
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

January 2015

Scaling Up Network Analysis and Mining: Statistical Sampling, Scaling Up Network Analysis and Mining: Statistical Sampling,

Estimation, and Pattern Discovery Estimation, and Pattern Discovery

Nesreen Kamel Ahmed
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Ahmed, Nesreen Kamel, "Scaling Up Network Analysis and Mining: Statistical Sampling, Estimation, and
Pattern Discovery" (2015). Open Access Dissertations. 1445.
https://docs.lib.purdue.edu/open_access_dissertations/1445

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1445&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1445?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1445&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form 30
Updated 1/15/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
 Head of the Departmental Graduate Program Date

Nesreen Kamel Ahmed

Scaling Up Network Analysis and Mining: Statistical Sampling, Estimation, and Pattern Discovery

Doctor of Philosophy

Jennifer Neville
Chair

Christopher W. Clifton

Walid G. Aref

Sonia Fahmy

Jennifer Neville

Sunil Prabhakar / William J. Gorman 07/09/2015

SCALING UP NETWORK ANALYSIS AND MINING:

STATISTICAL SAMPLING, ESTIMATION, AND PATTERN DISCOVERY

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Nesreen K. Ahmed

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2015

Purdue University

West Lafayette, Indiana

ii

To my mother and the loving memory of my father

They are the ones who made me who I am today

iii

ACKNOWLEDGMENTS

I am extremely thankful and honored to be surrounded by so many exceptional and

inspirational people. I believe words are not enough for expressing my gratitude to them.

First and foremost, I am extremely fortunate to have my PhD advisor Jennifer Neville, for

her continuous support, insightful feedback, invaluable advice over the years of my PhD

journey, and for challenging me and encouraging me to find my way as a researcher. I can

never thank my PhD committee members enough for their support and guidance. I am

very grateful to Sonia Fahmy, Chris Clifton, and Walid Aref, for their invaluable feedback

and advice that improved my dissertation and their encouragement over the years. I am

thankful for them for always finding new ways to consider a problem.

I have had enjoyable, rewarding discussions, and collaborations with many professors

during my PhD. I was very fortunate to work with Ramana Kompella, and I am extremely

grateful for his guidance that ultimately helped me become a better researcher. I am

particularly indebted and honored to have the opportunity to work with Nick Duffield.

Nick has been a great mentor to me and I learned a lot from him. I can never thank Nick

enough for his continuous guidance, support, and encouragement.

I specially like to thank Ahmed Elmagarmid, Greg Frederickson, Alan Qi, SVN Vish-

wanathan, Luo Si, David Gleich, and Susanne Hambrusch for all their support and guidance.

I am very grateful for Mohammad Al Hasan for his kind nature, advice, and collaboration.

Special thanks to Dr. Groman for his support, advice, and guidance during my PhD.

Special thanks to Sebastian Moreno, Dan Zhang, Mohamed Yakout, Tao Wang, Hyokun

Yun, Rongjing Xiang, Hoda Eldardiry, Timothy La Fond, Joel Pfeiffer, Hogun Park, Iman

Alodah, Praveen Kumar, Camille Gaspard, Sait Celebi, Suvidha Kancharla, Ellen Lai,

Giselle Zeno, Pablo Granda, Jiasen Yang, Jason Meng, Ahmed Aly, and many others, for

the interesting discussions and the great times during conferences and/or meetings.

I feel very grateful to have had the opportunity to work closely with top researchers in

a variety of industrial labs. I am especially fortunate and honored to have the opportunity

iv

to work with Ayman Farahat at Adobe Advanced Technology Labs. He has been a great

mentor to me and I am especially thankful for his often selfless support, encouragement,

and advice over the years.

In addition, I am especially fortunate to Robert Kuhn, my mentor at Intel, for his kind

nature, advice, and encouragement. Robert helped me to pursue new applications for data

mining beyond the traditional ones. I would also like to thank Al Mamunur Rashid for his

friendship, encouragement, and collaboration during my time at Intel.

During my time at Facebook, I am extremely fortunate to have had the opportunity to be

mentored by Rajiv Krishnamurthy. I am especially thankful for his help and encouragement

that gave me the strength to overcome many challenging problems that I encountered at

Facebook and beyond.

I feel eternally indebted to my early research advisor, Amir Atiya, who not only intro-

duced me to research in data mining and machine learning, but has significantly changed

my life in the process. Amir has been a great source of inspiration and true role model as

a researcher, mentor, and friend. I thank him for his relentless and selfless advice to tackle

difficult problems. His caring nature always gave me the strength to move forward even

during the tough times.

During my time at Purdue, I have built friendships that I hold closely to my heart. I

thank Nilothpal Talukder, Balamurugan Anandan, Hani Jibrin, Sohayla Jibrin, Lamis Be,

Ali Roumani, Muna Albasman, Sereen Al-Khalili, Ahmed Abdelhamid and many others. I

am indebted to Ryan Rossi for his friendship, encouragement, and collaboration.

Most of all, I owe my deepest gratitude to my family for their endless love and encour-

agement. Everything was possible due to their strong support. I dedicate this work to my

parents. My father has been always a continuous source of moral, joy, and support in my

life. I believe he is still with me and I hope I make him proud. My mother has been so self-

less in supporting me at all phases of my life and career. I am indebted to my sister Amany

and brothers Mohamed and Mustafa for their continuous support and encouragement over

the years. I have the best family anyone could ask for, and words will never be sufficient

for expressing my gratitude to my family.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

ABSTRACT . xiii

1 INTRODUCTION . 1

1.1 Challenges of Network Analysis and Mining 1

1.2 A Taxonomy of Network Sampling Methods 3

1.2.1 Classes of Network Sampling Methods 3

1.2.2 Spectrum of Computational Models 4

1.3 Problem Statement . 8

1.3.1 Sampling from Large Static Graphs 10

1.3.2 Sampling from Streaming Graphs 11

1.3.3 Big Graph Analytics and Unbiased Estimation 12

1.4 Contributions and Outline . 13

2 BACKGROUND . 15

2.1 Foundations and Notations . 16

2.2 Goals, Units, and Population of Networks 17

2.3 Classes of Sampling Methods . 20

2.4 Evaluation of Sampling Methods 22

2.5 Models of Computation . 27

2.6 Review of Related work . 31

2.6.1 Network Sampling in Social Science 31

2.6.2 Statistical Properties of Network Sampling 32

2.6.3 Network Sampling in Networked Systems 32

2.6.4 Network Sampling in Structured Data Mining 33

vi

Page

2.6.5 Graph Streams . 34

3 SAMPLING FROM LARGE STATIC GRAPHS 36

3.1 Motivation . 36

3.2 Two-Pass Stream Sampling . 37

3.3 Analysis of Sampling Bias . 39

3.3.1 Selection Bias Toward High Degree Nodes 39

3.3.2 Downward Bias Due to Sampling 41

3.4 Experiments . 44

3.4.1 Distance Metrics . 45

3.4.2 Statistical Distributions . 46

3.4.3 Comparison to Metropolis Graph Sampling 48

3.5 Network Sampling Designs for Relational Classification 53

3.5.1 Impact on Parameter Estimation 54

3.5.2 Impact on Classification Accuracy 57

3.6 Summary . 59

4 SAMPLING FROM STREAMING GRAPHS 61

4.1 Motivation . 61

4.2 Streaming Node Sampling . 62

4.3 Streaming Edge Sampling . 63

4.4 Streaming Topology-Based Sampling 64

4.5 Partially-Induced Edge Sampling (PIES) 65

4.6 Experiments . 68

4.6.1 Distance Metrics . 68

4.6.2 Statistical Distributions . 69

4.6.3 Analysis of Dense Versus Sparse Graphs 75

4.6.4 Analysis of Isolated Nodes 75

4.7 Sampling from Multigraph Streams 78

4.7.1 Kolmogorov-Smirnov Statistic 79

vii

Page

4.7.2 Statistical Distributions of Temporal Properties 80

4.7.3 Interplay between Graph Dynamics and Structure 82

4.7.4 Randomization Tests for Graph Streams 84

4.8 Summary . 85

5 SAMPLE & HOLD: A FRAMEWORK FOR BIG GRAPH ANALYTICS 86

5.1 Motivation . 86

5.2 Relation to Classic Sample and Hold 89

5.3 Framework for Graph Sampling . 90

5.3.1 Graph Stream Model . 90

5.3.2 Edge Sampling Model . 90

5.3.3 Subgraph Estimation . 91

5.4 Unbiased Estimation . 93

5.4.1 General Estimation and Variance 94

5.4.2 Edges . 95

5.4.3 Triangles . 95

5.4.4 Connected Paths of Length 2 96

5.4.5 Clustering Coefficient . 96

5.4.6 Nodes . 97

5.5 Graph Sample and Hold . 97

5.5.1 Algorithms . 97

5.5.2 Illustration with gSH(p,1) 99

5.6 Experiments . 100

5.6.1 Performance Analysis . 101

5.6.2 Confidence Bounds . 102

5.6.3 Comparison to Previous Work 106

5.6.4 Effect of p, q on Sampling Rate 108

5.6.5 Implementation Issues . 109

5.7 Related Work . 111

viii

Page

5.8 Summary . 113

6 FAST PARALLEL MOTIF COUNTING FOR LARGE GRAPHS 115

6.1 Motivation . 115

6.2 Motifs, Scalability, Applications . 116

6.3 Background . 118

6.3.1 Notations and Definitions 118

6.3.2 Relation to Graph Complement 121

6.3.3 Relation to Graph & Matrix Reconstruction Theorems . . . 121

6.4 Framework . 122

6.4.1 Searching Edge Neighborhoods 122

6.4.2 Counting Motifs of Size (k = 3) Nodes 123

6.5 Counting Motifs of Size (k = 4) Nodes 126

6.5.1 Motif State Transition Diagram 127

6.5.2 General Principle for Counting Motifs of size k = 4 128

6.5.3 Analysis & Combinatorial Arguments 131

6.5.4 Algorithm . 144

6.6 Experiments & Applications . 145

6.6.1 Scalability & Runtime . 146

6.6.2 Large-Scale Graph Comparison & Classification 149

6.6.3 Finding Large Stars, Cliques, and Other Patterns 150

6.7 Summary . 152

7 SUMMARY AND CONCLUSION . 163

7.1 Contributions . 164

7.2 Future Directions . 166

REFERENCES . 168

VITA . 181

ix

LIST OF TABLES

Table Page

2.1 Description of Network Statistics . 23

3.1 Characteristics of Network Data Sets 44

3.2 Comparison of the Maximum Kcore Number for Static Graphs 47

3.3 Comparison to Neighbor Reservoir Sampling 52

4.1 Comparison of the Maximum Kcore Number for Streaming Graphs . . 71

4.2 Comparison of Percentage of Isolated Nodes for All Sampling Algorithms 76

4.3 Average KS Distance for Stream Sampling Methods. 77

4.4 Average L1/L2 Distance for Stream Sampling Methods. 77

4.5 Characteristics of Multigraph Data Sets 78

5.1 Estimation on a Path of Length 3 . 99

5.2 Statistics of Data Sets . 100

5.3 Estimated Properties using Graph Sample & Hold 103

5.4 Coverage Probability for 95% Confidence Interval 106

5.5 Comparison to Streaming Triangles . 107

5.6 Runtime for Sampling and Estimation using gSH 110

6.1 Summary of Motif Notation and Properties 120

6.2 Runtime & Statistics for a Subset of 55 Networks 147

6.3 Accuracy of Graph Classification . 150

6.4 Statistics of Facebook100 Networks . 154

6.5 Statistics of Facebook100 Networks (Table 6.4 continued) 155

6.6 Statistics of Biological, Co-authorship & Interaction Networks 156

6.7 Statistics of Infrastructure, Strong Components & Social Networks . . 157

6.8 Statistics of Technological, Retweet, & Web Networks 158

6.9 Statistics of DIMACS Networks . 159

x

Table Page

6.10 Statistics of DIMACS Networks (Table 6.9 continued) 160

6.11 Statistics of Biological D& D Networks 161

6.12 Statistics of Chemical MUTAG Networks 162

xi

LIST OF FIGURES

Figure Page

1.1 Spectrum of Computational Models . 6

2.1 Illustration of Graph Streams . 29

3.1 Illustration of Original versus Sampled Degrees 43

3.2 Average Distance Across Six Static Graphs 46

3.3 Sampling Distribution of Facebook Graph 49

3.4 Sampling Distribution of HepPH Graph 49

3.5 Sampling Distribution of CondMAT Graph 49

3.6 Sampling Distribution of Twitter Graph 50

3.7 Sampling Distribution of Email-University Graph 50

3.8 Sampling Distribution of Flickr Graph 50

3.9 Sampling Distribution of LiveJournal Graph 51

3.10 Estimation of Class Prior . 56

3.11 Classification Accuracy Versus Sampling Fraction 58

3.12 Classification Accuracy Versus Proportion of Labeled Nodes 59

4.1 Average Distance Across Six Streaming Graphs 69

4.2 Stream Sampling Distribution of Pokec Graph 71

4.3 Stream Sampling Distribution of Facebook Graph 71

4.4 Stream Sampling Distribution of HepPH Graph 72

4.5 Stream Sampling Distribution of CondMAT Graph 72

4.6 Stream Sampling Distribution of Twitter Graph 72

4.7 Stream Sampling Distribution of Email-Univ Graph 73

4.8 Stream Sampling Distribution of Flickr Graph 73

4.9 Stream Sampling Distribution of LiveJournal Graph 73

4.10 Stream Sampling Distribution of Youtube Graph 74

xii

Figure Page

4.11 Stream Sampling Distribution of Web-Stanford Graph 74

4.12 Average KS Statistics for Dense and Sparse Graphs 75

4.13 KS distance as a Function of Stream Length 80

4.14 Distributions of Node Strength . 81

4.15 Distributions of Edge Weight . 81

4.16 Analysis of Node Strength Versus Node Degree 83

4.17 Randomization Tests for Multigraph Streams 84

5.1 Convergence Analysis of Graph Sample & Hold 105

5.2 Analysis of Sample and Hold Probabilities 109

6.1 4–node Motif Transition Diagram . 127

6.2 Illustration of Edge Neighborhood . 129

6.3 Runtime of Exact Motif Counting . 148

6.4 Anomaly Detection in Facebook University Networks 150

6.5 Visualization of the Human Diseasome Network 151

xiii

ABSTRACT

Ahmed, Nesreen K. PhD, Purdue University, August 2015. Scaling Up Network
Analysis and Mining: Statistical Sampling, Estimation, and Pattern Discovery.
Major Professor: Jennifer Neville.

Network analysis and graph mining play a prominent role in providing insights and

studying phenomena across various domains, including social, behavioral, biological, trans-

portation, communication, and financial domains. Across all these domains, networks arise

as a natural and rich representation for data. Studying these real-world networks is crucial

for solving numerous problems that lead to high-impact applications. For example, iden-

tifying the behavior and interests of users in online social networks (e.g., viral marketing),

monitoring and detecting virus outbreaks in human contact networks, predicting protein

functions in biological networks, and detecting anomalous behavior in computer networks.

A key characteristic of these networks is that their complex structure is massive and con-

tinuously evolving over time, which makes it challenging and computationally intensive to

analyze, query, and model these networks in their entirety. In this dissertation, we propose

sampling as well as fast, efficient, and scalable methods for network analysis and mining in

both static and streaming graphs.

We develop a generic framework for statistical network stream sampling, called graph

sample and hold. We formulate network sampling as a principled approach with two main

functions: (1) the sampling function, and (2) the holding function, this approach allows

tuning the sampling and estimation of graph properties more efficiently and accurately

than the state-of-the-art. We develop a suite of algorithms to sample and estimate various

graph properties, while processing the graph sequentially as a stream of edges. Finally,

we develop a fast parallel algorithm for counting motifs, which is 460 times faster than

the state-of-the-art. We show how these motif patterns can be used as features to benefit

various machine learning tasks such as large-scale graph classification, prediction, anomaly

detection, and visual analytics.

1

1. INTRODUCTION

Network analysis and graph mining play a prominent role in providing insights and

studying phenomena across various domains, including social, behavioral, biological,

transportation, communication, and financial domains. Across all these domains,

networks arise as a natural and rich data representation. Studying these networks

is crucial for solving numerous problems that lead to high-impact applications. For

example, consider online activity and interaction networks formed from electronic

communication (e.g., email, SMS, IMs), social media (e.g., Twitter, blogs, web pages),

and content sharing (e.g., Facebook, Flicker, Youtube). These social tools produce

a prolific amount of continuous and interaction data (e. g., Facebook users post 3.2

billion likes and comments every day [1]) that is naturally represented as a dynamic

network—where the nodes are people or objects and the edges are the interactions

among them.

Modeling and analyzing large dynamic networks have become increasingly im-

portant for many applications. For example, identifying the behavior and interests

of users in online social networks (e. g., viral marketing, online advertising) [2, 3],

monitoring and detecting virus outbreaks in human contact networks [4], predict-

ing protein functions in biological networks [5], and detecting anomalous behavior in

computer networks [6–8].

1.1 Challenges of Network Analysis and Mining

Many factors make it difficult and computationally intensive to study, analyze,

query, or model these networks in their entirety [9–11]. First and foremost, the sheer

size of many networks makes it computationally infeasible to study the entire network.

Moreover, some networks are not completely visible to the public (e. g., Facebook),

2

can only be accessed through crawling (e. g., World Wide Web) [12], or their structure

is dynamically changing over time (e. g., Twitter) [11, 13]. In other cases, the size of

the full network may not be as large but the measurements required to observe the

underlying network are costly (e. g., experiments in biological networks [14]). Thus,

network sampling is at the heart and foundation of network analysis and mining—

since researchers typically need to select a (tractable) subset of the nodes and edges

from which to make inferences about the full network.

One key stumbling block for enabling large-scale graph analytics is the limitation

in computational resources. Despite the recent advances in distributed and parallel

processing frameworks for graph analytics (e.g. MapReduce), and the appearance

of infinite resources in the cloud, running brute-force graph analytics is either too

costly, too slow, or too inefficient in many practical situations [15–19]. This necessi-

tates the development of fast, efficient, and approximation methods that exploit the

characteristics of real-world networks to provide accurate, real-time analytics.

In many situations, finding an approximate answer is usually sufficient for many

types of analysis tasks, in which the extra cost and time in finding the exact answer

is often not worth the extra accuracy [20, 21]. In these cases, sampling provides an

attractive approach to quickly and efficiently find an approximate answer to a query,

or more generally, any graph analysis task.

Sampling has a long history for being efficient and useful to reduce storage re-

quirements [22], speed up query execution times [23], and ensure data privacy by

processing only a sample of the data from which to make inferences about the data

population [24]. From peer-to-peer to social networks, sampling arises across many

different settings [25–29]. For example, sampled networks may be used in simulations

and experimentation—to measure performance before deploying new protocols and

systems in the field, such as new Internet protocols, social/viral marketing schemes,

A/B testing, and/or fraud detection algorithms.

Furthermore, many of the network data sets currently being analyzed as complete

networks are themselves samples due to the above limitations in data collection [30,

3

31]. Thus, it is critical that researchers understand the impact of various sampling

methods on the structure of the constructed networks. All of these factors motivate

the need for a more refined and complete understanding of network sampling.

Although a large body of research has developed methods to sample from net-

works [25–29], much of the work is problem-specific, and there has been less work

focused on developing a broader foundation for network sampling. More specifically,

it is often not clear when and why particular sampling methods are appropriate.

This is because the goals and population are often not explicitly defined or stated

up front, which makes it difficult to evaluate the quality of the recovered samples

for other applications. One of the primary aims of this work is to define the foun-

dations of network sampling more explicitly, such as objectives/goals, population of

interest, units, classes of sampling methods (i. e., node, edge, and topology-based),

and techniques to evaluate a sample (e. g., network statistics and distance metrics).

In this chapter, we start in Section 1.2 by introducing a taxonomy for network

sampling methods. Next, in Section 1.3, we highlight the key components and research

questions that we address in this work. Finally, in Section 1.4, we summarize the main

contributions and outline the structure of this dissertation.

1.2 A Taxonomy of Network Sampling Methods

Given a graph G= (V,E) as an input, how to sample a subgraph Gs = (Vs, Es)

with a subset of the nodes (Vs⊂V) and/or edges (Es⊂E) from the population graph

G? The goal is to ensure that Gs is representative, in the sense that graph properties

of interest are preserved in Gs (or can be estimated from Gs).

1.2.1 Classes of Network Sampling Methods

Network Sampling methods can be generally classified as node, edge, and topology-

based sampling methods, based on whether nodes or edges are first selected from the

graph G (node or edge-based sampling) or if the selection of nodes and edges depends

4

more on the existing topology of G (topology-based sampling). More precisely, we

define the three classes as follows:

• Node-based Sampling – Nodes are sampled with some probability p. For ex-

ample, in uniform node sampling, nodes are chosen independently and uniformly

at random from G for inclusion in the sampled subgraph Gs, and subsequently

edges that appear among these nodes are also added to Gs.

• Edge-based Sampling – Edges are sampled with some probability p. For ex-

ample, in uniform edge sampling, edges are chosen independently and uniformly

at random from G for inclusion in the sampled subgraph Gs.

• Topology-based Sampling – Nodes and edges in G are explored using some

variation of breadth-first search (i. e., sampling without replacement) or random

walk (i. e., sampling with replacement) methods for inclusion in the sampled

subgraph Gs.

In the past years, most of the existing work has focused on studying topology-based

sampling methods [9, 10, 26, 30, 32]. This trend was driven by the need of collecting

data from the web (i. e., web crawling), and the limitations of applying node and

edge-based sampling methods to collect data from distributed web and online social

networks (e. g., Facebook),

1.2.2 Spectrum of Computational Models

While most of the previous work focused on the question of how to sample, in

this dissertation, we discuss a spectrum of computational models for the design and

implementation of network sampling methods. Then, we analyze sampling methods

that generalize across this spectrum, going from the simplest and least constrained

model focused on sampling from static graphs to the more difficult and most con-

strained model of sampling from streaming graphs. This spectrum provides various

opportunities for applying sampling methods in a variety of scenarios.

5

Static Network Sampling. Traditionally, network sampling has been studied in

the case of simple static graphs [9,10,26,30,32]– such as forest fire, random walk and

snowball sampling methods. Given a disk-resident graph G, these works make the

simplifying assumption that the graph size is moderate and has a static structure.

Specifically, it is assumed that the graph can fit entirely in the main memory, and

the graph structure can be traversed arbitrarily (i. e., algorithms assume that the

full neighborhood of each node can be accessed randomly in constant time), while

many of the intrinsic complexities of realistic networks, such as the massive size, the

time-evolving nature, and the temporal characteristics of these graphs, are totally

ignored.

While studying static graphs is indeed important, the assumption that the graph

fits in memory is not always realistic for real-world scenarios (e. g., online social

networks). When the graph is too large to fit in memory, sampling requires random

disk accesses that incur large I/O costs [33–35]. These random accesses on disks are

typically much slower than random accesses in main memory [33]. Therefore, a key

disadvantage of these methods is that they don’t differentiate between a graph that

can fit entirely in the main memory and a graph that cannot. Naturally, this raises

the question: how can we sample from these large networks sequentially, one edge at

a time, while minimizing the number of passes over the edges? Given that the edges

can be stored in some arbitrary order, most of the topology-based sampling methods,

such as breadth-first search, random walk, or forest-fire sampling, and node-based

sampling methods are not appropriate as they require random access to a node’s

neighbors (which would require many passes over the edges).

Streaming Network Sampling. In addition to their massive size, many real-

world networks are also likely to be continuously streaming over time. A streaming

graph is a rapid, continuous, and possibly unbounded, time-varying stream of edges

that is clearly too large to fit in memory except for short windows of time (e. g., a

single day, hour, etc). Streaming graphs occur frequently in the real-world and can

6

Fig. 1.1.: Spectrum of Computational Models for network sampling: from static to
streaming.

be found in many modern online and communication applications such as: Twitter

posts, Facebook likes/comments, email communications, network monitoring, sensor

networks, among many other applications [36]. Although these applications are quite

prevalent, there has been little focus on developing network sampling algorithms that

address the complexities of streaming graphs. Generally, streaming graphs differ from

static graphs in four main aspects:

1. The massive volume of edges is far too large to fit into main memory

2. The graph structure is not fully observable at any point in time (i. e., only

sequential access is feasible, not random access)

3. Efficient real-time processing is critically important

4. The stream exhibits temporal characteristics (e. g., edge frequency) that don’t

appear in simple static graphs

Clearly, for such massive streaming graphs, sampling algorithms that process the

edge stream in single-pass and maintains a small consulting state in memory, are

more practical and efficient than those that process the data in an arbitrary order.

7

These specific sampling algorithms are typically classified as graph stream sampling

algorithms.

The above discussion shows a natural progression of computational models for

network sampling—from static to streaming. The majority of previous work has

focused on sampling from static graphs, which is the simplest and least restrictive

problem setup. In this work, however, we investigate the more challenging issues of

sampling from massive disk-resident and streaming graphs. This leads us to propose

a spectrum of computational models for network sampling as shown in Figure 1.1,

where we outline the computational models for sampling from: (1) static graphs, (2)

large graphs, and (3) streaming graphs. This spectrum not only provides insights

into the complexity of the computational models (i. e., static vs. streaming), but also

the complexity of the algorithms that are designed for each scenario. More complex

algorithms are more suitable for the simplest computational model of sampling from

static graphs. In contrast, as the complexity of the computational model increases to

a streaming scenario, efficient algorithms become necessary. Thus, there is a trade-

off between the complexity of the sampling algorithm and the complexity of the

computational model (static → streaming).

A subtle but important consequence is that any algorithm designed to work over

streaming graphs is also applicable in the simpler computational models (i. e., static

graphs). However, the converse is not true, algorithms designed for sampling a static

graph that can fit in memory, may not be generally applicable for streaming graphs

(as their implementation may require an intractable number of passes over the data).

Clearly, node and topology-based sampling methods are not efficient for sampling

sequentially from the edge stream, on the other hand, edge-based sampling methods

are naturally amenable to streaming implementation.

8

1.3 Problem Statement

From the previous discussion, it is clear that network sampling must mediate be-

tween a variety of problem-specific constraints and opposing priorities [11,37]. These

constraints are defined by the problem under study, such as the characteristics of the

data (e. g., heavy-tailed data distribution), the data access constraints (e. g., stream-

ing vs. distributed data), the available resources (e. g., memory, bandwidth), and the

accuracy needs of queries. In this dissertation, we propose network sampling methods

that can mediate between a variety of problem-specific constraints. One of the cen-

tral questions in this dissertation is: given a graph G represented as an edge stream

{e1, e2, ..., et, ...}, how to sample a subgraph Gs=(Vs, Es) sequentially, one edge at a

time, from the population graph G, while maintaining a small state |Ψ| ≤ O(|Gs|)?
A key challenge for any stream sampling algorithm is the need to decide whether

to include an edge et ∈ E in the sample or not as the edge is observed in the stream.

The stream sampling algorithm may maintain a state |Ψ| and consult the state to

determine whether to sample an edge or not, but the total storage space (i. e., |Ψ|)
is usually of the order of the size of the output: |Ψ| = O(|Gs|). Note that this

requirement is potentially larger than the o(N) (and preferably polylog(N)) that

streaming algorithms typically require [35]. But since any algorithm cannot require

less space than its output, we relax this requirement.

In this work, we propose a framework that can be used to design network sampling

algorithms in the streaming computational model. Generally, the process of network

sampling in the streaming computational model can be decomposed into two key

functions: a (1) Sampling function, and a (2) Holding function. For each observed

edge et in the stream of edges {e1, e2, ..., et, ...}, the probability of selecting et can be

formulated as a conditional probability as follows,

P [et is selected | stored state Ψ] = pt

9

If et is independent of the stored state Ψ, for example, et is not adjacent to

a previously selected edge, then (P [et is selected] = PS), which means the selection

probability is a constant. We call this the sampling function and we use it for sampling

and exploring new regions (unsampled) in the graph. On the other hand, if et is

not independent of the stored state Ψ, for example, et is adjacent to one or more

previously selected edges (ek ∈ Ψ), then the selection probability is a function of the

stored (P [et is selected | stored state Ψ] = f(Ψ) , and PH = f(Ψ)). We call this the

holding function and we use it for holding on or exploring a previously sampled region

in the graph. This holding function essentially involves a frequent update of the state

for each sampled edge. One of the primary challenges in this case is making sure the

state updates do not cause state increase. In this work, we show ways for controlling

the size of the sampled state, such as reservoir sampling [38] to ensure the size of the

reservoir remains constant.

A key property of the proposed framework is that any edge-based sampling al-

gorithm is statistically biased towards sampling graph regions that are much denser

than the rest of the graph regions. This is due to the bias of edge-based sampling

algorithms to the selection of high degree nodes and network hubs (see Chapter 3

for statistical bias analysis). It has been shown by Karger in [39] that edge-based

sampling algorithms have a higher likelihood of containing graph cuts with lower

value [40].

Moreover, the proposed framework is quite generic and flexible. By varying the

conditional dependence of the sampling probabilities on the stored state, one can

tune the estimation of various properties of the original graph efficiently with arbitrary

degrees of accuracy. For example, in uniform edge sampling, the sampling probability

of edges is a constant uniform probability and totally independent of the stored state.

Thus, in the case of uniform edge sampling, the sampling and holding functions

are exactly the same, i. e., (P [et is selected] = PS = PH = p). Furthermore, we can

adapt the holding function to simply track or capture certain graph properties (e. g.,

triangles). Similarly, by carefully designing the sampling function, we can obtain

10

a uniform random sample of nodes that appeared in the stream so far (similar to

the classical uniform node sampling). Therefore, the proposed framework does not

only help to design new sampling methods, but also to extend existing work to the

streaming computational model.

The central thesis statement of this work is formulated as:

Statistical network stream sampling can be approached as a principled ap-

proach with two main functions: (1) the sampling function, and (2) the

holding function – By using this approach, we obtain a generic and flexi-

ble framework that allows tuning the sampling and estimation of various

graph properties efficiently and accurately, while being applicable across

the full spectrum of computational models.

Throughout this dissertation, we investigate sampling as well as fast and efficient

methods to scale up network analysis and mining in static and streaming graphs. We

formally study two primary network analysis tasks: (1) Sampling a representative

subgraph, and (2) Unbiased estimation and efficient methods for subgraph counting.

1.3.1 Sampling from Large Static Graphs

Given a large static disk-resident graph G = (V,E), the question of how to obtain

a representative subgraph Gs = (Vs, Es) with n = |Vs| nodes from G has been studied

in previous work [9, 10, 26, 30, 32]. Most of the previous work assume that the graph

G can fit entirely in main

In this dissertation, we propose a two-pass sampling method that runs sequentially

with only two passes over the edge stream. The multi-pass computational model

takes a middle position in the memory spectrum by relaxing the polylog(N) storage

requirement of the streaming model [35, 41]. In addition to relaxing the memory

requirement, the multi-pass model allows multiple passes over the input stream [35,

41]. In some applications, a small number of sequential passes over the edge stream

11

would be more efficient than many random disk accesses to the graph [41]. The

proposed method is used to investigate three main research challenges:

• Given a large static disk-resident graph G, how can we sample from G sequen-

tially, one edge at a time, while minimizing the number of passes over the

edges?

• Analysis of the bias coming from sampling sequentially from the edge stream,

and the effect of the bias on the sampled subgraph.

• What is impact of different sampling methods on the performance of data min-

ing tasks, such as relational classification?

1.3.2 Sampling from Streaming Graphs

Today’s networks are not only large in size but also continuously streaming over

time, and therefore, their structure can be viewed as a dynamical system. The normal

operation of any dynamical system can be described by a process that transitions

between different states over time. In this component, we study how to use network

sampling to analyze the temporal and structural properties of streaming graphs.

Previous work has focused primarily on streaming uniform edge sampling, such

as the work in [40], which is useful for some analysis tasks but not all of them.

Therefore, we propose methods that extend traditional sampling algorithms from the

various classes (e. g., node, edge, etc) into the streaming computational model. Then,

We propose a novel graph stream sampling method that efficiently sample from the

graph stream in a single pass. We evaluate these methods on a variety of multigraph

streams and show their performance on both temporal and structural properties. Our

work in this part is focused on exploring two main research challenges:

• Given a streaming graph et ∈ E, how to sample a representative subgraph in

a single-pass over the edge stream, while maintaining a small state in memory

|Ψ| ≤ O(|S|)?

12

• How to extend traditional sampling algorithms to streaming implementation in

a single pass?

• What is the impact of single-pass stream sampling on structural and temporal

graph properties?

1.3.3 Big Graph Analytics and Unbiased Estimation

In this part, we focus on exploring fast, efficient approximation and exact methods

to obtain counts of frequent patterns/subgraphs in the edge stream of the graph.

One goal of this part is to develop methods useful for answering various graph queries

accurately, quickly, and efficiently. For this goal, we propose a generic stream sampling

framework for big graph analytics, called Graph Sample and Hold (gSH). gSH is a

parametric framework that can be used to estimate subgraph counts, such as the

number of edges, triangles, etc.

While previous work focused particularly on sampling schemes used to estimate

a certain graph property [17, 19, 42–44], gSH is generic and can be used to estimate

various graph properties with the same sampling scheme. Our framework starts by

sampling from massive graphs sequentially in a single pass, one edge at a time, while

maintaining a small state in memory. We also develop statistical estimators based on

the construction of Horvitz-Thompson [45], and we apply them to obtain unbiased

estimates of subgraph counts.

Another goal of this part is to extract useful structural features, such as motif

frequencies, that would benefit important machine learning tasks. For example, large-

scale graph classification, prediction, anomaly detection, among others. For this goal,

we propose a fast efficient algorithm for motif counting that take only a fraction of the

time to compute when compared with the current methods used. The proposed motif

counting algorithm leverages a number of combinatorial arguments that we show for

the different motif patterns. For each edge, we count a few of the patterns, and with

these counts along with combinatorial arguments, we derive the exact counts of the

13

others in constant time. The combinatorial arguments we show enable us to obtain

significant improvement on the scalability of motif counting.

In summary, we investigate the following research questions:

• How to quickly and efficiently estimate various subgraph counts, such as the

number of edges, triangles, etc?

• How to efficiently count all possible motifs (or graphlets) of size k = {2, 3, 4}
nodes?

1.4 Contributions and Outline

This dissertation is positioned to extend the range, applicability, and performance

gains of network sampling as a tool that is not only useful for web crawling and data

collection, but also for the analysis and mining of massive disk-resident and streaming

graphs efficiently. We show how network sampling can be used as a mediator of various

problem-specific constraints, such as the characteristics of the data (e. g., heavy-tailed

data distribution), the data access constraints (e. g., streaming vs. distributed data),

the available resources (e. g., memory, bandwidth), and the accuracy needs of queries.

We propose a flexible framework for designing statistical graph stream sampling.

The potential benefits of the proposed framework are two-fold. First, it will lead

to more interpretable sampling designs, that efficiently capture the specific graph

properties of interest. This should benefit big graph analytics and data mining ap-

plications in general, since interpretability is a quality that is often important for

domain experts to design useful sampling methods. Second, it will lead to samples

with better quality that efficiently mirror the properties of the population graph.

In addition, we propose a fast efficient algorithm for motif counting that is sig-

nificantly faster than the current methods used, while also scaling to much larger

networks with millions of nodes and edges. The proposed motif counting algorithm

leverages a number of combinatorial arguments, which enable us to obtain significant

improvement on the scalability of motif counting. Thus, this brings new opportu-

14

nities to investigate the use of motifs on much larger networks and newer applica-

tions. Furthermore, a number of important machine learning applications are likely

to benefit from such algorithm, including graph-based anomaly detection [7, 46], en-

tity resolution [47], as well as features for improving community detection [48], role

discovery [49], and relational classification [50,51].

The rest of this dissertation is organized as follows: Chapter 2 describes the

foundations of network analysis and sampling, highlighting the different objectives

of network sampling, the population and units with respect to the specific goals,

evaluation and classes of network sampling methods. In Chapter 3, we introduce our

approach to sampling a subgraph from large static graphs. Next, in Chapter 4, we

introduce our approach to sampling from streaming graphs. Then, we describe our

framework for unbiased estimation of counts of frequent subgraphs in Chapter 5. In

Chapter 6, we introduce our fast efficient algorithm for motif counting (counting all

possible subgraphs of size 2, 3, 4 nodes). Finally, Chapter 7 concludes the dissertation

and points out for future directions.

Parts of this dissertation have been published in peer-reviewed conferences and

journals. In particular, the work in Chapter 2 and Chapter 3 is published in the ACM

journal of TKDD [11] and WIN [52]. Parts of the work in Chapter 3 is published in

ICWSM [53], and MLG [54]. Also, the work in Chapter 4 is published in the ACM

journal of TKDD [11] and BigMine [55]. Moreover, the work in Chapter 5 is published

in SIGKDD [23]. Finally, the work in Chapter 6 is published in [56], and other parts

of this chapter are published in ICWSM [57].

15

2. BACKGROUND

In the context of statistical data analysis, a number of issues need to be considered

carefully before collecting data and making inferences based on them. First, we need

to identify the relevant population to be studied. Then, if sampling is necessary then

we need to decide how to sample from that population. Generally, the term population

is defined as the full set of representative units that one wishes to study (e. g., individ-

uals in a particular city). In some instances, the population may be relatively small

and therefore easy to study in its entirety (i. e., without sampling). For instance, it is

fairly easy to study the full set of graduate students in a particular academic depart-

ment. However, in many situations the population is large, unbounded, or difficult

and/or costly to access in its entirety (e. g., the complete set of Facebook users). In

this case, for efficiency reasons, a sample of units can be collected and characteristics

of the population can then be estimated from the sampled units.

Network sampling is of interest to a variety of researchers in a range of distinct

fields (e. g.statistics, social science, databases, data mining, machine learning) due

to the numerous complex data sets that can be represented as graphs. While each

area may investigate different types of networks, they have all considered how to

sample. For example, in social science, snowball sampling is used extensively to run

survey sampling in populations that are difficult-to-access (e. g., the set of drug users

in a city) [58]. Similarly, in Internet topology measurements, breadth first search is

used to crawl distributed, large-scale online social networks [30]. In structured data

mining and machine learning, the focus has been on developing algorithms to sample

small(er) subgraphs from a single large network [9]. These sampled subgraphs are

further used to learn models (e. g., relational classification models [59]), evaluate and

compare the performance of algorithms (e. g., different classification methods [60,61]),

16

and study complex network processes (e. g., information diffusion [62]). Section 2.6

provides a more detailed discussion of related work.

While this large body of research has developed methods to sample from networks,

much of the work is problem-specific and there has been less work focused on devel-

oping a broader foundation for network sampling. More specifically, it is often not

clear when and why particularly sampling methods are appropriate. This is because

the goals and population are often not explicitly defined or stated up front, which

makes it difficult to evaluate the quality of the recovered samples for other applica-

tions. One of the primary aims of this work is to define and discuss the foundations

of network sampling more explicitly, such as: objectives/goals, population of inter-

est, units, classes of sampling algorithms (i. e., node, edge, and topology-based), and

techniques to evaluate a sample (e. g., network statistics and distance metrics). In

this chapter, we outline a solid methodological framework for network sampling. The

framework will facilitate the comparison of various network sampling algorithms, and

help to understand their relative strengths and weaknesses with respect to particular

sampling goals.

2.1 Foundations and Notations

Formally, we consider an input network represented as a graph G= (V,E) with

the node set V = {v1, v2, ..., vN} and edge set E = {e1, e2, ..., eM}, such that N = |V |
is the number of nodes, and M = |E| is the number of edges. We denote η(.) as any

topological graph property. Therefore, η(G) could be a point statistic (e. g., average

degree of nodes in V) or a distribution (e. g., degree distribution of V in G).

Further, we define Λ = {a1, a2, ..., ak} as the set of k attributes associated with the

nodes describing their properties. Each node vi ∈ V is associated with an attribute

vector [a1(vi), a2(vi), ..., ak(vi)] where aj(vi) is the jth attribute value of node vi. For

instance, in a Facebook network where nodes represent users and edges represent

17

friendships, the node attributes may include age, political view, and relationship

status of the user.

Similarly, we denote β = {b1, b2, ..., bl} as the set of l attributes associated with the

edges describing their properties. Each edge eij = (vi, vj) ∈ E is associated with an

attribute vector [b1(eij), b2(eij), ..., bl(eij)]. In the Facebook example, edge attributes

may include relationship type (e. g., friends, married), relationship strength, and type

of communication (e. g., wall post, photo tag).

Now, we define the network sampling process. Let σ be any sampling algorithm

that selects a random sample S from G (i. e., S = σ(G)). The sampled set S could be

a subset of the nodes (S = Vs⊂V) , or edges (S = Es⊂E), or a subgraph (S=(Vs, Es)

where Vs⊂V and Es⊂E). The size of the sample S is defined relative to the graph

size with respect to a sampling fraction φ (0 ≤ φ ≤ 1). In most cases the sample size

is defined as a fraction of the nodes in the input graph, e. g., |S| = φ · |V |. But in

some cases, the sample size is defined relative to the number of edges (|S| = φ · |E|).

2.2 Goals, Units, and Population of Networks

While the explicit aim of many network sampling algorithms is to select a smaller

subgraph from G, there are often other more implicit goals of the process that are left

unstated. Here, we formally outline a range of possible goals for network sampling:

(Goal 1) Estimate network parameters

Let S ⊂ V or S ⊂ E. Then for a property η of G, if η(S) ≈ η(G), S is

considered a good sample of G.

For example, let S = Vs ⊂ V be the subset of sampled nodes, we can

estimate the average degree of nodes G using S:

d̂egavg =
1

|S|
∑

vi∈S
deg(vi ∈ G)

18

where deg(vi ∈ G) is the degree of node vi as it appears in G, and a direct

application of statistical estimators helps to correct sampling bias in d̂egavg

[63].

(Goal 2) Sample a representative subgraph

Let S =Gs refer to a subgraph Gs = (Vs, Es) sampled from G. Then for a

set of topological properties ηA of G, if ηA(S) ≈ ηA(G), S is considered a

good sample of G.

Generally, subgraph representativeness is evaluated by selecting a set of

graph topological properties that are important for a wide range of appli-

cations. This ensures that the sample subgraph S can be used in place of

G for testing algorithms, systems, and/or models in an application. For ex-

ample, [9] evaluated sample quality using topological properties like degree,

clustering, and eigenvalues.

(Goal 3) Estimate node attributes

Let S ⊂ V . Then for a function fa of node attribute a, if fa(S) ≈ fa(V), S

is considered a good sample of V (where V is the set of nodes in G).

For example, if a represents the age of users, we can estimate the average

in G using S:

âavg =
1

|S|
∑

vi∈S
a(vi)

Similar to goal 1, statistical estimators can be used to correct for bias.

(Goal 4) Estimate edge attributes

Let S ⊂ E. Then for a function fb of edge attribute b, if fb(S) ≈ fb(E), S

is considered a good sample of E (where E is the set of edges in G).

19

For example, if b represents the relationship type of friends (e. g., married,

coworkers), we can estimate the proportion of married relationships in G

using S:

p̂married =
1

|S|
∑

eij∈S
1(b(eij)=married)

Clearly, the first two goals (1 and 2) focus on characteristics of entire networks,

while the last two goals (3 and 4) focus on characteristics of nodes or edges in isolation.

Therefore, these goals may be difficult to satisfy simultaneously—i.e., if the sampled

data enable accurate study for one, it may not allow accurate study for others. For

instance, a representative subgraph sample could produce a biased estimate of node

attributes.

Once the goal is outlined, the population of interest can be defined relative to the

goal. In many cases, the definition of the population may be obvious (e. g., nodes in

the network). The main challenge is then to select a representative subset of units

in the population in order to make the study cost efficient and feasible. Other times,

the population may be less tangible and difficult to define. For example, if one wishes

to study the characteristics of a system or process, there is not a clearly defined set of

items to study. Instead, one is often interested in the overall behavior of the system.

In this case, the population can be defined as the set of possible outcomes from

the system (e.g., measurements over all settings) and these units should be sampled

according to their underlying probability distribution.

In the first two goals outlined above, the objective of study is an entire network

(either for structure or parameter estimation). In goal 1, if the objective is to estimate

local properties from the nodes (e. g.degree distribution of G), then the elementary

units are the nodes, and then the population would be the set of all nodes V in G.

However, if the objective is to estimate global properties (e. g.diameter of G), then

the elementary units correspond to subgraphs (any Gs ⊂ G) rather than nodes and

the population should be defined as the set of subgraphs of a particular size that

20

could be drawn from G. In goal 2, the objective is to select a subgraph Gs, thus the

elementary units correspond to subgraphs, rather than nodes or edges (goal 3 and 4).

As such, the population should also be defined as the set of subgraphs of a particular

size that could be drawn from G.

2.3 Classes of Sampling Methods

Once the population has been defined, a sampling algorithm σ must be chosen to

sample from G. Sampling algorithms can be categorized as node, edge, and topology-

based sampling, based on whether nodes or edges are locally selected from G (node

and edge-based sampling) or if the selection of nodes and edges depends more on the

existing topology of G (topology-based sampling).

Graph sampling algorithms have two basic steps:

(1) Node selection: used to sample a subset of nodes S = Vs from G, (i. e., Vs ⊂ V).

(2) Edge selection: used to sample a subset of edges S = Es from G, (i. e., Es ⊂ E)

When the objective is to sample only nodes or edges (e. g., goals 3, 4 or 1), then

either step 1 or step 2 is used to form the sample S. When the objective is to sample

a subgraph Gs from G (e. g., goals 2 or 1), then both step 1 and 2 from above are used

to form S, (i. e., S = (Vs, Es)). In this case, the edge selection is often conditioned

on the selected node set in order to form an induced subgraph by sampling a subset

of the edges incident to Vs (i. e.Es = {eij = (vi, vj)|eij ∈ E ∧ vi, vj ∈ Vs}. This

process is called graph induction. We distinguish between two approaches of graph

induction—total and partial graph induction—which differ by whether all or some of

the edges incident on Vs are selected. The resulting sampled graphs are referred to

as the induced subgraph and partially induced subgraph respectively.

While the discussion of the algorithms in the next chapters focuses more on sam-

pling a subgraph Gs from G, they can easily generalize to sampling only nodes or

edges.

21

Node sampling (NS). In classic node sampling, nodes are chosen independently

and uniformly at random from G for inclusion in the sampled graph Gs. For a target

fraction φ of nodes required, each node is simply sampled with a probability of φ.

Once the nodes are selected for Vs, the sampled subgraph is constructed to be the

induced subgraph over the nodes Vs, i. e., all edges among the Vs ∈ G are added to

Es. While node sampling is intuitive and relatively straightforward, the work in [64]

shows that it does not accurately capture properties of graphs with power-law degree

distributions. Similarly, [65] shows that although node sampling appears to capture

nodes of different degrees well, due to its inclusion of all edges for a chosen node set

only, the original level of connectivity is not likely to be preserved.

Edge sampling (ES). In classic edge sampling, edges are chosen independently

and uniformly at random from G for inclusion in the sampled graph Gs. Since edge

sampling focuses on the selection of edges rather than nodes to populate the sample,

the node set is constructed by including both incident nodes in Vs when a particular

edge is sampled (and added to Es). The resulting subgraph is partially induced,

which means no extra edges are added over and above those that were chosen during

the random edge selection process. Unfortunately, ES fails to preserve many desired

graph properties. Due to the independent sampling of edges, it does not preserve

clustering and connectivity. It is however more likely to capture path lengths, due to

its bias towards high degree nodes and the inclusion of both end points of selected

edges.

Topology-based sampling. Due to the known limitations of NS [64, 65] and ES

(bias toward high degree nodes), researchers have also considered many other topology-

based sampling methods (also referred to as exploration sampling), which use breadth-

first search (i. e., sampling without replacement) or random walks (i. e., sampling with

replacement) over the graph to construct a sample.

One example is snowball sampling, which adds nodes and edges using breadth-

first search from a randomly selected seed node, but stops early once it reaches a

22

particular size. Snowball sampling accurately maintains the network connectivity

within the snowball, but it suffers from boundary bias in that many peripheral nodes

(i. e., those sampled on the last round) will be missing a large number of neighbors [65].

Another example is the Forest Fire Sampling (FFS) method [9], which uses partial

breadth-first search where only a fraction of neighbors are followed for each node. The

algorithm starts by picking a node uniformly at random and adding it to the sample.

It then “burns” a random proportion of its outgoing links, and adds those edges, along

with the incident nodes, to the sample. The fraction is determined by sampling from

a geometric distribution with mean (pf/(1 − pf)). The authors recommend setting

pf = 0.7, which results in an average burn of 2.33 edges per node. The process is

repeated recursively for each burned neighbor until no new node is selected, then a

new random node is chosen to continue the process until the desired sample size is

obtained. There are other algorithms such as respondent-driven sampling [66] and

expansion sampling [28] that we give more details on in Chapter 2.6.

In general, such topology-based sampling approaches form the sampled graph out

of the explored nodes and edges, and usually perform better than simple algorithms

such as NS and ES.

2.4 Evaluation of Sampling Methods

When the goal is to approximate the entire input network—either for estimating

parameters (goal 1) or to select a representative subgraph structure (goal 2)—the

accuracy of network sampling methods is often measured by comparing structural

network statistics (e. g., degree). We first define a suite of common network statistics

and then discuss how they can be used to quantitatively compare sampling methods.

Network Statistics. The commonly considered network statistics can be compared

along two dimensions: local vs. global statistics, and point statistic vs. distribution.

A local statistic is is used to describe a characteristic of a local graph element (e. g.,

node, edge, subgraph). For example, node degree and node clustering coefficient.

23

Table 2.1.: Description of Network Statistics

Network Statistic. Description

Degree dist. Distribution of degrees for all nodes in the network

Path length dist. Distribution of (finite) shortest path lengths between
all pairs of nodes in the network

Clustering coefficient dist. Distribution of local clustering for all nodes in the
network

K-core dist. Distribution of k-core decomposition of the network

Eigenvalues Distribution of the eigenvalues of the network adja-
cency matrix vs. their rank

Network values Distribution of eigenvector components vs. their
rank, for the largest eigenvalue of the network ad-
jacency matrix

On the other hand, a global statistic is used to describe a characteristic of the entire

graph. For example, global clustering coefficient and graph diameter. Similarly, there

is also the distinction between point statistics and distributions. A point-statistic is

a single value statistic (e. g., diameter) while a distribution is a multi-valued statistic

(e. g., distribution of path length for all pairs of nodes). Clearly, a range of network

statistics are important to investigate the full graph structure.

In this work, we focus on the goal of sampling a representative subgraph Gs from

G, by using distributions of network characteristics calculated on the level of nodes,

edges, sets of nodes or edges, and subgraphs. Table 2.1 provides a summary for the

six network statistics we use and we formally define the statistics below:

(1) Degree distribution: The fraction of nodes with degree k, for all k > 0

pk = |{v∈V |deg(v)=k}|
N

Degree distribution has been widely studied by many researchers to understand

the connectivity in graphs. Many real-world networks were shown to have a

24

power-law degree distribution, for example in the Web [67], citation graphs [68],

and online social networks [69].

(2) Path length distribution: Also known as the hop plot distribution and denotes the

fraction of pairs (u, v) ∈ V with a shortest-path distance (dist(u, v)) of h, for all

h > 0 and h 6=∞

ph = |{(u,v)∈V |dist(u,v)=h}|
N2

The path length distribution is essential to know how the number of paths between

nodes expands as a function of distance (i. e., number of hops).

(3) Clustering coefficient distribution: The fraction of nodes with clustering coeffi-

cient (cc(v)) c, for all 0 ≤ c ≤ 1

pc = |{v∈V ′|cc(v)=c}|
|V ′| , where V ′ = {v ∈ V |deg(v) > 1}

Here the clustering coefficient of a node v is calculated as the number of triangles

centered on v divided by the number of pairs of neighbors of v (e. g., the proportion

of v’s neighbor that are linked). In social networks and many other real networks,

nodes tend to cluster. Thus, the clustering coefficient is an important measure

to capture the transitivity of the graph [70].

(4) K-core distribution: The fraction of nodes in graph G participating in a k-core of

order k. The k-core of G is the largest induced subgraph with minimum degree

k. Formally, let U ⊆ V , and G[U] =(U,E ′) where E ′={eu,v ∈ E|u, v ∈ U}. Then

G[U] is a k-core of order k if ∀v∈U degG[U]
(v) ≥ k.

Studying k-cores is an essential part of social network analysis as they demonstrate

the connectivity and community structure of the graph [71–73]. We denote the

maximum core number as the maximum value of k in the k-core distribution. The

maximum core number can be used as a lower bound on the degree of the nodes

that participate in the largest induced subgraph of G. Also, the core sizes can be

used to demonstrate the localized density of subgraphs in G [74].

25

(5) Eigenvalues : Let A be the corresponding adjacency matrix of a graph G, then

the decomposition of A into eigenvalues (Λ = [λ1, ..., λn]) and eigenvectors (X =

[X1, ..., Xn]) satisfies the equation (A − λI)X = 0, where I is the NxN identity

matrix. We number the set of eigenvalues (and associated eigenvectors) in de-

scending order λ1 ≥ ... ≥ λN , then we compare the largest 25 eigenvalues of the

sampled graphs to their counterparts in G. Note that eigenvalues are the basis

of spectral graph analysis [75].

(6) Network values : The distribution of the principal eigenvector components (i. e.,

the components xi ∈ X1 associated with the largest eigenvalue λ1 of the graph

adjacency matrix). We compare the largest 100 components of the principal

eigenvector of the sampled graphs to their counterparts in G.

Next, we describe the use of these statistics for comparing sampling methods.

Distance Measures for Quantitatively Comparing Sampling Methods. A

good sample has properties that approximate the full graph G (i.e., η(S) ≈ η(G)).

Thus, the distance between the property in G and the property in Gs is often used to

evaluate sample representativeness quantitatively (i. e., dist[η(G), η(GS)]) and sam-

pling algorithms that minimize the distance are considered superior. When the goal

is to provide estimates of global network parameters (e. g., average degree), then η(.)

may return point statistics. However, when the goal is to provide a representative

subgraph sample, then η(.) may return distributions of network properties (e. g., de-

gree distribution). These distributions reflect how the graph structure is distributed

across nodes and edges. The dist function used for evaluation could be typically any

distance measure (e. g., absolute difference). In this chapter, since we focus on us-

ing distributions to characterize graph structure, we use four different distributional

distance measures for evaluation.

(1) Kolmogorov-Smirnov (KS) statistic: Used to assess the distance between two

cumulative distribution functions (CDF). The KS-statistic is a widely used mea-

sure of the agreement between two distributions, including in [9] where it is used

26

to illustrate the accuracy of FFS. It is computed as the maximum vertical dis-

tance between the two distributions, where x represents the range of the random

variable and F1 and F2 represent two CDFs:

KS(F1, F2) = maxx|F1(x)− F2(x)|

(2) Skew divergence (SD): Used to assess the difference between two probability den-

sity functions (PDF) [76]. Skew divergence is used to measure the Kullback-

Leibler (KL) divergence between two PDFs P1 and P2 that do not have contin-

uous support over the full range of values (e. g., discrete degrees). KL measures

the average number of extra bits required to represent samples from the original

distribution when using the sampled distribution. However, since KL divergence

is not defined for distributions with different areas of support, skew divergence

smooths the two PDFs before computing the KL divergence:

SD(P1, P2, α) = KL[αP1 + (1− α)P2 || αP2 + (1− α)P1]

The results shown in [76] indicate that using SD yields better results than other

methods to approximate KL divergence on non-smoothed distributions. In this

work, as in [76], we use α = 0.99.

(3) Normalized L1 distance: In some cases, for evaluation we will need to measure

the distance between two positive m-dimensional real vectors p and q such that

p is the true vector and q is the estimated vector. For example, to compute the

distance between two vectors of eigenvalues. In this case, we use the normalized

L1 distance:

L1(p, q) = 1
m

∑m
i=1

|pi−qi|
pi

(4) Normalized L2 distance: In other cases, when the vector components are fractions

(less than one), we use the normalized euclidean distance L2 distance (e. g., to

compute the distance between two vectors of network values):

L2(p, q) = ||p−q||
||p||

27

2.5 Models of Computation

In this section, we discuss the different models of computation that can be used to

implement network sampling methods. At first, let us assume the network G = (V,E)

is given (e. g., stored on a large storage device). Then, the goal is to select a sample

S from G.

Traditionally, network sampling has been explored in the context of a static model

of computation. This simple model makes the fundamental assumption that it is easy

and fast (i. e., constant time) to randomly access any location of the graph G. For

example, random access may be used to query the entire set of nodes V or to query the

neighbors N (vi) of a particular node vi (where N (vi) = {vj ∈ V |eij = (vi, vj) ∈ E}).
However, random accesses on disks are much slower than random accesses in main

memory. A key disadvantage of the static model of computation is that it does not

differentiate between a graph that can fit entirely in the main memory and a graph

that cannot. Conversely, the primary advantage of the static model is that it is a

natural extension of how we understand and view the graph—thus, it is a simple

framework within which to design algorithms.

Although designing sampling algorithms with a static model of computation in

mind is indeed appropriate for some applications, this approach assumes the input

graphs are relatively small, can fit entirely into main memory, and have static struc-

ture (i. e., not changing over the time). This is unrealistic for many domains. For

instance, many social, communication, and information networks naturally change

over time and are massive in size (e. g., Facebook, Twitter, Flickr). The sheer size

and dynamic nature of these networks make it difficult to load the full graph entirely

in the main memory. Therefore, the static model of computation cannot realistically

capture all the intricacies of many real world graphs that we study today.

In addition, many real-world networks that are currently of interest are too large

to fit into memory. In this case, sampling methods that require random disk access

can incur large I/O costs for loading and reading the data. Naturally, this raises

28

a question as to how we can sample from large networks more efficiently (i.e., in a

sequential fashion rather than assuming random access). In this context, most of the

topology based sampling procedures such as breadth-first search and random-walk

sampling are no longer appropriate as they require the ability to randomly access a

node’s neighbors N (vi). If access is restricted to sequential passes over the edges, a

large number of passes over the edges would be needed to repeatedly query N (·). In

a similar way, node sampling would no longer be appropriate as it not only requires

random access for querying a node’s neighbors but it also requires random access to

the entire node set V in order to obtain a uniform random sample.

A streaming model of computation in which the graph can only be accessed se-

quentially as a stream of edges, is therefore more preferable for these situations [77].

The streaming model completely discards the possibility of random access to G and

the graph can only be accessed through an ordered scan of the edge stream. A sam-

pling algorithm in this context may use the main memory for holding a portion of

the edges temporarily and perform random accesses on that subset. In addition, the

sampling algorithm may access the edges repeatedly by making multiple passes over

the graph stream. Formally, for any input network G, we assume G is represented as

a graph stream (e.g., as in Figure 2.1).

Definition 2.5.1 (Graph Stream) A graph stream is an ordered sequence of edges

eπ(1), eπ(2), ..., eπ(M), where π is any arbitrary permutation on the edge indices [M] =

{1, 2, ...,M}, π : [M]→ [M].

Definition 2.5.1 is usually called the “adjacency stream” model in which the graph

is presented as a stream of edges in an arbitrary order. In contrast, the “incidence

stream” model assumes all edges incident to a vertex are presented in order suc-

cessively [43]. In this work, we use the adjacency stream model because it is more

reflective of the temporal ordering we observe in real world data sets.

While most real-world networks are too large to fit into main memory, many are

also likely to occur naturally as streaming data. A streaming graph is a rapid, con-

29

Fig. 2.1.: Illustration of graph streams—a sequence of edges ordered by time, and the
complexity constraints of streaming algorithms (space and no. passes).

tinuous, and possibly unbounded, time- varying stream of edges that is both too

large and too dynamic to fit into memory. These types of streaming graphs occur

frequently in real-world communication and information domains. For example real-

time tweets between users in Twitter, email logs, IP traffic, sensor networks, web

search traffic, and many other applications. While sampling from these streaming

networks is clearly challenging, their characteristics preclude the use of static models

of computation and thus a more in depth investigation of streaming models of com-

putation is warranted. This naturally raises a follow up question: how can we sample

from large graph streams in a single pass over the edges? Generally streaming graphs

differ from static graphs in three main aspects:

(1) The massive volume of edges streaming over the time is far too large to fit in

main memory.

(2) The graph can only be accessed sequentially in a single pass (i. e., random access

to neighboring nodes or to the entire graph is not possible).

(3) Efficient, real-time processing is of critical importance.

In a streaming model, as each edge e ∈ E arrives, the sampling algorithm σ needs

to decide whether to include the edge or not as the edge streams by. The sampling

30

algorithm σ may also maintain state Ψ and consult the state to determine whether

to sample e or not.

The complexity of a streaming sampling algorithm is measured by:

(1) Number of passes over the stream ω.

(2) Space required to store the state Ψ and the output.

(3) Representativeness of the output sample S.

Multiple passes over the stream (i. e., ω > 1) may be allowed for massive disk-

resident graphs but prohibitive due to the massive volumes of stored graph data.

However, multiple passes are generally not realistic for data sets where the graph is

continuously streaming over time. In this case, a requirement of a single pass is more

suitable (i. e., ω = 1). The total storage space (i. e., Ψ) is usually of the order of the

size of the output: |Ψ| = O(|Gs|). Note that this requirement is potentially larger

than the o(N, t) (and preferably polylog(N, t)) that streaming algorithms typically

require [35]. But, since any algorithm cannot require less space than its output, we

relax this requirement in our definition as follows.

Definition 2.5.2 (Streaming Graph Sampling) A streaming graph sampling al-

gorithm is any sampling algorithm σ that produces a sampled graph Gs by sampling

edges of the input graph G in a sequential order, preferably in one pass (i. e., ω = 1),

while maintaining state Ψ such that |Ψ| ≤ O(|Gs|).

Clearly, it is more difficult to design sampling algorithms for the graph stream

model, but it is critical to address the fundamental intricacies of, and implementation

requirements for, real-world graphs that we see today.

We now have what can be viewed as a complete spectrum of computational models

for network sampling, which ranges from the simple, yet less realistic, static graph

model to the more complex, but more realistic, streaming model (see Figure 1.1).

In Chapters 3-4, we will evaluate algorithms for representative subgraph sampling in

each computation model from the spectrum.

31

We note that our assumption in this work is that the population graph G is visible

in its entirety (collected and stored on disk). In many domains this assumption is valid,

but in some cases the full structure of the population graph may be unknown prior to

the sampling process (e. g., the deep Web or distributed information in peer-to-peer

networks). Web/network crawling is used extensively to sample from graphs that are

not fully visible to the public but naturally allow methods to explore the neighbors of a

given node (e. g., hyperlinks in a web page). Topology-based sampling methods (e. g.,

breadth-first search, random walk) have been widely used in this context. However,

these methods typically assume the graph G is well connected and remains static

during crawling, as discussed in [78].

2.6 Review of Related work

Generally speaking, there are two bodies of work related to this work: (i) network

sampling methods, which investigate and evaluate sampling methods with different

goals for collecting a sample and (ii) graph stream methods, including work on mining

and querying streaming data. In this section, we describe related work and put it in

the perspective of the framework we discussed earlier in this chapter.

The problem of sampling graphs has been of interest in many different fields of

research. Most of this body of research has focused on how to sample and each project

evaluates the “goodness” of the resulting samples relative to its research goal(s).

2.6.1 Network Sampling in Social Science

In social science, the classic work done by [79] (also see the review papers [25,80])

provides basic solutions to the initial problems that arise when only a sample of

the actors in a social network is available. [81] introduced the first snowball sampling

method and originated the concept of “chain-referral” sampling. Further, Granovetter

introduced the network community to the problem of making inferences about the

entire population from a sample (e. g., estimation of network density) [82]. Later,

32

respondent-driven sampling was proposed in [66] and analyzed in [83] to reduce the

biases associated with chain referral sampling of hidden populations. For an excellent

survey about estimation of network properties from samples, we refer the reader

to [84]. Generally, work in this area focuses on either the estimation of global network

parameters (e. g., density) or the estimation of actors (node) attributes, i. e., goals 1

and 3.

2.6.2 Statistical Properties of Network Sampling

Another important trend of research focused on analyzing the statistical properties

of sampled subgraphs. For example, the work in [65] and [85] studied the statistical

properties of sampled subgraphs produced by classical node, edge and random walk

sampling methods and discussed the bias in estimates of topological properties. Sim-

ilarly, the work in [64] showed that the sampled subgraph of a scale free network is

far from being scale free. Conversely, the work in [86] shows that under traceroute

sampling, the resulting degree distribution follows a power law even when the original

distribution is Poisson. Clearly, work in this area has focused on representative sub-

graph sampling (i. e., goal 2), considering how the topological properties of samples

differ from those of the original network.

2.6.3 Network Sampling in Networked Systems

A large body of research in networked systems has focused on Internet measure-

ment, which targets the problem of topology measurements in large-scale networks,

such as peer-to-peer networks (P2P), the world wide web (WWW), and online social

networks (OSN). The sheer size and distributed structure of these networks make it

hard to measure the properties of the entire network. Network sampling, via crawl-

ing, has been used extensively in this context. In OSNs, sampling methods that do

not revisit nodes are widely used (e. g., breadth-first search [30, 87, 88]). Breadth-

first search has been shown to be biased towards high degree nodes [89], but the

33

work in [90] suggested analytical solutions to correct the bias. Random walk sam-

pling has also been used to sample a uniform sample from users in Facebook and

Last.fm (see e. g., [26]) . For a recent survey covering assumptions and comparing

different methods of crawling, we refer the reader to [78]. Similar to OSNs, random

walk sampling and its variants were used extensively to sample the WWW [91, 92],

and P2P networks [27]. Since the classical random walk is biased towards high de-

gree nodes, some improvements were applied to correct the bias. For example, the

work in [93] applied Metropolis-Hastings random walks (MHRW) to sample peers in

Gnutella network, and the work in [94] applied re-weighted random walk (RWRW)

to sample P2P networks. Other work used m-dependent random walks and random

walks with jumps [32,95].

Overall, the work done in this area has focused extensively on sampling a uni-

form subset of nodes from the graph, to estimate topological properties of the entire

network from the set of sampled nodes (i. e., goal 1).

2.6.4 Network Sampling in Structured Data Mining

Network sampling is a core part of data mining research. Representative subgraph

sampling was first defined in [9]. [96] then proposed a generic Metropolis algorithm to

optimize the representativeness of a sampled subgraph—by minimizing the distance

of several graph properties from the sample to the original graph. Unfortunately, the

number of steps until convergence is not known in advance and is usually quite large in

practice. In addition, each step requires the computation of a complex distance func-

tion, which may be costly. In contrast to sampling, [97] explored reductive methods

to shrink the existing topology of the graph. At the same time, other work discussed

the difficulty of constructing a “universally representative” subgraph that preserves

all properties of the original network. For example, our past work discussed the

correlations between network properties and showed that accurately preserving some

properties leads to under- or over-estimation of other properties (e. g., preserving the

34

average degree of the original network leads to a sampled subgraph with overestimated

density) [52]. Also, [10] investigated the connection between the biases of topology-

based sampling methods (e. g., breadth-first search) and some topological properties

of the network (e. g., degree). These findings led to work focused on obtaining sam-

ples for specific applications, where the goal is to reproduce specific properties of the

target network—for example, to preserve the community structure [28], to preserve

the pagerank between all pairs of sampled nodes [98], or to visualize the graph [99].

Other network sampling goals have been considered as well. For example, sam-

pling nodes to perform A/B testing of social features [29], sampling connected sub-

graphs [100], sampling nodes to analyze the fraction of users with a certain prop-

erty [101], (i. e., goal 3), and sampling tweets (edges) to analyze the language used in

Twitter (i. e., goal 4). In addition, [102] and [103] sample the output space of graph

mining algorithms (e. g., graphlets), [104] collected information from social peers to

enhance the information needs of users, and [105] studied the impact of sampling on

the discovery of information diffusion.

Much of this work has focused on sampling in the context of a static model of

computation—where algorithms assume that the graph can be loaded entirely into

main memory, or the graph is distributed in a manner which allows exploration of a

node’s neighborhood in a crawling fashion.

2.6.5 Graph Streams

Data stream querying and mining has garnered a lot of interest over the past few

years [35, 106–108]. For example, sampling sequences (e. g., reservoir sampling) [38,

109, 110], computing frequency counts [111, 112] and load shedding [113], mining

concept drifting data streams [114–117], clustering evolving data streams [36, 118],

active mining and learning in data streams [119, 120], and other related mining

tasks [121–124].

35

Recently, as a result of the proliferation of graph data (e. g., social networks,

emails, IP traffic, Twitter hashtags), there has been an increased interest in min-

ing and querying graph streams. Following the earliest work on graph streams [125],

various problems were explored in the field of mining graph streams. For example,

counting triangles [43, 126], finding common neighborhoods [127], estimating pager-

ank values [128], and characterizing degree sequences in multi-graph streams [129].

More recently, there is work on clustering graph streams [130], outlier detection [40],

searching for subgraph patterns [131], and mining dense structural patterns [132].

Graph stream sampling was utilized in some of the work mentioned above. For

example, [128] performed short random walks from uniformly sampled nodes to es-

timate pagerank scores. Also, [43] used sampling to estimate number of triangles in

the graph stream. Moreover, [129] used a min-wise hash function to sample nearly

uniformly from the set of all edges that have been at any time in the stream. The

sampled edges were later used to maintain cascaded summaries of the graph stream.

More recently, [40] designed a structural reservoir sampling approach (based on min-

wise hash sampling of edges) for structural summarization. For an excellent survey

on mining graph streams, we refer the reader to [133] and [77].

The majority of this work has focused on sampling a subset of nodes uniformly

from the stream to estimate parameters such as the number of triangles or pagerank

scores of the graph stream (i. e., goal 1). Also, as discussed above, other work has

focused on sampling a subset of edges uniformly from the graph stream to maintain

summaries (i. e., goal 2). These summaries can be further pruned (by lowering a

threshold on the hash value [40]) to satisfy a specific stopping constraint (e. g., specific

number of nodes in the summary). In this work, since we focus primarily on sampling

a representative subgraph Gs ⊂ G from the graph stream, we compare to some of

these methods in Chapter 4.

36

3. SAMPLING FROM LARGE STATIC GRAPHS

In this chapter, we focus on how to sample a representative subgraph Gs = (Vs, Es)

from G=(V,E) (i. e., goal 2 from Section 2.2). A representative sample Gs is essential

for many applications in machine learning, data mining, and network simulations. As

an example, it can be used to drive realistic simulations and experimentation before

deploying new protocols and systems in the field [97]. We evaluate the representa-

tiveness of Gs relative to G, by comparing distributions of six topological properties

calculated over nodes, edges, and subgraphs (as summarized in Table 2.1).

3.1 Motivation

We distinguish between the degree of the sampled nodes before and after sampling.

For any node vi ∈ Vs, we denote ki to be the node degree of vi in the input graph G.

Similarly, we denote ksi to be the node degree of vi in the sampled subgraph Gs. Note

that ki = |N (vi)|, where N (vi) = {vj ∈ V | eij =(vi, vj) ∈ E}) is the set of neighbors

of node vi. Clearly, when a node is sampled, it is not necessarily the case that all its

neighbors are sampled as well, and therefore 0 ≤ ksi ≤ ki.

We propose a simple and efficient two-pass sampling algorithm: 2-pass induced

edge sampling (for brevity ES-i). ES-i has several advantages over current sampling

methods as we show later in this chapter:

(1) ES-i preserves the topological properties of G better than many of current sam-

pling algorithms.

(2) ES-i can be easily implemented as a two-pass sampling algorithm using only two

passes over the edges of G (i. e., ω = 2).

(3) ES-i is suitable for sampling large graphs that cannot fit into main memory.

37

3.2 Two-Pass Stream Sampling

We formally specify ES-i in Algorithm 3.1. Initially, ES-i selects the nodes in pairs

by sampling edges uniformly (i. e., p(eij is selected) = 1/|E|) and adds them to the

sample (Vs). Then, ES-i augments the sample with all edges that exist between any

of the sampled nodes (Es = {eij =(vi, vj) ∈ E |vi, vj ∈ VS}). These two steps together

form the sample subgraph Gs = (Vs, Es). For example, suppose edges e12 = (v1, v2)

and e34 = (v3, v4) are sampled in the first step, which leads to the addition of the

vertices v1, ..., v4 into the sampled graph. In the second step, ES-i adds all the edges

that exist between the sampled nodes—for example, edges e12 =(v1, v2), e34 =(v3, v4),

e13 = (v1, v3), e24 = (v2, v4), and any other possible combinations involving v1, ..., v4

that appear in G.

Algorithm 3.1: ES-i(φ, E)
Input : Sample fraction φ, Edge set E
Output: Sampled Subgraph Gs = (Vs, Es)

1 Vs = ∅, Es = ∅
2 // Node selection step
3 while |Vs| < φ× |V | do
4 r = random (1, |E|)
5 // uniformly random
6 (u, v) = er
7 Vs = Vs ∪ {u, v}
8 // Edge selection step
9 for k = 1 : |E| do

10 ek = (u, v)
11 if u ∈ Vs AND v ∈ Vs then
12 Es = Es ∪ {ek}

Algorithm 3.1 can also be generalized to control the total number of edges in the

sampled subgraph. For example, instead of adding an edge ek that exists between

two sampled nodes, we select ek with a probability p(ek) =
(

1
degGs (ek)

)β
, such that

degGs(ek) represents the number of adjacent edges to ek in the sampled subgraph,

and β is a sparsification parameter (0 ≤ β ≤ 1). To simplify the analysis, we use

β = 0 in the rest of this chapter, which corresponds to taking the induced subgraph

on the nodes sampled in the first step.

38

Since any sampling algorithm (by definition) selects only a subset of the nodes/edges

in the graph G, it naturally produces subgraphs with underestimated degrees in the

degree distribution of Gs. We refer to this as a downward bias and note that it is a

property of all network sampling methods, since only a fraction of a node’s neighbors

may be selected for inclusion in the sample (i. e., ksi ≤ ki for any sampled node vi).

Our proposed sampling methods exploits two key observations. First, by selecting

nodes via edge sampling, the method is inherently biased towards the selection of

nodes with high degrees, resulting in an upward bias in the (original) degree distri-

bution if it is only measured from the sampled nodes (i. e., using the degree of the

sampled nodes as observed in G). The upward bias resulting from edge sampling can

help offset the downward bias of the sampled degree distribution of Gs. Furthermore,

in addition to improving estimates of the sampled degree distribution, selecting high

degree nodes also helps to produce a more connected sampled subgraph that preserves

the topological properties of the graph G. This is due to the fact that high degree

nodes often represent hubs in the graph, which serve as good navigators through the

graph (e. g., many shortest paths usually pass through these hub nodes).

However, while the upward bias of edge sampling can help offset some issues of

sample selection bias, it is not sufficient to use it in isolation to construct a good

sampled subgraph. Specifically, since the edges are each sampled independently, edge

sampling is unlikely to preserve much structure surrounding each of the selected nodes.

This leads us to our second observation, that a simple graph induction step over the

sampled nodes (where we sample all the edges between any sampled nodes from G) is

crucial to recover much of the connectivity in the sampled subgraph—offsetting the

downward degree bias as well as increasing local clustering in the sampled graph. More

specifically, graph induction increases the likelihood that triangles will be sampled

among the set of selected nodes, producing higher clustering coefficients and shorter

path lengths in Gs.

39

These observations, while simple, make the sampled subgraph Gs approximate the

characteristics of the original graph G more accurately, even better than topology-

based sampling methods.

Since many real networks are now too large to fit into main memory, this raises the

question of how to sample from G sequentially, one edge at a time, while minimizing

the number of passes over the edges? Section 2.5 discussed how most of the topology-

based sampling methods are no longer be applicable in this scenario, since they require

many passes over the edges. In contrast, ES-i can be implemented to run sequentially

and requires only two passes over the edges of G (i. e., ω = 2). Note that if the

graph can fit in main memory, ES-i can be implemented with run time linear in the

number of edges (O(2E)) by flipping coins with the corresponding probability. Next,

we analyze the characteristics of ES-i and after that, in the evaluation, we show how

it accurately preserves many of the properties of the graph G.

3.3 Analysis of Sampling Bias

In this section, we analyze the bias of ES-i’s node selection analytically by com-

paring to the unbiased case of uniform sampling in which all nodes are sampled with

a uniform probability (i. e., p = 1
N

). First, we denote fD to be the degree sequence of

G where fD(k) is the number of nodes with degree k in graph G. Let n = |Vs| be the

target number of nodes in the sample subgraph Gs (i. e.., φ = n
N

).

3.3.1 Selection Bias Toward High Degree Nodes

We start by analyzing the upward bias to select high degree nodes by calculating

the expected value of the number of nodes with original degree k that are added to

the sample set of nodes Vs. Let EUN [fD(k)] be the expected value of fD(k) for the

sampled set Vs when n nodes are sampled uniformly with probability p = 1
N

:

40

EUN [fD(k)] = fD(k) · n · p

= fD(k) · n
N

Since, ES-i selects nodes proportional to their degree, the probability of sampling

a node vi with degree ki = k is p′ = k∑N
j=1 kj

. Note that we can also express the

probability as p′= k
2·|E| . Then we let EESi [fD(k)] denote the expected value of fD(k)

for the sampled set Vs when nodes are sampled with ES-i:

EESi [fD(k)] = fD(k) · n · p′

= fD(k) · n · k

2 · |E|

This leads us to Lemma 3.3.1, which shows ES-i’s bias towards high degree nodes.

Lemma 3.3.1 ES-i is biased to select high degree nodes. Let kavg = 2·|E|
N

be the

average degree in G. Then for k ≥ kavg, EESi [fD(k)] ≥ EUN [fD(k)].

Proof Consider the threshold k at which the expected value of fD(k) using ES-i

sampling is greater than the expected value of fD(k) using uniform random sampling:

EESi [fD(k)]− EUN [fD(k)] = fD(k) · n · k

2 · |E| − fD(k) · n
N

= fD(k) · n
[

k

2 · |E| −
1

N

]

= fD(k) · n

2 · |E|

[
k − kavg

]

≥ 0 when k ≥ kavg

41

3.3.2 Downward Bias Due to Sampling

Next, instead of focusing on the original degree k as observed in the graph G,

we focus on the sampled degree ks as observed in the sample subgraph Gs, where

0 ≤ ks ≤ k. Let ksi be a random variable that represent the sampled degree of node vi

in Gs, given that the original degree of node vi in G was ki. We compare the expected

value of ksi when using uniform sampling to the expected value of ksi when using ES-i.

Generally, the degree of the node vi in Gs depends on how many of its neighbors in

G are sampled. When using uniform sampling, the probability of sampling one of the

node’s neighbors is p = 1
N

:

EUN [ksi] =

ki∑

j=1

p · n = ki ·
n

N

Now, let us consider the variable kN =
∑

k′ k
′ · P (k′|k), where kN represents the

average degree of the neighbors of a node with degree k as observed in G. The function

kN has been widely used as a global measure of the assortativity in a network [134]. If

kN is increasing with k, then the network is assortative—indicating that nodes with

high degree connect to, on average, other nodes with high degree. Alternatively, if

kN is decreasing with k, then the network is disassortative—indicating that nodes of

high degree tend to connect to nodes of low degree.

When using ES-i, the probability of sampling any of the node’s neighbors is propor-

tional to the degree of the neighbor. Let vj be a neighbor of vi (i. e., eij =(vi, vj) ∈ E),

then the probability of sampling vj is p′ =
kj

2·|E| . Then we define kN i =
∑ki
j=1 kj

ki
to be

the average degree of the neighbors of node vi. Note that kN i ≥ 1. In this context,

kN i represents the local assortativity of node vi, so then:

EESi [k
s
i] =

ki∑

j=1

p′ · n

42

=
n

N
·
∑ki

j=1 kj

kavg

=
n

N
· ki
kavg
·
∑ki

j=1 kj

ki

= ki ·
n

N
· kN i
kavg

This leads us to Lemma 3.3.2, which shows when the sampled degrees using ES-i are

higher than uniform random sampling.

Lemma 3.3.2 The expected sampled degree in Vs using ES-i is greater than the ex-

pected sampled degree based on uniform node sampling when the local assortativity of

the node is high. Let kavg = 2·|E|
N

be the average degree in G and let kN i =
∑ki
j=1 kj

ki
be

the average degree of vi’s neighbors in G. For any node vi ∈ Vs, if kN i ≥ kavg, then

EESi [k
s
i] ≥ EUN [ksi].

Proof Consider the threshold k at which the expected value of ks using ES-i sam-

pling is greater than the expected value of ks using uniform random sampling:

EESi [k
s
i]− EUN [ksi] = ki ·

n

N
· kN i
kavg
− ki ·

n

N

= ki ·
n

N

[
kN i
kavg
− 1

]

≥ 0 when kN i ≥ kavg

Generally, for any sampled node vi, if the average degree of vi’s neighbors is greater

than the average degree of G, then its expected sampled degree under ES-i is higher

than it would be if uniform sampling was used. This is often the case in many real

networks where high degree nodes are connected with other high degree nodes.

In Figure 3.1, we empirically investigate the difference between the sampled de-

grees ks and original degrees k for an example network—the CondMAT graph.

43

Specifically, in Figure 3.1a, we compare the cumulative degree distribution (CDF)

of G when measured from the full set of nodes V to the CDF of G when measured

only from the set of sampled nodes Vs. To contrast this with the sampled degrees, in

Figure 3.1b we compare the CDF of Gs to the CDF of G (measured from the full set

of nodes V). Note that in Figure 3.1, the x-axis denotes the degree (k in Figure 3.1a,

and ks in Figure 3.1b), and the y-axis denotes the cumulative probability (P (X < x)).

(a) Original degree in G, k (b) Sampled degree in Gs, k
s

Fig. 3.1.: Illustration of original degrees (in G) vs. sampled degrees (in Gs) for
subgraphs selected by NS, ES, ES-i, and FFS on the CondMAT network.

In Figure 3.1a, the NS curve is directly on top of the Actual CDF, indicating that

NS accurately estimates the true degree distribution as observed in G. However, in

Figure 3.1b, the NS curve is skewed upwards, indicating that NS underestimates the

sampled degree distribution in Gs. On the other hand, in Figure 3.1a ES, FFS, and

ES-i all overestimate the true degree distribution inG, which is expected since they are

biased to selecting higher degree nodes. At the same time, in Figure 3.1b, ES and FFS

both underestimate the sampled degree distribution Gs. In contrast to other sampling

methods, ES-i comes closer to replicating the original degree distribution of G in Gs.

This is from the combination of node selection bias (toward high degree nodes) with

further augmentation through graph induction, which help ES-i to compensate for

the underestimation caused by sampling subgraphs.

44

Table 3.1.: Characteristics of Network Data Sets

Graph Nodes Edges Weak
Comps.

Avg. Path Density Clustering
Coeff.

HepPH 34,546 420,877 61 4.33 7× 10−4 0.146
CondMAT 23,133 93,439 567 5.35 4× 10−4 0.264

Twitter 8,581 27,889 162 4.17 7× 10−4 0.061
Facebook 46,952 183,412 842 5.6 2× 10−4 0.085
Flickr 820,878 6,625,280 1 6.5 1.9× 10−5 0.116
LiveJournal 4,847,571 68,993,773 1876 6.5 5.8× 10−6 0.288
Youtube 1,134,890 2,987,624 1 5.29 2.3× 10−6 0.006
Pokec 1,632,803 30,622,564 1 4.63 1.2× 10−5 0.047

Web-Stanford 281,903 2,312,497 1 6.93 2.9× 10−5 0.008

Email-Univ 214,893 1,270,285 24 3.91 5.5× 10−5 0.002

3.4 Experiments

In this section, we present results evaluating the various sampling methods on

static graphs. We compare the performance of our proposed algorithm ES-i to other

algorithms from each class (as discussed in section 2.3): node sampling (NS), edge

sampling (ES) and forest fire sampling (FFS).

We compare the algorithms on seven different real-world networks. We use online

social networks from Facebook in the city of New Orleans [12] and Flickr [135].

We use a social media network drawn from Twitter, corresponding to users tweets

surrounding the United Nations Climate Change Conference in Copenhagen, Decem-

ber 2009 (#cop15) [54]. Also, we use a citation graph from ArXiv HepPh and a

collaboration graph from CondMAT [136]. We consider an email network Email-

Univ that corresponds to a month of email communication collected from Purdue

university mail-servers [55]. Finally, we compare the methods on a large social net-

work from LiveJournal [136] with 4 million nodes (included only at the 20% sample

size). Table 3.1 provides a summary of the global statistics of the network data sets.

Below we discuss the experimental results. For each experiment, we applied the

sampling methods to the full network and sampled subgraphs over a range of sampling

fractions φ = [5%, 40%]. For each sampling fraction, we report the average results

over ten different trials.

45

3.4.1 Distance Metrics

Figures 3.2(a)–3.2(d) show the average KS statistic for degree, path length, clus-

tering coefficient, and k-core distributions on the six data sets. Generally, ES-i out-

performs the other methods for each of the four distributions. FFS performs similar

to ES-i in the degree distribution, however, it does not perform well for path length,

clustering coefficient, and k-core distributions. This implies that FFS can capture the

degree distribution but not connectivity between the sampled nodes. NS performs

better than FFS and ES for path length, clustering coefficient, and k-core statistics

but not for the degree statistics. This is due to the uniform sampling of the nodes

that makes NS more likely to sample fewer high degree nodes (as discussed in 3.3).

Clearly, as the sample size increases, NS is able to select more nodes and thus the

KS statistic decreases. ES-i and NS perform similarly for path length distribution.

This is because they both form a fully induced subgraph out of the sampled nodes.

Since induced subgraphs are more connected, the distance between pairs of nodes is

generally smaller.

In addition, we also used skew divergence as a second evaluation measure. Fig-

ures 3.2(e)–3.2(h) show the average skew divergence statistic for degree, path length,

clustering coefficient, and k-core distributions on the six data sets. Note that skew

divergence computes the divergence between the sampled and the real distributions

on the entire support of the distributions. While the skew divergence is similar to

KS statistic in that it still shows ES-i outperforming the other methods, it also shows

significant gains in some cases, indicating that ES-i produces samples that capture

the entire distribution more accurately.

Finally, Figures 3.2(i) and 3.2(j) show the L1 and L2 distances for eigenvalues

and network values respectively. Clearly, ES-i outperforms all the other methods that

fail to improve their performance even when the sample size is increased up to 40%

of the full graph.

46

5 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Sampling Fraction (%)

A
v
e
ra

g
e
 K

S
 D

is
ta

n
c
e

ES−i

FFS

NS

ES

(a) Degree

5 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Sampling Fraction (%)

A
v
e
ra

g
e
 K

S
 D

is
ta

n
c
e

(b) Path length

5 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Sampling Fraction (%)

A
v
e
ra

g
e
 K

S
 D

is
ta

n
c
e

(c) Clustering Coeff.

5 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Sampling Fraction (%)

A
v
e
ra

g
e
 K

S
 D

is
ta

n
c
e

(d) Kcore

5 10 20 30 40
0

1

2

3

4

Sampling Fraction (%)

A
v
e
ra

g
e
 S

k
e
w

 D
iv

e
rg

e
n
c
e

ES−i

FFS

NS

ES

(e) Degree

5 10 20 30 40
0

1

2

3

4

5

Sampling Fraction (%)

A
v
e
ra

g
e
 S

k
e
w

 D
iv

e
rg

e
n
c
e

(f) Path length

5 10 20 30 40
0

1

2

3

4

Sampling Fraction (%)

A
v
e
ra

g
e
 S

k
e
w

 D
iv

e
rg

e
n
c
e

(g) Clustering Coeff.

5 10 20 30 40
0

1

2

3

4

Sampling Fraction (%)

A
v
e
ra

g
e
 S

k
e
w

 D
iv

e
rg

e
n
c
e

(h) Kcore

5 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Sampling Fraction (%)

A
v
e
ra

g
e
 L

1
 D

is
ta

n
c
e

(i) Eigen Values

5 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sampling Fraction (%)

A
v
e
ra

g
e
 L

2
 D

is
ta

n
c
e

ES−i

FFS

NS

ES

(j) Network Values

Fig. 3.2.: (a-d) Average KS distance, (e-h) average skew divergence, and (i-j) average
L1 and L2 distance respectively, across 6 data sets.

3.4.2 Statistical Distributions

While the distance measures are important to quantify the divergence between

the sampled and the real distributions, by analyzing only the distance measures it

is unclear whether the sampled statistics are an over-estimate or under-estimate of

the original statistics. Therefore, we plot the distributions for all networks at the

20% sample size. We choose the 20% as a representative sample size, however, we

note that same conclusions hold for the other sample sizes. Note that we plot the

complementary CDF (CCDF) for degree and k-core distributions, CDF for path

length and clustering coefficient distribution, and we plot eigenvalues and network

values versus their rank. Figures 3.3, 3.5, 3.4, 3.6, 3.7, 3.8, and 3.9, show the

47

Table 3.2.: Comparison of the maximum kcore number at the 20% sample size for
ES-i, NS, ES, FFS versus the original value in G

Graph True ES-i NS ES FFS

HepPH 30 23∗ 8 2 4
CondMAT 25 20∗ 7 2 6

Twitter 18 18∗ 5 2 3
Facebook 16 14∗ 4 2 3
Flickr 406 406∗ 83 21 7
LiveJournal 372 372∗ 84 6 7

Email-UNIV 47 46∗ 15 3 7

distributions for all networks. Next, we discuss the main findings we can observe

from inspecting the distributions.

Degree Distribution. Across all networks, ES-i captures the tail of the degree dis-

tribution (high degree nodes) better than NS, ES, and FFS. However, ES-i

under-estimates the low degree nodes for Twitter, Email-Univ, and Flickr.

FFS and NS capture a large fraction of low degree nodes but they fail to capture

the high degree nodes.

Path length Distribution. ES-i preserves the path length distribution of HepPH,

CondMAT, and LiveJournal, however, it underestimates the distributions

of Twitter, Email-Univ, and Flickr. Conversely, NS over-estimates the

distributions of HepPH, CondMAT, and LiveJournal but successfully pre-

serves the distributions of the other data sets.

Clustering Coefficient Distribution. ES-i generally captures the clustering coef-

ficient more accurately than other methods. While ES-i under-estimates the

low clustering coefficients, particularly in Email-Univ, and Flickr, the other

methods fail to capture the clustered structures in almost all the data sets.

K-Core Distribution. Similar to the previous statistics, ES-i nicely preserves the

distribution of core sizes for HepPH, CondMAT, and Facebook, but it over-

estimates the core structures of the other data sets. On the other hand, NS,

48

ES, and FFS generally fail to capture the core structures for the majority of the

data sets (with the exception of Flickr). In addition to the distribution of the

core sizes, we compared the max-core number in the sampled graphs to their

real counterparts for the 20% sample size (Table 3.2). Note that the max-core

number is the maximum value of k in the k-core distribution. In contrast to

ES-i, the max-core number in samples for NS, ES, and FFS is consistently an

order of magnitude smaller than the real max-core number. This indicates that

NS, ES, and FFS do not preserve the local density in the sampled subgraph

structures.

Eigen Values. The NS, ES, and FFS methods generally fail to approximate the

eigenvalues of the original graph in the sample. In contrast, ES-i accurately

approximates the eigenvalues of Twitter, Email-Univ, Flickr, and Live-

Journal and closely approximates the eigenvalues of HepPH, CondMAT,

and Facebook (at 20% sample size). By the interlacing theorem of the eigen-

values of induced subgraphs [137], the eigenvalues of ES-i in Gs can be used to

estimate bounds on their counterparts in the input graph G: λi ≤ µi ≤ λi+(N−n)

such that µi is the ith eigenvalue of Gs, and λi is the ith eigenvalue of G.

Network Values. Similar to the other graph measures, ES-i more accurately ap-

proximates the network values of the graph compared to other methods.

3.4.3 Comparison to Metropolis Graph Sampling

Metropolis sampling has been used frequently to improve the quality of collected

samples. The main idea of Metropolis graph sampling is to draw a sample from the

sample space X with a particular density, such that good samples will be sampled

more frequently than bad ones. In [96], the authors used Markov chain sampling

to improve the quality of uniform node sampling (NS). Their algorithm starts with

an initial sample collected by NS, then the sampled nodes are replaced randomly

49

Degree

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
−5

10
0

Path Length

P
(X

<
x
)

20 40 60 80
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

ES−i

FFS

NS

ES

K (k−core)

P
(X

>
x
)

0 1 10
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

10

20

30

40

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

Fig. 3.3.: Sampling Distribution of Facebook Graph

Degree

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
−5

10
0

Path Length

P
(X

<
x
)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

ES−i

FFS

NS

ES

K (k−core)

P
(X

>
x
)

0 1 10
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

20

40

60

80

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

Fig. 3.4.: Sampling Distribution of HepPH Graph

Degree

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
−5

10
0

Path Length

P
(X

<
x
)

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

ES−i

FFS

NS

ES

K (k−core)

P
(X

>
x
)

0 1 10
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

10

20

30

40

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

Fig. 3.5.: Sampling Distribution of CondMAT Graph

50

Degree

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Path Length

P
(X

<
x
)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

ES−i

FFS

NS

ES

K (k−core)

P
(X

>
x
)

0 1 10
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

10

20

30

40

50

60

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−2

10
−1

10
0

Fig. 3.6.: Sampling Distribution of Twitter Graph

Degree

P
(X

>
x
)

10
0

10
5

10
−6

10
−4

10
−2

10
0

Path Length

P
(X

<
x
)

5 10 15
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

ES−i

FFS

NS

ES

K (k−core)

P
(X

>
x
)

0 1 10 100
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

100

200

300

400

500

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−2

10
−1

10
0

Fig. 3.7.: Sampling Distribution of Email-Univ Graph

Degree

P
(X

>
x
)

10
0

10
5

10
−6

10
−4

10
−2

10
0

Path Length

P
(X

<
x
)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

ES−i

FFS

NS

ES

K (k−core)

P
(X

>
x
)

0 1 10 100 1000
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

200

400

600

800

1000

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−2

10
−1

10
0

Fig. 3.8.: Sampling Distribution of Flickr Graph

51

Degree

P
(X

>
x
)

10
0

10
5

10
−8

10
−6

10
−4

10
−2

10
0

Path Length

P
(X

<
x
)

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

ES−i

FFS

NS

ES

K (k−core)

P
(X

>
x
)

0 1 10 100 1000
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

100

200

300

400

500

600

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−2

10
−1

10
0

Fig. 3.9.: Sampling Distribution of LiveJournal Graph

such that that the new sampled subgraph Gs will better match the properties of the

full graph G (e. g.degree distribution). Clearly, this method requires computing the

properties of the full graph G in advance, and this requirement might be hard to

satisfy when graphs are too large. In [138], we found that “bad” nodes (i.e., ones

that do not improve the match) are sampled more frequently than “good” ones as

the sample size increases (typically ≥ 1000 nodes), which makes it difficult for the

method to converge. Consequently, this method produces graphs with properties that

are comparable to node sampling.

Recently, neighbor reservoir sampling (NRS) has been proposed in [100] to sample

connected subgraphs. The key idea is to start by an initial sample Gs (chosen by

random-walk approaches), then nodes in Gs are randomly replaced by other potential

nodes (chosen from the neighbors of Gs), such that the new sample subgraph is

connected (i. e., Gs has a single component). Random-walk methods are generally

biased to high degree nodes, and thus NRS helps to reduce their bias by randomly

replacing nodes that were initially selected by random-walk methods.

In Table 3.3, we compare ES-i to neighbor reservoir sampling (NRS) for Twit-

ter, Facebook, HepPH, and CondMAT. Note that the results are the average of

the 20% and 30% sample sizes. We show the average KS distance computed over the

distributions of degree, path length, clustering, and kcore. We observe that NRS out-

52

Table 3.3.: Comparison of ES-i to Neighbor
Reservoir (NRS) and Forest Fire Sampling
(FFS-i) with graph induction

Data ES-i NRS FFS-i

Average KS dist.
(Deg, PL, Clust, KCore)

Twitter 0.2801 0.0631 0.3009
Facebook 0.1918 0.1054 0.2650
HepPH 0.0895 0.3321 0.1229
CondMAT 0.1125 0.1918 0.1892

0.1685 0.1731 0.2195

Average L1 dist. (EigenVal)

Twitter 0.1923 0.3323 0.2080
Facebook 0.1647 0.4676 0.1671
HepPH 0.3459 0.6512 0.3051
CondMAT 0.2479 0.4812 0.1689

0.2377 0.4831 0.2123

Average L2 dist. (NetVal)

Twitter 0.0481 0.1029 0.0549
Facebook 0.0787 0.2801 0.0759
HepPH 0.1804 0.3637 0.2482
CondMAT 0.0944 0.1750 0.0852

0.1004 0.2304 0.1161

performs ES-i for sparse graphs (Twitter and Facebook). This shows that NRS

is indeed effective to reduce the bias of random-walk sampling approaches. However,

ES-i outperforms NRS for dense graphs (HepPH and CondMAT). We also compare

the L1/L2 distances computed for the distribution of eigenvalues and network values

respectively and we observe that ES-i outperforms NRS for the four data sets. We

tried to use NRS for sampling very large graphs, but the method was slow and did not

converge for any of our larger data sets (within a limit of 2 hours of running time). Fur-

ther, we test the effect of graph induction on forest fire sampling (FFS-i) in Table 3.3.

ES-i outperforms FFS-i on the average KS distance computed over the distributions

of degree, path length, clustering, and kcore. For the L1/L2 distances, ES-i and FFS-i

performs comparably.

53

3.5 Network Sampling Designs for Relational Classification

In Chapter 2, we discussed how network sampling arises in many different appli-

cations (e. g., social science). Most data mining research on network sampling has

focused on how to collect a sample that closely match topological properties of the

network [9,10]. However, since the topological properties are never entirely preserved,

it is also important to study how the sampling process impacts applications overlaid

on the sampled networks.

One such study recently investigated the impact of sampling methods on the inves-

tigation of information diffusion [105]. The study shows that sampling methods which

considers both topology and user context improves discovery compared to other naive

methods. In this chapter, we consider the impact of sampling on relational learning.

Network sampling is a core part of relational learning since relational data is often

represented as attributed graphs. Sampled relational data is used in many different

contexts—including parameter estimation, active learning, collective inference, and

algorithm evaluation.

Network sampling can produce samples with imbalance in class membership and/or

bias in topological features (e. g., path length, clustering) due to missing nodes/edges—

thus the sampling process can significantly impact the accuracy of relational classifi-

cation methods. Biases may result from the size of the sample, the applied sampling

method, or both. While, most previous work in relational learning has focused on

analyzing a single input network and research has considered how to further split

the input network into training and testing networks for evaluation [51,139,140], the

fact that the input network is often itself sampled from an unknown target network

has largely been ignored. There has been little focus on how the construction of the

input networks may impact the performance of relational algorithms and evaluation

methods [53].

In this chapter, we study the question of how the choice of the sampling method

can impact parameter estimation and performance evaluation of relational classifica-

54

tion algorithms. We aim to evaluate the impact of network sampling on relational

classification using two different goals:

1. Parameter estimation: we study the impact of network sampling on the esti-

mation of class priors, i. e., goal 3.

2. Performance evaluation: we study the impact of network sampling on the esti-

mation of classification accuracy of relational learners, i. e., goal 2.

Conventional classification algorithms focus on the problem of identifying the

unknown class (e. g., group) to which an entity (e. g., person) belongs. Classification

models are learned from a training set of entities, which are assumed to be independent

and identically distributed (i.i.d.) and drawn from the underlying population of

instances. However, relational classification problems differs from this conventional

view in that entities violate the i.i.d. assumption. In relational data, entities (e. g.,

social network users) can exhibit complex dependencies. For example, friends often

share similar interests (e. g., political views).

Recently, there have been a great deal of research in relational learning and clas-

sification. For example,the work in [59] and [141] outline probabilistic relational

learning algorithms that search the space of relational attributes and neighbor cor-

relations to improve classification accuracy. The work in [140] proposed a simple

relational neighbor classifier (weighted-vote relational neighbor wvRN) that requires

no learning and iteratively classifies the entities in a relational network based on the

relational structure. Macskassy in [140] showed that wvRN often performs competi-

tively when compared to other more complex relational learning algorithms.

3.5.1 Impact on Parameter Estimation

Let a be the node attribute representing the class label of any node vi ∈ V in

graph G. We denote C = {c1, c2, ...} as the set of possible class labels, where cl is the

class label of node vi (i. e., a(vi) = cl).

55

We study the impact of network sampling on the estimation of class priors in G

(i. e., the distribution of class labels), using the following procedure:

1. Choose a set of nodes S from V using a sampling algorithm σ.

2. For each node vi ∈ S, observe vi’s class label.

3. Estimate the class label distribution p̂cl from S, using the following equation,

p̂cl =
1

|S|
∑

vi∈S
1(a(vi)=cl)

In the experiments, we consider four real networks: two citation networks CoRA

with 2708 nodes and Citeseer with 3312 nodes [142], Facebook collected from

Facebook Purdue network with 7315 users with their political views [143], and a

single day snapshot of 1490 political blogs that shows the interactions between liberal

and conservative blogs [144].

We sample a subset of the nodes using NS, ES, ES-i, FFS, and expansion sampling

(XS). Expansion sampling (XS) is a snowball sampling method which samples nodes

deterministically to maximize the sample expansion [28]. We varied the sample size

from 10− 80% of the size of the graph G. For each sample size, we take the average

of ten different experiments. Then, we compare the estimated class prior to the

actual class prior in the full graph G using the average KS distance measure. As

shown in Figures 3.10(a)–3.10(d), node sampling (NS) estimates the class priors more

accurately than other methods. In contrast, we note that FFS produces a large bias

in most of the graphs at small sample sizes (ie, 10%).

While XS performs similar to ES-i in CoRA, Citeseer, and Facebook, it

performs significantly worse when estimating the class priors for the political blogs

network (at 10% sample size). In [144], the authors show there is a clear division

between the liberal and conservative political blogs, and that 91% of the links orig-

inating within either the conservative or liberal communities stay within that com-

56

10 30 50 70 90
0

0.05

0.1

0.15

0.2

0.25

0.3

A
v
e
ra

g
e
 K

S
 D

is
ta

n
c
e

ES−i

FFS

NS

ES

XS

(a) Political Blogs

10 30 50 70 90
0

0.02

0.04

0.06

0.08

0.1

A
v
e
ra

g
e
 K

S
 D

is
ta

n
c
e

(b) Facebook

10 30 50 70 90
0

0.05

0.1

0.15

0.2

0.25

Sampling Fraction (%)

A
v
e
ra

g
e
 K

S
 D

is
ta

n
c
e

(c) CoRA

10 30 50 70 90
0

0.05

0.1

0.15

0.2

0.25

Sampling Fraction (%)

A
v
e
ra

g
e
 K

S
 D

is
ta

n
c
e

(d) Citeseer

Fig. 3.10.: Average KS distance of class priors for NS, ES, FFS, XS, and ES-i.

munity. According to these observations, the political blogs network is structurally

divided into two dense communities, and the nodes are homogeneously labeled within

each community. We find in networks with such a dense community structure, XS

(and FFS) are likely to be largely biased towards exploring only a small fraction of

the communities. For instance, in the political blogs network, we find that at the

10% sample size, XS (and FFS) only sample from one of the two communities (either

conservatives or liberals), effectively ignoring the other. This indicates that topology-

based sampling methods (such as XS, FFS) may produce biased estimates of class

priors from networks that have dense, homogeneously-labeled communities.

To solve this problem, we can modify the topology-based methods (like XS and

FFS) to randomly jump with a small probability α to a new node in the graph (which

can be chosen uniformly at random). We note that α should be set relative to the

density within the communities and the sparsity of edges between communities.

57

3.5.2 Impact on Classification Accuracy

Let R be a relational classifier which takes a graph G as input. The goal is to

predict the class labels of nodes in G. Therefore, R uses a proportion of nodes in

graph G with known class labels as a training set to learn a model. Afterwards,

R is used to predict the label of the remaining (unlabeled) nodes in G (i. e., test

set). Generally, the performance of R can be evaluated based on the accuracy of the

predicted class labels. In this work, we calculate the accuracy using area under the

ROC curve (AUC) measure.

We study the impact of network sampling on the accuracy of relational classifica-

tion using the following procedure:

1. Sample a subgraph Gs from G using a sampling algorithm σ.

2. Estimate the classification accuracy of a classifier R on Gs: âuc = R(Gs)

We compare the actual classification accuracy on G to the estimated classification

accuracy on Gs. Formally, we compare auc = R(G) to âuc = R(Gs) and Gs is said

to be representative to G, if âuc ≈ auc.

In our experiments, we use the weighted-vote relational neighbor classifier (wvRN)

as our base classifier R [140]. In wvRN, the class membership probability of a node

vi belonging to class cl is defined as:

P (cl|vi) =
1

Z

∑

vj∈N (vi)

w(vi, vj) ∗ P (cl|vj)

where N (vi) is the set of neighbors of node vi, w(vi, vj) is the weight of the edge

eij = (vi, vj), and Z =
∑

vj∈N (vi)
w(vi, vj) is the normalization term.

We follow the common methodology used in [140] to compute the classification

accuracy. First, we vary the proportion of randomly selected labeled nodes from

10−80% and use 5-fold cross validation to compute the average AUC. Then, we repeat

this procedure for both the graph G and the sample subgraph Gs (at different sample

58

10 30 50 70 90
0.4

0.5

0.6

0.7

0.8

0.9

1

A
re

a
 u

n
d
e
r

R
O

C

True

ES−i

FFS

NS

ES

XS

(a) Political Blogs

10 30 50 70 90
0.4

0.45

0.5

0.55

0.6

0.65

A
re

a
 u

n
d
e
r

R
O

C

(b) Facebook

10 30 50 70 90
0.4

0.5

0.6

0.7

0.8

0.9

1

Sampling Fraction (%)

A
re

a
 u

n
d
e
r

R
O

C

(c) CoRA

10 30 50 70 90
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sampling Fraction (%)

A
re

a
 u

n
d
e
r

R
O

C
(d) Citeseer

Fig. 3.11.: Classification accuracy versus sampling fraction, where 10% of nodes in
the graph are initially labeled for prediction.

sizes). Note that AUC is calculated for the most prevalent class. Figures 3.11(a)-

3.11(d) show the plots of AUC versus the sample size (φ = [10%, 80%]) with 10%

labeled nodes. Figures 3.12(a)-3.12(d) show the plots of AUC versus the proportion

of labeled nodes, where the AUC is averaged over all sample sizes (10 − 80%). We

observe that AUC of G is generally underestimated for sample sizes < 30% in the

case of NS, ES, and FFS. However, generally ES-i and XS perform better than other

sampling methods and converges to the “True” AUC in G. In Figures 3.11(b) and

3.12(b), ES-i and XS slightly overestimate the true AUC. These results show that

in some cases when the graph is noisy (with low autocorrelation between labels of

neighboring nodes), sampling of nodes and edges can enhance the performance of

relational classification by reducing noise and overfitting.

We observe that many sampling methods fail to simultaneously satisfy the two

different goals even though both are needed for relational learning applications (i. e.,

59

10 30 50 70 90
0.7

0.75

0.8

0.85

0.9

0.95

1

A
re

a
 u

n
d
e
r

R
O

C

True

ES−i

FFS

NS

ES

XS

(a) Political Blogs

10 30 50 70 90
0.5

0.55

0.6

0.65

0.7

A
re

a
 u

n
d
e
r

R
O

C

(b) Facebook

10 30 50 70 90
0.6

0.7

0.8

0.9

1

(%) Initially Labeled

A
re

a
 u

n
d
e
r

R
O

C

(c) CoRA

10 30 50 70 90
0.5

0.6

0.7

0.8

0.9

(%) Initially Labeled

A
re

a
 u

n
d
e
r

R
O

C
(d) Citeseer

Fig. 3.12.: Classification accuracy versus proportion of nodes in the graph that are
initially labeled for prediction, averaged over sample sizes 10− 80%.

parameter estimation and accuracy evaluation). For example, while NS estimates the

class priors better than other methods, it cannot accurately estimate classification

accuracy due to lack of connectivity in the samples. Edge sampling performs similar to

node sampling. On the other hand, while FFS and XS methods may be more accurate

for estimating classification accuracy, they are generally not robust for estimating

unbiased class priors (particularly for networks with homogeneously-labeled dense

communities). ES-i provides a good balance for satisfying the two goals with a small

bias at the smaller sample sizes.

3.6 Summary

In this chapter, we proposed a novel 2-pass streaming network sampling algorithm.

In addition, we studied the impact of various network sampling algorithms on the

60

performance of relational classification. Our contributions can be summarized in the

following points:

(1) Sampled subgraphs collected and constructed by our proposed algorithm (ES-

i) accurately preserve a range of network statistics that capture both local and

global distributions of the graph structure.

(2) Due to its bias to selecting high degree nodes, ES-i generally favors dense and

clustered areas of the graph, which results in connected sample subgraphs—in

contrast with other methods.

(3) uniform node/edge sampling, and forest fire sampling methods generally con-

struct more sparsely connected sampled subgraphs.

(4) Most sampling methods with the exception of our proposed algorithm (ES-i) fail

to simultaneously satisfy the two different goals needed for relational classification

tasks (i. e., parameter estimation and accuracy evaluation).

61

4. SAMPLING FROM STREAMING GRAPHS

In this chapter, we focus on how to sample a representative subgraph Gs from a

streaming graph G in a single-pass. Note that in this work we focus on space-efficient

sampling methods. Using the definition of a streaming graph sampling algorithm,

as discussed in Section 2.5, we now present streaming variants of different sampling

algorithms from Section 2.3.

4.1 Motivation

We live in a vastly connected world. A large percentage of world’s population

routinely use online applications (e.g., Facebook and instant messaging) that allow

them to interact with their friends, family, colleagues and anybody else that they

wish to. Analyzing various properties of these interconnection networks is a key

aspect in managing these applications; for example, uncovering interesting dynamics

often prove crucial for either enabling new services or making existing ones better.

Since these interconnection networks are often modeled as graphs, and these networks

are huge in practice (e. g., Facebook has more than a billion nodes), efficient streaming

methods have recently become extremely important.

In addition, many interesting graphs in the online world naturally evolve over time,

as new nodes join or new edges are added to the network. A natural representation

of such graphs is in the form of a stream of edges. Clearly, in such a streaming graph

model, sampling algorithms that process the data in one-pass are more efficient than

those that process data in an arbitrary order. Even for static graphs, the streaming

model is still applicable, with a one-pass algorithm for processing arbitrary queries

over this graph, which is typically more efficient than those that involve arbitrary

traversals through the graph.

62

4.2 Streaming Node Sampling

One key problem with traditional uniform node sampling (discussed in 2.3) is

that the algorithm assumes that nodes can be accessed uniformly at random. In our

stream setting, new nodes arrive into the system only when an edge that contains the

new node is observed in the system. It is therefore difficult to identify which n nodes

to select a priori. To address this, we utilize the idea of reservoir sampling [38] to

implement a streaming variant of node sampling (see Algorithm 4.1).

Algorithm 4.1: Streaming Node Sampling NS(n, S)
Input : Sample Size n, Graph Stream S
Output: Sampled Subgraph Gs = (Vs, Es)

1 Vs = ∅, Es = ∅
2 h is fixed uniform random hash function
3 t = 1
4 for et in the graph stream S do
5 (u, v) = et
6 if u /∈ Vs& h(u) is top-n min hash then
7 Vs = Vs ∪ u
8 Let w ∈ Vs be the node s.t. h(w) is no longer a top-n min hash
9 Vs = Vs − {w}; Remove all edges incident on w from Es

10 if v /∈ Vs& h(v) is top-n min hash then
11 Vs = Vs ∪ v
12 Let w ∈ Vs be the node s.t. h(w) is no longer a top-n min hash
13 Vs = Vs − {w}; Remove all edges incident on w from Es

14 if u, v ∈ Vs then
15 Es = Es ∪ et
16 t = t+ 1

The main idea is to select nodes uniformly at random with the help of a uniform

random hash function – h(vi) ∼ Uniform(0, 1). A uniform random hash function

defines a true random permutation on the nodes in the graph, meaning that any

node is equally likely to be the node with the minimum value. Specifically, we keep

track of the nodes with the n smallest hash values in the graph.

Nodes are only added to the sample if their hash values are among the top-n

minimum hashes seen thus far in the stream. Any edge that has both vertices already

in the reservoir is automatically added to the original graph. Since the reservoir is

finite, a node with smaller hash value may arrive late in the stream and replace a

node that was sampled earlier. In this case, all edges incident to the replaced/dropped

63

node will be removed from the sampled subgraph. Once the reservoir is filled up to

n nodes, it will remain at n nodes, but since selection is based on the hash values,

nodes will be dropped and added as the algorithm samples from all portions of the

stream (not just the front). Therefore, it guarantees a uniformly sampled set of nodes

from the graph stream.

4.3 Streaming Edge Sampling

Streaming edge sampling can be implemented similar to streaming node sampling.

Instead of hashing individual nodes, we focus on using hash-based selection of edges

(as shown in Algorithm 4.2). We use the approach that was first proposed in [40].

Algorithm 4.2: Streaming Edge Sampling ES(n, S)
Input : Sample Size n, Edge Selection Size m, Graph Stream S
Output: Sampled Subgraph Gs = (Vs, Es)

1 Vs = ∅, Es = ∅
2 h is fixed uniform random hash function
3 t = 1
4 for et in the graph stream S do
5 (u, v) = et
6 if h(et) is in top-m min hash then
7 Es = Es ∪ et
8 Vs = Vs ∪ {u, v}
9 Let ek ∈ Es be the edge s.t. h(ek) is no longer a top-m min hash

10 Es = Es − {ek}; Remove any nodes from Vs that have no incident edges

11 Iteratively remove edges in Es in decreasing order until |Vs| = n nodes
12 t = t+ 1

More precisely, if we are interested in sampling m edges at random from the

stream, we can simply keep a reservoir of the m edges with minimum hash values.

Thus, if a new edge streams into the system, we check if its hash value is less than

the top-m minimum hash value. If it is not, the edge is not selected, otherwise it is

added to the reservoir, replacing the edge with the previous highest hash value. One

problem with this approach is that our goal is often in terms of sampling a certain

number of nodes n.

Since we use a reservoir of edges, determining the value of m that provides n

nodes is difficult. The value may also vary throughout the stream, depending on

64

which edges the algorithm ends up selecting. Note that the sampling fraction could

also be specified in terms of fraction of edges; the choice of defining it in terms of

nodes is somewhat arbitrary in that sense. For our comparison purposes, we ensured

that we choose a large enough m such that the number of nodes was much higher

than n, but later iteratively pruned out sampled edges with the maximum hash values

until the target number of nodes n was reached.

4.4 Streaming Topology-Based Sampling

We also consider a streaming variant of a topology-based sampling algorithm.

Specifically, we consider a simple BFS-based algorithm (shown in Algorithm 4.3)

that works as follows. This algorithm essentially implements a simple breadth-first

search on a sliding window of w edges in the stream.

In many respects, this algorithm is similar to the forest-fire sampling (FFS) algo-

rithm. Just as in FFS, it starts at a random node in the graph and selects an edge,

among all edges incident on that node within the sliding window, to burn (as in FFS

parlance). For every edge burned, let v be the incident node at the other end of the

burned edge.

We enqueue v onto a queue Q in order to get a chance to burn its incident edges

within the window. For every new streaming edge observed, the sliding window moves

one step, which means the oldest edge in the window is dropped and a new edge is

added. (If that oldest edge was sampled, it will still be part of the sampled graph.)

If as a result of the sliding window moving one step, the node has no more edges

left to burn, then the burning process will dequeue a new node from Q. If the queue

is empty, the process jumps to a random node within the sliding window (just as

in FFS). This way, it does BFS as much as possible within a sliding window, with

random jumps if there is no more edges left to explore. Note that there may be other

ways to implement a one-pass streaming approach to topology-based sampling, but

65

since to our knowledge, there are no streaming methods in the literature, we include

this as a reasonable approximation for comparison.

Algorithm 4.3: Streaming Breadth First Sampling BFS(n, S,wsize)
Input : Sample Size n, Graph Stream S, Window Size=wsize
Output: Sampled Subgraph Gs = (Vs, Es)

1 Vs = ∅;Es = ∅; W = ∅
2 Add the first wsize edges to W
3 t′ = wsize
4 Create a queue Q
5 // uniformly sample a seed node from W
6 u = Uniform(VW); Vs = Vs ∪ {u}
7 for et in the graph stream S starting at t′ do
8 if W.incident edges(u) = ∅ then
9 if Q 6= ∅ then u = Q.dequeue()

10 else u = Uniform(VW)
11 if u /∈ Vs then Vs = Vs ∪ {u}
12 else
13 Sample es = (u, v) from W.incident edges(u)
14 Es = Es ∪ es
15 Vs = Vs ∪ {v}
16 W = W − {es}
17 Enqueue v onto Q

18 // Move the window W
19 W = W − {et−wsize}; W = W ∪ {et}
20 if |Vs| >n then
21 Retain [e] ⊂ Es such that [e] has n nodes
22 Output Gs = (Vs, Es)

23 t = t+ 1

This algorithm has a similar problem as the edge sampling variant in that it is

difficult to control the exact number of sampled nodes and hence some additional

pruning needs to be done at the end (see Algorithm 4.3).

4.5 Partially-Induced Edge Sampling (PIES)

We finally present our main algorithm called PIES that outperforms the above

implementations of stream sampling algorithms. Our ES-i approach discussed in

Chapter 3 outlines a sampling algorithm based on edge sampling concepts. A key

advantage of using edge sampling is its bias towards high degree nodes. This upward

bias helps offset the downward bias (caused by subgraph sampling) to some extent.

Afterwards, forming the induced graph will help capture the connectivity among the

sampled nodes.

66

Unfortunately, full graph induction in a streaming fashion is difficult, since node

selection and graph induction requires at least two passes (when implemented in

the obvious, straightforward way). Thus, instead of full induction of the edges be-

tween the sampled nodes, in a streaming environment we can utilize partial induction

and combine edge-based node sampling with the graph induction (as shown in Al-

gorithm 4.4) in a single pass. The partial induction step induces the sample in the

forward direction only. In other words, it adds an edge among a pair of sampled

nodes if it occurs after both the two nodes were added to the sample.

PIES aims to maintain a dynamic sample while the graph is streaming by utilizing

the same reservoir sampling idea we have used before. In brief, we add the first set

of edges in the stream to a reservoir and then the rest of the stream is processed

by randomly replacing existing records in the reservoir. PIES runs over the stream

in a single pass and adds deterministically the first m edges incident to n nodes to

the sample. Once it achieves the target sample size of n, then for any streaming

edge, it (probabilistically) adds the incident nodes to the sample by replacing other

sampled nodes from the node set (selected uniformly at random). At each step, the

algorithm will also add the edge to the sample if its two incident nodes are already

in the sampled node set—producing a partial induction effect.

Algorithm 4.4: PIES(Sample Size n, Stream S)
Input : Sample Size n, Graph Stream S
Output: Sampled Subgraph Gs = (Vs, Es)

1 Vs = ∅, Es = ∅
2 t = 1
3 while graph is streaming do
4 (u, v) = et
5 if |Vs| <n then
6 if u /∈ Vs then Vs = Vs ∪ {u}
7 if v /∈ Vs then Vs = Vs ∪ {v}
8 Es = Es ∪ {et}
9 m = |Es|

10 else
11 pe = m

t
12 draw r from continuous Uniform(0,1)
13 if r ≤ pe then
14 draw i and j from discrete Uniform[1,|Vs|]
15 if u /∈ Vs then Vs = Vs ∪ {u} , drop node Vs[i] with all its incident edges
16 if v /∈ Vs then Vs = Vs ∪ {v} , drop node Vs[j] with all its incident edges

17 if u ∈ Vs AND v ∈ Vs then Es = Es ∪ {et}
18 t = t+ 1

67

Next we discuss the properties of PIES to illustrate its characteristics.

1. PIES is a two-phase sampling method. A two-phase sampling method is a

method in which an initial sample of units is selected from the population (e. g.,

the graph stream), and then a second sample is selected as a subsample of the

first. PIES can be analyzed as a two-phase sampling method. The first phase

samples edges (i. e., edge sampling) from the graph stream with probability

pe = m
t

if the edge is incident to at least one node that does not belong to

the reservoir, where t is the variable representing the time of the stream and

m is the number of initial edges in the reservoir. Also, an edge is sampled

with probability pe = 1 if the edge is incident to two nodes that belong to

the reservoir. After that, the second phase samples a subgraph uniformly (i. e.,

node sampling) to maintain only n nodes in the reservoir (i. e., all nodes in the

reservoir are equally likely to be sampled).

2. PIES has a selection bias to high degree nodes. PIES is biased to high degree

nodes due to its first phase that relies on edge sampling. Naturally, edge sam-

pling is biased towards high degree nodes since they tend to have more edges

compared to lower degree nodes.

3. PIES samples an induced subgraph uniformly from the sub-sampled edge stream

E ′(t) at any time t in the stream. At any time t in the graph stream E, PIES

sub-samples E(t) to E ′(t) (such that |E ′(t)| ≤ |E(t)|). Then, PIES samples

a uniform induced subgraph from E ′(t), such that all nodes in E ′(t) have an

equal chance to be selected. Now, that we have discussed the main properties

of PIES, it can be easily adapted depending on a specific choice of the network

sampling goal.

68

4.6 Experiments

In this section, we present results of sampling from streaming graphs observed as

an arbitrarily ordered sequence of edges. The experimental setup is similar to what

we used in section 3.4. We compare the performance of our proposed algorithm PIES

to the streaming implementation of node (NS), edge (ES), and breadth-first search

sampling (BFS) methods. Note that we implement breadth first search using a sliding

window of 100 edges.

Similar to the experiments in section 3.4, we report average performance over ten

different runs. To assess algorithm variation based on the edge sequence ordering, we

randomly permute the edges in each run (while ensuring that all sampling methods

use the same sequential order). Note that all streaming algorithms run in O(|E|),
and therefore, in addition to the data sets we used in section 3.4, we also compare the

methods on large networks with millions of nodes/edges from Youtube, Pokec, and

Web-Stanford [136]. Note that large data sets are included only for 20% sample

size as they take longer running time.

4.6.1 Distance Metrics

Figures 4.1(a)–4.1(d) show the average KS statistic for degree, path length, clus-

tering coefficient, and k-core distributions as an average over the six data sets (similar

to section 3.4). PIES outperforms all other methods for capturing the degree distri-

bution. NS performs almost as well as PIES for path length, clustering coefficient,

and k-core distributions. As we explained earlier in this Chapter, PIES is biased to

high degree nodes (due to its first phase) compared to NS. Both BFS and ES perform

the worst among the four methods. This shows that the limited observability of the

graph structure using a window of 100 edges does not facilitate effective breadth-

first search. While increasing the window size may help improve the performance of

BFS, we did not explore this as our focus was primarily on space-efficient sampling.

69

5 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Sampling Fraction (%)

A
v
e
ra

g
e
 K

S
 D

is
ta

n
c
e

PIES

NS

ES

BFS

(a) Degree

5 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Sampling Fraction (%)

A
v
e

ra
g

e
 K

S
 D

is
ta

n
c
e

(b) Path length

5 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Sampling Fraction (%)

A
v
e

ra
g

e
 K

S
 D

is
ta

n
c
e

(c) Clustering Coeff.

5 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Sampling Fraction (%)

A
v
e

ra
g

e
 K

S
 D

is
ta

n
c
e

(d) Kcore

5 10 20 30 40
0

1

2

3

4

Sampling Fraction (%)

A
v
e
ra

g
e
 S

k
e
w

 D
iv

e
rg

e
n
c
e

PIES

NS

ES

BFS

(e) Degree

5 10 20 30 40
0

1

2

3

4

5

Sampling Fraction (%)

A
v
e

ra
g

e
 S

k
e

w
 D

iv
e

rg
e

n
c
e

(f) Path length

5 10 20 30 40
0

1

2

3

4

Sampling Fraction (%)

A
v
e

ra
g

e
 S

k
e

w
 D

iv
e

rg
e

n
c
e

(g) Clustering Coeff.

5 10 20 30 40
0

1

2

3

4

5

Sampling Fraction (%)

A
v
e

ra
g

e
 S

k
e

w
 D

iv
e

rg
e

n
c
e

(h) Kcore

5 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

1

Sampling Fraction (%)

A
v
e

ra
g

e
 L

1
 D

is
ta

n
c
e

(i) Eigen Values

5 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sampling Fraction (%)

A
v
e
ra

g
e
 L

2
 D

is
ta

n
c
e

PIES

NS

ES

BFS

(j) Network Values

Fig. 4.1.: (a-d) KS distance, (e-h) average skew divergence, and (i-j) average L1 and
L2 distance respectively, averaged across 6 graphs represented as edge streams.

Figures 4.1(e)–4.1(h) show the skew divergence results are similar to that of the KS

statistic.

Finally, Figures 4.1(i)–4.1(j) show the L1 and L2 distance for eigenvalues and

network values respectively. PIES outperforms all other methods. However, even

though PIES performs the best, the distance is almost 50% for the eigenvalues. This

implies PIES is not suitable for capturing the eigenvalues of the graph.

4.6.2 Statistical Distributions

We plot the distributions of the network statistics at the 20% sample size. Fig-

ures 4.2– 4.11 show the distributions across all data sets.

70

Degree Distribution. We observe across the all datasets, PIES outperforms the

other methods for Facebook, Twitter, Email-Univ, Flickr, LiveJour-

nal, Youtube, Pokec, and Web-Stanford. However, PIES only performs

slightly better than NS for HepPH and CondMAT. This behavior appears to

be related to the specific properties of the network datasets themselves. HepPH

and CondMAT are more clustered and denser compared to other graphs used

in the evaluation. We will discuss the behavior of the sampling methods for

dense versus sparse graphs later in this section.

Path Length Distribution. PIES preserves the path length distribution of Face-

book, Twitter, Email-Univ, Flickr, LiveJournal, Youtube, Pokec,

and Web-Stanford, however, it overestimates the shortest path for HepPH

and CondMAT.

Clustering Distribution. PIES generally underestimates the clustering coefficient

in the graph by missing some of the clustering surrounding the sampled nodes.

This behavior is more clear in HepPH, CondMAT, and Web-Stanford since

they are more clustered initially.

K-Core Distribution. Similarly, PIES outperforms the other methods for Face-

book, Twitter, LiveJournal, Pokec, Youtube, and Web-Stanford.

For HepPH and CondMAT, PIES performs almost as good as NS. In addi-

tion to the distribution of the core sizes, we compared the max-core number

in the sampled subgraphs to their real counterparts for the 20% sample size

(Table 4.1).

Eigen Values. While PIES captures the eigenvalues better than ES and BFS, its

eigenvalues are orders of magnitude smaller than the real graph’s eigenvalues.

This shows that none of the streaming algorithms accurately captures the eigen-

values of the full graph (compared to ES-i in Chapter 3).

Network Values. PIES accurately estimates the network values of most graphs.

71

Table 4.1.: Comparison of max-core-number at the 20%
sample size for PIES, NS, ES, BFS versus the original value
in G

Graph True PIES NS ES BFS

HepPH 30 8∗ 8∗ 2 1
CondMAT 25 7∗ 7∗ 2 1

Twitter 18 7∗ 4 3 1
Facebook 16 6∗ 4 2 1
Flickr 406 166∗ 81 19 1
LiveJournal 372 117∗ 82 5 1
Youtube 51 22∗ 12 5 2
Pokec 47 19∗ 13 2 1

Web-Stanford 71 33∗ 19 3 3

Email-UNIV 47 22∗ 15 3 1

Degree

P
(X

>
x
)

10
0

10
5

10
−8

10
−6

10
−4

10
−2

10
0

Path Length

P
(X

<
x
)

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

PIES

NS

ES

BFS

K (k−core)

P
(X
>
x
)

0 1 10 100
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

50

100

150

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−2

10
−1

10
0

Fig. 4.2.: Stream Sampling Distribution of Pokec Graph

Degree

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
−5

10
0

Path Length

P
(X

<
x
)

20 40 60 80
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

PIES

NS

ES

BFS

K (k−core)

P
(X

>
x
)

0 1 10
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

10

20

30

40

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−20

10
−15

10
−10

10
−5

10
0

Fig. 4.3.: Stream Sampling Distribution of Facebook Graph

72

Degree

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
−5

10
0

Path Length

P
(X

<
x
)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

PIES

NS

ES

BFS

K (k−core)

P
(X

>
x
)

0 1 10
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

20

40

60

80

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−20

10
−15

10
−10

10
−5

10
0

Fig. 4.4.: Stream Sampling Distribution of HepPH Graph

Degree

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
−5

10
0

Path Length

P
(X

<
x
)

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

PIES

NS

ES

BFS

K (k−core)

P
(X

>
x
)

0 1 10
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

10

20

30

40

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−20

10
−15

10
−10

10
−5

10
0

Fig. 4.5.: Stream Sampling Distribution of CondMAT Graph

Degree

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Path Length

P
(X

<
x
)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

PIES

NS

ES

BFS

K (k−core)

P
(X

>
x
)

0 1 10
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

10

20

30

40

50

60

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−20

10
−15

10
−10

10
−5

10
0

Fig. 4.6.: Stream Sampling Distribution of Twitter Graph

73

Degree

P
(X

>
x
)

10
0

10
5

10
−6

10
−4

10
−2

10
0

Path Length

P
(X

<
x
)

5 10 15
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

PIES

NS

ES

BFS

K (k−core)

P
(X

>
x
)

0 1 10 100
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

100

200

300

400

500

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−2

10
−1

10
0

Fig. 4.7.: Stream Sampling Distribution of Email-Univ Graph

Degree

P
(X

>
x
)

10
0

10
5

10
−6

10
−4

10
−2

10
0

Path Length

P
(X
<
x
)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

PIES

NS

ES

BFS

K (k−core)

P
(X

>
x
)

0 1 10 100 1000
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

200

400

600

800

1000

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−2

10
−1

10
0

Fig. 4.8.: Stream Sampling Distribution of Flickr Graph

Degree

P
(X

>
x
)

10
0

10
5

10
−8

10
−6

10
−4

10
−2

10
0

Path Length

P
(X

<
x
)

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X
<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

PIES

NS

ES

BFS

K (k−core)

P
(X

>
x
)

0 1 10 100 1000
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

100

200

300

400

500

600

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−2

10
−1

10
0

Fig. 4.9.: Stream Sampling Distribution of LiveJournal Graph

74

Degree

P
(X

>
x
)

10
0

10
5

10
−8

10
−6

10
−4

10
−2

10
0

Path Length

P
(X

<
x
)

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

PIES

NS

ES

BFS

K (k−core)

P
(X
>
x
)

0 1 10 100
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

50

100

150

200

250

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−2

10
−1

10
0

Fig. 4.10.: Stream Sampling Distribution of Youtube Graph

Degree

P
(X

>
x
)

10
0

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Path Length

P
(X

<
x
)

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Clustering Coefficient

P
(X

<
x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True

PIES

NS

ES

BFS

K (k−core)

P
(X

>
x
)

0 1 10 100
0

0.2

0.4

0.6

0.8

1

Rank

|E
ig

e
n

 V
a

lu
e

s
|

5 10 15 20 25
0

50

100

150

200

250

300

350

400

450

Rank

N
e

tw
o

rk
 V

a
lu

e

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

Fig. 4.11.: Stream Sampling Distribution of Web-Stanford Graph

75

Email−Univ Youtube Web−Stanford Pokec Twitter Facebook Flickr LiveJournal HepPH CondMAT
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e

ra
g

e
 K

S
 D

is
ta

n
c
e

PIES

NS

ES

BFS

Fig. 4.12.: Average KS Statistics for different networks (sorted
in increasing order of clustering/density from left to right).

4.6.3 Analysis of Dense Versus Sparse Graphs

Further to the discussion of the distributional results, we note that PIES is more

accurate for sparse, less clustered graphs. To illustrate this, we report the performance

of the stream sampling methods for each network in Figure 4.12, sorted from left to

right in ascending order by clustering coefficient and density. Note that the bars

represent the KS statistic (averaged over degree, path length, clustering, and k-core)

for the 20% sample size.

Clearly, the KS statistic for all methods increases as the graph becomes more

dense and clustered. PIES maintains a KS distance of approximately ≤ 26% for eight

out of ten networks. These results indicate that PIES performs better in networks

that are generally sparse and less clustered. This interesting result shows that PIES

will be more suitable to sample rapidly changing graph streams that have lower

density and less clustering—which is likely to be the case for many large-scale dynamic

communication and activity networks.

4.6.4 Analysis of Isolated Nodes

We also analyzed the number of isolated nodes for both NS and PIES in Table 4.2.

Since both NS and PIES sample nodes independently, it is expected that their sampled

76

Table 4.2.: Average percentage of isolated
nodes for NS & PIES at 20% sample.

Graph PIES NS

HepPH 0.05 0.15
CondMAT 0.14 0.36

Twitter 0.15 0.51
Facebook 0.13 0.43
Flickr 0.14 0.56
LiveJournal 0.06 0.36
Youtube 0.22 0.63
Pokec 0.01 0.21

Web-Stanford 0.08 0.32

Email-UNIV 0.07 0.51

subgraph contains some nodes with zero degree (i. e., isolated nodes). This implies

that PIES carries isolated nodes in the reservoir as the graph streams by. Clearly,

each time a new edge is sampled from the stream, its incident nodes replace randomly

selected nodes from the reservoir. This approach could replace high degree nodes while

other isolated nodes still remain in the reservoir.

With this observation in mind, we propose a modification for PIES such that

a newly added node replaces the node with minimum degree which has stayed in

the reservoir the longest amount of time without acquiring more edges. This strategy

favors retaining high degree nodes over isolated and/or low degree nodes in the sample.

We show the results of this modification in Tables 4.3 and 4.4, which compare the

KS distance, and L1/L2 distances respectively for each data set (averaged over the

two reasonable sample sizes 20% and 30%). Note that we refer to the modification of

PIES as “PIES (MIN)”.

The results show that modifying PIES in this manner achieves better results

for dense graphs such as HepPH and CondMAT. Note that there is a trade-off

between preventing nodes from being replaced (based on recency of adding nodes

in the sample) and degree. We handle the trade-off between degree and recency by

keeping two sets, one for the recent (not to be replaced) nodes, and the other for

the oldest (can be replaced) nodes. When the number of the oldest nodes becomes

77

Table 4.3.: Average KS Distance for Stream Sampling Methods.

Data PIES PIES
(MIN)

NS ES BFS

Email-UNIV
Deg 0.2348 0.5803 0.4547 0.2186 0.3724
PL 0.204 0.5621 0.19 0.6989 0.5114
Clust 0.1108 0.4728 0.188 0.3302 0.3473
KCore 0.2819 0.5821 0.1985 0.3219 0.5759

0.2079∗ 0.5493 0.2578 0.3924 0.4518

Twitter
Deg 0.1521 0.2598 0.4667 0.3052 0.4194
PL 0.0528 0.3941 0.1243 0.617 0.4811
Clust 0.2462 0.2269 0.346 0.4673 0.482
KCore 0.1001 0.2886 0.2271 0.4393 0.5929

0.1378∗ 0.2923 0.291 0.4572 0.4938

Facebook
Deg 0.1848 0.2357 0.3804 0.4912 0.6917
PL 0.2121 0.3171 0.4337 0.8762 0.9557
Clust 0.2594 0.2314 0.3496 0.4975 0.5017
KCore 0.2375 0.2447 0.3569 0.661 0.7275

0.2234∗ 0.2572 0.3802 0.6315 0.7192

Flickr
Deg 0.1503 0.399 0.514 0.0924 0.2706
PL 0.2845 0.4936 0.0789 0.1487 0.6763
Clust 0.1426 0.3754 0.2404 0.3156 0.3931
KCore 0.1654 0.4289 0.0595 0.1295 0.4541

0.1857 0.4242 0.2232 0.1716∗ 0.4485

HepPH
Deg 0.4103 0.1304 0.483 0.8585 0.8923
PL 0.306 0.1959 0.431 0.749 0.8676
Clust 0.4636 0.0393 0.3441 0.9156 0.9171
KCore 0.592 0.1674 0.6233 0.9402 0.9592

0.443 0.1332∗ 0.4704 0.8658 0.909

CondMAT
Deg 0.4042 0.1259 0.5006 0.6787 0.7471
PL 0.2944 0.2758 0.5211 0.6981 0.9205
Clust 0.5927 0.3285 0.5341 0.878 0.8853
KCore 0.4692 0.1512 0.4955 0.858 0.8909

0.4401 0.2203∗ 0.5128 0.7782 0.8609

Average for all Data sets 0.2730∗ 0.3128 0.3559 0.5494 0.6472

Table 4.4.: Average L1/L2 Distance for Stream Sampling Methods.

Data PIES PIES
(MIN)

NS ES BFS

Email-UNIV
Eigen 0.4487 0.074∗ 0.7018 0.7588 0.838
NetV al 0.199 0.0201∗ 0.5785 0.3799 1.007

Twitter
Eigen 0.4981 0.1851∗ 0.6411 0.7217 0.7964
NetV al 0.1431 0.043∗ 0.3108 0.4271 0.8385

Facebook
Eigen 0.591 0.1143∗ 0.6771 0.8417 0.9018
NetV al 0.306 0.0617∗ 0.5383 1.0984 1.5027

Flickr
Eigen 0.5503 0.0049∗ 0.7227 0.8491 0.9298
NetV al 0.1657 0.0005∗ 0.5626 0.0574 1.5193

HepPH
Eigen 0.7083 0.2825∗ 0.7232 0.9373 0.95
NetV al 0.3 0.1817∗ 0.3198 1.0821 1.2477

CondMAT
Eigen 0.6278 0.1475∗ 0.6843 0.8507 0.8875
NetV al 0.2254 0.06∗ 0.3235 0.7514 0.9853

78

Table 4.5.: Characteristics of Multigraph Data Sets

Graph Nodes Edges Avg.
Node
Strength

Avg.
Edge
Weight

Density Global
Clust.

Facebook-City 46,952 855,542 37.4 4.7 4× 10−4 0.085
Facebook-Univ 49,825 1,518,155 60.9 4.2 6× 10−4 0.060

Twitter-Cop15 8,578 45,771 10.7 1.6 6× 10−4 0.061
Retweet-Pol 18,470 61,157 6.6 1.3 2× 10−4 0.027

Infectious-Socio 10,972 415,912 75.8 9.3 3× 10−3 0.44

less than 50% of the total sample size, we merge the two sets, and consider all nodes

amenable to replacement, and replace the node with minimum degree.

4.7 Sampling from Multigraph Streams

In the previous sections, we focused on sampling a representative subgraph from

simple graph streams, i. e., graph streams where edges appear only once, similar to

the problem definition studied in [43]. In time-evolving graph streams, there are often

two characteristics to study:

1. Graph structure

2. Graph dynamics

Studying simple graph streams is particularly focused on the structure of the

streaming graph G (i. e., topological properties such as degree, clustering), while

ignoring the dynamics that take place on top of the graph structure. These dynamics

describe the strength (frequency) of communications between pairs of nodes, as well

as the strength of individual nodes over time. Therefore, we also study the problem

of sampling from multigraph streams, i. e., graph streams where edges may appear

more than once, similar to the problem definition studied in [129].

Formally, let G = (V,E) be a snapshot of streaming undirected graph of time

length T , such that E = {et,∀t ∈ [1, T]}. We denote by w the weight of an edge

e = (u, v), i. e., the number of times an edge e appeared in the stream, and we denote

79

by s the strength of a node v, equal to the sum of the weights of the incident edges

to node v, i. e., s =
∑

(u,v)∈E w. We also denote by k the degree of node v, i. e., the

number of unique neighbors of v. These functions previously used by [145].

Table 4.5 describes the characteristics of five real multigraph datasets. We use

graph streams (with real timestamps), from Facebook wall communications in the

city network of New Orleans—Facebook-City graph [30], from Facebook wall

communications in the university network of Purdue University—Facebook-Univ

graph [54], from the Twitter hashtag #cop15—Twitter-Cop15 graph [54], from

the retweets collected from Twitter hashtags with political content—Retweet-Pol

graph [146], and from face-to-face interactions at the INFECTIOUS exhibition in

Dublin, Ireland—Infectious-Socio graph [147].

In the experimental setup, we used the real timestamps of the datasets and we

ran ten experiments for each data set. In each experiment, we sample 20% of the

total number of nodes that appear in the stream as it is progressing. We evaluate the

quality of the sample at different time points in the stream, from 40% to 100% of the

stream length. Note that the stream length is the number of edges in the streaming

graph ordered by timestamps. For example, if the total number of edges in the stream

is 1000 edges, we evaluate using the graph sampled from the first 400, 600, 800, and

1000 edges respectively.

4.7.1 Kolmogorov-Smirnov Statistic

Figure 4.13 shows the average Kolmogorov-Smirnov (KS) statistics over the five

datasets, while the stream is progressing. Figures 4.13(a) and 4.13(b) show the KS

statistics of the distributions of node strength and edge weight respectively. The

results show that PIES performs consistently well for both node strength and edge

strength. In contrast, NS and ES each only perform well in one of the two properties.

In addition to the dynamics properties, we also evaluate the quality of the sample

using the structural properties. Figures 4.13(c)-4.13(f) show the KS statistics for the

80

40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

Stream Length (%)

A
v
e
ra

g
e
 K

S
 D

is
ta

n
c
e

PIES

NS

ES

BFS

(a) Node Strength

40 60 80 100
0

0.1

0.2

0.3

0.4

Stream Length (%)

A
v
e
ra

g
e
 K

S
 D

is
ta

n
c
e

(b) Edge Weight

40 60 80 100

0.2

0.3

0.4

0.5

Stream Length (%)

A
v
e
ra

g
e
 K

S
 D

is
ta

n
c
e

(c) Degree

40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Stream Length (%)

A
v
e
ra

g
e
 K

S
 D

is
ta

n
c
e

(d) Path length

40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

Stream Length (%)
A

v
e
ra

g
e
 K

S
 D

is
ta

n
c
e

(e) Clustering

40 60 80 100
0.2

0.3

0.4

0.5

0.6

Stream Length (%)

A
v
e
ra

g
e
 K

S
 D

is
ta

n
c
e

(f) k-core

Fig. 4.13.: Average KS distance of across 5 datasets vs. percentage of stream length.

distributions of degree, path length, clustering, and kcore. These results show that

PIES captures both the structure and dynamic properties as the stream is progressing.

4.7.2 Statistical Distributions of Temporal Properties

Figures 4.14 and 4.15 show the CCDF distributions of node strength and edge

weight respectively at the 20% sample, constructed using the entire stream (i. e., 100%

of the stream length). The results of Facebook-City and Infectious-Socio show

that ES captures the distribution of node strength but over-estimates the distribution

of edge weight. Also, the results show that NS captures the distribution of edge weight

but under-estimates the distribution of node strength. However, PIES again balances

the estimation of both node strength and edge weight, producing a more accurate

sample overall. Notably, BFS performs significantly worse than the other methods.

These results are not surprising since ES (unlike NS) is naturally biased towards

edges with high weights as they appear more frequently in the stream. We found that

in all the datasets, there is a strong positive correlation between the node strength

81

Node Strength (s)

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

True

PIES
NS

ES

BFS

(a) Infectious-Socio

Node Strength (s)

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

True

PIES
NS

ES

BFS

(b) Facebook-City

Node Strength (s)

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

True

PIES
NS

ES

BFS

(c) Facebook-Univ

Node Strength (s)

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

True

PIES
NS

ES

BFS

(d) Retweet-Pol

Node Strength (s)

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

True

PIES
NS

ES

BFS

(e) Twitter-Cop15

Fig. 4.14.: Distributions of node strength in multigraph streams at 20% sample.

Edge Weight (w)

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(a) Infectious-Socio

Edge Weight (w)

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(b) Facebook-City

Edge Weight (w)

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(c) Facebook-Univ

Edge Weight (w)

P
(X

>
x
)

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(d) Retweet-Pol

Edge Weight (w)

P
(X

>
x
)

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(e) Twitter-Cop15

Fig. 4.15.: Distributions of edge weight in multigraph streams at 20% sample.

82

and its degree (e. g., corr(k, s) = 0.76 in Facebook-City). Due to this correlation,

sampling methods that are biased to high degree nodes also have a greater chance of

capturing node strength compared to methods that are biased to low degree nodes.

On the other hand, the bias towards high degree nodes also may result in over-

estimation of the edge weights. This is clearly the case for ES. Similar observations

can be seen in the other graph data sets as shown in Figures 4.14 and 4.15. We also

note that these results are consistent at different points in the stream.

4.7.3 Interplay between Graph Dynamics and Structure

We further investigate the interplay between graph dynamics and structure by

plotting node degree versus node strength, comparing the samples to the original

data. Figure 4.16 shows scatter plots for a variety of multigraph streams (for a 20%

sample from the total stream).

The results show that PIES outperforms all other methods when it comes to

capturing the correlation between node degree and strength. NS performs similar

to PIES but generally fails to capture high degree nodes. Clearly, ES is biased to

sampling frequents edges with incident nodes that may or may not have a high degree.

Therefore, we observe ES that captures the strength of the nodes but fails to capture

their degree. In contrast, BFS captures the degree but fails to capture the strength

of the nodes.

From this experiment, we conclude that the choice of stream sampling method

may have a significant impact on the accuracy of sampling multigraph streams. This

is because the probability of sampling nodes depends not only on the graph structure

(i. e., node degree) but also on graph dynamics (i. e., node strength and edge weight).

Therefore, methods that are biased to sampling frequent edges (e. g., ES) will capture

more of the dynamics but less of the structure. At the same time, methods that

sample nodes (nearly) uniformly (e. g., NS, PIES) are able to capture both the graph

structure and its dynamics. We also found that graphs that are more clustered (e. g.,

83

(a) Infectious-Socio (b) Facebook-City

(c) Facebook-Univ (d) Retweet-Pol

(e) Twitter-Cop15

Fig. 4.16.: Node strength (s) vs. degree (k) at 20% sample of multigraph streams.

84

(a) Facebook-City/Permuted time (b) Infectious-Socio/Permuted time

Fig. 4.17.: Node strength (s) versus degree (k) for PIES, NS, ES, and BFS at 20%
sample size for graph streams with permuted ordering.

Infectious-Socio) are generally more difficult to sample accurately compared to

less clustered graphs (e. g., Twitter-Cop15).

4.7.4 Randomization Tests for Graph Streams

Randomization tests provide a way to test the effects of time on the graph structure

and degree/strength correlation. To investigate the effects of time-clustering on the

various sampling methods, we permuted the timestamps in the original stream before

sampling. If node interactions are grouped together in small intervals of time, then

the permutation will destroy this aspect of the stream. Figure 4.17 shows plots of

node degree versus node strength for Facebook-City and Infectious-Socio when

sampled from time-permuted graphs. The results show no impact on the accuracy of

PIES, NS, and ES. However, BFS is significantly impacted by the time permutation,

which shows that BFS performance is highly dependent on the temporal clustering of

edges in the stream. We also found that the effect of time clustering is more significant

in Infectious-Socio and less significant in the Twitter communication graphs we

studied.

85

4.8 Summary

In this chapter, we proposed a novel single-pass streaming network sampling algo-

rithm (PIES), and we extended traditional algorithms from the three classes (node,

edge, and topology-based sampling). Our contributions can be summarized in the

following points:

(1) PIES runs in a single pass scan over the stream, and maintains only a stored

state of the order of the required sample size

(2) Sampled subgraphs constructed by PIES accurately preserve many network statis-

tics and distributions (e. g., degree, path length, and k-core).

(3) PIES produces better samples when the graph is more sparse and less clustered

(e. g., Twitter and LiveJournal datasets).

(4) PIES can be easily adapted to reduce the number of isolated nodes in the sample

by modifying the reservoir replacement mechanism (i. e., PIES(MIN)).

(5) PIES(MIN) more accurately preserves the properties of dense graphs as well as

certain statistics (e. g., eigenvalues) that are difficult to be capture with PIES.

(6) PIES is better able to capture both the dynamics and structure of multigraph

streams compared to other methods.

(7) The results show that the structure of the sampled subgraph Gs depends on the

manner in which the topology of the graph G, the nature of the target prop-

erty η (e. g., degree distribution), and the characteristics of the sampling method

interact.

86

5. SAMPLE & HOLD: A FRAMEWORK FOR BIG

GRAPH ANALYTICS

Sampling is a standard approach in big-graph analytics; the goal is to efficiently esti-

mate the graph properties by consulting a sample of the whole population. A perfect

sample is assumed to mirror every property of the whole population. Unfortunately,

such a perfect sample is hard to collect in complex populations such as graphs (e.g.

web graphs, social networks), where an underlying network connects the units of the

population. Therefore, a good sample will be representative in the sense that graph

properties of interest can be estimated with a known degree of accuracy.

While previous work focused particularly on sampling schemes to estimate certain

graph properties (e.g. triangle count), much less is known for the case when we need

to estimate various graph properties with the same sampling scheme. In this chapter,

we propose a generic stream sampling framework for big-graph analytics, called Graph

Sample and Hold (gSH), which samples from massive graphs sequentially in a single

pass, one edge at a time, while maintaining a small state in memory.

5.1 Motivation

One key stumbling block for enabling big graph analytics is the limitation in

computational resources. Despite advances in distributed and parallel processing

frameworks such as MapReduce for graph analytics and the appearance of infinite

resources in the cloud, running brute-force graph analytics is either too costly, too

slow, or too inefficient in many practical situations. Further, finding an approximate

answer is usually sufficient for many types of analyses; the extra cost and time in

finding the exact answer is often not worth the extra accuracy. Sampling therefore

87

provides an attractive approach to quickly and efficiently finding an approximate

answer to a query, or more generally, any analysis objective.

In this chapter, we propose a new sampling framework for big-graph analytics,

called Graph Sample and Hold (gSH). gSH essentially maintains a small amount of

state and passes through all edges in the graph in a streaming fashion. The sampling

probability of an arriving edge can in general be a function of the stored state, such

as the adjacency properties of the arriving edge with those already sampled. (This

can be seen as an analog of the manner in which standard Sample and Hold [148]

samples packets with a probability depending on whether their key matches one

already sampled). Since the algorithm involves processing only a sample of edges

(and thus, nodes), it keeps run time complexity under check.

gSH provides a generic framework for unbiased estimation of the counts of ar-

bitrary subgraphs. This uses the Horvitz-Thompson construction [45] in which the

count of any sampled object is weighted by dividing by its sampling probability. In

gSH this is realized by maintaining along with each sampled edge, the sampling prob-

ability that was in force when it was sampled. The counts of subgraphs of sampled

edges are then weighted according to the product of the selection probabilities of their

constituent edges. Since the edge sampling probabilities are determined conditionally

with respect to the prior sampling outcomes, this product reflects the dependence

structure of edge selection.

The sampling framework also provide the means to compute the accuracy of es-

timates, since the unbiased estimator of the variance of the count estimator can be

computed from the sampling probabilities of selected edges alone. More generally, the

covariance between the count estimators of any pair of subgraphs can be estimated

in the same manner.

The framework itself is quite generic. By varying the dependence of sampling

probabilities on previous history, one can tune the estimation of various properties of

the original graph efficiently with arbitrary degrees of accuracy. For example, simple

uniform sampling of edges at random may naturally lead to selecting a large number

88

of higher-degree nodes since higher-degree nodes appear in more number of edges.

For each of these sampled nodes, we can choose the holding function to simply track

the size of the degree for these specific nodes, of course accounting for the loss of

the count before the node has been sampled in an unbiased manner. Similarly, by

carefully designing the sampling function, we can obtain a uniformly random sample

of nodes (similar to the classic node sampling), for whom we can choose to hold an

accurate count of number of triangles each of these nodes is part of.

In this chapter, we demonstrate applications of the gSH framework in two di-

rections. Firstly, we formulate a parameterized family gSH(p,q) of gSH sampling

schemes, in which an arriving edge with no adjacencies with previously sampled edges

is selected with probability p; otherwise it is sampled with probability q. Secondly,

we consider four specific quantities of interest to estimate within the framework.

These are counts of links, triangles, connected paths of length two, and the derived

global clustering coefficient. We also provide an unbiased estimator of node counts

based on edge sampling. Note that we do not claim that these lists of examples are

by any means exhaustive or that the framework can accommodate arbitrary queries

efficiently.

In Section 5.3, we describe the general framework for graph sampling, and show

how it can be used to provide unbiased estimates of the counts of arbitrary selections

of subgraphs. We also show how unbiased estimates of the variance of these esti-

mators can be efficiently computed within the same framework. In Section 5.4, we

show how counts of specific types of subgraph (links, triangles, paths of length 2) and

the global clustering coefficient can be estimated in this framework. In Section 5.5,

we describe the specific gSH(p,q) graph Sample and Hold algorithms, and illustrate

the application of gSH(p,1) on a simple graph. In Section 5.6, we describe a set of

evaluations based on a number of real network topologies. We apply the estimators

described in Section 5.3.2 to the counts described in Section 5.4, and compare em-

pirical confidence intervals with those estimated directly from the samples. We also

89

compare accuracy with prior work. We discuss the general relation of our work to

existing literature in Section 5.7 and conclude in Section 5.8.

5.2 Relation to Classic Sample and Hold

Sample and hold for big-graph analytics bears some resemblance to the classic

Sample and Hold (SH) approach [148], versions of which also appeared as counting

samples by [149], and were used for attack detection by [150]. In SH, packets carry

a key that identifies the flow to which they belong. A router maintains a cache of

information concerning the flows of packets that traverse it. If the key of an arriving

packet matches a key on which information is currently maintained in the router, the

information for that key (such as packet and byte counts and timing information)

is updated accordingly. Otherwise the packet is sampled with some probability p.

If selected, a new entry is instantiated in the cache for that key. SH is more likely

to sample longer flows. Thus, SH provides an efficient way to store information

concerning the disposition of packet across the small proportion of flows that carry a

large proportion of all network packets.

gSH can be viewed as an analog of SH in which the equivalence relation of pack-

ets according to their keys is replaced by adjacency relation between links. But this

generalization brings many differences as well. In particular, many graph properties

involve transitive properties (e.g., triangles) that are relatively uninteresting in net-

work measurements (and hence, under explored). For many of these properties, it

is important to realize that the accuracy of the analytics depends on the ordering

of edges to some extent, which was not the case for the vast majority of network

measurement problems considered in the literature.

90

5.3 Framework for Graph Sampling

5.3.1 Graph Stream Model

Let G = (V,K) be a graph. We call two edges k, k′ ∈ K adjacent, k ∼ k′, if they

join at some node. Specifically:

• Directed adjacency: k = (k1, k2) ∼ k′ = (k′1, k
′
2) iff k2 = k′1 or k1 = k′2. Note

that ∼ is not symmetric in this case.

• Undirected adjacency: k = (k1, k2) ∼ k′ = (k′1, k
′
2) iff k ∩ k′ 6= ∅. Note that ∼ is

symmetric in this case.

Without loss of generality we assume edges are unique; otherwise distinguishing labels

that are ignored by ∼ can be appended.

The edges in K are arriving in an order k : [|K|] → K. For k, k′ ∈ K, we write

k ≺ k′ if k appears earlier than k′ in arrival order. For i ≤ |K|, Ki = {k ∈ K : k � ki}
comprises the first i arrivals.

5.3.2 Edge Sampling Model

We describe the sampling of edges through a random process {Hi} = {Hi : i ∈
[|K|]} where Hi = 1 if ki is selected, and Hi = 0 otherwise. Let Fi denote the set

of possible outcomes {H1, . . . , Hi}; We assume that an edge is selected according to

a probability that is a function of the sampling outcomes of previous edges. For

example, the selection probability of an edge can be a function of the (random)

number of previously selected edges that are adjacent to it. Thus we write

P[ki is selected |{H1, . . . , Hi−1}] = E[Hi|Fi−1] = pi (5.1)

91

where pi ∈ (0, 1] is the random probability that is determined by the first i − 1

sampling outcomes1.

5.3.3 Subgraph Estimation

In this chapter, we are principally concerned with estimating the frequency of

occurrence of certain subsets of K within the sample. Our principal tool is the

selection estimator Ŝi = Hi/pi of the link ki, which indicates the presence of ki in

K. It is uniquely defined by the properties: (i) Ŝi ≥ 0; (ii) Ŝi > 0 iff Hi > 0; and

(iii) E[Ŝi|Fi−1] = 1, which we prove in Theorem 5.3.1 below. We recognize Ŝi as a

Horvitz-Thompson estimator [45] of unity.

The idea generalizes to indicators of general subsets of edges with K. We call a

subset J ⊂ K an ordered subset when written in the increasing arrival order J =

(ji1 , ji2 , . . . , jim) with i1 < i2 < · · · < im. For an ordered subset J of K we write

H(J) =
∏

ji∈J
Hi and P (J) =

∏

ji∈J
pi (5.2)

with the convention that H(∅) = P (∅) = 1. We say that J is selected if H(J) = 1.

The selection estimator for an ordered subset J of K is

Ŝ(J) =
∏

ji∈J
Ŝji = H(J)/P (J) (5.3)

which is our main structural result concerning the properties of Ŝ(J).

Theorem 5.3.1 (i) E[Ŝi|Fi−1] = 1 and hence E[Ŝi] = 1.

(ii) For any ordered subset J = (ji1 , . . . , jim) of K,

E[Ŝ(ji1 , . . . , jim)|Fim−1] = Ŝ(ji1 , . . . , jim−1) (5.4)

1Formally, {Fi} is the natural filtration associated with the process {Hi}, and {pi} is previsible
w.r.t. {Fi}; see [151].

92

and hence

E[Ŝ(J)] = 1 (5.5)

(iii) Let J, J ′ be two ordered subsets of K. If J ∩ J ′ = ∅ then

E[Ŝ(J)Ŝ(J ′)] = 1 and hence Cov(Ŝ(J), Ŝ(J ′)) = 0 (5.6)

(iv) Let J1, . . . , J` be disjoint ordered subsets of K. Let q be a polynomial in `

variables that is linear in each of its arguments. Then E[q(Ŝ(J1), . . . , Ŝ(J`))] =

q(1, . . . , 1).

(v) Let J, J ′ be two ordered subsets of K with J 	 J ′ be their symmetric differ-

ence. Then Ĉ(J, J ′) defined below is non-negative and an unbiased estimator of

Cov(Ŝ(J), Ŝ(J ′)), which is hence non-negative. Ĉ(J, J ′) is defined to be 0 when

J ∩ J ′ = ∅, and otherwise:

Ĉ(J, J ′) = Ŝ(J 	 J ′)Ŝ(J ∩ J ′)
(
Ŝ(J ∩ J ′)− 1

)

= Ŝ(J ∪ J ′)
(
Ŝ(J ∩ J ′)− 1

)
(5.7)

(vi) Ŝ(J)
(
Ŝ(J)− 1

)
is an unbiased estimator of Var(Ŝ(J)).

Proof (i) E[Ŝi|Fi−1] = E[Hi/pi|Fi−1] = 1, since pi > 0.

(ii) is a corollary of (i) since

E[Ŝ(ji1 , . . . , jim)|Fim−1] (5.8)

= E
[
E[Ŝim|Fim−1]Ŝ(ji1 , . . . , jim−1)|Fim−1

]

= Ŝ(ji1 , . . . , jim−1) (5.9)

(iii) When J ∩ J ′ = ∅, then by (ii)

E[Ŝ(J)Ŝ(J ′)] = E[Ŝ(J ∩ J ′)] = 1 (5.10)

93

Since J and J ′ are independent, and due to our convention that P (∅) = 1.

(iv) Is a direct corollary of (iii)

(v) We prove the the unbiasedness and non-negativity properties of C(J, J ′).

• Unbiasedness: if J ∩ J ′ 6= ∅, then by taking the expectation of Eq. 5.7,

E[Ĉ(J, J ′)] = E[Ŝ(J)Ŝ(J ′)]− E[Ŝ(J ∪ J ′)] (5.11)

= E[Ŝ(J)Ŝ(J ′)]− 1 = Cov(Ŝ(J), Ŝ(J ′))

since E[Ŝ(J)] = E[Ŝ(J ′)] = 1.

Note that the case J ∩ J ′ = ∅ follows directly from (iii).

• Non-negativity: Ĉ(J, J ′) is a product of non-negative terms.

Specifically, Ĉ(J, J ′) = [H(J ∪ J ′)/P (J ∪ J ′)][H(J ∩ J ′)/P (J ∩ J ′) − 1] =

[H(J ∪ J ′)/P (J ∪ J ′)][1/P (J ∩ J ′) − 1] ≥ 0, since H(A)H(B) = H(A) when

B ⊂ A, for any two sets A and B.

(vi) is a special case of (v) with J = J ′.

5.4 Unbiased Estimation

We now describe in more detail the process of estimation, and computing variance

estimates. The most general quantity that we wish to estimate is a weighted sum over

collections of subgraphs; for brevity, we will refer to these as subgraph sums. This

class includes quantities such as counts of total nodes or links in G, or counts of more

complex objects such as connected paths of length two, or triangles that have been a

focus of study in the recent literature. However, the class of more general quantities

in which a selector is applied to all subgraphs of a given type (e.g. triangles) or only

subgraphs fulfilling a selection criterion (e.g. based on labels on the nodes of the

triangle) are to be included in future work.

94

5.4.1 General Estimation and Variance

To allow for the greatest possible generality, we let K = 2K denote the set of

subsets of K, and let f be a real function on K. For any subset Q ⊂ K, the subset

sum of f over Q is

f(Q) =
∑

J∈Q
f(J) (5.12)

Here Q represents the set of subgraphs fulfilling a selection criterion as described

above. Let Q̂ denote the set of objects in Q that are sampled, i.e., therefore J =

(ki1 , . . . , kim) ∈ Q for which all links are selected. The following is an obvious conse-

quence of the linearity of expectation and Theorem 5.3.1

Theorem 5.4.1 (i) An unbiased estimator of f(Q) is

f̂(Q) =
∑

J∈Q
f(J)Ŝ(J) =

∑

J∈Q̂

f(J)/P (J) (5.13)

(ii) An unbiased estimator of Var(f̂(Q)) is

∑

J,J ′∈Q̂:J∩J ′ 6=∅

f(J)f(J ′)(1/P (J ∪ J ′))(1/P (J ∩ J ′)− 1) (5.14)

Proof (i) In Theorem 5.3.1, we showed that E[Ŝ(J)] = 1. Thus, as a direct

consequence of Theorem 5.3.1 and the linearity of expectation, we show that

E[f̂(Q)] = f(Q) (5.15)

(ii) In Theorem 5.3.1, we showed that Ĉ(J, J ′) is non-negative and an unbiased esti-

mator of Cov(Ŝ(J), Ŝ(J ′)). Thus, (ii) is a direct consequence of Theorem 5.3.1,

and the variance properties for the sum of correlated variables.

95

Note that the sum in (5.14) can formally be left unrestricted since terms with non-

intersecting J, J ′ are zero due to our convention that P (∅) = 1.

5.4.2 Edges

As before K denotes the edges in G; let K̂ denote the set of sampled edges. Then

N̂K =
∑

ki∈K̂

1

pi
(5.16)

is an unbiased estimate of the unique edge count NK = |K|. An unbiased estimate

of the variance of N̂K is

Var(N̂K) =
∑

ki∈K̂

1

pi

(
1

pi
− 1

)
(5.17)

5.4.3 Triangles

Let T denote the set of triangles τ = (k1, k2, k3) in G, and T̂ the set of sampled

triangles. Then

N̂T =
∑

τ∈T̂

1/P (τ) (5.18)

is an unbiased estimate of NT = |T |, the number of triangles in G. Since two inter-

secting triangles have either one link in common or are identical, an unbiased estimate

of Var(N̂T) is

Var(N̂T) =
∑

τ∈T̂

1

P (τ)

(
1

P (τ)
− 1

)
+
∑

τ 6=τ ′∈T̂

1

P (τ ∪ τ ′)

(
1

P (e(τ, τ ′))
− 1

)

where e(τ, τ ′) is the common edge between τ and τ ′

96

5.4.4 Connected Paths of Length 2

Let Λ denote the set of connected paths of length two L = (k1, k2) in G, and Λ̂

the subset of these that are sampled. Then

N̂Λ =
∑

L∈Λ̂

1/P (L) (5.19)

is an unbiased estimate of NΛ = |Λ|, the number of such paths in G. Since two

non-identical members of Λ may have one edge in common, an unbiased estimate of

Var(N̂Λ) is

Var(N̂Λ) =
∑

L∈Λ̂

1

P (L)

(
1

P (L)
− 1

)
+

∑

L6=L′∈Λ̂

1

P (L ∪ L′)

(
1

P (e(L,L′))
− 1

)

where e(L,L′) = L ∩ L′ is the common edge between L and L′.

5.4.5 Clustering Coefficient

The global clustering coefficient of a graph is defined as α = 3NT/NΛ. While we

use α̂ = 3N̂T/N̂Λ as an estimator of α, it is not unbiased. However, the well known

delta-method [152] suggests using a formal Taylor expansion. But we note that a

rigorous application of this method depends on establishing asymptotic properties of

N̂T and N̂Λ for large graphs, the study of which we defer to future work. With this

caveat we proceed as follows. For a random vector X = (X1, . . . , Xn) a second order

Taylor expansion results in the approximation

Var(f(X1, . . . , Xn)) ≈ v ·Mv (5.20)

97

where v = (∇f)(E[X]) and M is the covariance matrix of the Xi. Considering

f(N̂T , N̂Λ) = N̂T/N̂Λ we obtain the following approximation. For computation we

replace all quantities by their corresponding unbiased estimators derived previously:

Var(N̂T/N̂Λ) ≈ Var(N̂T)

N̂2
Λ

+
N̂2
T Var(N̂Λ)

N̂4
Λ

(5.21)

−2
N̂T Cov(N̂T , N̂Λ)

N̂3
Λ

Following Theorem 5.3.1, the covariance term is estimated as

∑

τ∈T̂ ,L∈Λ̂
τ∩L6=∅

1

P (τ ∪ L)

(
1

P (τ ∩ L)
− 1

)
(5.22)

5.4.6 Nodes

Node selection is not directly expressed as a subgraph sum, but rather through

a polynomial of the type treated in Theorem 5.3.1(iv). Let K(x) denote the edges

containing the node x ∈ V . Now observe x remains unsampled if and only if no edge

in K(x) is sampled. This motivates the following estimator of node selection:

n̂x = 1−
∏

ki∈K(x)

(1− Ŝi) (5.23)

The following is a direct consequence of Theorem 5.3.1(iv)

Lemma 5.4.1 n̂x = 0 if and only if no edge from K(x) is sampled, and E[nx] = 1.

5.5 Graph Sample and Hold

5.5.1 Algorithms

We now turn to specific sampling algorithms that conform to the edge sampling

model of Section 5.3.2. Graph Sample and Hold gSH(p, q) is a single pass al-

98

gorithm over a stream of edges. The edge k is somewhat analogous to the key of

(standard) sample and hold. A matching edge is sampled with probability q. If there

is not a match, the edge is stored with some probability p. An edge not sampled is

discarded permanently. For estimation purposes we also need to keep track of the

probability with which a selected edge is sampled. We formally specify gSH(p, q) as

Algorithm 5.1.

Algorithm 5.1: Graph Sample and Hold: gSH(p, q)

1 K̂ ← ∅;
2 while new edge k do

3 if k ∼ k′ for some (k′, p′) ∈ K̂ then
4 r = q

5 else
6 r = p

7 Append (k, r) to K̂ with probability r

In some sense, gSH samples connected components in the same way the standard

sample and hold samples flows, although there are some differences. The main dif-

ference is a single connected component in the original graph may be sampled as

multiple components. This can happen, for example, if omission of an edge from the

sample can disconnect a component. Clearly the order in which nodes are streamed

determines whether or not such sampling disconnection can occur.

Algorithm 5.2: Graph Sample and Hold for Triangles: gSHT (p, q)

1 K̂ ← ∅;
2 while new edge k do

3 if k would complete a triangle in K̂ then
4 r = 1

5 else

6 if k ∼ k′ for some (k′, p′) ∈ K̂ then
7 r = q

8 else
9 r = p

10 Append (k, r) to K̂ with probability r

Clearly, gSH would admit generalizations that allow a more complex dependence

of the sampling probability for a new edge on the current sampled edge set. This can

99

Table 5.1.: Estimation on a path of length 3 using gSH(p, 1)

Order Selection Probability Weights Est. Node Degree

(a,b) (b,c) (c,d) (a,b) (b,c) (c,d) (a,b) (b,c) (c,d) a b c d

1 2 3 X X X p 1/p 1 1 1/p 1/p+ 1 2 1
· X X (1− p)p 0 1/p 1 0 1/p 1/p+ 1 1
· · X (1− p)2p 0 0 1/p 0 0 1/p 1/p
· · · (1− p)3 0 0 0 0 0 0 0

2 1 3 X X X p 1 1/p 1 1 1/p+ 1 1/p+ 1 1
X · X (1− p)p2 1/p 0 1/p 1/p 1/p 1/p 1/p
· · X (1− p)2p 0 0 1/p 0 0 1/p 1/p
X · · (1− p)2p 1/p 0 0 1/p 1/p 0 0
· · · (1− p)3 0 0 0 0 0 0 0

1 3 2 X X X p2 1/p 1 1/p 1/p 1/p+ 1 1/p+ 1 1/p
X X · p(1− p) 1/p 1 0 1/p 1/p+ 1 1 0
· X X (1− p)p 0 1 1/p 0 1 1/p+ 1 1
· X · (1− p)2p 0 1/p 0 0 1/p 1/p 0
· · · (1− p)3 0 0 0 0 0 0 0

be achieved by adapting the flexible holding function. Consequently, the details of the

sampling scheme (holding function) should allow certain subgraphs to be favored for

selection. In this chapter, we do not delve into this matter in great detail, rather we

look at a simple illustrative modification of gSH that favor the selection of triangles–

called gSHT . gSHT is identical to gSH except that any arriving edge that would

complete a triangle is selected with probability 1; see Algorithm 5.2. Obviously

gSH(p, 1) and gSHT (p, 1) are identical.

5.5.2 Illustration with gSH(p,1)

We use a simple example of a path of length 3 to illustrate that in Graph Sample

and Hold gSH(p, 1), the distribution of the random graph sample depends on the

order in which the edges are presented. The graph G = (V,K) comprises 4 nodes

V = a, b, c, d connected by 3 undirected edges K = {(a, b), (b, c), (c, d)} which are the

keys for our setting.

There are 6 possible arrival orders for the keys, of which we need only analyze 3,

since the other orders can be obtained by time reversal. These are displayed in the

“Order” columns in Table 5.1. For each order, the possible selection outcomes for the

100

Table 5.2.: Statistics of datasets. n is the number of nodes, NK is the number of
edges, NT is the number of triangles, NΛ is the number of connected paths of length
2, α is the global clustering coefficient, and D is the density.

graph n NK NT NΛ α D

socfb-CMU 7K 249.9K 2.3M 37.4M 0.18526 0.0114
socfb-UCLA 20K 747.6K 5.1M 107.1M 0.14314 0.0036

socfb-Wisconsin 24K 835.9K 4.8M 121.4M 0.12013 0.0029

web-Stanford 282K 1.9M 11.3M 3.9T 0.00862 5.01× 10−5

web-Google 876K 4.3M 13.3M 727.4M 0.05523 1.15× 10−5

web-BerkStan 685K 6.6M 64.6M 27.9T 0.00694 2.83× 10−5

three edges by the check marks X, followed by the probability of each selection. The

estimated weights for each outcome is displayed in “Weights” followed by correspond-

ing estimate of the node degree, i.e., the sum of estimated weights of edges incident

at each node. One can check by inspection that the probability-weighted sums of the

weight estimators are 1, while the corresponding sums of the degree estimators yield

the the true node degree.

5.6 Experiments

We test the performance of our proposed framework (gSHT) as described in Al-

gorithm 5.2 (with r = 1 for edges that are closing triangles), on various social and

information networks with 250K–7M edges. For all network datasets, we consider

an undirected graph, discard edge weights, self-loops, and we generate the stream

by randomly permuting the edges. Table 5.2 summarizes the main characteristics of

these graphs, such that n is the number of nodes, NK is the number of edges, NT is

the number of triangles, NΛ is the number of connected paths of length two, α is the

global clustering coefficient, and D is the graph density.

1. Social Facebook Graphs. Here, the nodes are people and edges represent

friendships among Facebook users in three different US schools (CMU, UCLA,

and Wisconsin, see [153] for data analysis and downloads).

101

2. Web Graphs2. Here, the nodes are web-pages and edges are hyperlinks among

these pages in different domains.

We conduct the experiments on MacbookPro 2.66GHZ 6-Core Intel processor,

with 48GB memory. In order to test the effect of parameter settings (i.e., p and q),

we perform 100 independent experiments and we consider all possible combinations of

p and q in the range p, q = {0.005, 0.008, 0.01, 0.03, 0.05, 0.08, 0.1}. Our experimental

procedure is done independently for each p = pi, q = qi as follows:

1. Given one parameter setting p = pi, q = qi, we obtain a sample of edges K̂ ⊂ K

using gSHT (pi,qi)–as described in Algorithm 5.2.

2. Using K̂, compute the unbiased estimates of the following statistics: Edge

counts N̂K ; Triangle counts N̂T ; Connected paths of length two N̂Λ; Global

Clustering Coefficient α̂.

3. Compute the unbiased estimates of the variance of the quantities mentioned

above.

Note that the estimation of the count of unique edges N̂K is necessary when the graph

stream is not simple (i.e., edges may occur more than once).

5.6.1 Performance Analysis

We proceed by first demonstrating the accuracy of the proposed estimators for

the different graph statistics we discuss in this chapter across various social and web

networks. Given a sample K̂ ⊂ K (collected by gSHT Algorithm 5.2), we consider

the absolute relative error (i.e., |E[est]−Actual|
Actual

) as a measure of how far is the estimated

statistic from the actual graph statistic of interest, where E[est] is the mean estimated

value across 100 independent runs. Table 5.3 provides the estimated values in com-

parison to the actual statistics when the sample size is ≤ 40K with p, q = 0.005 for

web-BerkStan and p = 0.005, q = 0.008 otherwise.

2Stanford Network Project, http://snap.stanford.edu/

102

We summarize below our main findings from Table 5.3:

• For edge count (NK) estimates, we observe that the relative error is in the range

of 0.03% – 0.5% across all graphs.

• For triangle count (NT) estimates, we observe that the relative error is in the

range of 0.03% – 0.95% across all graphs.

• For the number of connected paths of length two (NΛ), we observe that the

relative error of the estimates is in the range of 0.02% – 0.6% across all graphs.

• For clustering coefficient (α) estimates, we observe that the relative error is in

the range of 0.02% – 0.76% across all graphs.

• Finally, we observe that the highest error is in the triangle count estimates and

yet it is still ≤ 1%.

5.6.2 Confidence Bounds

Having selected a sample that can be used to estimate the actual statistic, it is

also desirable to construct a confidence interval within which we are sufficiently sure

that the actual graph statistic of interest lies. We construct a 95% confidence interval

for the estimates of edge (NK), triangle (NT), connected paths of length two (NΛ)

counts, and clustering coefficient (α) as follows,

est± 1.96
√

Var(est) (5.24)

where the estimates ‘est’ and ‘Var(est)’ are computed using the equations of the

unbiased estimators of counts and their variance as discussed in Section 5.4. For

example, the 95% confidence interval for the edge count is,

N̂K ± 1.96

√
Var(N̂K) (5.25)

103

Table 5.3.: Estimated Properties using Graph Sample & Hold. Estimates of expected
value and relative error, when sample size ≤ 40K edges, with sampling probability
p, q = 0.005 for web-BerkStan, and p = 0.005, q = 0.008 otherwise. First column
shows the statistics of the full graph, SSize is the number of sampled edges, and
LB/UB are the 95% lower and upper bounds respectively.

Edges NK

NK N̂K
|N̂K−NK |

NK
SSize LB UB

socfb-CMU 249.9K 249.6K 0.0013 1.7K 236.8K 262.4K
socfb-UCLA 747.6K 751.3K 0.0050 5K 729.3K 773.34K

socfb-Wisconsin 835.9K 835.7K 0.0003 5.5K 812.2K 859.1K
web-Stanford 1.9M 1.9M 0.0004 14.8K 1.9M 2M
web-Google 4.3M 4.3M 0.0007 25.2K 4.2M 4.3M

web-BerkStan 6.6M 6.6M 0.0006 39.8K 6.5M 6.7M

Triangles NT

NT N̂T
|N̂T−NT |

NT
SSize LB UB

socfb-CMU 2.3M 2.3M 0.0003 1.7K 1.6M 2.9M
socfb-UCLA 5.1M 5.1M 0.0095 5K 4.2M 6.03M

socfb-Wisconsin 4.8M 4.8M 0.0058 5.5K 4M 5.7M
web-Stanford 11.3M 11.3M 0.0023 14.8K 3.7M 18.8M
web-Google 13.3M 13.4M 0.0029 25.2K 11.7M 15M

web-BerkStan 64.6M 65M 0.0063 39.8K 45.5M 84.6M

Path. Length two NΛ

NΛ N̂Λ
|N̂Λ−NΛ|

NΛ
SSize LB UB

socfb-CMU 37.4M 37.3M 0.0018 1.7K 32.6M 42M
socfb-UCLA 107.1M 107.8M 0.0060 5K 100.1M 115.42M

socfb-Wisconsin 121.4M 121.2M 0.0018 5.5K 108.9M 133.4M
web-Stanford 3.9T 3.9T 0.0004 14.8K 3.6T 4.2T
web-Google 727.4M 724.3M 0.0042 25.2K 677.1M 771.5M

web-BerkStan 27.9T 27.9T 0.0002 39.8K 26.5T 29.3T

Global Clustering α

α α̂
|α̂−α|
α

SSize LB UB

socfb-CMU 0.18526 0.18574 0.00260 1.7K 0.14576 0.22572
socfb-UCLA 0.14314 0.14363 0.00340 5K 0.12239 0.16487

socfb-Wisconsin 0.12013 0.12101 0.00730 5.5K 0.10125 0.14077
web-Stanford 0.00862 0.00862 0.00020 14.8K 0.00257 0.01467
web-Google 0.05523 0.05565 0.00760 25.2K 0.04825 0.06305

web-BerkStan 0.00694 0.00698 0.00680 39.8K 0.00496 0.00900

where UB = N̂K + 1.96

√
Var(N̂K), LB = N̂K − 1.96

√
Var(N̂K) are the upper and

lower bounds for the edge count respectively.

Table 5.3 provides the 95% upper and lower bounds (i.e., UB,LB) for the sample

when the sample size is ≤ 40K edges. We observe that the actual statistics across

all different graphs lie in between the bounds of the confidence interval (i.e., LB ≤
Actual ≤ UB). Note that the sample is collected using gSHT Algorithm 5.2.

104

Additionally, we study the properties of the sampling distribution of our proposed

framework (gSH) as we change the sample size. Figure 5.1 shows the sampling dis-

tribution as we increase the sample size (for all possible settings of p, q in the range

0.005–0.1 as described previously). More specifically, we plot the fraction E[est]
Actual

(rep-

resented by blue diamond symbols in the figure), where E[est] is the mean estimated

value across 100 independent runs. Further, we plot the fractions UB
Actual

, and LB
Actual

(represented by green circle symbols in the figure). These plots show the sampling

distribution of all statistics for socfb-UCLA, and socfb-Wisconsin graphs.

We now summarize the findings that we observe from Figure 5.1:

• The sampling distribution is centered and balanced over the red line (yaxis = 1)

which represents the actual value of the graph statistic. This shows the unbiased

properties of the estimators for the four graph quantities of interest that we

discussed in Section 5.3.

• The upper and lower bounds contain the actual value (represented by the red

line) for different combinations of p, q.

• As we increase the sample size, the bounds converge to be more concentrated

over the actual value of the graph statistic (i.e, the estimated variance is de-

creasing as we increase the sample size).

• The confidence intervals for edge counts are small in the range of 0.98–1.02.

• The confidence intervals for triangle counts and clustering coefficient are larger

compared to other graph statistics (in the range of 0.87–1.12).

• Samples with size = 40K edges (dashed vertical line) provide a reasonable trade-

off between sample size and unbiased estimates with low variance.

• Thus, we conclude that the sampling distribution of the proposed framework

has many desirable properties of unbiasedness and low variance as we increase

the sample size.

105

10
4

10
5

0.95

1

1.05
socfb−UCLA

N̂
K
/
N

K

Sample Size (Edges)

(a) Edges

10
4

10
5

0.85

0.9

0.95

1

1.05

1.1

1.15
socfb−UCLA

N̂
T
/N

T

Sample Size (Edges)

(b) Triangles

10
4

10
5

0.9

0.95

1

1.05

1.1
socfb−UCLA

N̂
Λ
/N

Λ

Sample Size (Edges)

(c) Path len.2

10
4

10
5

0.95

1

1.05
socfb−Wisconsin

N̂
K
/
N

K

Sample Size (Edges)

(d) Edges

10
4

10
5

0.85

0.9

0.95

1

1.05

1.1

1.15
socfb−Wisconsin

N̂
T
/N

T

Sample Size (Edges)

(e) Triangles

10
4

10
5

0.9

0.95

1

1.05

1.1
socfb−Wisconsin

N̂
Λ
/N

Λ

Sample Size (Edges)

(f) Path len.2

10
4

10
5

0.85

0.9

0.95

1

1.05

1.1

1.15
socfb−UCLA

α̂
/
α

Sample Size (Edges)

(g) Clustering

10
4

10
5

0.85

0.9

0.95

1

1.05

1.1

1.15
socfb−Wisconsin

α̂
/
α

Sample Size (Edges)

(h) Clustering

Fig. 5.1.: Convergence Analysis of Graph Sample & Hold. Convergence of the esti-
mates (NK , NT , NΛ, α, upper and lower bounds) for socfb-UCLA and socfb-Wisconsin
graphs, for all possible samples with p, q in the range 0.005–0.1. Diamonds (Blue):
E[est]
Actual

. Circles (Green): UB
Actual

, LB
Actual

. Square (Orange): refers to the sample in Ta-
ble 5.3. Dashed vertical line (Grey): refers to the sample at 40K edges

106

Table 5.4.: Coverage probability γ for 95% conf. interval

graph γNK
γNT

γNΛ
γα

socfb-CMU 0.94 0.95 0.96 0.92
socfb-UCLA 0.96 0.95 0.95 0.92

socfb-Wisconsin 0.95 0.95 0.96 0.95
web-Stanford 0.97 0.92 0.95 0.92
web-Google 0.95 0.93 0.95 0.95

web-BerkStan 0.96 0.94 0.93 0.93

Note that in Figure 5.1, we use a square (with orange color) to refer to the sample

reported in Table 5.3. We also found similar observations for the rest of the graphs.

In addition to the analysis above, we compute the exact coverage probability γ of

the 95% confidence as follows,

γ = P(LB ≤ Actual ≤ UB) (5.26)

For each p = pi, q = qi, we compute the proportion of samples in which the actual

statistic lies in the confidence interval across 100 independent sampling experiments

gSHT (pi, qi). We vary p, q in the range of 0.005–0.01, and for each possible combina-

tion of p, q (e.g., p = 0.005, q = 0.008), we compute the exact coverage probability

γ. Table 5.4 provides the mean coverage probability with p, q = {0.005, 0.008, 0.01}
for all different graphs. Note γNK , γNT , γNΛ

, and γα indicate the exact coverage

probability of edge, triangle, paths of length two counts, and clustering coefficient

respectively. We observe that the nominal 95% confidence interval holds to a good

approximation, as γ ≈ 95% across all graphs.

5.6.3 Comparison to Previous Work

We compare to the most recent research done on triangle counting by Jha et

al. [19]. Jha et al. proposed a Streaming-Triangles algorithm to estimate the triangle

counts. Their algorithm maintains two data structures. The first data structure is

the edge reservoir and used to maintain a uniform random sample of edges as they

107

Table 5.5.: Comparison to Streaming Triangles. Relative error and sample size of Jha
et al. [19] in comparison to our framework for triangle count estimation

StreamingTriangles gSHT

graph
|N̂T−NT |

NT
SSize

|N̂T−NT |
NT

SSize

web-Stanford ≈ 0.07 40K 0.0023 14.8K
web-Google ≈ 0.04 40K 0.0029 25.2K
web-BerkStan ≈ 0.12 40K 0.0063 39.8K

streamed in. The second data structure is the wedge (path length two) reservoir

and used to select a uniform sample of wedges created by the edge reservoir. The

algorithm proceeds in a reservoir sampling fashion as a new edge et is streaming

in. Then, edge et gets the chance to be sampled and replace a previously sampled

edge with probability 1/t. Similarly, a randomly selected new wedge (formed by et)

replaces a previously sampled wedge from the wedge reservoir. Table 5.5 provides

a comparison between our proposed framework (gSH) and the Streaming-Triangles

algorithm proposed by Jha et al. [19]. Note that we compare with the results reported

in their paper.

From Table 5.5, we observe that across the three web graphs, our proposed frame-

work produces a relative error that is orders of magnitude smaller than the error

produced by the Streaming-Triangles algorithm proposed in [19], and also uses a

small(er) overhead storage (in most of the graphs). We note that Jha et al. [19] com-

pares to other state of the art algorithms and shows that they are not practical and

produce a very large error; see Section 5.7 for more details.

We have also compared to the work of Pavan et al. [42] and found their algorithm

needs to store estimators, each of which stores at least one edge (≈ 36 bytes per

estimator). Their algorithm also needs at least 128 estimators to obtain good results.

On the other hand, gSHT used orders of magnitude less storage to achieve even a

better performance (results were omitted due to space constraints).

108

5.6.4 Effect of p, q on Sampling Rate

While Figure 5.1 shows that the sampling distribution of the proposed framework

is unbiased regardless the choice of p, q, the question as to what effect the choice of

p, q has on the sample size still needs to be explored. In this section, we study the

effect of the choice of parameter settings on the fraction of edges sampled from the

graph.

Figure 5.2 shows the fraction of sampled edges using gSHT Algorithm 5.2, as we

vary p, q in the range of 0.005–0.1 for two web graphs and two social Facebook graphs.

Note that the graphs are ordered by their density (see Table 5.2) going from the most

sparse to the most dense graph. We observe that when q ≤ 0.01, regardless the choice

of p, the fraction of sampled edges is in the range of 0.5% – 2.5% of the total number

of edges in the graph. We also observe that as q goes from 0.01 to 0.03, the fraction

of sampled edges would be in the range of 2.75% – 5%. These observations hold for

all the graphs we studied.

On the other hand, as q goes from 0.03 to 0.1, the fraction of sampled edges

depends on whether the graph is dense or sparse. For example, for the web-Google

graph, as q goes from 0.03 to 0.1, the fraction of sampled edges goes from 5% to

15%. Also, for the web-Stanford graph, as q goes from 0.03 to 0.1, the fraction of

sampled edges goes from 5% to 25%. However, for the most dense graph we have in

this chapter (socfb-CMU), the fraction of sampled edges goes from 5% to 31%. Note

that when we tried q = 1, regardless the choice of p, more than 80% of the edges were

sampled.

Since p is the probability of sampling a fresh edge (not adjacent to a previously

sampled edge), one could think of p as the probability of random jumps (similar to

random walk methods) to explore unsampled regions in the graph. On the other

hand, q is the probability of sampling an edge adjacent to previous edges. Therefore,

one could think of q as the probability of exploring the neighborhood of previously

sampled edges (similar to the forward probability in Forest Fire sampling).

109

P
ro
b
a
b
il
it
y
(q
)

Probability (p)

web−Google

0.005 0.008 0.01 0.03 0.05 0.08 0.1

0.005

0.008

0.01

0.03

0.05

0.08

0.1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro
b
a
b
il
it
y
(q
)

Probability (p)

web−Stanford

0.005 0.008 0.01 0.03 0.05 0.08 0.1

0.005

0.008

0.01

0.03

0.05

0.08

0.1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro
b
a
b
il
it
y
(q
)

Probability (p)

socfb−Wisconsin

0.005 0.008 0.01 0.03 0.05 0.08 0.1

0.005

0.008

0.01

0.03

0.05

0.08

0.1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro
b
a
b
il
it
y
(q
)

Probability (p)

socfb−CMU

0.005 0.008 0.01 0.03 0.05 0.08 0.1

0.005

0.008

0.01

0.03

0.05

0.08

0.1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 5.2.: Analysis of sample and hold probabilities. Sampling Fraction (SSize
NK

) as p, q
changes in the range ‘0.005–0.1’ for web and social graphs (ordered from sparse →
dense).

From all the discussion above, we conclude that using a small p, q settings (i.e.,

≤ 0.008) is better to control the fraction of sampled edges, and also recommended

since the sampling distribution of the proposed framework is unbiased regardless the

choice of p, q as we show in Figure 5.1 (also see Section 5.3). However, if a tight

confidence interval is needed, then increasing p, q helps to reduce variance.

5.6.5 Implementation Issues

In practice, statistical variance estimators are costly to compute. In this chapter,

we provide an efficient parallel procedure to compute the variance estimate. As an

example, we illustrate this for the task of computing the variance of the triangle

estimate (V ar(N̂T) from Section 5.4.3). Consider any pair of triangles τ and τ ′.

Assuming τ and τ ′ are not identical, the covariance of τ and τ ′ is greater than zero

(i.e., Cov(τ, τ ′) > 0), if and only if the two triangles are intersecting in one edge

110

Table 5.6.: Runtime for sampling and estimation using gSHT

Full Graph Sampled Graph

graph Time Graph size Time SSize

web-Stanford 19.68 1.9M 0.13 14.8K
web-Google 5.05 4.3M 0.55 25.2K
web-BerkStan 113.9 6.6M 1.05 39.8K

e(τ, τ ′). Since two intersecting triangles have either one edge in common or are

identical, we can find intersecting triangles by finding all triangles incident to a

particular edge e. In this case, the intersection probability of the two triangles is

P (τ ∩ τ ′) = P (e(τ, τ ′)). Note that if τ and τ ′ are identical, then the computation is

straightforward. The procedure is very simple as follows,

• Given a sample set of edges K̂ ⊂ K, for each edge e ∈ K̂

– find the set of all triangles ‘Te’ incident to e

– for each pair of triangles (τ, τ ′), where τ, τ ′ ∈ Te, and τ 6= τ ′, compute the

Cov(τ, τ ′) such that P (τ ∩ τ ′) = P (e(τ, τ ′))

Since, the computation of each edge is independent of other edges, we parallelize

the computation of the variance estimators. Moreover, since the computation of

triangle counts and paths of length two can themselves be parallelized, we compare

the total elapsed time in seconds used to compute these counts on both the full graph

and a sampled graph of size ≤ 40K edges. Table 5.6 provide the results of this

comparison for the three web graphs. Note that in the case of the sampled graph,

we report the sum of the total computations of both the variance estimators and

expected values of the triangle and paths of length two count statistics. Also, note

that we use the sample reported in Table 5.3 for these computations. The results

show a significant reduction in the time needed to compute triangles and paths of

length two counts. For example, consider the web-BerkStan graph, where the total

time is reduced from 113 seconds to 1.05 seconds. Note that all the computations of

Table 5.6 are performed on a MacPro laptop 2.9GHZ Intel Core i7 with 8GB memory.

111

5.7 Related Work

In this section, we discuss the related work on the problem of large-scale graph

analytics and their applications. Generally speaking, there are two bodies of work

related to this chapter: (i) graph analytics in the graph stream setting, and (ii) graph

analytics in the non-streaming setting (e.g. using MapReduce). In this chapter, we

propose a generic stream sampling framework for big-graph analytics, called Graph

Sample and Hold (gSH), that works in a single pass over the stream. Therefore, we

focus on the related work for graph analytics in the graph stream setting.

Graph Analysis Using Streaming Algorithms. Before exploring the literature

of graph stream analytics, we briefly review the literature in data stream analysis and

mining that may not contain graph data. For example, for sequence sampling (e. g.,

reservoir sampling) [38, 109], for computing frequency counts [111], and for mining

concept drifting data streams [117]. Additionally, the idea of sample and hold (SH)

was introduced in [148] for unbiased sampling of network data with integral weights.

Subsequently, other work explored adaptive SH, and SH with signed updates [154,

155]. Nevertheless, none of this work has considered the framework of sample and

hold (SH) for social and information networks. In this chapter, however, we propose

the framework of graph sample and hold (gSH) for big-graph analytics.

There has been an increasing interest in mining, analysis, and querying of massive

graph streams as a result of the proliferation of graph data (e. g., social networks,

emails, IP traffic, Twitter hashtags). For example, to count triangles [8, 19, 42–44,

126], finding common neighborhoods [127], estimating pagerank values [128], and

characterizing degree sequences in multi-graph streams [129]. In the data mining field,

there is the work done on clustering and outlier detection in graph streams [40,130].

Much of this work has used various sampling schemes to sample from the stream

of graph edges [11]. Surprisingly, the majority of this work has focused primarily on

sampling schemes that can be used to estimate certain graph properties (e.g. triangle

counts), while much less is known for the case when we need a generic approach

112

to estimate various graph properties with the same sampling scheme with minimum

assumptions.

For example, the work done in [43] proposed an algorithm with space bound

guarantees for triangle counting and clustering estimation in the incidence stream

model where all edges incident to a node are arriving in order together. However,

in the incidence stream model, counting triangles is a relatively easy problem, and

counting the number of paths of length two is simply straightforward. On the other

hand, it has been shown that these bounds and accurate estimates will no longer

hold in the case of adjacency stream model, where the edges arrive arbitrarily with

no particular order [19,42].

Another example, the work done Jha et al. in [19] proposed a practical, single pass,

O(
√
n)-space streaming algorithm specifically for triangle counting and clustering

estimation with additive error guarantee (as opposed to other algorithms with relative

error guarantee). Although, the algorithm is practical and approximates the triangle

counts accurately at a sample size of 40K edges, their method is specifically designed

for triangle counting. Nevertheless, we compare to the results of triangle counts

reported in [19], and we show that our framework is not only generic but also produces

errors with orders of magnitude less than the algorithm in [19], and with a small(er)

storage overhead in many times.

More recently, Pavan et al. proposed a space-efficient streaming algorithm for

counting and sampling triangles in [42]. This algorithm works in a single pass stream-

ing fashion with order O(NK∆/NT)-space, where ∆ is the maximum degree of the

graph. However, this algorithm needs to store estimators (i.e., wedges that may

form potential triangles), and each of these estimators stores at least one edge. In

their paper, they show that they need at least 128 estimators (i.e., more than 128K

edges), to obtain accurate results (i.e., large storage overhead compared to those in

this chapter).

113

Other semi-streaming algorithms were proposed for triangle counting, such as the

work in [8], however, they are not practical and produce large error as discussed and

analyzed by the work in [42].

Horvitz-Thompson estimation was proposed for social networks by Frank [156],

including applications to subgraph sampling, but limited to a model of simple random

sampling of vertices without replacement; see also Kolaczyk [157].

Graph Analysis Using Static and Parallel Algorithms. We briefly review

other research for graph analysis in non-streaming setting (i.e., static). For example,

exact counting of triangles with runtime O(NK
3/2) [18], or approximately by sampling

edges as in [16]. Although not working in a streaming fashion, the algorithm in [16]

uses unbiased estimators of triangle counts similar to our work. Moreover, other

algorithms were proposed based on wedge sampling and proved to be accurate in

practice, such as the work in [158]. More recently, the work done in [159] proposed a

parallel framework for finding the maximum clique.

Finally, there has been an increasing interest in the general problem of network

sampling. For example, to obtain a representative subgraph [9, 11], and to preserve

the community structure [28], and other sampling goals [101,102].

5.8 Summary

In this chapter, we presented a generic framework for big-graph analytics called

graph sample and hold (gSH). The gSH framework samples from massive graphs

sequentially in a single pass, one edge at a time, while maintaining a small state

typically less than 1% of the total number of edges in the graph. Our contributions

can be summarized in the following points:

• We show how to produce unbiased estimators and their variance for four specific

graph quantities of interest to estimate within the framework. Further, we show

how to obtain confidence bounds using the variance unbiased estimators.

114

• We conduct several experiments on real world graphs, such as social Facebook

graphs, and web graphs. The results show that the relative error ranging from

0.02% to 0.95% for a sample with ≤ 40K edges. Moreover, the results show

that the sampling distribution is centered and balanced over the actual values

of the four graph quantities of interest, with tight error bounds as the sample

size increases.

• We compare to the state of the art and our proposed framework has a relative

error orders of magnitude less than the Streaming-Triangles algorithm proposed

in [19], as well as with a small(er) overhead storage (in most of the graphs).

• We show how to parallelize and efficiently compute the unbiased variance esti-

mators, and we discuss the significant reductions in computation time that can

be achieved by gSH framework.

115

6. FAST PARALLEL MOTIF COUNTING FOR LARGE

GRAPHS

From social science to biology, numerous applications often rely on motifs for intuitive

and meaningful characterization of networks at both the global macro-level as well as

the local micro-level. While motifs have witnessed a tremendous success and impact in

a variety of domains, there has yet to be a fast and efficient approach for computing the

frequencies of these subgraph patterns. However, existing methods are not scalable

to large networks with millions of nodes and edges, which impedes the application of

motifs to new problems that require large-scale network analysis. To address these

problems, we propose a fast, efficient, and parallel algorithm for counting motifs of

size k = {3, 4}-nodes that take only a fraction of the time to compute when compared

with the current methods used. The proposed motif counting algorithms leverages

a number of proven combinatorial arguments for different motifs. For each edge, we

count a few motifs, and with these counts along with the combinatorial arguments,

we obtain the exact counts of others in constant time. On a large collection of 300+

networks from a variety of domains, our motif counting strategies are on average

460x faster than current methods. This brings new opportunities to investigate the

use of motifs on much larger networks and newer applications as we show in our

experiments. To the best of our knowledge, this dissertation provides the largest

motif computations to date as well as the largest systematic investigation on over

300+ networks from a variety of domains.

6.1 Motivation

Recursive decomposition of networks is a widely used approach in network anal-

ysis to factorize the complex structure of real-world networks into small subgraph

116

patterns of size k nodes, these patterns are called motifs [160]. Motifs (also known

as graphlets [161]) are defined as subgraph patterns recurring in real-world networks

at frequencies that are statistically significant from those in random networks. Given

a network, we can count up the number of embeddings of each motif pattern in the

network, creating a profile of sufficient statistics that characterizes the network struc-

ture [162]. While knowing the motif frequencies does not uniquely define the network

structure, it has been shown that motif frequencies often carry significant informa-

tion about the local network structure in a variety of domains [163–165]. This is in

contrast to global topological properties (e. g., diameter, degree distribution), where

networks with similar/exact global topological properties can exhibit significantly

different local structure.

6.2 Motifs, Scalability, Applications

From social science to biology, motifs have found numerous applications and were

used as the building blocks of network analysis [160]. In social science, motif anal-

ysis (typically known as k-subgraph census) is widely adopted in sociometric stud-

ies [163, 165]. Much of the work in this vein focused on analyzing triadic tenden-

cies as important structural features of social networks (e. g., transitivity or triadic

closure [166]) as well as analyzing triadic configurations as the basis for various so-

cial network theories (e. g., social balance, strength of weak ties, stability of ties, or

trust [167]). In biology [5, 161], motifs were widely used for protein function pre-

diction [162], network alignment [168], and phylogeny [169] to name a few. More

recently, there has been an increased interest in exploring the role of motif analy-

sis in computer networking [8, 170, 171] (e. g., for web spam detection, analysis of

peer-to-peer protocols and Internet AS graphs), chemoinformatics [172, 173], image

segmentation [174], among others [175].

While motif counting and discovery have witnessed a tremendous success and

impact in a variety of domains from social science to biology, there has yet to be a fast

117

and efficient approach for computing the frequencies of these patterns. For instance,

Shervashidze et al. [162] takes hours to count motifs on relatively small biological

networks (i. e., few hundreds/thousands of nodes/edges) and uses such counts as

features for graph classification [176]. Previous work showed that motif counting is

computationally intensive since the number of possible k-subgraphs in a graph G

increases exponentially with k in O(|V |k) and can be computed in O(|V |.∆k−1) for

any bounded degree graph, where ∆ is the maximum degree of the graph [162].

To address these problems, we propose a fast, efficient, and parallel algorithm for

counting motifs of size k = {3, 4}-nodes that take only a fraction of the time to com-

pute when compared with the current methods used. The proposed motif counting

algorithm leverages a number of proven combinatorial arguments for different motifs.

For each edge, we count a few motifs, and with these counts along with the combina-

torial arguments, we obtain the exact counts of others in constant time. On a large

collection of 300+ networks from a variety of domains, our motif counting strategies

are on average 460x faster than current methods. This brings new opportunities to

investigate the use of motifs on much larger networks and newer applications as we

show in our experiments. To the best of our knowledge, this chapter provides the

largest motif computations to date as well as the largest systematic investigation on

over 300+ networks from a variety of domains.

Furthermore, a number of important machine learning tasks are likely to ben-

efit from such an approach, including graph anomaly detection [7, 46], entity reso-

lution [47], as well as features for improving community detection [48], role discov-

ery [49], and relational classification [50].

Recently, there is an increased interest in sampling and other heuristic approaches

for obtaining approximate counts of various motif patterns [23, 103, 177]. However,

our work focuses on exact motif counting and thus approximation/sampling methods

are outside the scope of our work. Nevertheless, our fast and efficient motif algorithms

may be used to speedup sampling research, as it can be used for counting the various

118

motif patterns once a subgraph is sampled, and thus our work is independent of the

chosen sampling method [11].

We test the scalability of our proposed approach experimentally on 300+ networks

from biological, social, and technological domains [178]. We compare our approach

to the state of the art exact counting methods such as RAGE [179], FANMOD [180],

and Orca [181]. We found that RAGE [179] took 2400 seconds to count the motifs

on a small 26k node graph, whereas our proposed method is 460x faster, taking only

0.01 seconds. We also note that FANMOD [180], another recent approach, takes

172800 seconds, and Orca [181] takes 2.5 seconds for the same small graph. Our

exact motif analysis is well-suited for shared-memory multi-core architectures (CPU

and GPU), distributed architectures (MPI), and hybrid implementations that leverage

the advantages of both.

6.3 Background

Motifs are subgraph patterns recurring in real-world networks at frequencies that

are significantly higher than those in random networks [160, 161]. Previous work

showed that motifs can be used to define universal classes of networks [160]. Moreover,

motifs are at the heart and foundation of many network analysis tasks (e. g., network

classification, network alignment, etc.) [5, 161, 182]. In this chapter, we introduce an

efficient algorithm to compute the number of embeddings of each motif pattern of

size k = {3, 4} nodes in the network, creating a profile of sufficient statistics that

characterizes the network structure.

6.3.1 Notations and Definitions

Given an undirected simplified input graph G = (V,E) with no self edges, a motif

of size k nodes is defined as any subgraph Gk ⊂ G which consists of a subset of k nodes

of the graph G. We distinguish between induced and partially-induced motifs. An

induced motif is an induced subgraph that consist of all edges between its nodes that

119

are present in the input graph (as described in Definition 1), while a partially-induced

motif is a relaxed notion of a motif, where the subgraph pattern may contain only

some of these edges. In this chapter, we mainly focus on computing the frequencies

of induced motifs. In Table 6.1, we provide a summary of the notation and properties

of all possible induced motifs of size k = {3, 4}.

Definition 1 Induced Motif: an induced motif Gk = (Vk, Ek) is a subgraph that

consists of a subset of k vertices of the graph G = (V,E) (i.e., Vk ⊂ V) together

with all the edges whose endpoints are both in this subset (i. e., Ek = {∀e ∈ E | e =

(u, v) ∧ u, v ∈ Vk}).

In addition, we distinguish between connected and disconnected induced motifs

(see Table 6.1). A motif is connected if there is a path from any node to any other

node in the motif. An induced motif that is not connected is said to be disconnected

(as in Definition 2).

Definition 2 Connected Motif: a motif Gk = (Vk, Ek) is connected when there is

a path from any node to any other node in the motif (i. e., ∀u, v ∈ Vk, ∃Pu−v :

u, ..., w, ..., v, such that d(u, v) ≥ 0 ∧ d(u, v) 6= ∞). By definition, there exist one

and only one connected component in a motif Gk (i. e., |C| = 1) if and only if Gk is

connected.

Problem Definition. Given a family of motifs of size k nodes Gk = {gk1 , gk2 , ..., gkm},
our goal is to count the number of embeddings (appearances) of each motif gki ∈ Gk
in the input graph G. In other words, we need to count the number of induced motifs

Gk in G that are isomorphic to each motif pattern gki ∈ Gk in the family, such a

number is denoted by
(
G
gki

)
[183]. A motif gki ∈ Gk is embedded in the graph G,

if and only if there an injective mapping σ : Vgki → V , with e = (u, v) ∈ Egki and

e′ = (σ(u), σ(v)) ∈ E. Table 6.1 shows that |Gk| = {2, 4, 11} when k = {2, 3, 4}
respectively.

120

Table 6.1.: Summary of motif notation and properties

Summary of the notation and properties for the motifs of size k = {2, 3, 4}. Note that ρ denotes density, ∆ and
d̄ denote the max and mean degree, whereas assortativity is denoted by r. Also, |T | denotes the total number of
triangles, K is the max k-core number, χ denotes the Chromatic number, whereas D denotes the diameter, B denotes
the max betweenness, and |C| denotes the number of components. Note that if |C| > 1, then r, D, and B are from
the largest component.

Motif Description Complement ρ ∆ d̄ r |T | K χ D B |C|

(k = 4)−Motifs

C
o
n
n
e
c
t
e
d

g41 4-clique 1.00 3 3.0 1.00 4 3 4 1 0 1

g42 4-chordalcycle 0.83 3 2.5 -0.66 2 2 3 2 1 1

g43 4-tailedtriangle 0.67 3 2.0 -0.71 1 2 3 2 2 1

g44 4-cycle 0.67 2 2.0 1.00 0 2 2 2 1 1

g45 3-star 0.50 3 1.5 -1.00 0 1 2 2 3 1

g46 4-path 0.50 2 1.5 -0.50 0 1 2 3 2 1

D
is
c
o
n
n
e
c
t
e
d

g47 4-node-1-triangle 0.50 2 1.5 1.00 1 2 3 1 0 2

g48 4-node-2-star 0.33 2 1.0 -1.00 0 1 2 2 1 2

g49 4-node-2-edge 0.33 1 1.0 1.00 0 1 2 1 0 2

g410 4-node-1-edge 0.17 1 0.5 1.00 0 1 2 1 0 3

g411 4-node-independent 0.00 0 0.0 0.00 0 0 1 ∞ 0 4

(k = 3)−Motifs

g31 triangle 1.00 2 2.0 1.00 1 2 3 1 0 1

g32 2-star 0.67 2 1.33 -1.00 0 1 2 2 1 1

g33 3-node-1-edge 0.33 1 0.67 1.00 0 1 2 1 0 2

g34 3-node-independent 0.00 0 0.00 0.00 0 0 1 ∞ 0 3

(k = 2)−Motifs

g21 edge 1.00 1 1.0 1.00 0 1 2 1 0 1

g22 2-node-independent 0.00 0 0.0 0.00 0 0 1 ∞ 0 2

Further, given a family Gk = {gk1 , gk2 , ..., gkm} of motifs of size k nodes, we define

f(gki , G) as the relative frequency of occurrence of any motif gki ∈ Gk in the input

graph G.

121

6.3.2 Relation to Graph Complement

The complement of a graph G, denoted by Ḡ, is the graph defined on the same

vertices as G such that two vertices are connected in Ḡ if and only if they are not

connected in G. Therefore, the graph sum G+ Ḡ gives the complete graph on the set

of vertices of G. There are direct relationships between the frequencies of motifs and

the frequencies of their complement. For each motif gki , there exists a non-isomorphic

complementary motif pattern ḡki , such that two vertices are connected in ḡki if and

only if they are not connected in gki [183]. For example, cliques and independent

sets of any size nodes are pairs of complementary motifs. Similarly, chordal cycles of

size 4 nodes are complementary to the motif pattern 4-node-1edge (see Table 6.1). It

is also worth to note that the 4-path motif pattern is a self-complementary pattern,

which means the 4-path is isomorphic to its complement.

From this discussion, it is clear that the number of embeddings of each motif

gki ∈ Gk in the input graph G is equivalent to the number of embeddings of its

complementary motif ḡki in the complement graph Ḡ. In other words, f(gki , G) =

f(ḡki , Ḡ) [183,184].

6.3.3 Relation to Graph & Matrix Reconstruction Theorems

The graph reconstruction conjecture [183], states that an undirected graph G can

be uniquely determined up to an isomorphism, from the set of all possible vertex-

deleted subgraphs of G (i. e., {Gv}v∈V) [185]. Verification of this conjecture for all

possible graphs up to 6 vertices was carried by Kelly [186], and later was extended

to up to 11 vertices by McKay [185]. Clearly, if two graphs are isomorphic (i. e.,

G ∼= G′), then their motif frequencies would be the same (i. e., fk(G) = fk(G
′)),

but the reverse remains a conjecture for the general case of graphs. In contrast, the

matrix reconstruction theorem has been resolved [187], which states that any N ×N
matrix can be reconstructed from its list of all possible principal minors obtained by

122

the deletion of the k-th row and the k-th column [187], which is the foundation of

graphlet kernel [162].

The aim and scope of this chapter is different from the problem of graph recon-

struction. While graph reconstruction tries to test for the notion of isomorphism and

structure equivalence between graphs, our goal is to relax the notion of equivalence

to some form of structural similarity between graphs, such that the graph similarity

is measured on the feature representation space of motifs.

6.4 Framework

In this section, we describe our proposed fast and efficient algorithm for motif

counting that takes only a fraction of the time to compute when compared with the

current methods used. We introduce a number of combinatorial arguments that we

show for different motif patterns. The proposed motif counting algorithm leverages

these combinatorial arguments to obtain significant improvement on the scalability of

motif counting. For each edge, we count only a few of motifs, and with these counts

along with the combinatorial arguments, we derive the exact counts of the others in

constant time.

6.4.1 Searching Edge Neighborhoods

Our proposed algorithm iterates over all the edges of the input graph G = (V,E).

For each edge e = (u, v) ∈ E, we define the neighborhood of an edge e, denoted

by N (e), as the set of all nodes that are connected to the endpoints of e — i. e.,

N (e) = {N (u) \ {v}}∪ {N (v) \ {u}}, where N (u) and N (v) are the set of neighbors

of u and v respectively. Given a single edge e = (u, v) ∈ E, we explore the subgraph

surrounding this edge — i. e., the subgraph induced by both its endpoints and the

nodes in its neighborhood. We call this subgraph the egonet of the edge e, where e

is the center (ego) of the subgraph.

123

We search for possible motif patterns of size k = {3, 4} in the egonets of all edges

in the graph. By searching egonets of edges, we first map the problem to the local

(lower-dimensional) space induced by the neighborhood of each edge, and then merge

the search results for all edges. Searching over a local low-dimensional space of edge

neighborhoods is clearly more efficient than searching over the global high-dimensional

space of the whole graph. Moreover, searching over a local low-dimensional space of

edge neighborhoods is amenable to parallel implementation, which offers additional

speedup over iterative methods. Note that exhaustive search of the egonet of any

edge e ∈ E yields at least O(∆k−1) asymptotically, where ∆ is the maximum degree

in G. Clearly, exhaustive search is computationally intensive for large graphs, and

our approach is more efficient as we will show next.

6.4.2 Counting Motifs of Size (k = 3) Nodes

Algorithm 6.1: TriadCensus(G = (V,E)) our exact triad census algorithm for

counting all 3-node motifs. This Algorithm takes an undirected graph and returns the

frequencies of all 3-node motifs f(G3, G).
Input : Graph G = (V,E)
Output: Motif Counts of size 3 nodes f(G3, G)

1 Initialize Array X
2 for each edge e = (u, v) ∈ E in parallel do
3 Staru = ∅, Starv = ∅,Trie = ∅
4 for each w ∈ N (u) do
5 if w = v then continue
6 Add w to Staru and Set X(w) = 1

7 for each w ∈ N (v) do
8 if w = u then continue
9 if X(w) = 1 then → found triangle

10 Add w to Trie
11 Remove w from Staru

12 else Add w to Starv

13 f(g31 , G) += |Trie|
14 f(g32 , G) += |Staru|+ |Starv |
15 f(g33 , G) += |V | − |N (u) ∪N (v)|
16 for each w ∈ N (u) do X(w) = 0

17 f(g31 , G) = 1/3.f(g31 , G)
18 f(g32 , G) = 1/2.f(g32 , G)

19 f(g34 , G) =
(|V |

3

)
− f(g31 , G)− f(g32 , G)− f(g33 , G)

20 return f(G3, G)

124

Alg. 6.1 (TriadCensus) shows how to count motifs of size k = 3 for each edge.

There are four possible motifs of size k = 3 nodes, where only g31 (i. e., triangle

patterns) and g32 (i. e., 2-star patterns) are connected motifs (see Table 6.1).

Connected motifs of size k = 3. Lines 4—12 of Algorithm 6.1 show how to

find and count triangles incident to an edge. For any edge e = (u, v), a triangle

(u, v, w) exists, if and only if w is connected to both u and v. Let Trie be the set

of all nodes that form a triangle with e = (u, v), and |Trie| be the number of such

triangles. Then, Trie is the set of overlapping nodes in the neighborhoods of u and v

— Trie = N (u) ∩N (v).

Note that Algorithm 6.1 counts each triangle three times (one time for each edge

in the triangle), and therefore we divide the total count by 3 as in Eq. (6.1),

f(g31 , G) =
1

3
.
∑

e=(u,v)∈E
|Trie| (6.1)

Now we need to count 2-star patterns (i. e., g32). For any edge e = (u, v), let Stare

be the set of all nodes that form a 2-star with e, and |Stare| be the number of such

star patterns. A 2-star pattern (u, v, w) exists, if and only if w is connected to either

u or v but not both. Accordingly, Stare = Staru ∪ Starv, where Staru and Starv are

the set of nodes that form a 2-star with e centered at u and v respectively. More

formally, Staru can be defined as Staru = {w ∈ N (u) \ {v}|w /∈ N (v)}, and Starv can

be defined as Starv = {w ∈ N (v) \ {u}|w /∈ N (u)}.
Similar to counting triangles, Algorithm 6.1 counts each 2-star pattern two times

(one time for each edge in the 2-star). Thus, we divide the sum for all edges by 2 as

stated in Eq. (6.2),

f(g32 , G) =
1

2
.
∑

e=(u,v)∈E
|Staru|+ |Starv| (6.2)

125

Disconnected motifs of size k = 3. There are two disconnected motifs of size

k = 3 nodes, g33 (i. e., the 3-node-1-edge pattern) and g34 (i. e., the independent set

defined on 3 nodes) (see Table 6.1). Lines 15 and 19 show how to count these patterns.

Eq. 6.3 shows that the number of 3-node-1-edge motifs per edge e is equivalent to

the number of all nodes that are not in the neighborhood subgraph (egonet) of edge

e (i. e., V \ {N (u) ∪N (v)}),

f(g33 , G) =
∑

e=(u,v)∈E
|V | − |N (u) ∪N (v)| (6.3)

where |N (u) ∪N (v)| = |Trie|+ |Stare|+ |{u, v}|. Note that the number of 3-node-1-

edge motifs can be computed in o(1) for each edge.

Given that the total number of motifs of size 3 nodes is
(
N
3

)
, Eq. 6.4 shows how

to compute the frequency of g34 , which clearly can be done in o(1),

f(g34 , G) =

(|V |
3

)
−
(
f(g31 , G) + f(g32 , G) + f(g33 , G)

)
(6.4)

The complexity of counting all motifs of size k = 3 is O(|E|.∆) asymptotically as

we show next in Lemma 6.4.1.

Lemma 6.4.1 Alg. 6.1 counts all motifs of size k = 3–nodes in O(|E|.∆).

Proof For each edge e = (u, v) such that e ∈ E, the runtime complexity of counting

all triangle and 2-star patterns incident to e (i. e., Trie, Stare respectively as shown

in Lines 4—12) is O(|N (u)| + |N (v)|), and is asymptotically O(∆) where ∆ is the

maximum degree in the graph. Further, the runtime complexity of counting all 3-

node-1-edge patterns of size k = 3 incident to e can be counted in constant time o(1)

(Lines 15 and 19). Therefore, the total runtime complexity for counting all motifs of

size k = 3 in the graph is O
(∑
e∈E

(∆ + o(1))
)

= O(|E|.∆).

126

6.5 Counting Motifs of Size (k = 4) Nodes

An exhaustive search of the egonet of any edge to count all 4-node motifs indepen-

dently yields O(∆3) asymptotically, where ∆ is the maximum degree in G. Clearly,

exhaustive search is computationally intensive for large graphs. On the other hand,

our approach is hierarchical and more efficient as we show next.

For each edge e = (u, v), we start by finding triangles and 2-star patterns. Our

central principle is that any 4-node motif g4i can be decomposed into four 3-node

motifs [183], obtained by deleting one node from g4i each time. Thus, we jointly

count all possible 4-node motifs by leveraging the knowledge obtained from finding

3-node motifs and combinatorial arguments that describe relationships between pairs

of motif patterns. We summarize this procedure in the following steps:

• Step 1: For each edge e = (u, v), find all neighborhood nodes forming triangle

and 2-star patterns with e

• Step 2: For each edge e = (u, v), use the knowledge from Step 1 to count only

4-cliques and 4-cycles

• Step 3: For each edge e = (u, v), use the knowledge from Step 1 and combi-

natorial arguments to compute unrestricted counts for all 4-node motifs (i. e.,

counts that can be computed in constant time)

• Step 4: Merge the counts from all edges in the graph, and use combinatorial

arguments involving unrestricted counts (computed in Step 3) to obtain the

exact frequencies of all 4-node motifs

Note that we refer to unrestricted counts as the counts that can be computed in

constant time and using previous knowledge from Step 1. We discuss the details later

in Section 6.5.2.

127

Fig. 6.1.: 4–node Motif Transition Diagram: Figure shows all possible ±1 edge tran-
sitions between the set of all 4-node motifs. Dashed right arrows denote the deletion
of one edge to transition from one motif to another. Solid left arrows denote the ad-
dition of one edge to transition from one motif to another. Edges are colored by their
feature-based roles, where the set of feature are defined by the number of triangles
and 2-stars incident to an edge (see Table in the top-right corner). We define six
different classes of edge roles colored from black to orange (see Table in the top-right
corner). Dashed/solid arrows are colored similar to the edge roles to denote which
edge would be deleted/added to transition from one motif to another. The table in
the top-left corner shows the number of edge roles per each motif.

6.5.1 Motif State Transition Diagram

Assume that each motif pattern is a state, Fig. 6.1 shows all possible ±1 edge

transitions between the states of all 4-node motifs. We can transition from one motif

to another by the deletion (denoted by dashed right arrows) or addition (denoted

by solid left arrows) of a single edge. We define six different classes of possible edge

roles denoted by the colors from black to orange (see Table in the top-right corner in

Fig. 6.1). An edge role is an edge-level connectivity pattern (e. g., a chord edge), where

two edges belong to the same role (i. e., class) if they are similar in their topological

features. For each edge, we define a topological feature vector that consists of the

number of triangles and 2-stars incident to this edge. Then, we classify edges to one

of the six roles based on their feature vectors. All edges that appear in 4-node motifs

are colored by their roles. In addition, the transition arrows are colored similar to the

128

edge roles to denote which edge type should be deleted/added to transition from one

motif to another. Note that a single edge deletion/addition changes the role (class) of

other edges in a motif. The table in the top-left corner of Fig. 6.1 shows the number

of edge roles per each motif.

For example, consider the 4-clique motif (g41), where each edge participates exactly

in two triangles. Therefore, all the edges in a 4-clique motif (g41) belong to the first

role (denoted by the black color). Similarly, consider the 4-chordalcycle motif (g42),

where each edge (except the chord edge) participates exactly in one triangle and one

2-star. Therefore, all edges in a 4-chordalcycle motif “g42” belong to the second role

(denoted by the blue color) except for the chord edge which belongs to the first role

(denoted by the black color). Fig. 6.1 shows how to transition from the 4-clique motif

to the 4-chordalcycle motif “g42” by deleting one (any) edge from the 4-clique motif.

6.5.2 General Principle for Counting Motifs of size k = 4

Generally speaking, suppose we have N (e) distinct 4-node subgraphs that contains

an edge e = (u, v),

N (e) =
∣∣{{u, v, w, r} | w, r ∈ V \ {u, v} ∧ w 6= r

}∣∣ (6.5)

Now, each subgraph {u, v, w, r} in this collection may satisfy one or two properties

ai, aj ∈ A = {T, Su, Sv, I}. These properties describe the topological properties of

nodes w and r with respect to edge e, such that Aw = ai if {u, v, w} forms subgraph

pattern ai, and Ar = aj if {u, v, r} forms subgraph pattern aj. For example, Aw = T

if w forms a triangle with e, and Aw = Su or Sv if w forms a 2-star with e centered

around u or v respectively. Also, Aw = I if w is independent (disconnected) from e.

We clarify these properties by example in Fig. 6.2.

Accordingly, let N
(e)
ai denote the number of 4-node motifs {u, v, w, r} having prop-

erty ai ∈ A, and let N
(e)
ai,aj denote the number having properties ai, aj ∈ A,

129

Fig. 6.2.: Illustration of edge neighborhood: Let T denotes the nodes forming triangles
with edge (u, v) (i. e., V2, V3), whereas Su and Sv denotes the nodes forming 2-stars
centered at u and v respectively (i. e., V1, V4), and let I denote the nodes that are not
connected to edge e (i. e., V5, V6). Further, the dotted lines represent edges incident
to these nodes.

N (e)
ai,aj

=

∣∣∣∣∣

{
{u, v, w, r}

∣∣∣
w,r∈V \{u,v}
∧w 6=r
∧Aw=ai,Ar=aj

}∣∣∣∣∣ (6.6)

Now that we defined the topological properties of nodes w and r relative to edge e,

we need to define whether nodes w and r are connected themselves. Let e′wr represent

whether w and r are connected or not, such that e′wr = 1 if (w, r) ∈ E and e′wr = 0

otherwise. Accordingly, let N
(e)
ai,aj ,e′wr

denotes the number of 4-node motifs {u, v, w, r},
where w, r satisfy property ai, aj ∈ A respectively,

N
(e)
ai,aj ,e′wr

=

∣∣∣∣∣

{
{u, v, w, r}

∣∣∣∣∣
w,r∈V \{u,v}
∧w 6=r
∧Aw=ai,Ar=aj
∧e′wr∈{0,1}

}∣∣∣∣∣ (6.7)

For example, N
(e)
T,T,1 is the number of all motifs {u, v, w, r} containing edge e,

where both w and r are forming triangles with e and there exist an edge between w

and r. Using Equations 6.6 and 6.7, we provide a general principle for motif counting

in the following theorem.

130

Theorem 6.5.1 General Principle for Motif Counting: Given a graph G, for any

edge e = (u, v) in G, and for any properties ai, aj ∈ A, the number of 4-node motifs

{u, v, w, r} satisfies the following rule,

N
(e)
ai,aj ,0

= N (e)
ai,aj
−N (e)

ai,aj ,1
(6.8)

Proof Suppose there is a subgraph {u, v, w, r} containing edge e, where nodes w

and r satisfy ai, aj properties respectively, and (w, r) ∈ E. Then the expression on

the right side counts this subgraph once in the N
(e)
ai,aj term, and once in the N

(e)
ai,aj ,1

.

By the principle of inclusion-exclusion [188], the total contribution of the subgraph

{u, v, w, r} in N
(e)
ai,aj ,0

is zero. Thus, N
(e)
ai,aj ,0

is the number of motifs having properties

ai, aj, but (w, r) /∈ E.

Clearly, it is sufficient to compute N
(e)
ai,aj and N

(e)
ai,aj ,1

only, and use Theorem 6.5.1

to compute N
(e)
ai,aj ,0

in constant time. Note that N
(e)
ai,aj is an unrestricted count and

can be computed in constant time using the knowledge we have from finding 3-node

motifs.

Now, to simplify the discussion in the following sections, we precisely show how

to compute N
(e)
ai,aj , the number of 4-node motifs {u, v, w, r} such that w, r satisfy

property ai, aj ∈ A respectively. Let Wai be the set of nodes with property ai ∈ A
(i. e., Wai = {w ∈ V \ {u, v} | Aw = ai,∀ai ∈ A}), and similarly Raj be the set of

nodes with property aj ∈ A (i. e., Raj = {r ∈ V \ {u, v} | Ar = aj,∀aj ∈ A}). If

ai = aj, then Wai = Raj . Thus,

N (e)
ai,ai

=

(|Wai |
2

)
=

1

2
.(|Wai | − 1).|Wai | (6.9)

However, if ai 6= aj, thenWai andRaj are mutually exclusive (i. e.,Wai∩Raj = ∅).
Thus,

N (e)
ai,aj

= |Wai |.|Raj | (6.10)

131

6.5.3 Analysis & Combinatorial Arguments

In this section, we discuss combinatorial arguments involving unrestricted counts

that can be computed directly from our knowledge of 3-node motifs. These combi-

natorial arguments capture the relationships between the counts of pairs of 4-node

motifs. The proofs of these relationships are based on Theorem 6.5.1 and the transi-

tion diagram in Fig. 6.1. For each pair of motifs g4i and g4j , we show the relationship

for each edge in the graph (in Corollary 1–14), then we show a generalization for the

whole graph (in Lemma 6.5.1–6.5.7).

Relationship between 4-Cliques & 4-ChordalCycles. Here, our goal is to show

the relationship between the total number of 4-clique motifs (g41) and the total num-

ber of 4-chordalcycle motifs (g42). We start by showing the relationship for each edge

in the graph (in Corollary 1 and 2), then we show a generalization for the whole graph

(in Lemma 6.5.1).

Corollary 1 For any edge e = (u, v) in the graph, the number of 4-cliques containing

e is N
(e)
T,T,1.

Proof Suppose there is a subgraph {u, v, w, r} containing e. From graph theory,

we know that any clique of size k contains k distinct cliques of size k − 1 [183].

Accordingly, {u, v, w, r} is a 4-clique if and only if it contains all triangles in the set

{(u, v, w), (u, v, r), (u,w, r), (v, w, r)}, which means Aw = T , Ar = T , and e′wr = 1, as

there is an edge between w and r. More generally, any subgraph {u, v, w, r} containing

e contributes once in the count N
(e)
T,T,1 if and only if it is a 4-clique. In Theorem 6.5.1,

we showed that N
(e)
T,T,1 ≤ N

(e)
T,T .

Corollary 2 For any edge e = (u, v) in the graph, the number of 4-chordalcycles,

where e is the chord edge of the cycle (denoted by the black color in Fig. 6.1), is

N
(e)
T,T,0.

132

Proof Suppose there is a subgraph {u, v, w, r} containing e. We say that {u, v, w, r}
is a 4-chordalcycle with chord e if and only if there exist two nodes w, r ∈ Trie, and

(w, r) /∈ E. Clearly, if {u, v, w, r} is a 4-chordal-cycle with chord e, then it contains

two triangles (u, v, w) and (u, v, r) overlapping in e. This means Aw = T and Ar = T

and e′wr = 0, as there is no edge between w and r. More generally, any subgraph

{u, v, w, r} contributes once in the count N
(e)
T,T,0 if and only if it is a 4-chordalcycle

with e as the chord. In Theorem 6.5.1, we showed that N
(e)
T,T,0 ≤ N

(e)
T,T .

Lemma 6.5.1 For any graph G, the relationship between the counts of 4-cliques (i. e.,

f(g41 , G)) and 4-chordalcycles (i. e., f(g42 , G)) is,

f(g42 , G) =
∑

e∈E

(|Trie|
2

)
− 6.f(g41 , G)

Proof From Theorem 6.5.1 and the addition principle [188], the total count for all

edges in G is,
∑

e∈E
N

(e)
T,T,0 =

∑

e∈E
N

(e)
T,T −

∑

e∈E
N

(e)
T,T,1 (6.11)

Given that N
(e)
T,T is the number of 4-node subgraphs {u, v, w, r} containing e, such

that Aw = T,Ar = T . Thus, from Eq.6.9, N
(e)
T,T =

(|Trie|
2

)
. Now, from Corollary 1,

each 4-clique will be counted 6 times (once for each edge in the clique). Thus, the

total count of 4-cliques in G is f(g41 , G) = 1
6
.
∑
e∈E

N
(e)
T,T,1. Similarly, from Corollary 2,

each 4-chordalcycle is counted only once for each chord edge. Thus, the total count

of 4-chordalcycles in G is f(g42 , G) =
∑
e∈E

N
(e)
T,T,0. By direct substitution in Eq.6.11,

this lemma is true.

Relationship between 4-Cycles & 4-Paths. Our goal is to show the relationship

between the total number of 4-cycle motifs (g44) and the total number of 4-path motifs

(g46). We start by showing the relationship for each edge in the graph (in Corollary 3

and 4), then we show a generalization for the whole graph (in Lemma 6.5.2).

133

Corollary 3 For any edge e = (u, v) in the graph, the number of 4-cycles containing

e is N
(e)
Su,Sv ,1

.

Proof Suppose there is a subgraph {u, v, w, r} containing e, with some nodes w, r ∈
N (e). From graph theory, we know that any cycle of size k nodes has exactly k

edges, and every node has exactly degree 2 [183] (i. e., each node is a center of 2-star).

Accordingly, {u, v, w, r} is a 4-cycle if and only if it contains all the 2-star subgraphs in

the set {(v, u, w), (u, v, r), (v, r, w), (u,w, r)}, such that each 2-star is centered around

one of the four nodes. This means Aw = Su and Ar = Sv and e′wr = 1, as there

is an edge between w and r. More generally, any subgraph {u, v, w, r} containing

e contributes once in the count N
(e)
Su,Sv ,1

if and only if it is a cycle of 4 nodes. In

Theorem 6.5.1, we showed that N
(e)
Su,Sv ,1

≤ N
(e)
Su,Sv

.

Corollary 4 For any edge e = (u, v) in the graph, the number of 4-paths containing

e, where e is the middle edge in the path (denoted by the green color in Fig. 6.1), is

N
(e)
Su,Sv ,0

.

Proof Suppose there is a subgraph {u, v, w, r} containing e, with some nodes w, r ∈
N (e). From graph theory, we know that a 4-path is a connected chain of 3 edges,

with every node has degree at least 1 and at most 2. We say that {u, v, w, r} is a

4-path containing e as a middle edge if and only if it contains the edges in the set

{(w, u), (u, v), (v, r)}, where (w, u) is the start of the path, (v, r) is the end of the path,

and e = (u, v) is the middle edge. This means Aw = Su and Ar = Sv and e′wr = 0, as

there is no edge between w and r. More generally, any subgraph {u, v, w, r} containing

e contributes once in the count N
(e)
Su,Sv ,0

if and only if it is a path of 4 nodes with e is

the middle edge. In Theorem 6.5.1, we showed that N
(e)
Su,Sv ,0

≤ N
(e)
Su,Sv

.

Lemma 6.5.2 For any graph G, the relationship between the counts of 4-cycles (i. e.,

f(g44 , G)) and 4-paths (i. e., f(g46 , G))is,

f(g46 , G) =
∑

e∈E
|Staru|.|Starv| − 4.f(g44 , G)

134

Proof From Theorem 6.5.1 and the addition principle [188], the total count for all

edges in G is,
∑

e∈E
N

(e)
Su,Sv ,0

=
∑

e∈E
N

(e)
Su,Sv

−
∑

e∈E
N

(e)
Su,Sv ,1

(6.12)

Given that N
(e)
Su,Sv

is the number of 4-node subgraphs {u, v, w, r} containing e, such

that w, r Aw = Su, Ar = Sv. Thus, from Eq.6.10, N
(e)
Su,Sv

= |Staru|.|Starv|. Now, from

Corollary 3, each 4-cycle will be counted 4 times (once for each edge in the cycle).

Thus, the total count of 4-cycles in G is f(g44 , G) = 1
4
.
∑
e∈E

N
(e)
Su,Sv ,1

. Similarly, from

Corollary 4, each 4-path is counted only once for each middle edge in the path. Thus,

the total count of 4-paths in G is f(g46 , G) =
∑
e∈E

N
(e)
Su,Sv ,0

. By direct substitution in

Eq.6.12, this lemma is true.

Relationship between 4-TailedTriangles & 4-ChordalCycles. Our goal is to

show the relationship between the total number of 4-tailedtriangle motifs (g43) and

the total number of 4-chordalcycle motifs (g42). We start by showing the relationship

for each edge in the graph (in Corollary 5 and 6), then we show a generalization for

the whole graph (in Lemma 6.5.3).

Corollary 5 For any edge e = (u, v) in the graph, the number of 4-tailedtriangles

where e is part of both the triangle and 2-star patterns (denoted by the blue color in

Fig. 6.1), is N
(e)
T,Su∨Sv ,0.

Proof Suppose there is a subgraph {u, v, w, r} containing e, with some nodes w, r ∈
N (e). From graph theory, we know that any tailed triangle of size 4 nodes contains a

triangle, with one of the nodes in the triangle connected to the tail edge and forming

the center of a 2-star [183]. Accordingly, {u, v, w, r} is a tailed-triangle where e is part

of both the triangle and 2-star patterns, if and only if there is a node w ∈ Trie, and

another node r ∈ Staru or Starv, such that w, r are not connected by an edge. This

means Aw = T and Ar = Su ∨ Sv and e′wr = 0, as there is no edge between w and r.

More generally, any subgraph {u, v, w, r} containing e contributes once in the count

135

N
(e)
T,Su∨Sv ,0 if and only if it is a 4-tailedtriangle where e is part of both the triangle and

2-star patterns. In Theorem 6.5.1, we showed that N
(e)
T,Su∨Sv ,0 ≤ N

(e)
T,Su∨Sv .

Corollary 6 For any edge e = (u, v) in the graph, the number of 4-chordalcycles

where e is a cycle edge (denoted by the blue color in Fig. 6.1), is N
(e)
T,Su∨Sv ,1.

Proof Suppose there is a subgraph {u, v, w, r} containing e. We say that {u, v, w, r}
is a 4-chordalcycle with e is a cycle edge if and only if there exist two nodes w, r such

that w ∈ Trie and r ∈ Staru ∨ Starv, and (w, r) ∈ E. This means Aw = T and

Ar = Su ∨ Sv and e′wr = 1. More generally, any subgraph {u, v, w, r} containing e

contributes once in the count N
(e)
T,Su∨Sv ,1 if and only if it is a 4-chordalcycle where e

is a cycle edge. From Theorem 6.5.1, we showed that N
(e)
T,Su∨Sv ,1 ≤ N

(e)
T,Su∨Sv .

Lemma 6.5.3 For any graph G, the relationship between the counts of 4-chordalcycles

(i. e., f(g42 , G)) and 4-tailedtriangles (i. e., f(g43 , G)) is,

2.f(g43 , G) =
∑

e∈E
|Trie|.(|Staru|+ |Starv|)− 4.f(g42 , G)

Proof From Theorem 6.5.1 and the addition principle [188], the total count for all

edges in G is,
∑

e∈E
N

(e)
T,Su∨Sv ,0 =

∑

e∈E
N

(e)
T,Su∨Sv −

∑

e∈E
N

(e)
T,Su∨Sv ,1 (6.13)

Given that N
(e)
T,Su∨Sv = N

(e)
T,Su

+N
(e)
T,Sv

is the number of 4-node subgraphs {u, v, w, r}
containing e, such that Aw = T,Ar = Su ∨ Sv. Thus, from Eq.6.10, N

(e)
T,Su∨Sv =

|Trie|.(|Staru| + |Starv|). Now, from Corollary 6, each 4-chordalcycle is counted 4

times (once for each edge in the cycle). Thus, the total count of 4-chordalcycle in

G is f(g42 , G) = 1
4
.
∑
e∈E

N
(e)
T,Su∨Sv ,1. Similarly, from Corollary 5, each 4-tailedtriangle

will be counted 2 times (once for each blue edge as in Fig. 6.1). Thus, the total

count of 4-tailedtriangle in G is f(g43 , G) = 1
2
.
∑
e∈E

N
(e)
T,Su∨Sv ,0. By direct substitution

in Eq.6.13, this lemma is true.

136

Relationship between 4-TailedTriangles & 3-Stars. Our goal is to show the

relationship between the total number of 4-tailedtriangle motifs (g43) and the total

number of 3-stars (g42). We start by showing the relationship for each edge in the

graph (in Corollary 7 and 8), then we show a generalization for the whole graph (in

Lemma 6.5.4).

Corollary 7 For any edge e = (u, v) in the graph, the number of 4-tailedtriangles

with e as the tail edge (denoted by the green color in Fig. 6.1) and u is part of the

triangle, is N
(e)
Su,Su,1

.

Proof Suppose there is a subgraph {u, v, w, r} containing e. {u, v, w, r} is a 4-

tailedtriangle with e as the tail edge and u is part of the triangle, if and only if

w, r ∈ Su and w, r are connected by an edge. This means Aw = Su and Ar = Su and

e′wr = 1. More generally, any subgraph {u, v, w, r} containing e contributes once in

the count N
(e)
Su,Su,1

if and only if it is a 4-tailedtriangle with e as the tail edge and u

is part of the triangle. In Theorem 6.5.1, we showed that N
(e)
Su,Su,1

≤ N
(e)
Su,Su

.

In a similar fashion, the number of 4-tailedtriangles with e as the tail edge and v

is part of the triangle is N
(e)
Sv ,Sv ,1

. Thus, the total number of 4-tailedtriangles with e

as the tail edge and u ∨ v is part of the triangle is N
(e)
S.,S.,1

= N
(e)
Su,Su,1

+N
(e)
Sv ,Sv ,1

.

Corollary 8 For any edge e = (u, v) in the graph, the number of 3-star centered

around u is N
(e)
Su,Su,0

.

Proof Suppose there is a subgraph {u, v, w, r} containing e. {u, v, w, r} is a 3-star

centered around u, if and only if w, r ∈ Su and w, r are not connected by an edge.

This means Aw = Su and Ar = Su and e′wr = 0. More generally, any subgraph

{u, v, w, r} containing e contributes once in the count N
(e)
Su,Su,0

if and only if it is a

3-star centered around u. In Theorem 6.5.1, we showed that N
(e)
Su,Su,0

≤ N
(e)
Su,Su

.

Again, the number of 3-stars centered around v is N
(e)
Sv ,Sv ,0

. Thus, the total number

of 3-stars centered around u or v is N
(e)
S.,S.,0

= N
(e)
Su,Su,0

+N
(e)
Sv ,Sv ,0

.

137

Lemma 6.5.4 For any graph G, the relationship between the counts of 3-stars (i. e.,

f(g45 , G)) and 4-tailedtriangles (i. e., f(g43 , G)) is,

3.f(g45 , G) =
∑

e∈E

(|Staru|
2

)
+

(|Starv|
2

)
− f(g43 , G)

Proof From Theorem 6.5.1 and the addition principle [188], the total count for all

edges in G is,
∑

e∈E
N

(e)
S.,S.,0

=
∑

e∈E
N

(e)
S.,S.
−
∑

e∈E
N

(e)
S.,S.,1

(6.14)

Given that N
(e)
S.,S.

= N
(e)
Su,Su

+N
(e)
Sv ,Sv

is the number of 4-node subgraphs {u, v, w, r}
containing e, such that Aw = Su ∧ Ar = Su or Aw = Sv ∧ Ar = Sv. Thus, from

Eq.6.9, N
(e)
S.,S.

=
(|Staru|

2

)
+
(|Starv |

2

)
. Now, from Corollary 8, each 3-star is counted

3 times (once for each edge in the star). Thus, the total count of 3-stars in G is

f(g45 , G) = 1
3
.
∑
e∈E

N
(e)
S.,S.,0

. Similarly, from Corollary 7, each 4-tailedtriangle will be

counted once for each tail edge (denoted by the green color in Fig. 6.1). Thus, the

total count of 4-tailedtriangle in G is f(g43 , G) =
∑
e∈E

N
(e)
S.,S.,1

. This holds whether the

patterns are centered around u or v. By direct substitution in Eq.6.14, this lemma is

true.

Relationship between 4-TailedTriangles & 4-Node-1-Triangles. Our goal is

to show the relationship between the total number of 4-tailedtriangle motifs (g43) and

the total number of 4-Node-1-triangles (g47). We start by showing the relationship

for each edge in the graph (in Corollary 9 and 10), then we show a generalization for

the whole graph (in Lemma 6.5.5).

Corollary 9 For any edge e = (u, v) in the graph, the number of 4-node-1-triangle

is N
(e)
T,I,0.

Proof Suppose there is a subgraph {u, v, w, r} containing e, for some nodes w, r.

{u, v, w, r} is a 4-node-1-triangle if and only if there are some nodes w, r such that

138

w ∈ Trie, r /∈ N (e), and (w, r) /∈ E. This means r is independent of e, and w forms

a triangle with e. As such, Aw = T and Ar = I and e′wr = 0. More generally, any

subgraph {u, v, w, r} containing e contributes once in the count N
(e)
T,I,0 if and only if

it is a 4-node-1-triangle. In Theorem 6.5.1, we showed that N
(e)
T,I,0 ≤ N

(e)
T,I .

Corollary 10 For any edge e = (u, v) in the graph, the number of 4-tailedtriangles

with e participating in the triangle but not connected to the tail edge (denoted by the

red color in Fig. 6.1), is N
(e)
T,I,1.

Proof Suppose there is a subgraph {u, v, w, r} containing e. {u, v, w, r} is a 4-

tailedtriangle with e participating in the triangle but not connected to the tail edge,

if and only if there are some nodes w, r such that w ∈ Trie, r 6 N (e), and (w, r) ∈ E.

This means r is independent of e, and w forms a triangle with e. As such, Aw = T

and Ar = I and e′wr = 1. More generally, any subgraph {u, v, w, r} containing

e contributes once in the count N
(e)
T,I,1 if and only if it is a 4-tailedtriangle with e

participating in the triangle but not connected to the tail edge. In Theorem 6.5.1, we

showed that N
(e)
T,I,1 ≤ N

(e)
T,I .

Lemma 6.5.5 For any graph G, the relationship between the counts of 4-tailedtriangles

(i. e., f(g43 , G)) and 4-node-1-triangles (i. e., f(g47 , G)) is,

3.f(g47 , G) =
∑

e∈E

(
Trie. (|V | − |N (u) ∪N (v)|)

)
− f(g43 , G)

Proof From Theorem 6.5.1 and the addition principle [188], the total count for all

edges in G is,
∑

e∈E
N

(e)
T,I,0 =

∑

e∈E
N

(e)
T,I −

∑

e∈E
N

(e)
T,I,1 (6.15)

Given that N
(e)
T,I is the number of 4-node subgraphs {u, v, w, r} containing e, such

that Aw = T,Ar = I. And, the number of nodes independent of e is |V | − |N (u) ∪
N (v)|. Thus, from Eq.6.10, N

(e)
T,I = Trie.

(
|V | − |N (u) ∪ N (v)|

)
. Now, from Corol-

lary 10, each 4-tailedtriangle is counted one time (once for the red edge as in Fig. 6.1).

139

Thus, the total count of 4-tailedtriangles in G is f(g43 , G) =
∑
e∈E

N
(e)
T,I,1. Similarly, from

Corollary 9, each 4-node-1-triangle will be counted 3 times (once for each edge in the

triangle). Thus, the total count of 4-node-1-triangles in G is f(g47 , G) = 1
3
.
∑
e∈E

N
(e)
T,I,0.

By direct substitution in Eq.6.15, this lemma is true.

Relationship between 4-Paths & 4-node-2-Stars. Our goal is to show the re-

lationship between the total number of 4-path motifs (g46) and the total number of

4-node-2-star motifs (g48). We start by showing the relationship for each edge in the

graph (in Corollary 11 and 12), then we show a generalization for the whole graph

(in Lemma 6.5.6).

Corollary 11 For any edge e = (u, v) in the graph, the number of 4-paths where e

is the start or end of the path (denoted by the purple color in Fig. 6.1), is N
(e)
Su∨Sv ,I,1.

Proof Suppose there is a subgraph {u, v, w, r} containing e. {u, v, w, r} is a 4-

path with e is the start or end of the path, if and only if there there are some

nodes w, r where w ∈ Staru ∨ Starv, r /∈ N (e), and (w, r) ∈ E. This means r is

independent of e, and w forms a 2-star with e. As such, Aw = Su ∨ Sv and Ar = I

and e′wr = 1. More generally, any subgraph {u, v, w, r} containing e contributes once

in the count N
(e)
Su∨Sv ,I,1 if and only if it is a 4-path. In Theorem 6.5.1, we showed that

N
(e)
Su∨Sv ,I,1 ≤ N

(e)
Su∨Sv ,I .

Corollary 12 For any edge e = (u, v) in the graph, the number of 4-node-2-stars

where e is one of the star edges (denoted by the purple color in Fig. 6.1), is N
(e)
Su∨Sv ,I,0.

Proof Suppose there is a subgraph {u, v, w, r} containing e. {u, v, w, r} is a 4-node-

2-star with e as one of the star edges, if and only if there there are some nodes w, r

where w ∈ Staru ∨ Starv, r /∈ N (e), and (w, r) /∈ E. This means r is independent

of e, and w forms a 2-star with e. As such, Aw = Su ∨ Sv and Ar = I and e′wr = 0.

More generally, any subgraph {u, v, w, r} containing e contributes once in the count

N
(e)
Su∨Sv ,I,0 if and only if it is a 4-node-2-star. In Theorem 6.5.1, we showed that

N
(e)
Su∨Sv ,I,0 ≤ N

(e)
Su∨Sv ,I .

140

Lemma 6.5.6 For any graph G, the relationship between the counts of 4-paths (i. e.,

f(g46 , G)) and 4-node-2-stars (i. e., f(g48 , G)) is,

2.f(g48 , G) =
∑

e∈E
|Stare|.(|V | − |N (u) ∪N (v)|)− 2.f(g46 , G)

Proof From Theorem 6.5.1 and the addition principle [188], the total count for all

edges in G is,
∑

e∈E
N

(e)
Su∨Sv ,I,0 =

∑

e∈E
N

(e)
Su∨Sv ,I −

∑

e∈E
N

(e)
Su∨Sv ,I,1 (6.16)

Given that N
(e)
Su∨Sv ,I = N

(e)
Su,I

+N
(e)
Sv ,I

is the number of 4-node subgraphs {u, v, w, r}
containing e, such that Aw = Su∨Sv, Ar = I. And, the number of nodes independent

of e is |V | − |N (u) ∪ N (v)|. Thus, N
(e)
Su∨Sv ,I = |Stare|. (|V | − |N (u) ∪N (v)|), such

that |Stare| = |Staru|+ |Starv| (from Eq.6.10). Now, from Corollary 11, each 4-path is

counted 2 times (for both the start and end edges in the path, denoted by the purple

in Fig. 6.1). Thus, the total count of 4-paths in G is f(g46 , G) = 1
2
.
∑
e∈E

N
(e)
Su∨Sv ,I,1.

Similarly, from Corollary 12, each 4-node-2-star will be counted 2 times (once for

each edge in the star, denoted by the purple in Fig. 6.1). Thus, the total count of

4-node-2-star in G is f(g48 , G) = 1
2
.
∑
e∈E

N
(e)
Su∨Sv ,I,0. By direct substitution in Eq.6.16,

this lemma is true.

Relationship between 4-node-2-edges & 4-node-1-edge. Our goal is to show

the relationship between the total number of 4-node-2-edge motifs (g49) and the total

number of 4-node-1-edge motifs (g410). We start by showing the relationship for each

edge in the graph (in Corollary 13 and 14), then we show a generalization for the

whole graph (in Lemma 6.5.6).

Corollary 13 For any edge e = (u, v) in the graph, the number of 4-node-2-edges

where e is any of the two independent edges in the motif (denoted by the orange color

in Fig. 6.1), is N
(e)
I,I,1.

141

Proof Suppose there is a subgraph {u, v, w, r} containing e. {u, v, w, r} is a 4-node-

2-edge with e is one of the two independent edges, if and only if there there are some

nodes w, r /∈ N (e), and (w, r) ∈ E. This means w and r are independent of e. As

such, Aw = I and Ar = I and e′wr = 1. More generally, any subgraph {u, v, w, r}
containing e contributes once in the count N

(e)
I,I,1 if and only if it is a 4-node-2-edge.

In Theorem 6.5.1, we showed that N
(e)
I,I,1 ≤ N

(e)
I,I .

Corollary 14 For any edge e = (u, v) in the graph, the number of 4-node-1-edge

where e is an isolated/single edge in the motif (denoted by the orange color in Fig. 6.1),

is N
(e)
I,I,0.

Proof Suppose there is a subgraph {u, v, w, r} containing e. {u, v, w, r} is a 4-

node-1-edge with e is an isolated/single edge, if and only if there there are some

nodes w, r /∈ N (e), and (w, r) /∈ E. This means w and r are independent of e. As

such, Aw = I and Ar = I and e′wr = 0. More generally, any subgraph {u, v, w, r}
containing e contributes once in the count N

(e)
I,I,0 if and only if it is a 4-node-1-edge.

In Theorem 6.5.1, we showed that N
(e)
I,I,0 ≤ N

(e)
I,I .

Lemma 6.5.7 For any graph G, the relationship between the counts of 4-node-2-edge

motifs (i. e., f(g49 , G)) and 4-node-1-edge motifs (i. e., f(g410, G)) is,

f(g410 , G) =
∑

e∈E

(|V | − |N (u) ∪N (v)|
2

)
− 2.f(g49 , G)

Proof From Theorem 6.5.1 and the addition principle [188], the total count for all

edges in G is,
∑

e∈E
N

(e)
I,I,0 =

∑

e∈E
N

(e)
I,I −

∑

e∈E
N

(e)
I,I,1 (6.17)

Given that N
(e)
I,I is the number of 4-node subgraphs {u, v, w, r} containing e, such

that Aw = I, Ar = I. And, the number of nodes independent of e is |V | − |N (u) ∪
N (v)|. Thus, from Eq.6.9, N

(e)
I,I =

(|V |−|N (u)∪N (v)|
2

)
. Now, from Corollary 13, each

4-node-2-edge is counted 2 times (for the two edges in the motif, denoted by the

142

orange in Fig. 6.1). Thus, the total count of 4-node-2-edges in G is f(g49 , G) =

1
2
.
∑
e∈E

N
(e)
I,I,1. Similarly, from Corollary 14, each 4-node-1-edge will be counted once

(for the isolated/single edge in the motif, denoted by the orange in Fig. 6.1). Thus,

the total count of 4-node-1-edge in G is f(g410 , G) =
∑
e∈E

N
(e)
I,I,0. By direct substitution

in Eq.6.17, this lemma is true.

While it is straightforward to compute N
(e)
I,I for each edge e, this is not the case

for N
(e)
I,I,1 or N

(e)
I,I,0, as they require searching outside the local edge neighborhood.

However, sinceN
(e)
I,I,1 is the number of edges outside the egonet of e, it can be computed

as follows,

N
(e)
I,I,1 = |E| − |N (u) \ {v}| − |N (v) \ {u}| − |{e}|

− [N
(e)
T,T,1 +N

(e)
T,Su∨Sv ,1 +N

(e)
T,I,1]

− [N
(e)
S.,S.,1

+N
(e)
Su,Sv ,1

+N
(e)
S.,I,1

]

Thus, the total number of 4-node-2-edges is,

2.f(g49 , G) =
∑

e∈E
N

(e)
I,I,1 (6.18)

=
∑

e∈E
|E| − |N (u) \ {v}| − |N (v) \ {u}| − |{e}|

− [6.f(g41 , G) + 4.f(g42 , G) + 2.f(g43 , G)]

− [4.f(g44 , G) + 2.f(g46 , G)]

Finally, the number of 4-node-independent motifs (g411) is,

f(g411 , G) =

(|V |
4

)
−

10∑

i=1

f(g4i , G) (6.19)

143

Algorithm 6.2: MotifCensus(G = (V,E)) our exact motif census algorithm for

counting all 3, 4-node motifs. Alg. takes an undirected graph and returns the frequen-

cies of all 3, 4-node motifs
Input : Graph G = (V,E)
Output: Motif Counts of size 3, 4 nodes f(G3, G)

1 Initialize Array X
2 NT,T = 0, NSu,Sv = 0, NT,Su∨Sv = 0, NS.,S. = 0
3 NT,I = 0, NSu∨Sv,I = 0, NI,I = 0, NI,I,1 = 0
4 for each edge e = (u, v) ∈ E in parallel do
5 Staru = ∅, Starv = ∅,Trie = ∅
6 for each w ∈ N (u) do
7 if w = v then continue
8 Add w to Staru and Set X(w) = 1

9 for each w ∈ N (v) do
10 if w = u then continue
11 if X(w) = 1 then → found triangle
12 Add w to Trie and Set X(w) = 2
13 Remove w from Staru

14 else Add w to Starv and Set X(w) = 3

15 Compute f(G3, G) as in Lines 13—15 of Alg. 6.1
16 // Get Counts of 4-Cliques & 4-Cycles
17 f(g41 , G) += CliqueCount(X,Trie)
18 f(g44 , G) += CycleCount(X, Staru)
19 // Get Unrestricted Counts for 4-Node Connected Motifs

20 NT,T +=
(|Trie|

2

)

21 NSu,Sv += |Staru|.|Starv |
22 NT,Su∨Sv += |Trie|.(|Staru|+ |Starv |)
23 NSu,Su =

(|Staru|
2

)
and NSv,Sv =

(|Starv|
2

)

24 NS.,S. += NSu,Su +NSv,Sv

25 // Get Unrestricted Counts for 4-Node Disconnected Motifs
26 NT,I += Trie.(|V | − |N (u) ∪N (v)|)
27 NSu,I = |Staru|.(|V | − |N (u) ∪N (v)|)
28 NSv,I = |Starv |.(|V | − |N (u) ∪N (v)|)
29 NSu∨Sv,I += NSu,I +NSv,I

30 NI,I +=
(|V |−|N (u)∪N (v)|

2

)

31 NI,I,1 += |E| − |N (u) \ {v}| − |N (v) \ {u}| − 1
32 for each w ∈ N (v) do X(w) = 0

33 Use Lem. 6.5.1— 6.5.5 to compute f(g4i , G) for i = 1 : 8
34 Use Eq.6.18 to compute f(g49 , G) and Lem. 6.5.7 for f(g410 , G)
35 Use Eq. 6.19 to compute f(g411 , G)
36 return f(G3, G), f(G4, G)
37

38 procedure CliqueCount(X,Trie)
39 cliqe = 0
40 for each node w ∈ Trie do
41 for each r ∈ N (w) do
42 if X(r) = 2 then → found 4-Clique
43 cliqe += 1

44 X(w) = 0

45 return cliqe
46

47 procedure CycleCount(X, Staru)
48 cyce = 0
49 for each node w ∈ Staru do
50 for each r ∈ N (w) do
51 if X(r) = 3 then → found 4-Cycle
52 cyce += 1

53 X(w) = 0

54 return cyce

144

6.5.4 Algorithm

Alg. 6.2 shows how to count all motifs of size k = {3, 4} nodes efficiently (using

Lem. 6.5.1— 6.5.7). As discussed previously, we start by finding all triangle and 2-star

patterns in Lines 6–14 (i. e., Step 1). Then, in Lines 17—18 we only count 4-cliques

and 4-cycles (i. e., Step 2). Then, Lines 20—31 compute unrestricted counts for all

4-node motifs in constant time (using knowledge from steps 1 and 2, as discussed in

Step3), and finally Lines 33—35 compute the final counts (using the lemma proved

in Section 6.5.3) (i. e., Step4). Lemmas 6.5.8 and 6.5.9 show the complexity of

Alg. 6.2. Alg. 6.2 counts all 4-cliques and 4-cycles in O(m.∆.Tmax) and O(m.∆.Smax)

respectively, where Tmax is the maximum number of triangles incident to an edge and

Tmax � ∆ for sparse graphs, and Smax is the maximum number of stars incident

to an edge and Smax ≤ ∆. This is more efficient than O(|V |.∆3) given by [162],

and O(∆.|E|+ |E|2) given by [179]. In Section 6.6, we empirically compare to these

methods on a variety of data sets and we show the efficiency of Alg. 6.2.

Lemma 6.5.8 Alg. 6.2 counts all 4-cliques in O(|E|.∆.Tmax), where Tmax is the max-

imum number of triangles incident to an edge.

Proof For each edge e = (u, v) ∈ E, the runtime complexity of counting all 4-

cliques incident to e is equivalent to finding the set of all edges e′ = (w,w′) such that

{e′ = (w,w′) ∈ E|w,w′ ∈ Trie∧w 6= w′}, where Trie is the set of triangles incident to

e. First, we show in Lem. 6.4.1 that the runtime complexity of finding all triangles

incident to e is O(∆). Second, as described in Alg. 6.2 the runtime complexity of

checking whether any two distinct nodes w,w′ ∈ Trie are connected by an edge e′ =

(w,w′) isO(
∑

w∈Trie

∆) = O(|Trie|.∆), and can be computed asymptoticallyO(Tmax.∆),

where Tmax is the maximum triangle degree (i.e., the maximum number of triangles

incident to an edge and Tmax � ∆). Therefore, the total runtime complexity is

O
(∑
e∈E

(∆ + Tmax.∆)
)

= O(|E|.∆.Tmax).

145

Lemma 6.5.9 Alg. 6.2 counts all 4-cycles of size k = 4 in O(|E|.∆.Smax), where

Smax is the maximum number of 2-stars incident to an edge (proof is similar to

Lem. 6.5.8).

Proof For each edge e = (u, v) ∈ E, the runtime complexity of counting all 4-

cycles incident to e is equivalent to finding the set of all edges e′ = (w,w′) such that

{e′ = (w,w′) ∈ E|w ∈ Staru ∧w′ ∈ Starv, w 6= w′}. First, we show in Lem. 6.4.1 that

the runtime complexity of finding all 2-star patterns incident to e is O(∆). Second,

Alg. 6.2 shows the runtime complexity of checking whether any two distinct nodes

w ∈ Staru, and w′ ∈ Starv are connected by an edge e′ = (w,w′) is O(
∑

w∈Staru

∆) =

O(|Staru|.∆), and is asymptotically O(Smax.∆) (where Smax is the maximum number

of 2-stars incident to an edge, and Smax ≤ ∆). Therefore, the total runtime complexity

is O
(∑
e∈E

(∆ + Smax.∆)
)

= O(|E|.∆.Smax).

6.6 Experiments & Applications

We systematically investigate the scalability of our proposed algorithm on a large

collection of 1646 networks from a variety of domains with millions of nodes and edges

(see [178] for data download). Tables 6.6–6.8 show the statistics of 200 networks from

a variety of categories, including social, biological and other domains. In addition,

we test our algorithms with large collections of networks. Specifically, Tables 6.4

and 6.5 show the statistics of 100 Facebook college networks [153]. In addition,

Tables 6.11 and 6.12 show the statistics of a subset of 50 protein graphs (from the

D& D collection of 1178 protein graphs) and 50 chemical compound graphs (from the

MUTAG collection of 188 chemical compound graphs) [176]. Moreover, Tables 6.9

and 6.10 show the statistics of 80 dense graphs from the DIMACS challenge 1.

We proceed by first demonstrating how fast the parallel motif census algorithm

(Alg.6.2) counts all motifs of size k = {3, 4} (both connected and disconnected mo-

tifs) on various social and information networks. We systematically investigate the

1http://dimacs.rutgers.edu/Challenges/

146

scalability of our algorithm on all the above networks and we show detailed results

for a representative subset of 55 networks categorized in 8 broad classes from social,

Facebook, biological, web, technological, co-authorship, infrastructure, among other

domains. Note that for all of the networks, we discard edge weights, self-loops, and

edge direction. To the best of our knowledge, this is the largest study for motif

counting, and these are the largest motif computations published to date. Our own

implementation of Alg. 6.2 uses shared memory, but the algorithm is well-suited for

shared-memory multi-core architectures (CPU and GPU) and distributed architec-

tures (MPI). We used a two processor, Intel Xeon system with 6 cores and 48GB of

memory.

We also discuss a number of applications that could benefit from our fast motif

counting algorithm (Alg. 6.2), which facilitates exploring and understanding networks

and their structure. Motifs could provide an intuitive and meaningful characterization

of a network at the global macro-level as well as the local micro-level, thus, they are

useful for numerous applications. At the macro-level, motifs are useful for finding

similar networks (similarity queries), or finding networks that disagree most with

that set (graph anomalies), or exploring a time-series of networks, among numerous

other possibilities. Alternatively, motifs are also extremely useful for characterizing

networks and their behavior at the local node/edge-level as known as the micro-

level. For instance, given an edge (u, v) ∈ E, find the top-k most similar edges (with

applications in role discovery, entity-resolution, link prediction, and other related

matching/similarity applications). Also, motifs could be used for ranking nodes/edges

to find unique patterns and anomalies such as large stars, cliques, etc.

6.6.1 Scalability & Runtime

Table 6.2 shows the runtime and statistics of a representative subset of 55 net-

works. For each network, we provide the counts of connected motifs of size k = {3, 4}
and the time (seconds) taken to count all motifs. Notably, Alg. 6.2 takes only few

147

Table 6.2.: Runtime & Statistics for a Subset of 55 Networks

Seconds
graph |V | |E| |g31

| |g32
| |g41

| |g42
| |g44

| |g46
| |g45

| |g43
| Alg.6.2 RAGE

soc-brightkite 57k 213k 494k 12M 2.9M 12M 2.7M 533M 1.3B 114M 0.2 273.03
socfb-Berkeley13 23k 852k 5.4M 125M 27M 153M 87M 17B 25B 2.7B 4.94 2514.59

socfb-Wisconsin87 24k 836k 4.9M 107M 23M 121M 59M 12B 21B 1.9B 3.93 1450.31
socfb-FSU53 28k 1.0M 7.9M 130M 63M 242M 95M 16B 10B 2.9B 5.55 2192.94

socfb-MSU24 32k 1.1M 6.5M 139M 33M 183M 106M 16B 32B 2.6B 5.67 1904.09
socfb-Texas80 32k 1.2M 9.6M 160M 68M 316M 122M 21B 11B 3.9B 7.53 2967.01

socfb-Michigan23 30k 1.2M 8.3M 162M 49M 277M 146M 23B 13B 3.5B 7.57 2995.83
socfb-Indiana69 30k 1.3M 9.4M 181M 60M 269M 141M 25B 13B 3.8B 8.44 3212.10

socfb-UIllinois20 31k 1.3M 9.4M 172M 64M 273M 130M 23B 27B 3.8B 7.88 3088.77
socfb-UF21 35k 1.5M 12M 266M 98M 433M 186M 40B 150B 7.2B 14.49 N/A

soc-flickr 514k 3.2M 59M 963M 1.7B 14B 6.7B 244B 326B 90B 182.57 N/A
soc-orkut 3.1M 117M 628M 44B 3.2B 48B 70B 19T 98T 1.5T 14448.6 N/A

bio-celegans 453 2.0k 3.3k 69k 3.0k 37k 4.5k 495k 2.9M 363k <0.001 1.7
bio-diseasome 516 1.2k 1.4k 5.4k 1.4k 923 42 18k 27k 19k <0.001 0.44

bio-dmela 7.4k 26k 2.9k 572k 393 13k 107k 11M 9.2M 312k 0.01 2.47
bio-yeast-protein-inter 1.8k 2.2k 222 11k 41 198 140 31k 72k 2.6k <0.001 0.53

bio-yeast 1.5k 1.9k 206 11k 39 195 139 31k 72k 2.5k <0.001 0.43
bio-human-gene2 14k 9.0M 4.9B 10B 2.3T 3.7T 90B 4.4T 5.3T 8.4T 8023.84 N/A

bio-mouse-gene 43k 14M 3.6B 15B 670B 2.1T 223B 9.0T 6.7T 7.7T 5515.6 N/A

ca-CSphd 1.9k 1.7k 8 6.6k 0 5 8 9.4k 32k 93 <0.001 1.25
ca-GrQc 4.2k 13k 48k 85k 329k 66k 1.1k 553k 406k 628k <0.001 5.99

ca-dblp-2012 317k 1.0M 2.2M 15M 17M 4.8M 203k 252M 259M 97M 0.48 227.79
ca-cit-HepTh 23k 2.4M 191M 1.6B 13B 47B 7.3B 538B 976B 385B 132.66 N/A
ca-cit-HepPh 28k 3.1M 196M 1.5B 9.8B 34B 6.1B 536B 479B 276B 125.49 N/A

ca-coauthors-dblp 540k 15M 444M 698M 15B 3.4B 31M 42B 27B 67B 40.26 N/A
ca-hollywood-2009 1.1M 56M 4.9B 33B 1.4T 635B 168B 21T 17T 8.9T 13799.6 N/A

tech-as-caida2007 26k 53k 36k 15M 54k 1.7M 407k 285M 7.8B 47M 0.19 36.83
tech-p2p-gnutella 63k 148k 2.0k 1.6M 16 826 42k 15M 8.1M 71k 0.02 7.44

tech-RL-caida 191k 608k 455k 21M 423k 7.4M 40M 583M 1.7B 77M 0.39 71.74
tech-WHOIS 7.5k 57k 782k 5.3M 12M 31M 2.9M 229M 566M 194M 0.14 44.52

tech-as-skitter 1.7M 11M 29M 16B 149M 20B 43B 819B 96T 162B 476.06 N/A

web-BerkStan-dir 685k 6.6M 65M 28B 1.1B 99B 25B 49B 382T 476B 149.17 N/A
web-edu 3.0k 6.5k 10k 81k 40k 4.6k 18 435k 1.3M 186k <0.001 0.52

web-google-dir 876k 4.3M 13M 687M 40M 382M 38M 4.1B 650B 6.7B 4.45 N/A
web-indochina-2004 11k 48k 210k 481k 1.2M 88k 9.2k 5.5M 12M 4.9M 0.01 24.36

web-it-2004 509k 7.2M 339M 56M 29B 815M 175M 1.1B 1.4B 527M 25.26 N/A
web-baidu-baike 2.1M 17M 25M 31B 28M 4.5B 9.2B 3.3T 571T 327B 3975.81 N/A

web-wikipedia-growth 1.9M 37M 127M 123B 288M 38B 68B 29T 3.1P 3.2T 22389.2 N/A
web-ClueWeb09-50m 148M 447M 1.2B 494B 5.6B 243B 774B 34T 24P 3.4T 91697.4 N/A

inf-italy-osm 6.7M 7.0M 7.4k 8.2M 0 244 47k 9.9M 992k 27k 0.85 N/A
inf-openflights 2.9k 16k 73k 639k 286k 1.5M 319k 17M 17M 9.0M 0.01 2.46

inf-power 4.9k 6.6k 651 17k 90 385 324 38k 20k 5.1k <0.001 0.58
inf-roadNet-CA 2.0M 2.8M 120k 5.6M 40 13k 249k 11M 2.4M 521k 0.35 N/A
inf-roadNet-PA 1.1M 1.5M 67k 3.2M 16 5.7k 152k 6.2M 1.4M 295k 0.19 N/A

inf-road-usa 24M 29M 439k 50M 90 21k 1.6M 81M 18M 1.5M 4.05 N/A

ia-email-EU-dir 265k 364k 267k 194M 581k 10M 6.7M 4.4B 221B 341M 1.52 887.18
ia-enron-only 143 623 889 4.8k 779 2.7k 648 29k 17k 14k <0.001 0.12

ia-reality 6.8k 7.7k 400 497k 63 1.7k 2.8k 1.6M 26M 93k <0.001 1.39
ia-wiki-Talk-dir 2.4M 4.7M 9.2M 13B 65M 1.0B 924M 1.2T 192T 64B 281.33 N/A

ia-wikiquote-user-edits 93k 238k 279k 636M 411k 70M 44M 8.9B 2.4T 2.5B 2.41 691.28
ia-wiki-user-edits-page 2.1M 5.6M 6.7M 550B 10M 70B 44B 4.8T 88P 2.0T 5691.92 N/A

brock200-3 200 12k 291k 570k 3.2M 12M 4.1M 11M 3.5M 16M 0.02 22.96
brock200-4 200 13k 373k 584k 5.2M 16M 4.3M 8.9M 3.0M 17M 0.02 21.85
brock400-3 400 60k 4.4M 4.5M 184M 372M 63M 84M 28M 251M 0.4 997.15
brock400-4 400 60k 4.4M 4.5M 185M 373M 63M 84M 28M 250M 0.4 1010.26

N/A: Alg. was timed out after 30 hours of runtime

148

seconds to count all motifs for large social, web, and technological graphs (among

others). For example, for a large road network (i. e., inf-road-usa) with 24M nodes

and 29M edges, Alg. 6.2 takes only 4 seconds to count all motifs. Also as shown

in Table 6.2, for large Facebook networks with nearly 2M edges, Alg. 6.2 takes only

15 seconds, and for large web graphs with nearly 8M edges, Alg. 6.2 takes only 25

seconds.

4 5 6 7 8 9

−3

−2

−1

0

1

2

3

4

5

log (|V| + |E|)

lo
g

 s
e

c

4 5 6 7 8 9

−3

−2

−1

0

1

2

3

4

5

log (|V| + |E|)

lo
g

 s
e

c

Fig. 6.3.: Runtime of exact motif counting (Alg.6.2) for social and information net-
works scales almost linearly with the network dimension.

We compare the empirical runtime of Alg. 6.2 to the state-of-the-art baseline

method RAGE [179]. For social and Facebook networks, we observed that Alg. 6.2 is

on average 460x faster than RAGE. For all other networks, we observed that Alg. 6.2

is on average 600x faster than RAGE. Notably, Alg. 6.2 takes only 7 seconds to count

motifs of Facebook networks with 1.3M edges, while RAGE takes almost an hour

for the same networks. For larger networks with millions of nodes/edges, RAGE was

timed out (as it did not finish within 30 hours of runtime). Moreover, for dense graphs

from the DIMACS challenge, RAGE takes almost 17 minutes, while Alg. 6.2 takes

less than a second. We also compared to the baseline method FANMOD [180] and

Orca [181], we found that for a Facebook network with 250k edges, FANMOD takes

roughly 2.5 hours for counting all motifs, RAGE takes almost 7 minutes for the same

network, and Orca takes almost 10 seconds, while Alg. 6.2 takes less than a second.

149

Note that both RAGE and Orca count only connected motifs, while our algorithm

and FANMOD count both connected and disconnected motifs.

Finally, in Figure 6.3, we plot the runtime of Alg. 6.2 for a representative subset

of 150 social and information networks. The figure shows that our algorithm exhibits

nearly linear-time scaling over social and information networks ranging from 1000

nodes to 100 million nodes.

6.6.2 Large-Scale Graph Comparison & Classification

Motifs are also useful for large-scale comparison and classification of graphs. In

this case, we relax the notion of equivalence and isomorphism to some form of struc-

tural similarity between graphs, such that the graph similarity is measured using

feature-based motif counts. We study the full data set of Facebook100, which con-

tains 100 Facebook college networks collected from a variety of US schools [153]. We

plot the graphlet frequency distribution (GFD) score pictorially in Figure 6.4 for all

California schools. The GFD score is simply the normalized frequencies of graphlets

(motifs) of size k [161]. In our case, we use k = 4. The figure shows Caltech noticeably

different than others, consistent with the discussion in [153] which shows how Cal-

tech is well-known to be organized almost exclusively according to its undergraduate

“Housing” residence system, in contrast to other schools that follow the “dormitory”

residence system. The residence system seems to impact the organization of the

community structures at Caltech.

Moreover, we use counts of motifs of size k = {2, 3, 4}-nodes as features, from

which we learn a model to predict the label of the unlabeled graphs (e. g., the func-

tion of proteins). We test our approach on protein graphs (D& D collection of 1178

protein graphs) and chemical compound graphs (MUTAG collection of 188 chemical

compound graphs) [176]. We extract the motif features using our fast Alg. 6.2. Then,

we learn a model using SVM (RBF kernel) to predict the labels of the unlabeled

graphs, and we use 10-fold validation for evaluation. Table 6.3 shows the accuracy

150

0 1 2 3 4 5 6 7 8 9 10 11

−8

−7

−6

−5

−4

−3

−2

−1

0

Graphlets
G

F
D

 S
c
o
re

Berkeley13

Cal65

Caltech36

Stanford3

UC33

UC61

UC64

UCLA26

UCSB37

UCSC68

UCSD34

USC35

0 1 2 3 4 5 6 7 8 9 10 11

−8

−7

−6

−5

−4

−3

−2

−1

0

Graphlets
G

F
D

 S
c
o
re

Fig. 6.4.: Anomaly detection in Facebook university networks. Using the space of
motifs (graphlets) of size k = 4, Caltech is noticeably different than other California
universities, which is consistent with the findings in [153].

Table 6.3.: Accuracy & Standard Error for Classification of Large Collection of
Biological & Chemical Graphs

graph Type No. Graphs Accuracy(%) Alg. 6.2 (Time in Secs.)

D&D Protein 1178 76.13 ± 0.03 1.05 secs
MUTAG Chemicals 188 86.4 ± 0.21 0.14 secs

of this approach is 76% for protein function prediction, and 86% for mutagenic effect

prediction. Note that by using all motif-based features up to size 4 nodes, we were

able to obtain better accuracy than previous work (previous work achieved maximum

75% and 83% for D& D and MUTAG respectively [162]). More importantly, Alg. 6.2

extracts all the features (motif counts up to size 4 nodes) in almost one second. This

yields a significant improvement over the motif extraction method in [162], which

takes 2.45 hours to extract the same features from the D& D graph collection.

6.6.3 Finding Large Stars, Cliques, and Other Patterns

How can we quickly and efficiently find large cliques, stars, and other unique

patterns? Further, how can we identify the top-k largest cliques, stars, etc? Note

that many of these problems are NP-hard, e. g., finding the clique of maximum size

151

Fig. 6.5.: Visualization of the human diseasome network: A network of disorders and
disease genes linked by known disorder-gene associations [189]. Edges are weighted/-
colored by their number of incident star motifs of size 4 nodes, nodes are weighted/-
colored by their triangle counts. The large star on the right denoted by light blue
color corresponds to colon cancer; the large star on the lower left denoted by lime
green color corresponds to deafness; and the large star on the right denoted by lime
green color corresponds to leukemia. Notably this figure highlights the few pheno-
types (such as colon cancer, leukemia, and deafness) correspond to hubs (large stars)
that are connected to a large number of distinct disorders, which is consistent with
the findings in [189].

is a well-known NP-hard problem [183]. To answer these and other related queries,

we leverage the proposed parallel motif counting method in Alg. 6.2.

The idea is clearly shown in Figure. 6.5. Figure 6.5 provides a visualization of

the human diseasome network [189], where we used Alg. 6.2 to rank (weight) all the

edges in the network by the number of star patterns of size 4 nodes [57]. The intuition

behind the method is that if an edge (or node) has a (relatively) large number of stars

of 4 nodes (cliques, or another motif of interest), then it is also likely to be part of

152

a star of a large size. Recall that removing a node from a k-star or k-clique forms a

star or clique of size k − 1 [183]. Accordingly, edges with large weights are likely to

be members of large stars. Thus, as shown in Figure. 6.5, a visualization based on

the parallel motif counting method can help to quickly highlight such large stars by

using the counts (of stars of size 4 nodes) as edge weights or colors. Note that the

same approach is also applicable for finding cliques and other interesting patterns,

since edges with a high number of 4-cliques are likely to be members of the largest

clique in the network.

6.7 Summary

In this chapter, we proposed a fast, efficient, and parallel algorithm for counting

motifs of size k = {3, 4}-nodes that take only a fraction of the time to compute when

compared with the current methods used. The proposed motif counting algorithm

leverages a number of proven combinatorial arguments for different motifs. For each

edge, we count a few motifs, and with these counts along with the combinatorial

arguments, we obtain the exact counts of others in constant time. We systematically

investigate the scalability of our proposed algorithm on a large collection of 300+

networks from a variety of domains with millions of nodes and edges. The experi-

ments show that our motif counting strategies are on average 460x faster than current

methods. We also test and discuss new opportunities to investigate the use of motifs

on much larger networks and newer applications than the state-of-the-art. For exam-

ple, for finding large stars and cliques, as well as top-k queries. To the best of our

knowledge, this chapter provides the largest motif computations to date. A summary

of the main contributions of this chapter are:

• Algorithms. A fast, efficient, and parallel motif counting algorithm that lever-

ages a number of combinatorial arguments that we show for different motifs.

The combinatorial arguments we show in this chapter enable us to obtain sig-

nificant improvement on the scalability of motif counting.

153

• Scalability. The proposed motif counting algorithm achieves on average 460

times faster runtime compared to the state-of-the-art methods. In addition,

we analyze motif counts on graphs of sizes that are beyond the scope of the

state-of-the-art (e. g., on graphs with roughly 150 million nodes and 0.5 billion

edges).

• Effectiveness. Largest motif computations to date and largest systematic

evaluation on over 300+ large-scale networks from a variety of domains, from

biological networks to social and information.

• Applications. We show a variety of applications for motif counting, such as

finding unique patterns in graphs, as well as graph similarity and classification.

154

Table 6.4.: Statistics of Facebook100 Networks

graph |V | |E| |g31
| |g32

| |g41
| |g42

| |g44
| |g46

| |g45
| |g43

|
socfb-American75 6.4k 218k 1.5M 23M 6.5M 36M 23M 2.2B 1.2B 439M
socfb-Amherst41 2.2k 91k 916k 9.0M 4.5M 33M 18M 754M 361M 242M
socfb-Auburn71 18k 974k 10M 192M 85M 438M 229M 33B 53B 6.8B
socfb-Baylor93 13k 680k 7.0M 114M 55M 303M 181M 18B 11B 3.5B

socfb-BC17 12k 487k 3.5M 63M 16M 117M 77M 7.5B 4.2B 1.4B
socfb-Berkeley13 23k 852k 5.4M 125M 27M 153M 87M 17B 25B 2.7B
socfb-Bingham82 10k 363k 2.4M 38M 11M 63M 34M 3.8B 1.7B 691M
socfb-Bowdoin47 2.3k 84k 710k 7.7M 2.8M 22M 13M 599M 301M 178M
socfb-Brandeis99 3.9k 138k 1.0M 16M 3.7M 33M 20M 1.3B 1.8B 397M

socfb-Brown11 8.6k 385k 3.0M 52M 12M 96M 72M 6.7B 3.5B 1.2B
socfb-BU10 20k 638k 3.1M 67M 12M 61M 38M 6.9B 4.6B 974M

socfb-Bucknell39 3.8k 159k 1.3M 16M 5.9M 38M 23M 1.4B 620M 352M
socfb-Cal65 11k 351k 2.1M 33M 11M 46M 23M 3.1B 1.3B 573M

socfb-Caltech36 769 17k 120k 873k 460k 2.5M 965k 34M 19M 15M
socfb-Carnegie49 6.6k 250k 2.3M 30M 14M 84M 46M 3.5B 1.9B 838M
socfb-Colgate88 3.5k 155k 1.4M 16M 6.7M 46M 27M 1.5B 715M 399M

socfb-Columbia2 12k 444k 3.3M 66M 14M 119M 76M 8.2B 12B 1.8B
socfb-Cornell5 19k 791k 6.1M 117M 36M 206M 112M 16B 18B 2.9B

socfb-Dartmouth6 7.7k 304k 2.3M 38M 8.8M 72M 53M 4.4B 2.3B 833M
socfb-Duke14 9.9k 506k 5.1M 78M 31M 206M 126M 11B 5.9B 2.2B

socfb-Emory27 7.5k 330k 3.2M 41M 19M 112M 61M 4.6B 2.2B 1.0B
socfb-FSU53 28k 1.0M 7.9M 130M 63M 242M 95M 16B 10B 2.9B

socfb-Georgetown15 9.4k 426k 3.4M 58M 14M 111M 79M 7.3B 3.9B 1.4B
socfb-GWU54 12k 470k 3.2M 60M 15M 90M 56M 7.1B 5.6B 1.3B

socfb-Hamilton46 2.3k 96k 913k 9.8M 4.1M 31M 18M 826M 421M 251M
socfb-Harvard1 15k 825k 8.3M 158M 41M 378M 319M 29B 13B 4.9B

socfb-Haverford76 1.4k 60k 628k 5.6M 3.1M 24M 13M 427M 195M 153M
socfb-Howard90 4.0k 205k 2.2M 31M 12M 107M 87M 4.0B 2.2B 1.0B
socfb-Indiana69 30k 1.3M 9.4M 181M 60M 269M 141M 25B 13B 3.8B

socfb-JMU79 14k 486k 2.7M 54M 13M 63M 36M 5.4B 8.8B 1.0B
socfb-JohnsHopkins55 5.2k 187k 1.6M 21M 9.1M 54M 30M 2.1B 1.1B 518M

socfb-Lehigh96 5.1k 198k 1.6M 21M 8.1M 48M 28M 1.9B 1.0B 469M
socfb-Maine59 9.1k 243k 1.1M 20M 3.5M 21M 13M 1.6B 920M 281M

socfb-Maryland58 21k 745k 4.7M 94M 25M 117M 64M 11B 16B 1.8B
socfb-Mich67 3.7k 82k 468k 5.8M 1.9M 11M 5.0M 383M 206M 100M

socfb-Michigan23 30k 1.2M 8.3M 162M 49M 277M 146M 23B 13B 3.5B
socfb-Middlebury45 3.1k 125k 1.1M 13M 5.1M 35M 20M 1.1B 504M 301M
socfb-Mississippi66 11k 611k 8.3M 111M 75M 461M 252M 19B 9.8B 4.5B

socfb-MIT8 6.4k 251k 2.4M 32M 14M 88M 51M 3.8B 1.9B 909M
socfb-MSU24 32k 1.1M 6.5M 139M 33M 183M 106M 16B 32B 2.6B

socfb-MU78 15k 649k 4.6M 78M 27M 116M 59M 9.3B 4.0B 1.6B
socfb-Northeastern19 14k 382k 1.7M 34M 5.4M 32M 19M 3.0B 1.7B 455M
socfb-Northwestern25 11k 488k 4.4M 69M 25M 146M 85M 9.1B 6.2B 1.8B

socfb-NotreDame57 12k 541k 3.5M 73M 12M 98M 75M 9.4B 5.5B 1.4B
socfb-NYU9 22k 716k 3.6M 90M 13M 90M 59M 11B 11B 1.5B

socfb-Oberlin44 2.9k 90k 556k 7.9M 1.6M 14M 9.7M 618M 325M 143M
socfb-Oklahoma97 17k 893k 10M 163M 97M 482M 247M 29B 20B 5.7B

socfb-Penn94 42k 1.4M 7.2M 199M 31M 188M 113M 27B 57B 3.4B
socfb-Pepperdine86 3.4k 152k 1.6M 18M 9.2M 62M 37M 1.9B 915M 523M

socfb-Princeton12 6.6k 293k 2.5M 39M 11M 88M 63M 4.7B 2.1B 952M

155

Table 6.5.: Statistics of Facebook100 Networks (Table 6.4 continued)

graph |V | |E| |g31
| |g32

| |g41
| |g42

| |g44
| |g46

| |g45
| |g43

|
socfb-Reed98 962 19k 97k 1.0M 233k 2.0M 1.2M 44M 25M 15M
socfb-Rice31 4.1k 185k 1.9M 22M 11M 69M 36M 2.4B 1.1B 633M

socfb-Rochester38 4.6k 161k 1.3M 16M 6.4M 36M 19M 1.3B 873M 346M
socfb-Rutgers89 25k 785k 4.5M 83M 20M 101M 46M 8.8B 5.3B 1.4B

socfb-Santa74 3.6k 152k 1.5M 17M 7.6M 53M 31M 1.7B 914M 463M
socfb-Simmons81 1.5k 33k 169k 1.9M 457k 3.4M 1.7M 82M 48M 26M

socfb-Smith60 3.0k 97k 635k 8.0M 2.4M 13M 7.5M 597M 266M 139M
socfb-Stanford3 12k 568k 5.8M 94M 37M 226M 151M 15B 7.0B 2.8B

socfb-Swarthmore42 1.7k 61k 553k 5.7M 2.3M 19M 11M 423M 224M 143M
socfb-Syracuse56 14k 544k 4.4M 64M 31M 121M 58M 7.2B 4.1B 1.4B

socfb-Temple83 14k 361k 1.9M 38M 6.6M 50M 37M 3.8B 3.2B 649M
socfb-Tennessee95 17k 771k 7.2M 134M 52M 286M 164M 20B 34B 4.2B

socfb-Texas80 32k 1.2M 9.6M 160M 68M 316M 122M 21B 11B 3.9B
socfb-Texas84 36k 1.6M 11M 302M 71M 377M 215M 51B 119B 7.6B

socfb-Trinity100 2.6k 112k 1.1M 11M 5.3M 36M 20M 960M 409M 277M
socfb-Tufts18 6.7k 250k 1.8M 28M 8.6M 55M 33M 3.0B 1.4B 595M

socfb-Tulane29 7.8k 284k 2.4M 31M 16M 76M 35M 3.2B 1.6B 741M
socfb-UC33 17k 522k 3.2M 55M 16M 78M 36M 5.7B 3.4B 1.0B
socfb-UC61 14k 442k 3.5M 49M 24M 98M 40M 5.4B 2.6B 1.2B
socfb-UC64 6.8k 155k 938k 12M 4.6M 21M 9.1M 879M 479M 204M

socfb-UCF52 15k 429k 3.4M 54M 29M 102M 38M 5.3B 20B 1.4B
socfb-UChicago30 6.6k 208k 1.4M 22M 5.3M 35M 22M 2.1B 1.8B 456M

socfb-UCLA26 20k 748k 5.1M 92M 29M 131M 66M 11B 5.4B 1.8B
socfb-UConn91 17k 605k 3.4M 67M 17M 87M 44M 7.4B 4.4B 1.1B
socfb-UCSB37 15k 482k 3.1M 50M 18M 74M 34M 5.1B 2.4B 942M
socfb-UCSC68 9.0k 225k 1.1M 16M 4.2M 22M 9.3M 1.2B 527M 237M
socfb-UCSD34 15k 443k 2.7M 45M 13M 59M 26M 4.4B 3.9B 820M

socfb-UF21 35k 1.5M 12M 266M 98M 433M 186M 40B 150B 7.2B
socfb-UGA50 24k 1.2M 10M 179M 73M 341M 159M 27B 17B 4.6B

socfb-UIllinois20 31k 1.3M 9.4M 172M 64M 273M 130M 23B 27B 3.8B
socfb-UMass92 17k 519k 2.6M 57M 10M 60M 36M 5.4B 11B 958M

socfb-UNC28 18k 767k 5.4M 125M 30M 198M 132M 18B 26B 3.0B
socfb-UPenn7 15k 687k 5.5M 98M 28M 171M 110M 14B 6.9B 2.3B
socfb-USC35 17k 802k 7.2M 128M 55M 256M 133M 18B 24B 3.5B
socfb-USF51 13k 321k 1.8M 31M 9.5M 48M 29M 2.9B 1.7B 549M

socfb-USFCA72 2.7k 65k 372k 4.7M 1.2M 8.4M 5.1M 305M 156M 78M
socfb-UVA16 17k 789k 6.2M 120M 36M 211M 123M 17B 16B 2.9B

socfb-Vanderbilt48 8.1k 428k 4.7M 64M 33M 186M 108M 8.7B 5.8B 2.0B
socfb-Vassar85 3.1k 119k 850k 12M 2.7M 24M 19M 1.1B 485M 244M

socfb-Vermont70 7.3k 191k 947k 16M 3.4M 20M 11M 1.2B 701M 240M
socfb-Villanova62 7.8k 315k 2.5M 37M 11M 73M 46M 4.0B 2.2B 843M

socfb-Virginia63 21k 698k 4.5M 115M 27M 138M 69M 13B 79B 2.9B
socfb-Wake73 5.4k 279k 3.3M 39M 25M 137M 70M 4.9B 2.7B 1.3B

socfb-WashU32 7.8k 368k 3.6M 51M 21M 124M 74M 6.5B 4.1B 1.5B
socfb-Wellesley22 3.0k 95k 607k 8.7M 1.8M 16M 12M 710M 381M 168M
socfb-Wesleyan43 3.6k 138k 1.1M 14M 4.6M 32M 20M 1.2B 532M 291M

socfb-William77 6.5k 266k 2.1M 32M 11M 63M 39M 3.6B 2.2B 746M
socfb-Williams40 2.8k 113k 1.0M 11M 4.3M 32M 19M 999M 499M 282M

socfb-Wisconsin87 24k 836k 4.9M 107M 23M 121M 59M 12B 21B 1.9B
socfb-Yale4 8.6k 405k 3.6M 60M 17M 127M 87M 8.0B 5.9B 1.7B

156

Table 6.6.: Statistics of Biological, Co-authorship & Interaction Networks

graph |V | |E| |g31 | |g32 | |g41 | |g42 | |g44 | |g46 | |g45 | |g43 |
bio-celegans-dir 453 2.0k 3.3k 69k 3.0k 37k 4.5k 495k 2.9M 363k

bio-celegans 453 2.0k 3.3k 69k 3.0k 37k 4.5k 495k 2.9M 363k
bio-diseasome 516 1.2k 1.4k 5.4k 1.4k 923 42 18k 27k 19k

bio-dmela 7.4k 26k 2.9k 572k 393 13k 107k 11M 9.2M 312k
bio-yeast-protein-inter 1.8k 2.2k 222 11k 41 198 140 31k 72k 2.6k

bio-yeast 1.5k 1.9k 206 11k 39 195 139 31k 72k 2.5k
bio-human-gene1 22k 12M 6.8B 15B 3.3T 6.1T 131B 5.7T 9.8T 14T
bio-human-gene2 14k 9.0M 4.9B 10B 2.3T 3.7T 90B 4.4T 5.3T 8.4T

bio-mouse-gene 43k 14M 3.6B 15B 670B 2.1T 223B 9.0T 6.7T 7.7T
ca-AstroPh 18k 197k 1.4M 8.7M 9.6M 15M 1.3M 420M 299M 178M

ca-cit-HepPh 28k 3.1M 196M 1.5B 9.8B 34B 6.1B 536B 479B 276B
ca-cit-HepTh 23k 2.4M 191M 1.6B 13B 47B 7.3B 538B 976B 385B

ca-citeseer 227k 814k 2.7M 9.7M 19M 7.7M 83k 91M 609M 79M
ca-CondMat 21k 91k 171k 1.4M 289k 585k 38k 26M 26M 8.9M

ca-CSphd 1.9k 1.7k 8 6.6k 0 5 8 9.4k 32k 93
ca-dblp-2010 226k 716k 1.6M 7.7M 8.4M 3.2M 96k 99M 97M 50M
ca-dblp-2012 317k 1.0M 2.2M 15M 17M 4.8M 203k 252M 259M 97M
ca-Erdos992 6.1k 7.5k 1.6k 110k 450 5.1k 1.9k 664k 1.1M 89k

ca-GrQc 4.2k 13k 48k 85k 329k 66k 1.1k 553k 406k 628k
ca-HepPh 11k 118k 3.4M 5.2M 150M 35M 821k 204M 143M 462M
ca-IMDB 896k 3.8M 4.4k 162M 0 5.1k 23M 5.7B 9.1B 1.4M

ca-MathSciNet 333k 821k 577k 11M 407k 1.3M 256k 167M 169M 28M
ca-netscience 379 913 920 3.6k 631 894 7 8.5k 13k 8.7k

ca-sandi-auths 86 123 41 336 7 10 1 578 553 262
ca-coauthors-dblp 540k 15M 444M 698M 15B 3.4B 31M 42B 27B 67B

ca-hollywood-2009 1.1M 56M 4.9B 33B 1.4T 635B 168B 21T 17T 8.9T
ia-dbpedia-team-bi 365k 780k 3.7k 102M 0 97k 9.1M 1.3B 26B 4.9M

ia-email-EU-dir 265k 364k 267k 194M 581k 10M 6.7M 4.4B 221B 341M
ia-email-EU 32k 54k 49k 5.3M 67k 786k 403k 162M 461M 20M

ia-email-univ 1.1k 5.5k 5.3k 80k 3.4k 21k 13k 1.1M 546k 217k
ia-enron-email-dynamic 87k 297k 1.2M 46M 5.5M 51M 25M 2.9B 9.0B 654M

ia-enron-large 34k 181k 725k 23M 2.3M 22M 6.8M 1.4B 4.5B 376M
ia-enron-only 143 623 889 4.8k 779 2.7k 648 29k 17k 14k

ia-escorts-dynamic 10k 39k 2.5k 1.2M 54 11k 239k 28M 43M 593k
ia-fb-messages 1.3k 6.5k 2.5k 163k 255 11k 54k 3.4M 2.4M 248k
ia-infect-dublin 410 2.8k 7.1k 28k 14k 31k 7.4k 254k 100k 128k
ia-infect-hyper 113 2.2k 17k 52k 70k 279k 69k 548k 338k 634k

ia-radoslaw-email 167 3.2k 37k 95k 263k 767k 68k 668k 1.3M 1.6M
ia-reality 6.8k 7.7k 400 497k 63 1.7k 2.8k 1.6M 26M 93k

ia-southernwomen 18 64 97 194 73 173 25 265 189 441
ia-wiki-Talk-dir 2.4M 4.7M 9.2M 13B 65M 1.0B 924M 1.2T 192T 64B

ia-wiki-Talk 92k 361k 836k 51M 2.2M 32M 34M 5.8B 6.5B 668M
ia-wiki-trust-dir 139k 716k 3.0M 227M 12M 165M 56M 23B 303B 5.2B

ia-wikiquote-user-edits 93k 238k 279k 636M 411k 70M 44M 8.9B 2.4T 2.5B
ia-wiki-user-edits-page 2.1M 5.6M 6.7M 550B 10M 70B 44B 4.8T 88P 2.0T

157

Table 6.7.: Statistics of Infrastructure, Strong Components & Social Networks

graph |V | |E| |g31 | |g32 | |g41 | |g42 | |g44 | |g46 | |g45 | |g43 |
inf-euroroad 1.2k 1.4k 32 2.7k 0 3 38 5.4k 1.8k 218
inf-italy-osm 6.7M 7.0M 7.4k 8.2M 0 244 47k 9.9M 992k 27k

inf-openflights 2.9k 16k 73k 639k 286k 1.5M 319k 17M 17M 9.0M
inf-power 4.9k 6.6k 651 17k 90 385 324 38k 20k 5.1k

inf-roadNet-CA 2.0M 2.8M 120k 5.6M 40 13k 249k 11M 2.4M 521k
inf-roadNet-PA 1.1M 1.5M 67k 3.2M 16 5.7k 152k 6.2M 1.4M 295k

inf-USAir97 332 2.1k 12k 56k 61k 152k 4.5k 413k 972k 667k
inf-road-usa 24M 29M 439k 50M 90 21k 1.6M 81M 18M 1.5M

scc-enron-only 151 9.8k 425k 58k 13M 2.7M 34 66k 68k 1.2M
scc-fb-forum 897 71k 7.3M 3.3M 544M 292M 251k 21M 64M 253M

scc-fb-messages 1.9k 532k 138M 91M 26B 20B 971k 2.3B 6.8B 20B
scc-infect-dublin 11k 176k 2.3M 2.4M 26M 23M 83k 29M 12M 64M
scc-infect-hyper 113 6.2k 224k 9.5k 5.9M 423k 0 2.0k 2.1k 94k

scc-reality 6.8k 4.7M 2.2B 7.0B 742B 2.5T 20M 471B 7.1T 3.3T
scc-retweet-crawl 1.1M 24k 24k 176k 41k 115k 14k 2.0M 2.8M 997k

scc-retweet 18k 66k 3.6M 6.5M 155M 226M 1.6M 234M 330M 489M
scc-rt-lolgop 9.7k 4.5k 58k 185k 563k 1.3M 329 918k 5.7M 3.6M

scc-twitter-copen 8.6k 474k 97M 125M 15B 18B 10M 3.3B 19B 27B
soc-brightkite 57k 213k 494k 12M 2.9M 12M 2.7M 533M 1.3B 114M

soc-epinions 27k 100k 160k 4.9M 305k 2.7M 2.0M 222M 240M 35M
soc-flickr 514k 3.2M 59M 963M 1.7B 14B 6.7B 244B 326B 90B

soc-gowalla 197k 950k 2.3M 284M 6.1M 86M 42M 15B 784B 3.1B
soc-slashdot 70k 359k 402k 45M 1.8M 13M 15M 3.4B 11B 255M

soc-twitter-follows 405k 713k 30k 148M 2.8k 865k 15M 2.9B 21B 20M
soc-wiki-Vote 889 2.9k 2.1k 44k 836 11k 6.9k 467k 514k 124k

soc-youtube-snap 1.1M 3.0M 3.1M 1.5B 5.0M 222M 232M 91B 5.7T 12B
soc-youtube 496k 1.9M 2.4M 825M 3.8M 155M 162M 50B 3.2T 7.6B

soc-orkut-dir 3.1M 117M 628M 44B 3.2B 48B 70B 19T 98T 1.5T

158

Table 6.8.: Statistics of Technological, Retweet, & Web Networks

graph |V | |E| |g31
| |g32

| |g41
| |g42

| |g44
| |g46

| |g45
| |g43

|
tech-as-caida2007 26k 53k 36k 15M 54k 1.7M 407k 285M 7.8B 47M

tech-as-skitter 1.7M 11M 29M 16B 149M 20B 43B 819B 96T 162B
tech-internet-as 40k 85k 63k 28M 85k 5.1M 1.5M 643M 19B 106M

tech-p2p-gnutella 63k 148k 2.0k 1.6M 16 826 42k 15M 8.1M 71k
tech-pgp 11k 24k 55k 270k 239k 274k 22k 2.7M 4.0M 2.0M

tech-RL-caida 191k 608k 455k 21M 423k 7.4M 40M 583M 1.7B 77M
tech-routers-rf 2.1k 6.6k 10k 106k 21k 78k 23k 1.1M 1.2M 474k

tech-WHOIS 7.5k 57k 782k 5.3M 12M 31M 2.9M 229M 566M 194M
rt-retweet-crawl 1.1M 2.3M 175k 156M 29k 965k 10M 7.3B 64B 55M

rt-retweet 96 117 12 449 1 5 14 1.1k 1.1k 181
rt-twitter-copen 761 1.0k 149 7.0k 11 179 183 35k 38k 4.3k
web-arabic-2005 164k 1.7M 22M 3.6M 232M 3.4M 79k 27M 490M 26M

web-baidu-baike-related 416k 2.4M 14M 65B 329M 21B 213B 8.4B 2.7P 2.8B
web-BerkStan-dir 685k 6.6M 65M 28B 1.1B 99B 25B 49B 382T 476B

web-BerkStan 12k 20k 10k 78k 26k 16k 553 189k 354k 57k
web-edu 3.0k 6.5k 10k 81k 40k 4.6k 18 435k 1.3M 186k

web-EPA 4.3k 8.9k 997 240k 47 2.1k 20k 1.7M 7.3M 68k
web-frwikinews-user-edits 25k 69k 22k 148M 3.5k 5.5M 38M 842M 385B 142M

web-google-dir 876k 4.3M 13M 687M 40M 382M 38M 4.1B 650B 6.7B
web-google 1.3k 2.8k 5.1k 13k 13k 2.5k 116 38k 100k 27k

web-hudong 2.0M 14M 22M 19B 702M 1.3B 3.6B 1.6T 118T 88B
web-indochina-2004 11k 48k 210k 481k 1.2M 88k 9.2k 5.5M 12M 4.9M

web-it-2004 509k 7.2M 339M 56M 29B 815M 175M 1.1B 1.4B 527M
web-italycnr-2000 326k 3.1M 26M 7.9B 173M 62B 38B 22B 42T 44B

web-NotreDame 326k 1.1M 8.9M 278M 232M 161M 28M 1.3B 447B 5.9B
web-polblogs 643 2.3k 3.0k 47k 3.4k 20k 8.5k 350k 1.0M 149k
web-sk-2005 121k 334k 993k 3.3M 8.9M 919k 418k 16M 141M 11M

web-spam 4.8k 37k 129k 2.3M 374k 3.1M 1.5M 99M 114M 31M
web-Stanford 282k 2.3M 14M 3.9B 84M 13B 4.5B 29B 25T 43B
web-uk-2005 130k 12M 838M 712k 52B 0 0 109M 122M 24M

web-webbase-2001 16k 26k 21k 2.5M 80k 235k 20k 4.0M 895M 2.5M
web-wiki-ch-internal 1.9M 9.0M 18M 7.2B 30M 2.1B 4.2B 1.3T 31T 131B

web-wikipedia2009 1.9M 4.5M 2.2M 131M 1.5M 30M 64M 4.3B 10B 400M
web-baidu-baike 2.1M 17M 25M 31B 28M 4.5B 9.2B 3.3T 571T 327B

web-wikipedia-growth 1.9M 37M 127M 123B 288M 38B 68B 29T 3.1P 3.2T
web-ClueWeb09-50m 148M 447M 1.2B 494B 5.6B 243B 774B 34T 24P 3.4T

159

Table 6.9.: Statistics of DIMACS Networks

graph |V | |E| |g31
| |g32

| |g41
| |g42

| |g44
| |g46

| |g45
| |g43

|
brock200-1 200 15k 544k 558k 11M 23M 3.9M 5.3M 1.8M 16M
brock200-2 200 9.9k 160k 490k 950k 5.9M 3.0M 12M 4.1M 12M
brock200-3 200 12k 291k 570k 3.2M 12M 4.1M 11M 3.5M 16M
brock200-4 200 13k 373k 584k 5.2M 16M 4.3M 8.9M 3.0M 17M
brock400-1 400 60k 4.4M 4.5M 184M 373M 63M 84M 28M 250M
brock400-2 400 60k 4.5M 4.5M 185M 374M 63M 84M 28M 250M
brock400-3 400 60k 4.4M 4.5M 184M 372M 63M 84M 28M 251M
brock400-4 400 60k 4.4M 4.5M 185M 373M 63M 84M 28M 250M
brock800-1 800 208k 23M 38M 1.3B 4.1B 1.1B 2.4B 801M 4.4B
brock800-2 800 208k 23M 38M 1.3B 4.2B 1.1B 2.4B 794M 4.4B
brock800-3 800 207k 23M 38M 1.3B 4.1B 1.1B 2.4B 802M 4.4B
brock800-4 800 208k 23M 38M 1.3B 4.1B 1.1B 2.4B 799M 4.4B
c-fat200-1 200 1.5k 5.4k 6.0k 12k 14k 0 33k 0 27k
c-fat200-2 200 3.2k 26k 25k 132k 125k 0 275k 0 250k
c-fat200-5 200 8.5k 182k 163k 2.6M 2.3M 0 4.7M 0 4.5M
c-fat500-1 500 4.5k 19k 20k 48k 53k 0 125k 0 106k

c-fat500-10 500 47k 2.2M 2.0M 73M 60M 0 122M 0 120M
c-fat500-2 500 9.1k 82k 78k 487k 453k 0 984k 0 906k
c-fat500-5 500 23k 547k 488k 8.7M 7.4M 0 15M 0 15M

C1000-9 1k 450k 122M 40M 22B 15B 802M 352M 118M 3.2B
C125-9 125 7.0k 231k 78k 5.1M 3.4M 191k 91k 30k 789k

C2000-5 2k 1.0M 167M 499M 10B 62B 31B 125B 42B 125B
C2000-9 2k 1.8M 971M 323M 354B 235B 13B 5.8B 1.9B 52B

C250-9 250 28k 1.9M 630k 84M 57M 3.2M 1.4M 483k 13M
C4000-5 4k 4.0M 1.3B 4.0B 167B 1.0T 500B 2.0T 666B 2.0T

C500-9 500 112k 15M 5.0M 1.4B 909M 50M 22M 7.3M 201M
DSJC1000-5 1k 250k 21M 62M 649M 3.9B 1.9B 7.8B 2.6B 7.8B

DSJC500-5 500 63k 2.6M 7.8M 41M 245M 122M 483M 161M 486M
gen200-p0-9-44 200 18k 958k 318k 34M 23M 1.3M 562k 239k 5.0M
gen200-p0-9-55 200 18k 958k 318k 34M 23M 1.3M 575k 203k 5.1M
gen400-p0-9-55 400 72k 7.7M 2.6M 560M 370M 20M 9.2M 3.8M 82M
gen400-p0-9-65 400 72k 7.7M 2.6M 560M 369M 20M 9.4M 3.3M 83M
gen400-p0-9-75 400 72k 7.7M 2.6M 561M 369M 20M 9.4M 3.3M 84M

hamming10-2 1.0k 519k 173M 5.1M 43B 2.6B 13M 369k 0 46M
hamming10-4 1.0k 434k 101M 66M 14B 20B 2.3B 1.0B 1.2B 6.4B

hamming6-2 64 1.8k 31k 10k 342k 228k 13k 3.8k 0 46k
hamming6-4 64 704 960 12k 240 5.8k 24k 110k 54k 32k
hamming8-2 256 32k 2.5M 246k 144M 28M 470k 43k 0 1.7M
hamming8-4 256 21k 672k 1.4M 9.1M 43M 18M 20M 16M 43M

160

Table 6.10.: Statistics of DIMACS Networks (Table 6.9 continued)

graph |V | |E| |g31
| |g32

| |g41
| |g42

| |g44
| |g46

| |g45
| |g43

|
johnson16-2-4 120 5.5k 120k 131k 1.4M 3.6M 721k 262k 524k 1.4M
johnson32-2-4 496 108k 14M 6.0M 1.1B 1.1B 82M 12M 56M 163M

johnson8-2-4 28 210 420 1.7k 105 2.5k 2.5k 3.4k 2.2k 5.0k
johnson8-4-4 70 1.9k 24k 25k 162k 383k 73k 40k 43k 181k

keller4 171 9.4k 217k 387k 2.2M 8.9M 2.9M 4.2M 2.5M 8.5M
keller5 776 226k 33M 34M 2.6B 5.5B 999M 1.0B 572M 3.3B
keller6 3.4k 4.6M 3.5B 2.3B 1.6T 2.2T 251B 184B 99B 903B

MANN-a27 378 71k 8.7M 258k 789M 47M 234k 8.8k 44k 1.0M
MANN-a45 1.0k 533k 182M 2.0M 46B 1.0B 1.9M 43k 340k 12M
MANN-a81 3.3k 5.5M 6.1B 21M 5.0T 35B 21M 256k 3.6M 228M

MANN-a9 45 918 11k 2.8k 92k 49k 2.1k 252 468 4.6k
p-hat1000-1 1k 122k 3.1M 23M 20M 265M 282M 3.0B 1.2B 1.3B
p-hat1000-2 1k 245k 25M 56M 1.3B 4.6B 1.2B 5.5B 2.7B 7.5B
p-hat1000-3 1k 372k 70M 67M 7.9B 14B 2.0B 3.3B 1.3B 9.6B
p-hat1500-1 1.5k 285k 11M 83M 124M 1.6B 1.6B 16B 6.3B 7.2B
p-hat1500-2 1.5k 569k 91M 194M 7.9B 26B 6.5B 27B 14B 40B
p-hat1500-3 1.5k 847k 247M 224M 43B 72B 10B 16B 6.0B 48B

p-hat300-3 300 33k 1.9M 1.8M 63M 112M 17M 26M 10M 77M
p-hat500-1 500 32k 419k 3.0M 1.5M 19M 19M 200M 77M 88M
p-hat500-2 500 63k 3.3M 7.2M 93M 313M 80M 337M 167M 485M
p-hat500-3 500 94k 9.1M 8.3M 519M 881M 124M 192M 74M 588M
p-hat700-1 700 61k 1.1M 8.2M 5.4M 69M 71M 749M 291M 327M
p-hat700-2 700 122k 8.9M 19M 347M 1.2B 295M 1.3B 644M 1.8B
p-hat700-3 700 183k 25M 23M 1.9B 3.4B 479M 762M 296M 2.3B

san1000 1k 251k 29M 39M 2.1B 3.4B 647M 5.5B 1.1B 4.8B
san200-0-7-1 200 14k 467k 528k 9.0M 17M 3.4M 8.1M 1.1M 18M
san200-0-7-2 200 14k 485k 506k 10M 16M 2.9M 7.3M 1.9M 16M
san200-0-9-1 200 18k 960k 313k 35M 22M 1.2M 625k 87k 5.6M
san200-0-9-2 200 18k 958k 318k 34M 23M 1.3M 590k 119k 5.3M
san200-0-9-3 200 18k 957k 320k 34M 23M 1.3M 558k 185k 5.1M
san400-0-5-1 400 40k 1.7M 2.7M 46M 92M 20M 150M 34M 127M
san400-0-7-1 400 56k 3.8M 4.2M 152M 260M 52M 132M 15M 297M
san400-0-7-2 400 56k 3.8M 4.3M 145M 274M 55M 130M 20M 290M
san400-0-7-3 400 56k 3.7M 4.4M 139M 290M 58M 127M 28M 280M
san400-0-9-1 400 72k 7.7M 2.6M 560M 368M 20M 9.8M 1.3M 87M

sanr200-0-7 200 14k 444k 580k 7.4M 19M 4.2M 7.3M 2.4M 17M
sanr200-0-9 200 18k 950k 325k 34M 23M 1.3M 604k 202k 5.3M
sanr400-0-5 400 40k 1.3M 4.0M 17M 99M 49M 197M 66M 198M
sanr400-0-7 400 56k 3.6M 4.7M 124M 318M 68M 117M 39M 272M

161

Table 6.11.: Statistics of Biological D& D Networks

graph |V | |E| |g31 | |g32 | |g41 | |g42 | |g44 | |g46 | |g45 | |g43 |
DD1 327 899 749 2.2k 244 896 50 5.7k 695 3.1k

DD10 146 328 209 671 44 196 23 1.4k 155 752
DD100 349 1.0k 848 2.7k 260 1.1k 87 7.8k 1.2k 4.0k

DD1000 183 408 238 900 53 215 41 2.0k 311 926
DD1001 88 203 139 401 36 131 18 814 101 432
DD1002 104 255 194 567 58 228 10 1.3k 155 738
DD1003 53 116 75 227 22 68 16 409 48 238
DD1004 94 230 153 535 28 173 14 1.2k 144 637
DD1005 370 903 606 2.1k 142 622 81 4.7k 686 2.5k
DD1006 246 568 339 1.3k 66 337 55 3.0k 493 1.4k
DD1007 309 732 472 1.6k 109 485 56 3.7k 536 1.8k
DD1008 109 304 225 846 37 294 31 2.3k 326 1.2k
DD1009 129 272 148 568 26 138 20 1.1k 147 577

DD101 306 728 480 1.6k 113 508 66 3.6k 529 1.8k
DD1010 157 363 211 834 37 204 23 1.9k 289 850
DD1011 47 136 132 313 48 178 11 697 82 482
DD1012 146 365 279 770 73 297 30 1.6k 210 988
DD1013 93 211 133 462 27 139 18 992 153 509
DD1014 119 273 184 545 44 186 18 1.1k 106 594
DD1015 102 244 160 605 26 188 18 1.4k 227 797
DD1016 113 291 199 728 32 229 10 1.8k 234 954
DD1017 162 376 263 711 62 254 23 1.4k 128 803
DD1018 296 680 413 1.5k 71 406 42 3.1k 425 1.6k
DD1019 131 353 305 732 93 359 17 1.6k 114 948

DD102 561 1.4k 1.0k 3.4k 261 1.1k 108 8.2k 1.0k 4.1k
DD1020 228 541 375 1.2k 94 390 34 2.4k 335 1.3k
DD1021 329 787 490 1.9k 97 491 70 4.8k 808 2.2k
DD1022 294 730 510 1.7k 133 554 52 4.0k 545 2.0k
DD1023 172 425 282 1.1k 58 301 28 2.7k 409 1.3k
DD1024 59 160 139 333 43 152 8 774 65 434
DD1025 88 205 119 507 14 139 24 1.2k 197 567
DD1026 247 578 380 1.2k 94 378 48 2.6k 383 1.3k
DD1027 108 223 114 468 15 95 8 979 142 479
DD1028 72 137 53 296 4 42 11 605 118 233
DD1029 99 215 125 455 26 129 13 936 143 442

DD103 265 647 410 1.6k 97 443 58 3.9k 631 1.8k
DD1030 136 351 283 724 82 324 24 1.6k 127 881
DD1031 64 149 103 314 24 112 11 628 81 388
DD1032 159 387 256 968 55 290 33 2.5k 424 1.2k
DD1033 573 1.3k 748 2.9k 134 760 90 6.5k 939 3.0k
DD1034 183 514 426 1.3k 126 517 34 3.5k 429 1.9k
DD1035 56 122 68 245 7 68 8 454 52 240
DD1036 174 510 476 1.3k 171 619 32 3.2k 402 1.8k
DD1037 65 171 127 419 29 157 10 1.1k 141 535
DD1038 286 663 408 1.5k 88 431 49 3.4k 537 1.6k
DD1039 64 143 81 335 16 88 13 780 132 331

DD104 372 999 775 2.5k 229 932 66 6.8k 971 3.4k
DD1040 104 229 137 492 22 139 13 1.0k 140 547
DD1041 70 195 140 596 20 195 21 1.7k 291 902
DD1042 201 466 302 1.0k 73 306 40 2.2k 329 1.1k

162

Table 6.12.: Statistics of Chemical MUTAG Networks

graph |V | |E| |g31 | |g32 | |g41 | |g42 | |g44 | |g46 | |g45 | |g43 |
MUTAG1 23 27 0 41 0 0 0 63 10 0

MUTAG10 17 19 0 28 0 0 0 38 7 0
MUTAG100 20 23 0 35 0 0 0 53 9 0
MUTAG101 23 27 0 41 0 0 0 62 10 0
MUTAG102 19 21 0 31 0 0 0 43 8 0
MUTAG103 28 31 0 48 0 0 0 70 14 0
MUTAG104 26 30 0 46 0 0 0 70 12 0
MUTAG105 16 18 0 26 0 0 0 36 6 0
MUTAG106 23 27 0 41 0 0 0 61 10 0
MUTAG107 18 19 0 26 0 0 0 32 6 0
MUTAG108 17 19 0 27 0 0 0 36 6 0
MUTAG109 19 22 0 33 0 0 0 50 8 0

MUTAG11 15 17 0 25 0 0 0 36 6 0
MUTAG110 12 12 0 16 0 0 0 18 4 0
MUTAG111 25 28 0 43 0 0 0 64 12 0
MUTAG112 16 18 0 26 0 0 0 36 6 0
MUTAG113 23 27 0 41 0 0 0 62 10 0
MUTAG114 23 27 0 41 0 0 0 61 10 0
MUTAG115 16 18 0 26 0 0 0 36 6 0
MUTAG116 20 22 0 32 0 0 0 42 8 0
MUTAG117 23 27 0 41 0 0 0 63 10 0
MUTAG118 25 29 0 45 0 0 0 68 12 0
MUTAG119 19 22 0 33 0 0 0 48 8 0

MUTAG12 12 13 0 18 0 0 0 23 4 0
MUTAG120 23 27 0 41 0 0 0 63 10 0
MUTAG121 19 22 0 33 0 0 0 49 8 0
MUTAG122 19 20 0 29 0 0 0 38 8 0
MUTAG123 25 28 0 43 0 0 0 63 12 0
MUTAG124 18 20 0 29 0 0 0 40 7 0
MUTAG125 15 17 0 25 0 0 0 36 6 0
MUTAG126 16 17 0 23 0 0 0 28 5 0
MUTAG127 24 25 0 36 0 0 0 47 10 0
MUTAG128 11 11 0 14 0 0 0 16 3 0
MUTAG129 13 13 0 18 0 0 0 21 5 0

MUTAG13 21 22 0 31 0 0 0 39 8 0
MUTAG130 16 17 0 23 0 0 0 29 5 0
MUTAG131 10 10 0 13 0 0 0 14 3 0
MUTAG132 21 22 0 31 0 0 0 40 8 0
MUTAG133 13 14 0 20 0 0 0 26 5 0
MUTAG134 17 18 0 25 0 0 0 32 6 0
MUTAG135 11 11 0 15 0 0 0 17 4 0
MUTAG136 14 14 0 19 0 0 0 23 5 0
MUTAG137 11 11 0 14 0 0 0 17 3 0
MUTAG138 19 20 0 26 0 0 0 31 5 0
MUTAG139 11 11 0 14 0 0 0 17 3 0

MUTAG14 23 27 0 41 0 0 0 62 10 0
MUTAG140 21 23 0 35 0 0 0 48 10 0
MUTAG141 11 11 0 15 0 0 0 17 4 0
MUTAG142 13 14 0 20 0 0 0 25 5 0
MUTAG143 11 11 0 15 0 0 0 17 4 0

163

7. SUMMARY AND CONCLUSION

In this dissertation, we propose sampling as well as fast, efficient, and scalable meth-

ods for network analysis and mining for both static and streaming graphs. This

dissertation is positioned to extend the range, applicability, and performance gains

of network sampling as a tool that is not only useful for web crawling and data

collection, but also for the analysis and mining of massive disk-resident and stream-

ing graphs efficiently. We show how network sampling can be used as a mediator

of various problem-specific constraints, such as the characteristics of the data (e. g.,

heavy-tailed data distribution), the data access constraints (e. g., streaming vs. dis-

tributed data), the available resources (e. g., memory, bandwidth), and the accuracy

needs of queries.

Moreover, we propose graph sample and hold, a flexible framework for sampling

from large streaming graphs. Using graph sample and hold, we formulated network

sampling as a principled approach with two main functions: (1) the sampling func-

tion, and (2) the holding function. We showed how such approach allows tuning

the sampling and estimation of graph properties more efficiently and accurately than

the state-of-the-art. We developed a suite of algorithms, based on graph sample and

hold, to sample and estimate various graph properties, while processing the graph

sequentially as a stream of edges.

The potential benefits of the proposed framework are two-fold. First, it will lead

to more interpretable sampling designs, that efficiently capture the specific graph

properties of interest. This should benefit big graph analytics and data mining ap-

plications in general, since interpretability is a quality that is often important for

domain experts to design useful sampling methods. Second, it will lead to samples

with better quality that efficiently mirror the properties of the population graph.

164

In addition, we propose a fast, parallel, and efficient algorithm for motif counting

that is significantly faster than the current methods used, while also scaling to much

larger networks with millions of nodes and edges. The proposed motif counting al-

gorithm leverages a number of proven combinatorial arguments, which enable us to

obtain significant improvement on the scalability of motif counting. Thus, this brings

new opportunities to investigate the use of motifs on much larger networks and newer

applications.

Furthermore, we discuss how a number of important machine learning applications

are likely to benefit from such algorithm, including graph-based anomaly detection [7,

46], entity resolution [47], as well as features for improving community detection [48],

role discovery [49], and relational classification [50,51].

For all the proposed methods, we implemented prototypes showing their applica-

bility. Moreover, we conducted experimental studies on real-world data from social,

biological, technological, and communication domains. We validate the efficiency and

effectiveness of our approaches by large-scale comparisons against baseline methods.

7.1 Contributions

The algorithmic, theoretical, and empirical contributions of this work can be sum-

marized as follows.

• Framework

− A framework outlining the general problem of network sampling, high-

lighting the different goals, population and units, evaluation and classes of

network sampling methods

− Extending the above framework to include a spectrum of computational

models within which to design network sampling methods (i. e., going from

static to streaming graphs)

− A generic framework called graph sample and hold for the design of stream

sampling algorithms

165

• Theoretical Contributions

− Analysis and proofs of the sampling bias in the streaming computational

model, and investigation of its effect on the sampled subgraph

− Development and proofs of unbiased estimators, variance estimators, upper

and lower bounds for counts of frequent subgraphs

− Analysis and proofs of a number of combinatorial arguments involving

various motif patterns

− Development and proofs of the relationship between pairs of motif patterns

based on combinatorial arguments

• Algorithmic Contributions

− A generic 2-pass streaming algorithm for sampling from large static graphs

with linear runtime O(|E|)

− A generic single-pass streaming algorithm for sampling a subgraph from

streaming graphs with linear runtime O(|E|)

− Extension of existing sampling algorithms to the streaming computational

model

− A generic single-pass streaming algorithm for unbiased estimation of sub-

graph counts in large networks

− Development of parallel methods for computing the unbiased estimators

and variance estimators of counts of frequent subgraphs efficiently

− A fast, parallel, and efficient algorithm for motif counting, leveraging a

number of combinatorial arguments to obtain significant scalability over

current method (460 times faster than the state of the art).

• Empirical Contributions

− Empirical comparison of proposed algorithms to existing sampling methods

across a range of data sets from social, communication, and web graphs

166

− Illustration of the effect of different network sampling methods on the

performance of relational classification

− Illustration of the effects of graph characteristics (e. g., graph sparsity) on

the performance of different sampling methods

− Large-scale investigation and comparison of motif counting on 300+ net-

works with millions of nodes and edges

− Illustration of various applications of motif counting in biology and social

network analysis – such as for large-scale graph classification, prediction,

and anomaly detection

7.2 Future Directions

Generally, in data streams, the recent history is typically the more frequently ana-

lyzed, and also the more relevant for several applications. As the graph stream evolves

overtime, which means new edges are added, some of the sampled edges may become

outdated and less relevant over time. For example, an email exchanged between A

and B today is more certain, relevant, and indicative of an existing relationship be-

tween A and B, than a previous email exchanged months ago. Therefore, a natural

next step from this dissertation would be to extend the methods in Chapter 4 to bias

the sample to the recent time-horizon. Moreover, since the structure of streaming

graphs is continuously changing overtime, these graphs can be viewed as a dynamical

system. The normal operation of any dynamical system can be described by a process

that transitions between different states over time [190]. Therefore, another next step

would be to extend the applicability of the methods in Chapter 4 to modeling and

analyzing the state-space and evolution of graph streams.

Second, the work in Chapter 3 investigated the relationship between sampling

and relational classification. Our work shows that biases may result from the size

of the sample, the applied sampling method, or both. Our proposed work showed

to simultaneously satisfy the two different goals for relational learning applications

167

(i. e., parameter estimation and accuracy evaluation). As a broad extension of this

work, the relationship between sampling and machine learning is generally unex-

plored. Thus, a natural extension would be to propose sampling methods that can

particularly perform well for certain machine learning tasks. For example, custom

sampling methods for clustering [49], classification [53], anomaly detection [7], and

graph partitioning [191]. Moreover, this work naturally extends itself to the area of

privacy preserving data mining, where sampling can be used to answer queries and

perform simulations, while maintaining the privacy of the user data.

Third, the work in Chapter 5 can be extended to different variations of adap-

tive techniques based on statistical sub-sampling and reservoir methods to limit the

memory budget of our proposed framework. This means as the stored state reaches

its boundary, new sampled edges would replace older ones to maintain the budget

size. The risk of applying these sub-sampling techniques is the expected reduction

in the estimation accuracy. Therefore, the trade-off between the sample size and the

estimation accuracy has to be considered. At the same time, the major goal is to

ensure that we can obtain the maximum benefit of this bounded budget to estimate

the graph properties of interest.

Fourth, the algorithms in Chapter 6 can potentially accelerate a much broader

class of machine learning tasks beyond prediction and classification. For example,

interactive visual analytics [57, 192], graph-based anomaly detection [7, 46], entity

resolution [47], as well as features for improving community detection [48], role dis-

covery [49], and relational classification [50].

REFERENCES

168

REFERENCES

[1] J. Lafferty, “Facebook users worldwide: 3.2 billion likes and comments per day,”
http://allfacebook.com/facebook-marketing-infographic-engagement b98277,
August 2012.

[2] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of viral mar-
keting,” ACM Transactions on the Web, vol. 1, no. 1, p. 5, 2007.

[3] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec, “Steering user
behavior with badges,” in Proceedings of the 22nd International Conference on
World Wide Web, 2013, pp. 95–106.

[4] R. Pastor-Satorras and A. Vespignani, “Immunization of complex networks,”
Physical Review E, vol. 65, no. 3, p. 036104, 2002.

[5] T. Milenkoviæ and N. Pržulj, “Uncovering biological network function via
graphlet degree signatures,” Cancer Informatics, vol. 6, p. 257, 2008.

[6] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anoma-
lies,” in ACM SIGCOMM Computer Communication Review, vol. 34, no. 4,
2004, pp. 219–230.

[7] C. C. Noble and D. J. Cook, “Graph-based anomaly detection,” in Proceedings
of the 9th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2003, pp. 631–636.

[8] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient semi-streaming
algorithms for local triangle counting in massive graphs,” in Proceedings of
the 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2008.

[9] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2006, pp. 631–636.

[10] A. S. Maiya and T. Y. Berger-Wolf, “Benefits of bias: Towards better char-
acterization of network sampling,” in Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2011, pp.
105–113.

[11] N. K. Ahmed, J. Neville, and R. Kompella, “Network sampling: From static
to streaming graphs,” ACM Transactions on Knowledge Discovery From Data,
vol. 8, no. 2, pp. 1–56, 2014.

[12] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the evolution
of user interaction in facebook,” in Proceedings of the 2nd ACM Workshop on
Online Social Networks, 2009, pp. 37–42.

169

[13] G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl, “On the streaming model
augmented with a sorting primitive,” in Proceedings of the IEEE Symposium
on Foundations of Computer Science, 2004, pp. 540–549.

[14] M. S. Cline, M. Smoot, E. Cerami, A. Kuchinsky, N. Landys, C. Workman,
R. Christmas, I. Avila-Campilo, M. Creech, B. Gross et al., “Integration of
biological networks and gene expression data using cytoscape,” Nature protocols,
vol. 2, no. 10, pp. 2366–2382, 2007.

[15] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last re-
ducer,” in Proceedings of the 20th International Conference on World Wide
Web, 2011, pp. 607–614.

[16] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “Doulion: Count-
ing triangles in massive graphs with a coin,” in Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2009, pp. 837–846.

[17] P. Zhao, C. C. Aggarwal, and M. Wang, “gsketch: On query estimation in graph
streams,” Proceedings of the VLDB Endowment, vol. 5, no. 3, pp. 193–204, 2011.

[18] T. Schank, “Algorithmic aspects of triangle-based network analysis,” PhD in
CS, University Karlsruhe, 2007.

[19] M. Jha, C. Seshadhri, and A. Pinar, “A space efficient streaming algorithm for
triangle counting using the birthday paradox,” in Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2013, pp. 589–597.

[20] C. Seshadhri, A. Pinar, and T. G. Kolda, “Fast triangle counting through wedge
sampling,” in Proc. of SIAM, 2013.

[21] T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, and C. Task, “Counting
triangles in massive graphs with mapreduce,” SIAM Journal on Scientific Com-
puting, 2013.

[22] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions from
sampled flow statistics,” Transactions on Networking, vol. 13, no. 5, pp. 933–
946, 2005.

[23] N. K. Ahmed, N. Duffield, J. Neville, and R. Kompella, “Graph sample and
hold: A framework for big-graph analytics,” in Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2014, pp. 1446–1455.

[24] C. Clifton, “Protecting against data mining through samples,” in Research Ad-
vances in Database and Information Systems Security. Springer, 2000, pp.
193–207.

[25] O. Frank, “Sampling and inference in a population graph,” International Sta-
tistical Review/Revue Internationale de Statistique, vol. 48, no. 1, pp. 33–41,
1980.

[26] M. Gjoka, M. Kurant, C. Butts, and A. Markopoulou, “Walking in facebook: A
case study of unbiased sampling of OSNs,” in IEEE International Conference
on Computer Communications, 2010, pp. 1–9.

170

[27] C. Gkantsidis, M. Mihail, and A. Saberi, “Random walks in peer-to-peer net-
works,” in IEEE International Conference on Computer Communications, 2004,
pp. 1–12.

[28] A. S. Maiya and T. Y. Berger-Wolf, “Sampling Community Structure,” in Pro-
ceedings of the 19th International Conference on World Wide Web, 2010, pp.
701–710.

[29] L. Backstrom and J. Kleinberg, “Network bucket testing,” in Proceedings of the
20th International Conference on World Wide Web, 2011, pp. 615–624.

[30] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee,
“Measurement and analysis of online social networks,” in Proceedings of the 7th
ACM SIGCOMM Conference on Internet Measurement, 2007, pp. 29–42.

[31] A. Mislove, H. Koppula, K. Gummadi, P. Druschel, and B. Bhattacharjee,
“Growth of the flickr social network,” in Proceedings of the 2nd ACM Workshop
on Online Social Networks, 2008, pp. 25–30.

[32] B. Ribeiro and D. Towsley, “Estimating and sampling graphs with multidimen-
sional random walks,” in Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement, 2010, pp. 390–403.

[33] C. C. Aggarwal and H. Wang, Managing and Mining Graph Data. Springer,
2010, vol. 40.

[34] A. Rajaraman and J. D. Ullman, Mining of Massive Datasets. Cambridge
University Press, 2012.

[35] S. Muthukrishnan, Data streams: Algorithms and applications. Now Publishers
Inc., 2005.

[36] C. Aggarwal, J. Han, J. Wang, and P. Yu, “A framework for clustering evolving
data streams,” in Proceedings of the 29th International Conference on Very
Large Data Bases, 2003, pp. 81–92.

[37] G. Cormode and N. Duffield, “Sampling for big data: A tutorial,” in Proceedings
of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2014.

[38] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on Math-
ematical Software, vol. 11, pp. 37–57, 1985.

[39] D. R. Karger, “Random sampling in cut, flow, and network design problems,”
in Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of Com-
puting, 1994, pp. 648–657.

[40] C. Aggarwal, Y. Zhao, and P. Yu, “Outlier detection in graph streams,” in
IEEE 27th International Conference on Data Engineering, 2011, pp. 399–409.

[41] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, “On graph
problems in a semi-streaming model,” Automata, Languages and Programming,
pp. 17–44, 2004.

171

[42] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu, “Counting and sam-
pling triangles from a graph stream,” Proceedings of the VLDB Endowment,
vol. 6, no. 14, pp. 1870–1881, 2013.

[43] L. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and C. Sohler,
“Counting triangles in data streams,” in Proceedings of the 25th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
2006, pp. 253–262.

[44] H. Jowhari and M. Ghodsi, “New streaming algorithms for counting triangles
in graphs,” in Computing and Combinatorics, 2005, pp. 710–716.

[45] D. G. Horvitz and D. J. Thompson, “A generalization of sampling without
replacement from a finite universe,” Journal of the American Statistical Asso-
ciation, vol. 47, no. 260, pp. 663–685, 1952.

[46] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and
description: A survey,” Data Mining and Knowledge Discovery, pp. 1–63, 2014.

[47] I. Bhattacharya and L. Getoor, “Entity resolution in graphs,” Mining graph
data, p. 311, 2006.

[48] S. E. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1, no. 1,
2007.

[49] R. A. Rossi and N. K. Ahmed, “Role discovery in networks,” IEEE Transactions
on Knowledge and Data Engineering, vol. 27, no. 4, pp. 1112–1131, 2015.

[50] L. Getoor and B. Taskar, Introduction to Statistical Relational Learning. MIT
press, 2007.

[51] J. Neville, B. Gallagher, and T. Eliassi-Rad, “Evaluating statistical tests for
within-network classifiers of relational data,” in IEEE 9th International Con-
ference on Data Mining, 2009, pp. 397–406.

[52] N. K. Ahmed, J. Neville, and R. Kompella, “Reconsidering the foundations
of network sampling,” in Proceedings of the 2nd Workshop on Information in
Networks, 2010.

[53] ——, “Network sampling designs for relational classification,” in Proceedings
of the International AAAI Conference on Weblogs and Social Media, 2012, pp.
1–4.

[54] N. K. Ahmed, F. Berchmans, J. Neville, and R. Kompella, “Time-based sam-
pling of social network activity graphs,” in Proceedings of the 8th Workshop on
Mining and Learning with Graphs, 2010, pp. 1–9.

[55] N. K. Ahmed, J. Neville, and R. Kompella, “Space-efficient sampling from
social activity streams,” in Proceedings of the 1st International Workshop on
Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems,
Programming Models and Applications, 2012, pp. 53–60.

[56] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield, “Fast parallel graphlet
counting for large networks,” arXiv:1506.04322, 2015.

172

[57] N. K. Ahmed and R. A. Rossi, “Interactive visual graph analytics on the web,”
in Proceedings of the Ninth International AAAI Conference on Web and Social
Media, 2015.

[58] J. Watters and P. Biernacki, “Targeted sampling: Options for the study of
hidden populations,” Social Problems, vol. 36, no. 4, pp. 416–430, 1989.

[59] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer, “Learning probabilistic re-
lational models,” in Proceedings of the 16th International Joint Conference on
Artificial Intelligence, 1999, pp. 1300–1309.

[60] R. Rossi and J. Neville, “Time-evolving relational classification and ensemble
methods,” in Advances in Knowledge Discovery and Data Mining. Springer,
2012, vol. 7301, pp. 1–13.

[61] R. A. Rossi, L. K. McDowell, D. W. Aha, and J. Neville, “Transforming graph
data for statistical relational learning,” Journal of Artificial Intelligence Re-
search, vol. 45, no. 1, pp. 363–441, 2012.

[62] E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic, “The role of social networks
in information diffusion,” in Proceedings of the 21st International Conference
on World Wide Web, 2012, pp. 519–528.

[63] M. Hansen and W. Hurwitz, “On the theory of sampling from finite popula-
tions,” The Annals of Mathematical Statistics, vol. 14, no. 4, pp. 333–362, 1943.

[64] M. Stumpf, C. Wiuf, and R. May, “Subnets of scale-free networks are not scale-
free: Sampling properties of networks,” Proceedings of the National Academy
of Sciences, vol. 102, no. 12, pp. 4221–4224, 2005.

[65] S. Lee, P. Kim, and H. Jeong, “Statistical properties of sampled networks,”
Physical Review E, vol. 73, p. 016102, 2006.

[66] D. Heckathorn, “Respondent-driven sampling: A new approach to the study of
hidden populations,” Social Problems, no. 2, pp. 174–199, 1997.

[67] J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “The
web as a graph: Measurements, models, and methods,” in Computing and
Combinatorics, ser. Lecture Notes in Computer Science. Springer, 1999, vol.
1627, pp. 1–17.

[68] S. Redner, “How popular is your paper? an empirical study of the citation dis-
tribution,” The European Physical Journal B-Condensed Matter and Complex
Systems, vol. 4, no. 2, pp. 131–134, 1998.

[69] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model for
graph mining,” in SIAM International Conference on Data Mining, 2004, pp.
442–446.

[70] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world networks,”
Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[71] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir, “A model of inter-
net topology using k-shell decomposition,” Proceedings of the National Academy
of Sciences, vol. 104, no. 27, pp. 11 150–11 154, 2007.

173

[72] J. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “K-core de-
composition of internet graphs: Hierarchies, self-similarity and measurement
biases,” arXiv cs/0511007, 2005.

[73] R. Kumar, J. Novak, and A. Tomkins, “Structure and evolution of online social
networks,” in Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2006, pp. 337–357.

[74] C. Seshadhri, A. Pinar, and T. G. Kolda, “An in-depth analysis of stochastic
kronecker graphs,” Journal of the ACM, vol. 60, no. 2, pp. 1–32, 2013.

[75] M. Newman, Networks: An Introduction. Oxford University Press, 2010.

[76] L. Lee, “On the effectiveness of the skew divergence for statistical language
analysis,” in Artificial Intelligence and Statistics, 2001, pp. 65–72.

[77] J. Zhang, Managing and Mining Graph Data. Springer, 2010, chapter 13: A
survey on streaming algorithms for massive graphs, pp. 393–420.

[78] M. Gjoka, M. Kurant, C. Butts, and A. Markopoulou, “Practical recommenda-
tions on crawling online social networks,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1872–1892, 2011.

[79] O. Frank, “Survey sampling in graphs,” Journal of Statistical Planning and
Inference, vol. 1, no. 3, pp. 235–264, 1977.

[80] ——, “A survey of statistical methods for graph analysis,” Sociological Method-
ology, vol. 12, pp. 110–155, 1981.

[81] L. Goodman, “Snowball sampling,” The Annals of Mathematical Statistics,
vol. 32, no. 1, pp. 148–170, 1961.

[82] M. Granovetter, “Network sampling: Some first steps,” American Journal of
Sociology, vol. 81, no. 6, pp. 1287–1303, 1976.

[83] K. Gile and M. Handcock, “Respondent-driven sampling: An assessment of
current methodology,” Sociological Methodology, vol. 40, no. 1, pp. 285–327,
2010.

[84] E. Kolaczyk, Statistical Analysis of Network Data. Springer, 2009, chapter 5
Sampling and Estimation in Network Graphs, pp. 123–152.

[85] S. Yoon, S. Lee, S.-H. Yook, and Y. Kim, “Statistical properties of sampled
networks by random walks,” Physical Review E, vol. 75, p. 046114, 2007.

[86] A. Lakhina, J. Byers, M. Crovella, and P. Xie, “Sampling biases in ip topology
measurements,” in IEEE International Conference on Computer Communica-
tions, 2003, pp. 332–341.

[87] Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong, “Analysis of topological
characteristics of huge online social networking services,” in Proceedings of the
16th International Conference on World Wide Web, 2007, pp. 835–844.

[88] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao, “User interac-
tions in social networks and their implications,” in Proceedings of the 4th ACM
European Conference on Computer Systems, 2009, pp. 205–218.

174

[89] S. Ye, J. Lang, and F. Wu, “Crawling online social graphs,” in IEEE 12th
International Asia-Pacific Web Conference, 2010, pp. 236–242.

[90] M. Kurant, A. Markopoulou, and P. Thiran, “Towards unbiased bfs sampling,”
IEEE Journal on Selected Areas in Communications, vol. 29, no. 9, pp. 1799–
1809, 2011.

[91] E. Baykan, M. Henzinger, S. Keller, S. De Castelberg, and M. Kinzler, “A
comparison of techniques for sampling web pages,” arXiv:0902.1604, 2009.

[92] M. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork, “On near-uniform
url sampling,” Computer Networks, vol. 33, no. 1, pp. 295–308, 2000.

[93] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger, “On unbiased
sampling for unstructured peer-to-peer networks,” in Proceedings of the 6th
ACM SIGCOMM Conference on Internet Measurement, 2006, pp. 27–40.

[94] A. Rasti, M. Torkjazi, R. Rejaie, N. Duffield, W. Willinger, and D. Stutzbach,
“Respondent-driven sampling for characterizing unstructured overlays,” in
IEEE International Conference on Computer Communications, 2009, pp. 2701–
2705.

[95] K. Avrachenkov, B. Ribeiro, and D. Towsley, “Improving random walk estima-
tion accuracy with uniform restarts,” in Algorithms and Models for the Web-
Graph, ser. Lecture Notes in Computer Science. Springer, 2010, vol. 6516, pp.
98–109.

[96] C. Hubler, H.-P. Kriegel, K. M. Borgwardt, and Z. Ghahramani, “Metropolis
algorithms for representative subgraph sampling,” in IEEE 8th International
Conference on Data Mining, 2008, pp. 283–292.

[97] V. Krishnamurthy, M. Faloutsos, M. Chrobak, J. Cui, L. Lao, and A. Per-
cus, “Sampling large Internet topologies for simulation purposes,” Computer
Networks, vol. 51, no. 15, pp. 4284–4302, 2007.

[98] A. Vattani, D. Chakrabarti, and M. Gurevich, “Preserving personalized pager-
ank in subgraphs,” in Proceedings of the 28th International Conference on Ma-
chine Learning, 2011, pp. 793–800.

[99] Y. Jia, J. Hoberock, M. Garland, and J. Hart, “On the visualization of social and
other scale-free networks,” IEEE Transactions on Visualization and Computer
Graphics, vol. 14, no. 6, pp. 1285–1292, 2008.

[100] X. Lu and S. Bressan, “Sampling connected induced subgraphs uniformly at
random,” in Scientific and Statistical Database Management, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2012, vol. 7338, pp. 195–212.

[101] A. Dasgupta, R. Kumar, and D. Sivakumar, “Social sampling,” in Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2012, pp. 235–243.

[102] M. Al Hasan and M. Zaki, “Output space sampling for graph patterns,” Pro-
ceedings of the VLDB Endowment, vol. 2, no. 1, pp. 730–741, 2009.

175

[103] M. A. Bhuiyan, M. Rahman, M. Rahman, and M. Al Hasan, “Guise: Uniform
sampling of graphlets for large graph analysis,” in IEEE 12th International
Conference on Data Mining, 2012, pp. 91–100.

[104] M. Papagelis, G. Das, and N. Koudas, “Sampling online social networks,” IEEE
Transactions on Knowledge and Data Engineering, vol. 25, no. 3, pp. 662–676,
2013.

[105] M. De Choudhury, Y. Lin, H. Sundaram, K. Candan, L. Xie, and A. Kelliher,
“How does the data sampling strategy impact the discovery of information
diffusion in social media,” in Proceedings of the International AAAI Conference
on Weblogs and Social Media, 2010, pp. 34–41.

[106] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues
in data stream systems,” in Proceedings of the 21st ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, 2002, pp. 1–16.

[107] L. Golab and M. Özsu, “Issues in data stream management,” ACM Sigmod
Record, vol. 32, no. 2, pp. 5–14, 2003.

[108] C. C. Aggarwal, Ed., Data Streams - Models and Algorithms, ser. Advances in
Database Systems. Springer, 2007, vol. 31.

[109] B. Babcock, M. Datar, and R. Motwani, “Sampling from a moving window over
streaming data,” in Proceedings of the 13th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2002, pp. 633–634.

[110] C. C. Aggarwal, “On Biased Reservoir Sampling in the Presence of Stream
Evolution.” in Proceedings of the 32nd International Conference on Very Large
Data Bases, 2006, pp. 607–618.

[111] G. S. Manku and R. Motwani, “Approximate Frequency Counts over Data
Streams.” in Proceedings of the 28th International Conference on Very Large
Data Bases, 2002, pp. 346–357.

[112] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in data
streams,” in Proceedings of the 29th International Colloquium on Automata,
Languages and Programming, 2002, pp. 693–703.

[113] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker, “Load
shedding in a data stream manager,” in Proceedings of the 29th International
Conference on Very Large Data Bases, 2003, pp. 309–320.

[114] H. Wang, W. Fan, P. Yu, and J. Han, “Mining concept-drifting data streams us-
ing ensemble classifiers,” in Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2003, pp. 226–235.

[115] J. Gao, W. Fan, J. Han, and P. Yu, “A general framework for mining concept-
drifting data streams with skewed distributions,” in SIAM International Con-
ference on Data Mining, 2007, pp. 3–14.

[116] W. Fan, “Systematic data selection to mine concept-drifting data streams,” in
Proceedings of the 10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2004, pp. 128–137.

176

[117] ——, “StreamMiner: A classifier ensemble-based engine to mine concept-
drifting data streams,” in Proceedings of the 30th International Conference on
Very Large Data Bases, 2004, pp. 1257–1260.

[118] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering
data streams: Theory and practice,” IEEE Transactions on Knowledge and
Data Engineering, vol. 15, no. 3, pp. 515–528, 2003.

[119] W. Fan, Y. Huang, H. Wang, and P. Yu, “Active mining of data streams,” in
SIAM International Conference on Data Mining, 2004, pp. 457–461.

[120] X. Li, P. Yu, B. Liu, and S. Ng, “Positive unlabeled learning for data stream
classification,” in SIAM International Conference on Data Mining, 2009, pp.
259–270.

[121] P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proceedings
of the 6th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2000, pp. 71–80.

[122] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data streams,”
in Proceedings of the 7th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 2001, pp. 97–106.

[123] M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining data streams: A re-
view,” ACM Sigmod Record, vol. 34, no. 2, pp. 18–26, 2005.

[124] H. Wang, P. Yu, and J. Han, Data Mining and Knowledge Discovery Handbook.
Springer, 2010, ch. Mining Concept-Drifting Data Streams, pp. 789–802.

[125] M. Henzinger, P. Raghavan, and S. Rajagopalan, “Computing on data streams,”
in External Memory Algorithms: Dimacs Workshop External Memory and Vi-
sualization, vol. 50, 1999, pp. 107–118.

[126] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions in streaming algo-
rithms with an application to counting triangles in graphs,” in Proceedings of
the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, 2002, pp.
623–632.

[127] A. Buchsbaum, R. Giancarlo, and J. Westbrook, “On finding common neigh-
borhoods in massive graphs,” Theoretical Computer Science, vol. 299, no. 1, pp.
707–718, 2003.

[128] A. D. Sarma, S. Gollapudi, and R. Panigrahy, “Estimating pagerank on graph
streams,” in Proceedings of the 27th ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, 2008, pp. 69–78.

[129] G. Cormode and S. Muthukrishnan, “Space efficient mining of multigraph
streams,” in Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, 2005, pp. 271–282.

[130] C. Aggarwal, Y. Zhao, and P. Yu, “On clustering graph streams,” in SIAM
International Conference on Data Mining, 2010, pp. 478–489.

[131] L. Chen and C. Wang, “Continuous subgraph pattern search over certain and
uncertain graph streams,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 22, no. 8, pp. 1093–1109, 2010.

177

[132] C. Aggarwal, Y. Li, P. Yu, and R. Jin, “On dense pattern mining in graph
streams,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 975–984,
2010.

[133] A. McGregor, “Graph mining on streams,” Encyclopedia of Database Systems,
2009.

[134] M. Newman, “Assortative mixing in networks,” Physical Review Letters, vol. 89,
no. 20, p. 208701, 2002.

[135] D. F. Gleich, “Graph of flickr photo-sharing social network crawled in
may 2006,” Feb 2012. [Online]. Available: https://research.hub.purdue.edu/
publications/1002

[136] J. Leskovec, “Stanford large network dataset collection,” 2014. [Online].
Available: http://snap.stanford.edu/data/index.html

[137] W. Haemers, “Interlacing eigenvalues and graphs,” Linear Algebra and its Ap-
plications, vol. 226, pp. 593–616, 1995.

[138] N. K. Ahmed, J. Neville, and R. R. Kompella, “Network sampling via edge-
based node selection with graph induction,” Purdue Digital Library, Tech. Rep.
11-016, 2011.

[139] C. Körner and S. Wrobel, “Bias-free hypothesis evaluation in multirelational
domains,” in Proceedings of the 4th International Workshop on Multi-relational
Mining, 2005, pp. 33–38.

[140] S. Macskassy and F. Provost, “Classification in networked data: A toolkit and
a univariate case study,” Journal of Machine Learning Research, vol. 8, pp.
935–983, 2007.

[141] B. Taskar, E. Segal, and D. Koller, “Probabilistic classification and clustering
in relational data,” in Proceedings of the 17th International Joint Conference
on Artificial Intelligence, 2001, pp. 870–876.

[142] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad,
“Collective classification in network data,” AI Magazine, vol. 29, no. 3, pp.
93–106, 2008.

[143] R. Xiang, J. Neville, and M. Rogati, “Modeling relationship strength in online
social networks,” in Proceedings of the 19th International Conference on World
Wide Web, 2010, pp. 981–990.

[144] L. Adamic and N. Glance, “The political blogosphere and the 2004 us election:
Divided they blog,” in Proceedings of the 3rd International Workshop on Link
Discovery, 2005, pp. 36–43.

[145] A. Gautreau, A. Barrat, and M. Barthlemy, “Microdynamics in stationary com-
plex networks,” Proceedings of the National Academy of Sciences, vol. 106,
no. 22, pp. 8847–8852, 2009.

[146] M. Conover, J. Ratkiewicz, M. Francisco, B. Gonçalves, A. Flammini, and
F. Menczer, “Political polarization on twitter,” in Proceedings of the Interna-
tional AAAI Conference on Weblogs and Social Media, 2011, pp. 89–96.

178

[147] L. Isella, J. Stehl, A. Barrat, C. Cattuto, J. Pinton, and W. Van den Broeck,
“What’s in a crowd? analysis of face-to-face behavioral networks,” Journal of
Theoretical Biology, vol. 271, no. 1, pp. 166–180, 2011.

[148] C. Estan and G. Varghese, “New directions in traffic measurement and ac-
counting,” in Proceedings of the 2nd ACM SIGCOMM Conference on Internet
Measurement, 2002, pp. 323–336.

[149] P. B. Gibbons and Y. Matias, “New sampling-based summary statistics for im-
proving approximate query answers,” in ACM SIGMOD Record, vol. 27, no. 2,
1998, pp. 331–342.

[150] Smitha, I. Kim, and A. Reddy, “Identifying long-term high-bandwidth flows at
a router,” in Proceedings of High Performance Computing. Springer, 2001, pp.
361–371.

[151] D. Williams, Probability with Martingales. Cambridge University Press, 1991.

[152] M. J. Schervish, Theory of Statistics. Springer, 1995.

[153] A. L. Traud, P. J. Mucha, and M. A. Porter, “Social structure of facebook
networks,” Physica A: Statistical Mechanics and its Applications, 2012.

[154] E. Cohen, G. Cormode, and N. Duffield, “Don’t let the negatives bring you
down: Sampling from streams of signed updates,” SIGMETRICS, vol. 40, no. 1,
pp. 343–354, 2012.

[155] E. Cohen, N. Duffield, H. Kaplan, C. Lund, and M. Thorup, “Algorithms and
estimators for accurate summarization of internet traffic,” in Proceedings of the
7th ACM SIGCOMM Conference on Internet Measurement, 2007, pp. 265–278.

[156] O. Frank, “Sampling and estimation in large social networks,” Social Networks,
vol. 1, no. 1, pp. 91–101, 1979.

[157] E. D. Kolaczyk, “Sampling and estimation in network graphs,” in Statistical
Analysis of Network Data. Springer, 2009, pp. 1–30.

[158] C. Seshadhri, A. Pinar, and T. G. Kolda, “Wedge sampling for computing
clustering coefficients and triangle counts on large graphs,” arXiv:1309.3321,
2013.

[159] R. A. Rossi, D. F. Gleich, A. H. Gebremedhin, and M. A. Patwary, “Fast
maximum clique algorithms for large graphs,” in Proc. of WWW, 2014.

[160] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon,
“Network motifs: Simple building blocks of complex networks,” Science, vol.
298, no. 5594, pp. 824–827, 2002.

[161] N. Pržulj, D. G. Corneil, and I. Jurisica, “Modeling interactome: Scale-free or
geometric?” Bioinformatics, vol. 20, no. 18, pp. 3508–3515, 2004.

[162] N. Shervashidze, T. Petri, K. Mehlhorn, K. M. Borgwardt, and S. Vish-
wanathan, “Efficient graphlet kernels for large graph comparison,” in Inter-
national Conference on Artificial Intelligence and Statistics, 2009, pp. 488–495.

179

[163] P. W. Holland and S. Leinhardt, “Local structure in social networks,” Socio-
logical Methodology, vol. 7, pp. pp. 1–45, 1976.

[164] K. Faust, “A puzzle concerning triads in social networks: Graph constraints
and the triad census,” Social Networks, vol. 32, no. 3, pp. 221–233, 2010.

[165] O. Frank, “Triad count statistics,” Annals of Discrete Mathematics, vol. 38, pp.
141–149, 1988.

[166] G. Simmel and K. H. Wolff, The Sociology of Georg Simmel. Simon and
Schuster, 1950.

[167] M. Granovetter, “The strength of weak ties: A network theory revisited,” So-
ciological Theory, vol. 1, no. 1, pp. 201–233, 1983.

[168] T. Milenković, W. L. Ng, W. Hayes, and N. Pržulj, “Optimal network alignment
with graphlet degree vectors,” Cancer Informatics, vol. 9, p. 121, 2010.

[169] O. Kuchaiev, T. Milenković, V. Memǐsević, W. Hayes, and N. Pržulj, “Topo-
logical network alignment uncovers biological function and phylogeny,” Journal
of the Royal Society Interface, vol. 7, no. 50, pp. 1341–1354, 2010.

[170] D. Feldman and Y. Shavitt, “Automatic large scale generation of internet pop
level maps,” in Proceedings of the IEEE Global Communications Conference,
2008, pp. 1–6.

[171] D. Hales and S. Arteconi, “Motifs in evolving cooperative networks look like
protein structure networks,” Journal of Networks and Heterogeneous Media,
vol. 3, no. 2, 2008.

[172] L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi, “Graph kernels for chem-
ical informatics,” Neural Networks, vol. 18, no. 8, pp. 1093–1110, 2005.

[173] H. Kashima, H. Saigo, M. Hattori, and K. Tsuda, “Graph kernels for chemoin-
formatics,” Chemoinformatics and Advanced Machine Learning Perspectives:
Complex Computational Methods and Collaborative Techniques: Complex Com-
putational Methods and Collaborative Techniques, p. 1, 2010.

[174] L. Zhang, M. Song, Z. Liu, X. Liu, J. Bu, and C. Chen, “Probabilistic graphlet
cut: Exploiting spatial structure cue for weakly supervised image segmenta-
tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2013, pp. 1908–1915.

[175] L. Zhang, Y. Han, Y. Yang, M. Song, S. Yan, and Q. Tian, “Discovering discrim-
inative graphlets for aerial image categories recognition,” IEEE Transactions
on Image Processing, vol. 22, no. 12, pp. 5071–5084, 2013.

[176] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt,
“Graph kernels,” Journal of Machine Learning Research, vol. 11, pp. 1201–1242,
2010.

[177] M. Gonen and Y. Shavitt, “Approximating the number of network motifs,”
Internet Mathematics, vol. 6, no. 3, pp. 349–372, 2009.

180

[178] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Proceedings of the 29th
AAAI Conference on Artificial Intelligence, 2015. [Online]. Available:
http://networkrepository.com

[179] D. Marcus and Y. Shavitt, “Rage–A rapid graphlet enumerator for large net-
works,” Computer Networks, vol. 56, no. 2, pp. 810–819, 2012.

[180] S. Wernicke and F. Rasche, “Fanmod: A tool for fast network motif detection,”
Bioinformatics, vol. 22, no. 9, pp. 1152–1153, 2006.

[181] T. Hočevar and J. Demšar, “A combinatorial approach to graphlet counting,”
Bioinformatics, vol. 30, no. 4, pp. 559–565, 2014.

[182] W. Hayes, K. Sun, and N. Pržulj, “Graphlet-based measures are suitable for
biological network comparison,” Bioinformatics, vol. 29, no. 4, pp. 483–491,
2013.

[183] J. L. Gross, J. Yellen, and P. Zhang, Handbook of Graph Theory, 2nd ed. Chap-
man & Hall/CRC, 2013.

[184] J. Ugander, L. Backstrom, and J. Kleinberg, “Subgraph frequencies: Mapping
the empirical and extremal geography of large graph collections,” in Proceedings
of the 22nd International Conference on World Wide Web, 2013, pp. 1307–1318.

[185] B. D. McKay, “Small graphs are reconstructible,” Australasian Journal of Com-
binatorics, vol. 15, pp. 123–126, 1997.

[186] P. J. Kelly, “A congruence theorem for trees.” Pacific Journal of Mathematics,
vol. 7, no. 1, pp. 961–968, 1957.

[187] B. Manvel and P. K. Stockmeyer, “On reconstruction of matrices,” Mathematics
Magazine, pp. 218–221, 1971.

[188] R. P. Stanley, What Is Enumerative Combinatorics? Springer, 1986.

[189] K.-I. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A.-L. Barabási, “The
human disease network,” Proceedings of the National Academy of Sciences, vol.
104, no. 21, pp. 8685–8690, 2007.

[190] N. K. Ahmed, C. Cole, and J. Neville, “Learning the latent state space of
time-varying graphs,” arXiv:1403.3707, 2014.

[191] R. A. Rossi and N. K. Ahmed, “Coloring large complex networks,” Social Net-
work Analysis and Mining, vol. 4, no. 1, pp. 1–37, 2014.

[192] R. Rossi and N. K. Ahmed, “Interactive data repositories: From data sharing
to interactive data exploration & visualization,” in Proceedings of the ACM
SIGKDD Workshop on Interactive Data Exploration and Analytics, 2015, pp.
1–5.

VITA

181

VITA

Nesreen Ahmed was born and raised in Cairo, Egypt. She received her Ph.D. from

the Department of Computer Science at Purdue University. Her research in large-scale

data mining and machine learning focuses on the design of efficient and scalable tech-

niques for the analysis and modeling of network, social media, and time-series data.

Nesreen earned her joint master's degree in statistics and computer science from Pur-

due University. She also earned another master's degree and her bachelor of science

from Cairo University. She has published numerous papers at conferences, journals,

and two patents. She has also given tutorials on network sampling at top data mining

conferences. Nesreen worked as a researcher at Facebook, Intel data analytics, Adobe

Advanced Technology labs, and the data mining and computer modeling Center of

Excellence in Cairo. She was selected by the university of California Berkeley as a

rising star, awarded to top Ph.D. candidates and postdocs. Nesreen is an author of

the web-based network repository project (http://networkrepository.com), the first

data repository with interactive visual graph analytics.

	Scaling Up Network Analysis and Mining: Statistical Sampling, Estimation, and Pattern Discovery
	Recommended Citation

	tmp.1541013128.pdf.XFNdD

