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ABSTRACT 

Engle, Staci E. Ph.D., Purdue University, May 2016. Studies of nicotinic acetylcholine 
receptors containing α4 and α6 subunits in nicotine-induced synaptic plasticity in brain 
reward areas. Major Professor: Ryan Drenan. 
 
 
Tobacco addiction is a serious threat to public health in the United States and abroad, and 

development of new therapeutic approaches is a major priority. Nicotine, the primary 

psychoactive compound in tobacco smoke, activates and/or desensitizes nicotinic 

acetylcholine receptors (nAChRs) throughout the brain. nAChRs in ventral tegmental area 

(VTA) dopamine (DA) neurons are crucial for the rewarding and reinforcing properties of 

nicotine. Nicotine causes cellular changes in VTA DA neurons, including the enhancement 

of AMPA receptor (AMPAR) function. This enhancement sensitizes the VTA to excitatory 

input and promotes drug seeking in animal models. However, which nAChR subtype(s) 

are responsible for initiating these cellular changes is poorly understood. nAChRs 

containing the α6 subunit (α6* nAChRs) are highly and selectively expressed in DA 

neurons in the VTA. Therefore, we hypothesized that activation of α6* nAChRs is 

sufficient to enhance AMPAR function on the surface of VTA DA neurons. To test this, we 

studied mice expressing hypersensitive, gain-of-function α6 nAChRs (α6L9S mice). We 

found that low concentrations of nicotine could act selectively through α6* nAChRs to 

enhance the function of AMPARs on the surface of VTA DA neurons. Through 
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pretreatment with pharmacological inhibitors, we found that NMDA receptors, as well as 

Ca2+/calmodulin dependent protein kinase II, are also required for this effect. We 

subsequently expanded these studies to include alcohol because of the high rate of 

tobacco and alcohol co-abuse. Just as with nicotine, we found that low concentrations of 

ethanol were sufficient to enhance AMPAR function on VTA DA neurons of α6L9S mice. 

Because ethanol and nicotine both modulate AMPAR function in a manner involving α6* 

nAChRs, we tested the hypothesis that low concentrations of ethanol and nicotine 

combine to modulate AMPAR function. Remarkably, co-incubation of α6L9S brain slices 

in concentrations of ethanol and nicotine that are sub-threshold when incubated alone 

resulted in robust enhancement of AMPAR function.  Within the VTA, α6 nAChR subunits 

form nAChRs with and without the α4 nAChR subunit. Therefore, we studied the 

contribution of α4 nAChR subunits to nicotine-elicited changes in VTA synaptic plasticity.  

To address this, we removed α4 nAChR subunits from the VTA of adult mice by injecting 

viral vectors directing expression of Cre recombinase into the VTA of mice with loxP sites 

flanking the α4 subunit gene.  We found that nicotine no longer increases AMPAR function 

when α4 nAChR subunits are removed from the VTA, indicating a role of nAChRs that 

contain both α4 and α6 nAChR subunits in VTA synaptic plasticity.  Interestingly, we also 

saw that removing α4 subunits from the VTA of adult mice increases the excitability of 

VTA DA neurons. We hypothesized that removal of α4* nAChRs from GABAergic neurons 

in the VTA results in less tonic inhibition of VTA DA neurons. To test this we measured 

spontaneous inhibitory postsynaptic currents (IPSCs) on VTA DA neurons. Indeed, we saw 

that the instantaneous frequency of IPSCs was significantly reduced when α4 nAChR 
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subunits are removed from the VTA.  Overall, these studies highlight the importance of 

α4α6* nAChRs in the initiation of cellular changes that play a role in addiction to nicotine, 

suggesting α4α6* nAChRs may be a promising target for future smoking cessation 

pharmacotherapies. 
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 INTRODUCTION 

1.1 Tobacco Addiction 

Tobacco use is a major health problem in the United States. It results in numerous health 

complications including lung cancer, ischemic heart disease, and chronic obstructive 

pulmonary disease, among others. Tobacco use is the leading cause of preventable death 

(NCCD 2014).  It results in nearly 6 million deaths per year worldwide and is predicted to 

cause over 8 million deaths per year by 2030 (Mathers & Loncar 2006). Even though there 

are numerous health benefits to quitting tobacco use, nicotine, an addictive compound 

in tobacco, makes quitting difficult.  Nearly 70% of smokers have the desire to quit, yet 

over 95% of attempts to quit fail within the first year of abstinence (CDC 1993, CDC 2002).  

Many people relapse quickly because of nicotine withdrawal symptoms, just a few of 

which include tobacco cravings, irritability, anxiety, insomnia, and nausea (West et al 

2006).  People also relapse in times of stress and to prevent the weight gain that 

sometimes occurs when smokers quit (McKee et al 2011, Mineur et al 2011).  

While nearly 20% of the general population are smokers, an even higher percentage of 

people with mental illnesses smoke cigarettes.  Around 50% of people with depression 

smoke cigarettes (Pratt & Brody 2010) and greater than 60% of schizophrenics smoke 

cigarettes.  This increase may be explained by the possibility that smoking helps them to 
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overcome cognitive deficits as well as alleviate extrapyramidal symptoms caused by their 

medication (Sagud et al 2009).  

For all of the reasons above, development of effective smoking cessation 

pharmacotherapies is a major priority.  Current options include over-the-counter nicotine 

replacement therapies and prescription medications.  One of the most successfully used 

drugs is Chantix, or varenicline. However, only 23% of people prescribed Chantix are still 

abstinent 1 year after quitting (Knight et al 2010).  It also has the potential to cause several 

side effects ranging from mild to severe (Ebbert et al 2010, Hays et al 2008). Therefore, 

the overarching goal of our research is to better understand the mechanisms through 

which nicotine acts in order to identify targets for more specific and efficacious smoking 

cessation pharmacotherapies.   

1.2 Nicotinic Acetylcholine Receptors 

Nicotine is a tertiary amine alkaloid.  It exerts its addictive properties through its actions 

on nicotinic acetylcholine receptors (nAChRs) (Laviolette & van der Kooy 2004).  The 

endogenous ligand of nAChRs is acetylcholine (ACh).  They are a member of the cys-loop 

family of ligand-gated ion channels that also includes gamma-aminobutyric acid (GABA), 

serotonin, and glycine receptors.   nAChRs are composed of five subunits arranged to form 

a central, ion-conducting pore.  Each subunit consists of four transmembrane segments, 

two intracellular loops, and extracellular N- and C-terminal domains (Dani & Bertrand 

2007).  The N-terminal domain contains the two cysteine residues of the cys-loop.  

Neuronal nAChRs are composed of  and subunits and can be either homomeric or 
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heteromeric.  Homomeric nAChRs are composed of all  subunits while heteromeric 

nAChRs are composed of both  and  subunits.  Heteromeric receptors may contain 

either 3  and 2  subunits or 2  and 3  subunits (Itier & Bertrand 2001). Currently, 11 

different neuronal nAChR subunits have been identified in mammals: 2-7, 9, 10, 

and 2-4.  The 8 nAChR subunit is found in avian species but not mammals.  7 nAChR 

subunits can form homomeric nAChRs while 2-6 and 2-4 nAChR subunits combine 

to form functional heteromeric nAChRs (Le Novere et al 2002, Millar & Gotti 2009). 

However, 5 and 3 nAChR subunits are considered auxiliary subunits because while they 

are able modulate channel function, they do not form binding sites (Cui et al 2003, Drenan 

et al 2008b, Fowler et al 2011).  This leads to a diverse array of possible nAChR subtypes.  

Different subunits combine to form nAChR subtypes with differing pharmacological 

properties (Le Novere et al 2002). 42* (* indicates the possibility of other subunits 

present in the pentamer) and 7 nAChRs are the most abundant subtypes and are 

expressed widely throughout the brain (Millar & Gotti 2009).  

nAChRs have three conformational states: open, closed, and desensitized.  In the absence 

of a ligand, nAChRs remain in the closed state.  Upon ligand binding, channels open. The 

orthosteric binding site is formed at the interface of the N-termini of two adjacent  

subunits in homomeric nAChRs or between that of a  and  subunit in heteromeric 

nAChRs. Therefore, homomeric nAChRs contain five binding sites while heteromeric 

nAChRs have just two. Na+, K+, and Ca2+ can flow through nAChRs in the open state. The 

degree of Ca2+ permeability varies depending on the nAChR subtype. The M2 
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transmembrane domain from each of the 5 subunits line the pore and help to determine 

ion selectivity (Corringer et al 2000).  nAChRs can be found both presynaptically on 

terminals and postsynaptically on cell bodies. Therefore, nAChR activation can result in 

cell depolarization and neurotransmitter release (Dani & Bertrand 2007).  nAChRs that 

are desensitized are in a non-conducting state (Picciotto et al 2008).  

1.3 Mesolimbic Reward Pathway 

Most important to tobacco addiction, several nAChR subtypes are expressed in the 

mesolimbic reward pathway.  The mesolimbic reward pathway consists of dopamine (DA) 

neurons located in the ventral tegmental area (VTA) and their projections to the nucleus 

accumbens (NAc) (Laviolette & van der Kooy 2004)(Figure 1).  Drugs of abuse, including 

nicotine, result in a rise in DA release in the NAc (Di Chiara & Imperato 1988). Lesions of 

the mesolimbic DA system, as well as DA receptor antagonists, reduce nicotine self-

administration in rats (Corrigall & Coen 1991, Corrigall et al 1992). More specifically, 

nAChRs within the VTA are responsible for the reinforcing properties of nicotine, as shown 

by reduced self-administration following intra-VTA infusion of nAChR antagonists 

(Corrigall et al 1994).  The VTA is located in the ventral midbrain. In addition to the 

mesolimbic pathway, the VTA is also part of the mesocortical pathway. VTA DA neurons 

in this pathway send projections to the prefrontal cortex (PFC) (Laviolette & van der Kooy 

2004)(Figure 1).  Along with DA neurons, there are also GABAergic interneurons in the 

VTA which provide inhibitory input to DA neurons (Figure 1).  Glutamatergic terminals 

that provide excitatory neurotransmission in the VTA arise primarily from the PFC, bed 

nucleus of the stria terminalis, amygdala, pedunculopontine tegmental nucleus (PPTg), 
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and the lateral dorsal tegmental nucleus (LDTg) (Mao & McGehee 2010)(Figure 1). 

Additionally, the VTA receives cholinergic and GABAergic input from the PPTg and LDTg 

(Mao & McGehee 2010) (Figure 1).  These cholinergic inputs help regulate burst firing of 

VTA DA neurons (Lanca et al 2000). In addition to modulating reward, the cholinergic 

system is also thought to play a role in regulating sleep cycles and memory formation 

(Mark et al 2011, McKinney & Jacksonville 2005).   

 The VTA is emerging as a heterogeneous structure.  DA neurons within different regions 

of the VTA have different electrophysiological properties and project to different regions 

of the brain.  For example, DAergic neurons in the lateral VTA project to the NAc shell 

while those in the medial VTA project to the NAc core and PFC (Lammel et al 2014).  In 

addition, systemically administered nicotine preferentially activates DA neurons in the 

posterior VTA (bregma: −3.28 to −3.80 mm) over the anterior or tail VTA (Zhao-Shea et al 

2011).  
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Figure 1. Simplified illustration of dopaminergic, cholinergic, glutamatergic, and 
GABAergic circuity projecting to and from the VTA within the mouse brain.  
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1.4 nAChRs in the VTA 

Physiologically relevant concentrations of nicotine (around 100-500 nM) activate and/or 

desensitize nAChRs (Picciotto et al 2008, Pidoplichko et al 1997).  Nicotine acts through 

nAChRs to enhance firing of VTA DA neurons (Calabresi et al 1989) and increase DA 

release in the NAc (Di Chiara & Imperato 1988).  Within the VTA, nAChRs are located on 

several cell types.  nAChRs are expressed on DA cell bodies, glutamatergic terminals, and 

GABAergic interneurons (Marubio et al 2003).  DA cell bodies express heteromeric 

nAChRs and a subset also express homomeric α7 nAChRs (Azam et al 2002).   nAChRs 

containing the α6 nAChR subunit are selectively expressed on DA neurons in the VTA 

(Drenan et al 2008a, Le Novere et al 1996, Mackey et al 2012).  GABA interneurons 

provide inhibitory inputs onto VTA DA neurons and express mainly α4β2* nAChRs (Klink 

et al 2001, Mansvelder et al 2002, Nashmi et al 2007).  However, nicotine only briefly 

activates these receptors before desensitization occurs. Therefore, after a transient 

increase, inhibitory neurotransmission to VTA DA neurons in ultimately decreased 

(Mansvelder et al 2002).  Glutamatergic terminals that synapse onto VTA DA neurons 

express homomeric α7 nAChRs (Jones & Wonnacott 2004).  Nicotine activates nAChRs on 

glutamatergic terminals and therefore enhances excitatory neurotransmission to VTA DA 

neurons (Mansvelder & McGehee 2000).  

While there are several possible heteromeric nAChR subtypes in the VTA, it is important 

to understand which particular subtype(s) are necessary and/or sufficient for nicotine 

reinforcement and reward. 2* nAChRs are crucial for nicotine’s reinforcing properties 
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(Picciotto et al 1998).  Nicotine does not result in an increase in DA release in 2 knockout 

(KO) mice and 2KO mice do not self-administer nicotine (Picciotto et al 1998, Pons et al 

2008).  Furthermore, in electrophysiology studies done in brain slices from 2KO mice, 

DA neurons do not respond to puff application of nicotine. This can be explained by 

radioligand binding studies which reveal that high affinity nicotine binding sites are 

completely absent in 2KO mice (Picciotto et al 1995, Zoli et al 1998).   

The main high-sensitivity nAChRs in the VTA include those containing 4 and/or 6 

subunits (Salminen et al 2007, Salminen et al 2004).  Like the 2 nAChR subunit, 4 and 

6 nAChR subunits are also necessary for nicotine self-administration (Pons et al 2008).  

Selective re-expression of these subunits into the VTA shows that 4, 6, and 2 nAChR 

subunit expression specifically within the VTA drives nicotine reinforcement (Maskos et 

al 2005, Pons et al 2008).  Because nAChR function in VTA DA neurons is absent in 2KO 

mice, 4 and 6 subunits must co-assemble with the 2 subunit to form functional 

receptors (Picciotto et al 1998).  Further studies have concluded that VTA DA neurons 

express nAChRs with the following compositions: (4)3(2)2, (4)2(2)3, 452, 242, 

423, 62, 623, 642, and 4623 (Gotti et al 2010, Gotti et al 2005, 

Salminen et al 2007).  4623 nAChRs have the highest affinity to nicotine with an EC50 

of around 230 nM  (Salminen et al 2007) and make up approximately 20% of the 2* 

nAChR binding sites in VTA DA neurons (Gotti et al 2010).  -conotoxin MII (CtxMII) is a 

competitive antagonist selective for 6* nAChRs (Cartier et al 1996, Champtiaux et al 

2002) and dihydro--erythroidine (DHE) is a competitive antagonist moderately 
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selective for 4* nAChRs (Harvey et al 1996). Nevertheless, there are currently no 

antagonists that distinguish between 46*, (non-6)4*, and (non-4)6* nAChRs, 

making their differential effects difficult to study.  In addition to the roles of 4* and 6* 

nAChRs in the reinforcing and rewarding properties of nicotine discussed below, there is 

evidence for the involvement of 46* nAChRs as well (Drenan et al 2010, Liu et al 2012, 

Zhao-Shea et al 2011). 

The involvement of 4* nAChRs in the reinforcing properties of nicotine is not only 

demonstrated by the absence of nicotine self-administration in 4KO mice (Pons et al 

2008), but also by wild-type (WT) mice that fail to self-administer nicotine after given an 

intra-VTA infusion of DHE to block 42* nAChRs in the VTA (Corrigall et al 1994).   

nAChRs contribute to the rewarding properties of nicotine as well.  Selectively activating 

4* nAChRs will condition a place preference to nicotine (Tapper et al 2004) and 4KO 

mice do not show a place preference to nicotine (Sanjakdar et al 2015).  Moreover, 4 

nAChRs specifically on DA neurons are necessary for nicotine reward (McGranahan et al 

2011).  At the cellular level, nicotine does not significantly activate VTA DA neurons in 

4KO mice as compared to WT mice (Liu et al 2012, Zhao-Shea et al 2011).  

6* nAChRs are unique in that they are expressed in a limited number of brain regions, 

unlike 4 and 2 subunits that are widely expressed throughout the brain (Champtiaux 

et al 2003, Marubio et al 2003, Nashmi et al 2007, Ross et al 2000).  They are mainly found 

in catecholaminergic neurons, and most notably in the VTA, substantia nigra pars 

compacta, locus coeruleus, retinal ganglion cells, and their projection areas (Champtiaux 
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et al 2002, Cox et al 2008, Gotti et al 2005, Hill et al 1993, Le Novere et al 1996, Lena et al 

1999, Mackey et al 2012, Whiteaker et al 2000).  As discussed above, 6KO mice do not 

self-administer nicotine (Pons et al 2008).  In addition, in WT mice, intra-VTA CtxMII 

infusions block nicotine self-administration, as well as DA release in the NAc (Gotti et al 

2010). 6KO mice do not find nicotine rewarding at a dose that is sufficient to condition 

a place preference in WT mice (Sanjakdar et al 2015).  CtxMII infusions further support 

a role for 6* nAChRs in nicotine reward, because it dose-dependently decreases nicotine 

place preference in WT mice (Sanjakdar et al 2015).  Likewise, selectively activating 6* 

nAChRs can condition a place preference to nicotine (Drenan et al 2012).  Their restricted 

expression and their key role in the rewarding and reinforcing properties of nicotine make 

6* nAChRs an attractive option to selectively target with nicotine cessation drugs.   

1.5 Long-Term Potentiation 

Long-term potentiation (LTP) is the strengthening of synapses for an extended period of 

time following stimulation. LTP is measured by a protocol that pairs presynaptic 

stimulation with postsynaptic depolarization. The opposite of LTP is long-term depression 

(LTD), or the weakening of synapses. The ability of neurons to increase and decrease the 

strength of synapses over time is referred to as synaptic plasticity or changes in synaptic 

strength (Kauer & Malenka 2007).  

Both 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptors 

(AMPARs) and N-methyl-D-aspartate (NMDA) receptors (NMDARs) are key players in 

glutamatergic synaptic plasticity.  These receptors belong to the family of ionotropic 
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glutamate receptors, which also includes kainate receptors.  AMPARs are tetramers 

composed of a combination of AMPA-type ionotropic glutamate receptor (GluR) 1, GluR2, 

GluR3, and GluR4 subunits.  Glutamate receptors are activated by the binding of 

endogenous glutamate, or exogenous AMPA.  Upon activation the pore opens and allows 

cations into the cell.  AMPARs containing the GluR2 subunit are impermeable to Ca2+.  

AMPARs lacking the GluR2 subunit are permeable to both Na+ and Ca2+ (Isaac et al 2007).   

NMDARs are also tetramers. They are composed of varying combinations of NR1, NR2A, 

NR2B, NR2C, NR2D, NR3A and NR3B subunits.  They contain a central pore that is voltage-

dependently blocked by Mg2+.  When cells expressing NMDARs are sufficiently 

depolarized, the Mg2+ block is relieved.  NMDARs are highly Ca2+ permeable so once the 

cell is depolarized and the Mg2+ block is removed, binding of NDMA or glutamate results 

in Ca2+ influx into the cell (Cull-Candy et al 2001). 

The most widely studied form of LTP is NMDAR-dependent LTP (Malenka & Bear 2004).  

This form of LTP requires the activation of NMDARs. Therefore, the postsynaptic cell must 

be sufficiently depolarized in order for the Mg2+ block to be removed.  When the Mg2+ 

block is removed, glutamate released by the presynaptic cell activates NMDARs, resulting 

in Ca2+ entry into the postsynaptic cell. The rise in Ca2+ levels leads to intracellular 

signaling, including activation of calcium/calmodulin-dependent protein kinase II 

(CaMKII), and ultimately insertion of AMPARs into the cell membrane at the synapse on 

the postsynaptic cell (Kauer & Malenka 2007, Malenka & Bear 2004).  Other types of LTP 

exist in addition to NMDAR-dependent LTP, such as presynaptic LTP (Kauer & Malenka 

2007). 
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1.6 Synaptic Plasticity in the VTA 

LTP is classically associated with learning and memory in the hippocampus (Malenka & 

Bear 2004).  However, LTP can be induced in VTA DA neurons as well (Bonci & Malenka 

1999).   Excitatory synapses on VTA DA neurons, but not excitatory synapses on VTA GABA 

neurons, can be potentiated by a standard LTP pairing protocol (Bonci & Malenka 1999).  

LTP in VTA DA neurons is NMDAR-dependent and does not involve metabotropic 

glutamate receptors, like some other forms of LTP in the hippocampus (Bonci & Malenka 

1999).  LTD can also be observed on VTA DA neurons (Thomas et al 2000).  These results 

show that stimulation of the VTA can lead to long-term alterations in the synaptic strength 

of synapses on DA neurons.  

Increased DA release in the NAc long outlives the actions of nicotine on nAChRs on VTA 

DA neurons.  The concentration of nicotine achieved by smokers rapidly desensitizes 

nAChRs on VTA DA neurons (Pidoplichko et al 1997). Nevertheless, nicotine causes 

increased DA levels in the NAc for an hour or more in rodent models (Di Chiara & Imperato 

1988).  Therefore, additional cellular changes must occur in VTA DA neurons following 

nicotine exposure to maintain enhanced DA release.  This long-lasting enhancement of 

DA release is suggested to be a result of increased glutamatergic synaptic plasticity in the 

VTA (Kauer & Malenka 2007, Wolf et al 2004). Glutamatergic signaling in the VTA plays an 

important role in DA release in the NAc.  Stimulating the PFC, the main source of 

glutamatergic inputs to the VTA, results in enhanced burst firing of VTA DA neurons and 

increased DA release in the NAc (Murase et al 1993). Furthermore, blocking NMDARs with 

an intra-VTA infusion of a NMDAR antagonist will dose-dependently decrease nicotine-
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enhancement of DA release in the NAc of rats (Schilström et al 1997). Thus, strengthening 

of glutamatergic synapses on VTA DA neurons could support prolonged DA release.   

Mansvelder and McGehee found for the first time that exposing brain slices to nicotine 

leads to the induction of LTP on VTA DA neurons (Mansvelder & McGehee 2000). Pairing 

a brief 200 second nicotine application with a postsynaptic depolarization is sufficient to 

increase the amplitude of evoked excitatory postsynaptic currents (EPSCs) for as long as 

40 minutes.  Nicotine-induced LTP was prevented by both methyllycaconitine (MLA; 7 

nAChR antagonist) and D-2-amino-5-phosphonopentanoic acid (AP-5; competitive 

NMDAR antagonist; also commonly known as APV), indicating the mechanism is mediated 

by 7 nAChRs and NMDARs (Mansvelder & McGehee 2000).  

Following this discovery, it was also found that in vivo drug exposure can induce LTP-like 

changes in VTA DA neurons.  This was first observed with a single exposure to cocaine 

(Ungless et al 2001) and then generalized to other drugs of abuse, including nicotine (Saal 

et al 2003).  Because drugs were given in vivo, the classical method of measuring LTP had 

to be altered. Therefore, to measure changes in synaptic strength, these studies 

compared AMPA receptor mediated currents to NMDA receptor mediated currents 

(AMPA/NMDA ratios) as a surrogate measure of LTP.  It is important to note that 

AMPA/NMDA ratios are not similarly increased after exposure to psychoactive drugs that 

are not addictive (Saal et al 2003).   These drug-induced synaptic changes are correlated 

with addiction-related behaviors, such as the acquisition of self-administration and 
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behavioral sensitization (Borgland et al 2004, Chen et al 2008, Dong et al 2004, Luscher & 

Malenka 2011)  

1.7 Mechanisms of Nicotine-Evoked Synaptic Plasticity in the VTA 

To better understand nicotine-induced increases in synaptic strength, various aspects 

such as the time course, which nAChR subtypes are involved, and intracellular signaling 

mechanisms have been studied.  Changes in glutamatergic synaptic strength on VTA DA 

neurons have been observed after both in vivo nicotine exposure via nicotine injections 

and ex vivo via incubation of naïve brain slices in nicotine. The duration of nicotine 

exposure determines whether increases in AMPA/NMDA ratios occur and how long they 

last.  Several studies have demonstrated that increases in AMPA/NMDA ratios are seen 

24 hours after a nicotine injection (Baker et al 2013, Gao et al 2010, Placzek et al 2009, 

Saal et al 2003).  Wu and colleagues performed further experiments to look at additional 

time points (Gao et al 2010).  They found that waiting 10 minutes after the nicotine 

injection was not sufficient to see increases in AMPA/NMDA ratios.  However, after a 

single nicotine injection, increases in AMPA/NMDA ratios are seen after one hour, and 

last at least 72 hours, but do not persist for as long as 5 days.  Multiple nicotine injections 

(once daily for seven days) result in increased AMPA/NMDA ratios for as long as 8 days 

after the last injection (Gao et al 2010).   

Studies using naïve brain slices have also found that the slices must be incubated in 

nicotine for a sufficient amount of time before changes in AMPA/NMDA ratios are 

observed (Jin et al 2011, Mao et al 2011).  While one study reports that a 10 minute 

nicotine incubation was not sufficient to increase AMPA/NMDA ratios (Jin et al 2011), 
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another saw significant changes with after incubating slices in nicotine for just 15 minutes 

(Mao et al 2011).   

Not only is the length of nicotine exposure important to consider when investigating 

changes in AMPAR function, but also the age of the animal at the time of nicotine 

exposure.  Placzek et al. found that lower doses of nicotine could increase AMPA/NMDA 

ratios in young mice (postnatal days 21-35) compared to the doses required for adult mice 

(postnatal days 60-90) (Placzek et al 2009).  This suggests that the developing brain may 

be more sensitive to nicotine-induced changes in glutamatergic synaptic plasticity on VTA 

DA neurons.  This could be the result of differing nAChR expression between adolescence 

and adulthood.  Interestingly, there are higher levels of α6 nAChR subunit mRNA 

expressed in the VTA of juvenile rats (Azam et al 2007).  This makes α6* nAChRs an 

interesting target to explore when investigating which nAChR subtypes are responsible 

for nicotine-induced synaptic plasticity. 

Understanding which nAChR subtypes nicotine acts through to increase AMPA/NMDA 

ratios will lead to a better understanding of the mechanism through which glutamatergic 

plasticity occurs in the VTA. Different studies have addressed this topic but it remains 

unclear which nAChR subtypes are primarily involved because of conflicting results.  As in 

any comparison between scientific studies, differences in experimental details may 

account for contrasting results.   Studies exposing naïve brain slices to nicotine do not 

agree on the involvement of α4β2* nAChRs (Jin et al 2011, Mao et al 2011).  One group 

concluded that α4β2* nAChRs are not involved because pre-incubating brain slices from 

Wistar rats in DHβE, a moderately selective α4* nAChR antagonist, before nicotine 



16 
 

 

1
6
 

incubation did not inhibit increases in AMPA/NMDA ratios (Jin et al 2011).  A similar 

experiment that instead used Sprague Dawley rats, however, found DHβE had the ability 

to block nicotine-induced increases in AMPA/NMDA ratios (Mao et al 2011).  Findings on 

the involvement of α7 nAChRs, which are primarily found on glutamatergic terminals, are 

also conflicting.  One study found no increases in AMPA/NMDA ratios after pre-incubating 

brain slices in MLA, a α7 nAChR antagonist (Jin et al 2011).  Yet a second study using brain 

slices reports no involvement of α7 nAChRs as they found MLA pre-incubation was not 

able to block nicotine’s ability to increase AMPA receptor function (Mao et al 2011).   

An in vivo study concluded that increases in AMPA/NMDA ratios could proceed through 

activation of either α7 nAChRs or β2* nAChRs. They found that pre-injecting rats with a 

α7 nAChR antagonist before giving a nicotine injection did not block increases in 

AMPA/NMDA ratios, but neither did a β2 nAChR antagonist.  However, increases were 

prevented when both antagonists were injected together (Gao et al 2010).   

In addition to studies relying on pharmacological inhibitors, genetically modified mice 

have also been used as a tool to measure changes in glutamatergic synaptic plasticity.  In 

agreement with the results from in vivo antagonist pre-injection, nicotine injections still 

resulted in increased AMPA/NMDA ratios in both α7KO and β2KO mice (Gao et al 2010). 

However, a study done by Jin et al found no increases in AMPA/NMDA ratios in α7KO 

mice, more in agreement with their MLA slice incubation procedure (Jin et al 2011).   

No previous studies have looked at the role of α6* nAChRs in increased AMPA/NMDA 

ratios.  A study by Brown et al leads us to believe these receptors may of interest.  They 

showed that using optogenetics to selectively activate DA neurons via light stimulation is 
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sufficient for enhancement of AMPA/NMDA ratios in the VTA (Brown et al 2010).  Because 

α6* nAChRs are selectively expressed on DA neurons in the VTA (Drenan et al 2008a, 

Mackey et al 2012), their activation may be sufficient to increase AMPA/NMDA ratios as 

well.   

In addition to determining which nAChR subtype nicotine acts through, it is also important 

to understand what circuit and molecular events downstream of nAChR activation are 

involved in the enhancement of excitatory synapses on VTA DA neurons. Enhanced 

AMPA/NMDA ratios could be mediated by changes in the distribution and/or composition 

of AMPARs expressed on the surface of VTA DA neurons. An increase in the number of 

AMPARs expressed at glutamatergic synapses would result in an increase in AMPAR 

function (Kauer & Malenka 2007). Alternatively, an exchange of Ca2+ impermeable 

AMPARs for Ca2+ permeable AMPARs would also enhance the AMPA mediated 

component of AMPA/NMDA ratios (Luscher & Malenka 2011).  AMPARs lacking the GluR2 

subunit are Ca2+ permeable.  Inward rectification is a hallmark of GluR2-lacking AMPARs 

(Isaac et al 2007, Liu & Zukin 2007).  There are some studies suggesting the presence of 

inwardly-rectifying AMPARs on VTA DA neurons after nicotine exposure (Brown et al 2010, 

Gao et al 2010) as well as another report that there are not (Baker et al 2013).  These 

contrasting results indicate that nicotine may either cause an increase in sensitivity 

and/or an increase in the number of AMPARs expressed on VTA DA neurons.  More work 

is needed to uncover what changes are occurring at the AMPAR level following nicotine 

exposure.  
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There is no debate, however, on the necessity of NMDAR activation in the mechanism of 

nicotine-evoked increases in AMPA/NMDA ratios.  Whether it be pre-injection with MK-

801, a selective and non-competitive NMDAR antagonist,  (Gao et al 2010) or pre-

incubating slices in AP-5 (Mansvelder & McGehee 2000, Mao et al 2011), all studies show 

NMDAR antagonists inhibit increases in glutamatergic synaptic strength.  

In order for NMDARs to be activated, the neuron first must be sufficiently depolarized to 

relieve the Mg2+ block present in NMDARs (Cull-Candy et al 2001). Nicotine itself leads to 

depolarization of DAergic neurons (Liu et al 2012, Pidoplichko et al 1997).  This may be 

sufficient to remove the Mg2+ block or it may initiate other signaling events that further 

contribute to DA neuron depolarization or NMDAR activation.   Nicotine results in 

somatodendritic DA release (Rahman et al 2003). DA released in this manner could then 

activate D5 DA receptors in the VTA, resulting in the initiation of changes in AMPA and/or 

NMDA receptors, possibly through altered glutamate release (Mao et al 2011, Schilstrom 

et al 2006).  Several studies have investigated this through the use of D1/D5 DA receptor 

antagonists.  While the antagonists do not differentiate between D1 and D5 DA receptors, 

the involvement of the D5 DA receptor is more likely as D1 DA receptors have not been 

found in VTA DA neurons (Schilstrom et al 2006).  Mao et al found that pre-incubating 

slices in the D1/D5 DA receptor antagonist SCH-23390 before nicotine exposure could 

abolish increases in AMPA/NMDA ratios.  Further, they also found that incubating slices 

in SKF 81297 (a D1/D5 DA receptor agonist) alone was sufficient to increase AMPA/NMDA 

ratios (Mao et al 2011).  Brown et al found a similar effect in vivo.  Intra-VTA infusion of 

SCH-23390 before light stimulation of VTA DA neurons blocked increases in AMPA/NMDA 
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ratios (Brown et al 2010).  However, another in vivo study was not consistent with those 

discussed above.  Gao et al found that pre-injection of a solution of SCH-23390 and 

haloperidol did not block nicotine-mediated increases in AMPA/NMDA ratios (Gao et al 

2010).  

Because NDMAR activity is required, it is highly likely that calcium signaling plays a role in 

enhanced AMPA/NMDA ratios. Therefore, calcium dependent protein kinases or 

phosphatases could be required for changes in nicotine-mediated glutamatergic synaptic 

plasticity. When activated, calcineurin, a serine/threonine phosphatase, 

dephosphorylates AMPARs and NMDARs among other targets.  Its activity is necessary in 

the VTA for nicotine-mediated locomotor sensitization (Addy et al 2007).  However, Gao 

et al. found that calcineurin involvement in not necessary for nicotine-mediated increases 

in AMPA/NMDA ratios, as they found that pre-injection of cyclosporine, a calcineurin 

inhibitor, had no effect on increases in AMPA/NMDA ratios (Gao et al 2010).  Additional 

work on other calcium dependent kinases and phosphatases, such as CaMKII, will reveal 

more about the role of calcium signaling in nicotine-induced increases in glutamatergic 

synaptic strength in VTA DA neurons. 

1.8 Nicotine and Ethanol Co-Abuse 

Tobacco and alcohol co-abuse is extremely common (Bobo 1992, DiFranza & Guerrera 

1990, Falk et al 2006, Grant et al 2004, Miller & Gold 1998). Alcohol consumption 

increases the amount of cigarettes smoked, cigarette cravings, and the rewarding effects 

experienced from smoking (Friedman et al 1991, Harrison et al 2009, Mitchell et al 1995, 

Rose et al 2004). Likewise, nicotine increases the amount of alcohol consumed (Barrett et 
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al 2006). The high prevalence of tobacco and alcohol co-abuse suggests that nicotine and 

ethanol may have common molecular targets in the brain mediating their rewarding 

effects.  

1.9 Ethanol and nAChRs 

Ethanol has the ability to modulate several types of ionotropic receptors including GABAA, 

NMDA, and serotonin receptors (Dopico & Lovinger 2009). It is now starting to be 

appreciated that ethanol modulates nAChRs as well.  Several studies using heterologous 

expression systems or cultured neurons suggest that ethanol potentiates or inhibits ACh-

evoked currents depending on the subtype of nAChR expressed.  In Xenopus oocytes 

expressing human nAChR subunits, ethanol potentiated ACh-evoked currents from 42, 

44, 22, 24 nAChRs but inhibited 7 nAChRs.  The same study found ethanol did 

not alter currents from 32 or 34 nAChRs (Cardoso et al 1999).  In rat cultured cortical 

neurons, -bungarotoxin (-BuTX) was used to distinguish 7 nAChRs from heteromeric 

nAChRs (-BuTX sensitive and -BuTX insensitive, respectively). As in Xenopus oocytes, 

7 nAChRs are inhibited by ethanol and heteromeric nAChRs are potentiated by ethanol 

(Aistrup et al 1999).  

nAChRs in vivo also indicate ethanol modulates nAChRs. Mice given mecamylamine 

(MEC), a non-competitive nAChR antagonist, consumed less ethanol (Hendrickson 2009) 

and do not acquire a place preference when administered ethanol (Bhutada et al 2012).  

nAChRs specifically within the VTA are also implicated in ethanol’s mechanism of action. 
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Intra-VTA infusions of MEC reduced ethanol-induced DA release into the NAc (Blomqvist 

et al 1996).   

More specifically, α4* and α6* nAChRs play an important role in the rewarding properties 

of ethanol. α4 nAChR subunits are necessary for ethanol to condition a place preference 

in mice (Liu et al 2013a). α6* nAChR activity, specifically within the VTA,  is necessary for 

both ethanol consumption and reinforcement (Larsson et al 2004) (Lof et al 2007).  

Furthermore, enhanced α6* and α4* nAChR activity increases ethanol reward-like 

behavior (Liu et al 2013a, Powers et al 2013).  

These data indicate that ethanol can modulate nAChRs and nAChRs within the VTA 

contribute to the rewarding properties of ethanol. Future studies need to be conducted 

to better understand the mechanism of action. 

1.10 Effects of Combined Nicotine and Ethanol Administration  

Studies utilizing simultaneous nicotine and ethanol co-exposure indicate that the two 

drugs have synergistic or additive properties.  Results from VTA-containing brain slices 

demonstrate ethanol and nicotine have synergistic effects on action potential firing.  A 

subthreshold concentration of nicotine co-applied with ethanol was able to increase the 

firing rate of VTA DA neurons when perfused over brain slices. (Clark & Little 2004). 

Similarly, in acute brain slices, ethanol can potentiate ACh-induced increases in the firing 

rate of VTA DA neurons, which requires both α4 and α6 nAChR subunits. (Liu et al 2013a, 

Liu et al 2013b). Results in vivo show similar trends. In microdialysis experiments in awake 

rats, subthreshold intraperitoneal ethanol injections paired with subthreshold intra-VTA 

nicotine injections resulted in increased DA release in the NAc (Tizabi et al 2002). 
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1.11 Ethanol-Mediated Changes in Synaptic Plasticity  

Early work done in vitro provided evidence that glutamatergic signaling may be altered 

by ethanol.  AMPAR and NMDAR subunit levels were increased in rat primary neuronal 

cultures exposed to ethanol (Chandler et al 1999).  While not as widely studied as nicotine 

or other drugs of abuse, a single ethanol exposure also increases AMPA/NMDA ratios in 

VTA DA neurons (Heikkinen et al 2009, Saal et al 2003). Additionally, AMPA/NMDA ratios 

are increased after voluntary ethanol self-administration (Stuber et al 2008). To our 

knowledge, the role of nAChRs in ethanol-mediated increases in AMPA/NMDA ratios has 

not been previously studied.   

1.12 Objectives 

The overarching goal of these studies is to better understand the role of 6* nAChRs in 

addiction.  We began by studying their ability to activate VTA DA neurons, moved onto 

their role in glutamatergic synaptic plasticity on VTA DA neurons in response to both 

nicotine and ethanol exposure, and finally looked into the contribution of 4 nAChR 

subunits to 6* nAChR activity. 
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 METHODS 

Portions of this chapter (pgs 23-38) are reprinted from:  

Molecular Pharmacology 2013 Sept; 84(3):393-406, doi: 10.1124/mol.113.087346 

with permission of the American Society for Pharmacology and Experimental 

Therapeutics. All Rights Reserved.  

Neuropharmacology 2015 Apr; 91:13-22, doi:10.1016/j.neuropharm.2014.11.014 and 

Neuroscience 2015 Sept 24; 304:161-75, doi: 10.1016/j.neuroscience.2015.07.052 

with permission from Elsevier. All Rights Reserved. 

2.1 Materials 

(-) Nicotine hydrogen tartrate salt was obtained from Glentham Life Sciences (Wiltshire, 

United Kingdom). Nicotine doses are reported as freebase. 6-cyano-7-nitroquinoxaline-

2,3-dione (CNQX), D-2-amino-5-phosphonopentanoic acid (AP-5), KN-93, and 

tetrodotoxin (TTX) were purchased from Tocris Biosciences (Ellisville, MO). -Conotoxin 

MII (CtxMII) was synthesized as previously described (Azam et al 2010). All other 

chemicals without a specified supplier were obtained from Sigma (St. Louis, MO). 
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2.2 Mice 

All experiments were conducted in accordance with the guidelines for the care and use 

of animals provided by the National Institutes of Health Office of Laboratory Animal 

Welfare, and protocols were approved by the Institutional Animal Care and Use 

Committee at Purdue University. All efforts were made to minimize animal suffering, to 

reduce the number of animals used, and to utilize alternatives to in vivo techniques when 

available. Mice were kept on a standard 12-hour light/dark cycle at 22°C and given food 

and water ad libitum. Mice were weaned and group housed with same sex littermates on 

postnatal day 21. Tail biopsies were collected 21–28 days after birth and used to 

determine the genotype of the mice via polymerase chain reaction (PCR) analysis as 

previously described (Drenan et al 2008a). Male and female α6L9S mice and their non-

transgenic (non-Tg) littermates were 8–16 weeks old at the time experiments were 

conducted. No differences were noted between results obtained from male versus female 

mice, so results were pooled. 

α6L9S mice were generated as described (Drenan et al 2008a). Briefly, a mouse bacterial 

artificial chromosome (BAC) containing the Chrna6 gene was obtained and an L9′S 

mutation was introduced by codon replacement using a BAC recombineering approach. 

Mutant BAC DNA was introduced into FVB/N embryos, which were then implanted into 

pseudopregnant Swiss-Webster surrogates. The BAC insertion site in the mouse genome 

is unknown. Founder animals were isolated and have been continuously back-crossed to 

C57BL/6 for >12 generations. Over 90% of the α6L9S strain genome is expected to contain 

C57BL/6 alleles, but FVB/N allelic DNA close to the insertion site is likely to remain in place 

http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0028390814004304#200024434
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0028390814004304#200021912
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in this strain. α6L9S mice are thus transgenic and express mutant (L9′S) and wild-type 

(WT) α6 nAChR subunits (Cohen et al 2012). α6* nAChR function is sensitized in these 

mice, producing a 10- to 100-fold leftward shift in concentration-response relationships 

involving α6* nAChRs, depending on the assay being used (Cohen et al 2012, Drenan et al 

2010, Drenan et al 2008a).  We previously confirmed that α6* nAChRs in α6L9S mice are 

not overexpressed or misexpressed in ectopic brain locations (Drenan et al 2010, Drenan 

et al 2008a). 

α6L9S mice lacking α4 nAChR subunits were generated as previously described (Drenan 

et al 2010).  α4 knockout (KO) mice were a generous gift of Dr. Michael Marks (University 

of Colorado, Boulder, CO), and were produced by mating mice heterozygous for the α4KO 

allele. Briefly, α6L9S mice, in which the mutant allele is maintained in a heterozygous 

fashion, were crossed to homozygous α4KO mice to produce mice that are heterozygous 

for both the α6L9S allele and the α4KO allele. These mice were subsequently crossed to 

homozygous α4KO mice to produce mice heterozygous for the α6L9S allele and 

homozygous for the α4KO allele.  

α6 green fluorescent protein (GFP) mice were generated as previously described (Mackey 

et al 2012). To create α6GFP mice lacking α4 subunits, α4KO mice were crossed to α6GFP 

mice, generating α6GFP mice heterozygous for the α4KO allele. These mice were crossed 

again to mice homozygous for the α4KO allele, yielding α6GFP mice that were also 

homozygous for the α4KO allele.  

Chrna4 loxP/loxP mouse embryos were a generous gift from Dr. Stephen Heinemann (Salk 

Institute for Biological Studies, La Jolla, CA). They were generated as previously described 
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(McGranahan et al 2011). Homologous recombination was used to insert loxP sequences 

into intronic regions flanking exon V of the 4 gene.  Chrna4 loxP/loxP mice were crossed 

with 6L9S mice to generate mice with hypersensitive 6* nAChRs and floxed 4 subunit 

genes.  4 subunits were removed from Chrna4 loxP/loxP mice by injecting viral vectors 

driving the expression of Cre into the brain region of interest as described below. The 

virus also drives the expression of GFP. Therefore, Chrna4 loxP/loxP mice that received 

intra-VTA Cre virus injections are referred to as Chrna4 ventral midbrain conditional KO 

mice (Chrna4 vMB cKO).  Control Chrna4 loxP/loxP were injected with a virus that only 

drives the expression of GFP.  Not every cell is infected with the virus thus when referring 

to data from individual neurons, Cre(+) and Cre(-) is indicated.  Cre(+) refers to cells that 

are from Chrna4 vMB cKO mice that also express the Cre virus (identified by the presence 

of GFP).  Cre(-) refers to cells from Chrna4 loxP/loxP mice given control GFP virus 

injections.  

2.3 Stereotaxic Surgery 

Adult mice (at least 8 weeks of age) were anesthetized with a ketamine/xylazine cocktail 

(6L9S: 100 mg/kg ketamine, 10 mg/kg xylazine; non-Tg and Chrna4 loxP/loxP: 

120 mg/kg ketamine, 16 mg/kg xylazine; intraperitoneal (i.p.) injection). The surgical area 

was shaved and cleansed via three applications of alternating iodide ointment and 70% 

ethanol. Mice were then placed into a stereotaxic frame (Kopf; Tujunga, CA, USA) and a 

small incision was made to expose the skull. The skull was leveled in the coronal and 

sagittal planes using the coordinates for the bregma and lambda as landmarks. Bilateral 
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holes were drilled in the skull according to adjusted coordinates from the third edition of 

the Franklin and Paxinos mouse brain atlas (for VTA: M/L: ±0.5 mm from bregma, A/P: 

−3.2 mm from bregma; for NAc: M/L: ±0.6 mm from bregma, A/P: +1.5 mm from bregma). 

The A/P coordinate was adjusted for each animal to accommodate individual variations in 

size; the distance between the bregma and lambda was measured for each mouse and 

divided by the published distance in this species (4.21 mm), and this ratio was then 

multiplied by the proper A/P coordinate from the atlas to determine the proper A/P 

coordinates for each animal.  At this point mice were either implanted with guide 

cannulae or given intra-VTA or intra-NAc viral injections.  

Guide cannulae 3.0 mm in length (Plastics One; Roanoke, VA, USA) along with a dummy 

cannula (also 3.0 mm in length; Plastics One) were slowly lowered into position and 

secured using Geristore cement (Den-Mat; Lompoc, CA, USA). Animals remained in the 

stereotaxic apparatus until the cement fully dried. Once removed from the stereotaxic 

apparatus, a dust cap was screwed onto the dorsal portion of the guide cannula to keep 

the dummy cannula in place and to prevent contamination of the guide cannula.  

Chrna4 loxP/loxP mice and 6L9S/Chrna4 loxP/loxP were injected with viruses that drive 

the expression of Cre recombinase in order to remove 4 nAChR subunits.  A syringe 

loaded with the virus was slowly lowered to D/V coordinates of -4.5 mm from bregma for 

intra-VTA injections or -4.4 mm from bregma for intra-NAc injections. For the AAV-GFP 

and AAV-GFP-Cre viruses (AAV2.CMV.PI.eGFP.WPRE.bGH and AAV2.CMV.HI.eGFP-

Cre.WPRE.SV40 purchased from Penn Vector Core), 250 nL of virus was infused at a rate 
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of 50 nL/min. The injection needle was left in place for 5 minutes after the infusion ended 

before slowly retracting the needle out of the brain.  For the HSV-YFP and HSV-YFP-Cre 

retrograde viruses (hEF1-EYFP and hEF1-EYFP-IRES-cre purchased from the MIT 

McGovern Institute Viral Gene Transfer Core), 500 nL of virus was infused at a rate of 50 

nL/min.  The injected needle was left in place for 10 minutes after the infusion ended 

before slowly retracting the needle out of the brain. Sutures were used to close the 

incision.    

Following surgery, mice were given ketoprofen (5 mg/kg, subcutaneous) and allowed to 

recover on a heating pad under close observation until ambulatory. Mice were singly 

housed following surgery. Mice implanted with guide cannulae were allowed to recover 

for at least 5 days prior to infusions. Mice given viral injections were given 2 (AAV viruses) 

or 3 (HSV viruses) weeks to recover and for the virus to reach peak expression.  

2.4 in vivo Drug Administration 

Prior to receiving i.p. injections, mice were gently handled once a day for three days to 

habituate them to handling. The next day, mice were scruffed and given a mock injection. 

One day prior to the experiment, mice were scruffed and given a saline injection (i.p.). On 

the experimental day, mice were given an i.p. injection of vehicle (0.9% saline), nicotine, 

or ethanol. Nicotine was administered at a dose of 0.03 mg/kg or 0.17 mg/kg. Ethanol was 

administered at a dose of either 0.5 or 2.0 g/kg. Immediately following the injection, mice 

were placed in a novel conditioning chamber for 15 minutes (nicotine) or 5 minutes 

(ethanol) before they were returned to their home cage. One hour after the injection mice 

were euthanized for brain slice preparation. 
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A subset of 6L9S mice received intra-VTA infusions of CtxMII (10 pmol) or vehicle 

(sterile saline) immediately prior to nicotine (0.03 mg/kg, i.p.) injections. Infusions were 

carried out using a dual syringe pump connected to internal cannulae (extending 1.5 mm 

beyond guide cannulae; Plastics One) via two identical Hamilton syringes and PE50 tubing 

(Plastics One). Mice were anesthetized using isoflurane (5% for initiation of anesthesia; 

1.8% for maintenance). While maintained on isoflurane anesthesia, the dust cap and 

dummy cannula were removed and the internal cannula was fully inserted into the guide 

cannula. Drugs were infused at a rate of 0.1 μL/min for 5 minutes for a total volume of 

0.5 μL. The internal cannula was left in place for an additional 5 minutes to prevent 

backflow into the guide cannula. Following the infusion, the internal cannula was 

removed and the dummy cannula and dust cap were replaced. The animal was 

immediately removed from the isoflurane and allowed to recover (approximately 10 

minutes) in the home cage.  

2.5 Brain Slice Preparation for Electrophysiology 

Mice were anesthetized with sodium pentobarbital (100 mg/kg, i.p.) followed by cardiac 

perfusion with oxygenated (95% O2/5% CO2), 4°C N-methyl-D-glucamine (NMDG) 

recovery solution containing the following: 93 mM NMDG, 2.5 mM KCl, 1.2 mM NaH2PO4, 

30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 5 mM Na+ ascorbate, 2 mM thiourea, 3 

mM Na+ pyruvate, 10 mM MgSO4•7H2O, and 0.5 mM CaCl2•2H2O (300–310 mOsm, pH 

7.3–7.4). Brains were removed and retained in 4°C NMDG recovery solution for 1 minute. 

Coronal slices (200 μm) were cut with a microslicer (DTK-Zero 1; Ted Pella, Redding, CA). 
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Brain slices recovered for 12 minutes at 33°C in oxygenated NMDG recovery solution, 

after which they were held until recording in room temperature HEPES holding solution 

containing the following: 92 mM NaCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM NaHCO3, 20 

mM HEPES, 25 mM glucose, 5 mM Na+ ascorbate, 2 mM thiourea, 3 mM Na+ pyruvate, 2 

mM MgSO4•7H2O, and 2 mM CaCl2•2H2O (300–310 mOsm, pH 7.3–7.4). Coordinates for 

recordings in the VTA were approximately −3.5 mm from bregma, 4.0–4.5 mm from the 

surface, and 0.5–1.0 mm from the midline. In adult C57 mice, these coordinates 

correspond to NAc lateral shell-projecting VTA neurons, which are expected to be 

approximately 96% tyrosine hydroxylase (TH)-positive (Lammel et al 2008). 

2.6 Patch-Clamp Electrophysiology 

A single slice was transferred to a 0.8-ml recording chamber (RC-27L bath with PH-6D 

heated platform; Warner Instruments, Hamden, CT), and slices were superfused 

throughout the experiment with standard recording artificial cerebrospinal fluid (1.5–2.0 

ml/min) containing the following: 124 mM NaCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 24 mM 

NaHCO3, 12.5 mM glucose, 2 mM MgSO4•7H2O, and 2 mM CaCl2•2H2O (300–310 mOsm, 

pH 7.3–7.4). Cells were visualized with an upright microscope (FN-1; Nikon Instruments, 

Melville, NY) using infrared or visible differential interference contrast optics. Patch 

electrodes were constructed from Kwik-Fil borosilicate glass capillary tubes (1B150F-4; 

World Precision Instruments, Inc., Sarasota, FL) using a programmable microelectrode 

puller (P-97; Sutter Instrument Company, Novato, CA). The electrodes had tip resistances 

of 4.5–8.0 MΩ when filled with internal pipette solution (pH adjusted to 7.25 with Tris 

base, osmolarity adjusted to 290 mOsm with sucrose). Three internal pipette solutions 
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were used. The following solution was used when recording nicotine- or ACh-evoked 

currents (bath application or puff-applied), action potential firing, and spontaneous EPSCs: 

135 mM K+ gluconate, 5 mM EGTA, 0.5 mM CaCl2, 2 mM MgCl2, 10 mM HEPES, 2 mM 

MgATP, and 0.1 mM GTP. The following solution was used when recording AMPA- or 

NMDA-evoked currents and AMPA/NMDA ratios: 117 mM CsCH3SO3, 20 mM HEPES, 0.4 

mM EGTA, 2.8 mM NaCl, 5 mM tetraethylammonium (TEA)-Cl, 2.5 mM MgATP,  and 0.25 

mM GTP. When recording AMPA-evoked currents 100 μM spermine was added to this 

internal solution so the rectification index could be evaluated. Finally, inhibitory post 

synaptic current (IPSC) recordings were done using an internal solution containing (in 

mM): 75 K+ gluconate, 65 KCl, 5 EGTA, 10 HEPES, 0.5 CaCl2, 2 MgATP, 0.1 GTP. 

 Whole-cell recordings were taken at 32°C with an Axopatch 200B amplifier, a 16-bit 

Digidata 1440A A/D converter, and pCLAMP 10.3 software (all from Molecular Devices, 

Sunnyvale, CA). Data were sampled at 5 kHz and low-pass filtered at 1 kHz. The junction 

potential between the patch pipette and the bath solution was nulled immediately prior 

to gigaseal formation. Series resistance was uncompensated. 

DA neurons in VTA were identified according to previously published methods (Drenan et 

al 2008a, Nashmi et al 2007, Wooltorton et al 2003).  We avoided recording from neurons 

on the slice surface and neurons deep in the slice that were difficult to visualize. Briefly, 

DA neurons were identified via several electrophysiological characteristics: 1) broad spike 

width (≥2 milliseconds), 2) slow spontaneous firing (<5 Hz), and 3) expression of 

hyperpolarization-activated cation current (Ih).  
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To examine the function of somatic ligand-gated ion channels, agonists were locally 

applied using a Picospritzer III (General Valve, Fairfield, NJ). Atropine (1 μM) was present 

in the bath solution when administering ACh to avoid activation of muscarinic receptors. 

During AMPA- and NMDA-evoked current recordings, picrotoxin (a GABAA receptor 

antagonist; 75 M) and TTX (a selective sodium channel blocker; 0.5 M) were added to 

the recording solution to isolate the recorded DA neuron.  A drug-filled micropipette, 

identical to a typical recording pipette, was mounted onto a single-dimension 

piezoelectric translator (PA-100/12; Piezosystem Jena, Inc., Hopedale, MA), which was 

fixed to a micromanipulator (Sutter Instrument Company). Between drug applications, 

the drug-filled pipette was maintained ≥100 μm from the recorded cell. To apply drugs to 

the recorded cell, pClamp software triggered the piezoelectric translator to advance the 

drug-filled pipette to a predetermined position adjacent to the recorded cell (20–40 μm 

from the cell), drug was applied to the cell using a 250-millisecond pressure (12 psi) 

ejection, and the piezoelectric translator subsequently retracted the drug-filled pipette. 

This setup allowed for better reproducibility and reduced receptor desensitization 

compared with manual control of the drug-filled pipette. The first application to a cell was 

typically with the drug-filled tip approximately 40 μm from the cell, and we subsequently 

moved the position of the drug-filled pipette closer to the cell to achieve a more rapid 

response. Responses to AMPA were deemed acceptable based on two criteria: 1) the 

pressure application caused slight to modest cell movement, and 2) the seal parameters 

remained stable for multiple responses. Under these conditions, the 10–90% rise time for 
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AMPA application was 222 ± 17 milliseconds. Faster rise times and excessive cell 

movement were commonly associated with loss of a stable seal. Responses were much 

slower (10–90% rise time was 546 ± 75 milliseconds) when the cell did not move during 

the application. 

AMPA to NMDA ratio recordings were carried out as previously described (Etherton et al 

2011, Mao et al 2011), but with minor modifications. Coronal slices were used (as for 

AMPA-evoked currents), neurons were chosen as described above, and whole-cell 

recordings were established. Picrotoxin (75 μM) was added to the recording solution. A 

concentric bipolar stimulating electrode (FHC cat. #CBAPC75) was placed 100–200 μm 

lateral to the recorded cell, typically in/around the medial lemniscus in the ipsilateral 

hemisphere. Synaptic responses were stimulated (250–750 μA, 40 μsec, 0.1 Hz) such that 

evoked EPSCs were ∼50% of maximum amplitude. First, the cell was held at a command 

voltage of −70 mV, and an EPSC was evoked. Because there is little to no current through 

NMDA receptors at a membrane potential of −70 mV (due to Mg2+ block), the response 

at −70 mV, and therefore the time to peak, is likely to be completely mediated by AMPARs. 

Five sweeps were recorded at −70 mV, and the average time-to-peak was noted and 

subsequently used to measure AMPAR-mediated EPSCs at +40 mV. Next, cells were 

depolarized to a command voltage of +40 mV and membrane current was allowed to 

stabilize for several minutes prior to evoking EPSCs. EPSCs were again evoked, and 5 

sweeps were averaged. The amplitude of the AMPA-mediated component at +40 mV was 

estimated to be the membrane current value at the time corresponding to when the 

evoked EPSCs peaked when the command voltage was −70 mV. The NMDA component 
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was derived by averaging the membrane current value during a 10 millisecond window 

that began 40 milliseconds after the time of the peak AMPAR response. Because AMPA 

components of evoked EPSCs decay to baseline well before 40 milliseconds, this window 

accurately isolates the NMDA-mediated component of the evoked EPSC. AMPA 

components at +40 mV and NMDA components at +40 mV were used to derive an 

AMPA/NMDA ratio for each cell. This method was shown to yield results congruent with 

those obtained using AP-5 to pharmacologically isolate NMDA and AMPA components of 

the evoked EPSC in recordings of nicotine-evoked plasticity from VTA DA neurons (Mao 

et al 2011). In a subset of cells, we verified our measured AMPA/NMDA ratios by using 

AP-5 to pharmacologically isolate NMDA and AMPA components. For all recordings in VTA, 

one or two slices per animal were used, and data were obtained from between one and 

six cells per slice. 

A current injection protocol was used to record action potential firing and measure 

changes in excitability of VTA DA neurons in Chrna4 loxP/loxP control slices versus Cre(+) 

VTA DA neurons in Chrna4 vMB cKO slices.  In current clamp mode, current was injected 

from -40 to +80 pA in 20 pA intervals.  Each step lasted 2 seconds.  

Spontaneous EPSCs and IPSCs were measured while holding the cell at -60 mV in voltage 

clamp mode with the internal solution specified above. CNQX (10 M), an AMPA/kainate 

receptor antagonist, was added to the recording solution during IPSC recordings to 

exclude the possibility of recording EPSCs.  At the end of the recording in a subset of cells, 

picrotoxin (100 M), a GABAA receptor antagonist, was bath applied to confirm the events 
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recorded were GABA receptor mediated IPSCs. Picrotoxin (100 M) was added to the 

recording solution during EPSC recordings to exclude the possibility of recording IPSCs.  At 

the end of the recording in a subset of cells, CNQX (10 M), was bath applied to confirm 

the events recorded were AMPAR mediated EPSCs. Instantaneous frequency and 

amplitude were analyzed using the threshold search feature of Clampfit.  First, the 

baseline was adjusted to zero to correct for any baseline drift before starting the 

threshold search.  The threshold search was set to detect events between two cursors 

placed two minutes apart.  For IPSCs, CNQX bath application was started immediately 

after whole-cell access was established. Therefore the time window was set to start a 

minimum of 8 minutes after the start of CNQX bath application.  Negative going 

deflections were detected as events by placing the top level marker at zero and the 

bottom level marker below the baseline current.  Any event crossing the bottom level 

marker was detected as an event when the threshold search was ran.  At the completion 

of the run, the shape of event was manually examined so any noise detected as an event 

could be rejected.  A results summary sheet was automatically generated by Clampfit. It 

included the instantaneous frequency and amplitude of each event.  All events per cell 

were averaged to give the data points displayed in the figures.  

2.7 Single-Cell RT-PCR 

These methods for reverse transcription (RT)-PCR were adapted from (Zhao-Shea et al 

2011).  VTA neurons were studied using the K+ gluconate-based internal solution listed 

above but made with DEPC-treated water.  After whole-cell recording, the recorded cell 
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was aspirated into the pipette, under visual control, with gentle negative pressure.  Input 

resistance was monitored during aspiration.  Successful PCR reactions were typically only 

attained when a seal resistance of > 1 GΩ was maintained after aspiration.  Cellular 

contents were expelled into 75% ethanol, and RNA was precipitated and isolated by 

centrifugation at 4°C.  cDNA was formed from RNA via reverse transcription (Sensicript 

RT, Qiagen) using oligo-dT primers, and a nested PCR strategy was subsequently used to 

detect target mRNA species.  In round #1 of nested PCR, TH and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) cDNA was amplified (1 cycle: 94°C 2 minutes; 20 

cycles: 94°C 1 minute, 56°C 1 minute, and 72°C 1.5 minutes; 1 cycle: 72°C 10 minutes) 

with the following primers: TH_F (CAGTGATGCCAAGGACAAGC), TH_R2 

(GAGAAGGGGCTGGGAACTTT), GAPDH_F2 (AACTTTGGCATTGTGGAAGG), and GAPDH_R2 

(CCCTGTTGCTGTAGCCGTAT23).  Subsequently, TH and GAPDH signals were further 

amplified (1 cycle: 94°C 2 minutes; 36 cycles: 94°C 1 minute, 56°C 1 minute, 72°C 1.5 

minutes; 1 cycle: 72°C 10 minutes) in round #2 with the following primers: TH_F, TH_R1 

(CCT GTG GGT GGT ACC CTA TG), GAPDH_F1 (GTG TTC CTA CCC CCA ATG TG), and 

GAPDH_R1 (GGT CCT CAG TGT AGC CCA AG).   

2.8 Immunohistochemistry and Confocal Microscopy. 

Transgenic mice expressing α6* nAChR subunits fused in-frame with GFP (α6GFP 

mice; n = 3), along with α6GFP mice homozygous for the α4KO allele, were anesthetized 

with sodium pentobarbital (100 mg/kg i.p.) and transcardially perfused with 15 ml of 

heparin-containing ice-cold phosphate-buffered saline (PBS) followed by 30 ml ice-cold 4% 

paraformaldehyde in PBS. Brains were removed and postfixed overnight at 4°C. Coronal 
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sections (50 μm) were cut on a microslicer and collected into PBS. Sections were 

permeabilized (20 mM HEPES, pH 7.4, 0.5% Triton X-100, 50 mM NaCl, 3 mM MgCl2, 300 

mM sucrose) for 1 hour at 4°C, blocked [0.1% Triton X-100, 5% donkey/horse serum in 

Tris-buffered saline (TBS)] for 1 hour at room temperature, and incubated overnight at 

4°C in solutions containing primary antibodies (diluted in 0.1% Triton X-100, 5% donkey 

serum in TBS). Sections were stained with rabbit anti-GFP primary antibodies (A11122; 

Invitrogen, Carlsbad, CA) with a final dilution of 1:500. Sections were washed three times 

for 10 minutes each in TBS/Tween 20 (0.1% Triton X-100 in TBS) followed by incubation 

at room temperature for 1 hour with goat anti-rabbit Alexa 488 secondary antibodies 

(A11008; Invitrogen) diluted in 0.1% Triton X-100, 5% donkey serum in TBS.  Sections were 

then washed three times in TBS/Tween 20 for 10 minutes each. Sections were stained 

with Qnuclear Deep Red Stain (1:1000, Q10363; Invitrogen) in PBS for 20 minutes at room 

temperature followed by three 5-minute washes in PBS. All sections were mounted on 

slides and coverslipped with Vectashield (Vector Laboratories, Burlingame, CA), and then 

imaged with a Nikon A1 laser-scanning confocal microscope system (Nikon Instruments). 

Nikon Plan Apo 10X air and 60X oil objectives were used. Alexa 488 was excited with an 

argon laser at 488 nm. VTA DA neurons were imaged at 60X, and mean pixel intensity per 

cell was measured for >100 cells in both α6GFP and α6GFPα4KO slices. 

Slices from Chrna4 vMB cKO mice were treated with the same staining and imaging 

procedure with the exception of a modified permeabilization step.  Slices were 

alternatively permeabilized with a two minute incubation in PBS-Triton X (0.3% Triton X-

100 in PBS). Sections were co-stained with sheep anti-TH (1:800) and rabbit anti-GFP 
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(1:500). Secondary antibodies used include anti-sheep Alexa 555 and anti-rabbit Alexa 

488 with a final dilution factor of 1:500. 

2.9 Statistical Analysis. 

Statistical analysis was performed with GraphPad Prism 6 software (GraphPad Software, 

Inc., La Jolla, CA). Data are reported as the mean ± standard error of the mean (S.E.M.). 

To determine whether data sets were normally distributed, all data sets were subjected 

to a D’Agostino and Pearson omnibus normality test. Only when all data sets to be 

compared passed this normality test (α level = 0.05) were parametric statistical tests used. 

For data sets that were either not normally distributed or not large enough for a normality 

test, statistical significance (P < 0.05) was assessed with nonparametric tests.  A student’s 

t-test or a Mann–Whitney test was used for comparisons between two groups. One-way 

analysis of variance (ANOVA) or a Kruskal–Wallis (nonparametric one-way analysis of 

variance) test followed by a Dunn’s post hoc test was used for comparisons between three 

or more groups. Concentration-response curve data were fitted to the Hill equation. Error 

bars for plotted EC50 values indicate 95% confidence intervals. 
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 462* nAChR ACTIVATION ON VTA DA NEURONS IS SUFFICIENT TO 
STIMULATE A DEPOLARIZING CONDUCTANCE AND ENHANCE SURFACE AMPA 
RECEPTOR FUNCTION 

Portions of Sections 3.1 and 3.3-3.10 (pgs 39-41; 44-65) are reprinted from Molecular 

Pharmacology 2013 Sept; 84(3):393-406, doi: 10.1124/mol.113.087346 with permission 

of the American Society for Pharmacology and Experimental Therapeutics. All Rights 

Reserved.  

Portions of Sections 3.2, 3.11-3.12 (pgs 43; 66-69) are reprinted from Neuroscience 2015 

Sept 24; 304:161-75, doi: 10.1016/j.neuroscience.2015.07.052 with permission from 

Elsevier. All Rights Reserved. 

 

3.1 Electrophysiological Identification of VTA DA Neurons 

To study VTA DA neurons in adult mice (aged ≥60 days), we prepared coronal slices and 

recorded from VTA cells residing in the lateral aspect of the VTA. Although the VTA is 

emerging as a heterogeneous structure (Lammel et al 2011), 96.3% of neurons in this area 

test positive for TH expression in adult C57 mice, and these cells exhibit Ih currents 

(Lammel et al 2011).  VTA neurons in this study typically fired spontaneous (Figure 3.1 A), 

wide action potentials (with a width of approximately 2–5 milliseconds; Figure 3.1 B).  
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Hyperpolarizing current injections induced “sag” responses in the transmembrane 

voltage record (I = 120 pA; Figure 3.1 A), and these cells exhibited inward currents in 

response to hyperpolarizing voltage steps (Ih currents; Figure 3.1 C). To provide further 

confirmation that these neurons are DAergic, we conducted single-cell RT-PCR reactions 

from a subset of recorded neurons. All recorded neurons (n = 5) in lateral VTA with a PCR 

signal for GAPDH were also positive for TH mRNA (Figure 3.1 D), and all of these TH(+) 

cells exhibited electrophysiological features as shown above (Figure 3.1 A–C). On the basis 

of these results and supporting studies in the literature (Lammel et al 2008, Lammel et al 

2011, Zhang et al 2010) we proceeded with reasonable confidence that cells with these 

characteristics, and in the lateral part of the VTA, were DAergic neurons.  
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Figure 3.1 Electrophysiological identification of VTA DA neurons. (A) Whole-cell current-
clamp recordings of VTA DA neurons show spontaneous (I = 0 pA), pacemaker firing (1–5 
Hz), and “sag” responses in the membrane potential in response to hyperpolarizing (I =     
-120 pA) current injections. (B) VTA DA neurons have wide action potentials. The neuron 
in (A) indicated with an arrow is shown on an expanded time scale to better view the 
action potential width (typically 2–5 milliseconds) seen in the neurons under study. (C) Ih 
currents in VTA DA neurons. VTA cells were held at -60 mV in voltage-clamp mode and 
membrane current was recorded at baseline and during a voltage step to -120 mV. (D) 
Single-cell RT-PCR (done by Dr. Pei-Yu Shih). VTA DA neurons recorded in whole-cell mode 
were aspirated into the recording pipette, followed by RT of RNA and subsequent PCR 
reactions to detect TH and GAPDH (positive control) expression. Expected band sizes are 
as follows: TH = 207 bp and GAPDH = 138 bp (the asterisk indicates a spurious PCR 
reaction, possibly generated from external primer pairs). As a negative control, a pipette 
was lowered into the slice and mild negative pressure was applied. The pipette was 
removed from the slice and assayed with RT-PCR as for a recorded cell.   
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3.2 Hypersensitive 6* nAChRs in 6L9S mice  

In these experiments we used transgenic 6L9S mice to study the selective activation of 

6* nAChRs.  In these mice, the leucine at the nine prime position is mutated to a serine 

(L9′S) in the second transmembrane domain (TM2) of 6 nAChR subunits.  This mutation 

results in hypersensitive 6* nAChRs. They are 10- to 100- fold more sensitive than non-

6* nAChRs (Cohen et al 2012, Drenan et al 2010, Drenan et al 2008a). Therefore, low 

concentrations of agonists such as ACh and nicotine can be used to selectively activate 

6* nAChRs (Figure 3.2).  The leucine residue where the mutation is made is highly 

conserved among nAChR subunits and is found in the channel pore.  Mutating this leucine 

residue to a polar amino acid, such as serine or threonine, has successfully increased the 

sensitivity of several different nAChR subunits (Drenan & Lester 2012).  It was first 

demonstrated with 7 nAChRs in 1991 (Revah et al 1991).  Drenan et al first generated 

gain-of-function 6L9S transgenic mice in 2008 and carried out studies showing low 

doses/concentrations of nicotine act selectively through 6* nAChRs to enhance 

locomotor activity, stimulate DA release in striatal synaptosomes, and increase VTA DA 

neuron action potential firing rate (Drenan et al 2008a).  Here, we use 6L9S mice to test 

the hypothesis that 6* nAChR activation in VTA DA neurons is sufficient to elicit 

prolonged inward currents and to enhance AMPAR function. 
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Figure 3.2 Effect of L9S mutation in 6L9S mice. In 6L9S mice, a Leu to Ser mutation was 

introduced at the 9′ position within transmembrane domain 2 of the 6 nAChR subunit 
protein. This mutation increases the sensitivity of the population of channels containing 

the mutant 6 subunit, allowing ligands such as ACh and nicotine to selectively activate 
these channels when low concentrations are used. The theoretical concentration 

response curve for most responses involving 6 containing receptors is left-shifted. 
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3.3 A Low Concentration of Nicotine is Sufficient to Increase Inward Currents in 

VTA DA Neurons 

First, we tested the hypothesis that activation of 6* nAChRs is sufficient to elicit inward 

currents in VTA DA neurons by recording from VTA DA neurons from adult 6L9S and 

non-Tg littermate mice.  Whole-cell voltage-clamp recordings from VTA DA neurons were 

established using a K+ gluconate-based internal recording solution, and an inhibitor 

cocktail containing CNQX (10 M), picrotoxin (75 M), and TTX (0.5 M) was bath-applied 

to the cell to eliminate most external influences on membrane potential. We measured 

inward currents in response to a 10-minute bath exposure to nicotine. We previously 

reported that brief (250 milliseconds) puff-application of 100 nM nicotine elicited small 

(approximately 10 pA) inward currents (Drenan et al 2008a). We reasoned that sustained 

exposure of VTA DA neurons to 100 nM nicotine could be sufficient to provide prolonged 

activation of these cells. Nicotine (100 nM) elicited a significant inward current in 6L9S 

VTA DA neurons (mean change in holding current value relative to prenicotine baseline = 

-18.0 ± 3.0 pA; Figure 3.3 A, B, and E). Coapplication of CtxMII (100 nM) with nicotine 

(100 nM) eliminated these inward currents (mean change in holding current value relative 

to prenicotine baseline = –2.7 ± 4.1 pA; Mann–Whitney test, P < 0.05; Figure 3.3 A, B, and 

E), suggesting that 6* nAChRs mediate inward currents in response to 100 nM nicotine. 

To determine whether responses to 100 nM nicotine were selective for 6* nAChRs in 

6L9S slices, 100 nM nicotine was applied to VTA DA neurons from non-Tg littermate 

slices. Nicotine (100 nM) only slightly increased inward currents in non-Tg littermate VTA 
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DA neurons in this assay (mean change in holding current value relative to prenicotine 

baseline = -3.1 ± 0.8 pA; Figure 3.3 C and E), but the same concentration of nicotine 

significantly increased inward currents in 6L9S neurons (Mann–Whitney test, P < 0.05; 

Figure 3.3 E). CtxMII did not alter this response in non-Tg littermate cells (Figure 3.3 C 

and E). As a positive control, we applied 300 nM nicotine to non-Tg VTA DA neurons. This 

concentration was sufficient to moderately increase inward currents in these cells (mean 

change in holding current value relative to prenicotine baseline = -8.7 ± 2.2 pA; Figure 3.3 

D and E), consistent with a previous report (Liu et al 2012).  CtxMII did not block these 

responses (mean change in holding current value relative to prenicotine baseline = -7.0 ± 

1.0 pA; Figure 3.3 D and E), presumably because responses in non-Tg cells are mediated 

by both 6* and non-6* (42) nAChRs. Together, these results demonstrate that 

selective activation of 6* nAChRs is sufficient to increase inward currents in VTA DA 

neurons. Application of 100 nM nicotine to 6L9S slices was used in subsequent 

experiments to study the effects of selectively activating 6* nAChRs.  
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Figure 3.3 A low concentration of nicotine is sufficient to increase inward currents in VTA 

DA neurons. (A) 6L9S or non-Tg control neurons were voltage clamped in whole-cell 

mode. Inhibitor cocktail [10 M CNQX, 75 M picrotoxin, 0.5 M TTX] was superfused, 

followed by nicotine (100 nM) and then CtxMII (100 nM). A representative experiment 

from a 6L9S neuron is shown. Expanded recordings from time points (i), (ii), and (iii) are 

shown in B–D. (B–D) Voltage-clamp recording segments from 6L9S (B; 100 nM nicotine), 
non-Tg (C; 100 nM nicotine), and non-Tg (D; 300 nM nicotine) VTA DA neurons at (i) 
baseline with inhibitor cocktail present, (ii) inhibitor cocktail plus nicotine, and (iii) 

inhibitor cocktail/ nicotine plus CtxMII. (E) Summary showing mean holding current          

(-pA) change from baseline in response to nicotine (nic), and nicotine plus CtxMII in the 

indicated mouse strain (6L9S and non-Tg littermate). *P < 0.05. 
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3.4 AMPA-Evoked Current Methodology 

The initial exposure of brain cells to smoking-relevant concentrations of nicotine results 

in activation of high-sensitivity nAChRs, including those on VTA DA neurons (Calabresi et 

al 1989). This exposure to nicotine leads to upregulation of AMPA receptor (AMPAR) 

function in these cells (Saal et al 2003), which could support behavioral changes that lead 

to nicotine dependence. Because high-sensitivity nAChRs are expressed on VTA DA 

neurons, terminals from GABA neurons that synapse onto VTA DA neurons, and other 

glutamatergic fibers, it is not known whether activation of nAChRs specifically on VTA DA 

neurons can lead to increased AMPAR function. We previously demonstrated that 6* 

nAChRs are expressed only in DA neurons in VTA (Mackey et al 2012). We hypothesized 

that selective activation of 6* nAChRs in VTA, which should stimulate DAergic neurons 

but not other VTA nAChRs (such as those on GABA or glutamatergic terminals)(Drenan et 

al 2008a), is sufficient to enhance AMPAR function in these cells.  

To measure AMPAR function on the cell surface, we applied AMPA to VTA DA neurons 

using a drug-filled pipette (Kobayashi et al 2009, Li et al 2008, Sanchez et al 2010) that 

was positioned using a piezoelectric translator. A cell was voltage clamped and a stable 

recording was established. The drug-filled pipette remained stationary above/outside the 

slice until our recording software delivered an analog signal to the piezoelectric translator, 

triggering movement of the pipette to a predetermined position approximately 20–40 m 

from the recorded cell. A digital transistor–transistor logic (TTL) pulse (5 V, 250-

millisecond duration) activated the Picospritzer, resulting in drug delivery to the recorded 
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cell. After the TTL pulse, the piezoelectric translator withdrew the drug-filled pipette. This 

procedure is summarized in schematic form in Figure 3.4 A. Figure 3.4 B shows a 

representative record of the movement of the piezoelectric translator, the TTL pulse, and 

a response to 100 M AMPA in a VTA DA neuron.  
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Figure 3.4 AMPA-evoked current methodology. (A) A drug-filled pipette is positioned 
above/next to the cell being recorded. A piezoelectric translator brings the pipette close 

(20–40 m) to the cell, a TTL pulse triggers a pressure ejection that dispenses drug (AMPA) 
onto the cell, and the piezoelectric translator withdraws the pipette away from the cell. 
(B) Representative recording showing the timing of the TTL pulse, piezo drive movement, 

and resulting inward current elicited by application of 100 M AMPA to a VTA DA neuron. 
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3.5 Activation of 6* nAChRs is Sufficient to Enhance AMPAR Function on the 

Surface of VTA DA Neurons 

To test the hypothesis that selective activation of 6* nAChRs is sufficient to enhance 

AMPAR function, we prepared coronal slices from 6L9S mice and their non-Tg 

littermates. Slices were cut and allowed to recover for 60 minutes, followed by exposure 

of the slices to 100 nM nicotine (or a control solution containing no nicotine) for 60 

minutes similar to previous studies (Jin et al 2011, Mao et al 2011) (Figure 3.5 A). After a 

washout period (≥60 minutes), whole-cell recordings were established in VTA DA neurons 

using a Cs-methanesulfonate–based internal solution. AMPA currents were evoked at 

holding potentials of -60, 0, and +40 mV. Whereas nicotine (100 nM) exposure did not 

alter AMPAR function in non-Tg VTA DA neurons, this treatment was sufficient to robustly 

increase AMPA-evoked currents in 6L9S VTA DA neurons (Figure 3.5 B). Mean AMPA-

evoked current amplitude was not altered by nicotine (100 nM) at -60, 0, or +40 mV in 

non-Tg littermates (Figure 3.5 C). In contrast, there was a significant increase in AMPA-

evoked current amplitude at -60 and +40 mV in 6L9S neurons (-60 mV: control = -173.5 

± 29.4 pA, 100 nM nicotine = -358.4 ± 48.5 pA; Mann–Whitney test, P = 0.004) (+40 mV: 

control = 82.2 ± 14.3 pA, 100 nM nicotine = 167.1 ± 23.5 pA; Mann–Whitney test, P = 

0.0045) (Figure 3.5 D). As a positive control, we incubated non-Tg slices in a higher 

concentration of nicotine (500 nM). This treatment led to a significant increase in AMPA-

evoked currents at a holding potential of -60 mV (control = -184.2 ± 18.3 pA and 500 nM 

nicotine = -283.4 ± 35.8 pA; unpaired t test, P = 0.0487) (Figure 3.5 B and C), consistent 
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with previously published experiments with VTA DA neurons in slices (Jin et al 2011).  We 

next sought to determine whether enhanced AMPA-evoked currents in 6L9S slices 

treated with nicotine (100 nM) were due to a change in the efficacy versus the potency 

of AMPA. First, we constructed an AMPA concentration-response curve to confirm that 

changes in AMPA-evoked currents between non-Tg and 6L9S slices were not due to 

differences in initial AMPAR sensitivity. Multiple concentrations of AMPA were applied to 

6L9S and non-Tg neurons, and the data were fitted to the Hill equation (non-Tg: R2 = 

0.9467; 6L9S: R2 = 0.9819). There was no substantial difference in AMPA EC50 in 6L9S 

VTA DA neurons compared with non-Tg neurons (EC50 = 174 M for non-Tg, and EC50 = 

182 M for 6L9S; Figure 3.5 E). Figure 3.5 E plots these EC50 values along with their 

respective 95% confidence intervals. Similarly, we constructed a concentration-response 

curve for AMPA-evoked currents in 6L9S slices exposed to nicotine. AMPA at a range of 

concentrations was applied to cells in slices exposed to nicotine, and the data were fitted 

to the Hill equation (6L9S nicotine: R2 = 0.9942). The EC50 for AMPA-evoked currents in 

nicotine-exposed 6L9S slices was shifted to the left compared with 6L9S slices not 

exposed to nicotine (EC50 = 37 M; Figure 3.5 F), suggesting an increase in the sensitivity 

of AMPARs to AMPA.  
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Figure 3.5 Activation of 6* nAChRs is sufficient to enhance AMPAR function on the 

surface of VTA DA neurons. (A) Slice treatment procedure. Brain slices from adult 6L9S 
and non-Tg littermate mice were cut, recovered for 60 minutes, and incubated for 60 
minutes in control recording solution or recording solution plus nicotine (100 nM). 
Nicotine was washed out for ≥60 minutes, and whole-cell recordings were established in 

VTA DA neurons. (B) AMPA currents were evoked by puff-application of AMPA (100 M) 
at holding potentials of -60, 0, and +40 mV. Representative recordings from incubation of 

slices in control and nicotine solutions are shown for 6L9S and non-Tg littermate mice. 

(C and D) Summary showing mean AMPA-evoked currents ([AMPA] = 100 M) in non-Tg 

littermate (C) and 6L9S (D) VTA DA neurons in response to control incubation or nicotine 
incubation at the indicated concentration. The numbers of observations were as follows: 
non-Tg control (-60 mV, n = 10; 0 mV, n = 7; +40 mV, n = 7); non-Tg 100 nM nicotine (-60 
mV, n = 4; 0 mV, n = 4; +40 mV, n = 4), non-Tg 500 nM nicotine (-60 mV, n = 16; 0 mV, n = 

12; +40 mV, n = 12), 6L9S control (-60 mV, n = 14; 0 mV, n = 13; +40 mV, n = 13), and 

6L9S 100 nM nicotine (-60 mV, n = 11; 0 mV, n = 11; +40 mV, n = 11). (E) AMPA 
concentration-response curve in VTA DA neurons. AMPA-evoked currents were measured 

in non-Tg and 6L9S neurons. AMPA concentrations and number of observations at each 

data point are as follows: non-Tg (1 M, n = 2; 10 M, n = 6; 50 M, n = 5; 100 M, n = 

10; 250 M, n = 5; 500 M, n = 14; 1000 M, n = 11), and 6L9S (1 M, n = 2; 10 M, n = 

4; 50 M, n = 4; 100 M, n = 14; 250 M, n = 5; 500 M, n = 4; 1000 M, n = 5; 3000 M, 
n = 2). Data (mean ± S.E.M.) were fitted to the Hill equation, and the EC50 (±95% 
confidence interval) for each curve is plotted. (F) AMPA concentration-response curve in 

6L9S VTA DA neurons. AMPA-evoked currents were measured in 6L9S control slices or 
slices incubated in 100 nM nicotine for 60 minutes followed by >60 minutes washout prior 

to recording. Control treated6L9S data from (E) are replotted here for reference. AMPA 

concentrations and number of observations at each data point for 6L9S slices treated 

with nicotine are as follows: 6L9S (1 M, n = 2; 10 M, n = 3; 50 M, n = 2; 100 M, n = 

11; 300 M, n = 3; 1000 M, n = 3). Data (mean ± S.E.M.) were fitted to the Hill equation 
and the EC50 (± 95% confidence interval) for each curve is plotted. *P < 0.05; **P < 0.01. 
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3.6 Time Dependence For Enhancement of AMPA-Evoked Currents in 6L9S VTA 

DA Neurons 

Next, we studied the time dependence for enhancement of AMPAR function in VTA DA 

neurons. As with previous experiments, slices were cut and allowed to recover for 60 

minutes. We then compared AMPA-evoked current amplitudes from neurons treated in 

four different ways: 1) incubated for 60 minutes in a control solution without nicotine 

followed by a washout period of 60–240 minutes prior to recording, 2) incubated for 60 

minutes in nicotine (100 nM) followed by a washout period of 60–240 minutes prior to 

recording, 3) incubated for 10 minutes in nicotine (100 nM) followed by a washout period 

of 60–240 minutes prior to recording, and 4) incubated for 60 minutes in nicotine (100 

nM) followed by a washout period of greater than 240 minutes prior to recording (Figure 

3.6 A). Exposure of 6L9S slices to 100 nM nicotine for 10 minutes was insufficient to 

augment AMPA-evoked currents above control levels (control incubation/washout 60–

240 minutes = -173.5 ± 29.4 pA; 10-minute nicotine incubation/washout 60– 240 minutes 

= -213.5 ± 27.9 pA; Figure 3.6 B and C). However, a 60-minute exposure to nicotine was 

sufficient to augment AMPA-evoked currents over control (60-minute nicotine 

incubation/ washout 60–240 minutes = -351.1 ± 64.9 pA; Kruskal–Wallis test, P < 0.05; 

Figure 3.6 B and C). The effect of a 60-minute nicotine exposure was prolonged, as AMPA-

evoked currents were still enhanced after a washout period of >240 minutes (60-minute 

nicotine incubation/washout 60–240 minutes = -411.4 ± 75.5 pA; Kruskal–Wallis test, P < 

0.05; Figure 3.6 B and C).  
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Figure 3.6 Time dependence for enhancement of AMPA-evoked currents in 6L9S VTA 

DA neurons. (A) Slice treatment procedure. Brain slices from 6L9S mice were cut and 
recovered for 60 minutes. Slices were then incubated in nicotine (100 nM) for either 10 
or 60 minutes, followed in either case by a washout period of ≥60 minutes. Some slices 
treated with nicotine for 60 minutes were allowed >240 minutes of washout prior to 

recording. (B) Representative AMPA-evoked currents ([AMPA] = 100 M) at +40 and -60 
mV in VTA DA neurons in response to treatment detailed in (A). (C) Summary showing 

mean ± S.E.M. AMPA-evoked ([AMPA] = 100 M) current in 6L9S VTA DA neurons in 
response to the conditions described in (A). *P < 0.05 vs control. 
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3.7 Pharmacology of AMPA-Evoked Current Induction in 6L9S VTA DA Neurons 

To better understand the mechanism within VTA DA neurons that leads to enhanced 

AMPA-evoked currents, we pretreated 6L9S slices for 10 minutes with several 

pharmacological agents prior to 60 minutes nicotine (100 nM) exposure, washout, and 

subsequent AMPA-evoked current measurements (Figure 3.7 A). Pretreatment of slices 

with CtxMII eliminated the enhanced AMPA-evoked currents seen in 6L9S slices 

exposed to a control pretreatment prior to nicotine exposure (control = -173.5 ± 29.4 pA, 

nicotine = -358.4 ± 48.5 pA, and MII = -221.5 ± 45.8 pA; Kruskal– Wallis test, P < 0.05; 

Figure 3.7 B and C). Similarly, blockade of NMDA receptors with AP-5 (10 M) prior to 

nicotine treatment eliminated enhanced AMPA-evoked currents (AP-5 = -194.4 ± 32.9 pA; 

Figure 3.7 B and C). Previous studies indicate that DA D1/ D5 receptors in VTA may play a 

role in altered synaptic plasticity after exposure to drugs of abuse (Gao & Wolf 2007, Mao 

et al 2011).  Blockade of DA D1/D5 receptors with SCH-23390 (10 M) did not appear to 

substantially reduce nicotine-mediated enhancement in AMPA-evoked currents (SCH-

23390 = -325.0 ± 44.7 pA; Figure 3.7 B and C), but a Kruskal–Wallis test comparing AMPA-

evoked currents from 6L9S SCH-23390-treated slices and untreated control 6L9S slices 

did not reveal a statistical difference. Several previous reports indicate that homomeric 

7 nAChRs play a role in nicotine-elicited AMPAR upregulation (Gao et al 2010, Jin et al 

2011). However, pretreatment of slices with MLA (10 nM) did not reduce nicotine-elicited 

AMPAR upregulation in 6L9S VTA DA neurons (MLA = -497.8 ± 119.8 pA; Kruskal–Wallis 

test, P < 0.05; Figure 3.7 B and C). Previous studies indicate that the activity of CaMKII is 
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necessary for enhanced AMPAR function after exposure to drugs of abuse (Anderson et 

al 2008). Inhibiting CaMKII with KN-93 (cell-permeable inhibitor of CaMKII; 5 M) prior to 

nicotine treatment eliminated enhanced AMPA-evoked currents (KN-93 = -209.8 ± 37.8 

pA; Figure 3.7 C). 
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Figure 3.7 Pharmacology of AMPA-evoked current induction in 6L9S VTA DA neurons. 

(A) Slice treatment procedure. 6L9S brain slices were cut and recovered for 60 minutes. 
Slices were pretreated for 10 minutes with one of the drugs indicated in B, followed by 
cotreatment with the drug plus nicotine (100 nM) for 60 minutes. Slices were washed out 
for ≥60 minutes prior to recording. (B) Representative AMPA-evoked currents ([AMPA] = 

100 M) at +40 and -60 mV in VTA DA neurons from 6L9S brain slices pre-exposed for 
10 minutes to either control recording solution or the following drugs followed by 

incubation in 100 nM nicotine for 60 minutes: CtxMII (MII), SCH-23390 (SCH), AP-5, KN-
93, and MLA. (C) Summary showing mean ± S.E.M. AMPA-evoked currents ([AMPA] = 100 

M) in 6L9S VTA DA neurons in response to the conditions described in (A). *P < 0.05; 
**P < 0.01 vs control. 
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3.8 Enhanced AMPA-Evoked Currents in 6L9S VTA DA Neurons Are Mediated 

by 4 nAChR Subunits 

Elimination of 4 nAChR subunits via gene knockout has been shown to significantly 

reduce 6* nAChR function in synaptosomal DA release experiments (Drenan et al 2010, 

Salminen et al 2007, Salminen et al 2004), direct assays of striatal nAChR function in brain 

slices (Drenan et al 2010), and in behavioral experiments (Drenan et al 2010). To test the 

hypothesis that 4 nAChR subunits are important for 6* nAChR-mediated enhancement 

of AMPAR function in VTA DA neurons, we crossed 6L9S mice with 4KO animals to 

eliminate 4 nAChR subunits while still retaining gain-of-function 6 subunits (Drenan et 

al 2010). Slice treatment in this experiment (Figure 3.8 A) was identical to experiments 

reported in Figure 3.5. Whereas nicotine (100 nM) treatment of 6L9S slices leads to 

enhanced AMPAR function, identical treatment of slices from 6L9S mice lacking 4 

subunits did not increase AMPA-evoked currents (6L9S: control = -173.5 ± 29.4 pA, 

nicotine = -358.4 ± 48.5 pA; 6L9S4KO: control = -205.9 ± 23.3 pA, nicotine = -280.3 ± 

45.3 pA; Kruskal–Wallis test, P < 0.05 for 6L9S control versus nicotine and P > 0.05 for 

6L9S4KO control versus nicotine; Figure 3.8 B and C).  
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Figure 3.8 Enhanced AMPA-evoked currents in 6L9S VTA DA neurons are mediated, in 

part, by 4 nAChR subunits. (A) Slice treatment procedure. Brain slices from adult 6L9S 

and 6L9S4KO littermate mice were cut, recovered for 60 minutes, and incubated for 
60 minutes in control recording solution or recording solution plus nicotine (100 nM). 
Nicotine was washed out for ≥60 minutes, and whole-cell recordings were established in 

VTA DA neurons. (B) Representative AMPA-evoked currents ([AMPA] = 100 M) at +40 

and -60 mV in VTA DA neurons from 6L9S and 6L9S4KO brain slices after incubation 
in 100 nM nicotine for 60 minutes. (C) Summary showing mean ± S.E.M. AMPA-evoked 

currents ([AMPA] = 100 M) in 6L9S and 6L9S4KO VTA DA neurons in response to the 
conditions described in A. ***P < 0.001 vs control. 
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3.9 6* nAChR Function is Reduced in 4KO Mice 

To determine whether these results were due to reduced 6 expression and/or function, 

we performed a series of controls using 4KO animals. First, we crossed 4KO mice with 

transgenic mice expressing 6 subunits fused with GFP (Figure 3.9 A). This manipulation 

results in the production of only (non-4)62* nAChRs (Figure 3.9 B). We used anti-GFP 

immunohistochemistry and confocal microscopy, as previously described in these mice 

(Mackey et al 2012), to quantify 6* nAChR expression in VTA neurons in 6GFP mice 

and 6GFP mice crossed to 4KO mice. We found a small but significant reduction in 

6GFP expression in VTA neurons in 6GFP mice lacking 4 subunits compared with 

6GFP with intact 4 nAChR subunit expression (4WT = 17,921 ± 698 arbitrary units, 

4KO = 14,507 ± 816 arbitrary units; Mann–Whitney test, P = 0.0011; Figure 3.9 C).  

Next, we measured 6* nAChR function directly by comparing nicotine- and ACh-evoked 

currents in 6L9S mice and 6L9S mice lacking 4 subunits (Figure 3.9 D). In contrast to 

ACh-evoked responses in 6L9S VTA DA neurons with intact 4 subunits, responses from 

VTA DA neurons in 6L9S slices lacking 4 subunits were smaller (Figure 3.9 E). Inward 

current amplitudes after puff-application of both 1 and 100 M ACh were smaller in 

6L9S4KO neurons relative to 6L9S neurons (4WT 1 M ACh = -171 ± 30.3 pA, 4KO 

1 M ACh = -57.8 ± 21.8 pA, and 4KO 100 M ACh = -77.6 ± 20.2 pA; Figure 3.9 E and F). 

Similarly, 6L9S VTA DA neurons lacking 4 subunits were less sensitive to nicotine 

compared with 6L9S cells expressing 4 subunits (Figure 3.9 G). Whereas 1 M nicotine 

evoked large inward currents in 6L9S VTA DA neurons that express 4 subunits, 30 M 
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nicotine was required to elicit inward currents of the same amplitude in 6L9S slices 

lacking 4 subunits (4WT 1 M nicotine = -198.4 ± 25.8 pA, 4KO 1 M nicotine = -58.3 

± 11.5 pA, and 4KO 30 M nicotine = -189.6 ± 45.4 pA; Figure 3.9 G and H). Together, 

these experiments suggest that activation of 462* nAChRs are responsible for 

enhanced AMPA-evoked currents in 6L9S VTA DA neurons.  
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Figure 3.9 6* nAChR function is reduced in 4KO mice. (A) Schematic of 6GFP 

transgenic mice and 6GFP nAChRs. (B) The resulting 6* nAChR that remains after 

crossing 6GFP mice to 4KO mice is shown. (C) 6* nAChRs were quantified in 6GFP 

and 6GFP4KO VTA DA neurons using anti-GFP immunohistochemistry and confocal 
microscopy. Mean per-cell pixel intensity for each genotype is shown. (Done by Hilary 

Broderick.) (D) The resulting 6* nAChR that remains after crossing 6L9S mice to 4KO 

mice is shown. (E) Representative ACh-evoked currents in 6L9S and 6L9S4KO VTA DA 
neurons. VTA DA neurons from both genotypes were patch clamped and ACh was puff-
applied (250 milliseconds) at the indicated concentration. (F) Summary showing mean ± 

S.E.M. ACh-evoked current in 6L9S and 6L9S4KO VTA DA neurons in response to the 

indicated concentration of ACh. (G) Representative nicotine-evoked currents in 6L9S 

and 6L9S4KO VTA DA neurons. VTA DA neurons in slices from both genotypes were 
patch clamped and nicotine was puff-applied at the indicated concentration. (H) 

Summary showing mean ± S.E.M. nicotine-evoked current in 6L9S and 6L9S4KO VTA 
DA neurons in response to the indicated concentration of nicotine. **P < 0.01. 



64 
 

 

6
4
 

3.10 NMDA-Evoked Currents Are Not Changed by Nicotine in 6L9S VTA DA 

Neurons 

Next, we tested whether nicotine (100 nM), acting through 6* nAChRs, can increase or 

decrease NMDA receptor function on the surface of VTA DA neurons (Ungless et al 2001). 

Whole-cell voltage-clamp recordings were established in VTA DA neurons, and NMDA 

currents were evoked via puff-application of NMDA at a holding potential of +40 mV. 

Incubation of 6L9S and non-Tg slices in nicotine (100 nM) for 60 minutes (Figure 3.10 A) 

did not result in changes in NMDA-evoked currents relative to control treatments (control: 

non-Tg = 167.8 ± 17.8 pA and 6L9S = 172.8 ± 32.6 pA; nicotine: non-Tg = 185.2 ± 28.5 pA 

and 6L9S = 167.3 ± 18.7 pA; Kruskal–Wallis test, P = 0.7893; Figure 3.10 B and C). These 

results suggest that although NMDA activation is required for upregulation of AMPAR 

function on VTA DA neurons (Figure 3.7), activation of nAChRs does not significantly alter 

NMDA function after 60 minutes of exposure to nicotine. 
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Figure 3.10 NMDA-evoked currents are not changed by nicotine in 6L9S VTA DA neurons. 

(A) Slice treatment procedure. Brain slices from adult 6L9S and non-Tg littermate mice 
were cut, recovered for 60 minutes, and incubated for 60 minutes in control recording 
solution or recording solution plus nicotine (100 nM). Nicotine was washed out for ≥60 
minutes, and whole-cell recordings were established in VTA DA neurons. (B) 

Representative NMDA-evoked currents ([NMDA] = 100 M) at +40 mV in VTA DA neurons 

from 6L9S and non-Tg littermate brain slices in response to control incubation or 
incubation in 100 nM nicotine for 60 minutes. (C) Summary showing mean ± S.E.M. 

NMDA-evoked currents ([NMDA] = 100 M) in 6L9S and non-Tg littermate VTA DA 
neurons in response to the conditions described in A. 
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3.11 Systemic Nicotine Acts Through α6-Containing nAChRs to Enhance AMPA 

Receptor Function in VTA DA Neurons 

 
Up to this point we have incubated naïve brain slices in nicotine prior to measuring 

AMPAR function.  We also wanted to determine whether in vivo activation of α6* nAChRs 

is sufficient to support changes in VTA DA neuron synaptic plasticity. We tested the ability 

of in vivo nicotine administration to act selectively through α6* nAChRs to enhance 

AMPAR function on the surface of these cells. α6L9S and non-Tg control littermate mice 

were injected (i.p.) with nicotine or vehicle. After 60 min, mice were sacrificed and brain 

slices were prepared (Figure 3.11 A). Again, AMPAR function was measured using local 

application of AMPA to the recorded cell.  Based on the dose-range found to be sufficient 

to stimulate locomotor activity in α6L9S mice (0.02 to 0.05 mg/kg)(Berry et al 2015), 

α6L9S and non-Tg mice were injected with 0.03 mg/kg nicotine or vehicle. This dose was 

sufficient to enhance AMPA-evoked currents on the surface of VTA DA neurons in α6L9S 

mice, but was below threshold in non-Tg mice (α6L9S VEH = -214.2 ± 23.1 pA, α6L9S 

nicotine 0.03 mg/kg = -348.6 ± 42.6 pA, P = 0.0293; non-Tg VEH = -203.5 ± 22.2 pA, non-

Tg nicotine 0.03 mg/kg = -224.0 ± 36.5, P = 0.4848). (Figure 3.11 B and C). A relatively high 

dose of nicotine (0.17 mg/kg) was needed to increase the amplitude of AMPA-evoked 

currents on the surface of VTA DA neurons from non-Tg mice (non-Tg nicotine 0.17 mg/kg 

= -375.7 ± 58.6 pA, P = 0.019)(Figure 3.11 B and C). Thus, a single systemic exposure to 

nicotine can act through α6* nAChRs to enhance glutamatergic transmission in VTA DA 

neurons. 

http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200002325
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200022997
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200024434
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200007477
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Figure 3.11 Systemic nicotine acts through α6-containing nAChRs to enhance AMPA 
receptor function in VTA DA neurons. (A) Experimental design. α6L9S mice were injected 
(i.p.) with nicotine at the indicated dose. Sixty minutes after nicotine injection, mice were 
used to prepare brain slices for patch-clamp recording in VTA DA 
neurons. AMPAR currents were elicited by locally puffing AMPA onto the cell body of the 
recorded neuron and recording inward currents in voltage clamp mode. (B) A low dose of 
nicotine (0.03 mg/kg) is sufficient to enhance AMPAR currents in α6L9S VTA DA neurons. 
Representative AMPA-evoked currents from α6L9S and non-Tg mice injected with the 
indicated dose of nicotine are shown. (C) Quantification of AMPA-evoked current 
responses in VTA DA neurons from α6L9S and non-Tg mice injected with the indicated 
dose of nicotine. Mean peak AMPA-evoked currents for each group/treatment are 
plotted. Mann–Whitney test: ∗P < 0.05 (non-Tg: VEH n = 4; nicotine (0.03 mg/kg) n = 7; 
nicotine (0.17 mg/kg) n = 6; α6L9S: VEH n = 6; nicotine (0.03 mg/kg) n = 8). 
 

 

 

 

 

 

http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200015469
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200002325
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200021562
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200021562
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200022010
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200022997
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200020244
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200021562
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200001388


68 
 

 

6
8
 

3.12 Inhibition of α6-containing nAChRs in VTA Blocks AMPAR Enhancement by 

Systemic Nicotine. 

Finally, we tested the hypothesis that systemic, low-dose nicotine administration in α6L9S 

mice acts through ventral midbrain α6* nAChRs to enhance AMPA-evoked currents. Prior 

to nicotine (0.03 mg/kg; i.p.) challenge, the VTA of α6L9S mice was infused with αCtxMII 

(10 pmol) or vehicle (Figure 3.12 A). Brain slices were prepared and AMPA-evoked 

currents were measured as before. The nicotine-elicited increase in AMPAR function was 

abolished when αCtxMII was infused into the VTA (α6L9S: VEH/VEH = -246.4 ± 42.1 pA, 

VEH/nicotine (NIC) = -432.0 ± 40.1 pA, P = 0.0205; MII/NIC = -220.0 ± 31.7 pA, 

P = 0.0030)(Figure 3.12 B and C). αCtxMII infusion paired with a vehicle injection did not 

show any change over baseline (α6L9S: MII/VEH = -204.9 ± 37.2 pA, P = 0.4738)(Figure 

3.12 B and C). Injection sites in the VTA were verified post-hoc (Figure 3.12 D). These data, 

along with Figure 3.11, demonstrate that in vivo activation of VTA α6* nAChRs is 

sufficient to drive synaptic plasticity changes in VTA DA neurons that are known to be 

important for locomotor sensitization and reward behavior. 

 

 

 

 

 

 

 

http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200002325
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200022010
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200015469
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Figure 3.12 Inhibition of α6-containing nAChRs in VTA blocks AMPAR enhancement by 
systemic nicotine. (A) Experimental design. α6L9S mice were cannulated and vehicle or 
αCtxMII (10 pmol) was infused into the VTA. Following VTA infusion, mice were injected 
i.p. with saline or nicotine (0.03 mg/kg). Sixty minutes later, brain slices were prepared 
for recording. AMPA-evoked currents were elicited by locally puffing AMPA onto the cell 
body of the recorded neuron and recording inward cation currents in voltage clamp mode. 
(B) Representative AMPA-evoked currents from α6L9S mice injected/infused with the 
indicated drugs are shown. (C) Mean peak AMPA-evoked currents for each group shown 
in (B) are plotted. Mann–Whitney: ∗P < 0.05, ∗∗P < 0.01. (VEH/VEH: n = 7, MII/VEH: n = 7, 
VEH/NIC: n = 8, MII/NIC: n = 8). (D) Cannula location for each mouse in groups indicated 
in (B) is shown.  (Cannulations and infusions done by Dr. Jennifer Berry.)

http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200002325
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200022010
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200021562
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200015469
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0306452215006661?np=y#200001388
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 NICOTINE AND ETHANOL COOPERATE TO ENHANCE VTA AMPA 
RECEPTOR FUNCTION VIA α6-CONTAINING NICOTINIC RECEPTORS 

Portions of this chapter (pgs 70-83) are reprinted from: Neuropharmacology 2015 Apr; 

91:13-22, doi:10.1016/j.neuropharm.2014.11.014 with permission from Elsevier. All 

Rights Reserved. 

 

4.1 α6* nAChRs Are Involved in Ethanol-Mediated Increases in AMPAR Function 

in VTA DA Neurons 

α6* nAChRs are crucial for the rewarding properties of ethanol in rodents (Larsson et al 

2004, Lof et al 2007, Powers et al 2013). Systemic ethanol exposure is known to enhance 

AMPAR function on VTA DA neurons (Saal et al 2003, Stuber et al 2008), but α6* nAChR 

involvement in this process has not yet been studied. We began by testing the hypothesis 

that exposing slices to drinking-relevant concentrations of ethanol can increase AMPAR 

function on VTA DA neurons. VTA-containing brain slices were prepared from adult, drug-

naïve mice, and slices were allowed to recover for 60 minutes. Slices were then incubated 

in ethanol or a control recording solution without ethanol for 60 minutes. After a washout 

period of ≥60 minutes (Figure 4.1 A), stable whole-cell recordings were established in VTA 

DA neurons. A second, AMPA-filled, micropipette was programmed to move adjacent to 

the recorded cell, pressure-eject (puff) AMPA (100 μM), and be retracted (as in Figure 

http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0028390814004304#fig1
http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0028390814004304#bib22


71 
 

 

7
1
 

3.4). The amplitude of AMPA-evoked currents at a holding potential of −60 mV was 

measured to assess AMPAR function. 

We found that incubating slices from non-Tg mice in ethanol (20 mM) for 60 minutes 

significantly increased AMPAR function in VTA DA neurons over baseline responses from 

control slices not exposed to ethanol (control = −187.3 ± 16 pA, 20 mM 

ethanol = −319.6 ± 43 pA; ANOVA, P = 0.0034; post hoc test, P < 0.01) (Figure 4.1 B, D and 

E). To examine the role of α6* nAChRs, slices were pre-treated with αCtxMII (100 nM) for 

10 minutes prior to ethanol incubation. Pretreatment with αCtxMII blocked ethanol-

evoked increases in AMPAR function in VTA DA neurons (αCtxMII = −216.7 ± 44 pA) 

(Figure 4.1 B and E), suggesting an important role for ongoing α6* nAChR activity in this 

process. αCtxMII by itself had no effect on AMPA-evoked currents (−182.6 ± 29 pA) 

(Figure 4.1 E). In a similar fashion, slices were pre-treated in TTX for 10 minutes prior to 

ethanol incubation to examine whether action potential firing during ethanol exposure is 

required to evoke an increase in AMPAR function. We found that TTX does not block 

ethanol-evoked increases in AMPAR function in VTA DA neurons (TTX = −342.3 ± 44 pA; 

P < 0.05) (Figure 4.1 B and E). To corroborate data suggesting that α6* nAChRs play a role 

in ethanol-mediated enhancement of AMPAR function, we studied changes in AMPAR 

function in slices from α6L9S mice. Because these mice have enhanced α6* nAChR activity 

(Drenan et al 2008a), we hypothesized that a lower concentration of ethanol would be 

able to evoke increases in AMPAR function compared to non-Tg mice if α6* nAChRs are 

playing a role in this process. Baseline AMPAR function is not altered in α6L9S mice. 5 mM 

ethanol was insufficient to alter AMPAR function in non-Tg slices (−171.0 ± 24 pA), but 
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robustly enhanced AMPAR function in α6L9S slices (control = −180.1 ± 22 pA, 5 mM 

ethanol = −416.1 ± 49 pA; ANOVA, P < 0.0001; post hoc test, P < 0.0001) (Figure 4.1 C, D 

and F). This enhanced response was also blocked by pretreatment with αCtxMII 

(−223.0 ± 26 pA) (Figure 4.1 C and F), whereas αCtxMII alone had no effect 

(−192.3 ± 10 pA) (Figure 4.1 F). As in non-Tg mice, TTX blockade of action potential firing 

had no effect on ethanol's ability to enhance AMPAR function in α6L9S mice 

(TTX = −365.9 ± 56 pA; P < 0.01) (Figure 4.1 C and F). 
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Figure 4.1 α6* nAChRs are involved in ethanol-mediated increases in AMPAR function in 
VTA DA neurons. (A) Schematic illustrating ethanol (EtOH) exposure after cutting brain 
slices containing the VTA. After a 60 minute recovery period, brain slices were incubated 
in a control holding solution or an ethanol-containing holding solution for 60 minutes. 
Slices were transferred out of ethanol for a ≥60 minute washout period before initiating 
whole-cell recordings from VTA DA neurons. An additional group of brain slices were 
incubated in an inhibitor (inh), either 100 nM αCtxMII or 0.5 μM TTX, for 10 minutes 
before starting the 60 minute ethanol incubation. (B and C) Representative AMPA-evoked 
current traces from VTA DA neurons in (B) non-Tg and (C) α6L9S brain slices incubated in 
control recording solution or ethanol. AMPA (100 μM) was puff-applied while holding VTA 
DA neurons at −60 mV. Scale 100 pA, 5 sec. (D) Summary of AMPA-evoked responses 
(mean ± SEM) from VTA DA neurons at a holding potential of −60 mV in α6L9S mice and 
their non-Tg littermates. Dotted line indicates average amplitude of baseline AMPA-
evoked responses. (E and F) Summary of AMPA-evoked current amplitudes (mean ± SEM) 
in VTA DA neurons in (E) non-Tg and (F) α6L9S brain slices. *P < 0.05; **P < 0.01; 
****P < 0.0001 (one-way ANOVA, Dunnett post-hoc test comparing drug concentration 
to no-drug control). 
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4.2 α6* nAChRs Mediate Enhanced AMPAR Function After in vivo Ethanol 

Administration 

Enhanced α6* nAChR activity lowered the concentration of ethanol that is sufficient to 

enhance AMPAR function using a slice incubation procedure (Figure 4.1 C, D and F). To 

determine whether the same trend occurred after in vivo exposure to ethanol, mice were 

administered i.p. injections of ethanol. 60 min after this injection, mice were sacrificed 

and VTA brain slices were prepared. To minimize the possible effect of handling-induced 

stress, mice were handled once a day for three days, given a mock injection, and given a 

saline injection on the day immediately prior to the experiment (Figure 4.2 A). As in the 

previous experiment, AMPA was puff-applied onto a VTA DA neuron while recording 

inward currents evoked at a holding potential of −60 mV. Relative to a vehicle (saline) 

injection, ethanol (2.0 g/kg) significantly increased AMPAR function in VTA DA neurons 

in non-Tg slices (vehicle: −206.5 ± 24 pA, 2.0 g/kg ethanol: −365.2 ± 34 pA; 

ANOVA, P = 0.0004, post hoc test, P < 0.001) (Figure 4.2 B and D). A dose of 0.5 g/kg 

ethanol was insufficient to enhance AMPAR function in VTA DA neurons in non-Tg mice 

(−221.4 ± 17 pA) but did enhance AMPAR function in α6L9S mice (vehicle: −197.5 ± 23 pA, 

0.5 g/kg ethanol: −395.1 ± 46 pA; unpaired t test, P = 0.0072) (Figure 4.2 B–D). Together, 

these slice incubation and in vivo exposure experiments strongly indicate a role for α6* 

nAChRs in ethanol-mediated enhancement of AMPAR function in VTA. 
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Figure 4.2 α6* nAChRs mediate enhanced AMPAR function after in vivo ethanol 
administration. (A) Schematic of experimental procedure. Prior to ethanol injection, mice 
were habituated to handling by being handled once a day for three days, given a mock 
injection, and given a saline injection. Mice were given an ethanol or control saline 
injection 60 minutes prior to cutting brain slices containing the VTA. (B and C) 
Representative AMPA-evoked current traces from VTA DA neurons in (B) non-Tg and (C) 
α6L9S brain slices cut 60 minutes after a mouse was given a control injection or an ethanol 
(0.5 g/kg or 2.0 g/kg) injection. AMPA (100 μM) was puff-applied while holding VTA DA 
neurons at −60 mV. Scale: 100 pA, 5 sec. (D) Summary of AMPA-evoked current 
responses from VTA DA neurons at a holding potential of −60 mV in brain slices from non-
Tg and α6L9S mice. The mean ± SEM is plotted while the dotted line indicates amplitude 
of baseline AMPA-evoked responses. ***P < 0.001 (one-way ANOVA, Dunnett post-hoc 
test comparing drug concentration to no-drug control); ##P < 0.01 (student's t-test 
comparing control from 0.5 g/kg in α6L9S mice). 
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4.3 AMPAR Function is Enhanced by Nicotine Exposure in non-Tg and α6L9S 

Mice 

Exposure of naïve brain slices to nicotine also enhances AMPAR function in VTA DA 

neurons (Jin et al 2011, Mao et al 2011). Although we demonstrated a role for α6* nAChRs 

in this process (Figure 3.5), we did not identify the nicotine concentration range over 

which this effect takes place. To examine the action of a combined incubation with 

nicotine and ethanol (Figure 4.5 and Figure 4.6), we first identified nicotine 

concentrations that were sufficient and insufficient to enhance AMPA-evoked currents 

on VTA DA neurons. Brain slices cut from drug-naïve mice were incubated in nicotine for 

60 minutes and after a ≥60 minute wash-out period, AMPAR function was measured 

(Figure 4.3 A). In non-Tg brain slices, 100 nM nicotine was insufficient to increase AMPAR 

function, but 500 nM nicotine was sufficient (control = −187.3 ± 16 pA, 100 nM 

nicotine = −166.0 ± 14, 500 nM nicotine = −283.4 ± 36 pA; ANOVA, P = 0.0288; post 

hoc test, P < 0.05) (Figure 4.3 B). In α6L9S brain slices, nicotine concentrations as low as 

10 nM are sufficient to increase AMPAR function (control = −180.1 ± 22 pA, 10 nM 

nicotine = −320.1 ± 41 pA; ANOVA, P = 0.0012; post hoc test, P < 0.05) (Figure 4.3 B). The 

highest concentration of nicotine tested that was insufficient to enhance AMPAR function 

in α6L9S slices is 3 nM (−234.2 ± 36 pA) (Figure 4.3 B). 
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Figure 4.3 AMPAR function is enhanced by nicotine exposure in non-Tg and α6L9S mice. 
(A) Schematic illustrating slice treatment procedure. Brain slices containing the VTA were 
prepared from non-Tg and α6L9S mice and, after a 60 minute recovery period, incubated 
in control holding solution or nicotine-containing holding solution for 60 minutes. Whole-
cell patch clamp recordings were established in VTA DA neurons ≥60 minutes after slices 
were removed from nicotine. (B) Summary of AMPA-evoked current responses from VTA 
DA neurons at a holding potential of −60 mV in non-Tg and α6L9S brain slices incubated 
in nicotine. The mean ± SEM is plotted while the dotted line represents average 
amplitude of baseline AMPA-evoked responses. *P < 0.05; ***P < 0.001 (one-way ANOVA, 
Dunnett post-hoc test comparing drug concentration to no-drug control). 
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4.4 Nicotine and Ethanol Exposure Enhance Excitatory Synaptic Transmission in 

non-Tg and α6L9S Slices 

Our AMPA-evoked current approach measures AMPAR function from the total pool of 

surface-expressed AMPARs, including synaptic and nonsynaptic receptors. Because 

AMPARs are preferentially localized to synapses, we measured ethanol- and nicotine-

elicited changes in AMPA/NMDA ratios in VTA DA neurons using the same conditions we 

used for AMPA-evoked currents (Figure 4.4 A). AMPA to NMDA ratios were measured as 

described by McGehee and colleagues (Mao et al 2011). As with AMPA-evoked currents, 

AMPA/NMDA ratios were significantly enhanced in non-Tg slices following exposure to 

either 20 mM ethanol or 500 nM nicotine (control = 2.47 ± 0.2, 20 mM 

ethanol = 3.90 ± 0.1, 500 nM nicotine = 3.41 ± 0.4 pA; ANOVA, P = 0.0007) (Figure 4.4 C). 

Lower concentrations of ethanol (5 mM) or nicotine (100 nM) did not increase 

AMPA/NMDA ratios (Figure 4.4 C), just as they did not increase AMPA-evoked current 

responses (Figure 4.1 and Figure 4.3 B). Next, we measured AMPA/NMDA ratios in VTA 

DA neurons from α6L9S slices incubated with either 5 mM ethanol or 100 nM nicotine – 

concentrations sufficient to enhance AMPA-evoked currents in these slices. Incubating 

α6L9S slices for 60 minutes in either 5 mM ethanol or 100 nM nicotine was indeed 

sufficient to increase AMPA/NMDA ratios (control = 2.30 ± 0.2, 5 mM 

ethanol = 4.13 ± 0.3, 100 nM nicotine = 3.35 ± 0.2; ANOVA, P = 0.0013) (Figure 4.4 D). 

These results, together with our AMPA-evoked current data, suggest that α6* nAChR 

activity plays an important role mediating enhanced synaptic plasticity following nicotine 

and ethanol exposure. 
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Figure 4.4 Nicotine and ethanol exposure enhance excitatory synaptic transmission in 
non-Tg and α6L9S slices. (A) Schematic illustrating drug (nicotine or ethanol) exposure 
after cutting brain slices containing the VTA. After a 60 minute recovery period, brain 
slices were incubated in a control holding solution or a solution containing nicotine or 
ethanol (concentrations indicated in (C) and (D)) for 60 minutes. Slices were transferred 
out of ethanol for a ≥60 minute washout period before initiating whole-cell recordings 
from VTA DA neurons. (B) Exemplary synaptic current evoked in a VTA DA neuron, 
showing AMPAR- and NMDAR-mediated components. AMPA EPSCs were measured at a 
command voltage of +40 mV (red trace) at the time corresponding to the peak of the 
AMPA EPSC elicited at a command voltage of −70 mV (blue trace). NMDA EPSCs were 
measured at +40 mV by averaging the membrane current during a 10 msec window 40 
msec after the AMPA EPSC peak (the latter had decayed to baseline by this time, resulting 
in a current due completely to NMDARs). Scale: 40 pA, 10 msec. (C and D) AMPA/NMDA 
ratios (mean ± SEM) in non-Tg (C) and α6L9S (D) VTA DA neurons after exposure of slices 
to a control solution or to a solution containing the indicated drug. *P < 0.05; **P < 0.01; 
***P < 0.001 (one-way ANOVA, Dunnett post-hoc test). 
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4.5 Subthreshold Nicotine and Subthreshold Ethanol Combine to Enhance VTA 

AMPAR Function in non-Tg Slices 

Because both nicotine (Figure 4.3) and ethanol (Figure 4.1) act through α6* nAChRs to 

enhance AMPAR function in VTA DA neurons, we hypothesized that α6* nAChRs may also 

play a role in the combined action of nicotine + ethanol. To test this hypothesis, we 

incubated brain slices in control recording solution containing both nicotine and ethanol 

for 60 minutes and recorded AMPA-evoked currents after a 60 minute washout period 

(Figure 4.5 A). Whereas 100 nM nicotine or 5 mM ethanol were insufficient to increase 

AMPAR function in non-Tg VTA DA neurons when incubated alone, simultaneous co-

exposure to these concentrations enhanced AMPAR function (100 nM 

nicotine = −166.0 ± 14 pA, 5 mM ethanol = −171.0 ± 24 pA, 100 nM nicotine + 5 mM 

ethanol = −374.3 ± 69 pA; ANOVA, P = 0.0080) (Figure 4.5 B and C). To determine whether 

α6* nAChRs play a role in this response, slices were pre-incubated in αCtxMII (100 nM) 

for 10 minutes before adding nicotine and ethanol. αCtxMII blocked the combined action 

of nicotine + ethanol (−254.8 ± 39 pA) (Figure 4.5 B and C). Varenicline, a partial agonist 

at α4β2* and α6β2* nAChRs (Grady et al 2010), is currently used as a smoking cessation 

drug. To determine whether varenicline interferes with the combined action of 

nicotine + ethanol, slices were pre-incubated in varenicline for 10 minutes followed by 

continuous co-incubation of slices in varenicline (1 μM), nicotine (100 nM), and ethanol 

(5 mM). Like αCtxMII, varenicline blocked increases in AMPAR function mediated by 

nicotine + ethanol co-exposure (−227.8 ± 41 pA) (Figure 5.5 B and C). Varenicline by itself 

had no effect on AMPAR function in non-Tg cells (−204.3 ± 25 pA) (Figure 5.5 C). 



81 
 

 

8
1
 

 
 

Figure 4.5 Subthreshold nicotine and subthreshold ethanol, when combined, enhance 
VTA AMPAR function in non-Tg slices. (A) Schematic of slice treatment procedure. 
60 minutes after preparing brain slices containing the VTA from non-Tg mice, slices were 
incubated in holding solution containing both nicotine (100 nM) and ethanol (5 mM) for 
60 minutes. AMPA-evoked currents were elicited and recorded after a ≥60 minute wash-
out period. In some experiments, slices were pre-incubated in either αCtxMII (100 nM) or 
varenicline (VAR; 1 μM) for 10 minutes before adding nicotine + ethanol for 60 min. 
Varenicline (1 μM, 70 minutes) alone was also tested, as shown in (C). (B) Representative 
AMPA-evoked currents from non-Tg VTA DA neurons. Slices were treated for 60 minutes 
with nicotine/ethanol in one of the following ways: 1) 5 mM EtOH only, 2) 100 nM 
nicotine only, 3) 5 mM EtOH plus 100 nM nicotine. AMPA (100 μM) was puff-applied 
while holding VTA DA neurons at −60 mV. Scale: 100 pA, 5 sec. (C) Summary of AMPA-
evoked current amplitudes (mean ± SEM) in VTA DA neurons in non-Tg brain slices. 
*P < 0.05; **P < 0.01; (one-way ANOVA, Dunnett post-hoc test comparing the 5 mM EtOH 
group or the 100 nM nicotine group to the EtOH plus nicotine group). 
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4.6 Subthreshold Nicotine and Subthreshold Ethanol Combine to Enhance VTA 

AMPAR Function in α6L9S Slices 

To further test the idea that α6* nAChRs play a role in AMPAR enhancement following 

nicotine + ethanol co-exposure, we performed an analogous set of experiments with 

α6L9S VTA slices (Figure 4.6 A). We previously determined that 3 nM nicotine (Figure 4.3 

B) and 200 μM ethanol (Figure 4.1 D) were each insufficient to enhance AMPAR function 

in α6L9S slices when administered alone. However, when co-administered to α6L9S slices, 

3 nM nicotine and 200 μM ethanol enhanced AMPAR function (200 μM 

ethanol = −217.8 ± 49 pA, 3 nM nicotine = −234.2 ± 36 pA, 200 μM ethanol + 3 nM 

nicotine = −442.1 ± 72 pA; ANOVA, P = 0.0065) (Figure 4.6 B and C). As with non-Tg slices, 

pre-treatment with either αCtxMII or varenicline blocked the enhancement in AMPAR 

function seen following nicotine + ethanol co-exposure (MII: −248.0 ± 25 pA, 

varenicline: −252.0 ± 35 pA) (Figure 4.6 B and C). As in non-Tg slices, varenicline alone did 

not alter AMPAR function in α6L9S slices (−246.5 ± 28 pA) (Figure 4.6 C). 

 



83 
 

 

8
3
 

 
 

Figure 4.6 Subthreshold nicotine and subthreshold ethanol, when combined, enhance 
VTA AMPAR function in α6L9S slices. (A) Schematic of slice treatment procedure. 
60 minutes after preparing brain slices containing the VTA from α6L9S mice, slices were 
incubated in holding solution containing both nicotine (3 nM) and ethanol (200 μM) for 
60 minutes. AMPA-evoked currents were elicited and recorded after a ≥60 minute wash-
out period. In some experiments, slices were pre-incubated in either αCtxMII (100 nM) or 
varenicline (1 μM) for 10 minutes before adding nicotine + ethanol for 60 minutes. 
Varenicline (1 μM, 70 minutes) alone was also tested, as shown in (C). (B) Representative 
AMPA-evoked currents from α6L9S VTA DA neurons. Slices were treated for 60 minutes 
with nicotine/ethanol in one of the following ways: 1) 200 μM EtOH only, 2) 3 nM nicotine 
only, 3) 200 μM EtOH plus 3 nM nicotine. AMPA (100 μM) was puff-applied while holding 
VTA DA neurons at −60 mV. Scale: 100 pA, 5 sec. (C) Summary of AMPA-evoked current 
amplitudes (mean ± SEM) in VTA DA neurons in α6L9S brain slices. **P < 0.01; (one-way 
ANOVA, Dunnett post-hoc test comparing the 200 μM EtOH group or the 3 nM nicotine 
group to the EtOH plus nicotine group). 
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 REMOVAL OF 4-CONTAINING nAChRs FROM THE VENTRAL MIDBRAIN 
ALTERS CIRCUITRY WITHIN THE VTA  

5.1 Chrna4 vMB cKO Mouse Model 

Removal of 4* nAChRs from the VTA leaves (non-4)62* nAChRs as the primary high 

sensitivity nAChR subtype (Salminen et al 2007). Therefore, to study the role 6* nAChRs 

and 4* nAChRs in an additional model to the 6L9S transgenic mouse model, we utilized 

a ventral midbrain 4 conditional KO mouse model (Chrna4 vMB cKO mice).  Using mice 

that have the 4 nAChR subunit gene flanked by loxP sites (Chrna4 loxP/loxP mice), we 

removed 4 nAChR subunits from specific brain regions of adult mice by injecting viral 

vectors that drive the expression of Cre recombinase (AAV-Cre-GFP). Cre recombinase is 

an enzyme that catalyzes the deletion of floxed genes (Kaspar et al 2002, McGranahan et 

al 2011) (Figure 5.1 A). Within the VTA, WT mice express heteromeric nAChRs that can 

contain 4 nAChR subunits, 6 nAChR subunits, and/or both subunits [(non-6)42*, 

(non-4)62*, and/or 462* nAChRs, respectively].  In Chrna4 loxP/loxP mice, after 

an injection of AAV-Cre-GFP, only (non-4)62* nAChRs remain (Figure 5.1 B). The viral 

vectors used to drive the expression of Cre also drive the expression of GFP so we can 

visually identify infected cells by fluorescence.  For controls, Chrna4 loxP/loxP mice were 

injected with AAV-GFP, a virus driving the expression of GFP but not Cre. We used  
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immunohistochemistry and confocal microscopy to verify that there is virus expression in 

the VTA after Cre injections.  VTA containing-slices were co-stained with anti-GFP to label 

the virus and anti-TH to identify DA neurons.  We found that the virus was expressed 

throughout the VTA.  We saw that both TH(+) neurons (indicated by one arrow) and TH(-) 

neurons (indicated by two arrows) express the virus (Figure 5.1 C).  TH(-) neurons are 

presumably GABAergic, as 35% of neurons within the VTA are GABAergic (Nair-Roberts et 

al 2008). 
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Figure 5.1 Chrna4 vMB cKO mice. (A) Schematic of the 4 nAChR subunit gene before and 
after intra-VTA AAV-CRE-GFP injections. Chrna4 loxP/loxP mice contain loxP sites flanking 

exon 5 of the gene encoding the 4 nAChR subunit.  To remove 4 nAChR subunits, adult 
mice were given intra-VTA injections of AAV-CRE-GFP.  The resulting Chrna4 vMB cKO 

mice have exon 5 deleted from infected cells and therefore disrupted expression of 4* 
nAChRs. (B) Heteromeric nAChRs expressed in the vMB normally include (non-

6)4*nAChRs, (non-4)6* nAChRs, and 46* nAChRs. Following intra-VTA Cre 

injections, both (non-6)4* and 46* nAChRs are deleted leaving only (non-4)6* 
nAChRs remaining in the VTA. (C) Immunohistochemistry and confocal microscopy images 
of the VTA in a Chrna4 vMB cKO brain slice (green: anti-GFP, red: anti-TH).  60X images 
showing both a TH(+) and a TH(-) neuron infected by the virus (indicated by one or two 
white arrows, respectively). 
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5.2 nAChR Function in Chrna4 vMB cKO Mice 

To functionally verify the removal of 4 nAChR subunits in Chrna4 vMB cKO mice, we 

measured ACh-evoked currents in VTA DA neurons.  VTA DA neurons were held at -60 mV 

and the response to puff application of ACh was recorded (Figure 5.2 A, top). Cells 

infected with Cre virus (labeled Cre (+) from here on) were identified by the presence of 

GFP (Figure 5.2 A, bottom). ACh-evoked currents were significantly decreased in Cre (+) 

VTA DA neurons in Chrna4 vMB cKO brain slices compared to Cre (-) VTA DA neurons in 

Chrna4 loxP/loxP brain slices (Cre (-) = -84.26 ± 5.2 pA, Cre (+) = -28.50 ± 4.1 pA, P < 

0.0001)(Figure 5.2 B and C). This reduced sensitivity to ACh demonstrates that injecting 

Cre into the VTA of Chrna4 loxP/loxP mice prevents expression of 4* nAChRs.  However, 

while ACh-evoked currents were attenuated in Cre(+) neurons, they were not eliminated.  

To test the hypothesis that the residual current is mediated by (non-4)6* nAChRs, we 

measured ACh-evoked currents from Cre(+) VTA DA neurons before and after bath 

application of CtxMII.  A significant proportion of the remaining current was CtxMII-

sensitive (average Cre(+) current in a subpopulation of cells before CtxMII application = 

-33.00 ± 4.2 pA, average Cre(+) current after CtxMII = -12.00 ± 2.3 pA, P = 0.0286)(Figure 

5.2 D). nAChR removal was also measured in Chrna4 loxP/loxP mice crossed with 

hypersensitive 6L9S mice. A low concentration of 1M ACh selectively activates 

hypersensitive 6* nAChRs.  When 4* nAChRs are removed in Cre(+) VTA DA neurons, 

ACh-evoked currents are significantly reduced (Cre (-) = -128.60 ± 14.4 pA, Cre (+) = -13.25 

± 3.3 pA, P = 0.0016)(Figure 5.2 E and F).  This demonstrates that the majority of ACh-
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evoked currents in VTA DA neurons in slices from Chrna4 loxP/loxP 6L9S mice are 

mediated by 46* nAChRs and is consistent with our 4KO6L9S mice results (Figure 

3.9). 
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Figure 5.2 nAChR function in Chrna4 vMB cKO mice. (A) Schematic of experimental 
approach.  VTA DA neurons were voltage clamped at -60 mV during puff application of 
ACh.  VTA DA neurons expressing Cre (Cre +) were identified by the presence of GFP. (B) 
Representative ACh (1 mM)-evoked currents in Cre (-) and Cre (+) VTA DA neurons. Scale: 
25 pA, 1 sec. (C) Quantification (average ± S.E.M.) of ACh-evoked current amplitude in Cre 
(-) and Cre (+) VTA DA neurons ****P < 0.0001, student’s t-test. (D) Summary of the 
reduction in ACh (1 mM)-evoked currents following MII (100 nM) bath application for 4 

Cre (+) VTA DA neurons. (E) Representative ACh (1 M)-evoked currents in Cre (-) and Cre 
(+) VTA DA neurons in slices from Chrna4loxP/loxP α6L9S and Chrna4 vMB cKO α6L9S 
mice. Scale: 25 pA, 1 sec. (F) Quantification (average ± S.E.M.) of ACh-evoked current 
amplitude in Cre (-) and Cre (+) VTA DA neurons, **P < 0.01, Mann-Whitney test. 
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5.3 Removal of 4 nAChR Subunits Enhances Excitability of VTA DA Neurons 

To study the excitability of VTA DA neurons in Chrna4 loxP/loxP and Chrna4 vMB cKO mice, 

we injected increasing amounts of current into the cell.  Current injection steps lasting 2 

seconds were delivered in 20 pA intervals from 0 to +80 pA (Figure 5.3 A).  As expected, 

the firing rate of VTA DA neurons in control Chrna4 loxP/loxP brain slices steadily 

increased with each subsequent current step (Figure 5.3 A and B, gray circles).  In 4KO 

mice, nicotine does not increase the firing rate, as it does in WT mice (Liu et al 2012).  

However, when we give depolarizing current injection steps, action potential firing still 

increases in Cre(+) VTA DA neurons in Chrna4 vMB cKO slices (Figure 5.3 A and B, red 

circles).  In fact, the firing rate is significantly higher in Cre (+) VTA DA neurons compared 

to Cre(-) VTA DA neurons at +60 and +80 pA (+60 pA: Cre(-) = 12.30 ± 1.4 Hz, Cre (+) = 

20.15 ± 3.8 Hz, P = 0.0350; +80 pA: Cre(-) = 13.35 ± 1.6 Hz, Cre (+) = 22.83 ± 4.8 Hz, P = 

0.0435 (Figure 5.3 B).  A similar trend towards enhanced excitability in Cre(+) VTA DA 

neurons is observed when analyzing the first interspike interval (Figure 5.3 C) with 

significant differences occurring at the lowest current injection step of +20 pA.  Cre(-) and 

Cre(+) VTA DA neurons have a similar baseline action potential firing rate (Figure 5.3 B, 

insert) and there is no difference in either the resting membrane potential (Figure 5.3 D) 

or the input resistance (Figure 5.3 E).   

A study using optogenetics to activate VTA GABA neurons found that stimulation 

decreased the excitability of VTA DA neurons (van Zessen et al 2012).  Based on this result, 

if removal of 4* nAChRs inhibits GABAergic neurons, then we would expect to see the 
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increases in VTA DA neuron excitability that we do in Chrna4 vMB cKO mice.  Therefore, 

we next looked at GABAergic signaling in the VTA of Chrna4 vMB cKO mice.  
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Figure 5.3 Removal of 4 nAChR subunits enhances excitability of VTA DA neurons. (A) 
Representative action potential firing in a Cre (-) VTA DA neuron from a Chrna4 loxP/loxP 
mouse and a Cre(+) VTA DA neuron from a Chrna4 vMB cKO mouse. Current was injected 
at each of the indicated values in 2 second steps. (B) Comparison of Cre(-) and Cre(+) VTA 
DA neuron firing rate during each current injection step (Cre(-) = gray circles, Cre(+) = red 
circles). *P < 0.05 (C) Comparison of the first interspike interval (ISI) for Cre(-) and Cre(+) 
VTA DA neurons for each current injection step. *P < 0.05 (D) Resting membrane potential 
(RPM) of Cre(-) and Cre(+) VTA DA neurons. (E) Input resistance (Rin) of Cre (-) and Cre(+) 
VTA DA neurons.  
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5.4 4 nAChR Subunit Removal Decreases the Instantaneous Frequency of IPSCs 

We next sought to study the mechanism behind the enhanced excitability we see when 

4 nAChR subunits are removed from the VTA.  The VTA is comprised of around 35% 

GABAergic neurons that send local collaterals to inhibit DA neurons in the VTA as well as 

project to forebrain sites such as the NAc (Nair-Roberts et al 2008, Van Bockstaele & Pickel 

1995).  4* nAChRs are not only located on DA neurons in the VTA, but also on GABAergic 

neurons (Klink et al 2001).  In Chrna4 loxP/loxP mice, the 4 gene is floxed in all cell types.  

Therefore, when Cre is injected into the VTA, the 4 subunit is removed from both 

DAergic and GABAergic neurons (Figure 5.1 C).  We hypothesize that removal of 4* 

nAChRs from GABA interneurons results in reduced ACh-mediated GABA release and 

subsequently reduced inhibition of VTA DA neurons.  We measured changes in GABAergic 

inhibition by recording spontaneous IPSCs in VTA DA neurons of Chrna4 loxP/loxP and 

Chrna4 vMB cKO mice (Figure 5.4 A).    IPSC instantaneous frequency is significantly 

reduced in Chrna4 vMB cKO mice compared to Chrna4 loxP/loxP mice (lox/lox = 12.01 ± 

3.0 Hz, vMB cKO = 2.22 ± 1.2 Hz, P = 0.0047)(Figure 5.4 B, C, an F). We verified that the 

currents recorded were GABAergic by showing they can be blocked by bath application 

of picrotoxin (Figure 5.4 D). The majority of IPSCs were also blocked by TTX suggesting 

that action potential firing, and presumably GABAergic activity, in the VTA is necessary 

for a large portion of the IPSCs recorded (Figure 5.4 E).  The amplitude of IPSCs was not 

altered by the removal of 4 nAChR subunits in Chrna4 vMB cKO mice compared to 

Chrna4 loxP/loxP mice (lox/lox = 13.79 ± 2.1 pA, vMB cKO = 10.65 ± 2.0 pA, P = 
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0.3337)(Figure 5.4 B, C, and G). This indicates that when 4 nAChR subunits are removed 

from the VTA of adult mice, GABAergic inhibition of VTA DA neurons is decreased via a 

presynaptic mechanism. 
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Figure 5.4 4 nAChR Subunit Removal Decreases the Instantaneous Frequency of IPSCs. 
(A) Schematic illustrating experimental approach. VTA DA neurons were voltage clamped 

and -60 mV and spontaneous IPSCs were recorded in the presence of CNQX (10 M). (B)  
A representative trace of spontaneous IPSCs in a VTA DA neuron in a slice from a Chrna4 
loxP/loxP mouse. Scale: 5 pA, 200 msec. (C) A representative trace of spontaneous IPSCs 
in a VTA DA neuron in a slice from a Chrna4 vMB cKO mouse. Scale: 5 pA, 200 msec.  (D) 

Representative trace showing the lack of IPSCs after picrotoxin (100 M) was bath applied 
to the slice. Scale: 5 pA, 200 msec.  (E) Representative trace showing a reduction in IPSCs 

after TTX (0.5 M) was bath applied to the slice. Scale: 5 pA, 200 msec.  (F) Summary 
(average ± S.E.M.) of IPSC instantaneous frequency. **P < 0.01, Mann-Whitney test. (G) 
Summary (average ± S.E.M.) of IPSC amplitude.  
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5.5 EPSCs are not altered by removal of 4 nAChR subunits from the VTA 

To detect if the enhanced excitability of VTA DA neurons is a direct result of increased 

glutamatergic signaling within the VTA, we measured spontaneous EPSCs (Figure 5.5 A).  

We found no difference in the instantaneous frequency of spontaneous EPSCs in VTA DA 

neurons from Chrna4 vMB cKO mice compared to Chrna4 loxP/loxP mice (lox/lox = 18.20 

± 3.3 Hz, vMB cKO = 16.58 ± 2.6 Hz, P = 0.6990)(Figure 5.5 B, C, and E).  There was also no 

difference in the amplitude of spontaneous EPSCS in VTA DA neurons from Chrna4 vMB 

cKO mice compared to Chrna4 loxP/loxP mice (lox/lox = 6.01 ± 0.6 pA, vMB cKO = 5.16 ± 

0.8 pA, P = 0.4212)(Figure 5.5 B, C, and F). Events recorded were confirmed to be 

glutamatergic EPSCs by blockade with CNQX (Figure 5.5 D).  Therefore, we can reasonably 

conclude that enhanced excitability of Cre (+) VTA DA neurons is attributable to decreased 

GABAergic signaling and not enhanced glutamatergic signaling within the VTA. 
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Figure 5.5 EPSCs are not altered by removal of 4 nAChR subunits from the VTA. (A) 
Schematic illustrating experimental approach. VTA DA neurons were voltage clamped and 

-60 mV and spontaneous EPSCs were recorded in the presence of picrotoxin (100 M). (B)  
Representative trace of spontaneous EPSCs in a VTA DA neuron in a slice from a Chrna4 
loxP/loxP mouse. Scale: 5 pA, 200 msec. (C) Representative trace of spontaneous EPSCs 
in a VTA DA neuron in a slice from a Chrna4 vMB cKO mouse. Scale: 5 pA, 200 msec.  (D) 

Representative trace showing the lack of EPSCs after CNQX (10 M) was bath applied to 
the slice. Scale: 5 pA, 200 msec.  (E) Summary (average ± S.E.M.) of EPSC instantaneous 
frequency. (F) Summary (average ± S.E.M.) of EPSC amplitude.  
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5.6 Removal of 4 nAChR Subunits from NAc-Projecting VTA Neurons  

To confirm that the reduction in IPSC instantaneous frequency is a result of 4 nAChR 

subunit removal from neurons within the VTA, we also measured IPSCs after injecting 

mice with a retrograde HSV-CRE-YFP virus into the NAc (Figure 5.6 A). Because the 

retrograde virus is taken up by terminals in the NAc and transported back to the VTA, 4* 

nAChRs are only removed from VTA neurons in the mesolimbic pathway (Figure 5.6 A).  

Just as with the intra-VTA AAV-CRE-GFP injections, we again see that both TH(+) and TH(-) 

VTA neurons express the virus (Figure 5.6 B).  When recording spontaneous IPSCs we 

found that IPSC instantaneous frequency is still significantly decreased in VTA DA neurons 

in Chrna4 vMB cKO brain slices compared to VTA DA neurons in Chrna4 loxP/loxP control 

slices (lox/lox = 10.39 ± 1.4 Hz, NAc to VTA cKO = 4.46 ± 1.0 Hz, P = 0.0031)(Figure 5.6 C, 

D, and E) There are no significant change in the spontaneous IPSC amplitude in VTA DA 

neurons in Chrna4 vMB cKO brain slices compared to VTA DA neurons in Chrna4 loxP/loxP 

control slices (lox/lox = 12.06 ± 2.8 pA, NAc to VTA cKO = 11.82 ± 2.0 pA, P = 0.6241)(Figure 

5.6 C, D and F).  Therefore, changes in spontaneous IPSC instantaneous frequency are a 

result of decreased GABA release from neurons within the VTA and not GABAergic 

neurons in other nearby brain regions the AAV virus may have spread to, such as the 

GABA-rich rostromedial tegmental nucleus (RMTg) that sends projections to the VTA but 

not the NAc (Barrot et al 2012). 
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Figure 5.6 Removal of 4 nAChR Subunits from NAc-Projecting VTA Neurons. (A) 
Schematic of retrograde viral injection. When retrograde HSV-CRE-YFP viral vectors are 
injected into the NAc they are transported to the VTA via terminals of any neurons 
projecting from the VTA to the NAc. (B) Immunohistochemistry and confocal microscopy 
images of the VTA in a Chrna4 vMB cKO brain slice (green: anti-GFP, red: anti-TH).  60X 
images showing both a TH(+) and a TH(-) neuron infected by the virus (indicated by one 
or two white arrows, respectively). (C) Representative trace of spontaneous IPSCs in a 
VTA DA neuron in a slice from a Chrna4 loxP/loxP mouse. Scale: 5 pA, 200 msec. (D) 
Representative trace of spontaneous IPSCs from a VTA DA neuron in a slice from a Chrna4 
vMB cKO mouse. Scale: 5 pA, 200 msec. (E) Summary (average ± S.E.M.) of IPSC 
instantaneous frequency. **P < 0.01, Mann-Whitney test. (F) Summary (average ± S.E.M.) 
of IPSC amplitude.  
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5.7 Nicotine-Mediated Enhancement of Excitatory Synaptic Transmission in VTA 

DA Neurons Requires 4* nAChRs 

In our 4KO6L9S mouse model, incubating brain slices in nicotine did not significantly 

enhance AMPAR function on VTA DA neurons (Figure 3.8).  Here, we want to see if there 

is a similar effect when 4* nAChRs are removed selectively from the VTA of adult mice 

and nicotine is administered systemically.  Chrna4 loxP/loxP mice were given intra-VTA 

injections of AAV-GFP or AAV-Cre-GFP viral vectors followed by a two week recovery and 

handling period before they were given a vehicle or nicotine injection (0.17 mg/kg, i.p.).  

One hour after the injection, VTA-containing brain slices were prepared for 

electrophysiology and AMPA/NMDA ratios were measured (Figure 5.7 A).  When 4* 

nAChRs are intact, nicotine significantly enhances AMPA/NMDA ratios in VTA DA neurons 

(Cre(-)/saline injection: 2.38 ± 0.2 pA, Cre(-)/nicotine injection: 3.85 ± 0.1, P < 0.01)(Figure 

5.7 B). However, when 4* nAChRs are removed from VTA DA neurons there are no 

significant changes in AMPA/NMDA ratios following a nicotine injection (Cre(+)/saline 

injection: 2.20 ± 0.1 pA, Cre(+)/nicotine injection: 2.49 ± 0.2(Figure 5.7 B).  This shows that 

removal of 4* nAChRs from the VTA of adult mice disrupts the ability of acutely delivered 

nicotine to induce changes in synaptic plasticity.  Under these conditions, just as in 

4KO6L9S mice, activation of (non-4)6* nAChRs is not sufficient to support induction 

of plasticity in VTA DA neurons.   
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Figure 5.7 Nicotine-mediated enhancement of excitatory synaptic transmission in VTA DA 

neurons requires 4* nAChRs. (A) Schematic illustrating experimental procedure.  Chrna4 
loxP/loxP mice were given intra-VTA AAV-CRE-GFP (or control AAV-GFP) injections at least 
two weeks prior to a nicotine (0.17 mg/kg, i.p.) injection.  60 minutes after the nicotine 
injection, VTA brain slices were prepared for electrophysiology to measure AMPA/NMDA 
ratios. Example evoked synaptic currents recorded from a VTA DA neuron to illustrate 
AMPAR- and NMDAR-receptor components.  The AMPAR-mediated component was 
measured at a command voltage of +40 mV (blue trace) at the time corresponding to the 
peak of the AMPA EPSC evoked at a command voltage of -70 mV (red trace).  The NMDAR-
mediated component was measured on the +40 mV trace by averaging the membrane 
current during a 10 msec window, 40 msec after the AMPA EPSC peak. Scale: 40 pA, 10 
msec. (B) Quantification of AMPA/NMDA ratios measured from Cre(-) and Cre(+) VTA DA 
neurons following a saline or nicotine (0.17 mg/kg, i.p.) injection. **P < 0.01 (Kruskal-
Wallis test, followed by Dunn’s post hoc test) 
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5.8 Summary of Proposed Circuitry Changes in the VTA of Chrna4 vMB cKO Mice 

Based on the results in this chapter, we propose that the increased excitability observed 

in VTA DA neurons of Chrna4 vMB cKO mice when current is injected (Figure 5.3) is a 

result of disinhibition.  We hypothesize that when 4 nAChR subunits are removed from 

the VTA, cholinergic inputs no longer stimulate GABAergic interneurons, resulting in less 

GABA release onto VTA DA neurons (Figure 5.8).  This reduced inhibition could then in 

turn cause enhanced excitability of VTA DA neurons.  
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Figure 5.8 Summary of proposed circuitry changes in the VTA of Chrna4 vMB cKO mice. 

(A) VTA of control Chrna4 loxP/loxP mice with 4* nAChRs intact. (B) VTA of Chrna4 vMB 

cKO mice with 4* nAChRs deleted.  Without 4* nAChRs, GABAergic neurons are not 
stimulated by cholinergic inputs from the LDTg/PPTg.  Therefore, less GABA is released 
onto DA neurons. This disinhibition may result in enhanced excitability of VTA DA neurons.  
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 DISCUSSION 

Portions of Sections 6.1-6.4 (pgs 104-112) are reprinted from Molecular Pharmacology 

2013 Sept; 84(3):393-406, doi: 10.1124/mol.113.087346 with permission of the American 

Society for Pharmacology and Experimental Therapeutics. All Rights Reserved.  

Portions of Sections 6.5-6.6 (pgs 112-116) are reprinted from Neuropharmacology 2015 

Apr; 91:13-22, doi:10.1016/j.neuropharm.2014.11.014 with permission from Elsevier. All 

Rights Reserved. 

6.1 Mouse Models 

Mice are an ideal model organism for studying nicotine addiction.  Mice and humans have 

genomes that are roughly 90% identical (Monaco et al 2015) and they share similar brain 

reward circuitry (Laviolette & van der Kooy 2004). In addition to WT mice, several 

genetically modified mice were used in these studies, including 6L9S transgenic mice, 

4KO mice, and Chrna4 loxP/loxP mice.  nAChRs containing the 6 subunit have been 

difficult to study because, as of yet, they have not been robustly and repeatedly expressed 

in vitro in heterologous expression systems without modifications such as chimeric  
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subunits or concatamers (Letchworth & Whiteaker 2011).  Therefore, native 6* nAChRs 

must be studied in vivo or in acute brain slices.  Much of the published work on 6 nAChRs 

reveals information about the necessity of the receptor through the use of 6KO mice or 

pharmacological inhibitors such as CtxMII.  These approaches have several drawbacks 

including compensatory changes that may have occurred during development in 6KO 

mice, and the inability of inhibitors to distinguish between specific receptor subtypes like 

(non-4)6* nAChRs versus 46* nAChRs. Our approach using 6L9S mice allows us to 

complement these approaches by demonstrating sufficiency versus necessity (Drenan & 

Lester 2012).  These mice develop normally and express 6 nAChR subunits in the correct 

brain regions (Drenan et al 2008a).  Although previous work indicates no evidence for 

overexpression of 62* nAChRs (Drenan et al., 2010), the TM2 pore-lining mutation 

used to sensitize these receptors may alter their pharmacological properties (Labarca et 

al 1995, Revah et al 1991). Future studies using restricted expression of 46L9S2* 

nAChRs via concatamers (Kuryatov & Lindstrom 2011) will be useful in exploring the latter 

possibility, whereas development of 62*-selective ligands will be useful in addressing 

the importance of the former possibility.  

Crossing 6L9S mice with 4KO mouse models also proved useful in our studies to gain 

additional information on the role of 6* nAChRs.  When 4* nAChRs are removed, the 

primary high sensitivity receptor remaining in the VTA is the (non-4)6* nAChR 

(Salminen et al 2007).  The contribution of 46* nAChRs can be studied by comparing 

results from 6L9S mice to 6L9S mice crossed with 4KO mice as previously done 
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(Drenan et al 2010). In addition to the traditional 4KO mouse model, we also used a 

conditional 4KO approach (Figure 5.1). Using Chrna4 loxP/loxP mice we have 

successfully applied Cre-lox technology to remove 4 nAChR subunits from the VTA of 

adult mice (Figure 5.1).  By using adult mice we can overcome any possible compensatory 

changes that might occur during development.  In addition, we can selectively target 

certain brain regions to study the contributions of 4 subunits in that brain region instead 

of in a global KO mouse.  Thus far, our approach does not distinguish between the role of 

4* nAChRs on different cell populations within the VTA (Figure 5.1 C).  Future studies by 

our group will address this.   

6.2 VTA DA Neuron Activation by 62* nAChRs 

Understanding which nAChR subtypes are necessary and sufficient to mediate nicotine’s 

complex action on VTA neurons is a challenge (Drenan and Lester, 2012), and our data 

provide new information. We show that nicotine-elicited activation of somatodendritic 

62* nAChRs in VTA DA neurons is sufficient to stimulate an inward conductance that 

could, under physiologic conditions support prolonged depolarization of these cells 

(Figure 3.2).  2* nAChRs are absolutely required for nicotine-induced increases in VTA 

DA neuron firing (Maskos et al 2005, Picciotto et al 1998), and Tapper and colleagues 

recently reported that activation of 42* nAChRs in VTA DA neurons by smoking-

relevant concentrations of nicotine can support depolarization and action potential firing 

(Liu et al 2012).  These actions were sensitive to a 62* nAChR antagonist, implicating 

462* nAChRs.  Additionally, the depolarization measured was long-lived but only 



107 
 

 

1
0

7
 

when the 6 nAChR subunit were not inhibited indicating that 462* nAChRs are 

desensitization resistant (Liu et al 2012). This report is consistent with our study, which 

suggests that selective activation of 62* nAChRs can increase inward currents in VTA 

DA neurons (Figure 3.2). Other reports studying the role of VTA 62* nAChRs in nicotine 

self-administration (Gotti et al 2010, Pons et al 2008) and DA release (Gotti et al 2010) 

support the data we present here. Furthermore, our experiments employing puff-

application of nicotine and ACh in 6L9S, 6L9S4KO, and Chrna4 vMB cKO brain slices 

(Figures 3.9 and 5.2) provide evidence that 4 subunits play an important role in 6-

mediated neuronal activation. In the VTA, 42* nAChRs are found in DAergic neurons 

and in GABAergic neurons and/or terminals (Nashmi et al 2007). Nicotine may act through 

VTA 42* nAChRs via two mechanisms: 1) direct activation at 42* nAChRs on DA 

neurons, and/or 2) desensitization of 42* nAChRs in GABAergic neurons leading to DA 

neuron disinhibition (Mansvelder et al 2002, Nashmi et al 2007).  Because 6* nAChRs 

are restricted to DAergic cells in VTA (Mackey et al 2012), our results suggest that direct 

action by nicotine on somatodendritic 6* nAChRs may be sufficient to depolarize these 

cells. In the human brain, there may be redundant mechanisms in the VTA that allow 

nicotine to activate the mesolimbic DA system.  

6.3 Methods of Measuring AMPAR Function 

Classically, changes in synaptic plasticity on VTA DA neurons after drug exposure have 

been assessed by measuring AMPA/NMDA ratios (Saal et al 2003, Ungless et al 2001).  

However, without additional experiments, it is difficult to pinpoint if differences in the 
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ratio are due changes in AMPAR function, NMDAR function, or a combination of the two.  

Our approach involves direct application of AMPA onto the neuron being recorded (Figure 

3.4), similar to previous approaches (Kobayashi et al 2009, Sanchez et al 2010). This allows 

us to directly measure the function of AMPARs expressed on the cell surface.  

Alternatively, NMDAR function can be measured by locally puff applying NMDA onto the 

VTA DA neuron during a whole-cell recording (Figure 3.10).  Local puff application of drugs 

using a Picospritzer has been successfully employed in studies of other ligand-gated ion 

channels as well (Drenan et al 2008a, Eggers & Berger 2004).  A fundamental difference 

in measuring changes in AMPAR function with the ratio method versus the local drug 

application method is the population of AMPARs being activated.  When measuring 

AMPA/NMDA ratios, an electrode is used to stimulate afferents to release glutamate and 

activate AMPARs preferentially located at the synapse.  When measuring AMPA-evoked 

currents, the entire surface of the cell is exposed to AMPA and therefore the function of 

the total population of surface AMPARs, both synaptic and extrasynaptic, is measured. To 

identify if there are any discrepancies in the two methods, we also began to study 

AMPA/NMDA ratios.  We found that with both nicotine and ethanol exposure, there is no 

difference in measuring the function of synaptic versus extrasynaptic AMPARs (Figures 

3.5, 4.1, and 4.4).   

6.4 Nicotine-Induced Changes in AMPAR Function.  

Our recordings in isolated brain slices demonstrate that selective activation of 62* 

nAChRs is sufficient to enhance the function of AMPARs on VTA DA neurons (Figure 3.5). 
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To our knowledge, this study is the first to implicate 62* nAChRs in nicotine-induced 

changes in glutamatergic synaptic plasticity on VTA DA neurons. A single exposure to 

nicotine or other drugs of abuse enhances AMPAR-mediated EPSCs in VTA DA neurons 

(Saal et al 2003) which strongly suggests LTP of excitatory inputs to these cells (Luscher & 

Malenka 2011, Mansvelder & McGehee 2000, Ungless et al 2001). Subsequent studies 

addressing which nAChR subtypes mediate this effect are not completely consistent. In 

slice experiments, McGehee and colleagues report that 2* nAChRs (but not 7 nAChRs) 

are necessary for increased AMPAR function in synapses after nicotine exposure (Mao et 

al 2011), whereas in studies with animals injected with nicotine prior to slice preparation, 

Wu and colleagues suggest that nicotine-elicited increases in AMPAR function can 

proceed either through 2* or 7 nAChRs (Gao et al 2010, Jin et al 2011). Our results 

using naïve or nicotine-exposed slices from adult non-Tg or 6L9S mice are more 

consistent with the former, because we find no necessary role for 7 nAChRs in AMPAR 

functional enhancement (Figure 3.7).  Our results also demonstrate that the contribution 

of 4 nAChR subunits are necessary.  Enhanced AMPAR function does not occur in VTA 

DA neurons in either 4KO6L9S (Figure 3.8) or Chrna4 vMB cKO (Figure 5.7) brain slices 

following nicotine exposure.  This indicates that activation of (non-4)6* nAChRs is not 

sufficient but rather that activation of 462* is necessary for nicotine-evoked 

enhancement of AMPAR function.  

Our in vitro finding that selective activation 6* nAChRs is sufficient to enhance AMPAR 

function on VTA DA neurons is confirmed by our in vivo results.  In 6L9S mice, systemic 
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administration of 6-selective doses of nicotine (Figure 3.11 B and C) is sufficient to 

enhance AMPAR function on VTA DA neurons. This result was directly ascribed to 6* 

nAChRs because CtxMII infusion into the VTA immediately prior to systemic nicotine 

administration blocked the enhancement of AMPAR function (Figure 3.12). 

In VTA DA neurons, changes in both AMPAR distribution and/or composition are 

proposed to occur after exposure to nicotine and other drugs of abuse. Several reports 

suggest that drug exposure (including nicotine) leads to signal transduction events that 

promote exchange of Ca2+ impermeable AMPARs containing GluR2 subunits for high-

conductance, Ca2+ permeable AMPARs lacking GluR2 subunits (Bellone & Luscher 2006, 

Luscher & Malenka 2011).  This GluR2-lacking receptor pool typically displays inward 

rectification (Isaac et al 2007, Liu & Zukin 2007), and one study confirms the appearance 

of this type of AMPAR after a single exposure to nicotine (Gao et al 2010).  Another study 

on nicotine exposure to VTA DA neurons, however, demonstrated increases in 

AMPA/NMDA ratios but no appearance of an AMPAR pool displaying inward rectification 

(Baker et al 2013). We find no appearance of inward rectification in AMPA-evoked 

currents (Figure 3.5 B and D), which is more consistent with enhancement in numbers of 

GluR2-containing AMPARs rather than production of a significant amount of GluR2-

lacking AMPARs. However, our data showing an increase in AMPAR sensitivity in response 

to 62* activation (Figure 3.5 F) support a number of possible mechanisms, including 

increased AMPAR conductance—a hallmark of GluR2-lacking AMPARs. Future 
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pharmacological studies in 6L9S and WT slices exposed to nicotine are needed to 

characterize AMPAR sensitivity changes.  

It is also important to understand what circuit and/or molecular signal transduction 

events are necessary and/or sufficient to enhance AMPAR function in VTA DA neurons 

after nicotine exposure. At the circuit level, an approach utilizing optogenetics 

demonstrated conclusively that in vivo activation of VTA DA neurons was sufficient to 

promote AMPAR redistribution (Brown et al 2010). Because 62* nAChRs are selectively 

expressed in DA neurons in the VTA (Drenan et al 2008a, Mackey et al 2012), our results 

lead us to favor a similar conclusion for nicotine: activation of 62* nAChRs on VTA DA 

neurons is sufficient to promote enhanced AMPAR function. Two other molecular events 

have been shown to be important for induction of synaptic plasticity in VTA DA neurons: 

D1/D5 DA receptor activation (Brown et al 2010, Mao et al 2011, Schilstrom et al 2006), 

and NMDA receptor activation (Saal et al 2003, Ungless et al 2001).  Although our SCH-

23390 results are inconclusive, NMDA receptor activation is necessary for 62* nAChR-

mediated increases in AMPAR function (Figure 3.7 C).  Although NMDAR activity is 

necessary, the mechanism of enhanced AMPAR function does not require enhanced 

NMDAR function (Figure 3.10).  While the involvement of kinase activity has not been 

extensively studied with regards to nicotine-evoked increases in glutamatergic synaptic 

plasticity, CaMKII is required for increased AMPA/NMDA ratios after cocaine exposure 

(Anderson et al 2008, Liu et al 2014). Cocaine results in the phosphorylation of S831 on 

GluR1 subunits by CaMKII, leading to their increased expression at the synapse (Anderson 
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et al 2008, White et al 2013). Our results using KN-93 indicate CaMKII activity is necessary 

for 62* nAChR-mediated increases in AMPAR function as well (Figure 3.7 C).  Further 

experiments probing what target sites CaMKII phosphorylates will help determine if 

changes in AMPAR composition or distribution lead to enhanced AMPAR function.  

Together with previous studies on nicotine and other drugs of abuse, our data studying 

62* nAChRs support the contention that there may be multiple mechanisms in place 

that nicotine can use to enhance the responsiveness of VTA DA neurons, ultimately 

leading to a heightened behavioral response to nicotine. 

6.5 Ethanol-Mediated Enhancement of AMPAR Function  

Our results indicate that 6* nAChR activity is important in ethanol-mediated 

enhancement of AMPAR function both in vitro by incubating naïve VTA-containing brain 

slices in ethanol (Figures 4.1 and 4.4) and in vivo by giving mice ethanol injections (Figure 

4.2). We demonstrated 6* nAChR involvement with a genetic approach using selective 

6* nAChR activation in 6L9S mice and a pharmacological approach by showing that a 

6* nAChR antagonist (CtxMII) blocks ethanol-mediated enhancement of AMPAR 

function (Figure 4.1). This suggests that endogenous ACh and ethanol combine at 6* 

nAChRs to produce sufficient nAChR activity to initiate signaling events ultimately 

resulting in AMPAR functional enhancement.  ACh, presumably released from LDTg 

and/or PPTg axon terminals, is present in VTA slices and contributes to baseline 6* 

nAChR activity in VTA DA neurons (Drenan et al 2008a).  Our findings with nicotine in 

6L9S4KO mice (Figure 3.8) and previous reports on 46* nAChRs (Drenan et al 2010, 
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Liu et al 2012), suggest that 4 nAChR subunits are incorporated into 6* nAChRs that 

mediate these effects. Thus, most VTA 6* nAChRs contain 4 and 2 subunits and 

462* nAChRs could thus be subject to ethanol's nAChR potentiating properties.  

Ethanol is known to alter DA neuron activity and accumbal DA release via indirect, activity-

dependent mechanisms. For example, ethanol increases ACh release in the VTA (Larsson 

et al 2005), and ACh-induced firing in VTA DA neurons can be potentiated by ethanol (Liu 

et al 2013a). The increased concentration of ACh in the VTA could activate 6* nAChRs, 

leading to the 6* nAChR-mediated increases in AMPAR function we report.  Another 

indirect, activity-dependent mechanism through which ethanol may contribute to reward 

is by reducing GABAergic inhibition to VTA DA neurons (Di Chiara et al 1996, Spanagel et 

al 1992). Although it is possible that ethanol and nAChR activation collaborate to enhance 

AMPAR function via either of these mechanisms, we wanted to test the hypothesis that 

ethanol increases AMPAR function by acting directly on DA neurons in an activity-

independent manner.  Therefore, we blocked action potential firing by pre-incubating 

slices in TTX prior to and during the ethanol incubation. Our data shows that neuronal 

activity is not required to enhance AMPAR function after ethanol exposure (Figure 4.1 E 

and F). This strongly supports a direct mechanism of action on DA neurons rather than 

the indirect, activity-dependent mechanisms discussed above. Prior studies support that 

a direct activity-independent mechanism is possible. ACh that is released in VTA slices and 

which contributes to baseline 6* nAChR activity is insensitive to TTX (Drenan et al 2008a). 

Recently, Berg and colleagues reported a novel, cell-autonomous mechanism by which 
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nicotine elicits enhanced AMPAR trafficking to the surface of hippocampal neurons (Halff 

et al 2014). Our data showing that AMPAR function is enhanced even in the presence of 

TTX (Figure 4.1 E and F) suggest that a similar cell-autonomous, 6-mediated effect could 

also occur in VTA DA neurons. 

6.6 The Combined Activity of Nicotine and Ethanol in Enhancement of AMPAR 

Function 

Our data demonstrating that subthreshold concentrations of nicotine and ethanol can 

combine to enhance AMPAR function on the surface of VTA DA neurons (Figures 4.5 and 

4.6) is consistent with previous reports showing simultaneous nicotine + ethanol co-

exposure is synergistic or additive (Clark & Little 2004, Liu et al 2013a, Liu et al 2013b, 

Tizabi et al 2007, Tizabi et al 2002). Our demonstration that 100 nM nicotine plus 5 mM 

ethanol combine to enhance VTA AMPAR function (Figure 4.5) is relevant to human 

consumption of these drugs. A blood alcohol concentration of approximately 25 mg/dL 

(0.025% or 5 mM) is achievable with one drink and would not be expected to produce 

behavioral changes in humans other than mild euphoria and/or slight social disinhibition. 

A nicotine plasma level of 100 nM is easily achievable by one cigarette in a person naïve 

to nicotine (Henningfield 1995). In a daily smoker, this level of nicotine in plasma would 

be attainable by afternoon or evening simply due to accumulation of the drug from 

cigarettes smoked throughout the day (DHHS 1988). These properties of nicotine and 

ethanol, taken together with our data suggest that, in humans, one drink plus one 

cigarette may be sufficient to produce synaptic plasticity changes in VTA DA neurons that 
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are relevant to the addiction process. Genetic evidence points to a prominent role for 6-

containing nAChRs in alcohol consumption as well as nicotine addiction (Hoft et al 2009a, 

Hoft et al 2009b). Our data suggest that 6-containing nAChRs play a central role in the 

response to subthreshold, co-applied concentrations of nicotine and ethanol via CtxMII 

inhibition in non-Tg mice (Figure 4.5 B and C) and via selective activation in 6L9S mice 

(Figure 4.6).  In experiments involving DA release from striatal synaptosomes, CtxMII-

sensitive (6-dependent) nAChRs are the most sensitive to nicotine (Salminen et al 2007), 

supporting the notion that they are capable of responding meaningfully to subthreshold 

nicotine when ethanol is present to enhance receptor activity. In further support of the 

idea that 6-containing nAChRs confer the ability to respond to very low concentrations 

of nicotine, 6KO mice have reduced tendency to self-administer low (10 ng) 

concentrations of nicotine (Exley et al 2011).  

Varenicline is a partial agonist with similar efficacy and potency at both CtxMII-sensitive 

(6-containing) and CtxMII-resistant (non-6) nAChRs (Grady et al 2010). Varenicline is 

thought to promote abstinence from smoking via a dual mechanism: 1) varenicline 

substitutes for nicotine in activating nAChRs, and 2) varenicline competes with and blunts 

the full action of nicotine in activating nAChRs (Rollema et al 2007). Our results suggest 

that varenicline, similar to CtxMII, may interfere with the ability of nicotine and/or 

ethanol to enhance AMPAR function in VTA neurons (Figures 4.5 and 4.6). This is 

consistent with varenicline's action in preclinical and clinical studies. For example, 

varenicline reduces ethanol intake in mice (Hendrickson et al 2010) and rats (Steensland 
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et al 2007). Varenicline also reduces alcohol consumption in heavy drinking smokers 

(Fucito et al 2011, McKee et al 2009, Mitchell et al 2012). Together, this suggests that 

patients taking varenicline may be afforded some protection from the addictive 

properties of subthreshold concentrations of nicotine + alcohol. Varenicline, or other 

compounds with partial agonist properties at 4* and/or 6* nAChRs but a better side 

effect profile, could be useful in attenuating nicotine/alcohol co-addiction. 

6.7 Role of 4 nAChR Subunits in VTA DA Neuron Excitability 

In addition to studying changes in glutamatergic synaptic plasticity in Chrna4 vMB cKO 

mice (Figure 5.7), we also identified circuitry changes within the VTA.  In our Chrna4 vMB 

cKO mouse model, we interestingly saw enhanced excitability of VTA DA neurons (Figure 

5.3).  This may be counterintuitive based off previously published studies in 4KO mice.  

One study found that activation of VTA DA neurons by nicotine is dependent upon 4* 

nAChRs (Zhao-Shea et al 2011) and another study showed that while the baseline action 

potential firing rate is the same in WT and 4KO mice, nicotine does not result in an 

increase in the firing rate of VTA DA neurons in 4KO mice (Liu et al 2012).  Likewise, we 

saw no difference in the baseline firing rate (Figure 5.3).  However, during current 

injection steps we saw that, compared to Cre(-) VTA DA neurons from control Chrna4 

loxP/loxP mice, Cre(+) VTA DA neurons from Chrna4 vMB cKO mice have a decreased first 

interspike interval at lower current injections and increased firing rate over the whole two 

second current injection step at higher current injections (Figure 5.3).  We reasoned that 

because in our model, 4 nAChR subunits can be removed from any cell type that 
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expresses 4 nAChR subunits (Figure 5.1), that the enhanced excitability of DA neurons 

was due to removal of 4 nAChR subunits on GABA neurons. Within the VTA, GABA 

interneurons highly express 42* nAChRs (Klink et al 2001, Mansvelder et al 2002).  

These GABAergic neurons also fire spontaneously (Steffensen et al 1998) and therefore 

may tonically inhibit VTA DA neurons. Interestingly, picrotoxin administered into the VTA 

results in increased DA release in the NAc (Ikemoto et al 1997a), suggesting that removal 

of GABAergic signaling in the VTA excites DA neurons.  Moreover, rats will self-administer 

picrotoxin into the VTA (Ikemoto et al 1997b).  Therefore, we looked at spontaneous IPSCs 

in VTA DA neurons as a way to analyze changes in GABA release after removal of 4 

nAChR subunits.  We indeed did see a decrease in the instantaneous frequency of 

spontaneous IPSCS in VTA DA neurons in Chrna4 vMB cKO mice compared to control 

Chrna4 loxP/loxP mice that still have 4 nAChR subunit expression intact (Figure 5.4).  

Spontaneous IPSC instantaneous frequency was also dramatically reduced in control 

Chrna4 loxP/loxP mice in the presence of TTX, indicating activity of GABAergic neurons 

within the VTA is important for GABA release (Figure 5.4 E).   

Our results showing that removal of 4* nAChRs from the VTA decreases IPSC 

instantaneous frequency implies GABAergic neurons are controlled by cholinergic 

signaling.  We hypothesize that ACh released onto GABAergic neurons acts on 42* 

nAChRs and stimulates GABA release.  This is plausible as the VTA receives cholinergic 

input from the PPTg and LDTg (Mao & McGehee 2010) and endogenous ACh has 

previously been shown to contribute to IPSCs in VTA DA neurons (Mansvelder et al 2002).  
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Future experiments measuring the firing rate of VTA GABAergic interneurons in Chrna4 

vMB cKO mice will provide further insight into cholinergic control of GABAergic neurons 

within the VTA.   

Therefore, our proposed mechanism for increased VTA DA neuron excitability is a 

disinhibition mechanism as illustrated in Figure 5.8. We hypothesize that in control 

Chrna4 loxP/loxP mice, afferents from the PPTg and LDTg release ACh in the VTA, which 

activates 42* nAChRs located on GABAergic interneurons, and stimulates GABA 

release.  In Chrna4 vMB cKO mice, removal of 42* nAChRs from the VTA results in less 

GABA released onto VTA DA neurons and removal of this source of tonic inhibition results 

in enhanced VTA DA neuron excitability.  In mice with hypersensitive 4* nAChRs 

selectively expressed on GABAergic neurons, low doses of nicotine resulted in reward-like 

behavior (Ngolab et al 2015).  Because 42* nAChRs have been shown to rapidly 

desensitize (Mansvelder et al 2002) this could be explained by a disinhibition mechanism 

similar to what we propose is occurring in our study.  However, the authors concluded 

that desensitization is not responsible for reward due to their finding that DHE (a 

moderately selective α4* nAChR antagonist) does not similarly lead to a nicotine 

conditioned place preference (Ngolab et al 2015).   

The VTA also receives GABAergic input from the nearby RMTg, also referred to as the tail 

of the VTA (Barrot et al 2012).  While we took measures to try to contain the virus to the 

VTA and limit the spread to nearby regions through small injection volumes and the use 

of the AAV2 serotype which diffuses less (Passini et al 2004), it is possible that 4 nAChR 
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subunits may be removed from the RMTg as well.  Therefore, we repeated our IPSC 

recordings in Chrna4 loxP/loxP mice given injections of a retrograde Cre virus into the NAc 

(Figure 5.6 A) and saw similar decreases in IPSC instantaneous frequency but not 

amplitude (Figure 5.6 C-F).  We still saw viral expression in both DA and non-DA neurons 

within the VTA (Figure 5.6 B), indicating that both DA and GABA VTA neurons send 

projections to the NAc.  Furthermore, the recorded DA neuron itself does not have to 

express the Cre virus in order to exhibit decreased IPSC instantaneous frequency in 

Chrna4 vMB cKO mice, as long as the virus was indeed expressed in the VTA.  This 

indicates that some VTA GABA neurons send projections to both the NAc and VTA DA 

neurons. 

Further, we wanted to rule out the possibility that the enhanced excitability we see in 

VTA DA neurons is due to increased glutamatergic signaling.  Therefore we measured 

spontaneous EPSCs (Figure 5.5).  We saw no differences in either the instantaneous 

frequency nor the amplitude in Chrna4 vMB cKO mice compared to control Chrna4 

loxP/loxP mice with 4 nAChR subunits intact.  This is consistent with a previous study 

indicating that 7 nAChRs, not 4* nAChRs, are the primary nAChR subtype responsible 

for glutamatergic release in the VTA (Mansvelder & McGehee 2000). 

Our electrophysiology results showing enhanced excitability of VTA DA neurons is 

consistent with locomotor data collected by a colleague also working with this mouse 

model in our lab.  Baseline locomotor activity of Chrna4 vMB cKO mice is significantly 

higher compared to Chrna4 loxP/loxP control mice (unpublished result).  DA levels in the 



120 
 

 

1
2

0
 

NAc have not been measured in Chrna4 vMB cKO mice. However, our data showing 

enhanced VTA DA neuron excitability and increased locomotor activity in Chrna4 vMB cKO 

mice, is consistent with data showing that 4KO mice have increased basal levels of DA 

in the NAc (Marubio et al 2003). 

Our data highlights the importance of 4 nAChR subunit expression in the adult mouse 

VTA in controlling the activity of VTA DA neurons.  Developing mouse models where 

removal of  4 nAChR subunits is targeted to specific cell types, DAergic neurons versus 

GABAergic neurons, will provide further insight into the role of 4* nAChRs within the 

VTA.  

6.8 Future Directions 

While we demonstrated the involvement of 6* nAChRs in nicotine-mediated AMPAR 

enhancement on VTA DA neurons, more work still needs to be done to better understand 

the downstream mechanism of AMPAR insertion.  Our results showing no inward 

rectification suggest an increase in the number of AMPARs expressed on the cell surface.  

On the other hand, when constructing concentration-response curves, we saw increased 

AMPAR sensitivity.  Rather than an increase in the number of AMPARs expressed on the 

cell surface, an increase in AMPAR sensitivity suggests an exchange of AMPARs for those 

with an increased conductance.  Future studies should be done to better understand 

which mechanism of AMPAR insertion occurs in VTA DA neurons following nicotine 

exposure.  Experiments with pharmacological inhibitors that distinguish between 

different AMPAR subtypes, such as philanthotoxin, could be performed to address this 



121 
 

 

1
2

1
 

issue.  Alternatively, looking at the kinases involved in AMPAR insertion could provide 

insight into this mechanism.  We show that CaMKII activity is necessary for increased 

AMPAR function.  Future experiments can be done to determine which AMPAR subunits 

are phosphorylated and at what site following nicotine exposure.   

When doing experiments with Chrna4 vMB cKO mice, we found that VTA DA neurons in 

these mice are more excitable in response to depolarizing current injections than VTA DA 

neurons in Chrna4 loxP/loxP control mice.  Our method of removing 4 nAChR subunits 

from Chrna4 loxP/loxP mice via Cre viral injections has the advantage of removing 4* 

nAChRs from adult mice as well as from specific brain regions.  However, 4 nAChR 

subunits are removed from both dopaminergic neurons and non-dopaminergic neurons 

within the VTA. Therefore, we cannot tell if 4 nAChR subunit removal from dopaminergic 

neurons, GABAergic neurons, or a combination of the two is primarily responsible for the 

enhanced excitability of VTA DA neurons in Chrna4 vMB cKO mice. Future studies 

selectively removing 4 nAChR subunits from specific cell types will be useful to further 

understand the circuitry within the VTA.  Such experiments could be accomplished by 

crossing mice that express Cre under the control of specific promoters with Chrna4 

loxP/loxP mice. Drawbacks to this approach include the removal of 4* nAChRs globally 

and during development. 

We hypothesized that removal of 4* nAChRs decreased cholinergic excitation of 

GABAergic neurons, resulting in decreased GABA release.  Additional experiments 

recording the firing rate of GABAergic neurons could provide further support of our 
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hypothesis in addition to our IPSC recordings from DA neurons.  If our hypothesis is 

correct, there will be a decrease in the spontaneous firing rate of GABAergic neurons in 

Chrna4 vMB cKO mice.  Finally, it would be of interest to see if 4* nAChR selective 

antagonists, such as DHE could recapitulate the results we obtained with Chrna4 vMB 

cKO mice.  

While our results indicate that 6* nAChRs may play a crucial role in the development of 

nicotine dependence, there are currently no drugs available to selectively target these 

receptors without also acting on (non-6)4* nAChRs.  Improvements in the ability to 

stably, robustly express 6* nAChRs in heterologous systems would allow high 

throughput screening to help identify selective molecules.  Our results suggest such drugs 

may be useful not only for tobacco cessation but also for treating alcoholism or tobacco 

and alcohol co-abuse.  

6.9 Conclusions 

Overall, these studies highlight the importance of 46* nAChRs in the initiation of 

cellular changes that play a role in addiction.  Our data show for the first time that 

activation of 462* nAChRs by nicotine is sufficient to stimulate a depolarizing 

conductance in VTA DA neurons as well as enhance AMPAR function on the cell surface.  

We also show involvement of 62* nAChRs in ethanol-mediated enhancement of 

AMPAR function and demonstrate that ethanol and nicotine can combine to enhance 

excitatory transmission in the mesolimbic DA pathway.  While 6* nAChRs are expressed 

solely on DA neurons in the VTA, 4* nAChRs are also expressed on GABA neurons where 
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we find they play an important role in controlling GABA release and therefore DA neuron 

excitability.  Together, our data show that 462* nAChRs are emerging as a key target 

for smoking and alcohol cessation pharmacotherapies. 
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