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ABSTRACT

Ahmed, Noor PhD, Purdue University, May 2016. Design, Implementation and Ex-
periments for Moving Target Defense. Major Professor: Bharat Bhargava.

The traditional defensive security strategy for distributed systems is to safeguard

against malicious activities and prevent attackers from gaining control of the system.

The strategy employs well-established defensive techniques such as perimeter-based

firewalls, redundancy and replications, and encryption. However, given su�cient time

and resources, all these methods can be defeated by advanced adversaries.

To address this issue, this dissertation proposes an attack-resilient framework that

employs a novel defensive security strategy to reduce or eliminate the need to keep

one step ahead of sophisticated attacks. The core of our defensive strategy is to

transform systems to narrow the window of their vulnerability from hours/days to

minutes/seconds. This is achieved by controlling the system runtime execution in

time and space through diversification and randomization as a means of shifting the

perception of the attackers’ gain-loss balance. The goal of this defensive strategy,

commonly referred to as Moving Target Defense (MTD), is to increase the cost of an

attack on a system and to lower the likelihood of success and the perceived benefit of

compromising it.

The proposed defensive security paradigm is covered in five chapters: Chapter

1 introduces the framework and its core building blocks, then highlights the key

contributions of the dissertation. Chapter 2 presents a proactive monitoring scheme

to safeguard application runtime below the OS. Chapter 3 presents the proposed

framework, referred to as Mayflies, a bio-inspired MTD framework for distributed

systems, and discusses the formal model, design, implementation and algorithms.

In Chapters 4 and 5, we show the e↵ectiveness of the proposed framework with two



xiii

classes of widely adopted replicated systems: quorum-based Byzantine Fault-Tolerant

and Event-based Publish and Subscribe, deployed on a private cloud platform with

special emphasis on their resiliency to attacks and performance impact.
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1. INTRODUCTION

While defensive security strategies against arbitrary faults and system failures for

distributed systems have been studied for decades, defending against threats from re-

sourceful and advanced adversaries still remains challenging. With the ever increasing

adoption on cloud computing, due to its simplified service-based management model

built on commodity o↵–the–shelf hardware and software components, have amplified

these threats.

The key challenge is that the traditional defensive solutions (i.e., instruction set

randomization) are ad-hoc and designed to combat against specific threat, thus, lim-

ited in scope when attacks originate outside their intended defensive parameters (i.e.,

memory corruption or network layer attacks). The complexity of the building blocks

of the cloud software stack and the inherent security risks of sharing hardware re-

sources (i.e., multi-tenancy) have contributed more ad-hoc security solutions that are

specific to a single threat (i.e., side channel attack/defenses). Thus, the conceptual

view of such defensive strategy is to always attempt to stay one step ahead of the

attackers.

To remedy these issues, it is critical to design a vertical solution from the applica-

tion layer down to physical infrastructure in which the protection against attacks is

deeply integrated across all the layers of the system (i.e., application, runtime, net-

work) at all times, not as add on to a specific layer of the system for a given threat.

This vertical solution approach enables defensive strategies to be applied simultane-

ously across the board, thereby, reducing or eliminating to continuously address a

single exploit for one layer of the system while another exploit is in progress (i.e., cat

and mouse game).

In this dissertation, we propose a generic attack-resilient framework for distributed

systems that emphasizes a novel defensive security strategy that avoids threats in time
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intervals rather than defending the systems’ entire runtime. The framework’s funda-

mental defensive strategy is to disrupt the attackers gain/loss balance by increasing

the cost to attack the system and the perceived benefit of compromising it, com-

monly referred to as Moving Target Defense (MTD). We achieve this by controlling

the node’s exposure window of an attack through 1) partitioning its runtime execu-

tion in time intervals, 2) allowing nodes to run only with a predefined lifespan (as low

as a minute) on heterogeneous platforms (i.e., di↵erent OSs), while 3) pro-actively

monitoring their runtime below the OS.

The overarching goal of this dissertation is to propose abstractions and paradigms

for designing a generic attack-resilient framework for distributed systems on virtual-

ized cloud platforms. The key contribution lies in how the building blocks and the

theoretical underpinnings of the framework enable us realize our desired goal, the abil-

ity to dynamically and safely transform nodes across platforms to disrupt adversaries

gain/loss balance of the system control.

In this chapter, we give a brief overview of Distributed Systems and Cloud Ecosys-

tem, to lay the context of the design and the model of the proposed MTD framework.

We then discuss; the threat model and assumptions we considered in this work, the

three logical building blocks of the framework, and the attack-resiliency model and

the quantification schemes. Finally, we present the key contributions of the thesis,

followed by the thesis organization.

1.1 Distributed Systems

Distributed systems is a broad subject written in many books. In order to give a

brief overview relevant to our framework, we group them into their respective high-

level classes to discuss their architectural styles, resiliency attributes, and system

models.
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1.1.1 Architectural Styles

The two common widely adopted architectural styles are Service Oriented Ar-

chitectures (SOA) and Component-based. A comprehensive comparison of their dif-

ference is given in [1]. For example, RESTful and SOAP-based services (i.e., web-

services) are implementations of SOA-based system models that are widely deployed

in large scale enterprise systems such as facebook and twitter. Component-based Ar-

chitectures focus on building exchangeable software units (i.e., DCOM, JavaBeans,

Enterprise JavaBeans, and CORBA), typically managed in containers (i.e., applica-

tion servers). Architecturally supporting the dynamics of MTD schemes for defensive

measures is system dependent and is only considered in post system design.

In general, the static and dynamic software component relationships dictate the

flexibility to adopt changes at runtime. The use of dynamic architectures to support

runtime modification is first proposed in [2]. Architectural-based solutions of runtime

structural flexibility to handle faults, for example, self-adoptive [3] and self-repair [4]

has also been considered.

Given the complexity of the underlying computing fabric of the cloud (i.e mul-

tiple independently developed and deployed components) where the applications are

deployed, it is intuitive to see that the architectural-level defensive security solutions

are ill-suited, for instance, in multi-tenancy, an escaped malicious VM from a di↵er-

ent tenant can gain control of the system, in which the architectural-level defensive

solutions does not able to protect.

1.1.2 Architectural Attributes

Detailed attributes of distributed systems architecture vary from system to system,

but, we can identify them with two classes of system resiliency attributes; depend-

ability and security. Attributes of dependable systems include; reliability (the ability

for a system to recover from random errors/faults or continuity of correct service [2]),

availability, maintainability, and safety. Typically, reliability is achieved with some
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type of replication or redundancy and quantified with the Mean Time To Recover.

Security on the other hand, are the protection schemes employed to safeguard the

system from natural and man-made faults while achieving its intended objective for

its legitimate users (i.e., access control).

A sound system architecture is typically described using standard language like

the Architecture Description Language (ADL). Standards like ADL use formal no-

tation to unambiguously formulate and represent the structure of a system. These

structures comprise the software components, their externally visible properties and

their relationships, referred to the software architecture [5]. The architectural style

employed, the individual building block component relationship characteristics (i.e.,

static or dynamic), and the variable systems’ quality attributes such as: reliability,

safety/security, integrity, maintainability, availability, agility, functionality, etc. are

the foundation for designing a resilient architecture.

The cloud management software stack, commonly referred to as cloud framework,

abstracts the architectural attributes of the applications into the virtual machine com-

puting instance that these application are deployed. Hence, our proposed frameworks’

core design principle is to preserve these built-in resiliency attributes threatened by

the modern sophisticated attacks while the VMs are on the move across heterogeneous

platforms.

1.1.3 System Models

There are three classes of distributed systems; Synchronous, Asynchronous, and

Probabilistic. The former two are those common in distributed systems deployed

in cloud environment. For Synchronous systems, as the name implies, the interac-

tion/communication protocols between the nodes (i.e., SOAP-based clients/servers

model) are synchronized, where as the Asynchronous class communication protocols

(i.e., request/response, push/pull data models) are not synchronized (i.e., the request

is independent of the response in time/space).



5

Besides the standard-based lightweight services (i.e., web-services) that are widely

adopted in the commercial sector and on social sites, the event-based Publish and

Subscribe (pub/sub) and the Quorum-based Byzantine Fault Tolerant (BFT) systems

are the two widely deployed protocols in the cloud environments and studied in the

literature. The key design di↵erence is that in pub/sub, typically, a broker(s) mediates

the exchange of topic/content-based messages between the producers (publishers) and

consumers (subscribers) of the information (i.e., stock trading apps, cloud internals),

thus, it is an Asynchronous system. In contrast to the BFT systems where a number

of replica need to process client requests in an ordered and Synchronous fashion.

These systems are designed and modelled with di↵erent replication models (i.e.,

chain, quorum and others) and failure models (i.e., Byzantine Faults). The proposed

framework introduces a unified and generic system agility under the constraints of

the replication and faulty model di↵erences.

1.2 Cloud Eco-System

The key promise of cloud adoption is the cost benefits of the computing resources

that can scale up/down on demand, referred to as “elastic computing”. Infrastruc-

ture (IaaS), Platform (PaaS), and Software (SaaS) –as–a–Service are the three service

deployment models for cloud environments in which each service model has di↵er-

ent pricing, referred to as “pay–as–you–go”. Each deployment model o↵er di↵erent

protection schemes for the applications. Since our work involves in hypervisor-level

interactions, (i.e., virtual introspection), we developed our solutions on IaaS model.

While on-demand elastic computing and simplified service deployment models of

the cloud are undeniably useful, it is increasingly challenging to guarantee provable

reliability due to the sophisticated cyber attacks. (i.e., side channel, XML wrapping

attacks and just–in–time return oriented programming) in recent years. The transient

hardware and software design faults inherent in commercial–o↵–the–shelf hardware

built on such infrastructures have amplified these threats.
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On the other hand, by design, such infrastructures also enable unprecedented

security capabilities through the structured underlying computing architecture and

virtualization. The two key capabilities are the isolation and introspection which en-

ables to safeguard systems below the OS (i.e., hypervisor layer). The application-level

isolation enabled by the container technologies (i.e., Docker) allows multiple indepen-

dent applications to run in isolation on a single OS as if there are on a separate OSs.

OS-level isolation allows running multiple OS virtual instances on the same physical

hardware, referred as multi-tenancy (i.e., Xen or Quick Emulator (KVM/QEMU).

At the heart of the Virtualization world is the Virtual Machine Monitor (VMM),

referred to as a hypervisor. During the mediation of the resource virtualization by the

hypervisor, mapping virtual requests from the guest OS to the available physical re-

sources, one can peek into the low-level live memory and CPU activities for proactive

monitoring, referred as Virtual Machine Introspection [6]. Thus, isolation coupled

with VMI -based defensive security schemes o↵ers unprecedented defensive capabili-

ties that were not practical in non-virtualized domains, hence, the core building blocks

of our framework.

Recent computing advances in cloud technologies enables hardware assisted secu-

rity. These include; Intel’s SGX processor that divides the CPU into many secure en-

claves/sandboxes to protect applications from each other or even from a compromised

OS; and the ARM TrustZone processor divides CPU into two halves, the insecure and

secure worlds that communicate via a Secure Monitor Call instruction. In this dis-

sertation, we develop the framework with publicly available cloud software stack,

referred to as cloud framework, and commodity o↵–the–shelf hardware architectures

without customization.

There are a number of cloud frameworks that simplify the management of the

cloud platforms. These include; Eucalyptus, OpenNapula, OpenStack, Cloudstack

and Nimbus. We built our framework on top of an OpenStack framework [7]. Open-

Stack was developed by NASA and RackSpace [8], a cloud provider who serves a well

established businesses like Netflix. OpenStack is currently used by many organiza-
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tions such as AT&T, HP, IBM for their private cloud o↵erings and their own internal

systems.

1.3 Threat Model and Assumptions

Our attack model considers an adversary taking control of a node/VM by by-

passing the traditional defensive mechanisms, a valid assumption in the face of novel

attacks. The adversary gains systems’ high privileges and is able to alter all aspects

of the applications. Traditionally, the adversaries’ advantage, in this case, is the un-

bounded time and space across the replicas to compromise and disrupt the reliability

of the entire system. The commonly studied disruptive behavior for reliable dis-

tributed systems known as a Byzantine Failure Model, in which several compromised

nodes deviate from the specified system protocol.

We consider a replicated systems model where the adversary can exploit many

replicas in order to collude. Specifically, we consider adversaries that exploit systems

with rootkits to compromise the OS. Because of our solution approach allows the

replicas to exist for a short time in which that lifespan can be hard-wired in the

application, we consider the adversary to attack the system any time, right from

start of the replica.

We further assume the attacker takes a minimum time t to compromise a node n,

and having seen or attempted to compromise n with a given tactic devised for a given

exploit will not reduce the time to compromise a new node n0. This is because the

new node n0 will require new tactic and new exploit to compromise it given the fact

that it starts with new characteristics such as di↵erent OS, on di↵erent hardware and

hypervisor. Furthermore, the adversary can employ arbitrary attacks on the nodes in

the replica group only. We do not consider attacks that targets the networking fabric

of the compute instances (i.e., SDN) that can disrupt the routing table [9].

The fundamental premise of our framework is to eliminate the adversaries’ advan-

tage of time and space and create the agility to avoid attacks that can defeat system
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objective by extending the cloud management framework. We assume the cloud man-

agement software stack, specifically, the nova compute, galance, and neutron for the

software defined networking are secure. We further assume the virtual introspection

libraries are secure and capable of capturing accurate live application memory.

1.4 Motivation

Advances on resiliency to arbitrary faults and system failures have contributed well

established sound protocols and paradigms in distributed systems, however, resiliency

against sophisticated attacks still pose a challenging task. This is due to the fact that

replication/redundancy is the corner stone of building reliability guaranteed fault-

resilient systems, however, this solution approach is double-edged-sword in which

increasing reliability through replication increases the system’s attack-vector (i.e.,

need to protect more nodes). Figure 1.1(a) depicts the traditional replicated system

view of the space (i.e., across platforms) (y-axis) and runtime (x-axis) (i.e., elapsed

time).

The criticality of diversity as a defensive strategy in addition to replication/re-

dundancy was first proposed in [10]. Diversity and randomization allow the system

defender to deceive adversaries by continuously shifting the system’s attack surface

– the set of ways/entries an adversary can exploit/penetrate the systems [11]. In

general, the idea of proactive diversity is to periodically randomize replicas in the

hope of reducing windows of vulnerability. Notable examples are N-Version program-

ming [12] that proposed techniques to produce computationally variable binary forms

of the same program, and N-Variant Systems [13] for running multiple variants of the

same system in synchrony with a given input and monitoring for divergence. How-

ever, these techniques are often defeated when attacks target the runtime-level (i.e.,

return-oriented/code injection attacks).

Code injection attacks target runtime execution with exploits such as bu↵er and

heap overflows and control flow of the application (i.e., JIT-ROP). Techniques such as:
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Instruction Set Randomization [14], Address Space Randomization [15], randomizing

runtime [16], and system calls [17] have been used to e↵ectively combat against these

attacks. These runtime-level diversification and randomization defensive strategies

are considered mature and tightly integrated into some operating systems.

Furthermore, with the increased adoption of Software Defined Networks as the

core networking building block of the cloud, network level randomization techniques,

known as IP-Hopping, to defend against network exploits (i.e., network poisoning)

have been proposed recently [18]. These defensive security mechanisms, commonly

referred to as a Moving Target Defense (MTD) [19], are independently designed to

combat against specific threats in separate layers of the system; for high-level (i.e.,

application/replica), system-level (i.e., runtime), and network-level (i.e., IP-Hopping).

The fundamental problem of the the state–of–the–art MTD solutions are a one

dimensional space-based system view. As illustrated in Figure 1.1(b), an MTD ca-

pability is typically applied on a single layer as depicted on the arrows on each cell,

at the application layer (i.e., N-Version), in the space in any given time, where time

is a continuous function. Applying most of these defensive MTD schemes (i.e., ASR

or ISR-enabled OS) to systems in a given layer requires the system to be taken down

in which typically takes minutes/hours. This allows the attacker with its unbounded

time to exploit only one cell in the space to take control of the system (i.e., next zero

day attack), until the vulnerability is discovered (which takes from days/months or

years in some cases) and a new state–of–the–art solution is introduced to mitigate

that threat. The race to stay one step ahead of the attacks continues.

We introduce a unified generic MTD framework designed to simultaneously move

in space (i.e., across platforms) and in time (i.e., time-intervals as low as a minute)

as shown in Figure 1.1.(c). Unlike the–state–of–the–art singular MTD solution ap-

proach, we view the system space as a multidimensional space where we apply MTD

on all layers of the space (app, OS, network) in short time intervals while we are

proactively monitoring (discussed in section 1.4.2) all the replicas in the system.
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(a) Traditional System (b) State–of–the–art System

(c) Proposed System

Fig. 1.1.: MTD solution space

As illustrated in Figure 1.1(c), our solution approach views the system as a Multi-

Dimensional (MD) space as a function of time f(time). In each time-interval, we ter-

minate a node and activate a new one (depicted in the arrows) while we are observing

the runtime of the other nodes and marking accordingly based on the proactive mon-

itoring component results. We mark the node on either Clean (C) for a node whose

internal runtime is intact or Dirty (D) for a compromised or a missing node, depicted

C and D entries of the time-interval cells. To illustrate this concept, in Figure 1.1(c),

in the 3rd termination round for replica
n

depicted on the arrow on the 3rd cell, for

instance, we detect replica1 to be clean and replica2 as dirty as shown in it’s time-

interval entry D. In the next time-interval, we terminate replica2 prior to any other
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replica scheduled for termination. In general, the nodes whose entry show D takes

priority over the scheduled node in each time-interval, thus, preventing the nodes to

blindly move across platforms.

This defensive tactics makes the attacker’s job di�cult to compromise a node, for

instance, by the time the reconnaissance of the node (i.e., OS fingerprinting), exploit-

ing vulnerabilities (understanding app/memory layout), and crafting the attack (i.e.,

code injection attack) process completes, there is a high chance of the node changing

in space upon carrying the attack. In the case where the attack was crafted earlier

and succeeds in a short time, then, the node is under the control of the attacker for

a short time since it gets terminated eventually in the subsequent time-intervals. If

detected, then, we terminate that node instead the scheduled on, and learn to avoid

that specific configuration for the next time interval.

The framework is built on randomization and diversification techniques, referred

to as Reincarnation, discussed next, where the nodes are pre-packaged with the tra-

ditional MTD capabilities (i.e., Address Space Randomization) and moved across

platforms (i.e., space) in time intervals. To prevent moving blindly in space, the

framework is integrated with a proactive monitoring scheme below the OS using Vir-

tual Machine Introspection (section 1.4.2). This allows to e↵ectively move across

platforms for defensive measures and avoid configuration combinations (i.e., OS, hy-

pervisor) and platforms (i.e., hardware) that are susceptible to attacks.

With these two capabilities, coupled with the formal model of the framework, one

can easily observe the high-level system behavior in each time-interval on whether we

are in desired (i.e., initially deployed) state, or undesired state (i.e., under attack or

compromised) (section 1.4.3). We highlight these three logical building blocks of the

framework next. In this dissertation, we show how the aforementioned three logical

building blocks are su�cient to address the desired security objective.
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1.4.1 Node Reincarnation

Reincarnation is a technique for enhancing the resiliency of a system by termi-

nating a running node and starting a fresh new node with di↵erent characteristics

(i.e., hypervisor, OS) for its place. This new node will continues to perform the

computing task as its predecessor without disrupting the computations (i.e., applica-

tion runtime). All the nodes in the proposed MTD framework have a predefined short

lifespan, as low as a minute, and an observation status that dictates whether the node

reaches its lifespan or reincarnated prematurely due to attacks. For instance, some

replication models (i.e., quorum-based) have 2/3rd of the nodes running in sync at

all times, as a result, some nodes are exposed to attacks longer than others, thereby,

prioritizing node reincarnation is critical. The technical challenges inherent in this

runtime transformation is discussed in details in Chapter 3.

1.4.2 Proactive Monitoring

Hypervisors enable many isolated OS’s to share hardware resources. The Vir-

tual Machine Monitor (VMM) is the management interface between the hosting OS

and the Guest OSs. The transparent mapping of the virtualized OS resources (i.e.,

virtual memory, vCPU) into the physical memory enabled by the VMM allows the

interception of events to detect anticipated changes of the applications in the guest

OS, thus, enables to safeguard the system below the OS, a process known as Virtual

Machine Introspection (VMI) [6]. Such detection schemes are di�cult to subvert by

attacks originated inside the VMs of the applications. The implementation details or

our proactive monitoring with VMI is discussed in Chapter 2.

1.4.3 Desired vs. Undesired System States

Typically, we deploy a system in a desired state and at some point in time we end

up in an undesired state (i.e., compromised or failed) without our knowledge (in most
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cases). This is mostly credited to a successful stealthy attacks that creates turbulence

(i.e., under attack) state, infinitely many times until the system is compromised, data

is ex-filtrated or less usable (fail or crash). These high-level system state uncertainties

are driven by what is happening at the application’s runtime level. For instance, if a

node/server is compromised and is still running, then, the system is in a compromised

state; or when a node crashes in which the system enters into a failed state. One way

to formalize this behaviour in order to mathematically reason the correctness of the

framework is through Hierarchical Hidden Markov Model (HHMM) [20], discussed in

details in Chapter 3.

1.5 Thesis Statement

The thesis statement of this dissertation is:

With the increasing-level of sophistication of attacks in recent years, it is possible

for the systems to resist these attacks with a combination of mobility capabilities in

order to move across platforms and guidance on where to move, while serving their

legitimate users.

1.6 Thesis Contribution

The key contribution of this dissertation is the extensible design of the generic

framework built on a sound theoretical foundation to mathematically reason about

system behavior using well established tools and techniques. Using this design prin-

ciple as the cornerstone, this dissertation advances the state–of–the–art by extending

the widely adopted cloud management framework with novel defensive strategies to

combat against the ever evolving attacks on systems deployed on these complex plat-

forms.

Towards realizing attack-resiliency for distributed systems on cloud platforms, this

dissertation makes several fundamental contributions. These include:
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• O↵ering a defensive strategy to reduce or eliminate the need to continuously

fight threats (i.e., zero day) that is di�cult to win due to the subtle and poorly

understood attack-vectors of the cloud and the level of the sophistications em-

ployed in modern attacks.

• Introduces a formal model and algorithms for Moving Target Defense, a defen-

sive strategy that is considered a game changer [21].

• Introduced a new generic and unified MTD framework for distributed systems.

• Enables operation continuity in highly-targeted systems (i.e., military, finance,

health).

Our technical contributions are in the simplification of the cloud platform taxon-

omy, real-time application runtime integrity violation detection techniques, system

randomization and diversification algorithms to anticipate threats before they be-

come a problem. Furthermore, transforming the cloud management framework APIs

from asynchronous VM management to synchronous model to support the dynam-

ics of VM diversification without changes to the applications. These capabilities are

critical to ensure operation continuity in commercial and military systems on un-

trusted and highly-targeted cloud computing infrastructures. We now highlight our

key contributions and their impact in the following subsections.

1.6.1 Framework Design

The proposed framework adopts a cross-vertical design that operate on three dif-

ferent logical layers of the cloud framework; the nova compute at the application layer

(GuestOS layer), the VMI at the hypervisor layer (HostOS layer), and the neutron

at the networking layer (SDN). We know that these three logical layers of the cloud

abstracts the applications deployed in these platforms regardless of their architectural

styles or system models into a unified virtual computing environments (VMs). With

this design, we further extend the abstraction of the applications’ runtime in these
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VMs without changes to the applications deployed in them as depicted in Figure 1.2.

This allows us to easily reason about the high-level system status from the low-level

application runtime in time-intervals.

Fig. 1.2.: Mayflies MTD framework.

1.6.2 Abstractions and Paradigms

In a cloud platform built with OpenStack, the nova compute abstracts the virtual

machines from the applications in order to isolate (i.e., multi-tenancy) each other

while sharing the same physical hardware in pursuit of cost e�ciency, and ease of

integration and deployment. Technically, this isolation is achieved by provisioning

and de-provisioning VM instances on available platforms (hardware), and the pro-

grammable Software Defined Networking (SDN). The process for sharing the resources

which is mediated by the hypervisor is achieved by stopping a VM from execution

and resuming another one without any consideration of the actual running application

architecture or system model, referred to as VMEntry and VMExit. This is similar

to context switching of the CPU in application domains.
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As illustrated in Figure 1.2, we introduce two abstraction layers on top of the

traditional application runtime that is already abstracted within a VM by the cloud

framework as eluded above. The first abstraction is the Time-interval Runtime Exe-

cution (TIRE). TIRE is simply to partition the runtime into time-intervals, depicted

on the dots on the arrow time line, in order to evaluate the system state (i.e., desired

and undesired) within these time intervals. We developed algorithms to pro-actively

terminate a VM and start a new one on a heterogeneous platforms (hypersors, OS’s)

at runtime by extending the asynchronous model of the VM provisioning and de-

provisioning of nova compute API implementation, and dynamically swapping the

network interfaces with the neutron API implementation of the SDN, discussed in

details Chapter 3.

The second abstraction is the two high-level system states; desired and undesired

states, to formally reason about the system behaviour. The driving engine of these

states are; a) the pro-active monitoring scheme used to detect system runtime in-

tegrity violations below the OS using virtual introspection, and b) the pro-active node

reincarnations in time-intervals. Based on the observation in a) depicted on the dot-

ted arrows on the TIRE, we can easily reason the system state in each time-interval

on whether the system is still in its desired state (i.e., initially deployed state) or it

is in undesired state (i.e., compromised), if so, reactively anticipate state changes to

our favour in the subsequent time-intervals.

These abstraction layers allows randomization and diversifications on all types of

distributed systems in any cloud platform (i.e., OpenNapula, Eucalyptus).

1.6.3 Formal Model

Finite State Automata (FSA) is widely adopted mathematical machinery for spec-

ifying system with both deterministic DFA and non deterministic NFA properties,

especially, fault tolerant distributed systems. Buchi automaton [22], a type of !-

automaton which is NFA are the most popular kind of automaton used in modeling
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distributed systems. It is extremely challenging to develop an e↵ective proven meth-

ods for high-level system state transitioning under the in-deterministic nature of the

cyber space, therefore, we model the framework using probabilistic FSA (PFSA).

PFSA is simply a non-deterministic FSA (with no ✏ transition) with probabilities for

all transitions of the FSA.

We formulate our model in terms of Finite automata which enables us to formally

describe a probabilistic transitioning behavior correctly and define the resiliency of

the system formally. By definition, PFSA is a generative model, where as the FSA

(non-probabilistic) finite automaton, are accepting devices for strings generated by

grammars in formal languages. We don’t specify any alphabet input string
P

for

our automaton, however, we use the output alphabet donated by ⇤ where a 2 ⇤

and is generated by simply observing the system’s active nodes in time intervals. For

example, if any node’s runtime integrity violated, the system is considered compro-

mised (i.e., undesired) and we need to resist such behaviour by reincarnating the

unscheduled node to o↵set that loss.

The high-level system transition is dictated by the underlying observations col-

lected during system runtime in a pre-specified time intervals at the Time-Interval

Runtime Execution (TIRE) abstraction layer, therefore, it is intuitive to decompose

the framework model into two automaton, separating the high-level system behavior

and its internal runtime execution (i.e., TIRE), to easily reason the correct behavior

of each model independently.

1.6.4 Automata Decomposition

Finite State Automata allows modelling complex systems by decomposing into

multiple automaton and then chaining one automaton output to a second automatons’

input, thereby, reasoning about the system behavior separately while composing them

to achieve the desired results. Therefore, we model the two abstraction layers of the

framework with independent automata; time-interval runtime execution and high-
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level system states, in which the observations ⇤ of each time-interval that results in

either true or false be the output of the automaton and then accept as input of the

other.

The expressiveness of the Accept lies the power of the Buchi automaton to model

the time-interval runtime execution, and the correctness property (i.e., safety and

liveness) violations can be specified in terms of the Accept condition. A property is

specified as a Buchi automata A and then characteristics of the structure of this au-

tomata are used to classify its properties. We achieve such structured characteristics

by modelling the framework with PSFA, specifically, a Hierarchical Hidden Markov

Model (HHMM) [20] represented with Dynamic Bayesian Networks (DBN) [23], a

time-linear representation of HMM.

Modelling the framework with two automatas allow us to reason individually, and

to further compose with other formal automata models such as; interface automata

[24], virtual machines [25], cloud framework [26], and attack surface [11]. Therefore,

the framework fills the gap for reasoning attack-resiliency in all aspects of the systems

deployed on these complex cloud platforms.

1.7 Thesis Organization

We addressed the proposed framework in four chapters, described below:

Chapter two, Proactive Application Run-time Monitoring with Virtual Intro-

spection is based on the published journal article titled; Towards Targeted Intrusion

Detection Deployments in Cloud Computing [27]. This chapter introduces a simpli-

fied cloud taxonomy in order to adopt a light-weight virtual introspection intrusion

detection scheme as a proactive monitoring capability for the framework.

Chapter three, Mayflies : A Moving Target Defense Framework for Distributed

Systems. This chapter introduces bio-inspired attack-resilient MTD framework for

distributed systems which we call it Mayflies, and discusses the theoretical underpin-

nings, design, model and implementation of the prototype.
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Chapter four, Byzantine Fault-Avoidance (BFA). This chapter deploys a Byza-

tine Fault-Tolerant (BFT) system prototype (i.e., synchronous system model) on

Mayflies framework and illustrates how the framework transforms BFT systems to

BFA, a distributed system that avoids threats and withstands attacks (i.e., Byzantine

under attack [28]) than tolerating faults to a certain degree. This chapter is based on

our published work titled; From Byzantine Fault-Tolerant to Fault-Avoidance: An

Architectural Transformation to Attack and Failure Resiliency [29].

Chapter five, Disruption-Resilient Publish and Subscribe. This chapter illus-

trates Mayflies framework with an event-based systems (i.e., asynchronous system

model). This work is based on the published work entitled; Disruption Resilient

Publish and Subscribe [30] which shows how chain replicated system model can be

diversified and randomized to combat against a wide array of attacks that are common

to these systems.

The remainder of the dissertation proceeds as follows: Chapter 2 and 3 present

each logical building blocks of the proposed framework described above. To illustrate

the framework with widely adopted systems in a realistic cloud settings, Chapter 4

and 5 discusses the e↵ectiveness of the proposed framework on two di↵erent classes

of systems and present experimental results in terms of their performance and attack

resiliency. Finally, we summarize the thesis and discuss our future work in Chapter

6.
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2. PROACTIVE APPLICATION RUN-TIME

MONITORING WITH VIRTUAL INTROSPECTION

Protecting application runtime in dynamic cloud platforms with the traditional secu-

rity tools and techniques is increasingly challenging. One common widely protection

scheme for such platforms is to continuously monitor anomalous system behavior

for intrusion in order to prevent security violation incidents or reduce its impact

when such violations occur using an Intrusion Detection System (IDS). Existing IDS

techniques are ad-hoc and cumbersome to properly tweak for di↵erent layers of the

virtualized platforms. One of the core issue is mapping the IDS taxonomy classes to

the complexity of the multiple independent interconnected components (i.e., compute,

network) of the underlying cloud computing fabric.

In this chapter, we propose a simplified IDS taxonomy model and a deployment

decision support techniques for cloud platforms. We present a light-weight IDS us-

ing Virtual Machine Introspection (VMI) to safeguard application runtime for the

proposed Moving Target Defense (MTD) framework. We illustrate the taxonomy

mappings with two di↵erent attack scenarios and detection capabilities of the VMI.

This chapter is based on a published work “Towards Targeted Intrusion Detection

Deployments in Cloud Computing” [27].

2.1 Introduction

Cloud computing is a cost-e�cient computing paradigm that can scale up or scale

down on demand with limited system management/maintenance requirements due

to its structured building blocks and the hierarchical deployment models. The three

widely accepted cloud platform categories are 1) a private cloud, built in within orga-

nizational boundaries, 2) a public cloud, typically rented from commercial companies
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such as Amazon, RackSpace, HP, Google and Microsoft, and 3) a hybrid cloud that

provides a composition of private and public solutions. Within each of these platform

categories lie three service deployment models similar to the utility services, referred

to as “pay–as–you–go” service fee model: Software–as–a–Service (SaaS), Platform–

as–a–Service (PaaS) and Infrastructure–as–a–Service (IaaS).

The main di↵erence between the three service deployment models is the level of

administrative responsibility between the cloud user and the cloud provider for man-

aging and maintaining the cloud systems. For example, for SaaS, the software is

o↵ered by the cloud provider as a fee-based (i.e., salesforce.com). For PaaS in pub-

lic clouds, for example, some applications (e.g., web-servers) can be deployed with

little or no cloud conformance or modification requirements where the management/-

maintenance responsibilities are left to the cloud provider. Additional management

responsibilities are transferred to the user for the IaaS model. Thus, the specific

service deployment model dictates the type of IDS scheme suitable in that specific

layer.

There has been a wide array of IDS work in the past few years. Special treat-

ment of the current techniques and open issues is given in [31]. IDS techniques vary

from system to system, for instance, one IDS technique [32] employed by the cloud

providers independently collect monitoring information at di↵erent levels of granu-

larity to address the relationship behavior between the VMs rather than anomalies.

Deployment strategies for selected IDS techniques are presented in this survey [33].

One common theme among all cloud-based state–of–the–art IDS solutions is that

they are designed for one layer of abstraction of the cloud; thus, they require tweaks to

accommodate other threats and layers across the infrastructure. Furthermore, tradi-

tional IDS taxonomies are engineered for a given layer of abstraction or for the system

as whole (i.e., from the application logs down to the network tra�c). Therefore, it

is prudent to develop a simple taxonomy that abstracts the low-level (i.e., system

and network) details for the application layer in order to adapt to a specific target

for monitoring, for instance, in our case, application runtime monitoring. This is to
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enable a proactive monitoring capabilities for the applications at run-time. Unlike

the traditional IDS monitoring schemes, runtime monitoring requires faster decision

of the VM behavior, thus, we leverage a Virtual Machine Introspection (VMI) [6] as

an IDS solution and adopt the proposed taxonomy mapping techniques to illustrate

its e↵ectiveness.

2.2 Simplified IDS Taxonomy Model

Targeted IDS deployments in cloud environments require mapping IDS solutions

to specific layers of abstraction of the cloud, however, such mapping is not a one–to–

one mapping. For example, IDS solutions in the literature are classified as network

or host-based. The host can be the guest VMs or their host OS (i.e., hypervisor). In

cloud computing environments, the network layer is not accessible to SaaS and PaaS

service models, therefore, such classifications is harder to clearly map IDS solutions

to its proper cloud service deployment model. An overview of a comprehensive IDS

taxonomy is given in [34]. In this section, we classify existing IDS solutions in relation

to cloud service deployment models to simplify such mappings.

The simplified methodology enables e↵ective data collection in a variety of system

areas which is the core foundation of an e↵ective IDS solutions. For network-level

IDS schemes which is only available at the IaaS cloud service model, for example, the

timely collection of network tra�c and determining the correct anomalous behavior

within that data is critical. Yet, these decisions are not 100% accurate; some cases

drop to 80% [35] which is unacceptable in some applications.

Furthermore, the accuracy of detecting a threat is hindered as the systems grow.

Typically, most applications are built with components authored by di↵erent devel-

opers who choose what to log [36] which further contributes to the volume of collected

data that needs to be automatically analysed in a timely manner with high accuracy;

a problem further worsens if the data is unstructured. Labelling and associating such

data to derive an accurate anomalous behavior typically poses a greater challenge.
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Fig. 2.1.: Simplified IDS taxonomy classes (left) and cloud service deployment mod-
els depicted as rings (right)

Therefore, it is critical to develop a simple yet e↵ective taxonomy model that can

easily map IDS solutions to the desired cloud service model for collecting real-time

data. We introduce a simplified IDS taxonomy; System, Data, and Implementation

Scheme, depicted as three rollers in Figure 2.1 (left) and, cloud deployment models

are depicted as layered rings (right).

2.2.1 Cloud Service Deployment Models

Figure 2.1 (right) show the common cloud service deployment models depicted as

rings, a private and public cloud flavours are depicted in the left and right quadrants

of the rings, and hybrid on the bottom half. The inner ring represents the hardware

and networking which is virtualized by the hypervisor, depicted on the second ring.

On top of the hypervisor, are the three service delivery models; IaaS, PaaS, and

SaaS respectively. The short double arrows represent IDS positions, e.g., by the

data center (cloud providers) or at the internet service provider (ISP)/internal for

corporate private clouds.

IaaS, PaaS, and SaaS service models o↵er di↵erent protection schemes for the

applications deployed (depicted as a plus sign). From the cloud users prospective,
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applications deployed IaaS have user provided (i.e., introspection) monitoring data

depicted as double circles around the plus sign. By moving further away from IaaS,

applications have some form of monitoring information provided by cloud provider

(i.e., application server or database logs), depicted as a single circle in PaaS or dotted

circles in SaaS. The arrows and gears represent positioning additional protection/-

monitoring schemes like firewalls at the ISP found in private clouds or the data centers

in public clouds. It is intuitive to see that these layering schemes are easier to map a

simplified IDS capabilities on such environments. For example, the network attribute

in the systems taxonomy class can only be mapped to IaaS service model.

2.2.2 Taxonomy Classes

In this section we describe the three taxonomy classes, then we give a realistic

attack and VMI-based detection use case scenario to show its e↵ectiveness.

System Class

In Figure 2.1 (left), we consider the traditional network and host taxonomy under

the Systems class (depicted in the 1st roller). The main rationale behind our grouping

is due to the cloud deployment models where the line between the host and network

is merged into the guest and the host. For example, due to the multi-tenancy model

of the cloud, SaaS and PaaS deployment models have no access to the network tra�c

and the host machine, therefore, the Systems class covers everything including the

network, host, guest, the topology, and the architecture.

Data and Scheme Classes

Data collected and the scheme used to detect intrusion is critical to the success

of the IDS. This is because di↵erent abstraction layers of the cloud o↵er di↵erent

data sources, and the IDS scheme permissible in deploying in that abstraction layer
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as depicted in the second and third rollers in Figure 2.1 (left). Therefore, we classify

Data and Scheme independently, where the Data can be the network tra�c data,

logs, or system audit trails, and the Scheme is simply the scheme used to implements

the IDS system. For example, anomalous-based, behavior-based, signature-based,

and proactive monitoring (continuous monitoring), etc.

Anomalous-based intrusion capabilities available for the applications are in direct

relation to their deployed service ring. For example, it is intuitive to see network tra�c

data cannot be collected from an application deployed in SaaS unless customized

tenant tra�c is directed to the users VM by the cloud provider. Additional data

sources in this ring include: audit trails logs, applications or database logs, the cloud

provider’s logs (for billing purposes), and application signatures (HMAC hashes).

Additional logs at the platform level (e.g., detailed OS logs, application servers,

etc.) are available in PaaS. The traditional anomalous behavior found in these appli-

cations and system logs include function calls made/logged, temporary files written

somewhere, failed connections to a system or database, or too many unsuccessful lo-

gin attempts. Using these as the key data sources for the IDS, one can detect specific

threats. However, if the guest OS/VM is compromised and undetected, the integrity

of these logs is di�cult to verify, thereby, receiving logs/signatures the attacker pre-

pared for the IDS.

Each service deployment model o↵ers di↵erent data sources and enumerating un-

known threats to craft for specific IDS is cumbersome and ine↵ective. Therefore,

applications need to be deployed based on their critically of detection needs into the

appropriate service models (rings) and map the traditional IDS solutions suitable for

that ring or craft if needed. To simplify the mapping process, we introduce a decision

support matrix.
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2.2.3 Deployment Decision Support Matrix

Determining the target spot for IDS deployment for applications in cloud platforms

is highly dependent on two factors; the threat model and the available data source

to derive the anomalous behavior from. In other words, the fundamental question is

what we consider anomalous behavior under a given threat and what are the data

sources that we need to collect and derive the undesired behavior from? Thereby, the

data sources are the key determining factor of the success or failure (miss or high false

alarm rates) of the IDS solution deployed. Since this work is focused on the taxonomy

simplification for targeted deployment, we don’t consider covering the proposed IDS

alarm rate accuracy.

Table 2.1.: IDS Decision Matrix

Model System Data Scheme
SaaS N/A SaaS App logs, Audit logs Signature, Behavior
PaaS N/A SaaS OS logs, App logs, Audit logs Host, Signature, Behavior
IaaS VMI Live Memory snapshots Proactive and Reactive

Table 2.1 show the decision matrix; the cloud provider model in column one, the

IDS system in column 2, and few examples of Data and Scheme used for a given

threat in columns 3 and 4. We use a motivating example use case scenario (discussed

next) with the system model reference in Figure 2.1 to show how the entries are filled

in for a given IDS solution.

2.3 Proactive Monitoring

Proactive is typically defined as the continuous monitoring or system observation

while reactive is the reaction or the response upon detecting abnormal or intrusion

behavior. To illustrate the benefits of the proposed simplified mapping scheme using

the decision support matrix in Table 2.1, we show how the targeted solution adopts to
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the threats of a given intrusion use case. Enumerating possible threats to proactively

monitor is infeasible, we devise a specific use case for application runtime anomaly,

thus, our IDS operate below the OS (VMs) at the hypervisor-level in a private cloud

setting.

The hypervisor loads the next application to execute into the CPU, specifically, at

CR3 register. One can detect these events and alarm anomaly if the application is not

authorized. Another methods is capturing the application’s live memory snapshots

to detect unauthorized application/code snippet (i.e., code injection) loaded in the

memory with Virtual Machine Introspection (VMI) [6]. We are interested in the

later case given that we can further analyze the memory if needed in contrast to an

application name found in the registry. Since we are interested in monitoring the

application run-time we can simply peek the application’s live memory structure and

detect if altered, not the system as whole (OS logs, network tra�c, etc.), hence, we

refer to as light-weight IDS.

2.4 Proactive Monitoring with VMI

A typical cloud computing node consist of a host OS using a hypervisor (Xen or

KVM) to virtualize the computing hardware resources, and a guest OS to deploy ap-

plications. Our lightweight VMI-based solution pro-actively gathers live memory

data in intervals and reacts if detected anomalous behavior. With this information,

we now fill the decision support matrix table an entry of the System column with

VMI and Data column with memory data structure snapshots, and Scheme column,

as the name implies, is filled with our proactive and reactive. The monitoring process

is as follows:

1. Start the application to be protected in the guest VM.

2. Take memory snapshots in time intervals at the host OS.
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3. Analyse life memory data structure in real time and alarm any runtime integrity

violation of the applications runtime as an intrusion.

2.4.1 Use Case Scenario

Consider an adversary compromising a VM node using a kernel root kit. For

e↵ective detection strategy, we are interested in solutions that are outside the VM

that we are trying to protect. Given the threat and the solution approach, we fill

the matrix in Table 2.1 entries in SaaS and PaaS System columns with “N/A” which

means that system-level or architectural solutions are not available in these service

deployment models. Data and Schemes available in that service model, as described

earlier, are also filled in their appropriate columns.

To illustrate our intrusion scenario, we adopted two stealthy attacks that are

di�cult to detect from logs collected in the VM/OS or network tra�c:

1. Attack 1: We mimic a node compromise by logging into the VM, stopping the

victim process, and starting a malicious one with the same name but di↵erent

functionality; presumably stealing data. The process is a small c program that

simply prints a counter value, its process ID, and a function name print() and

sleeps for few seconds in a continues loop.

2. Attack 2: In a realistic setting, some applications have many runtime depen-

dencies and may be orchestrated with other applications. Restarting the process

causes to break the dependencies or the chain, thereby triggering an alarm. To

circumvent, we hijack the application by loading/injecting a shared library and

diverting to make additional function calls without stopping the process, print2()

in this case, that is implemented in the injected shared library.

Since the focus of this chapter is to illustrate our light-weight IDS deployment for

proactive monitoring for the proposed MTD framework, we will not discuss the details

of the attack implementation. For those interested, the program and the application

hijacking attack process used in this work are downloaded from the public domain.
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(a) Application Restart (b) Application Hijacking

Fig. 2.2.: Application runtime integrity attacks

2.4.2 VMI-based Runtime Anomaly Detection

We installed Library for Virtual Machine Introspection LibVMI [37], an open

source VMI library, in the host OS and continuously capture live application memory

snapshots in time-intervals which has a negligible performance impact [38] on the

application. For the first use case, we started our victim application attack1 in a

virtual machine and killed it with control c as shown in Figure 2.2(a). For the second

use case (attack2), we injected a shared library and manipulated the victim’s print()

return function in order to execute our print2() function in the injected shared library

and corrupt the counter by starting at 1001 as shown in Figure 2.2(b).

Attack 1 Detection

In order to e↵ectively detect this attack shown in Figure 2.2(a), we take an initial

memory snapshot, then for every snapshot (i.e., as low as a minute), we perform two

comparisons, the process ID and the address o↵set. This is because, in some cases,

we found out that the hypervisor re-assigns the address o↵set as soon as a process
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is terminated as shown in Figure 2.3(a). Strangely, the same o↵sets 3b949700 and

3b949700 but di↵erent process ID, 1688 vs. 1681. Typically, as shown in Figure

2.3(b), restarting a process gets assigned with a new process ID 1767 and a new

process address o↵set [3c650000vs...3b949700 ].

A kernel rootkit can easily circumvent this attack by hiding the process ID from

the process list, making it di�cult to detect such intrusion within inside the VM/OS.

We detected the attack at the host OS in two ways; a process ID or memory address

o↵set mismatch, or both is some cases. Next, we show how this monitoring scheme

can be circumvented in Attack2.

(a) Mismatch process ID but same address o↵set

(b) Mismatch address o↵set

(c) Corrupted internal address block

Fig. 2.3.: Integrity violation detection
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Attack 2 Detection

We hijack the application using code injection attacks to avoid detection for at-

tack 1. As shown in Figure 2.2(a), we call a function to print print2() implemented

in the injected code while still printing it’s process ID 1958. To detect such attack,

we need to analyze the memory snapshots deeper in order to find any discrepancies

caused by the malicious code that implements the print2(). Note that deep mem-

ory analysis is typically performed for Malware detection. Since the memory data

structure content of a single snapshot of an application is large, deeply analysing this

content is not suitable for application runtime monitoring because it is associated

with a high performance cost, however, we were able to detect this attack with few

string comparisons of the address block o↵sets as shown in Figure 2.3(c).

The memory data structure contains the continuous address block of the running

applications’ data and the execution parts. We simply store the first two hex charac-

ters of each block’s starting address o↵set in order to prevent performance overhead

inherent in deep live memory analysis. We then compare the incoming scan results

of these values of our target application in time-intervals. We detected the block’s

starting address mismatch when we hijacked the application. This shift in address

space at position df as shown in Fig. 2.3(c) was due to the injected library’s physical

address space allocated by the hypervisor.

2.5 Conclusion

In this chapter, we showed a simplified IDS taxonomy with a decision support

matrix as a guide for developing and deploying a targeted IDS solution on a given

cloud service model. With this taxonomy model, a light-weight IDS for real-time

application runtime integrity violation detection is deployed and illustrated with a

realistic attack and detection use case scenarios.
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3. MAYFLIES: A MOVING TARGET DEFENSE

FRAMEWORK FOR DISTRIBUTED SYSTEMS

Advances on resiliency to arbitrary faults and system failures have contributed well

established, sound protocols and paradigms in distributed systems literature, however,

resiliency against sophisticated attacks on these systems is poorly explored. The

corner stone of this contribution lie redundancy/replication techniques in which turns

out to be a double–edged–sword when facing sophisticated attacks. This is due to

the fact that increasing the number of nodes for reliability purposes, increases the

system’s attack-vector – the set of ways an attacker can penetrate a system (i.e.,

more nodes to protect). To remedy this issue, in this chapter, we present an attack-

resilient framework for distributed systems, dubbed Mayflies.

3.1 Introduction

The traditional defensive security strategy for distributed systems is to safe-

guard applications against malicious activities and prevent attackers from gaining

control of the system. The strategy employs well established defensive techniques,

i.e, perimeter-based fire walls, redundancy and replications, and encryption. How-

ever, given su�cient time and resources, all these methods can be defeated, especially,

when dealing with sophisticated attacks from advanced (technically) adversaries that

leverage zero-day exploits.

Moving Target Defense (MTD) [19], is a defensive strategy that aims to reduce the

need to stay one step ahead against attacks by disrupting attackers gain-loss balance.

The core of this strategy is to continuously shift the system’s attack surface [39] – the

set of ways/entries an adversary can exploit/penetrate the systems, with the goal of
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increasing the cost of an attack and the perceived benefit of compromising it. This

is achieved by randomization and diversification of the nodes across platforms.

There are well established MTD solutions designed specifically to combat against

specific threats, but limited when exploiting beyond their boundaries, for instance,

application-level redundancy and replication schemes prevents exploits that target

the application code base, but fail against code injection attacks that targets runtime

execution such as; bu↵er and heap overflows, and control flow of the application.

Instruction Set Randomization [14], Address Space Randomization [15], random-

izing runtime [16], and system calls [17] have been used to e↵ectively combat against

system-level (i.e., return-oriented/code injection) attacks. System-level diversifica-

tion and randomization is considered mature and tightly integrated into some oper-

ating systems. Most of these defensive security mechanisms (i.e., instruction/memory

address randomization) are e↵ective for their targets, however, modern sophisticated

attacks require defensive solution approaches to be deeply integrated into the archi-

tecture, from the application-level down to the infrastructure simultaneously and at

all-times.

We propose Mayflies, a bio inspired generic MTD framework for distributed sys-

tems that extends the cloud management software stack in order to defend systems

against sophisticated attacks. Mayflies [40] is a short-lived (minutes to hours) winged

insects known in the literature as ephemeroptera. Depending on the type of Mayfly

species, females of the Dolania Americana Mayflies, adult females live less than five

minutes where they find a mate, copulate, and lay their eggs during this short window

of time [41].

The basic idea of our framework is for a node (i.e., servers or replicas) to exist in

a predefined lifespan (i.e., short time intervals), participate in the overall computa-

tion, then vanish and appear (with pre-packaged with the existing MTD capabilities)

on di↵erent platform with di↵erent characteristic (i.e., di↵erent OS), dubbed Node

Reincarnation. This strategy allow us to deal attacks in short time intervals rather
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than the entire system run time, thereby, avoiding in-progress attacks or the spread

of a successful (undetected) attack to prevent cascading e↵ects (colluding).

We designed our Mayflies MTD framework on top of a cloud framework with spa-

cial emphasis on time (as lows a minute) and space diversification and randomization

across heterogeneous cloud platforms (i.e., OS, Hypervisors) while proactively moni-

toring the nodes. We abstract the system runtime from the virtual machine (VM) in-

stance to formally reason its correct behaviour using Dynamic Bayesian Network [23].

This abstraction allows the framework to enable MTD capabilities to all types of sys-

tems regardless of its architecture or communication model (i.e., Asynchronous and

Synchronous) on all kinds of cloud platforms (i.e., OpenStack and OpenNapula).

3.1.1 Related Work

To the best of our knowledge, Mayflies is the first unified generic MTD framework

for all types of distributed systems on virtualized cloud platforms. However, the ideas

employed, specially, the model and the proactive monitoring with virtual introspection

schemes, are not unique to the framework. To name a few, for example, Salfner and

Malek [42] adopted a Semi-Markov Model and proactive monitoring techniques for

online failure prediction. A game theocratic approach is introduced in Flipit [43]

as a game between attackers and defenders to assess system compromise time vs.

reclaiming time in a time-line window.

Other notable frameworks include: TALENT [44], an MTD framework that use

OS-level virtualization to sandbox mission critical applications across heterogeneous

platforms and migrate the environment in real-time. A human in-the loop framework

for controlling multi MTD capabilities is proposed in [45]. Along the same lines of

our cloud-based framework, a network focused MTD architecture is introduced in [18]

that transparently mutates IP addresses with high unpredictability, thus compliment

to our work.
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The idea of Virtual Machine Introspection (VMI) techniques have been extensively

studied for security designs. LiveWire [46] was the first VMI-based architecture for

intrusion detection for the integrity of user programs in Linux, i.e., sshd, syslogd,

etc. In our previous work [27], we discussed a simplified cloud platform taxonomy

and targeted VMI deployments for detecting application runtime anomalies. In this

work, we focus on the tight integration of VMI with Mayflies. Early works include

protecting Unix programs such as; ls, ps, etc. Modcheker [47], proposed a scheme for

detecting integrity violations for Windows OS kernel using VMI. Monitoring system

calls between the VMs and its host kernel using HMM to classify VM behavior is

proposed in [48]. In recent years, VMI-based solutions have shown an increased

interest in the commercial domain to o↵er a layered set of security services to the

cloud users for specific products like IBM Tivoli products or HP system Insights. We

leveraged VMI capabilities for detecting application runtime integrity violations in

real-time.

3.1.2 Attack-Resiliency

Resiliency to attacks in distributed systems is typically viewed as the system’s

ability of resisting to disorder or capable to bounce back in the event of an attack.

Clearly, this is a reactive defensive model, thereby, the reliability solution approaches

(i.e., redundancy and replication) becomes a double–edged–sword due to the increase

in the reactions or responses needed for the multitude of disorders inherent in in-

creasing the number of nodes in the system. In the proposed framework, having the

nodes exist with a predefined short lifespan while proactively being monitored at the

infrastructure layer (i.e., virtual introspection), we are able to deal with attacks be-

fore they make an impact. As a result, attack-resiliency definition, as viewed, does

not semantically align in the context of this framework.

Due to luck of consensus in resiliency definition in distributed systems, we view

resiliency as not an end product/system to resit attacks as commonly viewed, but
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as an ever evolving conceptual system attributes in concert with the disturbances or

attacks of its environment, similar to those adopted in organizational resiliency [49]

and systems engineering [50]. Thus, in this context, we define resiliency to attacks as

follows:

Definition 3.1.1 Resiliency to attacks is the ability of a system to sustain operations

for its intended users regardless of the disturbances (i.e., attacks) inherent in its

environment.

In order to sustain operations, the system needs to be able to continuously an-

ticipate the environmental changes prior and during disturbances – during attacks.

Therefore, resiliency must be conceptualized both proactive, to change before the en-

vironment changes, and reactive, e↵ectively anticipate the changes while experiencing

disturbances. Note that, in our conceptual resiliency model, we are only interested

during the attack, not afterwards. This is due to the fact that post attack, it means

that our attack-resiliency scheme has failed (i.e., no forces to resist), therefore, we

need to adjust our defensive tactics to anticipate future attack. At post attack crisis

stage, widely studied faulty-resiliency and recovery schemes built-in the applications

e↵ectively handle the situation.

Formulating resiliency in this manner, we can quantify it in terms of the rate

of changes between the system defender (subject to node reincarnation and virtual

introspection costs for monitoring), and the environment (subject to the cost of a

successful/attempted attacks). Inspired by the consensus of the species’ populations

model [51], for example, the preys population is measured by the proportionality

of their survival/reproductive rate vs. their eaten rate by predators. We consider

the attackers cost relative to our defensive strategy cost, for instance, if we wish to

thrive in any environment, the cost of our defensive strategies should be much lower

than or equal to the inherent cost of attacks/disorders we face. This principle is the

cornerstone of our framework design and our quantification of its e↵ectiveness.
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3.2 Framework Design

We built Mayflies framework on top of OpenStack cloud framework [7], a widely

adopted open source cloud management software stack that consists of many indepen-

dent components such as nova compute, horizon, neutron. We selected OpenStack

due to its popularity in commercial clouds, for instance, RackSpace [8], a public

cloud platform built with OpenStack used by many well-established businesses like

Netflix. Further, OpenStack provides a modularized components that simplify cloud

management.

Mayflies adopts a cross-vertical design that operate on three di↵erent logical layers

of the cloud framework; the nova compute at the application layer (GuestOS layer),

the VMI at the hypervisor layer (HostOS layer), and the neutron at the networking

layer.

Fig. 3.1.: High-level Mayflies architecture
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3.2.1 Mayflies Architecture

Figure 3.1 show the high-level architecture of Mayflies framework (top right)

and OpenStack cloud framework (left). In the cloud framework, starting from the

infrastructure at the bottom layer lie the hardware. In each hardware has a host OS,

a hypervisor (KVM/Xen) to virtualize the hardware for the guest VMs on top of it,

and the cloud software stack framework, OpenStack in our case. The vertical bars are

some of the OpenStack framework implementation components we leveraged in this

work. These include: nova, neutron, horizon, and glance. In addition, we installed

libvmi [37], a library for virtual introspection to peek live memory activities at the

hypervisor-level. The implementation details and the defensive capabilities of this

component is discussed in Chapter 2.

In the Mayflies framework, we introduce two abstraction layers; a high-level Sys-

tem State (top) and the Application Runtime (bottom), dubbed time-interval run-

time. To illustrate, for the system state, we consider Desired as the desired system

state at all times, and Undesired as the state we like to avoid (i.e., turbulence, com-

promised or failed system state). The driving engine of these two high-level states are

the observations from the application runtime by the proactive monitoring enabled

by the libvmi depicted as dotted arrows (discussed next).

3.2.2 Logical Building Blocks

The System State and the Application Runtime are two abstraction layers that

operate in synchrony. At the application runtime layer, we pro-actively refresh

VMs depicted in GuestOS (VM1. . .VM
n

) on di↵erent platforms as depicted on

(Hardware1. . .HW
n

) in pre-specified time intervals, referred as time-interval run-

time. To gain a holistic view of the high-level system state, we re-evaluate the system

state at the end of each interval to determine whether the system is in a desired state

or undesired state.
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System State

The key objective of Mayflies is to start the system in a Desired state and stay

in that state as often as possible. In the event when the system transitions into

Undesired state, a valid assumption in cyber space, we should bounce back seamlessly

into the Desired state. These transitions are dictated by the application runtime

status, for instance, if the application fails or crashes, which we typically know, then

we consider the system in undesired state. The challenge is when we enter into one of

the unknown undesired state; a turbulence state, which is when the system is under

attack and still usable, or in a compromised state when the attacks succeed and a

node is compromised.

As the cloud frameworks (i.e., OpenStack) abstract the compute nodes from the

deployed systems regardless of their architectural style (i.e., SOA) or it’s communi-

cation model (i.e., synchronous vs. asynchronous) with a unified deployment models

(i.e., IaaS, AaaS, SaaS), Mayflies attempts to abstract the system’s application run-

time (discussed next) from the VMs that are deployed in order to break the runtime

into observable time-intervals regardless of the application type. This allows us to

model both the system state and the runtime independently; therefore, we can for-

mally reason the transitions between the Desired and the Undesired states (discussed

in section 3.3).

Application Runtime

Mayflies transforms the traditional services designed to be protected their entire

runtime (as shown on the guest VMs on the cloud framework) to services that deal

with attacks in time intervals. Such transformation is simply achieved by allowing

the applications run on a heterogeneous OS’s and variable underlying computing

platforms (i.e., hardware and hypervisors), thereby, creating a mechanically generated

system instance(s) that are diversified in time and space which is considered as good

defense as type-checking [52]. Formally. we define time-interval as follows:
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Definition 3.2.1 Time-Interval in Mayflies is defined as a time unit. We use T
i

to

donate each time interval where i=1,2,3... are minutes/hours.

The goal is for each node in the system operate only with a predefined lifespan,

as low as a minute. This time unit can be a system time unit or upon completing

certain number of n transactions/service responses in which translates to the time it

takes to complete n (i.e., seconds/minutes). Upon reaching this lifespan, the node is

terminated and instantiated on a di↵erent platform, we call it Node Reincarnation,

discussed in section 3.2.3. This is to reduce the exposure attack window time of the

node and subvert in progress attacks while continuously re-assessing the system state

based on the observations of the nodes that are not being reincarnated. Thus, it is

intuitive to see that defending systems in T0 for the run time on the entire replicas

(traditional deployment) is extremely challenging in comparison when defending it in

T
i

, where i> 0, and T
j

is within minutes.

Therefore, it is critical to abstract the traditional application runtime model with

Time-Interval Runtime Execution Model, which we will discuss in details in section

3.3. This abstraction transforms the system run time into observable (with respect

to security) system states. However, the key design challenge inherent in such run

time execution model is dealing with the application state between the terminating

and the new instance/node without disrupting the computation.

Application State

Generally, application state is an abstract notion of a continuous memory region

of the application at runtime. Breaking this runtime into intervals (chunks) across

nodes, will break the continuity of that region, however, the implementation of such

abstraction is dictated by how the application constructs and preserves it at runtime.

Thus, the challenge of transferring application state between a terminating node and a

new node lies the communication model (i.e., synchronous vs. asynchronous) between

the interconnected applications/services or between the client and the servers.
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For example, the state information of Byzantine Fault-Tolerant Replicated sys-

tems (i.e., synchronous system model) [53], manages a static and a dynamic part of

the system state. The dynamic part is typically written in a file to assist the recov-

ering replica, thus, transferring that file implies state transfer. Another example of

a asynchronous system is the event based systems where the state is the registered

subscriptions and the events entering in the system. Terminating the node with the

registration information require transferring the information to the new node.

In most applications, the static part of the application state is called the sys-

tem configuration files which is typically saved in a file (system.config or hosts).

The static information in these files typically contains the application parameters like

the number of participating replicas and their IP addresses, the database connection

strings, security keys/certificates, etc. These parameters are not updated at run-

time unless the application implement protocols to handle this update, for instance,

replicated systems that allow replicas to join or leave the systems.

Yet another widely adopted example is in the web services domain, for example,

RESTful web services, a stateless web service (client/server) model where the client

requests are processed and responded as they enter the system, thereby, no state is

preserved. In contrast, for stateful services where the services are bound not only

their communication protocols like WS-Secure Conversation, referred to as SOAP-

based services, for instance, but also their access control token during that session.

Managing the dynamic part of the application state in a generic fashion is not fea-

sible, since it’s application dependent. In Mayflies, we exploit the built-in reliability

properties of the application where applications retry to connect to the service/replica

for few times before it gives up. Our reincarnation process completes within these

tries. Thus, we don’t consider transferring the dynamic part of the application state

(i.e., TCP connections, security tokens). These states are typically exchanged between

the running replicas and the recovering one, where in our case, is the reincarnating

node. We show two widely adopted from di↵erent classes of systems (synchronous

and asynchronous) as use cases in Chapters 4 and 5.
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3.2.3 Framework Components

Figure 3.2. show the cross section view of the Mayflies cloud platform. At the

core, is the OpenStack cloud management framework where the nodes/VMs are pro-

visioned and deprovisioned on the hardware (HW1. . . HWn) mediated by the hypervi-

sors (HV1. . . HVn), depicted on the second and the third rings. The arrows represent

the node randomization and diversification techniques of Mayflies across these hard-

wares. The LibVMI and SDN, depicted on the rectangles, are for the proactive

monitoring component and the network programming respective layers. Note that

the clients access through the externally feasible IP addresses (192.x.x.x) and the

VMs are interconnected with the internal IP addresses (10.x.x.x).

Fig. 3.2.: Cross section view of Mayflies cloud platform

Mayflies implements MTD algorithms that combines the cloud framework (i.e.,

Openstack) components; nova compute, neutron, and Virtual Machine Introspection

(VMI) for detecting runtime integrity violations in real-time. The nova compute is

designed for provisioning/de-provisioning VM instances on the cloud platforms. We

continuously provisioning/de-provisioning nodes in time intervals at run time, dubbed
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Node Reincarnation. We use neutron to dynamically reconfigure the network during

the reincarnations. We leveraged libvmi [37], a library for virtual machine introspec-

tion (VMI) for pro-active node monitoring or application runtime. We describe each

one of these components in details in the following three sections.

Proactive Node Monitoring

Pro-actively monitoring the nodes during their short lifespan is critical. The key

idea is to prioritize node reincarnations with respect to the overall system state to

prevent reincarnating nodes on a compromised cluster or reincarnating a node due

to it’s lifespan while another compromised node is in the system, thereby, e↵ective

monitoring prevents us from blindly moving nodes across platforms. The easiest

method to get the node status is by pinging the node, however, Mayflies key objective

is defend systems against advanced attacks, depending on the existence of the node

status does not say anything about attacks. We define node status as follows:

Definition 3.2.2 Node status in Mayflies is defined as the node to be clean if the

observation from the internal representation of the node’s runtime (i.e., memory,

CPU) integrity is intact and dirty if the integrity is violated.

We are interested in monitoring schemes at the infrastructure-level. In cloud

platforms, there are numerous ways of achieving this capability. The hypervisor

is the core machinery that mediates between the virtual resources of the VM and

the physical resources such as memory and CPU. The transparent mapping of the

virtualized OS memory into the physical memory enabled by the hypervisor opens

the opportunity to safeguard systems below the OS which is di�cult to subvert by

attacks originated inside the OS.

Thus, we leveraged VMI [37] for this case. In VMI, for instance, when the appli-

cation is hijacked, the address o↵sets show new entries for the injected code. Another

instance is when the application is terminated and a new malicious one is started in

which possibly ends up with a new process ID and/or di↵erent memory address o↵set
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in its virtual memory address space. Note that VMI is a powerful memory inspec-

tion tool used for Malware analysis and other intrusion detection methods. Since we

are interested memory analysis at runtime, we have adopted in its simplest fashion

which has a negligible performance overhead [38]. The details of the implementation

and defensive capabilities are discussed in Chapter 2. Algorithm 1 illustrates the

introspection procedure, INTROSPECT().

Algorithm 1 Virtual Introspect

1: Input: node
2: Output: true or false
3: procedure Introspect(node)
4: if node == new then
5: initialProc GetProcessMemory(node)
6: return false
7: else
8: currentProc GetProcessMemory(node)
9: if initialProc

i

(key, val) 6= currentProc
i

(key, val) then
10: return true
11: else
12: return false
13: end if
14: end if
15: end procedure

In algorithm 1, the procedure saves the initial memory information of the node

in line 5 and returns false for a clean new node. Then, returns accordingly when the

running node’s information is di↵erent/altered from the initial stored information in

lines 8 and 9. The result can be either true if anomaly is detected in the memory

structure, otherwise false. Note that we can check any key/value pairs in the memory

data structure such as the start/end address o↵sets of a given process.

Formally, let {O
j

, j=1,2,. . . } be observations of the node status n2N, where N is

the set of nodes. We model these observation as a Bernoulli processes where O
j

2{0,1}

in which O
j

= 1 indicates an observed node is clean and O
j

= 0 indicates the node is

dirty. The dirty node can be either missing (i.e., network drop) or it’s compromised

(i.e., VMs address space altered).
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Network Dynamics

In order to break the application’s runtime into manageable time-intervals, we

need to separate the network interface known to the users from the VM in order to

attach it to the substituting node without the user’s knowledge. This node can be

from a pool of prepared nodes or a newly created VM. VMs are typically intercon-

nected with a fixed IP addresses, similar to a LAN setting in a corporate network,

and are reached by the clients through a floating IP addresses through a virtual

router. The prepared nodes can be created on the network with fixed IPs (i.e., LAN

IP assigned by DHCP but not externally feasible) or o↵ the network (i.e., no network

card).

Fig. 3.3.: Illustration of VM compute and SDN interface interchanges. VM
x

seam-
lessly replaces VM

y

from a pool of VMs.

Algorithm 2 Network Interface Swap

Input: nodeState, newNode
Output: newNode

netInterface

. new node with network interface
1: procedure InterfaceSwap()
2: if nodeState

interface

== NULL then
3: newNode

netInterface

 NewNetInterface()
4: else
5: newNode

netInterface

 nodeState
netInterface

6: end if
7: end procedure

The node Network interface swapping procedure is illustrated in Algorithm 2. The

procedure simply creates a new interface if the node is created without an interface (an
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stand by VM), otherwise, attaches from the interface from the old node. The method

of creating a new network interface in NewNetInterface() or swapping with existing

one is described in details in the implementation section. Figure 3.3 illustrates the

process of swapping the network interface between two VMs (VM
x

and VM
y

). This

is achieved with the Software Defined Networking (SDN). SDN is a programmable

networking fabric that decouples the control plane from the data plane (i.e., switches).

The OpenStack neutron component implements the SDN interfaces and others are

enabled indirectly through the nova component.

Node Reincarnation

Reincarnation is a techniques of enhancing the resiliency of a system by terminat-

ing a running node and starting a fresh new one for its place on (possibly) a di↵erent

platform/OS as it dropped o↵ of the network and reconnected it. The node reincar-

nation procedure is illustrated in Algorithm 3. In REINCARNATE() procedure, we

first save the nodes application state then destroy (deleting the VM) it in lines 2 and

3. We get a new node for the pool in line 4, then, swap its network interface in line

5, and transfer its state in line 6. The GetNewNode() method can be implemented

in two di↵erent ways; by selecting a new VM from a pool of VMs or freshly booting

a new instance on demand. We discuss the pros and cons of each method in section

5.3.

Algorithm 3 Node Reincarnation Procedure

Input: targetNode
Output: Substitute targetNode with a newNode
1: procedure Reincarnate()
2: nodeState targetNode

state

3: DestroyTarget()
4: newNode GetNewNode()
5: InterfaceSwap(nodeState, newNode)
6: newNode

state

 nodeState
7: end procedure
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Formally, let n be a node in Mayflies as defined in definition 3.2.2, a reincarnation

is defined by a tuple: n
i

= hn
start

, n
⇢

i where

• n
start

2 R+, represent the real time the node starts.

• n
⇢

2 [n
start

, < ⇢|Ot

i

>], represent the lifespan of the node from the start to

the end. Either naturally reaching it’s lifespan ⇢ (no attacks) or terminated

prematurely based on the observation result at time Ot

i

time-interval t due to

attacks. Observations O
i

2 [0, 1] represent the node is found to be inactive=0

or active=1 (i.e., Dirty or Clean), thereby, is terminated accordingly.

• n0
start

, n0
⇢

0 , represent the real time node n reincarnated to n0 with a new prede-

fined life expectancy ⇢0, thus, it’s n
j

tuple; n
j

= hn
start

, n
⇢

i

3.3 Mayflies System Model

Typically, we deploy a system in a desired state and at some point in time we end

up in undesired state (i.e., compromised or failed) without our knowledge (in most

cases). This is mostly credited to the successful stealthy attacks that create turbulence

state infinitely many times until the system is compromised, ex-filtrated data or less

usable (fail or crash). These high-level uncertainties are driven by what’s happening

at the application’s runtime level, for instance, if a node/server is compromised and

is still running, then, the system is in a compromised state, in contrast to when a

node crashes in which the system enters into a failed state. One way to formalize this

behaviour is through Hierarchical Hidden Markov Model (HHMM) [20].

3.3.1 Model Description

A Markov chain or process is a sequence of events or states Q={q1, q2, . . . qn}, and

a Hidden Markov Model (HMM) represent stochastic sequences as Markov chains

where the states are associated with a probability density function (pdf). The pdfs

in each state q
i

are characterized by the probabilities of the emission p(x|q
i

) and the
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Fig. 3.4.: Mayflies DBN System Model – system states are Desired, Compromised
and Failed labelled as D, C, and F, followed by the Exit state E. The dotted lines on
E depict for the control returning to the parent node. TIRE is the observing state in
double circles.

transition q
i,j

where the transition to a next state is independent of the past states.

An elaborate introduction of the theory of HMM and its applications can be found

in [54].

As the name implies, a Hierarchical Hidden Markov Model (HHMM) forms a

hierarchy of HMMs where each state itself is an HHMM with sub level of HMMs as

its abstract/internal states. The top-level states in the hierarchy are called the hidden

states and the low-level is the production state that emit observations. An HHMM

is defined as a 3-tuple H =< �, ⇠,⌃ > where � ◆ (A,⇧, B) which represents the set

of the transitions for the horizontal matrix, the vertical vector and the probability

distributions respectively. The ⇠ is the topological structure which specifies the levels

and parent-child relationships of all the states, and ⌃ is the observation alphabet.

As depicted in Figure 3.4, we construct an HHMM in which the hidden states S are

Desired, Compromise, Failed and TIRE as the omitting/observable state (discussed

next). We define the topology of the hierarchy as follows: The Desired state as the

root state(i.e., initial state), the Compromised and Failed states in level II, and TIRE

as the leaf state in level III, referred as (S
D

, S
C

, S
F

, S
T

) respectively
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We define S
T

emissions as node status observation captured by the proactive

monitoring tools at the hypervisor level (i.e., VMI) in time intervals, say every minute.

We consider the following three observations:

• A node is active which is typically the initial state when the system is deployed.

• A node is inactive which can be either not-reachable due to network drop or

hardware/software failures.

• A node is dirty due to runtime integrity violations, (i.e., detected anomaly in

the applications memory).

For simplicity, we treat both in-active and dirty as Dirty and active as Clean as

described in the introduction section in Figure 1.1(c). We define the guiding principle

of state transitions as following:

• The systems starts in a Desired (S
D

) state and transitions to either Failed (S
F

)

state if S
T

emit in-active, or to a Compromised (S
C

) state if S
T

emit dirty.

Otherwise, stays in (S
D

), i.e. node (s) is active.

With this HHMM construction, we model the system with Dynamic Bayesian Net-

work [23]. As depicted in Fig 3.4, DBN represents HHMM with time-linear transition

partitions to drive a much simpler and faster algorithms for inference, classifications,

prediction and learning which we consider in our future work. In this work, the repre-

sentation and the encoding of the observation sequences and the transitions between

the hidden states of the model is su�cient to illustrate Mayflies’ objective.

To illustrate how we map the VMI observations to the high-level system states,

consider at time t=1 in Figure 3.4, the system starts in a desired (S
D

) state and

consider TIRE (S
T

) emission=dirty after the first observation, then the system tran-

sitions to a compromised (S
C

) state in t=2. We cannot change the state till (S
C

)

transitions to E signalling for its exit. At this point, we reincarnate the compromised

node so the next time in t=2, the emission=active and we transition to S
D

at t=3.
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Thus, modelling Mayflies with HHMM and formulating and encoding it in this

manner, we can reason the state transitions guided by the (emissions) in terms of

the overall proportion of the time {t2, ti, tk, . . . }, the system was compromised.

3.3.2 Time-Interval Runtime Execution Model

The key defensive strategy of the proposed framework is to avoid threats in time-

intervals rather than continuously defending the systems for its entire runtime exe-

cutions. To achieve this, we introduce an abstraction layer on top of the traditional

runtime execution, dubbed Time-Interval Runtime Execution (TIRE). TIRE is to

break the runtime execution into intervals where in any interval we re-evaluate the

system and determine its high-level state based on the observation collected by the

monitoring component in that time-interval . This evaluation can result in the sys-

tem to be still in the desired state or compromised/failed in which we can adjust to

our desired state accordingly, thereby, guaranteeing to disrupt the attackers gain/loss

balance and the unbounded time of controlling the system when it is compromised.

Definition 3.3.1 Runtime Execution of distributed systems is typically defined as a

set of infinite sequences of states in Q, donated by Q!.

TIRE is simply the break points of the infinite sequences of states in Q!. In each

time-intervals T
i

where i=1,2,3 . . . , at least a node n
i

is reincarnated to n0
i

, thus, the

execution sequences for n
i

will be those {q0 . . . qi�1} 2 Qi generated within T0 to T
i�1

time interval, then the execution sequences for n0
i

will be those {q
i

. . . q
j

} 2 Qj of T
i

to T
j

where i < j, and so on. Thus, the runtime sequences of n
i

, n0
i

, n00
i

, . . . are

isolated in the form of {Qi

n

, Qj

n

, Qk

n

, . . . .} 2 Q!, thereby, allowing us to safeguard the

individual nodes in time intervals rather than it’s entire runtime in which is proven

to be defeated eventually.

While we pro-actively monitoring the system at the hypervisor-level (below the

OS) for runtime integrity violations, at any time interval of T
i

, T
j

, . . . T
n

we determine

whether or not we observed a violation, if a violation is detected (i.e., altered the
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applications internal memory structure/o↵set), then we reincarnate the comprised

node(s) before they reach their predefined lifespan so we will be in our desired state in

the next time interval. One way to formalize and model this probabilistic observations

O of whether a node status has changed or not is through an HMM, hence, makes

TIRE the perfect choice of being the observable state in our HHMM construction

described in the previous section.

HMM-based TIRE Transitions and Observations

TIRE transition function is simply a real number, time assigned to the struc-

ture which breaks the system runtime into manageable intervals (i.e., one minutes

intervals). Thus, we define the transitioning function as:

↵T
i,j

! R+

Using ↵T
i,j

, we simply observe node(s) status between ↵T
i

and ↵T
j

. At the transi-

tion point ↵T
j

, we generate a sequences of observations {O=o1, o2, o3, . . . } of inactive

and/or dirty nodes. TIRE transitions T=t0. . . tn and observations O=o0. . . on lie the

probability distributions to easily reason about the high-level system state transitions.

Thus, for each state S inMayflies, we associate that state with random variable taking

values in ⇤ according to certain (state-dependent) probabilities.

Property 1 An HMM observation o is a logical predicate over Mayflies. Each T
i

is

considered a state predicate evaluates to true or false. We say that state transitions

at each T
i

satisfies a state predicate if the predicate evaluates to true and vice-versa.

By definition of the first-order HMM, transition t
i

to t
j

is dependent only upon

the current state at t
i

. Therefore, the probabilistic nature of that transition can be

defined as:

↵T
i,j

= Pr [T
i+1 = j|T

t

= i]

We make a first-order HMM assumption regarding the transition probabilities.
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Pr [T
i

, |T
i�1, Ti�2, . . . , T0] = P [T

i

|T
i�1] , i 2 0, 1, 2, 3 . . .

Similarly, we assume the emission probabilities of the model on how the observed

event from TIRE (S
T

) results system state transition:

Pr [o
i

, |T
i

, . . . , T0, oi�1, . . . , o0] = P [o
i

|T
i

] , o 2 O

Modeling TIRE as an observable HMM and formulating it in this manner enable

us to anticipate the high-level hidden state transitions in which the probability of

transitioning to an undesired state in T
i

can go either way (i.e., desired/undesired).

We anticipate this outcome if it results against our favour to bounce the system back

to our desired state in the next time interval (T
i+1). Thus, each TIRE time interval

(T
i

) is represented as the transition state as depicted in Figure 3.4, and the transition

between the states are the invariant that must be preserved. We assert that the

underlying runtime execution is preserved if these invariants hold.

3.3.3 Mayflies System States

As depicted in Figure 3.4, we defined three hidden states S
D

, S
C

and S
F

and an

observable state S
TIRE

that omits node status described above. Note that, in this

model, one can add many hidden and/or observing states in any levels; horizontally

or vertically. Since we are not interested in contracting the model and learning by its

probability distributions, and the hidden state themselves are not internal HHMMs

states with abstract sub-levels of HMMs, we treat our HHMM as a flat HMM to

reason the transition probabilities of the hidden states. In fact, the hidden state are

visible to us as we anticipate of being in our desired state at all time.
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State Transition Probabilities

Typically, at the deployment time, the system starts in a Desired state, call it

S
Desired

. TIRE observation generates transition probabilities of either to a S
Compromised

or S
Failed

state. The probability that a transition can happen before observation is

collected is:

↵
T

ij

Pr[T0 = 0]

Therefore, assuming the system starts in S
Desired

state and further assuming in

that state till the first observation collected. Certainly, this is the base case for

Property 1.

For the 1st observation or 8T
i

where i > 0, the probability of seeing the observed

events o1, o2, o3, . . . of a sequence up to o
i�1 observations and reaching in state T

i�1

time interval, then transitioning to state S
Compromised

at the next step is:

P (T0, T1, T2, . . . , Ti�1, oi�1 = S
Desired

, o
i

= S
Compromised

)

= ↵
T

ij

(S
Desired

)Pr (o
i

= S
Compromised

|o
i�1 = S

Desired

)

Similarly, for the 1st observation or 8T
i

where i > 0, the probability of seeing the

observed events o1, o2, o3, . . . of a sequence up to o
i�1 observations and reaching in

state T
i�1 time interval, then transitioning to state S

Failed

at the next step is:

P (T0, T1, T2, . . . , Ti�1, oi�1 = S
Desired

, o
i

= S
Failed

)

= ↵
T

ij

(S
Desired

)Pr (o
i

= S
Failed

|o
i�1 = S

Desired

)

In general, the probability that we are starting in S
Desired

at T
i�1 time-interval

given the observed events up to o
i�1, and given that we will be in state other than

Desired state at time-interval T
i

observation o
i

, the transitioning probabilities are

equally likely. Thus, preserving for all cases in Property 1.
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The fundamental problem of time-interval based observations is choosing the per-

fect observation intervals, for example, if the observation time is too long, we will

have the case where the observation o
i�1 results that we are in a Desired state, then

at o
i

end up in a Compromised state before we get the observation o
i+1, a valid as-

sumption in cyber space. In contrast, if the observation time is too short, then we

will introduce unnecessary performance burden on the applications. We will discuss

these issues and our solution approaches in the evaluation section.

3.3.4 Calculating State Transitions

We assume nodes inMayflies start with pristine status where they perform compu-

tations within a predefined lifespan and being reincarnated at specified time-intervals.

The key objective is to ensure the system stays in Desired state as often as possible,

and bounce back if ever transitions to any of the Undesired states. Thus, we are

interested in the long-run distribution of the process/runtime execution, for example,

the long-run proportion of the time that we are at desired state overtime.

Problem Formulation

Given our three hidden states S=(S
D

, S
C

, S
F

) for {S
Desired

, S
Compromised

, S
Failed

}

and we are initially starting at S
D

, we formulate the problem as a binary random

walk on the set of these states moving randomly one move per time-interval T
i

(i.e.,

as low as a minute), according to the following scheme:

We start with S
D

in the first time-interval, then one time-interval later we will be

at either S
C

, S
F

or stay in S
D

according to the outcome of the observation collected

in that time-interval (T
i

). These observations can be viewed of as rolling a fair die

for every one minute, for example. We move to S
C

if the die comes up 1 or 2,

stay at S
D

if the die comes up 3 or 4, and move to S
F

in the case of a 5 or 6.

Mapping the die throws in TIRE observation context, in each time-interval T
i

, we

collect observations about the nodes where they are either a) clean, reachable and
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internal runtime virtual address space is intact, or b) dirty, could not be reached due

to network drop or detected their runtime is corrupted. It’s intuitive to see that these

observations are also probabilistic in nature.

Example Solution

Let S
t

represent the state of the system at time t where t=1,2,3. . .minutes and

the time-intervals T
i

where i = 0,1,2,. . . n is in t. Note that the Markov process model

is an exponential distribution, in that the decisions are dependent only in the current

state. Probabilistically, if we are at Desired state now, the probability to any other

state will be 1/3rd no matter where we were (Failed or Compromised) in the past.

Let p
q

ij

denote the probability of going from state q
i

to q
j

in one step, and �
i

represent the matrix P whose entries are the p
ij

. For each state S
i

, we define:

�
i

=

P
n

i=1 Si

T
t

where
P

j

i=1 Si

is the total number n of visits the process makes to each state S
i

over

the time-intervals T
t

2 T0, T1, T2. . . . Tn

. Intuitively, the existence of �
i

translates to

changes in system states in which in turn is not in a single state (i.e., undesired) as

long as our observations and node reincarnations are e↵ective.

Let � denote the row vector of the elements of the �
i

, given the underlying HMM

state transition for each state S
i

, then we have a matrix in the form of � = �P subject

to
P

i

�
i

= 1. Calculating � in each transition results a solution set of < x, y, z >

time units for the three states, which means that in the long run we spent x amount

of our time at the desired state Sx

D

, y amount of our time at compromised state Sy

C

,

and z amount of our time at failed state Sz

F

. Thus, we can easily reason about the

high-level system states in time intervals, for instance, if we run the system for 1

hour, then, we can get time intervals like; for 55 minutes we operated under normal

conditions in a desired state, 3 minutes in a compromised state, and 2 minutes in

failed state.
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3.4 Implementation and Evaluations

Since Mayflies is designed as a generic MTD framework for distributed system,

evaluating it against numerous types of systems is infeasible. As noted earlier, system

classes (i.e., Synchronous and Asynchronous), architecture and design are dependent

on specific system model (i.e., BFT systems), thus, we discuss the use cases in a

generic fashion and give general guiding principles of deploying distributed systems

on Mayflies. We then discuss the prototype implementation details, algorithms, and

the inherent challenges of extending the cloud management framework with a generic

MTD capability. Finally, we present methodologies of evaluating the framework’s

resiliency to attacks. To illustrate the practicality of the framework, we present a

Synchronous system class prototype on Mayflies in Chapter 4 and Asynchronous

system class in Chapter 5.

3.4.1 Use Cases

The are two common classes of distributed systems; Synchronous and Asyn-

chronous as discussed in details in the introduction chapter. The RESTful clien-

t/server model, request/response, push/pull, and event-based systems represent Asyn-

chronous systems. The Byzantine fault-tolerant system is an example of a widely

studied/deployed synchronous system class. These systems are typically replicated

using chain replication, slave/master or quorum-based replication models, to name a

few, for reliability reasons.

These replication models require di↵erent schemes of reincarnation, for instance,

reincarnating a node in chain replication model, one must transfer all the data from

the terminating node to the new node in order to proceed with the computations.

For the slave/master replication model, the slave takes control when reincarnating

the master in which their data is typically synchronized, thus, computation continues

but the data should be handled accordingly. Most importantly, the quorum-based

replication model require more than 2/3rd of the nodes to be running in synchrony
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in addition to dealing with the their data during reincarnation. We consider this

replication model in our use case to illustrate Mayflies prototype. This allow us

to illustrate not only the randomization and diversification aspect of the our MTD

solution approach, but also, the defensive aspect of the proactive monitoring for those

nodes that are running at all times.

The core of our MTD scheme is the time-interval node reincarnation and node

observations/emissions. The observations/emissions is the driving engine of the high-

level system states (i.e., desired/undesired), however, the guiding principle for these

state transitions are application dependent. Thus, we give a general guiding principle.

In Chapter 4, we deploy a BFT system on Mayflies framework and show experiments

using the system specific guiding principle.

General Guiding Principle

As noted earlier, nodes in Mayflies have a predefined lifespan. Generally, for

a single node deployment or non replicated (i.e., web-server), we need to reincar-

nate/refresh that node in a pre-specified time intervals and observe the status within

that time frame. Within each time interval, if anomaly detected, consider the system

in compromised state else failed state, then reincarnate it (possibly) on a di↵erent

cluster before reaching it’s lifespan. Otherwise, consider the system in the Desired

state.

3.4.2 Mayflies MTD Algorithm

The core of our MTD defensive tactic is to move nodes across platforms, referred

to as node reincarnation, while we proactively monitoring at the hypervisor-level in

order to guide the direction/safety of the move (i.e., avoid vulnerable platforms).

There are di↵erent strategies to reincarnate a node, we give two examples; round-

robin and random. Algorithm 4 below illustrate these strategies.
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In Algorithm 4, lines 3 through 13 show the round-robin strategy. We continuously

reincarnate nodes in round robin fashion, going through the list of nodes over and

over again. This can be implemented, for example, a circular linked-list. The second

strategy is reincarnating a node by simply selecting it randomly shown in lines 14

through 27. Assuming the node IDs are numbered 1. . . n, we simply generate a

random number within the range of the node IDs and reincarnate accordingly.

Algorithm 4 Mayflies Algorithm

1: Initialize the replicas and time-interval x/lifespan
2: while true do
3: if strategy = RoundRobin then
4: repeat
5: isDirty  Introspect(replica

i

) . any dirty node?
6: if isDirty then . in algorithm 1
7: Reincarnate(replica

i

) . terminate the dirty node first
8: else
9: targetNode GetNode() . scheduled node in ordered list
10: Reincarnate(targetNode) . in algorithm 3
11: end if
12: wait(x) . sleep for x minutes/transactions
13: until stop MTD condition met
14: else if strategy = Random then
15: repeat
16: isDirty  Introspect(replica

i

) . any dirty node?
17: if isClean then . in algorithm 1
18: Reincarnate(replica

i

) . terminate the dirty node first
19: else
20: repeat . get a di↵erent node than the one just reincarnated
21: id randomGen() . get a random number within ID range
22: until id 6= replica

i

ID
23: targetNode GetNode(id)
24: Reincarnate(targetNode) . in algorithm 3
25: end if
26: wait(x) . sleep for x minutes/transactions
27: until stop MTD condition met
28: end if . many more strategies
29: end while
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Note that INTROSPECT(replica
i

) in lines 5 and 16, described in Algorithm 1 in

section 3.2.3, is an implementation dependent. For instance, we need to introspect the

replica index i from the list in descending order and reincarnate in ascending order

for the round-robin strategy. For the random strategy, we don’t need to reincarnate

the node that was just introspected.

3.4.3 Implementation

We implemented our algorithms with bash shell scripts tightly integrated into the

OpenStack (Kilo) [7] framework, an open source cloud management software stack.

As noted earlier int he design section above, OpenStack provides a modularized com-

ponents (i.e., computing virtualizaiton and SDN) that simplify cloud management

and ease of integration. With this, by orchestrating the interfaces implemented in

these components, we extended the cloud framework with our Mayflies MTD frame-

work. In Algorithm 4, there are five procedure calls: GETNODE(), INTROSPECT(),

REINCARNATE(), RANDOM() and WAIT(). The INTROSPECT() and REIN-

CARNATE() are described in algorithms 1 and 3 in section 3.2.3. The implementa-

tion is as follows:

GetNode() and Wait()

Depending on the data structure used to keep track of the nodes, this GETN-

ODE() procedure is simply extracting a target node from the list, for instance, by

index if it is a list or an array. The target node is selected randomly in the random

strategy using a basic random generator function. Similarly, The WAIT() procedure

is simply sleep(x) method call for x amount of time, else lifespan is used where the

node self-terminate after x number of transactions/execution completes discussed in

the use case illustrated in Chapter 4.
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Introspect()

We leveraged LibVMI [37], an open source library for Virtual Machine Introspec-

tion. Algorithm 1 in section 3.2.3 illustrates the detection scheme, and the details of

the implementation is discussed in Chapter 2. In summary, we first take a snapshot

of the application’s memory before we deploy/assign an IP address. We next take

snapshots in time intervals and compare specific elements in the address block like

the address o↵sets and alert if entries mismatch.

Reincarnate()

The reincarnation procedure is to reincarnate a target node if it is found dirty (i.e.,

compromised) by the introspection procedure, otherwise reincarnate as scheduled,

illustrated in lines 7 and 10 for the round-robin strategy, and lines 18 and 24 for

the random strategy in Algorithm 4. Assuming that the adversary can learn the

tactics used for reincarnating nodes, for instance, when using round-robin strategy,

the attacker can focus attacking those nodes that have longer exposure attack window

or are last in the list/array. To balance, the introspection monitoring scheme should

be constantly monitoring those nodes than those that are soon to be reincarnated.

There are di↵erent ways to implement node reincarnation in OpenStack as dis-

cussed in section 3.2.3. The nova boot <options> lets you create nodes, where the

options specify the type of the node; cluster, OS type, etc. Depending on the time-

criticality of the application, a node is booted on-demand or selected from prepared

pool of VMs without network interface attached or prepared with temporary inter-

faces while their successor frees the network interface that is known to the client or

the services in which is then the two interfaces are swapped.

The Reincarnate() procedure uses InterfaceSwap() procedure as illustrated in Al-

gorithm 3. This procedure is implemented as follows: we first save the port ID asso-

ciated to the terminating replica (the input replica). In SDN environment, the VM

is attached to a virtual network interface that is referred to as ports with a fixed IP
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similar to physical network interfaces. This interface is also associated with floating

IP for external access as noted earlier in Figure 3.3. Thus, both of the IP addresses

are part of the port even after it’s separated from the VM, thereby, transferable to

another VM. We detach the port o↵ of the replica with nova interface-detach

<newReplica portID>, we then get a new replica VM instance from the pool and

attach the port to it. Note that depending on the OS image of the replica, a VM re-

boot is required after the nova interface-attach <portID newReplica>. At this

point, the clients re-connect to this replica through it's floating IP (128.x.x.x ) as the

old server that dropped o↵ of the network and came back.

The pseudo-code below reflect the implementation logic and a code snippets:

Algorithm 5 Reincarnate

1: if nodeHasNetworkPort then
2: nova interface� dis� associate < VM

old

, F loatingIP > . remove IP
3: nova interface� associate < F loatingIP, V M

new

> . give IP
4: else
5: neutron port� create < options > . create virtual network card
6: neutron port� attach < options > . attach card
7: end if
8: if nodeHasNetworkInterface then
9: nova interface� detach < VM

old

, V M
old

port

ID

> . remove network interface
10: else
11: nova interface� attach < VM

new

VM
old

port

ID

> . give network interface
12: end if

For the node without the interface, we use neutron port-create <options> to

re-create the interface with attributes used by a terminating VM and then pass to

another VM with neutron port-attach <options>, thereby, allowing the servers

(if replicated) to continue using the known interface. With these capabilities, we

can reincarnate nodes across subsets and networks, an MTD scheme known as IP

Hopping.
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3.4.4 Evaluations

Mayflies’ defensive strategy is controlling the node’s attack exposure window in

time-intervals rather than the entire runtime through proactive node reincarnation

and node observations schemes. Hence, the three competing time of the framework

are the following:

• The Reincarnation Cost RC(t
i

) – the reincarnation time t
i

of a node.

• The Observation Time OT(t
i

) – time it takes to detect attacks with virtual

introspection.

• The Attack Success Time AS(t) – is the time it takes for an attack to succeed.

To assess the upper bounds of our MTD attack resiliency capabilities under the

constraints of the cloud framework (i.e., OpenStack), we quantify the attack success

times AS(t
i

) relative to RC(t
i

) and OT(t
i

). Formally,

Let µ be the expected overhead time of reincarnating a node n and ⌫ be the

expected overhead time of node observations in one time interval t
i

, then:

RC(t
i

) =
jX

i=1

µ
n

and

OT (t
i

) =
jX

i=1

⌫
n

Thus, in order to stay in a desired state as often as possible, we need to keep:

RC(t) +OT (t) < AS(t)

where RC(t) and OT(t) is the cost of our defensive strategy of the overall time t

against the attack success time.

We evaluate the performance impact of Mayflies with BFTSMaRT [55], a widely

studied Byzantine Fault Tolerant system prototype in the literature in the next chap-
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ter, and a publish and subscribe system in Chapter 5. These two systems represent

two classes of di↵erent system models.

3.5 Conclusion

In this chapter, we presented Mayflies, a bio-inspired MTD framework, and dis-

cussed the formal model, design and implementations, and algorithms. The key

challenge of designing and implementing the proposed generic MTD framework lie

the partitioning of the runtime execution into time intervals, and synchronizing the

OpenStack APIs (nova/neutron) to provision/deprovision VMs/nodes and reconfig-

ure the networks in a dynamic fashion. We discuss next on how we addressed these

challenges.

3.5.1 Partitioning Application Runtime

Partitioning the traditional runtime execution of the system seems a performance

burden on the applications. Further, it has been reported that the constrained VM

replacement requirements from the applications can result in temporary violation

against the placement algorithms used by the underlying infrastructure [56] , thereby,

possibly causing minor delays when such conflict happens. For a private cloud, we

show in the next chapter that the performance impact of BFT system deployed on

Mayflies framework is negligible. Our reincarnation scheme is similar to the VMentry

and VMexit processes of the hypervisor for mapping the virtual computing environ-

ment to the physical resources (i.e., CPU, memory) by the scheduler where a VM is

stopped and another one resumed.

The inherent performance issues in virtualized cloud platforms that are outside

the users's control, for instance, is referred to as performance variability of the day,

first reported in [57]. Furthermore, 22% of vital issues reported by cloud system de-

velopers relate to performance bugs [58]. Clearly, the defensive solution approaches
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designed while considering the underlying computing fabric is far superior to tradi-

tional independent ad-hoc solutions.

3.5.2 Synchronizing Nova and Neutron

The process of reincarnating a node in our framework is greatly simplified by the

combination of nova and neutron, however, the implementation of these capabilities

are asynchronous by design, the functions have no return values to determine whether

the call succeeded or failed. For example, detaching the network interface o↵ of the

replica with the nova interface-detach <options> to free it’s fix and floating IPs in

order to attach it to the new VM instance using the interface-attach <options>

throws an error “IP is still in use”. The reason is that these nova interfaces are

implemented by the neutron component. In general, all inter component (i.e., nova,

neutron, horizon, glance, cinder, etc.) calls in OpenStack software stack is done

through RESTful messaging (i.e., AMQP).

A typical workaround is to insert sleep(x) to hold the process for an x amount of

time before proceeding to the next call, however, this x will vary depending on the

load of the controller which is di�cult to predict, thereby, increasing the refresh time

if x is large or disrupting the system (crashes) if x is too small. We synchronized

the nova calls by making other nova reporting function calls (i.e., nova show

--minimal and nova interface-list) in a while loop as illustrated in the following

code snippet.

#/bin/bash

...

nova interface-detach <options>

while [ 1 ]

do

isactive=$(nova interface-list replicaID

| awk ’/\ACTIVE\y/ {print $2}’);
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if [ -z "$isactive" ]

then

break;

fi

sleep 1

done

nova interface-attach <options>

...

Basically, the loop holds the execution of the next function call by repeatedly call-

ing nova interface-list replicaID function that reports the status of the given

replica ID every second. We parse the value ACTIVE in isactive variable from the

result returned by the nova interface-list command using awk, then, break once

the value is null with the -z condition. This means that the interface does not exist

and can proceed to the next function call, thus, prevent us to blindly wait function

result in such environment.
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4. BYZANTINE FAULT-AVOIDANCE

The Byzantine Generals problem was first introduced by Lamport [59] as an ab-

stract notion of constructing a provable reliability-guaranteed replicated distributed

system. This replication model has the ability to cope with malfunctioning and byzan-

tine/arbitrary faulty components. The State Machine Replication (SMR) approach

is considered one of the e↵ective ways of implementing a Byzantine Fault Tolerant

(BFT) system [60]. SMR resolves the interactive consistency conditions for distribut-

ing single source of data to multiple channels by enforcing the replica to start in the

same state, execute client requests, and unanimously respond to it in ordered fashion,

thereby, enabling to reach agreement even in the face of few faulty replicas. This,

satisfies the correctness condition properties; safety and liveness. The safety prop-

erty asserts that some of the replicas remain consistent with one another, and liveness

guarantees that the clients will eventually receive responses for their requests.

For decades, BFT research was considered theoretical due to its impracticality

for implementing it in a real-world setting. A Practical Byzantine Fault Tolerant

(PBFT) system [61] that achieves performance close to a non-replicated system was

published and open sourced to help the ever-increasing need for reliable distributed

systems prototype. PBFT has sparked a wide-array of research to further improve

its performance, for example, reducing communication steps, replication costs, and

addressing security issues which is the focus of this chapter.

4.1 Motivation

The performance improvement of BFT systems was mainly credited to the ad-

vancement of cloud computing, for example, virtualization techniques have been used

on improving replications costs from 3f+1 where f is the faulty replica, to f+1 in
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ZZ [62], CheapBFT [63] and A2M [64]. While replicating systems on a highly dynamic

virtualized elastic cloud environment is undeniably cost e↵ective, it is increasingly

challenging to guarantee reliability due to the inherent increase in attack surface [39]

– the set of ways an adversary can exploit/penetrate the systems, due to the number

of components built on these platforms.

Amir et al. first reported in “Byzantine Replication Under Attack” [28] that

PBFT is vulnerable to performance degradation attacks. The core of such vulnera-

bility is the quorum-based consensus protocol where n servers exchange messages to

coordinate with a single selected leader node/server to reach consensus while there are

some faulty ones in the mix. A compromised leader can increase latency and reduce

throughput by delaying responses (state/view change or coordination messages) just

in time to avoid detection or protocol time outs to make the system barely usable.

They argued the insu�ciency of the correctness condition for BFT, and introduced

Prime [65], a new BFT protocol with bounded-delay performance criterion. Prime ex-

tends the existing BFT’s agreement protocol with an additional step, pre-agreement,

using reliable broadcast protocol.

The di�culty of determining the upper bound of the bounded-delay that de-

fines an acceptable level of performance was later addressed in BFT-Mencius [66].

BFT-Mencius introduced an Abortable Timely Announced Bounded-Delay broad-

cast protocol that is on the order of real communication delay. Other notable works

that address this issue include; Aadvark [67], which proposed a change in leadership

when suspected, i.e., when the leaders’ performance is slowing down. Along the same

lines of work, Spinning [68] constantly rotates the leaders’ role after every patch of

accepted client request for execution, similar in spirit to BFA.

All of the above approaches have concentrated on the application protocol layer

which is often defeated when the attack is originated outside the application (OS ker-

nel). With the ever increasing sophisticated attacks in recent years, the computing

landscape di↵erences between the traditional computing platforms and the virtual-

ized cloud environments have amplified these attacks. This is due to the inherent
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complexity of the interdependent components and the programmable network model

(SDN) on these platforms, thereby, defending replicated system (i.e., BFT) with the

existing solutions is extremely challenging. For instance, in a cloud platform, a com-

promised BFT leader/server not only disrupt the reliability of the BFT protocol but

can also wage several attacks such as attacks on the SDN controllers and the data

plane forwarding flows by poisoning the entire network topology or even take control

of the entire infrastructure [9].

The fundamental problem of BFT security issue is that fault-tolerance and attack-

tolerance techniques is a double edge-sword. On one hand, replication is the ultimate

solution for availability and fault-tolerance. On the other hand, replication increases

the overall system attack vector (i.e., increased the number of nodes to be protected

and resist attacks). Therefore, we believe shifting from a perceived over-emphasis on

improving BFTs’ protocols to designing architecturally resilient replicated systems

that reflect on the underlying computing fabric is critical. We deploy a BFT pro-

totype to the proposed Mayflies framework discussed in chapter 3 and evaluate its

performance impact while the replicas on the move across platforms.

The framework enables the BFT system avoid byzantine faults through controlling

the replicas’ exposure attack window while simultaneously preserving the correctness

condition of BFT properties; safety and liveness. Such control is achieved by allowing

replicas (including the leader) to exist only for a short period to complete n client

requests on a given underlying computing platform, then vanish and appear on a

di↵erent platform with di↵erent characteristics, i.e., guest OS, Host OS, hypervisor,

hardware, etc. As a result, enable a tight architectural-level integration of attack-

tolerant to fault-tolerant protocols through avoidance. Thus, we view our approach

as Byzantine Fault-Avoidance (BFA).
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4.2 Background

Byzantine Fault Tolerance (BFT) is a well-established reliability guaranteed dis-

tributed system based on state-machine replication model. PBFT [69] is the first

practical implementation of a leader-based BFT replication model that has been

widely studied in the literature. PBFT systems consist of a primary node and n

replicas; the basic operation (sketch) of the algorithm is as follows:

A primary node, referred as the leader, exchanges consensus messages to n replicas.

The primary’s main task is to assign monotonically increasing sequence numbers to

each of the client’s requests and start a three-phase agreement protocol; propose,

prepare, and commit respectively. Initially, the leader assigns a sequence number for

every request (from the clients), then multicasts to the other predefined replicas in

the propose phase. The replicas confirm the receipt of the request back to the leader

and transitions to the prepare phase. The leader then sends the execution approval

back to all the replicas to transition to the commit phase, thus, reliably completing

the request. Upon the completion, all the replicas send the response to the client,

thereby, guaranteeing task completion even in the case of a few faulty replicas.

4.3 BFA System Model

BFT systems are typically implemented using State Machine Replication (SMR)

model [60] and formalized with I/O automaton [70], therefore, it is a natural fit to

model BFA as an automaton.

Consider system B as a BFT’s finite state automata (FSA) system model. Typ-

ically, system B consists of four tuple automaton, B = (sig(B), states(B), start(B),

steps(B)), where sig(B) are independent actions acts(B) which consist of in(B),

out(B), and internal(B), of input, output, and internal actions respectively. A set of

states(B) consists of a non-empty set, and a start state start(B) ✓ states(B) of states.

A transition relation, steps(B) ✓ states(B) X acts(B) where the actions acts(B) are
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the client request, the propose, write, and accept consensus protocol messages, and

consensus decision as in(B), out(B), and internal(B) respectively.

Similarly, we model BFA with FSA and call it system A. System A will also have

the same four tuples, the set of states and a transition relation, however, the di↵erence

between the two FSA are their input, output and internal actions. For BFT, the client

requests and the responses are considered the input and the output, and the consensus

state transition protocols propose, write, and commit are the internal actions. We

are interested one of the internal action (accept) from system B (BFT) to send to

system A (BFA) as an input action.

4.3.1 BFT to BFA Transitions

In this work we are considering quorum-based also known leader-based BFT sys-

tems. Typically, leader-based BFT protocols consist of prepare/propose, write, and

accept state transitions where the leader exchange messages ordering replicas to exe-

cute client requests. Upon the completion of each client request, a decision is reached

depending on the non-faulty replicas participating the vote. The system transitions to

an accepting state if the number of voted replicas are within the acceptable majority.

We refer this decision as BFTCommit.

In BFT, the state machine is initially triggered by the client requests which is

considered as input action, and the consensus transitions which are considered as

internal actions happens next. One of these internal actions is the BFTCommit

transition which happens upon successfully completing/committing the transaction.

We need to pass this transition action to our BFA system as an input to trigger its

internal actions. However, for an I/O automaton, the internal actions of SMR-based

system are not visible to other systems in the same environment [70].

State transitions in BFT systems are just an abstract notion of implementation

dependent persistence workspace, i.e., continuous memory region. In order to elimi-

nate state synchronization complexities, BFT systems require logging every accepted
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Fig. 4.1.: Illustration of finite state automata composition for BFT in A, and BFA
in B. The transition of the BFT accept/commit state triggers as an input to BFA
(dotted arrow) and transitions it to an accept state for refreshing a replica.

execution for the recovery process/server in the event of natural crashes. We consider

every log event as the output action from system B that can be used as an input

action to our system A (BFA). We assign this checkpoint event of the BFT system

as the output action (out(B)) and use it as an input action (in(A)) for BFA.

Formally, the BFA’s state transition steps can be defined as steps(A)✓ acts(B),

where out(B) is the output action (BFTCommit) in act(B). This eliminates state

transfer complexities and e↵ectively allow us to easily reason about the preservation

of the BFT’s reliability properties (safety and liveliness).

In order to perform useful computations, we consider a transition after n accepted

BFTCommits, thus, indirectly trigger BFA system to transition to an accepting state

as depicted in the dotted lines in Figure 4.1. Thus, we consider this transition point to

be used as the application state transfer checkpoint between the terminating and the

newly created replicas, discussed in section 4.5.2. The input enabled action of BFT’s

I/O automation shows clearly that BFA is suitable for any SMR-based deterministic

system with state and some operations without any modification.

4.3.2 Correctness Proof

The rationale behind modelling BFA with I/O automata was due to the underly-

ing SMR-based BFT system which is typically modeled with automata, therefore, it
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is natural to frame our theoretical discussion in terms of automata composition. The

automata composition property of I/O automaton allows an output action ⇡ of one

automaton performs ⇡, all automata having ⇡ as input action perform ⇡ simultane-

ously.

Formally, we consider the composition of BFA system A with the underlying BFT

system B as parallel composition P= BkA. For any transition <s, ⇡, s’> of B which

is an accepting transition, there is a corresponding transition <s, ⇡, s’> of A. Note

that we only consider the accepting state, which we refer it BFTCommit as illustrated

in Figure 4.1.

Hence, for each accepting state in system B, there is a transition state in system A

as an input action which results it to transition to an accept state, thereby, a replica

node is refreshed. Therefore, the transition path becomes the invariant that must

be preserved in every replica refreshes. it is intuitive to see if these invariants hold

in one replica refresh round, then, we assert that the next replica refresh round will

be identical to the previous round. Since our system A is driven by the underlying

system B, it will not be the first one that violate the protocol. Thus, preserve the

system B’s correctness condition, safety and liveliness.

As discussed the Time-Interval Runtime Execution (TIRE) in the previous chapter

as the driving engine for the high-level state transitions i.e. desired vs. undesired,

composing P k TIRE as illustrated in Figure 4.2, then, clearly, BFA will not the

first one to violate the automata transitions. Figure 4.2 illustrates the automata

composition of BFT in A (left automata) to BFA in B (middle automata), described

in the previous section, and Mayflies’ TIRE in C (stacked time-intervals on right)

discussed in Chapter 3.

In general, by ensuring n correct live replicas are in sync (weak synchrony) given

that at least one of the replicas is being refreshed each time in a timely manner,

ensures the preservation of the liveness properties. It has been noted in [71] the

impossibility of achieving safety with synchrony, however, the SMR-based I/O au-
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Fig. 4.2.: FSA automata composition of BFT to BFA with Mayflies TIRE.

tomaton model guarantees that the replica responses will be correct according to

Linearizability [72].

4.4 BFA System Design

In this section we discuss the design approach and the building blocks of the

proposed BFA solution.

4.4.1 System Design

Our design is motivated by the modularized, pluggable and structured cloud com-

puting fabric, i.e, stacked hardware, host OS, guest VM/OS’s, and reconfigurable

networks (SDN) as depicted in the logical system view of 4 node replica deployment

use case in Figure 4.3. In Figure 4.3, from the bottom up, at the core of each hardware

(Hardware1. . . n), there is a Host OS with hypervisors (i.e., KVM/QEMU or XEN)

and a cloud software stack (i.e., OpenStack) as depicted on the bottom three leyers

of the stack. There are n VMs on each Host OS that is controlled with the nova

compute (label). Note that the VMI introspection is enabled at this layer (between

the hypervisor and the VMs).

To illustrate, we deployed four BFT replicas (BFT-0, BFT-1, BFT-2 and BFT-3)

on the VMs. These VMs are interconnected with LAN address (192.x.x.x), referred

as fix IP, and externally exposed with WAN address (128.x.x.x.), referred as floating
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Fig. 4.3.: BFT system logic view on a cloud platform

IP. This mapping is handled by the neutron component, an implementation of Soft-

ware Defined Networking (SDN). The arrows at both ends of the BFT replica stack

depicts the elastic computing model to dynamically add/remove computing resources

(VM1. . .VMn) below it. The cloud software management stack (i.e., openstack) im-

plements all these capabilities through a wide range of open source projects such;

nova, neutron, horizon, glance, etc. We leveraged these capabilities to not only build

on-demand scalable platforms but also for a defensive security strategy at system

runtime.

We adopted a cross layer vertical design that simultaneously operate on two log-

ical layers of the cloud platform to enable the failure and attack resiliency of BFT

systems; a nova compute at the application layer (guest VM/Os) and nova neutron at

the networking layer. The nova compute is for the VM provisioning/de-provisioning

and the neutron enables the dynamic network reconfiguration capabilities, thereby,

used for reincarnate/refresh the VMs by continuously provisioning/de-provisioning at

runtime. Thus, creating mechanically-generated diversity which is almost as powerful

a defense as type-checking [52].
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4.4.2 Replica Reincarnation

Refreshing a system/entity state is simply resetting its initial state. Refreshing

techniques has been widely adopted with a proven success in the access control do-

main, specially, on passwords. The refreshing scheme of these systems is typically

implemented by setting a predefined lifespan x for the password to exist/used, and

enforce system wide policy for the user to create a new password when x expires and

the system deletes it.

Along the same lines, replica/VMRefresh, referred as node reincarnation, is simply

terminating the VM instance after x amount of time or after completing x number of

transactions, then starting another one possibly with di↵erent characteristics (i.e., on

a hardware, hypervisor, host and/or guest OS) to replace it. This VM substitution

can be viewed in real-time with the network topology view of the horizon dashboard, a

browser-based visualization tool for managing the cloud instances as shown in Figures

4.4(a and b).

There are two di↵erent ways to refresh a BFT replica in virtualized cloud plat-

forms. By terminating the replica and selecting its replacement from either:

1. creating a new VM instance on-demand, or

2. from a pre-prepared pool of standby VMs.

In this work, we give spacial emphasis on the second replacement strategy (dis-

cussed next). We then discuss the implementation approaches and the pros/cons of

each replacement strategy for this replication model next.

Prepared VM Pool

On way to prepare a pool of standby VM replicas is through the nova boot

<options> command. The <options> include; the OS type (i.e., Linux, freeBSD,

windows, etc.), 32/64 bit OS, cluster geographic location, server apps/scripts to active

upon booting the instance, network configurations, etc. Another way is through the
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horizon dashboard, the virtualization tool for OpenStack,a virtualization tool for

managing platform instances in Openstack. Note that the VMs from the standby

pool (x R1) are not associated with any network in order to limit their exposure

prior using them as servers, thereby, not reachable in anyway. This is similar to

booting a server machine without a network card installed, and then we manipulate

the interfaces at runtime.

(a) BFT replicas pre-transformation (b) BFT replicas post-transformation

Fig. 4.4.: Prepackaged VM pool reincarnation topology view

Figure 4.4(a) shows the network topology for our use case of the 4 BFT replicas

0 R0 . . . 3 R0 on the right vertical bar (byzantine subnet) and 4 isolated standby

replica pool 0 R1 . . . 3 R1 between the vertical bars/subnets. A virtual router

(vmsec-proj) interconnects the two subnets with 192.x.x.x IP on the byzantine subnet

side and 128.x.x.x on the externally visible subnet (external). The arrows show the

refresh direction where the x R0 replicas (circle box) will be replaced with the x R1
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(rectangle box) replicas. The result after the replicas reincarnated, all x R0 replicas

are removed from the subnet byzantine and replaced with the standby replica from

the pool x R1 (rectangle box to the oval box) while serving clients as shown in Figure

4.4(b).

Figure 4.4(b) shows the result after performing one round of refresh, all the replicas

in the 0th round (x R0) are thrown o↵ of the byzantine subnet and one at a time

replaced with those (x R1) in the standby pool while serving clients. The cycle can

continue to the next round (x R2) replicas for round 2, and so on.

The naming convention used in our prototype x Rx stands for the replica ID x and

the round R it is operating, for instance, for the replica 0 R0 in the byzantine subnet

is the replica ID 0 operating in round 0 (0 R0), and its counter part standby replica

0 R1 is for replica ID 0 in round 1, and so on. The basic idea of our refreshing scheme

is to remove a replica x operating in round 0 (x R0) from the byzantine subnet (oval)

and replace it with the one of the same ID x from the pool designed to operate in

the next round R1 (rectangle).

Note that we manipulate the nodes’ network interfaces as they are taking over

the role of a server (x R0) in the byzantine subnet. The generic scheme of such node

transformation, dubbed node reincarnation with network interface swap is discussed

in details in the previous Chapter. In this Chapter, we show a specific implementation

of node reincarnation which we call it replica refresh and is illustrated in the following

algorithm.

Algorithm 6 Replica Refresh Algorithm

1: Input: replica
2: Output: newReplica . Substitute replica
3: procedure Referesh(replica)
4: portID  intrface� list < replica

ID

>
5: nova interface� detach < replica

ID

portID >
6: newReplica VM

Pool

. standby VM
7: nova interface� attach < portID newReplica >
8: end procedure
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In Algorithm 6, we first save the port ID associated to the terminating replica (the

input replica). In SDN environment, the VM is attached to a virtual network interface

that is referred to as ports with a fixed IP similar to physical network interfaces. This

interface is also associated with floating IP for external access as noted earlier. Thus,

both of the IP addresses are part of the port even after it is separated from the VM,

thereby, transferable to another VM. We detach the port o↵ of the replica in line 5,

we then get a new replica VM instance from the pool in line 6 and attach the port

to it in line 7. Note that depending on the OS image of the replica, a VM reboot is

required after the nova interface-attach <portID newReplica>. At this point,

the clients re-connect to this replica through its floating IP (128.x.x.x ) as the old

server that dropped o↵ of the network and came back. We show a 4 replica BFT use

case scenario with this refresh algorithm in the experiments section.

Pros & Cons

In general, one of the key advantage of refreshing a replica is the mechanism to

control its lifespan in order to reduce its exposure attack window. The refresh time,

the time it takes to swap a replica, is critical to the e↵ectiveness of the proposed

defensive security solution. The longer the refresh time, the longer the replica is

absent from the quorum, thereby, violating the systems reliability properties (i.e.,

su�cient number of replica synchronized). The replacement choices (i.e., prepared

vs. on-demand) of the replica dictates how fast a replica can be refreshed.

Creating a new VM instance on-demand takes roughly a minute and selecting one

from a prepared pool of VMs takes less than 10 seconds. As a result, the on-demand

boot replacement strategy is not suitable for BFT replication model, specially, for a 4

replica with 1 faulty settings. The main reason is that, in SMR-based BFT replication

model, the absence of a node from the quorum contributes the faulty replicas (f) to

fall below the threshold when an additional node fails (naturally or compromised),

thereby, violate the preservation of the reliability properties (safety and liveness).
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However, such a replacement strategy is highly e↵ective for non-SMR based repli-

cated systems, for example, the high-availability slave/master replication models

found in event-based middleware (i.e., HA RabitMQ’s) where the slave node replaces

the master node when it fails discussed in the next Chapter. For quorum-based BFT

systems, the refresh transition time should appear to all of the servers and clients

as the replica dropped o↵ of the network and came back in order to preserve the

system’s reliability. To achieve this, having the replicas in standby mode and dynam-

ically manipulating the network interfaces is the most e�cient method for refreshing

a replica.

There are two di↵erent ways to prepare the standby VM pool, the isolated/de-

tached pool or attached pool. As the names imply, the pool is created in isolation

or detached o↵ of the network as our replacement strategy discussed in the previous

section. The attached scheme is when the pool is prepared on the network similar to

the post-transformation depicted in Figure 4.4(b). Having the pool within the subnet

tend to be a little faster than our isolated replacement scheme if both the clients and

replicas/servers communicate with the floating IP, however, this require a di↵erent

network topology than the one depicted in Figure 4.4(a).

The standby VM pool can be prepared on the externally visible subnet than the

internal (byzantine) subnet of the (192.x.x.x) when using floating IP for both the

clients and servers, or perhaps, setting it in flat network topology than SDN. The

main reason is that the servers in the (byzantine) subnet have no knowledge of the

floating IP, therefore, cannot bound to a specific port with that IP. Replicas in the

BFT-SMaRT bound to a port number xyz on the fix IP where they communicate

among them, and the clients use the floating IP and the same port number xyz. The

SDN seamlessly handles this mappings.

Regardless, the core issue in this scheme is that the entire standby pool are vulner-

able as any other exposed BFT replicas due to the fact that they are reachable within

the LAN prior joining to be part of the servers. Consequently, the pool increases the
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systems’ overall attack vector (i.e., more nodes to protect) and the newly refreshed

replica will have higher exposure window as well.

Overall, creating a new instance on-demand is the most secure way that guar-

antees a zero exposure window as the VM instances are freshly created each time,

however, its slow refresh time makes the least favourable scheme for BFT replication

model. Using a pre-pared pool of VMs and dynamically manipulating the network

interfaces is e↵ective in time critical replication models as it o↵ers faster refresh time.

The attached pool scheme have some major security issues and it requires a di↵er-

ent network configuration to support our use case BFT prototype. Therefore, the

isolated/detached VM selection scheme o↵ers the best of both worlds, given that the

replicas are in standby mode unlike the fully exposed pool of the attached replicas or

the on-demand boot scheme which requires up to a minute in preparation.

4.5 Implementation

The implementation details of the Mayflies MTD framework in a generic way

is given in the previous Chapter, in this section we give a specific implemetation for

BFT systems. We implemented our algorithms with bash shell script using OpenStack

(Kilo) [7] components, an open source cloud management software stack. To illustrate

our proposed BFA, we used BFT-SMaRT [53] prototype downloaded from [73], a

widely studied Byzantine Fault Tolerant system in the literature.

We selected OpenStack due to its popularity in commercial clouds. For instance,

RackSpace [8], is a public cloud platform built with OpenStack used by many well-

established businesses like Netflix. Further, OpenStack provides a modularized com-

ponents that simplify cloud management. We leverage the nova, neutron and horizon

components. Similarly, we selected BFT-Smart due to its modern multi-core aware

architecture and modularized Java based implementation that is widely studied in

the literature in recent years. We have evaluated a number of open source BFT pro-
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totypes and none come close to BFT-SMaRT given the fact that BFT research has

been around for decades.

We deploy a BFT system to the Mayflies framework, we then apply node rein-

carnation which we call it replica refresh. The replica refresh scheme in this system

model is to control their existence of the replicas in the hope of reducing their expo-

sure window of attacks and avoid faults, thus, transforming the system into Byzantine

Fault-Avoidance (BFA). The fundamental question arise in such transformation ap-

proach (from BFT system to BFA) while preserving the systems’ reliability properties

is how to deal with the applications’ refresh points, dubbed lifespan, and its state trans-

fer between the terminating and the starting replica? We answer this question with

implementation details below, we then present our transformation algorithm.

4.5.1 Replica State Management

The state in BFT-SMaRT system consist of two parts; first, is the dynamic part

which is created at server start up time with information like; the replica id’s, IPs and

current leader ID, last executed ID or the committed transaction. This information is

typically written in a file called currentView to assist the recovering replica upon nat-

ural crashes. The second part is the static system configuration files (system.config

and hosts) which contains the security keys/certificates, total number of servers, the

faulty model (i.e., 1f ), host IP and port, etc. These files are loaded only once at

the server start up and not get updated, however, for spacial settings that supports

servers to leave and join in order for the system to grow or shrink, the hosts file gets

updated with the new server information at runtime.

As noted in section 4.1, the quorum-based state machine replication systems, the

accept state transition happens upon the replica reaching a consensus. At this point,

we can refresh the replica without violating the correctness conditions. The idea

is terminating the replica after committing the transaction, given the fact that the

system will progress with the majority without the temporarily terminated replica, we
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then re-initiate a new one at some point in the future transactions. This guarantees a

safe automata transitions, however, the challenge is how to intercept this check point

at runtime (discussed next) and transfer it to the new replica?.

For transferring the system state, there are two di↵erent logical layers of the

cloud platforms that can be implemented, either at the Hypervisor layer or at the

VM/ Application Protocol layer. For the hypervisor layer approach, one can inject the

state information into the servers’ memory space. In this process, the VM is paused

in which the state information becomes stale. Upon resuming the VM, given that

other replicas are continuously processing client requests as long as the faulty-level is

below the threshold, the state becomes stale, thereby, the replica has to send requests

to others for the current state and update its state upon verifying it with more than

one replica.

For the application layer, the process is to simply stop the replica, save its state,

activate a new server and inject the state, then start the new replica as the old one.

Upon resuming, the state information becomes stale, thus, acquire the state updates

from others as well, similar to the hypervisor approach. We implement our state

transfer scheme using this approach since it is simple and faster than the hypervisor

approach.

With the three files used for the replica state management, first, we introduce

a new configuration property in the system.config configuration file, called the

system.server.lifespan. We execute a sed command at the server side for the

configuration property substitution as illustrated in the code snippet below.

#/bin/bash

...

sed -i ’s/\^system.server.lifespan=[^ ]*/

system.server.lifespan=new_value/

config/system.config

...
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The sed command simply looks for the first part of the string, substitutes with the

second part of the string with our desired lifespan (new value) to the file name

provided. This illuminates one round trip of scp to the server for injecting the entire

configuration file, given that we need to update a single entry. We use the same ssh

connection to first execute the sed command to update the lifespan property and

then start the server afterwards.

Second, for the hosts file, as noted earlier, it only gets updates in spacial dynamic

case settings. For simplicity, we illustrate the use case with only 4 BFT replica

and keep the system size fixed (i.e., not allowing other replicas to join or leave).

However, in dynamic setting like that, the same system.config configuration file

update method can also be used to update the hosts file prior starting the newly

replaced replica.

Finally, we save the currentView file from the terminating replica, and inject

into the new replica using scp, then ssh to update the configuration files and start

the server. Since replicas get the latest state information, especially, the last com-

mitted transaction from the others when they reconnect, the state information in the

currentView file is critical for assisting the leader change protocol. We observed that

when we terminate a leader, the reconnected replica further complicates the decision

process of the new leader selection if the currentView file is not injected. We will

discuss our improvements of this issue in the discussion section 4.6.4.

4.5.2 BFT-SMaRT Replica Lifespan

As noted earlier, our key objective is to reduce the exposure attack window of the

replica by allowing replicas to run with a pre-defined time frame, dubbed, lifespan,

on a variable platforms with di↵erent characteristics. As illustrated in Figure 4.5, it

is intuitive to see the replicas in the initial window are vulnerable to attacks if they

stand still for the entire time. We refresh one replica (pointing arrow depicted as
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enlarged platform) for every x number of transactions completed, thus, reducing the

attack exposure window in the consequent windows.

The key rationale behind this approach is that if a replica is compromised and

undetected, the attacker will control within that lifespan time frame, thereby, elimi-

nating the chance for the servers to collude. Most importantly, attacks crafted for a

replica in one of the windows (i.e., 0-x) will not work against the same replicas as it

changes its characteristics in the upcoming window x
i

time frame.

Fig. 4.5.: Illustration of exposure attack window time line of 4 replicas.

In Figure 4.5, the four computer/platforms with IDs (0. . . 3) represents the host

OSs, and the circle above it represent the BFT servers (guest OSs). Note each plat-

form can host multiple guest VM instances. The initial 4 node use case show in

the first block and refreshing a replica (pointing arrow) after a predefined lifespan (x)

shown at the (x-axis) and x
i

, . . .x
n

in the consequence blocks with enlarged platforms,

and other nodes shrinking, depicting that they are weakening (i.e., longer exposure

time). The lifespan of the replica can be either a predefined fix system time as low

a minute or after completing x number of client requests. This marks the transition

from x to x
i

in the time line window shown in the (x-axis). Precisely setting the

replicas’ lifespan is critical in order to guarantee safe state transition between the

two composed automata (BFT and BFA) discussed in section 4.1. Intercepting ex-

actly when the consensus is committed/accepted at runtime and the refreshed replica

continues the process guarantees a safe transition.
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To illustrate, we decided to set the lifespan of the replica to exist after complet-

ing x number of requests (decided consensus) which can be easily translated into a

system time (i.e., x number of transactions takes x amount of time). We discuss the

rationale behind our decision in the discussion section in section 4.6.3. We inserted

our interested x value in the static configuration file system.config as discussed in

the previous section, and edited the consensus decision method in TOMLayer.java

class found in the Total Ordering Messages (TOM) module. The java code snippet

below shows these changes.

package bftsmart.tom.core;

// TOMLayer.java

public final class TOMLayer extends Thread

implements RequestReceiver {

...

/* Called by the current consensus’s

* execution, to notify the TOM layer that

* a value was decided

* @param cons The decided consensus */

public void decided(Consensus cons) {

/*Delivers the consensus to

* the delivery thread*/

this.dt.delivery(cons);

/*Lifespan detection and self termination*/

if(this.controller.getStaticConf().

getReEntryPoint() == cons.getId()){

Logger.println("Reached Life Expectency");

try{

PrintWriter writer = new
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PrintWriter("exitcertificate", "UTF-8");

writer.close();

try{

Runtime runtime = Runtime.getRuntime();

runtime.exec(new String[] {

"/bin/bash", "-c","path/terminator.sh"});

} catch (Exception e) {

Logger.println(e.getMessage());}

} catch (IOException ex) {

Logger.println(ex.getMessage());}

}//end if

...

In this class, the decided(Consensus cons) method calls the message delivery

thread to deliver the consensus cons (i.e., committed/accepted the execution of the

client response). We inserted our code after that method call as shown below the

comment /*Lifespan detection and self termination/. We simply check every

decision transaction number against the allowed system lifespan x loaded from the

static configuration file. Once the replica reach its lifespan, it creates a file which we

call it exitcertificate, then self-terminates by calling a bash script terminator.sh

which kills all the java processes. This assures that the replica existed only up to

its designated lifespan, thereby, guaranteeing a smooth automata transition between

BFT to BFA, thus, preserve the safety property of the BFT.

Clearly, as the code snippets show that our changes have no impact on the correct-

ness of the application protocol, however, one concern is for slow consuming clients

where the decided messages are kept in the delivery queue or the batch process model

where requests are delivered in batches (bulk). This should be simply addressed by

disconnecting the communication of the replica from the rest of the servers first and

delaying the termination call for the terminator.sh script until the delivery queue

is cleared.
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The monitoring bash shell script code snippet show the monitoring process is as

follows: we ssh to the VM replica while suppressing the ssh trust warnings with the

-o options, change to the directory to where the file will appear and keep checking

every second. The loop breaks once the file is created, server terminated and then we

perform the transformation process illustrated in Algorithm 7 discussed in the next

section.

#/bin/bash

...

ssh -i $key -o UserKnownHostsFile=/dev/null

-o StrictHostKeyChecking=no

’ubuntu@’$ip "cd $path;

while [ ! -f exitcertificate ];

do sleep 1; done"

...

Note that the ssh protocol verifies the trust of the replica for the first time another

host tries to connect. In our case, it is always the first time whenever we refresh a

replica, therefore, we added the following options in order to skip the confirmation

message:

[ssh --o UserKnownHostsFile=//dev//null -o StrictHostKeyChecking=no

...]

4.5.3 BFT to BFA Transformation

At a high level, the process of the transformation is as follows: we start the

servers/replicas with a predefined lifespan in their initial static configuration file, then

they create an exitcertificate file to signal the monitoring application for reaching

their lifespan and self terminate. While we continuously monitoring the existence of

this file, we refresh the replica once the file is detected. Algorithm 7 below illustrates

the logical implementation of the proposed architectural transformation.



88

In Algorithm 7, given the set S of all the participating replicas, we first initialize

the life expectancy x, counter i and the file name in line 2. In lines 6-14, we check

if the exitcertificate file is issued/created in line 6, we save its state file for the new

replica with GetCurrentViewFile() in line 7, apply the refreshing process in line 8.

Note that this procedure is implemented in Algorithm 1 above. We then update the

configuration file of the newly refreshed replica with the desired lifespan x and inject

the currentView/state file and start the server in line 9 and 10. We create a new VM

instance x Rn to replace the one just used in line 11. The counter i in line 12 is to

update the lifespan of the next upcoming replica, for instance, if the initial replica

termination lifespan is 20K increments, then x=20 and i=1, thus, we terminate the

first replica after completing (20K), (40K), and so on.

Algorithm 7 BFT to BFA transformer Algorithm

1: Input: S . Set of BFT replica servers (S1. . . Sn

)
2: Initialize x, i, exitcertificate . lifespan, next, file name.
3: while condition do
4: for replica in S do
5: repeat
6: if exitcertificate file exisits then
7: GetCurrentViewFile()
8: Refresh(replica) . Algorithm 6 above
9: InjectState() . scp
10: StartServer(x) . ssh
11: VM

Pool

 nova boot < opts > . refill
12: x x ⇤ i . next lifespan
13: else
14: do nothing . keep waiting
15: end if
16: until . until exit certificate issued
17: end for
18: condition = false . one round refresh only
19: end while

The GetCurrentViewFile(), InjectState() and StartServer() in lines 7, 9,

and 10 are implemented used secure copy scp and secure shell ssh commands as

described in the previous section (sec. 6.1). To illustrate the concept, in our experi-
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ment, we set the condition to false in line 18 to terminate the main while loop after

performing only one refresh round to all the replicas.

4.6 Evaluations

As depicted in the BFT system logic view diagram in Figure 4.2 in section 4.3.2,

each hardware/machine (HW1. . .HWn) lie a Host OS with a hypervisor (HV. . .HVn)

or containers, and guest OS’s/servers (VM1. . .VMn) on top of it. For each replica re-

freshed, we will start a new one with a di↵erent guest (VM) OS and hardware platform

for its place. Thus, our experiments is targeted on evaluating the runtime execution

gap while the replicas are on a constant move across these hardware (HW1. . .HWn),

and at the same time processing ordered messages.

We deploy BFT-SMaRT’ s CounterServer() and CounterClients() demo appli-

cation on OpenStack cloud platform and report the transformation results. In this

demo, the clients send requests that has a number to all the replicas/servers, then the

servers respond the number incremented by a predefined x value in ordered fashion.

This demo illustrates the SMR-based replication model that’s mathematically proven

to guarantee reliability even in the presence of some faulty ones. We are interested in

the runtime execution gap (i.e., missed messages) between the terminating server and

the new server in order to asses the transformation impact on the replicas reliability

properties and throughput.

4.6.1 Guiding Principle for Quorum-based Replicated Systems

In this system model, there are typically n nodes, where n � 4 , and the system

tolerates upto f faulty nodes, where f=1/3 of n. For example, when n=4, then if one

node is compromised/fails, the system should be still considered in a desired state.

To represent this behavior in our model, we need an additional hidden state with the

compromised and failed states in level II, call it, Turbulence, for example. Note that
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the HHMM model is extensible horizontally and vertically, and the state transition

probabilities are equally likely as discussed in section 3.3.3.

Then, the guiding principle for this system model can be governed by the following

rules:

• if less than or equal to 1/3rd of the nodes are dirty, then the system transitions

to Turbulence state.

• if more than 1/3rd of the nodes are dirty, then the system transitions to Com-

promised state.

• if more than 2/3rd nodes detected dirty, then the system transitions to Failed

state (i.e., application crashes).

4.6.2 Experimental Setup

Our experimental platform uses a private cloud built on OpenStack software on

a cluster of 10 machines of Dell Z400 with Intel Xeon 3.2 GHz Quad-Core and 8GB

of memory running Fedora 23 host OSs. We used a Gigabit Ethernet switch between

the machines. We set up one of the machines as a controller and networking (SDN)

node, and 9 were used as compute nodes. The 9 compute nodes allow us provisioning

36 virtual CPU’s (vCPU) which equals upto 18 small vm instances/servers, 2 vCPU

per instance. The client is installed in a separate node from the cluster to mimic the

realistic setting of clients.

We used Ubuntu 14.04 for the clients and the replicas/servers in all our experi-

ments to illustrate the concept. However, the idea applies to any cloud images/OS’s

formats (COW, EC2, etc.) available in the public repositories that OpenStack sup-

ports.
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4.6.3 Experimental Results

We run BFT-SMaRT CounterServer() and CounterClient() for 4 servers with 1(f),

where f is the number of faulty replica the system tolerate, and a single client sending

100K request messages. We set a 100K messages to be published in order to cover a

full round of refresh on all replicas. We set a refresh point of 20K increments for each

replica lifespan starting at replica 1 on 20K, replica ID 0 at 40K, replica ID 2 at 60K

and on 80K at replica ID 3. In BFT-SMaRT, the leader ID is typically number 0 and

the candidate leader is number 1 and (+1) for the next candidate leader and so on.

Refreshing the leader first will lead to refreshing a leader in each round, therefore, we

start with server 1, then 0, and so on.

Table 4.1.: Counter Demo with Normal Re-start

Server Re-Start Transition Gap

0 0, 0 40000, 40037
1 1, 1 20000, 23650
2 2, 2 60000, 62286
3 3, 3 80000, 82105

Table I show the results of the normal server restarts using the scripts smartrun.sh

and killall.sh included in the demo. The first column show the server ID, refresh-

ing it to itself (i.e., server IDs 0 and 0 again) is shown in column 2. The third column

shows the transition gap (i.e., the messages completed by the terminating server and

the start of the new server where its predecessor left o↵) after the replica fully recov-

ers and updates its state. In this experiment, we simply monitor the exitcertifacate

file from the terminating replica, then we ssh back and restart the server again. This

is to capture the recovery protocol timing in terms of transition gaps and the overall

process time.

Table 2 show the results of the demo servers while on the move across platforms

with the same settings above (i.e., 100K client requests and 20K increments). Similar

to Table 1 layout, column 1 show the original replica ID’s and the transformed ID
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Table 4.2.: Counter Demo with BFA Transformation

Server Refresh Transition Gap

0 0 R0, 0 R1 40000, 40037
1 1 R0, 1 R1 20000, 25852
2 2 R0, 2 R1 60000, 66176
3 3 R0, 3 R1 80000, 86773

shown in the second column where the server id pairs (x R0), (x R1) is for server id

x in round R0 and then to x in round R1, and so on. The third column show the

message transitions gap between (x R0) and (x R1) replica group.

Note that the transition gap of the leader replica (Server 0) in both experiments are

identical, this is due to the fact that the leader recovery time is about 20 seconds [53]

and the elapsed time between the termination of the replica and the start of a new

replica is typically less than 10 seconds as shown in Table III (column 2). The

transition gap starts after the replica updates its state (installs the last execution ID)

and resumes processing client requests which is ⇠700 messages passed from the time

it reconnects, and 0 messages for the leader replica.

Table 4.3.: Comparisons of Generic, Re-starts and Refreshes

Use Case Avg. Lapse Time (sec) 100K Time (sec)

Generic 0 185.655
Re-Start 0.120 ± 0.010 221.527
Refresh 11 ± 3 322.902

Table 3 shows the three use cases side–by–side: the Generic case were we start the

servers without stopping them, Re-Start and Refresh experiments reported in Tables

I and II with the 100K client requests. Column 1 is the use case scenario names.

Column 2 show the average lapse time, the time it takes for the server to put back

in business when Re-Started or Refreshed. The lapse time starts when we detect the

exitcertificate file and ssh back to re-start the server or manipulate the interface to

start a new and di↵erent replica for the case of the Refresh experiment. The lapse
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time is 0 for the Generic case since the server is not stopped. Column 3 show the

total process time of the 100K requests averaged across 5 experiments.

The total process time shows that it takes a little over 3 minutes to process a

100K client requests in the Generic case and little over 5 minutes when refreshing

a replica in every 20K requests for the Refresh case. This illustrates that we can

refresh a replica in as low as a minute while performing useful computation which is

necessary when operating in contested environments, however, in a normal situation,

the performance impact is negligible if randomly refreshing a replica (say for every

5-6 minutes or more which is ⇠ 200K+ requests) to disrupt attacks.

Fig. 4.6.: An output of nova list command showing the BFT and the standby
replicas with their network mappings before the transformation. The arrow shows
the (x R0) replica groups have network interfaces and x R1 have none.

Figure 4.6 reflect the graphical horizon dashboard network topology shown in

Figure 4.4(a) where our 4 BFT replicas on the byzantine subnet (x R0) with IP (fix

and floating) addresses and (x R1) with blank entries. To illustrate, the white square

box shows one of each of these replicas (0 R0) and (0 R1) where the network interface

is attached to (0 R0) as the arrow points and none to (0 R1).

Figure 4.7 shows the result after the transformation algorithm completes for one

round. The white square box shows the same two replicas as depicted in Figure 4.6,

(0 R0) and (0 R1) and this time the interface is attached to (0 R1) and (0 R0) has

no network entry as the arrow points. This transformation can continue as (x R2 )

for round 2 with newer VMs created/refilled instances in line 12 of the Algorithm 7,

and so on.
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Fig. 4.7.: Post BFA transformation results. The network interfaces of (x R0) group
are seamlessly transferred to the (x R1) group. Note (x R0) entries are blank.

Each our 4 BFT use case replicas in the initial round (x R0) clearly reached

the 20K refresh increments as we see those in the standby (x R1) round continued

processing from where their predecessors left o↵ as shown in Tables I and II, and the

SDN results of Figure 4.6 and 4.7. Thus, this guarantees the safe state transition

between the replica (x R0 and x R1) groups, as a result, preserved the reliability

properties of the protocol (safety and liveness). We showed the total process time of

a 100K messages from a single client, we consider evaluating our algorithm with large

number of clients while the servers are geographically distributed and under attack.

4.6.4 Discussion

In this section, we will discuss the key challenges on extending cloud framework

to support MTD-based attack resiliency defensive strategy. The key challenges we

address are the behaviour of the BFT-SMaRT leader change recovery protocol and

dealing with the replica lifespan of the nodes to accommodate the dynamics of the

framework.

Improving BFT-SMaRT Recovery Protocol

The absence of the node due to the re-start is less than a second, and the refresh

process is between 8-11 seconds. During this time, the replica misses over thousands

of messages as shown in Table I and Table II. In both cases, we observed that occa-
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sionally the system crashes when the recovering replica is catching up with the missed

messages (timeouts). This was due to the fact that terminating another replica that

reached its lifespan leads the system to fall below the allowed faulty number.

As the logs show, we believe that the replica is re-connected but has not yet been

fully recognized by the majority in the quorum process, thereby, the system crashes

upon terminating a second one. This issue also appears when terminating a replica at

the start of the experiments which was due to the replicas proceeding to process client

requests once 3/4 of the replicas are connected, thus, putting the 4th replica (i.e., 4

replica use case) in a catch-up mode early in the game. We set the replica lifespan to

20K increments to space out the termination and considering to thoroughly analyse

the code and systematically solve this issue in the future.

For the leader change recovery protocol, we discovered (from the logs and the code)

that upon the return/reconnected leader at specific point of the protocol message

exchanges, the returned leader further contributes more messages and delays the

leader selection process even further, for example, the reconnecting replica receives a

message from a certain replica which shows that his id is the known leader for this

replica. In contrast to the messages from other replicas that show a new leader is

considered (regency number incremented) but not decided and other replica sending

for unknown leader (regency -1). This causes many more messages to be exchanged

in order to settle the di↵erences among all the servers until a new leader is selected

which eventually happens.

Occasionally, the system enters into an infinite loop. The logs show that it is

due to the de-conflicting regency numbers among the replicas where each replica is

incrementing the next regency (leader) id beyond the number of participants, thereby,

a dead-lock in deciding a new leader. On one hand, these additional messages have

helped our refreshed replica to catch up to the point where its predecessor left o↵.

On the other hand, it a↵ects the system stability and the overall performance.

We know that the recovery time for a non-leader replica in BFT is negligible

and about 20 seconds for the leader due to the leader change protocol messages
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exchanged in order to unanimously decide for a new leader [53]. Given the fact

that our failure inducing defensive techniques, repeatedly refreshing (terminating/re-

starting) replicas, takes only between 8-11 seconds, we considered improving the

leader recovery protocol in a systematic fashion than the existing approaches in order

to greatly benefit the refreshing defensive solution.

Some of the previous attempts to remedy the vulnerability of the leader (the key

motivating factor to our work) and the leader change protocol include: extending the

leader change time-outs in the configuration file to delay the leader change protocol

activation [28]. The bounded acceptable delay time has been argued and proposed

improvements in [66]. Experiences with Fault-Injection in BFT Protocol in BFT-

SMaRT [74] revealed high time outs (i.e., client side) leads to high recovery times.

Furthermore, they showed injecting attacks to the next candidate leader (regency),

leads the system to revolve around malicious leaders.

To reduce the inherent issues in leader’s recovery time in a systematic approach,

we introduced a reclaim leadership method in the protocol in which the recovering

leader sends a new message called ignoreLeaderChange (LC IGNORE) as long as a

new leader is not yet decided. Once this messages is received, all the replicas simply

check if the sender was actually the leader, current leader has not yet been decided,

then cancel all the messages in the pipe (i.e., STOP, STOP DATA, SYNC, etc.). This

greatly improved the recovery process by eliminating the exchange of the additional

messages and the stability of the system in general. Another possible solution is to

perform a parallel post recovery techniques for the catchup process.

Replica Lifespan

The lifespan for the server can be either a predefined fixed time (as low a minute)

or after completing x number of client requests. The goal is to refresh replicas without

modifying the BFT code. To set the lifespan using the system clock time requires

that all the VM servers system clocks to be accurate at all times. This can be simply
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achieved through the use of NTP or other methods, however, the lifespan of the

replica may never be reached if a server is compromised and its system clock time is

altered.

Setting the lifespan of the replica upon completing x number of transactions which

is technically be translated to time is secure and it does not require system clock main-

tenance, however, the assumption is that the network flows are always synchronized

and the replicas process the client requests in the order it was received and respond

in that order. This assumption does not hold in virtualized environments, thereby, is

challenging to detect the exact transaction completion point.

Our first attempt to set the replica lifespan was to monitor the log file entries

as it is written for our interested value x, however, we discovered that there are 60

± messages processed by the time we extract the system state in order to terminate

the replica. This is possibly due to the IO disk read requests from our monitoring

script and the write requests of the server. Therefore, we decided to insert the lifespan

value x in the configuration file system.config and slightly edit the code to intercept

when the value x is reached and issue an exit/create certificate file, thus, assuring

the replicas to exist only with their intended lifespan. As a result, we monitor the

existence of the exitcertificate file instead of the log file entries and upon detecting it,

the replica gets refreshed safely as described in section 4.5.2.

4.7 Conclusion

In this Chapter we illustrated Mayflies MTD framework with a fault-tolerent

replicated system prototype. The criticality of incorporating attack-tolerance to fault-

tolerance protocols as an integral part of distributed system’s architecture and pro-

tocols was first addresed in [52] for over a decade. To the best of our knowledge, this

work is the first to attempt an architectural-level integration of attack-tolerance and

fault-tolerance on virtualized cloud platforms. Furthermore, the proposed Mayflies
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MTD framework not only enable such integration on fault-tolerance protocols, but

also to other replicated systems.

Experiences over the period of this work revealed major improvements between

the OpenStack software releases (semi annual). For instance, in Icehouse release,

detaching an interface from the terminating VM with nova interface-detach to

free the resources (i.e., IPs) in order to re-use it in nova interface-attach call

required a new interface to be created first with neutron port-create because the

interface is deleted. Then, the new interface has to be associated with the floating IP.

This resulted a slower refresh time than swapping the interface with just the two steps

(detach and attach) supported by the current version (kilo) used in our experiments.

Therefore, as new versions of cloud software stack and SDN implementations

emerge, and the BFT protocols re-engineered to adopt to such platforms, we believe

the cloud computing fabric can advance MTD-based security solutions to defend

systems against sophisticated attacks than the traditional defensive approaches.
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5. DISRUPTION-RESILIENT PUBLISH AND

SUBSCRIBE

The Publish and Subscribe (pub/sub) dissemination paradigm has emerged as a pop-

ular means of disseminating filtered messages across large numbers of subscribers and

publishers. This dissemination paradigm has attracted many applications: financial

trading systems, cloud infrastructures to interconnect components, and distributed

clustering (i.e., RabitMQ), as service buses used in Service Oriented Architectures,

Yahoo Message Broker, OracleJMS, IBM-Websphere, JBoss, and many others.

In pub/sub, typically, a broker(s) mediates the exchange of topic or content-based

messages between the producers (publishers) and consumers (subscribers). Sub-

scribers register their topic of interest to the broker in which is then filtered against the

incoming messages from the publishers and forwarded to them upon match, thereby,

eliminating the need for a prior connection between the message publishers and sub-

scribers.

5.1 Motivation

The many–to–many loose coupling data sharing model between the subscribers

and the publishers mediated by a broker have a major security issue. Once the broker

is compromised, messages can be dropped or not delivered at all, delayed or delivered

unfiltered. Most importantly, replicated brokers can collude to disrupt the entire

operation. These malicious behaviors are known as Byzantine faults; a faulty model

where the system deviates from the protocol specification and enters into undesired

states.

Mayer et. al. [75] evaluated the robustness of pub/sub systems in eight architec-

tural dimensions and argued the criticality of the rational behaviour. For decades,
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replication has been the corner stone for achieving reliability and robustness of the

brokers. For example, crash failure resiliency issues and reliability in pub/sub systems

using replication have been studied in [76].

With the growing trend of cloud computing adaptations, replicating brokers on

a highly dynamic virtualized cloud environment is undeniably cost e↵ective. How-

ever, it’s increasingly challenging to guarantee the reliability and robustness of the

brokers on these platforms due to the increase in the attack surface [39] – the set of

ways/entries an adversary can exploit/penetrate the systems.

Chang et al, in their position paper [77], noted the lack of studies of BFT-based

pub/sub systems in the literature and pointed out that building such as system is

di�cult, perhaps even impossible. The key challenge is that the BFT system’s run

time execution model is ordered (client request are processed in persistent FIFO

model) in contrast to the loosely coupled nature of pub/sub system.

A crash tolerant Paxos-based system, referred as P2S, was recently proposed by

the same authors [78]. Others have approached this problem using overlay networks.

To name a few, a consensus replication model is proposed in [79] which was noted that

the protocol somewhat deviates from the traditional message forwarding standards.

Another overlay networks based on neighbourhoods is proposed in [80].

With the ever-increasing sophisticated targeted attacks that employ zero-day ex-

ploits, protocol-level solutions tend to be defeated when attacks originate outside the

application, i.e., OS kernel. We believe shifting from a perceived over-emphasis on

improving existing protocol-centric solutions, to better enable fault–resiliency while

reflecting the underlying computing fabric, is critical. Thus, we deploy widely adopted

pub/sub system prototype on Mayflies framework to illustrate the MTD scheme of

randomizing and diversifying brokers over variable platforms to combat against the

aforementioned threats.
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5.2 Background

Eugster et. al. [81] gave a fair treatment of the pub/sub models and their interac-

tion patterns, highlighting the decoupled nature of publishers and subscribers in time,

space, and synchronization. Many variants of the paradigm are especially adapted a

variety of applications and network models. In this work, we are interested in highly

available replicated brokers/pub/sub systems distributed across heterogeneous clus-

ters.

Pub/sub ecosystem consists of three agent interactions: subscribers, publishers,

and broker. Typically, a broker mediates the exchange of topic or content-based

messages between the producers (publishers) and consumers (subscribers). In general,

pub/sub systems handle aperiodic and periodic messages of heterogeneous sizes and

formats in near-real time.

One of the proven methods of implementing a fault-tolerant (i.e., Byzantine Faults)

replicated services is through State Machine (SM) approach [60]. However, the main

challenge of implementing Byzantine Fault Tolerant (BFT) protocol in pub/sub sys-

tems is that BFT protocols are based on SM which complies a well ordered finite

state automata transitions, for example, client requests enter the system which is

then executed in ordered fashion among the replica and then a consensus is reached

for the response. Unlike pub/sub, the client requests/events are processed in loosely

coupled fashion, for example, events are published out of order and brokered by the

broker independent of the subscribers that are interested in these events.

5.2.1 Scope and Threat Model

Many variants of the pub/sub paradigm have been proposed and each is being

specially adapted to specific application and network models [81]. We consider repli-

cated n brokers where n>1 nodes/replica typically used for high availability cluster

settings.
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We consider the standard assumptions of Byzantine fault models [82] . Typically,

replicated brokers with Byzantine fault models demonstrate arbitrary faults that de-

viate from the correctness protocol. We consider a Byzantine broker misbehaviour

described in [77]. A compromised broker can: 1) impact the performance by delaying

publications, 2) e↵ect system integrity by tempering published contents, violating

message reordering and corrupting forwarding tables, and 3) even cause system out-

age. We consider publishers and subscribers (clients) are trusted.

5.3 System Design and Implementation

Our design is motivated by the modularized, pluggable and structured cloud com-

puting fabric, i.e, stacked hardware, host OS, guest VM/OS’s, and reconfigurable

networks. In this section we will describe our system design approach and discuss our

algorithms.

5.3.1 System Design

The logical system view depicted in Figure 5.1 illustrates the building blocks of a

cloud platform and the 3 Brokers for our use case. These blocks can be viewed as three

logical layers; i) the bottom three blocks (Hardware1..n, HostOS, and Hypervisors)

which we call it the foundation layer, ii) guest/VM layer which consists of the VM1..n

blocks and the impeded applications (Broker1, Broker2, and Broker3), and iii) the

networking layer.

In Figure 5.1, the arrows on top represent the entry point of the application,

and those on the side of the application layer (Broker 1..n) represent the elastic

computing model of the brokers provisioned on any of the underlying VM.We adopted

a cross layer vertical design that simultaneously operate on two logical layers of the

cloud platform; a guest/VM and the network layer. The guest/VM layer aims for

broker VM instance refreshes while the networking component aims to dynamically

reconfigure the network at runtime. It is intuitive to see that such scheme has the
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Fig. 5.1.: Logical pub/sub system view

benefit of terminating a compromised broker within a given time frame, therefore, a

successful and/or in progress attack will have a limited impact on the system.

Since attacks originate at the entry point, externally visible 192.168.1.x IP for

clients, by refreshing the underlying VM (broker1. . . n), we circumvent any attack

crafted or vulnerability exploited to a given system (i.e., hardware, Host and guest

OSs and the Hypervisor). Note that the brokers typically communicate with local IP

address similar to those found in LAN settings.

5.3.2 Implementation

We implemented our algorithms with bash shell script using OpenStack [7] nova

api, an open source cloud management software stack. As described in details in chap-

ter 3, OpenStack provides modularized components that simplify cloud management.

In this work, we leveraged nova compute for provisioning the VMs/servers, neutron

for networking, glance for the VM image management, and horizon dashboard for

visualization.

Algorithm 8 illustrates the broker refresh procedure. The procedure works as

follows: we first save the broker’s externally feasible IP address known as floating IP

in line 4. We then delete the broker in line 5, and in line 6 we create a new VM

instance with options like; specific port ID with selected fix IP address (LAN), OS

type, cluster, geographic location, file to run after boot, etc. We finally associate the
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floating IP to the new VM instance (newBroker) in line 7. This algorithm can be used

in a random refresh fashion or timely based (i.e., 5 minute) intervals as we illustrate

in the previous Chapter. In this Chapter, we illustrate on-demand VM instance boot

to reincarnate nodes. Unlike the BFT system illustrated in the previous Chapter,

this reincarnation process does not require network interface swapping.

Algorithm 8 Replica Refresh Algorithm

1: Input: replica
2: Output: newReplica . substitute targetBroker with a newBroker
3: procedure BrokerReferesh(replica)
4: flIP  targetBroker

floatIP

5: nova delete targetBroker
6: targetBroker  nova boot < options >
7: nova floating-ip-associate(newBroker

ID

, flIP )
8: end procedure

Clearly, this algorithm is also suitable for any replicated and non-replicated system

deployed on virtualized cloud platform using some form of nova implementation for

provisioning and de-provisioning VM instances, and an SDN implementation.

5.4 Evaluation

Our experiment is targeted on evaluating how fast we can refresh brokers in order

to reduce the exposure window time of an attack to succeed and disrupt the system.

We deploy an open source pub/sub system on Mayflies framework and illustrate how

we move the brokers while under attack. We use a simple application to illustrate

how we employ VMI to detect attacks while the brokers are on the move.

5.4.1 Experimental Setup

Our experimental cloud platform uses a private cloud built on OpenStack software

on a cluster of 10 machines (Dell Z400) with Intel Xeon 3.2 GHz Quad-Core with 8GB

of memory connected with 1 gigabit Ethernet switch. The 10 machines were used as



105

one controller and networking node, and 9 compute nodes. The 9 compute nodes

allow us provisioning 36 virtual CPU’s (vCPU) which equals upto a pool of 18 small

VM instances, 2 vCPU per instance.

We used Ubuntu 14.04 for clients and the replicas/servers in all our experiments.

Note that the OS’s of both replicas and clients can be any OS image that OpenStack

supports. We deployed RabitMQ [83] pub/sub brokers in distributed fashion. Ra-

bitMQ is a widely adopted open source and commercially supported content-based

message brokering. RabitMQ is used in may applications such the financial trading

systems, SOA Service buses, inter cloud component interconnections, etc.

Fig. 5.2.: Three broker replication model

There are numerous ways on setting highly available replicated brokering. For

simplicity, we set up 3 brokers with 6 slaves (2 each master) as depicted in Figure

5.2. Within a RabbitMQ cluster, queues (message topics) are singular structures

that exists only on one node (the master node) to which is then mirrored (replicated)

across multiple nodes to address high availability. Each mirrored queue consists of

one master and one or more slaves that can be synchronized, with the idea of the

slave replacing the master when it fails (built-in reliability scheme). Thus, the key

motivating factor for our solution approach, the existence of the built-in reliability

schemes in the protocol enables the brokers and clients to reconnect after a short

disconnect.
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5.4.2 Experimental Results

Figure 5.3 show the experimental platform. On the left, we show the 6 nodes

of experiment (three master and 3 slaves) topology. We reincarnate nodes every 5

minutes while under attack. In this Chapter, we show the tight integration of the

VMI-based proactive monitoring with OpenStack platform. As an illustration, we

use a simple application shown in Figure 5.3 top right shell window, and the VMI

detection scheme shown in the bottom shell window.

Fig. 5.3.: Experimental platform: broker topology view with OpenStack Horzon
Dashboard (left browser window), and attack detection illustration shell windows (top
right) for protecting application runtime integrity and detection window (bottom)

We omit evaluating the performance impact on node reincarnation, this is because

each replica manages queues for registered subscriptions in which the queue size of

these subscriptions is implementation dependent. The reincarnation process is similar

to the one described in the previous Chapter. In this experiment, we show a simple

application (protectme.sh) rather than RabitMQ outputs. The simple protectme.sh
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is running on the RabitMQ broker node prints its process id. We alter its integrity

by re-starting it, presumably, a malicious version.

As shown in Figure 5.3, were able to detect due it’s address space o↵set changes.

However, this type of detection can be bypassed with code injection attacks without

altering the processes running memory block. In that case, our next use case monitors

the internal structure of the applications memory space. The process is as follows:

We use the process’s ID to extract it’s memory region and monitor that region by

comparing certain o↵set value for faster response time. We were able to detect the

changes in the application runtime as shown in Figure 5.3 (shell window). The details

of the detection implementation is discussed in Chapter 2. This illustrates how the

proactive monitoring is performing the detection of attacks of the RabitMQ brokers

while on the move across platforms.

Figure 5.4 shows the exposure window time line. The x-axis shows five minute

blocks. In each block we have 3 physical nodes numbered 1, 2, 3 in which the

applications/brokers are deployed on (depicted as circles). In the first block, we show

3 nodes depicting the 3 replicas deployed for the experiment. The 3 replicas/VM can

be on any hardware, say, hardware #1, #2 and #3 out of the 9 nodes of our private

cloud infrastructure setting. To illustrate the concept, we refreshed a brokers in 5

minute intervals marked 0 to 5min by the end of each block.

Fig. 5.4.: Illustration of three Broker/VM exposure window of 5 minute intervals.

At the start of the experiment, the brokers broker1, broker2 and broker3 repre-

sented in circles are on their respected hardware among our cloud nodes, node#1,

node#2 and node#3 respectively. Note that each node can host more than one bro-
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ker instance. After 5 minutes, we refreshed broker1 on one of the other 6 nodes,

node
i

in this case. At the end of the next 5 minutes (10 minute block), we did sim-

ilarly to broker2 and mapped on the other 6 nodes of the platforms, node
j

in this

case. Similarly in the consequent 5 minute blocks. The process of refreshing a new

booted VM took only 50 to 60 seconds, unlike previous chapter where we refreshed

the VM/node from a pool of prepared VMs and swap the network interface took less

than 20 seconds. This is to illustrate the di↵erent schemes of VM diversifications

across platforms for di↵erent systems models.

It’s intuitive to see that defending the 3 replicas in the first block for it’s entire

run time is extremely challenging compared to when defending them in one of the

5 minute blocks. The rationale behind this is that in each block there is at least

one broker replica is on yet unknown (to the attacker) platform, and another one (or

more) soon to be refreshed, thus, reducing the exposure attack window of the overall

system.

5.4.3 Conclusion

In this chapter, we deployed a pub/sub system onMayflies framework. We showed

how Mayflies seamlessly adds visibility on system’s runtime to prevent disruptive

faulty behavior. The combination of node reincarnation and proactive monitoring

with VMI show the systematic approach of solving a long standing security issue in

pub/sub without changes to the applications or protocols.
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6. CONCLUSION AND FUTURE WORK

Moving Target Defense (MTD) o↵ers a promising defensive strategy to combat against

sophisticated exploits, however, existing MTD solutions are ad-hoc and designed to

address for specific threats. We introduced a bio-inspired generic MTD framework for

distributed systems, referred to as Mayflies. Mayflies controls the exposure attack

windows of the nodes through proactive monitoring and continuously refreshing the

VM, referred to as node reincarnation, across diverse platforms (i.e., hardware, OSs)

in time intervals (as low as a minute).

We formally modeled and discussed its e↵ectiveness in terms of the proportion

of the time the system being in a desired or undesired/compromised state. We

introduced a new abstraction layer on the traditional runtime execution, dubbed

Time Interval Runtime Execution (TIRE). TIRE abstraction model allows a non-

deterministic system to be structured to deterministic type to mathematically reason

using Finite State Automata (FSA). We showed the e↵ectiveness of the model when

coupled with Virtual Machine Introspection (VMI) to achieve the desired defensive se-

curity objective, a generic MTD framework to combat against sophisticated attacks.

Then, we discussed in details on the design and a prototype implementation. Fi-

nally, we illustrated the framework with two di↵erent classes of systems, a Byzantine

Fault-Tolerant and Event-based Publish and Subscribe systems.

6.1 Future Work

In recent years, a lot of attention has been given on the security and the perfor-

mance issues on the core of the building blocks of the cloud frameworks (i.e., SDN

and VMI ), for example, attacks on hypervisors by malicious VMs and the e↵ects

on VMI-based solutions and techniques have been reported in [84]. Similarly, SDN
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related security issues and counter measures are reported in [9]. We first consider im-

proving Mayflies algorithms to accommodate these countermeasures and extend the

framework with IP-hopping, reincarnating nodes across sub-nets or diverse network

partitions.

Second, since Mayflies framework model enables to conduct inference over the

system observations O by the VMI component and the transition choices, there-

fore, we can plan and prioritize the transitions (i.e., aggressively reincarnate nodes

when necessary and avoid compromised clusters/platforms). We conisder extending

the framework to support inference and learning from the observations. With these

inferences, one can formulate the fundamental HMM problem on maximizing the

probability [54] of starting in a desired state and staying there as often as possible.

With this type of inference and learning, we can anticipate attacks before they occur

which is critical to defend against modern sophisticated attacks.

Third, the Virtual Machine Introspection is an e↵ective method of detecting run-

time integrity violations. LibVMI [37] and DRAKVUF [85] are the two open-source

introspection libraries currently available with their own pros and cons. For ex-

ample, LibVMI is originally designed for Xen-based cloud platforms, using it in

KVM/QEMU-based platform which is well integrated into Openstack framework re-

quire some modifications in which causes stability and performance issues comparing

to when used without the modification (i.e., through GDB debugging scheme) [37].

In this work, we leveraged LibVMI in a dynamic runtime environment using the GDB

debugging scheme to illustrate the framework’s node observation mechanism. Since

our defensive solution approach competes with the attack success time, reducing the

observation time is critical. We consider developing a lightweight introspection li-

brary tightly integrated into the framework with improved performance in our future

work.

Furthermore, the core of Mayflies’ MTD defensive strategy is node reincarnation

and observation. We achieve reincarnation between 8 and 12 seconds. Depending

on the granular-level of the observations needed, there are two ways of implementing
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node/VM observations in the cloud; at the memory address observations using VMI

or at the CPU registers. With the CPU layer approach, one can listen an event of an

specific registry entry (i.e., CR3) when an application that is not known to the user

(i.e., white listing) is scheduled/loaded for execution. We consider exploring CPU

observation capabilities in the future work.

Finally, we consider introducing a new computing model, in which we call it

Fragmented Computing, designed to perform computation over fragmented data on

decomposed systems using Mayflies to make extremely di�cult to compromise a

system.
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