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ABSTRACT 

Zheng, Yue. Ph.D., Purdue University, December 2015. Impacts of Land-Atmosphere 

Interactions on Regional Convection and Rainfall. Major Professor: Dev Niyogi. 

 

 

High resolution (1-10 km) numerical weather prediction (NWP) models face major 

challenges trying to improve representation of moist processes.  In particular, simulating 

the interaction between the land surface and regional convection and rainfall is a source 

of uncertainties and presents three main barriers: (i) NWP models generally have simple 

land surface schemes, (ii) land-atmosphere coupling is not properly represented in models, 

and (iii) many assumptions made in deriving the theory of convective parameterizations 

are no longer valid at “gray scales” (e.g., 1-10 km).  In this dissertation, interactions 

between land-surface heterogeneities, land-atmosphere coupling, and moist convection 

and related mesoscale circulations were investigated in four major studies to improve and 

advance the understanding of high-resolution model simulations of regional convection 

and precipitation.  A number of short-term (i.e., 24-48 hours) retrospective numerical 

experiments were conducted over a variety of land-atmosphere coupling hotspot regions 

across the globe.   

 

First, impacts of heterogeneous land surface on turbulent flow and mesoscale simulations 

were assessed.  Experiments were conducted using the Weather Research and Forecasting
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(WRF) model coupled with a simple (slab) land surface model (LSM), a modestly 

complex Noah LSM, and a land data assimilation system (LDAS) with detailed surface 

fields.  Three heterogeneity length scales: 1, 3, and 9 km, were employed to alter land 

cover and land use.  The response of high-resolution model simulations’ to spatial scales 

changes of land-surface heterogeneity by modification of land-surface properties and 

changes in land-surface representation were investigated.  Results indicate that both land-

surface parameterizations and surface heterogeneity affect model simulations, and the 

impact of land-surface parameterizations is found to be more important, particularly for 

low frequency (𝑓 < 10−4 hz) eddies and mesoscale circulations.  Replacing a simple slab 

land model with more detailed land surface models (LSMs) (e.g., Noah or High-

Resolution Land Data Assimilation System) can help reduce uncertainties in the 

simulation of surface fluxes which may be greatly affected by land-surface heterogeneity 

via improved turbulent characteristics over heterogeneous landscapes.  An important 

result that emerges from the analysis is that the impact of land-surface heterogeneity on 

atmospheric feedbacks can be detected in mesoscale circulations that are roughly four 

times the heterogeneity spatial scale.  It follows that the heterogeneity length scale that 

can influence mesoscale circulations would be a function of grid spacing in the model. 

 

Second, the role of land-atmosphere coupling over regions with relatively strong coupling 

between land-surface conditions and moist convection were assessed.  The need for 

adopting a dynamic coupling strength within the land surface model was assessed by 

analyzing rainfall events and impacts of land-atmosphere coupling using the Noah land 

model and WRF model simulations over the U.S. southern Great Plains (SGP), Europe, 
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northern India, and West Africa.  Land-atmosphere coupling strength impacts on model 

parameterizations (i.e., land surface processes, PBL dynamics, and moist convection) 

were quantified and the range of regional variation in the coupling coefficient for model 

simulations was documented.  Results indicate that the adoption of a dynamic land-

atmosphere coupling formulation helps improve the simulation of surface fluxes and the 

resulting atmospheric state, thus dynamic coupling shows promise in modulating model 

results and improving convective system simulation and precipitation forecasts.  For the 

four regions, the surface coupling coefficient does not affect the general location but 

could improve the intensity of simulated precipitation.  Results highlight that there is high 

uncertainty in land-atmosphere coupling and the results from this and prior studies need 

to be considered with caution.  In particular, zones identified as coupling hotspots in 

climate studies and their coupling strength would likely change depending on the model 

formulations and coupling coefficient assigned.   

 

Third, impacts of an updated convection scheme on high-resolution precipitation 

forecasts were assessed.  At high resolution spatial scales, precipitation biases and errors 

can occur due to uncertainties in initial meteorological conditions, grid-scale cloud 

microphysics schemes, and/or subgrid-scale convection schemes.  To reduce precipitation 

biases and uncertainties, scale-aware parameterized cloud dynamics were introduced to 

high-resolution forecasts by making several changes to the Kain-Fritsch (KF) convection 

parameterization scheme (CPS) in the WRF model.  These changes include subgrid-scale 

cloud radiation interactions, a convective adjustment timescale, the cloud updraft mass 

flux impacting grid-scale vertical velocity, and a LCL-based methodology for 
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parameterizing entrainment.  This updated KF (UKF) CPS allows the convection scheme 

to facilitate a smooth transition from parameterized cloud physics to resolved grid-scale 

cloud physics across different grid resolutions.  Results indicate that (1) high-resolution 

precipitation forecasting is more sensitive to the source of initial conditions than to grid-

scale microphysics or convective parameterizations, and (2) the UKF CPS greatly 

alleviates excessive precipitation at 9 km grid spacing and improves results at 3 km grid 

spacing as well.   

 

In the last part of this dissertation, impacts of land-atmosphere-convection interactions on 

regional precipitation intensity and variation in the WRF model were assessed.  

Sensitivity experiments including effects of LSM, land-atmosphere coupling strength, 

and CPS on the fields of precipitation, surface scalars, and convection reveal that 

including a more detailed land surface parameterization, a dynamical surface coupling 

strength coefficient, and UKF CPS together, improves mesoscale simulations of several 

meteorological and convection parameters in the short-term high-resolution WRF model, 

increasing accuracy about 40% for precipitation intensity forecasts.   

 

Overall, results highlight the persistent role of land-surface heterogeneity for turbulent 

flow and mesoscale circulation, the essential role of land-atmosphere coupling for 

regional convection and precipitation formation over hotspot regions, and in particular, 

the important role of a scale-dependent subgrid-scale convection scheme on convective 

precipitation at intermediate scales.  Together the improvements in land-surface 

representation, land atmosphere coupling, and convection parameterization can yield 
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positive impacts on the model performance for short-term regional rainfall predictions, 

and therefore land-atmosphere-convection feedbacks can be well represented. 

 

Key words: Convection parameterization, High-resolution, Land-atmosphere interaction, 

Land-atmosphere coupling, Land-surface heterogeneity, LSM, Mesoscale convection, 

PBL, Precipitation, Subgrid-scale, Surface coupling strength, Surface fluxes, WRF-ARW 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Many of the central problems in meteorology and climate science involve moist 

(atmospheric) convection.  The deep, precipitating moist convection contributes to severe 

weather, such as excessive rainfall and flash floods, straight-line winds, hail, lightning, 

and tornadoes (Stevens 2005).  There is growing evidence that changes in land-surface 

properties can significantly influence convective rainfall on regional and global scales 

through dynamic processes (Pielke et al. 2001).   

 

The land surface consists of different features; the heterogeneous land surfaces behave as 

sources and sinks of heat and moisture, and the spatial structure of the surface 

characteristics are shown to influence heat and moisture fluxes within the planetary 

boundary layer (PBL) (e.g., Zhong and Doran 1995; Baldi et al. 2005; Holt et al. 2006; 

Niyogi et al. 2006; Zhang et al. 2010; Niu et al. 2011).  Additionally, the different scales 

of land surface heterogeneity, ranging from meters to kilometers, could generate different 

sizes and strengths of turbulent eddies, which in turn influence the atmospheric 

convection resulting in enhanced cloud formation and associated precipitation due to 

higher surface evapotranspiration (e.g., Hadfield et al. 1992; Pielke and Uliasz 1993; 

Avissar and Liu 1996; Avissar et al. 1998; Weaver and Avissar 2001; Koster et al. 2003;
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Weaver 2004a, b; Kang 2007; LeMone et al. 2007a; Huang and Margulis 2009; Niyogi et 

al. 2009a; Alfieri and Blanken 2012).  Avissar and Chen (1993) pointed out that correctly 

representing turbulent fluxes over heterogeneous surfaces is important to improve 

parameterizations in atmospheric models.  Most current land surface models (LSMs) 

characterize land surface properties, such as surface exchange coefficients of heat and 

moisture, roughness length, and albedo, by effective parameters, and the mechanism of 

coupled different LSMs in representing impacts of land-surface heterogeneity is therefore 

also necessary for improved simulations of land-atmospheric interactions.  Thus, it is 

necessary to understand both the statistical properties of turbulent flow and mesoscale 

predictions by different land surface parameterizations coupled to mesoscale weather 

forecasting models over a heterogeneous land surface.   

 

Literature suggests that the overlying air properties are influenced to some extent by the 

underlying land surface heterogeneity through land-atmosphere feedback which may be 

linked to the land-atmosphere coupling strength through exchange coefficients of heat 

and momentum (e.g., Niyogi et al. 1999; Pielke 2001; Trier et al. 2004; Holt et al. 2006; 

Koster et al. 2003, 2004, 2006; LeMone et al. 2008, 2010; Seneviratne et al. 2010; Hirsch 

et al. 2014).  The surface heating strongly depends on the land-atmosphere coupling, as 

lesser (or more) precipitation results in dryer (or wetter) soil, which contributes to a 

decrease (or increase) in the cooling effects from latent heat flux and thus amplifies (or 

reduces) summertime temperatures (Koster et al. 2004; Fischer et al. 2007).  These kinds 

of global regions were identified as “hot spot” areas of strong coupling between summer 

rainfall and land-surface conditions (Koster et al. 2004).  A number of atmospheric 
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models [(e.g., 12 participating atmospheric general circulation models (AGCM) in the 

Global Land-Atmosphere Coupling Experiment (GLACE)] have been studied to see if 

the land-atmospheric coupling effect can be well represented.  However, the hot spots 

land-atmosphere coupling effect could be incorrectly captured due to a lack of knowledge 

of the model-prescribed coupling strength (Koster et al. 2003; Ruiz-Barradas and Nigam 

2005; Dirmeyer et al. 2006; Hirsch et al. 2014; Lorenz and Pitman 2014).   

 

Recently the role of the coefficient C in the Zilitinkevich (1995) equation (Czil) for the 

coupling strength between land and atmosphere has been examined (e.g., LeMone et al. 

2008, 2010; Chen and Zhang, 2009; Trier et al. 2011).  The parameter of Czil describes 

the influence of surface turbulence on surface heat transfer and has been identified as the 

only parameter that could bring the Noah land surface model-based HRLDAS and 

observations into agreement (LeMone et al. 2008).  Most importantly, the parameter of 

Czil has a significant impact on model response to surface and boundary layer feedback 

which can affect predictions of weather/climate and more specifically convection and 

associated cloud-radiation-precipitation.  Thus, it is necessary to explore model 

sensitivity to Czil and its coupling capabilities over the hotspot regions. 

 

Atmospheric moist convection is a result of parcel-environment instability, and the moist 

processes play an important role in accurately predicting severe weather, air pollution, 

climate, and the hydrological cycle.  Convectively active clouds play a central role in the 

interaction of radiative, dynamical, and hydrological processes in the atmosphere.   
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Cloud microphysics schemes have been widely used in Numerical Weather Prediction 

(NWP) forecast models (e.g., Done et al. 2004; Deng and Stauffer 2006; Wulfmeyer et al. 

2006; Case et al. 2008; Niyogi et al. 2011).  However, at finer spatial and temporal scales, 

cloud microphysics schemes have limitations in representing moist convection due to two 

primary facts: 1) cloud grid-scale dynamics are separated from cloud physics; and 2) the 

subgrid-scale cloud effects need to be accounted for in high spatial resolution forecasts 

(e.g., ~1 to 10 km grid spacing; Arakawa and Jung 2011; Gustafson Jr. et al. 2013; 

Molinari and Dudek 1992). 

 

The convective parameterization (CP) has always been a key factor to improve numerical 

modeling of the atmosphere (Arakawa and Jung 2011).  Particularly, the subgrid-scale 

cumulus cloudiness in many high-resolution NWP models can influence simulations of 

atmospheric radiation and the resulting precipitation.  However, the subgrid-scale 

convective parametrization scheme (CPS) has been greatly neglected outside of global 

climate models.  Therefore many CPSs could not work properly at intermediate-scales 

(e.g., ~1 to 10 km grid spacing) due to the many assumptions tied to scales around 25 km.  

To improve the representation of subgrid-scale clouds for higher resolutions, there is a 

need to relax some of the assumptions towards achieving scale independence in the CPSs 

[e.g., the Kain-Fritsch (KF) CPS].   

 

Along with increasing resolution, the impact of parameterized convection is expected to 

become less and less significant.  However, the tendencies produced by parameterized 

convection would dominate over resolved convection at higher resolutions, resulting in 
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improper simulation of moist convection and precipitation.  To address these issues, the 

scale-aware parameterized cloud dynamics will be introduced to the KF scheme for high-

resolution forecasts by making several changes.    

 

One of the many key parameters to modify in the CPS is the convective adjustment 

timescale.  It is the time over which the convective available potential energy (CAPE) is 

“removed” to stabilize the atmosphere.  It determines the duration of convective heating, 

drying, precipitation, and radiative fluxes, and is set as a constant value in many regional 

and global models.  Another key parameter is the entrainment rate which is often 

specified in many global models.  For high-resolution simulations, the assumptions made 

in the formulations for adjustment timescale and entrainment of the KF scheme should be 

reconsidered to make CPSs seamless across the spatial scales.  Additionally, the 

importance of including subgrid-scale convective momentum transport on grid-scale 

vertical motions deserves attention.  One potential benefit is that adding the subgrid-scale 

vertical velocity could help reduce model spin-up time.   

 

Based on the above considerations, a few changes have been made to the KF CPS in this 

dissertation.  These changes include subgrid-scale cloud-radiation interactions, a dynamic 

adjustment timescale, impacts of cloud updraft mass fluxes on grid-scale vertical velocity, 

and lifting condensation level-based entrainment methodology that includes scale 

dependency.   
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Thus, the premise of this Ph.D. dissertation research is that accurate representations of the 

heterogeneous land surface, land-atmosphere coupling, and cloud convection at high 

resolutions are of vital importance for regional and global numerical models to accurately 

simulate mesoscale convection and forecast precipitation.  This study will assess the 

land-atmosphere interactions associated with regional convection and precipitation over 

the U.S. southern Great Plains (SGP), and in particular, assess the land-atmosphere 

coupling impacts over four hotspot regions (U.S. SGP, Europe, northern India, and West 

Africa) across the globe.   

 

The Weather Research and Forecasting (WRF) model (Skamarock and Klemp 2008) is 

the main modeling tool used in this research.  The WRF model has been commonly used 

around the world for a wide range of meteorological studies and operational purposes 

across spatial scales ranging from meters to thousands of kilometers and timescales from 

days to decades.  It is a fully compressible non-hydrostatic, primitive-equation model 

with multiple-nesting capabilities to enhance resolution over the areas of interest. 

 

Therefore, this dissertation research is specifically guided by the following four questions:  

i) how does land-surface heterogeneity affect LSM/WRF simulations and the differences 

arising from different LSMs impact the turbulent flow and mesoscale predictions?  ii) 

How do current meteorological models represent land-atmosphere surface coupling 

strength and what is the impact of surface-atmosphere coupling strength on regional (and 

though not considered here, global) model performance?  iii) To what extent can a 

subgrid-scale convection scheme be modified to bring in scale-awareness for improving 
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high-resolution short-term precipitation forecasts in the WRF model?  And iv) How could 

the land-atmosphere-cloud connection linkage be improved in a coupled model 

framework? 

 

1.2 Study Objectives 

The main objective of this dissertation is to improve the understanding and model 

forecast ability for regional convection and precipitation.  The main hypothesis is that 

accurate representation of fine-scale heterogeneous land surfaces and land-atmosphere 

coupling strength in conjunction with an improved CPS within the high-resolution (1-10 

km) WRF model, can significantly improve mesoscale convection and precipitation 

forecasts.  The unique focus of this research is to investigate NWP model performance at 

multi-scale processes involving turbulent processes, mesoscale circulations, subgrid-scale 

convective clouds, and the interactions between them.   

 

A variety of techniques including numerical modeling, field and satellite observations, 

and data assimilation were used in this study.  Sensitivity analysis and statistical-

dynamical approaches for improving high-resolution weather forecasts were also 

employed to assess the simulations of regional convection and rainfall.   

 

A four-pronged strategy was undertaken as shown below. 

i. Examined the role of land use and land cover variability on boundary layer 

dynamics and assessed the importance of the turbulent processes for mass and 
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energy transfer between the heterogeneous land surface and boundary layer in the 

NWP model. 

- Coupled model simulations were conducted utilizing observations (e.g., 

eddy covariance data and surface fluxes from AmeriFlux and ARM, and 

radiosonde data). 

- Spectral characteristics of landscape heterogeneity and observed turbulent 

data were analyzed. 

- Reduced uncertainty of surface flux simulations over heterogeneous 

landscapes. 

- Improved boundary layer and mesoscale process simulations via turbulent 

processes by using detailed land surface models coupled to the WRF model. 

ii. Investigated the impact of land-atmosphere coupling on different hotspot regions 

across the globe and assessed the impacts on mesoscale convection and rainfall. 

- Analyzed rainfall events over four land-atmosphere coupling hotspot 

regions (U.S. SGP, Europe, northern India, and West Africa) by conducting 

offline model and coupled Noah-WRF modeling experiments. 

- Improved simulations of surface fluxes, atmospheric state, and 

precipitation intensity by using a dynamic land-atmosphere coupling coefficient. 

- Processed and utilized precipitation observations (e.g., MPE and TRMM 

data). 

iii. Improved the prediction accuracy of fine scale (1-10 km) short-term precipitation 

by incorporating a subgrid-scale cloud convection effect in the WRF model.  
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- Implemented improved methodologies to update the KF CPS in the WRF 

model by introducing scale-aware parameterized cloud dynamics for high-

resolution forecasts.  

- Evaluated the impact of physics, dynamics, and initial conditions on high-

resolution short-term precipitation forecasts based on the updated KF (UKF) 

scheme. 

iv. Explored the impact of interaction between land-surface and cloud on mesoscale 

convection and precipitation intensity and distribution. 

- Improved model forecast capabilities for convection and precipitation at 

mesoscale and convection permitting scales.  

- Explored the impact of land-atmosphere-cloud interactions on 

precipitation for heavy rainfall events. 

- Examined the performance of PBL schemes, land surface schemes, and 

CPSs for severe thunderstorm events. 

A flowchart of the research experimental design is shown in Fig. 1.1. 
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1.3 Case Studies and Observational Data 

A number of short-term (24- or 48-hour) retrospective numerical experiments over four 

different land-atmosphere coupling hotspot regions across the globe (U.S. SGP, Europe, 

northern India, and West Africa) were chosen for study.  The main study domain is 

centered on the U.S. SGP due to its importance as a land-atmosphere coupling hotspot 

 
Fig. 1.1 The experimental design flowchart 
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and the availability of various high quality observations.  The four different sets of 

mesoscale events designed and studied are: 

1) Pre-convective environment: A wet “few clouds” day without precipitation over the 

U.S. SGP in summer 2007 was selected so that the cloud influence bias could be 

avoided.  The wet land-surface has a larger latent heat flux which leads to relatively 

high atmospheric water vapor content in the PBL enhancing surface net radiation.  

Heterogeneous landscape under wet conditions is important to improve the 

understanding of land-atmosphere coupling processes and mesoscale convection.   

2) Precipitation over regions with strong coupling between land-surface conditions and 

moist convection: The four regions, U.S. SGP, Europe, India, and West Africa, were 

selected since each region was identified as a land-atmosphere coupling hotspot in 

different global studies.    These hotpots are also diverse in landscape with intense 

mesoscale convection and heavy precipitation events.  As stated previously, the U.S. 

SGP has been a popular domain of many land-atmosphere coupling studies with high 

quality observational data.  Europe is a region with large amounts of orographic 

precipitation due to its various mountainous terrains.  Northern India is selected 

because of its monsoon region where heavy rainfall events and mesoscale convection 

are primarily associated with monsoon rainfall.  The concentrated rainfall in West 

Africa has revealed the critical importance of studying the interactions between land 

surface and atmosphere. 

3) Precipitation, cloud dynamics, and microphysics: four representative regional rainfall 

cases with different patterns and time periods over the U.S. SGP were selected and 

four sets of (thirty-six runs as total) 48-hour WRF experiments were conducted.  Case 
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1: 0000 UTC 4 June – 0000 UTC 6 June 2002; Case 2: 0000 UTC 28 July – 0000 

UTC 30 July 2010; Case 3: 0000 UTC 5 July – 0000 UTC 7 July 2010; and Case 4: 

0600 UTC 14 June – 0600 UTC 16 June 2002.  The purpose is to assess the high-

resolution model’s ability with the UKF scheme to forecast regional precipitation 

intensity and distribution. 

4) Mesoscale convective system: A convective event was selected where there was a 

squall line with extended trailing stratiform over the U.S. SGP from the MC3E field 

campaign in May 2011.   

 

1.4 Model Configurations 

The WRF model (Skamarock and Klemp 2008) is a useful tool to understand earth 

system processes across spatial scales ranging from meters to thousands of kilometers 

and timescales from days to decades.  It is the main modeling tool used in this 

dissertation.  Numerical model simulations were designed and conducted with multiple 

nested domains according to the research tasks.  The model configurations were based on 

previous studies (e.g., Krishnan et al. 2003; Venkata Ratnam and Cox 2006; Bukovsky 

and Karoly 2009; Flaounas et al. 2011).  The lateral boundary and initial conditions were 

provided by NCEP Global Final Analysis (FNL) data derived from the Global Forecast 

System (GFS) and Climate Forecast System Reanalysis (CFSR) data. 

 

A number of short-term retrospective numerical experiments were performed over a 

variety of land-atmosphere coupling hotspot regions across the globe to study the 

improvements in heterogeneous land surface representation, land-atmosphere surface 



13 

coupling effect, and CPSs.  It is hypothesized that together, these improvements can 

provide a positive impact on predictions of high-resolution regional convection and 

rainfall. 

 

One of the key aspects for simulating regional convection and rainfall is the 

representation of fine-scale heterogeneity land surface.  To address the roles of land-

surface heterogeneity in affecting land-surface processes and the corresponding PBL 

responses, the WRF model was coupled to a simple LSM (slab), a detailed LSM (Noah), 

and a fine-scale heterogeneous field analyses as provided by the High-Resolution land 

data assimilation system (HRLDAS).   

 

Slab model calculates ground temperature from a five-layer soil thermal diffusion option 

without explicit representation of vegetation effects (Blackadar 1976, 1979).  In the slab 

model, the ground wetness (as soil moisture availability) is set at a constant value during 

the WRF-ARW simulations, and this constant soil moisture value may result in difficulty 

in modeling latent heat flux due to the vegetation-process interactive complexity.   

 

In addition to the slab scheme, the other LSM used was the Noah model originated by 

Pan and Mahrt (1987), has and was significantly modified later (see Koren et al. 1999; Ek 

et al. 2003; Chen and Dudhia 2001).  The Noah model has explicit representation of 

vegetation effects and time-varying soil moisture/temperature, and has been used in the 

WRF model for a variety of mesoscale applications (e.g., Leung et al. 2003; Trier et al. 
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2004; Niyogi et al. 2006; Weisman et al. 2008; Chen et al. 2011; Otte et al. 2012; Bullock 

et al. 2015).    

 

HRLDAS runs in an uncoupled, offline mode at 1 km resolution with 30 months of spin-

up initialization using a variety of atmospheric forcings and surface conditions (Chen et 

al. 2007) and was also used in this study.  HRLDAS integrates static fields of land use 

and soil texture and prognostic vegetation and meteorology based on Noah LSM.  In 

addition to running offline, HRLDAS is then run in a coupled mode with WRF using the 

Noah LSM on the same WRF nested grids.  It is capable of providing a more realistic 

mesoscale environment and captures fine-scale land-surface heterogeneity (Holt et al. 

2006; Case et al. 2008; Charusombat et al. 2012). 

 

In addition to land-surface parameterization changes, WRF runs were also conducted for 

sensitivity analysis of the Czil values by using the same physical options over the four 

selected hot spot regions to constrain the confounding variables.  Along with studies 

involving land-atmosphere coupling, high-resolution experiments to determine the role of 

convection schemes were also performed.  Three convective treatments were designed 

with a combination of two cloud microphysics schemes [the Goddard microphysics 

scheme and the WRF double-moment 6-class scheme (WDM6)] and two types of initial 

conditions (as discussed above): (1) no CPS; (2) the latest KF scheme; and (3) the UKF 

scheme.   
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WRF is a state-of-the-art atmospheric modeling system and has been largely developed 

and maintained over the past years.  This dissertation is based on research that has 

spanned several years during which a few of the model versions were released.  In each 

of the model simulations, the latest available WRF version at the time of the study (WRF 

3.4.1) was used.  More details about the current and previous WRF releases can be found 

at http://www2.mmm.ucar.edu/wrf/users/download/get_source.html.   

 

1.5 Dissertation Layout 

This dissertation is organized as follows.  The following four chapters deal with the four 

research strategies undertaken in this dissertation.  Chapter 2 discusses the role of 

landscape heterogeneity on atmospheric mesoscale predictions and turbulent flow.  

Chapter 3 assesses the role of land-atmosphere coupling strength over regions with strong 

coupling between land-surface conditions and moist convection.  Chapter 4 improves the 

prediction of precipitation distribution and variability by introducing scale-aware 

parameterized cloud dynamics for high-resolution forecasts.  Chapter 5 summarizes and 

assesses the impact of the improvements in land-surface representation, land atmosphere 

coupling strength, and CP on high-resolution precipitation forecasts.  The overall 

conclusions from the dissertation are summarized in Chapter 6.   
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CHAPTER 2. IMPACTS OF HETEROGENEOUS LAND COVER AND LAND 

SURFACE PARAMETERIZATIONS ON TURBULENT FLOW AND 

MESOSCALE SIMULATIONS IN THE WRF MODEL
1
 

2.1 Introduction 

Land surface models (LSMs) parameterize energy and water exchanges and their 

coupling between the terrestrial biosphere and atmosphere (Henderson-Sellers et al. 1995, 

1996; Niyogi et al. 1999; Pitman 2003).  Recent progress in LSMs in NWP models has 

demonstrated their utility in providing accurate and high-resolution representations of 

surface properties (e.g., LeMone et al. 2008; Niyogi et al. 2009a; Niu et al. 2011; Wei et 

al. 2013; Cai et al. 2014).  Many studies have employed different LSMs to represent land 

heat and water storage and their relationships with fluxes (Dirmeyer et al. 2006), and the 

overall mesoscale model forecasts are influenced by the representation of land-surface 

heterogeneity (Avissar and Pielke 1989). 

 

Land-surface heterogeneity has been primarily represented in LSMs as horizontal 

changes in surface properties, such as land use/land cover (LULC), topography, and soil 

moisture (e.g., Chen and Avissar 1994; Eastman et al. 1998; Trier et al. 2004; Holt et al 

2006).  The land-surface heterogeneity also results in a mosaic of spatial gradients in 

surface energy and water budgets (e.g., Pielke and Uliasz 1993; LeMone et al. 2007;

                                                 
1 Zheng, Y., N. A. Brunsell, J. G. Alfieri, D. Niyogi, 2015: Impacts of land surface coupling on Boundary 

Layer simulation over heterogeneous landscapes. Earth Interact., Land Use Land Cover Change Special 

Issue. 
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Niyogi et al. 2009a; Alfieri and Blanken 2012).  The differential heating of the 

atmosphere caused by land-surface heterogeneity can lead to mesoscale atmospheric 

circulations and convective weather processes in the PBL over a broad range of spatial 

and temporal scales (Hadfield et al. 1992; Avissar and Liu 1996; Avissar et al. 1998; 

Koster et al. 2003; Niyogi et al. 2006; Kang et al. 2007; Weaver 2004a, b). 

 

The coupled simulated mesoscale features can be influenced by the scale of the 

heterogeneity.  For example, Wang et al. (1996) showed that in the lower atmosphere, 

fine scale thermal variability of the landscape influenced convection initiation in a three-

dimensional stochastic linear model of the mesoscale circulation.  Baidya Roy and 

Avissar (2000) found notable turbulent thermals were developed when the length scale of 

the surface heterogeneity exceeded 5-10 km, highlighting that subgrid-scale 

parameterization needs to include mesoscale processes instead of only accounting for 

turbulence.  Yates et al. (2003) showed that the effect of scale changes of land-surface 

heterogeneity is evident in modeled estimates of the domain mean flux.  While for larger 

length scales of land-surface heterogeneity, which could be regarded as relatively 

homogeneous conditions, the modeled latent heat flux became increasingly important 

(Brunsell et al. 2011).  As a result, the increasing heterogeneity scale may change the 

subgrid heterogeneity effects, and lead to significant changes in modeled surface energy 

partitioning which in turn affects the vertical fluxes of heat and moisture in the planetary 

boundary layer (PBL) and the simulation of mesoscale circulations (Zhong and Doran 

1995; Baldi et al. 2005; Zhang et al. 2010).   
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Understanding the mechanisms of coupled LSMs/WRF in representing impacts of land-

surface heterogeneity is necessary for improving simulation of land-atmospheric 

interactions.  While a number of LSMs coupled to atmospheric models have been used to 

investigate the impacts of heterogeneous surface forcings on the PBL and the resulting 

mesoscale circulations, there has been limited attempt to quantify how changes in length 

scales of land-surface heterogeneity affect the development of mesoscale circulations and 

turbulent flow in high-resolution (1~10 km) mesoscale models (Holt et al. 2006; Niyogi 

et al. 2006; Trier et al. 2008; Niu et al. 2011).  Therefore, in this study we conduct a 

number of numerical experiments to address the roles of land-surface heterogeneity in 

affecting land-surface processes and the corresponding mesoscale responses.  Our 

objectives include two primary aspects: 1) to understand to what extent land-surface 

heterogeneity impacts high-resolution (1~10 km) coupled LSMs/WRF simulations; and 2) 

to investigate how the differences arising from different land-surface parameterizations 

impact turbulent flow and mesoscale circulations. 

 

2.2 Numerical experiments 

A series of numerical experiments were conducted using the WRF model (version 3.4.1; 

Skamarock et al. 2008) coupled to a simple LSM (slab), a relatively detailed LSM (Noah), 

and a fine-scale heterogeneous field analyses as provided by a High-Resolution land data 

assimilation system (HRLDAS).   
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2.2.1 A brief description of the land-surface parameterizations 

The slab model is a simple but effective land model which prognostically calculates 

ground temperature from a five-layer soil thermal diffusion option (with layer thickness 

from top to bottom of 0.01, 0.02, 0.04, 0.08, and 0.16 m) without explicit representation 

of vegetation effects (Blackadar 1976, 1979).  The soil moisture availability in the slab 

model is a spatially varying but temporally constant parameter which is defined as a 

function of land use type in the WRF-ARW simulation.  The constant soil moisture 

availability values can introduce difficulty in modeling latent heat flux due to the 

complex interactions among vegetation and evapotranspiration process (Chen and Dudhia 

2001). 

 

The other LSM model used is the Noah model, which was developed with the 

consideration of the sensitivity of boundary layer development to surface moisture and 

vegetation (Chen and Dudhia 2001).  The Noah LSM has explicit representation of 

vegetation effects and time-varying soil moisture.  It has been used in WRF by including 

simplified approaches of canopy resistance, surface evaporation, vegetation transpiration, 

surface and sub-surface runoff scheme, and treatment of soil thermal and hydraulic 

properties.  One canopy layer and four soil layers with thickness of 0.1, 0.3, 0.6, and 1.0 

m from the ground surface to the bottom of the soil depth are used in the Noah LSM.  

 

In addition, HRLDAS which runs in an uncoupled, offline mode at higher resolution with 

30 months of spinup initialization using a variety of atmospheric forcings and surface 
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conditions (Chen et al. 2007), is employed to provide a more realistic mesoscale 

environment (Holt et al. 2006).  In addition to running offline, HRLDAS is then 

employed in a coupled analysis with WRF using the Noah LSM on the same WRF nested 

grids.  HRLDAS integrates static fields of land use and soil texture with four soil layers 

as well as time-varying fields of vegetation and meteorology based on Noah LSM.  It is 

capable of capturing land-surface heterogeneity at a spatial scale ranging from 1 to 10 km, 

which is a typical magnitude for mesoscale applications (Holt et al. 2006; Charusombat et 

al. 2012).  Details of the spinup period and model configuration of HRLDAS will be 

provided in the next section. 

 

Thus, this study employed the slab model which has constant soil moisture but prognostic 

soil temperature; the Noah model which has time-varying soil moisture and soil 

temperature with explicit representation of vegetation effects; and, the HRLDAS which 

provides more detailed land surface conditions, coupled to the WRF model separately.  

The purpose of using these different LSMs is to confine the land-surface heterogeneity as 

much as realistically possible to (i) only soil temperature varying (i.e., slab LSM), (ii) 

both soil temperature and moisture varying (i.e., Noah LSM), and (iii) finer length scale 

of heterogeneity (i.e., HRLDAS). 

 

2.2.2 Numerical model configuration 

The study domain is centered on the U.S. SGP due to its importance as a land-atmosphere 

coupling “hotspot” (Koster et al. 2004; Zheng et al. 2015) and the availability of various 

observations.  The WRF model is configured with 2 two-way nests of 3 km (490 × 470 
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grid points) and 1 km (607 × 574 grid points) horizontal grid spacing.  The main land-

cover types which include grassland, cropland, forests, and savannas and a mixture of 

crop and natural vegetation with considerable LULC heterogeneity are shown in Fig. 2.1a.  

The topography exhibits a higher western side elevation and a lower eastern side 

elevation (Fig. 2.1b).  The emphasis is on the higher-resolution 1 km grid spacing domain, 

so all the following figures and discussion will pertain to the 1 km nest.  The model was 

run with 42 vertical levels applied from the surface to the level of 100 hPa, with 20 

vertical levels below the height of 3 km to resolve the PBL processes.   

 

 

FIG. 2.1 Model domains for (a) the land-use category (the black dots represent specific site 

locations in Table 3); (b) topography (the red bold line is the selected position for the vertical cross 

section in Fig. 2.6).     
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A one degree, 6-hourly National Centers for Environmental Prediction (NCEP) Global 

Final Analysis (FNL) dataset derived from the Global Forecast System (GFS) was used 

to set the boundary and initial conditions for the large-scale atmospheric fields, soil 

parameters (i.e., soil moisture and temperature), and sea surface temperature (SST).  

Additionally, a long-term (30-months) offline high-resolution spinup and a variety of 

atmospheric forcing and surface conditions, including NCEP Stage-IV Rainfall Analysis 

at 4 km grid spacing, 50 km Geostationary Operational Environmental Satellite (GOES) 

solar downward radiation, other atmospheric forcing conditions from model-based 

analysis, and the United States Geological Survey (USGS) land-use and land-cover map 

with 24 vegetation types, were used in HRLDAS to initialize surface and soil fields.   

 

The major physical options used for this study included the Kain-Fritsch CPS (Janjic 

1994, 2000), the Morrison double-moment microphysics scheme (Hong and Pan 1996), 

the Mellor-Yamada-Janjic (MYJ) PBL scheme (Janjic 2001), and the Rapid Radiative 

Transfer Model (RRTM) for longwave and shortwave radiation (Mlawer et al. 1997).  

For model comparisons, data from the AmeriFlux network and the Atmospheric 

Radiation Measurement (ARM) (Stokes and Schwartz 1994) observations over U.S. SGP 

were used.  The data includes surface fluxes averaged every 30 minutes, air temperature 

at 1.5 m, specific humidity at 1.5 m, and wind speed at 1.5 m measured every 5 seconds.  

To study the model performance over the study region, the operational observed vertical 

sounding profiles from the NOAA/National Weather Service as archived at the 

University of Wyoming (http://weather.uwyo.edu/upperair/sounding.html) were also 

employed.   
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2.2.3 Model experiments 

A number of short-term numerical experiments using the WRF model coupled with three 

different land-surface parameterizations were conducted and compared.  A relatively 

calm day with few scattered clouds and no precipitation [from 1200 UTC on 7 July (i.e., 

0600 CST on 7 July) to 1200 UTC on 8 July (i.e., 0600 CST on 8 July)] was selected to 

capture the PBL processes.  The study region exhibits a relatively wet condition in which 

the surface net radiation would tend to be enhanced along with a larger latent heat flux 

and relatively high atmospheric water vapor content in the PBL.  The coupling between 

the land-surface processes and the PBL is expected to be important under such conditions 

(Eltahir 1998; Findell et al. 2011; Santanello 2013a,b). 

 

The WRF Preprocessing System (WPS) was used to initialize USGS soil texture map, 

terrain height, land-water mask, and land use/land cover.  To represent the continuous 

land-surface heterogeneity in this study for simulations of the coupled models, three 

different surface heterogeneity length scales (1, 3, and 9 km) of LULC are generated (or 

upscaled) from the 30 s resolution USGS 24-class LULC datasets using 4-point 

interpolation.  Note that the length scales are only used to filter LULC but not change the 

actual grid spacing of the model runs.  The land surface becomes more homogenous as 

the length scale increases, resulting in substantially altered LULC type information for 

the coupled modeling.   
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A total of nine coupled mesoscale numerical experiments have been conducted and the 

summary of these experiments is shown in Table 2.1.  Each set of numerical simulations 

has been assigned an experiment name and these are referred to as WS (slab/WRF), WN 

(Noah/WRF), and WH (HRLDAS/WRF).  Each of the LSM/WRF run includes three sets 

of experiments corresponding to the heterogeneity length scale.  For example, the WS 

case has three numerical simulations including WS01, WS03, and WS09, as identified 

under Case name in Table 2.1, referring to the 1, 3, and 9 km length scales respectively.   

 

Table 2.1 Summary of the numerical experiments 

Case 

name 

Land-surface 

initialization 

Land-surface grid 

spacing (km) 

WS01 

slab 

1 

WS03 3 

WS09 9 

WN01 

Noah 

1 

WN03 3 

WN09 9 

WH01 

HRLDAS 

1 

WH03 3 

WH09 9 

 

 

2.3 Results and discussion 

The analyses of the simulation results are undertaken to understand to what extent the 

change in surface heterogeneity due to increased LULC length scales affects the 

mesoscale model fields.  The assessments are primarily centered on the impact of LSMs 

and the land-surface heterogeneity on WRF simulated surface heat fluxes, surface 

parameters, turbulent characteristics and vertical turbulent fluxes, and mesoscale 

circulations.       
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2.3.1 Impacts of LSMs affected by land-surface heterogeneity on surface heat fluxes 

To investigate the impacts of the scale issue caused by land-surface heterogeneity on 

LSMs, we compared the surface latent and sensible heat fluxes over the domain (Figs. 2.2 

and 2.3).  As the length scale of LULC type increases, the spatial variations of surface 

heat fluxes for WS and WN become more homogenous while WH results show 

insignificant changes.  This is because the decreased resolution of the LULC in WS and 

WN affect the simulations of surface albedo, soil moisture, and surface skin temperature, 

thereby changing the surface radiation components resulting in the spatial changes of 

surface fluxes.  However, since the land-surface initialization of WH is based on a high-

resolution (1 km) uncoupled land-surface modeling system, the grid cells in WH retain 

the land-surface details of different surface types in the following coupled runs with 1, 3, 

and 9 km length scales.  As a result, the surface heat fluxes for WH do not show any 

notable differences.  The surface heat fluxes for WS show similar spatial patterns to those 

for WH.  However, the LE fluxes for WS for the different length scales at 2100 UTC 

(1500 CST), 7 July 2007 are significantly higher than WH with a maximum difference of 

about 300 W m
-2 

on the west side of Kansas where the main land-surface type is mixed 

dry-land-irrigated.  In such wet conditions, the constant soil moisture values prescribed in 

the slab model becomes the important cause of such differences.  Although HRLDAS is 

built upon the Noah LSM, WN has a larger range of surface heat fluxes and different heat 

flux patterns compared to WH.  More interestingly, it is found that over the domain in 

WN, LE on the east side is much lower than that on the west side, and this may be related 
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to the precipitation gradient across the region and the soil wetness.  Thus, both fine-scale 

gradients and model physics affect the model outputs.    

 

To further analyze the influence of land-surface heterogeneity on land-surface fluxes, 

mean values of diurnal variations [from 1200 UTC on 7 July (i.e., 1200 CST on 7 July) to 

1200 UTC on 8 July (i.e., 0600 CST on 8 July)] of surface heat fluxes were area-

 

FIG. 2.2 Spatial variations in surface latent heat flux (W m
-2

) at 2100 UTC (1500 CST) 7 July 

2007 in (a-c) WS01, WN01, WH01, (d-f) WS03, WN03, WH03, and (g-i) WS09, WN09, WH09.  
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averaged over the domain and shown in Table 2.2.  The WS shows the largest area- 

averaged LE (the smallest area-averaged H), whereas the WN results in the smallest area-

 

averaged LE which is about 30 W m
-2 

less than that for WS.  Results show that LE 

decreases with increasing length scales for the three coupled cases where the impact of 

smoothing land-surface heterogeneity from 1 to 9 km on LE for WS is the largest (2.3 W 

 

FIG. 2.3 Spatial variations in surface sensible heat flux (W m
-2

) at 2100 UTC (1500 CST) 7 July 

2007 in (a-c) WS01, WN01, WH01, (d-f) WS03, WN03, WH03, and (g-i) WS09, WN09, WH09. 
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m
-2

).  This shows that the slab model is more sensitive to land-surface heterogeneity 

impacts.  The area-averaged H for WS increases when the land-surface becomes more 

homogeneous.  The changing length scale modifies the amount of surface energy, and for 

WS the impact of the length scale changing from 1 to 9 km on H (6.8%) is more 

significant than on LE (1.6%).  Thus, the increased length scales weaken the 

heterogeneity effects in the slab/WRF simulations, and this can result in significant 

changes of surface energy partitioning simulated in the slab model.  This in turn affects 

the simulated heat and moisture within the PBL.  The Noah and HRLDAS runs show less 

sensitivity to the land-surface heterogeneity length scale changes, indicating that a more 

detailed land-surface parameterization can help reduce the uncertainty in surface 

representation. 

 

Table 2.2 Mean values of diurnal averaged of area-averaged surface heat fluxes 

Case name H (W m
-2

) LE (W m
-2

) 

WS01 32.12 144.78 

WS03 33.64 143.10 

WS09 34.30 142.48 

WN01 45.09 138.43 

WN03 45.64 138.29 

WN09 44.02 138.02 

WH01 56.87 113.63 

WH03 56.87 113.63 

WH09 57.15 112.92 

 

 

Four typical land-surface types (grassland, forest, wet cropland, and dry cropland) in the 

domain were selected to study the responses of LSMs in the high-resolution coupled 

model (Table 2.3).  Comparisons of diurnal variations of surface heat fluxes between the 

model runs over the domain and the measurements over four specific locations with 
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different land cover types are shown in Figs. 2.4 (latent heat flux) and 2.5 (sensible heat 

flux).  In the high-resolution coupled models, the different land-surface parameterizations 

greatly influence surface heat fluxes over grassland, forest, and wet cropland which have 

higher evaporation during wet conditions.  The impacts of the different land-surface 

parameterizations on surface heat fluxes over dry cropland are relatively small.  It is also 

found that Noah LSM performs better over all four land-surface types in all simulations.   

 

Table 2.3 Summary of the land-cover type selection
*
 

Site name Vegetation type Lat/Lon Data source 

KON C4 tallgrass prairie 39.08°N, 96.56°W AmeriFlux 

LAM Croplands (wet) 36.61°N, 97.49°W ARM 

OKM Forest 35.62°N, 96.07°W ARM 

VIC Croplands (dry) 36.06°N, 99.13°W ARM 

           *
Specific site locations are shown as black dots in Fig. 2.1a.  
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FIG. 2.4 Comparisons of diurnal variations in surface latent heat flux (W m
-2

) between the model 

runs at 1 km length scale initiated at 1200 UTC (0600 CST) 7 July 2007, and the observations over 

(a) grassland (KON), (b) forest (OKM), (c) wet cropland (LAM), and (d) dry cropland (VIC). 

Details of the land-cover types are in Table 2.3.  

 
 

FIG. 2.5 Comparisons of diurnal variations of surface sensible heat flux (W m
-2

) between the 

model runs at 1 km length scale initiated at 1200 UTC (0600 CST) 7 July 2007, and the 

observations over (a) grassland (KON), (b) forest (OKM), (c) wet cropland (LAM), and (d) dry 

cropland (VIC). Details of the land-cover types are in Table 2.3. 
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2.3.2 Impact of land-surface heterogeneity on modeling bias 

A vertical cross section in the north-south direction through the middle of the domain was 

analyzed for temperature and relative humidity at 2100 UTC (1500 CST) 7 July 2007 

(Fig. 2.6).  Similar patterns are noted for the three schemes in the 1-km length scale 

simulations.  As the heterogeneity length scale increases the cross sections of relative 

humidity show differences compared to those at the 1 km length scale.  The PBL depth 

for WS and WN runs at the 9 km length scale are much lower compared to that at the 1 

km length scale.  This may be related to the eddies growing faster in the simulations with 

1 km length scale than those with 9 km length scale, and that the MYJ PBL scheme in the 

1-km-heterogeneity simulation aids the vertical transport of energy flux (Ching et al. 

2014; LeMone et al. 2013; Zhou et al. 2014).  The cross section for WH at the 9 km 

length scale shows very different patterns for temperature and relative humidity when 

compared to those for WS and WN.  Consistent to the results noted for surface fluxes, the 

land-surface heterogeneity has less impact on the HRLDAS/WRF runs.  Thus, the land-

surface parameterization impacts the high-resolution coupled LSMs/WRF simulations 

more significantly than land-surface heterogeneity.  This is not surprising considering 

that to some extent the land-surface heterogeneity is dictated by the land-surface model.  

Additionally, the PBL depth for WH is less dependent on the spatial heterogeneity scale, 

and stays similarly high for increasing heterogeneous length scale.  This may be caused 

by the larger surface sensible heat flux in the WH simulations which leads to stronger 

resolved eddy motions and a deeper boundary layer. 
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Surface heat fluxes would eventually account for the difference in PBL processes and 

affect mesoscale simulations, modeling biases and the model’s ability to simulate mass 

and energy exchanges at the microscale (e.g., Bukovsky and Karoly 2009; Weaver et al. 

2002; LeMone et al. 2013, 2014; Reen et al. 2013).  To assess the impacts of land-surface 

heterogeneity on coupled model biases, the simulated atmospheric variables were 

analyzed further.   

 

 

 

FIG. 2.6 Vertical cross section in the north-south direction through the middle of the domain (as 

seen in Fig 1b) for temperature (K) and relative humidity (%) at 2100 UTC (1500 CST) 7 July 

2007 in (a-c) WS01, WN01, WH01, (d-f) WS03, WN03, WH03, and (g-i) WS09, WN09, WH09.  

The red bold marker “cross” in Fig 1a is the selected position for the cross section. 
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Results of diurnal-averaged RMSE of air temperature at 2 m (T2m), specific humidity at 2 

m (q2m), and wind speed at 10 m (U10m) over the domain are shown in Table 2.4.  It is 

found that for the atmospheric variables of T2m and q2m, WS has the largest RMSE while 

WN shows the smallest RMSE.  However for U10m, the RMSE of WS is smaller than 

those of the other two coupled models.  In addition, the RMSEs of T2m for WS and WN is 

higher with an increase in the length scale of surface heterogeneity while the RMSEs of 

WH01 and WH03 are the same.  These differences again indicate that the simulations of 

atmospheric variables are affected by both surface heterogeneity and land-surface 

parameterizations, and the impacts of land-surface parameterizations are more important.   

 

Table 2.4 Diurnal averaged RMSE of 2 m temperature (T2m) and moisture (q2m), and 10 m wind 

speed (U10m) for model forecasts over the domain 

 

Case name 

RMSE 

T2m 

(K) 

q2m 

(g kg
-1

) 

U10m 

(m s
-1

) 

WS01 2.656 2.920 1.692 

WS03 2.662 2.924 1.691 

WS09 2.668 2.922 1.708 

WN01 2.118 1.758 1.768 

WN03 2.129 1.762 1.733 

WN09 2.158 1.762 1.781 

WH01 2.203 2.540 1.890 

WH03 2.203 2.540 1.890 

WH09 2.220 2.562 2.162 

 

 

2.3.3 Impacts on turbulent characteristics 

Previous studies have shown that correctly representing turbulent fluxes can yield better 

predictions of the effects of surface variability in the PBL (Alapaty et al. 1997) and 

improve parameterizations in NWP models over heterogeneous land surfaces (Avissar 
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and Pielke 1989; Avissar and Chen 1993; Weaver 2004a, b; Alfieri et al. 2009; Case 

2011).  Additionally, a model’s ability to reproduce observed energy spectra can help 

indicate whether the model has correct energy transfer and if it can reliably reproduce 

multiscale forecasts within the atmosphere (Skamarock 2004).  The improved 

representation of small-scale phenomena therefore may contribute to improving 

mesoscale forecasts.  We hypothesize that the land-surface heterogeneity affects turbulent 

flow and mesoscale circulations which can be represented by LSMs coupled to WRF 

model; and the turbulent representations are important for improving the coupled model 

simulations when replacing a simple slab model to a more detailed LSM.  This 

hypothesis builds off prior results of Skamarock and Dempsey (2005) that showed that 

WRF-ARW forecasts produced kinetic energy spectra that bear close resemblance to 

climatologically observed spectra. 

 

The maps of the vertical velocity and wind fields at the middle of the PBL height (~ 1 km) 

have shown the convective structure of the PBL at 2100 UTC 7 July 2007 (Fig. 2.7).  The 

domain averaged turbulent vertical velocities are as expected close to zero and are 

negative (downward) for all the simulations.  The vertical velocity fields show pockets of 

updrafts or downdrafts notably in the northwestern part of the domain (Fig. 2.7A), and 

these patterns are more apparent in the HRLDAS runs [Figs. 2.7A (c,f,i)].  A reason for 

this might be related to the land-surface heterogeneity induced in the high-resolution 

HRLDAS/WRF experiment.  Since the convective eddies have positively correlated to 

the vertical velocity, these eddies provide a source of turbulent kinetic energy and 

positive heat flux.  For the runs with 9-km land-use heterogeneity length scale, slab/WRF 
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and Noah/WRF runs show stronger downward vertical velocity over the domain.  This 

might indicate there are some eddies in these two runs that are tightly coupled to the 

landscape.  However, the HRLDAS/WRF runs have insignificant changes in the vertical 

velocities and wind speeds due to the high-resolution (1 km) uncoupled land-surface 

modeling system initialization.  The averaged wind speed at the mid-PBL level height is 

about 5 m s
-1

, and show stronger gradients.  Thus, the spatial averaged energy spectra 

could be reasonably representing the impacts of spatial heterogeneity and different land-

surface parameterizations.   

 

 

Fast Fourier Transform (FFT) analysis was conducted and the WRF model kinetic energy 

spectra were developed to understand how the characteristics of the mesoscale energy 

spectra simulated by different LSMs/WRF are influenced by land-surface heterogeneity.  

 

FIG. 2.7 Maps of (A) mid-PBL vertical velocity and (B) the wind fields at 2100 UTC 7 July 2007 

with 1-km grid spacing. 
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For short periods and the condition that the advection velocity of the turbulence is much 

greater than the turbulent vertical scale, Taylor’s hypothesis of frozen turbulence can be 

invoked so that the spectrum of the time series data can be assumed to be representative 

of the spatial turbulent structure (Stull 1988).  To satisfy Taylor’s hypothesis, the 

simulated data over the domain were processed according to the condition that the 

standard deviation of wind speed is smaller than half of the mean wind speed (Willis and 

Deardorff 1976).  A total of 558 × 591 data points were produced in the domain.  To 

minimize the effects of the lateral boundary conditions, the energy densities were 

spatially averaged from grids beginning 15 points away from all the boundaries 

(Skamarock 2004).  The energy densities were horizontally averaged using a one-

dimensional spectral decomposition of the related scalars along the west-east direction.  

The kinetic energy spectra for the three different coupled models over the heterogeneous 

land surface were then computed at the height of each model’s surface layer using data 

from these selected points.   

 

The energy densities were calculated correspondingly to intense turbulent activity at 2100 

UTC (1500 CST) 7 July 2007.  The model results were compared against turbulence 

observations obtained using the eddy covariance (EC) technique which employed a 

Campbell Scientific CR1000 datalogger to sample velocities and virtual temperatures at 

20 Hz.  The EC tower in our research is from the AmeriFlux network and located at KON 

(39.08°N, 96.56°W; Fig. 2.1a).   
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The direct forcing from the flow interaction with topography and convection, the 

downscale cascade from lower frequencies, and upscale cascade from higher frequencies, 

are three substantial processes in the build-up of energy in the mesoscale portion of the 

spectrum (Skamarock 2004).  Fig. 2.8 shows the energy spectra with standard deviation 

log-log plots of simulated T2m, q2m (Figs. 2.8 a and b), and the log-log plots of horizontal 

wind velocities at 10 m (U10m, V10m), and vertical velocity (W) [Figs. 2.8 (c-e)] at the 

model’s lowest layer for the three different coupled models at the 1 km length scale.  

Note that since variations in variables such as temperature and humidity can persist as 

“footprints” of former turbulent flow, the resulting spectra of these variables cannot be 

associated with eddy motions (Stull 1988; Schmid 2002).  It is noted that the energy 

spectra show similar trends of curves.  This is likely because the initial and lateral 

boundary conditions for all the models are derived from the same 1 degree FNL analysis 

data.  However, the spectra can be sensitive to the different land-surface features.  The 

spectra of simulated T2m and q2m for WS depart from those for WN and WH and are much 

stronger (Fig. 2.8a), while the spectra for WN are the smallest but very close to the 

observations (Figs. 2.8 a and b).  A large portion of the turbulent observations are found 

when the frequency is larger than 10
-4

 hz, indicating that the large eddies that are resolved 

in WRF model contribute essentially to the turbulence state.  Additionally, the surface 

turbulence is a mix of some low-level frequencies related directly to the surface wind and 

some related to the PBL wind.  By analyzing the spectra for temperature and humidity, 

we concluded that the LSMs/WRF can capture most of the turbulent eddies that 

contribute to turbulence variances.   
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By decomposing a series of measurements into frequency, the contributions from eddies 

of different time and space scales to the overall turbulence can be quantified.  Impacts of 

LSMs on the spectra of U10m and V10m are noted to be more significant at lower 

frequencies (𝑓 < 10−4 hz) where the mesoscale circulations may be created as a result of 

land-surface heterogeneity (Fig. 2.9c and d).  The spectral amplitude of U10m for WH is 

larger than those of WN and WS (Fig. 2.9c).  WS shows stronger spectral amplitude for 

V10m (Fig. 2.8d), but all the simulated energy spectra of V10m are much smaller than the 

observations, indicating that although the energy from large size eddies for V10m of WS is 

 

FIG. 2.8 Energy spectra (m
2
 s

-4
) multiplied by frequency (s

-1
) computed from coupled WRF 

simulations compared to observations at 2100 UTC (1500 CST) on 7 July 2007 for (a) 

temperature at 2 m, (b) specific humidity at 2 m, (c) U-wind at 10 m, (d) V-wind at 10 m, and (e) 

vertical velocity.  
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stronger than those for WN and WH, the coupled models still underestimate the energy 

spectra of V10m that are contributed to by large eddies.  All spectra of vertical velocity 

collapse to a series of close curves in the middle and higher frequencies (Fig. 2.8e).   

 

The spectra have also been analyzed to estimate heterogeneity influences.  Fig. 2.9 shows 

log-log plots of energy spectra (m
2
 s

-3
) multiplied by frequency (s

-1
) at 2100 UTC (1500 

CST) over the domain at 1, 3, and 9 km length scales for T2m, q2m, and vertical velocity in 

WS, WN, and WH.  It is noted that the spectral amplitude of T2m for all the experiments 

decreases as the length scale increases [Figs. 2.9 (a-c)].  At higher frequencies with 3 km 

length scale, an upturn occurs at the end of tail from the energy spectra of T2m.  The 

slopes of WS01 and WS03 for T2m and q2m are larger than the corresponding slopes of the 

observations, indicating that slab/WRF cannot well represent the energy spectra of T2m 

and q2m and underestimates the energy cascade.  The spectra of q2m for WN03 are smaller 

than those for WN01 and WN09, and in the inertial subrange and higher frequencies, 

WS01 and WN01 show the largest spectral magnitudes while at lower frequencies, the 

spectra of q2m for WS09 and WN09 are the strongest (Figs. 2.9 d and e).  For 

HRLDAS/WRF runs, non-linear changes in the log value of the energy spectra with the 

increase of the heterogeneous length scale have been noticed.  The T2m and q2m show the 

largest energy over the 9 km heterogeneity spatial scale, whereas the energy spectra for 

the 3 km length scale experiments are the smallest (Fig. 2.9e and f).  Thus under 

abundant soil moisture availability conditions, the impacts of surface heterogeneity on the 

spectra of simulated surface temperature and moisture can be noted at all frequencies.  

The more detailed LSM/WRF at the 1 km length scale simulates a better energy spectrum.   



40 

 

 

 

FIG. 2.9 Energy spectra (m
2
 s

-3
) multiplied by frequency (s

-1
) computed from coupled WRF 

forecasts at 1, 3, and 9 km length scales at 2100 UTC (1500 CST) compared to observations on 7 

July 2007 for temperature at 2 m (top), specific humidity at 2 m (middle), and vertical velocity 

(bottom) in WS (a, d, g), WN (b, e, h), and WH (c, f, i). 
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For W simulated by WS and WN at lower frequencies, the spectral energy amplitude 

increases as the length scale increases (Figs. 2.9 g and h), indicating the large size of 

eddies over the land surface with a 9 km length scale contain more energy than those with 

a 1 and 3 km length scale.  In the inertial subrange, the energy spectra amplitudes are 

largest at the 1 km length scale, thus all the coupled models are able to represent land-

surface heterogeneity impacts on the vertical velocity which is much stronger over a 

more heterogeneous land surface.  WH01 and WH09 show close curves for the energy 

spectra of the vertical velocity.  Additionally, as seen in Figs. 2.9(g-i) W is less sensitive 

to the different land-surface parameterizations, especially at the 1 km length scale. 

 

Thus, in response to land-surface heterogeneity and LSMs, the impact of horizontal 

spatial scale of land-surface heterogeneity on mesoscale coupled model’s energy spectra 

can be better captured at the 1 km length scale by a more detailed land-surface 

parameterization. 

 

2.3.4 Impacts on surface-atmosphere interactions 

Sounding profiles (Fig. 2.10) at 0000 UTC (1800 CST) 8 July 2007 for specific humidity, 

potential temperature, and wind speed at Norman, OK (OUN, 35.18°N, 97.44°W) and 

Topeka, KS (TOP, 39.07°N, 95.62°W) were simulated and compared to observations.  

We only show sounding profiles simulated at the 1 km length scale as an example of the 

responses of sounding profiles to changes in the land-surface parameterizations.  The 

profiles of temperature, moisture, and wind speed in the WS model soundings are well 

simulated for the TOP site.  Simulated potential temperature, wind speed, and surface and 
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upper-level specific humidity by WS are also in good agreement with observations from 

the OUN site.  From the surface to the 900 hPa level, WH shows cold biases for surface 

potential temperature while WN over-predicts temperature for both sites.  Surprisingly, 

the slab model simulates the profiles of temperature, moisture, and wind speed better at 

the 1 km length scale.   

 

 

 

FIG. 2.10 Sounding profile at 0000 UTC (1800 CST) 8 July 2007 of specific humidity (g kg
-1

) (a, 

d), potential temperature (K) (b, e), and wind speed (m s
-1

) (c, f), valid at Norman, OK (OUN, 

35.18°N, 97.44°W) (top) and Topeka, KS (TOP, 39.07°N, 95.62°W) (bottom).   
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The dimensionless vertical profiles of the turbulent moisture flux, turbulent thermal flux, 

buoyancy flux, turbulent kinetic energy (TKE), and wind velocities were averaged from 

2100 UTC (1500 CST) to 2130 UTC (1530 CST) 7 July 2007 at specific site locations 

(Table 2.3) for each experiment and scaled using boundary layer heights.  Since the 

modeled PBL top is very irregular and not a good parameter to compare with PBL depth, 

we used actual sounding profiles to estimate the PBL heights (Cheng et al. 2002).  Fig. 

2.11 shows the impacts of different land-surface schemes on turbulent processes in the 

PBL over wet/dry croplands.  Results confirm that the turbulent characteristics vary over 

different land-surface properties, and the turbulence is stronger above the higher surface 

heat flux which agrees to the findings of Hadfield et al. (1992).  As seen in Figs. 2.11 a 

and e, the difference among the vertical profiles of normalized turbulent thermal flux 

between WS01 and WH01 is positive toward the entrainment zone.  This is because the 

stronger spectrum of T2m for WS (Fig. 2.8a) leads to larger eddies and more energy 

vertically transported into the PBL.  WN shows the largest normalized turbulent thermal 

flux over the wet cropland (Fig. 2.11a), however, the spectrum of T2m for WN did not 

show the largest amplitude (Fig. 2.8a).  Additionally, the higher surface sensible heat flux 

(e.g., Fig. 2.5) does not necessarily provide a higher averaged vertical turbulent thermal 

flux.  In Fig. 2.11b and f, stronger gradients at the surface where water vapor is 

evaporated into the boundary layer and the entrainment zone where a cap on the mixed 

layer exists, are noted for all the land-surface parameterizations over wet cropland.  This 

result further supports the findings of previous surface heterogeneity impact studies 

(Avissar and Schmidt 1998; Huang and Margulis 2009).  However WN fails to simulate 

this phenomenon over dry cropland.  WH shows the largest moisture flux in the near-
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surface layer.  The mixed layer is dried due to entrained air, but the drying magnitudes of 

moisture flux are different due to the influence of the different LSMs (Figs. 2.11 b and f).     

 

 

 

The production of TKE is directly related to the transport of momentum and scalars.  For 

the case being simulated under relatively low wind and scattered cloud scenario, the TKE 

production is expected surface buoyancy dominated.  It is further expected that larger 

buoyancy flux leads to higher total TKE and this feature is well represented by all the 

three different land-surface parameterizations coupled to WRF over wet cropland.  The 

 

FIG. 2.11 Vertical profiles of normalized (a) turbulent thermal flux (W m
-2

), (b) turbulent 

moisture flux (W m
-2

), (c) buoyancy flux (m K s
-2

), and (d) TKE (m
2
 s

-2
) averaged from 2100 UTC 

(1500 CST) to 2130 UTC (1530 CST) 7 July 2007 for wet cropland (LAM) and dry cropland 

(VIC).  
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simulated total TKE profiles for all land-surface parameterizations approach the 

maximum values at the surface and by definition decrease along with the height below 

the boundary layer height (Fig. 2.11d).  However, over dry cropland the total TKE for 

WN increases with height from the land surface to half of the boundary layer height and 

decreases when the normalized height is larger than 0.5 (Fig. 2.11h).  Among all the three 

simulations over dry cropland, the buoyancy flux in the PBL for WH is smaller than that 

for WS (Fig. 2.11g), and the total TKE simulated by WS is the smallest (Fig. 2.11h).  For 

WN, the vertical turbulent moisture flux and total TKE are not well simulated.  

 

Fig. 2.12 shows vertical profiles of normalized vertical velocity (taken as the ratio of 

vertical velocity and convective velocity; Deardorff and Willis 1982) averaged from 2100 

UTC (1500 CST) to 2130 UTC (1530 CST) 7 July 2007 over different land surfaces 

(Table 2.3).  The vertical velocity is a key parameter which is associated with turbulent 

parameters.  In general, the simulations differ with different land-surface 

parameterizations.  The profiles of normalized vertical velocity are simulated differently 

by different land-surface parameterizations, but are identical in shape (Fig. 2.12).  As 

shown in Fig. 2.12, over tall grass prairie, the magnitude of normalized vertical velocity 

for WS is much larger than those for WN and WH.  The vertical velocity profiles for WN 

and WH show close curves over the tall grass prairie, but WS and WH show similar 

velocities below 500 m height above the land surface.  The simulated vertical velocity 

show larger difference over the cropland, and is impacted significantly over dry cropland.  

The vertical profiles of horizontal velocity variance were also been studied.  Results show 

over tall grass prairie and cropland, larger horizontal velocities occur near the land 
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surface due to association with stronger wind shears during the daytime.  Over forest, the 

near-surface horizontal velocity is small because of the larger surface roughness.  Near 

the boundary layer height, all simulated horizontal velocities show a large gradient over 

tall grass prairie, but the magnitudes of the variations are different.  Note that while these 

results reveal that there are differences in the turbulent structure simulated by the 

different land-surface parameterizations coupled to WRF model in response to the 

surface heterogeneity, they cannot be used to evaluate whether one land-surface scheme 

surpasses the other in representing turbulent characteristics.     

 

 

The vertical profiles of normalized TKE with 1, 3, and 9 km length scales in WS, WN, 

and WH are shown in Fig. 2.13.  TKE is a measure of turbulent intensity that can also be 

influenced by the heterogeneity induced atmospheric motions.  The variation of TKE 

profile for WS is found to be the most significant at the 3 km length scale (Figs. 2.13 a 

and d).  Large gradients of TKE for WN are noted near the boundary layer height over 

the wet cropland, indicating vigorous turbulence occurs in Noah/WRF simulations over 

 

FIG. 2.12 Vertical profiles of vertical velocity averaged from 2100 UTC (1500 CST) to 2130 UTC 

(1530 CST) 7 July 2007 for grassland (KON) (a), forest (OKM) (b), wet cropland (LAM) (c), and 

dry cropland (VIC) (d). Details of the land-cover types are in Table 2.3. 
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wet cropland (Fig. 2.13b).  For WH the TKE profiles have close curves for the 3 km and 

9 km length scales, but the boundary layer is much more turbulent at the 1 km length 

scale (Figs. 2.13 c and f).  However, the simulated boundary layers are much more 

turbulent for WS03 and WN01 over dry cropland, indicating that the different land-

surface parameterization can result in significant difference in boundary layer simulations, 

particularly over the heterogeneous dry cropland.     

 

 

 

FIG. 2.13 Vertical profiles of normalized TKE (m
2
 s

-2
) averaged from 2100 UTC (1500 CST) to 

2130 UTC (1530 CST) 7 July 2007 with 1, 3, and 9 km length scales in WN (a, d), WS (b, e), and 

WH (c, f) over wet cropland (LAM) and dry cropland (VIC). 
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2.4 Summary and conclusions 

We conducted a series of numerical experiments (slab/WRF, Noah/WRF, and 

HRLDAS/WRF) to study the role of land-surface heterogeneity on the turbulent flow and 

mesoscale processes in the WRF model coupled within different land-surface 

parameterizations.  Results show that the more detailed land-surface parameterizations 

over heterogeneous land surface typically help improve turbulent processes, leading to 

improved simulations of land-atmosphere interactions over heterogeneous land surface.    

 

Changes of length scales of land-surface heterogeneity affect high-resolution model 

simulations through modification of land-surface properties.  Typically the spatial 

variation of surface heat flux decreases as the length scale of land-surface heterogeneity 

increases.  The slab model is found to be more sensitive to land-surface heterogeneity 

impacts, whereas the Noah and HRLDAS runs show less sensitivity to the land-surface 

heterogeneity length scale changes, indicating that the more detailed land-surface 

parameterizations (e.g., Noah LSM and HRLDAS) can help reduce the uncertainty of 

surface flux simulations over heterogeneous landscapes.    

 

Land-surface heterogeneity and changes in land-surface initialization also result in 

impacts on modeling biases, and the impacts of changes in land-surface parameterizations 

are more significant.  Nonlinear impacts are found in simulated surface temperature, 

moisture, and wind speeds due to landscape heterogeneity.  Larger biases have been 

noted in the slab/WRF run.   
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The responses of turbulent spectra to land-surface heterogeneity indicate that the more 

detailed LSMs/WRF simulate more correct turbulent spectra over the heterogeneous land 

surface.  The energy spectra response nonlinearly to changes in the heterogeneous length 

scales.  The impacts of LSMs on turbulent energy spectra are more significant at lower 

frequencies of the spectra with 1 km heterogeneity length scale.  Results of the spectral 

analysis provide an important finding that the atmospheric feedbacks that are roughly 

four times of the land heterogeneity spatial scale can be adequately resolved in the 

coupled mesoscale model.  For example, for the 1 km heterogeneity length scale, the 

circulation larger than 4 km would be resolved; it would be larger than 12 km to be 

resolved for the 3 km length scale, and larger than 36 km for the 9 km length scale.  This 

highlights the question such as “what is the minimum land heterogeneity required to 

trigger atmospheric circulation?”.  The effect would be a function of the degree of spatial 

heterogeneity represented in the land surface model, which is often a function of the grid 

spacing.  This emergent feature needs to be studied further. 

 

Results also identify substantial variations in turbulent spectra and provide one piece of 

evidence showing the nonlinear influence of spatial length scales and the use of different 

land-surface parameterizations on turbulent energy spectra.  However, the turbulent 

characteristics obtained at the surface may not be in equilibrium with the flow at height 

over a heterogeneous land surface (Schmid 1994), and it is possible to examine the 

change in the spatial energy spectra in relation to the length scale of heterogeneity.  

Results indicate that there are differences in the heterogeneity length scales represented 

by the model runs with different land-surface parameterizations.  
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The spatial heterogeneity represented by different land-surface parameterizations would 

resolve the atmospheric circulation which is at least four times of the spatial 

heterogeneity length scale.  The vertical profiles of the turbulent fluxes and TKE can also 

be used to represent LSM influences and land-surface heterogeneity impacts.  Our results 

agree with prior studies (e.g., Holt et al. 2006; Niyogi et al. 2006; Niyogi et al. 2009b; 

Niu et al. 2011) that showed a positive impact of the improved land-surface 

parameterization on model responses in terms of surface fluxes and mesoscale dynamical 

features.  Additionally, this study has addressed the issue of how the detailed land surface 

representation affects the boundary layer and mesoscale processes via turbulent processes. 
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CHAPTER 3. IMPACTS OF LAND-ATMOPSHERE COUPLING ON REGIONAL 

RAINFALL AND CONVECTION
2
 

3.1 Introduction 

The coupling between the atmosphere and the land surface can play an important role in 

regional convection and precipitation (i.e., Trier et al. 2004; Holt et al. 2006; LeMone et 

al. 2010) and is one of the important components of any given weather and climate model 

(Pielke et al. 2011).  The importance of land-atmosphere coupling has been emphasized 

in many observational and modeling studies (e.g., Dirmeyer 2000; Koster et al. 2003, 

2004, 2006; Seneviratne et al. 2010).  Wetter soils can cause higher evaporation, and 

higher latent heat flux, which in turn enhances the moisture availability within the 

planetary boundary layer (PBL), affects the atmospheric heating rates and cloud 

formation, and can impact local and regional precipitation (Niyogi et al. 1999; Pielke 

2001; Kang et al. 2007; LeMone et al. 2008).  The impacts of land-atmosphere coupling 

on regional temperature through a negative correlation between soil moisture and surface 

temperature also have been noted (Fischer et al. 2007; Hirsch et al. 2014).  

 

It is expected that land-surface feedbacks can have a more dominant impact on regional 

precipitation in some regions of the globe as compared to others.  Koster et al. (2004) 

identified global "hot spot" regions as areas of strong coupling between summer rainfall 

                                                 
2 Zheng, Y., A. Kumar, and D. Niyogi, 2015: Impacts of land-atmosphere coupling on regional rainfall and 

convection.  Clim. Dyn., 44, 2383–2409, doi: 10.1007/s00382-014-2442-8. 
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and land-surface conditions, and concluded that there was a significant impact on cloud 

formation, which was sensitive to the land-surface forcings such as soil moisture, land 

use, and topography (Koster et al. 2003; LeMone et al. 2008; Houze 2012).  It has been 

noted that the coupling hot spots identified in the Global Land-Atmosphere Coupling 

Experiment (GLACE) study could be incorrectly capturing land-atmosphere coupling 

(Dirmeyer et al. 2006).  In particular, the land surface models (LSM) may represent 

incorrect coupling in climate models, leading to too much evaporation and incorrect soil 

moisture-precipitation feedback (Ruiz-Barradas and Nigam 2005).  As a result, models 

can overestimate moisture in summer due to a lack of knowledge in reference to the 

model-prescribed land-atmosphere coupling strength (Koster et al. 2003; Hirsch et al. 

2014; Lorenz and Pitman 2014).  Similarly, Zhang et al. (2008) for example, concluded 

that the U.S. SGP does not show up as a strong land-atmosphere coupling region in their 

regional model runs.  This raises broad questions such as how do the current 

meteorological models represent land-atmosphere surface coupling strength?  What 

would be the impact of surface-atmosphere coupling strength on regional (and though not 

considered here, global) model performance?   

 

One way of representing the coupling strength between land and atmosphere is through 

the surface exchange coefficient.  Recent studies such as LeMone et al. (2008) and Chen 

and Zhang (2009) concluded that the surface exchange coefficient is responsible for 

transferring surface energy into the lower atmosphere and that the land-atmosphere 

coupling strength depends on this coefficient for different land-cover types and climate 

regimes.  Trier et al. (2011) explored the impacts of the coupling coefficient “C” based 
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on the Zilitinkevich (1995) equation (thereafter Czil) on the mesoscale warm rain 

processes over the U.S. SGP locale.  Their results indicated that the representation of Czil 

significantly affected precipitation and convection via a stronger surface exchange 

simulation, but the implication and possible advantages of dynamically changing Czil in 

regional scenarios over different regions are not yet clear.  Therefore, we investigated the 

coupling impact using an offline Noah land model and a coupled WRF model over U.S. 

SGP, Europe, India, and West African regions.  These four regions were selected because 

of the diversity in landscape, and the preponderance of intense mesoscale convection and 

heavy precipitation cases.  Further, each of these regions was identified as a land-

atmosphere coupling hotspot in different global studies (Koster et al. 2004 and 2006; Xue 

et al. 2004; Seneviratne et al. 2006). 

 

Thus, the objective of this study is to assess the role of coupling strength over regions 

with strong coupling between land-surface conditions and moist convection.  We 

hypothesize that a better understanding of the coupling effect will benefit numerical 

weather prediction (NWP) and the parameterizations used for land surface 

representations, and could potentially lead to improved simulation of severe weather 

events.  The main tasks undertaken are 1) to quantify the land-atmosphere coupling 

strength impacts on model parameterizations (i.e., land surface processes, PBL dynamics, 

and moist convection), 2) to document the range of the regional variations in Czil for 

model simulations, and, 3) to identify if the dynamically changing Czil could help 

improve the NWP model’s summer convection simulations over the different coupling 

hotspot regions. 



54 

 

This paper is organized as follows.  Section 2 summarizes the experimental setup using 

the uncoupled Noah LSM and the coupled WRF mesoscale model as well as the study 

domain.  Section 3 discusses the methodology adopted to assess the effects of the land-

atmosphere coupling strength.  Section 4 evaluates the different case studies and 

simulations.  The study conclusions and discussions are provided in Section 5. 

 

3.2 Numerical modeling framework and study domain 

This section describes the model setup and the experimental study domain.  The 

methodology first tests the impacts of the coupling coefficients within an offline model in 

order to study the impacts of surface coupling strength on energy partitioning and surface 

heat exchanges.  This analysis is conducted over the U.S. SGP.  Following the uncoupled 

diagnostics, the remainder of the experiments uses a coupled Noah-WRF modeling 

framework for regional coupling analysis across the four different regions.    

 

3.2.1 Offline modeling system 

The coupling strength needs to be studied in association with the land cover 

characteristics (Hirsch et al. 2014).  As a result, a number of numerical experiments over 

three different land surfaces (grassland, cropland, and forest) are undertaken using a 1-D 

offline (uncoupled) Noah  LSM within the High Resolution Land Data Assimilation 

System (HRLDAS; Chen et al 2007).  The land model is forced by analysis fields or 

meteorological observations rather than coupled to an atmospheric model.  HRLDAS 

integrates static fields of land use and soil texture as well as time-varying fields of 

vegetation and meteorology.  The primary reason for using HRLDAS is that this 
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framework is capable of capturing the land-surface heterogeneity at multiple scales that 

are important for resolving microscale to regional features (Holt et al. 2006; Charusombat 

et al. 2012).   

 

As stated, the U.S. SGP domain has been a subject of recent land-atmosphere coupling 

studies (e.g., Koster et al. 2006; Zhang et al. 2008; Trier et al. 2011) and has a number of 

high quality observations.  A 188 × 170 × 31 grid domain was set up with 4 km 

horizontal grid spacing (Fig. 3.1).  An eighteen month spinup initialization was run from 

December 2000 to June 2002 following Chen et al. (2007).  The atmospheric forcing and 

surface conditions used in HRLDAS were: i) National Centers for Environmental 

Prediction (NCEP) Stage-IV Rainfall Analysis at 4 km horizontal grid spacing; ii) 50 km 

GOES solar downward radiation; iii) other atmospheric forcing conditions from model-

based analysis; and iv) the USGS land-use and land-cover map with 24 vegetation types.  

The domain was initialized using the USGS soil texture map, terrain height, land-water 

mask and land use through the WRF Pre-processing System (WPS).  These data were 

interpolated to a regular 0.01 degree geographic projection according to the respective 

WRF grids.  The offline (uncoupled) HRLDAS model is grid-based, and uses 1-D 

column version of Noah to execute single-site land-surface simulations.  The soil 

conditions at four soil depth layers and the vegetation were initialized as model input 

parameters, and the physical processes were identical to that of the Noah LSM described 

by Chen et al. (1997, 2007).  Surface heat flux observations were used to evaluate the 

model results.   
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3.2.2 WRF Model and domain configurations 

WRF 3.4.1 (Skamarock et al. 2008) was used to conduct coupled simulations with Noah 

LSM.  One degree 6-hourly NCEP Global Final Analysis (FNL) dataset, which was 

derived from the Global Forecast System (GFS), was used to set the boundary and initial 

conditions for the large-scale atmospheric fields, soil parameters (i.e., soil moisture and 

temperature), and sea surface temperature (SST).  The WRF model was run with 28 

vertical levels applied from the surface to 50 hPa level.  The model was setup over four 

different regions, the U.S. SGP, Europe, northern India, and West Africa.  Each region 

has unique land-surface characteristics, and the cases being simulated are typical for the 

regions and employed to study the coupling impacts on atmospheric convection 

simulations.  A summary of the four regions is shown in Table 3.1 and discussed next.  

 

Table 3.1 The characteristics of study regions 

 

 

Model grid points 

Land-cover type Geographic feature 9-km grid 

spacing 

3-km grid 

spacing 

U.S. SGP 290 × 280 307 × 274 

Grassland, cropland, 

savannas and a mixture of 

crop and natural vegetation 

Modestly higher elevation 

on the western side, 

synoptic and mesoscale 

weather events 

Europe 250 × 240 307 × 274 

Forest, arable land with 

permanent crops, and 

pastures and mixed mosaics 

Mountainous terrain; 

Dominant orographic 

precipitation 

India 250 × 240 307 × 274 Forest and agricultural land 

A typical monsoon region 

with trough and associated 

weather patterns 

West Africa 433 × 433 631 × 631 

Forest, cropland, woodland 

and shrub land, grassland, 

and bare soil 

Large flat area  
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3.2.2.1    U.S. SGP 

The first study domain is over the U.S. configured with a two-way nesting.  The parent 

(outer) domain has a coarser mesh with 290 × 280 grid points in the horizontal directions 

and a grid spacing of 9 km, while the nest (inner) domain has 307 × 274 grid points at 3 

km grid spacing (Fig. 3.1a).  The main land-cover types include grassland, cropland, 

savannas and a mixture of crop and natural vegetation.  The topographic features are 

shown in Fig. 3.1a and indicate that the domain has a relatively higher elevation on the 

western side.     

 

 
Fig. 3.1 Topography maps of the nested model domains over the (a) U.S. southern Great Plains 

(SGP), (b) Europe, (c) India, and (d) West Africa. 
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3.2.2.2    Europe 

The second study region is over Europe and also has two-way nested domains of 9 km 

(250 × 240 grid points) and 3 km (307 × 274 grid points) grid spacing that cover most of 

Germany (Fig. 3.1b).  The three dominant land types in the European domain are forest, 

arable land and permanent crops, and pastures and mixed mosaics.  This region is 

complex with various mountainous terrains that affect regional circulation patterns and 

result in large amounts of orographic precipitation, particularly in the summertime.  

Because of the complex link between convective processes and orography, this domain is 

relatively difficult to simulate (Wulfmeyer et al. 2008). 

 

3.2.2.3    Northern India 

The third domain is set up over India using the two-way nesting with 250 × 240 grid 

points at 9 km horizontal grid spacing for the outer domain and 307 × 274 grid points 

with 3 km horizontal grid spacing for the inner domain (Fig. 3.1c).  India is a typical 

monsoon region where heavy rain events and mesoscale convection are predominantly 

associated with monsoon rainfall.  The major land-cover types over the Northern India 

domain are forest and agricultural land.   

 

3.2.2.4    West Africa 

The fourth domain covers West Africa (Fig. 3.1d).  As this region is much larger than the 

previous three regions, we configure the model with two nested domains:  a coarse mesh 

of 300 × 300 grid points with 27 km horizontal grid spacing, and 2, two-way nested 
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domains of 433 × 433 grid points with 9 km, and 631 × 631 grid points with 3 km, 

respectively.  The primary land-cover types are forest, cropland, woodland and shrubland, 

grassland, and bare soil.   

 

3.2.2.5    Model configuration 

We recognize that different model schemes and physical options may perform differently 

over different regions.  For example, Bukovsky and Karoly (2009) found that the Kain-

Fritsch (KF) scheme performed better over the U.S. in terms of mean precipitation, while 

Flaounas et al. (2011) pointed out that the combination of the KF scheme and the Mellor-

Yamada-Janjic (MYJ) PBL scheme provided the best simulation of the West Africa 

monsoon.  Similarly Venkata Ratnam and Cox (2006) reported that the KF scheme 

simulated more realistic moisture profile and rainfall distribution over India.  To 

constrain the confounding variables in understanding the model response to study the 

regional sensitivity of the Czil values, we use the same physical options to conduct model 

simulations over the four selected regions.  The predominant physical options in the 9 

and 3 km nests included: (a) The Goddard microphysics scheme which includes ice, snow 

and graupel processes and is suitable for high-resolution simulations (Tao, Simpson and 

McCumber 1989).  (b) The KF scheme, which is a deep and shallow convection sub-grid 

scheme using a mass flux approach with downdrafts and CAPE removal time scale 

(Janjic 1994, 2000).  (c) The MYJ PBL scheme (Janjic 2002), which is used together with 

the Eta similarity theory surface layer.  The ability to represent moisture entrainment into 

the lower atmosphere within this local-closure PBL scheme provides more realistic 

convection triggering with the KF scheme.  (d) The Noah LSM (Chen and Dudhia 2001), 
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which has a single vegetation canopy layer and simulates soil moisture and temperature 

for four soil layers with the depth of 0.1, 0.3, 0.6, and 1.0 m respectively.  Longwave 

radiation is based on the Rapid Radiative Transfer Model (Mlawer et al. 1997), while the 

shortwave radiation only considers a downward beam (Dudhia 1989).  The surface layer 

scheme is used to determine the exchange coefficient which links surface heat and 

moisture fluxes to the LSM and the PBL. 

 

3.2.3 Data for model case studies 

We employed AmeriFlux data and the International H2O Project 2002 (IHOP_2002) field 

campaign data as verification datasets.  The AmeriFlux sites produce a full suite of 

relatively long-term measurements of the meteorological variables and exchange rates of 

surface heat fluxes, with the knowledge of ecosystem and the history of land use and land 

cover changes.  The IHOP_2002 field campaign was conducted with an objective of 

improving convective initiation predictions and quantitative precipitation forecasts in 

NWP models.  The field data provide continuous complete measurement of surface 

fluxes, near-surface meteorological variables, and soil conditions during the late spring 

and early summer of 2002 (Weckwerth and Parsons 2006; LeMone et al. 2008).   

 

The experiments over Europe were carried out with data gathered during the Convective 

and Orographically-induced Precipitation Study (COPS) field campaign for the time 

period from 21 to 23 July 2007.  The locations of the COPS field experiment are between 

southern Germany and eastern France.  The Atmospheric Radiation Measurement (ARM) 

Mobile Facility (AMF) was deployed in the Black Forest region of Germany to capture 
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the convection and orographic rainfall processes in the complex mountainous terrain.  

More details about the COPS field campaign can be found in Wulfmeyer et al. (2008). 

 

Unlike the U.S. and European domains, the Indian domain has limited publicly available 

observations and conspicuously lacks flux measurements.  There are only 15 observations 

within the inner domain.  Therefore, we resort to using the radar reflectivity, atmospheric 

soundings, and the area-averaged bias of temperature, moisture, and wind speed to 

evaluate the model results.  Similarly, there are limited surface sites, instrumentation, or 

spatial and temporal sampling as part of in situ field experiments over the region of West 

Africa.  However, because of the ARM Mobile Facility (AMF) deployment in Niamey, 

Niger, West Africa as part of the African Monsoon Multidisciplinary Analysis (AMMA) 

field phases and observing periods (Redelsperger et al. 2006), there is an accessible 

meteorological dataset.  Data from the Tropical Rainfall Measuring Mission (TRMM) 

precipitation [3B42 and TRMM Multi-satellite Precipitation Analysis (TMPA)] are also 

used for both the Indian and African model studies.  All observed atmospheric soundings 

from selected weather stations over these four study regions are obtained from the 

University of Wyoming (http://weather.uwyo.edu/upperair/sounding.html). 

 

3.3 Land-atmosphere coupling method and Czil experiments 

Detailed land-surface representation is essential for realistic model forecasts (Holt et al. 

2006; Niyogi et al. 2006).  The key parameters associated with a LSM include sensible 

and latent heat fluxes which control the diurnal evolution and development of the PBL 

(Trier et al. 2011).  In the Noah LSM (Chen and Dudhia, 2001; Ek et al. 2003) the surface 



62 

 

sensible (H) and latent (LE) heat fluxes are determined through the bulk aerodynamic 

method as: 

        (3.1) 

               (3.2) 

where is the air density, is the specific heat of air at constant pressure,  is the 

wind speed, and are the air potential temperature and the air specific humidity at the 

lowest model level or at a specific measurement height above the ground (i.e., 2 m), and 

and are the surface potential temperature and the surface specific humidity.  The 

parameters and are the surface exchange coefficients of sensible heat and latent 

heat fluxes, and in the surface layer parameterization is assumed to equal to which 

controls the total heat flux inputs into the models’ lower atmospheric layer.   

 

Within the Noah LSM, the roughness length for moisture and heat, zot, is calculated 

according to Zilitinkevich (1995) and expressed as  

                                                 
                             (3.3) 

                                      

 where zom is the roughness length for momentum, Re is the roughness Reynolds number, 

k = 0.4 is the von kármán constant, ʋ is the kinematic molecular viscosity,  is the 

surface friction velocity, and C (thereafter Czil) is an empirical constant, which is set to 

0.1 by default in the existing Noah LSM.   
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The Czil term controls the ratio of , and the roughness lengths for momentum and 

heat are used to compute Ch based on Monin-Obukhov similarity theory in surface layer 

parameterization as: 

                        𝐶ℎ =
𝑘2/𝑅

[𝑙𝑛(
𝑧𝑎

𝑧𝑜𝑚
)−𝜓𝑚(

𝑧𝑎
𝐿

)+𝜓𝑚(
𝑧𝑜𝑚

𝐿
)][𝑙𝑛(

𝑧𝑎
𝑧𝑜𝑡

)−𝜓ℎ(
𝑧𝑎
𝐿

)+𝜓ℎ(
𝑧𝑜𝑡

𝐿
)]

         (3.4) 

where L is the Obukhov length, z is the height above the ground, R is the Prandtl number, 

and 𝜓𝑚and 𝜓ℎ are stability functions (Stull 1988).  In the Monin-Obukhov equation, zom 

is the height at which the average wind goes to zero and scalars at za < zom are assumed to 

be transported by molecular processes, zot is the height at which the air temperature 

equals to the soil surface temperature.  In convective conditions, the  ratio has 

been demonstrated to impact surface fluxes more effectively than the treatment to Monin-

Obukhov based stability functions (Chen et al. 1997). 

 

The surface coupling strength Czil relies on the surface exchange coefficient Ch.  Smaller 

values of Czil generate larger  which indicates a rougher surface for heat and moisture, 

resulting in stronger turbulence and larger Ch.  Therefore, smaller Czil is indicative of 

stronger surface coupling.  The values of Czil are assumed to vary from 0.01 (strong 

coupling) to 1.0 (weak coupling) (Chen et al. 1997).  It has been shown that the 

adjustment of Czil can contribute towards the improvement of model estimates of 

improved surface fluxes at least for the U.S. SGP during the summer (Moncrieff et al. 

2004; Gutmann and Small 2007; LeMone et al. 2008).  Chen and Zhang (2009) 

reevaluated the surface exchange coefficients using multi-year AmeriFlux data and 

omot zz

omot zz

otz
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obtained Czil values that are vegetation type dependent.  They dynamically linked Czil as a 

function of canopy height h (m) and represented it as: 

                                                Czil = 10
(-0.4h)

                             (3.5) 

 

These results motivate the need for investigating the impacts of Czil on mesoscale land-

atmospheric convection simulations over typical vegetation types and different regions.  

Experimental details of all experiments and related Czil values are shown in Table 3.2.  

 

Table 3.2 Summary of the coupling experiments 

 

Case 

name 

Coupling coefficient 

(Czil) 
Experimental focus Regions 

UN  0.1, 0.5, 0.8 
Uncoupled Noah LSM based 

simulated surface heat fluxes 
U.S. SGP 

BG 

0.1, 0.3, 0.5, 0.8, 1.0 
Bulk aerodynamic coefficient 

of heat (Ch ) over U.S. SGP 

Grassland 

BC Cropland 

BF Forest 

CS 

0.01, 0.05, 0.1, 0.3, 

0.5, 0.8, var 

Surface fluxes, 2 m temperature 

and moisture, vertical profiles of 

temperature, moisture, and wind 

speed, etc. 

U.S. SGP 

CE Europe 

CI India 

CA West Africa 

 

UN refers to uncoupled runs; B refers to uncoupled experiments for bulk Ch for grass (BG), cropland (BC), 

and Forest (BF).  C refers to coupled runs over U.S. SGP (CS), Europe (CE), India (CI), and West Africa 

(CA). 

    

 

3.4 Model verification and comparisons 

3.4.1 Impact of the “Czil” on the offline Noah LSM 

We first analyze impacts of the surface coupling strength coefficient on surface heat 

fluxes within the offline or uncoupled experiments (UN).  To obtain better surface fluxes 

and equilibrium soil conditions at small scales, 18-month-long HRLDAS runs with three 
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different Czil values (0.1, 0.5, and 0.8) were conducted as spinup for offline Noah land 

model experiments. 

 

Fig. 3.2 shows a snapshot of the model output for the three different Czil values (referred 

to as runs UN0.1, UN0.5, and UN0.8) and the impact on surface heat fluxes at the very 

end day of the HRLDAS 18-month-long simulations (1800 UTC on 2 June 2002).  The 

area-averaged value of H decreases from 334 W m
-2 

to 205 W m
-2

 when the surface 

coupling strength changes from 0.1 to 0.8.  However, the area-averaged LE has small 

variations, which are 2 W m
-2

 differences between UN0.1 and UN0.5 and 25 W m
-2

 

differences between UN0.5 and UN0.8.  It is noted that the influence of Czil on LE is 

small compared to that on H.  This is possibly due to the manner in which LE is 

computed as the residual of the energy balance, suggesting that the offsets between 

decreased net radiation and increased ground heat flux due to increasing Czil and the 

decrease in H are small.  Results also indicate that with increasing Czil, the coupling 

strength becomes weak, resulting in less rough surface for heat/moisture, and the 

simulated surface fluxes are less spatially heterogeneous.   
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The diurnal surface heat fluxes are averaged from 1 to 25 June 2002 over three different 

land covers (grassland, cropland, and forest) in the U.S. SGP.  As seen in Fig. 3.3, there 

are small differences between the observed and modeled temporal-averaged LE over 

grassland and cropland, but large impacts have been found on H.  This may be caused by 

drier soils in these locations which allow greater H changes in the simulations (Trier et al. 

2011).  The observed H lies between the model experiments of UN0.1 and UN0.5 over 

grassland and cropland.  The surface coupling strength has a notable effect on estimating 

heat fluxes over the forest land cover, where the maximum difference between the 

averaged observed and modeled surface fluxes is about 96.9 W m
-2

 for LE and 66.5W m
-2 

 

Fig. 3.2 A snapshot of cases (UN0.1, UN0.5, and UN0.8) with three different Czil values and resulting 

impacts on latent heat flux (W m
-2

) (upper row) and sensible heat flux (W m
-2

) (bottom row) at 1800 

UTC for 2 June 2002. 
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for H.  In spite of these relatively large impacts on heat fluxes over forest, the observed 

and modeled LE of UN0.1 are comparable, while H from UN0.8 is in better agreement 

with the observed data, indicating that only over a forest land cover the surface coupling 

strength of LE is stronger than that of H.    

 

To further analyze the land-atmosphere coupling strength over the three different land-

cover types, experiments were conducted with a broader range of Czil values.  These 

experiments are labeled as BG, BC, and BF.  As seen in Fig. 3.4, Czil values lead to 

different soil temperature and soil moisture fields.  Higher soil moisture and warmer 

surface leads to higher LE due to more surface evaporation and transpiration.  The 

impacts of soil moisture on surface heat fluxes are more significant on grassland and 

cropland when the soils are drier and not saturated.  Smaller differences caused by 

coupling strength can be seen in soil moisture in the forest region, but the soil 

temperature differences are significant and affect LE.  For example, the higher soil 

temperature leads to smaller LE and less surface evaporation into atmosphere. 

 

Table 3.3 Comparisons of surface exchange coefficient of heat (Ch) between observation and model 

runs with different Czil values over three vegetation types in U.S. SGP. The results are temporally 

averaged for June 2002. 

 
Veg Types/ 

Observational Site 
Observation Czil=0.1 Czil=0.3 Czil=0.5 Czil=0.8 Czil=1.0 

Grassland (h < 1m) 0.0025 0.058 0.030 0.020 0.013 0.011 

Cropland (h = 3m) 0.019 0.040 0.022 0.017 0.011 0.009 

Forest (h = 25m) 0.037 0.042 0.016 0.010 0.003 0.001 
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Fig. 3.3 Comparisons of 25 day-averaged surface latent heat flux (W m
-2

) and sensible heat flux (W 

m
-2

) between observation and offline experiments over (a) grassland, (b) cropland, and (c) forest in 

U.S. SGP. 

Forest

Forest
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Fig. 3.4 Variations of averaged-daily simulated surface variables: (a-c) precipitation forcing (mm day
-1

), (d-

f) surface soil moisture (m
3
 m

-3
), (g-i) surface soil temperature (K), (j-l) latent heat flux (W m

-2
), and (m-o) 

sensible heat flux (W m
-2

) from offline Noah experiments over grassland (left column), cropland (middle 

column), and forest (right column). 

(a)

(d)

(g)

(j)

(m)

(b)

(e)

(h)

(k)

(n)

(c)

(f)

(i)

(l)
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The Ch, which is directly related to the coupling strength and controls the total energy 

flux, is evaluated to explore the land-atmosphere coupling strength.  Using Eq. 3.1, the 

surface exchange coefficient, Ch, can be written as  

                              (3.6) 

The IHOP_2002 experiment provided 30-minute observed surface data, including 

sensible heat flux, wind speed at 10 m, surface temperature, air temperature, downward 

solar radiation, and outgoing longwave radiation.  Using observed air temperature and 

outgoing longwave radiation, θa and θs are calculated.  These 30-minute data are then 

used to compute Ch which is referred to as observed Ch.  The observed and offline Noah 

modeled Ch are then averaged from 1700 UTC to 2100 UTC in June 2002 to obtain 

midday values, the results of which are shown in Table 3.3 and Fig. 3.5.  It can be seen 

that BG0.1, BC0.1, and BF0.1 have large averaged-daily variations of Ch.  The modeled 

Ch of BG1.0 over the grass site located at Elmwood, OK (36.62°N, 100.62°W) is in better 

agreement with the observations.  Over the Bondville, IL, a cropland site (40.00°N, 

88.29°W, Table 3.3), the averaged value of Ch for BC0.5 is the closest to the observed Ch.  

The primary vegetation type in the Ozark, MO site (38.74°N, 92.20°W) is deciduous 

broadleaf forest land cover with typical plant height at 25 m.  Tall vegetation sites, such 

as forest, have rougher surfaces and results in stronger turbulence and the observed Ch 

has large variability over the forest.  The differences between air and surface 

temperatures which have effects on limiting the flux of net radiative heat transfer from 

the atmosphere to the soil are larger.  Since the calculation of observed Ch is affected by 

the differences between potential surface and air temperatures, the observed Ch has large 

variability over the forest.  The larger roughness also leads to larger Ch, indicating that 

 asph UCHC   /
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the surface coupling effects in forest area are stronger.  The result shown in Fig. 3.5c 

suggests a relatively good agreement between the modeled Ch of BF0.1 and the 

observation corresponds well.  Thus, consistent with prior results, it is concluded that a 

constant value of Czil cannot provide good agreement across different land-cover types in 

the version of the Noah LSM being used in WRF.   

 

 
 

Fig. 3.5 Comparisons of midday values of Ch (m s
-1

) averaged from 1700 UTC to 2100 UTC in June 

2002 between observation and offline experiments: (a) BG, (b) BC, and (c) BF. 
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3.4.2 The impacts of the Czil coupling parameter on the WRF-Noah model 

The impacts of the coupling strength, especially the dynamic vegetation type-dependent 

coupling strength (Czil-var) (Table 3.2), on convective WRF-Noah model simulations are 

investigated next.  The experiments are over different hotspot regions (U.S. SGP, Europe, 

northern India, and West Africa) with different surface coupling strength.  Impacts of 

surface coupling strength on surface and boundary layer variables such as surface heat 

fluxes, 2 m temperature and moisture, 10 m wind speed, precipitation, PBL soundings, 

are then analyzed and discussed.   

 

3.4.2.1    U.S. SGP 

(a) Surface flux analysis  

Model simulations covering a 48-hr period were conducted with a variety of Czil values 

initialized at 1200 UTC 12 June 2002.  To study atmospheric feedback to surface 

coupling strength following spinup, the results in Fig. 3.6 show the second day runs over 

grassland and cropland simulated 24 hrs after the initial condition.  The experiments with 

the weak coupling strength (CS0.8) have better match with the observations (Fig. 3.6), 

but the coupling strength once again modestly affects LE values over cropland.  The runs 

CS0.8 over both grassland and cropland match the observed H.  Rainfall modifies soil 

moisture and leads to higher LE.  The increased LE is accompanied with a decreased H 

from the surface, indicating a smaller Ch, and hence weaker coupling strength of H.  In 

response to the weak coupling strength the surface air temperature is increased as less H 

is transported from the surface, resulting in an increase in ground heat flux.  As a result, 

the weak coupling strength runs overestimate the soil surface temperature and the 



73 

 

maximum difference is about 5 K between runs with CS0.01 and CS0.8 at 0000 UTC.  It 

is noted that the surface coupling strength can also directly affect soil surface temperature, 

and the stronger coupling strength reduces the modeled skin temperature.   

 

(b) 2 m temperature and humidity and 10 m wind speed analysis  

Area-averaged analysis is used to evaluate the bias and RMSE errors for 2 m temperature 

and moisture.  In the 3 km grid spacing domain there are about 200 observation points.  A 

 

Fig. 3.6 Comparisons of surface heat fluxes (W m
-2

) between the 24-48 hr CS experiments 

initialized at 1200 UTC 12 June 2002 and the observation over (a-b) grassland (Elmwood, OK, 

36.62°N, 100.62°W) and (c-d) cropland (Lamont, OK, 36.61°N, 97.49°W). 
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majority of the observed data is from NCEP Automated Data Processing (ADP) Global 

Upper Air and Surface Weather Observations and obtained from meteorological sites 

with 6 hrs temporal resolution.  The satellite wind data is obtained from the National 

Environmental Satellite Data and Information Service (NESDIS).   

 

Table 3.4 Biases and RMSE of 2 m temperature (T), 2 m moisture (Q), and 10 m wind speed (WSPD) 

for 0-48 hr model forecasts over U.S. SGP at 3-km grid spacing 

Coupling 

coefficient 

(Czil) case 

Bias RMSE 

2 m T  

(K) 

2 m Q  

(10
-3

×kg kg
-1

) 

WSPD 

(m s
-1

) 

2 m T 

(K) 

2 m Q 

(10
-3

×kg kg
-1

) 

WSPD 

(m s
-1

) 

CS0.01 -3.27 0.41 1.49 4.09 2.13 3.49 

CS0.05 -3.16 0.30 1.63 4.01 2.08 3.47 

CS0.1 -3.01 0.22 1.40 3.90 2.05 3.48 

CS0.3 -2.67 -0.02 1.43 3.69 2.03 3.47 

CS0.5 -2.47 -0.18 1.35 3.62 2.05 3.35 

CS0.8 -2.36 -0.37 1.29 3.65 2.12 3.20 

CSvar -3.04 0.20 1.53 3.93 2.09 3.38 

 

Table 3.4 shows the mean bias and RMSE of 2 m temperature and moisture, and 10 m 

wind speed for the 0-48 hr model forecasts.  All model runs show cold biases, with 

CS0.01 and CSvar show the largest cold biases in the surface layer.  This is a result of 

strong surface coupling strength causing more H being lost from the surface leading to a 

cooler surface.  The bias and RMSE of 2 m temperature increase as the coupling strength 

became stronger, and the 2 m moisture of CS0.01, CS0.05, and CS0.1 show wet biases.  

The coupling coefficients in CS0.3, CS0.5, and CS0.8 lead to dry biases and the smallest 

bias of the 2 m moisture occurs in CS0.3.  The impact of the surface coupling strength on 

the 10 m winds is relatively small.   

 

(c) Planetary Boundary Layer: Temperature, Humidity and Wind speed profile 
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The area-averaged statistical analyses are conducted using soundings and the impacts of 

Czil on PBL are evaluated.  The vertical profile is analyzed from 1000 to 700 hPa since 

majority of the impact is within the boundary layer.  Fig. 3.7a shows that all the 

experiments have cold biases in the vertical and CS0.8 has the smallest temperature bias 

below 900 hPa but the largest bias above it.  Thus, weak coupling strength leads to 

stronger vertical temperature gradients.  CS0.01 and CSvar show similar temperature 

biases and good agreement with specific humidity profiles (Fig. 3.7b) up to the 850 hPa 

level.  The influence of the surface coupling strength on the vertical profiles of 

temperature and humidity is notable in the different experiments, and the impacts are the 

highest in the surface layer on specific humidity.  The wind speed vertical profile in Fig. 

3.7c indicates that the largest difference, 0.5 m s
-1

,
 
occurs at the 925 hPa level, and once 

again the surface coupling strength appears to have insignificant impacts on the wind 

speed.  

 

Table 3.5 Area-averaged accumulated precipitation (mm) over U.S. SGP at 3-km grid spacing 

 

Coupling coefficient 

(Czil) case 
Rainfall 

(mm) 

CS0.01 22.21 

CS0.05 22.16 

CS0.1 22.17 

CS0.3 21.29 

CS0.5 20.21 

CS0.8 18.86 

CSvar 21.59 

STAGE-IV 22.93 
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(d) Precipitation 

The area-averaged accumulated precipitation for the 48 hrs forecasts initiated at 1200 

UTC 12 June 2002 is summarized in Table 3.5.  The strongest coupling strength of 

CS0.01 leads to the largest amount of area-averaged accumulated precipitation.  CS0.01 

also shows close agreement of accumulated area-averaged precipitation to the 

  
      (a)                                                                                            (b) 

 
                 (c) 

Fig. 3.7 Vertical profiles of area-averaged bias over the U.S. SGP 3-km grid spacing domain at 

1800 UTC 12 June 2002 (a) temperature (K), (b) specific humidity (10
-3

 × kg kg
-1

), and (c) wind 

speed (m s
-1

). 
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observation, and the amount of rainfall for CSvar and CS0.3 are similar to each other.  

Since heavier rainfall is obtained by increasing the coupling strength through decreased 

values of Czil, it is possible that the model’s ability to correctly simulate rainfall can be 

tuned through surface coupling coefficient, particularly in areas where there is a known 

bias with convection triggering and rainfall under prediction.  The weak coupling tends to 

produce weak convective system with less precipitation whereas the strong coupling 

results in more water vapor into the atmosphere and ultimately more precipitation.  

Interestingly, the coupling strength does not appear to affect the timing of the peak rains, 

and only alters the amount of the precipitation.  These results need to be examined with a 

larger ensemble of CP experiments, but are consistent to those reported in Trier et al. 

(2011) for the U.S. SGP.  

 

To further explore the impact of Czil on precipitation, 3 hr (0000 UTC - 0300 UTC 13 

June 2002) accumulated precipitation (Fig. 3.8) was analyzed.  The experiments with 

constant Czil values have similar precipitation patterns in the U.S. SGP domain. Results 

again highlight that the constant surface coupling strength does not affect the general 

location but only the magnitude of the simulated precipitation.  However, the dynamic 

Czil improves both the pattern and location of the simulated precipitation in our 

experiments.  For instance, results show that the 3 hr accumulated precipitation of Czil-var 

has a better spatial agreement to the STAGE-IV observed precipitation than those of the 

constant values in the northern part of Texas.  Therefore, the dynamic Czil shows 

promising potential for improving the simulation of warm rain quantitative forecast over 

the U.S. SGP.   
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Fig. 3.8 Comparisons of the 3 hrs accumulated precipitation (0000 – 0300 UTC) on 13 June 2002 

over the U.S. SGP 3-km grid spacing domain between the model forecasts with (a) Czil = 0.01, (b) Czil 

= 0.05, (c) Czil = 0.1, (d) Czil = 0.3, (e) Czil = 0.5, (f) Czil = 0.8, (g) dynamic Czil-var, and (h) the STAGE-

IV observed precipitation. 
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3.4.2.2    Europe 

(a) Analysis of surface flux, 2 m temperature, and friction velocity 

The surface flux observations used for the European domain correspond to Black Forest, 

Germany (48.54°N, 8.397°E) and are centered in the 3 km grid spacing model domain 

(Fig. 3.1b).  The study region is characterized by significant amounts of orographic 

rainfall in summer.  The flux analysis shows that CE0.1 and CEvar have similar LE (Fig. 

3.9a), but the simulated LE with the weak coupling strength of CE0.8 leads to about 22 

Wm
-2

 reduction than that with the strong coupling strength of CE0.05.  The mean of the 

24 hrs observed LE is 50.77 W m
-2

, and CE0.3 (52.50 W m
-2

 for LE) is found to be close 

to the observation.  The mean of LE for the dynamic Czil experiment (58.66 W m
-2

) shows 

better agreement with the observation than that for CE0.8 (38.26 W m
-2

), but the dynamic 

Czil experiments do not improve the simulated LE.  Majority of the model simulations 

overestimated H before evening (1800 UTC, 7 pm local time).  During the night time 

after 1800 UTC, model forecasts of LE have good agreement with the observations, and 

H for CE0.3, CE0.5, and CE0.8 agree well with observations.  The overestimation of LE 

from the model leads to more moisture in the surface layer and decreases the 2 m 

temperature.  As a result, the 2 m temperature is underestimated by 2-5 K in all Czil 

experiments (Fig. 3.9c).  The 10 m wind speed again indicates that surface coupling 

strength has little impact on the surface wind speed. 
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(b) Analysis of 2 m temperature and specific humidity, 10 m wind speed, and 

precipitation  

The area-averaged analysis is conducted based on data from nearly 200 stations in the 3-

km grid spacing domain.  In Fig. 3.10a, the 2 m specific humidity bias suggests that 

during 1200 - 0000 UTC the surface coupling strength of CE0.01, CE0.05, CE0.1, and 

the dynamic coupling strength of CEvar lead to more moisture, while the moderate and 

the weak surface coupling strength coefficients of CE0.5 and CE0.8 produce drier 

  
                                                          (a)                                                                                                       (b) 

 
             (c)                                                                                                        (d) 

 

Fig. 3.9 Comparisons between the 0-24 hr CE experiments initialized at 0600 UTC 21 July 2007 and 

the observation of (a) latent heat flux (W m
-2

), (b) sensible heat flux (W m
-2

), (c) surface 

temperature (K), and (d) wind speed (m s
-1

), at Black Forest, Germany (48.54°N, 8.397°E). 
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boundary layer.  The model simulated moisture is improved for CE0.3.  Fig. 3.10b shows 

that there is about a 1-4 K 2 m temperature cold biases in all the experiments.  Reductions 

in the temperature bias are noted for the moderate and the weak coupling strength of 

CE0.5 and CE0.8.  CE0.1 which is the default coupling coefficient in current WRF model 

shows similar 2 m temperature and moisture biases to CEvar, but both of them fail to 

improve surface temperature and moisture.  The 10 m wind speed was also analyzed and 

the biases of the different coupling strength increased before 1800 UTC when a heavy 

rainfall occurred and then the biases decreased in the evening.  The similarity of patterns 

in Fig. 3.10c corresponds well to our previously stated conclusion for other regions that 

the surface coupling appears to have insignificant impact on surface wind speeds.  The 

higher winds contribute to the low temperature bias through increased mechanical 

mixing. 

 

The Equitable Threat Score (ETS) of 3 hrs accumulated precipitation over the 9 km grid 

spacing domain in Europe are assessed to analyze the coupling strength influence.  The 

Experimental Real-Time TRMM Multi-Satellite Precipitation Analysis (TMPA) data are 

used for comparisons.  As seen in Fig. 3.10d, the runs show limited skill, but the impacts 

of the coupling strength is still evident.  A more reasonable precipitation simulation is 

found with the weak coupling strength coefficient of CE0.8.  Results indicate that the 

dynamic Czil, and weak coupling strength may be helpful to improve summer convection 

simulations over Europe. 
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3.4.2.3    North India 

(a) Reflectivity  

A series of X-band Doppler weather radars (DWRs) are operated by India Meteorological 

Department (IMD) in weather mode for detection of localized weather phenomenon 

(Routray et al. 2010).  The reflectivity product from the New Delhi DWR is used for 

model comparisons.  Fig. 3.11 presents the radar reflectivity field from all the 

experiments and the observation corresponding to 1200 UTC 12 May 2012.  CI0.5 and 

CI0.8 show wider regions of stratiform precipitation (25-40 dBZ) which are closer to the 

observation.  Strong coupling strength leads to lighter rain and smaller areas of 

precipitation, but the dynamic Czil modestly improved the precipitation intensity and 

 

 

Fig. 3.10 0-24 hr model forecast, initialized at 0600 UTC 21 July 2007, area-averaged bias over 

Europe 3-km grid spacing domain of (a) 2 m specific humidity (10
-3

 × kg kg
-1

), (b) 2 m temperature 

(K), (c) 10 m wind speed (m s
-1

), and (d) ETS of 3 hrs accumulated precipitation from 0600 UTC 

21 July to 0600 UTC 22 July 2007 over the European 9-km grid spacing domain. 
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distribution.  The estimated reflectivity fields are converted to surface rainfall intensity 

using the Z-R relationship (Marshall et al. 1947) and the results are shown in Fig. 3.12.  

While all model runs underestimate the accumulated precipitation, the coupling strength 

over north India can be considered reasonable with Czil = 0.5, and 0.8.  Note that the 

precipitation amount is also influenced by large scale processes and not from local 

coupling mechanism alone.  During May over north India, most of the land is cultivated 

 

 

Fig. 3.11 Comparisons of reflectivity at 1200 UTC 12 May 2012 over India 3-km grid spacing 

domain between model forecasts with (a) Czil=0.01, (b) Czil=0.05, (c) Czil=0.1, (d) Czil=0.3, (e) Czil=0.5, 

(f) Czil=0.8, (g) dynamic Czil-var , and (h) the observation. 
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and the dry parched surface produces thermals into the atmosphere.  These thermals when 

interacting with larger moisture source often lead to regional precipitation events.  The 

model appears to capture these feedbacks as the weak coupling is dominant over 

cultivated but parched land surface.  

 

 

(b) Statistical analysis 

The 0-24 hr area-averaged 2 m temperature and moisture, and 925 mb wind speed biases 

are shown in Fig. 3.13 and the mean values of the bias are presented in Table 3.6.  All the 

runs show cold biases but a better response in simulating 2 m temperature is achieved 

with the weak coupling strength of CI0.8.  CIvar and CI0.5 show similar feedbacks on 

temperature, while the strong coupling strength of CI0.01 produces the largest 

temperature bias.  All the coupling runs show dry biases, and a slightly better response 

occurs with the strong coupling coefficient of CI0.01.  Since the strong coupling strength 

 

 

Fig. 3.12 Comparison of accumulated precipitation initiated at 0000 UTC 12 May 2012 over India 

3-km grid spacing domain between model forecasts and the observation. 
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leads to relatively more moisture than the other runs, as a feedback the LE of the strong 

coupling run is higher.  As the surface coupling strength is linked to the evolution of 

moisture in the model (Trier et al. 2011), the weak coupling strength produces drier 

environment for the PBL, resulting in reduced moisture (Fig. 3.14b).  The wind speeds at 

925 hPa of all experiments show similar biases before 1200 UTC, but large differences 

are noted between 1200 UTC 11 May and 0000 UTC 13 May 2012 and CIvar has the 

least bias.  The vertical profiles of the area-averaged bias from the surface to 700 hPa 

levels in the PBL are shown in Fig. 3.14.  Significant impacts of the coupling strength are 

found below 925 hPa, where all the simulations show lower temperature, less moisture, 

and larger wind speed biases.  The wind speed profile shows mixed results, whereas the 

CIvar indicates an improved response. 

 

TRMM data are used to assess the ETS of 3 hrs accumulated precipitation over the 9 km 

grid spacing India domain (Fig. 3.13d).  All model runs show similar precipitation results 

though the weak coupling strength leads to higher ETS scores and a better precipitation 

forecast.  The observation and model based histograms of 147 stations (grid) based WRF 

2 m temperature and 2 m specific humidity are generated in Figs. 3.15 and 3.16.  The 

histogram of CI0.8 shows similar distribution as compared to the range of 305-310 K in 

the 2 m temperature observation histogram.  All of the other coupling strengths produce 

lower frequencies of 305-310 K range but higher frequencies are observed within the 

range of 300-305 K.  The histograms correspond well with the results of area-averaged 

biases, emphasizing that the weak coupling strength has the best results for simulating the 

2 m temperature.  On the contrary, the 2 m specific humidity histogram of CI0.8 has the 
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largest difference compared to observations indicating that the weak coupling strength is 

not able to capture the 2 m specific humidity over the northern Indian region.  So, “what 

is an optimum coupling strength for the Indian monsoon region?” is still an open question.  

Our results do indicate that the constant value used in the default Noah/WRF model is not 

the optimal value.  

 

 Table 3.6 Biases of 2 m temperature (T), 2 m moisture (Q), and surface wind speed (WSPD) for 0-24 

hr model forecasts over India domain at 3-km grid spacing 

 

Coupling coefficient 

(Czil) case 
2 m T 

(K) 

2 m Q 

(10
-3

×kg kg
-1

) 

WSPD 

(m s
-1

) 

CI0.01 -2.95 -1.59 0.11 

CI0.05 -2.84 -1.66 0.04 

CI0.1 -2.69 -1.68 -0.06 

CI0.3 -2.38 -1.76 -0.26 

CI0.5 -2.27 -1.83 -0.37 

CI0.8 -2.19 -1.87 -0.49 

CIvar -2.33 -1.79 -0.06 

 

 

Fig. 3.13 0-24 hr model forecast initialized at 0000 UTC 12 May 2012, area-averaged bias over the 

Indian 3-km grid spacing domain of (a) 2 m specific humidity (10
-3

 × kg kg
-1

), (b) 2 m temperature 

(K), (c) 10 m wind speed (m s
-1

), and (d) ETS of 3 hrs accumulated precipitation from 0000 UTC 

12 July to 0000 UTC 13 May 2012 over the Indian 9-km grid spacing domain. 
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     (a)                                                            (b) 

 
        (c) 

 

Fig. 3.14 Vertical profiles of area-averaged bias over the Indian 3-km grid spacing domain at 1200 

UTC 12 May 2012 for (a) temperature (K), (b) specific humidity (10
-3

 × kg kg
-1

), and (c) wind 

speed (m s
-1

). 
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Fig. 3.15 147 points histograms of the observation and the WRF model forecasts for 2 m temperature 

(K): (a) Observation, (b) Czil = 0.01, (c) Czil = 0.05, (d) Czil = 0.1, (e) Czil = 0.3, (f) Czil = 0.5, (g) Czil = 0.8, 

and (h) dynamic Czil-var. 

 

(a) Observation (b) Czil = 0.01 

(c) Czil = 0.05 (d) Czil = 0.1 

(e) Czil = 0.3 (f) Czil = 0.5 

(g) Czil = 0.8 (h) Czil_var 
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Fig. 3.16 147 points histograms of the observation and the WRF model forecasts for 2 m specific 

humidity (kg kg
-1

): (a) Observation, (b) Czil = 0.01, (c) Czil = 0.05, (d) Czil = 0.1, (e) Czil = 0.3,  

(f) Czil = 0.5, (g) Czil = 0.8, and (h) dynamic Czil-var. 
 

 

(a) Observation (b) Czil = 0.01 

(c) Czil = 0.05 (d) Czil = 0.1 

(e) Czil = 0.3 (f) Czil = 0.5 

(g) Czil = 0.8 (h) Czil_var 
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3.4.2.4    West Africa   

(a) Surface flux analysis  

The impact of different coupling strengths on surface heat fluxes over the West African 

domain is shown in Figs. 3.17 a and b.  CAvar results in a better estimation of LE but 

overestimates H.  The H for CA0.3 has a good agreement with the observation, but the 

bias increases with stronger coupling when the coupling coefficient is decreased from 0.3 

to 0.01.  Since the LE of CA0.3 also matches well to the observations, the coupling 

strength of CA0.3 could be able to modify the surface fluxes over West Africa.  The 

surface air temperature is affected by H and is expected to be sensitive to surface 

coupling strength.  The runs with strong coupling strength show good agreement between 

the 2 m temperature and observations (Fig. 3.17c), but CAvar results in about 1-3 K 

lower temperature before 0300 UTC and higher temperatures after that.  The constant 

coupling coefficients have little impacts on the 10 m wind speed, but the impact of Czil on 

friction velocity is significant over West Africa.  Since the smaller Czil leads to larger 

roughness length for heat which means rougher surface for heat and moisture, the surface 

turbulence is stronger and results in larger friction velocity.  Although the temporal 

patterns of the friction velocity are similar among the different coupling runs, the strong 

coupling strength and the dynamic Czil lead to relatively poor simulations of the friction 

velocity (Fig. 3.17d).   
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(b) Statistical analysis 

As seen in Fig. 3.18a, the area-averaged bias of the 2 m moisture decreases in the 

morning, and CA0.1 and CAvar show generally similar and small biases.  The 2 m 

temperature of all simulations show cold biases; and CA0.1 and CAvar also have similar 

surface temperature biases.  This agreement is noted not just in the surface fields but also 

in the vertical profiles of temperature and moisture (Figs. 3.18 c and d).  All runs show 

wet and cold biases in the vertical profiles, though the weak coupling strength of CA0.8 

   
                                                         (a)                                                                                                  (b) 

  
                                                          (c)                                                                                                 (d) 

 
Fig. 3.17 Comparisons between the 0-24 hr CA experiments and the observation of (a) latent heat 

flux (W m
-2

), (b) sensible heat flux (W m
-2

), (c) 2 m temperature (K), and (d) friction velocity (m s
-1

), 

initialized at 0600 UTC 10 August 2006 for Niamey (13.478°N, 2.174°E), Niger, Africa. 
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results in the best performance.  The impacts of the coupling strength are more significant 

at the surface.  All the model runs have generally similar humidity biases around 925 hPa, 

but the different responses caused by the surface coupling strength show up again around 

900 hPa.  The wind speed forecast is improved by strong coupling strength in the surface 

layer, but the weak surface coupling strength run shows a smaller bias between the levels 

of 925 hPa and 850 hPa (Fig. 3.18e).  The impact noted on wind speed for this case is not 

entirely apparent and is likely a result of the larger domain considered in this experiment.  

 

 
         (a)                                                                    (b)     

 
                                   (c)                                                        (d)                                                         (e) 

 

 

Fig. 3.18 0-24 hr model forecast, initialized at 0600 UTC 10 August 2006, area-averaged bias over 

the West African 3-km grid spacing domain of (a) 2 m specific humidity (10
-3

 × kg kg
-1

), (b) 2 m 

temperature (K); Vertical profiles of domain averaged bias over a 3-km grid spacing domain for 

(c) temperature (K), (d) specific humidity (10
-3

 × kg kg
-1

), and (e) wind speed (m s
-1

) at 1200 UTC 

10 August 2006. 
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(c) Precipitation 

The 3 hrs accumulated precipitation over the West African region is simulated by all Czil 

experiments and again the TRMM-based precipitation estimates are used for comparisons. 

 

   

 

 
 

Fig. 3.19 Comparisons of the 3 hrs accumulated precipitation (0300 – 0600 UTC) on 11 August 

2006 over west Africa 3-km grid spacing domain between model forecasts with (a) Czil=0.01, (b) 

Czil=0.05, (c) Czil=0.1, (d) Czil=0.3, (e) Czil=0.5, (f) Czil=0.8, (g) dynamic  Czil-var , and (h) the TRMM-

based precipitation.  
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Again the results show consistency in that the surface coupling strength affects 

precipitation intensity and not the location.  The dynamic Czil experiment (Fig. 3.19g) 

successfully simulates one of the heavy rainfall systems identified in the TRMM-based 

precipitation estimates, but was missed in other experiments (Fig. 3.19h).   

 

3.5 Conclusions and discussions  

In this study, the impact of land-atmosphere coupling was assessed using an offline Noah 

LSM and the coupled Noah/WRF model for select summer time mesoscale convection 

and heavy rainfall cases over the U.S. SGP, Europe, northern India, and West Africa 

regions.  The potential benefit of using the dynamic formulation for representing the land 

atmosphere coupling was studied over the four different coupling “hotspot” regions.  The 

area-averaged statistical analysis of 2 m temperature and moisture and 10 m wind speeds 

were conducted and the impacts of surface coupling strength on precipitation were 

evaluated.  The Czil is found to have good potential to modulate the model results and 

particularly improve the simulation of the convective systems.  The dynamic coupling 

strength helps improve the precipitation forecasts in terms of intensity but not necessarily 

its location.  

 

The impacts of the coupling effect on the convection vary across different land-cover 

types and over different regions. Over the different regions, the model biases response 

varies with the changes in coupling strength.  Significant impacts from surface coupling 

strength are found between the surface layer and the 925 hPa level.  In summer, over the 

U.S. SGP the strong coupling leads to cold and wet boundary layer, resulting in strong 
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convective system and heavier rainfall, whereas the coupling over northern India is 

relatively weak and produces lighter rain and smaller areas of precipitation due to the 

cultivated parched land surface.  However, because of the unavailability of observed 

surface fluxes in India, the coupling impacts on surface energy and surface variables need 

further analysis when additional data become available.  The model performance with 

different Czil values may vary with different PBL schemes or CPs.  Thus, additional 

ensemble experiments are needed in future studies.  

 

Surface heat fluxes show the largest impact in terms of the coupling strengths assigned 

over different regions.  Results indicate that the constant surface coupling coefficient 

adopted in the current coupled Noah/WRF model has deficiency in producing correct 

surface fluxes.  Over the U.S. SGP, H is better simulated by the weak coupling 

coefficient (Czil = 0.8), while LE from runs with the strong coupling coefficients (Czil = 

0.01 and 0.05) and the dynamic Czil-var match the observations better.  In addition, the 

strong coupling strength overestimates the surface temperature and is able to modify the 

surface and atmospheric characteristics.  The surface heat fluxes are overestimated during 

the daytime in all the model runs over the European domain.  The runs with Czil = 0.5 and 

the dynamic Czil-var have a similar LE evolution, and the coupling strength Czil = 0.3 leads 

to an improvement of LE.  Over West Africa, the current WRF model leads to coupling 

effects that are too strong and could be improved by decreasing the coupling coefficient 

to 0.3 in the land model.  The dynamic Czil_var is able to improve the simulations of the 

surface fluxes over West Africa.  

 



96 

 

The model over predicts the sensible heat flux in the convective PBL with all coupling 

strengths and this may be due to errors in the different boundary layer formulations 

within the model (Hacker and Angevine 2013) and not just a coupling coefficient based 

problem.  The weak coupling strength also potentially acts to buffer or reduce the biases.  

A strong vertical moisture gradient is a sign of the weak coupling effects.  Excess 

moisture is reduced by the weak coupling strength which produces a drier environment 

for the PBL due to the linkage between the surface coupling strength and the evolution of 

moisture in the model.  Over prediction of the 10 m wind speed produces too large 

momentum fluxes over the four regions, and the momentum fluxes are generally 

insensitive to the coupling strength (except in the case of West Africa region).    

 

One important and consistent result that emerged from analysis over the different regions 

is that the precipitation locations are not affected by the coupling strength in all the 

experiments, but the coupling strength does have impacts on the magnitude of the 

precipitation and changes the local spatial and temporal patterns of the rainfall.  Our 

investigation also reveals that improvements made to the existing surface and atmosphere 

coupling strength by adopting the dynamic coupling coefficient are helpful in improving 

precipitation predictions.   

 

There is high uncertainty in land-atmosphere coupling findings and the results from this 

and prior studies need to be considered with caution.  Zones identified as coupling 

hotspots in climate studies, and the associated coupling strength would likely change 

depending on the model roughness/coupling coefficient assigned.  Thus the “actual” 
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coupling itself is perhaps a model artifact-albeit a useful one to study different processes 

including improving predictability.  As a result, the zone of “high” or “low” coupling 

strength should be considered in the context of the model and parameterizations used.  

More efforts need to be directed toward adopting the dynamic Czil rather than a constant 

value that is currently used in the Noah/WRF like models.  Model results are consistently 

though modestly improved and encouraging when a dynamic Czil is used.  Therefore, the 

dynamic Czil formulation is recommended for use in future studies but with a caution for 

use over complex terrains.  Evaluating the impact of coupling coefficient in a coupled 

model is highlighted as the results may be different than in the offline mode.  Our results 

indicate that identifying the correct coupling is a challenge as it can improve one variable 

and deteriorate another.  The coupling coefficient has significant control on the model 

performance particularly the quantitative precipitation forecasts and is thus an important 

feature for studying hydrometeorological extremes such as droughts and heavy rain 

events.
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CHAPTER 4. IMPROVING HIGH-RESOLUTION WEATHER FORECASTS USING 

THE WEATHER RESEARCH AND FORECASTING (WRF) MODEL WITH AN 

UPDATED KAIN-FRITSCH SCHEME
3
 

4.1 Introduction 

Numerical weather prediction (NWP) forecast models have been greatly improved, 

motivated by the role of providing accurate forecasts about severe weather events to 

mitigate the loss of life and property.  Furthermore, credibility of climate change 

simulations at urban-scales can be increased by first improving the accuracy of high-

resolution model simulations at weather prediction timescales (Chen et al. 2011).  In 

particular, moist processes play an important role in properly simulating weather, air 

pollution, climate and the hydrological cycle.  Clouds and precipitation formed in these 

processes are important forecast products, thus accurate prediction of precipitation is one 

of the most beneficial areas of NWP improvement.  For this reason, key processes 

occurring within clouds, including microphysical and dynamical processes, need to be 

well understood and modeled.   

 

Cloud microphysics schemes have been used in NWP models, but those microphysical 

processes may not be accurately represented due to the lack of supporting measurements 

for many processes occurring at finer spatial and temporal scales.  For example, the

                                                 
3
 Zheng, Y., K. Alapaty, J. A. Herwehe, A. D. Del Genio, D. Niyogi, 2015: Improving high-resolution 

weather forecasts using the Weather Research and Forecasting (WRF) model with an updated Kain-Fritsch 

scheme. Mon. Wea. Rev., doi: 10.1175/MWR-D-15-0005.1 (In press). 
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formulation described in Kain et al. (2008) has been found to be appropriate for WRF 

Single Moment 6-class (WSM6) microphysics (Hong et al. 2004) and has been 

successfully used in some numerical studies (e.g., Done et al. 2004; Deng and Stauffer 

2006; Wulfmeyer et al. 2006; Case et al. 2008; Niyogi et al. 2011).  However, according 

to Clark et al. (2012), many such studies are not able to accurately clarify unique 

precipitation particle and other physical parameters in different microphysical processes 

using regional models such as the WRF model (Skamarock and Klemp 2008).  This 

problem revealed that many characteristics of the model results were quite sensitive to 

the choice of microphysics scheme (Weisman et al. 2008; Dawson et al. 2010; Bryan and 

Morrison 2012).  Clark et al. (2012) also found that no single microphysics scheme could 

surpass the others in performance during the 2010 National Oceanic and Atmospheric 

Administration’s (NOAA’s) Hazardous Weather Testbed (HWT) Spring Forecasting 

Experiment.  There is also much debate on whether more complex microphysics schemes 

provide value for precipitation forecasts (e.g., Luo et al. 2010; Seifert and Stevens 2010; 

van Lier-Walqui et al. 2012; Van Weverberg et al. 2013).  Based on the microphysics 

scheme sensitivity study of Blossey et al. (2007), microphysics was found to have little 

impact on decreasing a model’s apparently excessive precipitation efficiency.  

Additionally, Cintineo et al. (2014) pointed out that large uncertainties remain in how 

various microphysics schemes represent subgrid-scale microphysical processes.  Thus, as 

grid spacing decreases, cloud microphysics schemes have limitations in representing 

moist convection (Arakawa and Jung 2011; Gustafson Jr. et al. 2013; Molinari and 

Dudek 1992).   
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One reason for the partial failure of cloud microphysics schemes can be attributed to the 

fact that grid-scale dynamics is separated from cloud physics.  Additionally, there will be 

clouds that are unresolved by high spatial resolutions (e.g., ~1 to 10 km grid spacings) 

and their effects need to be accounted for to improve predictability (e.g., Molinari and 

Dudek, 1992; Seaman et al. 1998).  Thus, from these studies it can be inferred that, at 

high spatial resolutions, usage of a cloud microphysics scheme alone (without an active 

parameterized convection scheme) may not be sufficient to represent moist convection 

and precipitation for warmer periods in weather forecasts.  

 

The dynamic cloud processes that describe cloud formation and growth can impact the 

timing, location, and intensity of precipitation.  In many NWP models, the fractional 

cloudiness can influence atmospheric radiation budgets as well as the dynamics and 

thermodynamics, but in the past, subgrid-scale cumulus cloudiness and the associated 

radiative impacts have been largely neglected outside of global climate models.  Alapaty 

et al. (2012) and Herwehe et al. (2014) emphasized and documented the importance of 

incorporating such subgrid-scale cloud-radiation interactions using the Kain-Fritsch (KF) 

CPS (Kain 2004) and the Rapid Radiation Transfer Model, Global (RRTMG) schemes 

(Iacono et al. 2008).  In order to represent subgrid-scale clouds at higher resolutions, it 

will be shown that there is a need to relax some of the assumptions used in CPs (e.g., the 

KF scheme).  We address some of these issues that cause CPSs to degrade progressively 

as resolution is increased, in particular for high-resolution modeling (for grid spacings on 

the order of 1-10 km).   
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One of the many key parameters in CPSs is the convective adjustment timescale, a 

characteristic time scale with which convective available potential energy (CAPE) is 

reduced at an exponential rate by convection.  This parameter is set as a constant value in 

many regional and global models with the exception of a very few models (e.g., the 

European Centre for Medium-Range Weather Forecasts model, Bechtold et al. 2008).  

Literature indicated that there is some uncertainty in the specification of this parameter.  

For example, Mishra and Srinivasan (2010) improved the simulation of the seasonal 

mean precipitation significantly by increasing the adjustment time scale value from 1 

hour to 8 hours, while Done et al. (2006) found that varying the adjustment timescale 

from minutes to one day resulted in changing all CP-generated subgrid-scale rainfall to 

only grid-scale precipitation.  In addition, the magnitude of convective heating and drying 

rates has been found to correlate with local CAPE more strongly at finer scales when grid 

spacing is on the order of 1-10 km (Kain 2004).  Another key cloud process is the 

interaction between convection and its environment through entrainment and detrainment.  

These processes are quite complex and are of vital importance in regional and global 

models (e.g., Tokioka et al. 1988; Kain and Fritsch 1990; Kang et al. 2009).  In many 

global models (e.g., Neale et al. 2010), the entrainment rate is specified and is a 

parameter often adjusted to improve results; however, there are very few regional and 

global models in which the entrainment rate is empirically estimated (e.g., Kain 2004; 

Chikira and Sugiyama 2010; Del Genio et al. 2012).  But for high-resolution simulations, 

assumptions made in the entrainment formulation of the KF scheme need to be 

reconsidered.  The convective momentum transport by cumulus convection is not 

included in many regional models, but for high-resolution modeling the importance of 
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including such subgrid-scale transport on grid-scale vertical motions deserves attention 

since it could help reduce model spin up time. 

 

Based on the above considerations, a few updates that were explored using the KF 

convection scheme are: inclusion of subgrid-scale cloud radiation interactions, a dynamic 

adjustment timescale, impact of subgrid-scale cloud updraft mass fluxes on grid-scale 

vertical velocity, and an entrainment methodology based on the lifting condensation level 

(LCL).  These changes introduce scale dependency for some of these key parameters in 

the KF scheme with an expectation that they will improve weather forecasts at 9- and 3-

km grid spacings. 

 

Since forecasts are sensitive to the initial conditions and small changes in the initial 

conditions can lead to big changes farther out in time (Rabier et al. 1996; Stensrud et al. 

2000), an accurate specification of the initial model state (i.e., the analysis of the 

atmospheric state) can make a significant improvement in high-resolution NWP model 

forecasts (Ehrendorfer 1997; Simmons and Hollingsworth 2002).  In this study, we also 

explore impacts of initial conditions on short-term high-resolution forecasts, as well as 

the sensitivity to different initial conditions of a high-resolution NWP model that includes 

an updated parameterized cloud dynamics.  For that reason, we have made an attempt to 

study the impacts of introducing scale-aware convective parameterized cloud dynamics 

for high-resolution forecasts using two different initial analyses.   
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To improve the prediction of precipitation distribution and variability, this study 

introduces several changes to the KF CPS in the WRF model and evaluates their impacts 

on high-resolution short-term forecasts.  Since high-resolution models can have varying 

degrees of sensitivities to physics, dynamics, and initial conditions, the objectives of this 

study are limited to understanding of the impacts of using (1) initial conditions obtained 

from two different analysis fields, and (2) a scale-dependent UKF scheme on high-

resolution precipitation forecasts using WRF version 3.4.1 (Skamarock and Klemp 2008).  

This paper is organized as follows: Section 2 presents methods for updating the KF 

scheme; Section 3 describes the design of the numerical simulations; Section 4 evaluates 

the WRF model performance; and summary and conclusions are provided in Section 5. 

 

4.2 Methodology 

For the purpose of improving high-resolution precipitation forecasts, we developed an 

updated KF scheme based on the study of subgrid-scale cloud-radiation interactions by 

Alapaty et al. (2012) by introducing grid resolution dependency and modifying the 

adjustment timescale and entrainment processes which influence surface precipitation.  

To help mitigate model spin up issues in short-range weather forecasts and associated 

precipitation, we also considered the impacts of subgrid-scale cloud updraft mass fluxes 

on grid-scale vertical velocity.   

 

Multisensor Precipitation Estimates (MPE, also known as Stage IV Next-Generation 

Radar) hourly rainfall products and the satellite infrared cloud observations were used for 

validation of the model forecasts.  MPE Stage IV is a national precipitation analysis 
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obtained from consideration of Next-Generation Radar data and precipitation gauges (Lin 

and Mitchell 2005).  MPE data at 4-km spatial resolution were obtained at hourly 

intervals and interpolated for a 3 km grid spacing in our study.  The high spatial 

resolution of MPE data makes it possible to evaluate high-resolution NWP model 

precipitation forecasts. 

 

4.2.1 The KF CPS 

The KF CPS (Kain and Fritsch 1990, 1993; Kain 2004) has been used successfully over 

the years, incorporated in the Pennsylvania State University–National Center for 

Atmospheric Research Mesoscale Model (Wang and Seaman 1997), the National Centers 

for Environmental Prediction (NCEP) Eta Model (Black 1994), the WRF model 

(Skamarock and Klemp 2008), and the new Model for Prediction Across Scales (MPAS) 

(Skamarock et al. 2012).  The KF scheme is a mass flux parameterization and uses the 

Lagrangian parcel method, and it can be generally grouped into three parts: 1) the 

convective trigger function, 2) the mass flux formulation, and 3) the closure assumptions.  

The early version of the KF scheme (Kain and Fritsch 1990, 1993) utilized a simple cloud 

model with moist updrafts and downdrafts, and has been modified for use by NWP 

models.  Several components of that KF scheme have been changed (Kain, 2004) to 

include an updraft formulation (i.e., imposing a minimum entrainment rate, specified 

cloud radius to vary as a function of subcloud-layer convergence, allowing a minimum 

cloud depth to vary as a function of cloud-base temperature, and allowing shallow 

convection), a downdraft formulation (i.e., introducing a new downdraft algorithm), and a 

closure assumption (i.e., calculating CAPE based on the path of an entraining parcel).  In 
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this study, we have used that latest version of the KF scheme (i.e., Kain, 2004) to 

introduce several new science updates which are described in the following section. 

 

4.2.2 A brief description of subgrid-scale cloud-radiation interactions 

In most NWP models, subgrid-scale CPs do not consider cumulus cloud feedbacks to 

radiation due to a lack of knowledge on how to estimate fractional cloudiness as a 

function of parameterized clouds, resulting in biases in both regional weather and climate 

simulations (Herwehe et al. 2014).  Alapaty et al. (2012) introduced a subgrid-scale 

cumulus cloudiness formulation to the KF CPS (Kain 2004) and the RRTMG models 

(Iacono et al. 2008).  The inclusion of subgrid-scale cloud-radiation interactions created 

more realistic longwave and shortwave radiation variability, leading to the improvement 

of several meteorological parameters at both the weather and climate timescales.  Here, 

we extend the study of subgrid-scale cloud-radiation interactions by relaxing some of the 

assumptions used in the KF scheme and hypothesize that our UKF scheme will reduce 

excessive precipitation in weather forecasts for short-term high-resolution modeling 

studies.                                            

 

4.2.3 A dynamic formulation for the adjustment timescale 

The adjustment timescale (τ) is the time over which CAPE is reduced to stabilize the 

atmosphere, originally introduced by Frisch and Chappell (1980). In the default 

configuration of many NWP models, a constant value of τ is specified as a global 

constant.  The KF scheme uses a technique that was proposed by Fritsch and Chappell 

(1980) for the estimation of τ based on the mean tropospheric horizontal wind speed and 
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grid resolution.  However, as noted by Stensrud (2007), this formulation may approach its 

limitation either for high resolution grids or for environments with strong winds, such as 

hurricane simulations.  Because of this limitation, τ was found to be one of the parameters 

that caused wet biases in simulated precipitation amounts at 12-km grid spacing (Bullock 

et al. 2015).  As we move from coarser (~15 km) to high resolution (~1 km) grids, one 

would expect the impacts of parameterized convection to gradually become less 

significant.  However, many CPSs cannot work properly at these finer scales because the 

tendencies produced by parameterized convection dominate over resolved convection 

(Arakawa and Jung 2011; Molinari and Dudek 1992).  To make CPSs (such as KF) 

seamless across these spatial scales, τ should increase with increased grid resolution such 

that atmospheric stability restoration is gradually taken over by the resolved convective 

processes.  However, it does not occur with the existing τ methodology used in the KF 

scheme as demonstrated by Bullock et al. (2015).  To that effect, a formulation for τ is 

developed by using cloud macrophysical parameters following the notion used by 

Bechtold et al. (2008).   

 

Considering the fact that many KF parameters are tied to grid spacing of around 25 km 

(Kain 2004), we derive a new grid resolution-dependent dynamic formulation of the 

adjustment timescale based on Bechtold et al. (2008): 

                                                𝜏 =
𝐷𝑒𝑝𝑡ℎ 𝑆𝑐𝑎𝑙𝑒

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑆𝑐𝑎𝑙𝑒
𝐹𝑛(𝐷𝑥)   (4.1) 

𝜏 =
𝐻

𝑊
𝛽      (4.2) 

                                                      𝛽 = [1 + 𝑙𝑛 (
25

𝐷𝑥
)] (4.3) 
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where H is cloud depth (m), and W is cloud averaged vertical velocity (m s
-1

).   𝐷𝑥 is the 

horizontal grid-spacing (km), and 𝛽  is a scaling parameter dependent on the model’s 

horizontal grid spacing 𝐷𝑥 (km), analogous to but different from that of Bechtold et al. 

(2008).   

 

For a spectrum of grid resolutions, the adjustment timescale τ from Eq. 4.1 without the 

scaling parameter 𝛽 would be of the same order.  Thus, as argued earlier, the scaling 

parameter helps the scheme represent a smooth transition from parameterized cloud 

physics to resolved grid-scale cloud physics.  For a 25 km grid, the scaling parameter 𝛽 

will become 1.0, while for a 1 km grid it would be about four times larger.  Proposed 

spatial variation of the scaling parameter closely follows the logarithmic-bimodal 

distribution of cloud fraction dependency on horizontal grid resolution derived from a 

cloud resolving modeling study (Arakawa and Wu 2013).  In our study, as resolution 

increases, τ increases and thus reduces the number of parameterized updrafts, which 

conforms to the main theme of Arakawa and Wu (2013) that subgrid-scale cloud fraction 

should cover only a small portion of a grid cell.  Since the cloud depth (H) is readily 

available from the KF, cloud averaged vertical velocity scale (W) is the only unknown in 

the Eq. 4.2 and it is estimated as follows.  

 

We extend the shallow convection study of Grant and Lock (2004) that used large eddy 

simulations (LES) and observations of the Barbados Oceanographic and Meteorological 

Experiment (BOMEX; Holland and Rasmusson 1973) to relate cloud depth-averaged 
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vertical velocity W to the product of KF cloud base updraft mass flux and entrained 

CAPE as: 

                                                        𝑊 = (𝛿𝑚𝑏𝐴𝑒)1 3⁄                                     (4.4) 

where 𝛿 is a constant and set to unity so that Eq. 4.4 is consistent with that of Grant and 

Lock, mb is the cloud-base updraft mass flux per unit density (m s
-1

), and Ae is 

diluted/entrained CAPE (m
2
 s

-2
).   

 

Since Eq. 4.4 was originally developed for shallow convective clouds, in order to extend 

it for deep convective clouds, we have introduced the constant, 𝛿.  It is interesting to note 

that Grant and Lock (2004) did not note that Eq. 4.4 is related to the cloud work function 

originally proposed by Arakawa and Schubert (1974) for a spectrum of convective clouds.  

Thus, Eq. 4.4 also works for deep convective clouds since it is essentially the cube-root 

of a simplified form of the cloud work function.  The cloud work function is defined as 

the buoyancy flux contribution to the rate of change of convective kinetic energy per unit 

cloud base mass flux, which then can be related to the product of vertically averaged 

cloud mass flux and entrained CAPE (Ae).  Thus,  𝛿  becomes the ratio of vertically 

averaged cloud mass flux and cloud base mass flux, resulting in Eq. 4.4.  From the study 

of Lawrence and Rasch (2005) that used the Zhang and McFarlane (1995) scheme, we 

find that vertically averaged mass flux is very close to the cloud base mass flux and thus 

𝛿 can vary from about 0.9 to 1.1 for deep convection.  However, in this study, we set 𝛿 to 

unity for the deep moist convection.  

 

Our new dynamic formulation for the adjustment timescale can then be written as  
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     𝜏 =
𝐻

 (𝛿𝑚𝑏𝐴𝑒)1 3⁄  𝛽 =  
𝐻

(𝛿𝑚𝑏𝐴𝑒)1 3⁄ [1 + 𝑙𝑛 (
25

𝐷𝑥
)]           (4.5) 

Thus, the adjustment timescale in Eq. 4.5 increases as resolution increases, resulting in 

longer time allowed for CAPE consumption by parameterized cloud physics and, hence, 

stabilization of the atmosphere by the KF scheme, facilitating a gradual transition of the 

stability restoration by the KF scheme to the grid-scale cloud physics.   

 

4.2.4 Enhancement of grid-scale vertical velocity using subgrid-scale updraft mass 

fluxes 

Many studies (e.g., Han and Pan 2011; Richter and Rasch 2008; Mallard et al. 2013) cite 

the need for inclusion of convective momentum transport into the KF scheme for proper 

simulation of hurricanes.  But, for high-resolution convective precipitation forecasts, it is 

not clear whether subgrid-scale updraft mass flux plays an important role on grid-scale 

momentum, mass, and energy transport.  To address an aspect of this issue, we 

considered impacts of subgrid-scale updraft mass fluxes on grid-scale vertical velocity 

using a simple linear methodology.  One potential benefit is that it can help reduce model 

spin up time over convectively active regions by increasing the grid-scale vertical 

velocity.  The proposed simple linear mixing methodology for enhancing grid-scale 

vertical velocity is expressed as 

                                                     𝑊𝑢𝑝 =
𝑀𝑢𝑝

𝜌
=

𝑀 𝐷𝑥2⁄

𝜌
                                 (4.6) 

                                                       𝑊𝑛 = 𝑊𝑔 + 𝑊𝑢𝑝                                     (4.7)  

   



110 

 

where 𝑊𝑢𝑝 is the effective vertical velocity of subgrid-scale updraft (m s
-1

), 𝑀𝑢𝑝 is the 

subgrid-scale updraft mass flux (kg m
-2 

s
-1

), ρ is the convective plume density (kg m
-3

), 𝑀 

is the updraft mass rate (kg s
-1

), 𝑊𝑛 is the reformulated grid-scale vertical velocity (m s
-1

), 

and 𝑊𝑔 is the grid-scale vertical velocity (m s
-1

). 

 

4.2.5 Entrainment methodology based on LCL 

From Kain (2004) the equation of the minimum entrainment rate for convective plumes is 

given by  

                                                        ∆𝑀𝑒 = 𝑀𝑏
𝐶

𝑅
∆𝑃                                    (4.8) 

where ∆𝑀𝑒 is the mixing rate (kg s
-1

), 𝑀𝑏 is the updraft mass rate at cloud base (kg s
-1

), 

C=0.03 is a constant (m Pa
-1

) which controls the overall magnitude of the entrainment 

rate for convective plumes, R is the radius of cloud base and dependent on the magnitude 

of vertical velocity at the lifting condensation level (LCL) (m), and ∆𝑃 is the pressure 

depth of a model layer (Pa).  

 

The magnitude of the constant C used in the Eq. 4.8 is the same as that of the non-

dimensional Tokioka parameter, α = 0.03, (Tokioka et al. 1988) used in global climate 

studies (e.g., Kang et al. 2009; Kim et al. 2011; Lin et al. 2013) for entrainment rate 

estimation.  These global studies showed that the hyperactivity of a subgrid-scale 

convection scheme can be largely modulated by tuning the Tokioka parameter, which 

allows grid-scale processes to perform the needed moisture conditioning of the large-

scale atmosphere.  These studies also showed that the subgrid-scale precipitation 
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decreases as the Tokioka parameter increases, resulting in an increase of grid-scale 

precipitation for improved climate simulations.  Dependence of the entrainment on 

horizontal grid resolution for radiatively driven shallow (stratocumulus) clouds was 

studied by Stevens and Bretherton (1999) using a large-eddy simulation model.  Their 

study found that when the horizontal spacing is coarsened, the entrainment rate decreased 

without any noticeable changes in the overall structure of the subcloud layer and cloud 

layer.  The role of entrainment for continental deep convective clouds was extensively 

studied by Del Genio and Wu (2010).  One of their findings was that at finer spatial 

resolutions, their inferred entrainment rate was greater because turbulence was more 

resolved.  They also used the WRF model at different grid resolutions and found the 

inferred entrainment rate at 125 m grid spacing to be stronger than that inferred at 600 m 

grid spacing.  Entrainment in deep convective clouds was also studied by Romps and 

Kuang (2010) using a LES model.  It was shown that the purity of convection decreases 

with finer grids (ranging from 3200 to 100 m spacings), suggesting increased entrainment 

with finer grid spacing.  Finally, in a recent cloud resolving modeling study, Bryan and 

Morrison (2012) concluded that changes in the simulated squall line intensity differences 

between two model grid resolutions (1 and 0.25 km) were primarily attributed to the 

increased entrainment.  Thus, all these studies clearly highlighted the dependency of 

entrainment on the horizontal grid resolution (i.e., entrainment increases as grid 

resolution increases).  de Rooy et al. (2013) provides a detailed review of entrainment in 

cumulus convection and highlights the study of Houghton and Cramer (1951) that 

entrainment needs to be partitioned into two parts: (1) entrainment due to large-scale 

processes; and (2) entrainment due to turbulence at cloud edges.  Since the first type of 
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entrainment is being represented by the Eq. 4.8, we have included the second type of 

entrainment through the usage of Tokioka parameter.  Thus, we considered all of these 

findings when reformulating the entrainment rate (Eq. 4.8) in the KF scheme to make it 

more adaptable to high-resolution model forecasts and to work seamlessly across spatial 

scales.  We introduce this feature via a dynamic Tokioka parameter that increases as 

model resolution increases.  Thus, the resolution dependent Tokioka parameter helps to 

represent grid spacing effects on convective cloud-entrainment interactions similar to that 

documented in the literature.  Hence, consistent with the above global climate and large-

eddy simulation studies, we have introduced a scale dependency for the Tokioka 

parameter by multiplying it with the β shown in Eq. 4.3, and also replaced R by ZLCL (m) 

– subcloud layer depth –  which is the height of the LCL above the ground.  The main 

advantage of using ZLCL instead of R is that at higher resolutions, R generally approaches 

the upper limit of 2 km used in the KF scheme, thus, it is not consistent with the 

assumption that subgrid-scale cloud fraction covers only a small area of a grid cell (e.g., 

Arakawa and Wu, 2013). In such situations, the diameter of the KF cloud will become 4 

km and thus, at the 3 km grid spacing used in this study, usage of R is inappropriate as 

the assumed subgrid cloud diameter exceeds the grid size.  

 

Then, the new minimum entrainment equation can be written as: 

                                                      ∆𝑀𝑒 = 𝑀𝑏
𝛼𝛽

𝑍𝐿𝐶𝐿
∆𝑃                               (4.9) 

Thus, Eq. 4.9 attempts to include both the types of entrainment consistent with the 

descriptions of de Rooy et al. (2013). 
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4.3 Design of Simulations 

The WRF model (Skamarock and Klemp 2008) is commonly used for a wide range of 

meteorological studies across scales ranging from meters to thousands of kilometers and 

timescales from days to decades.  An increasing number of researchers are employing it 

to study regional weather (e.g., Chen et al. 2011) and historic and future climate (e.g., 

Otte et al. 2012).  However, recent regional climate research noted that WRF often 

produced excessive precipitation within highly energetic convective systems (Done et al. 

2004; Hong et al. 2010; Alapaty et al. 2012; Herwehe et al. 2014).  We hypothesize that 

including the effects of parameterized scale-aware cloud dynamics into a high-resolution 

WRF simulation will reduce the excessive rainfall biases by properly representing 

convective timescale, grid-scale vertical velocity, and entrainment effects. 

 

The WRF model version 3.4.1 was used to conduct all weather forecast simulations over 

the U.S. SGP due to its importance as a land-atmosphere coupling “hotspot” (Koster et al. 

2004; Zheng et al. 2014) and the availability of various observations.  The main land-

cover types include grassland, cropland, savannas, and a mixture of crop and natural 

vegetation.  To understand the effects of using parameterized cloud dynamics for high-

resolution forecasts, we tested three WRF model configurations with two-way interacting 

nests for the SGP.  In our model simulations we used two choices [the Goddard 

microphysics scheme and the WRF double-moment 6-class scheme (WDM6)] for grid-

scale cloud processes for both grid spacings (9 and 3 km).  However, for subgrid-scale 

cloud representation, we used three approaches: (1) disabled subgrid-scale convection, 

allowing only explicit convection; (2) the latest KF scheme (Kain, 2004); and (3) our 
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UKF scheme.  Details on the cloud formulations used in this study are described in the 

Table 4.1, showing a total of 36 numerical experiments.  We have assigned a unique 

experiment name for each set of numerical simulation and these are referred to as EXP 

(explicit convection only), BASE [with the Kain (2004) KF], and UKF (with the update 

KF).  For example, for each simulation period, EXP case has two numerical simulations, 

as identified under Experiment Number in the Table 4.1, referring to two types of initial 

conditions.  To study impacts due to the choice of microphysics representation with the 

UKF scheme and its effects on regional weather simulations, we performed another set of 

six numerical experiments.  These experiments were designed to compare the 

performance of the Goddard microphysics scheme with the WDM6.  Note that no 

nudging or data assimilation was used in any of the simulations. 

 

One degree 6-hourly NCEP Global Final Analysis (FNL) data derived from the Global 

Forecast System (GFS) and 0.5 degree 6-hourly Climate Forecast System Reanalysis 

(CFSR) data were used separately to develop lateral boundary and initial conditions for 

the large-scale atmospheric fields, soil parameters (i.e., soil moisture and temperature), 

and sea surface temperature (SST).  The WRF model was configured with two-way 

interactive nested domains using horizontal grid spacing of 9 km (290 × 280 grid points; 

Domain 1 in Fig. 4.1a) and 3 km (307 × 274 grid points; Domain 2 in Fig. 4.1a).  

Locations of observational sites in Domain 2 are shown in Fig. 4.1b.  In the vertical, the 

model was configured with 28 eta levels with a model top at 50 hPa.  Prominent physics 

options in the WRF model configuration included the RRTMG radiation models (Iacono 

et al. 2008), the Goddard microphysics scheme (Tao et al. 1989), the Mellor-Yamada-
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Janjic (MYJ) planetary boundary layer (PBL) scheme (Janjic 2002), and the Noah land-

surface model (Chen and Dudhia 2001).  We focus our evaluation on assessing the 

updated model’s ability to forecast the location and intensity of surface precipitation, 

surface longwave and shortwave radiation, and surface temperature fields.  

 

 

 

 

 

Fig. 4.1 (a) Topography map of the nested model domain over the U.S. SGP, and (b) the 

IHOP_2002 domain and fixed deployment locations 

(https://www.eol.ucar.edu/field_projects/ihop2002). 
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Table 4.1 Summary of the numerical experiments 

Simulation 

period 

Experi

ment 

No. 

Experi

ment 

name 

Initial 

conditions 

Microphysics 

scheme 

9-km grid 

spacing 

3-km grid 

spacing 

0000 UTC 4 

June – 0000 

UTC 6 June 

2002 

1 
EXP 

GFS 

Goddard 

microphysics 

scheme 

KF scheme 
No cumulus 

parameterization 2 CFSR 

3 
BASE 

GFS 
KF scheme KF scheme 

4 CFSR 

5 
UKF 

GFS 
UKF scheme UKF scheme 

6 CFSR 

0000 UTC 16 

June – 0000 

UTC 18 June 

2002 

7 
EXP 

GFS 

Goddard 

microphysics 

scheme 

KF scheme 
No cumulus 

parameterization 8 CFSR 

9 
BASE 

GFS 
KF scheme KF scheme 

10 CFSR 

11 
UKF 

GFS 
UKF scheme UKF scheme 

12 CFSR 

0000 UTC 5 

July – 0000 

UTC 7 July 

2010 

13 
EXP 

GFS 

Goddard 

microphysics 

scheme 

KF scheme 
No cumulus 

parameterization 14 CFSR 

15 
BASE 

GFS 
KF scheme KF scheme 

16 CFSR 

17 
UKF 

GFS 
UKF scheme UKF scheme 

18 CFSR 

0000 UTC 28 

July – 0000 

UTC 30 July 

2010 

19 
EXP 

GFS 

Goddard 

microphysics 

scheme 

KF scheme 
No cumulus 

parameterization 20 CFSR 

21 
BASE 

GFS 
KF scheme KF scheme 

22 CFSR 

23 
UKF 

GFS 
UKF scheme UKF scheme 

24 CFSR 

25 DYNT

AU 

GFS KF scheme with only  

dynamic τ update 26 CFSR 

27 
WUP 

GFS KF scheme with only  

updraft mass flux update 28 CFSR 

29 
ENT 

GFS KF scheme with only  

entrainment update 30 CFSR 

0600 UTC 14 

June – 0600 

UTC 16 June 

2002 

31 
EXP 

GFS 

WDM6 

scheme 

KF scheme 
No cumulus 

parameterization 32 CFSR 

33 
BASE 

GFS 
KF scheme KF scheme 

34 CFSR 

35 
UKF 

GFS 
UKF scheme UKF scheme 

36 CFSR 

 

 

 



117 

 

4.4 Results and Discussions 

The primary goal of this study is to investigate the suitability of the UKF scheme for 

high-resolution simulations representing and forecasting surface precipitation.  Another 

goal is to study the impacts of two types of initial conditions obtained from different 

analyses on high-resolution model simulations.  For this purpose, WRF simulations using 

the 1.0 degree 6-hourly FNL datasets derived from GFS (denoted as GFS) to specify the 

initial states as well as boundary conditions are compared to those which used the 0.5 

degree 6-hourly CFSR data (denoted as CFSR) as initial and boundary conditions.  Four 

different regional precipitation patterns and time periods were selected for this 

experiment.  An additional microphysics scheme sensitivity study (using the Goddard and 

WDM6 microphysics schemes) was designed to explore whether various microphysics 

schemes accompanied with the UKF scheme are able to produce appropriate precipitation 

forecasts for these high-resolution simulations.     

 

4.4.1 Simulation period 0000 UTC 4 June – 0000 UTC 6 June 2002: Experiments 1-6: 

Representative examples of observed and simulated 12-hour accumulated precipitation at 

9-km grid spacing and 6-hour accumulated precipitation at 3-km grid spacing starting at 

0000 UTC 5 June 2002 are shown in Figs. 4.2 and 4.3.  It is apparent that the model 

forecasts with GFS contain precipitation at appropriate general locations and with a 

similar spatial structure when compared to the Stage IV observed precipitation (Figs. 4.2g 

and 4.3g).  However, the precipitation forecasts over the central to eastern regions of the 

domains using CFSR as initial and boundary conditions [Fig. 4.2 (d-f) and Fig. 4.3 (d-f)] 

are shifted to the north, while in Figs. 4.2 (d-f) the precipitation patterns over central 
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Mexico and Gulf of Mexico (based on observed cloud cover) seem to be reasonably 

simulated.  Such precipitation location offset indicates that the reanalysis systems may be 

impacted by interactions between the observational data and the assimilation system and 

can create unrealistic precipitation distributions shortly after the model is initialized.  It 

also indicates that some forecasts are more sensitive to initialization than to convective 

parameterization or physics.  The 6-hour accumulated precipitation from the 3-km grid 

spacing UKF GFS forecast (Fig. 4.3c) depicts a broad area of heavy precipitation over the 

western parts of the domain similar to that seen in the observations (Fig. 4.3g).  It is also 

noted that the high-resolution UKF model simulations show improvement in the 

precipitation distribution.  For instance, in Figs. 4.2 and 4.3 the heavy precipitation which 

occurred along the border of Oklahoma and Texas is shifted to the north and east in the 

BASE run (Figs. 4.2b and 4.3b), but is well simulated by the UKF run (Figs. 4.2c and 

4.3c).  In addition, around Lake Michigan the 12-hour accumulated precipitation from the 

9-km grid spacing forecast from UKF (Fig. 4.2c) has less coverage than that in the other 

two model runs using EXP and BASE (Figs. 4.2 a and b), again making UKF’s 

precipitation coverage more similar to the observations.  Note that the MPE observations 

are only limited to land areas and thus no observational data exists over the ocean.  Thus, 

large precipitation over the ocean [lower right corner in the Figs. 4.2 (a-f)] simulated by 

the model cannot be verified.  
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Fig. 4.2  Comparative example of simulated 12-hour (0000 UTC – 1200 UTC 5 June 2002) 

accumulated precipitation (mm) over a 9-km grid spacing domain with GFS (top), CFSR (middle) 

for EXP (a, d), BASE (b, e), and UKF (c, f), and (g) Stage IV observed precipitation. 
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For cloudy skies, outgoing longwave radiation (OLR) is reduced as opposed to clear skies 

and thus intercomparison of modeled OLR (W m
-2

) can point out differences in 

simulations of cloud placement and depth.  The OLR at 1800 UTC (1pm CDT) 5 June 

2002 for WRF simulations with GFS for the 9- and 3-km grid spacing domains 

 

 
Fig. 4.3  Comparative example of simulated 6-hour (0000 UTC – 0600 UTC 5 June 2002) 

accumulated precipitation (mm) over a 3-km grid spacing domain with GFS (top), CFSR (middle) 

for EXP (a, d), BASE (b, e), and UKF (c, f), and (g) Stage IV observed precipitation. 
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(Experiments 1, 3, and 5 in Table 4.1) are shown in Fig. 4.4.  The time shown is for the 

42
nd

 forecast hour of the 48-hour simulations when convection is active.  Satellite cloud 

coverage images available from the NOAA’s Aviation Digital Data Services 

[http://aviationweather.gov/adds/] are used for comparison to the EXP, BASE, and UKF 

runs.  The OLR over the 9-km grid spacing domain [Figs. 4.4(a-d)] indicates that the 

southwest to northeast orientation of a band of low OLR for the UKF is more comparable 

to the satellite observation and contains more detailed information due to the subgrid-

scale effects that are included here but not present in the BASE and EXP runs.  It also 

shows less OLR for the UKF due to subgrid clouds (i.e., Michigan, Alabama, Mississippi, 

and Texas) and more OLR under less cloudy regions (i.e., Indiana, Ohio, and Kentucky) 

compared with those for EXP and BASE.  In addition, as one of the key components of 

the surface energy budget, the representation of downward shortwave radiation (DSR) is 

also used for the comparison.  Fig. 4.5 shows DSR for 1800 UTC (1pm CDT) 5 June 

2002 along with satellite cloud coverage showing widespread cloudiness throughout 

Texas, Oklahoma, Missouri, Tennessee, Kentucky, Indiana, and Illinois.  The DSR for 

the 9-km grid spacing over Tennessee, Kentucky, Mississippi and Alabama in EXP and 

BASE indicates clear sky conditions (Figs. 4.5 b and c).  However, in UKF, the DSR 

indicates more cloud coverage (Fig. 4.5d) similar to that seen in the observations (Fig. 

4.5a). Further, the DSR for the 3-km grid spacing simulations [Figs. 4.5 (f-h)] indicate 

that the cloud coverage for UKF is larger and in better agreement with the observations 

(Fig. 4.5e).  This result is primarily because of the UKF scheme where the radiative 

effects of subgrid-scale clouds can be realistically represented even in grid spacing 

smaller than 4 km.  Thus, the UKF configuration improves the cloud cover simulation, 
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producing more realistic simulated radiation which could contribute to a better 

precipitation forecast.   

 

Improved representation of cloudiness also affects the temporal variations of surface 

radiation in UKF for high-resolution model forecasts.  For example, the measured 48-

hour variations of downward longwave and shortwave fluxes and the corresponding 

simulations at New Salem (37.31°N, 98.94°W), KS (IHOP_2002 site 7) at 3-km grid 

spacing (Figs. 4.6 a and b) indicate that UKF modulates the radiative impacts in the 

model, particularly during the second day of the forecast.  Both the EXP and BASE show 

large biases in shortwave fluxes with more than 600 W m
-2

 overestimations in the second 

day.  The UKF simulation decreases the downward shortwave flux while increasing the 

downward longwave flux with the help of improved representation of cloudiness (Figs. 

4.6 a and b), leading to an overall improvement in the temporal variability of the surface 

fluxes.  The increased cloudiness from UKF also reduces the surface temperature (Fig. 

4.6c) by about 5°C.  The UKF also shows a better simulation than the others in terms of 

variability, especially for the last 6 hours of the run.  However, the impact on the 2-m 

specific humidity (Fig. 4.6d) is not significantly different among runs because it depends 

on several land surface parameters such as soil moisture. 
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Fig. 4.4 Outgoing longwave radiation (W m
-2

) with GFS at 1800 UTC (1 pm CDT) 5 June 2002 

over a 9-km grid spacing domain (top) and 3-km grid spacing domain (bottom) for EXP (b, f), 

BASE (c, g), and UKF (d, h). 

 

 

Fig. 4.5 Surface shortwave radiation (W m
-2

) with GFS at 1800 UTC (1 pm CDT) 5 June 2002 over 

a 9-km grid spacing domain (top) and 3-km grid spacing domain (bottom) for EXP (b, f), BASE (c, 

g), and UKF (d, h). 
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Fig. 4.6 48-hour variation (0000 UTC 4 June – 0000 UTC 6 June 2002) of (a) downward longwave 

flux at ground surface (W m
-2

), (b) downward shortwave flux at ground surface (W m
-2

), (c) 

temperature at 2 m (°C), and (d) specific humidity at 2 m (g kg
-1

), at New Salem (37.31°N, 

98.94°W), KS, from IHOP_2002 site 7 measurements (solid line) and corresponding simulations 

in EXP (dotted line), BASE (dot-dash line), and UKF (dash line) with GFS at 3-km grid spacing. 
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To study the functionality of the new science updates used in the KF scheme on the entire 

model atmosphere, we present sounding profiles (Fig. 4.7) at 0000 UTC 6 July 2002 for 

specific humidity, potential temperature, and wind speed at Norman, OK (OUN, 35.18°N, 

97.44°W) and Topeka, KS (TOP, 39.07°N, 95.62°W) simulated at 3-km grid spacing and 

compared with respective observations available from the University of Wyoming 

 

 

Fig. 4.7 Sounding profile at 0000 UTC 6 July 2002 of specific humidity (g kg
-1

) (a, d), potential 

temperature (K) (b, e), and wind speed (m s
-1

) (c, f), valid at Norman, OK (OUN, 35.18°N, 

97.44°W) (top) and Topeka, KS (TOP, 39.07°N, 95.62°W) (bottom).   
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(http://weather.uwyo.edu/upperair/sounding.html).   For both observation sites, there is 

no clear indication of which simulation is outperforming the others, indicating that the 

UKF has only minor differences with the other simulations for this observational time.  

However, tropospheric wind speeds and surface specific humidity simulated by the UKF 

seem to be closer to the observations.  A detailed comparison of lower tropospheric 

profiles is presented in the following section.  

 

4.4.2 Simulation period 0000 UTC 28 July – 0000 UTC 30 July 2010: Experiments 19-

24:  

To extend this case study, a second set of 48-hour simulations was initialized at 0000 

UTC 28 July 2010 (Experiments 19-24).  Comparative examples of simulated 6-hour 

accumulated precipitation on the second day over 9- and 3-km grid spacings are shown in 

Figs. 4.8 and 4.9.  It is noted that the initial conditions still play an important role in the 

model simulation, but the precipitation forecast with CFSR has no spatial shift in this 

case, relative to observations.  The general rainfall locations of UKF with GFS and CFSR 

are similar and close to the observations.  The KF scheme in the EXP and the BASE runs 

with 9-km grid spacing again result in heavier amounts of rainfall (Figs. 4.8 a-b and d-e), 

while UKF reduces the excessive precipitation and leads to a much better simulation.  In 

the 3-km grid spacing precipitation forecast (Fig. 4.9), excessive precipitation occurs with 

the BASE run, but better forecasts are evident in EXP and UKF.  Since the high-

resolution MPE (Stage IV) hourly rainfall products have some biases (e.g., Wang et al. 

2008; Westcott et al. 2008; Westcott 2009), the visible satellite cloud observation is 
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Fig. 4.8 Comparative example of simulated 6-hour (1800 UTC 29 July – 0000 UTC 30 July 2010) 

accumulated precipitation (mm) over a 9-km grid spacing domain with GFS (top), CFSR (middle) 

for EXP (a, d), BASE (b, e), and UKF (c, f), and (g) Stage IV observed precipitation. 
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Fig. 4.9 Comparative example of simulated 6-hour (1800 UTC 29 July – 0000 UTC 30 July 2010) 

accumulated precipitation (mm) over a 3-km grid spacing domain with GFS (top), CFSR (middle) 

for EXP (a, d), BASE (b, e), and UKF (c, f), and (g) Stage IV observed precipitation and (h) visible 

satellite image valid at 2132 UTC 29 July 2010.  The satellite image is obtained from 

http://aviationweather.gov/adds/ managed by NOAA’s Aviation Digital Data Services. 
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included in the analysis to provide additional information.  For the 9- and 3-km grid 

spacing runs, the observed 6-hour accumulated precipitation does not exceed 1 mm in 

most of the northern Texas panhandle, however, cloudiness (which is taken as a key input 

parameter in our research) can be seen in Texas in the visible satellite image (Fig. 4.9h).   

 

The observed cloudiness indicates that the precipitation fields simulated in the high 

resolution grid by EXP and UKF in Figs. 4.9 (a, c, d, and f) are comparable to each other.  

Furthermore, it is demonstrated that the explicit treatment of convection (no cumulus 

parameterization) with a 3-km grid spacing at times can adequately predict convective 

systems and precipitation, consistent with the results of Done et al. (2004).  For this case 

study, the UKF results successfully demonstrate that it does not decrease the accuracy of 

precipitation forecasts, relative to the EXP (explicit treatment of convection).  However, 

Done et al. (2004) also pointed out that for some cases, explicit precipitation treatments 

suffered with an increasing propagated bias in the forecasts which may be mitigated 

using UKF treatment. 

 

Three rain rate thresholds (5, 15, and 25 mm h
-1

) were used to separate out light, medium, 

and heavy precipitation for the experiments.  Within the thresholds, precipitation, which 

was accumulated over time, was area-averaged over the 3-km grid spacing domain.  Fig. 

4.10 shows the 48-hour (0000 UTC 28 July – 0000 UTC 30 July 2010) period area-

averaged accumulated precipitation for simulations in EXP, BASE, and UKF, reflecting 

dynamic changes in modeling of convective events, and for forecasts with GFS and 

CFSR, reflecting the change in initial and boundary conditions.  As expected, results 
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show that the area-averaged precipitation rates from the high-resolution simulation with 

UKF are closer to the corresponding Stage IV observations in precipitation intensity and 

the timing of convection initiation for both GFS and CFSR.  It can be seen that 

improvements of the area-averaged precipitation are made by UKF with GFS for the very 

light rain rates (0-5 mm h
-1

), the moderate rain rates (15-25 mm h
-1

), and the heavier rain 

rates (greater than 25 mm h
-1

), while the BASE run performs poorest for all the rates.  

The difference in the light rain rates (5-15 mm h
-1

) with GFS between EXP and UKF is 

very small.  The area-averaged rainfall simulated using CFSR is found to be heavier 

compared to the GFS results.  In addition, the 48-hour averaged root mean square error 

(RMSE) for the 3-km domain is shown in Table 4.2.  In general, the 48-hour averaged 

RMSE of the area-averaged precipitation is greatly decreased by UKF for all rainfall 

rates.  It indicates that UKF outperforms the other two simulations at every threshold, 

regardless of the dataset used for initial and boundary conditions.  The differences in the 

area-averaged RMSE between GFS and CFSR for EXP are small (less than or equal to 

0.10 mm h
-1 

at every threshold) for all but greater than 25 mm h
-1

 cases, while the 

differences for BASE are obviously larger (~ 0.16 to 0.33 mm h
-1

).  Although a 

negligibly small difference is seen for UKF for the very light rain rate, the differences in 

RMSE between GFS and CFSR for the other rates are larger.  In the heavier rainfall 

threshold, differences in the 48-hour averaged RMSE are significant for all the 

experiments (i.e., 0.29 mm h
-1 

for EXP, 0.26 mm h
-1 

for BASE, and 0.25 mm h
-1 

for UKF).  

These differences reflect the influence of model initial conditions on the convection 

scheme’s contribution to the precipitation forecast, suggesting that changes in the model 
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initial conditions can have a direct effect on the simulation of precipitation through the 

CP used in NWP models.      

 

 

 
Fig. 4.10 48-hour (0000 UTC 28 July – 0000 UTC 30 July 2010) area-averaged over 3-km grid 

spacing precipitation (mm) from Stage IV observations (solid line) and corresponding 

simulations of EXP (dotted line), BASE (dot-dash line), and UKF (dashed line) with GFS (a-d) 

and CFSR (e-h). 
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Table 4.2 48-hour averaged root mean square error (RMSE) of area-averaged precipitation  

over a 3-km grid spacing domain 

RMSE 

GFS CFSR 

0-5  

mm h
-1

 

5-15  

mm h
-1

 

15-25 

mm h
-1

 

greater 

than 25 

mm h
-1

 

 

0-5 

 mm h
-1

 

 

5-15  

mm h
-1

 

 

15-25 

mm h
-1

 

greater 

than 25 

mm h
-1

 

EXP 0.74 1.09 0.60 0.55 0.70 1.00 0.50 0.26 

BASE 1.68 1.29 0.77 0.71 1.35 1.07 0.61 0.45 

UKF 0.47 1.06 0.55 0.43 0.45 0.87 0.37 0.18 

 

Fig. 4.11 shows the vertical profile of virtual potential temperature for two grid cells for 

the 9- and 3-km grid spacings at 0000 UTC 29 July 2010.  Note that all three simulations 

miss the shallow surface inversion at Topeka, KS (TOP, 39.07°N, 95.62°W) (Figs. 4.11 c 

and d) and EXP and UKF underestimate the surface temperature (Figs. 4.11 a and b).  It 

is difficult to pick out whether EXP or UKF performed better at Amarillo, TX (AMA, 

35.23°N, -101.7°W) since EXP looks slightly better in the lower levels and UKF 

performs best in the upper portion of the profile (Figs. 4. 11 a and b).  Also note that the 

virtual potential temperatures for UKF are almost constant with height in the PBL and 

close to the observations from the International H2O Project (IHOP), indicating that the 

MYJ scheme used in the WRF simulations with the UKF scheme is capable of simulating 

improved well-mixed boundary layers.   

 

4.4.3 Simulation period 0000 UTC 5 July – 0000 UTC 7 July 2010: Experiments 13-18: 

A distinct widespread northeast to southwest rainfall was observed in Oklahoma during 

the local afternoon hours of 6 July 2010 (Figs. 4.12 and 4.13).  Estimated 6-hour (1800 

UTC 5 July – 0000 UTC 7 July 2010) accumulated precipitation for the EXP, BASE, and 

UKF simulations and the Stage IV observed precipitation are compared and shown in 
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Figs. 4.12 and 4.13.  In Fig. 4.12, the UKF scheme successfully reduced excessive 

rainfall produced by the BASE scheme.  More interestingly, over the parent domain of 

EXP, scale separation issues with two-way nesting can be seen in the precipitation field 

as the convection scheme differs across the nest boundary (Figs. 4.12 a and d).  This 

boundary issue is alleviated by using the same convection scheme (as in BASE or UKF) 

in the inner domain [Figs. 4.12 (b-c) and 4.12 (e-f)]. 

 

 

Fig. 4.11 Vertical profile of virtual potential temperature (K) at 0000 UTC 29 July 2010 at 9-km 

grid spacing domain (a,c) and 3-km grid spacing domain (b,d) valid at Amarillo, TX (AMA, 

35.23°N, -101.7°W) (top) and Topeka, KS (TOP, 39.07°N, 95.62°W) (bottom).   
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In the 3-km grid spacing simulations (Fig. 4.13), EXP forecasts more precipitation in 

northeast Kansas, while producing less precipitation than observed in Oklahoma.  The 

improvement of using better initial conditions on high-resolution rainfall predictions can 

be seen in EXP and UKF, and at 3-km grid spacing, the precipitation simulated by UKF 

 

 

Fig. 4.12 Comparative example of simulated 6-hour (1800 UTC 6 July – 0000 UTC 7 July 2010) 

accumulated precipitation (mm) over a 9-km grid spacing domain with GFS (top), CFSR (middle) 

for EXP (a, d), BASE (b, e), and UKF (c, f), and (g) Stage IV observed precipitation. 
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with GFS is similar to the Stage IV observation.  However, the BASE run simulates more 

rainfall than observed and there are no obvious improvements when changing initial 

conditions.  Since the UKF is able to improve the high-resolution precipitation forecast 

by introducing subgrid-scale effects, an instantaneous east-west oriented transect of the 

 

 

Fig. 4.13 Comparative example of simulated 6-hour (1800 UTC 6 July – 0000 UTC 7 July 2010) 

accumulated precipitation (mm) over a 3-km grid spacing domain with GFS (top), CFSR (middle) 

for EXP (a, d), BASE (b, e), and UKF (c, f), and (g) Stage IV observed precipitation.  
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subgrid-scale rain rate simulated at 9- and 3-km grid spacings is taken across Oklahoma 

and northern Texas at 2000 UTC 5 July 2010 (Fig. 4.14).  It is found that the simulated 

convective rain rate for the finer resolution model (i.e., 3-km grid spacing) is generally 

less than that for the coarser resolution model (i.e., 9-km grid spacing) and confirms that 

subgrid-scale precipitation decreases when the model resolution increases. 

 

4.4.4 Sensitivity to microphysics schemes: Experiments 7-12 and 31-36: 

Sensitivity analysis is useful for diagnosing the impacts of interactions of convective 

treatment and microphysics on regional forecasts of rainfall.  A 48-hour period starting at 

0600 UTC 14 June 2002 during IHOP_2002 is examined due to significant convective 

activity and a large regional event that occurred over the most of the Oklahoma and 

larger regions of Kansas and north Texas (Wilson and Roberts 2006).  Sensitivity 

experiments (Experiments 7-12 and 31-36 in Table 4.1) were conducted by varying 

model convective and microphysics schemes.  Six-hour accumulated precipitation 

 

Fig. 4.14 The subgrid-scale rain rate (mm hr
-1

) simulated at 9- and 3-km grid spacings from the 

UKF scheme with GFS at 2000 UTC 5 July. 
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forecasts from all the experiments are compared to Stage IV precipitation analyses.  Fig. 

4.15 provides an example of 9-km grid spacing forecasts of 6-hour accumulated 

precipitation with the two microphysical parameterizations and three convective 

treatments.  Since the outer domain is large compared to the inner domain, it mitigates 

 

 
Fig. 4.15 Comparative example of simulated 6-hour (0000 UTC – 0600 UTC 16 June 2002) 

accumulated precipitation (mm) over a 9-km grid spacing domain with the CFSR and Goddard 

microphysics scheme (top), WRF Double-Moment 6-class scheme (middle) for the EXP (a, d), 

BASE (b, e), and UKF (c, f), and (g) Stage IV observed precipitation. 
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the lateral boundary condition impacts on the inner domain.  Fig. 4.15 shows that the 

distributions of simulated precipitation vary significantly with different combinations of 

convective and microphysics schemes.  Fig. 4.16 shows an example of the sensitivity of 

precipitation to microphysical parameterization at 3-km grid spacing.  The WDM6 

 

 
 

Fig. 4.16 Comparative example of simulated 6-hour (0000 UTC – 0600 UTC 16 June 2002) 

accumulated precipitation (mm) over a 3-km grid spacing domain with the CFSR and Goddard 

microphysics scheme (top), WRF Double-Moment 6-class scheme (middle) for EXP (a, d), BASE 

(b, e), and UKF (c, f), and (g) Stage IV observed precipitation. 
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scheme produces a large swath of precipitation with high values in the center.  The 

Goddard scheme with UKF is not able to provide a large area of precipitation, although 

the orientation of the precipitation distribution is similar to observed rainfall.  These 

results demonstrate that the impact of using the UKF scheme will vary from case to case 

and improvements may not be consistent with differing microphysics schemes.  

Therefore, for the cases where good initial conditions are not present, the microphysics 

scheme and the UKF scheme have limitations on improving the precipitation forecast.     

 

4.4.5 Sensitivity to each science update: Experiments 25-30: 

We recall that the three updates which include properly representing timescale 

(DYNTAU), grid-scale vertical velocity (WUP), and entrainment effect (ENT), have 

been employed to modify the original KF scheme, and as a result, the UKF scheme has 

substantially reduced the excessive precipitation biases for NWP high-resolution 

forecasts.  To find out which update is dominating the precipitation differences, six 

additional simulations (Experiments 25-30 in Table 4.1) using each update separately 

initialized by GFS and CFSR were conducted for simulation period 0000 UTC 28 July – 

0000 UTC 30 July 2010.  Fig. 4.17 shows 48-hour (0000 UTC 28 July – 0000 UTC 30 

July 2010) 3-km grid spacing area-averaged accumulated precipitation (mm) from Stage 

IV observations (black solid) and corresponding simulations in DYNTAU, WUP, ENT, 

UKF, and BASE using GFS (Fig. 4.17a) reanalysis data.  
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Since BASE produced more precipitation over wide areas as compared to the observation 

at 3-km grid spacing (Fig. 4.9), the simple area-averaged precipitation for BASE 

compensates its low precipitation intensity with an overprediction of areal rainfall 

coverage, resulting in better agreement of the area-averaged accumulated total 

precipitation with the observation.  WUP slightly reduces the area-averaged total 

precipitation compared to BASE, indicating that the update with subgrid-scale updraft 

 
 

 
Fig. 4.17 48-hour (0000 UTC 28 July – 0000 UTC 30 July 2010) area-averaged over 3-km grid 

spacing (a) accumulated total precipitation (mm) with GFS and (b) accumulated subgrid-scale 

precipitation (mm) with GFS: Stage IV observations (black solid) and corresponding simulations 

of DYNTAU (blue dot-dash), WUP (orange dashed), ENT (green dotted), UKF (red long-dashed), 

and BASE (purple double dash). 
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mass flux impacts on grid-scale vertical velocity helps to slightly increase saturation 

levels of the environment, thereby leading to a minor increase in subgrid-scale 

precipitation.   DYNTAU is found to contribute more to decreasing the simulated rainfall 

amount.  One modeling fact of many CPSs is that as model resolution increases, impacts 

from a standard subgrid-scale parameterization become more significant. However, with 

the adjustment timescale (τ) update, the value of τ increases and results in longer time to 

remove CAPE for atmospheric stabilization, resulting in the simulated precipitation by 

DYNTAU being reduced, a desired feature.  In the update of the entrainment effects, the 

introduced scale-dependent Tokioka parameter, as well as the LCL-based methodology, 

in the high-resolution simulation helps to achieve the proper representation of convective 

clouds through increased entrainment.  As a result, the hyperactivity of the subgrid-scale 

convection scheme is alleviated, leading to a decrease of subgrid-scale precipitation.  

Consistently, ENT reduces the precipitation from BASE, and it shows the minimum area-

averaged precipitation among all of the simulations with a separated update.  To 

summarize, the three different updates contribute differently to the precipitation changes 

and show non-linear impacts.  We also found similar results using the CFSR reanalysis 

data (not shown).  To further assess the relative contribution of each of the updates on 

precipitation components, i.e., subgrid-scale versus grid-scale, Fig. 4.17b shows 48-hour 

accumulated subgrid-scale precipitation obtained from using each of the updates.  In the 

literature, a few studies (e.g., Wang et al. 2009; Snively and Gallus 2014; Van Weverberg 

et al. 2013) use the term “cloud-permitting” scale (quasi-convective resolution) for grid 

spacings which are smaller than 4 km.  These studies demonstrate that grid-scale 

microphysics schemes are adequate to produce reasonable precipitation in model 
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forecasts/simulations at cloud-permitting scales, implying that the subgrid-scale 

convective component is either weak or absent.  As shown by comparisons of Figs. 4.17 a 

and b, the total precipitation in the UKF simulation is dominated by grid-scale 

precipitation, with the amount of subgrid rainfall below 1 mm for the entire forecast.  To 

further examine relative intensity of precipitation with each of the updates, in Fig. 4.18 

we present the accumulated value of 48-hour (0000 UTC 28 July – 0000 UTC 30 July 

2010) 3-km grid spacing area-averaged precipitation (mm) from Stage IV and 

corresponding simulations in DYNTAU, WUP, ENT, UKF, and BASE with GFS for 

certain thresholds of  hourly rates.  For the rate less than 5 mm h
-1

, UKF slightly under 

predicts while ENT is on average closest to the observations.  Simulations with the other 

updates overpredict the observed rate.  Results indicate that too much drizzle has been 

simulated by BASE and modifying the grid-scale vertical velocity alone cannot 

significantly improve the precipitation forecast.  DYNTAU and ENT contribute to reduce 

the drizzle, and UKF, which includes all three updates, shows good improvement for the 

forecast of drizzle.  But, for the rest of the hourly rates, UKF outperforms the other 

simulations.  However, UKF still tends to underpredict precipitation values at rates 

greater than 5 mm h
-1

.  Fig. 4.19 shows the accumulated 48-hour (0000 UTC 28 July – 

0000 UTC 30 July 2010) area-averaged subgrid-scale precipitation (mm) for 3-km grid 

spacing from simulations in DYNTAU, WUP, ENT, UKF, and BASE with GFS when 

the hourly rates are in the same thresholds as shown in Fig. 4.18.  It can be seen that UKF 

primarily contributes to the precipitation forecast when rate is less than 5 mm h
-1

, but 

negligibly improves the simulation when the rate is greater than 5 mm h
-1

 and less than 

15 mm h
-1

, and has zero contribution with higher hourly rain rates.  
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Fig. 4.18 48-hour (0000 UTC 28 July – 0000 UTC 30 July 2010) area-averaged over 3-km grid 

spacing total precipitation (mm) from Stage IV observations (black solid) and corresponding 

simulations of DYNTAU (blue dot-dash), WUP (orange dashed), ENT (green dotted), UKF (red 

long-dashed), and BASE (purple double dash) with GFS. 

 

 
Fig. 4.19 48-hour (0000 UTC 28 – 0000 UTC 30 July 2010) area-averaged over 3-km grid spacing 

subgrid-scale precipitation (mm) from simulations of DYNTAU (blue dot-dash), WUP (orange 

dashed), ENT (green dotted), UKF (red long-dashed), and BASE (purple double dash) with GFS. 
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4.5 Summary and conclusions 

The impacts of introducing parameterized cloud dynamics on high-resolution WRF 

model forecasts were examined at 9- and 3-km grid spacing, simulating regional 

precipitation over U.S. SGP with several cases of 48-hour forecasts.  An updated KF 

scheme, including subgrid-scale cloud-radiation interactions (Alapaty et al. 2012; 

Herwehe et al. 2014), a dynamic adjustment timescale, a simple linear method using 

cloud updraft mass fluxes impacting grid-scale vertical velocity, and a LCL-based 

methodology for parameterizing entrainment, was developed for high-resolution 

simulations and implemented in the WRF model (version 3.4.1).  The aforementioned 

parameters were adapted to be scale dependent, as shown in Equations 2, 5, and 9.  Four 

cases of regional precipitation were selected and thirty-six 48-hour WRF experiments 

that were made with three different treatments of convection (no cumulus convection 

representation, original KF, and UKF) were initialized separately with two different 

initial conditions: the 1.0 degree 6-hourly GFS-FNL dataset and 0.5 degree 6-hourly 

CFSR data.  To determine the precipitation forecast sensitivity to microphysics and 

emphasize the importance of initial conditions, six model runs [which included three 

different treatments of convection and two different microphysics schemes (Goddard 

microphysics scheme and WDM6)], were initialized with CFSR.  Overall, the UKF 

scheme is found to generally improve the high-resolution simulation of longwave and 

shortwave radiation associated with cloud patterns, and produce precipitation patterns 

and intensity that are closer to the observations.   
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Experiments using GFS and CFSR for initialization were conducted to assess how the 

initial condition dataset impacts forecasts.  These studies show that the general 

distribution and intensity of precipitation forecasts are significantly influenced by initial 

conditions obtained from different analysis fields.  The area-averaged precipitation 

simulated using CFSR is found to be heavier compared to the GFS results.  Simulations 

using the UKF scheme outperform the other simulations at light, medium, and heavy 

precipitation rates, regardless of the dataset used for initial conditions.  The larger 

differences in the area-averaged RMSE between the two initial conditions are found with 

the original KF scheme, but for heavy precipitation rates (greater than 25 mm h
-1

), 

significant differences due to changes in initial conditions are noted in all of the 

convective treatments (Table 4.2).  Sensitivity analysis demonstrates that the precipitation 

forecasts are more sensitive to the type of initialization than to grid-scale microphysics or 

convective treatments in our case studies.  Therefore, a good initial condition dataset is 

necessary for a good NWP model forecast, consistent with that documented in the 

literature (Rabier et al. 1996; Stensrud et al. 2000).  

 

In this study we find that grid resolution-dependent parameterized convective physics in 

the KF scheme results in improvement of high-resolution forecasts.  Thus, the UKF 

scheme in the WRF model at high-resolution scales produces more accurate surface 

radiation values and results in the improvement of simulated cloudiness.  The UKF 

scheme not only reduces excessive rainfall amounts, but also improves both the location 

and intensity of precipitation in high-resolution (3 and 9 km) forecasts.  Regional climate 

simulations that are being performed by our group do indicate that each of the science 
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updates presented in this paper results in a large reduction in monthly precipitation biases, 

which will be reported in a follow up paper.   
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CHAPTER 5. IMPACT OF LAND-ATMOSPHERE-CONVECTION INTERACTIONS 

ON REGIONAL PRECIPITATION INTENSITY AND VARIATION IN WRF
4
 

5.1 Introduction 

Accurate and site-specific forecasts of short-term precipitation are of key importance for 

predicting extreme weather events such as excessive rainfall and flash flood. A variety of 

mesoscale processes are involved in affecting the regional convection and precipitation, 

ranging from land processes, boundary layer processes, and convective cloud processes.   

 

The land surface heterogeneity can influence the exchanges of radiative, moisture, heat, 

and momentum fluxes with the atmosphere, and can lead to critical impacts on the 

development of convective and rainfall events (Hadfield et al. 1992; Avissar et al. 1998; 

Niyogi et al. 2006; LeMone et al. 2008).  Many land-surface parametrization schemes 

have been developed, in particular, to represent the water and energy budgets at the land 

surface, water storage in the ground, and evapotranspiration to the atmosphere (Niyogi et 

al. 1999; Pitman 2003; Dirmeyer et al. 2006).  Thus, an essential role of the land-surface 

parameterization is to provide accurate inputs to boundary layer and convective processes 

to properly represent hydrology cycling. 

                                                 
4
 Zheng, Y., K. Alapaty, D. Niyogi, 2015: Impact of land-atmosphere-convection interactions on regional 

precipitation intensity and variation in WRF (In submission). 
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However, several parameters employed in the land-surface parametrization schemes are 

very uncertain, leading to too much evaporation and precipitation (Pitman 1994;

Henderson-Sellers et al. 1995, 1996; Niyogi et al. 1999; Pitman et al. 1999; Betts 2007; 

Abramowitz 2008; Fischer et al. 2010; Niu et al. 2011; Han et al. 2014).  For example, 

the surface latent heat fluxes do not solely depend on the land surface processes but also 

on the land-atmosphere coupling, affecting regional convection and precipitation (Pielke 

2001; Findell and Eltahir 2003; Koster et al. 2004, 2006; Santanello et al. 2011; Trier et 

al. 2011; Taylor et al. 2012).    

 

Areas with strong coupling between soil moisture and summer rainfall are generally 

identified as “hot spots” (Koster et al. 2004), where wetter-than-usual soil moisture may 

lead to higher-than-usual evapotranspiration, and result in stronger potential impact on 

convection and increased precipitation.  The strength of the coupling between land and 

atmosphere varies from place to place and from time to time.  For example, Zheng et al. 

(2015a) have pointed out that the adoption of a dynamic coupling coefficient helped 

improving simulation of surface fluxes and the resulting atmospheric state, and in turn 

improved the intensity of the simulated precipitation.  Therefore, the improvements in 

land-atmosphere coupling will help reduce uncertainties in land-atmosphere feedbacks. 

 

The role of a convective parameterization in a numerical model is often thought as 

primary contributor to the simulated precipitation locations and amounts.  However, these 

convection schemes that are capable of generating different patterns of precipitation and 

driving mesoscale circulations need to be well understood and improved.  Particularly, at 
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the intermediate-scales (i.e., for horizontal grid spacings between ~1 and ~10 km) many 

CPS do not work properly. When an explicit convection scheme has been employed in 

most of these high resolution studies, many times precipitation forecasts were found to be 

unsatisfactory.  Based on the considerations of unresolved clouds and their effects in 

simulating moist convection and precipitation for warmer periods, some of the 

assumptions used in the convective parameterizations have been relaxed to make a CPS 

suitable for high resolution grids (Alapaty et al. 2012; Herwehe et al. 2014; Bullock et al. 

2015; Zheng et al. 2015b).  Thus, a CPS can be seamlessly adaptable to the intermediate-

scales and work properly for high-resolution model forecasts.       

 

Therefore, based on our previous studies (Zheng et al. 2015a and b), we study the impacts 

of different representations of land surface processes, land-atmosphere coupling strength, 

and a convective parameterization scheme on short-term regional precipitation forecasts.  

We also explore to what extent the improvements in land-atmosphere-convection 

interactions in the Weather Research and Forecasting (WRF) model benefit the short-

term regional precipitation intensity and variation.  This paper is organized as follows: 

Section 2 presents methods including the three aspects of improvements and the design of 

numerical simulations; Section 3 evaluates the model results; and discussions are in 

Section 4. 

 

5.2 Methodology 

Eight different representations of the three processes (land surface processes 

representation, coupling strength, and subgrid-scale convection processes) are used in this 
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study.  The Noah LSM has prognostic land states, including surface skin temperature, soil 

moisture and soil temperature at four soil layers (0.1, 0.3, 0.6, and 1.0 m thickness), 

canopy water content, snowpack water equivalent content and depth.  The soil moisture 

prognostic calculation in the Noah LSM is based on Richard’s equation:  

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
(𝐷

𝜕𝜃

𝜕𝑧
) +

𝜕𝐾

𝜕𝑧
+ 𝐹𝜃   (5.1) 

where θ is the soil water content, z is the elevation, t is time, 𝐹𝜃 represents the sources 

(i.e., rainfall) and sinks (i.e., evaporation) of soil moisture, K is the hydraulic conductivity, 

and D is the soil water diffusivity.  Both D and K are functions of soil texture.   

 

The soil temperature prognostic equation is: 

𝐶(𝜃)
𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑧
(𝐾𝑡(𝜃)

𝜕𝑇

𝜕𝑧
)   (5.2) 

where C and Kt are functions of soil texture and soil moisture.  The surface energy 

balance and water balance in the Noah LSM are: 

𝑅𝑛𝑒𝑡 = 𝐻 + 𝐿𝐸 + 𝐺 + 𝑆𝑃𝐺𝐻   (5.3) 

∆𝑆 = 𝑃 − 𝑅 − 𝐸    (5.4) 

where 𝑅𝑛𝑒𝑡 is the net radiation, H is the sensible heat flux, LE is the latent heat flux, G is 

the ground heat flux, and SPGH the snow phase-change heat flux.  Additionally, ∆𝑆 is the 

change in soil moisture content, P is the precipitation, R is the runoff, and E is the 

evaporation.   

 

Within the Noah LSM, the surface coupling strength controls the ratio of the roughness 

lengths for momentum and heat which more effectively impact surface fluxes.   It has 
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been demonstrated that the coupling strength coefficient which is dynamically linked as a 

function of canopy height can help improve regional precipitation intensities, compared 

to using the default constant coefficient (Chen and Zhang 2009; Zheng et al. 2015a).  The 

dynamical coupling strength is represented as: 

   𝐶𝑧𝑖𝑙 = 10(−0.4ℎ)                   (5.5) 

where 𝐶𝑧𝑖𝑙 is the surface coupling strength, and h is the canopy height (meter).   

 

For the convective parameterization, one of the crucial improvements in the UKF CPS is 

its scale dependency with the scaling parameter 𝛽, which makes the scheme a smooth 

transition from parameterized cloud physics to resolved grid-scale cloud physics: 

𝛽 = [1 + ln (
25

𝐷𝑥
)]    (5.6) 

where 𝐷𝑥  (km) is the model’s horizontal grid spacing.  Additionally, the UKF CPS 

includes the subgrid-scale cloud-radiation interactions, a dynamic adjustment timescale, 

impacts of cloud updraft mass fluxes on grid-scale vertical velocity, and lifting 

condensation level (LCL) l-based entrainment methodology.  The primary formulations 

in the UKF CPS are: 

𝜏 =
𝐻

 (𝛿𝑚𝑏𝐴𝑒)1 3⁄  𝛽    (5.7) 

𝑊𝑛 = 𝑊𝑔 + 𝑊𝑢𝑝 = 𝑊𝑔 +
𝑀 𝐷𝑥2⁄

𝜌
  (5.8) 

∆𝑀𝑒 = 𝑀𝑏
𝛼𝛽

𝑍𝐿𝐶𝐿
∆𝑃    (5.9) 

where τ is the adjustment timescale, H is cloud depth (m), 𝛿 is a constant and set to unity, 

mb is the cloud-base updraft mass flux per unit density (m s
-1

), and Ae is diluted/entrained 
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convective available potential energy (CAPE; m
2
 s

-2
); 𝑊𝑛 is the reformulated grid-scale 

vertical velocity (m s
-1

), 𝑊𝑔 is the grid-scale vertical velocity (m s
-1

), 𝑊𝑢𝑝 is the effective 

vertical velocity of subgrid-scale updraft (m s
-1

), ρ is the convective plume density (kg m
-

3
), and 𝑀 is the updraft mass rate (kg s

-1
); ∆𝑀𝑒  is the mixing rate (kg s

-1
), 𝑀𝑏  is the 

updraft mass rate at cloud base (kg s
-1

), α=0.03 is a constant (m Pa
-1

) which controls the 

overall magnitude of the entrainment rate for convective plumes, ZLCL is the height of the 

LCL above the ground (m), and ∆𝑃 is the pressure depth of a model layer (Pa). 

 

5.3 Numerical simulations design 

The WRF model (WRF 3.4.1; Skamarock et al. 2008) is configured with 2 two-way nests 

of 9 km (290 × 280 grid points) and 3 km (307 × 274 grid points) horizontal grid spacing, 

and 28 eta vertical levels with a model top at 50 hPa over the U.S. SGP domain (Fig. 5.1).  

The research domain was selected due to its importance as one of the land-atmosphere 

coupling hotspot regions and the availability of various observations.  One degree 6-

hourly NCEP Global Final Analysis (FNL) data derived from the Global Forecast System 

(GFS) was used as initial conditions for the atmospheric fields, soil states, and sea surface 

temperature.  The major physics options in the WRF model included the RRTMG 

radiation models (Iacono et al. 2008), the Goddard microphysics scheme (Tao et al. 1989), 

and the Mellor-Yamada-Janjic (MYJ) planetary boundary layer (PBL) scheme (Janjic 

2002).   
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A convection case [from 0000 UTC on 19 May (i.e., 1800 CST on 7 July) to 0000 UTC 

on 21 May (i.e., 1800 CST on 8 July), 2011] of squall line with extended trailing 

stratiform observed during a major joint field campaign [the Midlatitude Continental 

Convective Clouds Experiment, also known as MC3E (Jensen et al. 2010) was selected to 

examine the enhanced coupled WRF model’s ability to simulate the variation and 

intensity of rainfall.  A total of eight WRF configurations were tested with two LSM 

models (slab model and Noah LSM), with/without dynamic land-atmosphere coupling 

strength, and two treatments for the CPS [the latest KF scheme (Kain 2004), and the UKF 

scheme (Zheng et al. 2015b).  The summary of the experiments is shown in Table 5.1.  

Observations from the MC3E at the Atmospheric Radiation Measurement (ARM) SGP 

facilities, and the high spatial resolution Multisensor Precipitation Estimates (MPE, also 

 

Fig. 5.1 (a) WRF nested domain with topography height (meters), and (b) map of the MC3E study 

domain. 
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known as Stage IV Next-Generation Radar) hourly rainfall products (Lin and Mitchell 

2005), were used for model comparisons.    

 

Table 5.1 Summary of the numerical experiments 

Experiment 
Land surface 

model 

Land-

atmosphere 

coupling strength 

Convective 

parameterization 

scheme 

S_KF Slab 0.1 KF 

S_V_KF Slab Varying KF 

S_UKF Slab 0.1 UKF 

S_V_UKF Slab Varying UKF 

N_KF Noah 0.1 KF 

N_V_KF Noah Varying KF 

N_UKF Noah 0.1 UKF 

N_V_UKF Noah Varying UKF 

* S: slab model, N: Noah LSM, V: dynamical Czil, KF: the latest KF scheme, 

UKF, the updated KF scheme. 

 

 

5.4 Results 

5.4.1 Precipitation 

The operational WRF model 6-hour total precipitation forecasts valid from 1200 to 1800 

UTC on 20 May 2011 are shown in Figs. 5.2 (for the outer domain with 9 km grid 

spacing) and 5.3 (for the inner domain with 3 km grid spacing).  For the 9 km grid 

spacing forecasting, an observed area of heavy rainfall is clearly evident across the 

central domain and in a northeast orientation (Fig. 5.2i).  Forecasts (retrospective) with 
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the slab model produce a smaller area of heavy rain, and the precipitation is located 

further to the southeast [as seen in the red circle in Figs. 5.2 (a-d)].  Forecasts with the 

Noah LSM and KF show less intense precipitation in the red circle area (Figs. 5.2 e and f) 

but the spatial patterns, though displaced, are closer to observations.  It can be seen that 

the dynamical coupling strength only slightly improves the precipitation intensity (Fig. 

5.2f).  The heavier rainfall simulated in the Noah/WRF UKF runs (i.e., N_UKF and 

N_V_UKF runs) is further to the north across Oklahoma, which is closer to the 

observation (Figs. 5.2 g and h) but with an underprediction of light precipitation in the 

northern regions in the highlighted area.  For the 3 km grid spacing (for the inner domain), 

the slab/WRF runs cannot well simulate the precipitation (Figs. 5.3 a and b), even with 

the help of the dynamical coupling strength and the UKF scheme (Figs. 5.3 c and d).  In 

these forecasts, heavy precipitation is predicted in wrong locations.  Thus, the LSM has a 

more dominate role in rainfall forecasting and the simple LSM may produce incorrect 

precipitation patterns and intensities due to obvious limitations in the slab land surface 

parameterization.  The Noah/WRF KF runs (i.e., N_KF and N_V_KF runs) show a 

widespread area of precipitation distribution with much of the rainfall predicted to 

receive between 1 and 25 mm, and these runs miss the observed heavier rainfall across 

the eastern part of Oklahoma (Figs. 5.3 e and f).  The UKF scheme significantly improves 

the precipitation forecast for the 3 km grid spacing Noah/WRF simulation (Fig. 5.3g), 

and the dynamical coupling strength helps yield a positive impact on the high-resolution 

simulated precipitation intensity (Fig. 5.3h).  Thus, the high-resolution WRF model 

coupled to the Noah LSM, the dynamical coupling strength, and the UKF CPS, can lead 

to more accurate forecasting for precipitation amounts and locations. 
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Fig. 5.2 6-hour accumulated precipitation (1200 UTC – 1800 UTC on 20 May 2011) over the outer 

domain with 9 km grid spacing compared with the Stage IV observation. 



157 

 

 

 

Fig. 5.3 6-hour accumulated precipitation (1200 UTC – 1800 UTC on 20 May 2011) over the inner 

domain with 3 km grid spacing compared with the Stage IV observation. 
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Three rain rate thresholds (5, 15, and 25 mm h
-1

) were used to separate out the light, 

medium, and heavy precipitation for the model runs, and the 48-hour (0000 UTC 19 – 

0000 UTC 21 May 2011) time series of area-averaged precipitation over the 3 km grid 

spacing domain from Stage IV observations and corresponding simulations are shown in 

Fig. 5.4.  Consistent with the results from Zheng et al. (2015b), the UKF CPS has 

significantly improved precipitation intensity forecasts (i.e., increasing about 33% 

accuracy for the light rain, 44% accuracy for the medium rain, and 50% accuracy for the 

heavy rain), and the timing of convection initiation for all the rain rate thresholds.  

Additionally, the area-averaged precipitation for the N_V_UKF run (the red lines in Fig. 

5.4) and the S_V_UKF run (the blue lines) are closer to the observations compared to the 

results from the N_UKF run (the cyan lines) and the S_UKF run (the orange lines).  This 

indicates that the WRF model coupled with the dynamical coupling strength and UKF 

CPS can well forecast the convective events.  It is also noted that the impact of the 

dynamical coupling strength on area-averaged precipitation becomes more significant in 

the second simulation day, particularly for the medium rain rate (Fig. 5.4 b and c).  Thus, 

a spin up time of at least 24 hours is preferred for high-resolution model simulations.  

The experiment with Noah LSM again outperforms that with the simple slab model at 

every threshold, emphasizing the crucial role of land processes in land-atmosphere-

convection interactions.   
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5.4.2 Soundings 

A squall line was observed at midnight on 20 May (0600 UTC) confirming that the 

convective storm occurred in a rather stable environment.  Soundings over two different 

sites were examined [Dodge City, KS (DDC; 37.46° N, -99.58° W) and Amarillo, TX 

(AMA; 35.13° N, -101.43° W)] at 1200 UTC 20 May (6 hours after convection initiation), 

to study the coupled mesoscale models’ performance (Fig. 5.5).  The soundings 

observations are available from the University of Wyoming 

(http://weather.uwyo.edu/upperair/sounding.html).  In the lower boundary layer the 

soundings for N_V_UKF are much warmer, while the potential temperatures for 

S_V_UKF are closer to the observations.  All runs show moister and stronger wind 

 

Fig. 5.4 48-hour (0000 UTC 19 – 0000 UTC 21 May 2011) time series of area-averaged 

precipitation (mm) from Stage IV observations (solid black line) and simulations with different 

rain rate thresholds. 
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soundings above the 925 hPa pressure level in the PBL.  The specific humidity profile for 

N_V_UKF is closer to observations over the DDC site, but S_V_UKF shows a better 

simulated specific humidity profile over the AMA site.  There is no clear indication that 

the dynamical coupling strength could lead to better soundings and convection simulation 

when coupled with the UKF CPS, however, the comparison between the 3 km grid 

spacing runs with UKF and KF CPS clearly indicates that the UKF scheme outperforms 

the KF scheme in simulating the vertical moisture and wind speed profiles.   

 

 

Fig. 5.5 Vertical profiles of model-simulated potential temperature (a, d), specific humidity (b, e), 

and wind speed (c, f) at the sites of Dodge City, KS (DDC; 37.46°N, -99.58°W) and Amarillo, TX 

(AMA; 35.13°N, -101.43°W) at 1200 UTC on 20 May 2011 compared with observations. 
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5.4.3 Vertical velocity 

Large-scale vertical velocity is a key component of dynamic fields that is critical to 

convection simulations.  In the WRF model, the large-scale vertical velocity is 

determined internally during the simulation.  Fig. 5.6 shows a time-series of the large-

scale vertical velocity from all experiments at Dodge City, KS (DDC; 37.46°N, -99.58°W) 

over the period from 0000 UTC 20 May to 0000 UTC 21 May 2011.  The impacts of 

using different combinations of LSM, coupling strength, and CPS, have also been 

reflected in the vertical velocity field, resulting in different patterns of updrafts and 

downdrafts.  A strong core structure of downdraft between 600 hPa and 800 hPa was 

observed in the morning for the S_V_KF run (Fig. 5.6b), as well as an updraft core below 

700 hPa in the afternoon for the N_V_UKF run (Fig. 5.6h).  Stronger updrafts and 

downdrafts in the troposphere have been noted associated with the UKF scheme.  Thus, 

the variations of vertical velocity distribution with height and time are different for 

different experiments.  These differences in the simulated vertical velocity could lead to 

significant differences in the simulation of convective clouds.  These results also 

demonstrate that the UKF scheme could provide more detailed fluctuations of the vertical 

velocity. 
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Fig. 5.6 Simulated large-scale vertical velocity (m s
-1

) at Dodge City, KS  

(DDC; 37.46°N, -99.58°W). 
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5.4.4 Horizontal wind speeds and mixing ratio 

Given the assumption that differences in land-surface parameterizations and land-

atmosphere coupling strength are the primary roles in leading to the differences in wind 

and moisture fields, Fig. 5.7 shows the instantaneous high horizontal wind vectors and 

mixing ratio at the middle of the PBL height (~ 1 km) at 1200 UTC 20 May 2011 from 

different experiments.  The differences in the wind field and moisture field lead to 

changes in the distribution and intensity of moisture convergence.  The coupling strength 

and the convection scheme have a greater impact on the wind field density and wind 

direction.  The change in wind direction reflects the changes in dynamics during the 

convective simulation.  The water vapor mixing ratio is much higher in the southeastern 

part of the domain, and these patterns are also notable in the 6-hour precipitation over the 

inner domain in Fig. 5.3.  Thus, the moisture field has a close positive relationship to the 

precipitation, indicating that the correct simulation of the water vapor mixing ratio in the 

PBL is crucial in precipitation forecasting.  The different representations of soil moisture 

in the two LSMs (i.e., the slab model has constant soil moisture while the Noah model 

has time-varying soil moisture) can lead to the different patterns of water vapor mixing 

ratio, and it is concluded that the primary reason for the unrealistic precipitation 

simulated by slab/WRF (Figs. 5.2 and 5.3) is due to the constant value of the soil 

moisture availability in the bucket slab model.  The dynamical coupling strength 

coefficient has a more significant impact on the moisture field and wind vector field 

when the UKF is employed for the WRF simulations.  Therefore, the WRF model 

coupled with the more detailed LSM, the dynamical coupling strength coefficient, and the 



164 

 

UKF together, is able to reproduce a more reasonable precipitation forecast, particularly 

with the help of the improved simulation of water vapor mixing ratio in the PBL. 

 

 

 

 

Fig. 5.7 Simulated horizontal wind fields (wind vectors) and hydrometeor mixing ratio (white-

blue shaded) at 1 km height at 12:00 UTC on 20 May 2011 over the inner domain with 3 km grid 

spacing. 
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5.4.5 Surface fluxes 

The impact of the land-atmosphere-convection interactions on the important near-surface 

variables was also assessed (Fig. 5.8).  The simulations using 3 km grid spacing were 

compared to minute observations of 2 m temperature and 2 m relative humidity data, and 

half-hourly observations of surface sensible heat flux and latent heat flux data.  All these 

data are from the ARM measurements located over the MC3E study domain.  The near-

surface variables are more sensitive to the parameterizations during the daytime.  For 2 m 

temperature, all WRF model runs show a warm bias in the morning after 1500 UTC 20 

May.  The 2 m temperature for the S_KF run shows a curve very similar to observations 

during the nighttime (before 0900 UTC 20 May), while the results from other simulations 

are also in a reasonable range and close to observations (Fig. 5.8a).  For 2 m relative 

humidity, the WRF model runs show a wet bias in the nighttime but strong dry biases 

during the daytime (Fig. 5.8b).  The N_V_UKF increases instead of reducing the dry bias 

for the daytime simulation.  It is found that the choice of LSM plays a crucial role in 

these bias magnitude differences, and the WRF model coupled with the three-aspect 

improvements is not able to significantly reduce the bias primarily due to soil moisture 

impacts in the model.  However, it is not evident that the WRF model coupled with the 

simple slab model could lead to accurate regional convection and rainfall.  Additionally, 

it was determined that the cause is internal to the WRF model itself.  The surface sensible 

and latent heat fluxes indicate that the WRF configuration with a dynamical coupling 

strength coefficient could greatly help reduce surface flux bias (Figs. 5.8 c and d), leading 

to improved heat and moisture transfer simulations in the PBL.  Therefore, the effect of 
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the dynamical coupling strength is substantial in the convection and precipitation 

forecasts.   

 

 

 

 

Fig. 5.8 24-hour (0000 UTC 20 May – 0000 UTC 21 May 2011) time series of (a) temperature at 2 

m (°C), (b) relative humidity at 2 m (%) at ARM site E11 (36.88°N, -98.29°W), and (c) surface 

sensible flux (W m
-2

) and (d) surface latent heat flux (W m
-2

) at ARM site E4 (37.95°N, -98.33°W) 

over the 3 km grid spacing domain compared with observations (solid black line). 
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5.4.6 CAPE/CIN 

Fig. 5.9 shows the time series of the CAPE and convection inhibition (CIN) calculated 

from observed soundings at Dodge City, KS (DDC; 37.46°N, -99.58°W), and the Skew-T 

at 0000 UTC 20 May 2011.  CAPE is calculated as the vertical sum of the buoyancy 

which raises an air parcel along a reversible moist adiabatic from the level of free 

convection (LFC) to the equilibrium level (EL) (Moncrieff and Miller 1976).  CIN is the 

negative value of CAPE below LFC, and can be thought of as a measure of the work that 

an air parcel must do to reach the LFC where it will finally become positively buoyant.  

The magnitude of CAPE is strongly dependent on the environmental soundings profile.  

Since the elevated convective storms occurred with a strong squall line that was observed 

on 20 May 2011, and the convection had near saturated soundings in the unstable PBL, 

large CAPE with strong diurnal variation had been diagnosed by Xie et al. (2014).  As 

seen in Fig. 5.9a and b, both CAPE and CIN are sensitive to the influence of LSM, 

coupling strength, and CPS.  The simulated magnitude peaks of CAPE occurred around 

midnight (from 0400 UTC to 0500 UTC 20 May).  The large magnitudes of CAPE for 

the Noah/WRF simulations are earlier and larger than those for the slab/WRF simulations.  

The simulations with the UKF scheme significantly reduced the CAPE value, possibly 

leading to a decrease in the simulated precipitation rate under such unstable and saturated 

conditions.  However, to investigate if  convection could be well captured (or improved) 

by the mesoscale WRF model coupled with the improved scheme/parameterizations,  a 

longer simulation period or another case for deep convection should be conducted.  Most 

CIN values are distributed in the range from -400 to 0 J kg
-1

.  The small absolute values 

of CIN for the slab/WRF simulations suggest the higher precipitation rates that are seen 
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in Figs. 5.2 (a-d) and 5.3 (a-d).  Therefore, the changes in the LSM, surface coupling 

strength, and CPS in the WRF model can greatly affect the simulations of CAPE and CIN, 

resulting in changes in the precipitation forecasts.  It is concluded that the simulation of 

the convective precipitation development processes in the high-resolution mesoscale 

model could be improved via the improved CAPE and CIN. 

 

 

 

Fig. 5.9 24-hour (0000 UTC 20 May – 0000 UTC 21 May 2011) time series of (a) CAPE (J kg
-1

), 

(b) CIN (J kg
-1

) at Dodge City, KS (DDC; 37.46°N, -99.58°W), and (c) the skew-T plot at 0000 

UTC 20 May 2011. 
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5.5 Discussion 

The impact of including the effects of LSM, land-atmosphere coupling strength, and CPS 

on the fields of precipitation, surface scalars, and convection were examined for 48-hour 

weather simulations over the U.S. SGP domain.  From the experiments conducted with an 

observed squall line during the summertime, it was found that including a more detailed 

land surface parameterization, a dynamical surface coupling strength coefficient, and the 

UKF scheme together, improves the mesoscale simulations of several meteorological and 

convection parameters in the high-resolution WRF model.  The land-atmosphere-

convection feedbacks therefore can be well represented.  Generally, the LSM plays a 

dominate role in the short-term convection and rainfall forecasts, the dynamical coupling 

strength helps improve precipitation intensity, and the UKF scheme helps create more 

realistic moist convective process parameters and precipitation variability.   By studying 

the parameterized schemes in the land-atmosphere-convection interactions, the close 

relationship between the land surface, PBL processes, and convective activities is 

examined.  This research will directly benefit the regional climate and hydrological 

modeling communities by providing more accurate prediction of high-resolution regional 

convection and rainfall.  This research will also help improve the understanding and 

parameterization of moist processes in regional meteorological models, particularly over 

the regions that have close feedback between soil moisture and precipitation.
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CHAPTER 6. CONCLUSIONS 

The interactions between land-surface variability and cloud dynamics and their impacts 

on regional convection and rainfall have been studied based on the synthesis of numerical 

modeling analyses and field observations.  A number of numerical experiments were 

conducted over a variety of land-atmosphere coupling hotspot regions across the globe.  

Model simulations of regional convection and rainfall were improved by studying the 

impacts of the heterogeneous land surface, the land-atmosphere surface coupling strength, 

and improving the KF CPS for regional short-term weather forecasts. 

 

Land-surface heterogeneity in LULC plays a key role in influencing the simulation of 

surface fluxes and PBL dynamics.  Land heat and water storages and their relationship 

with fluxes can be changed to some extent by land-surface heterogeneity.  Nonlinear 

impacts are found in simulated surface temperature, moisture, and wind speeds along 

with heterogeneity length scale changes.  Spatial variations of the surface heat flux are 

found to decrease nonlinearly as the length scale of land-surface heterogeneity increases 

(becoming more homogeneous).  The different land-surface parameterizations represent 

the impact of land-surface heterogeneity in different manners and show a variety of 

modeling biases.  The simple slab soil model is found to be more sensitive to land-surface
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heterogeneity impacts, whereas the more detailed land-surface parameterizations (e.g., 

Noah LSM and HRLDAS) are less sensitive to heterogeneity length scale changes.  

Larger biases have been noted in the coupled slab/WRF runs.  Results also indicate that 

in wet conditions, the surface heat fluxes over land which contains higher evaporation 

and stronger coupling strength (e.g., grassland, forest, and wet cropland) are greatly 

impacted by land-surface parameterizations. The Noah LSM performs better over 

different types of LULC.  Vertical fluxes of heat and moisture in the PBL are affected by 

surface energy partitioning and the turbulent parameterization for mass and energy 

transfer between the heterogeneous land surface and the PBL within the coupled 

LSM/WRF models are explored to show the substantial impacts.  The impact of land-

surface parameterizations on turbulent energy spectra is found to be more significant at 

lower frequencies in the spectra where larger eddies dominate.  The slab/WRF 

overpredicts the energy spectra of surface temperature and moisture and underestimates 

the energy cascade.  The response of turbulent spectra to the length scales of land-surface 

heterogeneity indicate that the energy spectra respond nonlinearly to heterogeneous 

length scale changes and the simulated vertical velocity is less sensitive to land-surface 

parameterizations at finer-scale heterogeneous land surfaces.  Additionally, the WRF 

model coupled with a more detailed land-surface parameterization can more accurately 

simulate turbulent spectra over a heterogeneous land surface.  An important finding from 

the spectral analysis is that the atmospheric circulation, which is roughly four times the 

spatial heterogeneity length scale, can be adequately resolved in the coupled mesoscale 

WRF model.  This result shows that the land-surface heterogeneity effect would be a 

function of the degree of the heterogeneity spatial scales represented in the LSM. 
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Vertical fluxes of heat and moisture in the PBL are affected by the impact of land-surface 

heterogeneity and LSMs on surface energy partitioning, influencing simulations of 

mesoscale atmospheric circulations and regional convective weather processes.  Results 

show that vertical profiles of turbulent flux and TKE can also be used to represent 

impacts of the land-surface parameterization and land-surface heterogeneity.  Results 

indicate that HRLDAS/WRF well simulates the vertical turbulent moisture flux and total 

TKE in the PBL, and is able to capture the stronger gradients of the moisture flux at the 

surface and entrainment zone.  Thus, the more detailed land-surface representation can 

not only improve the mean fields of surface flux simulations but also turbulent processes, 

leading to improved simulations of land-atmosphere interactions over heterogeneous land 

surfaces.  Therefore, a positive impact of the improved land-surface parameterization 

over a fine-scale heterogeneous land surface has been identified via the simulated 

turbulent processes and mesoscale simulations. 

 

The coupling between the atmosphere and the land surface plays an important role in 

regional convection and precipitation.  The potential benefit of examining the land 

atmosphere coupling over four different coupling “hotspot” regions indicates that the 

land surface coupling strength coefficient Czil has the potential to modulate mesoscale 

model results and improve the simulation of convective systems.  Additionally, the 

dynamic formulation for representing land atmosphere coupling helps improve 

precipitation forecasts in terms of intensity but not necessarily in its location.   
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Impacts of the coupling effect on regional convection vary across different land-cover 

types and over different areas.  Surface heat fluxes have the largest impact in terms of the 

coupling strength assigned over the different regions.  Results indicate that the constant 

surface coupling coefficient used in the current coupled Noah/WRF model is deficient in 

producing correct surface fluxes.  Model biases respond differently along with changes in 

surface coupling strength.  The current WRF model in use over West Africa leads to 

coupling effects that are too strong and could be improved by using the coupling 

coefficient of 0.3 or the dynamic Czil.  It is also noted that in summer over the U.S. SGP, 

strong coupling leads to a cold and wet boundary layer resulting in a strong convective 

system and heavier rainfall, but due to the cultivated parched land surface over northern 

India, the coupling is found to be relatively weak, leading to lighter rain and smaller areas 

of precipitation.   

 

Thus the high uncertainty in land-atmosphere coupling findings indicates that the 

coupling strength for the “hotspot” regions needs to be carefully considered and the zone 

of “high” or “low” coupling strength should be evaluated in the context of the model and 

parameterizations used.  Since the modestly improved and encouraging model results are 

associated with using a dynamic Czil, more efforts need to be directed toward adopting the 

dynamic coupling coefficient rather than the constant value currently used in the 

Noah/WRF models.  It is a challenge to identify the correct coupling for land-atmosphere 

interactions as it can improve one variable and deteriorate another.  In addition, the 

coupling coefficient has significant control on model performance particularly the 

quantitative precipitation forecasts and is therefore an important feature in the study of   
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hydrometeorological extremes such as droughts and heavy rain events.  The results 

highlight that evaluating and improving land-atmosphere coupling could potentially 

improve model performance across the globe.   

 

Moist processes, especially the representation of clouds and their microphysical 

processes, are of vital importance in forecasting convection and precipitation.  However 

at high spatial resolutions, the use of cloud microphysics alone may not be sufficient to 

represent moist convection and precipitation for warmer periods in weather forecasts 

(Clark et al. 2012).  To reduce precipitation bias and errors occurring at high resolution 

scales due to uncertainties in the initial meteorological conditions and/or in grid-scale 

cloud microphysics schemes, in this research dissertation the scale-aware parameterized 

cloud dynamics for high-resolution forecasts were introduced to the KF CPS in the WRF 

model.  The UKF scheme includes subgrid-scale cloud-radiation interactions (Alapaty et 

al. 2012; Herwehe et al. 2014), a dynamic adjustment timescale, cloud updraft mass 

fluxes impacting grid-scale vertical velocity, and an LCL-based methodology to 

parameterize entrainment.  The UKF scheme is found to generally improve high-

resolution simulation of longwave and shortwave radiation associated with cloud patterns, 

and produce precipitation patterns and intensity that are closer to the observations.   

 

Results from experiments using two different initial conditions (GFS and CFSR) indicate 

that the general distribution and intensity of precipitation forecasts are significantly 

influenced by initial conditions obtained from different analysis fields.  The simulated 

area-averaged precipitation initiated by CFSR is found to be heavier than forecasts using 
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GFS.  The larger differences in the area-averaged RMSE between the two initial 

conditions are found in the original KF scheme, but significant differences are noted in 

all of the convective treatments for very heavy precipitation rates (greater than 25 mm h
-

1
).  From the sensitivity analysis, results indicate that precipitation forecasts are more 

sensitive to initialization than to grid-scale microphysics or convective treatments, thus a 

good initial condition dataset is necessary for NWP model forecasts.   

 

The UKF scheme in the WRF model at high-resolution scales is found to produce more 

accurate surface radiation values and results in the improvement of simulated cloudiness.  

Three different updates to the KF scheme which include properly representing timescale, 

grid-scale vertical velocity, and the entrainment effect are found to contribute differently 

to the precipitation changes and show nonlinear impacts.  Results show that the UKF 

primarily contributes to precipitation forecasts when the rain rate is less than 5 mm h
-1

, 

negligibly improving the simulation when the rate is greater than 5 mm h
-1

 and less than 

15 mm h
-1

, and has no contribution with higher hourly rain rates.  Additionally, results 

show that the UKF scheme not only reduces excessive rainfall amounts, but improves 

both the location and intensity of precipitation in high-resolution forecasts.   

 

A series of retrospective 48-hour experiments were conducted to explore how the land-

atmosphere-convection interactions affect the WRF model based on the above results.  

The impacts of using different combinations of (i) LSM, (ii) land-atmosphere surface 

coupling strength, and (iii) UKF CPS on short-term moist processes in the WRF model 

were assessed accordingly.  Results show that the LSM has a more dominate role in 
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simulating surface and near-surface temperature, boundary layer water vapor mixing ratio, 

and regional rainfall.  The simple LSM could produce an inappropriate water vapor 

mixing ratio and latent heat flux due to its simple parameterizations, resulting in incorrect 

precipitation intensity and variability.  The dynamic coupling strength coefficient could 

significantly reduce surface flux uncertainties and positively impact precipitation 

intensity emphasizing its substantial role in convection and precipitation forecasting.  The 

UKF improves the high-resolution precipitation intensity forecast by about 43%.  The 

precipitation simulation for the WRF model coupled with the dynamical coupling 

strength and the UKF CPS has good agreement with observations indicating that the 

representation of moist processes could be improved by improving the interactions 

between land-atmosphere coupling and convective parameterization.  Particularly, for the 

3 km grid spacing simulation, the UKF scheme can lead to better simulated sounding 

profiles compared to the KF scheme.  Results also show that the UKF scheme could 

provide more detailed fluctuation of vertical velocity which needs to be considered 

critically in the simulation of convective clouds.  Thus, the interactions between the land 

surface, PBL processes, and convective activities have been assessed by examining the 

parameterized schemes in LSM, land-atmosphere coupling strength, and CPS.  The land-

atmosphere-convection interactions could be well represented by employing a more 

detailed land surface parameterization, a dynamical surface coupling strength coefficient, 

and the UKF scheme, together.          

 

However, there are some important aspects of the research limitation that should be 

aware.  For example, the data limitation over certain regions needs further analysis when 
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additional data become available, and the current study addresses diurnal convection and 

precipitation situations in summertime only.  Additional ensemble experiments related to 

different sets of parameterization schemes are needed for further sensitivity analysis, and 

additional sets of simulations with different ranges of relative soil moisture saturation are 

needed to gain further insights into the longer-term behavior of the land-atmosphere-

convection system.  Thus, further insights to the sensitivity of model parameters and 

precipitation predictability would lead to a better understanding of land-atmosphere 

feedback and moist process mechanism.  Additionally, some open questions such as, "At 

what spatial scale would the land surface heterogeneity trigger mesoscale circulations 

that can affect the moist convection in climate models and may result in changes or 

missing in large-scale circulations?  How would the land-atmosphere coupling strength 

be influenced due to the climate change and what would be the resulting impacts on 

cloud formation and moist convection?  For the climate system and climate sensitivity, to 

what extent (e.g., initial condition, model resolution, and parameterization) to improve 

the global/regional climate models for a better understanding and more appropriate 

representation of clouds and moist convection, rather than obtaining more expensive 

models?" would be of great interest to explore.   

 

Overall, through the study of the impacts of land surface heterogeneity on turbulent flow 

and mesoscale simulations, the land-atmosphere coupling strength over certain regions 

across the globe with strong feedbacks between soil moisture and precipitation, and the 

dynamical scale-awareness UKF convection scheme, this research dissertation has 

examined the nature and magnitude of land surface, land-atmosphere coupling, 
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convection, and the interactions and feedbacks affecting and controlling regional moist 

processes.  Three substantial results were identified that help to explain the numerical 

modeling for convection and land surface interactions: 1) Atmospheric feedbacks that are 

roughly four times of the land heterogeneity spatial scale can be adequately resolved in 

the coupled mesoscale model; 2) Evaluating and using a dynamic land-atmosphere 

coupling strength could potentially improve convective model performance over areas 

where there is a known bias with convection triggering and rainfall; and 3) A grid 

resolution-dependent parameterized convective physics in the convection scheme reduces 

fine scale precipitation biases and could work properly at grey scales.  These results offer 

a strategy to obtain information related to land surface, appropriate land-atmosphere 

coupling strength, and grey scale convective parameterization, and also have significantly 

improved the accuracy of the WRF model at high-resolutions for short-term convective 

weather forecasting.   

 

This research is essential for regional climate and hydrological modeling communities.  

The understanding and improvements developed in this dissertation may also lead to 

methodologies to implement new processes in land surface schemes, find sensitivities in 

moist convection, and diagnose uncertainties and errors in mesoscale and large-scale 

circulations.  The scientific strategies in this research dissertation could greatly enhance 

high-resolution mesoscale model performance and benefit moist process representation 

for both regional and global meteorological models.  This improved understanding of 

regional convection and rainfall could essentially contribute to severe weather 
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exploration, tropical cyclone post-landfall risk estimation, and other convection-related 

phenomenon.  
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Appendix: Acronyms 

 

ADP – Automated Data Processing 

AGCM – Atmospheric General Circulation Model 

AMMA – African Monsoon Multidisciplinary Analysis 

AMF – ARM Mobile Facility 

ARM – Atmospheric Radiation Measurement 

BASE – Original KF Scheme 

BOMEX – Barbados Oceanographic and Meteorological Experiment 

CAPE – Convective Available Potential Energy 

CFSR – Climate Forecast System Reanalysis 

COPS – Convective and Orographically-induced Precipitation Study 

CP – Convective Parameterization 

CPS – Convective Parametrization Scheme 

Czil – Zilitinkevich Coefficient C 

DWR – Doppler Weather Radar 

EC – Eddy Covariance 

EL – Equilibrium Level 

ETS – Equitable Threat Score

EXP – Explicit Treatment of Convection 

FFT – Fast Fourier Transform

FNL – NCEP Global Final Analysis 

GFS – Global Forecast System  
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GLACE – Global Land-Atmosphere Coupling Experiment 

GOES – Geostationary Operational Environmental Satellites 

HRLDAS – High Resolution Land Data Assimilation System 

HWT – Hazardous Weather Testbed 

IHOP_2002 – International H2O Project 2002 

IMD – India Meteorological Department 

KF – Kain-Fritsch 

LCL – Lifting Condensation Level 

LES – Large Eddy Simulations 

LFC – Level of Free Convection 

LSM – Land Surface Model 

LULC – Land Use and Land Cove 

MPAS – Model for Prediction across Scales 

MPE – Multisensor Precipitation Estimates 

MYJ – Mellor-Yamada-Janjic 

NCEP – National Centers for Environmental Prediction 

NESDIS – National Environmental Satellite Data and Information Service 

NOAA – National Oceanic and Atmospheric Administration 

NWP – Numerical Weather Prediction 

PBL – Planetary Boundary Layer 

RMSE – Root Mean Square Error 

RRTM – Rapid Radiative Transfer Model 

RRTMG – Rapid Radiation Transfer Model, Global 
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SGP – Southern Great Plains 

SST – Sea Surface Temperature 

TKE – Turbulent Kinetic Energy 

TMPA – TRMM Multi-satellite Precipitation Analysis 

TRMM – Tropical Rainfall Measuring Mission 

UKF – Updated KF Scheme 

USGS – United States Geological Survey 

WDM6 – WRF double-moment 6-class scheme 

WSM6 – WRF Single Moment 6-class 

WPS – WRF Preprocessing System 

WRF-ARW – Advanced Research Weather Research and Forecasting
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