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ABSTRACT 

Cai, Chao. M.S., Purdue University, December 2015. Arabidopsis Myosin is Involved in 
the Distribution and Dynamic Behavior of the Cellulose Synthase Complex . Major 
Professor: Christopher Staiger. 
 
 
Plant cells are encased in cell walls which are important for the growth and 

development of the organism. Primary cell wall consists mainly of polysaccharides with 

cellulose as the most abundant component. In plant cells, cellulose is synthesized by a 

plasma membrane (PM) localized protein complex called the cellulose synthase complex 

(CSC). It was previously reported that disrupting normal actin organization resulted in a 

reduction of cellulose content in Arabidopsis dark-grown seedlings. Furthermore, actin 

was found to facilitate the delivery of CSC into the PM, and inferred to be involved in 

endocytosis. As a motor protein that translocates cargo along actin filaments, myosin 

plays an important role in organelle and vesicle trafficking. However, it is not known 

whether myosin is involved in regulating cellulose deposition or CSC behavior. Here, we 

used biochemical analysis to determine the cellulose content in Arabidopsis etiolated 

seedlings, and found a significantly decreased cellulose content in a myosin xi-1, xi-2, 

and xi-k triple knockout mutant (xi3KO), indicating that myosin is involved in cellulose 

deposition. To evaluate the molecular mechanism underlying the role of myosin in CSC 

trafficking, we characterized and employed a new plant myosin inhibitor, 
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pentabromopseudilin (PBP), which was previously used to inhibit the function of animal 

and yeast myosins V. With this pharmacological tool, we discovered that treatments 

with myosin inhibitors reduced the density of CSC at the PM, as well as the rate of 

delivery of CSC to the PM, which is used to infer that plant myosin is involved in the 

delivery and internalization of CSC at the PM. Surprisingly, we found that the motility of 

CSC was significantly inhibited upon treatment with myosin inhibitors, which is different 

from the results with the actin-polymerization inhibitor Latrunculin B (LatB). Moreover, 

myosin inhibitor-treated cells showed an altered microtubule orientation, whereas LatB 

treatment had no effect. These results provide the first evidence that myosin is involved 

in cellulose deposition and offer insights for the potential mechanism of how myosin 

regulates CSC behavior. 
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CHAPTER 1. LITERATURE REVIEW 

1.1 Cellulose synthesis and cellulose synthase complex (CSC) 

Plants store energy from sunlight through photosynthesis, which provides the 

expanding population of Earth with energy and nutrition. A large proportion of 

carbohydrates produced by photosynthesis is used to generate cell wall biomass. The 

cell wall plays key roles in maintaining many fundamental aspects of plant form and 

function; for example, it determines the shape of different cell types, holds the cell 

against turgor pressure, protects plants from pathogenic microbes, and potentially 

induces defense responses from certain pathogen stimuli (Keegstra, 2010, Somerville, 

2006). There are mainly three types of polysaccharides in primary cell walls. Cellulose 

microfibrils wrap around cells and form the backbone of cell walls. Matrix 

polysaccharides, including hemicellulose and pectins, bind to and cross-link the parallel 

cellulose microfibrils, forming a strong network (Scheller & Ulvskov, 2010) and glue 

neighboring cells together (Harholt et al., 2010). 

Cellulose is arguably the most abundant and best-characterized wall component in plant 

cell walls, as well as the most abundant biopolymer on Earth (Keegstra, 2010). 

Crystalline cellulose microfibrils consist of a collection of β-1,4-glucan chains that are 

bundled together by hydrogen bonding (Carpita, 2011, Somerville, 2006). Unlike matrix 
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polysaccharides, which are synthesized in the Golgi apparatus and delivered into the 

extracellular space via the secretory pathway, cellulose microfibrils are synthesized from 

a large transmembrane enzyme complex at the plasma membrane (PM), named the 

cellulose synthase complex (CSC), and then deposited directly into the extracellular 

space (Mueller & Brown, 1980, Mueller et al., 1976, McFarlane et al., 2014). 

Cellulose synthase can be visualized as symmetrical rosettes of six multiprotein 

complexes by freeze-fracture, electron microscopy (EM) of PM preparations (Mueller et 

al., 1976). Each rosette contains a transmembrane domain of about 25~30 nm in 

diameter, and a much larger catalytic domain of about 50 nm wide (Bowling & Brown Jr, 

2008). The CSC rosettes contain cellulose synthase proteins (CESA), demonstrated using 

immuno-EM by Kimura et al. (1999). CESA was identified originally by homology of a 

cotton cDNA to bacterial cellulose synthase sequence (Pear et al., 1996), and later on, 

confirmed by functional analysis of an Arabidopsis temperature-sensitive cesa1 mutant, 

rsw1 (Arioli et al., 1998). To form a rosette of 30~36 subunits, at least 3 different types 

of CESA proteins are required (Taylor et al., 2003). The Arabidopsis genome contains 10 

CESA genes (Holland et al., 2000, Richmond, 2000). Through the analysis of mutants and 

antisense constructs, CESA1, CESA3, and CESA6 proteins are found to be necessary for 

the synthesis of primary cell walls (Fagard et al., 2000, Arioli et al., 1998), with CESA2 

and CESA5 displaying partially redundant function to CESA6 (Desprez et al., 2007). On 

the other hand, CESA4, CESA7, and CESA8 are required for the synthesis of secondary 

cell walls (Taylor et al., 2003). 
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1.2 The dynamic behavior of CSC in living cells  

In order to study the distribution and dynamic behavior of CSC in living cells, cesa 

mutant plants complemented with functional, fluorescent protein-tagged CESA proteins 

(FP-CESAs) were generated (Desprez et al., 2007, Paredez et al., 2006, Gutierrez et al., 

2009, Watanabe et al., 2015). With FP-CESAs, CSC can be observed at three cellular 

locations: the Golgi apparatus; small CESA compartments or microtubule-associated 

cellulose synthase compartments (SmaCC/MASCs); and the PM, which can be 

distinguished by morphology, localization, and motility patterns (Paredez et al., 2006, 

Crowell et al., 2009, Gutierrez et al., 2009).  

The behavior of CSC at all three locations appears to be dynamic/motile. The motility of 

CSC-containing Golgi depends upon actin and myosin (Crowell et al., 2009, Gutierrez et 

al., 2009, Sampathkumar et al., 2013). Disrupting normal actin organization with the 

actin-polymerization inhibitor latrunculin B (LatB) for 1~4 hours reduces the motility of 

CSC-containing Golgi apparatus (normally ~0.3 µm/s on average), and also results in 

Golgi clustering (Gutierrez et al., 2009, Sampathkumar et al., 2013). Small CESA 

compartments (SmaCCs), also called MASCs, are found to move along microtubules at a 

rate ~1 µm/min, and their motility is driven primarily by microtubule depolymerization 

(Crowell et al., 2009, Gutierrez et al., 2009). There is also data suggesting that a 

subpopulation of subcortical SmaCCs/MASCs move along actin filaments 

(Sampathkumar et al., 2013) and this will be discussed later. How SmaCCs/MASCs 

deliver CSC to the PM is currently unknown. While cortical microtubules appear to 

coincide with the location of CSC insertion, perturbation with oryzalin at moderate 
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doses does not inhibit the rate of delivery in FRAP experiments (Gutierrez et al., 2009). 

At the PM, CSCs move along a relatively linear trajectory, co-aligned with cortical 

microtubules, at a rate ~300 nm/min (Paredez et al., 2006). However, the motility of CSC 

at the PM, which is originally observed in epidermal cells from 3-d-old etiolated 

Arabidopsis hypocotyls expressing YFP-CESA6, is thought to be powered by the synthesis 

of cellulose microfibrils (Morgan et al., 2013, Paredez et al., 2006). 

Under normal physiological conditions, CSC does not stay at the PM forever. The 

estimated lifetime of CSC at the PM is ~8 min (Sampathkumar et al., 2013), and then 

internalized by clathrin-mediated endocytosis (Bashline et al., 2013, Bashline et al., 

2015). The internalized CSCs are thought to be substituted by new CSCs that are 

delivered into the PM (Gutierrez et al., 2009). In coordination with trans-Golgi 

network/early endosome (TGN/EE), SmaCC/MASCs may serve as a transfer station for 

the exchange of CSC at the PM (Gutierrez et al., 2009, Crowell et al., 2009, Luo et al., 

2015, Sampathkumar et al., 2013). Recent data from Lei et al., 2015 suggest that 

SmaCCs/MASCs are also involved in the recycling CSC back to the PM. This balance 

between delivery and internalization of CSC sets up an equilibrium which regulates the 

density of CSC at the PM (Sampathkumar et al., 2013). 

The distribution and dynamic behavior of CSC for cellulose synthesis in the primary and 

secondary cell walls are different. CSCs were found to be enriched in regions of the 

plasma membrane associated with bands of cortical microtubules during secondary wall 

deposition (Watanabe et al., 2015, Wightman & Turner, 2008). Originally, the motility of 

CSC during secondary cell wall formation was estimated as ten times faster than that in 
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primary cell wall formation, based on the observation of YFP-CESA7 in root vasculature 

(Wightman et al., 2009). However, due to the fact that the cells observed for secondary 

cell wall formation are buried deep inside the tissue, which creates imaging difficulties, 

the accuracy of the estimation in this study is questionable. Recently, a study of YFP-

CESA7 in 3-d-old etiolated hypocotyl epidermal cells that are induced to form ectopic 

secondary cell walls revealed that the motility of CSC in the PM during secondary cell 

wall formation is faster than that during primary cell wall formation by up to 1.5 fold 

(Watanabe et al., 2015). Moreover, the linear density of CSC along individual trajectories 

at the PM is higher during secondary cell wall formation compared to primary cell wall 

formation (Watanabe et al., 2015). The faster motility rate, combined with the higher 

density of CSC at the PM, results in markedly faster cellulose synthesis during secondary 

cell wall (Watanabe et al., 2015). 

 

1.3 Role of plant cytoskeleton system in regulating CSC behavior  

As the key regulator for numerous cellular processes, the plant cytoskeletal system plays 

important roles in regulating cellulose deposition (McFarlane et al., 2014, Bashline et al., 

2014). Cortical microtubules are hypothesized to guide the orientation of cellulose 

microfibrils (Li et al., 2015, McFarlane et al., 2014, Bashline et al., 2014). Originally, it 

was found that the orientation of cellulose microfibrils was sensitive to long-term 

treatment with colchicine, which was later characterized as a microtubule destabilizing 

drug (Green, 1962). Also, the localization of cortical microtubule appears to be oriented 

the same as cellulose microfibrils in grazing sections of EM micrographs (Ledbetter & 
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Porter, 1963). In recent years, visualization of cellulose synthase rosettes (CESA complex) 

by FP-CESAs shows that the rosettes co-align with, and move along cortical microtubules, 

even when the dynamic microtubules reoriented (Chan et al., 2010, Paredez et al., 2006). 

Completely depleting microtubules with 20 µM oryzalin for 7 hours results in a 

uniformly-dispersed distribution and trajectories of CESA, but no apparent change in 

CESA motility (Paredez et al., 2006). Thus, microtubules are necessary for orientation of 

cellulose microfibril deposition but not for cellulose synthesis per se. 

The mechanism of the “alignment hypothesis” was partially revealed by the discovery of 

proteins that interact with both microtubules and CSCs. Cellulose synthase interactive1 

(CSI1/POM2) was discovered to directly bind to both CESA subunits and microtubules (Li 

et al., 2012, Gu et al., 2010, Bringmann et al., 2012). In the csi1 mutant, CESA 

trajectories and microtubules are uncoupled, indicating that CSI1 is important for the 

co-alignment of CSC and microtubules (Bringmann et al., 2012, Mei et al., 2012, Li et al., 

2012). Another cellulose synthase interactive protein, CSI3, which is not functionally 

equivalent to CSI1, also showed a CSC regulatory function in a partial microtubule-

dependent manner (Lei et al., 2013).  

In addition to microtubules, actin filaments are involved in cellulose deposition (Bashline 

et al., 2014, McFarlane et al., 2014). During secondary cell wall formation, actin 

filaments are required for the delivery of CSC to the PM. YFP-CESA7-containing 

organelles move along actin filaments and pause at delivery sites, and PM-localized CSC 

bands disappear upon treatment with LatB (Wightman & Turner, 2008). Disrupting actin 

organization with LatB treatment or an act2 act7 double mutant causes a significant 
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reduction in crystalline cellulose content in etiolated seedlings (Sampathkumar et al., 

2013). Further, analyses of the distribution and dynamic behavior of CSC in etiolated 

hypocotyl epidermal cells reveals that actin regulates the dynamic behavior of CSC in 

Golgi, SmaCC/MASCs, and at the PM. The motility of CSC-containing Golgi was inhibited 

upon the disruption of actin filaments (Gutierrez et al., 2009, Crowell et al., 2009). In 

addition to cortical SmaCCs/MASCs that localize 0.3~0.6 µm below the PM focal plane, 

and move along cortical microtubules, another population of subcortical SmaCCs, which 

localizes 0.6~1.0 µm below the PM focal plane, has been identified to move along actin 

filaments (Sampathkumar et al., 2013). Disrupting actin organization causes an increase 

in the population of microtubule-dependent cortical SmaCCs, as well as abolishes the 

movement of subcortical SmaCCs (Sampathkumar et al., 2013). Moreover, the delivery 

(normally at rate ~10 particles/µm2/h) and internalization (inferred by lifetime) of CSC at 

the PM are significantly reduced in LatB-treated or act2 act7 mutant cells, suggesting 

that actin regulates the delivery and internalization of CSC (Sampathkumar et al., 2013). 

In these studies, the measurement of CSC density, which is unchanged by disruption of 

actin, is used to infer the rate of internalization. In addition, the motility rate of CSC at 

the PM is not altered in actin-disrupted cells, suggesting that the synthesis of cellulose 

might be independent of actin filaments. Despite the fact that actin filaments are 

involved in regulating cellulose deposition and CSC behavior, the molecular mechanism 

of how the actin-dependent delivery and internalization of CSC are driven is currently 

unknown. As the motor for translocation along actin filaments, myosin is a potential 
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candidate that could work with actin and provide the driving force for the delivery and 

internalization of CSC. 

 

1.4 Plant myosin is a potential CSC regulator  

Myosin is a huge family of motor proteins that exists ubiquitously in eukaryotic cells 

(Syamaladevi et al., 2012). One of the first characterized myosins is the conventional 

myosin II from sarcomeres which slides on actin filaments using the energy of ATP 

hydrolysis, resulting in muscle contraction (Vale & Milligan, 2000). There are also 

unconventional myosins in non-muscle cells, most of which function as a molecular 

motor to transport cargos along actin filaments. There are at least 24 classes of myosin 

identified among animal, yeast, and plant cells (Foth et al., 2006). Myosin commonly 

contains two parts: An N-terminal head domain and a C-terminal tail domain 

(Syamaladevi et al., 2012). The head domain is known as an actin-binding ATPase, which 

detaches from the actin filament when bound to ATP, and attaches to actin after the 

ATP is hydrolyzed. The power stroke occurs at the release of Pi from myosin, while it is 

attached to actin with ADP bound. (Lymn & Taylor, 1971). The tail domain is known as a 

cargo binding domain, which shows different specificity among different myosins (Li & 

Nebenführ, 2008). There are two classes of myosin found in higher plants. Class VIII and 

XI myosins in plants are closely related to class V myosins in animals and yeasts (Hodge 

et al., 2000, Richards & Cavalier-Smith, 2005). The Arabidopsis genome encodes 17 

myosin genes with four class VIII myosins and thirteen class XI myosins (Avisar et al., 

2009). Currently, there is no direct evidence supporting that myosin is involved in 
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cellulose deposition or CESA dynamics, however, some circumstantial evidence may 

implicate plant myosins in several aspects of CSC behavior. First, several studies 

demonstrate that myosin activity correlates with the size of plant organs and cells. 

Studies using myosin xi knockout mutants show that the inhibition of growth and size of 

Arabidopsis seedlings directly correlates with the number of myosin genes knocked out 

(Peremyslov et al., 2010, Ueda et al., 2010). Similarly, organ and cell size are reduced in 

dark-grown hypocotyls and light-grown roots of a myosin xi triple knockout mutant with 

myosin xi-1, xi-2, and xi-k (xi3KO) knocked out (Cai et al., 2014). Moreover, engineering 

myosin activity by swapping the head or ATPase domain with faster and slower motors 

directly correlates with rates of cytoplasmic streaming, plant cell, and organ size; faster 

myosin results in faster streaming, larger organs and cell size, whereas slower myosin 

results in slower streaming, smaller organs and cell size (Tominaga et al., 2013). 

Second, Arabidopsis myosin XI is implicated in callose and lignin-like wall polymer 

deposition during the response to fungal penetration (Yang et al., 2014). A myosin xi 

quadruple mutant as well as treatment with 2,3-butanedione monoxime (BDM) and N-

ethylmaleimide (NEM) (myosin inhibitors) exhibit delayed callose deposition and 

reduced lignin-like wall polymer deposition in leaf epidermal cells during Blumeria 

graminis infection (Yang et al., 2014). These results are used to infer that plant myosin is 

involved in cell wall deposition. 

Third, actin and myosin are implicated in several examples of exocytosis and 

endocytosis processes. The motility rate of SCAMP2-labeled secretory vesicles is 

significantly reduced in myosin xi triple knockout mutants, indicating that plant myosin 
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is involved in the secretory pathway (Peremyslov et al., 2012). Steady-state level 

secretion of Penetration 1 (PEN1) protein is myosin XI-dependent. The fluorescent 

intensity of GFP-PEN1 is significantly lower in the myosin xi quadruple mutants 

compared to wild type (WT) (Yang et al., 2014).  

Evidence also supports that actin and myosin are involved in endocytosis. The number 

of FM4-64 stained endosomes is significantly reduced in the myosin xi quadruple mutant 

compared to WT (Yang et al., 2014). Treatment with LatB and BDM inhibit the ligand-

induced endocytosis of flagellin receptor, FLS2 (Beck et al., 2012). However, there are 

contradictory data suggesting that actin filament arrays may also block endocytosis. 

Disrupting actin organization with LatB treatment actually promoted auxin-induced PIN1 

protein internalization (Nagawa et al., 2012). These data suggest multiple mechanisms 

for the involvement of actin during endocytosis in different biological processes (Li et al., 

2014, Baisa et al., 2013). 

 

1.5 The function of plant myosin can be interrogated genetically and 

pharmacologically 

Functions of plant myosin have been tested by numerous groups with genetic 

approaches by manipulating myosin genes. Overexpression of Arabidopsis or tobacco 

myosin XI tail domains in tobacco leaf cells, which causes a dominant-negative effect, 

inhibits the motility of peroxisomes, Golgi, and mitochondria (Avisar et al., 2008, 

Sparkes et al., 2008). Similar inhibitory effects on organelle motility were confirmed with 

Arabidopsis myosin xi mutants (Madison et al., 2015, Peremyslov et al., 2010, 
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Peremyslov et al., 2012, Ueda et al., 2010, Avisar et al., 2008, Ojangu et al., 2012). 

Moreover, myosin mutant plants are typically stunted and display smaller organs and 

cell sizes. In addition, the correlation between myosin motility rate and size of plant 

organ and cell was characterized using genetic approach, as described in the previous 

section. 

Another way to characterize myosin function that has been widely used in plant is 

pharmacological treatment with myosin inhibitors. Despite the potency of using 

mutants to study myosin function, there are several problems with the genetic 

approach to understanding plant myosin function. One issue is that plant genomes 

contain a large number of myosin genes which are thought to be functionally redundant 

(Prokhnevsky et al., 2008, Mühlhausen & Kollmar, 2013). Another issue is that plant cells 

may potentially compensate the function of a mutated gene as a way of dealing with 

long-term gene loss.  

Three drugs, NEM, BDM, and ML-7, are relatively widely used as plant myosin inhibitors. 

NEM modifies the sulfhydryl group of cysteine residues, and deactivates the motor 

activity in myosin head domain (Sekine et al., 1962). BDM was originally used as an 

inhibitor for the ATPase head domain of skeletal myosin II (Herrmann et al., 1992), 

however, it was subsequently demonstrated to be effective at inhibiting plant myosin XI 

extracted from Chara or lily pollen tube in vitro (Funaki et al., 2004, Tominaga et al., 

2000). Although it has been reported that low concentrations of BDM do not inhibit all 

myosin-dependent cellular processes in plant cells (McCurdy, 1999), it was shown that, 

at millimolar concentration, BDM can inhibit organelle motility and actin dynamicity 



12 

 

 

(Nebenführ et al., 1999, Staiger et al., 2009, Cai et al., 2014), which is consistent with 

the phenotype of myosin mutants. ML-7 is an inhibitor of myosin light chain kinase from 

smooth muscle (Saitoh et al., 1987). The assumed mechanism of ML-7 in plant cells is 

that it can inhibit the putative plant myosin light chain phosphorylation, which reduces 

the activity of myosin (Molchan et al., 2002). Despite the fact that there is limited 

information on the effectiveness and specificity of these drugs on plant myosin, most 

recent studies confirm their pharmacological results with two to three drugs treatment, 

or by combining with genetic studies. Despite potential problems, there are benefits of 

pharmacological studies. Inhibitor treatment offers acute poisoning of the motor, which 

allows us to study the motor activity in a short-term and dose-dependent manner 

Recently, new inhibitors of animal myosin V have been discovered, which could be 

potential candidates as plant myosin inhibitors. Pentabromopseudilin (PBP) reduces the 

rate constants for ATP binding, ATP hydrolysis and ADP dissociation from the myosin 

ATPase domain, as well as inhibits myosin V-dependent processes in budding yeast 

(Fedorov et al., 2009, Preller et al., 2011). Myosin V inhibitor-1 (MyoVin-1) can 

specifically inhibit ADP release from the actomyosin complex in an uncompetitive 

mechanism, thus slowing the actin-activated myosin V ATPase (Islam et al., 2010). Given 

that plant myosin proteins are close relatives of myosin V in animals and yeast (Richards 

& Cavalier-Smith, 2005, Mühlhausen & Kollmar, 2013), these drugs could be promising 

supplements for BDM in plant myosin studies. 

To gain a better understanding of how myosin might regulate cellulose deposition and 

cell wall assembly, we hypothesize that plant myosin is involved in regulating the 
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distribution and dynamic behavior of CSC. To test this hypothesis, we used myosin 

inhibitors, combined with spinning-disk confocal imaging of living plant epidermal cells 

expressing YFP-CESA6 (in prc1-1 mutant background). Quantitative analysis of CESA 

density at the PM, delivery rates, and velocity of movement during celluloses synthesis, 

revealed that plant myosin facilitates the delivery and internalization of CSC at the PM, 

as well as the rate of CSC motility. 
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CHAPTER 2. METHODS AND MATERIALS 

2.1 Plant materials and growth conditions 

The Arabidopsis mutant with myosin xi-1, xi-2, and xi-k knocked out (xi3KO) and the 

xi3KO mutant expressing vYFP-fABD2 were characterized previously (Peremyslov et al., 

2010). For Golgi and actin analysis, YFP-tagged Mannosidase I (YFP-ManI) and GFP-

tagged second actin-binding domain from Arabidopsis Fimbrin 1 (GFP-fABD2) seeds 

were from Staiger lab stocks (Sheahan et al., 2004, Nebenführ et al., 1999). For CSC 

imaging, the prc1-1 homozygous mutant expressing YFP-cellulose synthase 6 (YFP-CESA6) 

seeds were propagated from a previously characterized stock (Paredez et al., 2006, Li et 

al., 2012, Bashline et al., 2013), kindly provided by Ying Gu (Pennsylvaina State 

University). Seeds were surface sterilized and stratified at 4°C for 3 days on half-strength 

Murashige and Skoog (MS) medium supplemented with 1% sucrose and 1% agar. After 4 

h of exposure to light, plates were wrapped in three layers of aluminum foil and placed 

in continuous darkness. Three- to five-d-old seedlings used for cell wall determination 

and CSC imaging were grown vertically, and seedlings used for Golgi motility and actin 

analysis were grown horizontally at 21°C.  
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2.2 Drug treatment 

Latrunculin B (LatB), butanedione monoxime (BDM), isoxaben (ISX), and 2,6-

dichlorobenzonitrile (DCB) were purchased from Sigma-Aldrich. Pentabromopseudilin 

(PBP) was purchased from Adipogen Corporation. MyoVin-1 was purchased from EMD 

Millipore.  

For cellulose content and monosaccharide composition analysis, wild-type seedlings 

were grown on ½ MS plates containing 100 nM LatB. For Golgi motility assay as well as 

actin architecture and dynamics analyses, hypocotyls were pretreated for 15 min with 

mock (0.2% DMSO), 30 mM BDM, 10 µM PBP (from 2.5 mM stock solution in DMSO), or 

20 µM MyoVin-1 (from 5 mM stock solution in DMSO), and then mounted in 

corresponding solutions for imaging. For CSC density, CSC motility, and microtubule 

orientation analysis, hypocotyls were pretreated for 15 min with mock (0.2% DMSO), 10 

µM LatB (from 5 mM stock solution in DMSO), 30 mM BDM, 10 µM PBP, 100 nM ISX 

(from 100 mM stock solution in DMSO), or 5 µM DCB (from 5 mM stock solution in 

DMSO), and mounted in corresponding solutions for imaging. For CSC delivery analysis, 

hypocotyls were mounted in mock (0.2% DMSO), 10 µM LatB, 30 mM BDM, 10 µM PBP, 

100 µM PBP (from 25 mM stock solution in DMSO), 100 nM ISX, or 5 µM DCB, and 

imaged immediately. 

 

2.3 Cell wall determination 

Five-d-old hypocotyls were lyophilized and then ground in SDS buffer (1% SDS, 50 mM 

Tris-HCl, pH 7.2). The homogenate was washed sequentially with SDS buffer and 50% 
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ethanol at 60°C, and then with distilled water at ambient temperature. The sample was 

pelleted at 4,500 rpm, and considered as cell wall material (CWM). 

The amount of cellulose in CWM from etiolated Arabidopsis hypocotyls was determined 

by a method modified from Updegraff, 1969. CWM was resuspended with 0.9 mL 

distilled water, and 0.1 mL sample was taken for total sugar analysis. The rest of the 

sample was transferred into glass conical vials. For total cellulose determination, the 

non-cellulosic portion of CWM was hydrolyzed with 2 M TFA (containing 500 µM myo-

inositol as internal standard for monosaccharide analysis) at 120°C for 90 min. For 

crystalline cellulose determination, the non-cellulosic portion of CWM was hydrolyzed 

with acetic nitric reagent (acetic acid : nitric acid : water = 8:1:2) at 100°C for 60 min. 

The residue from hydrolysis was then washed with distilled water and aliquoted into 

three technical repeats. The amount of sugar in samples was measured using phenol 

sulfuric colorimetric assay (Dubois et al., 1956). In a test tube, 200 µL test sample and 

200 µL 5% (v/v) phenol were mixed together, then 2 mL concentrated sulfuric acid was 

introduced to develop color. After overnight incubation, O.D.500 was read, and then 

converted to weight by comparing to a standard curve generated from a known amount 

of cellulose (Dubois et al., 1956). 

To analyze the monosaccharide composition in CWM, the supernatant from TFA 

hydrolyzed samples was transferred into a small flat-bottom screw-cap tube, and mixed 

1:1 with tert-butanol, then dried under nitrogen gas overnight. After the sample was 

completely dried, 0.5 mL freshly-made 20 mg/mL NaBH4 in DMSO and 0.1 mL 1 M 

NH3·H2O was added, and incubated in a water bath at 40~45 °C for 90 min. The 
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reduction reaction was stopped by neutralizing with 100 µL glacial acetic acid, followed 

by 100 µL 1-methylimidazole. To generate alditol acetates, 750 µL anhydrous acetic 

anhydride was added into the sample, mixed thoroughly and incubated at 40~45 °C for 

30 min. The reaction was stopped by adding 1.5 mL distilled water. The alditol acetate 

was extracted with dichloromethane, and washed multiple times with distilled water 

before evaporated dichloromethane at 40~45 °C. The samples were then re-dissolved in 

500 µL dichloromethane, and then run through gas chromatography–mass spectrometry. 

The amount of each monosaccharide was calculated based on the proportional area 

under the corresponding peak comparing to the internal control (myo-inositol)(Carpita 

& Shea, 1989). 

 

2.4 Live-cell imaging  

For imaging Golgi and actin filaments in 5-d-old etiolated hypocotyl epidermal cells, 

variable-angle epifluorescence microscopy (VAEM) was performed using a TIRF 

illuminator on an IX-71 microscope (Olympus), equipped with a 60×1.45–numerical 

aperture PlanApo TIRF objective (Olympus). Both YFP-ManI and GFP-fABD2 were excited 

with a 488-nm laser line from a solid-state 50 mW laser (Intelligent Imaging Innovations), 

and emitted through a 525/30-nm filter, and captured with an EM-CCD camera (ORCA-

EM C9100-12; Hamamatsu Photonics). Time-lapse series for Golgi motility were taken at 

500-ms intervals for 121 frames, and for actin dynamics were taken at 1-s interval for 

100 frames. The VAEM platform was operated with Slidebook software (version 6.0; 

Intelligent Imaging Innovations). For CSC density, motility, and microtubule imaging, 
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spinning-disk confocal microscopy (SDCM) was performed using a Yokogawa scanner 

unit CSU-X1-A1 on an Olympus IX-83 microscope, equipped with a 100×1.4–numerical 

aperture UPlanSApo oil objective (Olympus). YFP-CESA6 and YFP-TUB5 were excited 

with a 514-nm laser, and emitted through a 542/27-nm filter, and captured with an 

Andor iXon Ultra 897BV EMCCD camera (Andor Technology). For CSC density and 

motility imaging, time-lapse images were collected at the plasma membrane with a 5-s 

interval for 5 or 61 frames, respectively. For microtubule analyses, images from a single 

focal plane were collected. The SDCM platform was operated with MetaMorph software 

(version 7.8.8.0; Molecular Devices) 

For fluorescence recovery after photobleaching (FRAP) experiments, images were 

collected with a Zeiss Observer Z.1 microscope, equipped with a Yokogawa CSU-X1 and 

a 100×1.46–numerical aperture PlanApo objective (Zeiss). YFP-CESA6 was excited with a 

515-nm laser line, and emitted through a 525/50 filter. Photobleaching was performed 

with a Vector scanner (Intelligent Imaging Innovations) with a 515-nm laser line at 100% 

power and 3 ms/scan. Time-lapse images were collected at the plasma membrane with 

a 5-s interval for 150 frames, with photobleaching in a region of interest (ROI) of 16 µm 

(100 pixels) in diameter after the 6th frame, and recovery monitored for a total of 12.5 

min. The FRAP platform was operated with Slidebook software (version 6.0; Intelligent 

Imaging Innovations). 
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2.5 Image processing and quantitative analysis 

Image processing and analysis were generally performed with ImageJ (version 1.5b), and 

will be mentioned specifically otherwise. 

For Golgi motility analysis, time-lapse series were converted to 8-bit, and run through 

“TrackMate” plugin with Laplacian of Gaussian (LoG) algorithm as particle detection 

filter. Trajectories detected by TrackMate were selected for analysis only if more than 5 

spots were on the trajectory and the mean trajectory quality was greater than 20. The 

parameter “Mean Speed” was then pooled, and plotted as the average Golgi motility 

rate. 

The analyses of actin architecture and dynamics followed the description in Cai et al., 

2014. For actin architecture analysis (filament abundance and extent of bundling), 

micrographs were cropped and converted to 8-bit. A custom macro written by Benjamin 

Staiger (Purdue University), combining the “skewness” and “density” algorithm 

originally from Higaki et al., 2010, was applied for image analysis. Overall actin 

dynamicity analyses were performed in MATLAB (version 7.14.0, MathWorks) using the 

method described in Vidali et al., 2010. Pair-wise Pearson correlation coefficient was 

calculated for all the possible time intervals sequentially. For the analysis of filament 

shape change, single actin filaments were hand tracked from time-lapse series 

generated for overall actin dynamicity analysis. Convolutedness and the rate of change 

of convolutedness were measured for actin filament shape change. Convolutedness is 

defined as the ratio of filament length divided by the Euclidean distance. The rate of 
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change of convolutedness is the average difference in convolutedness between 

consecutive frames divided by the time interval between frames. 

For the analysis of CSC distribution and dynamic behavior, background was subtracted 

using “Subtract Background” in ImageJ with rolling ball radius set at 30 pixels. Images 

were then cropped and converted to 8-bit for further analysis. For CSC density 

measurements, time projections were generated from five successive frames at 5-s 

intervals with “average intensity” algorithm in order to maximize the visualization of CSC 

at plasma membrane. The number of CSC was then counted with the LoG detector in 

TrackMate using the time projections. CSC density was calculated as the number of 

particles detected divided by the area of ROI.  

For CSC delivery analysis, an ROI was selected at the center of bleached area with a 

diameter of 12.8 µm (smaller than bleached area) to exclude the lateral movement of 

CSC into the bleached region (Sampathkumar et al., 2013). The density of CSC in the ROI 

was measured as described above. The CSC delivery rate was calculated as the slope of 

linear regression line from the first three minutes after photobleaching. CSC lifetime was 

calculated as density (from CSC density analysis) divided by delivery rate 

(Sampathkumar et al., 2013). For CSC motility rate measurements, kymographs were 

generated by following a trajectory of CSC particles in the time-lapse series. CSC motility 

rate was calculated as the reciprocal of the slope of individual CSC particles in 

kymographs (Paredez et al., 2006). 

The orientation of microtubules was analyzed based on the methods described in Ueda 

et al., 2010 and Cai et al., 2014. Images were rotated with longitudinal cell axis parallel 



21 

 

 

to the horizontal axis of the image, and then skeletonized through a bandpass filter. 

Average angle of microtubules with respect to the longitudinal cell axis and the 

parallelness of microtubules with respect to each other were measured with a custom 

written macro by Benjamin Staiger, which coordinates procedures within the kbi plugin 

(http://hasezawa.ib.k.u-tokyo.ac.jp/zp/Kbi/ImageJKbiPlugins). 

 

2.6 Statistical analysis 

Statistical analyses were performed using Excel (version 14.0.6112.500, Microsoft), 

MATLAB (version 7.14.0, MathWorks), or R (version 3.2.2). 

 

 

http://hasezawa.ib.k.u-tokyo.ac.jp/zp/Kbi/ImageJKbiPlugins
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CHAPTER 3. RESULTS 

3.1 Cellulose content is reduced in the myosin xi3KO mutant 

Recently, it was reported that Arabidopsis myosin is involved in regulating cell size, 

exocytosis, and cell wall deposition (Cai et al., 2014, Peremyslov et al., 2010, Tominaga 

et al., 2013, Yang et al., 2014). To test whether plant myosin regulates cellulose 

deposition, we measured cellulose content in a previously characterized mutant with 

myosin xi-1, myosin xi-2, and myosin xi-k knocked out (xi3KO) (Peremyslov et al., 2010). 

To determine the cellulose content, we prepared an alcohol-insoluble cell wall fraction 

and hydrolyzed non-cellulosic cell wall components with trifluoroacetic acid (TFA) 

(Gibeaut & Carpita, 1991) or acetic nitric (AN) reagent (Updegraff, 1969). The amount of 

cellulose in the residual fraction was measured with the phenol sulfuric colorimetric 

assay (Dubois et al., 1956). With TFA hydrolysis, both amorphous and crystalline 

cellulose would be left in the residue, however, AN reagent can also hydrolyze 

amorphous cellulose, leaving mainly the crystalline fraction (Updegraff, 1969). The 

xi3KO mutant had a significantly reduced cellulose content compared to the wild type 

(WT) control (Figure 3.1, A to D). Similarly, wild-type seedlings grown on medium 

containing the actin-polymerization inhibitor latrunculin B (LatB) showed a decrease in 

cellulose content (Figure 3.1, A to D), which is consistent with a previous study 
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(Sampathkumar et al., 2013). This result demonstrates that plant myosin is involved in 

cellulose deposition. 

In addition to cellulose content, we also analyzed cell wall monosaccharide composition 

to test whether non-cellulosic cell wall components were altered in the xi3KO mutant. 

The amount of monosaccharides was measured with gas chromatography-mass 

spectrometry from alditol acetates generated from the TFA-soluble cell wall fraction 

(Gibeaut & Carpita, 1991). There were no significant differences in amounts of individual 

monosaccharides with LatB treatment or in the xi3KO mutant (Figure 3.1E).  

 

3.2 Validation of PBP as a myosin inhibitor in plant cells  

Butanedione monoxime (BDM) is the most commonly used myosin inhibitor in plants, 

but its mode of action has been questioned (McCurdy, 1999). Pentabromopseudilin (PBP) 

and MyoVin-1 are potent inhibitors of myosin V in animal cells (Fedorov et al., 2009, 

Islam et al., 2010). Moreover, PBP inhibits the myosin-dependent polarized distribution 

of mitochondria in budding yeast, indicating a cross-kingdom effectiveness (Fedorov et 

al., 2009). Considering that both plant class VIII and XI myosins are closely related to 

class V myosins (Hodge et al., 2000, Mühlhausen & Kollmar, 2013), PBP and MyoVin-1 

may be potential candidates as plant myosin inhibitors. To test this, we measured Golgi 

motility, which has been characterized primarily as a myosin XI-dependent cellular 

process (Peremyslov et al., 2008, Peremyslov et al., 2010, Prokhnevsky et al., 2008). To 

measure Golgi motility, time-lapse series were collected from 5-d-old etiolated 

hypocotyls expressing YFP-Mannosidase I (YFP-ManI) with variable-angle 
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epifluorescence microscopy (VAEM). Hypocotyls were treated for 15 min with mock, 30 

mM BDM, 10 µM PBP, or 20 µM MyoVin-1 prior to imaging. Two types of Golgi 

movement in epidermal cells have been described, with fast directional movement 

supported by actin bundles and regional wiggling presumably trapped by actin 

meshwork (Akkerman et al., 2011). Representative time projections which display the 

trajectories of Golgi motility showed a directional fast Golgi movement upon mock and 

MyoVin-1 treatment (Figure 3.2, A and B), however, in BDM and PBP treated cells, the 

majority of Golgi wiggled in a confined area (Figure 3.2, A and B). Quantitative analysis 

of Golgi motility showed a significant reduction in rates upon BDM and PBP treatment 

compared to mock treatment, but no significant difference was detected following 

MyoVin-1 treatment (Figure 3.2C). This result indicates that PBP can effectively reduce 

Golgi motility, and validates its use as a myosin inhibitor in plants.  

We also examined actin organization and dynamic behavior, which were found to be 

myosin dependent previously (Cai et al., 2014, Park & Nebenführ, 2013). It has been 

shown that the overall actin dynamicity in Arabidopsis hypocotyl epidermal cells was 

reduced in the xi3KO mutant, and that myosin generates forces for the buckling and 

straightening of actin filaments (Cai et al., 2014). Representative images of epidermal 

cells from hypocotyls expressing the actin reporter GFP-fABD2 (Sheahan et al., 2004) 

showed that the cortical actin array was more dense in BDM-treated cells compared to 

mock treatment, but there were no obvious changes in PBP- or MyoVin-1-treated cells 

(Figure 3.3A). Quantitative analyses were performed to analyze the architecture of 

cortical actin arrays. Skewness and density were measured to evaluate the extent of 
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bundling and the percentage of occupancy of actin filaments in epidermal cells 

respectively (Higaki et al., 2010, Henty et al., 2011). Cells treated with BDM had a 

significantly increased percentage of occupancy and slightly reduced bundling of actin 

arrays compared to mock treatment; however, no significant differences were detected 

following PBP or MyoVin-1 treatment (Figure 3.3, B and C). 

In addition to myosin inhibitors, we also validated the effectiveness of LatB treatment in 

disrupting cortical actin arrays. Cells treated with 100 nM or 10 µM LatB for 15 min 

showed fragmented actin filament arrays, as well as decreased filament abundance 

(Figure 3.4A). Quantitative analysis of actin architecture revealed that the percentage of 

occupancy was reduced in a LatB-dependent manner (Figure 3.4B). Extent of bundling 

was increased after the treatment with 10 µM LatB (Figure 3.4C). These results 

suggested that short-term LatB treatment can disrupt, but not abolish, cortical actin 

filament arrays. 

To analyze whether actin dynamics were altered by treatment with potential myosin 

inhibitors, time-lapse series were collected. We first quantified overall actin dynamicity 

by calculating the correlation coefficient of pixel intensity for all pairwise temporal 

intervals (Vidali et al., 2010). The correlation coefficient curves for BDM and PBP 

treatment decayed significantly slower compared to mock and MyoVin-1 treatment 

(Figure 3.3D), indicating a decreased overall actin dynamicity in the presence of myosin 

inhibitors. Convolutedness and the rate of change of convolutedness were measured to 

test whether myosin-dependent actin buckling and straightening are altered by the 

treatment with potential myosin inhibitors (Cai et al., 2014). The convolutedness of 
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single actin filaments showed no difference after BDM, PBP, or MyoVin-1 treatment 

compared to mock (Figure 3.3E). However, BDM and PBP treatment caused a significant 

reduction in the rate of change of convolutedness (Figure 3.3F), indicating that filament 

buckling and straightening was reduced following the treatment with PBP and confirms 

previous results with BDM (Cai et al., 2014). These results showed that PBP can inhibit 

multiple myosin-dependent processes, and thus could be a potential candidate as a 

myosin inhibitor in plants. MyoVin-1, on the other hand, seems not to affect myosin-

dependent processes in plant cells; we therefore forego further use in this study. 

 

3.3 Apparent CSC density at the plasma membrane is reduced after myosin inhibitor 

treatment  

One possible explanation for the reduction of cellulose content in the xi3KO mutant is 

that the amount of CSCs at the plasma membrane (PM), available for cellulose synthesis, 

is decreased in the absence of myosin activity. We analyzed the distribution and 

dynamic behavior of CSC using Arabidopsis plants expressing functional YFP-CESA6 that 

complemented a prc1-1 mutant (Paredez et al., 2006). To test whether myosin activity is 

involved in regulating CSC density at the PM, we examined the distribution of PM-

localized CSC in response to myosin inhibitor treatment using time-lapse spinning-disk 

confocal microscopy (SDCM). Time projections were generated to enhance the 

detection of CSC, based on the slow motility of CSC at the PM (Paredez et al., 2006). 

Representative time projections showed a reduced amount of CSCs upon BDM and PBP 

treatment (Figure 3.5, A and B). Quantitative analysis of the number of CSCs showed 
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that, in mock-treated epidermal cells, CSCs density was 1.32 ± 0.03 particles/µm2 (Figure 

3.5C), which is consistent with a value of 1.34 ± 0.08 particles/µm2 observed by 

Sampathkumar et al., 2013.  A significant reduction of CSC density upon treatment with 

BDM and PBP compared to mock treatment was observed (Figure 3.5C). In contrast, 

treatment with the actin-polymerization inhibitor LatB as well as the cellulose synthase 

inhibitor 2,6-dichlorobenzonitrile (DCB), had no significant effect on CSC density, 

whereas another cellulose synthesis inhibitor isoxaben (ISX) showed a decrease in CSC 

density compared to mock treatment (Figure 3.5, A-C). The results with LatB and ISX are 

consistent with previous studies (Sampathkumar et al., 2013, DeBolt et al., 2007, 

Gutierrez et al., 2009). Our new data suggest that myosin is involved in regulating the 

abundance of CSC at the PM. 

 

3.4 Rate of delivery and apparent lifetime of CSC at the PM are affected by myosin 

inhibitors  

The density of CSC at the PM is regulated by the dynamic balance of delivery and 

internalization (Bashline et al., 2013, Bashline et al., 2015). It was reported that 

disrupting actin organization genetically and pharmacologically could hinder both the 

delivery and uptake of CSC at PM (Sampathkumar et al., 2013). As a motor protein that 

translocates organelles and vesicles along actin filaments, myosin could possibly be 

involved in exocytosis, endocytosis, or both. Thus, we hypothesized that the reduction 

of CSC density at the PM upon myosin inhibitor treatment is due to the disruption of the 

balance between delivery and internalization of CSC. Fluorescence recovery after 
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photobleaching (FRAP) experiments have been applied in several studies to analyze the 

rate of delivery of CSC to the PM (Sampathkumar et al., 2013, Bashline et al., 2013, 

Gutierrez et al., 2009). To avoid error that may be introduced through lateral movement 

of CSCs, we analyzed a region of interest (ROI) that is smaller than the bleached area 

(Figure 3.6A) (Sampathkumar et al., 2013). By counting the number of CSC particles in 

ROIs after photobleaching, we observed that the recovery of CSCs in the bleached area 

was slower upon LatB, BDM, and PBP treatment compared to mock treatment (Figure 

3.6B). Indeed, a higher concentration of PBP (100 µM) showed even greater inhibition of 

recovery than did 10 µM PBP (Figure 3.6B). The delivery rate of CSC to the PM was 

calculated as the slope of linear regression during the initial 3 min of recovery 

(Sampathkumar et al., 2013). In mock-treated epidermal cells, CSCs were delivered at a 

rate of 0.22 ± 0.02 particles/µm2/min (Figure 3.6C), which is consistent with a value of 

0.19 ± 0.02 particles/µm2/min observed by Sampathkumar et al., 2013. Epidermal cells 

treated with LatB, BDM, and PBP had significantly decreased delivery rates compared to 

mock treatment (Figure 3.6C). In addition, PBP showed inhibition of CSC delivery in a 

dose-dependent manner (Figure 3.6C). Despite the fact that there is no direct 

measurement for the internalization rate of CSC, calculated lifetime using density 

divided by delivery rate has been adapted to estimate the endocytosis of CSC 

(Sampathkumar et al., 2013). The calculated lifetime was significantly extended upon 

the treatment with LatB, BDM, and PBP compared to mock treatment (Figure 3.6D). 

However, LatB was more potent than both myosin inhibitors, which had CSC lifetimes 

only slightly greater than mock treatment. As controls, CSC inhibitors, ISX and DCB, 
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showed a significant decrease in CSC delivery rate and a marked increase in lifetime. 

These results indicate that plant myosin is involved in regulating both the delivery and 

internalization of CSC at the PM. 

 

3.5 Motility rate of CSC at the PM is reduced by myosin inhibitors  

In addition to the amount of CSC at the PM, the rate of cellulose synthesis can also 

affect cellulose content. Given that the synthesis of cellulose microfibrils is thought to 

be the driving force for motility of CSCs at the PM (Morgan et al., 2013, Paredez et al., 

2006), we analyzed the rate of motility of CSCs as an indirect measurement to test 

whether the CESA activity was altered. To test whether myosin could regulate CSC 

motility, time-lapse series were obtained with SDCM, and time projections were 

generated to visualize the trajectories of CSC motility (Figure 3.7A). Representative time 

projections and kymographs showed that CSCs traveled bidirectionally on linear 

trajectories in mock- and LatB-treated cells. However, the trajectories in BDM- and PBP-

treated cells are not quite visible, suggesting that the motility was lowered (Figure 3.7, A 

and B). Quantitative analysis of CSC motility using kymographs (Paredez et al., 2006) 

revealed that BDM and PBP treatments had significantly reduced CSC motility rates 

compared to mock and LatB treatments (Figure 3.7, B and C). ISX and DCB treatments 

also inhibited CSC motility significantly, as reported in a previous study (DeBolt et al., 

2007). These results indicate that myosin influences CESA activity. 



30 

 

 

3.6 Microtubule orientation is altered upon treatment of myosin inhibitors  

One of the factors that coordinates the motility of CSC at the PM is the cortical 

microtubule array. Microtubules guide the trajectories of CSC motility (Paredez et al., 

2006, Chan et al., 2010). There is genetic and pharmacological evidence suggesting that 

CESA activity can influence microtubule orientation and stability (Persson et al., 2007). 

Thus, we hypothesized that altering CSC distribution and dynamic behavior with myosin 

inhibitors can alter microtubule orientation. To test this hypothesis, we examined 

microtubule organization in epidermal cells from 3-d-old etiolated hypocotyls expressing 

yellow fluorescent protein tagged β-tubulin 5 (YFP-TUB5) (Shaw et al., 2003, Staiger et 

al., 2009). Representative images showed that microtubules were mainly oriented 

transverse to the longitudinal axis of the cell in both mock- and LatB-treated cells (Figure 

3.8A). However, treatment with myosin inhibitors resulted in microtubule orientations 

that were oblique (PBP) or even parallel (BDM) to the longitudinal cell axis (Figure 3.8A). 

Quantitative analyses of the average angle of microtubules against the longitudinal axis 

of cells (Cai et al., 2014, Ueda et al., 2010) showed that BDM and PBP treatment had a 

significantly decreased angle compared to mock and LatB treatment, confirming that 

microtubule orientation changed more longitudinally upon treatment with myosin 

inhibitors (Figure 3.8B). Parallelness of microtubules with respect to each other was also 

measured (Cai et al., 2014, Ueda et al., 2010). PBP treatment showed a significantly 

decreased parallelness compared to mock treatment, indicating a less ordered 

microtubule array after PBP treatment (Figure 3.8C). However, BDM showed an increase 
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in parallelness compared to mock treatment (Figure 3.8C). These results demonstrate 

for the first time that myosin can influence microtubule organization. 
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Figure 3.1. Cellulose content is reduced in the myosin xi3KO mutant.  
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Figure 3.1. Cellulose content is reduced in the myosin xi3KO mutant. 
Ethanol-insoluble cell wall material (CWM) was prepared from 5-d-old etiolated 
hypocotyls of wild-type Col-0 (WT), the myosin xi3KO mutant, and WT growing on plates 
containing 100 nM latrunculin B (LatB). (A to D) Cellulose content was measured. The 
non-cellulosic component of CWM was hydrolyzed with 2 M trifluoroacetic acid (TFA; A 
and C) or acetic nitric reagent (AN; B and D). The amount of cellulose and total sugar 
were then determined by a phenol sulfuric colorimetric assay and converted to weight 
amounts for determination. Cellulose content was plotted as the ratio of total sugar (A 
and B) or dry weight (C and D). The cellulose content was significantly reduced in LatB-
treated and xi3KO mutant hypocotyls compared to WT. Values given are means ± SD (n 
= 4 biological repeats; Student’s t test, *P <0.05, **P < 0.01). (E) Monosaccharide 
composition was analyzed by gas chromatography-mass spectrometry (GC-MS) with 
alditol acetates generated from the TFA-soluble fraction of CWM. There were no 
significant differences in amounts of individual monosaccharides. Values given are 
means ± SD (n = 4; Student’s t test, P > 0.05). 
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Figure 3.2. Myosin inhibitor treatments reduce Golgi motility in hypocotyl epidermal 
cells. 
 (A) Representative time projections show the trajectories of Golgi motility from 5-d-old 
etiolated hypocotyls expressing YFP-Mannosidase I (YFP-ManI). Hypocotyls were treated 
for 15 min with mock (0.2% DMSO), 30 mM 2,3-butanedione monoxime (BDM), 10 µM 
pentabromopseudilin (PBP), or 20 µM MyoVin-1 prior to imaging. Variable-angle 
fluorescent microscopy (VAEM) time-lapse series were collected from epidermal cells in 
the basal region of the hypocotyl at 0.5-s intervals for 121 frames. Time projections 
were generated with maximum intensity of all 121 images. Bar = 10 µm. (B) Trajectories 
of Golgi motility detected with ImageJ plugin “TrackMate” in (A). Heat map of 
trajectories indicates the maximum speed from 0.4 to 6 µm/s. (C) Box-whisker plots 
show Golgi motility in inhibitor-treated epidermal cells. The body of the box consists of 
median, the first and third quartiles. Whiskers represent 1.5 times of inter-quartile 
range (IQR) above or below the first and third quartiles, respectively. Outliers are not 
shown in the plot. Red solid circles show the average Golgi motility rates. The rate of 
Golgi motility was significantly decreased after BDM and PBP treatments, whereas 
MyoVin-1 had little or no effect. Values given are means ± SE (n > 5000 trajectories from 
20 hypocotyls per treatment; Student’s t test, **P < 0.01).  
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Figure 3.3. Myosin inhibitors reduce actin dynamics. 
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Figure 3.3. Myosin inhibitors reduce actin dynamics.  
(A) Representative images of epidermal cells from 5-d-old etiolated hypocotyls 
expressing GFP-fABD2 treated for 15 min with mock (0.2% DMSO), 30 mM BDM, 10 µM 
PBP, or 20 µM MyoVin-1 prior to imaging. VAEM images were collected from the basal 
region of the hypocotyl. Bar = 10 μm. 
(B) and (C) Quantitative analyses of the architecture of actin arrays in drug-treated 
epidermal cells. (B) Percentage of occupancy (density) was measured. Filament density 
was significantly increased in BDM-treated cells compared to mock treatment, whereas 
PBP and MyoVin-1 had no effect. Values given are means ± SE (n ≥ 100 images from 20 
seedlings per treatment; t test: **P < 0.01). (C) The extent of filament bundling 
(skewness) was measured. Bundling was slightly decreased in BDM-treated cells 
compared to mock treatment. The same images used for (B) were analyzed for bundling 
(t test: **P < 0.01). 
(D) Pairwise correlation coefficient was calculated at all possible temporal spacings from 
time-lapse series of epidermal cells in the basal region of the hypocotyl. Filaments in 
BDM- and PBP-treated cells had significantly reduced overall actin dynamicity compared 
to mock treatment, whereas MyoVin-1 had no effect. Values given are means ± SE (n ≥ 
35 cells from 20 seedlings per treatment; analysis of variance, P < 0.01). 
(E) and (F) Quantitative analyses of single actin filament shape change in drug-treated 
epidermal cells. (E) Convolutedness showed no significant difference in all myosin 
inhibitor-treated cells compared to mock treatment. (F) Rate of change of 
convolutedness was significantly decreased in cells treated with BDM and PBP 
compared to mock treatment. The same images used for (D) were analyzed for filament 
shape change. Values given are means ± SE (n ≥ 50 filaments from 10 seedlings per 
treatment; t test: **P < 0.01).  
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Figure 3.4. LatB treatment disrupts cortical actin arrays. 
(A) Representative images of epidermal cells from 5-d-old etiolated hypocotyls 
expressing GFP-fABD2 treated for 15 min with mock (0.2% DMSO), 100 nM LatB, 10 µM 
or LatB prior to imaging. VAEM images were collected from the basal region of the 
hypocotyl. Bar = 10 μm. 
(B) and (C) Quantitative analyses of the architecture of actin arrays in drug-treated 
epidermal cells. (B) Percentage of occupancy (density) was measured. Filament density 
was significantly reduced in LatB-treated cells compared to mock treatment. Values 
given are means ± SE (n ≥ 100 images from 20 seedlings per treatment; t test: *P < 0.05, 
**P < 0.01). (C) The extent of filament bundling (skewness) was measured. Bundling was 
increased in cells treated with 10 µM LatB compared to mock treatment. The same 
images used for (B) were analyzed for bundling (t test: **P < 0.01). 

  



38 

 

 

 
Figure 3.5. The density of CSC particles at the PM is reduced after treatment with 
myosin inhibitors. 
(A) Representative time projections of plasma membrane (PM)-localized YFP tagged 
cellulose synthase 6 (YFP-CESA6) particles showing the distribution of cellulose synthase 
complex (CSC) in hypocotyl epidermal cells. Hypocotyls were treated for 15 min with 
mock (0.2% DMSO), 10 µM LatB, 30 mM BDM, 10 µM PBP, 100 nM isoxaben (ISX), or 5 
µM 2,6-dichlorobenzonitrile (DCB) prior to imaging. Time-lapse series were collected 
with spinning-disk confocal microscopy from epidermal cells at the apical region of 3-d-
old hypocotyls using 5-s intervals for 5 frames. Time projections were generated with 
average intensity for all 5 images. Bar = 10 µm. (B) Magnified ROIs (yellow box in A) with 
CSC particles detected using “TrackMate” plugin from ImageJ (marked in purple). The 
number of particles in each ROI is given in orange. Bar = 5 µm. (C) Quantitative analysis 
of CSC density in inhibitor-treated epidermal cells. The CSC density was significantly 
decreased after BDM, PBP, and ISX treatments, but not with LatB and DCB treatments. 
Values given are means ± SE (n > 20 cells per treatment; Student’s t test, **P < 0.01). 
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Figure 3.6. Delivery of CSC to the PM is inhibited by myosin inhibitors. 
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Figure 3.6. Delivery of CSC to the PM is inhibited by myosin inhibitors. 
(A) Representative time projections of PM-localized CSC particle recovery after 
photobleaching following treatment with mock (0.2% DMSO), 10 µM LatB, 30 mM BDM, 
10 µM PBP, 100 µM PBP, 100 nM ISX, or 5 µM DCB. Three-d-old hypocotyls were 
mounted in inhibitor and time-lapse series were collected from epidermal cells by 
spinning-disk confocal microscopy with 5-s intervals for 150 frames. One region (circle in 
red solid line) was photobleached using 100% laser power with the 515-nm laser line 
after the 6th frame. Time projections were generated with average intensity for the last 
5 images from each minute. CSC particles were measured within the region of interest 
(ROI, circle in yellow dashed line). Bar = 5 µm. (B) Quantitative analysis of CSC density 
before and after photobleaching. Values given are means ± SE (n = 10 ROIs per 
treatment). (C) The delivery rate of CSC to the PM was calculated as the slope of linear 
regression from the CSC density within each ROI during the initial 3 min of recovery. 
Values given are means ± SE (n = 10 ROIs per treatment; Student’s t test,*P<0.05, **P < 
0.01). (D) Lifetime of CSC at the PM was calculated using the delivery rate in (C) divided 
by CSC density in Figure 3.5C. The CSC delivery rate was significantly reduced, and the 
apparent lifetime was increased after treatment with LatB, BDM, PBP, ISX, and DCB.  
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Figure 3.7. The motility of CSC at the PM is reduced by myosin inhibitors. 
 (A) Representative time projections of the trajectories of CSC particles at the PM 
following 15 min treatment with mock (0.2% DMSO), 10 µM LatB, 30 mM BDM, 10 µM 
PBP, 100 nM ISX, or 5 µM DCB. Time-lapse series of epidermal cells from the apex of 3-
d-old hypocotyls were collected by spinning-disk confocal microscopy using 5-s intervals 
for 61 frames. Time projections were generated with average intensity of all 61 images. 
Bar = 10 µm. (B) Kymographs of selected trajectories (red lines) in (A). Bar = 5 µm. (C) 
Box-whisker plots show the motility rate of CSC measured by kymograph after drug 
treatments. The body of the box consists of median, the first and third quartiles. 
Whiskers represent 1.5 times of inter-quartile range (IQR) above or below the first and 
third quartiles, respectively. Black empty circles represent outliers off the range of 
whiskers. Red solid circles show the average CSC motility rate. Quantitative analyses 
show that BDM, PBP, ISX, and DCB treatment significantly reduced the motility of CSC at 
the PM (n > 500 CSC particles per treatment, Student’s t test, **P<0.01). 
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Figure 3.8. Myosin inhibitors induce the reorientation of cortical microtubules. 
 (A) Representative images of epidermal cells from 3-d-old etiolated hypocotyls 
expressing YFP-tagged β-tubulin5 (YFP-TUB5). Hypocotyls were treated for 15 min with 
mock (0.2% DMSO), 100 nM LatB, 30 mM BDM, or 10 µM PBP prior to imaging. Images 
were collected with spinning-disk confocal microscopy at the apical region of 3-d-old 
hypocotyls. Bar = 10 µm. (B and C) Quantitative analyses of the orientation of cortical 
microtubule arrays. (B) Average angle of microtubules with respect to the longitudinal 
axis of epidermal cells was measured. Angle was significantly decreased upon BDM and 
PBP treatment. (C) The parallelness of microtubules with respect to each other was 
measured. Parallelness was significantly reduced after PBP treatment, whereas BDM 
modestly, but significantly increased parallelness of microtubules. Values given are 
means ± SE (n > 100 cells, Student’s t test, *P < 0.05, **P < 0.01).  
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CHAPTER 4.  DISCUSSION 

4.1 Summary of results 

In this study, we dissected the role of plant myosin in cell wall assembly, including 

cellulose deposition as well as the distribution and dynamic behavior of cellulose 

synthase complexes (CSCs). Biochemical determination of cellulose content showed that 

the amount of crystalline cellulose was significantly decreased in a myosin xi triple 

knockout mutant (xi3KO). In order to test the function of myosin in regulating CSC 

distribution and dynamic behavior, we identified pentabromopseudilin (PBP) as a 

potential plant myosin inhibitor. Short-term treatment with PBP reduced the rate of 

Golgi motility as well as overall actin dynamicity, which are myosin-dependent processes. 

Combining a pharmacological approach with high resolution live-cell imaging, we found 

that CSC density at the plasma membrane (PM) was reduced when plant myosin activity 

was inhibited with PBP and BDM treatments. This reduction of CSC density could be due 

to a disruption of the balance between delivery and internalization of CSC at the PM. 

Inhibiting actin polymerization and myosin activity caused a reduced CSC delivery rate 

and an increased CSC lifetime at the PM. Surprisingly, we found that myosin influences 

CSC motility in an actin-independent manner, as PBP treatment inhibits the motility of 

CSC at the PM, whereas disrupting actin organization does not. Finally, inhibiting myosin 
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activity also altered cortical microtubule orientation, which could potentially be related 

to the inhibition of CSC motility, or could represent a form of actin-microtubule crosstalk. 

 

4.2 Validation of PBP as a myosin inhibitor for use in plants 

Inhibitors of myosin have been widely used to study myosin function. In plants, N-

ethylmaleimide (NEM), ML-7, and 2,3-butanedione monoxime (BDM) have been widely 

used to test myosin function. There are advantages as well as potential risks associated 

with use of these drugs as myosin inhibitors in plants. 

NEM is a sulfhydryl group crosslinker, which potentially inhibits the activity of many 

different proteins, including myosins. Myosin protein crosslinked with NEM shows no 

motor activity, but can still bind to actin filaments (Sekine et al., 1962). One problem 

with NEM is its poor specificity, especially for in vivo experiments. In biology studies, 

NEM is often used as an irreversible inhibitor to modify cysteine residues at the active 

site of proteins (Gregory, 1955), thus this reaction is not specific to myosin. Actually, 

NEM has been found to inhibit multiple cellular processes in plants. For example, NEM 

inhibits the auxin-stimulated NADH oxidase activity in soybean (Morré et al., 1995), and 

also inactivates plasma membrane H+-ATPase in oats (Katz & Sussman, 1987). Thus, 

results using NEM on plant cells to inhibit myosin-based functions, for example 

chloroplast motility in Vallisneria mesophyll cells (Liebe & Menzel, 1995), should be 

interpreted with caution. 

ML-7 has been characterized as an inhibitor of smooth muscle myosin light chain kinase 

(MLCK), which blocks the phosphorylation of myosin light chain (MLC), thereby 
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inhibiting the activity of smooth muscle myosin II (Saitoh et al., 1987). Treatment of 

plant cells with ML-7 blocked cytoplasmic streaming in Tradescantia stamen hair cells 

(Molchan et al., 2002), and inhibited chloroplast accumulation in Arabidopsis leaf cells 

(Paves & Truve, 2007); however, any conclusions about plant myosin function drawn 

from ML-7 treatment are rather questionable. First, the inhibitory effect of ML-7 is not 

specific to MLCK, even in animal cells. Although ML-7 has better selectivity than its 

precursor ML-9, it still shows inhibition of mitogen- and stress-activated protein kinase 1 

(MSK1) (Bain et al., 2003, Saitoh et al., 1987). Second, there are no genes characterized 

as MLC in the Arabidopsis genome, and consequently, no MLCK genes or proteins have 

been identified. However, functional analysis of plant myosin sequences show that plant 

myosin contains multiple IQ motifs, which serve as potential binding sites for light 

chains (Syamaladevi et al., 2012). Also, it was reported that actomyosin-dependent 

vesicle transport in Chara can be regulated by calcium signaling and phosphorylation 

(Morimatsu et al., 2002, McCurdy & Harmon, 1992). The detection of calmodulin (CaM) 

in myosin extracts from lily pollen tubes and tobacco Bright Yellow 2 (BY-2) cells has 

been used to suggest that CaM might be a MLC in plants (Yamamoto et al., 1999, Yokota 

et al., 1999b, Yokota et al., 1999a). Thus, the potential effectiveness of ML-7 in inhibiting 

myosin-related cellular processes should not be ruled out, but the specificity of the drug 

can only be tested after the real target is identified.  

Butanedione monoxime (BDM) was originally found to inhibit the contraction of cardiac 

muscle (Bergey et al., 1981, Li et al., 1985), and later, characterized as a non-competitive 

inhibitor of skeletal myosin II ATPase, by stabilizing the M·ADP·Pi intermediate 



46 

 

 

(Herrmann et al., 1992, McKillop et al., 1994). The effectiveness of BDM on plant myosin 

XI has been demonstrated through in vitro biochemical studies. The in vitro motility of 

myosin proteins isolated from Chara or lily pollen tubes is inhibited by BDM treatment 

(Funaki et al., 2004, Tominaga et al., 2000). Also, treatment with BDM inhibits organelle 

motility and actin dynamicity, which are consistent with results from myosin xi mutants 

(Nebenführ et al., 1999, Peremyslov et al., 2010, Ueda et al., 2010, Staiger et al., 2009, 

Cai et al., 2014). BDM has been used as a general myosin inhibitor due to its inhibition of 

non-muscle myosin II and myosin V (Cramer & Mitchison, 1995), and is currently 

considered as the best characterized plant myosin inhibitor. However, BDM has 

relatively low affinity for the myosin ATPase domain, and has to be applied in tens of 

millimolar concentration to be effective (Funaki et al., 2004). In animal cells, BDM 

affects serine/threonine protein phosphorylation (Stapleton et al., 1998), which raises 

the problem of off-target inhibition in plant cells. 

In this study, we tested two myosin V inhibitors, pentabromopseudilin (PBP) and myosin 

V inhibitor-1 (MyoVin-1), as potential plant myosin inhibitors. We found that PBP, at 

micromolar concentration, could inhibit myosin-dependent Golgi motility and actin 

dynamicity similar to BDM, whereas MyoVin-1 showed no difference compared to mock 

treatment, indicating that PBP may be used as a new myosin inhibitor in plants. Further 

studies using an Arabidopsis line expressing YFP-tagged myosin XI-K (YFP-XI-K) that 

complements the xi3KO mutant showed that PBP inhibits the motility of YFP-XI-K in a 

dose-dependent manner (Weiwei Zhang, personal communication), confirming that PBP 
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targets plant myosin. Ultimately, however, PBP should be tested for the ability to inhibit 

biochemically the actin-activated ATPase or in vitro motility of purified plant myosins. 

 

4.3 Myosin XI is involved in cellulose deposition 

It has been hypothesized for decades that plant myosin is involved in cell wall deposition 

(Nebenführ et al., 1999), yet no direct evidence supports this hypothesis under normal 

physiological conditions. During the formation of cell wall appositions or papillae in 

response to fungal penetration of host plant cells, inhibition of myosin activity using 

drugs (NEM and BDM) or a myosin mutant inhibits the deposition of callose and lignin-

like wall polymers (Yang et al., 2014). Moreover, disrupting actin organization with 

cytochalasin D results in a decrease in α-cellulose and matrix polysaccharide deposition 

in tobacco protoplasts (Leucci et al., 2007). 

Currently, evidence indicating that plant myosin is involved in cellulose deposition is 

only circumstantial. First, plant myosin XI has been shown to regulate the growth and 

size of cells and organs. Knocking out myosin xi genes showed a dwarf phenotype in 

Arabidopsis (Prokhnevsky et al., 2008, Peremyslov et al., 2010). The severity of the 

phenotype directly correlated with the number of myosin xi genes that were knocked 

out. Also, it was shown that the activity of myosin ATPase correlated with the size of 

plant cells and organs. Swapping the head domain of Arabidopsis Myosin XI-2 with 

faster or slower motor domains caused plant cells and organs to be larger or smaller, 

respectively (Tominaga et al., 2013). These results indicate that plant myosin XI may 

serve as the motor to deliver cell wall-related material to the PM. Second, as the tracks 
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that myosins move along, actin filaments are reported to be involved in cellulose 

deposition (Sampathkumar et al., 2013). For example, disrupting proper actin 

organization with latrunculin B (Lat B) or an act2 act7 double mutant causes a reduction 

of crystalline cellulose content in Arabidopsis. Further investigation indicates that actin 

facilitated the delivery and internalization of CSC at the PM (Sampathkumar et al., 2013). 

Disrupting actin organization causes no change in CSC density at the PM, but a reduction 

of delivery rate, thus implying an inhibition of internalization. With the determination of 

cellulose content in etiolated Arabidopsis hypocotyls using biochemical analysis, we 

found that seedlings grown on medium containing 100 nM LatB had a decreased 

cellulose content, which is consistent with the findings in Sampathkumar et al., 2013. 

Moreover, we found that the cellulose content in the myosin xi3KO mutant (Peremyslov 

et al., 2010, Cai et al., 2014) was also significantly reduced. This result, for the first time, 

provides direct evidence that plant myosin is involved in cellulose deposition. 

 

4.4 Plant myosin regulates the distribution of CSC by participating in the delivery of 

CSC to the PM 

To be a functional unit that synthesizes cellulose microfibrils, the assembled CSC has to 

be secreted to the PM. There are at least two routes for the delivery of CSC, one is 

directly from a pausing CSC-containing Golgi (Crowell et al., 2009), the other, which is 

probably the major route, is through SmaCC/MASC, which helps CSC recycle back to the 

PM through a CSI1-facilitated pathway (Gutierrez et al., 2009, Sampathkumar et al., 

2013, Lei et al., 2015). However, disrupting cortical microtubules does not alter CSC 
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delivery (Gutierrez et al., 2009). There is evidence supporting that both actin and myosin 

are involved in the delivery of CSC into the PM. The motility of secretory vesicles labeled 

with SCAMP2 was reduced in a myosin xi mutant, suggesting that plant myosin XI is 

involved in a general secretory pathway (Peremyslov et al., 2012). Also, steady-state 

level of Penetration 1 protein (PEN1) at the PM was inhibited in myosin xi mutant or 

upon treatment with myosin inhibitors (Yang et al., 2014). Recent studies on a myosin XI 

receptor protein, MyoB, support a model that myosin-dependent, MyoB-mediated 

trafficking of a specialized vesicle drives motility of organelles and vesicles through 

cytoplasmic streaming (Peremyslov et al., 2015, Peremyslov et al., 2013). Also, it has 

been recently found that the exocytosis of CESA requires the proper function of TGN/EE 

(Luo et al., 2015), whose motility is myosin dependent (Avisar et al., 2012).  

Multiple studies show that actin filaments are involved in the trafficking of CSC in plant 

cells. Disrupting actin organization with cytochalasin D or LatB reduces the motility of 

CESA-containing Golgi, and causes the clustering of Golgi and uneven distribution of CSC 

at the PM (Crowell et al., 2009, Gutierrez et al., 2009, Sampathkumar et al., 2013). Upon 

treatment with the actin stabilizing drug, jasplakinolide, CESA-containing Golgi follows a 

“disorganized trajectory” (Sampathkumar et al., 2013). The motility of distinct 

populations of SmaCC/MASC was found to be dependent on both microtubules and 

actin filaments. Cortical microtubules guide orientation of SmaCC/MASC motility, and 

microtubule depolymerization is thought to be the driving force for the motility of 

cortical SmaCC/MASCs (Crowell et al., 2009, Gutierrez et al., 2009). However, a 

subpopulation of subcortical SmaCC/MASCs are found to move along actin filaments 
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(Sampathkumar et al., 2013). Disrupting actin inhibits the movement of subcortical 

SmaCC/MASCs and causes an increase in the number of cortical SmaCC/MASCs, 

suggesting that there is an interchange of SmaCC/MASCs between actin filaments and 

microtubules (Sampathkumar et al., 2013). Thus, it has been hypothesized that Golgi-

derived SmaCC/MASCs move along actin filaments, and pause on cortical microtubules 

during the insertion of CSC into the PM (Li et al., 2015, Wallace & Somerville, 2014). Our 

data showed a significant decrease in CSC delivery at the PM with no change in density 

upon treatment with LatB, which is consistent with the results of Sampathkumar et al., 

2013. Moreover, we found that treatment with myosin inhibitors reduced not only the 

delivery of CSC, but also the density of CSC at the PM. 

To maintain the proper amount of CSC at the PM, existing CSC has to be internalized. 

However, due to the high density of CSCs at the PM, and the limits of fluorescent 

microscopy, at present, there is no tool to directly measure the internalization rate of 

CSC from the PM. A parameter, “CSC lifetime”, which is calculated as CSC density 

divided by delivery rate, was applied to infer the rate of CSC internalization. Due to the 

fact that disrupting actin filaments causes a decrease of CSC delivery rate, but no change 

in density, it was inferred that lifetime of CSC at the PM was extended (Sampathkumar 

et al., 2013), suggesting that actin filaments are necessary for the internalization of CSC. 

It was found that clathrin-mediated endocytosis played at least a partial role in the 

internalization of CSC. In the Arabidopsis µ2 and twd40-2 mutants, which are deficient in 

clathrin-mediated endocytosis, an increase in PM-localized CSC density with no change 

in the rate of delivery is observed (Bashline et al., 2013, Bashline et al., 2015). Evidence 
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on whether actin filaments facilitate or inhibit endocytosis is controversial (Baisa et al., 

2013). It has been shown that the lifetime of clathrin-coated pits was extended by the 

treatment of LatB (Konopka & Bednarek, 2008). In addition, treatment with LatB inhibits 

the internalization of a membrane-localized receptor, Flagellin-sensitive 2 (FLS2) (Beck 

et al., 2012). However, accumulation of actin filaments inhibits auxin-induced PIN1 

internalization, suggesting that actin filaments may block endocytosis (Nagawa et al., 

2012). Plant myosin has been found to be implicated in clathrin-mediated endocytosis. 

Inhibiting myosin with BDM inhibits the endocytosis of FLS2 (Beck et al., 2012). Using 

the calculation from CSC density and delivery rate, we found that CSC lifetime at the PM 

was significantly increased by treatment with myosin inhibitors, suggesting that myosin 

is necessary for CSC internalization. Interestingly, compared to LatB treatment, which 

showed no significant change in CSC density, the treatment with myosin inhibitors 

induced a stronger inhibition of delivery, but a weaker effect on internalization. This 

could probably break the equilibrium between delivery and internalization, thus 

reducing the density of CSC at the PM (Figure 4.1). In other words, myosin may play a 

greater role in delivery compared to internalization of CESA in plant epidermal cells, 

whereas actin is postulated to participate equally in both. 

 

4.5 Plant myosin is involved in CSC motility and microtubule orientation by an 

unknown mechanism 

The motility of CSC is guided by cortical microtubules and thought to be driven by the 

synthesis of cellulose (McFarlane et al., 2014, Bashline et al., 2014, Wallace & Somerville, 
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2014). Both our study and published results from other groups showed that disrupting 

actin organization does not alter the rate of CSC motility (Sampathkumar et al., 2013). 

Similarly, we found that doses of LatB that have pronounced effects on actin dynamics 

and organization have no effect on CSC motility. Surprisingly, we found that the motility 

of CSC was significantly inhibited by short-term treatment with myosin inhibitors, which 

indicates that plant myosin could possibly influence CSC motility in an actin-

independent manner. However, the mechanism by which myosin is involved in 

regulating CSC motility is not known. Several factors have been proposed to regulate the 

motility rate of CSC, which is thought to be mostly correlated with the rate of cellulose 

synthesis (Bashline et al., 2014, McFarlane et al., 2014). The most direct factor that can 

affect CSC motility is the amount of UDP-glucose available for cellulose synthesis. It was 

assumed that sucrose synthase (SuS) associates with CSC to provide a local supply of 

UDP-glucose (Amor et al., 1995, Fujii et al., 2010). The existence of GPI-anchored 

proteins that are required for normal cellulose synthesis, like COBRA and SOS5, might 

also regulate CSC motility (Harpaz‐Saad et al., 2011, Roudier et al., 2005, Schindelman et 

al., 2001). Plant myosin could potentially regulate the localization of these CSC 

associated/regulating proteins through the secretory pathway. 

Another possible way to regulate CSC motility is through components of CSC other than 

CESA proteins. Cellulose synthase interactive1 (CSI1) and Korrigan1 (KOR1) were both 

identified as components of CSC to maintain its normal function (McFarlane et al., 2014). 

Recent studies on the csi1 mutant, which knocked out the crosslinker for CSC and 

microtubule, show a lowered CSC motility rate as well as change in microtubule 
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orientation (Li et al., 2012, Bringmann et al., 2012). A similar situation with decreased 

CSC motility and altered microtubule orientation is also observed in the kor1 mutant 

(Paredez et al., 2008, Vain et al., 2014). Thus, it is possible that plant myosin facilitates 

the interaction between CESAs and CSI1/KOR1, the delivery of components to the PM, 

or both. 

The possibility that plant myosin coordinates the interaction among components of CSC 

can also explain the observation that microtubule orientation is altered with the 

treatment of myosin inhibitors. In addition to disrupting CSI1 or KOR1 genetically, it was 

found that altering CSC activity induced changes in microtubule orientation (Paredez et 

al., 2008, Fujita et al., 2013), which suggests a potential feedback loop between CSC and 

cortical microtubules. In addition, our data showed that PBP was less effective than 

BDM in inhibiting both CSC motility and microtubule orientation, suggesting that the 

microtubule reorientation induced by myosin inhibitors may correlate with the 

inhibition of CSC motility.  

Even though LatB treatment did not alter microtubule orientation, it is still possible the 

myosin affects microtubule orientation through actin. The dynamic interaction of 

cortical microtubules and actin filaments has been quantitatively described by 

visualization of fluorescently-tagged microtubule and actin reporters (Sampathkumar & 

Wightman, 2015, Sampathkumar et al., 2011). Our data showed that treatment with 

myosin inhibitors significantly inhibited the dynamic change of actin filament (Cai et al., 

2014), which could have a potential influence in regulating microtubule orientation with 

a mechanism that is different from LatB-induced actin change. Granted, we cannot rule 
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out the possibility that the microtubule reorientation observed in our experiments is still 

actin-dependent, due to the fact that the concentration and duration of LatB we applied 

was not enough to destroy all actin filaments and bundles in epidermal cells. Thus, it is 

possible that myosin regulates microtubule orientation through actin bundles. 

 

4.6 Overall significance of findings in this study 

In order to dissect the function of plant myosin in regulating cellulose deposition and 

CSC behavior, we identified PBP as a potential new plant myosin inhibitor, which is 

effective at micromolar concentrations. With biochemical determination of cellulose 

content in the xi3KO mutant, we provided the first direct evidence that plant myosin XI 

is involved in the deposition of cellulose. Characterization of CSC behavior revealed that 

the density of CSC was reduced upon treatment with myosin inhibitors, which is 

probably due to the differential inhibition of CSC delivery and internalization. 

Surprisingly, inhibition of myosin caused a significant reduction in the rate of CSC 

motility as well as altered microtubule orientation, which are not consistent with LatB 

treatment, suggesting that these changes are potentially independent from actin 

filaments, thus, uncovering a unique facet of myosin function. 

 

4.7 Future perspectives 

There are several things that could be considered in the future to strengthen and extend 

this study. First, further characterization of PBP as a plant myosin inhibitor could be 

evaluated with direct in vitro biochemical measurement of ATPase activity of 
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Arabidopsis Myosin XI proteins. This experiment could provide direct evidence about 

the target of PBP. Second, the involvement of plant myosin in cell wall deposition could 

be backed-up by the analysis of cell wall components using seedlings grown on medium 

containing myosin inhibitors. Further analysis on carbohydrates linkage could potentially 

reveal exactly which polysaccharide molecule is delivered through a myosin-dependent 

pathway. Third, the CSC behavior could be observed in myosin xi mutants to eliminate 

the possible unspecific effect of inhibitors. Fourth, the rate of CSC internalization can be 

observed directly with CESA tagged with photo-activatable fluorescent protein, thus the 

endocytosis of CSC can be directly evaluated. Fifth, the mechanism of how myosin 

regulates CSC motility and microtubule orientation should addressed, potentially by 

looking at the interactive relationship between CSC and CSI1 or KOR1. 
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Figure 4.1. A model for how myosin regulates CSC behavior. 
Treatment of epidermal cells with myosin inhibitors caused a reduced rate of delivery 
and extended lifetime of CSC at PM, which is similar to that reported for actin-disrupted 
cells (Sampathkumar et al., 2013). These results suggest that plant myosins may work 
with actin filaments to promote the delivery and internalization of CSC. Moreover, 
myosin may play a greater role in delivery compared to internalization, based on the 
observed decrease of CSC density after treatment with myosin inhibitors. But, the 
lifetime measurement suggests that exocytosis and endocytosis may be almost equally 
impacted by BDM and PBP. Also, myosin could regulate the motility of CSC, independent 
of actin, by an unknown mechanism. 
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Plant cell expansion relies on intracellular trafficking of vesicles and macromolecules, which requires myosin motors and a
dynamic actin network. Arabidopsis (Arabidopsis thaliana) myosin XI powers the motility of diverse cellular organelles,
including endoplasmic reticulum, Golgi, endomembrane vesicles, peroxisomes, and mitochondria. Several recent studies
show that there are changes in actin organization and dynamics in myosin xi mutants, indicating that motors influence the
molecular tracks they use for transport. However, the mechanism by which actin organization and dynamics are regulated
by myosin XI awaits further detailed investigation. Here, using high spatiotemporal imaging of living cells, we quantitatively
assessed the architecture and dynamic behavior of cortical actin arrays in a mutant with three Myosin XI (XI-1, XI-2, and
XI-K) genes knocked out (xi3KO). In addition to apparent reduction of organ and cell size, the mutant showed less dense and
more bundled actin filament arrays in epidermal cells. Furthermore, the overall actin dynamicity was significantly inhibited
in the xi3KO mutant. Because cytoskeletal remodeling is contributed mainly by filament assembly/disassembly and
translocation/buckling, we also examined the dynamic behavior of individual actin filaments. We found that the xi3KO
mutant had significantly decreased actin turnover, with a 2-fold reduction in filament severing frequency. Moreover,
quantitative analysis of filament shape change over time revealed that myosin XI generates the force for buckling and
straightening of both single actin filaments and actin bundles. Thus, our data provide genetic evidence that three
Arabidopsis class XI myosins contribute to actin remodeling by stimulating turnover and generating the force for filament
shape change.

Active transport is an important mechanism for
eukaryotic cells to maintain the proper distribution of
organelles and macromolecules and to deliver materials
to sites of polar growth. Unlike animal cells, which use
microtubules as tracks for long-distance transport,
plants use predominantly actin filaments and myosin
motors for vesicle trafficking and organelle positioning
(Schuh, 2011). Studies using dominant-negative, RNAi,
and knockout mutants indicate that the plant class XI
myosins are motor molecules involved in transport of
organelles, such as endoplasmic reticulum, Golgi, mi-
tochondria, and peroxisomes (Avisar et al., 2008, 2009;
Peremyslov et al., 2008, 2010; Prokhnevsky et al., 2008;
Sparkes et al., 2008).

In addition to myosin XI, a functional network of
dynamic actin filaments is critical for vesicle trafficking.

Actin filaments or bundles provide the tracks for myo-
sins to processively translocate using the energy of ATP
hydrolysis. In Arabidopsis (Arabidopsis thaliana) epi-
dermal cells, cortical actin filament arrays undergo
continuous and rapid remodeling (Staiger et al., 2009;
Smertenko et al., 2010). Two main features contribute
to this dynamic rearrangement of actin filaments:
translocation and buckling, and rapid assembly and
disassembly (Staiger et al., 2009; Henty-Ridilla et al.,
2013). The organization and dynamic behavior of actin
filaments are regulated by a plethora of actin-binding
proteins (Henty-Ridilla et al., 2013). Myosin is both a
motor that drives long-distance cargo motility and also
an actin regulator. In vitro biochemical assays show
that skeletal muscle myosin II can induce the disas-
sembly and fragmentation of actin filaments (Murrell
and Gardel, 2012; Vogel et al., 2013). In budding yeast
(Saccharomyces cerevisiae), myosin V is involved in the
rapid translocation of actin cables and is responsible
for the delivery of formin regulators, which affects the
assembly of actin filaments at specific subcellular lo-
cations (Chesarone-Cataldo et al., 2011; Yu et al., 2011).
By contrast, our understanding of how plant myosins
are involved in the regulation of actin filament turn-
over and translocation is incomplete.

Studies on the effects of myosin on actin organization
and dynamics in plant cells were initially performed by
applying the drug 2,3-butanedione monoxime (BDM),
which inhibits ATP hydrolysis by the myosin II head
domain (Herrmann et al., 1992). For example, treatment
with BDM alters actin organization in tip-growing root
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hairs and pollen tubes (Tominaga et al., 2000; Zheng
et al., 2009), as well as in cells of the root transition zone
(Šamaj et al., 2000). A detailed description of the dy-
namic behavior of individual actin filaments in epider-
mal cells shows that BDM inhibits the turnover and
shape change of actin filaments (Staiger et al., 2009).
Although there is evidence that BDM can inhibit the
motility of plant myosin XI in vitro (Tominaga et al.,
2000; Funaki et al., 2004), this drug is typically applied
at millimolar concentrations and probably does not in-
hibit all myosin-dependent cellular processes in plant
cells (McCurdy, 1999). Therefore, genetic approaches
using knockout mutants are important to interrogate
the function of plant myosins. In Arabidopsis, actin
filament bundles are oriented more transversely in
myosin xi double, triple, and quadruple mutants com-
pared with the predominantly longitudinal orientation
in wild-type cells (Peremyslov et al., 2010; Ueda et al.,
2010). Moreover, overall actin dynamics are reduced in
root hairs of a myosin xi-kmutant (Park and Nebenführ,
2013). Also, actin filament arrays appear more ran-
domized in tip-growing Physcomitrella patens protone-
mal cells when both myosin xi genes are knocked down
(Vidali et al., 2010). Surprisingly, the overall dynamicity
of the actin network is not altered in Myosin XI
knockdown protonemal cells (Vidali et al., 2010). To
gain a better understanding of the mechanism by which
myosins impact actin filament organization and dy-
namics in plant cells, detailed analyses of actin filament
properties in myosin mutants are necessary.

Here, we used a previously characterized myosin
xi-1, xi-2, and xi-k triple knockout mutant (Peremyslov
et al., 2010), combined with advanced live-cell imag-
ing, to dissect how Arabidopsis myosin XI is involved
in actin remodeling. With the high temporal and spa-
tial resolution afforded by variable-angle epifluo-
rescence microscopy (VAEM) and a set of metrics for
analyzing filament dynamics, we found that the three
class XI myosins generate force for the buckling and
straightening of actin filaments and bundles, as well as
promote actin filament turnover.

RESULTS

The Growth of Arabidopsis Seedlings Is Inhibited in a
myosin xi Triple Knockout Mutant

Recently, it was reported that the velocity of myosin-
dependent motility correlates with plant size, and
knockout mutants of Arabidopsis myosins exhibit re-
duced organ size (Peremyslov et al., 2010; Tominaga
et al., 2013). We analyzed the function of myosin XI in
Arabidopsis seedlings using a previously character-
ized triple mutant line with myosin xi-1, myosin xi-2,
and myosin xi-k knocked out (xi3KO; Peremyslov et al.,
2010). To confirm that the loss of multiple myosin XI
isoforms affected the expansion of organs, etiolated
hypocotyls of the xi3KO mutant were examined. Or-
gan length was significantly reduced in hypocotyls of

xi3KO mutant seedlings compared with the wild type
over a developmental time series (Fig. 1, A and B). We
also examined light-grown roots. The length of roots
from xi3KO seedlings was significantly reduced com-
pared with the wild type (Fig. 1, C and D), which is
consistent with a previous study (Peremyslov et al.,
2010).

To test whether the reduction of organ length in the
xi3KOmutant is due to inhibition of cell expansion, the
length of epidermal cells from hypocotyls and the root
elongation zone was measured. The growth of Arabi-
dopsis hypocotyl epidermal cells occurs along a gra-
dient, with cells at the base (near the root) finishing
axial expansion earlier than those near the apex (near
the cotyledons; Gendreau et al., 1997). The length and
width of epidermal cells from both apical and basal
regions of 5-d-old hypocotyls were significantly re-
duced in the xi3KO mutant (Fig. 1, E and F). Similarly,
epidermal cells from the root elongation zone exhibi-
ted reduced length and width in the xi3KO mutant
compared with the wild type (Fig. 1, G and H). These
results suggest that loss of myosin XI inhibited cell and
organ expansion in the early developmental stage.

The Architecture of Cortical Actin Arrays Is Altered in
Epidermal Cells of the xi3KO Mutant

Myosins may have the ability to generate force on a
preexisting actin network (Szymanski and Cosgrove,
2009) and Arabidopsis class XI myosins are reportedly
involved in regulating actin organization (Peremyslov
et al., 2010; Ueda et al., 2010). In myosin xi double,
triple, and quadruple mutants, actin bundles appear
to be more transversely oriented compared with the
longitudinal orientation in wild-type cells (Peremyslov
et al., 2010; Ueda et al., 2010). To further test whether
the loss of myosin XI affects actin organization, we ex-
amined the cortical actin arrays in Arabidopsis seed-
lings expressing the yellow fluorescent protein fused
with the second actin-binding domain from Arabi-
dopsis FIMBRIN1 (YFP-fABD2) with VAEM. Repre-
sentative images of epidermal cells from xi3KO
hypocotyls showed that the cortical actin array was
much less dense and more bundled compared with
wild-type cells (Fig. 2A). Quantitative analyses were
performed to analyze the architecture of cortical actin
arrays. Two parameters, skewness and density, were
measured to evaluate the extent of bundling and the
percentage of occupancy of actin filaments in epider-
mal cells (Higaki et al., 2010; Henty et al., 2011; Li et al.,
2012). The xi3KO mutant had a significantly reduced
percentage of occupancy and increased bundling of
actin arrays in both the apical and basal regions of the
hypocotyl (Fig. 2, B and C). We also examined the
angle of actin filaments with respect to the longitudinal
axis of the cell, as well as the parallelness of actin fil-
aments with respect to each other, using the methods
of Ueda et al. (2010). The xi3KO mutant had a signif-
icantly increased angle in both apical and basal regions
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of the hypocotyl (Fig. 2D) and significantly reduced
filament-filament parallelness in the basal region of the
hypocotyl (Fig. 2E), suggesting that actin filament arrays
in the xi3KO mutant are more transversely oriented and
disorganized.

To examine whether the change in architecture of
actin arrays is apparent in other organs, the extent of
bundling and the percentage of occupancy of actin
filaments were also evaluated in light-grown roots of
the xi3KOmutant. The actin arrays were more bundled
and less dense in epidermal cells from the root elon-
gation zone (Fig. 3, A–C), which is consistent with the
result in hypocotyls. We also examined overall fila-
ment orientation and filament parallelness in root ep-
idermal cells. The actin filament arrays showed an
increase of both angle and parallelness in epidermal
cells from the root elongation zone (Fig. 3, D and E).
Collectively, these results demonstrate that the three
class XI myosins are involved in regulation of actin
organization.

Cortical Actin Array Dynamics in Epidermal Cells Are
Reduced in the xi3KO Mutant

Cortical actin arrays in Arabidopsis hypocotyl epi-
dermal cells undergo constant remodeling and fila-
ment turnover (Staiger et al., 2009; Smertenko et al.,
2010). It has been reported that knocking downMyosin
XI in Physcomitrella patens protonemal cells does not
affect the overall dynamics of actin organization (Vidali
et al., 2010). To analyze whether the overall dynamicity
of cortical actin arrays is altered in Arabidopsis when
three Myosin XI genes are knocked out, time-lapse
VAEM series were collected from epidermal cells of
etiolated hypocotyls expressing YFP-fABD2. Actin arrays
in the epidermal cells from the xi3KO mutant appeared
to be much less dynamic when compared with wild-type
cells at both apical and basal regions of the hypocotyl
(Fig. 4A). To quantify global actin dynamics, a corre-
lation coefficient analysis was performed (Vidali et al.,
2010). This analysis was accomplished by calculating
pixel intensity correlation for all pairwise temporal
intervals from multiple time-lapse series. The overall

Figure 1. The myosin xi3KO mutant has reduced hypocotyl, root, and
epidermal cell length. A, Representative examples of etiolated Arabi-
dopsis seedlings from 5-d-old myosin xi-1, xi-2, xi-k triple knockout
(xi3KO) mutant and the wild type (WT) are shown. Bar = 5 mm. B, The
length of etiolated hypocotyls was significantly reduced in the xi3KO
mutant compared with the wild type. Measurements were taken on
alternate days for 12 d total. Values are means6 SE (n $ 50 hypocotyls
per genotype; Student’s t test, **P , 0.01). C, Representative examples
of light-grown seedlings from 7-d-old xi3KO mutant and the wild type
are shown. Bar = 5 mm. D, The length of light-grown roots was sig-
nificantly reduced in the xi3KO mutant compared with the wild type.
Measurementswere performed on alternate days. Values are means6 SE

(n $ 50 roots per genotype; Student’s t test, **P , 0.01). E, The
length of epidermal cells was measured at the apex (near cotyledons)
and base (near root) of 5-d-old etiolated hypocotyls. The xi3KOmutant
had significantly reduced epidermal cell length at both apex and base

of the hypocotyl. Values are means 6 SE (n . 70 cells from at least 10
hypocotyls per genotype; Student’s t test, **P , 0.01). F, The width of
epidermal cells was measured at the apex and base of the same hy-
pocotyls in E. The xi3KO mutant had significantly reduced epidermal
cell width at the basal region of the hypocotyl. Values are means 6 SE

(n . 100 cells from at least 10 hypocotyls per genotype; Student’s
t test, **P, 0.01). G, The length of epidermal cells was measured from
the elongation zone of 10-d-old light-grown roots. The xi3KO mutant
had significantly reduced epidermal cell length. Values are means6 SE

(n. 80 cells from at least 10 roots per genotype; Student’s t test, **P,
0.01). H, The width of epidermal cells was measured at the elongation
zone of the same roots in G. The xi3KO mutant had significantly re-
duced epidermal cell width. Values are means6 SE (n. 100 cells from
at least 10 roots per genotype Student’s t test, **P , 0.01). ND, No
significant difference.
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actin dynamics is reflected by the rate of decay of cor-
relation coefficient values as a function of time interval.
A faster decay of the curve suggests more active actin
dynamics. The correlation coefficient curve for the
xi3KO mutant decayed significantly slower compared
with the wild type (Fig. 4, B and C), indicating de-
creased dynamics of the actin arrays in xi3KO mutant
cells. Both apical and basal regions of the dark-grown
hypocotyl showed a reduction in actin dynamicity, in-
dicating that myosin XI regulates actin dynamics at
different developmental stages. Moreover, we measured
the overall dynamicity for different subpopulations
of actin filaments. The correlation coefficient curves
for both single actin filaments and actin bundles
decayed significantly slower in the xi3KO mutant
compared with the wild type (Supplemental Fig. S1,
C–F; Supplemental Methods S1), indicating that these
three myosins XI are involved in regulating the dy-
namics of both single actin filament and actin bundles.
We also applied BDM, a myosin ATPase inhibitor,
on hypocotyl epidermal cells expressing GFP-fABD2.

The correlation coefficient curves decayed significantly
slower and in a dose-dependent manner after 5-min
treatments with different concentrations of BDM (Fig. 4,
D and E), thus phenocopying the xi3KO mutant.

To test whether the reduction of overall dynamics in
xi3KO occurs in other organs and developmental states,
we examined the correlation coefficient of time-lapse
images collected from epidermal cells in the elonga-
tion zone of light-grown roots. The results show that the
overall dynamicity of actin arrays in xi3KO root epi-
dermal cells was reduced compared with the wild type
(Fig. 3F), which is consistent with the result from hy-
pocotyls. Collectively, these data indicate that three
Arabidopsis myosin XI isoforms are involved in pro-
moting the overall dynamicity of actin filament arrays.

The Dynamic Properties of Single Actin Filaments Are
Altered in the xi3KO Mutant

Two main features contribute to the dynamic behav-
ior of actin filaments in the cortical array of epidermal

Figure 2. The architecture of actin arrays in epi-
dermal cells of the xi3KO mutant is altered. A,
Representative images of epidermal cells from
5-d-old dark-grown hypocotyls of wild-type (WT)
and xi3KO seedlings expressing YFP-fABD2.
VAEM images were collected from the apical and
basal regions of the hypocotyl. Bar = 20 mm. B and
C, Quantitative analyses of the architecture of
cortical actin arrays in wild-type and xi3KO mu-
tant epidermal cells. B, Percentage of occupancy
(density) was measured. Filament density was sig-
nificantly decreased in epidermal cells at both
apical and basal regions of hypocotyls in the
xi3KO mutant compared with the wild type.
Values given are means6 SE (n$ 150 images from
30 hypocotyls per genotype; Student’s t test, **P,
0.01). C, The extent of filament bundling (skew-
ness) was measured. Bundling was significantly
increased in epidermal cells at both apical and
basal regions of the hypocotyl in xi3KO. The same
images used for B were analyzed for bundling
(Student’s t test, **P, 0.01). D and E, Quantitative
analyses of the orientation of cortical actin arrays
in wild-type and xi3KOmutant epidermal cells. D,
Average angle of actin filaments with respect to the
longitudinal axis of epidermal cells was measured.
Angle was significantly increased in epidermal
cells at both apical and basal regions of hypocotyls
in the xi3KOmutant compared with the wild type.
Values given are means 6 SE (Student’s t test,
**P , 0.01). E, The parallelness of actin filaments
with respect to each other was measured. Parallel-
ness was significantly reduced in epidermal cells at
the basal regions of the hypocotyl in xi3KO com-
pared with the wild type. The same images used for
B and C were analyzed for angle and parallelness
(Student’s t test, **P , 0.01).
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cells: filament translocation and buckling, and filament
turnover by assembly and disassembly events (Staiger
et al., 2009; Smertenko et al., 2010; Henty-Ridilla et al.,
2013). To dissect the mechanisms through which Ara-
bidopsis myosin XI regulates actin rearrangements, we
tracked the dynamic behavior of single actin filaments in
time-lapse VAEM series collected from hypocotyl epi-
dermal cells (Staiger et al., 2009).
An in vitro reconstituted system was used to show

that skeletal muscle myosin II could induce the disas-
sembly and fragmentation of actin filaments (Murrell
and Gardel, 2012; Vogel et al., 2013). We hypothesize

that the loss of myosin XI would cause a decrease
in actin turnover in Arabidopsis epidermal cells. As
shown in Table I, actin filaments in xi3KO mutant cells
showed a decrease in severing frequency to about one-
half of the wild-type level, as well as a 50% increase
in maximum filament length and an almost 2-fold
increase in maximum filament lifetime. These results
demonstrate that actin turnover was reduced in the
xi3KO mutant, because in Arabidopsis epidermal cells,
actin filament disassembly is mainly achieved through
severing activity (Staiger et al., 2009; Henty et al.,
2011).

Figure 3. The architecture and overall dynamicity of actin arrays in epidermal cells from the root elongation zone of the xi3KO
mutant are changed. A, Representative images of epidermal cells from 7-d-old light-grown roots of wild-type (WT) and xi3KO
seedlings expressing YFP-fABD2. VAEM images were collected from the elongation zone of the root. Bar = 10 mm. B and C,
Quantitative analyses of the architecture of actin arrays in wild-type and xi3KO mutant epidermal cells. B, Percentage of
occupancy (density) was measured. Filament density was significantly decreased in the xi3KO mutant compared with the wild
type. Values given are means 6 SE (n $ 100 images from 30 seedlings per genotype; Student’s t test, **P , 0.01). C, The extent
of filament bundling (skewness) was measured. Bundling was significantly increased in the xi3KO mutant compared with the
wild type. The same images used for B were analyzed for bundling (Student’s t test, **P , 0.01). D and E, Quantitative analyses
of the orientation of cortical actin arrays in wild-type and xi3KO mutant epidermal cells. D, Average angle of actin filaments
with respect to the longitudinal axis of epidermal cells was measured. Angle was significantly increased in the xi3KO mutant
compared with the wild type. Values given are means 6 SE (Student’s t test, **P , 0.01). E, The parallelness of actin filaments
with respect to each other was measured. Parallelness was significantly increased in xi3KO compared with the wild type. The
same images used for B and C were analyzed for angle and parallelness (Student’s t test, **P , 0.01). F, Pairwise correlation
coefficient was calculated at all possible temporal spacings from time-lapse series of epidermal cells in the elongation zone of
the root. Filaments in xi3KO had significantly reduced overall actin dynamicity compared with the wild type. Values given are
means 6 SE (n $ 35 cells from 15 seedlings per genotype; ANOVA, P , 0.01).
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In budding yeast, mutation of myosin V causes an
apparent reduction in actin cable extension rates,
which results from the loss of filament populations
that translocated at rates greater than 2 mm s–1 (Yu
et al., 2011). Given that myosin XI in Arabidopsis is a
close relative of yeast myosin V (Hodge and Cope,
2000), we hypothesize that the average filament elon-
gation rate in xi3KO would be reduced due to the loss
of fast-growing filaments, assuming that filaments with
fast elongation rates are actually translocating rather
than assembling from monomers. By tracking the be-
havior of dynamic filament ends, however, no signifi-
cant change of average filament elongation rate was
detected between xi3KO and wild-type control cells
(Table I; Fig. 5A). We further categorized the filaments
into three populations based on elongation rate, as de-
scribed in Yu et al. (2011). As shown in Figure 5B, the
proportion of filaments with different elongation rates
was not altered in xi3KO compared with the wild type.
Unlike the situation in the budding yeast, the fastest

population of growing filament ends (.2 mm s–1)
remained the same statistically as the wild-type control.
Because the actin cable extension measured in Yu et al.
(2011) is a combination of elongation and translocation,
these results indicate that we probably measured dif-
ferent aspects of actin dynamics from those in yeast.
Our results show that these three class XI Arabidopsis
myosins are not involved in the regulation of actin
assembly.

We also quantified several other single actin filament
dynamic parameters to determine whether myosin XI
regulates additional aspects of the dynamic behavior,
for example, the availability of filament ends (Table I).
The regrowth frequency, annealing frequency, and fil-
ament origin were not significantly different in xi3KO
cells compared with the wild type. Collectively, these
results indicate that the three class XI Arabidopsis
myosins do not have a major effect on the behavior of
dynamic filament ends. However, class XI myosins do
contribute to filament disassembly through modulation

Figure 4. Overall actin dynamicity is reduced in
the xi3KO mutant and BDM-treated epidermal
cells. A, Representative time-lapse VAEM images
taken from 5-d-old dark-grown hypocotyls of
wild-type (WT) and xi3KO Arabidopsis seedlings
expressing YFP-fABD2. Images shown were taken
from epidermal cells in the apical and basal re-
gions of the hypocotyl and displayed at 8-s inter-
vals. The merged image shows the three time
points in separate colors (red, green, and blue).
Bar = 10 mm. B and C, Pairwise correlation coef-
ficient was calculated at all possible temporal
spacings from time-lapse series collected at the
apical (B) and basal (C) regions of the hypocotyl.
Filaments in xi3KO had reduced overall actin
dynamicity compared with the wild type. Values
given are means 6 SE (n $ 40 cells from 10
seedlings per genotype; ANOVA, P , 0.01).
D, Representative time-lapse VAEM images taken
from 5-d-old dark-grown hypocotyls treated with
0 (mock), 20, 30, or 50 mM BDM for 5 min. Im-
ages shown were taken from epidermal cells in
the basal region of the hypocotyl and displayed at
8-s intervals. Bar = 5 mm. E, Pairwise correlation
coefficient was calculated at all possible temporal
spacings from time-lapse series collected at the
basal region of the hypocotyl. Epidermal cells
showed a dose-dependent reduction in overall ac-
tin dynamicity. Values given are means 6 SE (n $

40 cells from 10 seedlings per genotype; ANOVA,
P , 0.01).
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of severing frequency, which was reduced 2-fold in the
mutant cells.

Myosin XI Generates Force for Filament and Bundle
Buckling and Straightening

Cortical actin filaments undergo continuous shape
changes, as well as stochastic dynamic turnover (Staiger
et al., 2009; Smertenko et al., 2010). It was shown in a
previous study that BDM, a myosin ATPase inhibitor,
could reduce actin dynamics by inhibiting filament
buckling and straightening events (Staiger et al., 2009).
To test whether myosin XI contributes to filament
buckling and straightening, we examined the shape of
actin filaments in VAEM time-lapse series collected
from hypocotyl epidermal cells. Actin filaments in wild-
type cells showed continuous buckling and straighten-
ing events (Fig. 6A, 24 and 30 s); however, in xi3KO
mutant cells, the shape of actin filaments remained
relatively constant (Fig. 6B). To quantitatively assess the
shape of actin filaments, we measured convolutedness
and the rate of change of convolutedness. Convo-
lutedness is a dimensionless measure of the ratio of

filament length divided by the distance of a straight line
connecting the plus and minus ends (Smertenko et al.,
2010; Fig. 6A). As shown in Figure 6C, the convo-
lutedness of actin filaments showed a modest reduction
(apical) or no difference (basal) in xi3KO epidermal cells
compared with the wild type. However, the xi3KO
mutant showed an approximately 2- to 3-fold reduction
in the rate of change of convolutedness, indicating the
filament buckling and straightening is reduced when
three myosin XI isoforms are eliminated. We also ex-
amined these parameters for actin filament bundles.
Similar to single actin filaments, bundles had a signifi-
cantly reduced rate of change of convolutedness in the
xi3KO mutant (Fig. 6, E and F). In sum, these results
suggest that three class XI myosins regulate not the
overall shape but the shape change of actin filaments
and bundles.

DISCUSSION

In this study, we dissected the role of three Arabi-
dopsis class XI myosins in organization and dynamics
of cortical actin arrays using high spatiotemporal

Table I. Comparison of actin dynamics parameters from wild-type and xi3KO epidermal cells

Measurements taken from epidermal cells in 5-d-old hypocotyls of the xi3KO mutant and wild-type plants. Values
given are means6 SE, with n. 50 filaments from n. 10 epidermal cells and at least 10 hypocotyls per line. ND, Not
significantly different from the wild-type control value by Student’s t test (P . 0.05). *Significantly different from the
wild-type control value by Student’s t test (P , 0.05). **Significantly different from the wild-type control value by
Student’s t test (P , 0.001). For filament origin, n . 300 filament from n . 30 epidermal cells and at least 10
hypocotyls per line. ‡, Not significantly different from the wild-type control value by ANOVA (P . 0.05).

Stochastic Dynamics Parameters Wild Type xi3KO

Apical
Elongation rate (mm s–1) 1.76 6 0.04 1.78 6 0.05ND

Filament breaks (breaks) 3.5 6 0.1 3.8 6 0.2ND

Severing frequency (breaks mm21 s–1) 0.016 6 0.001 0.008 6 0.001**
Max length (mm) 11.2 6 0.4 15.0 6 1.0**
Max lifetime (s) 21.1 6 0.6 37.9 6 1.8**
Regrowth of severed ends (%) 5.2 6 1.7 3.3 6 1.2ND

Annealing of severed ends (%) 3.8 6 1.5 1.3 6 0.7ND

Filament origin (% per cell)
De novo 28.8 6 3.5 27.5 6 8.6‡

Ends 21.4 6 3.9 20.9 6 7.7‡

Side 49.2 6 3.1 51.3 6 5.4‡

Convolutedness 1.25 6 0.05 1.11 6 0.01*
Rate of change of convolutedness (s–1) 0.09 6 0.01 0.04 6 0.003**

Basal
Elongation rate (mm s–1) 1.79 6 0.05 1.86 6 0.05ND

Filament breaks (breaks) 4.7 6 0.2 4.5 6 0.2ND

Severing frequency (breaks mm21 s–1) 0.014 6 0.001 0.007 6 0.001**
Max length (mm) 12.6 6 0.4 17.0 6 0.7**
Max lifetime (s) 27.6 6 0.8 44.1 6 1.9**
Regrowth of severed ends (%) 3.3 6 1.1 3.2 6 1.2ND

Annealing of severed ends (%) 2.6 6 1.1 1.2 6 0.8ND

Filament origin (% per cell)
De novo 29.5 6 2.6 28.4 6 7.1‡

Ends 21.0 6 3.0 21.7 6 6.5‡

Side 48.6 6 3.4 50.6 6 4.4‡

Convolutedness 1.27 6 0.04 1.20 6 0.04ND

Rate of change of convolutedness (s–1) 0.09 6 0.01 0.03 6 0.003**
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resolution imaging of living plant epidermal cells.
Arabidopsis myosin XI is important for the expansion
of organs and cells at different developmental stages.
The myosin xi-1, xi-2, and xi-k triple mutant is a dwarf
plant with significantly reduced etiolated hypocotyl
length and light-grown root length, as shown previ-
ously (Peremyslov et al., 2010). Cell expansion was
significantly inhibited in hypocotyls and roots of the
xi3KO mutant. Moreover, the architecture of cortical
actin filament arrays was less dense and more bundled
in the xi3KO mutant compared with the wild type.
These three class XI myosins also contribute to the
overall dynamicity of actin in epidermal cells, which is
significantly inhibited in the xi3KO mutant. This effect
on dynamics of actin has two main features: myosin XI
promotes the turnover of actin filaments by enhancing
severing frequency, and it generates the force for
buckling and straightening of single actin filaments
and filament bundles. Finally, the three class XI myosins
appear not to be involved in regulating the behavior of
dynamic filament ends or filament assembly.

The regulation of actin organization by plant myo-
sins has been observed in many studies; however, the
results vary in different cell types and based on dif-
ferent methods for inhibiting myosin activity. BDM
inhibits the ATPase activity of myosin head domain
(Funaki et al., 2004), and its effect on actin filaments in
plant cells varies depending on the dose and duration
of treatment. Treatment of pollen tubes and root hairs
with BDM for 1 h causes a loss of longitudinal orien-
tation of actin bundles in the shank region (Tominaga
et al., 2000), whereas short-term treatment (10 min) of
growing root hairs with BDM induces the formation of
fine actin filament arrays extending into the apical
clear zone (Zheng et al., 2009). Due to apparent genetic
redundancy within the large gene family, mutants that
have multiple myosin xi genes knocked out were cre-
ated to study their function in plant cells (Peremyslov
et al., 2008, 2010; Prokhnevsky et al., 2008; Ueda et al.,
2010; Ojangu et al., 2012). The Arabidopsis myosin xi-k,
xi-2 double mutant has randomized actin bundle
arrays compared with the predominantly longitudinal

orientation in wild-type epidermal cells (Ueda et al.,
2010). The midvein epidermal cells in triple and qua-
druple mutants of Arabidopsis myosin xi (xi-1, xi-2, xi-i,
xi-k) lose their longitudinal bundles, and actin filament
arrays become more transversely oriented (Peremyslov
et al., 2010). Similar to BDM treatment, the actin bun-
dles protrude into the apical clear zone of root hairs
in these triple and quadruple mutants (Peremyslov
et al., 2010). In tip-growing P. patens protonemal cells,
actin filament arrays lose their parallel longitudinal
orientation and become more randomized when both
Myosin XI genes are knocked down (Vidali et al., 2010).
In this study, we examined the architecture and or-
ganization of cortical actin filament arrays in growing
and nongrowing epidermal cells from different organs.
With quantitative live-cell imaging, we found that the
abundance of actin filaments in the cortical array was
significantly reduced in the xi3KO mutant and that
actin filaments were much more bundled compared
with the wild type. Moreover, the cortical actin array is
more transversely oriented and disorganized in the
xi3KO mutant compared with the wild type.

In plant cells, actin filament arrays undergo rapid
and continuous remodeling (Staiger et al., 2009; Vidali
et al., 2009; Smertenko et al., 2010). Recent studies
quantified this overall dynamicity of actin arrays to
test whether plant myosin XI is involved in the regu-
lation of actin dynamics; however, the results are not
consistent between organisms. Knocking down both
Myosin XI genes in P. patens protonemal cells has no
effect on the overall actin dynamicity (Vidali et al.,
2010), whereas root hairs of the Arabidopsis myosin
xi-k mutant show a reduction of overall dynamicity of
actin filament arrays (Park and Nebenführ, 2013). In
this study, we demonstrated that three class XI myosins
are important to maintain overall actin dynamicity
in diffuse-growing epidermal cells of Arabidopsis. The
overall actin dynamicity was significantly inhibited in
the xi3KO mutant in both growing and nongrowing hy-
pocotyl cells as well as in root elongation zone epidermal
cells. In addition, we demonstrated that the myosin
ATPase inhibitor BDM inhibits overall actin dynamicity.

Figure 5. Elongation rate of growing filament
ends is not altered in xi3KO mutant. A, Box plots
show the elongation rate of growing actin fila-
ments in the wild type (WT) and the xi3KO mu-
tant. The box spans between the first and the third
quartile. The line inside the box shows the me-
dian. The bars show the minimum and maximum
values. Circles show the average filament elon-
gation rates (n . 100 filaments per genotype).
B, The elongation rate of growing filaments ana-
lyzed in A was binned into three populations:
#1 mm s–1, 1 to 2 mm s–1, and .2 mm s–1. The
percentage of each population was calculated. ND
indicates not significantly different from wild-type
control by x2 test (P . 0.05). [See online article for
color version of this figure.]
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The dynamic behavior of actin filament arrays is
contributed mainly by two features: filament assembly
and disassembly, and filament translocation and buckling
(Henty-Ridilla et al., 2013; Li et al., 2014a). These
properties of actin filaments can be tracked with high-
resolution time-lapse imaging (Staiger et al., 2009).
Previous data from diverse classes of myosin demon-
strate that motors can regulate the dynamics of actin
filaments. In budding yeast, myosin V delivers formin
regulators, which locally alter the assembly of actin
filaments at the bud neck (Chesarone-Cataldo et al.,
2011). Further, yeast myosin V enhances actin cable
motility by promoting translocation of bundles (Yu

et al., 2011). Conventional myosin II from rabbit skeletal
muscle is able to induce the fragmentation of actin fil-
aments, which facilitates the turnover of actin in vitro
(Murrell and Gardel, 2012; Vogel et al., 2013). Here, by
tracking the dynamic behavior of individual actin fila-
ments in vivo, we quantitatively assessed the effects of
loss of myosin XI on parameters of stochastic turnover.
We found that three Arabidopsis myosins XI are critical
for the turnover of actin. In the xi3KO mutant, severing
frequency was significantly inhibited compared with the
wild type, which led to an increase in maximum fila-
ment length and lifetime. In this case, myosin might
generate tension on filaments that facilitates the action

Figure 6. The rate of filament buckling and
straightening is reduced in the xi3KO mutant.
A and B, Time-lapse VAEM series show examples
of actin filament buckling and straightening in
wild-type (WT) epidermal cells (A) but not in the
xi3KO mutant cells (B). The filament highlighted
in A buckled (asterisks) at two sites at 24 s and
straightened (asterisks) at 30 s and then got sev-
ered at 34 and 36 s (arrows). However, the fila-
ment highlighted in B showed no visible shape
change during the entire time series and even-
tually got severed at 91 s (arrows). Bar = 5 mm.
C and D, Quantitative analyses of single actin
filament shape change in wild-type and xi3KO
mutant epidermal cells. C, Convolutedness was
measured as the ratio of filament length (L1) di-
vided by the Euclidean distance (L2), as shown in
A. Values for the representative filaments are
stamped in yellow in A and B. Convolutedness
showed a modest reduction at the apical region
of the hypocotyl but no significant difference in
xi3KO compared with the wild type at the base of
hypocotyls (n $ 50 filaments from 10 hypocotyls
per genotype; Student’s t test, *0.01 , P , 0.05).
D, Rate of change of convolutedness of single
actin filaments was measured. The rate of change
of convolutedness was significantly decreased in
cells from both apical and basal regions of hy-
pocotyls in the xi3KO mutant compared with the
wild type. Values given are means6 SE. The same
images used for C were analyzed for D (Student’s
t test, **P , 0.01). E and F, Quantitative analyses
of actin bundle shape change in wild-type and
xi3KO mutant epidermal cells. E, Convoluted-
ness of actin filament bundles showed no signif-
icant difference in xi3KO compared with the
wild type at either the apical or basal region of
hypocotyls (n $ 50 bundles from 10 hypocotyls
per genotype; Student’s t test, *0.01 , P , 0.05).
F, The rate of change of convolutedness of actin
filament bundles was significantly decreased in
cells from both apical and basal regions of hy-
pocotyls in the xi3KO mutant compared with the
wild type. Values given are means6 SE. The same
images used for E were analyzed for F (Student’s
t test, **P , 0.01). ND, No significant difference.
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of other severing proteins. Alternatively, filament
buckling by myosin could directly result in breaks
along the length of the polymer. Regardless of mech-
anism, this is the first genetic evidence that myosin is
involved in regulating filament fragmentation and
actin turnover in plant cells.

Myosin XI appears not to be involved in regulating
filament ends or filament assembly in Arabidopsis
epidermal cells. The myosin xi3KOmutant did not have
altered annealing and regrowth frequencies, which
indicates that the number of free filament ends was not
changed. Actin filaments originate from different loca-
tions (de novo, side, and end), suggesting different
mechanisms of nucleation (Staiger et al., 2009). The
xi3KO mutant did not show any alteration to the pro-
portion of filament origins compared with the wild
type. More importantly, in budding yeast, the distri-
bution of distinct populations of actin cables reveals
different molecular mechanisms whereby barbed-end
elongation is coordinated (Chesarone-Cataldo et al.,
2011; Yu et al., 2011). Cable motility rates that are faster
than 2 mm s–1 are due to filament translocation driven
by the type V myosin Myo2p (Yu et al., 2011). Here, we
found that there was no significant change in either the
average or the distribution of elongation rates in the
xi3KO mutant. These data indicate that the mechanis-
tically distinct types of elongating barbed ends in plant
epidermal cells (Li et al., 2014b) are not regulated by the
three class XI myosins and also confirm that the dy-
namic behavior of filament ends is not regulated by the
three class XI myosins.

Filament buckling and straightening is another im-
portant feature that contributes to the dynamics of actin
filament arrays. A previous study using BDM showed
that plant myosin may generate the force for buckling
and straightening of actin filaments (Staiger et al., 2009).
We hypothesize that myosin XI powers filament buck-
ling by facilitating the sliding of antiparallel filaments
past each other, by translocation of filaments along
membranes, or both (Szymanski and Cosgrove, 2009;
Staiger et al., 2009; Henty-Ridilla et al., 2013; Li et al.,
2014a). Here, using a genetic approach, we confirmed
that three class XI myosins contribute to the shape
change of actin filaments. The rate of change of
convolutedness was significantly reduced in epidermal
cells of the xi3KO mutant. Moreover, although the thick
actin bundles are less dynamic than single actin fila-
ments (Staiger et al., 2009), the shape change of actin
bundles was also inhibited in the xi3KO mutant. Thus,
this is the first piece of evidence indicating that three
class XI myosins generate force for not only single actin
filaments, but also actin bundles in plant epidermal
cells. Changes in filament and bundle shape could be
powered by antiparallel filament sliding, trafficking
of endomembrane compartments along actin filaments,
translocation of filaments at the plasma membrane,
bulk cytoplasmic streaming, or all of the above.

Plant cell expansion depends on the delivery of mem-
branes and cell wall materials (Smith and Oppenheimer,
2005; Li et al., 2014a). One component of this delivery

mechanism is cargo selection. For example, the traf-
ficking of noncellulosic cell wall components is assumed
to depend on actin and myosin (Nebenführ et al., 1999).
Arabidopsis myosin XI facilitates the motility of secre-
tory vesicles, and a novel cargo adaptor protein was
recently identified (Peremyslov et al., 2012, 2013). The
other key aspect in myosin-dependent secretion is actin
track organization. Proper actin organization is important
for the patterning and lifetime of cellulose synthase com-
plex residency at the plasma membrane, which, in turn,
impacts crystalline cellulose deposition (Sampathkumar
et al., 2013). In this context, anchored myosin motors
might generate forces on the actin bundles that sup-
port transvacuolar strands and create stable transport
pathways to particular locations at the cortex (Szymanski
and Cosgrove, 2009). Studying mutants of other con-
served actin-binding proteins revealed a correlation be-
tween certain actin filament features and cell expansion
(Smith and Oppenheimer, 2005; Hussey et al., 2006; Li
et al., 2014a). It is hypothesized that longer filament
length and increased lifetime enhance axial cell ex-
pansion by establishing more efficient tracks for vesicle
trafficking (Henty-Ridilla et al., 2013; Li et al., 2014a,
2014b). Our data show that in the xi3KO mutant, fila-
ment length and lifetime were increased due to the
inhibition of severing frequency. However, although
filament length and lifetime are increased, cell length
and width in the xi3KO mutant were reduced. This
could suggest that myosin XI is downstream of actin
length and lifetime in regulating cell expansion. In other
words, track length and lifetime are not relevant when
the motors and cargo delivery are inhibited. Moreover,
a recent study shows that the velocity of myosin posi-
tively correlates with cell size by replacing the ATPase
head domain with faster and slower motors (Tominaga
et al., 2013). Such mutants provide a unique opportu-
nity to study, in more detail, the relationship between
myosin motor activity and actin tracks. For example, it
should be possible to test whether the change of myosin
velocity would affect turnover of actin filaments or
whether a higher velocity of myosin would generate
more force for filament buckling and straightening, or
both.

MATERIALS AND METHODS

Plant Material and Growth Conditions

The Arabidopsis (Arabidopsis thaliana) xi3KO mutant and xi3KO mutant
expressing vYFP-fABD2 were characterized previously (Peremyslov et al.,
2010). Seeds were surface sterilized and stratified at 4°C for 3 d on one-half-
strength Murashige and Skoog medium. For dark-grown hypocotyls, seed-
lings were grown on medium supplemented with 1% (w/v) Suc and 1% (w/v)
agar. After 4 h of exposure to light, plates were wrapped in three layers of
aluminum foil and placed in continuous darkness. For light-grown seedlings,
seeds were plated on one-half-strength Murashige and Skoog medium sup-
plemented with 0% (w/v) Suc and 0.6% (w/v) agar (Dyachok et al., 2011; Li
et al., 2012). Seedlings were grown vertically under long-day conditions (16 h
of light/8 h of dark) at 21°C. To measure the epidermal cell length and width,
5-d-old dark-grown hypocotyls were incubated in 5 mM FM4-64 dye (Invi-
trogen) for 10 min. Seven-day-old light-grown roots were incubated in 5 mM

FM4-64 dye for 5 min. The apical and basal third of hypocotyls and the root
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elongation zone were imaged with a 203/0.25 numerical aperture (NA) ob-
jective on a Zeiss Observer Z.1. Wide-field fluorescence micrographs were
collected with a charge-coupled device (CCD) camera (QuantEM:512SC;
Photometrics). A double-blind experimental design was used for all phenotypic
analysis. All image measurements were performed with ImageJ (http://rsb.info.nih.
gov/ij/). Data analysis and statistical tests were performed with Microsoft Excel.

VAEM Imaging

VAEM was performed using a total internal reflection fluorescence (TIRF)
illuminator on an IX-71 microscope equipped with a 603/1.45 NA PlanApo
TIRF objective (Olympus). YFP-fABD2 was excited with a 488-nm laser line
from a solid-state 50-mW laser (Intelligent Imaging Innovations). The emission
went through a 525/30-nm filter and was captured with an electron-multiplying
CCD camera (ORCA-EM C9100-12; Hamamatsu Photonics). The VAEM
platform was operated with Slidebook software (version 5.5.0; Intelligent
Imaging Innovations). For the imaging of BDM-treated GFP-fABD2 seedlings,
VAEM was performed using a TIRF illuminator on a Zeiss Observer Z.1
equipped with a 1003/1.46 NA PlanApo objective. GFP-fABD2 was excited
with a 488-nm laser line from a solid-state 50-mW laser (Intelligent Imaging
Innovations). The emission was captured with an electron-multiplying CCD
camera (QuantEM:512SC; Photometrics).

Quantitative Analysis of the Architecture of Cortical
Actin Arrays

Two parameters, filament abundance (density) and the extent of filament
bundling (skewness), were measured as described previously (Higaki et al.,
2010; Henty et al., 2011; Li et al., 2012). VAEM snapshots were collected from
hypocotyl or root epidermal cells expressing YFP-fABD2 with a fixed laser
power, exposure time, and gain setting. Micrographs were cropped and an-
alyzed with ImageJ. At least 150 images of hypocotyl epidermal cells per re-
gion, or over 60 images of the root elongation zone from 30 individual
seedlings, were collected and analyzed.

Actin Filament Dynamics

VAEM time-lapse series were collected to measure the dynamics of cortical
actin arrays in epidermal cells as described previously (Staiger et al., 2009;
Henty et al., 2011; Li et al., 2012). Epidermal cells from the apical or basal third
of 5-d-old dark-grown hypocotyls or from the root elongation zone of 7-d-old
light-grown seedlings were examined. Parameters describing actin turnover
and the behavior of filament ends were measured as described (Staiger et al.,
2009; Henty et al., 2011; Li et al., 2012). Convolutedness and the rate of change
of convolutedness were measured after the actin filament stopped growing.
Convolutedness is defined as the ratio of filament length divided by the dis-
tance between the plus and minus ends (Smertenko et al., 2010). The rate of
change of convolutedness is the average difference in convolutedness between
consecutive frames divided by the average time interval between frames. A
double-blind experimental design was used to compare the dynamic parameters
between genotypes. The time-lapse VAEM images for single filament dynamic
measurements were also used for correlation coefficient analyses (Vidali et al.,
2010). Images were cropped and analyzed in MATLAB (version 7.14.0, Math-
Works) using the method described previously (Vidali et al., 2010).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Overall actin dynamicity of both single actin
filament and actin bundles is reduced in the xi3KO mutant.

Supplemental Methods S1. Overall dynamicity analysis for single actin
filaments and actin bundles.
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