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ABSTRACT 
 
 
 

Steckloff, Jordan K. Ph.D., Purdue University, December 2015. On the Interaction of 
Sublimating Gas with Cometary Bodies. Major Professor: H. Jay Melosh 

 
 
 

Sublimation of volatiles is a defining process of comet nuclei, and profoundly 

affects their dynamics, structure, and appearance.  Central to understanding the processes 

by which comets formed and subsequently evolved is a careful computation of this 

sublimation pressure as a function of heliocentric distance.  Unlike previous efforts, I 

develop a thermodynamic method to numerically compute the sublimation pressure of 

any species from limited knowledge of its physical properties.  I then describe a novel 

cometary disruption mechanism in which this sublimation pressure induces differential 

stresses within the body of the nucleus that exceed its material strength, resulting in 

structural failure and breakup of the nucleus.  I show that this mechanism is consistent 

with the behavior of Comet ISON (C/2012 S1), and use it to estimate the cohesive 

strength of ISON’s nucleus, a first for a Long-Period Comet. 

Sublimating volatiles can also generate sublimative torques that alter the rotation 

state of the nucleus.  However, computing these torques requires high-resolution 

information on the shape and activity of the nucleus, which is available only for the few 

nuclei visited by spacecraft.  To remedy this, I develop a novel framework based on the 



 

 

ix 

YORP Effect (the torques asteroids experience by emitting thermal photons from their 

asymmetric shapes) to study the effects of sublimative torques on populations of 

cometary bodies.  I take advantage of the similar manner in which surfaces emit both 

thermal photons and sublimating molecules to derive numerical relationships that 

describe sublimative torques by appropriately scaling the YORP torque equations.  I then 

use this framework to explain the formation of dust striae (long linear features in the tails 

of Long-Period Comets that align with the Sun), which has remained an enigma for more 

than a century.  I show that the observed ~10-100 m chunks ejected from comet nuclei 

experience sublimative torques that spin them up to the point of disruption, forming the 

observed striae. 

Sublimative torques can also significantly affect nuclei themselves, and cause 

large avalanches that excavate buried supervolatile ices.  The activity of Comet 

103P/Hartley 2 is dominated by CO2 driven sublimation at the tip of its bilobate nucleus.  

This CO2 ice responds to the nucleus’s diurnal cycle, and must therefore be very near the 

surface.  However, CO2 ices were expected to have receded deep below Hartley 2’s 

surface during its ~10 million year migration from the Kuiper Belt to the Jupiter Family, 

suggesting that these ices were somehow brought to the surface.  I map the gravitational 

slopes of Hartley 2’s surface as a function of rotation period, and show that large 

avalanches capable of excavating these CO2 ices set in at a rotation period of ~11 hours, 

and are entirely confined to the regions of the nucleus exhibiting CO2 driven activity.  

This suggests that a period of fast rotation activated this CO2 activity.  At the rate of spin-

down observed by EPOXI, this avalanche likely occurred between 1984 and 1991, and 

would have significantly brightened the comet, consistent with its discovery in 1986.  
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Furthermore, this mechanism allows me to date nearly all terrains imaged by EPOXI, a 

first for a comet. 
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“When beggars die there are no comets seen; 
The heavens themselves blaze forth the death of princes.” 

-William Shakespeare 
 
  
 

CHAPTER 1. INTRODUCTION 

 

 

For as long as there have been humans, those humans have observed the night 

sky, which acted as a calendar, and regulated the yearly cycle. So intimate was the 

cosmos’ perceived control of events on earth, that the appearance of a comet, which was 

seen as an unfavorable star (disastrum in Latin, the origin of the word disaster (Oxford 

English Dictionary, 2015) that upset the predictable cosmic order of the stars and planets 

impending calamity. Flavius Josephus, a Romano-Jewish historian recalled how the Jews, 

prior to their revolt against the Romans in 66 C.E., gave no “credit to the signs that were 

so evident, and did so plainly foretell their future desolation...a star resembling a sword, 

which stood over the city, and a comet, that continued a whole year” (Josephus, 75 C.E.).  

That comet was the 66 C.E. apparition of Comet Halley, which has been unambiguously 

observed at every apparition since 2406 B.C.E. (Tsu, 1934).  The “star resembling a 

sword” is likely either the pre-perihelion or post-perihelion leg of Comet Halley’s orbit, 

as the two motions of the comet were viewed as two separate objects at that time. 
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Comets were sometimes omens of good fortune. The Ancient Romans practiced 

apotheosis, whereby a deceased ruler was deified by his successor. Shortly after the 

assassination of Julius Caesar in 44 B.C.E., one of the brightest comets ever recorded 

appeared in the sky, on the day of his apotheosis. This Great Comet of 44 B.C. (formally 

C/-43 K1) was visible in the daytime sky for 7 days “and was believed to be the soul of 

Caesar, who had been taken to heaven” (Suetonius, 121 C.E.).  The 1066 apparition of 

Comet Halley was recorded in the Bayeux Tapestry as an omen of success for Duke 

William II of Normandy’s conquest of England (See Figure 1.1). Later that year at the 

Battle of Hastings, William II defeated and killed King Harold of England, and 

conquered England. 

Although comets have been associated with significant events throughout human 

history, the following work is concerned not with the historical, sociological, or 

archaeoastronomical aspects of cometary apparitions, but rather with the development of 

physical theories of their origins, structure, and behavior.  While all ancient civilizations 

may have observed comets and wondered as to their purpose and origin, the oldest 

surviving theories on the physical nature of comets as part of a wider and comprehensive 

cosmology can be traced to the ancient Greeks, particularly Aristotle. I therefore begin 

my discussion of scientific cometology in ancient Greece. 
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Figure 1.1 Comet Halley in the Bayeux Tapestry. 

 
The Bayeux Tapestry, which tells the story of the Norman conquest of England, notes the 
apparition of Comet Halley in 1066, visible as a star with a large tail. The tapestry 
includes the caption  “ISTI MIRANT STELLA” (the men watch the star), referring to the 
Normans (left side of tapestry) seeing this new “star” (Comet Halley) as an omen of 
success in their invasion of England that same year. King Harold himself may have also 
seen the comet as an omen doom, foretelling of his disastrous defeat and death at the 
Battle of Hastings.  (Photo Credit: Myrabella, 2015) 
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“It’s a warm summer evening, circa 600 B.C., you’ve finished your 
shopping at the local market, or agora, and you look up at the night sky. 

There you notice some of the stars seem to move, so you name them 
plan!t!s, or wanderer.” 

-Dr. Sheldon Cooper, PhD 
The Big Bang Theory (2009) 

 
 
 

CHAPTER 2. A BRIEF HISTORY OF COMET SCIENCE 

 

Aristotle was not the first natural philosopher to ponder the nature of comets. Before 

Aristotle, Anaxagoras and Democritus (who first pondered the existence of molecules) 

believed comets to be a conjunction of at least two of the five (known) planets (Mercury, 

Venus, Mars, Jupiter, Saturn) (Aristotle, 350a B.C.E.), which would produce an 

elongated, illuminated object (Heidarzadeh, 2008 p. 10). Earlier, the Pythagorean school 

of philosophy had taught that comets are apparitions of a 6th planet, whose orbit rises 

only a little above the horizon (like Mercury) and which has a very long orbital period 

such that it only appears after long intervals (Aristotle, 350a B.C.E.). These thinkers 

placed comets squarely in the celestial realm of the planets, and the Pythagoreans were 

remarkably accurate in describing the orbits of some known comets.  However, Aristotle 

had reasonable and well thought out objections to such ideas placing comets in the realm 

of the planets. 
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The ancient Greeks observed that the Sun, Moon, and planets move along the 

zodiacal path (Aristotle, 350a B.C.E.), which traces the projection of the Solar System’s 

ecliptic plane on the sky, against the firmament of the fixed stars.  Aristotle noted that 

sometimes all five planets are visible at the same time as a comet, and reasoned that a 

conjunction of the planets cannot therefore produce a comet.  Furthermore, many comets 

follow paths outside the zodiac, suggesting that comets are distinct from the planets.  

Finally, Aristotle noted that sometimes multiple comets are simultaneously visible in the 

night sky.  Thus, the addition of a cometary planet to the Solar System, regardless of its 

path in the sky, could not explain simultaneous cometary apparitions.  Aristotle therefore 

did not believe that cometary phenomena were a part of the heavens. (Aristotle, 350a 

B.C.E.) 

Aristotle’s cosmology divided the universe into two realms, the celestial and the 

terrestrial: the celestial realm is one of perpetual circular motion and clockwork 

predictability (Aristotle, 350b B.C.E.), while the terrestrial realm is imperfect, 

unpredictable, and where the natural position of an object is to come to rest in its element 

(Aristotle, 350a B.C.E.).  The terrestrial realm was stratified into four layers representing 

the natural state of the four elements (bottom to top: earth, water, air, fire). Thus, a fire 

reaches skyward and hot air rises because the fire element is at the top of the terrestrial 

realm (in contact with the celestial realm), while rain falls to the ground and continues to 

flow across its surface until it reaches a lake, stream, or ocean and comes to rest.  This 

division seemed to explain why the planets move in predictable, perpetual motion along a 

common path in the sky, while moving objects on the earth eventually slow down and 

come to rest. Although Aristotle did not consider that friction is responsible for this 
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difference in motion, he did consider that the planets move through a resistanceless 

æther, which permeates the celestial realm (Heidarzadeh, 2008 p. 4-16).  Thus the 

heavens, which begin at the Moon, are subject to a different set of physical principles 

than the terrestrial realm. 

For Aristotle, any satisfactory physical explanation of comets had to explain their 

non-zodiacal motion and unpredictable apparitions, and provide a mechanism for 

generating a tail (Heidarzadeh, 2008 p. 12). Aristotle believed meteors, comets, and the 

Milky Way to be related phenomena.  Heidarzadeh (2008) summarized Aristotle’s theory 

on the nature of comets: 

“When the hot and dry exhalation [of the earth] rises to the so-called fire layer, it 

participates in the circular motion of the fire caused by the revolution of the 

celestial sphere… Under special conditions, shooting stars appear in the sky.  

Shooting stars, however, consume their fuel quickly and burn out in a matter of 

seconds… By contrast, it is expected that if a mass of condensed (and therefore 

less inflammable) exhalation encounters an adequate amount of the element fire 

(not so strong as to burn the material instantly and not so weak as to extinguish it 

quickly) it will create a longer lasting fire.  In fact, in such a case, the flame 

cannot spread rapidly through the fuel, but stops in the densest part of it.  Then, 

this semi-steady burning fuel, which is moving with the motion of the so-called 

fire layer, will create a relatively durable fire, seen as a comet.” (Heidarzadeh, 

2008 p. 12) 

Thus, comets are the result of flammable materials that rise to the top of the fire layer of 

the terrestrial realm and slowly smolder, forming a long-lived, smoky apparition.  

Additionally, because the fire layer touches the perpetually-revolving celestial realm, the 



 

 

8 

top of the fire layer gets dragged toward the west, blowing on the smoky comet and 

forming a tail. 

Aristotle also postulated a second type of comet that forms when a star or planet 

generates an exhalation that moves (naturally) toward the fire layer, forming a luminous 

fringe that follows the motion of its source.  While this form of comet does not appear to 

replicate the perceived motion of comets in the sky, which move relative to the fixed 

stars, it illustrates the relationship of comets to the Milky Way.  Aristotle described the 

Milky Way as a region where the exhalations tend to gather, forming a long-lived 

luminous phenomenon.  Furthermore, because few exhalations remain, and because the 

necessary conditions to form comets are rare, comet apparitions are very infrequent. 

Aristotle’s comet theory therefore explains the random paths and rare apparitions of 

comets, their fuzzy, smoky appearance, and provides a mechanism to form comet tails. 

Thus, Aristotle incorrectly believed comets to be merely a phenomenon located in 

the upper layer of the terrestrial realm, and placed the location of comets between the 

Earth and the Moon, which fit with the wider Aristotelian cosmology. That this view 

persisted for nearly 2 millennia, is a testament to how advanced and comprehensive 

Aristotle's empirical philosophy was at the time, and how rarely naked eye comets appear 

in the sky, the observations of which could facilitate a revision of the Aristotelian comet 

theory.  That is becuase the Aristotelian theory of comets made testable predictions on 

the behavior and orientation of comets.  First, because the theory places comets in the 

sublunar realm, they should exhibit a diurnal parallax greater than the ~1 degree parallax 

angle of the moon.  This means that the apparent location of the comet in relation to the 

fixed stars should appear to move over the course of a night on account of the motion of 
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the observer as the Earth rotates.  Additionally, if a comet in fact comes to conjunction 

with a planet, the planet’s appearance and color should change as the planet’s light passes 

through the comet. Finally, because the comet tail is formed by the effect of the celestial 

realm’s east-west rotation, the Aristotelian theory predicts that all comet tails are oriented 

in an east-west direction (Heidarzadeh, 2008 p. 17-18). 

Ab" Ma’shar, a preeminent Islamic astrologer, recorded his observations of a 

comet in Albumasar in Sadan: 

The philosophers say, and Aristotle himself, that comets are in the sky in the 

sphere of fire, and that nothing of them is formed in the heavens, and that the 

heavens undergo no alteration.  But they have all erred in this opinion. For I saw 

with my own eyes a comet beyond Venus.  And I know that the comet was above 

Venus, because its color was not affected.  And many have told me that they 

have seen a comet beyond Jupiter and sometimes beyond Saturn.” (Thorndike, 

1954 p. 23) 

Thus Ab" Ma’shar recorded clear evidence that comets are a celestial, rather than 

atmospheric, phenomenon. Ab" Ma’shar’s observations inspired subsequent observers to 

measure cometary parallaxes and determine whether comets are a terrestrial or celestial 

phenomenon (Heidarzadeh, 2008 p. 29-31).   

Abu Ma’shar’s observations were, like most contemporary surviving records of 

comets, purely qualitative.  Improvements in astronomical tools and techniques over the 

subsequent centuries allowed for better, more quantitative measurements. Georg von 

Peurbach recorded his observations on the parallax of the comet of 1456 (another 

apparition of Comet Halley).  From his measurements, he concluded that the comet was 
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at an altitude of 1,000 German miles  (7,500 km) (Heidarzadeh, 2008 p. 35). 16 years 

later, Regiomontanus measured the altitude of the comet of 1472 to be 8,200 German 

miles (62,000 km) (Heidarzadeh, 2008 p. 36-37). Interestingly, these flawed 

measurements, likely the result of the crude instruments available at the time, were too 

low even for the Aristotelian comet theory, placing comets in the air layer, rather than the 

fire layer. However, these measurements revolutionized the study of comets by 

introducing mathematical methods to their study. 

In 1531-1533, three bright naked eye comets allowed Peter Apian and Girolamo 

Fracastoro to independently discover that comet tails always point away from the Sun, 

rather than in an East-West direction as predicted by Aristotle (Heidarzadeh, 2008 p.37). 

Gemma Frisius explained this phenomenon with his optical theory of Comets, in which 

he proposed that comet tails are the result of refracted sunlight (Heidarzadeh, 2008 p. 37-

38). Jean Pena elaborated on this theory by proposing that comets were denser that their 

surrounding air, allowing them to act as a spherical lens (Heidarzadeh, 2008 p. 38). This 

theory is incomplete, as it is never specified what material intercepts the rays of the Sun 

and reflects them toward the observer. 

Finally, in 1577, Tycho Brahe (whom Edmund Halley called “that great Restorer 

of Astronomy” [Halley, 1705]) measured the diurnal (daily) parallax of a comet (Halley, 

1705). Only five years prior, Tycho had attempted to measure the diurnal parallax of the 

nova (literally “new [star]”) of 1572 using a sextant (Gingerich, 2005).  Although 

primitive when compared to modern instrumentation, the astronomical instruments 

available to Tycho were an order of magnitude more accurate than the instruments 

available to the preceding generation (Heidarzadeh, 2008 p. 50).  Having failed to detect 
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any parallax despite extensive observations, Tycho had convincingly shown that novae 

were celestial, shattering the Aristotelian notion that the heavens were perpetual and 

unchanging (Gingerich, 2005).  Tycho’s observations were so careful and precise, that his 

recorded position of the nova was off by only three arcminutes (remarkable given the 

technology at the time), which we learned when its remnant was finally discovered in the 

1950’s (Gingerich, 2005). This discovery was so sensational, that the Danish king 

literally gave Tycho more than a ton of gold to build an observatory (Gingerich, 2005). 

From his new observatory, Tycho Brahe observed the comet of 1577 on each 

clear night (~30 total), measuring its position relative to the fixed stars multiple times 

each night (Heidarzadeh, 2008 p. 41), but failing to measure any observable parallax 

angle (Halley, 1705).  From the precision of this measurement, he determined that the 

comet must be at least 197,800 German Miles (~1.5 million km) from the Earth and be at 

least 465 German Miles (3,490 km) across (Heidarzadeh, 2008 p. 41-45).  Tycho 

therefore determined that comets travel beyond the celestial orb of the Moon, and are 

planet-sized.  

Johannes Kepler, who worked for Tycho, succeeded him as imperial 

mathematician after Tycho’s unexpected death.  Kepler observed the comets of 1607 and 

1618 and detected their annual parallax, which conclusively placed them nearer to the 

Earth than Jupiter (Halley, 1705).  This discovery placed the location of comets clearly in 

the realm of the planets.  From the measurements of Tycho as well as his own, Kepler 

concluded that comets travel in approximately rectilinear paths.  However, Hevelius 

found that his own observations did not agree with rectilinear motion (Halley, 1705). 
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Thus, the theory of Aristotle had been conclusively disproven through 

quantitative measurements, and was supplanted by a theory that explained the great 

distance of the comets as well as the orientations of their tails.  However, their path 

through the heavens was poorly understood. 

The early 17th century was a period of rapid development in our understanding of 

the cosmos.  The heliocentric model of the Solar System proposed by Copernicus in the 

mid-sixteenth century was becoming widely used.  The invention of the telescope 

allowed Galileo Galilee to first view the large moons of Jupiter that now bear his name, 

and to observe that the Jovian system resembled a miniature Solar System.  Later, 

Johannes Kepler developed his laws of planetary motion.  Observers were treated to rare 

appearance of three bright naked-eye comets in five months of 1618, with the last of the 

three being the brightest.  Galileo observed that the brightest comet of 1618 traveled 

more than 90 degrees of arc in ~40 days.  However, if it were the same comet at the great 

comet of 1577, then it shouldn’t have traveled even a single degree in that span of time.  

Thus, Galileo deduced that either comets do not follow circular paths, or that there must 

be more than one comet (Heidarzadeh, 2008 p. 61-64).  Kepler further considered that 

comets travel in straight lines, but the motion of the Earth around the Sun made comet 

trajectories appear curved (Heidarzadeh, 2008 p.64-65).  For reasons unknown, Kepler 

never applied his laws of planetary motion to comets. 

The Great Comet of 1680 was one of the brightest comets observed in recorded 

history (Yeomans, 2007), and the first known sungrazing comet, having a perihelion 

distance only ~# of a Solar Radius above the photosphere of the Sun (Halley, 1705; JPL 

Solar System Dynamics).  Georg Samuel Dörffel and Isaac Newton independently 
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determined that this comet followed a parabolic path (Heidarzadeh, 2008 p. 88-93).  John 

Flamsteed and Robert Hooke proposed that a central force acted in the Solar System to 

generate these paths (Heidarzadeh, 2008 p. 88-93), however neither could explain how it 

worked. 

Isaac Newton stated, in his magnum opus Philosophiæ Naturalis Principia 

Mathematica, that a gravitational force governs the motion of all bodies in the universe 

whose strength varies by the inverse-square of the heliocentric distance.  This causes 

comets to “move in some of the conic sections, having their foci in the center of the sun; 

and by radii drawn to the sun describe areas proportional to the times.” (Newton, 1726, p. 

332) Thus, Isaac Newton used his law of gravitation to derive Kepler’s second law of 

planetary motion, and showed that it applies to comets as well as planets.  Newton also 

noted that cometary “orbits will be so near to parabolas, that parabolas may be us’d 

[used] for them without sensible error” (Newton, 1726 p. 332).  While this approximation 

worked well for the Great Comet of 1680 and most other long-period comets, it would 

eventually break down with the discovery of Jupiter Family Comets (JFCs), which have 

significantly less eccentric, elliptical orbits, with a Tisserand parameter with respect to 

Jupiter (TJ) of 2 < TJ <3, and typically have an aphelion of 5-6 AU (Lowry et al. p. 397-

410).  

Newton realized that comets and other celestial objects follow their observed 

paths because “the celestial spaces [are] free and without resistance” (Newton, 1726 p. 

369). He therefore concluded that the æther did not impede the motion of objects in the 

same manner as air (Newton, 1726 p.230-232).  Because the Great Comet of 1680  
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Figure 2.1 Orbit of the Great Comet of 1680 

An illustration of the nearly parabolic orbit of the Great Comet of 1680 from Newton’s 
Philosophiæ Naturalis Principia Mathematica (Newton, 1726 p. 358-359).  Isaac Newton 
was the first to explain that the paths of comets (and all heavenly bodies) are conic 
sections, and that such shapes are the result of his law of universal gravitation.  The tail 
of the Great Comet of 1680 obviously pointed away from the Sun, when its observed 
orientation was drawn in the appropriate location on the comet’s path. 
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survived traveling through the solar atmosphere (Newton, 1726 p. 385), he concluded 

that comets must be durable, solid, and very dense (Heidarzadeh, 2008 p. 94-96).  

Newton realized that the optical theories of comet tails are inconsistent with observations.  

As Henry Pemberton later summarized Newton’s logic: 

Of [the appearance of comet tails] there are several opinions; our author reduces 

them to three...The first is, that they arise from a beam of light transmitted 

through the head of the comet, in like manner as a stream of light is discerned, 

when the sun shines into a darkened room through a small hole.  This opinion, as 

Sir ISAAC NEWTON observes, implies the authors of it wholly unskilled in the 

principles of optics; for that stream of light, seen in a darken’d room, arises from 

the reflection of the sun beams by the dust and motes floating in the air: for the 

rays of light themselves are not seen, but by their being reflected to the eye from 

some substance, upon which they fall.  The next opinion examined by our author 

is that of the celebrated DES CARTES, who imagins these tails to be the light of 

the comet refracted in its passage to us, and thence affording an oblong 

representation; as the light of the sun does, when refracted by the prism in that 

noted experiment […] But this opinion is at once overturned from this 

consideration only, that the planets could be no more free from this refraction 

than the comets; nay ought to have larger or brighter tails, than they, because the 

light of the planets is strongest...And besides, when the light in its passage from 

different comets to the earth describes the same path through the heavens, the 

refraction of it should of necessity be in all respects the same.  But this is 

contrary to observation; for the comet in 1680, the 28th day of December, and a 

former comet in the year 1577, the 29th day of December, appear’d in the same 

place of the heavens, that is, were seen adjacent to the same fixed stars, the earth 
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likewise being in the same place at both times; yet the tail of the latter comet 

deviated from the opposition to the sun a little to the northward, and the tail of 

the former comet declined from the opposition of the sun five times as much 

southward. (Pemberton, 1728) 

Newton’s own theory on the tails of comets is based on his observation of the 

relationship between heliocentric distance and the length of a comet’s tail, and that comet 

tails are curved (Newton, 1726 p. 365): 

It is plain that the phænomena of the tails of Comets, depend upon the 

motions of their heads, and by no means upon the places of the heavens in which 

their heads are seen, and that therefore the tails of Comets do not proceed from 

the refraction of the heavens, but from their own heads, which furnish the matter 

that forms the tail.  For, as in our air, the smoak of a heated body ascends, wither 

perpendicularly if the body is at rest, or obliquely, if the body is mov’d obliquely; 

so in the heavens, where all bodies gravitate towards the Sun, smoak and vapour 

must (as we have already said) ascend from the Sun, and either rise 

perpendicularly, if the smoaking body is at rest; or obliquely, if the body, in all 

the progress of its motion, is always leaving those places from which the upper or 

heigher parts of the vapour had risen before.  And that obliquity will be least, 

where the vapour ascends with most velocity, to wit near the smoaking body, 

when that is near the Sun.  But because the obliquity varies, the column of 

vapour will be incurvated; and because the vapour in the preceding side is 

something more recent, that is, has ascended something more late from the body, 

it will therefore be something more dense on that side, and must on that account 

reflect more light, as well as be better defin’d. (Newton, 1726 p. 365-366) 
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Thus, Newton’s theory that comet tails are a smoke-like material explained why comet 

tails are brightest near the head, are oriented away from the Sun, and curved.  

The Newtonian model of comets as massive objects with thick atmospheres was a 

drastic change from theories that came before, and was remarkably successful in 

explaining a host of cometary and planetary motions and behaviors.  This model was 

quite persistent, and even served as the basis for works of science fiction.  For example, 

in Jules Verne’s 1877 Hector Servadac, which tells of a group of people that find 

themselves living on a comet after one collides with the Earth (Verne, 1877).  Even 

today, it is remarkably still recognizable as the basis of all comet theories that came 

afterwards.  Newton even postulated that comets can serve as a mechanism to deliver 

volatile materials to the planets.   

While his deduction that comet nuclei were dense, planet-sized durable objects 

surrounded by thick atmospheres was quite logical, Newton did notice problems with this 

theory.  He realized that the gravitational perturbations of such massive comets would 

destabilize the Solar System over time.  He therefore proposed that the Creator of the 

Solar System would have to periodically intervene and “restore” the Solar System.  Thus, 

Isaac Newton invoked divine intervention to solve problems with his theories. 

Furthermore, the newtonian model of comets could not explain why planet-sized 

comets with thick atmospheres have tails at heliocentric distances comparable to the 

terrestrial planets, while the planets themselves do not have tails.  As Henry Pemberton 

described: 

[A] difference is found between the planets and comets.  The atmospheres of the 

planets are of so fine and subtile a substance, as hardly to be discerned at any 
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distance, by reason of the small quantity of light which they reflect...But the 

atmospheres which surround the comets are so gross and thick, as to reflect light 

very copiously. (Pemberton, 1728 p.237) 

Thus, the rarified nature of planetary atmospheres, when compared to those of the 

comets, prevents them from reflecting more light to the observer.  Moreover, Pemberton 

cites differences between the material composing planetary and cometary atmospheres 

if we consider, that [comets] do not send out those fumes merely by their near 

approach to the sun; but are framed of a texture, which disposes them in a 

particular manner to fume in that sort: for the earth, without emitting any such 

steam, is more than half the year at a less distance from the sun, than the comet 

of 1664 and 1665 approached it, when nearest; likewise the comets of 1682 and 

1683 never approached the sun much above a seventh part nearer than Venus, 

and were more than half as far again from the sun as Mercury; yet all these 

emitted tails. (Pemberton, 1728 p. 245) 

Thus, Pemberton attempted to explain away the lack of planetary tails by claiming that 

the different “textures” of the cometary and planetary atmospheres result in only comets 

forming tails (Hidarzideh, 208 p. 140-141). 

William Whiston, who succeeded Isaac Newton as the Lucasian Professor at 

Cambridge, found Newton’s explanation for the formation of comet tails incomplete.  

Whereas Newton proposed that the vapors of the comet tail rise from the Sun due to heat 

and interactions with the æther, Whiston adopted the Keplerian view that the rays of the 

Sun exert a pressure on these materials that drive them antisunward (Heidarzadeh, 2008 

p.129-135). As he described in his book A new theory of the Earth, comets tails form 

from the “Atmosphere rarified by the Sun’s Heat; which becoming thereby, if not 
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specifically lighter than the Æther, or Atmosphere encompassing the Sun, yet as least so 

rare an light as to yield to the Sun’s Rays, and to be carry’d away by them, and so rise in 

a Mist or Steam of Vapours towards the Parts opposite to the Sun” (Whiston, 1755 p. 52). 

Leonhard Euler later eliminated any interaction with æther, stating that tails are formed 

solely by interaction with the Sun’s rays (Heidarzadeh, 2008 p.159-164). 

Edmund Halley, a contemporary and colleague of Isaac Newton, used Newton’s 

theory of gravity and observations of all known well-measured comets to break their 

motions down into orbital elements (Halley, 1705), and conducted the first dynamical 

studies of their population.  He discovered that the observed population of comets is 

nearly isotropic: “tis apparent, their Orbits are dispos’d in no manner of Order; nor can 

they, as the Planets are, be comprehended within a Zodiack, but move indifferently every 

Way, as well Retrograde as Direct” (Halley, 1705).  This population is now known as the 

Nearly Isotropic Comets (NICs).  Halley also proposed that there may be a great many 

number of comets that we do not see due to their lack of activity: “the Distances in the 

Perihelium’s are sometimes greater, sometimes less; which makes me suspect, there may 

be a far greater Number of them, which moving in Regions more remote from the Sun, 

become very obscure; and wanting Tails, pass by us unseen.” (Halley, 1705) 

However, Edmund Halley is most famous for proposing that the comets are not 

onetime apparitions, but rather that they return.  He noted that none of the known comets 

have been observed to follow hyperbolic motion, and thus no observed comet is unbound 

to the Sun.  He therefore concluded that Newton’s parabolic path for the comets is merely 

an approximation for very eccentric orbits with very long periods.  He then commented 

on how a comet with nearly the same set of orbital elements appears every ~76 years:  



 

 

20 

 

 

 

 
Figure 2.2 Edmund Halley’s Table of Cometary Orbital Elements.   

Edmund Halley computed this table of the orbital elements of the comets from all 
sufficiently and reliably observed comets.  This table, printed in his 1705 publication 
Astronomiae Cometicae Synopsis, shows that the comets of 1531, 1607, and 1682 share 
the same orbital elements, and are therefore the same object.  The units of the table 
“needs little Explication”, except that “the Perihelium Distances, are estimated in such 
Parts, as the Middle Distance of the Earth from the Sun, contains 100000.” (Halley, 1705) 
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there are many Things which make me believe that the Comet which Apian 

observ’d in the Year 1531. was the same with that which Kepler and 

Longomontanus took Notice of and describ’d in the Year 1607. and which I my 

self have seen return, and observ’d in the Year 1682. All the Elements agree, and 

nothing seems to contradict thismy Opinion, besides the Inequality of the 

Periodick Revolutions: Which Inequality is not so great neither, as that it may not 

be owing to Physical Causes.  For the Motion of Saturn is so disturbed by the rest 

of the Planets, especially Jupiter, that the Periodick Time of that Planet is 

uncertain for some whole Days together.  How much more therefore will a 

Comet be subject to such like Errors, which rises almost Four times higher than 

Saturn, and whose Velocity, tho’ encreased by a very little, would be sufficient to 

change its Orbit, from an Elliptical to a Parabolical one.  This, moreover, 

confirms me in my Opinion of its being the same; that in the Year 1456. in the 

Summer time, a Comet was seen passing Retrograde between the Earth and the 

Sun, much after the same Manner: Which, tho’ no Body made Observations upon 

it, yet from its Period, and the Manner of its Transit, I cannot think different from 

these I have just now mention’d. Hence I dare venture to foretell, That it will 

return again in the Year 1758. And, if it should then return, we shall have no 

Reason to doubt but the rest must return too: Therefore Astronomers have a large 

Field to exercise themselves in for many Ages, before they will be able to know 

the Number of these many and great Bodies revolving about the common Center 

of the Sun. (Halley, 1705) 

Halley could not have known that the comet he predicted to return (now known as 

Comet 1P/Halley) has a period so much shorter than the other NICs, nor that the giant 

planets (Jupiter in particular) do in fact excite incoming comets with highly eccentric 
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elliptical orbits to hyperbolic escape trajectories.  It therefore seemed reasonable to add 

observed comets to a table and look for the return of previous comets until all the comets 

are discovered.  Nevertheless, his discovery that comets can have elliptical orbits opened 

up a new avenue for studying the dynamics of comets and comet populations. 

All proposed theories of comets generally only attempted to explain the observed 

motion and behavior of comets, rather than their formation. Immanuel Kant proposed one 

of the first theories of comet formation.  He proposed that the bodies of the Solar System 

formed through accretion of protoplanetary materials, which were organized such that the 

densest materials were closer to the Sun, forming denser bodies (Heidarzadeh, 2008 p. 

164-168).  Further, the resulting bodies followed orbits that became progressively more 

eccentric with increasing heliocentric distance (Heidarzadeh, 2008 p. 164-168).  Thus, in 

Kant’s theory, comets were merely planets that formed from materials beyond Saturn (the 

most distant known planet at that time) into highly elliptical planetary bodies, an idea that 

is still recognizable in current theories of comet formation. 

In mid-June 1770, a bright new comet was discovered by Charles Messier that 

passed within 0.015 AU of the Earth, the closest perigee of a comet in recorded history 

(Stén, 2014 p.86-91).  Anders Johan Lexell tried to fit the observations of the orbit to a 

parabolic orbit, but found that the best fit was of an elliptical orbit with a period of 5.58 

years (Stén, 2014 p.86-91).  No comet had ever before had such a short orbital period 

(Stén, 2014 p.86-91).  Even more strangely, such a short orbital period suggested that this 

comet, now known as Lexell’s Comet, should have been observed on previous orbits.  

Although the following apparition of Lexell’s comet in 1776 possessed poor viewing 

geometry, the 1781 apparition had good viewing geometry, but the comet was never 
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observed (Stén, 2014 p.86-91).  Lexell integrated the comet’s orbit forward and 

backward, and determined that the comet had had a close approach with Jupiter, which 

had reduced the comet’s perihelion and rendered the comet visible in 1770 (Laplace, 

1824 p. 215). Furthermore, forward integrating the orbit revealed that the comet had had 

another close encounter with Jupiter in 1779 that had changed its orbit and rendered the 

comet “forever invisible” (Stén, 2014 p.86-91).  Although the comet has never been 

recovered (Stén, 2014 p.86-91), Lexell’s Comet turned out to be the first known member 

of an entirely new class of comet, the Jupiter Family Comets (JFCs). 

In the early 1800’s Pierre-Simon Marquis De Laplace realized that the mass of a 

comet should have gravitationally perturbed the orbits of the Earth and Moon, as well as 

that of the satellites of Jupiter.  While Laplace determined that the Earth had decreased 

the orbital period of Lexell’s Comet by 2 days, he found that the period of the Earth had 

not changed by a detectable amount (Heidarzadeh, 2008 p. 197-199).  Laplace therefore 

concluded: 

De toutes les comètes observées, celle-ci a le plus approche de la terre qui, par 

conséquent, aurait dû en éprouver une action sensible, si la masse de cet astre 

était comparable à celle du globe terrestre.  En supposant ces deux masses égales, 

l’action de la comète aurait accru de 11612’’, la durée de l’année sidérale.  Nous 

sommes certains par les nombreuses comparaisons des observations, que MM. 

Delambre et Burckhardt ont faites pour construire leurs Tables du Soleil, que 

depuis 1770, l’année sidérale n’a pas augmenté de 3’’; la masse de la comète 

n’est donc pas 1/5000 de celle de la terre, et si l’on considere que cet astre en 

1767 et 1779, a traversé le système des satellites de Jupiter, sans y causer le plus 

léger trouble; on verra qu’elle est moindre encore.  La petitesse des masses des 
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comètes est généralement indiqueé par leur influence insensible sur les 

mouvemens du système planétaire (Laplace, 1824 p. 215-216). 

Thus, Laplace showed that the mass of Lexell’s Comet had to be significantly less than 

1/5000th that of the Earth, and therefore has a negligible effect on the motions of the 

planets and the moons of Jupiter.  This unexpected result showed that the comets are not 

planet-mass objects, but rather they are at most a tiny fraction of a lunar mass 

(Heidarzadeh, 2008 p. 198).  Laplace further concluded that comets must be mostly 

composed of an extremely rarified atmosphere with only small amounts of condensed 

material contained within: 

Ces astres que l’on nomme comètes, sont preque toujours accompagnés d’une 

nébulosité qui en croissant, se termine quelquefois dans une queue d’une grande 

étendue, et qui doit être d’une rareté extrême; puisque l’on voit les étoiles à 

travers son immense profondeur. (Laplace, 1808 p. 51) 

William Herschel, who was observing nebulae around that time, noted that they 

have a “resemblance to telescopic comets, however, is very apt to suggest the idea, that 

possibly such small telescopic comets as often visit our neighbourhood may be composed 

of nebulous matter” (Heidarzadeh, 2008 p. 190). He later calculated the comet of 1807 to 

have a coma ~1 million km across with a nucleus less than 1,000 km in diameter 

(Heidarzadeh, 2008 p. 190), a result consistent with the cometary mass computation of 

Laplace.   

Laplace later speculated on the composition and nature of comets in his work 

Exposition du système du monde by considering the nature of their comae (atmospheres): 
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There are bodies which cannot be reduced to a state of fluidity, by the greatest 

heat which we can produce.  There are others which the greatest cold experienced 

on earth is unable to reduce to a solid State: such are the fluids which compose 

our atmosphere, and which, notwithstanding the pressure and cold to which they 

have been subjected, have still maintained themselves in the state of vapours.  

But their analogy with aeriform fluids, to which we can reduce a great number of 

substances by the application of heat, and their condensation by compression and 

cold, leaves no doubt but that the atmospheric fluids are extremely volatile 

bodies, which an intense cold would reduce to a solid state.  To make them 

assume this state, it would be, sufficient to remove the earth farther from the sun, 

as it would be sufficient in order that water and several other bodies should enter 

into our atmosphere, to bring the earth nearer to the sun.  These great vicissitudes 

take place in the comets, and principally on those which approach very near to 

the sun in their perihelion.  The nebulosities which surround them, being the 

effect of the vaporisation of fluids at their surface, the cold which follows ought 

to moderate the excessive heat which is produced by their proximity to the sun; 

and the condensation of the same vaporised fluids when they recede from it, 

repairs in part the diminution of temperature, which this remotion ought to 

produce, so that the double effect of the vaporisation and condensation of fluids, 

makes the difference between the extreme heat and cold, which the comets 

experience at each revolution, much less than it would otherwise be. 

(Heidarzadeh, 2008 p.203)  

Thus, Laplace proposed that comets are small, ice-covered bodies that form comae as the 

nucleus approaches the sun and volatilizes the ices.  Although this passage was later 

removed from all editions of the Exposition du système du monde after the 4th edition 
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(Heidarzadeh, 2008 p.202-203), this model of comets is the first hint of what would later 

be referred to as the “dirty snowball” model of comet nuclei. 

Following in the footsteps of Edmund Halley, Johann Franz Encke computed the 

orbits of the comets of 1786 I, 1795, 1805, and 1819, and determined that they were all 

the same comet with a period of 3.3 years (Heidarzadeh, 2008 p. 212).  He then ventured 

to predict the return in 1822 of the comet now known as Comet Encke (Heidarzadeh, 

2008 p. 212).  Encke was using a new method of computing orbits that had recently been 

developed by Carl Friedrich Gauss, and his calculations showed that Comet Encke’s 

orbital period was lengthening during each apparition (Heidarzadeh, 2008 p. 212).  Encke 

proposed that this motion was the result of drag with a medium that pervades the Solar 

System, the æther (Heidarzadeh, 2008 p. 212). 

A decade later, Friedrich Bessel was making observations of the 1835 apparition 

of Comet Halley, when he noticed that the coma was structured, containing what we now 

call dust jets (Heidarzadeh, 2008 p. 214).  He observed that the coma exhibited an 

enhancement of activity on the sunward side of the nucleus that appeared to oscillate 

about the sunward axis (Heidarzadeh, 2008 p. 214-215).  Bessel deduced that the nucleus 

of the comet was somehow ejecting material in the direction of the Sun.  Furthermore, he 

deduced that the recoil force from such an ejection pushes the nucleus in the opposite 

direction “like a burning rocket”, which can strongly affect the keplerian motion of the 

nucleus: 

die Ausströmung des Halley’schen Kometen, ohngefähr in der Richtung der 

Sonne, gab ihm, wie ich schon in der Beschreibung seines Ansehens angeführt 

habe, das Ansehen einer brennenden Rakete.  Sie muss auch dieselbe Wirkung 
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auf seine Bewegung gehabt haben, welche das Brennen einer Rakete auf die 

ihrige hat; sie muss ihm eine, ihrer eigenen entgegengesetzte Geschwindigkeit 

ertheilt haben.  Denn nicht der Schwerpunkt des Kometen selbst, sondern nur der 

gemeinschaftliche Schwerpunt des Kometen und der Ausströmung, kann, in 

jedem Augenblicke, eine Kegelschnitt nach den Keplerschen Gesetzen 

beschreiben; da die Ausströmung sich in jedem Augenblicke erneueren, oder sich 

als eine beschleunigende Kraft zeigen.  Der Anblick der Lebhaftigkeit der 

Ausströmung, oder vielmehr das anscheinende Verhältniss ihrer Masse zu der 

Masse des Kerns, muss die Meinung erzeugen, dass die daraus hervorgehende 

störende Kraft der elliptischen Bewegung des Kometen merklich sein könne. 

(Bessel, 1836) 

Thus, Bessel discovered how sublimating volatiles from the surface of comet nuclei 

affects their dynamical evolution, without invoking the æther. 

Bessel then discussed the meaning of this volatile nature of comets in regard to 

their structure and composition.  He argued that comets, unlike the planets, are not solid 

bodies.  He noted that the cores of comets are not opaque, and do not show a clear 

boundary. Additionally, the small masses of comets, which must somehow fill the very 

large volume of the comet, is consistent with a warmed vapor heated by the sun: 

Mehrere Beobachter haben frühere Kometen über Sterne hinweggehen sehen und 

diese nicht aus dem Gesichte verloren.  Wenn ein Vorübergang wirklich central 

gewesen ist und wenn die Atmosphäre des Kometen keine Strahlenbrechung 

besessen hat, so begründet diese Beobachtung den Schluss, dass der Kern des 

Kometen kein undurchsichtiger Körper gewesen ist.  Ich glaube zwar nicht, dass 

man die völlige Ueberzeugung hat erlangen können, dass die beobachteten 
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Bedeckungen central waren; auch bin ich der Meinung, dass die Behauptung der 

gänzlichen Abwesenheit einer Strahlenbrechung, auf Beobachtungen gegründet 

werden müsste, durch welche der scheinbare Ort eines Sterns, in noch grösserer 

Nähe bei dem Mittelpunkte des Kometen bestimmt wird, als durch meine, im 

vorigen Artikel mitgetheilte Beobachtung der Fall ist.  Demohngeachtet aber 

halte ich für wahrscheinlich, dass der Kern des Kometen kein eigentlich fester 

Körper ist; d.h. kein fester Körper der Art wie die Erde, der Mond und die 

Planeten.  Er muss in der That leicht in den Zustand der Verflüchtigung 

übergehen können, während die eben genannten Körper diese Eigenschaft nicht, 

oder wenigstens in einem geringen Grade besitzen: indem seine Oberfläche keine 

feste Begränzung zeigt, scheint sie sich in diesem Zustande zu befinden; der fast 

unbegreiflich grosse Raum, welcher durch die Schweife vieler Kometen gefüllt 

wird, verbunden mit der wahrscheinlichen äufsersten Kleinheit ihrer Massen, 

zeigt gleichfalls, dass die Materie der Kometen die Eigenschaft erlangt, sich 

unbegrenzt auszudehnen.  Allein diese Eigenschaft kann die Masse des Kometen 

ursprünglich nicht besitzen; wenigstens kann sie keine Materie sein, welche 

keine Dichtigkeit hat, wenn sie keinen Druck erleidet, denn seine solche Materie 

würde sich offenbar gänzlich zerstreuen.  Ich sehe aber keine Schwierigkeit der 

Annahme, dass die Kometen aus Theilen bestehen, welchen nur noch wenig and 

der Wärme, oder einer anderen repulsirenden Eigenschaft fehlt, welche sie 

besitzen müssen um flüchtig zu werden.  Dass die Verflüchtigung sich an dem 

der Sonne gerade zugewandten Theile der Oberfläche am frühesten zeigt, auch 

dass sie sich durch grössere Annäherung an die Sonne und durch längere Dauer 

ihrer Wirkung vermehrt und über einen, immer grösser werdenden Theil der 

Oberfläche erstreckt, ist nach dieser Ansicht zu erwarten, so wie auch mit den 
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Beobachtungen übereinstimmend.  Dass die Verflüchtigung, durch den mit ihr 

verbundenen Wärmeverlust, das Mittel werden kann, durch welches ein Theil der 

Kometenmasse vor der Zerstreuung geschützt wird, ist, wenn ich nicht irre, schon 

von Laplace bemerkt worden. (Bessel, 1836) 

A decade after Bessel observed Comet Halley, astronomers anticipated the 1846 

return of the third known Jupiter Family Comet, Comet 3P/Biela.  Although the comet 

was discovered by J.L. Montaigne of France (Jenniskens & Vaubaillon, 2007), it was 

named after Wilhelm von Biela, who was the first to calculate its 6.75 year orbit in 1826 

(Jenniskens & Vaubaillon, 2007).  Astronomers first spotted Comet Biela as a faint, 

nebulous object on 26 November 1846 (Heidarzadeh, 2008 p. 217).  Further observations 

soon revealed that the comet had fragmented into two separate comets, each with its own 

tail, and exhibited significant brightening events throughout the apparition (Jenniskens & 

Vaubaillon, 2007).  Additionally, the primary (brighter) fragment appeared to shed 

further pieces during the apparition (Jenniskens & Vaubaillon, 2007).   The two 

fragments did not appear to exert any significant gravitational influence on one another, 

in spite of a separation of only ~250,000 km, further evidence that the mass of comets are 

tiny (Heidarzadeh, 2008 p. 218).  The two fragments were again recovered during the 

following 1852 apparition, but failed to appear at any subsequent apparitions 

(Heidarzadeh, 2008 p. 219).  However, during an 1872 search for the comet, a very 

prominent and unexpected meteor shower appeared, with a peak intensity of 3000 hr-1 

(Heidarzadeh, 2008 p. 219).  Furthermore, the radiant of the meteor shower was in the 

constellation Andromeda, along the very path the Comet Biela was expected to follow 
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(Heidarzadeh, 2008 p. 219).  Thus, astronomers realized that comet dust produces meteor 

showers, and that Comet Biela had fragmented into dust. 

In 1858, Comet Donati appeared in the sky, exhibiting three tails, two of which 

were thin, linear features tangent to the main dust tail (Heidarzadeh, 2008 p. 219).  The 

two thin linear tails, called streamers, are now known to be the result of instantaneous 

ejections of dust from the nucleus (Sekanina & Kracht, 2014).  However, Comet Donati’s 

most novel feature were the shells of material surrounding the head of the nucleus, which 

expanded with time (Heidarzadeh, 2008 p.220-221). These shells led George Bond to 

conclude that a dust jet was building up these shells on each revolution of the nucleus as 

it swept through space (Heidarzadeh, 2008 p. 221), which expanded over time due to 

momentum.  He further realized that this ejection was controlled by the sun 

(Heidarzadeh, 2008 p. 221), which explained why no section of a shell was visible on the 

antisunward side of the nucleus (see Figure 2.3).  Thus, Comet Donati was the first comet 

to provide evidence of a rotating nucleus, and strengthened Bessel’s observation of 

cometary dust jets. 

A coherent picture of comet tail formation was beginning to emerge.  Comet Biela 

showed that comets can fragment into fine pieces, while Comets Halley and Donati 

revealed that such materials could be ejected sunward from the head of the nucleus.  

While Leonard Euler had first suggested that an interaction with Sun’s rays could push 

cometary material antisunward, the mechanics of such an effect was poorly understood.   
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Figure 2.3 Drawing of the Head of Comet Donati by George Bond. 

Comet Donati exhibited prominent shells of material that expanded away from the 
nucleus on the sunward side of the nucleus.  This engraving of Comet Donati was 
sketched by George Bond on 2 October 1858. (Bond & Watts, 1858) 
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James Clerk Maxwell first described the nature of such a radiation pressure in A treatise 

on Electricity and Magnetism, the same work in which he described the fundamental 

equations of electromagnetism: 

...the combined effect of the electrostatic and the electrokinetic stresses is a 

pressure[…] in the direction of the propagation of the wave.[...] Hence in a 

medium in which waves are propagated there is a pressure in the direction 

normal to the waves, and numerically equal to the energy in unit of volume. 

(Maxwell, 1954 p. 440-441) 

He further quantified the magnitude of this pressure based on his newly-developed 

“Maxwell’s Equations” of electricity and magnetism (Maxwell, 1954 p. 440-441). 

Shortly thereafter, William Crookes showed qualitatively that radiation has the 

expected repulsive effect.   He used the newly-invented Sprengel Pump, which consists 

of drops of mercury falling through a narrow tube, trapping bubbles of air to be evacuated 

from the system, and removes it from the system as it reaches the bottom of the tube 

(Sprengel, 1865).  Crookes found that the Sprengel pump could just barely get the test 

apparatus to the required “evacuation”, and used chemical absorption of the remaining 

gases to further reduce the pressure of his test chamber (Crookes, 1874).  In his evacuated 

chamber, he constructed a balance out of straw, which he experimentally determined to 

be the most ideal material available, attached two weights made of pith, and balanced the 

apparatus by charring the ends of the straw until the system reached equilibrium 

(Crookes, 1874).  He then experimented with light and heat, and found that both always 

repelled the mass, which a piece of ice attracted it (Crookes, 1874).  Lastly, he 

experimented with sunlight scattered through a prism, and found that “extreme visible 
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red” produced the strongest effect (Crookes, 1874).  Crookes concluded by discussing the 

possible application of radiation pressure to unsolved problems in celestial mechanics: 

In the sun’s radiation passing through the quasi vacuum of space we have the 

radial repulsive force, possessing successive propagation, required to account for 

the changes of form in the lighter matter of comets and nebulæ; and we may 

learn by that action, which is rapid and apparently fitful, to find the cause in 

those rapid bursts which take place in the central body of our system; but until 

we measure the force more exactly we shall be unable to say how much influence 

it may have in keeping the heavenly bodies at their respective distances. 

(Crookes, 1874) 

Later, Svante Arrhenius used Maxwell’s theory to calculate that comet dust must 

be ~1 µm across for radiation pressure to balance solar gravity (and therefore 

significantly affect dust motions), and Karl Schwarzschild computed that the solar 

radiation pressure can be up to 20 times stronger than solar gravity (Heidarzadeh, 2008 p. 

229-230).  Finally, the strength of radiation pressure on 1 µm grains was confirmed 

experimentally by Ernest Nichols and Gordon Hull (Heidarzadeh, 2008 p.230). Thus, the 

formation of cometary dust tails was largely understood. 

Meanwhile, the developing techniques of spectroscopy started being applied to 

comet observations in the mid-19th century.  Arthur Wright identified CO and CO2 gases 

trapped inside a freshly-fallen meteorite, and later passed an arc through this sample and 

noted that three bright spectral lines were produced, which matched the spectral bands of 

comets (Heidarzadeh, 2008 p. 234). Thus, Arthur Wright identified two of the three most 

prevalent volatile species present in comets.  Later, W.A. Norton used the recent 
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experimental and theoretical results of Michael Faraday and Claude Servais Mathias 

Pouillet to conclude that CO2 exists in a condensed phase on the surface of comet nuclei 

(Heidarzadeh, 2008 p. 234). In the 1940’s, Polydore F. Swings discovered that H2O was 

also present in comets (Heidarzadeh, 2008 p. 238), and is now known to be the most 

abundant cometary volatile ice.  Spectroscopy also uncovered many other, more minor 

volatile species generally composed of the elements Carbon, Hydrogen, Oxygen, and 

Nitrogen (or CHON) (Bockelée-Morvan et al. 2004). 

While the composition of comets was now being understood through 

spectroscopy, the structural nature of comets was still poorly understood.  Some believed 

that comets were merely coherent collections of dust in mutual orbits about the Sun (e.g. 

Lyttleton, 1948) (so-called “sandbank” model), an idea that seemed consistent with 

cometary meteor streams and the fragility of splitting comets (Whipple, 1961).  However, 

Whipple (1961) convincingly demonstrated that, were one to consider the surface area 

required to reflect the observed quantity of light toward the observer, and then considered 

the thickness of a coating of volatiles that would be required to cover this surface area to 

produce the observed quantities of volatiles leaving a comet (he focused specifically on 

the CO+ ion in particular), the “dust” would need to be coated in at least a meter of ice, 

and therefore a comet cannot be primarily composed of dust (Whipple, 1961).  Whipple 

then showed that these sandbank models are at least two orders of magnitude too low in 

their predicted gas-to-dust ratios compared to observations (Whipple, 1961).  Whipple 

also pointed out that sandbank models cannot explain the secular changes in the motions 

of comets, are inconsistent with sungrazing comets, whose close approaches would 
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vaporize any grain smaller than 30 cm, and that some tensile strength is required for a 

comet to survive tidal breakup (Whipple, 1961). 

Fred Whipple proposed an icy conglomerate model of comets (commonly known 

as the “dirty snowball” model) in two seminal papers (Whipple, 1950; 1951), in which a 

comet contains a small solid nucleus of ice and dust a few kilometers across.  He showed 

that, as these nuclei sublimate, the escaping gases carry away dust and form a coma 

(Whipple, 1950).  Additionally, he showed that the reaction force from sublimating gases 

can account for the secular motion of comets Encke, d’Arrest, and Wolf 1 (Whipple, 

1950).  Finally, an icy conglomerate continuously refreshes both the gas and “meteoric” 

materials in the nucleus, accounting for the observed gas-to-dust ratios (Whipple, 1951). 

Whipple’s icy conglomerate model of comets was proven correct when the Giotto 

spacecraft imaged the nucleus of Comet Halley in 1986 (Keller, 1986).  The nature of 

comets was finally known. Over the following three decades, spacecraft would 

investigate another five comet nuclei in situ, all of which are Jupiter Family Comets: 

19P/Borrelley, 9P/Tempel 1, 81P/Wild 2, 103P/Hartley 2, and 67P/Churyumov-

Gerasimenko.   

In the middle of the twentieth century, astronomers were beginning to devote 

significant effort to understand the reservoirs of the comets.  Although Edmund Halley 

first noted the parabolic shapes of comet orbits and speculated that a large number of 

comets exists at great heliocentric distance (Halley, 1705), Jan Oort first studied the 

distance to these comets.  He noted that Long-Period comets typically have aphelia 

between 50,000 AU and 150,000 AU, and noted that very few have aphelia smaller than 

10,000 AU, and noted that these distances denote the inner and outer radii of “a general 
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cloud of comets” surrounding the Sun (Oort, 1950). Oort proposed that his eponymous 

Oort Cloud was formed from objects scattered by Jupiter to great heliocentric distance 

(Oort, 1950).  Later, it was proposed that the Oort cloud formed from icy planetesimals 

that were scattered to large heliocentric distance during migration of the giant planets 

(a.k.a. the Nice Model) (Gomes et al. 2005; Morbidelli et al. 2005; Tsiganis et al. 2005). 

Meanwhile, Fred Whipple noted the similarity in composition of comets with 

Uranus and Neptune, and proposed the existence of a belt of comets beyond the orbit of 

Neptune akin to the asteroid belt between Mars and Jupiter (Whipple, 1964).  This belt is 

named after Gerhard Kuiper (the Kuiper Belt), even though Kuiper ironically predicted 

that such a belt would be dynamically unstable and should therefore not exist (Kuiper, 

1951). Later, it was proposed that a separate population of comets scattered outward by 

Neptune during planet migration (Gomes et al. 2008) have been slowly leaking into the 

giant planet region of the Solar System on billion-year timescales (Duncan & Levison, 

1997). These comets then migrate through the giant planet region on timescales of ~10 

million years before entering the Jupiter Family of Comets (Duncan & Levison, 1997). 

Thus, the general structure, composition, dynamics, and origin of the comets 

became known by the time I began graduate school.   
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“200 degrees in the sunlight, minus 200 in the shade, canyons of razor-
sharp rock, unpredictable gravitational conditions, unexpected 
eruptions...” 

“...That’s all you gotta say, scariest environment imaginable” 
-Armageddon (1998) 

 
 

CHAPTER 3. SUBLIMATION PRESSURE 
 
 

Sublimation is a defining process of comet nuclei.  The release of volatile gases 

generates a momentum flux (units of pressure) that pushes nuclei, leading to non-

keplerian motion of the comet.  Despite the importance of this process, methods to 

compute the magnitude of this reaction pressure have been limited to empirical fits of 

volatile sublimation experiments, which are only available for some cometary 

volatiles.  I develop a theoretical model of volatile sublimation that requires 

significantly less empirical data to accurately model volatile sublimation.   

I then devise a novel model of cometary disruption, in which sublimative momentum 

flux induces differential stresses within the nucleus.  If these stresses exceed the 

material strength of the nucleus, it will undergo brittle failure and fragment.  I then 

show that this model is consistent with the fragmentation of Comet C/2012 S1 

(ISON).  Through this model, I estimate the strength of Comet ISON’s nucleus to be 

0.2-0.5 Pa, ad the strength of the resulting fragments to be 0.6-9 Pa.   
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The following manuscript was published in Icarus (volume 258, p. 430-437) in 2015 

as “Dynamic sublimation pressure and the catastrophic breakup of Comet ISON”, 

coauthored by Brandon C. Johnson, Timothy Bowling, H. Jay Melosh, David Minton, 

Carey M. Lisse, and Karl Battams. 

 

 

3.1 Introduction 

On November 12, 2013 sungrazing comet C/2012 S1 (ISON) unexpectedly 

disrupted into fragments. This occurred at a heliocentric distance of 145 solar radii (!!) 

(0.68 AU), prior to reaching perihelion (Combi et al. 2014; Boehnhardt et al. 2013; 

Steckloff et al. 2015). Subsequent disruption events occurred on November 21 and 26 at 

88 !! (0.41 AU) and 36 !! (0.17 AU) respectively (Knight & Battams, 2014; Steckloff 

et al. 2015). While there is nothing seemingly special about these heliocentric distances, 

currently known sungrazing comet disruption mechanisms seem inadequate to explain 

ISON’s demise.  ISON’s disruptions occurred much too far from the Sun to have been 

caused by ablation or chromospheric impact, which disrupt nuclei within a heliocentric 

distance (q) of 1.01 !! (Brown et al. 2011).  Tidal stresses can disrupt the nucleus only 

within the fluid Roche Limit (q < ~2 !!) (Knight & Walsh, 2013).  Additionally, ISON’s 

effective radius of ~600-700 m (Delamere et al. 2013; Lamy et al. 2014) was too large to 

have lost all its ice through complete sublimation and then disintegrated, a process that 

may only disrupt nuclei less than ~200-350 m in radius (Knight & Walsh, 2013; 

Sekanina, 2003).  Finally, ISON’s 10.4 hour rotation period at 210 !! on November 1 

(Lamy et al. 2014) was too long for nongravitational torques to spin the body up to 
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fragmentation (~2.2 hour period) (Pravec et al. 2006) by the time it reached 145 !! less 

than 2 weeks later on November 13 (Samarasinha & Mueller, 2013).  However, it has 

been implied that sublimating gases are linked to the disruption of sungrazing comets 

(Sekanina 2003).  Here we introduce a new break-up mechanism that readily explains 

Comet ISON’s series of disruptions.  

As illustrated in Figure 3.1, gas sublimating on the sunward side of the nucleus 

transfers momentum to the nucleus, exerting a dynamic sublimation pressure on its 

illuminated hemisphere.  The sublimation pressure on the surface generates differential 

stresses within the nucleus that may exceed ISON’s material strength, ultimately 

disrupting the comet into fragments (Brown et al. 2011; Borovi$ka et al. 2013). Based on 

the timing of disruption events we can estimate the bulk unconfined crushing strength of 

Comet ISON’s nucleus. 

 

3.2 Theory/calculation 

Investigating our proposed disruption mechanism requires an accurate 

computation of the sublimation pressure (itself a function of both thermal gas velocity 

and mass loss rate) acting at the surface of the nucleus as a function of heliocentric 

distance.  Previous computations of cometary sublimation rely heavily upon either 

empirical fits to observed volatile mass loss rates (e.g. Marsden et al. 1973; Cowan & 

A’Hearn 1979; Sekanina, 1992), or on the theoretical dependence of mass loss rates on 

temperature (Delsemme & Swings, 1952) rather than the dependence of sublimation 

pressure on heliocentric distance.  We choose instead to construct a versatile 

thermodynamic model of the sublimation pressure acting upon a cometary surface. In our 
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calculations, the heliocentric dependence of the sublimation pressure of a particular 

volatile species is fully described by six known quantities: heliocentric distance (rhelio), 

molar mass (mmolar), heat of sublimation (L), sublimation coefficient (!) and a laboratory 

measurement of vapor pressure (Pref) at a known temperature (Tref).   

Comets consist of intimate mixtures of refractory materials (silicates, metal 

sulfide dust, organics) and volatile ices (primarily H2O, CO2, and CO [Bockleé-Morvan 

et al. 2004]).  The phase-change behavior of mixtures of volatiles can be significantly 

more complicated than that of a single, pure volatile species.  In particular, if cometary 

CO is mostly trapped within amorphous H2O ice, then the release of significant quantities 

of CO may require the amorphous H2O ice to crystallize (Bar-Nun et al. 2013), which is a 

highly exothermic and potentially explosive phase transition (Mastrapa et al., 2013).  

Moreover, the presence of amorphous ice in comets is contentious (Lisse et al. 2013). 

However, Comet ISON’s CO content is only a few percent of its H2O content (Weaver et 

al., 2014) and produced an order of magnitude less CO2 than H2O (McKay et al. 2014).  

Therefore, we may assume that the sublimation pressure acting on Comet ISON’s surface 

is dominated by the sublimation of pure H2O ice, which avoids the complications of the 

sublimation of mixed materials and species more volatile than H2O ice.  However, we 

include the cases in which pure CO2 and CO ice sublimates for the sake of comparison, 

which admittedly ignores the complications of how one would trap significant quantities 

of CO ice in the first place. 

Typical bond albedos measured for Jupiter Family Comet (JFC) nuclei are very 

low (0.03-0.06) (Li et al. 2013a; Li et al. 2013b; Capaccioni et al. 2015), and when JFCs 

approach the Sun, most of the incident radiation (94-97%) is absorbed at the surface and 



 

 

44 

drives the sublimation of volatile ices (an active comet’s dominant cooling mechanism).  

We explore the case in which Comet ISON’s albedo is similar to that of JFCs, and 

assume that all incident radiation is absorbed (bond albedo of 0).  However, because 

dynamically new comets have never been thermally processed by the Sun, it is plausible 

that their surfaces are significantly richer in ices than JFCs, which could lead to a much 

higher albedo. Moreover, there are no high-resolution observations of dynamically new 

comet nuclei, which would constrain their albedos.  We therefore also explore the case in 

which Comet ISON has a bond albedo of 0.5, which is similar to that of the dwarf planet 

Pluto. 

Observations of JFC nuclei suggest that cometary thermal inertia is very low 

(Gulkis et al. 2015; Davidsson et al. 2013; Groussin et al. 2013; Lisse et al. 2005; Lamy 

et al. 2008), meaning that little daytime heat is stored by the surface to be later released 

when it rotates into night.  This naturally explains their highly asymmetric dayside-

nightside distribution of sublimating gases (Feaga et al. 2007; Gulkis et al. 2015).  

Similarly, Comet ISON’s activity is concentrated on its illuminated hemisphere (Li et al. 

2013c).  Since cometary activity is driven by volatile sublimation, we assume that 

effectively all volatile emission occurs on Comet ISON’s illuminated hemisphere, 

causing a sublimation pressure that only acts on the illuminated parts of its nucleus.  

Indeed, it has been known for decades that nongravitational forces push predominantly 

on the sunward hemispheres of comet nuclei (Marsden et al. 1973).  While observations 

show that the unilluminated side of comet nuclei can emit volatiles, emission on the 

unilluminated side is usually less than half of the emission of the illuminated side (Feaga  
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Figure 3.1 Schematic of Dynamic Sublimation Pressure Disruption Mechanism and 
Comparison to Atmospheric Impact. 
 
(Left) We assume that the dynamic pressure is zero on the dark side of the nucleus, while 
the peak dynamic pressure on the illuminated side (Psub) becomes comparable to the 
unconfined static crushing strength of the nucleus (%).  When Psub exceeds %, the nucleus 
disrupts catastrophically.  (Right) This is analogous to the nucleus impacting a planetary 
atmosphere.  A ram pressure (Pram) builds up on the leading edge of the nucleus as it 
travels through the atmosphere.  If Pram exceeds %, then the nucleus breaks up into 
fragments (Borovi$ka et al. 2013). 
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et al. 2007; Gulkis et al. 2015).  Therefore, our sunward emission assumption is valid for 

our purpose of obtaining an order of magnitude estimate of ISON’s strength. 

While the nuclei of highly thermally evolved comets (like JFCs) emit dust and gas 

from only a small fraction of their surfaces (Ververka et al. 2013, Samarasinha & 

Mueller, 2013), ISON’s high H2O production rate prior to disruption suggests that nearly 

the entire surface of its nucleus was active (Combi et al. 2014), consistent with a 

thermally primitive, dynamically new comet.  This implies that volatile ices are located 

within the thermal skin depth of the comet’s surface.  We therefore assume that volatile 

ices sublimate from the entire illuminated surface of ISON, and that a negligible amount 

of incident solar energy is thermally radiated into space from a mantle of material 

covering the volatile ices. 

The dynamic pressure exerted by sublimating volatiles on the surface of the 

nucleus is equal to the momentum flux of the departing material, and is computed by 

multiplying the volatile’s mass flux by its thermal velocity.  Assuming that volatile ices 

are at or near the surface, we estimate Comet ISON’s volatile mass flux by equating the 

absorbed solar energy to the energy required to sublime each ice species, as first 

described by Fred Whipple (Whipple, 1950).  We assume that volatile ices and refractory 

materials are intimately mixed, such that heat is rapidly transferred from refractory 

materials to volatile ices.  We ignore the amount of energy required to warm the ices 

from their initial low temperatures (perhaps 10 K for dynamically new comets such as 

ISON) to the equilibrium sublimation temperature. Such heating consumes less than 

~10%, ~25%, and ~25% of the total incident solar energy for H2O, CO2, and CO ice 

respectively, and is therefore negligible for our order of magnitude estimates.  For 
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simplicity, we treat each volatile species individually, while acknowledging that multiple 

species may sublime simultaneously from different depths below the surface.   

 

3.2.1 Computing Mass Flux, Force, Temperature, and Sublimation Pressure 

The incident solar radiation intensity at the location of the comet is given by  

!!"!!" ! !!"#$%
!!!!!

      (3.1) 

where Lsolar is the solar luminosity ( 3.846 x 1026 W), and !! is the heliocentric distance.  

We assume that all solar radiation incident upon an area element of the surface of the 

nucleus (dA) is used to overcome the latent heat of sublimation of these volatile ices 

(Whipple, 1950) to determine each species’ mass flux 

! ! !!! !! !!"#$%!!!! !"#! ! !!! !! !!"#$%
!!!!!!!!!

!"#!   (3.2) 

where A is the albedo of the sublimating surface, !!!! is the temperature-dependent 

latent heat of sublimation of a volatile ice species and ! is the angle between the comet-

Sun line and the vector normal to the area element (local phase angle).  For a sphere, ! is 

equivalently the azimuth angle of the area element from the subsolar point.  While the 

latent heat of sublimation for water is temperature-dependent, it varies so little over the 

temperature range of interest (Feistel & Wagner, 2007) that treating it as a constant 

makes a negligible difference in our results.  We therefore assume that the latent heat of 

sublimation is a constant. 

We determine the thermal velocity of the dominant sublimating volatile using the 

kinetic theory of gases.  We assume that the speeds of sublimating gas molecules obey a 



 

 

48 

Maxwell-Boltzmann distribution, where the mean of the magnitude of the molecule 

velocities escaping from a given area element (!") is 

!!!!"#$% ! ! !!"
!!!"#

      (3.3) 

where mmol is the molar mass of the species, T is the gas temperature, and R is the ideal 

gas constant.  The gas diffusing through the cometary pores has a Knudsen number of 

Kn~102-105, which allows us to assume that the sublimating volatile molecules are 

sufficiently rarefied to be emitted from a porous regolith according to Lambert’s cosine 

law (Gombosi, 1994, pp. 227-230). Thus, the number of molecules emitted in a particular 

direction from an area element (!!!!!) is proportional to the cosine of the angle of that 

direction with respect to the vector normal to that area element 

!!!!! ! !!"
! !"#!     (3.4) 

where !!" is the number flux of molecules through area element dA, and ! is the angle 

made with the vector normal to area element dA.  We compute the net force on a given 

area element from sublimating gas molecules by multiplying this particle density 

distribution by both vthermal and the mass of a particle, and then integrate over all solid 

angles.  Since the particle density distribution depends solely on the angle with respect to 

the vector normal to the area element, this computation is axisymmetric.  Thus, the 

components of the force tangential to the surface of area element dA cancel out, allowing 

us to consider only the component of the force normal to the surface.  Integrating over all 

solid angles above the ground 

!!"!#!$% ! !
! !!!!!"#$% !!!!"    (3.5) 

and the mass flux from the area element (!) is 
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! ! !!"!"#
!!"

!!!"!"       (3.6) 

where mmolar is the molar mass of the sublimating gas and Nav is Avogadro’s constant.  

Combining equations (3.2), (3.3), and (3.5) 

!!"!#!$% ! !
! !!! !!

!!"#$%
!!!!!!

!!"
!!!"#

!!"#! !"   (3.7) 

We compute the appropriate temperature (T) in Equation (3.7) by joining the 

Langmuir-Knudsen (Langmuir, 1913) equation of sublimation rates with the Clausius-

Clapyron relation of equilibrium partial pressure and temperature of an ideal gas 

! ! !!!!! !!"#
!!"#!!!!        (3.8) 

!"
!" !

!
!!

!
!      (3.9) 

where !!!! is the temperature-dependent sublimation coefficient (e.g. Gundlach et al. 

2011) and P(T) is the temperature-dependent partial pressure of the molecular species, 

which results in the following expression for the temperature as a function of the mass 

flux:  

! ! !!!!! !!"#
!!"#!!"!!

!
!

!
!!"#

!!!     (3.10) 

where Pref and Tref are an experimentally measured reference pressure and temperature of 

the species.  We use the empirical fit to the temperature dependence of the sublimation 

coefficient !!!! for H2O from Gundlach et al. (2011), which produces a small 

improvement in the computation of water’s sublimation pressure over setting the  
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Figure 3.2 Azimuthal Dependence of Dynamic Sublimation Pressure 

A plot of the azimuthal dependence of the dynamic sublimation pressure for three 
separate heliocentric distances for the case of a bond albedo of 0.  Azimuthal angle is the 
angle between the subsolar point and the vector normal to the surface of an idealized, 
spherical nucleus.  While the real nucleus is not necessarily spherical, it will have a 
subsolar point and a limb, where the dynamic sublimation pressures will be at a 
maximum and zero respectively.  The differential stress that results from this pressure 
difference is ultimately responsible for fragmenting the nucleus. 

 

  

0 10 20 30 40 50 60 70 80 900

1

2

3

4

5

6

7

8

9

10

azimuth from subsolar point (degrees)

D
yn

am
ic

 S
ub

lim
at

io
n 

Pr
es

su
re

 (P
a)

 

 

36 Rsolar

88 Rsolar

145 Rsolar



 

 

51 

sublimation coefficient to 1.  We set the sublimation coefficient !!!! for all other species 

to 1.  Combining equations (3.2) and (3.10) 

!!! !! !!"#$%!!!!!!
!"#! ! !!!! !!"#

!!"#!!"!!
!
!

!
!!"#

!!!     (3.11) 

Note that this is a transcendental equation, which does not have an analytical solution.  

Thus, we solve for this temperature numerically.  Lastly, since pressure is a force applied 

over an area, we rearrange equation (3.7) to describe the dynamic sublimation pressure 

exerted on the surface of a nucleus 

!!"#!!! !!! ! !
! !!! !!

!!"#$%
!!!!!!

!!"
!!!"#

!!"#!            (3.12) 

We approximate a comet as a sphere, and plot the dependence of the dynamic 

sublimation pressure on the azimuth from the subsolar point (!) for the sublimation of 

H2O at heliocentric distances of 36 !!, 88 !!, and 145 !! (see Figure 3.2). 

 

3.2.2 Differential Stress 

Computing differential stresses with ISON’s nucleus is essential to our analysis, 

because differential stresses can lead to its disruption.  A compressive differential stress 

will cause a brittle material to deform, but the material will remain intact deforming 

elastically as long as the differential stress remains below the material’s strength.  

However, when the differential stress exceeds a brittle material’s strength, the material 

will fail and fracture.  In the case of a comet, when the dynamic sublimation pressure 

causes material failure, the nucleus will subsequently fragment.   

Because the sublimation pressure drops to zero at a 90-degree azimuth from the 

subsolar point (the limb of the nucleus) and remains near zero on the unilluminated side,  
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Figure 3.3 Schematic of how Sublimation Pressure Induces Differential Stresses.   

 (top) dynamic sublimation pressure acts upon the sunward hemisphere of the nucleus.  
Sublimation pressure peaks at the subsolar point, but drops off to zero toward the limb.  
As the nucleus approaches the Sun, the sublimation pressure increases. (bottom inset) We 
illustrate the stresses acting on a parcel of material within the nucleus after subtracting off 
the hydrostatic pressure.  The distribution of the sublimation pressure acting on the 
surface of the nucleus induces unequal stresses on the parcel of material, with stresses 
greatest along the comet-Sun axis.  As the nucleus approaches the Sun, the stresses on the 
parcel grow.  If the difference in stresses between the maximum stress and minimum 
stress axis (the differential stress) exceeds the strength of the material, then the parcel 
fails and fragments. 
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the maximum differential stress within the nucleus is similar in magnitude to the 

sublimation pressure at the subsolar point (the maximum sublimation pressure).  

Therefore, when we compute the dynamic sublimation pressure at the subsolar point as a 

function of heliocentric distance, we are approximating the maximum differential stresses 

within the nucleus (see Figure 3.3).  

Gundlach et al. (2012) proposed a related mechanism, in which a sublimation 

pressure that pressed equally on all parts of the nucleus may have allowed Comet C/2011 

W3 (Lovejoy) to survive through its perihelion of 1.2 !!.  Within ~10 !! of the Sun, the 

coma of a comet with a ~1 km nucleus becomes optically thick (Drahus et al. 2014), 

causing light of equal intensity to fall upon all parts of the nucleus, which results in a 

uniform sublimation pressure being exerted on all parts of its surface.  Unlike our 

proposed mechanism, such a phenomenon would generate no new differential stresses 

within the interior of the nucleus.  However, it would induce a confining pressure on its 

surface, which can increase the strength of porous, granular materials (Alkire & 

Andersland, 1973).  If this increase in strength were sufficiently large, then volatile 

sublimation near the Sun could allow C/2011 W3 (Lovejoy) to resist the strong solar tidal 

forces that exist within the Roche Limit that would otherwise disrupt the nucleus 

(Gundlach et al. 2012). 

The Whipple model for ice sublimation (Whipple, 1950), combined with our 

model of ISON as a sublimating sphere of ice 680 m in radius (Lamy et al. 2014), 

predicts a mass loss rate from Comet ISON’s nucleus for H2O at 214 !! (1 AU) of 

qwater=2.75x1028 s-1, in agreement with the observed production rate of qwater = 

2.30(±0.71)x1028 s-1 (Combi et al. 2014).  Measurements of Comet ISON’s Af! parameter 
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as a function of aperture radius (!) flattened out and approached a constant value as ISON 

approached the Sun, suggesting that icy grains ceased to contribute significantly to 

ISON’s volatile production by late October (Knight & Schleicher, 2015).  We therefore 

find that such close agreement between the expected and measured production rates 

generally support our assumption that the entire illuminated hemisphere is sublimating.  

Although Combi et al. (2014) deconvolved the observations with a model to obtain a 

daily average water production rate, their observed production rate of 

qwater=1.99(±0.32)x1028 s-1 at 0.98 AU is consistent with the measured rate of qwater = 

1.6x1028 s-1 (±25%) at 0.98 AU (Bodewits et al. 2013), and their observed production rate 

of qwater=1.79(±0.35)x1028 s-1 at 0.88 AU is within a factor of 2 of qOH = 8.14(±2.31)x1027 

s-1 at 0.89 AU (Opitom et al. 2013a).  These observations, which demonstrate remarkable 

agreement across various instruments, are consistent with a highly active, intact nucleus.   

However, after November 12th, the amount of active surface required to match the 

observed H2O production increased permanently by a factor of ~25, implying that the 

nucleus had then disrupted into a swarm of fragments (Combi et al. 2014).  This is 

consistent with the observation of arc-like wings in the coma of ISON, which suggest the 

presence of multiple fragments (Boehnhardt et al. 2013).  Other analysis determined that 

the radius of ISON’s nucleus (or nucleus fragments) decreased too much during this 

event to be solely the result of sublimative surface erosion, further implying a disruption 

event at 145 !! (Steckloff et al. 2015).  We therefore interpret this first event to be the 

complete breakup of the nucleus into a swarm dominated by large fragments ~100 m in 

radius (see Discussion section).  The swarm (or specific large fragments within it) was 
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later observed to undergo two further significant disruption events on November 21st and 

November 26th Knight & Battams, 2014; Steckloff et al. 2015). 

Escaping fragments and lofted grains do not directly contribute to the reaction 

force on the comet’s nucleus because their velocity is so slow near the nucleus relative to 

the sublimating gases that they carry a negligible amount of momentum away from the 

nucleus.  However, they can reflect some fraction of the sublimated gas molecules back 

onto the nucleus, further increasing the dynamic pressure.  This effect can only increase 

the peak dynamic pressure by a factor of ! (in the unlikely limit that every gas molecule 

bounces indefinitely between the nucleus and icy grains), to equal the gas vapor pressure.  

We adopt the conservative stance of neglecting this uncertain (but positive) backpressure, 

which can only add to the dynamic sublimation pressure, and which will introduce only 

small errors into our estimate. 

 

3.3  Results 

Motivated by observations of high H2O production (Combi et al. 2014; Opitom et 

al. 2013a, 2013b, 2013c), we assume that volatile sublimation is dominated by H2O as 

ISON approached perihelion. We compute the maximum dynamic H2O sublimation 

pressure (and thus estimate the bulk cometary unconfined crushing strength) when Comet 

ISON disrupted at heliocentric distances of 36, 88, and 145 !! (Combi et al. 2014; 

Boehnhardt et al. 2013; Knight & Battams, 2014; Steckloff et al. 2015)]. We find 

strengths of 9, 1, and 0.5 Pa, respectively, for the case where ISON has a bond albedo of 

0. If we instead assume a bond albedo of 0.5, we find strengths of 4, 0.6, and 0.2 Pa 

respectively (see Figure 3.4). These strengths are comparable to estimates of the strengths  
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Figure 3.4 Dynamic Gas Sublimation Pressures for Major Volatile Species.   

A plot of dynamic gas pressures for pure H2O, CO2, and CO as a function of heliocentric 
distance, measured in both Solar Radii (!!) and Astronomical Units (AU).  We include 
the mineral fosterite (Nagahara et al. 1994) as a proxy for refractory cometary materials, 
which only becomes dominant in the absence of volatiles very near the Sun.  Solid curves 
denote sublimation pressures if the nucleus has zero bond albedo while the dashed curves 
are for an assumed bond albedo of 0.5.  For a bond albedo between these two values, the 
sublimation pressure will lie between these two curves.  The thin, dashed vertical lines at 
36, 88[2], and 145[1] !! mark where Comet ISON disrupted into fragments (Combi et al. 
2014; Knight & Battams, 2014), while the dotted line at 2.66 !! denote Comet ISON’s 
perihelion distance. 
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of Jupiter Family Comets (JFCs) (Asphaug & Benz, 1996; Bowling et al. 2014; Melosh, 

2011; Sekanina & Yeomans, 1985; Thomas et al. 2015).  If Comet ISON’s true bond 

albedo is between these two values, then the maximum dynamic pressure and bulk 

unconfined crushing strength estimates will also lie between the corresponding values.  

Such a hierarchy of strengths is consistent with studies of the strength of geologic 

materials, which depend inversely on the size of the sample (Brace, 1961), and is 

consistent with evidence suggesting that comet nuclei are composed of pieces that are 

heterogeneous in strength (Sekanina, 2003).  The lowest of these strength estimates (0.2 

and 0.5 Pa depending on bond albedo) corresponds to the first disruption event (at 145 

!!), and therefore represents the bulk unconfined crushing strength of ISON’s intact 

nucleus (prior to any significant fragmentation).  The higher strength estimates 

correspond to the later disruption events at 88 !! and 36 !!, and therefore represent the 

strengths of fragments of ISON’s nucleus. 

 

3.4  Discussion 

After a fragmentation event, the size of the resulting fragments may have an 

observable effect on the motion of the comet or morphology of the nucleus.  The 

sublimation pressure acting on the illuminated surfaces of the nucleus provides a net 

antisunward force, with the net motion of the nucleus dependent on this sublimation force 

and the solar gravitational force.  Since the sublimation force depends on surface area, 

while the gravitation force depends on volume, larger bodies (smaller surface-area-to-

volume ratio) are less susceptible to the sublimation force than smaller bodies (larger 

surface-area-to-volume ratio).  Therefore, if the nucleus produced fragments of 
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substantially unequal sizes, smaller fragments would appear to drift antisunward of the 

larger fragments, which would cause the central condensate of the comet’s coma to 

elongate and even break up.  However, Comet ISON maintained a strong central 

condensate (a compact region of peak coma brightness) up until only a few hours before 

perihelion (Knight & Battams, 2014; Opitom et al. 2013b, 2013c), and this central 

condensate only began to noticeably elongate a few days before perihelion (Steckloff et 

al. 2015).  Thus, either the first fragmentation event broke Comet ISON into a swarm of 

equally sized fragments, or into differently sized fragments that were still each large 

enough to limit the relative drift between fragments and the resulting observable changes 

to the morphology of the coma. 

Steckloff et al. (2015) conducted a preliminary study to estimate the sizes of the 

dominant fragments of Comet ISON.  They measured the deviation of Comet ISON’s 

position using the SCUBA-2 instrument on the James Clerk Maxwell Telescope from 

JPL Horizon’s ephemeris solution #53, and estimated fragment sizes by assuming that 

this deviation is entirely due to H2O sublimation pressure.  From this, they determined 

that the first fragmentation event reduced the effective radius of Comet ISON from an 

approximately 680 m for the intact nucleus to fragments on the order of ~100 m.  Such 

fragments would require approximately half of a week to traverse a single pixel of the 

SCUBA-2 instrument and a few days more for the larger pixels of the TRAPPIST 

telescope.  This provides a rough estimate of the timescale over which coma morphology 

would noticeably elongate from the release of a single fragment from a much larger 

parent nucleus.  This timescale would be longer if the fragments are closer in size, since 

they would drift together.  Since no change in coma morphology was detected during the 
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9 days between the first and second fragmentation events, it is unlikely that ISON only 

released a single ~100 m fragment from the nucleus during the first fragmentation event.  

Rather, it is more likely that the first fragmentation event broke up ISON’s nucleus into a 

swarm of large fragments with radii on the order of ~100 meters.   

Because the coma may have started to elongate between the second and third 

fragmentation events, it is unclear whether the second fragmentation event was the result 

of a single fragment or multiple fragments disrupting.  However, the elongation of the 

central condensate after the third fragmentation event (Steckloff et al. in prep.) suggests 

that a large range of fragment sizes were present after the third fragmentation event. 

 

3.4.1 Supervolatiles and Amorphous Ice 

Samarasinha (2001) proposed that the buildup of pore pressure within the nucleus 

from the sublimation of super-volatile species could lead to its disruption.  This 

mechanism requires that the thermal skin depth of the comet be large enough to reach 

pockets of deeply seated volatiles.  The thermal skin depth (!!"#$) describes the 

characteristic length scale over which the amplitude of a heat pulse conducting (without 

sublimating volatiles) into an infinite half-space of material with a fixed boundary 

location and temperature drops by a factor of e, and is given by the equation 

!!"#$ ! !!       (3.13) 

where ! is a material’s thermal diffusivity (typically on the order of 10-6 m2 s-1 for dense 

rocks or ice) and ! is the duration since the onset of the thermal pulse.  The longer a 

material is exposed to a heat pulse, the deeper the heat can penetrate.  The rate at which 
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the thermal skin depth advances into a material is obtained by differentiating equation 

(13) with respect to time (!) 

!!"#$ ! !!!"#$
!" ! !

!
!
!      (3.14) 

! !
!!!"#$

      (3.15) 

Thus, as the time of exposure (!) and thermal skin depth (!!"#$) increases, the rate of 

growth of the thermal skin depth (!!"#$) decreases.   

If the fixed-temperature boundary is receding at a constant rate, the thermal skin 

depth (!!"#$) will either grow or shrink until !!"#$ is equal to this rate of recession, and 

the thermal skin depth will maintain a fixed depth relative to the surface.  However, 

because heat takes time to conduct from the surface to the thermal skin depth, the 

distance between the thermal skin depth (!!"#$) and the receding surface will be less than 

what equation (3.13) provides.  Also, the rate of surface recession on a comet nucleus is 

not constant, but rather accelerates as the nucleus approaches the Sun, which further 

reduces the distance between the surface and !!"#$.  Additionally, moving boundaries, 

changing boundary conditions, and sublimation make the actual temperature profile of a 

comet nucleus significantly more complicated than that which results from simple heat 

conduction.  However, if we assume that the H2O sublimation front, whose temperature is 

largely determined by heliocentric distance, is some distance !!"# below the surface of 

the nucleus and that !!"#$ is measured from the sublimation front, then the quantity 

!!"#$ ! !!"# (computed using equations (3.13) and (3.15)) will be a conservative 

overestimate of Comet ISON’s orbital thermal skin depth. 
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Because Comet ISON’s activity occurred predominantly on the sunward 

hemisphere (Li et al. 2013c), the volatiles driving this activity had to respond to the day-

night (diurnal) cycle of the nucleus, and could therefore be no deeper below the surface 

than a depth comparable to the diurnal skin depth.  Based on a ~10.4 hour rotation period 

for the nucleus of Comet ISON (Lamy et al. 2014), the sublimation front of H2O (!!"#) is 

no more than ~20 cm below the surface.  Since sublimation is a comet’s dominant 

cooling mechanism in the inner Solar System, we estimate the rate of the sublimation 

front’s recession into the nucleus at the time of the Lamy et al. (2014) observations by 

dividing the mass-loss rate equation (equation 3.2) by the bulk density of a typical comet, 

and find that it is on the order of ~10-6 m/s.  Noting that the rate of sublimation front 

recession and thermal skin depth recession (!!"#$! are in equilibrium, we set !!"#$ to ~10-

6 m/s, and find that !!"#$ is on the order of ~0.5 m.  Thus, !!"#$ ! !!"# is on the order of 

meters, and therefore cold, Oort Cloud conditions persist in the primordial materials of 

Comet ISON only a few meters at most below the surface of the nucleus. 

 Because the orbital thermal skin depth is so shallow, if the thermal wave were to 

reach a pocket of supervolatile ices or trigger the crystallization of amorphous ice, they 

would release fragments from the surface with sizes comparable to the orbital thermal 

skin depth.  Thus, if the first fragmentation event were the result of the rapid sublimation 

of supervolatile species, one would expect to see an outburst that released debris up to an 

order of ~1 m in size, leaving the nucleus largely intact.  If the nucleus is composed of 

amorphous water ice whose crystallization was triggered by the propagation of the 

thermal wave into the interior, the crystallization front will propagate into the amorphous 

ice until the cold interior of the nucleus absorbs the exothermic heat of the phase 
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transition and quenches the crystallization process.  Because the thermal wave is near the 

surface, the temperature gradient near the sublimation front is very steep (dropping to 

primordial temperatures over a distance on the order of the orbital thermal skin depth), 

and would quench the crystallization of the amorphous ice very quickly.  Therefore, even 

if the exothermic crystallization of amorphous ice caused the first fragmentation event, 

one would still only expect to see an outburst that released similarly small debris. 

 Such small debris from a surface layer is inconsistent with the drastic reduction in 

the size of the nucleus after the first fragmentation event (Steckloff et al. 2015) and the 

observation of coma wings (Boehnhardt et al. 2013), which may indicate the presence of 

multiple large fragments.  Additionally, such small debris would dissipate quickly, which 

is inconsistent with the sustained increase in water production (Combi, 2014).  Therefore, 

while a direct application of the Samarasinha (2001) model may explain the disruption of 

highly thermally evolved comet nuclei, it appears that its direct application is inconsistent 

with the disruption of Comet ISON. 

We cannot rule out a modification of the Samarasinha (2001) model, in which 

sublimating gases can penetrate into the pores of the nucleus and recondense (thus 

transporting heat into the cometary interior by releasing their heats of sublimation).  If 

voids are present within the interior of the nucleus, then a sublimation front and thermal 

skin depth would be created within the walls of these voids akin to the situation at the 

surface.  The Second Law of Thermodynamics limits the maximum temperature of the 

void walls achievable through this mechanism to the surface temperature of the nucleus 

(although the actual temperature would likely be much lower).  Gas must be able to 

readily diffuse through the nucleus for a significant amount of heat to be transported into 
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the cometary interior in this manner, which greatly restricts the ability of sublimating 

volatiles to build up a gas pressure as though the comet were a sealed vessel.  As the 

walls of the void recede through sublimation, the thermal wave may encounter 

supervolatile ices or amorphous ice.  The sublimation of supervolatiles within a void 

would produce pressures that could be no greater than those that would be present at the 

surface, but probably significantly less.  If these low pressures lead to the destruction of 

the nucleus, then our strength estimates would be an upper bound to the strength of the 

nucleus.  However, were the thermal wave to trigger the crystallization of amorphous ice, 

this exothermic phase transition could cause a very rapid buildup of gas pressure within 

the void, potentially faster than the gases may diffuse out, and could potentially lead to a 

catastrophic explosion of the nucleus.  We therefore cannot rule out this modified 

mechanism.  This mechanism requires special diffusive, compositional, and structural 

conditions to disrupt the nucleus, which seems less likely to lead to ISON’s disruption 

than sublimation pressure at the surface. However, a detailed exploration of the relevant 

physics of diffusion, sublimation, and phase transitions is beyond the scope of this paper. 

 

3.4.2 Hydrostatic Pressure and Fragmentation Timescale 

Our crushing strength computation ignores the internal hydrostatic pressure due to 

self-gravity of comet ISON, which is up to ~10 Pa for a 680m spherical nucleus (Lamy et 

al. 2014) with a density of 400 kg m-3 (Richardson & Melosh, 2013).  If the nucleus were 

to uniformly disrupt in a single event, the dynamic sublimation pressure would have to 

overcome this overburden pressure in the comet’s interior.  In reality, the nucleus 

probably disrupted piecewise, in a process where the dynamic sublimation pressure first 
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overcomes the crushing strength and disperses the material near the surface of the 

nucleus, where the hydrostatic pressure is low.  This reduces the hydrostatic pressure 

throughout the remaining nucleus, where this process repeats until the entire cometary 

nucleus is dispersed.  We estimate the timescale of this dispersion by computing the time 

needed for the surface of the comet to accelerate across the diameter of the nucleus from 

sublimation pressure alone, assuming typical cometary densities of around 400 kg m-3 

(Richardson & Melosh, 2013; Richardson & Bowling, 2014; Thomas et al. 2015).  This 

results in a dispersion timescale for Comet ISON of only a few hours at 145 !!, 

allowing us to ignore the effects of hydrostatic pressure and treat the cometary disruption 

effectively as an instantaneous event in the comet’s orbit. 

Our sublimation pressure disruption mechanism assumes that the nucleus is 

rotating slowly enough that the maximum dynamic sublimation pressure at the sub-solar 

region has enough time to fragment the nucleus before rotating significantly away from 

the sub-solar point and reducing the sublimation pressure on that area element.  The 

critical timescale for fragmenting the nucleus is the amount of time needed for a crack, 

once started, to propagate across the nucleus.  The growing tip of a crack travels at the 

Rayleigh surface wave velocity, which are typically on the order of ~100 m/s for granular 

materials, and higher for more coherent materials (Lawn & Wilshaw, 1975).  Thus, the 

time needed for a crack to travel across the nucleus (and therefore the timescale of 

fragmentation) is on the order of a few seconds.  Since the rotation period of a comet 

nucleus is limited to be no shorter than a few hours before fragmenting rotationally 

(Snodgrass et al. 2006; Pravec et al. 2006), the timescale of fragmentation is negligible 

and our assumption holds. 
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3.4.3 Strengths of Other Comets 

We compare our crushing strength estimate to observationally constrained 

estimates of the bulk, tensile, and shear strengths of other comets, which are related to the 

bulk crushing strength by small factors on the order of unity (Price, 1968).  The crushing 

strength of Comet ISON is consistent with Comet Shoemaker-Levy 9’s bulk tensile 

strength of <6.5 Pa (Asphaug & Benz, 1996); Comet Brooks 2’s bulk tensile strength of 

<2 Pa (Sekanina & Yeomans, 1985); within an order of magnitude of Comet Wild 2’s 

shear strength of >17 Pa (Melosh, 2011); and Comet Churyumov-Gerasimenko’s 

cohesive strength of ~2-16 Pa (Bowling et al. 2014), and tensile strength of <20 Pa 

(Thomas et al. 2015).  Thus, if Comet ISON is representative of thermally unprocessed 

comets, then the low bulk strength of comets is a primordial property that is unaltered by 

thermal processing. 

We consider other strength estimates of comets, and note that they are not 

applicable to our mechanism.  The 1-10 kPa effective target strength of Comet 

9P/Tempel 1 from the Deep Impact experiment (Richardson & Melosh, 2013) is a 

measurement of dynamic strength (which does not adhere to the weakest link model of 

material failure). Therefore, we expect this estimate to be several orders of magnitude 

larger than a measurement of static strength, which is applicable to our disruption 

mechanism.  Comet Hyakutake’s tensile strength was estimated to be ~100 Pa from the 

strength required to hold the comet together from rotational fragmentation (Lisse et al. 

1999).  However, this estimate assumed a bulk density for Comet Hyakutake of 100 kg 

m-3, which is now known to be unreasonably low: a more typical cometary density of 270 

kg m-3 or greater allows the nucleus to be held together by gravity alone.  Indeed the 
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known rotation rates of JFCs and Kuiper Belt Objects are consistent with effectively 

strengthless bodies with densities less than 600 kg m-3 (Snodgrass et al. 2006) in a 

manner analogous to the asteroid rubble pile “spin barrier” (Pravec et al. 2006). 

All of these upper bounds of comet strength require that the nucleus structurally 

fail in some way.  Thus, these strength estimates may be biased toward weaker nuclei, 

which would structurally fail more easily.  Indeed, many comets survive perihelion 

passage despite having orbits that take them to smaller heliocentric distances than those 

corresponding to Comet ISON’s fragmentation events (Bortle, 1991), consistent with 

stronger nuclei.  If comets are effectively rubble piles held together by van der Waal’s 

forces, then they may possess strengths similar to rubble pile asteroids of ~25 Pa 

(Sánchez & Scheeres, 2014).  Such strengths would allow comet nuclei to survive the 

differential stresses induced by H2O sublimation to within 20 !! (0.1 AU) of the Sun.  

Thus, the survival/non-survival of near-Sun comets is consistent with different comet 

nuclei having strengths that span more than an order of magnitude. 

Additionally, short-period comets with small perihelia (when compared to where 

ISON fragmented) may survive multiple orbits as a result of their unique dynamical and 

thermophysical evolution.  Jupiter Family Comets like 2P/Encke and 96P/Machholz 

originate in the Kuiper Belt and Scattered Disk until an encounter with Neptune sends 

them into the Outer Planet region of the Solar System, where they are reclassified as 

Centaurs (Duncan et al. 2004).  Typically, an encounter with Jupiter after a few million 

years (the dynamical lifetime of a Centaur) either ejects the object from the Solar System 

or sends it into the Jupiter Family of comets (Duncan et al. 2004).  During this inward 

migration process, a Jupiter Family Comet is also undergoing thermophysical evolution.  
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As its orbit evolves ever closer the Sun, the comet loses volatile ices through sublimation, 

which may result in the build up of a lag deposit (or dust mantle) on its surface.  These 

deposits are very good insulators (Gulkis et al. 2015; Davidsson et al. 2013; Groussin et 

al. 2013; Lisse et al. 2005; Lamy et al. 2008), and even a thin coating would restrict 

volatile sublimation to a small fraction of the surface.  Therefore, when this inhibited 

sublimation activity is averaged over the surface, we expect JFCs to experience 

significantly lower sublimation pressures than the pristine icy surfaces that we have 

modeled in this work.  Thus, the survival of JFCs with small perihelia is consistent with 

our work, even without allowing for larger material strengths. 

 

3.5  Conclusions 

 We have shown that existing mechanisms of comet disruption have difficulty 

explaining Comet ISON’s fragmentation.  We proposed a new mechanism of comet 

disruption in which sublimating gases exert a dynamic pressure on the sunward 

hemisphere of a nucleus and induce differential stresses within the nucleus, which may 

fracture and fragment the nucleus if they exceed its material strength.  Using a versatile 

thermodynamic model of volatile sublimation, we find Comet ISON has a material 

strength similar to JFCs. For the case that the nucleus of Comet ISON has a bond albedo 

of 0, we estimate its bulk unconfined crushing strength to be 0.5 Pa, and the bulk 

unconfined crushing strength of resulting fragments at 1-9 Pa.  If Comet ISON’s nucleus 

has a bond albedo of 0.5, then these strength estimates drop to 0.2 Pa for the intact 

nucleus and 0.6-4 Pa for its fragments. 
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“I came in with Halley's Comet in 1835.  
It is coming again next year, and I expect to go out with it.  

It will be the greatest disappointment of my life if I don't go out with 
Halley's Comet.” 

-Mark Twain (1909) 
 
 
 

CHAPTER 4. A SUBLIMATIVE ANALOGUE TO THE YORP EFFECT 
 
 

Sublimating volatiles can also generate sublimative torques that alter the rotation 

state of the nucleus.  Traditionally, one requires detailed knowledge of the shape and 

activity of an icy body to compute the effects of sublimative torques. However, this 

information is only available for the few comet nuclei visited by spacecraft, limiting the 

study of sublimative torques to a handful of objects.  I remedied this by developing a 

novel framework to study the average effects of sublimative torques on large populations 

of cometary bodies, rather than individual objects.  This SYORP framework is based on 

the YORP Effect, which computes the torques resulting from the nonisotropic emission 

of thermal photons from an asymmetric body.  Because surfaces emit both thermal 

photons and sublimating molecules in a functionally similar manner, I developed the 

necessary scaling relationships that allow the YORP torque equations to accurately 

describe sublimative torques.  Because the YORP effect parameterizes the net effect of 

shape and albedo into a single numerical constant, SYORP similarly replaces the detailed 

information required to traditionally compute sublimative torques with simple numerical 
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constants (or statistical distributions of these parameters).  The activity parameters can be 

estimated from measurements of cometary outgassing, observations of coma structures, 

or computed directly from detailed knowledge of a comet’s activity. 

I then use this framework to explain the formation of dust striae (rare, Sun-aligned 

linear dust features in the tails of some comets), which has remained an enigma for more 

than a century.  Specifically, I apply this model to the stria system of Comet West 

(C/1975 V1).  It is generally accepted that stria formation is a two-step process in which a 

nucleus ejects a coherent mass of material that later breaks up and disperses far from the 

nucleus.  However, proposed formation mechanism either can not get enough material to 

drift coherently away from the nucleus or are thermodynamically implausible.  I show 

that ~10-100 m chunks of material, which are observed being ejected from comet nuclei, 

experience sublimative torques that spin them up to the point of disruption, naturally 

forming the observed striae.  

The following manuscript was published in Icarus (volume 264, p. 160-171) in 

2015 as “The formation of striae within cometary dust tails by a sublimation-driven 

YORP-like effect” coauthored by Seth A. Jacobson. 

 
4.1 Introduction 

Linear features sometimes form within the dust tails of “great comets” from the 

Oort Cloud such as Comet West (C/1975 V1) (Sekanina & Farrell 1978, 1980), Comet 

Hale-Bopp (C/1995 O1) (Pittichová et al. 1997), Comet McNaught (C/2006 P1), and 

Comet PANSTARRS (C/2011 L4) (Jones & Battams 2014).  These features are generally 

aligned with either the nucleus of the comet (synchrones) or with the Sun (striae) (e.g.  
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Figure 4.1 Illustrating Stria and Synchrones. 
 

An image of Comet McNaught (C/2006 P1) shows long linear structures within the tail of 
the comet.  We have overlain lines to highlight the linear features in the cometary tail.  
Note how these features line up with either the head of the comet (synchrones) or with 
the Sun (striae).  Image ©Akira Fujii/David Malin Images reproduced with permission, 
with annotations and markings added by authors 
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Comet McNaught [C/2006 P1] in Figure 4.1).  Synchrones are believed to form from ~1-

100 µm dust released nearly simultaneously or diurnally from active areas of the comet’s 

surface, which drifts away from the nucleus due to solar radiation pressure (Karchuk & 

Korsun 2010).  In contrast, the mechanism that creates striae is poorly understood. 

Sekanina & Farrell (1980) observed that “striae seem to fit synchronic formations 

whose sources of emission are located in the area of the dust tail rather than in the 

nucleus,” and postulated three conditions that need to be met by the “parent” materials 

that form a stria: (1) these materials must be ejected simultaneously from the nucleus; (2) 

they must experience identical repulsive accelerations from the Sun and (3) these parent 

objects must break up and disperse simultaneously (listed at the beginning of Section II in 

Sekanina & Farrell 1980).  Some proposed mechanisms assume that (3) occurs as a 

single, short-lived event (Sekanina & Farrell, 1980; Fröhlich & Notni, 1998), while other 

mechanisms model (3) as a relatively long-lived fragmentation cascade (Nishioka 1998, 

Jones & Battams 2014).  Regardless of the exact details of (3), these three conditions 

ensure that the pre-stria materials arrive at the source location of a stria as a single unit, 

where the parent materials are then transformed into a daughter fragment size distribution 

that creates the narrow lineaments oriented towards the Sun via anti-sunward 

acceleration. 

 

4.2 Radiation Pressure 

Sekanina & Farrell (1980) and subsequent authors (e.g. Fröhlich & Notni, 1988; 

Pittichová et al, 1997) considered that solar radiation pressure was solely responsible for 
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the parent materials’ repulsive acceleration (second condition above). Sunlight, like 

gravity, obeys an inverse square law and solar radiation pressure is oriented antiparallel 

to the solar gravitational acceleration force (to leading order).  Thus, its strength can be 

parameterized by the dimensionless constant &, which is the ratio of the force of solar 

radiation pressure to the solar gravitational force acting upon a particular object.  Since 

the force of gravity depends on an objects volume (~R3) while force of radiation depends 

on an objects surface area (~R2), & is a size-dependent parameter.  For Comet West, the & 

parameter for the parent materials released from the nucleus was estimated at &p = 0.55 – 

1.10, while the & parameter for the dust fragments within the striae was &f = 0.6 – 2.7 

(Sekanina & Farrell, 1980).  Such high beta parameters require that both parent and 

daughter grains be small (~ 0.1 µm), such that a small parent grain is most likely capable 

of creating only ~10 daughter grains (Sekanina & Farrell, 1980). Alternatively, the parent 

grains could be extremely elongated such that they have a Sun-facing cross-section of a 

~0.1 µm grain (Sekanina & Farrell, 1980).  Since Comet West’s striae are estimated to 

contain ~106 kg of material (Sekanina & Farrell 1980), such extreme elongation is 

unlikely, and more recent research has focused instead on exploring mechanisms that 

allow a swarm of small-sized parent grains to travel together. 

Fröhlich & Notni (1988) propose that such a swarm could travel away from the 

nucleus in a coherent, optically thick parcel of grains with a narrow range of "-values.  

The breadth of this range depends on the swarm’s optical thickness (with optically thin 

swarms incapable of remaining together), with & values above this range receiving 

enough illumination to surge ahead and leave the swarm, while grains with & values 

below this range lag behind the coherent swarm.  Fröhlich & Notni  (1988) propose that 
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swarms on the order of ~1000 km across become optically thin in the cometary tail and 

disperse, forming striae.  However, to maintain an optically thick swarm the grains must 

not have any significant transverse velocity (motion perpendicular to the direction of 

solar gravity/radiation pressure), a condition that is thermodynamically very unlikely 

without a mechanism for laterally confining the dust.  

Neither of these proposed mechanisms is satisfactory. Meeting Sekanina & 

Farrell’s (1980) second condition with radiation pressure requires small parent grains, but 

then it is difficult to meet the third condition while creating a large enough mass of 

daughter grains. If an alternative to radiation pressure can be found, then these issues may 

disappear. 

Lastly, observations show that comets with perihelia <6AU form striae between 

near-perihelion and ~1 AU of the Sun (Pittichová et al, 1997), which suggests that the 

mechanism driving stria formation must turn off beyond ~1 AU and somehow prevent 

the formation of observable striae until after the comet has approached the near-

perihelion part of its orbit.  Since the intensity of solar irradiation decreases smoothly as 

the inverse-square of heliocentric distance, there is no heliocentric distance at which the 

solar radiation pressure drops off precipitously.  Therefore, if solar radiation pressure 

drives stria formation, then striae should form at all heliocentric distances, with 

differences in solar radiation pressure manifesting itself as an increase in the duration of 

the stria formation process with increasing heliocentric distance. 
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4.3. Sublimation-Driven Stria Formation Model 

In this paper, we propose a sublimation-driven stria formation mechanism that 

allows for relatively large, volatile-rich chunks of ejected cometary materials to drift into 

the cometary dust tail and fragment quickly into fine dust, forming cometary dust tail 

striae.  This mechanism also naturally restricts the formation of observable stria until the 

comet reaches the near- or post-perihelion portion of its orbit and is inactive beyond ~1 

AU.  We show, through careful consideration of the timescale of stria formation, that this 

mechanism is consistent with the observed striae of Comet West. 

 The sublimation of volatile ices is enough to both accelerate the parent 

chunk anti-sunward relative to the cometary nucleus and spin up the parent chunk to 

fragmentation, (i.e. rotational fission.)  Because the sublimation pressure exerted on the 

illuminated hemisphere of a volatile rich body is many orders of magnitude greater than 

radiation pressure, this mechanism is able to affect chunks that are many orders of 

magnitude larger than previous radiation pressure-driven only mechanisms.  We envision 

that the formation of a stria occurs in five steps (see Figure 4.2): (1) a parent chunk is 

released from the nucleus of a comet, (2) sublimation pressure causes the parent chunk to 

drift anti-sunward relative to the nucleus while simultaneously increasing its spin rate, (3) 

parent chunk spins up to the point of fission, (4) the resulting daughter chunks repeat 

steps 2 and 3 at an ever-increasing rate, resulting in a fragmentation cascade that (5) stops 

when the materials become small (micron-sized grains) and devolatilized, at which point 

radiation pressure dominates the behavior of grains which stream out to form a stria. 
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Figure 4.2: A Cartoon of SYORP-induced Stria Formation. 

The five steps of stria formation are illustrated above including (1) parent chunk release, 
(2) sublimation-driven anti-sunward drift and rotational acceleration,  (3) rotational 
fission, (4) fragmentation cascade, and (5) transition from sublimation to radiation 
pressure domination of anti-sunward drift. After step 5, the stream of small micron-sized 
chunks appears observationally as a stria. 
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 Previous studies of the effects of the reactive torques due to sublimating gas on 

the rotation state of cometary nuclei have focused on the reactive torques from jets either 

observed or inferred on the surface (e.g. Wilhelm, 1987; Peale & Lissauer, 1989; Julian, 

1990; Samarasinha & Belton, 1995; Neishtadt et al, 2002, 2003; Gutiárrez et al., 2003; 

Sidorenko et al., 2008). These jets may be the dominant rotation state torques for large 

cometary nuclei (Meech et al., 2011; Belton et al., 2011; Chesley et al., 2013), but the 

relatively small cometary chunks discussed below are assumed to not possess the ability 

to create jets (Belton, 2010, 2013; Bruck Syal et al., 2013), although jet production is 

itself poorly understood. In this work, we propose that it is the background sublimation 

that torques the cometary chunk. This sublimation is nearly isotropic in the sense that it is 

emitted from every heated surface element but is very sensitive to the shape and 

illumination of the chunk. A similar model for an entire comet nuclei has been considered 

in the past, but it was preliminary (Szegö et al,. 2001), considered only an ellipsoidal 

shape (Mysen, 2004; 2007), or focused on matching different observational phenomena 

(Rodionov et al., 2002; Gutiárrez et al., 2007).  

 

4.3.1   Step 1: Parent chunks leave comet 

We propose that a single ejected (parent) chunk contains all of the material that 

later becomes a stria.  Sekanina & Farrell (1980) illustrated a method of obtaining an 

order of magnitude estimate of the volume of a stria for Comet West.  Assuming that the 

dust of a stria has a typical Jupiter Family Comet (JFC) albedo of ~0.03 (Hammel et al. 

1987;Brownlee et al. 2004; Lamy et al. 2004; Oberst et al. 2004; Li et al. 2007; Li et al. 

2013a; Sierks et al. 2015), is comprised of ~0.1-1 micron particles (Green et al. 2004), 
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and that it originated from an initial parent chunk that was half water ice (McDonnell et 

al. 1987), then we expect the initial parent chunks to have radii on the order of ~10-100 

m.  We assume that these parent chunks have a density of ~400 kg/m3, which is typical of 

JFCs (Sierks et al. 2015; Thomas et al. 2013; Richardson et al. 2007). 

Such house- or building-sized (~10-100 m) chunks of material have been 

observed in the debris of comets 57P/du Toit-Neujmin-Delporte (Fernández, 2009), 

73P/Schwassmann-Wachmann 3 (Fuse et al. 2007; Reach et al. 2009), and C/1999 S4 

(LINEAR) (Weaver et al. 2001); were observed within the coma of 17P/Holmes 

following its massive 2007 outburst (Stevenson et al. 2010); and was possibly detected by 

the Giotto spacecraft within a few hundred kilometer of Comet 26P/Grigg-Skjellerup’s 

nucleus (McBride et al. 1997).  Most applicably, comet C/1996 B2 (Hyakutake) ejected 

~10-100 m chunks, which drifted antisunward relative to the nucleus via sublimation 

pressure (Desvoivres et al. 2000; Schleicher & Woodney, 2003).   

The frequency of striae is likewise consistent with the frequency of ejected ~10-

100 m chunks.  While a direct measurement of this frequency is difficult due to 

observational limitations, it is expected to be intermediate to the frequencies of ejection 

of larger and smaller chunks.  Centaur comet 174P/Echeclus ejected a fragment a few 

kilometers in size (Rousselot, 2008), the only known ejection of such a large fragment.  

Meanwhile, high-resolution images from spacecraft have revealed that ~1/3 of Jupiter 

Family Comets (JFCs) eject a large number of decimeter to meter scale chunks into their 

inner comae at speeds near their escape velocities (~1 m/s) (Hermalyn et al. 2013; 

Rotundi et al. 2015).  Because striae occur more frequently than the ejection of kilometer-

scale fragments yet less frequently than the detection of decimeter to meter scale chunks, 
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it is reasonable that the parent bodies that form them are likewise intermediate in size 

(~10-100 m).   

While we do not propose a model for the ejection of these suggested house-sized 

parent chunks from the nuclei of striated comets, we speculate that perhaps cometary 

outbursts (Pittichová et al. 1997; Rousselot, 2008) or supervolatile-driven activity may be 

responsible for launching these parent chunks at greater than escape velocity. Such 

activity would eject parent chunks with a distribution of initial velocities, and the Rosetta 

spacecraft observed indirect evidence for the ejection of  ~10-100 m chunks from the 

surface of Comet 67P/Churyumov-Gerasimenko at less than escape velocity that later 

reimpacted its surface (Thomas et al. 2015).  We assume that these parent chunks are rich 

in water ice throughout, including near the surface of the chunk (relative to the thermal 

skin depth).  If this is not the case, then sublimation pressure will not be able to drive the 

chunk away from the nucleus (see Step 2), due to the inability of the ices to respond to 

the parent chunk’s diurnal thermal cycle. 

 

4.3.2   Step 2: Sublimation Pressure instead of Radiation Pressure 

We propose that the reaction force (or equivalently, the sublimative momentum 

flux) on a volatile-rich parent chunk from the ejection of sublimating gas molecules is 

enough to both accelerate the parent chunk anti-sunward relative to the cometary nucleus 

(discussed below) and spin up the parent chunk to fragmentation (discussed in Step 3).  

Sublimating gasses exert an anti-sunward acceleration on volatile-rich cometary material 

(Whipple, 1950; Marsden et al. 1973; Steckloff et al. 2015a).  Near the Sun, the 

magnitude of this acceleration behaves similarly to radiation pressure, since it 
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approximates the same inverse square law.  Thus, it provides the repulsive acceleration 

necessary to form striae.  However, since the sublimation pressure for H2O ice is up to 4-

5 orders of magnitude stronger than radiation pressure, it can transport chunks of material 

into the cometary tail that are 4-5 orders of magnitude larger in radius than those 

transported by radiation pressure alone for a given acceleration of the material relative to 

the nucleus.    

We model parent chunks as balls of pure H2O ice with such low albedos, that they 

effectively absorb all incident solar radiation, similar to Steckloff et al. (2015a).  We note 

that these assumptions certainly do no accurately describe the real composition and 

structure of the parent chunks, which are likely complicated agglomerates of ices and 

refractory materials with albedos of only a few percent.  However, these assumptions 

illustrate the conditions under which sublimation pressure is maximized, and therefore, 

define the upper bound of the sublimation pressure acting upon parent chunks.  Assuming 

that the subliming gas is in thermal equilibrium with its source ice and that all incident 

solar radiation is either re-radiated to space or applied toward overcoming the ice’s latent 

heat of sublimation (Whipple 1950), Steckloff et al. (2015a) show that the sublimation 

pressure acting on a surface element of cometary material is determined by the following 

two equations 

!!! !! !!"#$%!!!!!!
!"#! ! !!!!! !!"#

!!"#!!"#!
!
!

!
!!"#

!!!                                           (4.1) 

!!"#!!!!!!! !
!
! !!! !!

!!"#$%
!!!!!!

!!"
!!!"#

!!"#!                                         (4.2) 

where A is the bond albedo of the material, !!!! is the temperature-dependent 

sublimation coefficient of the volatile species,  !!"#$% is the Sun’s luminosity, !!!"#$ is the 
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heliocentric distance of the object, ! is the ice’s latent heat of sublimation,  ! is the solar 

phase of the element of surface relative to the subsolar point, !!"# is the molar mass of 

the ice species, R is the ideal gas constant, T is the temperature of the sublimating gas 

(assumed to be in thermal equilibrium with its source ice), and Pref is an experimentally 

determined vapor pressure at temperature Tref.  Since equation (4.1) is transcendental, we 

solve for temperature (T) numerically, then insert it into equation (4.2) to determine the 

sublimation pressure of a given surface area element.  This formulation assumes that the 

coma around the volatile-rich body is optically thin (Steckloff et al. 2015), which is valid 

for heliocentric distances greater than ~0.05 AU for cometary bodies up to ~1 km 

(Drahus, 2014). This method of computing sublimation pressures provides similar results 

to previous methods of computing sublimative forces on comet nuclei (e.g. Whipple, 

1950; Marsden et al. 1973; Sekanina, 2003), but is instead based on the theoretical (rather 

than empirical) relationship between vapor pressure and temperature, and is therefore 

useful for volatile species for which limited empirical data exists (Steckloff et al. 2015a). 

We plot this dynamic sublimation pressure at the subsolar point in Figure 4.3.  To 

compute the net force acting upon a volatile-rich object, we integrate equation 4.2 over 

the surface of the object. 

Once a parent chunk is broken up into small grains and devolatilized, following 

the remaining steps detailed below, radiation pressure dominates the non-gravitational 

behavior of the grains.  At this point, radiation pressure streams the chunks into a long 

lineament as in Sekanina & Farrell (1980), creating the observed striae.  However, 

sublimation pressure is responsible for moving the bulk mass of stria material to the 

location of stria formation. 



 

 

86 

 

 

 

 

Figure 4.3 Peak Sublimation Pressure as a Function of Heliocentric Distance 

We adopted figure 4 from Steckloff et al. (2015a) to show the variation in peak 
sublimation pressure for an assumed albedo of 0 as a function of heliocentric distance for 
common cometary volatile species (H2O, CO2, and CO) and the mineral Forsterite, which 
was found in the coma of comet Wild 2 (Zolensky et al. 2006).  For the formation of 
striae, we focus on the H2O sublimation curve, as we are positing that H2O sublimation is 
responsible for stria formation.  Clearly visible is the point (~1 AU) beyond which the 
sublimation pressure drops off much more quickly.  Strength of radiation pressure is 
added for reference.  
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4.3.3  Step 2 continued: Rotational acceleration due to SYORP 

The back-reaction from anisotropic volatile emission rotationally accelerates 

striae parent chunks. As a gas molecule escapes from the surface of a parent chunk, it 

transports angular momentum relative to the center of mass of the parent chunk. The sum 

of the individual torques from each gas molecule sublimating off of the parent chunk 

creates a net rotational acceleration of the nucleus (unless that comet possesses perfect 

symmetry). Thus, in addition to changing the linear motion of a chunk’s center of mass, 

diurnal sublimation can also change a chunk’s rotation about its center of mass.  We 

assess the strength of this angular acceleration by analogizing this effect to the well-

studied YORP effect (Rubincam, 2000; Bottke et al., 2002; Vokrouhlicky & Capek, 

2002; Capek & Vokrouhlicky, 2004; Scheeres, 2007; Rozitis & Green, 2013).  

Gas molecules sublimate near the surface of a parent chunk and diffuse through 

its porous structure, where the gas mean free path is significantly larger than the pores of 

the cometary material.  Eventually these molecules reach the surface, where the last 

scattering of each gas molecule can be treated independently and the gas emission profile 

is Lambertian (the probability of being ejected in any given direction is proportional to 

the cosine of the angle made between that direction and a vector normal to the local 

surface of the parent chunk [pp. 227-230 in Gombosi, 1994]). Since gas molecules and 

photons are emitted in a nearly identical fashion, we are able to utilize the theory 

developed for the photon-driven YORP effect to quantify these sublimation-driven 

torques. 
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4.3.3.1  The YORP Effect 

Since the numerous instantaneous torques acting on a body are infinitesimal in 

duration and may be oriented in opposing directions, the YORP effect is a time-averaged 

phenomenon. The secular rotational acceleration rate due to the YORP effect for an 

object of radius R and density ! is (Scheeres, 2007): 

!"
!" !

!!
!!! !!!!!

!!!!
!!"!!                                                 (4.3) 

where!!!!and !!!are the object’s heliocentric semi-major axis and eccentricity, CY is a 

shape-dependent coefficient with typical values between 10-3 and 10-2 (Scheeres, 2007; 

Rozitis & Green, 2013), and G1 ! 1014 kg km s-2 is related to the speed of light c and the 

solar constant W¤ = 1.361 kW m-2, which is defined at 1 AU: 

!!
!!!!"!! !

!!
!                                                              (4.4) 

Note that the magnitude of the rotational acceleration scales inversely with surface area 

and density, and scales linearly with the absolute strength of the solar radiation pressure 

at the object’s location and with its shape-dependent coefficient CY, which is defined 

independent of size (Scheeres, 2007). The coefficient CY is determined by the thermally 

emitted photons, since the absorbed solar radiation contributes no net torque (Rubincam 

& Paddack, 2010). 

 

4.3.3.2  The SYORP Effect 

Since gas molecules carry significantly more momentum than photons, the 

instantaneous torques acting upon the body are much greater than for the YORP effect. 
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We parameterize this sublimation-driven YORP (SYORP) effect by modifying the YORP 

effect rotational acceleration equations (equations 4.3 and 4.4). Since sublimating gas 

molecules behave like photons at the surface of the parent chunk, sublimation-driven 

angular acceleration should depend on the shape of the object in the same manner as 

emitted photon-driven angular acceleration.  Therefore, the shape dependent coefficient 

for sublimation CS should be the same as that for photons CY.  Physically, the coefficient 

CS represents the fraction of the spin and orbit averaged sublimative momentum flux that 

contributes a torque due to shape asymmetry.  Thus we assume that CY ! CS for the 

purposes of our order of magnitude considerations, and should have a value that lies in 

the range 10-3 – 10-2 based on asteroid shapes (Scheeres, 2007; Rozitis & Green, 2013), 

which should be representative of the shapes of cometary nuclei to first order.  This is 

consistent with recent work that implies the values of CS for cometary nuclei may lie 

within a small range of values (Samarasinha & Mueller, 2013). 

The absolute strength of the gas sublimation pressure PS is very different than 

thermal emission pressure  

!! ! !! !!! !! !!! !                                                        (4.5) 

We parameterize this difference with a quantity #, which is the ratio of the sublimation 

pressure to the radiation pressure: 

! ! !! !!                                                                    (4.6) 

The angular acceleration associated with SYORP is directly analogous to the angular 

acceleration associated with YORP: 

!"
!" !

!!!!!
!!"!! !

!!!!!!
!!"!!                                                          (4.7) 
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where we have taken advantage of both the new parameter # and the equivalence between 

the two shape factors CS and CY. 

Since a subliming gas molecule carries significantly more momentum than an 

emitted thermal photon, we might naively expect # to be greater than one. However, if 

gas emission is significantly reduced relative to thermal emission, # may be less than one.  

We use equations 4.5 and 4.2 for the radiation PY and sublimation PS pressures 

respectively to compute the ratio # as a function of heliocentric distance.  Near the Sun, 

the chunk is cooled predominantly through sublimative cooling and energy is lost 

primarily through overcoming a species latent heat of sublimation.  Since the incident 

solar energy flux scales as the inverse square of heliocentric distance, the sublimative 

mass-loss rate and resulting sublimation pressures (and therefore gamma) scale 

approximately (but not exactly) as an inverse square law with heliocentric distance.  

Further from the Sun, however, the chunk is predominantly cooled by blackbody 

radiation, and the sublimative mass-loss rates fall far short of the inverse square law, 

resulting in a steep drop off in gamma with increasing heliocentric distance.  This leads to 

a shape of the gamma curves in which they rise steeply with decreasing heliocentric 

distance until reaching an approximately constant value (see Figure 4.4). 

 

4.3.4   Step 3: Critical failure of the body 

We define a critical rotation rate $crit, above which the centripetal acceleration 

required to hold the body together overcomes the tensile strength of the body, leading to 

fragmentation.  Since these chunks survived ejection from the cometary nucleus intact, 

they are necessarily stronger than their parent nucleus, which typically have strengths on  
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Figure 4.4 A plot of the gamma factor for various species. 

Above is a plot of ' (ratio of sublimation pressure to radiation pressure) versus 
heliocentric distance for various volatiles.  We computed these values based on a planar 
surface element composed purely of the respective volatile, with the Sun located at the 
zenith. Sublimation pressure data for all volatiles obtained from Steckloff et al. (2015a).  
We observe that the volatiles activate at larger heliocentric distances, building up the 
sublimation pressure as the sublimating object moves inward.  Closer to the Sun the 
volatile becomes fully activated, and nearly scale with ! !!!!!"#$! , causing the '-gamma 
curves to flatten out to a nearly a constant value. 
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the order of a few Pascals (Sekanina & Yeomans, 1985; Asphaug & Benz, 1996; Melosh, 

2011; Bowling et al. 2014; Steckloff et al. 2015a, Thomas et al. 2015).  For these icy 

chunks, self-gravitational forces are dominated by even this weak strength limit. Thus 

gravity has a negligible effect in holding these icy parent chunks together.  To estimate 

$crit, we approximate the icy parent chunks as rectangular prisms, where the long axis (a 

= 2R) is twice the length of the other two sides, which we assume to be equal in length (b 

= c = R).  The maximum tensile force exerted along the long axis of the body due to 

strength is then  

!!"#$%&" ! !!! ! !!!!                                                     (4.8) 

where A is the cross-sectional area perpendicular to the long axis, and %t is the material 

tensile strength.  The centripetal force at which the body fails (fragments) under principal 

axis rotation is 

!!"#$ ! !!!"#$ ! !
!!!!!!                                           (4.9) 

At the critical rotation rate, !!"#$%!" ! !!"#$, thus the critical rotation rate (above which 

the object fragments) is 

!!"#$ ! !!!
!!!                                                                   (4.10) 

 

We estimate the SYORP timescale by assuming that the parent chunk starts at rest 

and compute the amount of time required to spin the chunk up to !!"#$.  We integrate the 

expression for angular acceleration (equation 4.7) with respect to time (!), set the 

constant of integration to zero (for chunks starting at rest), and set this resulting 

expression for angular velocity (!) equal to !!"#$ 
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!! ! ! !"!!!
!!!!!

                                                              (4.11) 

 

This timescale defines the duration of an SYORP cycle. 

 

4.3.5   Step 4:  Runaway Fragmentation Cascade 

We now consider the fragmentation of the parent chunk.  Since the chunk slowly 

spins up to the point of fragmentation, the parent clump likely fragments along a single 

plane of weakness1, resulting in two roughly equal-sized daughter chunks.  If we assume 

that the two daughter chunks are equal in mass, and that the total volume of material is 

preserved, then the daughter chunks will have a radius !!!!  of the parent chunk.  Such a 

size decrease is associated with a corresponding increase in the tensile strength of the 

daughter chunk.  According to Griffith Crack Theory (Brace 1961) and assuming a 

Weibull distribution of flaws within the material, the strength scales approximately as 

~ !!!, where s is the size of the object.  Thus, the daughter clumps will have a tensile 

strength that is approximately !! ! !!!" times the tensile strength of the parent chunk.   

After fragmentation, the daughter chunks will be rotating approximately at a rate 

!!!"#!! (the critical rotation rate of its parent chunk), with the exact value depending on 

geometry.  Thus, instead of starting at rest (as is assumed for the initial parent chunk), the 

daughter chunks already are rotating at a significant fraction of their own !!"#$ 

                                                
1 As opposed to a sudden shock of the material, which may result in many forked 
fractures and numerous fragments if the shock is traveling faster than the velocity of 
Raleigh surface waves within the material (order of ~100 m/s) 
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!! ! !!"#$!!               (4.12) 

! !
!!! !!

!!"#$        (4.13) 

! ! !!
!!"#$

! !!!"              (4.14) 

which reduces the time needed for the daughter chunks to spin up to fragmentation 

proportionally.  Therefore, the timescales to fragmentation for all chunks (except for the 

initial parent chunk) are (1-C) ( 25% of the time to rotational fission from rest.  

Therefore, while the initial parent chunk will require the full !! to spin up to 

fragmentation, all ensuing daughter chunks will only require !!! !!!! to spin up to 

!!"#$. 

If we compute the ratio of the SYORP timescales  (equation 4.11) for the 

daughter clump versus the parent clump, we find that 

 

!!!"#$!!"#
!!"#$%&

! !!!!!!!"#$!!"# !!"#$!!!"
!!!!!!!"#$%& !!"#$%&

                                              (4.15) 

! !!!! !!"                                                              (4.16) 

! !
!

!" ! !!!"                                                         (4.17) 

assuming that ! and !! are the same for parent and daughter chunks.  Since this ratio of 

SYORP timescales is less than 1, each successive generation of chunks will have a 

shorter lifetime than the previous generation, leading to a runaway cascade of 

fragmentation.  Such a cascade is consistent with the modeling of Nishioka (1998) and 

Jones & Battams (2014) for the creation of dust necessary to explain striae. 
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We next estimate the duration of the entire cascade of fragmentation events, 

which is equivalent to the elapsed time between parent chunk ejection from the nucleus 

and the onset of stria formation.  We first compute the number of fragmentation steps 

needed to fragment a parent chunk into micron-sized dust, which is the suspected size of 

stria grains (Sekanina & Farrell, 1980).  Since daughter chunks have a radius !! !!  times 

the size of their parent chunks, the radius of a chunk in the nth generation is  

!! ! !!!!
!
!                                                         (4.18) 

where !! is the size of the initial parent chunk ejected from the nucleus.  Thus, the 

number of generations needed to reach size !! is 

! ! !! !"#!" !! !!"#!" !!
!"#!" !

                                       (4.19) 

Therefore, a parent chunk of ~10-100 m in radius requires ~70-80 generations to produce 

micron sized dust. 

Since the SYORP timescale decreases with each subsequent generation, we can 

analytically solve for the total amount of time needed for a parent chunk to fragment into 

the nth generation  

!! ! !! ! !!!!! !! !!!
!!!!

!!
!!! ! !! ! !!!"!! !!!" !!

!!!                      (4.20) 

where !! is the SYORP timescale of the initial parent chunk and ! ! !!!!!!"#$, which 

accounts for the nonzero initial rotation of the daughter chunks.  The first ~10 

generations, which together reduce parent chunk radii by an order of magnitude, 

dominate this total timescale, occupying over 90% of the time needed to reach 

sufficiently small fragments.  Thus, the time required for an ejected parent chunk to 
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fragment into micron-sized stria grains (and therefore the duration of the stria-forming 

fragmentation cascade) is effectively independent of the size of the final grain 

!!"#$%&'(#()*' ! !! ! !!!"!! ! !!!" !! !"!!!!!
!!!!!

                           (4.21) 

where !!!! is the tensile strength of the parent chunk. 

After each fragmentation event, classical YORP theory predicts that, on average, 

half of the daughter chunks will continue to spin up to !!"#$, while the other half will 

spin down towards a stationary state.  For those chunks that spin down to a low velocity 

rotation state, the literature is currently inconclusive as to whether or not they will be 

captured into a low velocity tumbling state (Vokrouhlick) & Capek, 2002; Cicalo & 

Scheeres, 2010; Breiter et al., 2011). If the chunk is not captured in a tumbling state, then 

it will pass through a low velocity rotation state and emerge accelerating with the 

opposite sense of rotation. This has been a standard and successful assumption in the 

literature matching both near-Earth and main asteroid belt spin period distributions (Rossi 

et al., 2009; Marzari et al., 2011). After making this assumption, then nominally half the 

chunks take 175% of the SYORP timescale !! to fragment while the other half take 25% 

of !!. This factor of a few difference of the fragmentation timescale is smaller than the 

expected order of magnitude variations of the SYORP shape coefficient !!.  

When the chunks are large and the SYORP fragmentation timescales are 

relatively long, the chunks that fragment much faster or much slower than the average 

chunk could drift away from the pack contributing to background dust production and 

possibly form separate mini-striae.  As the SYORP fragmentation cascade progresses and 

the fragmentation timescales decrease, even chunks with very different fragmentation 



 

 

97 

timescales will be unable to drift appreciably apart from one another. If only half the 

initial parent chunk’s mass ends up in the stria, then the initial parent chunks must be 

approximately * larger in radius to account for the mass that fails to form striae.  While a 

sublimative analogue to the Tangential YORP Effect will increase the fraction of chunks 

that accelerate in the direction of their rotation (Golubov & Krugly, 2012; Golubov et al. 

2014) and therefore contribute to stria formation, we conservatively neglect this 

contribution. 

 

4.3.6   Step 5: Onset of Stria Formation 

As the fragmentation cascade continues, the resulting fragments become not only 

smaller, but also increasingly devolatilized.  At some point, the resulting grains within the 

fragment swarm are so small and devolatilized, that solar radiation pressure dominates 

their behavior, and they stream anti-sunward as in previous models.  While we assume 

that all daughter chunks are of an equal size and have an idealized distribution of flaws, 

rotational fragmentation will create chunks that are only approximately equal.  While 

these different sizes will not produce large separations between chunks during earlier 

generations, variations in size during the final generations will cause the grains to 

separate from one another via solar radiation pressure according to their differing & 

values, forming a stria (Sekanina & Farrell, 1980).  We therefore consider the point at 

which a parent chunk completes its fragmentation cascade to be the onset of stria 

formation 
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4.3.7   Modeling and Constraints on Stria Formation 

We now estimate the constraints of SYORP-driven stria formation on Comet 

West.  We approximate Comet West’s orbit as a parabola with a perihelion of 0.197 AU, 

and numerically investigate the heliocentric and cometocentric distances of stria formed 

from our scheme as a function of the heliocentric distance of parent chunk ejection.  We 

numerically integrate the motion of hypothetical parent chunks ejected from the nucleus 

between 180 days pre-perihelion to 90 days post-perihelion, and record their heliocentric 

and cometocentric distances at which they complete their fragmentation cascades.  We 

assume that parent chunks that have not completed their fragmentation cascades by the 

time they reached a post-perihelion heliocentric distance of 10 AU will not form stria 

because this distance is much greater than the heliocentric distance beyond which water 

ice sublimation shuts down.  We assume the separation between the comet and the parent 

chunk is small compared to their heliocentric distances, which allows us to approximate 

the change in the cometocentric distance (dcomet) of the parent chunk by assuming that its 

cometocentric drift is due entirely to the effects of dynamic sublimation pressure  

!!!"#$% ! !
!!!!!!"#$!!!! ! !" !

!!!"#!!!!!"#$!
!!" !!! ! !!!                       (4.22) 

where !!!!!"#$! is the acceleration of the parent chunk due to sublimation pressure, 

!!"#!!!!!"#$! is the heliocentric distance dependent sublimation pressure, ! is the density of 

the parent chunk,  and v is the parent chunk’s cometocentric velocity.  We assume that 

this distance montonically increases.  This is an admittedly simplified model, which 

accounts only for a one-dimensional change in the cometocentric distance.  However, the 

largest sources of error are likely the uncertainties in the physical properties of the parent 
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grains.  This one-dimensional model is therefore sufficient for our purpose of 

understanding the order of magnitude behavior of parent chunks, and we reserve two or 

three-dimensional modeling of stria formation with a deeper study of parent chunk 

properties for another paper.  

Our assumed initial velocity of the parent chunk (~1 m/s) relative to the nucleus is 

negligible compared to the average velocity needed to move a parent chunk from the 

nucleus to the cometocentric location of stria formation (~100-1,000 m/s) in the weeks 

between passing the sublimation barrier (the heliocentric distance within which H2O 

sublimation becomes the dominant cooling mechanism of the nucleus) and forming a 

stria.  Therefore, we can treat the parent chunks as though they were initially at rest.  

Additionally, because the parent chunks have an initial velocity comparable to the 

comet’s escape velocity, the parent chunk will quickly move several nucleus radii away 

from the nucleus, to a point where the cometary gravity is negligible compared to solar 

gravity or sublimation pressure (while still being relatively close to the nucleus when 

compared to the cometocentric distance of stria formation).  We therefore ignore the 

negligible effects of cometary gravity on this calculation.  We assume that that parent 

chunk has a tensile strength of 10 Pa, which is the expected order of magnitude when the 

~1 Pa strength of ~1 km comet nuclei (Sekanina & Yeomans, 1985;  Asphaug & Benz, 

1996; Bowling et al. 2014; Thomas et al. 2015; Steckloff et al. 2015a) is scaled to a ~10 

m chunk using a !!! strength scaling law (Brace, 1961).  We use a time step of 6 hours 

in the numerical modeling. 
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Figure 4.5: Comet West stria formation heliocentric distance versus parent chunk ejection 
heliocentric distance 

 
We plot the heliocentric distance of fragmentation for each simulated 10m parent chunk 
ejected from Comet West at 6 hour invervals as a function of the heliocentric distance of 
parent chunk ejection for two values of the SYORP coefficient CY = 0.01 and 0.0035.  
This plot reveals that the overwhelming majority of ejected parent chunks would produce 
stria between 0.2 and 0.3 AU (near perihelion), consistent with observations (Sekanina & 
Farrell 1980).  Additionally, parent chunks ejected beyond the sublimation barrier (~1 
AU) form striae at near the same heliocentric distance (the stria barrier), leading to the 
asymtotic behavior of the inbound part of the curves.  Meanwhile, few chunks ejected 
after the sublimation barrier have time to fragment before passing back beyond the 
sublimation barrier, leading to the  asymptotic behavior of the outbound part of the 
curves.  
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In Figure 4.5, we plot the heliocentric distance of the onset of stria formation (the 

point at which the fragmentation cascade is complete) as a function of the heliocentric 

distance of ejection of a 10 m parent chunk for a comet with the orbit of Comet West.  

We plot two different cases of the SYORP coefficient CS, which illustrate two different 

behaviors in Figure 4.5: one in which the parent chunk parameters restrict all striae 

formation to post-perihelion (CS=0.0035), and another in which the parent chunk 

parameters allow for the formation of some pre-perihelion striae (CS=0.01), which puts a 

bulge in the curve near perihelion.   

For the case where CS=0.01 (which is the upper bound of the expected range of 

SYORP coefficients, and therefore represents the strongest expected response to 

SYORP), we find that the heliocentric distance of stria formation has little dependence on 

the heliocentric distance of parent chunk ejection, with the vast majority of parent chunks 

forming striae within a narrow window of heliocentric distances (for a given parent 

chunk size and SYORP coefficient).  Because of the sublimation barrier, any parent 

chunk ejected beyond ~1 AU will experience neither a significant SYORP effect nor 

sublimation pressure until it reaches the sublimation barrier.  After crossing the 

sublimation barrier, the rapid increase in SYORP torques that peak at perihelion will 

induce a peak in the number of parent chunks completing their fragmentation cascades, 

and would therefore cause a burst of stria formation near- and post-perihelion.  

Meanwhile, Figure 4.5 reveals that very few parent chunks ejected post-perihelion have 

sufficient time to undergo the SYORP fragmentation cascade (Step 5) to form striae 

before passing back across the sublimation barrier, and is only possible for parent chunks 
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that have a very strong response to SYORP torques (i.e. smaller radii and larger SYORP 

coefficients). 

Thus, our model predicts that large, Comet West-like stria should preferentially 

form after the comet reaches near-perihelion and ~1 AU (water sublimation barrier), with 

a large burst of striae forming near perihelion, consistent with observations of striae 

(Sekanina & Farrell, 1980; Pittichová et al. 1997).  This is not to suggest that no striae 

can form prior to perihelion.  Striated comet nuclei likely eject a population of parent 

chunks with a distribution of sizes and SYORP coefficients. Because the SYORP 

response is size-dependent, our model predicts that smaller parent chunks will be able to 

respond quickly enough to the weaker pre-perihelion SYORP torques to form striae 

(assuming that SYORP coefficients are independent of size.)  However, these early striae 

would contain significantly less material than the larger striae that form later, and may 

therefore be unobservable.  Thus, while our SYORP model of stria suggests that any 

comet capable of ejecting icy chunks could form striae, they may not stand out above 

background dust emission. Therefore, a careful pre-perihelion study of striated comets 

could confirm this aspect of SYORP theory. 

 

4.4.  Striae of Comet West 

We lastly apply our model to the striae of Comet West as a proof of concept of 

the SYORP model.  We use this rudimentary one-dimensional model to estimate the sizes 

and SYORP coefficients of the initial parent chunks needed to match the estimated 

heliocentric and cometocentric distances of its striae (Sekanina & Farrell, 1980).  

Sekanina & Farrell (1980) obtain these distances by modeling the motion of devolatilized 
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dust under the effects of solar gravity and radiation pressure.  Although the Sekanina & 

Farrell (1980) model of stria formation differs from the model presented in this paper, 

both models of dust behavior post-formation are identical.  Therefore, the heliocentric 

and cometocentric distances of stria formation that were obtained by post-formation stria 

dust modeling are applicable to our model.   

We list the heliocentric and cometocentric distances of stria formation for the 

observed stria of Comet West from Sekanina & Farrell (1980), along with our parent 

chunk radii and SYORP coefficients (CS) that best fit those distances in Table 4.1.  Each 

heliocentric and cometocentric distance pair have two unique solutions for parent chunk 

radius and SYORP coefficient: one solution for the pre-perihelion portion of the comet’s 

orbit, and a second solution for the post-perihelion portion of the orbit.  Because the 

striae in Sekanina & Farrell (1980) were observed post-perihelion, we restrict ourselves 

to this set of solutions.   

The best-fit parent chunks’ SYORP coefficients (CS) lie between 0.00029 – 

0.00126, and their best-fit radii lie between 15-110 m.  These SYORP coefficients are on 

the low size of their expected range of ~0.001-0.01 (Scheeres, 2007; Rozitis & Green, 

2013), which is based on repurposing YORP coefficients to SYORP.  While this may be 

a result of model assumptions, we acknowledge that it may be indicative of a 

fundamental difference between the YORP and SYORP effects.  The YORP and SYORP 

coefficients are shape-dependent parameters that describe the second order torques that 

arise from asymmetries in the shape of the object.  Unlike the YORP effect, SYORP 

depends on the loss of material from the surface of the object that can eliminate 

asymmetries in its shape over time, particularly at smaller size scales.   
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Table 4.1 Heliocentric and Cometocentric locations of stria formation for Comet West 
and their best-fit parent chunks 

 
Heliocentric 
Distance (AU)1 

Cometocentric 
Distance (Gm)1 

Best Fit Parent Radius 
(m) (error !!!"#!!"#) 

Best Fit Parent CS 
(error !!!!"!!") 

0.2284 2.56 32.5 0.00056 
0.2924 7.58 16.4 0.00029 
0.2696 5.34 20.5 0.000355 
0.2581 4.2 24 0.000406 
0.2606 4.1 24.75 0.000415 
0.2535 3.27 30.5 0.000493 
0.2683 4.06 26.5 0.000433 
0.2506 2.8 35 0.000555 
0.2592 2.92 34 0.000530 
0.2517 2.14 47 0.000688 
0.2543 1.97 50 0.000715 
0.2785 2.94 37 0.000544 
0.2769 2.29 49 0.00067 
0.2624 1.1 95 0.00114 
0.2685 0.96 110 0.00126 
0.2841 1.12 105 0.00118 

1Sekanina & Farrell (1980) 
 

This table lists the modeled heliocentric and cometocentric distances of formation for 16 
striae of Comet West (Sekanina & Farrell, 1980).  These distances were obtained by 
modeling the post-formation dynamics of the dust that composed each stria.  This table 
also lists our best fit radius and SYORP coefficient for each stria. 
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If the object becomes more symmetrical, its SYORP coefficient will drop over time.  

Therefore, time-averaged SYORP coefficients may be, as a whole, smaller than their 

YORP counterparts.  While our model assumes a static SYORP coefficient, these best-fit 

SYORP coefficients are more representative of an average value.  Therefore, while the 

initial SYORP coefficient of a parent chunk may be comparable to its YORP coefficient, 

the loss of mass required by SYORP may result in a lower average SYORP coefficient 

than the average YORP coefficient (were the chunk not sublimating.) 

The best-fit radii of the parent chunks fall within the expected ~10-100 m range. 

The estimated error in the size of the radii of the parent chunks is a result of uncertainly 

in the magnitude of the average dynamic sublimation pressure.  Steckloff et al. (2015a) 

estimate the uncertainly in the sublimation pressure to be up to ~10% for pure H2O ice 

sublimation.  Additionally, we use a dynamically new comet C/2012 S1 (ISON), which is 

a reasonable analogue to the predicted pristine parent chunks, to estimate uncertainties 

associated with sublimation contributions from less common but more volatile species 

and the active fraction of the parent chunks’ surfaces.  We estimate that the small 

contributions from less common sublimating volatile species (CO2, CO, etc.) to be up to 

~10%, based on their relative abundances (McKay et al. 2014; Weaver et al. 2014) and 

relative volatilities (Steckloff et al. 2015a).  Unlike JFC nuclei which have only small 

fractions of their nuclei that are active, the entire surface of Comet ISON appeared to be 

active (Steckloff et al. 2015b), which is consistent with the thermally primitive nature of 

long-period comets.  While this would suggest that fragments of such a nucleus (i.e. stria 

parent chunks) would similarly be active all over, we do not understand what mechanism 

may be responsible for their ejection.  We consider the case in which the ejection 
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mechanism lofts a partially exposed chunk of material, and conservatively estimate that 

the exposed region of that chunk (perhaps 20% of its surface) is devolatilized and 

inactive (or equivalently, that a larger portion of its surface is partially devolatilized).  

Because we do not currently have a well-studied ejection mechanism that we could use to 

better constrain these uncertainties, we adopt the conservative estimate of 20% as the 

uncertainly in the active area.   

These errors are not symmetrical about our best fit solution.  Our model assumes 

the maximum possible sublimation pressure and active area, and uncertainties in their 

values can only revise them downward.  We therefore end up with an asymmetrical error 

in the average sublimation pressure of !!"#!!"#!!"# from propagation of errors.  We run 

these uncertainties through our model to estimate the uncertainties in the radii of the 

parent chunks of the striae from Sekanina & Farrell (1980) to be !" ! !!!"#!!"#, and the 

uncertainty in the corresponding SYORP coefficients to be !!! ! !!!!"!!". 

With 16 parent chunks, we can generate a Size-Frequency Distribution (SFD), 

which plots the number of chunks larger than a particular size (see Figure 4.6).  We 

neglect to include parent clumps smaller than 20 m in this power law fit, as the power law 

shows a break in the trend, which likely indicates observational bias near the limit of 

detection.  The cumulative-SFD represents the number of chunks greater than a given 

size, and appears to follow a clear power law (!!! !! ! !!) with a best-fit power law 

index (q) of -1.4.  However, a power law index between -2.0 and -1.1 is consistent with 

the estimated errors in our model, and power law indexes between -1.1 and -4.0 are 

consistent with the estimated errors of the chunks up to 50 m in radius.  This cumulative-
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SFD power-law index is consistent with the index of q=-1.92±0.20 for Jupiter Family 

Comets (JFCs) with radii larger than 1.25 km (Snodgrass et al. 2011), but is only 

marginally consistent with the index of ~-1 that describes the impactor population 

(<~2km) in the young terrains of Europa (Bierhaus et al. 2012).   

The differential Size-Frequency Distribution (differential-SFD) is generated by 

taking a derivative of the cumulative-SFD with respect to object radius generates the 

differential Size-Frequency Distribution (differential-SFD).  The differential-SFD for all 

parent chunks has a power-law slope of -2.4 (-3.0- -2.1), but values between -2.1 and -5 

are consistent with the estimated errors of the chunks up to 50 m in radius.  This is 

consistent with the differential-SFD index of the fragments of Comet 73P/Schwassmann-

Wachmann 3 Nucleus B of -2.11 (Fuse et al. 2007) or -2.56 (large fragments F > 10mJy) 

(Reach et al. 2009), but inconsistent with its small fragments (F < 10 mJy) index of -1.84 

(Reach et al. 2009).  This range of differential-SFD power-law indexes for all parent 

chunks of Comet West is inconsistent with the differential-SFD indexes of -4.7 to -6.6 

(Kelley et al. 2013) and -3 to -4 (Rotundi et al. 2015) that describe the chunks and grains 

in the inner comae of comets 103P/Hartley 2 and 67P Churyumov-Gerasimenko 

respectively.  However, the two latter populations are for small chunks (up to ~1 m in 

radius), and the differential-SFD power-law slope for parent chunks of Comet West up to 

50 m in radius is consistent with both of these populations.  It is presently unclear 

whether these similar power law indexes indicate a similar origin, composition, or 

evolution of these different populations, and further study is warranted to place these 

cometary populations into a common context and explore how evolutionary and ejection 

processes may alter these SFDs. 
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Figure 4.6: Cumulative Size-frequency distribution of the best-fit parent chunks of Comet 

West’s striae. Here we plot the number of chunks  
 

larger than a given parent chunk size. Vertical error bars are !, while horizontal error 
bars are the estimated !!!"#!!"# uncertainly in parent chunk radius.  Vertical dashed line 
represents a break in the size-frequency distribution, which we belive is due to 
observational bias. 
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4.5.  Discussion 

Thus far our analysis has assumed that the sublimation fronts for the volatile ices 

are located at the surface of the chunks, rather than below.  Comet ISON’s dust activity, 

which is a proxy for gas sublimation, was located predominantly on the sunward side of 

the nucleus (Li et al. 2013b).  This is common for comet nuclei (Whipple, 1950; Keller et 

al. 1986; Feaga et al. 2007; Belton, 2013; Gulkis et al. 2015), and suggests that the 

volatile sublimation front is close enough to the surface of the nucleus to respond to the 

diurnal thermal wave (Steckloff et al. 2015a), such that the time required for a pulse of 

heat at the surface to propagate to the sublimating volatiles is short compared to the 

rotation period.  This behavior is consistent with the low thermal inertias of cometary 

material (Lisse et al. 2005; Lamy et al. 2008; Davidsson et al. 2013; Groussin et al. 2013; 

Gulkis et al. 2015).  However, if the rotation period of a parent chunk were to become 

comparable to this thermal lag time during SYORP spin up, then the chunk’s gas 

emissions would begin to lose their sunward directionality, and sublimation pressure 

would begin to cease driving the chunk anti-sunward. 

Shutting down the anti-sunward sublimation-driven acceleration would not affect 

the SYORP torques, which, like the YORP effect, only depends on the shape of the 

chunk.  Therefore a chunk in this situation would cease to accelerate heliocentrically, but 

would drift cometocentrically at a constant rate and continue to spin up to the point of 

fragmentation, at which point this cycle would repeat with the daughter chunks.  Because 

the antisunward acceleration would episodically shut down, the resulting cometocentric 

distance of stria formation would be reduced.  However, since neither the thermal lag 

time between the nuclear surface and the volatile ices nor the depth of the volatile ices of 
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Oort Cloud comets is known, these considerations are currently merely unconstrained 

speculation.  

The SYORP mechanism, while explaining why most observed striae form near- 

or post-perihelion, predicts that striae may also form pre-perihelion within ~1 AU of the 

Sun.  However, the parent chunks that would form these earlier striae would have to 

undergo their fragmentation cascades in a shorter period of time, and would therefore be 

significantly smaller than the parent chunks that form post-perihelion striae. Because 

these smaller parent chunks would form striae that contain less material than the post-

perihelion striae, these earlier striae are expected to be faint and likely to remain 

undetected.  A careful pre-perihelion study of comets that produce post-perihelion striae 

may be able to confirm this aspect of the SYORP theory. 

Additionally, we assume that H2O sublimation is driving the stria formation 

process.  However, if more volatile species such as CO2 or CO are driving striae 

formation, then striae may form further from the Sun, form faster, and contain more 

material.  Additionally, if parent chunks are ejected via sublimation of supervolatile 

species from a discrete location of the nucleus, then parent chunks may be diurnally 

ejected.  If this process occurs within the sublimation barrier of the driving species, then 

it may lead to the formation of striae that are regularly spaced within the cometary tail, 

and that form at an interval approximating the rotation period of the nucleus. 

Our model relies on the ability of comet nuclei to eject ~10-100 m sized chunks at 

escape velocity (~1 m/s).  Long-period comet C/1992 B2 (Hyakutake) experienced an 

outburst that ejected chunks consistent with the parent chunks in our model (Desvoivres 

et al. 2000; Schleicher & Woodney, 2003).  However, it is unclear whether or not the 
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comet formed striae due to limited observations of the comet post-perihelion.  Similarly, 

Jupiter Family Comet 17P/Holmes produced fragments consistent with parent chunks 

(Stevenson et al. 2010), however its distant perihelion of 2 AU would likely prevent the 

vigorous sublimation that is necessary in our model to form striae.  Spacecraft flybys of 

comet nuclei (such as Giotto, Deep Space 1, Deep Impact, Stardust, DIXI, and Stardust-

NExT) would be very unlikely to resolve the ejection of parent-sized chunks of material 

due to their limited time of encounter, and would almost certainly require a Rosetta-style 

mission to observe the nucleus of a striated comet for an extended period of time.   

The Rosetta spacecraft itself has observed decimeter to meter-sized chunks of 

material moving at near escape velocity at Comet 67P/Churyumov-Gerasimenko 

(Rotundi et al. 2015) and would certainly be able to detect the ejection of objects as large 

as parent chunks.  However, because striae are a rare phenomenon and Jupiter Family 

Comets are so thermally processed, we would not necessarily expect that 

67P/Churyumov-Gerasimenko would be able to eject parent chunks at escape velocity, 

which is required to form striae.  Indeed, Rosetta has discovered ~10-100 m chunks of 

material that may have been ejected from the nucleus of 67P/Churyumov-Gerasimenko, 

but lacked sufficient velocity to escape the nucleus’ gravity (Thomas et al. 2015).  Direct 

observation of the ejection of ~10-100 m chunks of material would be much more likely 

by a spacecraft at a long period comet or active centaur.  However, failure to detect the 

ejection of ~10-100 m chunks of material at these bodies would not necessarily invalidate 

this theory, since it predicts that only some bodies are capable of ejecting these chunks. 

It is plausible that a particularly active comet could eject parent chunks at 

velocities an order or two of magnitude greater than the comet’s escape velocity.  Such 
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parent chunks could drift significantly farther from the nucleus than other parent chunks, 

and would form striae far from the cometary tail.  However, if these parent chunks are 

ejected sufficiently far from the Sun in the centaur region, they may drift so far from the 

nucleus that they would form dust features too far from the nucleus to be easily 

associated with the comet.  The Rosetta spacecraft currently in orbit around the nucleus 

of comet 67P/Churyumov-Gerasimenko may be able to directly observe the ejection of 

large chunks of material from the nucleus during perihelion, and perhaps even obtain a 

velocity profile of the ejected population. 

Additionally, our model may predict observable intermediate stages of stria 

formation.  Because we begin with a single parent chunk, the initial stages of stria 

formation would be unobservable.  We have already shown that daughter chunks with 

radii that are comparable to the initial parent chunk predominantly occupy the duration of 

the SYORP fragmentation cascade.  Thus, as the daughter chunks drift away from the 

nucleus, they remain unobservable.  However, as the runaway fragmentation cascade 

nears completion, a very large number of small chunks are produced very rapidly.  Thus, 

immediately prior to the onset of stria formation, an observable cloud of material may 

appear in the tail of the comet that then streams outward into a stria. 

While we assume that each step of the SYORP fragmentation cascade produces 

two identical daughter chunks (size and shape), it is likely that these two chunks vary 

from one another.  If this variation is small, then the fragmentation cascade would be 

insignificantly affected and the daughter chunks will still complete their fragmentation 

cascades at approximately the same time.  However, if this variation is large, then one 

daughter chunk may undergo a significantly faster fragmentation cascade, and complete 
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its fragmentation before drifting a significant distance from the nucleus.  This would 

manifest itself as a source of fine-grained debris in the tail of the comet located between 

the nucleus and the striae.  Additionally, if the fragmentation of the larger daughter 

chunks (early stages of the fragmentation cascade) is messy and produces fine-grained 

debris, then it would also manifest itself as an additional source of fine-grained material 

between the nucleus and striae.  In either of these cases, one may see a diffuse or wispy 

tail of material distinct from the striae or the rest of the dust tail.  However, if the 

fragmentation cascade is more ideal, or if the dust tail is bright, then this feature may not 

be visible or even existent. 

Lastly, while we have only applied SYORP to parent chunks on the order of ~10-

100 m in radius, there is no reason why SYORP would not affect much larger icy objects 

within the Solar System.  Indeed, the SYORP mechanism should be able to change the 

spin state of icy objects of all sizes.  The limiting factor for SYORP is heliocentric 

distance, as the effect shuts down beyond the sublimation barrier of the driving volatile 

species.  While we have here only considered the sublimation of water ice (which shuts 

down beyond ~1 AU), CO2-driven SYORP would be active out to ~10 AU, while CO-

driven SYORP would remain active out to ~100 AU!  Therefore, as long as the 

appropriate volatile species is present and abundant, SYORP can provide torques to 

objects throughout the observable Solar System.   

 

4.6.  Summary & Conclusions 

We have proposed a new sublimation-driven model for the formation of striae 

within the tails of comets that provides a natural explanation for why comets with 
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perihelia within 0.6 AU only form striae within ~1 AU of the Sun after reaching the near-

perihelion portion of their orbits.  Our model easily allows a large amount of material to 

be transported as a single unit to the location of stria formation, a major weakness of 

existing stria formation schemes.  As part of our driving mechanism, we describe a new, 

sublimation-driven analogue to the YORP effect (SYORP), which allows large (~10-100 

m) parent chunks to fragment quickly enough to form stria within the inner Solar System.  

If large numbers of parent chunks with similar sizes and shapes are ejected prior to the 

comet passing within the sublimation barrier, then these parent chunks should produce a 

sudden burst of striae.  However, the ejection of parent chunks with a range of sizes and 

shapes is more likely.   

We apply our model to the striae of Comet West, and find that parent chunks with 

radii between 15 m and 110 m (!!!"#!!"#), which are consistent with expected sizes.  The 

sizes of these parent chunks follow a power-law cumulative size-frequency distribution 

(cumulative-SFD) with a power-law index of !!!!!!!!!!!! (!!!!!!!!!!!! for parent chunks less 

than 50 m radius), which is consistent with the index of -1.92±0.20 for Jupiter Family 

Comets with radii larger than 1.25 km (Snodgrass et al. 2011) and marginally consistent 

with the index of ~-1 for the impactor population into the young terrains of Europa 

(Bierhaus et al. 2012).  The differential Size-Frequency Distribution (differential-SFD) of 

!!!!!!!!!!!! is consistent with 73P/Schwassmann-Wachmann 3 Nucleus B’s large fragments 

(Reach et al. 2009) or all fragments (Fuse et al. 2007).  The differential-SFD for parent 

chunks less than 50 m in radius of !!!!!!!!!!!! is consistent with the differential-SFD 

indexes of the particles in the inner comae of comets 103P/Hartley 2 (Kelley et al. 2013) 

and 67P/Churyumov-Gerasimenko (Rotundi et al. 2015).  The mechanism responsible for 
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lofting these parent chunks off of the surface of the nucleus is unknown, but we speculate 

that it may be the resulting gas drag from a cometary outburst, consistent with the 

observed parent-sized chunks of comet 17P/Holmes (Stevenson et al. 2010) and comet 

C/1996 B2 (Hyakutake) (Desvoivres et al. 2000; Schleicher & Woodney, 2003).  The 

SYORP coefficients (CS) of Comet West’s parent chunks are 0.00029 – 0.00126 (!!!"!!"), 

which is on the low side of the expected range of ~0.001-0.01 (Scheeres, 2007; Rozitis & 

Green, 2013).  This may be due to the loss of surface material that is inherent in the 

SYORP mechanism, and which may remove the asymmetries in the shape of the body 

that generate the sublimative torques that create the SYORP effect. 

   We also predict that fainter, potentially observable striae may form earlier than 

the larger easily observable striae.  However, these early striae would tend to form from 

smaller parent chunks, and would therefore be harder to detect.  Additionally, our 

mechanism suggests that any comet capable of ejecting icy chunks can produce striae, 

which may or may not be large enough to be observable.  Lastly, we speculate on 

possible intermediate stages of stria formation in our mechanism that may be observable.  

One would appear as a cloud of material present immediately prior to stria formation, 

which may or may not be visible above the background of the dust tail.  The other 

depends on imperfections during the SYORP fragmentation cascade, and may appear as a 

faint wispy tail-like feature located in the dust tail between the nucleus and the striae if 

the fragmentation is sufficiently imperfect and the dust tail is sufficiently dim.  
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“Rocket science is difficult.  Spacecraft exploration of comets is even more so.” 
-Richard P. Binzel 

 
 
 

CHAPTER 5. ROTATIONALLY INDUCED AVALANCHES AND THE 
ACTIVATION OF  COMET HARTLEY 2 

 
 
 

When sublimative torques spin up comet nuclei, the effects on the geomorphology 

and activity of the nucleus can be profound, potentially causing massive avalanches that 

excavate buried supervolatile ices.  The activity of Comet 103P/Hartley 2 is dominated 

by CO2 driven sublimation at the tip of its bilobate nucleus.  This CO2 ice responds to the 

nucleus’s diurnal cycle, and must therefore be very near the surface.  However, CO2 ices 

were expected to have receded deep below Hartley 2’s surface during its ~10 million year 

migration from the Kuiper Belt to the Jupiter Family, suggesting that these ices were 

somehow brought to the surface.  I map the gravitational slopes of Hartley 2’s surface as 

a function of rotation period, and show that large avalanches capable of excavating these 

CO2 ices set in at a rotation period of ~11 hours, and are entirely confined to the regions 

of the nucleus exhibiting CO2 driven activity.  This suggests that a period of fast rotation 

activated this CO2 activity.  At the rate of spin-down observed by EPOXI, this avalanche 

likely occurred between 1984 and 1991, and would have significantly brightened the 

comet, consistent with its discovery in 1986.  Furthermore, this mechanism allows me 
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date nearly all terrains imaged by EPOXI, a first for a comet.  Finally, this mechanism 

may be the sought-after mechanism for reactivating dormant comet nuclei. 

The following manuscript was submitted to Icarus in Octoboer 2015 as 

“Rotationally Induced Surface Slope Instabilities and the Activation of CO2 Activity on 

Comet 103P/Hartley 2”, and is coauthored by Kevin Graves, Masatoshi Hirabayashi, H. 

Jay Melosh, and James E. Richardson.  

 

5.1 Introduction 

The DIXI (Deep Impact eXtended Investigation) flyby of comet 103P/Hartley 2 

on November 4, 2010, revealed the nucleus to be a small, bilobate, but highly active 

world (A'Hearn et al. 2011).  The majority of Hartley 2's activity is restricted to a region 

at the tip of its small lobe, and is diurnally driven by CO2 sublimation (A'Hearn et al. 

2011).  While bilobate comet nuclei are fairly common (Keller et al. 1986; Oberst et al. 

2004; Harmon et al. 2010; A’Hearn et al. 2011; Sierks et al. 2015), diurnal control of CO2 

sublimation has never before been observed by spacecraft in situ. 

Diurnal control requires that Hartley 2’s CO2 ices are located within the diurnal 

skin depth of the nucleus, which extends no more than a few centimeters below the 

surface.  However, this is unexpected of a Jupiter Family Comet (JFC) like Hartley 2, 

which spend typically ~45 million years as a Centaur object (Duncan et al. 2004) before 

migrating into the Jupiter family.  In the Centaur region of the Solar System carbon 

monoxide and carbon dioxide ices sublimate vigorously enough to drive cometary 

activity in this region of space (Sekanina, 1992; Steckloff & Jacobson, 2016).   
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Figure 5.1 Overview of relevant regions of comet 103P/Hartley 2 

The nucleus of comet Hartley 2 exhibits various terrain types visible in this original and 
annotated image from the DIXI flyby (MRI-VIS frame 5004052).  Although the CO2-
driven active region was only obliquely imaged by the Deep Impact spacecraft, the entire 
tip of the small lobe is dominated by CO2 activity.  The rest of the nucleus surface is a 
combination of knobby, hummocky terrain and smooth regions. As a result of this work, 
we have determined the location of current and former locations of low net potential 
(gravitational plus rotational potential), where materials will preferentially settle.   The 
migration of these potential lows over time as the nucleus rotation period lengthens to the 
observed period during the DIXI flyby implies the following relative ages for the terrains 
denoted above (oldest to youngest): persistent potential high, CO2-driven region and 
potential low at time of avalanche (contemporaneous), oldest part of current potential 
low, and current potential low. 
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Volatile sublimation over such a long dynamical lifetime should produce a chemical 

stratification of the surface layers of the nucleus, with more volatile ices receding into the 

interior of the nucleus, while less volatile ices such as water ice remain closer to the 

surface.  Thus, the diurnal activity of a JFC is expected to be driven by near-surface H2O 

sublimation, consistent with high-resolution spacecraft observations of JFCs (Feaga et al. 

2007; Gulkis et al. 2015; Sierks et al. 2015). 

For Hartley 2 to exhibit diurnally controlled CO2 sublimation, Hartley 2 must 

either have had an unusually short migration through the Centaur region into the Jupiter 

Family that limited the thermophysical evolution of the surface layers of the nucleus, or 

some mechanism must have recently removed the thermally evolved surface layers that 

are expected to overlie CO2-rich layers.  Here we show that an episode of fast rotation in 

the recent past of Hartley 2 could have generated surface slope instabilities that exposed 

buried CO2-rich ices in the region of the observed activity.   

At the time of the Deep Impact flyby, the nucleus of Hartley 2 was in a tumbling 

rotation state (A’Hearn et al. 2011; Knight & Schliecher, 2011; Samarasinha et al. 2011), 

with a rotation period about its principal axis of 18.3 hours (A’hearn et al. 2011; Drahus 

et al. 2011) and rotation period about its long axis of 27.79 hours (A'Hearn et al. 2011). 

However, sublimative torques can change comet spin periods, and during the Deep 

Impact flyby, Hartley 2's rotation period about its principal axis was lengthening at an 

estimated rate of 1.3土0.2 min/day based on DIXI flyby imagery (Belton et al. 2013) or 

1.00土0.15 min/day from ground-based observations (Drahus et al. 2011), while its 

rotation period about the long axis (the rolling motion of the nucleus) first increased 

before decreasing again during the encounter (Belton et al. 2013).  Other ground-based 
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observations are consistent with these rapid changes in the rotation state of the nucleus 

(Knight & Schleicher, 2011; Meech et al. 2011; Samarasinha et al. 2011; Knight et al. 

2015).   

This suggests that Hartley 2 was likely spinning much faster about its principal 

axis in the recent past.  At the rate of angular deceleration observed during the DIXI 

encounter, Hartley 2 would have been spinning fast enough to break apart (disrupt) only 

~20 orbits in the past (Drahus et al. 2011).  However, this assumes that the nucleus would 

survive to the disruption limit of a gravity-dominated ellipsoid (Pravec & Harris, 2000).  

Consideration of the rotationally-induced stresses that concentrate at the waist of Hartley 

2’s bilobate structure suggests that its nucleus would fission into two lobes at rotation 

periods shorter than ~8 hours.  Thus, Hartley 2 would have been rotating at its disruption 

limit only ~10 orbits in the past.  This suggests that the CO2 activity driving Hartley 2’s 

sublimative torques is either less than ~70 years old, or that its nucleus migrated 

unusually quickly through the Centaur region, such that the nucleus did not significantly 

thermophysically evolve. 

In the case of rapid migration, Hartley 2’s orbit would need to have evolved from 

a perihelion outside of ~10 AU into the Jupiter Family of comets in a timespan on the 

order of centuries or shorter for its CO2 activity to remain diurnally controlled and the 

nucleus to remain intact. However, this is exceedingly unlikely when compared to the 

typical migration timescale through the centaur region of ~45 million years (Duncan et al. 

2004). Even if we assume that Hartley 2 migrated through the Centaur region in 

negligible time and was directly injected into the Jupiter Family, the median dynamical 

lifetime of a JFC is ~325,000 years (Duncan et al. 2004) and CO2 sublimates vigorously 
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throughout the JFC region of space (Steckloff et al. 2015; Steckloff & Jacobson, 2016), 

making it exceedingly unlikely (~0.02%) that Hartley 2 has been in the Jupiter Family for 

less than this ~70 year maximum age of activity. 

Instead, we investigate the alternative, that comet Hartley 2’s CO2 activity is 

young, and thus was a relatively dormant comet that was reactivated in the recent past.  

We propose that rotationally-induced avalanches preferentially exposed buried CO2-rich 

materials on the surface of Hartley 2’s small lobe, where solar radiation could diurnally 

controls CO2 sublimation, generating the observed activity of the nucleus.  We explore 

this case numerically. 

 

5.2 Methods 

We explore the effects of spin rate changes on the surface of Hartley 2's nucleus 

by computing the stability of its slopes at rotation periods between four hours (where the 

nucleus is unstable and breaks apart) and its rotation period of 18.34 hours at the time of 

the DIXI flyby.  Although Hartley 2 is in a tumbling rotation state (A’Hearn et al. 2011; 

Knight & Schliecher, 2011; Samarasinha et al. 2011), we ignore the slower rotation about 

its long axis (period of 27.79 hours at the time of the flyby [A'Hearn et al. 2011]), and 

assume principal axis rotation. 

We assume that avalanches, which remove surface materials while leaving 

underlying materials undisturbed, are responsible for exposing CO2-rich ices on the 

surface of the nucleus.  Avalanches occur when the slope angle of a surface exceeds its 

angle of repose (Lambe & Whitman, 1969).  We compute the surface slope angles of 

Hartley 2 by first computing the net acceleration vector (the sum of the gravitational and 
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centrifugal acceleration) at the center of each facet of the Thomas et al. (2013) shape 

model of Hartley 2 using the GRAVMAP code, which is based on the method of Werner 

(1994).  We then compute the angle between the net acceleration vector and the vector 

normal to the facet of the shape model to obtain the surface slope angle of the facet.  We 

next identify facets of the shape model with slope angles that exceed the angle of repose 

of Hartley 2’s regolith, an unstable condition that precedes landslides and avalanches. 

Critical to this method is the density of the nucleus, which is assumed to be 

uniform. The high relative encounter velocity of the Deep Impact spacecraft with Hartley 

2’s small nucleus prevented a direct measurement of its density from gravitational 

deflection of the spacecraft (A’Hearn et al. 2011).  However, A’Hearn et al. (2011) 

considered that the smooth waist of the nucleus is likely a ponded depositional feature, 

which requires a density of at least 220 kg/m+ for this region to occupy a gravitational 

low.  Richardson & Bowling (2014) considered that the waist is likely the result of a 

fluidized flow, and would therefore approximate an equipotential surface.  By 

minimizing the variance of the effective potential (gravitational plus rotational) for the 

observed portion of the waist at the principal rotation period during the Deep Impact 

flyby, they estimated the nucleus density to be != 200 (140-520) kg/m+.  Thomas et al. 

(2013) further considered the changing rotation state of the nucleus to refine this estimate 

to != 300 (200-400) kg/m+.   

The angle of repose (!) of a surface (the maximum stable slope angle) depends on 

the angle of internal friction (!), pore pressure of fluids within the material (!!"#$), 

material density (!), cohesive strength (!!), and the local gravity field (g) of the body  

!! ! !! ! !!! ! !!"#$!!"#!!           (5.1) 
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!! ! !"!!!"#!!       (5.2) 

!! ! !"!!!"#!!        (5.3) 

where ! is the thickness of the unstable layer (Melosh, 2011).  The angles of internal 

friction for geologic materials are remarkable uniform, typically ~30°-45° (Lambe & 

Whitman, 1969).  We conservatively assume that pore pressure (!!"#$) within the 

regolith of Hartley 2 is negligible, which will result in more stable surfaces and higher 

angles of repose.    

We also assume that the surface regolith of Hartley 2 is non-cohesive, based on 

the presence of the smooth waist of Hartley 2 that is believed to be a flow deposit that 

fluidized by H2O sublimation (A’Hearn et al. 2011; Thomas et al. 2013; Richardson & 

Bowling, 2014).  Because this regolith would fail to fluidize if its cohesive strength were 

greater than the vapor pressure of the sublimating H2O, the vapor pressure of H2O 

provides a maximum constraint to the cohesive strength of the regolith.  If H2O ice were 

located right at the surface of the smooth waist (as opposed to mixed within it), its vapor 

pressure at perihelion with the Sun at the zenith would be ~0.1 Pa (Steckloff et al. 2015; 

Steckloff & Jacobson, 2016), however this constraint would only allow for the onset of 

fluidization for a very brief moment of Hartley 2’s orbit.  If we assume that the waist is 

able to fluidize for a few months preceding perihelion, then the constraint on the cohesive 

strength of the regolith drops by nearly an order of magnitude, and if we assume that the 

sublimating H2O ice deposits are located within the regolith (rather than on top of it), the 

constraint on cohesive strength drops even further.  It is therefore reasonable to assume 

that the regolith of Hartley 2 has such weak cohesion, that it effectively behaves as a non-

cohesive material. 
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In this case of regolith without significant pore pressure or cohesion, the angle of 

repose (!) in equations (5.2)-(5.3) becomes equal to the angle of internal friction (!), and 

is therefore expected to lie between 30°-45°.  We conservatively choose to only consider 

slopes less than 30° to be stable, and slopes exceeding 45° to be unstable.  It is unclear if 

surface slopes between 30° and 45° are stable or unstable without a more thorough 

understanding of the structural properties of Hartley 2’s regolith.  We vary the principal 

axis rotation period of Hartley 2 in 1 hour increments, compute the resulting surface 

slope angles, and identify unstable regions of the nucleus surface for each rotation period. 

 

5.3 Results 

We find that the surface of comet Hartley 2 is generally very stable during the 

DIXI flyby (spin period of 18.34 hours), with all the surface (except for a single scarp on 

the large lobe) possessing a surface slope angle less than 20°, and therefore stable. The 

surface slopes of the large lobe’s scarp are maximally between 30° and 45°, leaving 

unclear the stability of its surface.   However, this feature is associated with a dust jet 

(Bruck Syal et al. 2013), and so it is plausible that this scarp is unstable or was unstable 

in the recent past. 

As we spin up the nucleus of Hartley 2 to a rotation period of 13 hours, a ring of 

terrain outlining the CO2-driven activity of the small lobe steepens to surface slope angles 

of 30° to 45° degrees (see Figure 2).  While this does not necessarily indicate that the tip 

of the small lobe becomes unstable and prone to avalanches, it does suggest that the tip of 

the small lobe is trending toward slope instability as the nucleus is spun up.  Interestingly, 

the rest of the nucleus outside of the scarp on the large lobe remains relatively flat, with  
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Figure 5.2:  Surface slopes of 103P/Hartley 2 under different rotation rates 

As the nucleus of comet 103P/Hartley 2 is spun up from it’s DIXI flyby rotation 
period of 18.34 hours, the slopes on the tip of the small lobe of the nucleus 
increase significantly more than any other place on the nucleus, and become 
highly unstable (above 45°) at a rotation period of 11 hours.  This suggests that, at 
an 11 hour rotation period, avalanches would set in on the tip of the small lobe, 
excavating buried CO2 ices and activating this region of the nucleus.  
Interestingly, the rest of the nucleus remains at roughly the same slope, regardless 
of rotation period, and would not experience avalanches. 
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surface slopes less than ~20°.  At a 13 hour rotation period, the scarp on the large lobe 

steepens to a slope angle of ~45° indicating that it is likely unstable without cohesion.   

At a rotation period of 11 hours, the surface slopes of the source region of the 

CO2-driven activity at the tip of the small lobe exceed 45° and become clearly unstable.  

Under these conditions, avalanches will excavate buried materials, and surface materials 

will flow downhill, toward the tip of the small lobe.  Interestingly, these avalanches are 

almost exclusively restricted to the active region of the small lobe, as the rest of the 

nucleus outside of the scarp on the large lobe and a few isolated facets remains stable 

with surface slope angles less than 20°.  The remarkable geographic correlation between 

surface slope instabilities and the CO2-driven active terrains on the small lobe of Hartley 

2 strongly suggest that the nucleus recently experienced an episode of fast rotation (with 

a period of ~11 hours), which excavated buried CO2 ices to the surface of the nucleus 

where they currently drive activity. 

This result is robust against uncertainties in the bulk density of the nucleus.  

While our previous computations assume a nucleus bulk density (!) of 300 kg/m+ 

(Thomas et al. 2013), a decrease in the nucleus bulk density makes the surface slopes 

more prone to change under rotational spin up, while an increase in density makes the 

surface slopes more resistant to change.  As a result, when we run the same analysis and 

vary the nucleus bulk density (!), we find that surface slope instabilities set in at the tip 

of the small lobe at a rotation period of ~13 hours for a bulk nucleus density of 200 

kg/m3, and at a rotation period of ~10 hours for a bulk nucleus density of 400 kg/m3.  

However, the distribution of surface slopes is effectively unchanged under these differing 
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densities, and the same regions and isolated facets of the nucleus shape model remain 

stable/unstable across the uncertainty in the nucleus bulk density. 

Although we assume the regolith of the comet to be cohesionless, the underlying, 

non-thermally evolved materials likely possess significant strength.  We use finite 

element model (FEM) analysis (Hirabayashi & Scheeres, 2015) to compute the internal 

stress state of Hartley 2’s nucleus and determine the minimum strength required to 

maintain the interior structural stability of the nucleus at the onset of surface slope 

instabilities on the small lobe.  We input the Thomas et al. (2013) shape model into 

ANSYS FEM software and assume that the nucleus deforms plastically.  At the DIXI 

flyby rotation period of 18.34 hours, the nucleus experiences entirely compressional 

stresses, but does not fail compressionally (structurally stable).  However, at the onset of 

surface slope instabilities, the waist of Hartley 2 enters a tensile state (while the two lobes 

of the nucleus remain compressional), and requires a tensile strength of at least 2.8 (2.0 - 

4.0) Pa to remain structurally stable (see Figure 5.3).   

We compare this to known bulk strength estimates of comet nuclei and find that it 

is consistent with the constraints on the tensile strength of comets Shoemaker-Levy 9 

(D/1993 F2) and Brooks 2 (16P) of <6.5 Pa (Asphaug & Benz, 1996) and <2 Pa 

(Sekanina & Yeomans, 1985) respectively. This constraint is also consistent with 

estimates of comet Churyumov-Gerasimenko’s (67P’s) cohesive strength of 1-16 Pa 

(Bowling et al. 2015) and tensile strength of 3-15 Pa (Groussin et al. 2015) and 20 Pa 

(Thomas et al. 2015).  It is also consistent with the ~1 Pa order unconfined crushing 

strength of Comet ISON (C/2012 S1) (Steckloff et al. 2015) and >17 Pa cohesive strength 

of Comet Wild 2 (81P) (Melosh 2011; Steckloff et al. 2015). 
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Figure 5.3: Finite Element Model (FEM) Analysis of Plastic Stresses in the body of 
Hartley 2 at Critical Rotation Period.   

 
We model the internal stress state of Hartley 2’s nucleus at the critical rotation period at 
which surface slope instabilities and their resulting avalanches set in on the small lobe 
(11 hour period for a bulk density of 300 kg/m3).  We assume plastic deformation of the 
nucleus material, and compute the highest stresses experienced by the nucleus material.  
Although we assume that a non-cohesive regolith covers the nucleus, the interior of the 
nucleus must have ~2.8 Pa of cohesive strength to prevent the nucleus from breaking, 
consistent with strengths of other cometary nuclei (Sekanina & Yeomans, 1985; Asphaug 
& Benz, 1996; Melosh, 2011; Bowling et al. 2015; Thomas et al. 2015; Steckloff et al. 
2015). 
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5.4 Discussion 

Small, isolated jets appear on the large lobe of the nucleus (Bruck Syal et al. 

2013), and it is conceivable that the scattered, isolated facets of the large lobe that 

experience surface slope instabilities at faster spin rates may be associated with jets.  

However, the contribution of these jets to the overall production of the nucleus is likely 

very minor, otherwise the light curve amplitude during DIXI’s approach to Hartley 2 

(A’Hearn et al. 2011) would not be a drastic).  Additionally, these unstable facets were on 

the unilluminated side of the nucleus during the DIXI flyby, where jets are less likely to 

be active or observed, and where the shape of the nucleus is relatively poorly constrained.  

It is therefore possible that the surface slope instabilities of these facets are artifacts of 

imperfections in the Thomas et al. (2013) shape model. Furthermore, although the 

sources of the small jets are associated with geologic features of the nucleus (Bruck Syal 

et al. 2013), these source areas are smaller than, or comparable to, the 2 degree (~10-44 

m) resolution of the Thomas et al. (2013) shape model.  Because our method is limited by 

the resolution of the shape model, studying the activation of these isolated jets, or the 

effects of isolated unstable facets of the shape model, is difficult and unreliable.  We 

therefore restrict our analysis to large-scale regional trends on the surface of Hartley 2’s 

nucleus, which are unlikely to be the result of errors in the shape model. 

The unstable scarp on the large lobe is not associated with activity on its face, 

although it does have a dust jet at its base (Bruck Syal et al. 2013).  This suggests that 

this region did not recently experience avalanches that exposed interior ices preceding the 

flyby or during previous episodes of fast rotation.  However, the instability of this region 

at all studied spin periods implies that any non-cohesive regolith would slide off of this 
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surface, keeping underlying cohesive materials exposed at the surface.  This scarp region 

may therefore be an outcrop of cohesive materials that generally underlie the cometary 

regolith, similar to the Hathor terrain on comet Churyumov-Gerasimenko (67P) (Sierks et 

al. 2015; Thomas et al. 2015).  However, its lack of observed CO2 activity suggests that it 

has long been exposed at the surface, allowing CO2 ices to recede below the diurnal 

thermal skin depth. 

Although the principal rotation period of Hartley 2’s nucleus was increasing by 

~1 minute/day during the DIXI encounter (Drahus et al. 2011, Belton et al. 2013), this 

rate is not maintained during an entire orbit (Knight et al. 2015).  Drahus et al. (2013) 

estimated the orbitally-averaged decrease in the principal axis rotation frequency to be 

~0.012 hr-1 per orbit.  At this rate, Hartley 2 would have been spinning fast enough 

(period of 11 hours) to induce surface slope instabilities ~3-4 orbits prior to the DIXI 

encounter.  This suggests that Hartley 2 was reactivated between 1984 and 1991.  

Interestingly, this coincides with the discovery of the comet by Malcolm Hartley in 1986, 

and activation of the small lobe of the nucleus would have certainly facilitated the 

discovery of the comet.  Such a recent activation is consistent with observations that 

suggest the activity of the nucleus has been diminishing over time since systematic 

observations of Hartley 2 began during its 1991 apparition (Meech et al. 2011; Knight & 

Schleicher, 2013), as would be expected as the exposed surface of the nucleus evolves 

thermophysically.  It is therefore quite likely that Hartley 2 was a relatively dormant 

comet that reactivated shortly before its discovery, possibly during its 1985 perihelion 

passage. 
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During the rotationally-induced avalanches, material flows downhill toward the 

tip of the small lobe.  If the CO2 ices were located at a similar depth as they are on 

Tempel 1 (9P), then the thickness of the avalanching material is equal to the ~10m orbital 

thermal skin depth (Sarid et al. 2005) of Tempel 1’s seasonally-active CO2 (Feaga et al. 

2007).  Hartley 2 has a surface area of 5.24 km2 (Thomas et al. 2013), ~16% of which is 

sublimating CO2 (Samarasinha & Mueller, 2013).  If we assume that all of this CO2 

activity is located on the small lobe, then surface material covering ~0.8 km2 (~2.4x1010 

kg) would avalanche toward the tip of the small lobe, severely restricting cometary 

activity.  However, since DIXI observed this region to be highly active (A’Hearn et al. 

2011), this material needs to be removed from the surface.   

At a spin period of 11 hours, the component of net acceleration normal to the 

surface at the tip of the small lobe is ~5x10-6 m/s2, which is a factor of 5 smaller than 

during the DIXI flyby (due to the faster spin rate).  Thus, it would have been easier to 

remove material from the surface through gas drag during periods of fast rotation.  If we 

assume that the CO2 ices, once exposed to sunlight during the avalanches, quickly 

warmed up and reached a sublimative equilibrium, then the sublimating CO2 would exert 

a dynamic sublimation pressure between 0.001 Pa (at aphelion) and 0.1 Pa (at perihelion) 

(Steckloff et al. 2015; Steckloff & Jacobson, 2016) on the surface materials.  This 

pressure is great enough to loft chunks between ~0.5 - 50 m off the surface of the small 

lobe!  Some of the smaller pieces of this material would reach escape velocity and be 

visible as a sizeable outburst of the comet.  However, the larger pieces of material would 

fall back onto the nucleus, and may be the source of the ~20-40 m mounds and rough 

surface terrains observed by the DIXI mission (Thomas et al. 2013).   
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We replotted the Thomas et al. (2013) binned size distribution data of these 

mounds on the surface of Hartley 2, and found that their cumulative size-frequency 

distribution (SFD) has a power-law index of -4.1.  This is consistent with the range of 

indices of -5.6 - -3.7 for the differential SFD of the chunks of material found in Hartley 

2’s inner coma (Kelley et al. 2013) and with the index of -4.0±0.3 from WISE/NEOWISE 

observations of Hartley 2 (Bauer et al. 2011), suggesting that an ejection and fallback 

origin of these mounds is plausible. (See Figure 4).  In any case, it is quite likely that the 

avalanching surface materials would leave the surface of the region of CO2-driven 

activity on the small lobe, and may end up being deposited on the rest of the nucleus.   

We computed the net specific potential (gravitational plus rotational potential per 

unit mass) of Hartley 2’s surface at various spin periods. Since materials are 

preferentially deposited in potential minima, we consider the location of the potential 

minima at the time of Hartley 2’s avalanche to determine where the materials are 

preferentially deposited. We find that the potential minima are located at the tips of each 

lobe. However, since the avalanche activated CO2 activity that can prevent this material 

from settling on the surface, the avalanche debris is most likely to settle at the tip of the 

large lobe. Thus, our model of Hartley 2’s activation predicts that a rough, hummocky 

avalanche debris deposit should be located at the tip of the large lobe, consistent with 

observations of hummocky terrain at this location (see Figure 1). Furthermore, our model 

predicts the existence of other depositional terrains as the location of potential lows 

migrates about the nucleus during the lengthening of the principal rotation period of the 

nucleus from ~11 hours at the time of the avalanche to the 18.34 hour period during the 

DIXI flyby (see Figure 5.5).  
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Figure 5.4  Size-Frequency Distribution of Mounds on Nucleus of Hartley 2.   

We replotted the binned size-frequency data of mounds on the surface of Hartley 2 from 
Thomas et al. (2013) to compute their cumulative size frequency distribution (cumulative 
SFD).  Thomas et al. (2013) placed the data in 5 meter bins (the source of the horizontal 
error bars).  Vertical error bars are standard square-root of N.  Because data is binned, 
large bins become undersampled due to low probability of mound having a large size.  
We exclude these bins, which would otherwise skew the power-law fit to the SFD.  We 
exclude the smallest-sized bins, which are near the resolution of the Deep Impact MRI, 
and therefore exhibit observational bias.  We find that the mounds follow a power-law 
cumulative SFD, with a power-law index of -4.1, consistent with the SFD of icy chunks 
in the inner coma of Hartley 2 during the DIXI flyby (Kelley et al. 2013) 
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At spin periods longer than ~14 hours, the potential low of the nucleus migrates 

from the tips of the lobes to the large region on the center of the imaged portion of the 

large lobe (denoted by Bruck-Syal et al. [2013] as a “central mound”).  During this 

episode of intermediate spin periods, the surface of the nucleus is stable (slope angles 

below the angle of repose), inhibiting the formation of large-scale hummocky avalanche 

deposits. However, the CO2-driven activity at the tip of the small lobe is ejecting grains 

composed of H2O ice and dust (A’Hearn et al. 2011), some of which settle back onto the 

surface. As these grains warm up, the H2O ice sublimates, forming a fluidized flow 

(Belton & Melosh, 2009) that settles in the potential well.  Thus, our avalanche theory 

predicts the formation of a smooth terrain that approximates an equipotential surface on 

the central mound, consistent with observations. At a spin period longer than ~16 hours, 

the waist region of the nucleus joins this potential low, where fluidized icy grains should 

flow and settle, forming a smooth, equipotential surface (A’Hearn et al. 2011; Thomas et 

al. 2013; Richardson & Bowling, 2014), consistent with observations. Finally, we note 

that the unstable scarp on the large lobe is part of a region that is a persistent location of 

high potential at all studied spin periods. It is unlikely that material would settle in this 

terrain rather than move downhill. Thus, we most expect an unstable scarp be located in 

this region, where the cohesive interior of the nucleus is most likely to be outcropped at 

the surface, rather than covered with regolith. 
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Figure 5.5: Specific Potential Map of Hartley 2 at Various Spin Period 

We compute the net specific potential (gravitational plus rotational potential per unit 
mass) for various rotation periods. Because we only care about potential differences we 
plot each case with a color bar that spans 0.008 J/kg, roughly centered about the median 
specific potential of the surface (u0). We clearly see that the regions of low specific 
potential migrate over the surface of the nucleus as the spin period increases. At the time 
of avalanche that excavated the small lobe, the potential lows were located at the tips of 
the lobes, migrating to waist and central mound of the nucleus by the time of the DIXI 
flyby. 
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From this sequence of events, we can place relative ages on most of the imaged 

surface of Hartley 2. The region of persistent potential high is likely the oldest terrain on 

the surface, with the unstable scarp representing an outcrop of the nucleus on the surface. 

The CO2-driven active region and hummocky terrain at the tip of the large lobe, which 

formed simultaneously ~1984-1991 are the oldest terrains formed since the avalanche. 

The smooth terrain of the central mound formed next, when the rotation period was 

longer than ~14 hours. This terrain developed over time, as fallback material accumulated 

on the surface of the nucleus and fluidized. Finally, the smooth waist region joined the 

potential low at spin periods longer than ~16 hours, and formed most recently as 

fluidized fallback material settled. 

It is likely that surface slope instabilities across the small lobe did not set in 

simultaneously.  More likely, a series of smaller avalanches excavated buried CO2 ices, 

rather than one large avalanche, causing a more gradual brightening of the comet 

(gradual, long-lived outburst).  As this outburst faded, the comet would dim, but would 

settle to a much brighter magnitude than before the outburst due to the activation of CO2-

driven activity on the small lobe.  The CO2-driven regions would resist being covered by 

an avalanche because their activity would be able to loft this material off the surface, 

preventing it from settling.   

At the ~11 hour rotation period at which surface slope instabilities set in, the 

waist of the nucleus enters a tensile state.  Although only a small amount of cohesion 

(~2.8 Pa) is needed to hold the nucleus together, the waist may still experience a slow 

creep of the nucleus material, which may lead to an elongation of the neck, and could 

contribute to the formation of the bilobate shape of the nucleus.  The rest of the nucleus 
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remains in compression, with most of the large and small lobes experiencing very small 

stresses (~1 Pa) at all rotation periods between 11 and 18 hours.  This lack of significant 

compression or change in stress state would allow the nucleus to remain uncompacted, 

and may explain why the nucleus of comet Hartley 2 appears to be significantly less 

dense than other observed comet nuclei (Richardson et al. 2007; Thomas et al. 2013; 

Sierks et al. 2015). 

In proposing that the activity of Hartley 2 is the result of rotationally-induced 

avalanches, we require a mechanism to spin up the nucleus to the onset of surface-slope 

instabilities.  Although we suggest that Hartley 2 was relatively dormant prior to 

reactivation, it may still have exhibited some activity, which can generate sublimation 

torques.  To induce enough sublimation torque to spin up Hartley 2 to the onset of surface 

slope instabilities within a typical ~3 x 105 year dynamical lifetime of a Jupiter Family 

Comet (Duncan et al. 2004), only ~0.01% of the total solar heat incident on Hartley 2 

over its orbit needs to reach the buried ices (according to SYORP theory [Steckloff & 

Jacobson, 2016]).  If we assume that sublimation cooling dominated the 5% of comet 

Tempel 1 (9P) that is active (Samarasinha et al. 2013), then a dormant nucleus would 

need to have at least ~1% of the activity of Tempel 1 to be capable of inducing surface 

slope instabilities during a typical dynamical JFC lifetime.  It is therefore plausible that 

even very weak activity could have spun up the nucleus of a dormant Hartley 2 and 

activate the activity on the small lobe. 

Our work suggests that comet Hartley 2 was recently a dormant comet, a class of 

comets that recent work suggests exists (Kresak, 1987; Levison et al. 2006).  While 

dormancy may be a common phase of Jupiter Family Comets, their mechanisms of 
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reactivation are poorly understood.  Bruck-Syal et al. (2013) show that a rapid release of 

energy into the subsurface of comet Hartley 2 can trigger the formation of well-

collimated jets.  However, whereas Bruck Syal et al. (2013) propose that amorphous ice 

crystallization could provide the energy required to initiate jet formation, amorphous ice 

has yet to be detected on a comet (Huebner, 2009; Lisse et al. 2013), and another 

explosive source of heat on comet nuclei has not been identified.  We have shown that 

rotationally-induced avalanches can excavate ices and reactivate a comet. 

 

5.5 Conclusions 

We have shown that the distribution of the activity of comet 103P/Hartley 2, 

which is driven by diurnally controlled carbon dioxide sublimation, is consistent with 

rotationally-induced surface slope instabilities from a recent episode of fast rotation. At a 

rotation period of ~11 (10-13) hours, the region of Hartley 2's surface that is bounded by 

its carbon dioxide activity becomes unstable and avalanches toward the tip of the small 

lobe, excavating buried materials beneath.  These avalanched materials would likely be 

lofted off the surface of the nucleus at less than escape velocity and be redeposited on 

other parts of the nucleus, forming hummocky terrains.  We further show that spinning up 

the nucleus from its DIXI encounter spin period of 18.34 hours to this faster spin period 

does not induce surface slope instabilities on any other part of the nucleus prior to 

generating instabilities at the tip of the small lobe. Additionally, we have shown that the 

stresses within the nucleus are small enough in magnitude that the shape of the nucleus 

can be maintained if it possesses a bulk cohesive strength of at least 2.8 (2.0-4.0) Pa, 

which is consistent with strength estimates of other comet nuclei (Sekanina & Yeomans, 
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1985; Asphaug & Benz, 1996; Melosh, 2011; Bowling et al. 2015; Groussin et al. 2015; 

Thomas et al. 2015; Steckloff et al. 2015). We therefore conclude that rotational spin up 

is responsible for either initiating or maintaining the diurnally-controlled carbon dioxide 

driven activity of comet Hartley 2, and may have formed the observed knobby, 

hummocky terrains in the process. Our model of activating Hartley 2 predicts the 

formation of smooth fluidized terrains on the central mound and waist as the nucleus 

rotation period lengthened to the 18.34 hours of the DIXI flyby, consistent with 

observations.  We discuss how this mechanism can potentially reactivate dormant comet 

nuclei, and how the shape of Hartley 2 may be responsible for its unusually low density 

by limiting the internal stresses of the nucleus. 
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a b s t r a c t

Previously proposed mechanisms have difficulty explaining the disruption of Comet C/2012 S1 (ISON) as
it approached the Sun. We describe a novel cometary disruption mechanism whereby comet nuclei
fragment and disperse through dynamic sublimation pressure, which induces differential stresses within
the interior of the nucleus. When these differential stresses exceed its material strength, the nucleus
breaks into fragments. We model the sublimation process thermodynamically and propose that it is
responsible for the disruption of Comet ISON. We estimate the bulk unconfined crushing strength of
Comet ISON’s nucleus and the resulting fragments to be 0.5 Pa and 1–9 Pa, respectively, assuming typical
Jupiter Family Comet (JFC) albedos. However, if Comet ISON has an albedo similar to Pluto, this strength
estimate drops to 0.2 Pa for the intact nucleus and 0.6–4 Pa for its fragments. Regardless of assumed
albedo, these are similar to previous strength estimates of JFCs. This suggests that, if Comet ISON is
representative of dynamically new comets, then low bulk strength is a primordial property of some
comet nuclei, and not due to thermal processing during migration into the Jupiter Family.

! 2015 Elsevier Inc. All rights reserved.

1. Introduction

On November 12, 2013 sungrazing comet C/2012 S1 (ISON)
unexpectedly disrupted into fragments. This occurred at a helio-
centric distance of 145 solar radii (R!) (0.68 AU), prior to reaching
perihelion (Combi et al., 2014; Boehnhardt et al., 2013; Steckloff
et al., 2015). Subsequent disruption events occurred on
November 21 and 26 at 88 R! (0.41 AU) and 36 R! (0.17 AU)
respectively (Knight and Battams, 2014; Steckloff et al., 2015).
While there is nothing seemingly special about these heliocentric
distances, currently known sungrazing comet disruption mecha-
nisms seem inadequate to explain ISON’s demise. ISON’s disrup-
tions occurred much too far from the Sun to have been caused by
ablation or chromospheric impact, which disrupt nuclei within a
heliocentric distance (q) of 1.01 R! (Brown et al., 2011). Tidal stres-
ses can disrupt the nucleus only within the fluid Roche Limit
(q < "2 R!) (Knight andWalsh, 2013). Additionally, ISON’s effective

radius of "600–700 m (Delamere et al., 2013; Lamy et al., 2014)
was too large to have lost all its ice through complete sublimation
and then disintegrated, a process that may only disrupt nuclei less
than "200–350 m in radius (Knight and Walsh, 2013; Sekanina,
2003). Finally, ISON’s 10.4 h rotation period at 210 R! on
November 1 (Lamy et al., 2014) was too long for nongravitational
torques to spin the body up to fragmentation ("2.2 h period)
(Pravec et al., 2006) by the time it reached 145 R! less than
2 weeks later on November 13 (Samarasinha and Mueller, 2013).
However, it has been implied that sublimating gases are linked
to the disruption of sungrazing comets (Sekanina, 2003). Here we
introduce a new break-up mechanism that readily explains
Comet ISON’s series of disruptions.

As illustrated in Fig. 1, gas sublimating on the sunward side of
the nucleus transfers momentum to the nucleus, exerting a
dynamic sublimation pressure on its illuminated hemisphere.
The sublimation pressure on the surface generates differential
stresses within the nucleus that may exceed ISON’s material
strength, ultimately disrupting the comet into fragments (Brown
et al., 2011; Borovička et al., 2013). Based on the timing of

http://dx.doi.org/10.1016/j.icarus.2015.06.032
0019-1035/! 2015 Elsevier Inc. All rights reserved.
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disruption events we can estimate the bulk unconfined crushing
strength of Comet ISON’s nucleus.

2. Theory/calculation

Investigating our proposed disruption mechanism requires an
accurate computation of the sublimation pressure (itself a function
of both thermal gas velocity and mass loss rate) acting at the sur-
face of the nucleus as a function of heliocentric distance. Previous
computations of cometary sublimation rely heavily upon either
empirical fits to observed volatile mass loss rates (e.g. Marsden
et al., 1973; Cowan and A’Hearn, 1979; Sekanina, 1992), or on
the theoretical dependence of mass loss rates on temperature
(Delsemme and Swings, 1952) rather than the dependence of sub-
limation pressure on heliocentric distance. We choose instead to
construct a versatile thermodynamic model of the sublimation
pressure acting upon a cometary surface. In our calculations, the
heliocentric dependence of the sublimation pressure of a particular
volatile species is fully described by six known quantities: helio-
centric distance (rhelio), molar mass (mmolar), heat of sublimation
(L), sublimation coefficient (a) and a laboratory measurement of
vapor pressure (Pref) at a known temperature (Tref).

Comets consist of intimate mixtures of refractory materials (sil-
icates, metal sulfide dust, organics) and volatile ices (primarily
H2O, CO2, and CO [Bockelée-Morvan et al., 2004]). The
phase-change behavior of mixtures of volatiles can be significantly
more complicated than that of a single, pure volatile species. In
particular, if cometary CO is mostly trapped within amorphous
H2O ice, then the release of significant quantities of COmay require
the amorphous H2O ice to crystallize (Bar-Nun et al., 2013), which
is a highly exothermic and potentially explosive phase transition
(Mastrapa et al., 2013). Moreover, the presence of amorphous ice
in comets is contentious (Lisse et al., 2013). However, Comet
ISON’s CO content is only a few percent of its H2O content
(Weaver et al., 2014) and produced an order of magnitude less

CO2 than H2O (McKay et al., 2014). Therefore, we may assume that
the sublimation pressure acting on Comet ISON’s surface is domi-
nated by the sublimation of pure H2O ice, which avoids the compli-
cations of the sublimation of mixed materials and species more
volatile than H2O ice. However, we include the cases in which pure
CO2 and CO ice sublimates for the sake of comparison, which
admittedly ignores the complications of how one would trap sig-
nificant quantities of CO ice in the first place.

Typical bond albedos measured for Jupiter Family Comet (JFC)
nuclei are very low (0.03–0.06) (Li et al., 2013a,b; Capaccioni
et al., 2015), and when JFCs approach the Sun, most of the incident
radiation (94–97%) is absorbed at the surface and drives the subli-
mation of volatile ices (an active comet’s dominant cooling mech-
anism). We explore the case in which Comet ISON’s albedo is
similar to that of JFCs, and assume that all incident radiation is
absorbed (bond albedo of 0). However, because dynamically new
comets have never been thermally processed by the Sun, it is plau-
sible that their surfaces are significantly richer in ices than JFCs,
which could lead to a much higher albedo. Moreover, there are
no high-resolution observations of dynamically new comet nuclei,
which would constrain their albedos. We therefore also explore the
case in which Comet ISON has a bond albedo of 0.5, which is sim-
ilar to that of the dwarf planet Pluto.

Observations of JFC nuclei suggest that cometary thermal iner-
tia is very low (Gulkis et al., 2015; Davidsson et al., 2013; Groussin
et al., 2013; Lisse et al., 2005; Lamy et al., 2008), meaning that little
daytime heat is stored by the surface to be later released when it
rotates into night. This naturally explains their highly asymmetric
dayside–nightside distribution of sublimating gases (Feaga et al.,
2007; Gulkis et al., 2015). Similarly, Comet ISON’s activity is con-
centrated on its illuminated hemisphere (Li et al., 2013c). Since
cometary activity is driven by volatile sublimation, we assume that
effectively all volatile emission occurs on Comet ISON’s illuminated
hemisphere, causing a sublimation pressure that only acts on the
illuminated parts of its nucleus. Indeed, it has been known for dec-
ades that nongravitational forces push predominantly on the sun-
ward hemispheres of comet nuclei (Marsden et al., 1973). While
observations show that the unilluminated side of comet nuclei
can emit volatiles, emission on the unilluminated side is usually
less than half of the emission of the illuminated side (Feaga
et al., 2007; Gulkis et al., 2015). Therefore, our sunward emission
assumption is valid for our purpose of obtaining an order of mag-
nitude estimate of ISON’s strength.

While the nuclei of highly thermally evolved comets (like JFCs)
emit dust and gas from only a small fraction of their surfaces
(Ververka et al., 2013; Samarasinha and Mueller, 2013), ISON’s
high H2O production rate prior to disruption suggests that nearly
the entire surface of its nucleus was active (Combi et al., 2014),
consistent with a thermally primitive, dynamically new comet.
This implies that volatile ices are located within the thermal skin
depth of the comet’s surface. We therefore assume that volatile
ices sublimate from the entire illuminated surface of ISON, and
that a negligible amount of incident solar energy is thermally radi-
ated into space from a mantle of material covering the volatile ices.

The dynamic pressure exerted by sublimating volatiles on the
surface of the nucleus is equal to the momentum flux of the
departing material, and is computed by multiplying the volatile’s
mass flux by its thermal velocity. Assuming that volatile ices are
at or near the surface, we estimate Comet ISON’s volatile mass flux
by equating the absorbed solar energy to the energy required to
sublime each ice species, as first described by Whipple (1950).
We assume that volatile ices and refractory materials are inti-
mately mixed, such that heat is rapidly transferred from refractory
materials to volatile ices. We ignore the amount of energy required
to warm the ices from their initial low temperatures (perhaps 10 K
for dynamically new comets such as ISON) to the equilibrium

Fig. 1. Schematic of Dynamic Sublimation Pressure Disruption Mechanism and
Comparison to Atmospheric Impact. (Left) We assume that the dynamic pressure is
zero on the dark side of the nucleus, while the peak dynamic pressure on the
illuminated side (Psub) becomes comparable to the unconfined static crushing
strength of the nucleus (r). When Psub exceeds r, the nucleus disrupts catastroph-
ically. (Right) This is analogous to the nucleus impacting a planetary atmosphere. A
ram pressure (Pram) builds up on the leading edge of the nucleus as it travels
through the atmosphere. If Pram exceeds r, then the nucleus breaks up into
fragments (Borovicka et al., 2013).

J.K. Steckloff et al. / Icarus 258 (2015) 430–437 431



 

 

154 

  

sublimation temperature. Such heating consumes less than !10%,
!25%, and !25% of the total incident solar energy for H2O, CO2,
and CO ice respectively, and is therefore negligible for our order
of magnitude estimates. For simplicity, we treat each volatile spe-
cies individually, while acknowledging that multiple species may
sublime simultaneously from different depths below the surface.

2.1. Computing mass flux, force, temperature, and sublimation
pressure

The incident solar radiation intensity at the location of the
comet is given by

Isolar ¼
Lsolar
4pr2h

ð1Þ

where Lsolar is the solar luminosity (3.846 % 1026 W), and rh is the
heliocentric distance. We assume that all solar radiation incident
upon an area element of the surface of the nucleus (dA) is used to
overcome the latent heat of sublimation of these volatile ices
(Whipple, 1950) to determine each species’ mass flux

_m ¼ ð1& AÞ
Isolar
kðTÞ cos/ ¼ ð1& AÞ

Lsolar
4pr2hkðTÞ

cos/ ð2Þ

where A is the albedo of the sublimating surface, kðTÞ is the
temperature-dependent latent heat of sublimation of a volatile ice
species and / is the angle between the comet–Sun line and the vec-
tor normal to the area element (local phase angle). For a sphere, / is
equivalently the azimuth angle of the area element from the subso-
lar point. While the latent heat of sublimation for water is
temperature-dependent, it varies so little over the temperature
range of interest (Feistel and Wagner, 2007) that treating it as a
constant makes a negligible difference in our results. We therefore
assume that the latent heat of sublimation is a constant.

We determine the thermal velocity of the dominant sublimat-
ing volatile using the kinetic theory of gases. We assume that the
speeds of sublimating gas molecules obey a Maxwell–Boltzmann
distribution, where the mean of the magnitude of the molecule
velocities escaping from a given area element (dA) is

v thermal ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8RT
pmmol

s

ð3Þ

where mmol is the molar mass of the species, T is the gas tempera-
ture, and R is the ideal gas constant. The gas diffusing through the
cometary pores has a Knudsen number of Kn ! 102–105, which
allows us to assume that the sublimating volatile molecules are suf-
ficiently rarefied to be emitted from a porous regolith according to
Lambert’s cosine law (Gombosi, 1994, pp. 227–230). Thus, the num-
ber of molecules emitted in a particular direction from an area ele-
ment (d _NðhÞ) is proportional to the cosine of the angle of that
direction with respect to the vector normal to that area element

d _NðhÞ ¼
_NdA

p cos h ð4Þ

where _NdA is the number flux of molecules through area element dA,
and h is the angle made with the vector normal to area element dA.
We compute the net force on a given area element from sublimating
gas molecules by multiplying this particle density distribution by
both vthermal and the mass of a particle, and then integrate over all
solid angles. Since the particle density distribution depends solely
on the angle with respect to the vector normal to the area element,
this computation is axisymmetric. Thus, the components of the
force tangential to the surface of area element dA cancel out, allow-
ing us to consider only the component of the force normal to the
surface. Integrating over all solid angles above the ground

Felement ¼
2
3
v thermal _mdA ð5Þ

and the mass flux from the area element ( _m) is

_m ¼ mmolar

Nav

_NdA

dA
ð6Þ

where mmolar is the molar mass of the sublimating gas and Nav is
Avogadro’s constant. Combining Eqs. (2), (3) and (5)

Felement ¼
2
3
ð1& AÞ Lsolar

4pr2hk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8RT
pmmol

s

cos/dA ð7Þ

We compute the appropriate temperature (T) in Eq. (7) by
joining the Langmuir–Knudsen (Langmuir, 1913) equation of sub-
limation rates with the Clausius–Clapeyron relation of equilibrium
partial pressure and temperature of an ideal gas

_m ¼ aðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
mmol

2pRT

r
PðTÞ ð8Þ

dP
dT

¼ P
T2

k
R

ð9Þ

where aðTÞ is the temperature-dependent sublimation coefficient
(e.g. Gundlach et al., 2011) and P(T) is the temperature-dependent
partial pressure of the molecular species, which results in the fol-
lowing expression for the temperature as a function of the mass
flux:

_m ¼ aðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
mmol

2pRT

r
Pref e

k
R

1
Tref

&1
T

" #

ð10Þ

where Pref and Tref are an experimentally measured reference pres-
sure and temperature of the species. We use the empirical fit to the
temperature dependence of the sublimation coefficient a(T) for H2O
from Gundlach et al. (2011), which produces a small improvement
in the computation of water’s sublimation pressure over setting the
sublimation coefficient to 1. We set the sublimation coefficient a(T)
for all other species to 1. Combining Eqs. (2) and (10)

ð1& AÞ Lsolar
4pr2hk

cos/ ¼ aðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
mmol

2pRT

r
Pref e

k
R

1
Tref

&1
T

" #

ð11Þ

Note that this is a transcendental equation, which does not have
an analytical solution. Thus, we solve for this temperature
numerically. Lastly, since pressure is a force applied over an area,
we rearrange Eq. (7) to describe the dynamic sublimation pressure
exerted on the surface of a nucleus

Psubðrh;/Þ ¼
2
3
ð1& AÞ Lsolar

4pr2hk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8RT
pmmol

s

cos/ ð12Þ

We approximate a comet as a sphere, and plot the dependence
of the dynamic sublimation pressure on the azimuth from the sub-
solar point (/) for the sublimation of H2O at heliocentric distances
of 36, R' 88, R' and 145 R' (see Fig. 2).

2.2. Differential stress

Computing differential stresses with ISON’s nucleus is essential
to our analysis, because differential stresses can lead to its disrup-
tion. A compressive differential stress will cause a brittle material
to deform, but the material will remain intact deforming elastically
as long as the differential stress remains below the material’s
strength. However, when the differential stress exceeds a brittle
material’s strength, the material will fail and fracture. In the case
of a comet, when the dynamic sublimation pressure causes
material failure, the nucleus will subsequently fragment.
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Because the sublimation pressure drops to zero at a 90-degree
azimuth from the subsolar point (the limb of the nucleus) and
remains near zero on the unilluminated side, the maximum differ-
ential stress within the nucleus is similar in magnitude to the sub-
limation pressure at the subsolar point (the maximum sublimation
pressure). Therefore, when we compute the dynamic sublimation
pressure at the subsolar point as a function of heliocentric distance,
we are approximating the maximum differential stresses within
the nucleus (see Fig. 3).

Gundlach et al. (2012) proposed a related mechanism, in which
a sublimation pressure that pressed equally on all parts of the
nucleus may have allowed Comet C/2011 W3 (Lovejoy) to survive
through its perihelion of 1.2 R!. Within "10 R! of the Sun, the
coma of a comet with a "1 km nucleus becomes optically thick
(Drahus, 2014), causing light of equal intensity to fall upon all parts
of the nucleus, which results in a uniform sublimation pressure
being exerted on all parts of its surface. Unlike our proposed mech-
anism, such a phenomenon would generate no new differential
stresses within the interior of the nucleus. However, it would
induce a confining pressure on its surface, which can increase the
strength of porous, granular materials (Alkire and Andersland,
1973). If this increase in strength were sufficiently large, then vola-
tile sublimation near the Sun could allow C/2011 W3 (Lovejoy) to
resist the strong solar tidal forces that exist within the Roche Limit
that would otherwise disrupt the nucleus (Gundlach et al., 2012).

The Whipple model for ice sublimation (Whipple, 1950), com-
bined with our model of ISON as a sublimating sphere of ice
680 m in radius (Lamy et al., 2014), predicts a mass loss rate from
Comet ISON’s nucleus for H2O at 214 R! (1 AU) of qwater = 2.75
# 1028 s$1, in agreement with the observed production rate of
qwater = 2.30(±0.71) # 1028 s$1 (Combi et al., 2014). Measurements
of Comet ISON’s Afq parameter as a function of aperture radius
(q) flattened out and approached a constant value as ISON
approached the Sun, suggesting that icy grains ceased to contribute
significantly to ISON’s volatile production by late October (Knight
and Schleicher, 2015). We therefore find that such close agreement
between the expected and measured production rates generally
support our assumption that the entire illuminated hemisphere
is sublimating. Although Combi et al. (2014) deconvolved the
observations with a model to obtain a daily average water

production rate, their observed production rate of qwater =
1.99(±0.32) # 1028 s$1 at 0.98 AU is consistent with the measured
rate of qwater = 1.6 # 1028 s$1 (±25%) at 0.98 AU (Bodewits et al.,
2013) and their observed production rate of qwater = 1.79(±0.35) #
1028 s$1 at 0.88 AU is within a factor of 2 of qOH = 8.14(±2.31) #
1027 s$1 at 0.89 AU (Opitom et al., 2013a). These observations,
which demonstrate remarkable agreement across various instru-
ments, are consistent with a highly active, intact nucleus.

However, after November 12th, the amount of active surface
required to match the observed H2O production increased perma-
nently by a factor of "25, implying that the nucleus had then dis-
rupted into a swarm of fragments (Combi et al., 2014). This is
consistent with the observation of arc-like wings in the coma of
ISON, which suggest the presence of multiple fragments
(Boehnhardt et al., 2013). Other analysis determined that the
radius of ISON’s nucleus (or nucleus fragments) decreased too
much during this event to be solely the result of sublimative sur-
face erosion, further implying a disruption event at 145 R!

(Steckloff et al., 2015). We therefore interpret this first event to
be the complete breakup of the nucleus into a swarm dominated
by large fragments "100 m in radius (see Discussion section).
The swarm (or specific large fragments within it) was later
observed to undergo two further significant disruption events on
November 21st and November 26th Knight and Battams, 2014;
Steckloff et al., 2015).

Escaping fragments and lofted grains do not directly contribute
to the reaction force on the comet’s nucleus because their velocity
is so slow near the nucleus relative to the sublimating gases that
they carry a negligible amount of momentum away from the
nucleus. However, they can reflect some fraction of the sublimated
gas molecules back onto the nucleus, further increasing the
dynamic pressure. This effect can only increase the peak dynamic
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Fig. 2. Azimuthal dependence of dynamic sublimation pressure. A plot of the
azimuthal dependence of the dynamic sublimation pressure for three separate
heliocentric distances for the case of a bond albedo of 0. Azimuthal angle is the
angle between the subsolar point and the vector normal to the surface of an
idealized, spherical nucleus. While the real nucleus is not necessarily spherical, it
will have a subsolar point and a limb, where the dynamic sublimation pressures
will be at a maximum and zero respectively. The differential stress that results from
this pressure difference is ultimately responsible for fragmenting the nucleus.

Fig. 3. Schematic of how sublimation pressure induces differential stresses. (top)
Dynamic sublimation pressure acts upon the sunward hemisphere of the nucleus.
Sublimation pressure peaks at the subsolar point, but drops off to zero toward the
limb. As the nucleus approaches the Sun, the sublimation pressure increases.
(bottom inset) We illustrate the stresses acting on a parcel of material within the
nucleus after subtracting off the hydrostatic pressure. The distribution of the
sublimation pressure acting on the surface of the nucleus induces unequal stresses
on the parcel of material, with stresses greatest along the comet–Sun axis. As the
nucleus approaches the Sun, the stresses on the parcel grow. If the difference in
stresses between the maximum stress and minimum stress axis (the differential
stress) exceeds the strength of the material, then the parcel fails and fragments.
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pressure by a factor of p (in the unlikely limit that every gas mole-
cule bounces indefinitely between the nucleus and icy grains), to
equal the gas vapor pressure. We adopt the conservative stance
of neglecting this uncertain (but positive) backpressure, which
can only add to the dynamic sublimation pressure, and which will
introduce only small errors into our estimate.

3. Results

Motivated by observations of high H2O production (Combi et al.,
2014; Opitom et al., 2013a,b,c), we assume that volatile sublima-
tion is dominated by H2O as ISON approached perihelion. We com-
pute the maximum dynamic H2O sublimation pressure (and thus
estimate the bulk cometary unconfined crushing strength) when
Comet ISON disrupted at heliocentric distances of 36, 88, and
145 R! (Combi et al., 2014; Boehnhardt et al., 2013; Knight and
Battams, 2014; Steckloff et al., 2015)]. We find strengths of 9, 1,
and 0.5 Pa, respectively, for the case where ISON has a bond albedo
of 0. If we instead assume a bond albedo of 0.5, we find strengths of
4, 0.6, and 0.2 Pa respectively (see Fig. 4). These strengths are com-
parable to estimates of the strengths of Jupiter Family Comets
(JFCs) (Asphaug and Benz, 1996; Bowling et al., 2014; Melosh,
2011; Sekanina and Yeomans, 1985; Thomas et al., 2015). If
Comet ISON’s true bond albedo is between these two values, then
the maximum dynamic pressure and bulk unconfined crushing
strength estimates will also lie between the corresponding values.
Such a hierarchy of strengths is consistent with studies of the
strength of geologic materials, which depend inversely on the size
of the sample (Brace, 1961), and is consistent with evidence sug-
gesting that comet nuclei are composed of pieces that are hetero-
geneous in strength (Sekanina, 2003). The lowest of these strength
estimates (0.2 and 0.5 Pa depending on bond albedo) corresponds
to the first disruption event (at 145) R!, and therefore represents
the bulk unconfined crushing strength of ISON’s intact nucleus
(prior to any significant fragmentation). The higher strength

estimates correspond to the later disruption events at 88 R! and
36, R! and therefore represent the strengths of fragments of
ISON’s nucleus.

4. Discussion

After a fragmentation event, the size of the resulting fragments
may have an observable effect on the motion of the comet or mor-
phology of the nucleus. The sublimation pressure acting on the illu-
minated surfaces of the nucleus provides a net antisunward force,
with the net motion of the nucleus dependent on this sublimation
force and the solar gravitational force. Since the sublimation force
depends on surface area, while the gravitation force depends on
volume, larger bodies (smaller surface-area-to-volume ratio) are
less susceptible to the sublimation force than smaller bodies (larger
surface-area-to-volume ratio). Therefore, if the nucleus produced
fragments of substantially unequal sizes, smaller fragments would
appear to drift antisunward of the larger fragments, which would
cause the central condensate of the comet’s coma to elongate and
even break up. However, Comet ISON maintained a strong central
condensate (a compact region of peak coma brightness) up until
only a few hours before perihelion (Knight and Battams, 2014;
Opitom et al., 2013b,c), and this central condensate only began to
noticeably elongate a few days before perihelion (Steckloff et al.,
2015). Thus, either the first fragmentation event broke Comet
ISON into a swarm of equally sized fragments, or into differently
sized fragments that were still each large enough to limit the rela-
tive drift between fragments and the resulting observable changes
to the morphology of the coma.

Steckloff et al. (2015) conducted a preliminary study to esti-
mate the sizes of the dominant fragments of Comet ISON. They
measured the deviation of Comet ISON’s position using the
SCUBA-2 instrument on the James Clerk Maxwell Telescope from
JPL Horizon’s ephemeris solution #53, and estimated fragment
sizes by assuming that this deviation is entirely due to H2O subli-
mation pressure. From this, they determined that the first frag-
mentation event reduced the effective radius of Comet ISON from
an approximately 680 m for the intact nucleus to fragments on
the order of "100 m. Such fragments would require approximately
half of a week to traverse a single pixel of the SCUBA-2 instrument
and a few days more for the larger pixels of the TRAPPIST tele-
scope. This provides a rough estimate of the timescale over which
coma morphology would noticeably elongate from the release of a
single fragment from a much larger parent nucleus. This timescale
would be longer if the fragments are closer in size, since they
would drift together. Since no change in coma morphology was
detected during the 9 days between the first and second fragmen-
tation events, it is unlikely that ISON only released a single "100 m
fragment from the nucleus during the first fragmentation event.
Rather, it is more likely that the first fragmentation event broke
up ISON’s nucleus into a swarm of large fragments with radii on
the order of "100 m.

Because the coma may have started to elongate between the
second and third fragmentation events, it is unclear whether the
second fragmentation event was the result of a single fragment
or multiple fragments disrupting. However, the elongation of the
central condensate after the third fragmentation event (Steckloff
et al., in prep.) suggests that a large range of fragment sizes were
present after the third fragmentation event.

4.1. Supervolatiles and amorphous ice

Samarasinha (2001) proposed that the buildup of pore pressure
within the nucleus from the sublimation of super-volatile species
could lead to its disruption. This mechanism requires that the

Fig. 4. Dynamic gas sublimation pressures for major volatile species. A plot of
dynamic gas pressures for pure H2O, CO2, and CO as a function of heliocentric
distance, measured in both Solar Radii (R!) and Astronomical Units (AU). We
include the mineral fosterite (Nagahara et al., 1994) as a proxy for refractory
cometary materials, which only becomes dominant in the absence of volatiles very
near the Sun. Solid curves denote sublimation pressures if the nucleus has zero
bond albedo while the dashed curves are for an assumed bond albedo of 0.5. For a
bond albedo between these two values, the sublimation pressure will lie between
these two curves. The thin, dashed vertical lines at 36, 88[2], and 145[1] R! mark
where Comet ISON disrupted into fragments (Combi et al., 2014; Knight and
Battams, 2014), while the dotted line at 2.66 R! denote Comet ISON’s perihelion
distance.
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thermal skin depth of the comet be large enough to reach pockets
of deeply seated volatiles. The thermal skin depth (hskin) describes
the characteristic length scale over which the amplitude of a heat
pulse conducting (without sublimating volatiles) into an infinite
half-space of material with a fixed boundary location and temper-
ature drops by a factor of e, and is given by the equation

hskin ¼
ffiffiffiffiffiffiffi
H s

p
ð13Þ

where H is a material’s thermal diffusivity (typically on the order of
10$6 m2 s$1 for dense rocks or ice) and s is the duration since the
onset of the thermal pulse. The longer a material is exposed to a
heat pulse, the deeper the heat can penetrate. The rate at which
the thermal skin depth advances into a material is obtained by
differentiating Eq. (13) with respect to time (s)

v skin ¼
dhskin

ds ¼ 1
2

ffiffiffiffiffi
H
s

r
ð14Þ

¼ H
2hskin

ð15Þ

Thus, as the time of exposure (s) and thermal skin depth (hskin)
increases, the rate of growth of the thermal skin depth (vskin)
decreases.

If the fixed-temperature boundary is receding at a constant rate,
the thermal skin depth (hskin) will either grow or shrink until vskin is
equal to this rate of recession, and the thermal skin depth will
maintain a fixed depth relative to the surface. However, because
heat takes time to conduct from the surface to the thermal skin
depth, the distance between the thermal skin depth (hskin) and
the receding surface will be less than what Eq. (13) provides.
Also, the rate of surface recession on a comet nucleus is not con-
stant, but rather accelerates as the nucleus approaches the Sun,
which further reduces the distance between the surface and hskin.
Additionally, moving boundaries, changing boundary conditions,
and sublimation make the actual temperature profile of a comet
nucleus significantly more complicated than that which results
from simple heat conduction. However, if we assume that the
H2O sublimation front, whose temperature is largely determined
by heliocentric distance, is some distance hsub below the surface
of the nucleus and that hskin is measured from the sublimation
front, then the quantity hskin + hsub (computed using Eqs. (13) and
(15)) will be a conservative overestimate of Comet ISON’s orbital
thermal skin depth.

Because Comet ISON’s activity occurred predominantly on the
sunward hemisphere (Li et al., 2013c), the volatiles driving this
activity had to respond to the day-night (diurnal) cycle of the
nucleus, and could therefore be no deeper below the surface than
a depth comparable to the diurnal skin depth. Based on a
%10.4 h rotation period for the nucleus of Comet ISON (Lamy
et al., 2014), the sublimation front of H2O (hsub) is no more than
%20 cm below the surface. Since sublimation is a comet’s domi-
nant cooling mechanism in the inner Solar System, we estimate
the rate of the sublimation front’s recession into the nucleus at
the time of the Lamy et al. (2014) observations by dividing the
mass-loss rate equation (Eq. (2)) by the bulk density of a typical
comet, and find that it is on the order of %10$6 m/s. Noting that
the rate of sublimation front recession and thermal skin depth
recession (vskin) are in equilibrium, we set vskin to %10$6 m/s, and
find that hskin is on the order of %0.5 m. Thus, hskin + hsub is on the
order of meters, and therefore cold, Oort Cloud conditions persist
in the primordial materials of Comet ISON only a few meters at
most below the surface of the nucleus.

Because the orbital thermal skin depth is so shallow, if the ther-
mal wave were to reach a pocket of supervolatile ices or trigger the
crystallization of amorphous ice, they would release fragments
from the surface with sizes comparable to the orbital thermal skin

depth. Thus, if the first fragmentation event were the result of the
rapid sublimation of supervolatile species, one would expect to see
an outburst that released debris up to an order of %1 m in size,
leaving the nucleus largely intact. If the nucleus is composed of
amorphous water ice whose crystallization was triggered by the
propagation of the thermal wave into the interior, the crystalliza-
tion front will propagate into the amorphous ice until the cold inte-
rior of the nucleus absorbs the exothermic heat of the phase
transition and quenches the crystallization process. Because the
thermal wave is near the surface, the temperature gradient near
the sublimation front is very steep (dropping to primordial tem-
peratures over a distance on the order of the orbital thermal skin
depth), and would quench the crystallization of the amorphous
ice very quickly. Therefore, even if the exothermic crystallization
of amorphous ice caused the first fragmentation event, one would
still only expect to see an outburst that released similarly small
debris.

Such small debris from a surface layer is inconsistent with the
drastic reduction in the size of the nucleus after the first fragmen-
tation event (Steckloff et al., 2015) and the observation of coma
wings (Boehnhardt et al., 2013), which may indicate the presence
of multiple large fragments. Additionally, such small debris would
dissipate quickly, which is inconsistent with the sustained increase
in water production (Combi et al., 2014). Therefore, while a direct
application of the Samarasinha (2001) model may explain the dis-
ruption of highly thermally evolved comet nuclei, it appears that
its direct application is inconsistent with the disruption of Comet
ISON.

We cannot rule out a modification of the Samarasinha (2001)
model, in which sublimating gases can penetrate into the pores
of the nucleus and recondense (thus transporting heat into the
cometary interior by releasing their heats of sublimation). If voids
are present within the interior of the nucleus, then a sublimation
front and thermal skin depth would be created within the walls
of these voids akin to the situation at the surface. The Second
Law of Thermodynamics limits the maximum temperature of the
void walls achievable through this mechanism to the surface tem-
perature of the nucleus (although the actual temperature would
likely be much lower). Gas must be able to readily diffuse through
the nucleus for a significant amount of heat to be transported into
the cometary interior in this manner, which greatly restricts the
ability of sublimating volatiles to build up a gas pressure as though
the comet were a sealed vessel. As the walls of the void recede
through sublimation, the thermal wave may encounter super-
volatile ices or amorphous ice. The sublimation of supervolatiles
within a void would produce pressures that could be no greater
than those that would be present at the surface, but probably sig-
nificantly less. If these low pressures lead to the destruction of the
nucleus, then our strength estimates would be an upper bound to
the strength of the nucleus. However, were the thermal wave to
trigger the crystallization of amorphous ice, this exothermic phase
transition could cause a very rapid buildup of gas pressure within
the void, potentially faster than the gases may diffuse out, and
could potentially lead to a catastrophic explosion of the nucleus.
We therefore cannot rule out this modified mechanism. This mech-
anism requires special diffusive, compositional, and structural con-
ditions to disrupt the nucleus, which seems less likely to lead to
ISON’s disruption than sublimation pressure at the surface.
However, a detailed exploration of the relevant physics of diffu-
sion, sublimation, and phase transitions is beyond the scope of this
paper.

4.2. Hydrostatic pressure and fragmentation timescale

Our crushing strength computation ignores the internal hydro-
static pressure due to self-gravity of Comet ISON, which is up to
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!10 Pa for a 680 m spherical nucleus (Lamy et al., 2014) with a
density of 400 kg m"3 (Richardson and Melosh, 2013). If the
nucleus were to uniformly disrupt in a single event, the dynamic
sublimation pressure would have to overcome this overburden
pressure in the comet’s interior. In reality, the nucleus probably
disrupted piecewise, in a process where the dynamic sublimation
pressure first overcomes the crushing strength and disperses the
material near the surface of the nucleus, where the hydrostatic
pressure is low. This reduces the hydrostatic pressure throughout
the remaining nucleus, where this process repeats until the entire
cometary nucleus is dispersed. We estimate the timescale of this
dispersion by computing the time needed for the surface of the
comet to accelerate across the diameter of the nucleus from subli-
mation pressure alone, assuming typical cometary densities of
around 400 kg m"3 (Richardson and Melosh, 2013; Richardson
and Bowling, 2014; Thomas et al., 2015). This results in a disper-
sion timescale for Comet ISON of only a few hours at 145, R# allow-
ing us to ignore the effects of hydrostatic pressure and treat the
cometary disruption effectively as an instantaneous event in the
comet’s orbit.

Our sublimation pressure disruption mechanism assumes that
the nucleus is rotating slowly enough that the maximum dynamic
sublimation pressure at the sub-solar region has enough time to
fragment the nucleus before rotating significantly away from the
sub-solar point and reducing the sublimation pressure on that area
element. The critical timescale for fragmenting the nucleus is the
amount of time needed for a crack, once started, to propagate
across the nucleus. The growing tip of a crack travels at the
Rayleigh surface wave velocity, which are typically on the order
of !100 m/s for granular materials, and higher for more coherent
materials (Lawn and Wilshaw, 1975). Thus, the time needed for a
crack to travel across the nucleus (and therefore the timescale of
fragmentation) is on the order of a few seconds. Since the rotation
period of a comet nucleus is limited to be no shorter than a few
hours before fragmenting rotationally (Snodgrass et al., 2006;
Pravec et al., 2006), the timescale of fragmentation is negligible
and our assumption holds.

4.3. Strengths of other comets

We compare our crushing strength estimate to observationally
constrained estimates of the bulk, tensile, and shear strengths of
other comets, which are related to the bulk crushing strength by
small factors on the order of unity (Price, 1968). The crushing
strength of Comet ISON is consistent with Comet
Shoemaker-Levy 9’s bulk tensile strength of <6.5 Pa (Asphaug
and Benz, 1996); Comet Brooks 2’s bulk tensile strength of <2 Pa
(Sekanina and Yeomans, 1985); within an order of magnitude of
Comet Wild 2’s shear strength of >17 Pa (Melosh, 2011); and
Comet Churyumov–Gerasimenko’s cohesive strength of !2–16 Pa
(Bowling et al., 2014), and tensile strength of <20 Pa (Thomas
et al., 2015). Thus, if Comet ISON is representative of thermally
unprocessed comets, then the low bulk strength of comets is a pri-
mordial property that is unaltered by thermal processing.

We consider other strength estimates of comets, and note that
they are not applicable to our mechanism. The 1–10 kPa effective
target strength of Comet 9P/Tempel 1 from the Deep Impact exper-
iment (Richardson and Melosh, 2013) is a measurement of
dynamic strength (which does not adhere to the weakest link
model of material failure). Therefore, we expect this estimate to
be several orders of magnitude larger than a measurement of static
strength, which is applicable to our disruption mechanism. Comet
Hyakutake’s tensile strength was estimated to be !100 Pa from the
strength required to hold the comet together from rotational frag-
mentation (Lisse et al., 1999). However, this estimate assumed a

bulk density for Comet Hyakutake of 100 kg m"3, which is now
known to be unreasonably low: a more typical cometary density
of 270 kg m"3 or greater allows the nucleus to be held together
by gravity alone. Indeed the known rotation rates of JFCs and
Kuiper Belt Objects are consistent with effectively strengthless
bodies with densities less than 600 kg m"3 (Snodgrass et al.,
2006) in a manner analogous to the asteroid rubble pile ‘‘spin
barrier’’ (Pravec et al., 2006).

All of these upper bounds of comet strength require that the
nucleus structurally fail in some way. Thus, these strength esti-
mates may be biased toward weaker nuclei, which would struc-
turally fail more easily. Indeed, many comets survive perihelion
passage despite having orbits that take them to smaller heliocen-
tric distances than those corresponding to Comet ISON’s fragmen-
tation events (Bortle, 1991), consistent with stronger nuclei. If
comets are effectively rubble piles held together by van der
Waal’s forces, then they may possess strengths similar to rubble
pile asteroids of !25 Pa (Sánchez and Scheeres, 2014). Such
strengths would allow comet nuclei to survive the differential
stresses induced by H2O sublimation to within 20 R# (0.1 AU) of
the Sun. Thus, the survival/non-survival of near-Sun comets is con-
sistent with different comet nuclei having strengths that span
more than an order of magnitude.

Additionally, short-period comets with small perihelia (when
compared to where ISON fragmented) may survive multiple orbits
as a result of their unique dynamical and thermophysical evolu-
tion. Jupiter Family Comets like 2P/Encke and 96P/Machholz orig-
inate in the Kuiper Belt and Scattered Disk until an encounter with
Neptune sends them into the Outer Planet region of the Solar
System, where they are reclassified as Centaurs (Duncan et al.,
2004). Typically, an encounter with Jupiter after a few million
years (the dynamical lifetime of a Centaur) either ejects the object
from the Solar System or sends it into the Jupiter Family of comets
(Duncan et al., 2004). During this inward migration process, a
Jupiter Family Comet is also undergoing thermophysical evolution.
As its orbit evolves ever closer the Sun, the comet loses volatile ices
through sublimation, which may result in the build up of a lag
deposit (or dust mantle) on its surface. These deposits are very
good insulators (Gulkis et al., 2015; Davidsson et al., 2013;
Groussin et al., 2013; Lisse et al., 2005; Lamy et al., 2008), and even
a thin coating would restrict volatile sublimation to a small frac-
tion of the surface. Therefore, when this inhibited sublimation
activity is averaged over the surface, we expect JFCs to experience
significantly lower sublimation pressures than the pristine icy sur-
faces that we have modeled in this work. Thus, the survival of JFCs
with small perihelia is consistent with our work, even without
allowing for larger material strengths.

5. Conclusions

We have shown that existing mechanisms of comet disruption
have difficulty explaining Comet ISON’s fragmentation. We pro-
posed a new mechanism of comet disruption in which sublimating
gases exert a dynamic pressure on the sunward hemisphere of a
nucleus and induce differential stresses within the nucleus, which
may fracture and fragment the nucleus if they exceed its material
strength. Using a versatile thermodynamic model of volatile subli-
mation, we find Comet ISON has a material strength similar to JFCs.
For the case that the nucleus of Comet ISON has a bond albedo of 0,
we estimate its bulk unconfined crushing strength to be 0.5 Pa, and
the bulk unconfined crushing strength of resulting fragments at
1–9 Pa. If Comet ISON’s nucleus has a bond albedo of 0.5, then
these strength estimates drop to 0.2 Pa for the intact nucleus and
0.6–4 Pa for its fragments.
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a b s t r a c t

Sublimating gas molecules scatter off of the surface of an icy body in the same manner as photons
(Lambertian Scattering). This means that for every photon-driven body force, there should be a
sublimation-driven analog that affects icy bodies. Thermal photons emitted from the surfaces of asym-
metrically shaped bodies in the Solar System generate net torques that change the spin rates of these
bodies over time. The long-term averaging of this torque is called the YORP effect. Here we propose a
sublimation-driven analog to the YORP effect (Sublimation-YORP or SYORP), in which sublimating gas
molecules emitted from the surfaces of icy bodies in the Solar System also generate net torques on the
bodies. However, sublimating gas molecules carry !104–105 times more momentum away from the body
than thermal photons, resulting in much greater body torques. Previous studies of sublimative torques
focused on emissions from highly localized sources on the surfaces of Jupiter Family Comet nuclei, and
have therefore required extensive empirical observations to predict the resulting behavior of the body.
By contrast, SYORP applies to non-localized emissions across the entire body, which likely dominates
sublimation-drive torques on small icy chunks and dynamically young comets outside the Jupiter
Family, and can therefore be applied without high-resolution spacecraft observations of their surfaces.
Instead, we repurpose the well-tested mathematical machinery of the YORP effect to account for
sublimation-driven torques. We show how an SYORP-driven mechanism best matches observations of
the rarely observed, Sun-oriented linear features (striae) in the tails of comets, whose formation mech-
anism has remained enigmatic for decades. The SYORP effect naturally explains why striae tend to be
observed between near-perihelion and !1 AU from the Sun for comets with perihelia less than 0.6 AU,
and solves longstanding problems with moving enough material into the cometary tail to form visible
striae. We show that the SYORP mechanism can form striae that match the striae of CometWest, estimate
the sizes of the stria-forming chunks, and produce a power-law fit to these parent chunks with a power
law index of "1:4þ0:3

"0:6. Lastly, we predict potential observables of this SYORP mechanism, which may
appear as clouds or material that appear immediately prior to stria formation, or as a faint, wispy dust
feature within the dust tail, between the nucleus and the striae.

! 2015 Elsevier Inc. All rights reserved.

1. Introduction

Linear features sometimes form within the dust tails of ‘‘great
comets” from the Oort Cloud such as Comet West (C/1975 V1)
(Sekanina and Farrell, 1978, 1980), Comet Hale-Bopp (C/1995 O1)
(Pittichová et al., 1997), Comet McNaught (C/2006 P1), and Comet
PANSTARRS (C/2011 L4) (Jones and Battams, 2014). These features
are generally aligned with either the nucleus of the comet (syn-
chrones) or with the Sun (striae) (e.g. Comet McNaught [C/2006
P1] in Fig. 1). Synchrones are believed to form from !1 to

100 lm dust released nearly simultaneously or diurnally from
active areas of the comet’s surface, which drifts away from the
nucleus due to solar radiation pressure (Kharchuk and Korsun,
2010). In contrast, the mechanism that creates striae is poorly
understood.

Sekanina and Farrell (1980) observed that ‘‘striae seem to fit
synchronic formations whose sources of emission are located in
the area of the dust tail rather than in the nucleus,” and postulated
three conditions that need to be met by the ‘‘parent” materials that
form a stria: (1) these materials must be ejected simultaneously
from the nucleus; (2) they must experience identical repulsive
accelerations from the Sun and (3) these parent objects must break

http://dx.doi.org/10.1016/j.icarus.2015.09.021
0019-1035/! 2015 Elsevier Inc. All rights reserved.
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up and disperse simultaneously (listed at the beginning of Section 2
in Sekanina and Farrell, 1980). Some proposed mechanisms
assume that (3) occurs as a single, short-lived event (Sekanina
and Farrell, 1980; Froehlich and Notni, 1988), while other mecha-
nisms model (3) as a relatively long-lived fragmentation cascade
(Nishioka, 1998; Jones and Battams, 2014). Regardless of the exact
details of (3), these three conditions ensure that the pre-stria mate-
rials arrive at the source location of a stria as a single unit, where
the parent materials are then transformed into a daughter frag-
ment size distribution that creates the narrow lineaments oriented
towards the Sun via anti-sunward acceleration.

2. Radiation pressure

Sekanina and Farrell (1980) and subsequent authors (e.g.
Froehlich and Notni, 1988; Pittichová et al., 1997) considered that
solar radiation pressure was solely responsible for the parent
materials’ repulsive acceleration (second condition above).
Sunlight, like gravity, obeys an inverse square law and solar radia-
tion pressure is oriented antiparallel to the solar gravitational
acceleration force (to leading order). Thus, its strength can be
parameterized by the dimensionless constant b, which is the ratio
of the force of solar radiation pressure to the solar gravitational
force acting upon a particular object. Since the force of gravity
depends on an objects volume (!R3) while force of radiation
depends on an objects surface area (!R2), b is a size-dependent
parameter. For Comet West, the b parameter for the parent mate-
rials released from the nucleus was estimated at bp = 0.55–1.10,
while the b parameter for the dust fragments within the striae
was bf = 0.6–2.7 (Sekanina and Farrell, 1980). Such high beta
parameters require that both parent and daughter grains be small
(!0.1 lm), such that a small parent grain is most likely capable of
creating only !10 daughter grains (Sekanina and Farrell, 1980).
Alternatively, the parent grains could be extremely elongated such
that they have a Sun-facing cross-section of a !0.1 lm grain

(Sekanina and Farrell, 1980). Since Comet West’s striae are esti-
mated to contain !106 kg of material (Sekanina and Farrell,
1980), such extreme elongation is unlikely, and more recent
research has focused instead on exploring mechanisms that allow
a swarm of small-sized parent grains to travel together.

Froehlich and Notni (1988) propose that such a swarm could
travel away from the nucleus in a coherent, optically thick parcel
of grains with a narrow range of b-values. The breadth of this range
depends on the swarm’s optical thickness (with optically thin
swarms incapable of remaining together), with b values above this
range receiving enough illumination to surge ahead and leave the
swarm, while grains with b values below this range lag behind
the coherent swarm. Froehlich and Notni (1988) propose that
swarms on the order of !1000 km across become optically thin
in the cometary tail and disperse, forming striae. However, to
maintain an optically thick swarm the grains must not have any
significant transverse velocity (motion perpendicular to the direc-
tion of solar gravity/radiation pressure), a condition that is thermo-
dynamically very unlikely without a mechanism for laterally
confining the dust.

Neither of these proposed mechanisms is satisfactory. Meeting
Sekanina and Farrell’s (1980) second condition with radiation pres-
sure requires small parent grains, but then it is difficult to meet the
third condition while creating a large enough mass of daughter
grains. If an alternative to radiation pressure can be found, then
these issues may disappear.

Lastly, observations show that comets with perihelia <6 AU
form striae between near-perihelion and !1 AU of the Sun
(Pittichová et al., 1997), which suggests that the mechanism driv-
ing stria formation must turn off beyond !1 AU and somehow pre-
vent the formation of observable striae until after the comet has
approached the near-perihelion part of its orbit. Since the intensity
of solar irradiation decreases smoothly as the inverse-square of
heliocentric distance, there is no heliocentric distance at which
the solar radiation pressure drops off precipitously. Therefore, if
solar radiation pressure drives stria formation, then striae should

Fig. 1. Illustrating Stria and Synchrones. An image of Comet McNaught (C/2006 P1) shows long linear structures within the tail of the comet. We have overlain lines to highlight
the linear features in the cometary tail. Note how these features line up with either the head of the comet (synchrones) or with the Sun (striae). Image !Akira Fujii/David
Malin Images reproduced with permission, with annotations and markings added by authors.
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form at all heliocentric distances, with differences in solar radia-
tion pressure manifesting itself as an increase in the duration of
the stria formation process with increasing heliocentric distance.

3. Sublimation-driven stria formation model

In this paper, we propose a sublimation-driven stria formation
mechanism that allows for relatively large, volatile-rich chunks
of ejected cometary materials to drift into the cometary dust tail
and fragment quickly into fine dust, forming cometary dust tail
striae. This mechanism also naturally restricts the formation of
observable stria until the comet reaches the near- or post-
perihelion portion of its orbit and is inactive beyond !1 AU. We
show, through careful consideration of the timescale of stria for-
mation, that this mechanism is consistent with the observed striae
of Comet West.

The sublimation of volatile ices is enough to both accelerate the
parent chunk anti-sunward relative to the cometary nucleus and
spin up the parent chunk to fragmentation (i.e. rotational fission.)
Because the sublimation pressure exerted on the illuminated
hemisphere of a volatile rich body is many orders of magnitude
greater than radiation pressure, this mechanism is able to affect
chunks that are many orders of magnitude larger than previous
radiation pressure-driven only mechanisms. We envision that the
formation of a stria occurs in five steps (see Fig. 2): (1) a parent
chunk is released from the nucleus of a comet, (2) sublimation
pressure causes the parent chunk to drift anti-sunward relative
to the nucleus while simultaneously increasing its spin rate, (3)
parent chunk spins up to the point of fission, (4) the resulting
daughter chunks repeat steps 2 and 3 at an ever-increasing rate,
resulting in a fragmentation cascade that (5) stops when the mate-
rials become small (micron-sized grains) and devolatilized, at
which point radiation pressure dominates the behavior of grains
which stream out to form a stria.

Previous studies of the effects of the reactive torques due to sub-
limating gas on the rotation state of cometary nuclei have focused
on the reactive torques from jets either observed or inferred on
the surface (e.g. Wilhelm, 1987; Peale and Lissauer, 1989; Julian,
1990; Samarasinha and Belton, 1995; Neishtadt et al., 2002, 2003;
Gutiárrez et al., 2003; Sidorenko et al., 2008). These jets may be
the dominant rotation state torques for large cometary nuclei
(Meech et al., 2011; Belton et al., 2011; Chesley et al., 2013), but
the relatively small cometary chunks discussed below are assumed
to not possess the ability to create jets (Belton, 2010, 2013; Bruck
Syal et al., 2013), although jet production is itself poorly under-
stood. In this work, we propose that it is the background sublima-
tion that torques the cometary chunk. This sublimation is nearly
isotropic in the sense that it is emitted from every heated surface
element but is very sensitive to the shape and illumination of the
chunk. A similar model for an entire comet nuclei has been
considered in the past, but it was preliminary (Szegö et al., 2001),
considered only an ellipsoidal shape (Mysen, 2004, 2007), or
focused on matching different observational phenomena
(Rodionov et al., 2002; Gutiárrez and Davidsson, 2007).

3.1. Step 1: Parent chunks leave comet

We propose that a single ejected (parent) chunk contains all of
the material that later becomes a stria. Sekanina and Farrell (1980)
illustrated a method of obtaining an order of magnitude estimate
of the volume of a stria for Comet West. Assuming that the dust
of a stria has a typical Jupiter Family Comet (JFC) albedo of !0.03
(Hammel et al., 1987; Brownlee et al., 2004; Lamy et al., 2004;
Oberst et al., 2004; Li et al., 2007, 2013a; Sierks et al., 2015), is
comprised of !0.1–1 lm particles (Green et al., 2004), and that it

originated from an initial parent chunk that was half water ice
(McDonnell et al., 1987), then we expect the initial parent chunks
to have radii on the order of !10–100 m. We assume that these
parent chunks have a density of !400 kg/m3, which is typical of
JFCs (Sierks et al., 2015; Thomas et al., 2013; Richardson et al.,
2007).

Such house- or building-sized (!10–100 m) chunks of material
have been observed in the debris of Comets 57P/du Toit-Neujmin-
Delporte (Fernández, 2009), 73P/Schwassmann-Wachmann 3
(Fuse et al., 2007; Reach et al., 2009), and C/1999 S4 (LINEAR)
(Weaver et al., 2001); were observed within the coma of 17P/
Holmes following its massive 2007 outburst (Stevenson et al.,
2010); and was possibly detected by the Giotto spacecraft within
a few hundred kilometer of Comet 26P/Grigg-Skjellerup’s nucleus
(McBride et al., 1997). Most applicably, Comet C/1996 B2
(Hyakutake) ejected !10–100 m chunks, which drifted antisun-
ward relative to the nucleus via sublimation pressure (Desvoivres
et al., 2000; Schleicher and Woodney, 2003).

The frequency of striae is likewise consistent with the fre-
quency of ejected!10–100 m chunks. While a direct measurement
of this frequency is difficult due to observational limitations, it is
expected to be intermediate to the frequencies of ejection of larger
and smaller chunks. Centaur Comet 174P/Echeclus ejected a frag-
ment a few kilometers in size (Rousselot, 2008), the only known
ejection of such a large fragment. Meanwhile, high-resolution
images from spacecraft have revealed that !1/3 of Jupiter Family
Comets (JFCs) eject a large number of decimeter to meter scale
chunks into their inner comae at speeds near their escape veloci-
ties (!1 m/s) (Hermalyn et al., 2013; Rotundi et al., 2015). Because
striae occur more frequently than the ejection of kilometer-scale
fragments yet less frequently than the detection of decimeter to
meter scale chunks, it is reasonable that the parent bodies that
form them are likewise intermediate in size (!10–100 m).

While we do not propose a model for the ejection of these sug-
gested house-sized parent chunks from the nuclei of striated
comets, we speculate that perhaps cometary outbursts
(Pittichová et al., 1997; Rousselot, 2008) or supervolatile-driven
activity may be responsible for launching these parent chunks at
greater than escape velocity. Such activity would eject parent
chunks with a distribution of initial velocities, and the Rosetta
spacecraft observed indirect evidence for the ejection of
!10–100 m chunks from the surface of Comet 67P/Churyumov-
Gerasimenko at less than escape velocity that later reimpacted
its surface (Thomas et al., 2015). We assume that these parent
chunks are rich in water ice throughout, including near the surface
of the chunk (relative to the thermal skin depth). If this is not the
case, then sublimation pressure will not be able to drive the chunk
away from the nucleus (see Section 3.2), due to the inability of the
ices to respond to the parent chunk’s diurnal thermal cycle.

3.2. Step 2: Sublimation pressure instead of radiation pressure

We propose that the reaction force (or equivalently, the subli-
mative momentum flux) on a volatile-rich parent chunk from the
ejection of sublimating gas molecules is enough to both accelerate
the parent chunk anti-sunward relative to the cometary nucleus
(discussed below) and spin up the parent chunk to fragmentation
(discussed in Section 3.4). Sublimating gasses exert an anti-
sunward acceleration on volatile-rich cometary material
(Whipple, 1950; Marsden et al., 1973; Steckloff et al., 2015a). Near
the Sun, the magnitude of this acceleration behaves similarly to
radiation pressure, since it approximates the same inverse square
law. Thus, it provides the repulsive acceleration necessary to form
striae. However, since the sublimation pressure for H2O ice is up to
4–5 orders of magnitude stronger than radiation pressure, it can
transport chunks of material into the cometary tail that are 4–5
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orders of magnitude larger in radius than those transported by
radiation pressure alone for a given acceleration of the material
relative to the nucleus.

We model parent chunks as balls of pure H2O ice with such low
albedos, that they effectively absorb all incident solar radiation,
similar to Steckloff et al. (2015a). We note that these assumptions
certainly do no accurately describe the real composition and struc-
ture of the parent chunks, which are likely complicated agglomer-
ates of ices and refractory materials with albedos of only a few
percent. However, these assumptions illustrate the conditions
under which sublimation pressure is maximized, and therefore,
define the upper bound of the sublimation pressure acting upon
parent chunks. Assuming that the subliming gas is in thermal equi-
librium with its source ice and that all incident solar radiation is
either re-radiated to space or applied toward overcoming the ice’s
latent heat of sublimation (Whipple, 1950), Steckloff et al. (2015a)
show that the sublimation pressure acting on a surface element of
cometary material is determined by the following two equations

ð1" AÞ Lsolar
4pr2hk

cos/ ¼ aðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
mmol

2pRT

r
Pref e

k
R

1
Tref

"1
T

" #

ð1Þ

Psubðrh ;/Þ ¼
2
3
ð1" AÞ Lsolar

4pr2hk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8RT
pmmol

s

cos/ ð2Þ

where A is the bond albedo of the material, aðTÞ is the temperature-
dependent sublimation coefficient of the volatile species, Lsolar is the
Sun’s luminosity, rhelio is the heliocentric distance of the object, k is
the ice’s latent heat of sublimation, / is the solar phase of the ele-
ment of surface relative to the subsolar point, mmol is the molar
mass of the ice species, R is the ideal gas constant, T is the temper-
ature of the sublimating gas (assumed to be in thermal equilibrium
with its source ice), and Pref is an experimentally determined vapor
pressure at temperature Tref. Since Eq. (1) is transcendental, we
solve for temperature (T) numerically, then insert it into Eq. (2) to
determine the sublimation pressure of a given surface area element.
This formulation assumes that the coma around the volatile-rich
body is optically thin (Steckloff et al., 2015a, 2015b), which is valid
for heliocentric distances greater than %0.05 AU for cometary
bodies up to %1 km (Drahus, 2014). This method of computing

sublimation pressures provides similar results to previous methods
of computing sublimative forces on comet nuclei (e.g. Whipple,
1950; Marsden et al., 1973; Sekanina, 2003), but is instead based
on the theoretical (rather than empirical) relationship between
vapor pressure and temperature, and is therefore useful for volatile
species for which limited empirical data exists (Steckloff et al.,
2015a). We plot this dynamic sublimation pressure at the subsolar
point in Fig. 3. To compute the net force acting upon a volatile-rich
object, we integrate Eq. (2) over the surface of the object.

Once a parent chunk is broken up into small grains and devola-
tilized, following the remaining steps detailed below, radiation
pressure dominates the non-gravitational behavior of the grains.
At this point, radiation pressure streams the chunks into a long lin-
eament as in Sekanina and Farrell (1980), creating the observed
striae. However, sublimation pressure is responsible for moving
the bulk mass of stria material to the location of stria formation.

3.3. Step 2 continued: Rotational acceleration due to a sublimation-
driven YORP-like effect (SYORP)

The back-reaction from anisotropic volatile emission rotation-
ally accelerates striae parent chunks. As a gas molecule escapes
from the surface of a parent chunk, it transports angular momen-
tum relative to the center of mass of the parent chunk. The sum
of the individual torques from each gas molecule sublimating off
of the parent chunk creates a net rotational acceleration of the
nucleus (unless that comet possesses perfect symmetry). Thus, in
addition to changing the linear motion of a chunk’s center of mass,
diurnal sublimation can also change a chunk’s rotation about its
center of mass. We assess the strength of this angular acceleration
by analogizing this effect to the well-studied YORP effect
(Rubincam, 2000; Bottke et al., 2002; Vokrouhlicky and Capek,
2002; Capek and Vokrouhlicky, 2004; Scheeres, 2007; Rozitis and
Green, 2013).

Gas molecules sublimate near the surface of a parent chunk and
diffuse through its porous structure, where the gas mean free path
is significantly larger than the pores of the cometary material.
Eventually these molecules reach the surface, where the last scat-
tering of each gas molecule can be treated independently and the
gas emission profile is Lambertian (the probability of being ejected

Fig. 2. A Cartoon of SYORP-induced Stria Formation. The five steps of stria formation are illustrated above including (1) parent chunk release, (2) sublimation-driven anti-
sunward drift and rotational acceleration, (3) rotational fission, (4) fragmentation cascade, and (5) transition from sublimation to radiation pressure domination of anti-
sunward drift. After step 5, the stream of small micron-sized chunks appears observationally as a stria.
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in any given direction is proportional to the cosine of the angle
made between that direction and a vector normal to the local sur-
face of the parent chunk [pp. 227–230 in Gombosi, 1994]). Since
gas molecules and photons are emitted in a nearly identical fash-
ion, we are able to utilize the theory developed for the photon-
driven YORP effect to quantify these sublimation-driven torques.

3.3.1. The YORP effect
Since the numerous instantaneous torques acting on a body are

infinitesimal in duration and may be oriented in opposing direc-
tions, the YORP effect is a time-averaged phenomenon. The secular
rotational acceleration rate due to the YORP effect for an object of
radius R and density q is (Scheeres, 2007):

dx
dt

¼ G1

a2"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# e2"
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 !
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4pqR2 ð3Þ

where a" and e" are the object’s heliocentric semi-major axis and
eccentricity, CY is a shape-dependent coefficient with typical values
between 10#3 and 10#2 (Scheeres, 2007; Rozitis and Green, 2013),
and G1 & 1014 kg km s#2 is related to the speed of light c and the
solar constant W" = 1.361 kWm#2, which is defined at 1 AU:
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Note that the magnitude of the rotational acceleration scales inver-
sely with surface area and density, and scales linearly with the
absolute strength of the solar radiation pressure at the object’s loca-
tion and with its shape-dependent coefficient CY, which is defined
independent of size (Scheeres, 2007). The coefficient CY is deter-
mined by the thermally emitted photons, since the absorbed solar
radiation contributes no net torque (Rubincam and Paddack, 2010).

3.3.2. The SYORP effect
Since gas molecules carry significantly more momentum than

photons, the instantaneous torques acting upon the body are much
greater than for the YORP effect. We parameterize this
sublimation-driven YORP (SYORP) effect by modifying the YORP
effect rotational acceleration equations (Eqs. (3) and (4)). Since
sublimating gas molecules behave like photons at the surface of
the parent chunk, sublimation-driven angular acceleration should
depend on the shape of the object in the same manner as emitted

photon-driven angular acceleration. Therefore, the shape depen-
dent coefficient for sublimation CS should be the same as that for
photons CY. Physically, the coefficient CS represents the fraction
of the spin and orbit averaged sublimative momentum flux that
contributes a torque due to shape asymmetry. Thus we assume
that CY & CS for the purposes of our order of magnitude considera-
tions, and should have a value that lies in the range 10#3–10#2

based on asteroid shapes (Scheeres, 2007; Rozitis and Green,
2013), which should be representative of the shapes of cometary
nuclei to first order. This is consistent with recent work that
implies the values of CS for cometary nuclei may lie within a small
range of values (Samarasinha and Mueller, 2013).

The absolute strength of the gas sublimation pressure PS is very
different than thermal emission pressure

PY ¼ G1=a2"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# e2"

q
: ð5Þ

We parameterize this difference with a quantity c, which is the
ratio of the sublimation pressure to the radiation pressure:

c ¼ PS=PY ð6Þ

The angular acceleration associated with SYORP is directly anal-
ogous to the angular acceleration associated with YORP:

dx
dt

¼ 3PSCS

4pqR2 ¼ 3cPYCY

4pqR2 ð7Þ

where we have taken advantage of both the new parameter c and
the equivalence between the two shape factors CS and CY.

Since a subliming gas molecule carries significantly more
momentum than an emitted thermal photon, we might naively
expect c to be greater than one. However, if gas emission is signifi-
cantly reduced relative to thermal emission, c may be less than
one. We use Eqs. (5) and (2) for the radiation PY and sublimation PS
pressures respectively to compute the ratio c as a function of helio-
centric distance. Near the Sun, the chunk is cooled predominantly
through sublimative cooling and energy is lost primarily through
overcoming a species latent heat of sublimation. Since the incident
solar energy flux scales as the inverse square of heliocentric dis-
tance, the sublimative mass-loss rate and resulting sublimation
pressures (and therefore gamma) scale approximately (but not
exactly) as an inverse square lawwith heliocentric distance. Further
from the Sun, however, the chunk is predominantly cooled by black-
body radiation, and the sublimative mass-loss rates fall far short of
the inverse square law, resulting in a steep drop off in gamma with
increasing heliocentric distance. This leads to a shape of the gamma
curves in which they rise steeply with decreasing heliocentric
distance until reaching an approximately constant value (see Fig. 4).

3.4. Step 3: Critical failure of the body

We define a critical rotation rate xcrit, above which the cen-
tripetal acceleration required to hold the body together overcomes
the tensile strength of the body, leading to fragmentation. Since
these chunks survived ejection from the cometary nucleus intact,
they are necessarily stronger than their parent nucleus, which typ-
ically have strengths on the order of a few Pascals (Sekanina and
Yeomans, 1985; Asphaug and Benz, 1996; Melosh, 2011; Bowling
et al., 2014; Steckloff et al., 2015a; Thomas et al., 2015). For these
icy chunks, self-gravitational forces are dominated by even this
weak strength limit (Scheeres et al., 2010). Thus gravity has a neg-
ligible effect in holding these icy parent chunks together. To esti-
mate xcrit, we approximate the icy parent chunks as rectangular
prisms, where the long axis (a = 2R) is twice the length of the other
two sides, which we assume to be equal in length (b = c = R). The
maximum tensile force exerted along the long axis of the body
due to strength is then

Fig. 3. Peak Sublimation Pressure as a Function of Heliocentric Distance. We adopted
Fig. 4 from Steckloff et al. (2015a) to show the variation in peak sublimation
pressure for an assumed albedo of 0 as a function of heliocentric distance for
common cometary volatile species (H2O, CO2, and CO) and the mineral Forsterite,
which was found in the coma of Comet Wild 2 (Zolensky et al., 2006). For the
formation of striae, we focus on the H2O sublimation curve, as we are positing that
H2O sublimation is responsible for stria formation. Clearly visible is the point
('1 AU) beyond which the sublimation pressure drops off much more quickly.
Strength of radiation pressure is added for reference.
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Ftensile ¼ Art ¼ R2rt ð8Þ

where A is the cross-sectional area perpendicular to the long axis,
and rt is the material tensile strength. The centripetal force at
which the body fails (fragments) under principal axis rotation is

Fcent ¼ macent ¼
1
2
qx2R4 ð9Þ

At the critical rotation rate, Ftensile ¼ Fcent , thus the critical rota-
tion rate (above which the object fragments) is

xcrit ¼

ffiffiffiffiffiffiffiffiffi
2rt

qR2

s

ð10Þ

We estimate the SYORP timescale by assuming that the parent
chunk starts at rest and compute the amount of time required to
spin the chunk up to xcrit . We integrate the expression for angular
acceleration (Eq. (7)) with respect to time (s), set the constant of
integration to zero (for chunks starting at rest), and set this result-
ing expression for angular velocity (x) equal to xcrit

sS ¼
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32qrt

p

cPYCY
ð11Þ

This timescale defines the duration of an SYORP cycle.

3.5. Step 4: Runaway fragmentation cascade

We now consider the fragmentation of the parent chunk. Since
the chunk slowly spins up to the point of fragmentation, the parent
clump likely fragments along a single plane of weakness1, resulting
in two roughly equal-sized daughter chunks. If we assume that the
two daughter chunks are equal in mass, and that the total volume
of material is preserved, then the daughter chunks will have a radiusffiffiffiffiffiffiffiffi

1=23
p

of the parent chunk. Such a size decrease is associated with a
corresponding increase in the tensile strength of the daughter chunk.
According to Griffith Crack Theory (Brace, 1961) and assuming a
Weibull distribution of flaws within the material, the strength scales
approximately as $

ffiffiffiffiffiffiffiffi
1=s

p
, where s is the size of the object. Thus, the

daughter clumps will have a tensile strength that is approximatelyffiffiffi
26

p
% 1:12 times the tensile strength of the parent chunk.
After fragmentation, the daughter chunks will be rotating

approximately at a ratexcrit;p (the critical rotation rate of its parent
chunk), with the exact value depending on geometry. Thus, instead
of starting at rest (as is assumed for the initial parent chunk), the
daughter chunks already are rotating at a significant fraction of
their own xcrit

x0 ¼ xcrit;p ð12Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1ffiffiffiffiffi
223

p ffiffiffi
26

p

s
xcrit ð13Þ

C ¼ x0

xcrit
% 0:75 ð14Þ

which reduces the time needed for the daughter chunks to spin
up to fragmentation proportionally. Therefore, the timescales to
fragmentation for all chunks (except for the initial parent chunk)
are (1 & C) % 25% of the time to rotational fission from rest. There-
fore, while the initial parent chunk will require the full sS to spin
up to fragmentation, all ensuing daughter chunks will only require
ð1& CÞsS to spin up to xcrit .

If we compute the ratio of the SYORP timescales (Eq. (11)) for
the daughter clump versus the parent clump, we find that

sdaughter
sparent

¼
ð1& CÞRdaughter

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffirdaughter
p

ð1& CÞRparent
ffiffiffiffiffiffiffiffiffiffiffiffiffirparent

p ð15Þ

¼
ffiffiffiffiffiffiffiffi
1=23

p ffiffiffi
212

p
ð16Þ

¼
ffiffiffi
1
8

12

r
% 0:84 ð17Þ

assuming that q and Cs are the same for parent and daughter
chunks. Since this ratio of SYORP timescales is less than 1, each
successive generation of chunks will have a shorter lifetime than
the previous generation, leading to a runaway cascade of fragmen-
tation. Such a cascade is consistent with the modeling of Nishioka
(1998) and Jones and Battams (2014) for the creation of dust nec-
essary to explain striae.

We next estimate the duration of the entire cascade of fragmen-
tation events, which is equivalent to the elapsed time between par-
ent chunk ejection from the nucleus and the onset of stria
formation. We first compute the number of fragmentation steps
needed to fragment a parent chunk into micron-sized dust, which
is the suspected size of stria grains (Sekanina and Farrell, 1980).
Since daughter chunks have a radius 1=

ffiffiffi
23

p
times the size of their

parent chunks, the radius of a chunk in the nth generation is

Rn ¼ R02&n
3 ð18Þ

where R0 is the size of the initial parent chunk ejected from the
nucleus. Thus, the number of generations needed to reach size Rn is

n ¼ &3
log10ðRnÞ & log10ðR0Þ

log10ð2Þ
ð19Þ

Therefore, a parent chunk of $10–100 m in radius requires
$70–80 generations to produce micron sized dust.

Since the SYORP timescale decreases with each subsequent gen-
eration, we can analytically solve for the total amount of time
needed for a parent chunk to fragment into the nth generation

Tn ¼ s0 þ s0ð1& CÞ
Xn

i¼1

sn
sn&1

" #i

% s0 þ 0:25s0
Xn

i¼1

ð0:84Þi ð20Þ

where s0 is the SYORP timescale of the initial parent chunk and
C ¼ x0=xcrit , which accounts for the nonzero initial rotation of the
daughter chunks. The first $10 generations, which together reduce
parent chunk radii by an order of magnitude, dominate this total

1 As opposed to a sudden shock of the material, which may result in many forked
fractures and numerous fragments if the shock is traveling faster than the velocity of
Raleigh surface waves within the material (order of $100 m/s).
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Fig. 4. A plot of the gamma factor for various species. Above is a plot of c (ratio of
sublimation pressure to radiation pressure) versus heliocentric distance for various
volatiles. We computed these values based on a planar surface element composed
purely of the respective volatile, with the Sun located at the zenith. Sublimation
pressure data for all volatiles obtained from Steckloff et al. (2015a). We observe that
the volatiles activate at larger heliocentric distances, building up the sublimation
pressure as the sublimating object moves inward. Closer to the Sun the volatile
becomes fully activated, and nearly scale with / 1=r2helio , causing the c–gamma
curves to flatten out to a nearly a constant value.
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timescale, occupying over 90% of the time needed to reach suffi-
ciently small fragments. Thus, the time required for an ejected par-
ent chunk to fragment into micron-sized stria grains (and therefore
the duration of the stria-forming fragmentation cascade) is effec-
tively independent of the size of the final grain

Tfragmentation ! Tn ! 2:31s0 ! 2:31
R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32qrt;0

p

cPYCY
ð21Þ

where rt;0 is the tensile strength of the parent chunk.
After each fragmentation event, classical YORP theory predicts

that, on average, half of the daughter chunks will continue to spin
up toxcrit , while the other half will spin down towards a stationary
state. For those chunks that spin down to a low velocity rotation
state, the literature is currently inconclusive as to whether or not
they will be captured into a low velocity tumbling state
(Vokrouhlicky and Capek, 2002; Cicalo and Scheeres, 2010;
Breiter et al., 2011). If the chunk is not captured in a tumbling state,
then it will pass through a low velocity rotation state and emerge
accelerating with the opposite sense of rotation. This has been a
standard and successful assumption in the literature matching
both near-Earth and main asteroid belt spin period distributions
(Rossi et al., 2009; Marzari et al., 2011). After making this assump-
tion, then nominally half the chunks take 175% of the SYORP time-
scale sS to fragment while the other half take 25% of sS. This factor
of a few difference of the fragmentation timescale is smaller than
the expected order of magnitude variations of the SYORP shape
coefficient CS.

When the chunks are large and the SYORP fragmentation time-
scales are relatively long, the chunks that fragment much faster or
much slower than the average chunk could drift away from the
pack contributing to background dust production and possibly
form separate mini-striae. As the SYORP fragmentation cascade
progresses and the fragmentation timescales decrease, even
chunks with very different fragmentation timescales will be unable
to drift appreciably apart from one another. If only half the initial
parent chunk’s mass ends up in the stria, then the initial parent
chunks must be approximately ¼ larger in radius to account for
the mass that fails to form striae. While a sublimative analog to
the Tangential YORP Effect will increase the fraction of chunks that
accelerate in the direction of their rotation (Golubov and Krugly,
2012; Golubov et al., 2014) and therefore contribute to stria forma-
tion, we conservatively neglect this contribution.

3.6. Step 5: Onset of stria formation

As the fragmentation cascade continues, the resulting frag-
ments become not only smaller, but also increasingly devolatilized.
At some point, the resulting grains within the fragment swarm are
so small and devolatilized, that solar radiation pressure dominates
their behavior, and they stream anti-sunward as in previous mod-
els. While we assume that all daughter chunks are of an equal size
and have an idealized distribution of flaws, rotational fragmenta-
tion will create chunks that are only approximately equal. While
these different sizes will not produce large separations between
chunks during earlier generations, variations in size during the
final generations will cause the grains to separate from one
another via solar radiation pressure according to their differing b
values, forming a stria (Sekanina and Farrell, 1980). We therefore
consider the point at which a parent chunk completes its fragmen-
tation cascade to be the onset of stria formation.

3.7. Modeling and constraints on stria formation

We now estimate the constraints of SYORP-driven stria forma-
tion on Comet West. We approximate Comet West’s orbit as a

parabola with a perihelion of 0.197 AU, and numerically investi-
gate the heliocentric and cometocentric distances of stria formed
from our scheme as a function of the heliocentric distance of par-
ent chunk ejection. We numerically integrate the motion of hypo-
thetical parent chunks ejected from the nucleus between 180 days
pre-perihelion to 90 days post-perihelion, and record their helio-
centric and cometocentric distances at which they complete their
fragmentation cascades. We assume that parent chunks that have
not completed their fragmentation cascades by the time they
reached a post-perihelion heliocentric distance of 10 AU will not
form stria because this distance is much greater than the heliocen-
tric distance beyond which water ice sublimation shuts down. We
assume the separation between the comet and the parent chunk is
small compared to their heliocentric distances, which allows us to
approximate the change in the cometocentric distance (dcomet) of
the parent chunk by assuming that its cometocentric drift is due
entirely to the effects of dynamic sublimation pressure

Ddcomet ¼
1
2
aðrhelioÞDt

2 þ vt ¼ 3PsubðrhelioÞ

8qR Dt2 þ vDt ð22Þ

where aðrhelioÞ is the acceleration of the parent chunk due to sublima-
tion pressure, PsubðrhelioÞ is the heliocentric distance dependent subli-
mation pressure, q is the density of the parent chunk, and v is the
parent chunk’s cometocentric velocity. We assume that this dis-
tance montonically increases. This is an admittedly simplified
model, which accounts only for a one-dimensional change in the
cometocentric distance. However, the largest sources of error are
likely the uncertainties in the physical properties of the parent
grains. This one-dimensional model is therefore sufficient for our
purpose of understanding the order of magnitude behavior of par-
ent chunks, and we reserve two or three-dimensional modeling of
stria formation with a deeper study of parent chunk properties for
another paper.

Our assumed initial velocity of the parent chunk (&1 m/s) rela-
tive to the nucleus is negligible compared to the average velocity
needed to move a parent chunk from the nucleus to the cometo-
centric location of stria formation (&100–1000 m/s) in the weeks
between passing the sublimation barrier (the heliocentric distance
within which H2O sublimation becomes the dominant cooling
mechanism of the nucleus) and forming a stria. Therefore, we
can treat the parent chunks as though they were initially at rest.
Additionally, because the parent chunks have an initial velocity
comparable to the comet’s escape velocity, the parent chunk will
quickly move several nucleus radii away from the nucleus, to a
point where the cometary gravity is negligible compared to solar
gravity or sublimation pressure (while still being relatively close
to the nucleus when compared to the cometocentric distance of
stria formation). We therefore ignore the negligible effects of
cometary gravity on this calculation. We assume that that parent
chunk has a tensile strength of 10 Pa, which is the expected order
of magnitude when the &1 Pa strength of &1 km comet nuclei
(Sekanina and Yeomans, 1985; Asphaug and Benz, 1996; Bowling
et al., 2014; Thomas et al., 2015; Steckloff et al., 2015a) is scaled
to a &10 m chunk using a

ffiffiffiffiffiffiffiffi
1=s

p
strength scaling law (Brace,

1961). We use a time step of 6 h in the numerical modeling.
In Fig. 5, we plot the heliocentric distance of the onset of stria

formation (the point at which the fragmentation cascade is com-
plete) as a function of the heliocentric distance of ejection of a
10 m parent chunk for a comet with the orbit of Comet West. We
plot two different cases of the SYORP coefficient CS, which illustrate
two different behaviors in Fig. 5: one in which the parent chunk
parameters restrict all striae formation to post-perihelion
(CS = 0.0035), and another in which the parent chunk parameters
allow for the formation of some pre-perihelion striae (CS = 0.01),
which puts a bulge in the curve near perihelion.
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For the case where CS = 0.01 (which is the upper bound of the
expected range of SYORP coefficients, and therefore represents
the strongest expected response to SYORP), we find that the helio-
centric distance of stria formation has little dependence on the
heliocentric distance of parent chunk ejection, with the vast major-
ity of parent chunks forming striae within a narrow window of
heliocentric distances (for a given parent chunk size and SYORP
coefficient). Because of the sublimation barrier, any parent chunk
ejected beyond !1 AU will experience neither a significant SYORP
effect nor sublimation pressure until it reaches the sublimation
barrier. After crossing the sublimation barrier, the rapid increase
in SYORP torques that peak at perihelion will induce a peak in
the number of parent chunks completing their fragmentation cas-
cades, and would therefore cause a burst of stria formation near-
and post-perihelion. Meanwhile, Fig. 5 reveals that very few parent
chunks ejected post-perihelion have sufficient time to undergo the
SYORP fragmentation cascade (Section 3.6) to form striae before
passing back across the sublimation barrier, and is only possible
for parent chunks that have a very strong response to SYORP tor-
ques (i.e. smaller radii and larger SYORP coefficients).

Thus, our model predicts that large, Comet West-like stria
should preferentially form after the comet reaches near-
perihelion and !1 AU (water sublimation barrier), with a large
burst of striae forming near perihelion, consistent with observa-
tions of striae (Sekanina and Farrell, 1980; Pittichová et al., 1997).
This is not to suggest that no striae can form prior to perihelion.
Striated comet nuclei likely eject a population of parent chunks
with a distribution of sizes and SYORP coefficients. Because the
SYORP response is size-dependent, our model predicts that smaller
parent chunks will be able to respond quickly enough to the weaker
pre-perihelion SYORP torques to form striae (assuming that SYORP
coefficients are independent of size.) However, these early striae
would contain significantly less material than the larger striae that
form later, and may therefore be unobservable. Thus, while our
SYORP model of stria suggests that any comet capable of ejecting
icy chunks could form striae, they may not stand out above back-
ground dust emission. Therefore, a careful pre-perihelion study of
striated comets could confirm this aspect of SYORP theory.

4. Striae of Comet West

We lastly apply our model to the striae of CometWest as a proof
of concept of the SYORP model. We use this rudimentary one-
dimensional model to estimate the sizes and SYORP coefficients
of the initial parent chunks needed to match the estimated helio-
centric and cometocentric distances of its striae (Sekanina and
Farrell, 1980). Sekanina and Farrell (1980) obtain these distances
by modeling the motion of devolatilized dust under the effects of
solar gravity and radiation pressure. Although the Sekanina and
Farrell (1980) model of stria formation differs from the model pre-
sented in this paper, both models of dust behavior post-formation
are identical. Therefore, the heliocentric and cometocentric dis-
tances of stria formation that were obtained by post-formation
stria dust modeling are applicable to our model.

We list the heliocentric and cometocentric distances of stria for-
mation for the observed stria of Comet West from Sekanina and
Farrell (1980), along with our parent chunk radii and SYORP coef-
ficients (CS) that best fit those distances in Table 1. Each heliocen-
tric and cometocentric distance pair have two unique solutions for
parent chunk radius and SYORP coefficient: one solution for the
pre-perihelion portion of the comet’s orbit, and a second solution
for the post-perihelion portion of the orbit. Because the striae in
Sekanina and Farrell (1980) were observed post-perihelion, we
restrict ourselves to this set of solutions.

The best-fit parent chunks’ SYORP coefficients (CS) lie between
0.00029 and 0.00126, and their best-fit radii lie between 15 and
110 m. These SYORP coefficients are on the low size of their
expected range of !0.001–0.01 (Scheeres, 2007; Rozitis and
Green, 2013), which is based on repurposing YORP coefficients to
SYORP. While this may be a result of model assumptions, we
acknowledge that it may be indicative of a fundamental difference
between the YORP and SYORP effects. The YORP and SYORP coeffi-
cients are shape-dependent parameters that describe the second
order torques that arise from asymmetries in the shape of the
object. Unlike the YORP effect, SYORP depends on the loss of mate-
rial from the surface of the object that can eliminate asymmetries
in its shape over time, particularly at smaller size scales. If the
object becomes more symmetrical, its SYORP coefficient will drop
over time. Therefore, time-averaged SYORP coefficients may be, as
a whole, smaller than their YORP counterparts. While our model

Fig. 5. Comet West stria formation heliocentric distance versus parent chunk ejection
heliocentric distance. We plot the heliocentric distance of fragmentation for each
simulated 10 m parent chunk ejected from Comet West at 6 h intervals as a function
of the heliocentric distance of parent chunk ejection for two values of the SYORP
coefficient CY = 0.01 and 0.0035. This plot reveals that the overwhelming majority of
ejected parent chunks would produce stria between 0.2 and 0.3 AU (near perihe-
lion), consistent with observations (Sekanina and Farrell, 1980). Additionally,
parent chunks ejected beyond the sublimation barrier (!1 AU) form striae at near
the same heliocentric distance (the stria barrier), leading to the asymptotic
behavior of the inbound part of the curves. Meanwhile, few chunks ejected after
the sublimation barrier have time to fragment before passing back beyond the
sublimation barrier, leading to the asymptotic behavior of the outbound part of the
curves.

Table 1
Heliocentric and cometocentric locations of stria formation for Comet West and their best-
fit parent chunks. This table lists the modeled heliocentric and cometocentric
distances of formation for 16 striae of Comet West (Sekanina and Farrell, 1980).
These distances were obtained by modeling the post-formation dynamics of the dust
that composed each stria. This table also lists our best fit radius and SYORP coefficient
for each striae.

Heliocentric
distance (AU)a

Cometocentric
distance (Gm)a

Best fit parent radius
(m) (error Rþ10%

#27%)
Best fit parent
CS (error Cþ6%

S#2%
)

0.2284 2.56 32.5 0.00056
0.2924 7.58 16.4 0.00029
0.2696 5.34 20.5 0.000355
0.2581 4.2 24 0.000406
0.2606 4.1 24.75 0.000415
0.2535 3.27 30.5 0.000493
0.2683 4.06 26.5 0.000433
0.2506 2.8 35 0.000555
0.2592 2.92 34 0.000530
0.2517 2.14 47 0.000688
0.2543 1.97 50 0.000715
0.2785 2.94 37 0.000544
0.2769 2.29 49 0.00067
0.2624 1.1 95 0.00114
0.2685 0.96 110 0.00126
0.2841 1.12 105 0.00118

a Sekanina and Farrell (1980).
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assumes a static SYORP coefficient, these best-fit SYORP coeffi-
cients are more representative of an average value. Therefore,
while the initial SYORP coefficient of a parent chunk may be com-
parable to its YORP coefficient, the loss of mass required by SYORP
may result in a lower average SYORP coefficient than the average
YORP coefficient (were the chunk not sublimating).

The best-fit radii of the parent chunks fall within the expected
!10–100 m range. The estimated error in the size of the radii of
the parent chunks is a result of uncertainly in the magnitude of
the average dynamic sublimation pressure. Steckloff et al.
(2015a) estimate the uncertainly in the sublimation pressure to
be up to !10% for pure H2O ice sublimation. Additionally, we use
a dynamically new Comet C/2012 S1 (ISON), which is a reasonable
analog to the predicted pristine parent chunks, to estimate uncer-
tainties associated with sublimation contributions from less com-
mon but more volatile species and the active fraction of the
parent chunks’ surfaces. We estimate that the small contributions
from less common sublimating volatile species (CO2, CO, etc.) to be
up to !10%, based on their relative abundances (McKay et al.,
2014; Weaver et al., 2012) and relative volatilities (Steckloff
et al., 2015a). Unlike JFC nuclei which have only small fractions
of their nuclei that are active, the entire surface of Comet ISON
appeared to be active (Steckloff et al., 2015b), which is consistent
with the thermally primitive nature of long-period comets. While
this would suggest that fragments of such a nucleus (i.e. stria par-
ent chunks) would similarly be active all over, we do not under-
stand what mechanism may be responsible for their ejection. We
consider the case in which the ejection mechanism lofts a partially
exposed chunk of material, and conservatively estimate that the
exposed region of that chunk (perhaps 20% of its surface) is devo-
latilized and inactive (or equivalently, that a larger portion of its
surface is partially devolatilized). Because we do not currently have
a well-studied ejection mechanism that we could use to better
constrain these uncertainties, we adopt the conservative estimate
of 20% as the uncertainly in the active area.

These errors are not symmetrical about our best fit solution.
Our model assumes the maximum possible sublimation pressure
and active area, and uncertainties in their values can only revise
them downward. We therefore end up with an asymmetrical error
in the average sublimation pressure of Pþ10%

sub#25%
from propagation of

errors. We run these uncertainties through our model to estimate
the uncertainties in the radii of the parent chunks of the striae from
Sekanina and Farrell (1980) to be eR ¼ Rþ10%

#27%, and the uncertainty in
the corresponding SYORP coefficients to be eCS ¼ Cþ6%

S#2%
.

With 16 parent chunks, we can generate a Size–Frequency
Distribution (SFD), which plots the number of chunks larger than
a particular size (see Fig. 6). We neglect to include parent clumps
smaller than 20 m in this power law fit, as the power law shows
a break in the trend, which likely indicates observational bias near
the limit of detection. The cumulative-SFD represents the number
of chunks greater than a given size, and appears to follow a clear
power law (Nð> RÞ / Rq) with a best-fit power law index (q) of
#1.4. However, a power law index between #2.0 and #1.1 is con-
sistent with the estimated errors in our model, and power law
indexes between #1.1 and #4.0 are consistent with the estimated
errors of the chunks up to 50 m in radius. This cumulative-SFD
power-law index is consistent with the index of q = #1.92 ± 0.20
for Jupiter Family Comets (JFCs) with radii larger than 1.25 km
(Snodgrass et al., 2011), but is only marginally consistent with
the index of !#1 that describes the impactor population
(<!2 km) in the young terrains of Europa (Bierhaus et al., 2012).

The differential Size–Frequency Distribution (differential-SFD)
is generated by taking a derivative of the cumulative-SFD with
respect to object radius generates the differential Size–Frequency
Distribution (differential-SFD). The differential-SFD for all parent

chunks has a power-law slope of #2.4 (#3.0 to #2.1), but values
between #2.1 and #5 are consistent with the estimated errors of
the chunks up to 50 m in radius. This is consistent with the
differential-SFD index of the fragments of Comet 73P/
Schwassmann-Wachmann 3 Nucleus B of #2.11 (Fuse et al.,
2007) or #2.56 (large fragments F > 10 mJy) (Reach et al., 2009),
but inconsistent with its small fragments (F < 10 mJy) index of -
1.84 (Reach et al., 2009). This range of differential-SFD power-
law indexes for all parent chunks of Comet West is inconsistent
with the differential-SFD indexes of #4.7 to #6.6 (Kelley et al.,
2013) and #3 to #4 (Rotundi et al., 2015) that describe the chunks
and grains in the inner comae of Comets 103P/Hartley 2 and 67P
Churyumov-Gerasimenko respectively. However, the two latter
populations are for small chunks (up to !1 m in radius), and the
differential-SFD power-law slope for parent chunks of Comet West
up to 50 m in radius is consistent with both of these populations. It
is presently unclear whether these similar power law indexes indi-
cate a similar origin, composition, or evolution of these different
populations, and further study is warranted to place these
cometary populations into a common context and explore how
evolutionary and ejection processes may alter these SFDs.

5. Discussion

Thus far our analysis has assumed that the sublimation fronts
for the volatile ices are located at the surface of the chunks, rather
than below. Comet ISON’s dust activity, which is a proxy for gas
sublimation, was located predominantly on the sunward side of
the nucleus (Li et al., 2013b). This is common for comet nuclei
(Whipple, 1950; Keller et al., 1986; Feaga et al., 2007; Belton,
2013; Gulkis et al., 2015), and suggests that the volatile sublima-
tion front is close enough to the surface of the nucleus to respond
to the diurnal thermal wave (Steckloff et al., 2015a), such that the
time required for a pulse of heat at the surface to propagate to the
sublimating volatiles is short compared to the rotation period. This
behavior is consistent with the low thermal inertias of cometary
material (Lisse et al., 2005; Lamy et al., 2008; Davidsson et al.,
2013; Groussin et al., 2013; Gulkis et al., 2015). However, if the
rotation period of a parent chunk were to become comparable to
this thermal lag time during SYORP spin up, then the chunk’s gas
emissions would begin to lose their sunward directionality, and

Fig. 6. Cumulative Size–frequency distribution of the best-fit parent chunks of Comet
West’s striae. Here we plot the number of chunks larger than a given parent chunk
size. Vertical error bars are

ffiffiffiffi
N

p
, while horizontal error bars are the estimated !þ10%

#27%
uncertainly in parent chunk radius. Vertical dashed line represents a break in the
size–frequency distribution, which we believe is due to observational bias.
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sublimation pressure would begin to cease driving the chunk anti-
sunward.

Shutting down the anti-sunward sublimation-driven accelera-
tion would not affect the SYORP torques, which, like the YORP
effect, only depends on the shape of the chunk. Therefore a chunk
in this situation would cease to accelerate heliocentrically, but
would drift cometocentrically at a constant rate and continue to
spin up to the point of fragmentation, at which point this cycle
would repeat with the daughter chunks. Because the antisunward
acceleration would episodically shut down, the resulting cometo-
centric distance of stria formation would be reduced. However,
since neither the thermal lag time between the nuclear surface
and the volatile ices nor the depth of the volatile ices of Oort Cloud
comets is known, these considerations are currently merely uncon-
strained speculation.

The SYORP mechanism, while explaining why most observed
striae form near- or post-perihelion, predicts that striae may also
form pre-perihelion within !1 AU of the Sun. However, the parent
chunks that would form these earlier striae would have to undergo
their fragmentation cascades in a shorter period of time, and would
therefore be significantly smaller than the parent chunks that form
post-perihelion striae. Because these smaller parent chunks would
form striae that contain less material than the post-perihelion
striae, these earlier striae are expected to be faint and likely to
remain undetected. A careful pre-perihelion study of comets that
produce post-perihelion striae may be able to confirm this aspect
of the SYORP theory.

Additionally, we assume that H2O sublimation is driving the
stria formation process. However, if more volatile species such as
CO2 or CO are driving striae formation, then striae may form fur-
ther from the Sun, form faster, and contain more material. Addi-
tionally, if parent chunks are ejected via sublimation of
supervolatile species from a discrete location of the nucleus, then
parent chunks may be diurnally ejected. If this process occurs
within the sublimation barrier of the driving species, then it may
lead to the formation of striae that are regularly spaced within
the cometary tail, and that form at an interval approximating the
rotation period of the nucleus.

Our model relies on the ability of comet nuclei to eject !10–
100 m sized chunks at escape velocity (!1 m/s). Long-period
Comet C/1992 B2 (Hyakutake) experienced an outburst that
ejected chunks consistent with the parent chunks in our model
(Desvoivres et al., 2000; Schleicher and Woodney, 2003). However,
it is unclear whether or not the comet formed striae due to limited
observations of the comet post-perihelion. Similarly, Jupiter Family
Comet 17P/Holmes produced fragments consistent with parent
chunks (Stevenson et al., 2010), however its distant perihelion of
2 AU would likely prevent the vigorous sublimation that is neces-
sary in our model to form striae. Spacecraft flybys of comet nuclei
(such as Giotto, Deep Space 1, Deep Impact, Stardust, DIXI, and
Stardust-NExT) would be very unlikely to resolve the ejection of
parent-sized chunks of material due to their limited time of
encounter, and would almost certainly require a Rosetta-style mis-
sion to observe the nucleus of a striated comet for an extended per-
iod of time.

The Rosetta spacecraft itself has observed decimeter to meter-
sized chunks of material moving at near escape velocity at Comet
67P/Churyumov-Gerasimenko (Rotundi et al., 2015) and would
certainly be able to detect the ejection of objects as large as parent
chunks. However, because striae are a rare phenomenon and Jupi-
ter Family Comets are so thermally processed, we would not nec-
essarily expect that 67P/Churyumov-Gerasimenko would be able
to eject parent chunks at escape velocity, which is required to form
striae. Indeed, Rosetta has discovered !10–100 m chunks of
material that may have been ejected from the nucleus of

67P/Churyumov-Gerasimenko, but lacked sufficient velocity to
escape the nucleus’ gravity (Thomas et al., 2015). Direct observa-
tion of the ejection of !10–100 m chunks of material would be
much more likely by a spacecraft at a long period comet or active
centaur. However, failure to detect the ejection of !10–100 m
chunks of material at these bodies would not necessarily invalidate
this theory, since it predicts that only some bodies are capable of
ejecting these chunks.

It is plausible that a particularly active comet could eject parent
chunks at velocities an order or two of magnitude greater than the
comet’s escape velocity. Such parent chunks could drift signifi-
cantly farther from the nucleus than other parent chunks, and
would form striae far from the cometary tail. However, if these par-
ent chunks are ejected sufficiently far from the Sun in the centaur
region, they may drift so far from the nucleus that they would form
dust features too far from the nucleus to be easily associated with
the comet. The Rosetta spacecraft currently in orbit around the
nucleus of Comet 67P/Churyumov-Gerasimenko may be able to
directly observe the ejection of large chunks of material from the
nucleus during perihelion, and perhaps even obtain a velocity pro-
file of the ejected population.

Additionally, our model may predict observable intermediate
stages of stria formation. Because we begin with a single parent
chunk, the initial stages of stria formation would be unobservable.
We have already shown that daughter chunks with radii that are
comparable to the initial parent chunk predominantly occupy the
duration of the SYORP fragmentation cascade. Thus, as the daugh-
ter chunks drift away from the nucleus, they remain unobservable.
However, as the runaway fragmentation cascade nears completion,
a very large number of small chunks are produced very rapidly.
Thus, immediately prior to the onset of stria formation, an observ-
able cloud of material may appear in the tail of the comet that then
streams outward into a stria.

While we assume that each step of the SYORP fragmentation
cascade produces two identical daughter chunks (size and shape),
it is likely that these two chunks vary from one another. If this vari-
ation is small, then the fragmentation cascade would be insignifi-
cantly affected and the daughter chunks will still complete their
fragmentation cascades at approximately the same time. However,
if this variation is large, then one daughter chunk may undergo a
significantly faster fragmentation cascade, and complete its frag-
mentation before drifting a significant distance from the nucleus.
This would manifest itself as a source of fine-grained debris in
the tail of the comet located between the nucleus and the striae.
Additionally, if the fragmentation of the larger daughter chunks
(early stages of the fragmentation cascade) is messy and produces
fine-grained debris, then it would also manifest itself as an addi-
tional source of fine-grained material between the nucleus and
striae. In either of these cases, one may see a diffuse or wispy tail
of material distinct from the striae or the rest of the dust tail. How-
ever, if the fragmentation cascade is more ideal, or if the dust tail is
bright, then this feature may not be visible or even existent.

Lastly, while we have only applied SYORP to parent chunks on
the order of !10–100 m in radius, there is no reason why SYORP
would not affect much larger icy objects within the Solar System.
Indeed, the SYORP mechanism should be able to change the spin
state of icy objects of all sizes. The limiting factor for SYORP is
heliocentric distance, as the effect shuts down beyond the sublima-
tion barrier of the driving volatile species. While we have here only
considered the sublimation of water ice (which shuts down beyond
!1 AU), CO2-driven SYORP would be active out to !10 AU, while
CO-driven SYORP would remain active out to !100 AU! Therefore,
as long as the appropriate volatile species is present and abundant,
SYORP can provide torques to objects throughout the observable
Solar System.
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6. Summary and conclusions

We have proposed a new sublimation-driven model for the for-
mation of striae within the tails of comets that provides a natural
explanation for why comets with perihelia within 0.6 AU only form
striae within !1 AU of the Sun after reaching the near-perihelion
portion of their orbits. Our model easily allows a large amount of
material to be transported as a single unit to the location of stria
formation, a major weakness of existing stria formation schemes.
As part of our driving mechanism, we describe a new,
sublimation-driven analog to the YORP effect (SYORP), which
allows large (!10–100 m) parent chunks to fragment quickly
enough to form stria within the inner Solar System. If large num-
bers of parent chunks with similar sizes and shapes are ejected
prior to the comet passing within the sublimation barrier, then
these parent chunks should produce a sudden burst of striae. How-
ever, the ejection of parent chunks with a range of sizes and shapes
is more likely.

We apply our model to the striae of Comet West, and find that
parent chunks with radii between 15 m and 110 m ( þ10%

#27%), which
are consistent with expected sizes. The sizes of these parent
chunks follow a power-law cumulative size–frequency distribu-
tion (cumulative-SFD) with a power-law index of #1:4þ0:3

#0:6

(#1:5þ0:4
#2:5 for parent chunks less than 50 m radius), which is con-

sistent with the index of #1.92 ± 0.20 for Jupiter Family Comets
with radii larger than 1.25 km (Snodgrass et al., 2011) and mar-
ginally consistent with the index of !#1 for the impactor popu-
lation into the young terrains of Europa (Bierhaus et al., 2012).
The differential Size–Frequency Distribution (differential-SFD) of
#2:4þ0:3

#0:6 is consistent with 73P/Schwassmann-Wachmann 3
Nucleus B’s large fragments (Reach et al., 2009) or all fragments
(Fuse et al., 2007). The differential-SFD for parent chunks less
than 50 m in radius of #2:5þ0:4

#2:5 is consistent with the
differential-SFD indexes of the particles in the inner comae of
Comets 103P/Hartley 2 (Kelley et al., 2013) and 67P/
Churyumov-Gerasimenko (Rotundi et al., 2015). The mechanism
responsible for lofting these parent chunks off of the surface of
the nucleus is unknown, but we speculate that it may be the
resulting gas drag from a cometary outburst, consistent with
the observed parent-sized chunks of Comet 17P/Holmes
(Stevenson et al., 2010) and Comet C/1996 B2 (Hyakutake)
(Desvoivres et al., 2000; Schleicher and Woodney, 2003). The
SYORP coefficients (CS) of Comet West’s parent chunks are
0.00029–0.00126 ( þ6%

#2%), which is on the low side of the expected
range of !0.001–0.01 (Scheeres, 2007; Rozitis and Green, 2013).
This may be due to the loss of surface material that is inherent
in the SYORP mechanism, and which may remove the asymme-
tries in the shape of the body that generate the sublimative tor-
ques that create the SYORP effect.

We also predict that fainter, potentially observable striae may
form earlier than the larger easily observable striae. However,
these early striae would tend to form from smaller parent chunks,
and would therefore be harder to detect. Additionally, our mecha-
nism suggests that any comet capable of ejecting icy chunks can
produce striae, which may or may not be large enough to be
observable. Lastly, we speculate on possible intermediate stages
of stria formation in our mechanism that may be observable. One
would appear as a cloud of material present immediately prior to
stria formation, which may or may not be visible above the back-
ground of the dust tail. The other depends on imperfections during
the SYORP fragmentation cascade, and may appear as a faint wispy
tail-like feature located in the dust tail between the nucleus and
the striae if the fragmentation is sufficiently imperfect and the dust
tail is sufficiently dim.
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