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ABSTRACT 

Chandrasekhar, Saradha. Ph.D., Purdue University, August 2015. Thiol-Disulfide 
Exchange in Human Growth Hormone. Major Professor: Elizabeth M. Topp. 
 
 
The biopharmaceutical industry has been growing at a tremendous rate, with sales of $63.6 

billion 2012 in the US [1]. Nevertheless, the successful development of many protein drugs 

has been impeded by physical and chemical instabilities arising from their inherent 

chemical complexity and often leading to protein aggregation. The formation of non-native 

disulfide bonds is a common route to covalent aggregation of therapeutic proteins and other 

biologics [2, 3]. Disulfide bonds participate in hydrolytic and oxidative degradation 

reactions that form non-native disulfide bonds and other reactive species. The mechanisms 

responsible for protein aggregation are poorly understood and formulations are currently 

optimized on a trial and error basis. This approach contributes to high development costs 

and increases the time to market. The main goal of our research is to elucidate the 

mechanisms of thiol-disulfide exchange and disulfide scrambling in therapeutic proteins. 

To accomplish this goal, model peptides derived from human growth hormone (hGH) and 

intact hGH were used to investigate reaction mechanisms and kinetics in solution and solid-

state environments. The results will be useful in the rational development of stable, safe 

and efficacious protein formulations that contain free cysteines and disulfides. 
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Chapter 1 of this dissertation focuses on background information and explains the 

role of disulfide bonds in proteins, their advantages and limitations and different 

degradation pathways.  Research objective and specific aims are also outlined in Chapter 

1. Model hGH-derived tryptic peptides were used to investigate reaction mechanism and 

kinetics in aqueous solution (Chapter 2). RP-HPLC was used as a quantitative tool and 

product identity was further confirmed on the LC-MS. The effects of pH, temperature, 

oxidation suppressants and peptide secondary structure on thiol-disulfide exchange were 

also explored.  

Protein drugs are also manufactured as lyophilized powders to improve stability 

and retain potency during storage. In Chapter 3 of this dissertation, thiol-disulfide exchange 

during lyophilization and storage in the solid state using model peptides are discussed. 

Comparisons are drawn to the aqueous solution studies in Chapter 2. We also investigated 

the effect of factors that may contribute to thiol-disulfide exchange during lyophilization 

and these include; initial peptide concentration, temperature, buffer type and concentration, 

length of primary drying time and peptide adsorption to ice.  

In Chapter 4, thiol-disulfide exchange in intact hGH was investigated to understand 

the effects of higher-order structure on reaction kinetics. Free thiol containing peptides of 

different length and sequence and GSH were used to facilitate thiol-disulfide exchange in 

intact hGH and hGH-derived peptides with a disulfide bond. Finally, concluding remarks, 

future perspectives and implications for protein formulations are discussed in Chapter 5. 
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CHAPTER 1. OVERVIEW OF THERAPEUTIC PROTEINS 

1.1 Introduction 

 

Many low molecular weight drugs are chemically manufactured and processed into 

tablets and capsules that are easily ingestible. In contrast, protein drugs are macromolecules 

that contain many labile groups and have fragile, dynamic three-dimensional structures. 

Protein pharmaceuticals have been gaining widespread importance as new treatments for 

serious diseases such as cancer, cardiovascular and autoimmune diseases. The growth of 

protein therapeutics has been facilitated by the rapid development of recombinant DNA 

(rDNA) technology since the approval of recombinant insulin. The different categories of 

biologic drugs and their 2012 U.S. sales are shown in Figure 1.1.  

Figure 1.1: Categories of biologic drugs in terms of US sales in 2012. Adapted 
with permission from [1]. 
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Protein drugs and other biologics are the fastest growing sector of the U.S. 

pharmaceutical industry, with sales expected to increase to $144 billion by 2016 [1]. Nine 

new biopharmaceutical entities (NBE) were approved by the FDA in 2012 [4] and industry 

pipelines suggest the potential for many more protein drugs in the future. Protein instability 

presents many challenges to the development of new protein drug products which 

ultimately increase the time and cost required.  Recent data suggest that approximately 

$400 million is associated with pre-clinical development of new biopharmaceuticals, a cost 

ultimately borne by the public [5].  

Protein drug development is further complicated by the fact that formulations often 

contain an ensemble of protein conformations, which include the native state, partially 

unfolded states and even completely denatured states. This heterogeneity stems from the 

dynamics and thermodynamics of protein folding, the source of the protein (usually a 

complex biological mixture of proteins from cells), and the effects of upstream and 

downstream processing conditions. An ideal protein formulation would contain the pure 

protein in its native state; however, structural complexity and the presence of numerous 

reactive centers in proteins make it almost impossible to identify optimum conditions to 

maintain this ideal. In addition, the mechanisms of most aggregation pathways have not 

yet been investigated in detail and aggregates of protein drugs are typically classified as 

covalent and non-covalent [6]. This broad classification of protein aggregates precludes the 

mechanistic details of aggregation pathways like thiol-disulfide exchange and is a 

limitation in designing rational approaches to improve protein stability during manufacture, 

processing and storage.  

 



  3 
 

 

1.2 Recombinant DNA technology 

 

Therapeutic proteins are now produced using recombinant DNA (rDNA) 

technology, where a vector containing the gene of interest is transformed into a host cell 

for protein expression. The protein of interest is then purified from the cell lysate; this 

process varies depending on the type of protein, the way it is expressed (secreted vs. 

inclusion bodies) and the host cell in which it is expressed. Insulin was the first recombinant 

product to be licensed for therapeutic use in 1982. FDA approved recombinant proteins for 

therapeutic use includes hormones, growth factors, coagulation factors, interferons, 

interleukins and enzymes [7]. Theoretically any protein can be produced using rDNA 

technology. However, the protein may undergo changes during 

manufacture/purification/processing (Figure 1.2) that make it unstable and unsuitable for 

therapeutic use. During a typical protein manufacturing process, nearly 20-30 unit 

operations are performed and these steps increase the chances of variability in the final 

protein product [8]. Protein properties are also affected by post-translational modifications 

such as glycosylation, amidation, carboxylation, sulfation and hydroxylation [9]. Overall, 

the process of expressing and purifying proteins is a rate-limiting process in research, 

demanding expertise and making protein therapeutics very expensive. 

Different factors associated with the host cell and manufacturing process can affect 

protein drug quality [8]. Some of these undesirable modifications are: i) undesirable host 

cell and process modifications: truncation, glycation, methylation and isomerization, ii) 

undesirable process modifications: aggregation, oxidation, deamidation and misfolded 
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forms of protein and impurities from host cell and process related impurities: host cell 

proteins and endotoxins. 

 

 
Figure 1.2: a) Monoclonal antibody structure showing regions that are prone to undergo 
chemical modifications, resulting in product heterogeneity. b) Schematic showing a typical 
protein manufacturing process. Adapted with permission from [8]. 

 
 

1.3 Stability of protein drugs 

 

Challenges associated with the development of protein pharmaceuticals arise from 

the unique flexible structure of proteins that enable them to interact with other biological 

molecules and also adapt to changes in their microenvironment. Structural flexibility 
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promotes conformational changes, chemical modifications (via exposure to reactive 

species like ROS), aggregation and precipitation. Such modifications have been associated 

with loss of biological activity and immunogenicity [10-12]. Aggregation is known to occur 

both in solution [13] and the solid state [14-16] and can be induced by chemical and/or 

physical changes. Chemical instabilities that involve bond formation or cleavage include 

deamidation, thiol-disulfide exchange, proteolysis and oxidation. Physical instabilities 

result in changes to higher order structure without covalent modification; these include 

denaturation, aggregation, adsorption to surfaces and precipitation [6]. The onset of 

aggregation is protein specific and the effect of stabilizers on therapeutic proteins must be 

studied on a case-by-case basis, which further retards drug development and increases 

manufacturing costs. Different chemical and physical degradation pathways in proteins and 

peptides are discussed below.  

 

1.3.1 Physical degradation 

Denaturation: protein denaturation is the loss of tertiary or secondary structure or 

both, which can then lead to any of the other degradation pathways listed below. Protein 

denaturation is further classified as thermal, cold, chemical or pressure-induced [6]. 

Thermal denaturation occurs at elevated temperatures and is irreversible, these thermally 

unfolded proteins have a tendency to associate and form aggregates. There are few reports 

on cold denaturation of proteins; nevertheless it is an important phenomenon as even at -

20 oC and in the presence of stabilizers, they have mobility. Chaotropes like guanidine 

hydrochloride and urea are used to chemically denature proteins. These reagents are used 

in studies to determine the free energy associated with unfolding events. For pressure-
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induced denaturation to occur, proteins must be exposed to pressures in the range of 2000-

4000 bar. A lower pressure range (1000-1500 bar) is typically employed to dissociate 

aggregates. Pressure-induced denaturation is usually reversible, unlike the other types of 

protein denaturation described above [17].  

Aggregation: involves the formation of non-native bonds following disruption of 

native bonds. Loss of native protein conformation during purification, formulation, freeze-

thawing and freeze-drying often leads to the exposure of hydrophobic residues in unfolded 

and partially unfolded states that can then promote aggregation [6]. Both non-covalent and 

covalent interactions can result in protein aggregation, which ultimately affects biological 

activity and can result in a severe immunogenic response after administration. Proteins do 

not aggregate via a single pathway and this adds to the challenges associated with 

investigating the mechanism of aggregation. There are five general mechanisms of protein 

aggregation: 1) association of native monomers, 2) aggregation of conformationally altered 

monomers, 3) aggregation of chemically-modified monomers, 4) nucleation-controlled 

aggregation and 5) surface-induced aggregation [18].  Typically, protein conformational 

stability is considered to be a significant factor in regulating aggregation; a partially 

unfolded state is the aggregation initiator (also the rate-limiting factor) [6, 19]. Stabilizing 

agents like sucrose and Tween have been used to effectively suppress aggregation in human 

interferon- γ13 and human growth hormone respectively [20].  

Surface adsorption: proteins are exposed to a multitude of surfaces to which they 

can adsorb during manufacture, processing and storage. The physical state of a protein can 

be altered when it adsorbs to a surface or is exposed to interfacial stress [6]. Though both 

the native and partially unfolded states can adsorb to surfaces, adsorption of a partially 
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unfolded protein may be energetically favored due to the exposure of more hydrophobic 

residues when compared to the native state, in which they are buried within the core. A 

combination of interfacial structure perturbation and desorption of partially unfolded 

proteins can set off nucleation and result in aggregation [21-24]. The effects of surface 

adsorption on protein function and conformation have been reported previously [25, 26]. 

Precipitation: there are two different mechanisms by which proteins can precipitate. 

First, salting out of proteins in the presence of an excluded solvent can result in 

precipitation, a process that is usually reversible upon dilution [27]. Further, salted-out 

proteins retain activity similar to that of the native protein. Second, aggregates can grow 

so large in size that they are no longer soluble and manifest as haziness or cloudiness. The 

observed haziness is termed particulate formation and is typically irreversible. Particulate 

identification and detection is a major concern to the pharmaceutical industry and 

regulatory agencies as the particles may have immunogenic implications [28].  It is 

important to distinguish particulates formed from protein aggregates and foreign materials.  

 

1.3.2 Chemical degradation 

Oxidation: amino acids His, Trp, Met, Cys and Tyr can undergo oxidation in the 

presence of a reactive oxygen species (ROS) [29]. Oxidation reactions in proteins are 

classified as sit-specific (metal catalyzed) and non-site specific (photooxidation and free 

radical cascades). Methionine (Met) is oxidized easily to its sulfoxide and sulfone in the 

presence of ROS and molecular oxygen. Met oxidation has been reported in mAbs, 

particularly in the Fc region [30]. Oxidation of Trp generates kynurenine derivatives and 
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can occur both in the presence and absence of light. Yang et al. determined Trp oxidation 

in mAbs using RP-HPLC as an analytical tool [31].  

Deamidation: is one of the most common pathways for chemical degradation in 

peptides and proteins. Asn and Gln can undergo deamidation to form Asp and Glu 

respectively at neutral to alkaline pH. Gln deamidation is less common due to the formation 

of a less stable six-membered ring intermediate. Primary structure effects on deamidation 

have been explored, and faster deamidation is observed when smaller amino acids are 

present after (e.g., N+1) residues due to minimal steric effects [6]. Deamidation is also 

favored in polypeptide regions that are known to be flexible and when amino acid side 

chains that can act as hydrogen bond donors are present in the N+1 position. Asn-Gly is 

frequently the most reactive sequence for deamidation to occur in peptides and proteins. 

Preceding (e.g., N-1) amino acids typically have little effect on deamidation in solution, 

however, in the solid-state deamidation is accelerated with a Gln or Glu residue. 

Deamidation has been observed in therapeutic proteins like rhGH [32], glucagon [33] and 

mAbs [34]. Asp residues can also participate in isomerization and racemization reactions, 

which follow mechanisms similar to that for deamidation.  

Proteolysis/hydrolysis/clipping: hinge region hydrolysis can occur in mAbs and 

peptide backbone hydrolysis can occur near Asp residues. Asp hydrolysis in the solid state 

has been observed for recombinant bovine growth hormone [35]. Hinge region hydrolysis 

facilitated by hinge region flexibility and Fab region conformational instability has been 

reported in mAbs.  

Dityrosine formation and formaldehyde mediated cross-linking: Formaldehyde 

can form covalent bonds with a nitrogen atom of Lys or His to produce a hydroxylmethyl 
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derivative, which is then transformed into a Schiff base imine upon condensation. The 

imine is reactive and facilitates a cross-linking reaction with Tyr [36]. Dityrosine can be 

formed by photoactivation or enzyme catalysis. Dityrosine formation between two tyrosyl 

residues has been identified in calmodulin [37].  

Thiol-disulfide exchange and disulfide scrambling: Thiols and disulfides in 

proteins have functional roles and can participate in oxidative and hydrolytic pathways. 

Disulfide scrambling has been observed in therapeutic proteins like mAbs [38], insulin [39] 

and hGH [40]. However, very little is known about the effect of higher order structure on 

the mechanism and kinetics of thiol-disulfide exchange and disulfide scrambling. As the 

number of antibodies and antibody- or albumin-fusion drug products increases, the need to 

control thiol/disulfide reactivity becomes more acute. This reaction is the focus of the work 

presented in this dissertation and is discussed in detail in below.  

  

1.4 Thiols and disulfide bonds 

 

There are three types of Cys: i) free SH groups, ii) ligand SH groups and iii) 

disulfides (cystines) [41]. Cysteine is similar to Serine but is a poorer hydrogen bond donor. 

In vivo, free Cys are present only in reducing environments that make them less harmful, 

for example in bacterial and viral proteins [41]. A common location for free Cys is on a β 

strand, pointing inward and buried. They are rarely found on the surface of proteins due to 

their reactive nature. Wolfenden et al. have shown Cys to be neutral or mildly hydrophobic 

and this could also explain their tendency to be the most buried amino acid [42]. Ligand 

Cys can bind to different metals and prosthetic groups like Fe, Cu, Zn, Fe-S clusters and 
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hemes. Typically, ligand Cys are found in coil regions and in helices, they are quite rare in 

β-sheets. Mettalothionien is an example of a protein that contains ligand Cys with 20 Cys 

that can bind to seven metals [41]. Disulfide bonds stabilize native protein structures by 

crosslinking distant regions into a compact three- dimensional structure and reducing 

conformational entropy of the unfolded state.  However, in their reduced forms (as free 

thiol groups) they may have very little role in the early folding process. The Cα-Cβ vectors 

are either antiparallel or perpendicular in the most common disulfide conformations, the 

left-handed spiral and right-handed hook respectively. In addition to the vector orientation, 

the distance between the α-carbons of the cysteines must be 4-7.5 Å.  

 

1.5 Disulfide bond formation in proteins 

 

In eukaryotes, protein disulfide bonds are formed in the endoplasmic reticulum (ER) 

where the redox state is more favorable when compared to the cytosol. Oxidation of 

cysteines is initiated when proteins are translocated into the ER lumen. The rate of disulfide 

bond formation in living cells is faster than the rate of formation in vitro (in air), this has 

been attributed to the role of enzymes in the catalysis of protein oxidative folding in 

addition to the role of small-molecule redox buffers (GSH/GSSG) [43]. GSH provides 

reducing equivalents that are necessary to optimize folding conditions and counterbalance 

conditions of oxidative stress [43]. Protein disulfide isomerase (PDI) is an enzymatic 

catalyst that facilitates disulfide bond formation, reduction and isomerization. At the active 

site of PDI is a Cys-x-x-Cys motif similar to thioredoxin. When the cysteines are oxidized, 
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PDI transfers disulfide bonds to proteins in the ER (Figure 1.3). Disulfide scrambling is 

catalyzed when the cysteines in PDI are in the reduced state.  

Similarly, in prokaryotes, DsbA (thioredoxin-like oxidoreductase, disulfide bond 

A enzyme) and DsbB (a membrane protein) initiate disulfide bond formation in periplasmic 

proteins. DsbA oxidizes cysteines in periplasmic proteins with the reduction of its own 

disulfide bond, DsbA is then reoxidized by DsbB. Components of the electron transport 

system help maintain DsbB in its oxidized state. DsbC reduces non-native disulfides in 

protein substrates, this is followed by re-oxidation of the Cys residues in the substrate by 

DsbA or DsbC. The role of DsbD is to maintain DsbC in its oxidized state, and cytoplasmic 

thioredoxin then reduces DsbD.  

 

Figure 1.3: A pathway for protein disulfide bond formation in the endoplasmic reticulum 
(ER). Oxidizing equivalents flow from Ero1p to Pdi1p, and then from Pdi1p to secretory 
proteins through a series of thiol-disulfide exchange reactions. Adapted with permission 
from [43]. 
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Disulfide bond formation in proteins is typically favored at neutral to alkaline pH 

and the rate of oxidative folding is increased in the presence of an oxidizing agent. A 

common oxidizing agent that is used to facilitate oxidative folding of proteins is oxidized 

glutathione (GSSG). Denaturing agents like guanidine hydrochloride and urea disrupt the 

folding process [3].  One exception to this general rule is murine prion protein (mPrP), 

which has only one intramolecular disulfide bond. At alkaline pH and in the absence of a 

denaturing agent, disulfide bond formation in mPrP is very slow [44]. However, at pH 8.0 

in the presence of both a denaturing agent and glutathione, mPrP folds correctly. The 

optimum pH for oxidative refolding of mPrP is 4.0-5.0. In the absence of a denaturant, 

mPrP is in a stable conformation at pH 8.0, where the Cys residues are isolated from one 

another and cannot form a disulfide bond. In the denaturant-mediated unfolded state, the 

Cys residues are in close enough proximity to form a stable disulfide bond. This is a good 

example of both intrinsic and extrinsic factors (discussed below in section 1.6) contributing 

to disulfide bond formation. 

Many therapeutic proteins like antibodies, enzymes and hormones contain disulfide 

bonds that crosslink distant regions to help maintain the native fold and stabilize the three-

dimensional structure of proteins [45, 46]. Other roles of disulfide bonds include enzyme 

catalysis [47], regulation of biological activity [46], structural stabilization of extracellular 

proteins [47] and protection against oxidative damage [45]. It is not always easy to predict 

the effect a disulfide bond can have on a protein. In some cases, engineered disulfide bonds 

can have destabilizing effects, if the entropy of the folded state is decreased by reduced 

flexibility [3]. In the same way, mutating Cys to other amino acid residues may not 
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necessarily impede degradation via other pathways and in addition may be accompanied 

by a loss of biological activity.  

Figure 1.4 shows how disulfide bond stability and stability provided to the folded 

protein by a disulfide bond are thermodynamically linked; ΔG of this cycle is zero [45]. In 

one pathway, formation of disulfide bonds occurs first by organizing the unfolded protein 

in such a way that the entropy loss accompanying protein folding is less than that of the 

unfolded state [45]. In an alternative pathway, the protein folds first bringing together 

distant Cys residues that can then be oxidized to form stable disulfide bonds.  

 

 

Figure 1.4: Thermodynamic cycle linking disulfide bond stability in the reduced and 
oxidized folded structure with the stability of the folded and unfolded states [45]. 
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1.5.1 Disulfide bond disruption and rearrangement 

Disulfide bonds are prone to undergo cleavage because they have 0.4-fold lower 

dissociation energy than C-C and C-H bonds [49]. Some of the mechanisms by which 

disulfide bonds may be disrupted include thiol-disulfide exchange, alkaline hydrolysis, 

photodegradation, thioether formation and trisulfide variants.  

Thiol-disulfide exchange: This reaction typically occurs at alkaline pH [50], as the 

reactive species is the thiolate anion with pKa 8-9. Reactivity of the thiol group can 

however be increased by a decrease in pKa, influenced by surrounding amino acid residues. 

This means that thiol-disulfide exchange reactions cannot be ruled out even under 

physiological conditions or lower pH. Thiol-disulfide exchange involves the nucleophilic 

attack (SN2) of a thiolate anion (RSH-) on a disulfide bond (S-S) to form a transition state 

(TS), expelling a thiol group (with lower pKa) and forming a new disulfide bond [45]. In 

the TS, negative charge is delocalized over the three sulfur atoms, with more negative 

charge on the terminal sulfurs than the central sulfur atom [51]. The energy barrier between 

the reactants and TS is the activation energy (Ea) of the reaction and the potential energy 

difference between reactants and products in ∆E (Figure 1.5). Thiol-disulfide exchange is 

reversible at room temperature and at physiological pH. In the presence of oxygen, metal 

and reactive oxygen species (ROS) other products of thiol oxidation like sulfenic, sulfinic, 

sulfonic acids and thiosulfonate (Figure 1.6) may be generated [52, 53]. Both intra- and 

intermolecular disulfide bonds can undergo scrambling reactions (Figure 1.7).  
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          Figure 1.5: Energy diagram for thiol-disulfide exchange reactions.  

 

        

     Figure 1.6: Oxidative pathways for thiols, adapted with permission from [52]. 
Copyright 2003 American Chemical Society. 
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Direct hydrolysis: The direct attack of a hydroxyl ion on a sulfur atom generates 

sulfenic acid (RSOH) and thiolate anion (RS-). RS- is a reactive nucleophile which can 

react with another disulfide bond (R′SSR″) to form RSSR″ and release R′S- (Figure 1.8B).  

β-elimination: involves proton abstraction from the α-carbon on Cys to form 

dehydroalanine and thiocysteine. Removal of a sulfur atom from the thiocysteine generates 

a thiolate anion and hydrosulfide ion. Thiolate anion can then participate in the formation 

of non-native disulfide bonds via thiol-disulfide exchange or oxidative pathways. The 

hydrosulfide ion can initiate disulfide scrambling via thiol-catalyzed exchange. 

Dehydroalanine can react further with lysine to form lysinoalanine cross-links.  

α-elimination: involves proton abstraction from the β-carbon of the Cys residue to 

form thiolate and thioaldehyde. Thioaldehyde can react further to form an aldehyde or 

imine group.  Thiolate anion can also react further with disulfides, reactive oxygen species 

to form the products shown in Figure 1.6.  

 

Figure 1.7: Different thiol-disulfide exchange reactions: A) intramolecular, B) 
intermolecular and C) intermolecular disulfide bond disrupted by thiol-disulfide exchange. 
Adapted with permission from reference [54]. 
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At low pH: Protons can cleave disulfide bonds to give sulfenium ions (RS+) under 

strong acidic conditions (Figure 1.8D). Sulfenium ions can then react with a sulfur atom in 

another disulfide bond via an electrophilic displacement to form a scrambled disulfide, 

expelling another sulfenium ion (R′S+ + RSSR ↔ R′SSR + RS+).  

Photodegradation: Photoionization of tyrosine/tryptophan generates a solvated 

electron which can then reduce a disulfide bond to thiyl radical (RS●) and thiolate anion 

(RS-) 1. Thiyl radicals are reactive and can form disulfide bonds (RSSR) with other thiyl 

radicals or a reductive disulfide radical anion (RSSR●-) with a thiolate.  

Thioether formation: Tous et al. identified thioether (-C-S-C) linkages (also called 

lanthionine) that are formed by the removal of a sulfur atom from a disulfide bond (-C-S-

S-C-) in monoclonal antibodies (mAbs) during production and storage [55]. Thioether-

linked antibodies have been detected even in endogenous antibodies [56]. The effect of 

thioether formation on the safety and efficacy of mAbs has not been reported; nevertheless 

it may affect protein conformation and biological activity and should be characterized in 

recombinant therapeutic proteins.  

Trisulfide variants: Formation of trisulfides in proteins is not a common post-

translational modification. Proteins that are known to form trisulfide variants include 

superoxide dismutase [57], mutein of interleukin [58], monoclonal antibodies [59] and hGH. 

A trisulfide variant (-C-S-S-S-C-) of hGH was identified only in recombinant protein 

expressed in E.coli and not in hGH preparations from human pituitaries [60]. Although the 

trisulfide variant did not affect the biological activity of hGH and converted completely 

into disulfides in IgG1 upon intraperitoneal injection in rats, the identification and 

characterization of such variants is still critical in determining protein drug quality.  
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Figure 1.8: Different pathways that lead to disulfide bond disruption. A) Thiol-disulfide 
exchange (nuc: nucleophile, c: central sulfur and lvg: leaving group). B) Direct attack of 
hydroxyl ion on disulfide bond generates sulfenic acid and thiolate anion. C) Acid-base 
assisted hydrolysis of disulfide bond. D) Disulfide bond disruption under acidic conditions.  
 

1.6  Factors that influence disulfide bond reactivity 

 

Both intrinsic (physicochemical properties of the protein) and extrinsic factors 

(environmental factors like pH, temperature, mechanical force and in the presence of low 

molecular weight thiols in serum) can affect disulfide bond stability.  

 

1.6.1 Intrinsic factors 

These are factors that are innate to the protein itself. Primary sequence and higher 

order structure have been shown to affect thiol-disulfide exchange [61, 62]. Introduction of 

a positively charged amino acid neighboring a Cys residue in a model redox-sensitive 
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yellow fluorescent protein promoted electrostatic interactions with glutathione disulfide 

(GSSG) and decreased thiol pKa such that the rate of thiol-disulfide exchange increased 

13-fold [62]. In another study with cyanogen bromide fragments of hen egg white lysozyme, 

for a Cys with two positively charged neighbors, the rate of thiol-disulfide exchange 

increased 6.5-fold in a 20 mM ionic strength medium relative to a lower ionic strength 

medium [63]. In a high ionic strength medium (≥ 20 mM), the rate of thiol-disulfide 

exchange was reported to decrease by 700-fold. Ionic influences from distant residues are 

minimized at a high ionic strength (≥ 20 mM), thus reducing the rate of thiol disulfide 

exchange.  

In a thioredoxin from E.coli, disulfide reactivity is 102-103 times greater than that 

of normal disulfides due to the presence of a lysyl residue nearby with a positively charged 

group [47]. Similarly, in seminal ribonuclease, the presence of positively charged groups 

nearby (from Lys) was found to influence reactivity of the Cys31-Cys32 disulfide in 

addition to contributions from adjacency of the thiols and protein tertiary structure [64].  In 

peptides with the sequence Cys-X-Cys (where X is any amino acid), Zhang et al. have 

shown that disulfide bonds can be reduced rather easily. In contrast, in peptides with 4-5 

residues between terminal Cys residues, the disulfide bonds were more resistant to 

reduction and formed stable loops [65].  The equilibrium constant for ring closure in 

dipeptide (-Cys-Cys-) and tripeptide (-Cys-Val-Cys-) models was not affected by the 

addition of an Ala residue C-terminal to Cys [65].  

Disulfide reactivity can also be influenced by geometric strain that the protein 

native state imposes on a disulfide bond. For example, α-lactalbumin has four native 

disulfides of which Cys6-Cysl20 was reported to be 140 times more reactive in the fully 
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unfolded state; observed super reactivity of this disulfide bond was attributed to the 

geometric strain imposed on it in the native folded state [66].  Zavialov et al. elucidated the 

relationship between protein structure and the formation of a disulfide bond between small 

heat shock protein 25 (Hsp25) and GSH [67]. Hsp25 has a free Cys residue at position 41, 

in a redox environment; Hsp25 in its reduced form (PSH) is in equilibrium with a mixed 

disulfide (PSSG) and its oxidized dimer (PSSP). Tertiary and/or quaternary structural 

changes induced by protein denaturation prevent Hsp25 from forming the dimer (PSSP) 

due to changes in proximity of the 2 subunits. This study shows the importance of the 

proximity of a disulfide bond to a Cys residue to undergo thiol-disulfide exchange. The 

authors also demonstrated the effect of steric and electrostatic hindrances on thiol-disulfide 

exchange. Figure 1.9 below shows the formation of a mixed disulfide between heat shock 

protein and GSH; steric and electrostatic hindrances appear after the formation of this 

mixed disulfide, entry of another GSH molecule is inhibited thus resulting in an 

intersubunit disulfide [67].  

 

1.6.2 Extrinsic factors 

Extrinsic factors like pH (neutral to alkaline) will influence the rate of disulfide 

interchange by affecting the formation of the reactive species. Thiol-disulfide exchange in 

general is accelerated under neutral to alkaline pH [45], however it can also occur in strong 

acidic media facilitated by a sulfenium ion (Figure 1.8D). Benesch and Benesch have 

reported that disulfide exchange is rapid in concentrated HCl and the rate drops below a 

concentration of 9 N. At lower acid concentrations, the amount of RS+ generated also 

decreases thus affecting the overall rate of interchange [68]. Similar observations favoring 
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sulfenium ion mediated exchange in strong acidic media (7-12 N HCl) were reported by 

Ryle and Sanger [69]. In moderately acidic solutions disulfide interchange is not observed. 

The effects of temperature on thiol-disulfide exchange reactions have been studied 

in small organic molecules and proteins [70, 71]. Thiol-disulfide exchange follows 

Arrhenius behavior with activation energies in the range of 30-70kJ/mol [70]. The effects 

of urea and temperature on the formation of the disulfide-linked dimer of Hsp25 are shown 

in Figure 1.10; the fraction of subunits forming the dimer decreases with increasing urea 

concentration and temperature [67]. In addition to pH and temperature, recent studies have 

shown the effects of an external mechanical force on thiol-disulfide exchange. Using 

cardiac titin domain as a model protein, Wiita et al. have shown that an applied mechanical 

force > 100 pN promotes thiol-disulfide exchange [70].   

       

Figure 1.9: Scheme showing assumed effects of the appearance of steric and electrostatic 
hindrances after the formation of a mixed disulfide on thiol-disulfide exchange in Hsp25. 
The two subunits that form the subunit are shown in black. Adapted with permission from 
reference [67].  

 

Disulfide exchange can also occur in the presence of low molecular weight thiols 

both in vitro and in vivo. Thiols in serum like GSH, cysteine and cystine are known to 
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mediate thiol-disulfide exchange [72]. The formation of correct disulfides inside cells is 

regulated by a redox environment, typically consisting of GSH and GSSG, and where the 

ratio of GSH/GSSG varies from 30: 1 to 100:1 [39]. Once the protein is secreted from the 

cell, it is no longer exposed to a reducing environment. Instead, exposure to small amounts 

of thiols can initiate disulfide interchange that results in altered conformations and thus 

reduced protein activity [39, 49].  Disulfide-linked dimers have been reported in IgG2 both 

in cell culture and in human serum [73]. Disulfide isoforms have also been observed in 

IgG4, a phenomenon known as Fab-arm exchange. Fab-arm exchange occurs in the 

presence of GSH concentrations as low as 0.5 mM in vitro and results in the formation of 

bispecific antibodies that can bind only monovalently even to repeating antigens [74]. Thus, 

disulfide exchange may be favored in the reducing environment in cell culture during 

recombinant protein expression and in blood after administration of protein therapeutics.  

 

Figure 1.10: Dependence of fraction of subunits forming the inter-subunit disulfide bond 
(PSSP) on urea concentration (left) and on temperature (right). Adapted with permission 
from reference [67].  
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1.7 Impact on protein physical stability and biological activity 

 

The effect of disulfide bonds on protein stability can be advantageous or 

disadvantageous; some of these effects are discussed in this section. In general, the native 

state of a protein (N) and its unfolded state (U) are in equilibrium such that N↔U. The 

introduction of a disulfide bond in a protein increases the free energy of U, with the 

assumption is that there is no difference in the enthalpies of the disulfide-linked protein 

and the reduced form of the protein. The contribution of an intramolecular disulfide bond 

to the decrease in entropy of U can be calculated using the equation: ΔS = -2.1-(3/2)R ln n, 

where R is the gas constant and n is the number of residues between the two Cys residues 

that form the intramolecular disulfide bond. An engineered intramolecular disulfide bond 

(Cys61-S-S-Cys98) in subtilisin E improved protein stability with a 4.5 oC increase in the 

melting temperature and a longer half time while there was no significant effect on 

enzymatic activity [75].   

There have been numerous reports of how disulfide scrambling can lead to 

aggregation [76-79]. Aggregates can affect therapeutic efficacy, biological activity and 

safety of protein drugs. Atypical disulfide bond formation can lead to misfolded forms of 

proteins that are dysfunctional [55].  Proteins like bovine pancreatic trypsin inhibitor [80], 

bovine pancreatic ribonuclease A [81] and human proinsulin [82] fold into their native 

conformations only after most of their native disulfide bonds have been formed. This has 

provided a useful approach to studying the folding pathways of these proteins in detail by 

trapping the different disulfide intermediates. In natriuretic peptide receptor-A, an 

intermolecular disulfide bond functions as an allosteric bond where the formation of a 
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disulfide-linked dimer (undesirable in protein therapeutics) is essential for its activation 

[83]. Dillon et al. measured in vitro binding ability and biological activity of different IgG2 

disulfide isoforms. The authors reported significant differences in biological activity of the 

isoforms and attributed these differences to changes in conformational angles and 

flexibility of the Fab region of IgG2 [38]. In another study, Qiao et al. reported that human 

insulin requires the correct formation of both intra- and interchain disulfide bonds to 

function properly [82]. Thus non-native disulfide bonding patterns can introduce 

conformational changes in proteins that may be detrimental to their therapeutic activity. 

Disulfide bonds can also have a positive impact on biological activity. For example, 

recombinant immunotoxins (RITs) are anti-cancer agents that contain the Fv region of an 

antibody and a protein toxin from bacteria or plants. Liu et al. observed that engineering a 

disulfide bond into an RIT significantly lowered immunogenicity in mice while retaining 

cytotoxicity and anti-tumor activity [84].  HA22-LR-DB, formed by anti-CD22 Fv fused 

to domain III of pseudomonas exotoxin A, with a disulfide bond in domain III improved 

thermal stability and altered the kinetics of antibody formation in mice. In another study, 

the aggregation propensity in IgG1 antibodies was found to be significantly lower when 

compared to IgG2 antibodies, though they share 95% sequence identity [85]. This was 

attributed to the presence of an interchain disulfide bond in IgG1. Thus it is important to 

understand the roles of disulfide bonds in therapeutic proteins before suitable formulation 

strategies can be employed.  
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1.8 Formulation strategies for Cys-containing proteins 

 

As described in the section above, disulfide bonds can be advantageous or 

disadvantageous to protein function/activity. Different strategies have been employed to 

minimize disulfide exchange and disulfide-mediated aggregation in proteins that contain 

free thiols and/or disulfide bonds [3]. Some of these approaches are discussed below.  

 

1.8.1 Formulating proteins with a reducing agent 

There have been reports of covalent dimer formation in E-Cadherin via a disulfide 

bond which ultimately leads to protein degradation [86]. Dithiothreitol (DTT), a reducing 

agent, and thiol group derivatizing agents like iodoacetamide and polyethylene-glycol 

malemide were used in formulations to improve protein stability [86]. Addition of DTT 

prevented dimer formation and further inhibited protein precipitation. This strategy may 

not be suitable for all proteins, especially if the protein also contains a functional disulfide 

bond. Addition of a reducing agent could reduce the native disulfide bond and change 

protein conformation, exposing reactive centers to a myriad of degradation pathways.  

 

1.8.2 Chemical modification of thiol groups 

Another strategy to formulate proteins that contain unpaired cysteine residues is to 

derivatize the thiol group in order to prevent thiol mediated aggregation. The thiol group 

on Cys residues is a reactive species that can participate in oxidation reactions in addition 

to thiol-disulfide exchange. Some of the derivatizing agents that have been used are 

iodoacetate, iodoacetamide, 1,3-propane sultone, methyl methanethiosulfonate, 
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methoxycarbonylmethyl disulfide, maleimide, tetrathionates, and dinitrophenyl alkyl 

disulfides. Ruegg et al. have used 1,3 propane sultone to derivatize thiol groups on [Lys8] 

vasopressin, human serum albumin, bovine insulin and bovine pancreatic ribonuclease, 

increasing their stability to acid hydrolysis [87]. Some commonly used Cys-derivatizing 

agents are shown in Figure 1.11. Cys residues can also be PEGylated with PEG-maleimide, 

PEG-iodoacetamide and PEG-epoxide [3]. Proteins generally have fewer Cys than Lys 

residues thus making Cys-PEGylation more selective. PEGylated proteins have improved 

physicochemical stability, pharmacokinetic and pharmacodynamic properties.  

PEG can also react with disulfide bonds; PEG-monosulfone forms a three carbon 

bridge with the native disulfide bond-sulfurs. For example, the native disulfide bond in 

interferon α-2b was conjugated with PEG and retained its biological activity and tertiary 

structure [88]. Although thiol derivatization is an attractive option, it is not a feasible one 

for proteins where free Cys and/or the native disulfide bond are important in biological 

activity and protein stability.  
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Figure 1.11: Thiol derivatizing agents that are commonly used to derivatize thiols in 
proteins to prevent reaction with other groups [3].  
 

1.8.3 Protein engineering  

Disulfide bond heterogeneity in therapeutic proteins can be reduced by mutating 

Cys residues with other non-reactive amino acids like Ser. Antibodies have a large number 

of disulfide bonds and they are classified by the number and type (inter/intra) of bonds. 

Allen et al. have shown that Cys→Ser mutations in IgG2 reduce disulfide bond 

heterogeneity while maintaining in vitro activity [89]. Browning et al. observed disulfide 

scrambling in interleukin-2 (IL-2) with one disulfide bond and a free Cys residue, under 

denaturing and alkaline conditions (Figure 1.12). The scrambled forms were less active 

than the native form [90]. A Cys125Ser mutant of IL-2 was found to be more stable to 

disulfide scrambling at alkaline pH.  
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Figure 1.12: Thiol-disulfide exchange in interleukin-2. Adapted with permission from 
reference [90]. 

 

Junnila et al. determined the role of the C-terminal solvent exposed disulfide bond 

(Cys182-Cys189) in hGH by mutating the Cys residues with Ala. The hGH analogs were 

found to have reduced receptor binding affinity and stability compared to the wild type 

[91]. Although biological activity did not change drastically with this mutation, decreased 

stability of the mutants could lead to other degradation pathways, including aggregation. 

In other proteins, disulfide bonds have been introduced to improve overall stability [92]. 

Introducing an intermolecular disulfide bond is usually associated with increased protein 

stability. However, the effect of an intramolecular disulfide bond or the presence of an 

unpaired Cys can be unpredictable [93]. For example, Hsu et al. observed that deletion of 

a free Cys residue in recombinant keratinocyte growth factor affected protein stability [94]. 

This Cys (residue 40) was found to play an important role in maintaining protein stability 
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and structural integrity. Protein engineering may not always be a practical option, 

especially if the role of the Cys/disulfide bond is unknown. In addition to the strategies 

mentioned above (that cannot be applied to all therapeutic proteins), targeting specific 

mechanisms that contribute to and processing conditions that facilitate disulfide-mediated 

aggregation is instrumental in designing rational approaches to stabilize protein 

formulations. 

 

1.9 Lyophilization of peptide and protein drugs 

 

Therapeutic proteins are often lyophilized to improve storage stability. However, 

aggregation is known to occur even in the solid state [14, 79, 95, 96]. Proteins can undergo 

conformational changes during lyophilization, particularly during dehydration. Different 

effects of dehydration on protein conformation have been reported. Desai et al. observed 

freeze-drying induced partial denaturation in bovine pancreatic trypsin inhibitor [97]. In 

another study by Rupley et al., no difference in protein conformation was observed for 

lyophilized lysozyme when compared to the protein in aqueous solution [98]. Costantino 

et al. observed that the process of lyophilization itself induced structural changes in 

recombinant human albumin (rHA) [95]. During lyophilization of rHA, there was an 

increase in both β-sheet content and unordered structural elements resulting in partial 

protein unfolding. Such conformational changes can expose hydrophobic regions and 

reactive groups, facilitating aggregation via hydrophobic interactions and other covalent 

and non-covalent pathways. 
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Cryoprotectants and lyoprotectants such as sugars, polyols, polymers and 

surfactants are typically used to protect peptides and proteins from process induced 

degradation [99]. Solid properties of the excipients themselves must be investigated before 

they can be used with a protein or peptide. Mannitol, for example can crystallize into three 

different polymorphic forms (α, β and δ) as well as a hemi-hydrate. The type of polymorph 

that is generated will depend on lyophilization conditions and the presence of other 

excipients. The mannitol hemi-hydrate may release its crystal water during storage. Unlike 

mannitol, sucrose is amorphous after lyophilization. For some therapeutic proteins a 

combination of both amorphous and crystalline excipients may be advantageous. Prior 

knowledge of protein aggregation mechanisms may be beneficial to the process of 

excipients screening and selection to add further stability during freeze- and spray drying. 

This highlights the importance of understanding the effect of processing conditions and the 

use of excipients/stabilizers on chemical modifications in addition to determining storage 

stability under accelerated conditions. 

 

1.9.1 Thiol-disulfide exchange in the solid-state 

Lyophilized protein powders in the ‘dry state’ or ‘anhydrous state’ are thought to 

exhibit behavior and ionization states similar to pH conditions in aqueous solution before 

lyophilization, thus demonstrating a “pH memory” [100]. Alkaline hydrolysis of disulfide 

bonds and thiol-disulfide exchange are favored at neutral to alkaline pH, with the thiolate 

anion being the reactive species. Thus, formulating proteins with free thiols and/or 

disulfides in neutral to alkaline buffers prior to lyophilization would be expected to 

facilitate disulfide-mediated aggregation during lyophilization and storage in the solid state. 



  31 
 

 

In addition, the three dimensional structure of proteins can influence disulfide-mediated 

degradation. Any structural rearrangement of proteins (perturbation during lyophilization) 

can have a profound effect on the pKa of reactive residues. Structural changes induced by 

process stresses can be probed using Fourier transform infrared spectroscopy (FTIR) [101]. 

FTIR spectra of human growth hormone lyophilized with and without excipients are shown 

in Figure 1.13. In addition, the presence of moisture and high storage temperatures can 

further influence reaction rates.  

Thiol-disulfide exchange has been reported in lyophilized proteins like bovine 

serum albumin (BSA) when exposed to moisture at 37 oC [96].  Similarly, Constantino et 

al. investigated the mechanism of aggregation in recombinant human albumin (rHA) 

during storage in the solid state at 37 oC and 96% RH [95]. They attributed the formation 

of insoluble aggregates to disulfide exchange in the absence of any stabilizing excipients. 

Both BSA and rHA contain a free thiol in addition to disulfide bonds. 
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Disulfide mediated aggregation can also occur in proteins with no free thiols but 

with disulfide bonds. One such example is insulin, in which β-elimination followed by 

thiol-catalyzed disulfide exchange results in the formation of insoluble aggregates during 

storage at 50 oC and 96% RH. These studies show how structural perturbations during 

lyophilization can have a profound effect on the storage stability of therapeutic proteins 

and disulfide bond reactivity, especially when exposed to high relative humidity and 

temperature.  

 

1.10 Disulfide bond mapping 

 

Recombinant proteins that are expressed in different systems like E.coli and CHO 

cells can have incorrectly folded, scrambled forms. Thus, it is important to identify the 

 Figure 1.13: FTIR spectra of human growth hormone. 1- hGH in solution, 2- hGH 
lyophilized with sucrose, 3- hGH lyophilized with trehalose and 4- hGH lyophilized alone. 
Adapted with permission from reference [101].  
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presence and extent of scrambling in protein therapeutics to assess the quality of the final 

drug product, particularly for biosimilars. Conventional methods for disulfide bond 

determination such as NMR and Edman sequencing typically require large amounts of 

protein samples. Mass spectrometry coupled with ionization methods for ionizing large 

molecules has emerged as a novel analytical tool for characterizing protein structure and 

disulfide bond analysis/mapping.  

The first step in disulfide bond mapping is to determine the number of disulfide 

bonds, by comparing MS spectra before and after protein reduction and the mass shift 

between the two samples. In recombinant human granulocyte-macrophage colony-

stimulating factor (GM-CSF), ESI MS analysis before and after protein reduction revealed 

a 4Da shift in reduced protein spectra [102], suggesting that GM-CSF has two native 

disulfide bonds. Using an alkylating agent in addition to a reducing agent will confirm the 

presence of any free Cys residues when compared to the MS spectra of the native and non-

reduced protein. The next step in disulfide bond mapping is to identify the location of these 

disulfide bonds and free Cys. This can be achieved with proteolytic and alkylating agents, 

comparing HPLC-UV chromatograms followed by tandem MS [103]. A combination of 

two or more proteolytic agents may be required for proteins where disulfide bonds are 

found to hinder proteolysis to form simple disulfide-linked peptides. Different ionization 

methods such as FAB/liquid secondary ion, plasma desorption (PD) and MALDI have been 

used to map disulfide bonds recombinant human interferon α-2b, human growth hormone 

and IL-4 [103].  

Disulfide scrambling can occur even during analysis of disulfide bonding patterns 

in proteins and peptides. Suitable quench conditions (low pH) and thiol derivatizing agents 
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(described under formulation strategies for cysteine-containing proteins) can be employed 

to minimize these effects. Tang and Speicher describe four steps for disulfide bond 

mapping in proteins: i) cleaving proteins using proteases or other chemical reagents (shown 

in Table 1.1) under acidic and non-reducing conditions, ii) chromatographic separation of 

cleaved fragments, iii) use of disulfide reducing agents to confirm disulfide containing 

complexes and iv) characterizing disulfide-linked peptides using mass spectrometry (MS) 

and N-terminal Edman sequencing [104]. For large proteins (> 50 kDa) or proteins with 

multiple disulfide bonds and large domains that are typically resistant to denaturation and 

proteolysis, cyanogen bromide (CNBr) cleavage can be used. In this method, fragmentation 

occurs C-terminal to Met residues and large fragments are usually generated. Further, the 

low pH employed for CNBr cleavage prevents disulfide bond scrambling.  

More recently, MS-based approaches (tandem-MS) for disulfide bond 

identification in proteins are becoming popular. Collision-induced dissociation (CID) in 

MS results in amide bond cleavage to yield b- and y- ions and is the most common tandem 

MS approach that is used to obtain protein structural information [105]. Disulfide bonds 

can either be broken or remain intact during CID. In addition to b/y ions, disulfide bonds 

can fragment (S-S or S-C bonds) to form free Cys residues, thioaldehydes, dehydroalanines 

and persulfides. Using CID as the fragmentation mode eliminates the need for sample 

reduction prior to MS analysis and high- end MS instruments. However, the formation of 

different cysteinyl peptide combinations can complicate analysis of the spectra and 

disulfide bond assignment, particularly for proteins for which the native disulfide linkage 

is unknown. 
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Haitao et al. have described a method for direct disulfide bond cleavage in the gas 

phase using electron transfer dissociation (ETD) [106]. Disulfide bond cleavage is 

preferred to peptide bond cleavage in ETD due to the fact that sulfur atoms capture 

electrons easily during the electron transfer process. This approach eliminates the need for 

two separate experiments, i.e., enzymatic digestion with and without reducing agents to 

determine the exact location of disulfide bonds. ETD and ECD are more suitable for 

disulfide bond identification, particularly for proteins in which the disulfide-bonding 

pattern is unknown. 16 disulfide bonds in an anti-HER2 mAb (Herceptin®) were mapped 

using ETD fragmentation followed by CID-MS3 on the dissociated peptides to further 

verify the disulfide arrangement. However, the authors report that a disadvantage of using 

ETD for disulfide bond identification is that for precursor ions with m/z > 900, in this case, 

the charge-reduced species is the dominant form and not the disulfide-dissociated peptide. 

Nevertheless, this analytical technique has been used to effectively map disulfide bonds in 

recombinant proteins such as human growth hormone and tissue plasminogen activator 

[106].  

Zhang et al. used an electrolytic reduction approach coupled with desorption 

electrospray ionization mass spectrometry (EC/DESI-MS) to analyze disulfide linkages in 

insulin and somatostatin [107]. The EC/DESI-MS method could effectively map disulfide 

bonding patterns and determine the role of disulfide bonds in maintaining protein 

conformation based on charge state distributions. Use of a selenamide derivatizing agent 

with EC/DESI-MS facilitated the analysis of intra- and interpeptide disulfide bonds.  
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Table 1.1: Chemical cleavage reagents and proteases commonly used for disulfide 
mapping in proteins [104].  

 

 

 

1.11 Research objectives and specific aims 

 

The main objective of this research is to elucidate the mechanisms of thiol-disulfide 

exchange and identify factors that determine reaction rate in solution, during lyophilization 

and storage in the solid-state using model peptides derived from human growth hormone 

(hGH) and the intact protein. The studies test the central hypothesis that the rate of thiol-

disulfide exchange differs in solution and amorphous solids and is affected by higher order 

structure. To test the hypothesis, the following specific aims were proposed: 

Specific Aim 1:  To elucidate the mechanism of thiol-disulfide exchange in aqueous 

solution and to determine the effect of pH, temperature, oxidation suppressants and peptide 

secondary structure on reaction kinetics. Thiol-disulfide exchange can result in protein 

aggregation via the formation of scrambled inter- and intramolecular disulfide bonds. 

Previous studies of thiol-disulfide exchange have been based on reactions between 

Protease Cleavage site Buffer conditions Temperature Reference

Chymotrypsin Trp, Tyr, Phe 50 mM sodium 
phosphate, pH 5.5 37 oC

 Schnaible et al (2002a) 
[108] 

Endoproteinase Glu-C Glu, Asp 100 mM sodium acetate, 
pH 4.0 24 oC

Lippincott and apostol 
(2002) [109]

Endoproteinase Lys-C Lys 25 mM Tric-HCl, pH 6.8 37 oC Lead et al (1999) [110]

Pepsin non-specific 0.02N HCl, pH 2.0 37 oC Bures et al (1998) [111]

Subtilisin non-specific 50 mM sodium 
phosphate, pH 6.5 37 oC Chong et al (2002) [112]

Thermolysin non-specific 0.1 M triethylamine-HCl, 
pH 6.0 37 oC Bures et al (1998) [111]

Trypsin Lys, Arg 50 mM sodium 
phosphate, pH 6.0 37 oC

Schnaible et al (2002a) 
[108]

Trypsin (immobilized) Lys, Arg 50 mM sodium 
phosphate, pH 6.5 23 oC

Chong and Speicher 
(2001) [113]
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proteins/peptides and low molecular weight thiols such as glutathione and DTT. However, 

these species are not representative of free thiol groups in larger proteins, and very little is 

known about the reaction mechanisms in these materials. Our hypothesis was that the 

reaction in solution will proceed primarily through the thiolate anion when oxidative 

pathways are inhibited and will be affected by secondary structure.  To test this hypothesis, 

the effects of pH, temperature, oxidation suppressants and peptide secondary structure were 

explored in detail using model tryptic peptides derived from human growth hormone 

(hGH). The results provide mechanistic detail for thiol-disulfide exchange in aqueous 

solution, and are reported in Chapter 2.  

Specific Aim 2: To elucidate the mechanism of thiol-disulfide exchange during 

lyophilization and storage in the solid state. To improve storage stability and shelf-life, 

many protein drugs are marketed as lyophilized powders. However, protein aggregation is 

known to occur even in the solid-state. Tryptic peptides derived from hGH and containing 

disulfide bonds were co-lyophilized with peptides containing free thiols to determine the 

effect of processing conditions on the thiol-disulfide exchange reaction and comparisons 

were drawn to aqueous solution studies. The results provide insights into the effects of 

lyophilization on thiol-disulfide exchange and peptide secondary structure contribution to 

reaction kinetics.  

Specific Aim 3: To determine the effects of higher order structure on the kinetics 

of thiol-disulfide exchange using intact hGH. To test the applicability of studies with model 

peptides to a therapeutic protein, the studies of Aims 1 and 2 were extended to intact hGH. 

The studies in Aim 3 test the null hypothesis that the rates and mechanisms of thiol-

disulfide exchange are unaffected by higher order structure and are identical in hGH and 
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in the model peptides. hGH has two disulfide bonds and no free cysteine residues. The 

results are expected to provide a qualitative measure of the effects of structure on the thiol-

disulfide exchange reaction and an indication of the degradation propensity of disulfide 

bonds in hGH in comparison to model peptides.  

 

1.12 Research Significance 

 

The rate of failure of candidate drug molecules to successfully obtain regulatory 

approval to treat patients is significant, with only one in ten biopharmaceuticals reaching 

the market between 2003 and 2010 [114]. Selecting a promising molecule rather than one 

with inadequate developability characteristics can reduce the total cost of drug 

development and deliver greater value to a larger number of patients. Reducing the attrition 

rate of candidate drug molecules is dependent upon the selection of quality leads. 

Candidate drug molecules are evaluated for stability and shelf-life by assessing their 

potential to degrade by various physical and chemical pathways, including aggregation. 

Different aggregation pathways are often grouped together because of the lack of 

information on the mechanism of individual pathways. This can result in overlooking a 

relevant aggregation pathway, such as disulfide exchange, during candidate evaluation.  

The aggregation of therapeutic proteins has been a major concern for the 

biopharmaceutical industry and regulatory agencies alike, since aggregates have been 

associated with adverse immune responses in patients. To make matters worse, aggregates 

are often difficult to detect and control. Strategies to determine aggregation propensity and 

to inhibit protein aggregation include molecular dynamics simulations [115], protein 
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engineering and process optimization [116] and formulation design [117, 118]. In addition, 

new analytical techniques are being developed to detect protein aggregates formed during 

manufacturing and storage. While these strategies are effective for some proteins, the 

inherent structural complexity of these large molecule drugs makes it challenging to devise 

a general approach that can be adapted to all classes of therapeutic proteins.   

The development of protein therapeutics currently involves a trial and error 

paradigm, which is often the rate-limiting step in getting a drug approved and to the market. 

In order to effectively control aggregation in therapeutic proteins, the mechanisms of 

relevant degradation pathways must be understood in detail. Detailed mechanistic studies 

of protein aggregation pathways like thiol-disulfide exchange, in combination with 

computational methods will facilitate successful development of protein pharmaceuticals 

and minimize associated costs.  

Thiol-disulfide exchange and disulfide scrambling are widely recognized as 

common routes to covalent aggregation in protein drugs. While there are reports of thiol-

disulfide exchange reactions between low molecular weight thiols like GSH [67, 119] and 

CySH [120] and proteins, they are not entirely applicable to disulfide-mediated aggregation 

in proteins since steric effects may influence reaction rates and these low molecular weight 

thiols may not always be present in protein formulations. Thus, understanding the 

mechanisms of thiol-disulfide exchange in aqueous solution and in the solid-state will 

improve our ability to control aggregation in therapeutic proteins. Understanding the 

mechanism of chemical reactivity of a protein is strategic in that it will steer protein 

formulation development away from a trial and error paradigm. The results obtained will 

facilitate the design of rational approaches to control disulfide-mediated aggregation in 
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solution and lyophilized formulations and decrease the likelihood of immunogenic effects 

after administration.  

Finally, biosimilars are proteins that are intended to be similar to the innovator drug 

with respect to quality, safety and efficacy. Variations in biosimilars production include 

manufacturing, cell culture and purification processes and the type of formulation used. 

These differences can have significant effects on the quality of a protein drug. There are 

many analytical tools that are currently being used to characterize follow-on protein 

products [121, 122]. A combination of these analytical methods and the knowledge of 

disulfide rearrangement mechanisms and kinetics are expected to provide improved 

screening.   
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CHAPTER 2. ELUCIDATING THE MECHANISM AND KINETICS OF 
THIOL-DISULFIDE EXCHANGE IN PEPTIDES DERIVED FROM 

HUMAN GROWTH HORMONE IN AQUEOUS SOLUTION 

This work was published in the Journal of Pharmaceutical Sciences DOI 
10.1002/jps.23906, content reproduced with permission from Wiley. 
 
 

2.1 Abstract 

 

Disulfide bonds stabilize proteins by crosslinking distant regions into a compact 

three-dimensional structure. However, disulfide bonds can participate in degradation 

pathways that can contribute to protein aggregation. In this chapter, experimental data for 

the mechanism of thiol-disulfide exchange in tryptic peptides derived from human growth 

hormone in aqueous solution is presented. Reaction kinetics were monitored to investigate 

the effect of pH (6.0-10.0), buffer concentration (10, 20 and 40 mM), temperature (4-50 

oC), oxidation suppressants (EDTA and N2 sparging) and peptide secondary structure 

(linear vs. cyclic). The concentrations of free thiol containing peptides, scrambled 

disulfides and native disulfide-linked peptides generated via thiol-disulfide exchange and 

oxidation reactions were determined using RP-HPLC and LC-MS Concentration  vs. time 

data  were fitted to a mathematical model using non-linear least squares regression analysis. 

Excluding oxidation suppressants (EDTA and N2 sparging) did not influence the intrinsic 
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rate of thiol-disulfide exchange. In addition, peptide secondary structure was found to 

influence the rate of thiol-disulfide exchange.  

 

2.2 Keywords 

 

Protein, peptide, human growth hormone, oxidation, kinetics, aggregation and 

thiol-disulfide exchange. 

 

2.3 Introduction 

 

In therapeutic proteins, correct disulfide linkages are critical to the biological 

activity and stability of this growing class of drugs [54]. For example, non-native disulfide 

bonding patterns in IgG antibodies have been associated with changes in receptor binding 

affinity, stability, and circulating half-life [123]. A disulfide-linked homodimer of human 

growth hormone (hGH) showed reduced receptor binding affinity and attenuated cell 

proliferative activity [124]. Human albumin or albumin fusion proteins, which contain 17 

disulfides and may contain a free-thiol, also may be prone to deleterious disulfide-mediated 

events [125]. The fundamental mechanism of thiol-disulfide exchange has been defined in 

previous reports using low molecular weight thiols and proteins [45, 61, 119, 120]; 

however, controlling these reactions in therapeutic proteins still remains challenging. It is 

often difficult to predict the most labile disulfide bonds based on structure alone [126], 

suggesting that the structural determinants of thiol-disulfide exchange may be weaker than 

for other reactions such as deamidation [127, 128]. An intact IgG antibody can have more 
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than 20 disulfide bonds, with the potential to form more than 200 species with a single 

scrambled intra- or intermolecular disulfide. While “reducible” aggregates are common in 

protein drug formulations, the disulfide bonds involved are not often identified. There have 

been reports from our group [129] and others [70] that thiol-disulfide exchange is sensitive 

to process-induced stresses such as freezing and fluid shear, but the mechanisms of these 

effects and their interplay with protein structure and fluid composition have not been fully 

elucidated.  

Different factors were critical in designing experiments relevant to achieving the 

overall goals of this project. First, human growth hormone (hGH) is a 4-helix bundle 

protein that belongs to the cytokine family with 191 amino acids and two disulfide bonds 

(no free cysteine residues). The C-terminal disulfide bond is known to have a functional 

role [91]; hence the common formulation strategies for Cys-containing proteins (discussed 

in Chapter 1) are not applicable for hGH. Further, hGH is known to aggregate in solution 

[130,131] and the solid state [132-134], facilitated by the formation of scrambled disulfides 

[91, 135] and/or protein unfolding [130, 136]. Thus, hGH is a tractable model system for 

detailed mechanistic studies. Trypsin digestion map for hGH is shown in Figure 2.1 with 

the disulfide linked peptides; i) T6 and T16 and ii) T20 and T21. Tryptic peptides derived 

from the solvent exposed disulfide bond (T20, T20-T21 and cT20-T21, Table 2.1) in hGH 

were used as model compounds to elucidate the mechanism of thiol-disulfide exchange 

(Scheme 2.1). The T20 peptide contains Cys182, which has been identified as the most 

reactive thiol in hGH [137].   

Second, physical and chemical instabilities are interrelated, for example a chemical 

modification can lead to an unfolding event and vice versa, both modifications contribute 
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to the overall drug decomposition rate. In a review by Waterman and Adami, the authors 

state that drug shelf-life is determined by the rate of formation of individual products and 

rarely by the overall drug decomposition rate [138]. The use of peptide model compounds 

allows determination of mechanisms and rate constants for a specific chemical 

modification in the absence of higher order structure and other degradation pathways, thus 

facilitating better molecular and formulation design approaches.  

Finally, elucidating the reaction mechanism in solution will provide a basis for 

better understanding reactions in solid state systems and determining the influence of other 

external factors like processing and storage conditions. T20 was used in its reduced form 

to react with linear (T20-T21) and cyclic (cT20-T21) peptide models of the native disulfide 

bond. The results show that for these hGH tryptic peptides, the mechanism of thiol-

disulfide exchange is pH independent and the reactions follow Arrhenius behavior. 

However, the observed rate constant (kobs) depends on the concentration of thiolate anion 

and hence the solution pH. Intrinsic rates of thiol-disulfide exchange are not affected by 

oxidation of free thiol-containing peptides even in the absence of oxidation suppressants. 

Additionally, cyclization of the peptide is shown to influence the kinetics of thiol-disulfide 

exchange, with the cyclic peptide having 10-fold lower reactivity when compared to the 

linear peptide.  
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Figure 2.1: hGH-trypsin digestion map, tryptic fragments are labeled T1 to T21 starting
from the N-terminus. Disulfide bonds are represented by the two solid lines between T6-
T16 and T20-T21. Adapted with permission from [139]. 
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Table 2.1: Abbreviations and amino acid sequences of hGH-derived peptides used in 
studies of thiol-disulfide exchange. 
 

 

                            

2.4 Materials 

 

Model peptides T20, T21, T20-T21 and cT20-T21 (see Table 2.1 for structures) 

were purchased from GenScript (Piscataway, NJ) with > 95% purity and supplied as a 

lyophilized powder. HPLC grade acetonitrile (ACN), NaCl and KCl were purchased from 

Fisher Scientific Co. (Pittsburgh, PA). H2O2 and Na2CO3 (anhydrous granules) were 

obtained from Mallinckrodt Baker Inc. (Phillipsburg, NJ). K2HPO4 and 

ethylenediaminetetraacetic acid (EDTA) were purchased from Sigma Chemical Co. (St. 

Louis, MO). Trifluoroacetic acid (TFA) and formic acid were obtained from Thermo 

Abbreviation Description Amino acid sequence Theoretical mass Observed mass

T20
Monomeric peptide, free 

SH group
NH2- IVQCR-OH 617.3319 617.3290

T21
Monomeric peptide, free 

SH group
NH2- SVEGSCGF-OH 784.3062 784.3067

T20-T20
Homodimer, disulfide-

linked

NH2- IVQCR-OH

NH2- IVQCR-OH
1232.6482 1232.6247

T21-T21
Homodimer, disulfide-

linked

NH2- SVEGSCGF-OH

NH2- SVEGSCGF-OH
1566.5978 1566.5984

T20-T21
Heterodimer, disulfide-

linked

NH2- IVQCR-OH

NH2- SVEGSCGF-OH
1399.6225 1399.6247

cT20-T21
Cyclic peptide, disulfide 

linked
NH2-IVQCRSVEGSCGF -OH 1381.6118 1381.6201

rT20-T21
Linear peptide, free SH 

groups
NH2-IVQCRSVEGSCGF -OH 1383.6275 1383.6344
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Scientific (Rockford, IL). Double-distilled water (DDI) used for buffer preparation and as 

HPLC mobile phase was deionized and purified using a Milli-Q water system, Millipore 

Ltd (Billerica, MA) and filtered with a 0.2 µm filter. 

 

2.5 Methods 

 

2.5.1 Preparation of peptide stock solutions and disulfide linked peptides for kinetic 

studies 

All peptides were used as provided by the manufacturer. Stock solutions were 

prepared in a 0.1% formic acid solution in DDI. T20, T21, T20-T21 and cT20-T21 stock 

solutions were stable at 4 oC for up to 2 weeks and T20-T20, T21-T21 solutions (pH <3.0 

after quenching with a 0.5% formic acid solution) were stable for 4 days at 4 oC. Far-UV 

(190-260 nm) CD analysis with a J-815 CD spectrometer (JASCO, Easton, MD) was used 

to assess peptide secondary structure. 

2.5.2 Homodimer formation 

T20-T20 and T21-T21 homodimers (Table 2.1) were synthesized in-house using 

H2O2 as an oxidizing agent according to a method described by Luo et al. [140]. H2O2 in 

phosphate buffer (pH 8.0, 2 mM) was added to solutions of T20 or T21 (4 mM) monomers 

in a 1:2 molar ratio (total reaction volume < 1 mL) and allowed to react for 1 day. The 

reaction was then quenched with a 0.5% formic acid solution (2x reaction volume). 

Conversion of monomer to homodimer was > 98% for both monomers, as determined by 

both RP-HPLC (Figure 2.2) and LC-MS. These homodimers were then used to construct 

calibration plots and synthetic standards were not purchased from GenScript.  Attempts to 
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produce the T20-T21 heterodimer using a similar method resulted in very low yields, so 

synthetic T20-T21 was purchased from GenScript (Piscataway, NJ). 

 

 

Figure 2.2: HPLC chromatograms showing T20-T20 formation over time at pH 6.0 in 50 
mM phosphate buffer with H2O2 as the oxidizing agent.  
 

2.5.3 Buffer preparation 

Phosphate buffers (PB) for pH 6.0-8.0 and carbonate buffers (CB) for pH 9.0-10.0 

were prepared at different concentrations (10, 20 and 40 mM) to enable extrapolation of 

rate constants to zero buffer concentration. The ionic strength of all buffers was adjusted 

to 0.08 M using KCl for PB and NaCl for CB. To minimize oxidation of free thiols, 0.5 

mM EDTA and N2 were used. Buffers were sparged with N2 for 30 min and then degassed 

and filtered with a 0.2 µm (Millipore, MA) filter before use. For reactions without 

suppression of oxidation, PB (pH 7.0, 10 mM) was used without EDTA and N2.  
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2.5.4 Quantification of reactants and products by HPLC 

RP-HPLC assays were developed to detect and quantify each of the seven species 

(T20, T20-T20, T20-T21, T21, T21-T21, cT20-T21, rT20-T21) with baseline resolution 

(Figure 2.3). Samples were analyzed using reverse-phase high-performance liquid 

chromatography (RP-HPLC, Agilent 1200 series). The system was equipped with a UV 

detector operating at 215 nm for all studies. Agilent Chemstation software was used for 

data acquisition and analysis. A ZORBAX Eclipse plus C18, 5 µm (4.6 X 250 mm) 

analytical column (Agilent Technologies, Santa Clara, CA) was used with gradient elution 

(column temperature was maintained at 25 oC). Solvent A was 0.1% TFA (pH~2.5) in 

water and Solvent B was 0.1 % TFA in acetonitrile. Elution was performed at 1 mL/min 

starting with 14% Solvent B, which was increased to 47% in 5.2 min, then held at 47% for 

3 min and finally returned to 14% at 8.3 min. Total run time for each sample was 12 min. 

The retention times for T20, T20-T20, T20-T21, T21 and T21-T21 were 4.7 min, 5.2 min, 

6.5 min, 7.2 min and 7.9 min respectively (Figure 2.3), as confirmed by mass spectrometry 

(ESI-QTOF-MS, Agilent). For studies with the cyclic peptide, a similar gradient elution 

was used with a total run time of 13 min. The retention times for T20, T20-T20, cT20-T21 

and rT20-T21 were 4.8 min, 5.3 min, 7.3 min and 7.7 min, respectively, as confirmed by 

MS. Calibration curves were linear in the following concentration ranges: 20 µM -1 mM 

(T20), 10-500 µM (T20-T20), 5-500 µM (T20-T21), 20-180 µM (T21), 10-200 µM (T21-

T21), 5-500 µM (cT20-T21), and 5-500 µM (rT20-T21). Limits of detection (S/N = 2) 

were 15 µM (T20), 2.5 µM (T20-T20), 1 µM (T20-T21), 5 µM (T21), 5 µM (T21-T21) 

and 5 µM (cT20-T21 and rT20-T21). No cleavage of disulfide bonds was observed at pH 

levels above the Cys thiol pKa, as has been previously reported [141].  
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At the end of each experiment, the total mass of the identified products was >98% 

for pH 6.0-9.0 and >95% for pH 10.0 of the total initial mass of the reactants. Based on the 

limits of detection and linear ranges of the calibration curves, initial reactant concentrations 

of 350 µM (T20) and 250 µM (T20-T21) were used. The amount of T20-T20 and T20-T21 

formed via oxidative pathways was determined by mass balance. For example, in the 

absence of oxidation, the amount of T20-T20 generated will equal the amount of T20-T21 

consumed.  Any additional T20-T20 formed is assumed to occur via oxidation. 
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Figure 2.3: HPLC chromatograms (215nm) at various times during the reaction of T20 
with T20-T21 at pH 7.0, 10 mM phosphate buffer with 0.5 mM EDTA. A) 0 mins. B) 180 
mins and C) 1440 mins.  
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2.5.5 Determination of reaction order 

The initial reaction rates were monitored at room temperature (22 oC) and pH 7.0 

(10 mM PB, 0.5 mM EDTA, 0.08 M ionic strength, N2 sparged) in a 2 mL microcentrifuge 

tube with a total reaction volume of 1250 µL. Initial volumes of T20 were 500 µL, 500 µL 

and 250 µL, respectively and initial concentrations were calculated based on final 

concentrations listed below. To determine the reaction order with respect to T20, a final 

concentration of T20-T21 of 250 µM was used and kinetics monitored at different initial 

concentrations of T20 (80, 250, 370 and 630 µM). In the same way, the reaction order with 

respect to T20-T21 was determined using a fixed initial concentration of T20 (350 µM) 

and different initial concentrations of T20-T21 (130, 270, 410 and 600 µM).  

 

2.5.6 Thiol-disulfide exchange reactions 

Reaction kinetics were monitored at five different pH values (6.0, 7.0, 8.0, 9.0, and 

10.0). For the reaction, 500 µL of T20 (875 µM), 500 µL of T20-T21 (625 µM) and 250 

µL of buffer (50, 100 and 200 mM) were added to a 2 mL microcentrifuge tube and mixed 

by pipetting. The final pH of the reaction mixture was adjusted using NaOH or HCl (exact 

volume to be added was determined from pilot studies at each pH) after a 100 µL aliquot 

was removed and quenched to verify initial concentrations (t = 0 min). Samples were 

withdrawn in triplicate at all time points and quenched with 10 µL of 20% formic acid 

solution in DDI to prevent further scrambling. 30 µL of this quenched solution was then 

used for RP-HPLC analysis. Dilution factors from total reaction volume, addition of 

NaOH/HCl for pH adjustment and quench solution were accounted for in determining final 

peptide concentrations. No measurable changes in concentration were observed in 
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quenched samples within the time scale of the experiment. The cyclic peptide cT20-T21 

(see Table 2.1) was reacted with T20 in 10 mM PB and CB (0.08 M ionic strength, 0.5 mM 

EDTA and N2 sparged). The reaction was monitored kinetically at 22 oC and at 40 oC at 

pH 7.0 and 9.0 for 6 hours. Initial reactant concentrations were [T20] = 450 µM and [cT20-

T21] = 45 µM. Quench conditions were the same as in studies with T20-T21 and aliquots 

were withdrawn in triplicate and analyzed using RP-HPLC.  

 

2.5.7 Determining activation parameters for the reaction of T20 with T20-T21 

Reaction kinetics were also monitored at five different temperatures (in triplicate): 

4, 15, 25, 40 and 50 oC at pH 7.0 (PB, 10 mM with 0.5 mM EDTA). Initial reactant 

concentrations, quench conditions and sample analysis were identical to those in the pH 

studies. Arrhenius parameters obtained from accelerated storage conditions are generally 

used to predict protein stability at low temperatures [142]. However, for proteins, non-

Arrhenius behavior is not uncommon due to the complexity of the aggregation process 

itself. In simpler model compounds like peptides, we expect the reaction to follow 

Arrhenius behavior in a narrow temperature window. Use of high temperatures (≥ 60 oC) 

can lead to degradation of the peptides. Thus, for the hGH-derived peptides used in studies 

here, Arrhenius behavior was investigated from 4 to 50 oC using Equation 2.1 below.  

 

                                    k = A exp [-(Ea/RT)]                                      Eq. 2.1 

 

Where, k- rate constant, A- preexponential factor, R- gas constant, T-temperature and Ea 

is the activation energy.  
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The Eyring equation (Eq 2.2) provides molecular insight into how a reaction 

progresses with changing temperature. Activation energy, Ea and enthalpy of activation 

(ΔH‡) only have small differences in their values and are often used interchangeably.  

 

             ln (k/T) = (-ΔH‡/T)(1/T) + ln (kB/h) + (ΔS‡/R)                           Eq. 2.2    

 

Where, k- rate constant, T-temperature, ΔH‡ - enthalpy of activation, ΔS‡ - entropy of 

activation, kB – Boltzmann constant, h – Planck’s constant and R – gas constant.  

                            

2.6 Data analysis 

 

For the reaction of T20 with linear T20-T21, the data were consistent with a 

reaction scheme involving: (i) equilibrium ionization of T20 and T21, (ii) reversible thiol-

disulfide exchange reactions of the ionized thiolate forms of T20 and T21 (i.e., T20-S-, 

T21-S-) with T20-T21 and (iii) oxidation of the ionized thiolate forms of T20 and T21 

(Scheme 2.1). A system of equations corresponding to this scheme was used to describe 

the time-varying concentrations of each species and to estimate values of the microscopic 

rate constants.  

 

T20S- = T20 / {1 + (10-7)/ (10-pKa)}                  Eq. 2.3  

T21S- = T21 / {1 + (10-7)/ (10-pKa)}                                        Eq. 2.4 
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d [T20-T21]/dt = -k1 [T20S-][T20-T21] + k2 [T20-T20] – k3 [T21S-][T20-T21] + k4 [T21- 

T21][T20S-] +   k5 [T20S-]3 [T21S-]                                                              Eq. 2.5      

 

d [T20-T20]/dt = k1 [T20S-][T20-T21] – k2 [T20-T20][T21S-] + k5 [T20S-]3 [T21S-]     

Eq. 2.6 

 

d [T21-T21]/dt = k3 [T21S-][T20-T21] – k4 [T21-T21][T20S-] + k6 [T21S-]2 Eq. 2.7 

 

d [T20S-]/dt = –k1 [T20S-][T20-T21] + k2 [T20-T20][T21S-] + k3 [T21S-][T20-T21] – k4 

[T21-T21][T20S-] – k5 [T20S-]3 [T21S-]     Eq. 2.8 

 

d [T21S-]/dt = k1 [T20S-][T20-T21] – k2 [T20-T20][T21S-] – k3 [T21S-][T20-T21] + 

k4[T21-T21][T20S-]    – k5 [T20S-]3[T21S-] - k6 [T21S-]2                         Eq. 2.9                         

           

In the kinetic model, time is the independent variable, reactant and product 

concentrations are dependent variables, and the rate constants (k1, k2, k3, k4, k5 and k6) are 

treated as parameters to be determined by non-linear regression. The model returned a 

value of 8.3 for thiol pKa when it was defined as a parameter to be determined by regression 

of pH 7.0 data. Thus, the pKa values for the ionization of the T20 and T21 thiol groups 

(Ka20, Ka21) were fixed at 8.3 for all reaction conditions, consistent with previous reports 

for cysteine [143, 144]. Rate constants k1, k2, k3, and k4 are second-order rate constants for 

thiol-disulfide exchange; k5 is a composite rate constant for the production of T20-T21 and 

T20-T20 by the oxidation of T20S- and T21S-. A composite oxidation rate constant (k5) 
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was used to minimize model parameters. This composite reaction (R5, Scheme 2.1) was 

sufficient to describe the minor oxidation observed when oxidation was suppressed (i.e., 

with EDTA and N2 sparging). Kinetic data were fitted to the model (Equations 2.3-2.9) 

using non-linear regression (SCIENTIST®, Micromath Research, St. Louis, MO). 

SCIENTIST® reports Model Selection Criterion (MSC) values to determine the most 

appropriate models; a greater MSC value represents a better model. MSC is independent 

of the scaling of data points and is similar to the Akaike Information Criterion (AIC), which 

is considered to be a better measure of model validity than R2 values for non-linear models 

[145]. MSC value for the model with composite k5 was greater than the MSC value for a 

model with two separate oxidation rate constants. When oxidation was not suppressed, the 

additional parameter k6 for the oxidation of ionized T21 to T21-T21 (R6, Scheme 2.1) was 

included to compare data to oxidation suppressed studies and to obtain better model fits 

based on MSC values. 

Average values of the measured concentrations of each of the five species (i.e., T20, 

T21, T20-T20, T21-T21 and T20-T21), as measured by RP-HPLC in triplicate at each time 

point, defined the data set. In studies of the effect of pH, kinetic studies were repeated at 

several buffer concentrations and the values of the rate constants extrapolated to zero buffer 

concentration. An Arrhenius plot was constructed from reactions at various temperatures 

to estimate the activation energy (Ea) of the reactions. All calculated Ea values were 

evaluated by one-way ANOVA using SAS, a statistical analysis software (SAS Institute, 

Cary, NC) at 95% confidence to determine significant differences in Ea among the four 

thiol-disulfide exchange reactions (R3 and R4, Scheme 2.1).For the reaction of T20 with 
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cT20-T21, the data were fitted to the equation (Eq. 2.10) for first order irreversible reaction 

to give kobs.  

                                    

                                   A/A0 = exp (-kobs t)                                Eq. 2.10 

 

Here, A = [T20-T21] or [cT20-T21] and A0 is the initial concentration of the respective 

disulfide. A reaction scheme was proposed for the reactions with cT20-T21 (Scheme 2.2). 

  

2.7 Results 

 

2.7.1 Addition of oxidation suppressants to favor the thiol-disulfide exchange reaction 

Peptides derived from hGH were used to investigate thiol-disulfide exchange in 

aqueous solution. Initial studies of the reaction of T20 with T20-T21 in buffer without 

EDTA or N2 sparging (pH 7.0) showed that the reactants and products did not appear to 

reach equilibrium (Figure 2.4), suggesting another reaction pathway in addition to thiol-

disulfide exchange. In reactions of T20 and T20-T21, only five species (i.e., T20, T21, 

T20-T20, T20-T21, and T21-T21) were detected at all reaction conditions studied (Figure 

2.3). Similarly, in reactions of T20 and cT20-T21, only four species were detected (i.e., 

T20, T20-T20, cT20-T21, rT20-T21). No additional oxidation products (e.g., sulfenic, 

sulfinic, or sulfonic acids) were detected with either RP-HPLC or LC-MS both in the 

presence and absence of oxidation suppressants, strongly suggesting that the additional 

reaction pathway is the formation of T20-T20, T20-T21 and T21-T21 from their respective 

monomers via oxidation. In order to isolate the thiol-disulfide exchange reaction for further 
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investigation, PB buffers (pH 7.0) were sparged with N2 for 30 minutes, degassed, and 

different concentrations of EDTA (0.5 mM, 1 mM and 2 mM) were evaluated for their 

ability inhibit the oxidation reactions. Because the reactions were unaffected by higher 

EDTA concentrations (data not shown), 0.5 mM was chosen for all subsequent studies in 

which oxidation was suppressed. Although the rates of the oxidation reactions were 

significantly attenuated (see below), oxidation could not be eliminated completely using 

EDTA and N2 sparging. Other methods to inhibit oxidation like using a nitrogen controlled 

atmosphere were not investigated as <10% of T20 and T21 participate in the oxidation 

pathways in the presence of EDTA and N2 (based on mass balance from RP-HPLC data). 

Oxidation of rT20-T21 to cT20-T21 is the major reaction (Figure 2.5, concentration 

of cT20-T21 increases while rT20-T21 decreases beyond 500 min), even in oxidation 

suppressed conditions, after 6 hours. As the main aim was to study thiol-disulfide exchange, 

we monitored the reaction for up to 6 hours, a time period within which oxidation of T20 

to T20-T20 or rT20-T21 to cT20-T21 does not occur to an appreciable extent (determined 

from pilot studies that were monitored at later time points, Figure 2.5). Also, mass balance 

showed that the amount of T20-T20 formed was equivalent to the amount of cT20-T21 

consumed, further supporting thiol-disulfide exchange as the major pathway for disulfide 

scrambling for t < 6 h. For studies with cT20-T21 at pH 7.0 and T20 and T20-T21 at pH 

7.0 and 9.0, a similar sampling schedule was used 
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Figure 2.4: The concentration of reactants and products for a kinetic study with T20 and 
T20-T21 at pH 7.0, 10 mM PB and 0.08 M ionic strength (without EDTA or N2 sparging). 
Initial concentrations of peptides were: [T20] = 350 µM; [T20-T21] = 250 µM. The 
symbols represent actual data points obtained from samples at different times (n=3, +/-SD). 
Solid lines are model predictions for the reactions in Scheme 2.1. 
 

 

 

Figure 2.5: Concentrations of cT20-T21 (▲) and rT20-T21 (●) for the reaction of cT20-T21 with 
T20 in 10 mM carbonate buffer, pH 9.0, and 0.08 M ionic strength (with EDTA and N2 sparged) at 
22 oC.  
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2.7.2 Apparent order of reaction; reaction of T20 and T20-T21 

To estimate the order of the disulfide exchange reaction and guide the development 

of a proposed reaction scheme (Scheme 2.1), reactant and product concentrations were 

monitored in the early stages of the reaction (pH 7.0, 10 mM PB, 0.5 mM EDTA and N2 

sparging) where <5% change in both reactants was observed. The apparent first-order 

reaction rates were estimated for a range of initial concentrations. Slopes of log-log plots 

of the rate of reactant disappearance versus reactant concentration were 0.99±0.01 for T20 

and 0.93±0.03 for T20-T21 (Figure 2.6), indicating that the reaction is first-order with 

respect to the thiol and disulfide reactants and second-order overall. Kuwajima et al. 

investigated disulfide bond reduction in α-lactalbumin with DTT [66]. The authors 

reported that the kinetics of disulfide bond reduction is rate-limited by inter-molecular 

disulfide exchange between α-lactalbumin and DTT and that such a reaction is second-

order [66], consistent with our findings using hGH-derived peptides. This report and our 

observation that thiol-disulfide exchange is a second-order reaction are also consistent with 

other literature reports [45, 119]. 
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Reaction schemes for thiol-disulfide exchange in hGH-derived peptides 
 

 
Scheme 2.1: Reaction of T20 with T20-T21 

 

 
 
 
 
 

Scheme 2.2: Reaction of T20 with cT20-T21 
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Figure 2.6: Thiol-disulfide exchange initial rate studies in which the concentration of one 
reactant (either T20 or T20-T21) was fixed while the concentration of the second reactant 
(either T20 or T20-T21) was varied (see text). Reaction kinetics was monitored at pH 7.0, 
10mM PB, 0.08M ionic strength with EDTA and N2 sparging at 22 oC. Log-log plots of 
rate of loss of T20 versus T20 concentration (■) and rate of loss of T20-T21 versus T20-
T21 concentration (♦). 
 

2.7.3 Effect of oxidation suppressants on thiol-disulfide exchange 

To determine the effect of oxidation on the rate and mechanism of thiol-disulfide 

exchange at pH 7.0, the rate constants for the exchange and oxidation reactions were 

estimated by fitting the experimental data from reactions with and without EDTA and N2 

sparging to the model described in Scheme 2.1 (Figures 2.4 and 2.7). The oxidation 

suppressed thiol-disulfide exchange data of T20 with T20-T21 were well described by the 

model in Scheme 2.1 without R6 (R2 ≥0.95, see below), as T21-T21 was formed only via 

thiol-disulfide exchange in the presence of oxidation suppressants at all pH 6.0-10.0. In the 

absence of oxidation suppressants, including a separate reaction (Scheme 2.1, R6), 
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for all three oxidation reactions in Scheme 2.1 (R5 and R6). For the oxidation of T21 to 

form T21-T21 in the absence of oxidation suppressants (R6, Scheme 2.1), the estimated 

value of rate constant k6 was 8.9±2.6 M-1s-1. In the presence of oxidation suppressants, 

oxidation of T21 was not observed (k6 = 0). Rate constants for thiol-disulfide exchange 

were similar with and without oxidation suppressants, while k5 increased 3.6-fold and k6 

increased from 0 to 8.9±2.6 M-1s-1 (Figure 2.8). Statistical analysis showed no significant 

difference in rate constants for thiol-disulfide exchange (p>0.05) and a significant 

difference for the oxidation reaction rate constant (p<0.05) in the presence and absence of 

EDTA and N2, indicating that the intrinsic rate of the disulfide exchange reactions are not 

affected by the presence of oxidation side-reactions.  

 

Figure 2.7: The concentration of reactants and products for a kinetic study with T20 and 
T20-T21 at pH 7.0, 10mM phosphate buffer with 0.5 mM EDTA and N2 sparging. Initial 
concentrations of peptides were: [T20] = 350 µM; [T20-T21] = 250 µM. The symbols 
represent actual data points obtained from samples at different times (n=3, +/- SD. Solid 
lines are model predictions for the reactions in Scheme 2.1. 
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Figure 2.8: Comparison of rate constants for reactions with and without oxidation 
suppressants (0.5 mM EDTA and N2 sparging) at pH 7.0, 10 mM PB and 0.08 M ionic 
strength at 22 oC. Initial concentrations of peptides were: [T20] = 350 µM and [T20-T21] 
= 250 µM (n=3, +/- SD). Unit for k5 is M-3s-1.   
 

2.7.4 Effect of pH on the reaction of T20 with T20-T21 

Thiol-disulfide exchange reactions were monitored as a function of buffer 
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shown in Figure 2.11 for the extrapolated rate constants. Statistical analysis showed no 

significant difference (p>0.05) in the rate constants for this pH range. This suggests that 

the mechanism of thiol-disulfide exchange is independent of pH as reported by others [146, 

147]. Although a change in solution pH did not affect the rate of thiol-disulfide exchange 

in tryptic peptides, it can influence reaction kinetics in proteins, which can undergo pH-

induced conformational changes that can alter the exposure of disulfides and/or free thiols. 

The pseudo-first order rate constant (kobs) for the loss of T20-T21 was determined by 

monitoring the change in concentration over time. Data at different pH values (6.0-10.0) 

are shown as a pH-rate profile in Figure 2.12. The slope of the pH-rate profile in the 

pharmaceutically relevant range of pH 6.0 to 8.0, below the thiol pKa (8.3), is ~ 1. The 

change in kobs with increasing pH (i.e., the slope of the pH rate profile) decreases above pH 

8.0. However, there is a slight increase in kobs above pH 8.0 as the population of thiolate 

anion still changes, albeit at decreasing proportions at pH > thiol pKa. The observed pH 

dependence of kobs and the pH independence of k1-k4 indicate that thiol-disulfide exchange 

depends on the concentration of thiolate anion.  
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Continued from previous page 

 

  

 

 

  

Figure 2.9: Rate constants vs. buffer concentration. Rate constants were obtained from 
model fits to reaction scheme 2.1 (n=3, +/-SD): A) pH 6.0, B) pH 7.0, C) pH 8.0, D) pH 
9.0, and E) pH 10.0 at 0.08 M ionic strength,  different buffer concentrations of 10, 20 and 
40 mM (with EDTA and N2 sparging) and at 22 oC. Initial concentrations of peptides were: 
[T20] = 350 µM; [T20-T21] = 250 µM. Dotted lines are trendlines.  
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Continued from previous page 

 

 

 

 
Figure 2.10: Kinetic plots at different pH for the reaction of T20 with T20-T21 at 22 oC. 
Symbols represent actual data points (n=3, +/- SD) and solid lines represent model fits.[T20] 
= 350 µM; [T20-T21] = 250 µM. Buffer conditions: pH 6.0-8.0 is with 10 mM phosphate 
buffer and pH 9.0-10.0 is with 10 mM carbonate buffer. Ionic strength (0.08 M) and EDTA 
(0.5 mM) were the same at all pH values. A) pH 6.0, B) pH 8.0, C) pH 9.0, and D) pH 10.0. 
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Table 2.2: Measured rate constants for all buffer concentrations for the reaction of T20 
with T20-T21, 0.08 M ionic strength (with EDTA and N2 sparged) at 22 oC. 
 

 

 

 

Figure 2.11: pH-rate profile for second order microscopic rate constants (see Scheme 2.1 
and text for details) obtained for kinetic studies with T20 and T20-T21 at 22 oC. All rate 
constants are values extrapolated to zero buffer concentration (n=3, +/- SD). 
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Figure 2.12: Pseudo-first order rate constant for the loss of T20-T21 () at different pH 
(10 mM buffer, 0.08 M ionic strength with oxidation suppressants) and at 22 oC. Rate 
constants were determined by non-linear regression. Uncertainties are within the size of 
the symbol (n=3, +/-SD). 
 
2.7.5 Activation parameters for the reaction of T20 with T20-T21 

Microscopic rate constants for thiol-disulfide exchange (k1, k2, k3, and k4) obtained 
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ANOVA. R3 and R4 represent two mechanistically equivalent reversible reactions and thus 

would be expected to have similar activation energies. We estimated Arrhenius activation 

energies for the reaction of T20 and T20-T21 to be in the range of 41-53 kJ/mol (Table 

2.3). An Eyring plot (Figure 2.15) was used to estimate values for enthalpy (∆H‡), entropy 

(∆S‡) and free energy of activation (∆G‡) at 25 oC (Table 2.3).  

 

 

Figure 2.13: Arrhenius plots for microscopic rate constants for the reaction of T20 and 
T20-T21 (Scheme 2.1) at pH 7.0, 10 mM phosphate buffer and 0.08 M ionic strength with 
0.5 M EDTA and N2 sparging (n=3, +/- SD). Solid lines represent trendlines.  
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Figure 2.14: Arrhenius plot for microscopic rate constant k5 (●) for the reaction of T20 
and T20-T21 (see 2.1). The reaction was monitored at pH 7.0, 10 mM buffer and 0.08 M 
ionic strength (with EDTA and N2 sparging) (n=3, +/- SD). Solid lines represent trendlines. 
 

 

Figure 2.15: Eyring plot for microscopic rate constants for the reaction of T20 with T20-
T21 at pH 7.0, 10 mM buffer and 0.08 M ionic strength (with EDTA and N2 sparging) (n=3, 
+/- SD). Solid lines represent trendlines. 
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2.7.6 Effect of peptide cyclization on thiol-disulfide exchange 

The non-cyclic model peptides (T20, T21, T20-T20, T21-T21 and T20-T21) do not 

have any secondary structure, as confirmed by far-UV CD analysis. However, the CD 

spectrum for cT20-T21 shows internal hydrogen bonding, possibly due to the presence of 

a beta-turn-like structure (Figure 2.16). Initial studies carried out with T20 and cT20-T21 

with the same molar ratios as the heterodimer study (thiol: disulfide = 1.4:1) showed no 

reaction at 22, 40, or 60 oC. Thus, a higher thiol: disulfide ratio of 10:1 was used for kinetic 

studies using cT20-T21. We compared the rate of reaction of T20 with cT20-T21 at two 

different pH values and temperatures with that of T20-T21 under similar reaction 

conditions (Table 2.4) to determine the effect of peptide secondary structure on reaction 

kinetics. For scrambling reactions involving cT20-T21 and T20, rates were considerably 

slower than for the linear form (Figure 2.17). Even with a 10:1 molar ratio of thiol: disulfide, 

only a 26% decrease in disulfide content was observed after 6 hours at pH 9.0 and 22 oC, 

as compared to an 86% decrease for the linear T20-T21. Our results suggest that secondary 

structure has a marked effect on the reaction rate, and that secondary structural constraints 

may attenuate thiol-disulfide exchange in intact hGH relative to the intrinsic exchange rate 

of the peptides. 
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Table 2.3: Activation parameters for thiol-disulfide exchange reactions and oxidation 
reaction (k5). Values for ΔH‡, ΔS‡ and ΔG‡ were obtained from the Eyring plot shown in 
Figure 2.15. 
 

 

 

 

Table 2.4: The change in cT20-T21 and T20-T21 concentrations obtained after 6 hours for 
thiol-disulfide exchange reactions with T20 at different pH and temperature at thiol: 
disulfide of 10:1.  

 

 

Rate constant Ea (kJ/mol) A ΔH‡ (kJ/mol) ΔS‡ (J/mol.K) ΔG‡ 25 oC (kJ/mol)
k1 46±4 7.5*108 ±4.2a 43±6 -83±20 68±9
k2 41±2 2.0*108 ±2.6a 38±4 -96±15 66±6
k3 48±4 8.9*108 ±5.9a 50±6 -66±21 70±9
k4 48±4 2.3*109 ±4.4a 45±5 -75±16 67±7
k5 53±7 1.5*1012 ±16.0b 51±6 134±19 11±8

aunits in M-1s-1

bunits in M-3s-1

Peptide pH Temp (oC) % decrease after 6 hours
7.0 22 17.3±3.3
7.0 40 18.6±2.4
9.0 22 26.0±3.6
9.0 40 23.6±3.2
7.0 22 79.9±9.8
9.0 22 86.4±2.9

cT20-T21

T20-T21
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Figure 2.16: Far-UV CD spectra for A) T20-T21 and B) cT20-T21. The far-UV CD spectrum for 
T20-T21 is representative of peptides T20, T21, T20-T20 and T20-T21. 
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Figure 2.17: Observed pseudo-first order rate constants for the loss of cT20-T21 and T20-
T21 at different concentration ratios and temperatures. Ratios in figure legend represents 
thiol:disulfide ratio (T20:T20-T21/cT20-T21). Initial concentrations of peptides were: 
[T20] = 450 µM; [T20-T21] = 45 µM for 10:1 studies and [T20] = 350 µM; [T20-T21] = 
250 µM for the 1.4:1 study. Uncertainties are within the size of the symbol (n=3).  
 

2.8 Discussion 

 

The mechanism of thiol-disulfide exchange involves reaction of the thiolate anion 

(RS-) with a disulfide bond (R’SSR”) at neutral to alkaline pH [45, 46, 71]. The thiol group 

undergoes deprotonation to form the reactive nucleophile (RS-), this step is followed by 

the exchange of redox equivalents leading to oxidation of the attacking thiol and reduction 

of R'SSR" [45]. In our studies with model peptides derived from hGH, products consistent 

with this mechanism were detected, including T20-T20, T21, T21-T21 and rT20-T21. No 

additional oxidation products such as cysteine sulfenic acid, cysteine sulfinic acid, cysteine 

sulfonic acid or thiosulfinates were detected, either in the presence or absence of EDTA 

and N2, as confirmed by MS analysis and mass balance upon completion of the kinetic 
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studies.  Here we report thiol-disulfide exchange using model peptides (T20-T21, cT20-

T21, T20) representative of proteins containing an unpaired Cys and disulfide bonds. 

Although native hGH and most mAbs generally do not have unpaired Cys, these may be 

generated by β-elimination, incomplete folding or disulfide bond reduction during 

expression, folding, purification and/or fill-finish operations, and during storage in solution 

or solid formulations.  

The reaction between thiols and disulfides has been studied in detail by other groups 

[50, 119, 120]. Previously Luo et al. used a data modeling approach to determine oxidation 

reaction kinetics for the reaction of Cys-SH and H2O2 [140] and we have used a similar 

approach to study thiol-disulfide exchange. To our knowledge, however, this is the first 

report of a detailed kinetic model allowing the determination of both observed and 

microscopic rate constants for thiol-disulfide exchange in peptide model compounds.  In 

the kinetic model, reactions R1-R5 (Scheme 2.1) were sufficient to describe both thiol-

disulfide exchange and thiol oxidation in studies with oxidation suppressants. Thiol 

oxidation reactions R5 and R6 represent composite reactions that involve oxidation of T20 

or T21 via a RSOH intermediate [140]. RSOH is a reactive species that is completely 

consumed, was not detected analytically and as a result was excluded from the reaction 

scheme. Excellent fits of the model to our data suggest that the reactions represented by 

Scheme 2.1 effectively describe the mechanism for thiol-disulfide exchange between T20 

and T20-T21 and oxidation of free thiols (T20, T21) to form homodimers (T20-T20, T21-

T21) and heterodimer (T20-T21). In the reaction of T20 with T20-T21, omitting oxidation 

suppressants (EDTA and N2 sparging) resulted in an increase in the oxidation rate constant 

k5 by 366% and k6 to 8.9±2.6M-1s-1 from ~0, while the other rate constants remained 
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unchanged (Figure 2.8). The kobs value for the loss of T20 decreased by 130% in the 

presence of oxidation suppressants while kobs for the loss of T20-T21 remained unchanged. 

The results show that excluding oxidation suppressants accelerates the formation of 

scrambled disulfides (T20-T20 and T21-T21) via oxidative pathways. Hydroxyl ion 

mediated disulfide exchange and aggregation has been reported for atrial natriuretic peptide 

(ANP), a cyclic peptide with 25 amino acids and a disulfide bond (C4-C28) in the solid 

state [141]. However, alkaline hydrolysis of peptide bonds in T20-T21 and cT20-T21 was 

not observed up to pH 10.0. 

Rate constants obtained here for the reaction of T20 with T20-T21 are comparable 

to previous reports. For example, Holmgren et al. studied disulfide bond reduction in 

insulin with dithiothreitol (DTT) at neutral pH and determined a second-order rate constant 

for the reaction of 5 M-1s-1 [47]. In another study with DTT, Wiita et al. studied force-

dependent chemical kinetics of disulfide bond reduction [70]. In the absence of an external 

force and at pH 7.2, a second-order rate constant of 6.45 M-1s-1 was obtained. These values 

for thiol mediated disulfide exchange are similar to our model predictions for the reactions 

of both T20 and T21 with T20-T21 (Scheme 2.1, R3 and R4) at pH 7.0 (3-11 M-1s-1).  

Arrhenius activation energy values reported here (Table 2.3) are similar to those 

obtained by Fernandes et al., who reported Ea values for thiol-disulfide exchange in 

solution in the range 60-66 kJ/mol [148]. Wiita et al. assumed values for the Arrhenius 

parameter (A) of 105-1012 M-1s-1, and obtained activation energies between 30-65 kJ/mol 

for thiol-disulfide exchange [70]. Whitesides et al. determined activation parameters for 

the reaction of Ellman’s reagent and glutathione with three different thiols in water at 30 
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oC [71]; ∆G‡ = 44.4 – 65.7 kJ/mol, ∆H‡ = 37.7 – 66.9 kJ/mol and ∆S‡ = -19.7 – +13.4 

J/mol.K.  

The activation parameters reported here, with the exception of more negative values 

of ∆S‡, are similar to values cited above. Thiol-disulfide exchange proceeds via a linear 

SN2 mechanism [149, 150], with greater translational and vibrational constraint of the 

transition state than the reactants, resulting in a negative ∆S‡ and a positive ∆G‡. The values 

of the activation parameters reported here are consistent with expected values of -85 – -

125 J/mol.K for this mechanism [71] and suggest that translational and vibrational 

constraints play a more significant role for thiol-disulfide exchange reactions involving 

peptides than in small molecules.  Youngman et al. have shown that carbamidomethylation 

of all four Cys residues in hGH decreases stability by ~ 37.7 kJ/mol [151]. Protein 

destabilization by disulfide bond reduction increased the population of self-associated 

forms. This is similar to the activation energies reported here, suggesting that the activation 

energy for thiol-disulfide exchange in model peptides is of the same order as the decrease 

in stability that results from the reduction of disulfide bonds in native hGH.  

The results also show that the reaction is ten-fold slower in the cyclic peptide 

(cT20-T21) than in the linear form (T20-T21), suggesting that secondary structural 

constraints in hGH slow thiol-disulfide exchange.  Interestingly, this observation is 

contrary to previous reports. Rabenstein et al. determined observed rate constants for thiol-

disulfide exchange with Cys and Arg-vasopressin (AVP) at pH 7.0 and 25 oC [120]. AVP 

is a cyclic peptide with 9 amino acid residues. The reaction of AVP with Cys (CysSH) was 

100 times faster than the reaction between glutathione disulfide (GSSG) and CysSH. The 

authors attributed this to several factors including a more accessible disulfide bond formed 
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between two terminal Cys residues in AVP. The disulfide bond in cT20-T21 (C4-C11) is 

somewhat removed from the N- and C-termini, and may be less solvent exposed than in 

T20-T21, perhaps contributing to the reduction in rate observed here. Internal hydrogen 

bonding in the cT20-T21 peptide (CD spectrum, Figure 2.16) could impose a structural 

constraint which translates to reduced reactivity of the disulfide bond with T20. 

Additionally, in peptides with 1-3 residues between the Cys, cyclization is unfavorable due 

to geometric strain, while a stable disulfide bond is formed in peptides with 4-5 intervening 

amino acids [50]. The differences in structural effects between the studies reported here 

and previous reports indicate that the relationship between peptide secondary structure and 

reactivity in thiol-disulfide exchange is not completely understood, and that further studies 

are warranted, particularly given the relevance to therapeutic proteins such as hGH, 

monoclonal antibodies (mAbs) and human serum albumin. The results can be extended to 

therapeutic proteins and biosimilars to determine the influence of sequence, structure and 

processing conditions on reaction mechanisms and disulfide-mediated aggregation 

propensity and to improve candidate selection during development.  

 

2.9 Conclusion 

 

The studies reported here define the mechanistic details of thiol-disulfide exchange 

and oxidation in hGH model peptides in solution. Microscopic and apparent rate constants 

obtained from model predictions provide an insight into the effects of pH, temperature and 

secondary structure on thiol-disulfide exchange. Detailed kinetic analysis of degradation 

pathways like thiol-disulfide exchange is valuable for the development of protein drug 
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formulations, both in solution and in the solid state.  Further, the information can be used 

to improve our understanding of the contributions of thiol-disulfide exchange to 

aggregation in other therapeutic proteins with disulfide bonds and/or Cys residues. 
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CHAPTER 3. INVESTIGATING THE EFFECT OF LYOPHILIZATION AND 
SUBSEQUENT STORAGE IN THE SOLID STATE ON THIOL-

DISULFIDE EXCHANGE IN PEPTIDES DERIVED FROM HUMAN 
GROWTH HORMONE 

This work was published in the Journal of Pharmaceutical Sciences 
DOI: 10.1002/jps.24370, content reproduced with permission from Wiley. 
 
 
 

3.1 Abstract 

 

Lyophilization (freeze-drying) is frequently used to stabilize protein therapeutics. 

However, covalent modifications such as thiol-disulfide exchange and disulfide scrambling 

can occur even in the solid-state. The effects of lyophilization and storage of lyophilized 

powders on the mechanism and kinetics of thiol-disulfide exchange have not been 

elucidated and were investigated in the studies presented here. Reaction kinetics were 

monitored during different stages of lyophilization (freezing, primary drying and 

secondary drying) and during storage of the lyophilized powders at 22 oC and ambient RH. 

The concentrations of reactants and products were determined using RP-HPLC and product 

identity confirmed using LC-MS. Loss of native disulfide was observed for both linear and 

cyclic peptide during the primary drying step, however, the native disulfides were 

regenerated during secondary drying with no further change till the end of lyophilization. 

Deviations from Arrhenius parameters predicted from solution studies and the absence of 
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buffer effects during lyophilization suggest that factors such as temperature, initial peptide 

concentration, buffer type and concentration do not influence thiol-disulfide exchange 

during lyophilization. Results from a ‘cold finger’ method used to study peptide adsorption 

to ice indicate that there is no preferential peptide adsorption to the ice surface and the 

presence of an ice surface may not influence disulfide reactivity during primary drying. 

Overall, reaction rates and product distribution are different for the reaction of T20 with 

T20-T21 or cT20-T21 in the solid-state and aqueous solution while the mechanism of thiol-

disulfide remains unchanged. Increased reactivity of the cyclic peptide in the solid-state 

suggests that peptide cyclization does not offer protection against lyophilization and that 

damage induced by a process stress further affects storage stability at 22 oC and ambient 

RH.  

 

3.2 Keywords 

 

Lyophilization, freezing, cold finger, peptide, human growth hormone, kinetics and 

thiol-disulfide exchange. 

 

3.3 Introduction 

 

Protein therapeutics continue to grow in commercial and therapeutic importance, 

providing new treatments for cancer, cardiovascular and autoimmune diseases. The 

biologics sector in the US grew by 18.2% between 2012-2013, with sales of $63.6 billion 

in 2012 [1]. Nevertheless, the development of therapeutic proteins can be compromised by 
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the inherent complexity and instability of these macromolecules [152, 153]. To improve 

stability and retain potency, protein pharmaceuticals are often lyophilized [154-156]. 

Lyophilization (freeze- drying) produces solid powders with high surface area and is used 

for storage of the protein following expression and for final marketed drug product [157]. 

Though lyophilization often reduces the rates of chemical and physical degradation, 

chemical and physical degradation can still occur during processing and subsequent storage 

in the solid state [132, 158, 159].  

Lyophilization cycles typically consist of freezing, primary drying and secondary 

drying steps [160]. The process can expose proteins to undesirable stresses such as cold 

denaturation, increased concentration of solutes and protein (“freeze concentration”), pH 

changes and dehydration, all of which can induce protein unfolding and/or structural 

perturbations [161, 162]. Costantino et al. observed secondary structure changes, a 

decrease in α-helicity and an increase in β-sheet and unordered structure, upon 

lyophilization of human growth hormone (hGH) [163]. Lyophilization induced structural 

changes have also been reported for recombinant human albumin (rHA) [95]. Such 

structural and/or conformational changes can further lead to aggregation during storage [14] 

and rehydration [164, 78]. Solid-phase aggregation of proteins can occur via different 

mechanisms in the presence of moisture; namely, thiol-disulfide exchange, disulfide 

scrambling, non-disulfide covalent aggregation and non-covalent aggregation [165].  

While there are reports of disulfide-mediated aggregation in the solid state for 

proteins that contain cysteines and/or disulfides [79, 166], the lack of a complete 

understanding of factors that influence reactivity reduces formulation to trial-and-error, 

informed by experience, in selecting composition and stabilizing excipients. Thus, an 
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improved mechanistic understanding of aggregation-inducing processes such as thiol-

disulfide exchange will be beneficial for the rational design of formulations that stabilize 

proteins during lyophilization and storage. 

Native disulfide bonds scramble via oxidative and hydrolytic pathways to form 

non-native bonds that can affect protein stability and activity. Two predominant pathways 

lead to disulfide-mediated covalent aggregation: (i) thiol-disulfide exchange (RSH + 

R1SSR2 ↔ R1SSR + R2SH) and (ii) disulfide scrambling (RSSR + R1SSR1 ↔ 2R1SSR) [2, 

3, 141]. In solution at neutral to alkaline pH, the thiolate anion (RS-) is the reactive species 

that initiates thiol-disulfide exchange. Nucleophilic attack of RS- on a native disulfide 

(R1SSR2) generates a non-native disulfide (R1SSR) and a new thiol (R2S-) in an SN2 

nucleophilic displacement reaction [45, 71]. Disulfide scrambling, a related reaction, is 

initiated by disulfide bond cleavage to generate a thiolate that then initiates thiol-disulfide 

or thiol-catalyzed exchange [165].  

Disulfide-mediated aggregation has been reported in lyophilized bovine serum 

albumin (BSA) [79] and β-galactosidase [166]. In rHA, lyophilization produced an 

increase in both β-sheet content and unordered structural elements resulting in partial 

protein unfolding, which further facilitated moisture-induced aggregation via thiol-

disulfide exchange upon storage [95]. Andya et al. observed disulfide linked dimers and 

trimers in recombinant humanized monoclonal antibody (rhuMAb) formulations following 

lyophilization and storage at 30 oC [167]. In the absence of excipients, reversible structural 

alterations during lyophilization promoted covalent aggregate formation upon storage. 

Degradation reactions can also occur in the solid state in the absence of process-induced 

structural changes. For example, in the absence of a stabilizing excipient, a rhuMAb (IgG) 
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aggregated in the solid state though native secondary structure was retained after spray 

drying [163]. Reports of disulfide-linked aggregates in lyophilized protein samples [79, 

166, 168] demonstrate the importance of designing processes and formulations that can 

inhibit disulfide bond degradation. 

Disulfide bonds can be cleaved under neutral to alkaline conditions via the attack 

of a hydroxyl ion. Alkaline hydrolysis of disulfide bonds can be classified into three 

pathways: i) direct attack-this results in the formation of sulfenic acid and a free thiol, ii) 

α-elimination- where the β proton of Cys is attacked to produce thiolate and thioaldehyde 

and iii) β-elimination- where the α proton of Cys is abstracted to produce dehydroalanine 

and persulfide.  

Human growth hormone (hGH) is a therapeutic protein used to treat growth 

hormone deficiency and other growth disorders. It has two disulfide bonds and no free 

thiols; with 191 amino acids the monomeric form has a molecular weight of 22 kDa. 

Structural perturbations in hGH have been reported in the solid state [101] and could 

further result in the formation of disulfide-linked aggregates during storage. A disulfide-

linked dimer of hGH (45 kDa) was found to have diminished receptor binding affinity and 

cell-proliferative activity [124]. Thus, given its relatively small size, therapeutic value and 

tendency to aggregate [135, 136], hGH was chosen as a suitable model to study thiol-

disulfide exchange kinetics in the solid state.  

The mechanistic information obtained from aqueous solution studies in Chapter 2 

provided a basis for understanding the effects of lyophilization process stresses and the 

solid environment on thiol-disulfide exchange. In this Chapter, studies pertaining to thiol-

disulfide exchange and disulfide scrambling in hGH-derived peptides during lyophilization 
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and subsequent room temperature storage of the lyophilized powders are reported. The 

hGH-derived peptides were lyophilized without excipients to determine process effects on 

disulfide exchange and scrambling kinetics. The results demonstrate that the rate of thiol-

disulfide exchange is accelerated during primary drying, and that peptide secondary 

structure does not influence reactivity during lyophilization. Factors such as temperature, 

initial peptide concentration, buffer type and concentration and peptide adsorption to ice 

did not influence thiol-disulfide exchange during primary drying. During storage in 

lyophilized solids, both the rates and the distribution of products differed for linear and 

cyclic disulfide-containing peptides when compared to those observed in aqueous solution. 

Peptide cyclization does not offer protection against thiol-disulfide exchange in the solid 

state, the observed rate constant (kobs) for the loss of cT20-T21 was 10-fold greater than 

that in aqueous solution.  

 

3.4 Materials 

 

Model peptides T20, T21, T20-T21, rT20-T21 and cT20-T21 (see Table 3.1 for 

structures) were purchased from GenScript (Piscataway, NJ) with >90% purity as a 

lyophilized powder. HPLC grade acetonitrile (ACN), NaCl and KCl were purchased from 

Fisher Scientific Co. (Pittsburgh, PA). K2HPO4, 5,5-dimethyl-1,3-cyclohexanedione 

(dimedone), ethylenediaminetetraacetic acid (EDTA) and sodium citrate tribasic dihydrate 

were purchased from Sigma Chemical Co. (St. Louis, MO). Trifluoroacetic acid (TFA) and 

formic acid (FA) were obtained from Thermo Scientific (Rockford, IL). Double-distilled 

water (DDI) used for buffer preparation and as HPLC mobile phase was deionized and 
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purified using a Milli-Q water system, (Millipore Ltd., Billerica, MA) and filtered with a 

0.2 µm filter. Glass vials (2 mL) and stoppers (13 mm gray butyl) for lyophilization were 

purchased from Wheaton (Millville, NJ). Methods 

 

3.4.1 Quantification of reactants and products by HPLC 

Samples were analyzed using reverse-phase high-performance liquid 

chromatography (RP-HPLC, Agilent 1200 series) with UV detection at 215 nm. Agilent 

Chemstation software was used for data acquisition and analysis. A ZORBAX Eclipse plus 

C18, 5 µm (4.6 X 250 mm) analytical column (Agilent Technologies, Santa Clara, CA) 

was used with gradient elution and the column temperature maintained at 25 oC. The 

gradient elution method and associated calibration plots were as described in our previous 

work [169]. Identification of reactants and products on LC-MS: Samples were analyzed 

using an ESI-LC/MS system (1200 series LC, 6520 qTOF; Agilent Technologies, Santa 

Clara, CA) with a ZORBAX 300SB-C18 column (1.0 X 50 mm, 3.5 µm) with gradient 

elution similar to that used in HPLC quantitation. Mobile phase A was 0.1% formic acid 

in water and mobile phase B was 0.1% formic acid in acetonitrile. A gradient run was 

initiated with 5% B, which was increased to 50% in 6.10 min, then held at 50% for 1 min 

followed by an increase to 100% in 0.6 min, decreased to 0% in 0.6 min, increased again 

to 100% in 0.6 min and finally returned to 5% in 0.6 min. The flow rate was maintained at 

50 µL/min and the column temperature was not controlled. Data were analyzed using 

MassHunter software. Reactants and products were identified using mass filters with 

peptide masses corresponding to the different reaction mechanisms for thiol-disulfide 

exchange and oxidation reactions.   
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3.4.2 Thiol-disulfide exchange reactions 

All peptides were used as provided by the manufacturer without further purification. 

Stock solutions were prepared in a 0.1% formic acid solution in DDI. Reaction kinetics 

were monitored during lyophilization and storage of lyophilized powders at 22 oC. For the 

reaction, 1500 µL of T20 (1125 µM), 1500 µL of T20-T21/cT20-T21 (112.5 µM) and 750 

µL of 50 mM phosphate buffer (PB) were added to a 15 mL BD falcon tube and mixed by 

pipetting. The final pH of the reaction mixture was adjusted using NaOH or HCl (exact 

volume to be added was determined from pilot studies) after a 100 µL aliquot was removed 

and quenched with 10 µL 20% formic acid in DDI (FA) to verify initial concentrations (t 

= 0 min before lyophilization). 200 µL aliquots of the reaction mixture were transferred 

into vials (on ice) and placed inside the freeze-dryer; shelves were pre-cooled to -40 oC. 

Frozen samples, collected during the freezing step, were thawed and quenched with 20 µL 

of 20% FA to prevent disulfide exchange prior to analysis. Lyophilization samples at the 

end of primary drying and during secondary drying were reconstituted with 200 µL of 0.1% 

FA; 150 µL of the reconstituted sample was quenched with 15 µL of 20% FA. For storage 

stability studies, reaction mixtures, solution and lyo samples were prepared as described 

above. At the end of the lyophilization cycle, vials were capped under a vacuum (not sealed) 

and stored at 22 oC. Samples were withdrawn in triplicate at each time point during 

lyophilization and storage. 30 µL and 10 µL of the quenched solution were then used for 

RP-HPLC and LC-MS analysis, respectively. Dilution factors from total reaction volume, 

addition of NaOH/HCl for pH adjustment and quench solution were accounted for in 

determining final peptide concentrations. No measurable changes in concentration were 

observed in quenched samples within the time scale of the experiment.  
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Buffer effect: T20 and T20-T21 were also lyophilized with 2.5 mM potassium 

phosphate and 10 mM sodium citrate buffer at pH 7.0 to investigate the effect of buffer 

type and concentration on thiol-disulfide exchange. Initial peptide concentrations and total 

reaction volume were as described above. For 2.5 mM PB, 750 µL of 10 mM buffer stock 

was used and for 10 mM sodium citrate, 750 µL of 50 mM buffer stock was used. Samples 

were withdrawn in triplicate, quenched and analyzed as described above.  
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Table 3.1: Abbreviations and amino acid sequences of peptides detected in solid-state 
studies with hGH-derived peptides.  
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3.4.3 Lyophilization of peptide samples  

Solid samples were prepared by lyophilization in a programmable benchtop VirTris 

freeze-dryer (SP scientific, Gardiner, NY), using methods routine in our labs [129] (Table 

3.2). Briefly, the lyophilization cycle consisted of the following steps; freezing at -40 oC, 

then drying at -35 oC under vacuum (70 mTorr) for 2 h, -5 oC for 8 h, 5 oC for 8 h, 15 oC 

for 6 h (100 mTorr) and 25 oC for 10 h (100 mTorr). The same lyophilization cycle was 

used for all solid-state studies to eliminate processing conditions as a variable and was not 

optimized. The instrument was operated in manual mode to monitor disulfide exchange 

during lyophilization so that samples could be removed at the end of each step. Lyophilized 

samples at the end of the cycle appeared as dried powders and did not form elegant cakes 

due to the absence of any bulking agents. The glass transition temperature (Tg) of the 

lyophilized samples was measured using a DSC Q2000 (TA instruments, New Castle, DE) 

and moisture content was measured using TGA Q5000 (TA instruments, New Castle, DE) 

and SGA-100 (VTI Corporation, Hialeah, FL).   

 

Table 3.2: Lyophilization cycle used for solid-state studies with hGH-derived peptides 
 

 

 

Temperature (oC) -40 -35 -5 5 15 25
Duration (h) 2 2 8 8 6 10
Total time (h) 2 4 12 20 26 36

Vacuum (mTorr) N/A 70 70 70 100 100
       N/A, not applicable
      Step 1: Freezing, Step 2: primary drying and Steps 3-6: secondary drying 

6Step 1 2 3 4 5
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3.4.4 Peptide adsorption to ice 

The rates of thiol-disulfide exchange in hGH model peptides were affected by 

lyophilization. The role of adsorption to ice in these effects was assessed using a cold finger. 

A cold finger condenser (24/40 inner joints from Fisher Scientific) was connected with 

insulated tubing to a circulating water bath (Thermo Scientific) containing an ethylene 

glycol/water (1:1) mixture and the temperature set to -10 oC. This method was used 

previously by Kuiper et. al for purification of antifreeze proteins by adsorption to ice [170]. 

The cold finger was first placed in DDI seeded with ice crystals for 10 minutes to form an 

ice surface (Figure 3.1). Ice surface area and ice crystal morphology on the cold finger 

were not controlled using this method. The cold finger was then placed in a solution of 

peptides inside a Styrofoam box and the ice surface allowed to grow for 1 hour. A peptide 

solution was prepared by adding 32 mL of T20 (1250 µM), 32 mL of T20-T21 (125 µM) 

and 16 mL PB buffer (10 mM, pH 7.0, 0.08 M ionic strength, 0.5 mM EDTA and N2 

sparged). After adsorption for 1 hour, the cold finger was removed from the solution and 

placed inside an empty beaker (Figure 3.1). The coolant temperature was maintained at -

10 oC for another 6 hours. 100 µL of the solution remaining in the beaker (not frozen) and 

thawed ice surface on the cold finger were quenched with 10 µL of 20% FA and 30 µL of 

the quenched samples were injected onto the RP-HPLC column and analyzed for free thiols, 

native and scrambled disulfides using the method described above.  
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Figure 3.1: Picture of an ice surface formed on the cold finger after 10 mins (left). Picture 
of cold finger after adsorption of the peptide solution to the ice surface for one hour (right).  
 

3.4.5 Method for detecting reaction intermediates 

Sulfenic acid determination (reaction with dimedone): Dimedone was used as a 

trapping reagent to detect the presence of sulfenic acids, potential intermediates in 

oxidation-mediated thiol-disulfide exchange [52]. To detect sulfenic acids in lyophilized 

samples, dimedone was co-lyophilized with model peptides. To 10 mM PB (0.08 M ionic 

strength, 0.5 mM EDTA), 1.72 g of dimedone was added (total buffer volume = 200 mL) 

and the buffer sparged with N2. 1500 µL of T20-T21 (625 µM) was then added to 1500 µL 

of 0.1% formic acid in DDI and 750 µL of buffer with dimedone. The pH of the reaction 

mixture was adjusted to 8.0 using NaOH/HCl and the final concentration of dimedone 

before lyophilization was 12.5 mM (dimedone: T20-T21 = 50:1). 200 µL aliquots of the 

reaction mixture were transferred into glass vials and the samples were lyophilized using 

the cycle shown in Table 3.2. To compare with solution samples, 200 µL aliquots of the 

same reaction mixture were transferred to glass vials, capped and stored at 22 oC. At 

different time points during storage, samples were reconstituted with 200 µL 0.1% FA and 
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analyzed using RP-HPLC and LC-MS. Dehydroalanine detection: To detect 

dehydroalanine, an intermediate in the degradation of disulfide bonds via β-elimination [3], 

LC-MS spectra were scanned for a characteristic mass loss of 34 Da as reported previously 

[171].  

 

3.4.6 Data analysis 

For the reaction of T20 with linear T20-T21 in the solid state during storage, the 

data were consistent with a reaction scheme involving: (i) equilibrium ionization of T20 

and T21, (ii) irreversible thiol-disulfide exchange reaction of the ionized thiolate form of 

T20 (T20-S-) with T20-T21 and (iii) oxidation of the ionized thiolate forms of T20 and T21 

(Scheme 3.1). The scheme is similar to that reported earlier for the reaction in solution 

[169], but with an irreversible thiol-disulfide exchange reaction rather than a reversible one. 

The following equations were used to estimate microscopic rate constants: 

 

T20S- = T20 / {1 + (10-7)/ (10-pKa)}                   Eq.3.1 

 

T21S- = T21 / {1 + (10-7)/ (10-pKa)}                                             Eq.3.2 

 

d[T20-T21]/dt = -k1′ [T20S-][T20-T21] + k2′ [T20S-][T21S-]                                    Eq.3.3                 

 

d[T20-T20]/dt = k1′ [T20S-][T20-T21]                                                                       Eq.3.4                      

 

d[T20S-]/dt = -k1′ [T20S-][T20-T21] - k2′ [T20S-][T21S-]                                          Eq.3.5                         
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d[T21S-]/dt =  k1′ [T20S-][T20-T21] - k2′ [T20S-][T21S-]                                          Eq.3.6            

 

In the kinetic model, time is the independent variable, reactant and product 

concentrations are dependent variables, and the rate constants (k1′ and k2′) are treated as 

parameters to be determined by non-linear regression. The model returned a value of 8.3 

for thiol pKa when it was defined as a parameter to be determined by regression of pH 7.0 

data. Thus, the pKa values for the ionization of T20 and T21 (Ka20, Ka21) were fixed at 8.3, 

consistent with previous reports for cysteine [143, 144] and with our previous model for 

the solution-state reaction [169]. Rate constants k1′ and k2′ are second-order rate constants 

for thiol-disulfide exchange and thiol oxidation, respectively (Scheme 3.1). Kinetic data 

were fitted to the model (eqns. 4.1-4.6) using non-linear regression (SCIENTIST®, 

Micromath Research, St. Louis, MO). Pertinent models in SCIENTIST® were selected 

based on reported Model Selection Criterion (MSC) values; a greater MSC value represents 

a better model. MSC is independent of the scaling of data points and is similar to the Akaike 

Information Criterion (AIC), which is considered to be a better measure of model validity 

than R2 values for non-linear regression [145]. For the reaction of T20 with T20-T21 or 

cT20-T21 in lyophilized powders during storage at 22 oC, the data were fitted to an 

equation (Eq.3.7) for first-order irreversible reaction to determine the observed rate 

constant (kobs) 

 

A/A0 = exp (-kobs t)            Eq.3.7 
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Here, A = [T20-T21] or [cT20-T21], A0 is the initial concentration of the respective 

disulfide and t is time.  

 

3.5 Results 

 

The mechanisms of thiol-disulfide exchange reactions between T20 and T20-T21 

or cT20-T21 have been elucidated in aqueous solution [169] and provide a basis for the 

quantitative analysis of thiol-disulfide exchange in the solid state. Here, thiol-disulfide 

exchange reactions were investigated in tryptic peptides derived from hGH during 

lyophilization and storage of lyophilized powders.  Native disulfides are T20-T21 and 

cT20-T21 and scrambled disulfides formed as products of thiol-disulfide exchange are 

T20-T20, T21-T21, SMDs and DMD (amino acid sequence of all peptides are shown in 

Table 3.1).  

 

3.5.1 Effect of lyophilization on thiol-disulfide exchange 

For the reaction of T20 with T20-T21 (thiol: disulfide = 1.4: 1(molar ratio)), 

primary drying resulted in a 33% loss of native disulfide (Figure 3.2a). The subsequent 

increase in T20-T21 levels during secondary drying (Figure 3.2a) can be attributed in part 

to the reversibility of the thiol-disulfide exchange reaction.  Despite this increase, a net 9% 

loss remained at the end of secondary drying (Figure 3.2a). At a greater initial thiol: 

disulfide ratio of 10:1 (molar ratio), a 24% decrease in T20-T21 was observed after primary 

drying (Figure 3.2b). During secondary drying, T20-T21 was regenerated from the 

monomers and scrambled disulfides, resulting in an overall decrease in native disulfide of 
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10% at the end of the lyophilization cycle (Figure 3.2b). Black dotted lines in Figures 3.2a 

and 3.2b are the predicted concentrations of T20-T21 based on solution-state model 

predictions, adjusted for the changing temperature profile during lyophilization using 

Arrhenius parameters (see below). The solution-state model provides reasonable 

predictions during freezing and primary drying, but does not describe concentrations 

during secondary drying. A mass balance from RP-HPLC and LC-MS data shows that 

products other than T20-T20 and T21 were not generated in detectable quantities and that 

≥ 96 % of the initial peptide mass was accounted for at all time points during lyophilization. 

The distribution of free thiols (T20 and T21), native disulfide (T20-T21) and scrambled 

disulfide (T20-T20) for the reaction of T20 with T20-T21 at 10:1 is shown in Figure 3.3.  

For the cyclic peptide, a 29% decrease in native disulfide was observed after 

primary drying (Figure 3.2b). Like the linear peptide, cT20-T21 was partially regenerated 

during secondary drying, resulting in a 17% decrease overall in native disulfide content at 

the end of lyophilization (Figure 3.2b). The distribution of free thiols (T20 and rT20-T21), 

native disulfide (cT20-T21) and scrambled disulfide (T20-T20) is shown in Figure 3.3. In 

addition to these species, small amounts of single mixed disulfides (SMD1, SMD2 ) and 

double mixed disulfide (DMD) (structures in Table 3.1) were also detected on LC-MS and 

RP-HPLC (data not shown), though these could not be analyzed quantitatively due to the 

lack of synthetic standards. Mass balance from RP-HPLC data obtained during freezing, 

primary and secondary drying accounts for ≥ 90% of the initial mass of cT20-T21 

(determined from concentrations of cT20-T21 and rT20-T21). The distribution of free 

thiols (T20 and rT20-T21), native disulfide (cT20-T21) and scrambled disulfide (T20-T20) 

for the reaction of T20 with cT20-T21 at 10:1 is shown in Figure 3.4. The factors that may 
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influence thiol-disulfide exchange during freeze-drying and the results of studies designed 

to elucidate their effects are described in greater detail below.  
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a) 

 

 

b) 

 

Figure 3.2: Change in native disulfide content during lyophilization (n=3, +/- SD) at pH 
7.0 (10 mM PB, 0.08 M ionic strength, 0.5 mM EDTA and N2 sparged); I-freezing, II-
primary drying and III-secondary drying. Reaction of T20 with a) T20-T21 (thiol: disulfide 
= 1.4:1), b) T20-T21 (♦) and cT20-T21 (■) at thiol: disulfide = 10:1. Black dashed lines 
indicate the end of each stage during lyophilization and the black dotted lines represent 
predicted values from solution Arrhenius parameters (see text).  

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000

C
on

ce
nt

ra
tio

n 
(µ

M
)

Time (min)

I II III

0

10

20

30

40

50

60

0 500 1000 1500 2000

C
on

ce
nt

ra
tio

n 
(µ

M
)

Time (min)

I II III



  102 
 

 

 

Figure 3.3: Change in concentrations of reactants and products during lyophilization (n=3, 
+/- SD) for the reaction of T20 with T20-T21 (thiol: disulfide = 10:1, pH 7.0, 10 mM PB, 
0.08 M ionic strength, 0.5 mM EDTA and N2 sparged); I-freezing, II-primary drying and 
III-secondary drying. Symbols represent actual data points: T20 (■), T21 (●), T20-T20 (□), 
T21-T21 (○) and T20-T21 (♦). Initial concentrations of reactants in solution (before 
lyophilization): [T20] = 450 µM; [T20-T21] = 45 µM. On the plot, t=0 (min) represents 
solution concentrations before lyophilization.  
 

 

Figure 3.4: Change in concentrations of reactants and products during lyophilization (n=3, 
+/- SD) for the reaction of T20 with cT20-T21 (thiol: disulfide = 10:1, pH 7.0, 10 mM PB, 
0.08 M ionic strength, 0.5 mM EDTA and N2 sparged); I-freezing, II-primary drying and 
III-secondary drying. Symbols represent actual data points: T20 (■), T20-T20 (□), cT20-
T21 (♦) and rT20-T21 (◊). Initial concentrations of reactants in solution (before 
lyophilization): [T20] = 450 µM; [T20-T21] = 45 µM. On the plot, t=0 (min) represents 
solution concentrations before lyophilization.  
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3.5.2 Disulfide bond stability during lyophilization 

Lyophilization of hGH derived peptides showed a difference in the distribution of 

scrambled disulfides when compared to solution studies.  Native disulfides (T20-T21 and 

cT20-T21) were regenerated during secondary drying. For the cyclic peptide, non-native 

disulfides (SMDs and DMD, Table 3.1) were detected in the solid state in addition to T20-

T20. While previous studies have shown that lyophilization alters thiol-disulfide product 

distribution [129], the factors contributing to these differences were not identified. Here, 

we investigated the effects of temperature, peptide concentration, buffer and peptide 

adsorption to ice on disulfide bond stability during lyophilization.   

Effect of temperature and concentration: Arrhenius parameters determined from 

thermal stress studies in aqueous solution (thiol: disulfide = 1.4:1) were used to predict 

reaction kinetics at reactant concentrations and temperatures used in lyophilization (black 

dotted line in Figures 3.2a and 3.2b). At a higher thiol: disulfide ratio (Figure 3.2b), 

Arrhenius predictions agree well with data obtained during freezing and primary drying. 

However, the solution-state model overestimates the extent of thiol-disulfide exchange 

during secondary drying and does not account for the increase in native disulfide during 

the transition from primary drying to secondary drying. Deviations from Arrhenius 

behavior suggest that factors other than temperature and initial peptide concentrations (e.g., 

phase change, peptide adsorption to ice, peptide structural changes, changes in reaction 

mechanism and/or freeze concentration) influence thiol-disulfide exchange during the 

freeze-drying process, since the model predictions are based on both the concentrations of 

the reactants and temperature.   
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Effect of buffer type and buffer concentration: T20 was lyophilized with T20-T21 

at pH 7.0 and 4-fold lower buffer concentration (2.5 mM PB, 0.04 M ionic strength, 0.5 

mM EDTA and N2 sparged). The rate of loss of T20-T21 was similar to that observed 

during lyophilization with 10 mM PB (Figure 3.5). Similarly, when T20 was co-lyophilized 

with T20-T21 in sodium citrate buffer (10 mM, 0.5 mM EDTA and N2 sparged), the native 

disulfide concentration decreased during primary drying and then increased during 

secondary drying (Figure 3.5). While there are some differences in T20-T21 concentration 

during primary drying, particularly at a low buffer concentration (2.5 mM PB), the T20-

T21 concentration is similar at the end of primary drying and after two hours of secondary 

drying (-5 oC, 70 mTorr) in all three buffers (Figure 3.5). These results suggest that buffer 

concentration and type (phosphate vs. citrate) do not contribute to the observed loss of 

native disulfide during primary drying.  

Lyophilization induced damage to disulfide bonds: To investigate the effect of 

peptide adsorption to an ice surface on thiol-disulfide exchange, a “cold finger” was used 

(see methods, Figure 3.1). The ice surface on the cold finger and the solution after 

adsorption were analyzed using RP-HPLC (data not shown). Peptide concentrations on the 

ice after adsorption for 1 hr were; [T20] = 326 µM and [cT20-T21] = 33 µM. The results 

showed that the ratio of T20 to cT20-T21 on the ice (10:1) after adsorption for 1 hr is 

similar to the molar ratio (10:1) in the initial reaction mixture before adsorption. Although 

cT20-T21 does not adsorb preferentially to the ice surface, thiol-disulfide exchange 

between T20 and cT20-T21 still occurs on ice (6 hr sample thawed and analyzed on the 

HPLC, data not shown).  
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Figure 3.5: Effect of buffer type and buffer concentration on thiol-disulfide exchange 
during lyophilization; freezing (I), primary drying (II) and secondary drying (III). Plot 
shows change in T20-T21 concentration (n=3, +/- SD), co-lyophilized with T20. All 
buffers contain 0.5 mM EDTA and were sparged with N2, pH of reaction mixture was 
adjusted to 7.0 before lyophilization. Initial concentrations of reactants in solution (before 
lyophilization): [T20] = 450 µM; [T20-T21] = 45 µM. On the plot, t=0 (min) represents 
solution concentrations before lyophilization. 
 

Primary drying duration: The duration of the primary drying step (-35 oC, 70 

mTorr) was increased from 2 to 6 hours to determine the effect of drying time on thiol-

disulfide exchange (Figure 3.6). The concentration of native disulfide decreases in the 

initial 2 hours of primary drying. After this initial loss, the native disulfide is regenerated 

with continued drying for another 2 hours. Between 4 and 6 hours, there is no further 

change in T20-T21. While a longer primary drying step can preserve the native disulfide 

to some extent, lyophilization induced damage to the disulfide bond still occurs and may 

influence the storage stability of the resulting solids.  
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Figure 3.6: Change in concentration of T20-T21 lyophilized with T20 ( thiol: disulfide = 
6:1, pH 7.0, 10 mM PB, 0.08 M ionic strength, 0.5 mM EDTA and N2 sparged) during 
freezing and primary drying (n=3) (♦). Primary drying time was increased from 2 to 6 hours. 
On the plot, t=0 (min) represents solution concentrations before lyophilization.  
 

3.5.3 Thiol-disulfide exchange in lyophilized powders during storage 

The thiol-disulfide exchange reaction between T20 and T20-T21 or cT20-T21 at 

pH 7.0 (pre-lyophilization) in lyophilized powders stored at 22 oC was monitored over 0-7 

and 0-12 days for T20-T21 and cT20-T21, respectively. Storage stability studies were 

truncated after 7 days for T20-T21, since oxidative pathways began to dominate (Figure 

3.7).  Tg measured for the lyophilized powder at the end of secondary drying was 20.6 oC, 

and the moisture content at the end of secondary drying and after storage for 14 days at 22 

oC was 1-1.5%.  

Reaction of T20 with T20-T21: The change in the concentration of T20-T21 during 

storage is shown in Figure 3.8. Rate constants for the exchange (k1′) and oxidation reaction 

(k2′) were estimated by fitting the data to the model of Scheme 3.1. Excellent model fits to 

the data were obtained and these model fits are represented by solid lines in Figure 3.9.  
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The rate constants for the reaction of T20 with T20-T21 in the solid state are shown in 

(Table 3.3). Mass balance from RP-HPLC data at the end of 7 days accounts for 95% of 

initial mass of peptides. The observed pseudo-first order rate constant (kobs) for the loss of 

T20-T21 during storage in aqueous solution is of the same order as kobs in the solid state, 

indicating that the reaction is not slowed appreciably in the lyophilized form.  

 

 

Figure 3.7: Concentration of scrambled and native disulfides formed via oxidative 
pathways during storage of lyophilized powders (n=3, +/- SD). Inset zooms in to show 
change in concentrations of T20-T21 and T21-T21. T20-T21 was co-lyophilized with T20 
(thiol: disulfide = 10:1, pH 7.0, 10 mM PB, 0.08 M ionic strength, 0.5 mM EDTA and N2 
sparged) (see text for details).  
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Scheme 3.1. Thiol-disulfide exchange in T20-T21 during storage in the solid state. 

 

 

 

Figure 3.8: Reaction of T20 with T20-T21 in lyophilized powders stored at 22 oC (n=3, 
+/- SD). Initial concentrations of reactants in solution (before lyophilization): [T20] = 450 
µM; [T20-T21] = 45 µM. Buffer conditions: pH 7.0 , 10 mM phosphate buffer, 0.08 M 
ionic strength, 0.5 mM EDTA and N2 sparged.  
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Figure 3.9: Reaction of T20 with T20-T21 in lyophilized powders stored at 22 oC (n=3, 
+/- SD). Initial concentrations of reactants in solution (before lyophilization): [T20] = 450 
µM; [T20-T21] = 45 µM. Buffer conditions: pH 7.0 , 10 mM phosphate buffer, 0.08 M 
ionic strength, 0.5 mM EDTA and N2 sparged. Plot shows concentrations of T20 (■), T21 
(●), T20-T20 (□), T21-T21 (○) and T20-T21 (♦). Solid lines are non-linear regressions 
based on the model in Scheme 3.1. Initial time point (t = 0 days) corresponds to a sample 
reconstituted immediately after lyophilization. 
 

 
Table 3.3: Microscopic and observed rate constants for thiol-disulfide exchange between 
T20 and T20-T21 in lyophilized solids and aqueous solution.  
 

 
a values obtained from Chapter 2, [169] 
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Reaction of T20 with cT20-T21: During storage of the cyclic peptide cT20-T21 in 

lyophilized powders containing T20, the loss of the disulfide bond was faster in the solid 

state than in aqueous solutions stored at the same conditions (Figure 3.10). The 

concentration of cT20-T21 in solution increases over time due to oxidation as rT20-T21 is 

oxidized to cT20-T21, behavior similar to that observed for cT20-T21 in aqueous solution 

studies [169]. Mixed disulfides (SMDs and DMD; structures in Table 3.1) were detected 

on both RP-HPLC (Figure 3.11) and LC-MS (data not shown), consistent with the reaction 

mechanism in Scheme 3.3b. No other oxidation products such as sulfenic, sulfinic or 

sulfonic acid were detected. A mass balance from RP-HPLC data at the end of 12 days 

accounts for 80% of all peptides present in the storage samples. This suggests that the 

remaining 20% of the initial mass is present as SMDs or DMD, which are not quantitated 

but detected on LC-MS and RP-HPLC, or as other undetected species. Figure 3.12 shows 

a concentration vs. time plot for T20, rT20-T21, native (cT20-T21) and scrambled disulfide 

(T20-T20) obtained during storage of cyclic peptide. Unlike T20-T21, the concentration of 

cT20-T21 does not increase during storage after 7 days (Figure 3.10). This suggests that 

lyophilization induced stresses favor thiol-disulfide exchange between T20 and cT20-T21, 

as temperature and pH did not influence reactivity to as great an extent in solution [169]. 

Observed rate constants (kobs) for the loss of cT20-T21 during storage in lyophilized 

powders are shown in Table 3.3. At a pH 7.0, the kobs value for cT20-T21 in the solid state 

is ~10-fold greater than its kobs value in aqueous solution, and is comparable to kobs for T20-

T21 in lyophilized solids at pH 7.0. This suggests that structural constraints imposed by 

cyclization slow the thiol-disulfide exchange reaction in solution but not in lyophilized 

solids.    
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Figure 3.10: Change in concentration of cT20-T21 lyophilized with T20 ( thiol: disulfide 
= 10:1, pH 7.0, 10 mM PB, 0.08 M ionic strength, 0.5 mM EDTA and N2 sparged) during 
storage (n=3, +/- SD) at 22 oC (■), and in solution (♦) (thiol: disulfide = 10:1, pH 7.0, 10 
mM PB, 0.08 M ionic strength, 0.5 mM EDTA and N2 sparged). Both solid and solution 
samples were stored at 22 oC in lyo vials, n = 3. Open symbols show the initial 
concentration of cT20-T21 in solution before lyophilization (□) and before storage as 
solution at 22 oC (◊). Initial data points (t = 0 days, filled symbols) represent solution 
sample and lyophilized sample reconstituted immediately after lyophilization. 
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Figure 3.11: HPLC chromatograms (215 nm) obtained at various times during storage of 
lyophilized T20 and cT20-T21 at 22 oC (pH before lyophilization was 7.0). Solution sample 
before lyophilization (A), solid sample immediately after lyophilization (B) and solid 
sample after 3 days (C). Peak labels: 1) T20; 2) T20-T20; 3) DMD; 4) SMD 1&2; 5) cT20-
T21 and 6) rT20-T21.  
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Figure 3.12: The concentration of reactants and products for a kinetic study with T20 and 
cT20-T21 during storage at 22 oC. Buffer conditions before lyophilization: pH 7.0, 10mM 
phosphate buffer with 0.5 mM EDTA and N2 sparging. Initial concentrations of peptides 
were: [T20] = 450 µM (Δ); [cT20-T21] = 45 µM (). The symbols represent actual data 
points obtained from samples at different times (n=3, +/- SD): T20 (■), cT20-T21 (♦), T20-
T20 (□) and rT20-T21 (◊). 
 

To determine disulfide bond stability without a free thiol in the solid state, T20-
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T20 sulfenic acid (T20-SOH) and dimedone adduct (m/z = 378.7059) was detected 

in solid samples stored at 22 oC for 2 weeks using LC-MS after reconstitution and in 

solution samples stored at the same conditions (Figure 3.15). In addition, T20-SO2H (T20 

sulfinic acid) was detected in solution samples; this is formed by further reaction of T20-

SOH with a hydroxyl ion [172, 173]. These products of alkaline hydrolysis are consistent 

with a direct attack of OH- on the disulfide bond in T20-T21 (Scheme 3.2). Damage to the 

disulfide bond in the cyclic peptide at pH 8.0 by alkaline hydrolysis was lower than that of 

the linear form. No dimedone adducts were detected on the LC-MS. However, small 

amounts of cysteine dehydroalanine (Scheme 3.2) were observed. This is consistent with 

disulfide bond degradation via β-elimination mechanism.  

 

             

Figure 3.13: Change in T20-T21 (pH 8.0, 10 mM PB, 0.08 M ionic strength, 0.5 mM 
EDTA and N2 sparged) concentration during storage (n=3, +/- SD) without T20, as a 
lyophilized powder (♦) and in solution (■). T = 0 (day) on plot represents solution sample 
analyzed at the same time as samples reconstituted immediately after lyophilization. Initial 
concentration of T20-T21 in solution before lyophilization is represented by ∆. 
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Figure 3.14: Change in cT20-T21 (pH 8.0, 10 mM PB, 0.08 M ionic strength, 0.5 mM 
EDTA and N2 sparged) concentration during storage (n=3, +/- SD) without T20, as a 
lyophilized powder (♦) and in solution (■). T = 0 (day) on plot represents solution sample 
analyzed at the same time as samples reconstituted immediately after lyophilization. Initial 
concentration of cT20-T21 in solution before lyophilization is represented by ∆. 
 
 

 

Figure 3.15: Mass spectrum (extracted ion chromatogram) showing the T20-S-dimedone 
adduct. Lyophilized T20-T21 (initial concentration = 250 µM, PB pH 8.0, 0.5 mM EDTA, 
0.08 M ionic strength and N2 sparged) was analyzed on the LC-MS upon reconstitution 
after storage at 22 oC for 2 weeks. 
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Scheme 3.2. Alkaline hydrolysis of disulfide bonds in the linear and cyclic peptide. 

 

 

3.6 Discussion 

 

The mechanism of thiol-disulfide exchange is well established in aqueous solution. 

In neutral to basic solution, the thiolate anion is the reactive nucleophile, attacking a 

disulfide bond via an SN2 mechanism [45, 71]. Thiol-disulfide exchange is known to occur 

in the solid state as well [14, 79, 95], though the reaction mechanisms have not been fully 

elucidated. In the studies reported here, hGH-derived model peptides were lyophilized 

without excipients to investigate the effect of lyophilization on thiol-disulfide exchange 

kinetics and mechanisms. The amino acid sequences of the model and their masses are 

shown in Table 3.1. In studies of the solution-state reaction of the linear peptide (T20-T21) 

with T20, the T20-T20 homodimer and T21 were detected as the initial products, as we 
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have reported previously [169].  At longer time points, the T21-T21 homodimer was also 

observed. These products are consistent with two thiol-disulfide exchange reactions, in 

which: (i) T20-T21 initially reacts with T20 to produce the T20-T20 homodimer and T21, 

and (ii) T20-T21 reacts with T21 produced in the first reaction to produce the T21-T21 

homodimer and regenerate T20 (Scheme 3.3a). Solution-state reaction kinetics were not 

adequately described by a kinetic scheme based only on these two reactions, however, and 

oxidative pathways were included. This suggests that even in the presence of oxidation 

suppressants (EDTA and N2 sparging), T20 and T21 also undergo oxidation to form T20-

T20, T21-T21 and T20-T21 via a sulfenic acid intermediate. Kinetic models including both 

thiol-disulfide exchange and oxidation steps provided excellent fits to data, both in the 

presence and in the absence of oxidation suppressants [169].  

When the reaction of T20-T21 with T20 was monitored during lyophilization and 

storage in the solid state, T20-T20 and T21 were again detected as initial products, 

consistent with reaction 1 in Scheme 3.3a. Reaction 2 in scheme 3.3a was not observed in 

the solid state during storage (in the timeframe that the reaction was monitored) based on 

model fits to the data in SCIENTIST®. As in solution [169], kinetic profiles suggested that 

T20 and T21 were oxidized to T20-T20, T21-T21 and T20-T21 on extended storage in the 

solid state (> 7days at 22 oC; Figure 3.7). Oxidation products such as cysteine sulfenic, 

sulfinic and sulfonic acid and thiosulfinates were not detected for samples containing T20-

T21 co-lyophilized with T20. However, when T20-T21 was lyophilized without T20 (see 

methods), sulfenic acid and a dimedone adduct were detected (Figure 3.15). The presence 

of sulfenic acid as an intermediate suggests that disulfide linked peptides can undergo 

alkaline hydrolysis when a free thiol (T20) is not present, as reported previously [172, 174]. 
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Kinetic analysis further suggests that, during lyophilization, T20-T20 and T21 are 

generated (k1 > k-1) during primary drying and then partly consumed (k1 < k-1) during the 

first step of secondary drying (Table 3.2), after which there is no appreciable change in 

product distribution. During storage in the lyophilized solid, the product distribution is 

altered and kinetic analysis suggests that thiol-disulfide exchange is essentially irreversible. 

Possible physicochemical contributions to these kinetic effects are discussed below.   

In solution-state reactions of the cyclic peptide (cT20-T21) with T20, only T20-

T20 and rT20-T21 were detected as products [169]. Mixed disulfides (SMDs and DMD; 

Table 3.1) were not observed under any conditions in aqueous solution. After 6 hours, 

oxidation of rT20-T21 to cT20-T21 was the dominant pathway even under oxidation-

suppressed conditions.  In contrast, SMDs, DMD, rT20-T21 and T20-T20 were identified 

as products of the reaction of cT20-T21 with T20 in the solid state. Oxidation of rT20-T21 

to cT20-T21 was not the dominant reaction even after 12 days of storage in lyophilized 

solids at 22 0C, and the concentration of cT20-T21 did not increase with time (Figures 3.10 

and 3.12). As with the linear peptide, oxidation products such as cysteine sulfenic, sulfinic 

and sulfonic acid and thiosulfinates were not detected. While sulfenic acid and dimedone 

adducts were not detected for cT20-T21 lyophilized without T20, trace amounts of cysteine 

dehydroalanine were detected (data not shown), again suggestive of alkaline hydrolysis in 

the absence of a free thiol.   

In the reaction of the cyclic peptide cT20-T21 with T20 in the solid state, mixed 

disulfides (SMDs and DMD) were detected in addition to T20-T20 and rT20-T21 during 

lyophilization and storage (Figure 3.11, Scheme 3.3b). Mixed disulfides were not detected 

in solution studies [169], suggesting that rates of loss from this pool (k-3, k4) are rapid 
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relative to rates of formation (k3, k-4) so that these species do not accumulate in solution 

(Scheme 3.3b). The absence of the double mixed disulfide (DMD) in solution can be 

attributed to the decreased reactivity of cT20-T21 and hence lower concentrations of T20-

T20, which in solution did not accumulate to levels sufficient to drive the reaction towards 

DMD. In contrast, both SMDs and DMD were detected during the primary drying stage of 

lyophilization, and the native disulfide was regenerated during secondary drying (Table 

3.2).  

The observed mechanism of thiol-disulfide exchange between T20 and cT20-T21 

is similar to that reported previously for tocinoic acid (TA (ox)) and glutathione (GSH) 

during lyophilization, where both SMDs and the DMD were detected [129]. TA (ox) is a 

cyclic peptide with 6 amino acids and terminal Cys residues linked by a disulfide bond 

(Scheme 3.3b, Table 3.4). Though the mechanism remains unchanged here, the relative 

rates of some thiol-disulfide exchange reactions (scheme 3.3b) are different for cT20-T21 

and TA (ox). TA (ox) was consumed in an irreversible thiol-disulfide exchange reaction at 

the end of lyophilization [129], while for cT20-T21 most of the native disulfide was 

regenerated at the end of step 3 (Table 3.2). The results suggest that although the type of 

disulfide and thiol containing peptides may play a role in reaction kinetics during 

lyophilization, the overall mechanism for thiol-disulfide exchange in cyclic peptides can 

be represented by Scheme 3.3b.   

The loss of native disulfide for both T20-T21 and cT20-T21 during the freezing 

step may be initiated by freeze-concentration, leading to high local concentrations of the 

peptide reactants (T20 and T20-T21 or cT20-T21). The loss of disulfide bonds during 

freezing is consistent with previous studies of tumor growth factor-β1, in which increased 
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intra- and intermolecular disulfide bond exchange was observed during freezing and long-

term storage at -70 oC [175]. Here, deviations from solution Arrhenius parameters (Figure 

3.2) and the absence of a buffer effect (Figure 3.5) suggest that factors such as temperature, 

peptide concentration, buffer type and concentration have no effect on thiol-disulfide 

exchange observed during primary drying. Further, the absence of preferential peptide 

adsorption to ice using the ‘cold finger’ method suggests that the ice surface itself does not 

play a role in thiol-disulfide exchange. Instead, loss of the disulfide bond during primary 

drying may be due to a reduced activation barrier for thiol-disulfide exchange as the 

environment becomes less polar, as observed at the active site of ribonucleotide reductase 

[148].  

In the simple peptides studied here, most of the native disulfide in T20-T21 and 

cT20-T21 is regenerated during secondary drying (Figure 3.2). In larger proteins with 

multiple disulfide bonds, such reverse reactions may not regenerate the original disulfide 

bond, but may instead result in intramolecular disulfide scrambling and/or covalent 

aggregation, depending on the proximity of the groups involved. The role of thiol group 

proximity to a disulfide bond was investigated previously for small heat shock protein and 

glutathione [67]. The distance between thiols and disulfides, and their relative mobility, 

can be affected by freeze-drying induced unfolding, particularly for hGH, which is known 

to undergo structural perturbations during lyophilization [101]. The formation of 

intermolecular disulfide bonds can further lead to aggregation during storage and/or 

rehydration. Here, the reactivity of the native disulfide bonds in T20-T21 and cT20-T21 

appears to decrease as drying proceeds (Figure 3.2 and Steps 4, 5 and 6, Table 3.2), perhaps 

the result of reduced mobility of the reactive species in the solid state. 
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The results suggest that, at neutral to slightly alkaline pH, proteins with free thiols 

and disulfides can undergo thiol-disulfide exchange during lyophilization and storage in 

the solid state, which can further lead to the formation of disulfide-linked aggregates. 

Though peptide cyclization retards disulfide exchange in solution, in the solid state the 

observed disulfide bond degradation for cT20-T21 is greater than in solution and similar 

to that of the linear peptide, T20-T21. Thus, increased stability of a disulfide bond 

conferred by secondary structure in solution may not necessarily translate to increased 

stability in the solid state. Further, structural constraints may not influence disulfide 

degradation kinetics during lyophilization and storage in the solid state, especially when 

free thiols are present on the surface of proteins and are in close proximity to a disulfide 

bond. Thus, the use of lyophilization alone as a stabilizing strategy may not be sufficient 

to retard thiol-disulfide exchange and offer protection against chemical degradation during 

storage. Reasonable formulation strategies include restricting free thiol content before 

lyophilization, using suitable excipients to stabilize protein structure when free thiols are 

not present on the surface, excluding O2 from formulations (if products of oxidative 

pathways are detected) and formulating proteins at low pH followed by reconstitution at 

near neutral pH (these strategies are discussed in detail in Chapter 5).  
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Scheme 3.3. Reaction schemes for thiol-disulfide exchange in a) T20-T21 and b) cT20-

T21 

a) 

 

 

b) 

 

 

R1S- + R2SSR3                                 R1SSR2 + R3S- (1)

R3S- + R2SSR3                                 R3SSR3 + R2S- (2)

k1

k-1

k2

k-2

linear peptide, aqueous solution + (fast) + (fast) + (fast) + (fast)
linear peptide, lyophilization + (slow) + (slow) nd nd
linear peptide, storage in the solid-state + (slow) nd nd nd
+ : reaction observed
nd- not detected, based on products observed

Rate constant (M-1s-1)

k-2
Reaction scheme

k1 k-1 k2

+

+ R1SSR1

R2S-

R3SSR1

R1SSR1

R2SH

R3SH
+

+ R1S-

R3S-

R2SSR1 R2SSR1

R3SSR1

R1S-+
R2S

R3S
R1S- +  

k3

k-3

k5

k-5

k4 k-4

cyclic peptide, aqueous solution + (fast) + (fast) + (fast) + (fast) nd nd
cyclic peptide, lyophilization + (slow) + (slow) + (slow) + (slow) + (slow) + (slow)
cyclic peptide, storage in the solid-state + (slow) + (very slow) + (slow) + (very slow) + (slow) + (very slow)
+: reaction observed
nd- not detected, based on products observed

Reaction scheme
Rate constant (M-1s-1)

k3 k-3 k4 k-4 k5 k-5
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Table 3.4: Abbreviations and amino acid sequences of tocinoic acid, glutathione and their 
mixed disulfides.  
 

 

 

 

 

Abbreviation Description
Designation in 

general reaction 
scheme

Amino acid sequence

GSH
Monomeric 

peptide, free SH 
group

R1 NH2- ECG-OH

GSSG
Homodimer,

disulfide-linked
R1SSR1

TA(ox)
Cyclic peptide, 
disulfide linked

TA(red)
Linear peptide, 
free SH groups

NH2-CNQIYC -OH

Single mixed 
disulfide (SMD)

linear peptide, 
disulfide linked to 

GSH OR OR

Double mixed 
disulfide 
(DMD)

linear peptide, 
disulfide linked 

to two GSH 
peptides

NH2- ECG-OH

NH2- ECG-OH

R2S

R3S

R3S-

R2SSR1

R3SSR1

R2S-

R2SH

R3SH

R2SSR1

R3SSR1

NH2-CNQIYC -OH

NH2-CNQIYC-OH 

NH2-ECG-OH

NH2-CNQIYC-OH 

NH2-ECG-OH

NH2-CNQIYC-OH 

NH2-ECG-OH
NH2-ECG-OH
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3.7 Conclusion 

 

The studies reported here detail the effects of lyophilization and storage of 

lyophilized powders on the mechanisms and rates of thiol-disulfide exchange. Peptide 

secondary structure does not influence disulfide (T20-T21 or cT20-T21) reactivity in the 

solid state when co-lyophilized with a free thiol (T20). Further, lyophilization does not 

retard thiol-disulfide exchange during storage in the solid state. The results obtained 

provide an insight into the effect of process stresses on disulfide exchange and are valuable 

to the design of robust lyophilization processes for the development of stable peptide and 

protein drug products that contain free thiols and/or disulfide bonds.  
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CHAPTER 4. THIOL-DISULFIDE EXCHANGE IN HUMAN GROWTH 
HORMONE 

This work has been submitted to the FEBS Journal. 

 

4.1 Abstract 

 

Protein therapeutics such as hormones and monoclonal antibodies contain thiols 

and/or disulfides that can participate in thiol-disulfide exchange reactions at neutral to 

alkaline pH. This can result in the formation of mixed/scrambled disulfides that affect 

protein therapeutic efficacy and elicit undesirable immunogenic responses upon 

administration.  Thiol-disulfide exchange reactions were monitored in recombinant human 

growth hormone (rhGH) and model tryptic peptides derived from hGH (cT20-T21 and 

T20-T21pep) to investigate higher-order structure effects on reaction kinetics. Different free 

thiol-containing peptides (varying length and amino acid sequence) were used to initiate 

thiol-disulfide exchange in intact hGH and in model peptides at pH 7.0 and 37 oC. Protein 

samples were digested with trypsin and analyzed for native disulfides, scrambled disulfides 

and free thiols on the LC-MS.  For peptide-level studies, concentration of disulfide-linked 

peptides were determined using RP-HPLC and product identity was confirmed on the LC-

MS. Loss of native disulfide in cT20-T21 and T20-T21pep within 60 min of reaction was 

greater than loss of the C-terminal disulfide in hGH, consistent with higher-order structural 
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effects. Of all the peptides tested, GSH was the most reactive, forming the highest 

percentage of mixed disulfides in intact hGH and in the model peptides. At longer time-

points (>240 min) during the reaction, native disulfides in both hGH and cT20-T21 were 

regenerated and the fastest rates of regeneration were observed for cysteine  and the 

dipeptide CR. Tripeptides, RCR and QCR, had lower reactivity towards native disulfides 

but facilitated faster regeneration of native disulfides compared to GSH. 

 

4.2 Keywords 

 

Human growth hormone, protein, peptide, kinetics, thiol-disulfide exchange, 

glutathione 

 

4.3 Introduction 

 

In the biopharmaceutical industry, formation of correct disulfide links in 

recombinant proteins is central to the development of safe and efficacious protein 

therapeutics. While perturbation of native disulfide bonds is advantageous for regulating 

the biological activity of enzymes such as thioredoxin reductase, disulfide bond disruption 

is undesirable in protein drugs; mismatched disulfides can result in misfolding, aggregation, 

loss of biological activity and stability [54]. To ensure drug quality and product 

homogeneity, particularly with an increase in the development of biosimilars globally, the 

presence of these scrambled disulfides and the extent of scrambling need to be determined 

in protein therapeutics. A detailed mechanistic understanding of degradation pathways like 
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thiol-disulfide exchange is expected to reduce attrition rates during drug development and 

decrease the time to market protein drug products.  

Formation of protein mixed disulfides (P-S-S-R) is not uncommon and occurs in 

all biological environments, typically by two mechanisms; a) thiol-disulfide exchange; P-

S-S-P + R-SH ↔ P-S-S-R + P-SH and b) via sulfenic acid formation; P-SOH + R-SH → 

P-S-S-R + H2O [61], where R-SH is any low-molecular weight thiol (reduced), P-S-S-P is 

the native disulfide bond in a protein, P-SH is the protein with a free thiol, P-SOH is protein 

sulfenic acid and P-S-S-R is the mixed disulfide. Thiol-disulfide exchange reactions are 

favored at neutral to alkaline pH and the reaction proceeds via an SN2 nucleophilic 

displacement. The oxidized form of low-molecular weight thiols (R-S-S-R) are used to 

form protein disulfide bonds via oxidation while the reduced forms (R-SH) are used to 

rearrange scrambled disulfide bonds in vivo. The leaving group typically has a lower pKa 

compared to the central sulfur atom that is attacked by a thiolate anion [61]. For example, 

small molecule catalysts that facilitate folding of proteins contain thiol groups with a low 

pKa [176], which enhances the leaving group ability of the corresponding thiolate anion 

(RS-) and increases the redox potential.  

Intrinsic factors other than thiol pKa are also known to affect thiol-disulfide 

exchange; these include ionic strength of the medium [63], geometric strain imposed on 

the disulfide bond by higher-order structure [66] and stability of the native disulfide bond 

relative to a non-native bond [65].  

Proteins can form mixed/scrambled disulfides with other thiols, that are either 

present as an impurity or in the protein as a free Cys [177,178]. The sulfur group that has 

better exposure to the attacking nucleophile is more prone to undergo thiol-disulfide 
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exchange reactions in comparison to more buried residues, even if it exists as a free Cys 

[179]. These protein mixed disulfides can then initiate other thiol-disulfide exchange 

reactions resulting in the formation of disulfide-linked aggregates. Disulfide bond 

degradation in therapeutic proteins can also occur via β-elimination [3] and thiol-catalyzed 

exchange [78] during processing and storage or after administration in vivo in the presence 

of low-molecular weight thiols in serum [49]. In some proteins like monoclonal antibodies, 

incomplete disulfide bond formation also results in free Cys [123] that can then initiate 

disulfide-mediated degradation events.  

Rearrangement of native disulfide bonds to form mixed disulfides via thiol-

disulfide exchange has been reported in a number of therapeutic proteins [14, 72, 78].  

Disulfide-linked isomers of interleukin-2 (IL-2) were observed in the presence of a 

chaotrope under alkaline conditions. IL-2 has one free Cys and one disulfide bond in its 

native form, alkaline and denaturing conditions deprotonate the free thiol thus mediating 

thiol-disulfide exchange reactions that generate less active disulfide-linked isomers [90]. 

Thiol-disulfide exchange reactions have also been observed in monoclonal antibodies, the 

CH1 domain of IgG2 contains a free Cys that is involved in the formation of disulfide-

linked oligomers (intermolecular disulfides) upon agitation stress [178]. While thiol-

disulfide exchange is known to occur in proteins and peptides, the effects of protein higher-

order structure and peptide primary structure on reaction kinetics are not as well understood 

and are the focus of studies reported here.  

Human growth hormone is a therapeutic protein that is used for the treatment of a 

number of growth related disorders; these include Turner’s syndrome, Prader-Will 
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syndrome, chronic kidney insufficiency and hGH deficiencies. In 2012, hGH was one of 

the top 200 pharmaceutical products by retail sales in the US [180]. Amino acid sequences 

of the two native disulfide-containing tryptic peptides are shown in Table 4.1. There are no 

free Cys residues in hGH, however, a free thiol group maybe generated via β-elimination 

[3, 141] and can facilitate disulfide exchange and lead to loss of therapeutic efficacy. With 

access to cDNA for hGH expression in-house, relatively small size of the protein and 

results obtained previously for model tryptic peptides derived from hGH, hGH was the 

model protein of choice for investigating thiol-disulfide exchange.  

In our previous studies (Chapters 2 and 3), we investigated the mechanism and 

kinetics of thiol-disulfide exchange in tryptic peptides derived from human growth 

hormone in aqueous solution and in the solid state at a thiol: disulfide = 10: 1 (molar ratio) 

[69, 181]. Results showed that peptide secondary structure (peptide cyclized by a disulfide 

bond) offers protection against thiol-disulfide exchange in solution [69]. However, in the 

solid state, no protection was observed and reaction kinetics were similar for both linear 

and cyclic peptides while the mechanism remained unchanged [181]. Here, we report 

experimental data for the effect of higher order structure and peptide primary structure on 

thiol-disulfide exchange using model peptides and recombinant human growth hormone 

(rhGH). Thiol-disulfide exchange reactions were monitored at a thiol: disulfide molar ratio 

of 100: 1 at pH 7.0 and 37 oC. Results show that loss of native disulfide via thiol-disulfide 

exchange in cT20-T21 and T20-T21pep (peptides mimicking native C-terminal disulfide in 

hGH) is greater than loss of native disulfide in hGH in the presence of T20a, GSH, RCR, 

CR and C, indicating the role of higher-order structure. GSH was the most reactive of all 

free-thiol containing peptides used to initiate thiol-disulfide exchange, resulting in 84.7% 
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and 57.7% loss of native disulfide in cT20-T21 and hGH respectively. Tripeptides, RCR 

and QCR had lower reactivites towards the native disulfide when compared to GSH but 

favored faster (>GSH) regeneration of native disulfides in hGH. In the presence of RCR, 

native disulfide was faster than with QCR. Loss of native disulfide was the lowest and 

regeneration of the native disulfide was the fastest with free thiols CR and C.  

 

4.4 Materials 

 

HPLC grade acetonitrile (ACN), NaCl and KCl were purchased from Fisher 

Scientific Co. (Pittsburgh, PA). H2O2 and Na2CO3 (anhydrous granules) were obtained 

from Mallinckrodt Baker Inc. (Phillipsburg, NJ). K2HPO4, ethylenediaminetetraacetic acid 

(EDTA), Trizma® hydrochloride (Tris.HCl), urea, sucrose, glutathione (oxidized-GSSG), 

glutathione (reduced-GSH), L-Cysteine (Cys/C) and glycerol were purchased from Sigma 

Chemical Co. (St. Louis, MO). Trifluoroacetic acid (TFA) and formic acid (FA) were 

obtained from Thermo Scientific (Rockford, IL). Double-distilled water (DDI) used for 

buffer preparation and as HPLC mobile phase was deionized and purified using a Milli-Q 

water system, Millipore Ltd (Billerica, MA) and filtered with a 0.2 µm filter. Flash digest 

kit (trypsin) for protein digestion was obtained from Perfinity Biosciences (West Lafayette, 

IN).  Human growth hormone (1 mg/mL) was purchased as a lyophilized powder (0.34 mg 

phosphate buffer and 8 mg mannitol) from ProSpec-Tany TechnoGene Ltd., Ness Ziona, 

Israel. Synthetic peptides were obtained from GenScript (Piscataway, NJ). 
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4.5 Method 

 

4.5.1 hGH expression and purification 

The plasmid containing the recombinant human growth hormone (r-hGH) 

expression gene was obtained from Dr. J. Laurence (Kansas University). This plasmid 

codes for hGH with an additional 28 amino acids at the N-terminus with a molecular weight 

of 25 kDa (Figure 4.1). The plasmid was transformed into the BL21 (DE3) E.coli cells for 

protein expression, using the protocol provided by New England BioLabs. Cells carrying 

the plasmid for hGH were grown in terrific broth media containing 100 µg/ mL ampicillin 

in an incubator shaker at 37° C. The cells were induced at OD600 = 0.8 with 1 mM IPTG. 

Post-induction was carried out in incubator shaker at 20° C for 16 hours. Expression of r-

hGH in the induced cells was checked with 12% SDS-PAGE and was found to be over-

expressed as inclusion bodies (Figure 4.2a). 

Purification of rhGH: rhGH was purified using the method as described previously 

[182]. Induced E.coli cells were harvested by centrifugation at 6500 rpm for 15 min. The 

cell pellet was resuspended in 50 mM Tris-HCl, 100 mM NaCl, 5 mM EDTA at pH 8.0 

and sonicated to lyse the cells. r-hGH inclusion bodies were separated from the soluble cell 

lysate by centrifugation at 13, 000 rpm for 30 mins. The pellet with cell debris was 

resuspended in buffer, 50 mM Tris-HCl, 5 mM EDTA, 1% deoxycholate (DOC) at pH 8.0, 

sonicated and centrifuged to further clarify the inclusion bodies. The pellet was washed 

with buffer, 50 mM Tris-HCl at pH 8.0 and centrifuged to remove any DOC from the 

previous step. Pure inclusion bodies were solubilized in buffer containing 100 mM Tris-

HCl and 2 M Urea at pH 12.5. The solution were further diluted 10 times in a buffer 
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containing, 50 mM Tris-HCl, 2 M Urea, 0.5 mM EDTA, 3 mM GSH, 0.6 mM GSSG, 10% 

Glycerol and 2% sucrose at pH 8.0. Refolding of r-hGH was carried out by the step-wise 

dialysis of the protein solution against buffer 50 mM Tris-HCl, 0.5 mM EDTA, 10% 

Glycerol, 2% sucrose at pH 8.0 by descending the concentration of urea from 2-0 M at each 

step (1.5, 0.5 and 0 M). The refolded r-hGH was filtered and purified further using a HiPrep 

26/60 Sephacryl S-100 high resolution column (Amersham Biosciences) equilibrated with 

50 mM Tris-HCl, 2% sucrose at pH 8.0 and the fraction containing the monomeric r-hGH 

were checked with 12% SDS-PAGE for the purity (Figure 4.2b). Concentration of purified 

hGH was determined using a UV-Vis spectrophotometer (Agilent Technologies, Santa 

Clara, CA). MS analysis of the purified protein confirms the presence of two native 

disulfide bonds as found in the commercially available recombinant hGH (Figure 4.3 and 

Table 4.1). Near-UV CD analysis with a J-815 CD spectrometer (JASCO, Easton, MD) 

was used to assess protein tertiary structure. 

 

Figure 4.1: Amino acid sequence of hGH expressed and purified in our lab (MW = 25 
kDa). Sequence highlighted in blue shows the additional 28 amino acids at the N-terminus. 
Highlighted in yellow are the four Cys residues and the native disulfide bonds are 
represented by the red dotted lines. 
 
 
 

H2N-MKYLLPTAAAGLLLLAAQPAMAMAHHHHFPTIPLSRLFDNAMLRAHRLHQLAFDTYQEFEEAYIPKEQKYSFLQN 
 

PQTSLCFSESIPTPSNREETQQKSNLELLRISLLLIQSWLEPVQFLRSVFANSLVYGASDSNVYDLLKDLEEGIQTLMGR 

 

LEDGSPRTGQIFKQTYSKFDTNSHNDDALLKNYGLLYCFRKDMDKVETFLRIVQCRSVEGSCGF-COOH 
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Figure 4.2: Expression and purification of rhGH: (A) Expression of r-hGH in uninduced (lane 
1) and induced (lane 2) culture was checked with 12% SDS-PAGE. (B) Purification of refolded 
r-hGH in HiPrep 26/60 Sephacryl S-100 high resolution column (Amersham Biosciences, 
Piscataway, NJ). Gel filtration chromatogram showing the resolved monomeric r-hGH. Inset, 
12% SDS-PAGE shows the purified r-hGH (lane 1). (M: Molecular weight marker). 
 

 
 

Figure 4.3: Total ion chromatogram for the tryptic digest of r-hGH. The two native disulfide 
bonds are in peptides T6-T16 and T20-T21 with retention times 26.1 and 12.17 min respectively. 
The figure insets show the isotope pattern and charge states of the two disulfide-containing 
peptides.  
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4.5.2 Thiol-disulfide exchange in model peptides 

RP-HPLC analysis: peptide samples were analyzed using an Agilent 1200 series 

HPLC system equipped with a UV-detector operated at 215 nm. Analytical column and 

gradient elution were the same as described previously [69]. Calibration plots were linear 

in the following concentration ranges; 5-500 µM (T20-T21pep), 20-200 µM (T20), 20-200 

µM  (T21), 5-500 µM (cT20-T21), and 5-500 µM (rT20-T21).  

Sample preparation: Peptides T20a (GIVQCR), T20 (IVQCR), CR, RCR, QCR, 

cT20-T21, T20-T21pep and rT20-T21 (Table 4.2) were obtained from GenScript 

(Piscataway, NJ) with >90% purity as lyophilized powders. Stock solutions were made in 

0.1% formic acid in DDI (pH ~ 2.5) to minimize oxidation of free thiols. Peptide T20a was 

synthesized to study thiol-disulfide exchange in intact hGH and draw comparisons to 

previous studies with model peptides, where T20 was used as the reactive thiol [69, 181]. 

Using T20 to initiate disulfide exchange in hGH would make differentiation of scrambled 

and native disulfides difficult, for example, T20-T21 could be the native disulfide, product 

of disulfide exchange with T20 or an intermolecular disulfide (between two protein 

molecules). T20a is similar in sequence to T20 with the addition of a Gly at the N-terminal, 

this difference allows easy identification of scrambled disulfides with T20a. To determine 

reactivity of T20a and to investigate buffer effect, reaction of T20a with T20-T21 peptide 

(thiol: disulfide = 10: 1) was monitored kinetically in 10 mM phosphate buffer (PB) and 

50 mM Tris.Hcl with 2% sucrose at 22 oC. Final pH of the reaction mixture was 7.0, 

samples were analyzed as described previously [69].  kobs (Pseudo-first order) for the loss 

of T20-T21 is similar in PB and Tris.HCl with 2% sucrose (Figure 4.4). Thus all peptide-
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level studies were monitored kinetically in 10 mM PB to quantitate thiol-disulfide 

exchange. 

 

A 

 

 

B 

 

Figure 4.4: Change in concentration of T20-T21 (♦) for the reaction with A) T20a (10 mM 
PB, pH 7.0, 0.08 M ionic strength, 0.5 mM EDTA and N2 sparged) and with B) T20a (50 
mM Tris.HCl and 2% sucrose, pH 7.0) at 22 oC (n=3, +/- SD). Initial concentration of 
peptides were; [T20a] = 500 µM and [T20-T21] = 50 µM.  
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Investigating the effect of amino acid sequence and peptide length on thiol-

disulfide exchange: reaction kinetics were monitored at pH 7.0 and 37 oC in aqueous 

solution. For the reaction, 1500 µL of T20a/T20/GSH/RCR/QCR/CR/C (12500 µM), 1500 

µL of T20-T21pep/cT20-T21 (125 µM) and 750 µL of 50 mM phosphate buffer (0.08 M 

ionic strength and 0.5 mM EDTA) were added to a 15 mL BD falcon tube and mixed by 

pipetting. The final pH of the reaction mixture was adjusted to 7.0 using NaOH or HCl 

(exact volume to be added was determined from pilot studies) after a 100 µL aliquot was 

removed and quenched with 10 µL 20% formic acid in DDI (FA) to verify initial 

concentrations (t=0 min). Samples were withdrawn in triplicate at different time points, 

quenched with 20% FA, analyzed and quantitated using RP-HPLC as described in Chapters 

2 and 3.  

 

4.5.3 Enzymatic digestion using the Perfinity flash digest protocol 

hGH samples were added to the Perfinity flash digest kit tubes with digestion buffer 

(ratio of sample to buffer was 1:2.4). Digestion was performed at 60 oC and 1400 rpm using 

a ThermoMixer C (Eppendorf, Hauppauge, NY) for 15-17 mins. Digested samples were 

then transferred to microcentrifuge tubes and centrifuged at 14000 rpm for 2 mins. After 

centrifugation, the supernatant was removed, quenched with 10 µL of 20% FA in DDI and 

analyzed on the LC-MS (~20 µL).  

 

4.5.4 Removal of unreacted peptides using a desalting column 

To minimize scrambling during digestion, ZebaTM spin desalting columns with 7K 

MWCO (Pierce Biotechnonogy, Rockland, IL) were used to remove any unreacted 
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peptides from the reaction mixture with hGH. The spin columns were first placed in an 

empty collection tube (1.5-2 mL) and centrifuged at 4700 rpm using an Eppendorf 

centrifuge (Eppendorf, Hauppauge, NY) equipped with a F45-11-12 rotor for 1 min to 

remove the storage buffer. Reacted samples (80-85 µL) were then added carefully to the 

center of the resin bed. After the sample had adsorbed onto the resin bed, the spin columns 

were then placed inside new collection tubes and centrifuged at 4700 rpm for 2 mins. 

Desalted sample was collected and digested using the Perfinity flash digest kit as described 

above and analyzed on the LC-MS.  

 

4.5.5 LC-MS analysis and disulfide bond identification using MassHunter software 

Mass analyses were carried out on an LC-MS system (1200 series LC, 6520 qTOF, 

Agilent Technologies, Santa Clara, CA). Peptides in the digested samples were separated 

prior to MS analysis using a Zorbax 300SB-C18 column from Agilent Technologies. 

Solvent A was 0.1% FA in water and solvent B was 0.1% FA in ACN. A gradient run was 

initiated with 5% B then held at 5% for 5 min and increased to 20% in 8 min, in the next 

step gradient was increased to 25% in 10 min and to 60% in 5 min. followed by an increase 

to 100% in 0.6 min, decreased to 0% in 0.6 min and finally returned to 5% in 2.4 min. The 

flow rate was maintained at 50 µL/min and the column temperature was not controlled. To 

determine native and scrambled disulfide species, a library of all peptides containing a 

disulfide bond and/or free Cys was generated. Briefly, amino acid sequence of hGH was 

entered into the software and after selecting the digestion enzyme and missed cleavages, 

an in silico digest was performed. We used trypsin as the enzyme and the number of missed 

cleavages was set to four to generate a list of all possible tryptic fragments. The same 
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process was then repeated by switching out native disulfides to scrambled disulfides and 

free thiols. From these lists, all peptides with disulfide bonds and/or free cysteines were 

selected and combined to create a mass filter list. Mass spectra of all digested hGH samples 

were then scanned against the mass filter list to determine the presence of scrambled 

disulfides and the extent of disulfide scrambling. Loss of native disulfide (T20-T21) was 

monitored at different reaction times using peak areas from extracted ion chromatograms 

(XIC); concentration was calculated using the calibration plot (Figure 4.5) constructed with 

a peptide standard from GenScript (Piscataway, NJ). Similar calibration plots were 

constructed for T20 and T21 using peptide standards.  

 

4.5.6 Thiol-disulfide exchange in hGH 

For the reaction of hGH with thiol-containing peptides (T20a, GSH  RCR or CR) 

and C, 280 µL of hGH purified in-house (0.56 mg/mL or 22.4 µM) in 50 mM Tris.HCl 

buffer and 2% sucrose (pH 8.0) was mixed with 70 µL T20a/GSH/RCR/CR/C (8950 µM 

in 0.1% FA in DDI). The pH of the final reaction mixture was 7.0 and the final molar ratio 

of peptide to protein was 100:1 (1790 µM: 17.9 µM). 90 µL aliquots of the reaction mixture 

were then transferred to microfuge tubes (n=3 for each time point) and placed in an 

incubator at 37 oC. Samples were withdrawn in triplicate at various times, desalted, 

digested and analyzed using LC/MS as described above. Control samples (hGH alone or 

model disulfide peptides alone) were diluted, desalted and digested as for the reaction 

samples at other time points.  To determine contributions from the additional 28 amino 

acids in the modified hGH expressed in-house, the reaction of Prospec hGH with GSH was 

also monitored. Prospec hGH was first buffer exchanged (overnight at 4 oC) into 50 mM 
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Tris.HCl and 2% sucrose before reaction with GSH. Sample dilution and analysis were 

carried out as above.  

 

 

Figure 4.5: Calibration plot for T20-T21 (synthetic standard from GenScript); constructed 
using peak areas (n=3, +/- SD) from XIC at different peptide concentrations.  
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Table 4.1: Amino acid sequence of disulfide-linked peptides in hGH: native and scrambled 
disulfides 

 

 
 

  

Tryptic peptide Description Amino acid sequence Theoretical
mass (Da)

Observed 
mass (Da)

T6-T16
Native

disulfide- linked 
peptide

NH2- YSFLQNPQTSLCFSESIPTPSNR-OH

NH2- NYGLLYCFR-OH

3760.766 3760.7903

T20-T21

Native
disulfide- linked 

peptide

NH2- IVQCR-OH

NH2- SVEGSCGF-OH

1399.6225 1399.6243

T6 Monomer, free 
thiol group NH2- YSFLQNPQTSLCFSESIPTPSNR-OH 2615.233 2615.2284

T16 Monomer, free 
thiol group NH2- NYGLLYCFR-OH 1147.549 1147.5412

T20 Monomer, free 
thiol group NH2- IVQCR-OH 617.3319 617.33

T21 Monomer, free 
thiol group NH2- SVEGSCGF-OH 784.3061 784.3017
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Table 4.2: Amino acid sequence of model peptides used to investigate thiol-disulfide 
exchange reactions 
 

 

 

4.5.7 Near-UV CD measurement 

Near-UV CD spectroscopy was used to assess the effects of disulfide reduction on 

the tertiary structure of hGH. Samples with and without 5 mM β-mercaptoethanol were 

diluted to 2 μM final hGH concentration. Molar ellipticity was measured on a JASCO J-

815 spectrometer (JASCO Analytical Instruments, Easton, MD) in a 10 mm path length 

Peptide Description Amino acid sequence

Disulfide-linked peptides

cT20-T21 Cyclic peptide

T20-T21pep

Heterodimer, 
disulfide-linked

peptide

NH2- IVQCR-OH

NH2- SVEGSCGF-OH

Free thiol-containing peptides

rT20-T21 Monomer, free 
thiol group NH2- IVQCRSVEGSCGF-OH

T20a Monomer, free 
thiol group NH2- GIVQCR-OH

T20 Monomer, free 
thiol group NH2- IVQCR-OH

GSH Monomer, free 
thiol group NH2- ECG-OH

RCR Monomer, free 
thiol group NH2- RCR-OH

QCR Monomer, free 
thiol group NH2- QCR-OH

CR
Monomer, free 

thiol group NH2- CR-OH

NH2-IVQCRSVEGSCGF -OH



 142 
 

 

quartz cuvette. Spectra were acquired for wavelengths of 250 nm to 350 nm at a scanning 

speed of 50 nm/min. 

 

4.5.8 Amide hydrogen-deuterium exchange mass spectrometry (HDX-MS)  

HDX-MS was conducted to determine the solvent accessibility of hGH under native 

and reduced conditions. A 2 mg/mL solution of hGH was prepared in buffer containing 10 

mM sodium phosphate, 1.6 % mannitol, pH 7.0 (buffer A). To obtain reduced hGH, a 2 

mg/mL solution was prepared in buffer containing 10 mM sodium phosphate, 1.6 % 

mannitol, 10 mM DTT, pH 7.0 (buffer B) and incubated on ice for 1 h. HDX was initiated 

by mixing 3 μL of the sample with 27 μL of deuterated buffer A and buffer B for native 

and reduced hGH, respectively. Exchange was carried out at 23 ˚C for 10 s to 10 min. 

Reactions were quenched by adding 30 μL of ice cold buffer containing 0.2 M sodium 

phosphate, 0.5 M Tris(2-carboxyethyl)phosphine hydrochloride, 6 M guanidine 

hydrochloride to a final pH of 2.5. Deuterium uptake was measured using a the LC/MS 

system described above and equipped with a custom-built column refrigeration unit (0 ˚C) 

to minimize back exchange. Approximately 50 pmol of protein was injected onto to an 

immobilized pepsin column. The digests were desalted and trapped in a peptide microtrap 

(Michrom Bioresources, Auburn, CA) with 10% ACN, 90% water, and 0.1% for 4 min. 

Peptides were eluted onto a reverse phase analytical column (Zorbax 300SB-C18; Agilent 

Technologies, Santa Clara, CA) for 4.3 min using a gradient to 60% ACN, 40% water, and 

0.1% FA. Mass spectra were acquired in the m/z range 200-1700. Peptic digests of 

undeuterated hGH were analyzed and their mass identified using the MassHunter software 

(Agilent). Peptides identified from undeuterated hGH were mapped onto data from 
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deuterated samples using HDExaminer software (Sierra Analytics, Modesto, CA) to 

determine the level of deuterium uptake. The analysis times for all HDX samples were very 

similar, so that the observed deuterium uptake values were not subjected to back-exchange 

corrections. Data from 5 min HDX were mapped onto the crystal structure of hGH (PDB 

ID: 1 HGU) using PyMOL software (PyMOL Molecular Graphics System, Version 1.3, 

Schrodinger, LLC).   

 

4.6 Results 

 

4.6.1 Thiol-disulfide exchange in hGH:  product identification 

Thiol-disulfide exchange in hGH was investigated using T20a, GSH, cysteine (C) 

and several small Cys-containing peptides such as CR and RCR (Table 4.2), to explore the 

effects of different thiol containing molecules on reaction kinetics. Control samples 

containing hGH alone incubated at 37 oC and analyzed after 60 mins and 1 day did not 

show scrambled species (data not shown), indicating that disulfide exchange does not occur 

under the conditions investigated here in the absence of a free thiol group. LC/MS analysis 

of intact protein samples during the reaction of hGH with T20a showed peaks 

corresponding to protein mixed disulfides with T20a (data not shown), confirming that 

thiol-disulfide exchange does not occur during digestion. The list of scrambled species 

observed for hGH in reaction with various thiol-containing peptides, the amino acid 

sequences of the scrambled products, their molecular weights and their chromatographic 

retention times are listed in Table 4.3, 4.4 and 4.5, respectively. 
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For the reaction of hGH with T20a (at thiol: disulfide = 100:1), four scrambled 

disulfides; T20a-T20, T20a-T21, T20a-T6 and T20a-T16 (Table 4.3) and free thiols; T6, 

T16, T20 and T21 (Table 4.1) were identified. No inter- or intra-molecular disulfides were 

detected at any time point during the reaction. GSH is commonly used in protein refolding 

and is also known to form mixed disulfides with proteins [61, 67]. In the reaction of hGH 

with GSH, the loss of both native disulfides (T20-T21, T6-T16) was observed within a few 

minutes resulting in the detection of mixed disulfides (Table 4.3) and free thiols (Table 

4.1). The data are consistent with a reaction mechanism identical to that proposed for T20a 

(Scheme 4.1), since no other degradation products were detected.  

Interestingly, for the reaction with CR, the mixed disulfide (T20-CR) and free thiols 

(T6, T16 and T21) were not detected in any of the samples. All the other mixed disulfides, 

T21-CR, T6-CR and T16-CR and T20 were detected (Table 4.4). Mixed disulfides (T6-

RCR, T16-RCR and T21-RCR) and free thiols (T20 and T6) were detected for the reaction 

of hGH with RCR (Table 4.5). With C as the thiol reagent, the loss of the native disulfide 

was slower than for T20a, GSH or CR. Only T21-C and T20 were detected (Table 4.5); 

mixed disulfides (T20-C, T6-C and T16-C) and free thiols (T6, T16 and T21) were not 

detected. The detection of scrambled disulfides at all four Cys residues in hGH suggests 

that both native disulfides are prone to attack by a reactive thiolate anion in aqueous 

solution at pH 7.0. It is interesting that in the presence of C, scrambling was detected only 

at the C-terminal disulfide bond. This may be due to rapid regeneration of the native 

disulfides, so that the mixed disulfides go undetected at the reaction times monitored here.  
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Table 4.3: Amino acid sequence of mixed disulfide-linked peptides from hGH: for the 
reaction of hGH with T20a.  
 

 

Table 4.4: Amino acid sequence of mixed disulfide-linked peptides from hGH: for the 
reaction of hGH with GSH.  
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Table 4.5: Amino acid sequence of mixed disulfide-linked peptides from hGH: for the 
reaction of hGH with CR, C and RCR. 
 

 

 

4.6.2 Thiol-disulfide exchange in hGH: product quantitation 

Thiol-disulfide exchange in hGH was quantified for the C-terminal disulfide bond, 

which links the tryptic peptides T20 and T21. Quantitative analysis of disulfide scrambling 

in T6-T16 was not performed due to the lack of peptide standards (i.e., for T6-T16, T6 and 

T16) and the low aqueous solubility of T6.  At the C-terminal disulfide bond (T20-T21), 

the concentrations of T20-T21, T20 and T21 were determined using XIC peak areas and 

calibration curves prepared using synthetic peptide standards. The concentrations of 
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protein-thiol mixed disulfides were determined from mass balance: [Mixed disulfides] = 

[T20-T21]total – ([T20-T21]t + ([T20] + [T21])/2). Intra- and intermolecular disulfides and 

products of thiol oxidation such as sulfenic, sulfinic and sulfonic acid were not detected. 

Thus, it was assumed that disulfide bond cleavage of 1 mol of T20-T21 releases 1 mol of 

T20 and 1 mol of T21 that are present either in their free thiol form or in mixed disulfides. 

The percent loss of native disulfide at different times during the reaction was determined 

from [T20-T21] in the control sample (i.e., at t = 0) and [T20-T21] at time, t.  

The distributions of mixed disulfides, free thiols and the native disulfide (T20-T21) 

over time for the reaction of hGH with different thiols are shown in Figures 4.6 and 4.7. 

Loss of native disulfide (%) in the presence of free thiol-containing peptides and C is 

reported in Table 4.6.  After 60 min, T20-T21 showed the greatest loss with with GSH and 

the least with C. After 1 day, the native disulfide was regenerated to a greater extent with 

C followed by CR and RCR (Table 4.6). The presence of an Arg residue adjacent to Cys 

was found to favor regeneration of the native disulfide over GSH. A similar product profile 

was obtained for Prospec hGH (22kDa) for the reaction with GSH (Figure 4.8), suggesting 

that the leader sequence at the N-terminus in the hGH expressed in-house (25 kDa) does 

not influence thiol-disulfide exchange appreciably.  
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A 

 

B 

 

Figure 4.6: Concentrations of T20-T21 (♦), T20 (■), T21 (●) and T20a-T20+T20a-T21 or 
T20-S-S-G+T21-S-S-G (▲) for the reaction of hGH with T20a (A) and GSH (B) at pH 7.0 
(40 mM Tris.HCl and 1.6% sucrose) and 37 oC (n=3, +/- SD). Initial molar ratio of thiol: 
hGH was 100:1. Concentration of hGH alone before reaction with T20a is represented by 
◊. Lines on plot are to improve readability and do not represent regression analysis. 
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Figure 4.7: Concentrations of T20-T21 (), T20 (), T21 (●) and mixed disulfides (▲) 
for the reaction of hGH with (A) RCR, (B) CR and (C) C at pH 7.0 (40 mM Tris.HCl and 
1.6% sucrose) and 37 oC (n=3, +/- SD). Initial molar ratio of thiol: hGH was 100:1. Control 
sample represents hGH alone before reaction with CR. Lines on plot are to improve 
readability and do not represent regression analysis. 
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Figure 4.8: Concentrations of T20-T21 (), T20 (), T21 (●) and T20-S-S-G+T21-S-S-
G (▲) for the reaction of Prospec hGH with GSH at pH 7.0 (40 mM Tris.HCl and 1.6% 
sucrose) and 37 oC (n=3, +/- SD). Initial molar ratio of thiol: hGH was 100:1. T=0 min 
sample represents hGH alone before reaction with GSH. Lines on plot are to improve 
readability and do not represent regression analysis. 
 

4.6.3 Effect of higher order structure on thiol-disulfide exchange 

To investigate the effects of higher order structure on thiol-disulfide exchange and 

to show that close proximity of a free thiol group to a disulfide bond is a prerequisite for 

regeneration of native disulfide bonds, model disulfide-linked peptides were used. Thiol-

disulfide exchange was monitored in cT20-T21 and T20-T21pep at pH 7.0 and 37 oC. For 

cT20-T21, the concentrations of the single mixed disulfides (SMDs) and the double mixed 

disulfide (DMD) (Scheme 4.1) were determined from mass balance; [SMDs + DMD] = 

[cT20-T21]o –([cT20-T21]t + [rT20-T21]t)  as synthetic peptide standards for SMDs and 

DMD were not available. For T20-T21pep, the same mass balance equation described above 
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was used for quantitation. In the presence of GSH (Table 4.2), SMDs and DMD and rT20-

T21 were formed via thiol-disulfide exchange of the native bond in cT20-T21 (Scheme 4.1; 

Figure 4.9a). Though similar products (SMDs, DMD and rT20-T21) were observed for the 

reaction of cT20-T21 with all free thiols (Figure 4.10), the time courses of product 

distribution differed. As in hGH, the native disulfide was regenerated in cT20-T21 after 1 

day (Table 4.6).  

Thiol-disulfide exchange in T20-T21pep: Disulfide bond cleavage in T20-T21pep via 

thiol-disulfide exchange resulted in the formation of mixed disulfides with GSH (T20-S-

S-G & T21-S-S-G), free thiols (T20 & T21) and trace amounts of homodimers (T20-T20 

& T21-T21) (Figure 4.9b). At the end of 2 days, T20-T21pep was consumed completely, 

unlike thiol-disulfide exchange studies with cT20-T21 and hGH in which the native 

disulfides were regenerated. These results obtained with disulfide-linked peptides suggest 

that the higher order structure influences reactivity, making the native disulfides less 

accessible to attack by a thiolate anion in hGH (determined by % loss of native disulfide 

shown in Table 4.6) but does not inhibit the reaction completely. Thus, proximity of thiol 

groups to a disulfide bond (dictated by peptide/protein structure) determines the type of 

disulfide bond (intra vs. inter) that can be re-formed. The presence of an Arg residue 

adjacent to Cys in the thiol influences the rate and extent of regeneration.  
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A 

 

B 

 

Figure 4.9: Concentrations of species for the reaction of cT20-T21/T20-T21pep with GSH 
at pH 7.0 (10 mM phosphate buffer) and 37 oC (n=3, +/- SD), initial molar ratio of GSH: 
cT20-T21/T20-T21pep was 100:1. A) Concentrations of cT20-T21 (♦), rT20-T21 (■) and 
SMDs + DMD (▲). B) Concentrations of T20-T21pep (♦), T20 (■), T21 (●) and mixed 
disulfides (▲). T=0 min represents concentration of native disulfide (cT20-T21/T20-
T21pep) before initiation of reaction by adjusting the pH to 7.0.  Lines on plot are to improve 
readability and do not represent regression analysis. 
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Figure 4.10: Distribution of cT20-T21 (♦), rT20-T21 (■) and SMDs+DMD (▲) for the 
reaction of cT20-21 with A) T20a, B) CR, C) RCR, D) QCR and E) C and F) T20 at pH 
7.0 and 37 oC in 10 mM PB (0.08 M ionic strength, 0.5 mM EDTA and N2 sparged). T=0 
min represents sample collected before reaction was initiated by adjusting pH to 7.0, thiol: 
disulfide ratio was 100: 1 (molar ratio).  
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Table 4.6: The change in native disulfide concentration in peptides and hGH obtained after 1 hour 
and 1 day for thiol-disulfide exchange reactions with different free thiols at pH 7.0 and 37 oC.  
 

 

4.6.4 Effect of hGH structure on regeneration of native disulfide 

To measure the extent of loss of hGH native structure upon disulfide bond cleavage 

breakage, and to correlate the regeneration of native disulfides following thiol-disulfide 

exchange, near-UV CD spectroscopy and amide HDX-MS were conducted for hGH in both 

oxidized and reduced states. Near-UV CD showed no appreciable differences in tertiary 

structure between the native and reduced forms (Figure 4.11).  

HDX-MS has been widely used to study protein structure and conformation at 

peptide level resolution [183]. Here, a total of 31 peptic peptides covering 100% of hGH 

sequence were identified and analyzed. Comparison of the level of deuterium uptake 

between the native and reduced state showed no appreciable differences (Figure 4.12), 

suggesting that hGH retains its native structure after disulfide bond cleavage. The C-

terminal peptide fragment, 182-191 containing the two cysteine residues (C182 and C189) 

are involved in disulfide formation is ~ 50% deuterated in both the native and reduced 

Disulfide Thiol pH Temp (oC)
% decrease of native 
disulfide after 60 mins

% decrease of native 
disulfide after 1 day

GIVQCR (T20a) 61.9±4.8 53.7±1.7

IVQCR (T20) 70.5±1.1 64.5±1.2

GSH 84.7±3.5 76.8±1.2

RCR 49.9±0.1 23.9±0.1

QCR 59.2±1.3 39.3±0.5

CR 66.2±0.9 8.3±0.5

C 57.3±0.4 13.7±0.2

GIVQCR (T20a) 37.5±6.8 37.1±5.8

GSH 57.7±6.1 23.9±4.4

RCR 35.8±7.9 11.4±1.4

CR 20.7±5.5 6.8±1.8

C 16.7±0.5 3.8±2.6

37

37

cT20-T21

T20-T21 in 
hGH (intact)

7

7
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states. Similarly, peptide fragment 47-53 containing C53 and fragment 160-172 containing 

C165 showed 53% and 38% deuterium uptake, respectively. Subtractive analysis of peptide 

fragments 160-172 and 166-175 shows that residues 160-165 are more than 60% deuterated. 

Overall, the near-UV CD and HDX-MS results suggest that the disulfide containing regions 

in hGH are highly solvent accessible and that the structure of fully reduced hGH is close 

to the native state. This suggests that the regeneration of native disulfide bonds following 

disulfide exchange may be favored by the orientations of the native Cys partners in close 

proximity to one another. 

 

 

Figure 4.11: Near-UV CD spectra for hGH native (solid line) and reduced (dotted line). 
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Figure 4.12: Crystal structure of hGH (PDB ID: 1 HGU) representing the percent 
deuterium uptake in native (A) and reduced (B) state following 5 min of HDX. Data from 
31 overlapping peptic fragments were mapped onto the structure. 
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Scheme 4.1: Thiol-disulfide exchange at the C-terminal disulfide bond (T20-T21) in 
hGH/disulfide bond in cT20-T21; R-S- is the thiolate form of the free thiol-containing 
peptide (Table 4.2) and R-S-S-R is the oxidized form. The blue dashed lines represent a 
trypsin cleavage site in hGH.  
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Figure 4.13: Concentration vs time plot for the loss of cT20-T21 (n=3, +/- SD) during the 
reaction with GSH, CR, RCR, QCR and C at pH 7.0 and 37 oC in 10 mM PB (0.08 M ionic 
strength, 0.5 mM EDTA and N2 sparged). Initial thiol: disulfide was 100:1 (molar ratio). 
Lines on plot are to improve readability and do not represent regression analysis.  
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4.7 Discussion 

 

In the studies reported here, thiol-disulfide exchange reactions between intact 

hGH/cT20-T21/T20-T21pep and free thiol-containing peptides (Table 4.2) were 

investigated in aqueous solution at pH 7.0 and 37 oC. The amino acid sequences of native, 

scrambled and free thiol containing peptides and their masses are shown in Tables 4.1, 4.2, 

4.3, 4.4, 4.5 and C.2. From our previous studies with hGH-derived peptides [69, 181] and 

other reports [45, 71], it is well known that thiol-disulfide exchange is favored at neutral to 

alkaline conditions. Although thiol-disulfide exchange was observed at both the native 

disulfides in hGH (T20-T21 and T6-T16), quantitative analysis of disulfide scrambling was 

performed only for the C-terminal disulfide.  

After purification, hGH was digested using the Perfinity flash digest kit and 

analyzed using LC/MS for the presence of native, scrambled disulfides and free thiols. 

Perfinity digestion was compared with overnight digestion with trypsin in solution and 

with digestion with trypsin immobilized on magnetic and agarose beads to determine 

digestion efficiency (Table C.1, Appendix C). For all digestion protocols except the flash 

digest kit, scrambled disulfides were detected and digestion was incomplete after 60 min 

(Table C.1). In contrast, digestion with the flash digest kit was complete in 17 min and no 

scrambled disulfides were detected.  

For the reaction of hGH with different thiol-containing peptides, products generally 

conforming to Scheme 4.1 were detected (except intermolecular disulfides), and the 

distribution of these species varied with reaction time. Mixed disulfides were detected at 

both the disulfide bonds (T20-T21 and T6-T16) and fully reduced forms of the native 
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disulfides (Table 4.1) were also observed. The reactivity of the C-terminal native disulfide 

(T20-T21) in hGH decreased in the order GSH>T20a>RCR>CR≈C and regeneration of 

native disulfides was favored over the formation of mixed disulfides in the order 

C≈CR>RCR>GSH>T20a (Table 4.6). Though most of the native disulfides were 

regenerated in the presence of GSH (75-80%), RCR (85-90%), CR (92-95%) and C (94-

99%), the presence of even low levels of mixed disulfides may be detrimental to the 

therapeutic efficacy and stability of hGH, given the functional roles of the two native 

disulfide bonds. The C-terminal disulfide bond (T20-T21) is required for binding to the 

growth hormone receptor and to maintain normal stability, while the disulfide bond in T6-

T16 is necessary for biological activity [91].  

The concentration of hGH can also influence thiol-disulfide exchange and/or 

disulfide scrambling, though these effects were not investigated here.  For example, in 

studies of porcine somatotropin (porcine hGH), disulfide exchange led to the formation of 

irreversible thixotropic gels (disulfide-linked aggregates) at concentrations > 25 mg/mL 

during storage at 39 oC for 14 days [184]. Initial concentrations used in our studies range 

from 0.3 to 0.45 mg/mL, concentrations  ~ 100-fold lower than those used by Buckwalter 

et al. High hGH concentrations within the secretory granules (50-100 mg/mL) also favor 

intermolecular exchange and result in the formation of disulfide-linked dimers and 

oligomers [137, 185]. Due to the low yield of hGH purified in-house (<0.6 mg/mL) and 

the cost of commercially available hGH, studies at higher concentrations were not practical 

here, and the absence of any intermolecular disulfides (Table C.2 in Appendix C) may 

reflect low hGH concentrations.  
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SMDs, DMD and rT20-T21 were identified as products of the reaction of cT20-

T21 with all the free thiol-containing peptides (Table 4.2). Oxidation products such as 

cysteine sulfenic, sulfinic and sulfonic acid and thiosulfinates were not detected, and 

Scheme 4.1 effectively describes the products observed. Overall, the loss of native disulfide 

in cT20-T21 after 60 min decreases in the order GSH>T20>CR>T20a>QCR>C>RCR and 

regeneration of native disulfide is favored after 1 day in the order 

CR>C>RCR>QCR>T20a>T20>GSH. The amino acid length of all peptides used here 

ranges from 1-5. The results suggest that thiol size in this range has no effect on reactivity. 

In contrast primary sequence, particularly the presence of Arg adjacent to a Cys, promotes 

the reformation of the native disulfide. The loss of native disulfide (% loss in 60 min) in 

cT20-T21 is greater than the loss of native disulfide (T20-T21) in hGH with GSH, T20a, 

RCR, CR and C (Table 4.6).  

Native disulfides in hGH were re-formed in the presence of GSH, RCR, CR, C and 

to a lesser extent with T20a. Rabenstein et al. made a similar observation with somatostatin 

and GSH. At concentrations of GSH less than 4 mM, Rabenstein et al observed that the 

rate of thiol-disulfide exchange to re-form the native disulfide was faster than the rate of 

thiol-disulfide exchange to form the fully reduced form [119]. The authors also concluded 

that the conformational properties of the mixed disulfides may place the mixed disulfide in 

close proximity to the thiol group that then regenerates the native disulfide. Similar results 

have been reported for the reaction of small heat shock protein 25 (Hsp25) with GSH, 

where the formation of an intersubunit protein disulfide (native disulfide) is preferred over 

the mixed disulfides [67]. Here, near-UV CD and HDX-MS of both reduced (with BME) 

and non-reduced hGH (Figures 4.11 and 4.12) showed no differences in higher order 
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structure, thus favoring regeneration of native disulfides. Youngman et al. have shown that 

folding of hGH is similar in the presence and absence of disulfide bonds [151], further 

suggesting that disulfide bond reduction does not affect protein structure.  

Regeneration of native disulfides was fastest in the presence of RCR, CR and C. 

For the reaction of hGH with C, formation of mixed disulfides was minimal and most of 

the native disulfide remained intact (no thiol-disulfide exchange at T6-T16) after 60 mins 

and 1 day. Previously, Raman et al. have shown that the Cysteine/Cystine redox system is 

more efficient in the oxidative folding of high concentrations (0.05 mg/mL) of lysozyme 

when compared to GSH/GSSG [186]. Though only Cysteine was added to the studies here, 

oxidation of Cys over time can result in the formation of Cystine thus providing a 

Cystine/Cystine redox system. This observation with lysozyme and our results suggest that 

Cys favors the formation of native disulfides over mixed disulfides such that the rate of 

formation of mixed disulfides << the rate of regeneration of native disulfides, attributing 

to the detection of only one of the mixed disulfides (T21-C). Also, the thiol group in Cys 

itself has a low pKa (8.3) that would make it a better leaving group.  

With RCR and CR, the presence of a positively charged group adjacent to the Cys 

would be expected to increase reactivity of the thiol group by lowering thiol pKa. A thiol 

group with low pKa makes a better leaving group [61] as the charge stabilizes the thiolate 

form over the mixed disulfide [62] thus favoring reformation of native disulfides in both 

cT20-21 and hGH. The presence of an Arg adjacent to Cys182 in growth hormone is highly 

conserved among different species; the positively charged residue lowers pKa of the thiol 

group making it the most reactive of the four Cys residues [137].  Having two Arg residues 

flanking the reactive Cys not increase reactivity over having just one, however; similar 
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reactivities of CR and RCR were observed for cT20-T21 (Figure 4.13). However, with 

QCR, the regeneration is not as fast as it is with RCR and CR (Figure 4.13). In agreement 

with the results obtained here, Okumura et al. observed that with a glutathione derivative, 

RCG (oxidized and reduced), prouroguanylin folded into its native conformation more 

efficiently than with GSH [187]. The increase in folding efficiency was attributed to the 

presence of a positive charge (from Arg) adjacent to the Cys residue. T20a is similar in 

sequence to the tryptic fragment, T20, in hGH and this could explain why the native 

disulfide in cT20-T21 and hGH (Table 4.6) is not regenerated faster than with GSH as 

observed for other peptides with a neighboring Arg.  

The unified software package DiANNA was used to determine the Cys state in all 

the free thiol-containing peptides to gain a better understanding of the observed differences 

in reactivities. The algorithm predicts the susceptibility of Cys residues to either participate 

in a disulfide bond or to be in the reduced state with 76-81 % accuracy [188]. Scores 

obtained for the different peptides used to initiate thiol-disulfide exchange are shown in 

Table 4.7. A higher score corresponds to an increased susceptibility to be in that state. The 

lowest scores for half Cys were obtained for C and CR, suggesting that in the presence of 

these thiols, regeneration of the native disulfide will be favored over mixed disulfides, in 

accordance with the results obtained here (Figure 4.13). However, similar half Cys scores 

were obtained for RCR, QCR and GSH and no correlations could be made to the results 

reported here. rT20-T21, reduced form of cT20-T21 had the highest half Cys score, 

suggesting that the disulfide bond in cT20-T21 would be favored over its reduced form or 

a mixed disulfide with another free thiol-containing peptide. The differences in peptide 

reactivity between DiANNA scores and the reactivities reported here suggest that, in 
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addition to the influence of primary structure on thiol pKa, higher order structure also plays 

a role and can determine the type of disulfide bond that can be regenerated.  

 

Table 4.7: Oxidation state prediction for thiol-containing peptides using DiANNA 

 

 

4.8 Conclusion 

 

The studies reported in this chapter using intact hGH, disulfide-linked and free 

thiol-containing peptides as model compounds, demonstrate that higher-order structure, 

proximity of thiols to a disulfide and primary structure influence thiol-disulfide exchange. 

Higher-order structure was found to protect the native disulfides to some extent, however, 

thiol-disulfide exchange still occurs at both the native disulfides in intact hGH. Loss of the 

native disulfides in hGH did not result in structural changes as observed using CD and 

HDX. Regeneration of the native disulfide was favored in the presence of peptides that 

contain an Arg residue adjacent to the reactive Cys for both hGH and a cyclic peptide 

Peptide Free Cys Half Cys

C 0.869 0.131
CR 0.835 0.165

RCR 0.711 0.289
QCR 0.799 0.201
GSH 0.798 0.202
T20 0.608 0.392
T20a 0.692 0.308

rT20-T21 0.546 0.454
values represented as scores obtained using DiANNA
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(cT20-T21). These results provide an improved understanding of thiol-disulfide exchange 

reactions in hGH and are valuable to the development of protein drugs that contain 

disulfide bonds.   
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CHAPTER 5. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

In order to improve stability of therapeutic proteins during the manufacturing 

process and storage, it is important to understand the mechanisms of degradation pathways 

both in aqueous solution and in the solid state. These deleterious degradation reactions can 

significantly affect the therapeutic value of proteins. The studies reported in this 

dissertation have elucidated the mechanism of one such pathway, thiol-disulfide exchange, 

in human growth hormone. Model tryptic peptides derived from hGH were used to 

investigate reaction mechanisms and kinetics in Chapters 2 and 3, providing mechanistic 

details on the reaction in the absence of higher order structure and other degradation 

pathways. Chapter 4 provided insight into the effects of higher-order structure on thiol-

disulfide exchange using intact hGH as a model protein. 

 

5.1 Thiol-disulfide exchange in aqueous solution (Chapter 2) 
 

The results presented in chapter 2 demonstrated that in aqueous solution, 

microscopic rate constants for thiol-disulfide exchange are pH independent while the 

observed rate constants for the loss of native disulfide are pH dependent. Further, thiol-

disulfide exchange follows Arrhenius behavior and the calculated activation parameters 

are similar to previous reports in the literature for low-molecular weight thiols and proteins 

[71]. The activation energy values for all four reversible thiol-disulfide exchange reactions
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(R3 and R4, Scheme 2.1) were similar suggesting that they are all essentially the same 

reaction. The negative entropy of activation values that were obtained (Table 2.3) for thiol-

disulfide exchange reactions (R3 and R4, Scheme 2.1) are representative of SN2 

nucleophilic displacement reactions. Though the presence of oxidation suppressants 

(EDTA and N2 sparging) did not completely inhibit oxidation reactions (R5 and R6, 

Scheme 2.1), the oxidation reactions did not affect the intrinsic rates of thiol-disulfide 

exchange. Finally, peptide secondary structure was shown to influence reactivity of the 

disulfide bond; loss of native disulfide in the linear peptide was ~10-fold greater than in 

the cyclic peptide.  

 

5.2 Thiol-disulfide exchange during lyophilization and storage in the solid state 

(Chapter 3) 

 

These studies explored the effects of a process stress (lyophilization) and 

subsequent storage in the solid state on thiol-disulfide exchange in hGH-derived peptides. 

The results from Chapter 3 demonstrate that the mechanism of thiol-disulfide exchange is 

similar in aqueous solution and in the solid state. However, differences in reaction rates 

and distribution of products were observed. Further, peptide cyclization offered little or no 

protection from thiol-disulfide exchange during lyophilization and storage. Increased 

reactivity of the cyclic peptide in the solid state shows that lyophilization may not always 

be a suitable approach to improve the stability of peptide and protein formulations. This 

information is valuable to the pharmaceutical industry, especially when protein 

formulations are switched from solution to the solid state with the assumption that they are 
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more stable during storage in the solid state. The ‘cold finger’ was used to study adsorption 

of peptides and proteins to ice surfaces and evaluate the role of surfactants in protein 

formulations where ice-induced degradation is suspected. A general reaction scheme for 

the reaction of linear or cyclic peptides that contain disulfide bonds with a free thiol 

(Scheme 3.3, Chapter 3) was also proposed. This reaction scheme can be used as a guide 

to identify scrambled species when the reactive thiol group and disulfide-containing moiety 

(linear or cyclic) are known. The relative rates of these reactions may vary between solution 

and the solid state and will be influenced by the type of thiol/disulfide, pH and temperature.  

 

5.3 Thiol-disulfide exchange in human growth hormone (Chapter 4) 

 

The results presented in Chapter 4 show that thiol-disulfide exchange also occurs 

in intact hGH in the presence of reactive thiolate anions. By using the Perfinity flash digest 

protocol, scrambled disulfides were not produced during digestion, allowing analysis of 

hGH samples. However, scrambling may occur during digestion for proteins that have a 

free Cys in their native form (not tested here) and suitable alkylating agents need to be 

evaluated for their ability to minimize disulfide exchange in parallel with their effect on 

digestion efficiency and digestion times.  

For the protein concentrations tested here, no intermolecular or intramolecular 

disulfides were detected. Protein mixed-disulfides were detected with GSH, free thiol-

containing peptides and cysteine. However, most of the native disulfide was regenerated at 

the end of one day. A similar trend was observed with the cyclic peptide, suggesting that 

the proximity of free Cys residues in hGH and cT20-T21 favors reformation of the native 
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disulfide.  Overall, loss of native disulfide in cT20-T21 and T20-T21pep was greater than 

loss of native disulfide in hGH. Further, the presence of an Arg residue neighboring the 

reactive Cys was found to favor regeneration of the native disulfide over GSH. Together, 

the results suggest that protein higher order structure and peptide secondary structure 

influence thiol-disulfide exchange. 

  

5.4 Recommendations for future work 

 

The stabilizing effects of excipients on thiol-disulfide exchange are not well known; 

this is an area for future investigation.  A previous report of thiol-disulfide exchange 

examined the effect of sucrose on the reaction during lyophilization [129]. Though some 

protection was observed during the freezing and primary drying steps, loss of native 

disulfide during secondary drying in the presence of sucrose was similar to vials 

lyophilized without sucrose [129]. It would also be interesting to study thiol-disulfide 

exchange in intact hGH in the solid state both in the presence and absence of excipients, 

since hGH is known to undergo structural changes upon lyophilization. Though an 

excipient may have a stabilizing effect on thiol/disulfide mediated degradation, it may 

facilitate degradation via a different mechanism. Thus, the compatibilities of excipients 

with different proteins and potential degradation pathways (both physical and chemical) 

have to be carefully assessed in aqueous solution and in solid-state formulations.  

The effects of glass transition temperature (Tg) and moisture content on thiol-

disulfide exchange were not investigated here. Incorporation of some excipients in 

formulations will increase Tg, thus improving storage stability while others may have a 
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negative effect (e.g., low Tg, change in pH and/or loss of structure). The moisture content 

of lyophilized peptide samples in Chapter 2 was 1-1.5% immediately after lyophilization 

and after storage for 14 days.  Even with such low moisture content, the cyclic peptide 

degraded more rapidly in the solid state than in solution samples. It is possible that as the 

moisture content increases, sample dilution with water molecules protects the native 

disulfide bond from thiol-disulfide exchange as reported previously for recombinant 

human albumin [95]. Thus, studies relating the kinetics of thiol-disulfide exchange and the 

kinetics of water sorption are needed, in order to identify the particular moisture content 

that can lead to protein instability.  

The results obtained in Chapter 4 with intact hGH showed that no structural changes 

were observed upon disulfide bond cleavage thus favoring regeneration of the native 

disulfide over inter-/intramolecular scrambled disulfides. Even though lyophilization is 

known to induce structural changes in hGH [101], denaturants (e.g., GdnHCl, urea), 

mechanical force and agitation may have different effects on higher-order structure that 

can result in an altered distribution of scrambled disulfides in the presence of reactive thiols. 

It would be interesting to monitor thiol-disulfide exchange in hGH with different 

denaturing agents/stresses and to identify conditions in which disulfide degradation is 

favored.   

The results reported in this dissertation can also be extended to understand the 

effects of primary structure and length of the attacking thiol groups on thiol-disulfide 

exchange. Though steric effects related to the size of the reactive nucleophile are known to 

influence reaction kinetics to a greater extent than the size of disulfide-containing moiety 

and/or the pH [179], this is still an area that has not been explored extensively as it has 
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been for deamidation in peptides and proteins [189, 190]. For example, the effects of amino 

acids flanking the Cys residue are not well understood except for the presence of an 

arginine, which was shown to favor regeneration of the native disulfides, as reported here 

and by Okumura et al [187]. Other positively charged amino acids such as His and Lys 

may have similar effects and are yet to be investigated. Another area for future work is to 

use the information presented here to study therapeutic proteins with similar and distinct 

higher order structures, e.g., using model peptides from a protein that is rich in β-sheets 

instead of α-helices.   

Finally, since serum is known to contain low molecular weight thiols such as Cys 

and GSH [72], the mechanistic details of thiol-disulfide exchange reported here can be 

extended to understand the reaction in therapeutic proteins in vivo after administration. 

Jiang et al. have used a continuous flow dialysis system to evaluate protein disulfide 

conversion [191]; a similar system can be used for other therapeutic proteins to evaluate 

the potential for loss of native protein disulfides. This can provide an insight into the 

formation of modified forms of the protein drug that may have altered properties. It is 

already known that monoclonal antibodies of the IgG4 class undergo Fab-arm exchange, a 

disulfide rearrangement phenomena, in serum and these modified molecules have been 

shown to have therapeutic effects that differ from those of the native protein. 

 

5.5 Implications for protein formulation 

 

The results obtained in Chapter 3 with both the linear and cyclic peptides suggest 

that lyophilization at near neutral pH does not inhibit thiol-disulfide exchange. A common 
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approach to inhibiting thiol-disulfide exchange and β-elimination is to formulate proteins 

and peptides that contain thiols and disulfides at low pH prior to lyophilization, followed 

by reconstitution in near neutral buffer before administration. Low pH prior to 

lyophilization has been shown to arrest β-elimination in insulin during storage in the solid 

state [79]. This approach may work well for some proteins when compared to others 

depending on inherent protein stability at low pH. Thermal stability of proteins varies with 

pH [192] and may further facilitate disulfide-mediated degradation events during and after 

lyophilization. Overall, the effect of pH on the conformational stability of a protein and 

excipients must be well understood before this approach can be employed.  

Another stabilization strategy is to use excipients in peptide and protein 

formulations before lyophilization. In the absence of excipients, proteins can undergo 

structural changes during processing that may favor thiol and/or disulfide-mediated 

degradation. For example, upon structural changes, a buried Cys residue may be exposed 

to oxidative agents or be brought in close proximity to a native disulfide bond resulting in 

the formation of intermolecular bonds, high molecular weight aggregated and/or non-

native intramolecular disulfides. Increasing the buffer concentration is another strategy that 

can be used to control thiol-disulfide exchange. The buffer concentrations tested in the 

studies reported here (10 – 40 mM) did not have a significant effect on thiol-disulfide 

exchange in the linear peptide (Chapter 2). However, in a study with bovine serum albumin, 

disulfide-mediated aggregation was reduced when 1 M sodium phosphate was added to the 

initiating buffer (5 mM phosphate, 150 mM NaCl, pH = 7.3). A possible explanation for 

the observed reduction is that phosphate anions prevent the attack of thiolate anions on the 

disulfide bond [96].  
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For proteins that contain free thiols such as human serum albumin, protein tyrosine 

phosphatases and recombinant human α1-antitrypsin, thiol derivatizing agents and protein 

engineering approaches can be employed to retain biological activity and improve stability 

[3].  These approaches are discussed in detail in Chapter 1 and can be used when the free 

Cys residues are known to have no functional role. Thiol derivatization, however, is not a 

suitable strategy for proteins where the role of Cys is unknown. Derivatization restricts free 

thiol content and will minimize thiol-catalyzed and thiol-disulfide exchange reactions 

during lyophilization and storage. Protein concentration may also influence the formation 

of disulfide-linked aggregates. For example, at high concentrations of porcine 

somatotropin (>25 mg/mL), disulfide-linked aggregates were detected at 39 oC after 14 

days during storage [184]. Optimizing protein concentrations to a range that delivers an 

effective dose and provides stability during storage is essential to developing safe and 

effective protein therapeutics.  

The presence of oxygen, metal ions (CuII and FeIII) and reactive oxygen species 

(ROS) such as peroxides, superoxide and hydroxyl radical can result in the formation of 

sulfenic, sulfinic and sulfonic acids and thiolsulfinate or a new non-native disulfide bond 

[140, 193, 194]. Although oxidative pathways were found to have no effect on the intrinsic 

rates of thiol-disulfide exchange (Chapter 2), these products of oxidative pathways can 

diminish the therapeutic efficacy of protein and peptide drugs that contain free thiols. 

Nitrogen sparging and storage of protein formulations in a nitrogen atmosphere will inhibit 

O2-mediated oxidative pathways. Some common excipients like polyvinyl pyrrolidone and 

polyethylene glycol contain peroxides as impurities. These excipients should be excluded 

from protein formulations and suitable antioxidants can be employed as stabilizers when 
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peroxides are detected. If metal-catalyzed thiol oxidation is suspected, EDTA can be used 

as a metal ion chelator to stabilize thiol containing peptides and proteins. In some cases 

however, the presence of transition metal cations (Cu2+) can be beneficial when used as an 

oxidizing agent to minimize free thiol groups prior to lyophilization [78].  The addition of 

divalent metal ions (Cu2+) catalyzed thiol oxidation at a rapid rate relative to thiol-disulfide 

exchange and stabilized insulin from aggregation [78]. 
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Appendix A: Data modeling with SCIENTIST® 

// Micromath Scientist Model File for the reaction of T20 with T20-T21 at pH 7.0 in 
aqueous solution 
 
IndVars: T 
DepVars: T20,T21,T20T20,T21T21,T20T21,T20S,T21S 
Params: K1,K2,K3,K4,K5,pKa,pKb 
 
T20T20' = K1*T20S*T20T21-K2*T20T20*T21S+K5*T20S*T20S*T20S*T21S 
T21T21' = K3*T21S*T20T21-K4*T21T21*T20S 
T20T21' = - K1*T20S*T20T21 + K2*T20T20*T21S - K3*T21S*T20T21 +       
K4*T21T21*T20S+K5*T20S*T20S*T20S*T21S 
T20' = -K1*T20S*T20T21+K2*T20T20*T21S+K3*T21S*T20T21-K4*T20S*T21T21-
K5*T20S*T20S*T20S*T21S 
T21' = K1*T20S*T20T21-K2*T20T20*T21S-K3*T21S*T20T21+K4*T20S*T21T21-
K5*T20S*T20S*T20S*T21S 
 
 
//Parameter values: 
K1 = 0.0004 
K2 = 0.0006 
K3 = 0.0002 
K4 = 0.0006 
pKa = 8.3 
pKb = 8.3 
 
// Initial conditions: 
T = 0.0 
T20 = 350.00 
T20T21 = 250.00 
T21 = 0.0 
T20T20 = 0.0 
T21T21 = 0.0 
T20S = T20/(1+((10^(-7))/(10^(-pKa)))) 
T21S = T21/(1+((10^(-7))/(10^(-pKb)))) 
 
 
 

 

 



193 
 

 

Appendix B: SGA and DSC measurements for lyophilized samples 

 

Figure B.1: VTI data for lyo sample (T20 and cT20-T21, pH 7.0, 10 mM PB, 0.08 M ionic 
strength and 0.5 mM EDTA) collected on SGA-100 (VTI Corporation, Hialeah, FL). Data 
was measured at 0% RH and at 25 oC at the end of secondary drying. 
 

  

Figure B.2: DSC data for lyo sample (T20 and cT20-T21, pH 7.0, 10 mM PB, 0.08 M 
ionic strength and 0.5 mM EDTA) collected on DSC Q-2000 (TA instruments, New Castle, 
DE).  
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Appendix C: Purification and digestion optmization of hGH 

rhGH was purified from E.coli after cell harvesting using the protocol shown in the flow 

chart below.  

 

Figure C.1: Flow chart showing purification steps for hGH from the cell pellet. Buffers 
used for each step are shown in boxes and amount of each buffer added are in green next 
to the boxes.  

 

Cell pellet

Sonication

Solubilization 
of inclusion 
bodies

Dilution

Refolding with 
dialysis

Gel filtration

4 cycles

100 mM Tris.HCl
2 M Urea
pH 12.5

50 mM Tris.HCl 5% sucrose 
2 M Urea                       3 mM GSH
0.5 mM EDTA               0.6 mM GSSG
10% glycerol                 pH 8.0

50 mM Tris.HCl
100 mM NaCl
5 mM EDTA
pH 8.0

50 mM Tris.HCl
1% DOC
pH 8.5

50 mM Tris.HCl
pH 8.5

1 cycle 2 cycles 1 cycle

50 mM Tris.HCl
1 M Urea
0.5 mM EDTA
2% sucrose
pH 8.0

50 mM Tris.HCl
0.5 M Urea
0.5 mM EDTA
2% sucrose
pH 8.0

50 mM Tris.HCl
0.5 mM EDTA
2% sucrose
pH 8.0

50 mM Tris.HCl
2% sucrose
pH 8.0

Day 2 Day 3 Day 4

Day 1

Day 1 (O/N)

Day 5

Add 10 or 5 mL

Add 40 or 45 mL

Add 50 mL

2.5 L for dialysis

2 L for column 
equilibration and elution
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Table C.1: Comparing different digestion protocols for hGH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Digestion protocol Disulfide 
scrambling

Digestion complete 
in less than 60 mins

Trypsindigestion in 
solution Y N

Trypsin immobilized 
on magnetic beads Y N

Trypsin immobilized 
on agarose beads Y N

Perfinity flash digest 
protocol N Y
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Table C.2: Amino acid sequence of all possible scrambled intra-and intermolecular 
disulfide-linked peptides from hGH. 
 

 
nd- not detected 

 

 

 

Tryptic peptide Description Amino acid sequence Theoretical
mass (Da)

Observed
mass (Da)

T6-T20
Scrambled
disulfide-

linked peptide

NH2- YSFLQNPQTSLCFSESIPTPSNR-OH

NH2- IVQCR-OH

3230.549 nd

T6-T21

Scrambled
disulfide-

linked peptide

NH2- YSFLQNPQTSLCFSESIPTPSNR-OH

NH2- SVEGSCGF-OH

3397.523 nd

T16-T20

Scrambled
disulfide-

linked peptide

NH2- NYGLLYCFR-OH

NH2- IVQCR-OH

1762.865 nd

T16-T21

Scrambled
disulfide-

linked peptide

NH2- NYGLLYCFR-OH

NH2- SVEGSCGF-OH

1929.839 nd

T6-T6

Homodimer,
Scrambled
disulfide-

linked peptide

NH2- YSFLQNPQTSLCFSESIPTPSNR-OH

NH2- YSFLQNPQTSLCFSESIPTPSNR-OH

5228.45 nd

T16-T16

Homodimer,
Scrambled
disulfide-

linked peptide

NH2- NYGLLYCFR-OH

NH2- NYGLLYCFR-OH

2293.081 nd

T20-T20

Homodimer,
Scrambled
disulfide-

linked peptide

NH2- IVQCR-OH

NH2- IVQCR-OH

1232.648 nd

T21-T21

Homodimer,
Scrambled
disulfide-

linked peptide

NH2- SVEGSCGF-OH

NH2- SVEGSCGF-OH

1566.597 nd
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