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ABSTRACT 

Wilson, Gregory L. Ph.D., Purdue University, December 2015. Development And 

Application Of Pseudoreceptor Methods. Major Professor: Markus Lill. 

 

 

 Quantitative Structure-Activity Relationship (QSAR) methods are a commonly 

used tool in the drug discovery process.  These methods attempt to form a statistical 

model that relates descriptor properties of a ligand to the activity of that ligand compound 

towards a specific desired physiological response.  QSAR methods are known as a 

ligand-based method, as they specifically use information from ligands and not protein 

structural data.  However, a derivation of QSAR methods are pseudoreceptor methods.  

Pseudoreceptor methods go beyond standard QSAR by building a model representation 

of the protein pocket.  However, the ability of pseudoreceptors to accurately replicate 

natural protein surfaces has not been studied.    The goal of this thesis work is to 

investigate the necessary descriptors to map a protein binding pocket and a method to 

accurately recreate the 3-D spatial structure of the binding pocket.  In addition, additional 

applications of existing pseudoreceptor methods are explored. 

 To identify the necessary descriptors to map a protein binding pocket,   we 

developed a program that decomposes the protein-ligand interaction surface from a large 

number of ligand-bound protein crystal structures.    The binding pockets of the protein 
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structure are identified, and then the physico-chemical properties of the protein are 

mapped onto the solvent accessible surface of the binding pocket.  A number of 2-D 

Gaussian functions are then placed onto this surface to model the protein’s physico-

chemical properties.  We found that a small number of these Gaussians were able to 

accurately replicate the properties of the protein. 

 With this knowledge, we then desired a means of accurately recreating the 

binding pocket surfaces of proteins only the structures of their bound ligands.  Typically 

in pseudoreceptor methods either the average or combined solvent accessible surface of 

the ligand set is used.  To test this, we generated iso-level surfaces of the solvent 

accessible surfaces of sets of ligands for which the co-crystallized protein structure is 

available.  We also tested additional sets of surfaces located beyond the ligand’s solvent 

accessible surface.  We found that any single surface was unable to accurately reproduce 

the protein-ligand interaction surface, and multi-surface approach using numerous iso-

surfaces is needed to accurately represent the protein. 

 Finally, we explored the application of RAPTOR, an existing pseudoreceptor 

method, to the problem of the prediction of Sites-of-Metabolism (SoM) for Cytochrome 

P450s (Cyps).  In our approach, we used RAPTOR as a means of discriminating between 

active (correctly predicted SoM) docking poses of ligands from decoy (incorrect SoM) 

poses.  With our method, we achieved the highest reported rate of SoM prediction across 

nine Cyp isoforms, with the best reported performance on seven of those nine isoforms.



1 

 

 

1
 

CHAPTER 1. INTRODUCTION 

1.1 Combined Ligand-based and Structure-based Computer-Aided Drug Design 

The majority of Computer-Aided Drug Design (CADD) methods can be divided into 

two categories: ligand-based drug design, and structure-based drug design.   These 

categories are named after the origin of the data used in the design procedure.  Ligand-

based drug design efforts are based off the analysis of the biological activities and chemical 

properties of a set of ligands, and are often used when little to no information about the 

structure of the target protein is available.  A primary example of ligand-based drug design 

would be the wide variety of Quantitative Structure Activity Relationship (QSAR) 

techniques.  On the other hand, when there is sufficient information about the three-

dimensional structure of the target protein, especially if an X-ray structure is available, 

structure-based drug design methods are routinely applied in the drug development process.  

These techniques focus on simulating the interactions of potential ligands with the protein 

structure.  Molecular dynamics or Monte Carlo simulation-based free energy methods and 

protein-ligand docking simulations are major types of structure-based design techniques.  

However, as the number of available protein-ligand crystal structures continues to rise, and 

as more and more physicochemical and biological data for ligands is published, there is an 

increasing number of systems where both ligand and protein structure data is available.  

Thus, there is a growing trend of attempting to 
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perform both ligand-based and structure-based drug design on the same protein system.  

These efforts may be as simple as performing QSAR or pharmacophore studies and 

docking on the same system, and there are a number of examples of such occurrences in 

the literature1,2.   What we are focused on here, however, are integrated methods of 

combining ligand-based and structure-based drug design concepts into a single technique. 

 Some of the earliest work on combining techniques from structure- and ligand-

based design was the adaptation of the GRID program3,4 to ligand-based design leading to 

the GRID-GOLPE approach5.  The GRID method can be used on a protein structure to 

identify hotspots of possible protein-ligand interactions, e.g. favorable interactions with 

hydrogen-bonding or hydrophobic groups.  In the GRID-GOLPE adaptation, GRID is 

applied on a set of ligand structures binding to a common binding site. GOLPE6 performs 

the chemometric analysis by identifying the descriptors strongly correlating with biological 

activity and generating a multivariate regression using those descriptors.  The methods that 

we will discuss in this section cover two major categories where significant development 

of integrated structure-based and ligand-based drug design is occurring: interaction-based 

methods, like GRID-GOLPE, and docking-similarity based methods (Figure 1.1). 
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Figure 1.1: Classification scheme of integrated structure and ligand-based methods.  The 

major classification into two major categories includes interaction-based and docking 

similarity-based methods.  Each of those categories contain two subcategories: 

pseudoreceptor methods and pharmacophore/fingerprint-based methods for the 

interaction-based methods, and combined structure-ligand based virtual screening 

approaches and methods that integrate similarity-based concepts into the scoring process 

of ligand docking. 
  

Structure-Based Design 
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1.1.1 Interaction-Based Methods 

One major class of methods integrating both ligand-based and structure-based drug 

design methods is based on comparing or modeling protein-ligand interactions across 

similar protein-ligand systems.  These concepts seek to identify key protein-ligand 

interactions from known data and utilize this interaction data to identify ligands with 

similar interaction profile.  This class of integrated methods can be further divided into two 

sub-categories (Figure 1.1).  The first sub-category is the pseudoreceptor techniques that 

correlate similarities between ligands with measured biological activity, similar to QSAR, 

but then use this data to establish a structural representation of the protein-ligand binding 

pocket11,45,46,48,50-72.  The other set of techniques is the converse of the first category.  These 

methods analyze protein-ligand interactions in structural data to extract key types of 

interactions, and then translate that information into a simplified mathematical 

representation that can be used by similarity-based methods to screen for active lead 

compounds in ligand libraries73-96.  Many techniques from this category are based upon 

fingerprint or pharmacophore models. 

 

1.1.2 Docking and Screening Based Methods 

 The second major class of integrated structure-based and ligand-based design 

techniques is those methods which combine structure-based docking techniques with 

ligand-based similarity information (Figure 1.1)2,97-104.  The first subcategory is screening-

based methods.  These methods use ligand similarity to aid high-throughput virtual 

screening in one of two ways.  When there is a known hit or lead compound, similarity 

studies are used to enrich ligand libraries to reduce the number of compounds that are 
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docked.   The other approach is to use docking to identify a possible hit, and then screen a 

ligand library for similar ligands as alternative hits.   The other category addresses one of 

the major known issues with docking, the scoring problem, by integrating ligand similarity 

directly into the scoring process. 

 

1.2 Pseudoreceptor Methods 

As mentioned previously, pseudoreceptor methods are a means of integrating 

structure-based and ligand-based techniques.  Pseudoreceptor7 methods are primarily 

expansions of Quantitative Structure Activity Relationship (QSAR) techniques, mainly 3-

D-QSAR techniques such as CoMFA8, CoMSIA9,10, or GOLPE6, that place 

physicochemical information onto 3-D space surrounding a set of aligned reference 

compounds that bind into the same binding site of a common macromolecular target.  

Pseudoreceptor methods expand this mapping by attempting to create models of the target 

protein binding site around the ligand ensemble.  These representative pseudoreceptor 

models are intended to contain key protein-ligand interactions, and to map these 

interactions into an appropriate shape and volume.   

The aim of generating these models is to be able to rationally modify or propose 

new small molecules that are complementary to the pseudoreceptor model and to 

accurately predict binding affinities for a series of potential ligands.  Early pseudoreceptor 

methods involved the manual folding of peptide chains around the ligand ensemble11, but 

these methods have now been expanded into a wide-variety of automated computational 

methods.  There are several major classes of pseudoreceptor methods including atom-based, 

surface-based, fragment-based and residue-based methods1-6.  
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1.2.1 Challenges of Pseudoreceptor Methods 

Two critical factors in the overall process of pseudoreceptor modeling are the 

chemical space of the ligand set and the ligand alignment process.  The chemical space of 

a ligand set refers to the set of physicochemical properties present in the entire ligand 

library and the span of related binding affinities.  The pseudoreceptor model can only 

account for those features present in the chemical space of the ligand library, e.g. if a 

protein has a hydrogen-bonding residue in the binding pocket with no matching functional 

group in the ligand set, the pseudoreceptor model will lack that particular hydrogen-

bonding feature.   

The alignment of the ligand set plays an important role in generating the 

pseudoreceptor model as well.  In order to accurately represent the 3-D structure of the 

protein-binding pocket, the correct ligand binding mode is necessary.  This is a non-trivial 

challenge, especially with regards to highly flexible ligands.  As such, a large number of 

methods for alignment have been developed and utilized for the various pseudoreceptor 

methods.  Alignment techniques include pharmacophore based methods, molecular 

simulations, other similarity-based methods, as well as docking methods if protein structure 

information is available12-21.   

 

1.2.2 Surface-based methods 

One major class of pseudoreceptors is surface-based methods, where the 

pseudoreceptor is represented as a curved 3-D surface with physicochemical properties 

mapped onto it representing protein properties important for protein-ligand interactions44-

48.  These surfaces are generated in a number of ways.  In Receptor Surface Models (RSM), 
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a “shape field” for each ligand is generated that represents the molecular volume45-47.  The 

fields for all ligands are then combined, and an iso-level surface is generated based on the 

combined shape field.  In RAPTOR, an iso-surface approximating the solvent-accessible 

surface of the aligned ligand-set is generated48.  The occupancy of every ligand atom is 

mapped onto a grid according to a smooth function ranging from one at the atom center to 

zero at its solvent accessible surface. An iso-level surface is then generated again, similar 

to the RSM approach.   

 

1.3 Cytochrome P450 

 Cytochromes P450 (CYPs) are a superfamily of membrane-bound hemoproteins.  

They are enzymes, with a heme-iron catalytic site with the iron coordinated via a cysteine 

residue.  CYPs, generally, catalyze the oxidation of a substrate via electron transfer and 

hydrogen abstraction.  CYPs are membrane-anchored proteins, with molecular weights 

ranging from 45 to 60 kDa, and they contain large, flexible binding pockets.  While CYPs 

are found in a wide variety of species, the human cytochromes are encoded by 57 genes 

and 33 pseudogenes and are divided into 42 families and subfamilies.49 



8 

 

 

8
 

1.3.1 Importance of Cytochrome P450 

 CYPs metabolize both endogenous and exogenous compounds22, which leads to 

their clinical importance: the CYP superfamily is responsible for the metabolism of the 

majority of pharmaceutical compounds23.  Particularly important in drug metabolism are 

CYP1A2, CYP2C9, CYP2C19, CYP2-D6, and CYP3A424.   As drug metabolism and 

elimination are important factors in the drug discovery and development process, and CYPs 

play a ubiquitous role in those processes, CYP-drug interactions must be kept constantly 

in mind when developing new pharmaceuticals25.  Common concerns are metabolic rate, 

which is a key factor in therapeutic dosage, and the production of toxic metabolites, which 

can cause the abandonment of otherwise promising drug candidates26.  These concerns lead 

to the desire of medicinal chemists for the ability to alter metabolic rate or by-product 

production by changing the site of ligand metabolism via CYPs27,28. 

 

1.3.2 Site of Metabolism Prediction 

 In order to alter the metabolism of a ligand by CYP, one must be able to predict the 

ligands’ sites of metabolism (SoM).  Computational tools have become widely used for the 

prediction of SoM of CYP substrates27.  As mentioned previously, computational methods 

are divided into structure-based, ligand-based, and combined methods, and there exists 

CYP SoM prediction tools that fall into all of these categories29,30. 

 

 

 

 



9 

 

 

9
 

  1.3.2.1 Ligand-based Site of Metabolism Prediction 

 Ligand-based techniques, as mentioned previously, analyze ligands’ 

physicochemical properties to predict the most likely site of metabolism.  Such methods 

include quantum chemical calculation-based reactivity prediction, such as SmartCYP31, 

pharmacophore models, rule-based methods, and fingerprint methods32.  While highly 

efficient, these methods also ignore important considerations, namely the binding pose of 

the ligand with its target CYP, as the most energetically favorable metabolic site may not 

be located in proximity to the catalytic heme. 

 

1.3.2.2 Structure-based Site of Metabolism Prediction 

 The converse to ligand-based techniques, structure-based techniques calculate 

interactions between a ligand and a structural model of the CYP enzyme to determine the 

likely SoM.  Structure-based techniques include ligand docking and molecular dynamics 

simulations33.  These techniques attempt to predict if a ligand will bind a specific CYP 

enzyme, and if so, attempt to determine the binding pose of the ligand and which ligand 

atoms are in close proximity to the catalytic heme.  These techniques can be time 

consuming, especially molecular dynamics simulations, and are highly dependent on the 

accuracy of the scoring function or force field used in the simulations and require protein 

structure models, which can be difficult to obtain, especially for membrane-bound proteins 

such as CYPs. 
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1.3.2.3. Combined Ligand-based and Structure-based Site of Metabolism Prediction 

 As mentioned previously, both ligand-based and structure-based methods have 

significant weakness when predicting SoMs.  This has led many groups34-38, including the 

Lill group39, to attempt to combine both types of methods.  These combined methods are 

designed to utilize ligand-based information while being guided by structural constraints.  

These methods are especially useful when multiple metabolic pathways exist for a 

compound.  An exemplar of this situation is the compound Terbinafine, which is 

metabolized by at least seven different CYP isozymes and results in multiple different 

metabolites40.   The complex interactions between reactivity and ligand-binding pose are 

difficult to predict using structure-based or ligand-based information only. 

 The approach previously developed by the Lill group combined the NAT reactivity 

model developed by Olsen et al.41 with ensemble docking.  In ensemble docking, molecular 

dynamics simulations are performed on a protein crystal structure to produce a diverse 

ensemble of protein structures.  The ligands of interest are then docked to every member 

of the protein ensemble instead of a single crystal structure.  This allows for protein 

flexibility to generate a more diverse set of ligand binding poses.  In our previous method, 

instead of purely relying on the docking scoring function to determine the best scoring pose, 

and therefore the predicted site of metabolism as determined by proximity to the catalytic 

site, the NAT model was included as an additional scoring factor.  This skewed the results 

towards those poses with a reactively favored atom close to the metabolic heme, and 

produced better predictive results than the NAT model or ensemble docking in isolation.  

 

 



11 

 

 

1
1
 

1.4 Research Summary 

 The overall goal of my research is the application and development of the 

advancement of combined ligand-based and structure-based techniques, namely 

pseudoreceptor-based methods, with a focus on surface-based pseudoreceptors.  While the 

goal of pseudoreceptor methods is to produce a protein-like structure to interact with 

ligands, there has been a lack of use of protein structural data in the guiding of the creation 

of the pseudoreceptors.  In Chapter 2, analysis of the interaction surface between protein 

crystal structure and co-crystallized ligand for the refined set of the PDBbind database42,43 

will be presented.   These surfaces represent the ideal pseudoreceptor, as they map the true 

interactions of protein and ligand, and the analysis will show that the majority of protein-

ligand interactions can be mapped by a few of Gaussian-based descriptors that have 

parameters that fall into a small range of values.  In Chapter 3, a means of tuning surface-

based pseudoreceptors to accurately replicate protein binding pocket topology as from 

known binding ligands will be presented. 

In Chapter 4, I will discuss the implementation of the refinement of our group’s 

previous work on SoM prediction, which includes the use of a modified version of the 

RAPTOR pseudoreceptor package.  The modification was the inclusion of reactivity scores 

from the SMARTCYP package as term in the RAPTOR scoring function.   The motivation 

for the inclusion of RAPTOR was as a means of generating a model which could reliably 

select binding poses with the known SoM close to the heme of CYP.  This method was 

implemented as a means to counteract the difficulties arising from the large number of 

poses generated by the ensemble docking process.  The initial modeling was performed on 

CYP2C9, but was later extended to eight other CYP isozymes. 
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***Note: Portions of this section previously published in the following papers: 

Wilson, GL.; Lill, MA. Integrating structure-based and ligand-based approaches for 

computational drug design, Future Medicinal Chemistry, 2011, 3, 735-770. 

Wilson, GL.; Lill, MA. Towards a realistic representation in surface-based 

pseudoreceptor modelling: a PDB-wide analysis of binding pockets, Molecular 

Informatics, 2012, 31, 259-271 

Kingsley, LJ.; Wilson, GL.; Essex, ME.; Lill, MA. Combining Structure- and Ligand-

Based Approaches to Improve Site of Metabolism Prediction in CYP2C9 Substrates. 

Pharm. Res., 2015, 32, 986-1001. 

  



13 

 

 

1
3
 

List of References 

 

1.   Nicolotti, O; Miscioscia, TF; Carotti, A; Leonetti, F; and Carotti, A. An integrated 

approach to ligand- and structure-based drug design: Development and application to a 

series of serine protease inhibitors. J. Chem. Inf. Model. 48[6], 1211-1226 (2008). 

2.  Lin, TW; Melgar, MM; Kurth, D et al. Structure-based inhibitor design of AccD5, 

an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium 

tuberculosis. Proc.Natl.Acad.Sci.U.S.A. 103[9], 3072-3077 (2006). 

3.   Goodford, PJ. A Computational-Procedure for Determining Energetically 

Favorable Binding-Sites on Biologically Important Macromolecules. J. Med. Chem. 

28[7], 849-857 (1985). 

4.   Goodford, P. Multivariate characterization of molecules for QSAR analysis. 

Journal of Chemometrics 10[2], 107-117 (1996). 

5.   Nilsson, J; Wikstrom, H; Smilde, A et al. GRID/GOLPE 3D quantitative 

structure-activity relationship study on a set of benzamides and naphthamides, with 

affinity for the dopamine D-3 receptor subtype. J. Med. Chem. 40[6], 833-840 (1997). 

6.   Baroni, M; Costantino, G; Cruciani, G et al. Generating Optimal Linear Pls 

Estimations (Golpe) - An Advanced Chemometric Tool for Handling 3D-Qsar Problems. 

Quantitative Structure-Activity Relationships 12[1], 9-20 (1993). 

7.   Tanrikulu, Y and Schneider, G. Pseudoreceptor models in drug design. Nat. Rev. 

Drug Discov. 7[8], 667-677 (2008). 

8.   Cramer, RD; Patterson, DE; and Bunce, JD. Comparative Molecular-Field 

Analysis (Comfa) .1. Effect of Shape on Binding of Steroids to Carrier Proteins. 

J.Am.Chem.Soc. 110[18], 5959-5967 (1988). 

9.   Klebe, G. Comparative molecular similarity indices analysis: CoMSIA. 

Perspectives in Drug Discovery and Design 12[87-104 (1998). 

10.   Klebe, G; Abraham, U; and Mietzner, T. Molecular Similarity Indexes in A 

Comparative-Analysis (Comsia) of Drug Molecules to Correlate and Predict Their 

Biological-Activity. J. Med. Chem.  37[24], 4130-4146 (1994). 

11.  Momany, F; Pitha, R; Klimkovsky, VJ; and Venkatchalam, CM. Expert Systems 

and Applications in Chemistry. American Chemical Society, Washington D.C. (1989). 

12.  Lemmen, C; Lengauer, T; and Klebe, G. FLEXS: A method for fast flexible 

ligand superposition. J. Med. Chem. 41[23], 4502-4520 (1998). 

13.   Lill, MA and Vedani, A. Combining 4D pharmacophore generation and 

multidimensional QSAR: Modeling ligand binding to the bradykinin B-2 receptor. J. 

Chem. Inf. Model. 46[5], 2135-2145 (2006). 

14.   Lemmen, C and Lengauer, T. Computational methods for the structural alignment 

of molecules. J.Comput.Aided Mol.Des. 14[3], 215-232 (2000). 

15.   Labute, P; Williams, C; Feher, M; Sourial, E; and Schmidt, JM. Flexible 

alignment of small molecules. J. of Med. Chem. 44[10], 1483-1490 (2001). 

16. Jewell, NE; Turner, DB; Willett, P; and Sexton, GJ. Automatic generation of 

alignments for 3D QSAR analyses. J. Mol. Graph. Model. 20[2], 111-121 (2001). 



14 

 

 

1
4
 

17.   Kramer, A; Horn, HW; and Rice, JE. Fast 3D molecular superposition and 

similarity search in databases of flexible molecules. J.Comput.Aided Mol.Des. 17[1], 13-

38 (2003). 

18.   Korhonen, SP; Tuppurainen, K; Laatikainen, R; and Perakyla, M. FLUFF-BALL, 

a template-based grid-independent superposition and QSAR technique: Validation using 

a benchmark steroid data set. J.Chem.Inf.Comput.Sci. 43[6], 1780-1793 (2003). 

19.   Girones, X and Carbo-Dorca, R. TGSA-flex: Extending the capabilities of the 

topo-geometrical superposition algorithm to handle flexible molecules. J.Comput.Chem. 

25[2], 153-159 (2004). 

20.   Ronkko, T; Tervo, AJ; Parkkinen, J; and Poso, A. BRUTUS: Optimization of a 

grid-based similarity function for rigid-body molecular superposition. II. Description and 

characterization. J.Comput.Aided Mol.Des. 20[4], 227-236 (2006). 

21.   Tervo, AJ; Ronkko, T; Nyronen, TH; and Poso, A. BRUTUS: Optimization of a 

grid-based similarity function for rigid-body molecular superposition. 1. Alignment and 

virtual screening applications J. Med. Chem.  48[12], 4076-4086 (2005). 

22. Guengerich FP. Cytochrome p450 enzymes in the generation of commercial 

products. Nat. Rev. Drug Discov. 1(5), 359-66 2002. 

23.  Nebert, DW; Russell, DW. Clinical importance of the cytochromes P450. The 

Lancet. 360[9340], 1107-1182 (2002). 

24. Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug 

discovery data. Nat. Rev. Drug Discov. 4(10), 825-33 2005. 

25. Emoto C, Murase S, Iwasaki K. Approach to the prediction of the contribution of 

major cytochrome P450 enzymes to drug metabolism in the early drug-discovery stage. 

Xenobiotica. 36(8), 671-83 2006. 

26. Thompson RA, Isin EM, Li Y, Weaver R, Weidolf L, Wilson I, et al. Risk 

assessment and mitigation strategies for reactive metabolites in drug discovery and 

development. Chem. Biol. Interact. 192(1–2), 65-71 2011 

27. Trunzer M, Faller B, Zimmerlin A. Metabolic Soft Spot Identification and 

Compound Optimization in Early Discovery Phases Using MetaSite and LC-MS/MS 

Validation. J. Med. Chem. 52(2), 329-35 2008. 

28. Kirkpatrick P. Drug metabolism: Seeking the soft spots. Nat. Rev. Drug Discov. 

8(3), 196- 2009 

29. Crivori P, Poggesi I. Computational approaches for predicting CYP-related 

metabolism properties in the screening of new drugs. Eur. J. Med. Chem. 41(7), 795-808 

2006. 

30. Kirchmair J, Williamson MJ, et al. Computational Prediction of Metabolism: Sites, 

Products, SAR, P450 Enzyme Dynamics, and Mechanisms. J. Chem. Inf. Model. 52(3), 

617-48 2012. 

31. Rydberg P, Gloriam DE, Zaretzki J, Breneman C, Olsen L. SMARTCyp: A 2D 

Method for Prediction of Cytochrome P450-Mediated Drug Metabolism. ACS Med. Chem. 

Lett. 1(3), 96-100 2010. 

32. Cruciani G, Carosati E, De Boeck B, Ethirajulu K, Mackie C, Howe T, et al. 

MetaSite:  Understanding Metabolism in Human Cytochromes from the Perspective of the 

Chemist. J. Med. Chem. 48(22), 6970-9 2005. 



15 

 

 

1
5
 

33. Hritz J, de Ruiter A, Oostenbrink C. Impact of Plasticity and Flexibility on Docking 

Results for Cytochrome P450 2D6: A Combined Approach of Molecular Dynamics and 

Ligand Docking. J. Med. Chem. 51(23), 7469-77 2008. 

34. Moors SLC, Vos AM, Cummings MD, et al. Structure-Based Site of Metabolism 

Prediction for Cytochrome P450 2D6. J. Med. Chem.  54(17), 6098-105 2011. 

35. Zaretzki J, Bergeron C, Rydberg P, Huang TW, Bennett KP, Breneman CM. RS-

Predictor: A New Tool for Predicting Sites of Cytochrome P450-Mediated Metabolism 

Applied to CYP 3A4. J. Chem. Inf. Model. 51(7), 1667-89 2011. 

36. Tyzack JD, Williamson MJ, Torella R, Glen RC. Prediction of Cytochrome P450 

Xenobiotic Metabolism. J. Chem. Inf. Model. 53(6), 1294-305 2013. 

37. Campagna-Slater V, Pottel J, Therrien E, Cantin L-D, Moitessier N. Development 

of a Computational Tool to Rival Experts in the Prediction of Sites of Metabolism of 

Xenobiotics by P450s. J. Chem. Inf. Model. 52(9), 2471-83 2012. 

38. Li J, Schneebeli ST, Bylund J, Farid R, Friesner RA. IDSite: An Accurate Approach 

to Predict P450-Mediated Drug Metabolism. J. Chem. Theo. Comp. 7(11), 3829-45 2011. 

39. Danielson ML, Desai PV, Mohutsky MA, Wrighton SA, Lill MA. Potentially 

increasing the metabolic stability of drug candidates via computational site of metabolism 

prediction by CYP2C9. Eur. J. Med. Chem. 46(9), 3953-63 2011. 

40. Vickers AEM, Sinclair JR, Zollinger M, Heitz F, Glänzel U, Johanson L, et al. 

Multiple Cytochrome P-450s Involved in the Metabolism of Terbinafine Suggest a Limited 

Potential for Drug-Drug Interactions. Drug Metab. Dispos. 27(9), 1029-38 1999. 

41. Rydberg P, Vasanthanathan P, Oostenbrink C, Olsen L. Fast Prediction of 

Cytochrome P450 Mediated Drug Metabolism. ChemMedChem. 4(12):2070-9 2009. 

42. Wang, R, Fang, X, Lu, Y, Yang, CY, Wang, S. The PDBbind Database: 

Methodologies and updates, J. Med. Chem. 48(12), 4111-4119 2005. 

43. Wang, R.; Fang, X.; Lu, Y.; Wang, S. The PDBbind Database: Collection of 

Binding Affinities for Protein-Ligand Complexes with Known Three-Dimensional 

Structures. J. Med. Chem. 47(12), 2977-2980 2004. 

44. Wilson G, Lill M.  Integrating structure-based and ligand-based approaches for  

computational drug design. Fut Med. Chem. 3(6) ,735–750 2011. 

45. Hahn M.  Receptor surface models. 1. Definition and construction. J. Med. Chem 

38(12), 2080–90 1995. 

46. Hahn M, Rogers D. Receptor surface models. 2. Application to quantitative 

structure-activity relationships studies. .J Med. Chem. 38(12),  2091–102 1995. 

47.       Hahn M, Rogers D. Receptor surface models. Perspect. Drug Discov. 12(14), 

117–133 1998. 

48. Lill MA, Vedani A, Dobler M.  Raptor: combining dual-shell representation, 

induced-fit simulation, and hydrophobicity scoring in receptor modeling. J. Med. Chem. 

47(25), 6174–6186 2004. 

49. Nebert DW, Nelson DR, et al. The P450 Superfamily. DNA. 8(1), 1-13 1989. 

50. Kato Y, Itai A, and Iitaka, Y. A Novel Method for Superimposing Molecules and 

Receptor Mapping. Tetrahedron 43(22), 5229-5236 1987. 

51. Kato Y, Inoue A, Yamada M, Tomioka N, and Itai A. Automatic Superposition of 

Drug Molecules Based on Their Common Receptor-Site. J.Comput.Aided Mol.Des. 6(5), 

475-486 1992. 



16 

 

 

1
6
 

52.  Guccione S, Doweyko, AM, Chen, H, Barretta, GU, and Balzano, F. 3D-QSAR 

using “Multiconformer” alignment: The use of HASL in the analysis of 5-HT1A 

thienopyrimidinone ligands.  J.Comput.Aided Mol.Des.  14(7), 647-657 2000. 

53.  Andrews PR, Quint G, Winkler DA et al. Morpheus - A Conformation-Activity 

Relationships and Receptor Modeling Package. J.Mol.Graph. 7(3), 138-145 1989. 

54.  Lloyd DG, Buenemann CL, Todorov NP, Manallack DT, and Dean PM. Scaffold 

Hopping in De Novo Design. Ligand Generation in the Absence of Receptor Information.  

J. Med. Chem.   47(3), 493-496 2004. 

55.  Todorov NP and Dean PM. A branch-and-bound method for optimal atom-type 

assignment in de novo ligand design. J.Comput.Aided Mol.Des. 12(4), 335-349 1998. 

56.  Crippen GM. Validation of EGSITE2, a mixed integer program for deducing 

objective site models from experimental binding data. J. Med. Chem. 40(20), 3161-3172 

1997. 

57.  Crippen GM. Voronoi Binding-Site Models. J.Comput.Chem. 8(7), 943-955 1987. 

58.  Zbinden P, Dobler M, Folkers G, and Vedani A. PrGen: Pseudoreceptor modeling 

using receptor-mediated ligand alignment and pharmacophore equilibration. QSAR. 

17(2), 122-130 1998. 

59.  Vedani A, Zbinden P, Snyder JP, and Greenidge PA. Pseudoreceptor Modeling - 

the Construction of 3-Dimensional Receptor Surrogates. J.Am.Chem.Soc. 117(17), 4987-

4994 1995. 

60.  Vedani A, Dobler M, and Zbinden P. Quasi-atomistic receptor surface models: A 

bridge between 3-D QSAR and receptor modeling. J.Am.Chem.Soc. 120(18), 4471-4477 

1998. 

61.  Vedani A,  Zbinden P, and Snyder JP. Pseudo-Receptor Modeling - A New 

Concept for the 3-Dimensional Construction of Receptor-Binding Sites. J.Recept.Res. 

13(1-4), 163-177 1993. 

62.  Vedani A and Dobler M. 5D-QSAR: The key for simulating induced fit? J. Med. 

Chem. 45(11), 2139–2149 2002. 

63.  Vedani A, Dobler M, and Lill MA. Combining protein modeling and 6D-QSAR – 

Simulating the binding of structurally diverse ligands to the estrogen receptor.  J. Med. 

Chem. 48(11), 3700–3703 2005. 

64.  Walters DE and Hinds RM. Genetically Evolved Receptor Models - A 

Computational Approach to Construction of Receptor Models. J. Med. Chem. 37(16), 

2527-2536 1994. 

65.  Pei J, Zhou JJ, Xie GR, Chen HM, and He X. PARM: A practical utility for drug 

design. J. Mol. Graph. Model.  19(5), 448-454 2001. 

66.  Chen HM, Zhou JJ, and Xie GR. PARM: A genetic evolved algorithm to predict 

bioactivity. J.Chem.Inf.Comput.Sci. 38(2), 243-250 1998. 

67.  Pei JF and Zhou JJ. Flexible atom receptor model. Acta Chimica Sinica 60(6), 

973-979 2002. 

68.  Chae CH, Yoo SE, and Shin W. Novel receptor surface approach for 3D-QSAR: 

The weighted probe interaction energy method. J.Chem.Inf.Comput.Sci. 44(5), 1774-

1787 2004. 

69.  Pei JF, Chen H, Liu ZM et al. Improving the quality of 3D-QSAR by using 

flexible-ligand receptor models. J. Chem. Inf. Model. 45(6), 1920-1933 2005. 



17 

 

 

1
7
 

70.  Chen W and Gilson MK. ConCept: De novo design of synthetic receptors for 

targeted ligands. J. Chem. Inf. Model. 47(2), 425-434 2007. 

71.  McMartin C and Bohacek RS. QXP: Powerful, rapid computer algorithms for 

structure-based drug design. J.Comput.Aided Mol.Des. 11(4), 333-344 1997. 

72.  Hay BP and Firman TK. HostDesigner: A program for the de novo structure-

based design of molecular receptors with binding sites that complement metal ion guests. 

Inorg.Chem. 41(21), 5502-5512 2002. 

73.  Wolber G and Langer T. LigandScout: 3-d pharmacophores derived from protein-

bound Ligands and their use as virtual screening filters. J. Chem. Inf. Model. 45(1), 160-

169 2005. 

74.  Wolber G and Langer T. LigandScout: Interactive automated pharmacophore 

model generation from ligand-target complexes. Abstracts of Papers of the American 

Chemical Society 229, U611 2005. 

75.  Sato T, Honma T, and Yokoyama S. Combining Machine Learning and 

Pharmacophore-Based Interaction Fingerprint for in Silico Screening. J. Chem. Inf. 

Model. 50(1), 170-185 2010. 

76.  Baroni M, Cruciani G, Sciabola S, Perruccio F, and Mason JS. A common 

reference framework for analyzing/comparing proteins and ligands. Fingerprints for 

ligands and proteins (FLAP): Theory and application. J. Chem. Inf. Model. 47(2), 279-

294 2007. 

77.  Mason JS, Morize I, Menard PR et al. New 4-point pharmacophore method for 

molecular similarity and diversity applications: Overview of the method and applications, 

including a novel approach to the design of combinatorial libraries containing privileged 

substructures. J. Med. Chem. 42(17), 3251-3264 1999. 

78.  Weill N and Rognan D. Development and Validation of a Novel Protein-Ligand 

Fingerprint To Mine Chemogenomic Space: Application to G Protein-Coupled Receptors 

and Their Ligands. J. Chem. Inf. Model. 49(4), 1049-1062 2009. 

79.  Deng Z, Chuaqui C, and Singh J. Structural interaction fingerprint (SIFt): A novel 

method for analyzing three-dimensional protein-ligand binding interactions. J. Med. 

Chem. 47(2), 337-344 2004. 

80.  Chuaqui C, Deng Z, and Singh J. Interaction profiles of protein kinase-inhibitor 

complexes and their application to virtual screening. J. Med. Chem. 48(1), 121-133 2005. 

81.  Kelly MD and Mancera RL. Expanded interaction fingerprint method for 

analyzing ligand binding modes in docking and structure-based drug design. 

J.Chem.Inf.Comput.Sci. 44(6), 1942-1951 2004. 

82.  Perez-Nueno VI, Rabal O, Borrell JI, and Teixido J. APIF: A New Interaction 

Fingerprint Based on Atom Pairs and Its Application to Virtual Screening. J. Chem. Inf. 

Model. 49(5), 1245-1260 2009. 

83.  Deng Z, Chuaqui C, and Singh J. Knowledge-based design of target-focused 

libraries using protein-ligand interaction constraints. J. Med. Chem. 49(2), 490-500 2006. 

84.  Nandigam RK, Kim S, Singh J, and Chuaqui C. Position Specific Interaction 

Dependent Scoring Technique for Virtual Screening Based on Weighted Protein-Ligand 

Interaction Fingerprint Profiles. J. Chem. Inf. Model. 49(5), 1185-1192 2009. 

85.  Marcou G and Rognan D. Optimizing fragment and scaffold docking by use of 

molecular interaction fingerprints. J. Chem. Inf. Model. 47(1), 195-207 2007. 



18 

 

 

1
8
 

86.  Venhorst J, Nunez S, Terpstra JW, and Kruse CG. Assessment of scaffold 

hopping efficiency by use of molecular interaction fingerprints. J. Med. Chem. 51(11), 

3222-3229 2008. 

87.  Mpamhanga CP, Chen BN, Mclay IM, and Willett P. Knowledge-based 

interaction fingerprint scoring: A simple method for improving the effectiveness of fast 

scoring functions. J. Chem. Inf. Model. 46(2), 686-698 2006. 

88.  Crisman TJ, Sisay MT, and Bajorath J. Ligand-Target Interaction-Based 

Weighting of Substructures for Virtual Screening. J. Chem. Inf. Model. 48(10), 1955-

1964 2008. 

89.  Tan L, Lounkine E, and Bajorath J. Similarity Searching Using Fingerprints of 

Molecular Fragments Involved in Protein-Ligand Interactions. J. Chem. Inf. Model. 

48(12), 2308-2312 2008. 

90.  Tan L and Bajorath J. Utilizing Target-Ligand Interaction Information in 

Fingerprint Searching for Ligands of Related Targets. Chemical Biology & Drug Design 

74(1), 25-32 2009. 

91.  Tan L, Vogt M, and Bajorath J. Three-Dimensional Protein-Ligand Interaction 

Scaling of Two-Dimensional Fingerprints. Chemical Biology & Drug Design 74(5), 449-

456 2009. 

92.  McGregor MJ and Pallai PV. Clustering of large databases of compounds: Using 

the MDL ''keys'' as structural descriptors. J.Chem.Inf.Comput.Sci. 37(3), 443-448 1997. 

93.  Batista J, Tan L, and Bajorath J. Atom-Centered Interacting Fragments and 

Similarity Search Applications. J. Chem. Inf. Model. 50(1), 79-86 2010. 

94.  Kroemer RT, Vulpetti A, McDonald JJ et al. Assessment of docking poses: 

Interactions-based accuracy classification (IBAC) versus crystal structure deviations. 

J.Chem.Inf.Comput.Sci. 44(3), 871-881 2004. 

95.  Naumann T and Matter H. Structural classification of protein kinases using 3D 

molecular interaction field analysis of their ligand binding sites: Target family 

landscapes. J. Med. Chem. 45(12), 2366-2378 2002. 

96.  MACCS structural keys, MDL Elsevier, San Leandro, CA, USA. 

http://www.mdl.com 2002 

97.  Willett P. Similarity-based virtual screening using 2D fingerprints. Drug 

Discovery Today 11(23-24), 1046-1053 2006. 

98.  Jain AN. Virtual screening in lead discovery and optimization. Current Opinion 

in Drug Discovery & Development 7(4), 396-403 2004. 

99.  Kitchen DB, Decornez H, Furr JR, and Bajorath J. Docking and scoring in virtual 

screening for drug discovery: Methods and applications. Nature Reviews Drug Discovery 

3(11), 935-949 2004. 

100. Shoichet BK. Virtual screening of chemical libraries. Nature 432(7019), 862-865 

2004. 

101.  Tan L, Geppert H, Sisay MT, Gutschow M, and Bajorath J. Integrating Structure- 

and Ligand-Based Virtual Screening: Comparison of Individual, Parallel, and Fused 

Molecular Docking and Similarity Search Calculations on Multiple Targets. 

Chemmedchem 3(10), 1566-1571 2008. 

102.  Fukunishi Y. Structural ensemble in computational drug screening. Expert 

Opinion on Drug Metabolism & Toxicology 6(7), 835-849 2010. 



19 

 

 

1
9
 

103.  Fukunishi Y and Nakamura H. Prediction of protein-ligand complex structure by 

docking software guided by other complex structures. J. Mol. Graph. Model. 26(6), 1030-

1033 2008. 

104.  Hirokawa T. Receptor-ligand docking simulation for membrane proteins. 

Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan 127(1), 123-131 2007. 



20 

 

 

2
0
 

CHAPTER 2.  AN ANALYSIS OF BINDNG POCKETS 

 

 

2.1 Overview 

Pseudoreceptor models are intended to contain key protein–ligand interactions, 

and to map the appropriate spatial information content of these interactions. The aim 

of pseudoreceptor modelling is to generate surrogates of the 3-D structure of the 

protein binding site that can be used for structure-based drug design applications such 

as virtual screening, rationally modifying or proposing new small molecules 

complementary to the pseudoreceptor model, and predicting binding affinities of 

potential ligands. Although several types of pseudoreceptor representations exist1,2, 

one popular class are surface-based pseudoreceptor models that represent the binding 

site of the target protein by selected surfaces. Of particular interest is the solvent -

accessible surface, as it represents the 3-D-space most critical for the complementary 

contacts between protein and ligand. Hydrogen bonds and van der Waals interactions 

are particularly strong at the protein-ligand interface. Thus, these surfaces can provide 

a rather complete representation of the protein-ligand contacts while reducing the 

number of descriptors compared to grid-based approaches. 
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The method RAPTOR11 is an example of a surface- based pseudoreceptor 

approach. Additionally, RAPTOR accounts for both ligand and protein flexibility. In 

general the RAPTOR algorithm works by distributing hydrophobic and hydrogen 

bond properties representing the surrogate of the target protein onto a surface 

surrounding an aligned set of ligand molecules until the interaction between these 

surface properties and the ligands reproduces the experimental binding affinities of 

the compounds. A scoring function is then utilized to measure the interaction strength 

between surface properties and ligand atoms. 

The critical question is how the different physicochemical properties are 

distributed onto the pseudoreceptor surface. In methods such as RAPTOR the surface 

is typically represented by several hundred points. In the most naïve approach those 

points are treated independently from each other, and overfitting may occur during 

optimization of the pseudoreceptor model.  To reduce the number of descriptors in 

RAPTOR, we defined patches of surface points that were empirically forced to adopt 

similar physicochemical properties. The patch size and the transition between patches, 

however, are user-defined and may not reflect accurately the distribution of physico-

chemical properties in experimental protein structures.   

In this chapter, we address the question if the physico-chemical properties on 

the solvent-accessible surface of experimentally determined protein structures can be 

accurately modelled by a small number of surface descriptors.  First, we analysed 

binding pocket surfaces of a large set of experimentally determined protein-ligand 

complexes and used 2-D Gaussian functions to fit the surface properties.  The fitted 

property values differ from the original values on average by 15-25%, and on average 
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six Gaussian functions are necessary to model each surface property. These 

descriptors will allow for a more realistic pseudoreceptor representation of the 

binding site compared to our current empirical patching model implemented in 

RAPTOR and limit the number of descriptors, thereby reducing the potential of 

overfitting throughout the QSAR optimization phase.  

 

2.2 Database Preparation 

For our analysis of protein-ligand interaction surfaces the PDBBind Database3,4 

was chosen, as it contains target protein structures co-crystallized with small molecule 

ligands.  The refined set of the PDBBind database, a set of protein-small molecule crystal 

complexes manually reviewed for resolution, binding affinity data, protein amino acid 

composition, and ligand molecular and common element composition criteria, was 

prepared as input data to our Protein-Ligand Surface Interaction Analysis (PLSIA) program 

(see next section).  The REDUCE program5 was utilized to add missing atoms to the PDB 

structures and to optimize the protein’s hydrogen-bond network by adjusting Asn, Gln and 

His side-chain orientations, as well as the tautomeric and protonation state of His residues. 

AMBER atom types and partial charges were then assigned to the optimized protein 

structures using the AMBER036 force field parameter file. Parameters were not assigned 

to the ligand structures as they are used solely for the definition of the binding pocket. 
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2.3 PLSIA Algorithm 

2.3.1 Surface Triangulation 

The Protein-Ligand Surface Interaction Analysis (PLSIA) program operated by 

loading each protein structure and generating a separate PDB file in which the ligand has 

been removed.  The pseudo-holo form was used for the calculation of triangulated surfaces 

on the exterior protein surface and any cavity using the MSRoll program7.  MSRoll uses a 

rolling probe method to determine the solvent-accessible surface. The cavity or surface 

closest to the ligand was identified using a distance calculation between the ligand atoms 

and the closest surface points and was selected as the protein- ligand interaction surface.  

In order to produce a surface with a larger number of smaller triangles, the tessellation 

fitness parameter was set to 0.5 radians, the default settings were used for all additional 

parameters.   

MSRoll generated a triangulated representation of each exterior and cavity surface, 

however, the triangulation is often heterogeneous, with triangles varying significantly in 

size. The COALESCE program8 was used to regularize the triangulated surfaces. 

COALESCE loads the MSRoll output and combines small triangles, those with edges with 

less than half the average edge length (which is typically around 0.5 Å), and fixes dangling 

vertices resulting in a smooth triangulated surface with similar triangle sizes. COALESCE 

also standardizes the direction of the normal vectors of each triangle, always pointing away 

from the protein. After this refinement, all triangle vertices more than 8 Å from any ligand 

atom were removed.  
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2.3.2 Protein Property Calculation 

After identifying and isolating the binding pocket surface, the program PLSIA 

determined the electrostatic, hydrogen bond, and hydrophobic field of the protein mapped 

onto each triangle vertex.  The results of these equations were parameterized such that an 

output value of one is approximately one kcal/mol of interaction energy. 

 

2.3.2.1 Electrostatic Calculations 

In PLSIA a partial charge was assigned to each protein atom using the Amber03 

force field.  The Coulombic potential on each surface vertex, s, generated by the protein 

atoms within 12 Å was determined by the following equation: 

 
 
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         (2.1) 

Here, n is the number of protein atoms within 12 Å of the surface point s, qi is the partial 

charge of protein atom i, and D(rsi) is the distance-dependent dielectric, which in this case 

is rsi itself, and rsi is the distance between the vertex s and atom i. 

 

2.3.2.2 Hydrogen Bond Calculations 

All protein atoms capable of forming hydrogen-bonds were identified in PLSIA.  

Next, the availability of the donors and acceptors to form protein-ligand hydrogen bonds 

was determined. Donors and acceptors form intra-protein hydrogen bonds if there was a 

complimentary hydrogen-bonding partner identified within 2.5Å and a maximum angle of 

40 degrees between the donor hydrogen atom, donor heavy atom and the acceptor atom.  

Any donor or acceptor atom occupied by intra-protein hydrogen bonds was not considered 
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for further calculation of the hydrogen-bond fields on the protein surface.  Accessible 

hydrogen bonding protein atoms that were within 4 Å of a surface vertex were used to 

calculate the hydrogen bond potential on the vertex point s using the following equation: 

   oo
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Here, rsi is the distance between the vertex s and the hydrogen bond partner 

(hydrogen for donor and heteroatom for acceptor), and  is the hydrogen bond angle.  

For hydrogen bond donors, this angle is between the donor hydrogen atom, the donor 

heavy atom, and the vertex. For hydrogen bond acceptors, the angle is between the 

acceptor’s lone pair, the acceptor atom, and the vertex. The donor potential and 

acceptor potential were determined separately, and a value for both was assigned to 

each vertex.  In addition, the protein atoms which provided the strongest contribution 

to each vertex were identified and stored. 

 

2.3.2.3 Hydrophobic Calculations 

PLSIA assigned a partial logP value to each protein atom using the methodology 

of Wildman and Crippen9.  The overall hydrophobic field spawned by all protein atoms 

onto each vertex s was computed using the following equation: 
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Here, n is the number of protein atoms within 3 Å of the vertex s, logPi is the partial 

log P value of protein atom i, and rsi is the distance between the vertex s and atom i. 

 

2.3.3 Gaussian Preparation 

After the physico-chemical properties of interest have been mapped onto the vertex 

points of the solvent-accessible  surface of the protein, several calculations had to be 

performed to project the 3-D surface onto a 2-D projection map allowing subsequent  2-D 

fits using  Gaussian  network models (see section 2.2.6).  First, an analysis of the 

connectivity of the vertex points was performed to generate the Shortest Path Array (SPA).  

This array was an NxN matrix, where N is the number of surface vertex points, describing 

the shortest connectivity between two vertices along the edges of the triangulated surface.  

The generation of the SPA involved the use of an NxN Edge matrix in which all vertices i 

and j, that are connected via an edge of the triangulated surface were assigned a value of 

one to their corresponding entries Edgei,j and Edgej,i  in the Edge matrix. All entries Edgei,j 

that corresponded to unconnected vertices i and j were set to zero. A brute-force search 

along the connected edges between all vertices using the Edge matrix was used to calculate 

the smallest number of edges separating two vertices, and this value was stored in the SPA.  

Thus the SPA recorded the smallest separation between two vertices along the edges of the 

triangulated surface. 
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Figure 2.1: Possible paths for vertices separated by three edges. Central path which 

illustrates the bisecting path algorithm is shorter than left path composed solely of edge 

traveling.  
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Next, the relative coordinates of the surface points in 3-D representation of the 

protein surface were projected into a 2-D representation to allow for a fit with 2-D 

Gaussian functions:  PLSIA approximates the 2-D distance along the interaction 

surfaces (Figure 2.1).  This calculation was trivial for adjacent vertices (Figure 2.1, 

points A, B), but became more complicated for more separated surface vertex points.  

For all adjacent vertex points, the direct 3-D distance between the two vertex points 

was calculated and stored.   

For points (Figure 2.1, points A, C) separated by two edges (SPA = 2), the 

following process was used:  First, all intermediate points were identified that are 

directly connected to the two target vertices (SPA = 1).  Due to the triangulation of 

the surface, some vertices shared two intermediate po ints (B, D).  For those cases, the 

distance between the two target vertices was defined by finding the point on the 

intermediate edge point (E) that had the smallest sum of distances to the target vertices 

(A, C).  This distance was determined computing the smallest distance along the 

triangulated surface between points A and C passing through 100 equally separated 

points along the edge BD.  This represented the shortest path along the triangulated 

surface between the target vertices (A, C) for a given pair of intermediates (B, D).  

This distance was computed for all vertices with SPA = 2, and the shortest distance 

for each pair was stored.  For points separated by successively higher SPA values, the 

distance was determined by finding the shortest distance given a single intermediate 

point: For vertices with 3 edge separations (SPA = 3; Figure 2.1, points A, F) all 

intermediates with an SPA = 1 to a target vertex (e.g. CF, GF) and an edge with SPA 

= 2 (e.g. AC, AG) to the other vertex were compared; for vertices with 4 edge 
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separations of all  SPA=3/SPA=1 and SPA=2/SPA=2 pairings were compared and the 

shortest distance for each target vertex pair was stored. This procedure was then 

generalized for larger edge separations.   

 

2.3.4 Patching Process 

Next, the surface was divided into patches that represent local maxima of the 

physico-chemical properties that were subsequently fitted using Gaussian functions (see 

section 2.2.6).  This patching was accomplished by the following process:  First, dependent 

on the studied property, the maximum or minimum value of the property on a vertex was 

identified, and this vertex was defined to be the origin of the first patch.  Starting from this 

origin vertex, the vertices with increasing separation from the origin were examined: First 

all vertices with SPA=1, then SPA=2, etc. were examined to determine if they are added 

to the current patch, until an empirically defined maximum edge separation of nine was 

reached.   

In order for a vertex to be included in the current patch, it must have fulfilled 

a number of conditions:  First, the absolute value of the property had to exceed a 

certain minimum property value, set to 0.1 kcal/mol for all properties, except 

hydrophobicity which was set to 0.05 kcal/mol.  This condition was introduced to 

limit the patches to those vertices that represent significant magnitudes of the 

properties of interest.  This condition also allowed for the separation of the 

electrostatic potential into patches with positive and negative values using zero, or 

more precisely the region between -0.1 and 0.1 kcal/mol as boundary criteria.  The 

second condition was that a vertex must be connected by at least a single edge to a 
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vertex already included in the patch definition.  This condition was used to prevent 

two nearby, but separated patches from being combined into a single patch.  The third 

condition for defining a patch was that it must contain at least four vertices, as that is 

the minimum number of points required to fit a 2-D Gaussian containing four 

variables (see section 2.3.6).  Additionally, the hydrogen bonding parameters had a 

fourth patching criterion: all members of a patch had to share the same strongest 

contributing protein atom as identified in the property calculation process.  This 

condition aided in separating overlapping hydrogen bonding patches caused by 

different hydrogen-bonding protein groups. 

 

2.3.5 Coordinate Transformation 

The final step prior to the Gaussian fit was the transformation of the 3-D 

coordinates of the surface vertices of a patch to 2-D coordinates (Figure 2.2).  The 

following list details the process of this transformation. 

1. The center of the patch was defined as the origin (O) 

2. The normal vector of the origin (ON) was calculated by averaging the normal 

vectors of all triangles of which O is a member. 

3. A transformation plane was defined by the plane that passes through O and is 

perpendicular to ON. 

4. All other vertices of the patch were projected into this plane along the vectors 

normal to the plane (e.g. C  C’ or A  A’). 

5. A reference axis for use with 2-D polar coordinates was defined by the vector 

between origin O and vertex C’ closest to the origin point.  
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6. Using this reference axis and the normal vector of the plane, angles for each of the 

projected vertices were determined (Figure 2.2). 

7. The surface distance between each vertex A and O was looked up from the data 

calculated in section 2.2.3. 

8. A new point B’ was calculated for each A by moving the distance from step 7 along 

the angle from step 6. (e.g. Point B’ has coordinates (DistOA, (A’OC’)). 

9. Using these polar coordinates each new vertex was translated into 2-D Cartesian 

coordinates with the origin vertex O having coordinates (0, 0) for use as a reference 

point (e.g. (DistOA cos((A’OC’)), DistOA sin((A’OC’))) for vertex B)’. 
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Figure 2.2: Projection of vertices on 3D surface patch into the 2D plane defined by the 

origin vertex O (maximum or minimum property value) and its normal vector. 3D 

vertices, e.g. A, are projected into the plane (A’) and are scaled to match the 3D 

surface distance between O and A (B’). 
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2.3.6 Gaussian Fitting Process 

Once all surface vertices of the patch were translated into 2-D Cartesian 

coordinate form (x,y), a standard multivariate fitting algorithms was applied to fit a 

2-D Gaussian function to each patch: 
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with σx representing one axis of the Gaussian, σy the remaining axis, θ is rotation of 

the Gaussian axes with respect to the standard Cartesian axes, and A is the amplitude 

of the Gaussian.   

   PLSIA used the non-linear least-squares fitting algorithm from the GNU 

Scientific Library10, based on the Levenberg-Marquadt algorithm, to fit a standard 2-

D Gaussian function to each patch.  The fitting process was run for 10000 steps and 

was repeated for up to 81 different initial parameter settings.  Each parameter, 

amplitude, θ, σx, and σy, had three possible initial settings: 0.25, 0.75, 1.5. Different 

permutations of these starting parameters were run until the Gaussian fit converged 

to a solution with a low sum square error (the average percent error across the patch 

is less than 10%) or until all 81 initial parameter sets had been evaluated, in which 

case the run producing the smallest error was selected.  
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2.3.7 Iteration and Re-patching Process 

After fitting the first patch, the patching and fitting process continued according to 

two different schemes. In the first scheme, called One Pass Fit patching, all vertices of the 

previously fitted patch were removed from further consideration for subsequent patching 

and Gaussian fitting.  The patching and fitting process was repeated for all remaining 

vertices until no further vertices meet the patch criteria.  In this scheme, each point was 

fitted to a Gaussian function at most once for any studied physico-chemical property. 

The second scheme, called Residual Fit patching, allowed for each vertex to 

be fitted multiple times.  This was done to see if the surface was more accurately 

represented by one patch per property per surface region or multiple overlapping 

patches.  This occurs by subtracting the physico-chemical values of the Gaussian fit 

from the original value for every vertex of the current patch resulting in residual 

values.  These residual values were then assigned to each vertex and the modified 

vertices were further considered in the patching algorithm as viable candidates.  

 

2.3.8 Clique Detection Analysis Using Patch Centers 

The Gaussian functions fitted to the patches model the physico-chemical properties 

of the protein projected onto its surface. We expect similar properties on the surface for the 

same protein bound to different ligands if no significant conformational change occurs. To 

test this hypothesis, we performed clique detection between the patch centers for each pair 

of proteins. The center points of the Gaussian fits produced by the PLSIA program were 

considered as pharmacophores representing protein properties  An edge array for each 
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protein surface was generated storing the distances and center types (e.g. donor-donor, 

donor-acceptor, etc.) for all pairs of centers.   

These arrays were used in a clique detection algorithm performing an 

exhaustive search to identify the maximum number of patch centres for which all 

pairwise distances between the two proteins match.  A distance between two centers 

was considered a match if the distances for the two proteins were within a user -

defined tolerance of 0.75 Å and if the centers had matching corresponding property 

types.  A score S was computed for each pair of proteins i and j to measure the number 

of common patch centers in the maximum common clique: 

),min( centers

j

centers

i

centers

ij

ij
nn

n
S           (2.5) 

where nij
centers is the number of matching centers in the clique and ni

centers is the 

number of centers for protein i.  The number of matching centers was normalized by 

the smaller number of total centers of the two compared protein in order to correct for 

the variation in binding pocket size due to variation in size of the co-crystallized 

ligands.    

 

2.4 PLSIA Results 

2.4.1 Quality of Fit 

We used the following measure for evaluating the quality of the fits of the PLSIA 

algorithm: 
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Ep represents the average relative deviation over n evaluated vertices for a property p 

between the fitted values Fi at vertex i and computed initial surface value Ci at vertex 

i. We used this criterion to evaluate two different analysis schemes using PLSIA, One 

Pass and Residual Fit, as described under Section 2.3.7. 

Table 2.1 displays the average relative error of Gaussian fitting for 

electrostatic, hydrophobic and hydrogen properties. For electrostatic and hydrophobic 

properties, the average error is approximately 15% of the initial surface values, 

however larger errors are observed for donor and acceptor properties. This suggests 

that the patches can be represented by single Gaussians.  We propose that this 

difference in fitting accuracy between hydrogen-bond and the other properties is at 

least partially due to the directionality of the hydrogen bond (Figure 2.5).  If the 

hydrogen bond is oriented along the normal vector of the surface, the resulting patch 

is well characterized by a symmetric function such as the Gaussian function, as with 

increasing surface distance from the center of the patch both distance and angle 

increase reducing the interaction potential according to equation 2.2.  However, if the 

hydrogen bond direction is tilted with respect to the surface normal (Figure 2.5), the 

distance and angle term in equation 2.2 display different maxima on the surface and 

the resulting interaction potential on the surface will become asymmetric.   
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Table 2.1: Average Relative Error of Gaussian Fitting for Individual Properties  

Algorithm El.st. H.phobic Donor Acceptor 

One Pass Fit 0.159 0.156 0.254 0.225 

Residual Fit 0.158 0.144 0.238 0.210 
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Figure 2.3: Hydrogen-bond interaction potential on the surface using equation 2 

together with the optimal Gaussian fit to that distribution for a single hydrogen bond 

group tilted with respect to the surface normal by 45 degrees. The hydrogen bond 

group is located two units below the axis at x=0.  The angle causes the potential 

function to have maximum not located at the coordinate center (x=0).  The error using 

equation 5 is approximately 10% . 
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We also observed that for all properties there is only a small difference in average 

relative errors between the One Pass and Residual fits.  Additionally, we investigated 

the effect of two central variables in the program, the minimum and maximum sizes 

of the fitted surface patch, onto the observed error in fit. The absolute minimum size 

of a patch is four points, as that is the number of unknown variables in the Gaussian 

function.  Changing the minimum size (Table 2.2) showed significant variation in the 

error of the fits.  Some of the error is due to several small patches that are being less 

well fit by Gaussian functions when a larger patch size is enforced. Consequently, we 

chose a minimum size of four points for subsequent analysis.  

The maximum size of the property patch is governed by the maximum number of 

edge lengths measured from the surface point representing the maximum value of a 

property of a patch.  We investigated maximum edge lengths of five to nine edges 

using the Residual Fit method.  Comparing the results across all properties, no 

significant variation in observed error can be noted, as shown in Table 2.3. The aim 

of this study was to investigate if a small number of surface descriptors can be used 

to characterize the distribution of physico-chemical properties of the protein. Thus, 

we decided to allow patches with maximum edge length of nine, as this would prevent 

the splitting of large patches into smaller fractions, resulting in a decrease in number 

of surface descriptors. 
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Table 2.2. Average Relative Error of Gaussian Fitting for Individual Properties with 

Variation of Minimum Patch Size (Residual Fit). Maximum edge length was set to 

eight. 

Type of 
interaction 
 

Minimum Points 
 
 

 4 8 12 

El.st. 0.158 0.166 0.169 

H.phobic 0.144 0.166 0.185 

Donor 0.238 0.270 0.299 

Acceptor 0.210 0.231 0.242 
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Table 2.3: Average Relative Error of Gaussian Fitting for Individual Properties with 

Variation of Maximum Patch Size (Residual Fit). Minimum number of points in patch 

was set to four. 

Type of 
interaction 

 

Maximum edge length 
 
 

 5 6 7 8 9 

El.st. 0.141 0.148 0.153 0.158 0.158 

H.phobic 0.138 0.141 0.141 0.143 0.144 

Donor 0.240 0.240 0.238 0.238 0.238 

Acceptor 0.210 0.209 0.209 0.209 0.210 

  



42 

 

 

4
2
 

2.4.2 Characterization of distributions of properties 

We characterized how the different physico-chemical properties are 

distributed on the surface by analysing the size of the patches, and the magnitude and 

widths of the fitted Gaussian functions. Here we considered the results from the 

Residual Fit analysis. 

Figure 2.4 shows that the largest portion of patches are small in size, with a 

maximum number of patches with a size between four and ten (~1-3 Å2) for all 

properties except hydrogen bond donors which adopts a broad maximum at a patch 

size containing about 20 surface points (~5 Å2). The frequency of obtaining large 

patches decreases rapidly with size for electrostatic and hydrogen bond properties, 

however this trend is weaker for hydrophobic properties. Compared to hydrogen bond 

properties, the interaction potential for hydrophobic contacts (equation 2.3) has a 

longer interaction range. Furthermore, the hydrophobic function doesn’t contain any 

directionality information, thus the hydrogen bond patches are more localized and 

consequently smaller in size compared to the hydrophobic patches. Electrostatic 

interactions are dependent on the partial charges, which for formally neutral chemical 

groups are due to differences in electronegativity of bonded atoms. The connected 

atoms in those groups typically have alternating signs of partial charge. On the 

contrary, hydrophobic moieties in the binding site of protein consist of a collection 

of connected atoms. Thus, it is not surprising that hydrophobic surface patches are 

larger in dimension than electrostatic patches from neutral chemical entities.  
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Figure 2.4. Distribution of number of patches with a specific patch size for 

electrostatic (A, negative, B, positive), C, hydrophobic, D, hydrogen bond donor and 

E, acceptor properties. 
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Figure 2.5: Distribution of width of Gaussian fit to patches with electrostatic (A, 

negative, B, positive), C, hydrophobic, D, hydrogen bond donor and E, acceptor 

properties. 

 

  

A B 

C D 

E 



45 

 

 

4
5
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Distribution of amplitude of Gaussian fit to patches with electrostatic (A, 

negative, B, positive), C, hydrophobic, D, hydrogen bond donor and E, acceptor 

properties. 
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The trend for the distribution of patch sizes for the different physico-chemical 

properties is reproduced in the distribution of the width of the Gaussian function fit 

to the patches (Figure 2.5). Width has been defined as half of the sum of the lengths 

of the principal axes of the Gaussian function. Compared to electrostatic and 

hydrogen-bond properties, hydrophobic patches are on average larger in size and 

consequently Gaussian fits display larger widths. 

Figure 2.6 displays the distribution of amplitudes of the Gaussian fits for the 

various properties. Interestingly, on average the negative electrostatic potential is 

smaller in magnitude than the positive electrostatic potential. This reflects the smaller 

van der Waals radius of partially positive hydrogen atoms compared to partially 

negative nitrogen, oxygen, sulphur or carbon atoms. Thus, surface points on the 

solvent accessible surface are on average closer to positive atoms than to negative 

atoms, which results in stronger positive electrostatic potential compared to negative 

potential. Most hydrogen bonding patches have amplitude of around one or minus one 

consistent with the maximum hydrogen bond strength of one according to equation 

2.2. Hydrogen-bond acceptor patches with amplitude up to two and donor patches 

with amplitude up to three have been identified. Those patches represent surface 

regions that share multiple nearby hydrogen-bonding functional groups of different 

amino-acid residues that cannot be cleanly separated by the closest protein atom 

classification. 
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2.4.3 Similarity of binding sites 

We also investigated how similar the identified patches and Gaussian fits were 

for different crystal structures of the same protein.  For this study, we ran the PLSIA 

program on a set of structures for 4 different proteins: Estrogen receptor, CDK2, HIV 

protease, and RARγ.  The estrogen receptor set includes both protein structures with 

bound agonists and antagonists.  We performed a clique detection analysis of the 

distances between centers of the surface patches (see section 2.2.8) for all pairs of 

protein structures. The results were evaluated for pairs of structures of the same 

protein system and different protein systems (Figure 2.7). 

For the RARγ and agonist-bound estrogen receptors, there is clear separation 

between the similarity scores (equation 2.5) for comparisons between structures of 

the same protein system with respect to comparisons to structures of other protein 

systems.  Such a clear separation was not identified for the other protein systems, 

though for CDK2 and HIV protease the intra-protein scores are slightly higher relative 

to the comparisons with the structures of other protein system. For antagonist bound 

estrogen-receptor structures, a separation to comparisons with other protein systems 

is observed but not to comparisons with agonist-bound estrogen structures. This is not 

surprising, as the antagonists bind also to the agonist binding site but their chemical 

structure typically extends to a solvent-exposed moiety. As the used similarity 

measure (Equation 2.5) is normalized to the minimum number of patches in either of 

the two compared protein structures (here the agonist bound structures), the partial 

overlap of agonist and antagonist binding sites resulted in a comparable range of 

similarity scores. 
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Figure 2.7: Similarity score (Equation 2.5) for all pairs of protein structures using 

clique detection on the centers of surface patches.  Each column represents all pair -

wise interactions for the indicated protein groupings, either intra or inter-protein. 
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Analysing each individual protein structure (Figure 2.8) reveals that in all 

cases the average similarity score to any protein structure from the same protein class 

is higher than the corresponding average score to any other protein structure. Thus, 

the analysis still seems to preferentially select members of the same protein class 

against other protein systems, even for CDK2 and HIV protease.  

Visual comparisons of pairs of protein structures of the same protein system, 

reveals that low similarity scores are often associated with conformational changes in 

the binding site (Figure 2.9). The structures of the binding sites of agonist-bound 

estrogen receptors are relatively similar, resulting in comparable locations of the 

Gaussian centers and consequently large similarity scores. In contrary, the CDK2 

system shows significant conformational variation in the binding pocket, which leads 

to dissimilar Gaussian center locations and low similarity scores. 
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Figure 2.8: Difference in average similarity score (equation 2.5) between 

comparisons to protein structures within and without the same protein class for all 

protein structures. Positive values correspond to larger similarity among members of 

the same protein class.  Every individual protein structure was more similar to 

members of its protein class (represented by a positive score) than to other protein 

classes.  The more rigid or conserved the binding pocket, the more positive the score.  
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Figure 2.9: Pairwise comparison of Gaussian centers for two protein structures for 

two different protein systems, agonist-bound estrogen receptor (top) and CDK2 

(bottom). Top: Binding site residues for the estrogen receptor structures 1gwr (black) 

and 1gwq (grey) are displayed as lines, the corresponding Gaussian centers are shown 

as small solid spheres (1gwr) and large transparent spheres (1gwq). The binding site 

residues don’t display significant conformational changes, resulting in similar 

positions of Gaussian centers. Bottom: The extended loop regions in 1rej (black) and 

1b38 (grey) show significant conformational differences resulting in poor overlap 

between Gaussian centers of 1rej (small solid spheres) and 1b38 (large transparent 

spheres). Gaussian centers for electrostatic negative patches are colored cyan, positive 

(pink), hydrophobic (brown), donors (blue) and acceptors (red).   
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2.5 PLSIA Conclusions 

In this chapter we studied if the physico-chemical properties of the binding site of 

a protein can be accurately represented by surface descriptors modelled by 2-D Gaussian 

functions fitted to surface patches. Properties such as electrostatic and hydrophobic 

properties are accurately fitted using Gaussian functions with an average relative error 

around 15%. Hydrogen bond properties are more localized but display larger errors around 

20-25% compared to other properties. One contribution to this increased error is that 

hydrogen bonds are directional but the vector of directionality of a hydrogen bond donor 

or acceptor doesn’t necessarily point in the direction of the surface normal. Adding a 

directionality term to the Gaussian fit function may reduce the error of fit but increases the 

number of fit variables and consequently the potential of overfitting. 

The type and location of the Gaussian centers is consistent among different structures 

of the same protein system, if no significant conformational changes are observed in the 

binding site upon binding of different ligands. On average, only about six Gaussian 

function descriptors are necessary to model each physico-chemical property important for 

ligand binding. This demonstrates the potential to use 2-D Gaussian functions in surface-

based pseudoreceptors allowing for a significant reduction of number of descriptors in the 

QSAR modeling process. 

***Note: Portions of this chapter previously published in: 

Wilson, GL.; Lill, MA. Towards a realistic representation in surface-based 

pseudoreceptor modelling: a PDB-wide analysis of binding pockets, Molecular 

Informatics, 2012, 31, 259-271 
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CHAPTER 3.  OPTIMIZING SURFACE REPRESENTATIONS OF BINDING 

SITES USING EXPERIMENTAL PROTEIN-LIGAND STRUCTURE DATA 

 

 

3.1 Overview 

As mentioned in Chapter 1, there are several major classes of pseudoreceptor 

methods including atom-based, fragment-based and residue-based methods1,2.  One major 

class is surface-based methods, where the pseudoreceptor is represented as a curved 3-D 

surface with physicochemical properties mapped onto it representing protein properties 

important for protein-ligand interactions3-6.  These surfaces are generated in a number of 

ways.  In Receptor Surface Models (RSM), a “shape field” for each ligand is generated that 

represents the molecular volume3-5.  The fields for all ligands are then combined, and an 

iso-level surface is generated based on the combined shape field.  In RAPTOR, an iso-

surface approximating the solvent-accessible surface of the aligned ligand-set is generated6.  

The occupancy of every ligand atom is mapped onto a grid according to a smooth function 

ranging from 1 at the atom center to 0 at its solvent accessible surface. An iso-level surface 

is then generated again, similar to the RSM approach.  Atom-based approaches use similar 

methods to determine where to place the atoms of the pseudoreceptor7-11.  For example, 

FLARM generates a spherical grid around the geometric center of the aligned ligands8.  

The sphere is then contracted towards the  center until a grid point contacts the surface of 
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a ligand atom. The surface is finally relaxed to allow for a cushion distance of less than 

one Å between ligand and pseudoreceptor.  In WeP11, the marching cube algorithm is used.  

The space surrounding the ligand set is divided into cubes and steric overlap of a methyl 

groups (2.0 Å probe radius) placed on each cube vertex with the ligands is tested.  The 

interacting cube vertices are then used for generating a triangulated surface representing 

the pseudoreceptor.   

Whereas those different schemes aim to empirically reproduce the surface of the 

binding site using ligand information only, to the best of our knowledge, no systematic 

investigation was performed to validate which surface generation process most accurately 

reproduces the surface of the real binding site of experimentally determined protein-ligand 

structures. 

In general, experimental information about the protein structure is not used to 

generate a pseudoreceptor. In this study, however, we will use experimental data to 

optimize the pseudoreceptor method to accurately represent the binding pocket for any 

given protein.  We studied a number of protein-ligand crystal structures for three different 

protein systems and investigated whether the molecular surface of the protein structure can 

be reproduced with iso-surfaces generated from the corresponding co-crystallized ligands. 

Throughout our analysis, we have identified a set of parameters that reliably reproduces 

the surface of the binding pocket for all studied protein systems. 
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3.2 Methods 

3.2.1. Protein Surface Generation 

For the protein-surface analysis  35 protein-ligand structures from three protein 

systems were selected from the Protein Data Bank (PDB) (www.rcsb.org)12: 20 cyclin-

dependent kinase 2 (CDK2) structures, 7 estrogen receptor  (ER) structures, and 8 HIV 

protease (HIV-PR) structures. (Table A1)  The crystal structures within each protein system 

were aligned to each other using PyMOL.  The molecular surface of each protein binding 

pocket was then identified using MSRoll in conjunction with our previously described 

refinement algorithm13. (Figure 3.1a) For ER, surface points with a maximum distance of 

4 Å to any ligand atom was used; for CDK2 and HIV-PR this cut-off was set to 5 Å.  The 

lower cut-off for ER was necessary to prevent the inclusion of surface points in our analysis 

that result from cavities other than the binding pocket. 

 

3.2.2. Occupancy Calculation 

The crystal structure ligands were extracted from the aligned PDB structures and 

grouped into five categories: ER, HIV-PR, CDK-20, CDK-10, and CDK-5.  The ER, HIV-

PR, and CDK-20 groups contain all ligands for each respective protein system, while CDK-

10 and CDK-5 are randomly chosen subsets of the CDK-20 group made up of ten and five 

ligands respectively.  A grid around the aligned ligand molecules was constructed using 

the minimum and maximum x-, y- and z-values, (xmin, ymin, zmin) and (xmax, ymax, 

zmax), respectively of any atom of the ligand set plus an additional 10 Å cushion in each 

positive and negative direction.   Grid points were placed starting from (xmin, ymin, zmin) 

using a grid-spacing of 1 Å.  

http://www.rcsb.org/
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Figure 3.1:  Schematic of algorithm: (a) Generation of triangulated protein surface.  Red 

triangles and lines are vertices and edges of triangulated MSRoll surface.  Blue circles 

represent grid points generated in subsequent steps. (b) Occupancy of ligand molecules 

mapped to grid.  Occupancy of ligand 1 (pink) and ligand 2 (green) are calculated on grid 

points.  Occupancy is averaged across all ligands to produce final value (black).  (c) Iso-

surfaces of ligand occupancy are generated.  Occupancy values are interpolated between 

grid points to match a target iso-level.  These vertices are then used to generate an iso-

surface shell of ligand occupancy.  The solid black line represents the 0.1 occupancy iso-

surface, the dashed line the 0.7 occupancy iso-surface. (d) Interpolation of protein surface 

occupancy.  Protein surface points (red triangles) are placed inside the grid generated from 

their corresponding crystal ligands (blue circles).   The ligand occupancy values of these 

grid points are then interpolated to generate occupancy values for each protein surface point 
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The steric occupancy of the ligand atoms were then mapped onto the grid.  These 

occupancy values represented the shared volume there would be between a sphere placed 

on the grid point with the molecular (van der Waal’s) volume of a ligand atom, with a value 

of one representing full overlap, and zero indicating no overlap.  Occupancy was calculated 

with the same function as used in the RAPTOR QSAR package6: 

𝑂 = 1 − (
4

9
) ∗ (

𝑑

𝑀
)
6

+ (
17

9
) ∗ (

𝑑

𝑀
)
4

− (
22

9
) ∗ (

𝑑

𝑀
)
2

              𝑑 < 𝑀   (3.1) 

𝑂 = 0                                                                                                𝑑 ≥ 𝑀 

𝑀 = 𝑟𝑣𝑑𝑊 + 𝑐                                                                                                  

Where O is the occupancy, d is the distance between ligand atom and grid point, and M is 

the maximum radius.  The maximum radius for a ligand atom is defined as the van der 

Waal’s radius rvdW of that atom plus a constant value c.  In this work, four different 

constants were used: c = 1.4 Å, 2.0 Å, 2.5 Å, and 3.0 Å. (Figure 3.2) The 1.4 Å constant 

reflects the solvent accessible surface (SAS) of a ligand, as the occupancy function reaches 

zero at the SAS radius using this constant.  

For every ligand molecule, the occupancy for each atom was computed on all grid 

points within 4 Å plus the van der Waals radius of the atom. (Figure 3.1b) The highest 

atom occupancy for every given grid point was stored as the final occupancy value for the 

ligand molecule.  In the cases of the 1H00 structure for CDK2, there were two ligand 

conformations present, so the occupancy values for the grids of the two conformations were 

averaged to give a final occupancy for that ligand.  The occupancies for all ligand 

molecules within a set were then averaged to produce a final occupancy for each grid point 

representing the full ligand group. 
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Figure 3.2: Occupancy as function of distance with varied values of c.  Function begins at 

a value of one at zero distance and decays to zero at a distance equal to the sum of the van 

der Waals radius of an atom plus a constant c.  In this graph, the van der Waals radius is 

set to 1.5 Å for all value of c 
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3.3. Analysis 

The occupancy grid was used for the final two steps of the analysis:  comparison 

with the protein surfaces and construction of iso-surface shells.  For a given iso-level, the 

iso-surface was constructed using the marching cubes algorithm14.  First, the occupancy 

grid was searched in a systematic manner, starting with the origin point of the grid (xmin, 

ymin, zmin).  The seven vertices surrounding this point in the positive x, y, and z directions 

were identified and used to generate a cube.  If all eight vertices of the cube have occupancy 

values higher or lower than the target iso-level, the cube was discarded and the next cube 

was searched.  This process continued until the full grid had been searched and all 

occupancy values mapped.  

When a cube had at least one vertex with occupancy higher than the target iso-level 

and at least one vertex with occupancy lower than the target iso-level, it was identified as 

a “surface cube” at a given iso-surface level. The marching cubes algorithm then 

determines the intersection of the target iso-surface with the cube.  This was done by 

interpolating where the edges of the cube intersect with the iso-surface. These intersections 

are then used to determine one or more surface triangles representing the target iso-surface.  

These triangles were then stored, and once all cubes had been searched, combined into a 

single triangulated iso-surface shell of the ligand occupancy. This is illustrated in Figure 

3.1c.  The grid in the figure has been divided into four squares representing cubes of the 3-

D grid, and two example iso-surfaces.  The 0.1 iso-level value iso-surface passes through 

the top two squares, as they have lower vertices greater than 0.1 and upper vertices less 

than 0.1, just as the 0.7 iso-surface passes through the bottom squares for the same reason.  
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An iso-surface with target value between 0.35 and 0.65 would pass through all four squares, 

as each has at least one vertex above and one vertex below that value.  

The final process of the algorithm was to compare the known protein surfaces 

generated from the crystal structures with the occupancy grid generated from the co-

crystalized ligands of those structures.  To achieve this, the surface points, generated from 

MSROLL, for each protein structure of a set were placed into the generated occupancy grid 

of the ligands.  The eight grid vertices of the occupancy grid surrounding every surface 

point were identified, and tri-linear interpolation was used to determine the occupancy 

value at the coordinates of the surface point. (Figure 3.1d)  This value represents which 

iso-surface shell of the ligand would pass through each given protein surface point.  This 

process was repeated for every protein structure of a given set.  

Histograms were generated to determine how well an iso-surface a given iso-level 

is able to reproduce the experimental protein surface.  The histograms measure the percent 

of protein surface points that are spatially congruent with the iso-surface at a given iso-

level of occupancy displayed on the x-axis of the graphs.  When discussing the graphs, 

coverage percentage refers to the percent of protein surface points that would be contained 

within an iso-surface shell of a given iso-level.  Cumulative occupancy graphs were 

generated to display the coverage percentage.   

 

3.4 Results 

The primary focus of this study is to derive an optimized algorithm to generate 

pseudoreceptor surfaces that closely mimic the experimental binding pocket surface of 

protein structures using the co-crystallized ligands.  To achieve this end, we performed 
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both a quantitative as well as a qualitative analysis of the results of our algorithm, 

generating the following results for the individual protein systems. 

 

  3.4.1 Estrogen Receptor 

Figure 3.3 shows the histogram results for the surface comparison analysis using 

the four different constants c for the ER protein set.  The results for the 2, 2.5, and 3 Å c-

values show similar profiles. The higher c-value histograms show shifts towards higher 

average occupancy values.  This is due to the fact that once a surface point lies within the 

maximum distance of the occupancy function an increase in the c-value will simply result 

in an occupancy value closer to one.  There are slight differences between these three 

constants:  instead of the single maximum in the histogram using c = 2.0 Å, for c = 3.0 Å 

there is a small additional maximum at lower occupancies.  This feature starts to appear in 

the c = 2.5 Å statistics. This is most likely caused by ligand variation.  One ER ligand is 

significantly different from the rest, with a group occupying a unique region of space.  This 

difference causes a large variation in the protein surfaces, and causes the double maxima, 

as there are two distinct surface profiles.   For c = 1.4 Å, a significantly different profile is 

observed with a small number of points located outside the maximum distance: 

approximately 0.15%.  This means that these points are located more than the c-value plus 

van der Waal’s radius away from any ligand atom.  The width of the histogram peak is also 

very compressed, with 25% of points located between occupancies of 0 and 0.15 with the 

maximum located in the bin between 0.05 and 0.10 occupancy. 
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Figure 3.3: ER occupancy distribution graph with varying values of c in occupancy 

calculation.  Occupancy values are binned in .05 width increments, starting with 0.025 as 

a bin center representing the 0-0.05 bin and increasing to 0.975.  Bins are inclusive on the 

upper limit, exclusive at the lower limit. An additional zero bin is added which includes 

the fraction of protein surface points with no mapped occupancy 
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Figure 3.4 shows the cumulative histogram for the ER system.  Of particular interest 

are the occupancy bounds for the majority of the surface points (i.e. finding the ligand iso-

surface shells that would surround the majority of surface points.  For c = 1.4 Å, 93% of 

protein surface points have interpolated occupancies higher than 0.05, and 74.4% higher 

than 0.10.  On the other tail, only 1% of points have occupancies higher than 0.65, 6% 

higher than 0.45, and 13% higher than 0.35.  Together, this means 80% of surface points 

are located between 0.05 and 0.35 occupancy, 90% between 0.05 and 0.55 and 99% 

between 0 and 0.65.  For the other values of c, the occupancy iso-levels with the same 

percent coverage increase with c-value.  This occurs through all coverage percentages, 

increasing with greater iso-level values, leading to an increase in the difference of iso-level 

values between any two coverage percentages.  For example, 94% of points have higher 

occupancies than 0.1, 0.15, and 0.2 for the 2.0, 2.5, and 3.0 Å constant values, respectively.  

The 5% coverage iso-levels are for these runs: 0.6, 0.7 and 0.75.  So the total separation 

for the iso-surface shells containing between them 90% of protein surface points increases 

from 0.5 occupancy difference for 1.4 Å to 0.55 for the 3.0 Å run.  The 99% separations 

are much larger: 0.65, 0.8, 0.85, and 0.9 for the 1.4 Å, 2.0 Å, 2.5 Å, and 3.0 Å c-values. 
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Figure 3.4: ER accumulation graph with varying c-values in occupancy function.  Y-axis 

is percent of total protein surface points with iso-level of less than or equal to the x-axis 

bin.  Bins are determined in the same manner as the corresponding distribution graph 
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3.4.2 HIV-PR 

The results for HIV-PR are shown in Figure 3.5.  The results for this system follow 

similar trends to the ER system.  The distribution profile for c = 1.4 Å is significantly 

different from the other three c-values.  New profile features start developing when c = 2.0 

Å, and these features develop fully in the 2.5 Å and 3.0 Å runs, which show very similar 

profiles.  A major difference between the results for HIV-PR as compared to ER is that it 

is not until c = 3.0 Å that all surface points have a higher than 0 occupancy.  This is partly 

expected, as the distance cut-off for protein surface points is 1 Å larger for the HIV-PR and 

CDK systems.  While the percentage of uncovered surface points is relatively high, 5%, 

for c= 1.4 Å, it decreases to 1% and then to 0.08% for c = 2.0 Å and c = 2.5 Å.  The bimodal 

motif that was partly evident in the ER set is much more pronounced in the HIV-PR set 

when c= 2.5 and 3.0 Å, with a swift increase at low occupancies that plateaus for a 

significant range of occupancies, and then increases to a maximum followed by a decrease, 

as seen in Figure 3.5.  

The accumulation results for the HIV-PR set are shown in Figure 3.6 and Table A5.  

For c= 1.4 Å a significant fraction of points have low occupancies.  20% of protein surface 

points have occupancy less than 0.05.  99% of points have occupancy lower than 0.55, 95% 

lower than 0.45, and 90% lower than 0.35.  For c = 2.0 Å, 99% of points have occupancy 

> 0.0, and 90% have occupancy higher than 0.05. 
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Figure 3.5: HIV-PR occupancy distribution graph with varying values of c in occupancy 

calculation.  Occupancy values are binned in .05 width increments, starting with 0.025 as 

a bin center representing the 0-0.05 bin and increasing to 0.975.  Bins are inclusive on the 

upper limit, exclusive at the lower limit. An additional zero bin is added which includes 

the fraction of protein surface points with no mapped occupancy 
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Figure 3.6: HIV-PR accumulation graph with varying c-values in occupancy function.  Y-

axis is percent of total protein surface points with iso-level of less than or equal to the x-

axis bin.  Bins are determined in the same manner as the corresponding distribution graph 
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3.4.3 CDK 

In this work, three different sets of CDK2 ligands were used to produce occupancy 

data: CDK-20, CDK-10, and CDK-5.  CDK-10 is a subset of CDK-20 and CDK-5 is a 

subset of CDK-10.  In the analysis stage, however, all twenty protein structures were used 

for all three ligands sets.  This was done to determine how well the iso-surface shells from 

a smaller ligand set correspond to the larger ensemble of protein structure. Figure 3.7 and 

Tables A6-A11 show the results for the individual sets. (Occupancy accumulation graphs 

for CDK are not shown)  Whereas the total range of occupancy values of the protein surface 

points is similar in all sets compared to the HIV-PR and ER system, there is a notable shift 

in the distribution of occupancy values towards higher median occupancies for all c-values 

higher than 1.4 Å.  This shift in average occupancy increases with the size of CDK set, 

with the CDK-5 set having the lowest median occupancy and CDK-20 the highest.   
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Figure 3.7: CDK occupancy distribution graphs with varying values of c in occupancy 

calculation for all three CDK systems.  Occupancy values are binned in .05 width 

increments, starting with 0.025 as a bin center representing the 0-0.05 bin and increasing 

to 0.975.  Bins are inclusive on the upper limit, exclusive at the lower limit. An additional 

zero bin is added which includes the fraction of protein surface points with no mapped 

occupancy. (A) CDK-5 set (B) CDK-10 set, and (C) CDK-20 set 

A 

B 

C 
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Looking at the four different c-values across all three sets, there are a number of 

similar trends.  First, the larger the ligand set, the higher the maximum.  Second, the smaller 

the ligand sets the more surface points are located at the extreme occupancies: more points 

with very low occupancy and more points with very high occupancy.  For the high 

occupancy points, this is due to the averaging occurring in the occupancy calculation.  As 

more ligands are included, with spatial and chemical diversity, the high occupancy iso-

surface shells decrease in volume.  In addition, at very high iso-levels, approximately 0.9, 

the algorithm fails to build a full continuous shell.  This is due to the averaging process 

across diverse ligands leading to low maximum occupancies.  For example, if a set was 

comprised of two non-overlapping ligands, the maximum possible occupancy would be 0.5 

due to the averaging process.  The reason for the higher number of very low occupancy 

points is the inverse of this process.  As long as a surface point falls within the cut-off 

distance of a single ligand atom, it receives a non-zero occupancy value, even if the 

averaging process makes it very small.  This process shifts points to lower occupancies 

overall, which results in the increasing maxima, which are located at low occupancy values 

in all three CDK sets.  

 

3.4.4 Iso-surface Shells 

While looking at the previous histograms provides information on how many 

protein surfaces points are covered by a given iso-surface shell, it does not provide the 

whole story on the quality of the fit.  For example, a 50 Å sphere centered on a ligand set 

would likely provide 100% coverage, while being of poor use in pseudoreceptor modeling.  

To address this issue, a number of iso-surface shells of the ligands were generated for visual 



72 

 

 

7
2
 

inspection.  Similar to the previous section, we wanted to investigate the effect of changing 

the distance constant c, the number of ligands used in shell generation, and target iso-level 

on the overall shape and size of the iso-surface.  When referring to these figures, exterior 

refers to the space that is located outside of the protein surface when viewed from the ligand 

center; interior refers to the space inside the protein surface, respectively.  The transition 

region is the 3-D space where the protein surface points are located. (Figure 3.8) 

Figure 3.9 shows the 0.05 iso-surface shell of the HIV-PR system at the four 

different c-values.  The overall shape of the shells is similar for each c-value, the primary 

change being the spatial extension of the shell.  Figure 3.13 also demonstrates how closely 

the shells match the protein surface.  Using c = 1.4 Å, the majority of the shell is located 

slightly to the exterior of the protein surface points, but is in the transition region in some 

portions.  For c = 3.0 Å, even though the iso-surface shell is located almost exclusively to 

the exterior, the shell is overall significantly larger than the protein surface.  The 

intermediate c-value iso-surface shells fall between these two extremes, with decreasing 

portions of the shell in the transition region, but with other regions located exterior to the 

protein surface. 
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Figure 3.8: Definition of terms for discussion of iso-surface shells.  Red triangles and lines 

represent individual protein surfaces.  Black lines divide space into three regions: exterior, 

transition region, and interior.  Interior refers to the region of space that is enclosed by all 

protein surfaces, corresponding to the intersection of all protein binding pockets.  The 

transition region refers to the 3-D space where the varying protein surfaces are located.  

The exterior is refers to the region of space that would be filled by the protein or bulk 

solvent that surrounds the binding pocket 
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Figure 3.9: 0.05 Iso-level shells for HIV-PR with varying c-values: (a) 1.4, (b) 2.0, (c) 2.5, 

(d) 3.0.  The iso-surfaces are generated using an iso-level of 0.05.  Increasing c-value 

results in an expansion of the shells.  All sub-figures focus on the same region of the HIV-

PR binding pocket showing the larger shells including previously excluded protein surface 

points in one portion while simultaneously diverging from the protein surfaces in another 
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The effect of changing the number of ligands in the CDK systems is shown in 

Figure 3.10.  The shells shown represent the 0.05 iso-surface with c = 2.5 Å.  Overall, the 

three iso-surface shells are very similar.  No shell is consistently larger than any of the 

others, though there are regions where each shell is largest.  However, as the size of the 

ligand set increases, the curvature of the iso-surface shells becomes more refined, creating 

a slightly more complex surface.  This consistency is desirable, as it indicates that a small 

ligand set can generate a pseudoreceptor that could be applicable to a larger set of ligands 

as long as they cover similar space in the binding pocket.  This is the case for the CDK 

system we studied where the ligands of the CDK-5 set cover roughly the same 3-D space 

when aligned as the full CDK-20 set.    

Figure 3.11 shows the iso-surfaces of the ER system at varying iso-levels with c = 

3.0 Å.  The 0.05 shell encompasses nearly all of the protein surface points and follows the 

contours of the protein surface.  As the iso-level value increases, the encompassed volume 

of the shells decreases.  This decrease is most pronounced in the region indicated by the 

red arrow in Figure 3.11b.  This region is occupied by a single protein-ligand complex 

(2P15), and receives a very low average occupancy value, and the 0.25 iso-surface shell 

does not contain this region.  The 0.5 iso-surface shell is mainly located in the transition 

region of the protein surface points.  At high iso-levels, such as 0.75, the shell is almost 

completely to the interior of the protein surfaces.  
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Figure 3.10: 0.05 Iso-level shells of CDK sets with c-value of 2.5 and iso-level of 0.05.  

(a) Paired shells for CDK-5 (red) and CDK-10 (blue), (b) CDK-5 and CDK-20 (green), (c) 

CDK-10 and CDK -20.  While slight variations exist between all three shells, the overall 

shapes of the shells are very similar between the three CDK sets 
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Figure 3.11: Iso-surface shells of estrogen with c=3.0.  Iso-levels are (a) 0.05, (b) 0.25, 

(c) 0.5, (d) O.75.  The size and shape of the iso-surface shell varies significantly with 

change in iso-level.  Most notable is the change between the 0.05 shell and the 0.25 shell 

in the region indicated by the red arrow in sub-figure B.  The protein surface points in 

this region come from a single protein structure, giving the region a very low average 

occupancy even where the ligand for that structure is located.  This causes a dramatic 

difference between the 0.05 shell, which includes the full region, and the 0.25 shell which 

does not include the space  
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3.5 Conclusion 

As previously mentioned, the focus of our research was to determine a means of 

producing a pseudoreceptor iso-surface that corresponds to the protein-ligand interaction 

surfaces present in PDB crystal structures.  To achieve this goal, we first investigated how 

well the composite solvent-accessible surface (SAS) of a ligand set reproduces the protein 

surfaces, as the SAS is used in a number of pseudoreceptor generation methods.  We 

approximate this surface by setting c=1.4 Å.  At this value, the occupancy function decays 

to zero when a grid point is 1.4 Å plus van der Waals radius away from a given ligand atom.  

Therefore, any grid point with occupancy greater than zero would be within the typical 

SAS, while grid points with zero occupancy are outside the SAS. The SAS covers the 

majority of protein surface points.  However, with the exception of the ER system, there 

remained a small portion of surface points not contained within the SAS, with a minimum 

coverage of 92% for the CDK-5 set. In addition, from visual inspection, the SAS iso-

surface shells with low (<0.05) iso-levels, are located in close proximity to the protein 

surface.  Conversely, increasing the c-value to 3.0 Å ensures nearly complete (>99%) 

coverage, but the iso-surface shells included portions in 3-D space that would overlap with 

the protein.   

In order to create an accurate pseudoreceptor surface model, we need to find a 

balance between achieving the maximum possible coverage of protein surface points and 

smoothly approximating the protein surfaces without significant overlap with the protein.  

Also, from visual inspection, coverage percentage may be misleading in certain cases.  

When a protein binding pocket is solvent exposed, it is possible for surface points that are 

within the distance cut-off to be in fact outside the binding site. (Figure 3.12) Due to the 
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opposing geometries of the protein binding pocket which are concave and the generated 

iso-surface which is convex, slightly lower coverage percentages are observed. This 

underestimation must be considered in evaluating the results of the algorithm.  From our 

results, we would recommend a c-value of less than or equal to 2.0 Å, as higher c values 

produce shells that are significantly larger than the protein surfaces at low iso-levels.  For 

these c-values, we recommend an iso-level target of <0.05, as these parameters result in 

iso-surface shells that cover approximately 95% of protein surface points, while smoothly 

approximating the protein surface in most regions.  
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Figure 3.12:  Scheme for coverage percentage of solvent exposed ligand binding pockets.  

Red triangles and line represent the protein surface of a single protein-ligand crystal 

structure.  Due to curvature where the pocket is solvent exposed, certain protein surface 

are included within the distance cut-off of the algorithm that do not fall within the convex 

ligand-iso-surface shell (dashed line) 
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While the previous parameters for c and iso-level are useful in determining an iso-

surface shell that encompasses the full combined protein surface, this shell fails to address 

a number of issues.  First, ligand diversity can vastly increase the size of an iso-surface 

shell constructed from a low iso-level target, as seen in the ER system, where there is a 

vast difference between the 0.05 shell and the 0.25 shell due to a single ligand having a 

pose which occupies a different region of the binding pocket compared to all other ligands.  

In addition, the surfaces of the individual proteins vary significantly due to protein 

flexibility, resulting in a wide range of mapped occupancies (>0.5 iso-level difference 

range for 95% of protein surface points).  With respect to pseudoreceptor modeling, this 

means while the low iso-level iso-surface shell represents the outermost surface to all 

ligands, it does not fully replicate the surface with which an “averaged” ligand would 

interact, especially if the ligand set is diverse.  This averaged surface would be represented 

by an iso-surface shell closer to interior of the protein surface points, inside the transition 

region.  As seen in Figure 3.11, in the ER system the iso-level that corresponds to this 

region is in the range of 0.5-0.6. 

It is also important to note, that while the suggested parameters represent general 

starting points, they will not be ideal for all protein ligand systems.  In just the three systems 

considered in this study, there are significant differences in the occupancy profiles of the 

protein surface points.  The flexibility of the protein and the diversity of the ligand set play 

important roles in determining the ideal parameter set.  A rigid system would lead to a 

lower ideal c-value, as seen in the ER system, where even with c=1.4, less than 0.1% of 

protein surface points do not have an occupancy value.  Increasing ligand diversity leads 

adjusting the iso-level targets of the interior and exterior shells.  For example, with the 
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CDK-20 set, it is impossible to create an iso-surface shell with iso-level greater than around 

0.7, as the surface becomes discontinuous due to ligand diversity and the averaging process 

in the occupancy calculation 

These individual factors lead to a number of final conclusions.  First, it appears to 

be unlikely for a single pseudoreceptor surface to fully and accurately replicate the 

individual protein binding pockets for a diverse ligand set.  A low iso-level produces an 

iso-surface shell that contains the surfaces for all ligands, but can vary significantly from 

individual protein surfaces where there is diversity in a ligand set.  Higher iso-level iso-

surface shells more closely reproduce the surface that an “average” ligand would see, but 

lose the unique features of more diverse ligands.  To address the drawbacks of the 

individual surfaces, it may be advantageous to use an ensemble of pseudoreceptor surfaces.  

RAPTOR implements a version of this with its dual-shell model6.  In this model, two iso-

surfaces are built using the most affine ligand as the basis for the inner shell and all ligands 

for the outer shell.  We propose a similar solution, utilizing multiple shells of varied iso-

levels: higher iso-level shells would represent the conserved portions of the ligand, and low 

iso-level shells would include the effects of ligand variation. 
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CHAPTER 4. INTEGRATED STRUCURE AND LIGAND-BASED METHOD FOR 

THE PREDICTION OF SITES OF METABOLISM OF CYTOCHROME P450 

ISOZYMES. 

***Note: This chapter was performed in collaboration with Dr. Laura Kingsley and 

Morgan Essex.  Dr. Kingsley and Ms. Essex were responsible for the method 

development of the MD simulations, ensemble selection and generation, and docking, 

and performed these studies on CYP2C9.  Gregory Wilson was responsible for the QSAR 

development and studies on CYP2C9.  He also performed all studies for the remaining 

CYP isozymes and is responsible for webserver development.  Portions of this chapter 

previously published in:  

Kingsley, LJ.; Wilson, GL.; Essex, ME.; Lill, MA. Combining Structure- and Ligand-

Based Approaches to Improve Site of Metabolism Prediction in CYP2C9 Substrates. 

Pharm. Res., 2015, 32, 986-1001. 

4.1 Introduction 

As discussed in Chapter 1, our group has previously implemented a method that 

combined ensemble docking and NAT reactivity scores in an integrated structure and 

ligand-based tool for the prediction of CYP SoMs.  The success of this approach was in 

part attributed to the inclusion of critical binding site conformations during docking via 

the use of a protein ensemble which led to a ~10% improvement in identifying reactive 

ligand poses  as compared to docking to the crystal structure alone1.   

While the inclusion of protein flexibility using an ensemble of protein structures 

improved the generation of docking poses that were consistent with the experimentally 

known SoM, the number and diversity of false poses also increased. This increase in 

binding poses presents a significant challenge for the scoring functions used in docking
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and was  thought to be the primary cause of the reduced prediction accuracy of docking 

observed in the top-1, top-2 and top-3 positions1. The poor docking performance in the 

ensemble is likely one of the key reasons that the improvement in SoM prediction 

accuracy in the ensemble was only modest compared to using only the crystal structure1. 

Based on our previous findings, we have developed a revised methodology to better 

incorporate protein flexibility and to better rank predicted poses in CYP2C9. The two 

main methodological improvements compared to our previous approach are a pre-

filtering process to reduce the size of the protein ensemble used in docking and the 

implementation of pseudoreceptor modeling to accurately rank the binding poses relevant 

for SoM prediction. Compared to the existing methods cited above, our approach differs 

in method by which the data from docking and SMARTCyp2 are combined, namely a 

modified pseudoreceptor scheme. To the best of our knowledge, this is the first attempt to 

directly incorporate SMARTCyp reactivity data into a pseudoreceptor model that is based 

on structural protein and ligand data to predict SoMs in CYP2C9.  

A schematic of the revised procedure is shown in Figure 4.1. As with our previous 

model, both structure- and ligand-based principles were used in the current scheme; 

SMARTCyp, a successor of the NAT model was used to predict reactivity scores for each 

atom and ensemble docking was used to incorporate structural features of CYP2C9. We 

compared predictions in the crystal structure alone to predictions in a “pseudo-apo” 

ensemble which was selected based on a pre-filtering step used to isolate structures 

relevant for ligand binding. We found that incorporating “pseudo-apo” simulations 

increased the conformational space covered by the binding pocket allowing for successful 

docking of nearly all ligands. This was in stark comparison to the crystal structure alone, 
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where less than 65% of the ligands tested could be successfully docked. In this study, as 

with our previous study, we noticed that the scoring function used in docking did not 

always accurately predict the correct binding poses. Due to the difficulty of accurately 

ranking poses using the docking scoring function, we introduced a pseudoreceptor model 

to differentiate between poses.  Using the poses generated by docking and the reactivity 

scores generated by SMARTCyp, we produced a dataset suitable for pseudoreceptor 

modeling. A modified, in-house version of the RAPTOR3 pseudoreceptor QSAR suite 

was used to develop a pseudo-receptor model to identify docking poses that correctly 

predict SoMs in our CYP2C9 ligand data set. With this approach we were able to 

significantly improve SoM prediction in the CYP2C9 ligand data set tested. Using a 

combination of docking to the pseudo-apo ensemble, SMARTCyp, and pseudoreceptor 

we were able to accurately predict the SoM in 96% of ligands within the top-2 positions.   

Afterwards, we extended this method to eight additional CYP isozymes and 

obtained similar results.  These isozymes are responsible for metabolism of significant 

percentages of all drugs: 1A2 (15%), 2A6 (3%), 2B6 (8%), 2C8 (8%), 2C19 (12%), 2-D6 

(25%), 2E1 (4%), and 3A4 (50%), along with 2C9 at 20%4.  
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Figure 4.1: SoM prediction using a combination of structure- and ligand- based approaches. 

Using both atom reactivity data from SMARTCyp and structural data from docking, we 

generated a set of active (true SoM is within 4Å of the reactive oxygen) and decoy poses. 

A subset of these poses was used to train a pseudo-receptor QSAR model which was then 

used to evaluate all docking poses of all ligands.  
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4.2 Methods 

4.2.1 CYP2C9 Ligand Library Preparation 

A set of 73 structurally diverse CYP2C9 substrates with known SoMs were used 

for this study (Table A12). The compounds were based on those used by Danielson et. 

al(20), which were taken from the literature5 and the University of Washington Metabolism 

and Transporter Drug Interaction database© (www.druginteractioninfo.org). All possible 

stereoisomers (in case that stereochemistry was not defined for the structure) and relevant 

protonation states were considered as unique chemical structures resulting in 139 total 

ligand structures. Ligands were built using Maestro and minimized using MacroModel as 

previously described1. 

 

4.2.2 SMARTCyp 

SMARTCyp2 is a reactivity model that predicts the reactivity at C, S, N, and P 

positions in a given ligand based on a series of over 40 rules derived from quantum 

calculations. SMARTCyp 2.4.2 was used to predict likely SoMs based on reactivity 

energies and atom accessibility in each of the 139 total ligand structures. The atoms of each 

ligand were then ranked according to the predicted abstraction energy, also referred to as 

the SMARTCyp score. In cases where one or more ligand variants existed, for instance two 

possible protonation states of the same ligand, the best (lowest) overall score was selected 

for each atom. The percentage of correctly predicted SoMs in the top-1, top-2, and top-3 

positions were calculated using the experimentally known SoMs. In cases where a given 

substrate had more than one known SoM, only the highest predicted SoM was considered. 

This criterion was also used for all subsequently described methods.  

http://www.druginteractioninfo.org/
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4.2.3. Static Crystal Docking 

  The 1R9O crystal structure of CYP2C9 was used for the static docking studies. 

The co-crystalized ligands, flurbiprofen and glycerol, along with all crystal waters were 

removed. The crystallized heme (deoxygenated) was replaced by an oxygenated heme. 

Protonation and tautomer states of histidine and rotamer states of asparagine, glutamine 

and histidine were assigned using Reduce6. The ligand library was prepared for docking 

using the PyMol plugin developed by Danielson et.al7.  

 

4.2.3.1 Autodock Vina 

 Ligands were docked using AutoDock Vina (Vina). The docking volume was 

defined using our PyMol plugin. The selected docking cuboid was roughly 20Å on each 

side and included the active face of the heme and surrounding residues that could be 

relevant for binding. Default values were used for all docking parameters in Vina. For each 

unique ligand, 10 total docking poses were generated and 5kcal/mol was chosen as the 

maximum energy difference allowed between the best and any other reported docking pose.  

 

4.2.3.2. Ranking 

Docking success was evaluated based on the distance between the known SoM and 

the reactive oxygen of the heme moiety. Because docking to multiple similar protein 

structures can result in redundancy of several ligand poses, the poses were clustered using 

k-medoid clustering. K was iteratively adjusted such that the maximum RMSD between 

any two poses and the cluster center was less than 1.0Å. The pose with the best (lowest) 

docking score from each cluster was selected as the representative member for that cluster. 
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Next, docking poses of all protonation states and stereoisomers of a given ligand 

were pooled resulting in a single set of poses for each ligand containing all protonation and 

tautomeric states of the ligand. The combined poses were then ranked according to the 

docking score. If two poses had the same docking score, both would share the same rank, 

but the rank immediately following would reflect the inclusion of multiple poses. For 

instance assuming two poses had the same score and were ranked first, the next compound 

would be ranked in the third position to account for the two ligands that had been previously 

ranked higher.  

A distance of 4.0Å or less between any heavy atom and the reactive oxygen was 

considered to be potentially reactive. Poses that did not have a heavy atom within 4.0Å of 

the reactive oxygen were omitted from the ranking scheme.  

 Next, each atom was assigned the best Vina docking score attained by any pose 

wherein the atom was within 4.0Å of the oxygen on the heme. The atoms were then ranked 

according to the assigned score and the percentage of accurately predicted SoMs that 

occurred in the top-1, top-2 and top-3 positions was calculated.  In addition to determining 

the accuracy of SoM predictions in the top-3 positions, the overall docking success was 

determined for docking to the crystal structure and the ensemble. The overall docking 

success is defined as the percentage of ligands that could be successfully docked regardless 

of ranking. In other words, the overall docking success is a measure of how well the pose 

prediction portion of the docking algorithm performed exclusive of the scoring function.  
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4.2.4 Ensemble Generation 

4.2.4.1 MD Simulations 

An MD simulation of the pseudo-apo structure of CYP2C9 was used in the 

ensemble generation process. To generate the initial protein structure the ligand was 

removed from the CYP2C9 crystal structure, 1R9O.   

The MD simulation was performed using Gromacs-4.5.58,9 and the Amber03 force 

field. The input structure was prepared using Reduce6 to identify the proper rotamer, 

tautomer, and protonation states of histidine, and the proper rotamer states of asparagine 

and glutamine. The heme parameters were extracted from the literature10. We opted to use 

an oxygenated heme model because the oxygen may be critical for the docking of certain 

ligands. Gromacs was used to solvate the system in an octagonal water box of SPC216 

waters and 6 chlorine ions were added to neutralize the system. The box size was selected 

to guarantee a minimum distance of 15Å between solute and box edge.  

The steepest descent method and particle mesh Ewald (PME) summation with a 

grid size of 0.12nm was used to carry out 1000 steps of energy minimization.  To compute 

van der Waals interactions a switching function was applied between 1.0nm and the cut-

off of 1.4nm. The LINCS algorithm11 was used to constrain bonds containing hydrogen 

atoms. Next the hydrogen bond network of the surrounding waters was established using a 

200ps MD simulation in which all but the waters were restrained. Simulations were 

performed at 300K using PME, Berendsen thermostat, and Parrinello-Rahman pressure 

coupling. The integration time step was 2fs. Finally a 400ps equilibration run was 

performed to equilibrate the system prior to the 10ns production run.  
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4.2.4.2. Ensemble Generation and Refinement 

The initial ensemble was generated by extracting frames every 100ps from the 

pseudo-apo production run. The initial ensemble was then refined using a docking-based 

filtering process resulting in a 6 member ensemble. From the 73 ligands used in this study, 

14 structurally diverse ligands (denoted in Table A12) were manually selected for 

ensemble refinement. These 14 ligands were docked to all members of the 100-member 

ensemble using AutoDock Vina, as described above. Ligand variants were combined to 

give a single set of poses for each ligand as previously described.  

To determine which protein structures were able to best dock the 14-ligand training 

set, a fitness score was calculated for each protein structure as follows: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
∑ 𝑤𝑖𝑓𝑖
14−𝑙𝑖𝑔𝑎𝑛𝑑 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡
𝑖=1

∑ 𝑤𝑖
14−𝑙𝑖𝑔𝑎𝑛𝑑 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡
𝑖=1

      𝑓𝑖 =

{
 
 

 
 
5;         𝑟𝑎𝑛𝑘 = 1
4;  2 < 𝑟𝑎𝑛𝑘 < 4
3;  4 < 𝑟𝑎𝑛𝑘 < 6
2; 6 < 𝑟𝑎𝑛𝑘 < 10
1;        𝑟𝑎𝑛𝑘 > 10}

 
 

 
 

   (4.1) 

Where wi is one over the number of protein structures to which the ligand i was successfully 

docked and fi represents an assigned value based on the docking rank. Poses that were not 

successfully docked (e.g. did not have the known SoM within 4Å of the reactive oxygen) 

were given a score of 0, while those that were successfully docked were given a score 

between 1 and 5, based on the rank of the pose.  The factor wi guarantees that protein 

structures are more likely selected for the refined ensemble that allow the successful 

docking of ligands that are difficult to dock.  For example, assume that two ligands A and 

B dock successfully to protein structure S. Assume ligand B is successfully docked to 49 

other protein structures (out of 100 structures in the initial ensemble) and ligand A is only 

docked successfully to S. As protein structure S seems to be unique and relevant for binding 
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ligand A and structurally similar ligands, it should gain a high fitness value and be more 

likely to be included in the refined ensemble. This is achieved by the introduction of the 

weight (wi) which will be 1.0 (1/1) for ligand A but only 0.02 (1/50) for ligand B. 

The protein structures from the ensemble were then ranked by fitness. We found 

that 13 out of 14 ligands could be successfully docked to at least one of the top-5 ranked 

protein structures. The remaining ligand, 2-oxoquazepam, was not successfully docked 

until the 34th ranked protein structure. Based on our previous findings that the inclusion of 

multiple protein conformations can be problematic for the docking scoring function, we 

felt that including 34 structures would be detrimental to the model. We tested the top-4, 

top-6, top-8, and top-10 protein structures on the entire ligand data set (data not shown) 

and found that selecting the top-6 structures achieved optimal template diversity. 

 

4.2.5. Ensemble Docking 

All 139 ligand structures were docked to the 6-member protein ensemble. Ensemble 

docking was performed in a similar fashion as to the static crystal docking described above. 

Again, all ligand variants from all ensemble members were pooled to produce a single set 

of poses for each ligand, the resultant poses were clustered and the cluster member with 

the highest docking score was selected.  

 

4.2.6. Ranking 

 As with the static crystal docking, the atoms of each ligand were ranked according 

to the best docking score in which that atom was within 4.0Å of the reactive oxygen. The 
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percentage of successfully predicted SoMs in the top-1, top-2 and top-3 positions were 

calculated as well as the overall docking success, as described above.  

 

4.2.7. SMARTCyp + Docking 

In an attempt to improve SoM ranking in the top-1, top-2, and top-3 positions, we 

combined SMARTCyp reactivity predictions with the docking results. A single combined 

score (CS) was calculated for each atom of a given ligand using the following function: 

𝐶𝑆 = 𝑅𝑖 + 𝛾𝑆𝑖          (4.2) 

where Ri is the atom’s SMARTCyp reactivity score (usually ranging from about 50 (best) 

to 100(worst)) and Si is the docking score from the highest ranked pose where the atom i 

was within the 4.0Å cutoff from the oxygen of the heme (usually ranging from about -12 

(best) to -6 (worst)). Gamma (γ) is a weighting factor between 0 and 10, and is used to 

adjust the contribution of the docking score (Si) to the total combined score (CS). In order 

to be further considered in the CS scheme, an atom had to have both a docking score and a 

SMARTCyp score, otherwise the atom was omitted as a potential SoM. 

Gamma was optimized using a subset of ligands (denoted in Table A12) and the following 

fitness function: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = (%𝑡𝑜𝑝1) + 0.5(%𝑡𝑜𝑝2) + 0.25(%𝑡𝑜𝑝3)    (4.3) 

Where %top1, %top2, and %top3, reflect the percentage of accurately predicted SoMs in 

the top-1, top-2 and top-3 positions, respectively.  Gamma was initially set to 0 and was 

iteratively increased by 0.5 to a maximum of 100. The gamma value that maximized the 

fitness score for each data set (i.e. crystal or pseudo-apo ensemble) was selected. 
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For each ligand, atoms were ranked by CS value. As with the docking scores, atoms 

with equivalent CS values were ranked at the same position, but the next position reflected 

the inclusion of multiple atoms at the previous position. The percentage of correctly 

identified SoMs in the top-1, top-2 and top-3 ranked atoms was calculated for the x-ray 

crystal structure alone and the pseudo-apo ensemble.   

 

4.2.8. SMARTCyp+ Docking+ QSAR 

In an attempt to further improve SoM prediction results we implemented a modified 

QSAR scheme to evaluate and re-rank docking poses. The SMARTCyp score and free 

energy of binding were combined into the fitness functions used for deriving the QSAR 

model.  

                                                                                                                                                                           

4.2.8.1 Dataset Preparation and Selection 

As described previously, SMARTCyp assigns reactivity scores to all ligand atoms, 

with the lowest score representing the predicted SoM.  When combining the SMARTCyp 

reactivity approach with docking, the SoM predictions can be re-ranked by including only 

those atoms within a reactive distance of the oxygen atom of the heme.  The main limitation 

of this approach is the accuracy of the docking scoring function. Often poses are found in 

which the true SoM is within the cutoff distance (active poses), but these poses may be 

amongst the worst ranked by the scoring function. This problem intensifies as more poses 

are introduced using ensemble docking. To overcome the limitations of docking scoring 

functions, we developed a modified version of the RAPTOR QSAR package to generate a 
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statistical model to differentiate poses that are consistent with the experimentally known 

SoM from those which are not. 

The clustered docking poses were used as input for the QSAR model (Figure 4.2a). 

The poses were first separated into active poses and decoy poses (Figure 4.2b). An active 

pose was defined as a pose in which the known SoM was docked within 4Å of the oxygen 

on the heme and had the known SoM within the top-3 ranked SMARTCyp scores for those 

atoms within 4Å of the heme oxygen atom. The active poses were further classified by 

whether the known SoM had the first, second, or third best SMARTCyp score (Figure 4.2c).  

A decoy pose was defined as any pose that was docked with at least one atom within 4Å 

of the heme oxygen atom but did not meet the criteria for an active pose.   
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Figure 4.2:  Scheme of QSAR modeling process.  First the poses generated by docking 

(a) were separated into active and decoy poses and the actives subcategorized into Top 1, 

Top 2, and Top 3 actives(b).  A driving force (DF) was then assigned to each pose (c) and 

the RAPTOR package was used to generate a QSAR model(d).  After the QSAR training, 

all poses for a ligand are sorted by the QSAR score (e) and atom scores are assigned to 

the top three SMARTCyp atoms for each pose.  Atoms are then ranked by the final score 

(FS) according to the QSAR model (f).  
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4.2.8.2. Test and Training Selection 

  A random set of nineteen ligands was selected as the initial test set for the QSAR 

simulations and the remaining ligands were assigned to the training set.  The value of 

nineteen was chosen as this represented approximately one-quarter of the available ligands 

for QSAR modelling.  The test set was then manually curated to ensure that it covered the 

chemical space of the training set.  During this evaluation, four of the test ligands were 

moved to the training set, and an equal number of ligands were moved to the test set to 

retain the overall 3:1 training to test ratio.  Two of the ligands that were moved into the 

training set had unique ring structures not found in any other ligand in the data set, a third 

ligand had a unique long carbon chain, and the final ligand was the smallest compound in 

the data set.  These unique features cause the ligands to be unsuitable for the test set.  This 

test set was then used for all remaining QSAR simulations. The final training and test sets 

are noted in the “Data Set” column of Table A12.  

As discussed earlier, active poses are further classified based on the rank of the 

SoM using the SMARTCyp score. Thus, for many ligands there are binding poses in which 

the SoM is ranked as most reactive atom (i.e. other more reactive atoms are not within 4Å 

of the catalytic center) and other poses where the SoM is ranked lower (e.g. as top-2 or top-

3) because in addition to the try SoM, other more reactive atoms also fall within 4Å of the 

reactive oxygen. In a strict sense, the later poses disagree with the experimental SoM data 

and would add noise to the QSAR training process. Thus, during QSAR model training 

only the active poses with the highest ranked SoM based on the SMARTCyp score were 

used as active poses. All other active poses, however, were moved into the final prediction 

set which contains all docked poses with any atom within 4Å of the catalytic oxygen. This 
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prediction set was used for final evaluation of SoM prediction quality using our optimized 

QSAR model (Figure 4.1, last step).  

 

4.2.8.3 Inclusion of SMARTCyp reaction scores 

To directly incorporate the SMARTCyp scores into the QSAR model, the RAPTOR 

package was modified.  The original version of RAPTOR uses hydrogen-bond interactions 

and hydrophobic contacts between the ligands and the pseudo-receptor generated by 

RAPTOR to predict binding affinities. In the modified version of RAPTOR, the 

SMARTCyp score was provided as an additional contribution to the overall predicted score. 

Thus, the QSAR score Qscore was computed by the sum of hydrogen-bond interactions 

ΔGHBond, hydrophobic contacts ΔGHPhob and SMARTCyp score SSMARTCyp: 

𝑄𝑠𝑐𝑜𝑟𝑒 = ∆𝐺𝐻𝐵𝑜𝑛𝑑 + ∆𝐺𝐻𝑃ℎ𝑜𝑏 + 0.1 ∙ 𝑆𝑆𝑀𝐴𝑅𝑇𝐶𝑦𝑝      (4.4) 

SMARTCyp scores were assigned to every pose as 1/10th of the original value to 

scale the reactivity scores to the same order of magnitude as the other two contributions to 

the Qscore within the RAPTOR models.  For active poses, the SMARTCyp score of the 

known SoM was used.  For decoys, the lowest SMARTCyp score of any atom within 4.0Å 

of the oxygen atom of the heme was used.  

Also, the input to the QSAR method was adjusted (Figure 4.2b).  Typically, all 

poses for a given ligand are treated as alternative conformations of the same ligand and the 

experimental affinity value is used during the QSAR modeling process for every 

conformation.   For our method, we grouped active and decoy poses separately.  In addition, 

instead of binding affinities, the active poses were assigned a negative score, while the 

decoys were assigned a score of 0 or a positive value. We will refer to the difference 
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between these scores as a “driving force.”  The goal of this driving force is to identify the 

physicochemical features in the QSAR model that allows discrimination between active 

and decoy poses due to differences in protein-ligand interactions.   

In order to determine the optimal driving force, we ran multiple RAPTOR 

simulations with different driving forces.  We ran simulations with both a fixed driving 

force for all active poses, and simulations with a variable driving force for the actives.  For 

the variable driving force simulations, the top-1 actives poses are assigned a value of X-Y, 

top-2 poses  are scored as X, and top-3 poses are scored as X+Y where X and Y are real 

floating point values ranging from -5 to -2 and Y ranging from -1.5 to -0.5.  Using variable 

weights for top-1, top-2 and top-3 poses improved the performance of the QSAR model 

compared to assigning identical weights to all actives. Many of the driving force weights 

generated QSAR models with similar quality.  Therefore, we chose a set of weights in the 

middle of our testing range, i.e. an X value of -3 and a Y value of 1, with the decoy set 

being assigned a value of zero.  This setting had the best performance by a slight margin. 

 

4.2.8.4 QSAR Modeling 

 The modified RAPTOR program was used to generate a pseudo-receptor QSAR 

model for CYP2C9 with all remaining parameters set to their default values.  Five 

individual models, run with the fast search mode, a coupling factor of 0.5 and sharpness 

penalty of 1 were constructed for each modeling run.  
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4.2.8.5 Analysis of QSAR Results 

Typically, pseudo-receptor models are used to predict the binding affinity of a 

ligand.  RAPTOR, in addition to providing an overall prediction of the affinity of the ligand, 

predicts the binding energy for each conformation of a ligand.  In this study, those 

conformations are the individual docking poses for a ligand.  However, here the predicted 

score does not provide an estimate of the binding affinity but yields a likelihood score for 

each conformation to be the pose predicted to have the known SoM within 4 Å of the 

catalytic center. To evaluate the success of our model, all binding poses of training and test 

set were combined with the predictive set of actives excluded from the modeling process. 

The trained QSAR model was used to assign QSAR scores to all poses which were then 

ranked by this score (Figure 4.2e).  The atoms within 4Å of the catalytic center with the 

top-3 SMARTCyp scores for each pose were assigned modified QSAR scores using the 

following formula:  

𝐹𝑆𝐴 = 𝑄𝑠𝑐𝑜𝑟𝑒 + 
𝐶𝑌𝑃𝐴−𝐶𝑌𝑃𝑅𝐸𝐹

10
        (4.5) 

where FSA is the final score for atom A, Qscore is the QSAR score for the pose in which 

atom A is found, CYPA is the SMARTCyp score for atom A, and CYPREF is the 

SMARTCyp score for the atom used in the QSAR model building process .  This formula 

adjusts the QSAR score for the difference in SMARTCyp scores between the top three 

SMARTCyp atoms (Figure 4.2f).   The lowest score for any given atom among all poses 

was identified, and then the atoms themselves were sorted by score.  The highest ranked 

known SoM was identified and the percentage of correctly predicted SoMs in the top-1, 

top-2, and top-3 positions were reported.  
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4.3 CYP2C9 Results and Discussion 

4.3.1 SMARTCyp Prediction 

 Several reactivity schemes have been developed to predict SoMs in CYP substrates 

based on the physicochemical properties of the ligand alone2,12. Such ligand-based methods 

are advantageous because they do not require protein structural information and are 

computationally efficient. SMARTCyp is one example of a widely used reactivity based 

method. Potential SoMs are evaluated based on a combination the accessibility of the atom 

within the structure and the estimated energy required to abstract a hydrogen from carbon 

atoms or for an oxygen attack in the case of nitrogen, phosphorus, and sulfur atoms. The 

resultant score is referred to as a SMARTCyp score and is used to rank potential SoMs. 

Recently, a new version of the SMARTCyp program, version 2.4.2, was released with 

parameters specific to CYP2C9 ligands13.  

We generated a 139-ligand data set comprised of all possible rotameric and 

protonation states of 73 unique ligands and evaluated each using SMARTCyp version 

2.4.2 (referred to as SMARTCyp). The atoms of each ligand were ranked according to 

the assigned SMARTCyp reactivity score and the number of correctly predicted SoMs in 

the top-1, top-2, and top-3 positions was calculated (Table 4.2 - SMARTCyp Alone 

column). SMARTCyp correctly predicted the known SoM at the top-1 position in 42% of 

the ligands tested. In the top-2 and top-3 positions, the prediction percentages increase to 

58% and 67% respectively.  
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4.3.2. Static Docking 

 Docking is another approach used to predict potential SoMs in CYP ligands. 

Docking is one of the most widely used techniques in structure-based drug design and 

provides information about potential ligand binding modes. In the biologically active 

conformation within the CYP binding site, the ligand should be positioned in such a way 

that the SoM is in close proximity to the reactive oxygen atom of the heme moiety. In 

theory, if the docking pose is correctly predicted, atoms which are positioned near the 

oxygen atom of the heme are the most likely SoM candidates.  

As a comparison to our new approach, we docked our ligand library into the 

crystal structure of CYP2C9 (PDB ID: 1R9O) using Autodock Vina (Vina). A docking 

pose was considered to be an accurate SoM prediction if the distance between the known 

SoM and the reactive oxygen of the heme moiety was 4Å or less. Docking poses were 

ranked by the internal Vina scoring function and the percentage of correctly predicted 

SoMs in the top-1, top-2, and top-3 ranked poses were calculated (Table 4.2 - Vina Alone 

column). In addition to assessing predictions in the top-3 ranked poses, we calculated the 

overall docking success by determining the percentage of ligands that achieved an active 

pose regardless of rank (Table 4.2- Vina Alone column).   

SMARTCyp outperformed docking in identifying the known SoM within the top-

3 positions. However, the overall docking success was approximately equal to the 

prediction success of SMARTCyp in the top-3 positions (64% and 67% respectively). This 

highlights two possible shortcomings in the standard Vina docking approach. First, despite 

67% overall accuracy in docking, less than half of these poses were ranked in the top-3 

positions, suggesting that the Vina scoring function does not always rank potentially 
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biologically active conformations in the top positions. Second, the failure to achieve 100% 

docking success suggests that the binding pocket of the crystal structure alone may not be 

able to accommodate the structural diversity of the ligands in the data set.   

It is well known that CYP enzymes are highly flexible and that the binding sites of 

these enzymes often have to adapt to accommodate structurally different ligands14. The 

plasticity of the CYP binding sites can make docking to these enzymes challenging and 

often ensemble approaches are employed to improve docking results15,16. 

 

4.3.3 Ensemble Generation and Selection 

4.3.3.1 Ensemble Diversity 

A pseudo-apo ensemble was generated by extracting 100 snapshots from a 10ns 

trajectory of CYP2C9 with the crystal ligand removed. A principle component analysis 

(PCA) suggests that through the duration of the simulation, both the overall protein 

structure and the binding site residues adopted several alternative conformations (Figures 

4.3a and 4.3b). Ultimately, the increased diversity in the pseudo-apo ensemble allowed for 

improved docking of several ligands in comparison to the crystal structure.  
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Figure 4.3: Principal component analysis of CYP2C9 pseudo-apo MD trajectories. The 

PCA using all protein residues (a) and only the binding site residues (b).  The binding site 

residues were manually defined based on the defined binding site box from the docking 

simulations. The black circles represent the top-6 structures selected for the final ensemble.  
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For instance, no active docking pose was found for 9-cis-retinoic acid in the crystal 

structure, however side-chain rotations that occurred during the pseudo-apo simulation 

allowed for successful docking of this ligand (Figure 4.4a). The orientation of LEU 208, 

PHE 476, and PHE 100 ( PHE 100 was omitted from figure for clarity) are crucial to 

achieve a bioactive conformation of this ligand. In the crystal structure, the top-ranked 

bioactive pose of the ligand directly overlaps with LEU 208. Furthermore, the rotation of 

ASP 293 in the pseudo-apo simulation provides a potential hydrogen bonding site for the 

ligand.  

Additionally, the binding of torsemide required a significant rearrangement of 

residues in the active site (Figure 4.4b).  A ~3Å shift in the C-terminal loop is accompanied 

by the ~180 degree rotation of PHE476 in the pseudo-apo simulation which allows for this 

ligand to be successfully docked. In the closest-to-active pose in the crystal structure 

docking the ligand is found to occupy a pocket created between the C-terminal loop and 

the G helix, resulting in a conformation where the SoM is 4.2Å from the reactive oxygen. 

In the pseudo-apo simulation, shifting of the C-terminal loop causes a closure of this pocket 

and causes the ligand to bind on the opposite side of the C-terminal loop where the SoM is 

within 3.7A of the reactive oxygen and at a more favorable angle to the reactive oxygen. 
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Figure 4.4: Conformational adaptation in the pseudo-apo simulation that allows for 

successful docking of 9-cis-retinoic acid and torsemide. The true SoM for each ligand has 

been denoted with a sphere. Compared to the flurbiprofen-bound crystal structure (shown 

in dark grey sticks and cartoon), several residues and the C-terminal loop adapt to allow 

for ligand binding. In the case of 9-cis-retanoic acid (a), LEU208 and PHE 476 rotate to 

allow for the ligand to fit into a bioactive conformation. Furthermore ASP293 rotates into 

a position to allow a potential hydrogen bond to the imidazole ring. In the case of torsemide 

(b), a ~180º rotation of the side chain and a >3Å shift in the C-alpha position of PHE 476 

was observed, allowing for a bioactive conformation of torsemide that was not observed in 

the crystal structure. This shift closes a pocket between the C-terminus and the G helix (not 

shown). The closest-to-active pose found in the crystal structure docking was found to 

occupy this pocket. Closure of this pocket allows for an alternative ligand conformation to 

be found in the pseudo-apo ensemble that is consistent with the known SoM of torsemide. 
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4.3.3.2 Final Ensemble Selection 

While, the inclusion of a variety of binding site conformations may be essential for 

docking of large and diverse ligand libraries such as the one tested here, an ensemble of 

several hundred members is both cumbersome and redundant; therefore the pseudo-apo 

ensemble was further refined.  

A docking filter was used to select the most relevant conformations from the initial 

ensembles. Using a subset of 14 ligands and the fitness function described in the Methods 

section, the top-6 structures from the pseudo-apo ensemble were selected as the final 

ensemble members. The fitness scores, RMSD to the crystal structure, as well as the 

binding site volume are shown for each member of the ensemble in Table 4.1.   
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Table 4.1: Calculated fitness score, overall RMSD to 1R9O crystal structure and binding 

site volume of selected ensemble members. The volume of the binding site over the 

course of the trajectory calculated using POVME 

Structurea Fitness 

Score  

RMSD 

to 

Crystal 

Binding 

Site 

Volume 

PA 97 2.66 1.18 361 

PA 19 2.58 1.19 393 

PA 66 2.58 1.02 422 

PA 1 2.55 1.12 836 

PA 25 2.53 1.18 363 

PA 91 2.51 1.08 411 
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The 14-ligand training set was initially docked to all protein structures (Figure A1). 

Although some individual members of the ensemble perform worse than the crystal 

structure alone, taken together, ensemble docking shows significant improvement over 

docking to the crystal structure alone. The crystal structure successfully docked only half 

of the 14-ligand test set whereas the pseudo-apo ensemble docked successfully 13 out of 

14 compounds into the top-5 protein structures alone (Figure 4.5). The remaining ligand, 

2-oxoquazepam was successfully docked to the 34th ranked structure.    

The selected ensemble members were found to be structurally diverse and to cover 

a significant portion of the conformational space sampled by the MD simulation according 

to the PCA (Figure 4.3).  Compared to randomly selected ensembles of the same size, the 

filtered ensemble provides considerable improvement in the docking results in the top-3 

positions and slight improvement in the overall prediction success (Table 4.2). The 

improvement over random selection indicates that the pre-filtering procedure aids in the 

isolation of protein conformations relevant for docking.  
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Figure 4.5: A visual representation of the docking performance in a) the crystal structure, 

b) the pseudo- ensemble using the 14-ligand subset. Ligand ranking is indicated by the 

shade of red, lighter regions indicate highly ranked poses, while black indicates that no 

pose was found in which the true SoM was within a reactive distance to the oxygen on the 

heme. The rank of the protein structure according to the fitness function is shown on the 

far right hand side for the pseudo-apo ensemble.  
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4.3.4 Ensemble Docking 

Following the selection of the 6-member pseudo-apo ensemble, we used Vina to 

dock all 73 compounds in the data set to each member of the ensemble. Compared to the 

crystal structure alone, the ensemble offered significant improvement in the top-1, top-2 

and top-3 positions and in the overall docking success (Table 4.2).  

 The more diverse binding pockets of the mixed ensemble are likely responsible for 

the significant improvement in the overall docking success. The increase in accurate 

predictions in the top-1, top-2 and top-3 positions, while significant, does not match the 

improvement in overall docking success. The increased binding pocket diversity in the 

ensemble is likely the reason that more compounds can be successfully docked, however, 

this diversity can also result in a higher number of alternative ligand poses, making the 

identification of true positive poses more challenging for the docking scoring function. 

This is one possible reason that the individual increase in the top-1, top-2, and top-3 

positions is not as drastic as in the overall docking performance.  
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Table 4.2: Comparison of various methods for predicting SoMs in the top-1, top-2, and 

top-3 positions. 

 X-ray structure aloneh 

 Randoma SMARTCyp 

Aloneb 

Vina 

Alonec 

Vina + 

SMARTCypd 

Vina+ 

SMARTCyp

+ QSARe 

Top-1 12% 44% 21% 38% 49% 

Top-2 24% 59% 27% 53% 56% 

Top-3 38% 68% 37 % 60% 63% 

% docked  64% Gamma 

0.0g 

 

  Pseudo-apo Ensemblei 

Vina Alonef Vina + 

SMARTCy

p 

Vina+ 

SMARTCy

p+ QSAR 

Top-1 44%  

[28 ±6.5%] 

55% 88% 

Top-2 58% 

[37 ±5.7%] 

77% 

 

96% 

Top-3 67% 

[48± 7.0%] 

88% 

 

96% 

% docked 96% 

[92±1.7%] 

Gamma 

23.5 

 

 

a Percentage of correctly predicted SoMs if a heavy atom was chosen at 

random for each ligand.  
b Percentage of correctly predicted SoMs using SMARTCyp only.  
c Percentage of correctly predicted SoMs using Autodock Vina alone. A 

prediction was considered “correct” if the true SoM was within 4.0Å in the 

top-1, top-2 or top-3 ranked docking poses, respectively.  
d Percentage of correctly predicted SoMs using a combination score 

comprised of the Vina score and the SmartCyp score, see Methods section for 

full details.  
e Percentage of correctly predicted SoMs using the modified QSAR model 

that includes the poses provided by Vina docking and the reactivity scores 

from SMARTCyp. 
f Bracketed values represent the percentage of successfully docked 

compounds when the protein structures that comprised the ensembles were 

chosen at random.  These values represent the average and standard deviation 

over three randomly selected protein sets.  
g Although a gamma (γ) of 0 is selected, the omission of some atoms due to 

failure to find both a successful docking pose and SMARTCyp score can 

result in slightly different rankings using the CS versus SMARTCyp. These 

differences were caused by the inability to find a successful docking pose, 

therefore an atom may be ranked in SMARTCyp but not the combination 
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approach, which can result in slight changes in the overall rankings as 

observed in the crystal structure. 
h Binding poses were identified using docking with AutoDock Vina to the x-

ray structure of CYP2C9 only. 
i Binding poses were identified using docking with AutoDock Vina to an 

ensemble of proteins structures generated by an MD simulations based on the 

pseudo-apo form of CYP2C9 (holo x-ray structure with co-crystallized ligand 

removed). 
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4.3.5 Combining Docking and SMARTCyp 

We hypothesized that SoM predictions could be further improved by combining the 

structural data from docking and the ligand-based reactivity predictions from SMARTCyp. 

For instance, let us assume that SMARTCyp incorrectly predicts a given atom as the true 

SoM; although the incorrectly predicted atom may be a highly reactive, it may not be a 

structurally feasible SoM based on its binding conformation. For example, it may be part 

of a bulky group that cannot easily fit close to the reactive oxygen of the heme. By 

including contributions from both docking and SMARTCyp, such atoms could be re-

ranked or even eliminated as possible SoMs, resulting in improved predictions. 

The optimized gamma value can offer insight about the individual contributions 

of docking scoring and SMARTCyp to the overall ranking of the SoM; a low gamma 

suggests that SMARTCyp dominates the calculated CS and docking only provides a 

minor contribution, a gamma of around 10 would suggest approximately equal 

contributions of both docking and SMARTCyp, and a large gamma would suggest that 

docking dominates the CS function.  

In the crystal structure, the optimized gamma value of 0.0 suggests that the results 

are entirely dominated by the SMARTCyp rankings of the compounds. On the other 

hand, the gamma score for the pseudo-apo ensemble is 23.5, suggesting that docking 

scores are a major contribution to the overall CS ranking. There are several reasons for 

this discrepancy in gamma scores. Most notably, in the pseudo-ensemble the rankings of 

SMARTCyp and docking are approximately equal in the top-3 positions (~65%).  This 

suggests that both docking and SMARTCyp have approximately equal ability to 

contribute to the final ranking. However, almost all compounds can be successfully 



116 

 

 

1
1
6
 

docked to the ensemble, indicating that docking has the potential to further improve SoM 

prediction above the ~65% observed with either approach individually.  This is in 

contrast to the crystal structure where docking has a significantly lower percentage of 

compounds ranked in the top-3 (~45%) and also a lower overall docking success (~65%), 

thus a less significant potential to contribute to the overall CS ranking.  

In Figure 4.6, we provide some specific examples of how CS ranking in the 

pseudo-apo ensemble improved SoM prediction in various compounds. In some 

compounds, such as galangin, the contribution of the docking score was essential for the 

top-1 CS ranking of the compounds (Figure 4.6a), whereas in others, like terbinafine, it 

was the SMARTCyp (Figure 4.6b) score that was the determining factor. SMARTCyp 

and docking did not rank the same ligands in the top-3 positions as was seen with 

galangin and terbinafine. These differences allowed for approximately 10% improvement 

in the CS ranking. However, the most intriguing cases were those in which different 

rankings of individual atoms by SMARTCyp and docking led to a synergistic ranking 

effect. In these cases, the CS ranking of the true SoM was higher than in either approach 

individually. Suprofen, for example shows this trend (Figure 4.6c). Suprofen and other 

ligands where there was a synergistic effect accounted for the remaining ~10% 

improvement in the CS ranking is as compared to either method alone.  
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Figure 4.6: The combined score (CS) versus docking and SMARTCyp scores individually 

of the top-3 atoms as ranked by the CS. The top-ranked docking pose is shown on the left 

of each panel and the bioactive pose is shown in orange on the right. In panel a, the top-
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ranked pose is the bioactive pose, thus only a single pose is shown.  True SoMs have been 

denoted in the text with a star and in the structures as an orange sphere.  a) In some cases 

the docking score is the determining factor for the overall CS ranking of the true SoM. In 

fluvistatin, for instance, in the top ranked docking pose the true SoM, C25, was the atom 

nearest to the reactive oxygen of the heme. Even when combined with a poor SMARTCyp 

score, the favorable docking score of this pose allowed this atom to be ranked 1st overall. 

In other cases, SMARTCyp is crucial for the ranking using CS. In the case of mestranol, 

the top-ranked docking pose places C10 and C14 nearest to the reactive oxygen (b). 

However, these atoms were ranked poorly by SMARTCyp (4th and 5th, respectively). The 

top-ranked bioactive pose (c) had a docking score that was only slightly less favorable than 

the top ranked pose, and thus when combined with the SMARTCyp scores, wherein the 

true SoM was ranked first, the overall CS ranking placed the true SoM in the top-1 position.  

In some cases there was a synergistic outcome using the CS. In GV150526, SMARTCyp 

incorrectly predicts the SoM as C3, however the docking results suggest that the 

conformation leading to metabolism of C3 is unfavorable (ranked 15th overall). The overall 

top-ranked pose (d) incorrectly predicts O14 as the true SoM, however this atom was not 

favorably ranked using SMARTCyp. The top-ranked bioactive pose (e) ranks the true SoM 

4th overall and SMARTCyp ranks this atom 2nd overall. Combining these predictions leads 

to the true SoM, C20, being ranked 1st overall.  
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Although using a combination approach in the pseudo-apo ensemble improved 

performance over either SMARTCYP alone or docking alone, and all approaches tested 

on the crystal structure alone, we hypothesized that using Quantitative Structure-Activity 

Relationship (QSAR) modeling could improve the separation between active and inactive 

docking poses and further improve SoM prediction in the top-1, top-2, and top-3 

positions.  

 

4.3.6 Ranking CS data using QSAR 

QSAR is a computational method that derives statistical relationships between 

sets of descriptors, typically ligand properties, and a set of values, typically the biological 

activities of the target ligands.  We hypothesized that there were certain key ligand 

features, along with the spatial orientation of those features, which could distinguish 

between active and decoy docking poses, and that QSAR statistical modeling could be 

used to identify those features.  By assigning a favorable score to active poses as 

compared to decoy poses, we aimed to train a model to preferentially select active ligand 

poses. 

However, in addition to protein-ligand interactions, for CYP metabolism the 

reactivity of a chemical group is an additional critical factor to determine the potential 

SoM of a ligand. As pseudo-receptor QSAR programs, such as RAPTOR, do not directly 

incorporate this factor, we modified RAPTOR to include SMARTCyp scores as a 

descriptor in the modeling process. Using this modified QSAR approach, we were able to 

significantly improve SoM predictions (Table 4.2 - Vina+SMARTCyp+QSAR column). 
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Compared to SMARTCyp alone, docking alone, or the combined approach using 

SMARTCyp and docking (CS), re-ranking atoms using QSAR proved to be far superior. 

For example, the QSAR model based on the docking results from the pseudo-apo 

ensemble was able to predict the correct SoM in 88% and 96% within the top-1and top-2 

positions, respectively.  

For several compounds the QSAR approach drastically improved the ranking of 

the true SoM in comparison to the other methods tested (Figure 4.7). For instance, for 

etodolac (Figure 4.7a and 4.7b) none of the other methods tested accurately predicted the 

true SoM, C13, within the top-3 positions. However, using QSAR, the top ranked pose 

placed the true SoM within 4.0Å of the reactive oxygen. Notably, this pose was very 

poorly ranked using docking (10th overall). In other compounds, such as 17 alpha-

ethinylestradiol (Figure 4.7c and 4.7d), the QSAR score offered incremental 

improvements within the top-3 ranked positions. In this compound, both docking and 

SMARTCyp were unable to rank the true-SoM within the top-3 positions. While the CS 

method improved the ranking to the top-2 position, QSAR ranked the true SoM at the 

top-1 position.  
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Figure 4.7: Examples of compounds in which the QSAR method improves SoM prediction 

over other tested methods. In the left column is the pose selected by the QSAR model and 

in the right column is the top-ranked docking pose, in both cases the true SoM has been 

shown in an orange sphere. The transparent white sticks represent the conformation of the 

crystal structure. In the case of Etodolac, the top ranked QSAR and top-ranked docking 

pose both have the true SoM oriented towards the reactive oxygen, but the QSAR pose 

selects the structure in which the SoM is within a reactive distance (a and b). For17 alpha-

ethinylestradiol, the QSAR model selects a pose that is completely inverted (c) from the 

top-ranked docking pose (d). In both cases, the QSAR model places the known SoM in the 

top-1 predicted position. Notably, in all cases successful ligand docking requires a 

significant rearrangement of the binding site residues, as neither of these compounds could 

be successfully docked to the crystal structure. 
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One remaining limitation for the success of the QSAR model was the overall 

docking success. In other words, assuming that an active pose was sampled during the 

docking process, the QSAR model was nearly always able to identify the true SoM 

within the top-3 positions. In the crystal structure for instance, the QSAR model 

accurately predicted the SoM within the top-3 positions for all but one of the compounds 

for which an active docking pose was obtained.  For the pseudo-apo ensemble, all 

compounds with an active docking pose were predicted within the top-2 ranked SoM. 

Table 4.3 represents the QSAR results in isolation, i.e. only ligands for which 

active docking poses were found are considered.  In this situation, 91%, 100% and 100% 

of the known SoMs are correctly predicted when the pseudo-apo ensemble was used for 

docking within the top-1, top-2 and top-3, respectively.  These percentages are slightly 

lower when the crystal structure was used for docking, i.e., 77%, 87%, and 98%, for the 

top-1, top-2, and top-3 positions, respectively.  

While the QSAR model using the results from docking to the crystal structure was 

severely limited by the quality of the docking process, the pseudo-apo docking set was 

able to generate active poses for most ligands, allowing the subsequent QSAR model to 

predict the known SoM in the top-2 positions in 96% of all cases. 
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Table 4.3: QSAR SoM Rankings of ligands with an active docking pose. 

 

Fraction of Ligands with 

Rank 
Total Number of Active 

Ligands 

 QSAR Model Top 1 Top 2 Top 3 

X-ray 0.77 0.87 0.98 47 

Pseudo-apo 

Ensemble 0.91 1.00 1.00 70 
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Over-fitting can be a concern in QSAR modelling, so the results for the test and 

training set of the QSAR models were compared (Table 4.4).  Similar to Table 4.3, only 

those ligands for which an active docking pose was found are included in the 

comparisons.  For the x-ray structure, there was little differences between the two sets; 

the training and test set had approximately the same fractions in the top-1, top-2, and top-

3 positions.  For the pseudo-apo ensemble, the prediction accuracy of the test set 

exceeded  that of the training set, where the SoM of all ligands was correctly predicted in 

the top-1 position.   This indicates that the chemical space of the test set was well-

covered by the training set, and that the model has high predictive power for future 

compounds within the space modeled. 

Additionally, as the RAPTOR QSAR package generates a pseudo-receptor model 

of the protein binding pocket around the ensemble of ligand poses, we visually compared 

the QSAR model with the members of the pseudo-apo structural ensemble, a 

representative example is shown in Figure 4.8. As shown, there is significant agreement 

between the protein structure and the RAPTOR model.  Where the model predicts 

hydrophobic properties, the protein residues are mainly hydrophobic, such as LEU 366 

and 361, and PHE 100, 114, and 476.  Hydrophilic residues such as ARG 108, ASN 204, 

and ASP 293 are collocated with hydrophilic features of the RAPTOR pseudo-

receptor.  PHE 100 and 114 both appear to be able to engage in different types of 

interactions, as they are co-located with both hydrophobic and hydrophilic features, 

indicating that π stacking interactions might play an important role in the binding pocket. 
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Table 4.4: Comparison of QSAT Test and Training Sets. 

 

Fraction of Training Set 

Ligands with Rank 
Total Number of 

Active Ligands 

 QSAR Model Top 1 Top 2 Top 3 

X-ray, training 0.76 0.88 1.00 33 

X-ray, test 0.79 0.86 0.93 14 

     

Pseudo-apo, training 0.88 1.00 1.00 51 

Pseudo-apo, test 1.00 1.00 1.00 19 

 

  



126 

 

 

1
2
6
 

 

Figure 4.8:   The QSAR model of the pseudo-apo data set.  The binding site residues (a) 

and pseudo-receptor (b) with 90º rotation (c) generated by RAPTOR. The pseudo-receptor  

RAPTOR models are colored by property, with red representing hydrogen bond acceptors, 

blue hydrogen bond donors, and brown and yellow as hydrophobic regions. 
 

 

 

  



127 

 

 

1
2
7
 

4.4 CYP2C9 Conclusions 

In this study, we compared the ability of ligand-based, structure-based, and 

combination-based approaches to predict the SoM in 73 diverse CYP2C9 substrates. Of 

all individual methods tested, docking was found to have the poorest performance. 

Whereas ensemble docking showed a significant improvement over docking to the crystal 

structure alone, at most 38% of the compounds were ranked in the top-1 position using 

docking.  Using the SMARTCyp reactivity model alone, 42% of the compounds were 

accurately prediction in the top-1 position. By combining the docking scores and 

SMARTCyp scores prediction accuracy was improved in both ensembles, but not in the 

crystal structure. Ultimately, we found that the inclusion of QSAR into the combination 

approach resulted in significant improvement in prediction success and was the most 

effective and accurate SoM prediction method tested in this work.  

In all systems tested, the QSAR model was able to accurately predict, within the 

top-3 positions, the SoM for nearly all ligands with an active pose. A key limitation to the 

success observed with QSAR was the ability of docking to provide active poses, in other 

words, poses in which the true SoM was within a reactive distance to the oxygen of the 

heme. Using a pseudo-apo ensemble, we were able to find an active docking pose for 

nearly all ligands tested. To set our results in perspective, a recent study of currently 

published methods found that accurate predictions in the top-2 positions range between 

68-87%, on average, across various CYP isoforms17. In the same study, the highest 

prediction rate achieved for CYP2C9 was 87% in the top-217. Using our approach we 

achieved an accurate prediction rate of 96% in the top-2 positions, albeit using a 

different, dataset.  
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Our promising results in CYP2C9 represent a step towards improved and highly 

accurate SoM predictions in CYP enzymes. While in the current study we tested 

substrates of CYP2C9, we believe that the proposed method will be of use in broader 

ligand datasets and also will be applicable to different CYP isozymes.  

 

4.5 Extension of method to other CYP Isozymes 

 The general ligand preparation procedure for the other CYP isozymes was identical 

to the method used to prepare the CYP2C9 set.  The size of the ligands sets for the CYPs 

is as follows: 1A2 (271 Ligands), 2A6 (105 Ligands), 2B6 (151 Ligands), 2C8 (141 

Ligands), 2C19 (218 Ligands), 2-D6 (270 Ligands), 2E1 (145 Ligands), 3A4 (475 Ligands).  

The rest of the methods used to generate the SoM prediction models follow the same 

procedure as section 2 of this chapter with two major exceptions. 

 The first change is with regards to the ligands used to select the representative 

protein ensemble members.  For 2C9, these ligands were manually selected.  For the other 

data sets, this process was automated.  The ligand sets were clustered based on similarity 

to select structurally diverse ligands.  Generally, the size of the diverse selected was set to 

be approximately 10-20% of the total ligand set.  This guided selection process was used 

for all remaining eight CYP isozymes.  Similarly, for 2C9 the initial selection of the test 

and training sets was random.  This random set was then manually curated for coverage of 

the chemical space of the ligand set.  This process was also automated for the other ligand 

sets using the same clustering method used to select the ensemble selection set, only with 

slightly larger number of clusters.  This process typically resulted in test sets of similar size 

to the diverse selection set, 15-20% of ligand compounds. 
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4.6 Results and Comparison for CYP Isozymes 

 As can be in Table 4.5, our models for all CYP isozymes produced highly reliable 

predictions of CYP SoMs.  The Top-1 prediction rates range from 79% for 1A2 to 97% for 

2B6.  The Top-3 prediction rates range from 85.2% for 2-D6 to 100% for 2C8.  The average 

prediction rate across all nine isozymes is 85% in the Top-1, 92% in the Top-2 and 93% in 

the Top-3.  It is important to note that overall docking accuracy was comparable to the 

Top-3 percentage at 94%.  Overall, and for each individual CYP isozyme, the same general 

trend noticed for CYP2C9 was observed: if an active docking pose for a ligand can be 

found, the QSAR model is generally able to place it in one of the top spots. 

 To investigate this issue, a secondary model was built for several of the CYP 

isozymes with the lowest docking accuracy, including CYP2-D6.  For these secondary 

models, those ligands for each CYP isozyme which failed to find an active docking pose 

in the initial model were used as the screening ligands for a repeat of the protein ensemble 

member selection process.  In general, most (over 90%) of the failed ligands successfully 

docked to an ensemble member at this stage.  In addition, there was significant overlap 

between the original protein structure ensembles and the newly selected ensembles.  The 

new structures were added to the original protein ensembles, and the rest of the method 

was repeated.   
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  Table 4.5: SoM Prediction for Nine Cyp Isozymes 

Cyp Isozyme Number of 

Compounds 

Succesful 

Docking % 

Top-1 Top-2 Top-3 

1A2 271 93 79 90 91 

2A6 105 94 87 93 93 

2B6 151 99 97 99 99 

2C8 141 100 94 100 100 

2C9 226 96 88 96 96 

2C19 218 88 80 87 88 

2D6 218 87 80 84 85 

2E1 270 96 81 89 91 

3A4 475 94 80 90 92 
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However, after the new models were completed, there was no significant change in 

overall docking accuracy or final prediction rates of the models.  Comparing which ligands 

were successfully docked for each model, while most ligands docked successfully to both 

models, some ligands docked successfully to only one model, while some docked to neither.  

This last set was of particular interest, as many of these ligands docked successfully in the 

ensemble selection process. When the results of the ensemble selection process were 

further analyzed, we found a common characteristic:  The ligands that successfully docked 

in the ensemble selection stage did so with low ranks.  We therefore concluded that the 

docking scoring process was a weakness in our method, as it preferred non-active poses 

for some ligands. 

Even with this issue with the docking process, our results compare favorably with 

the top methods in the field.  Table 4.6 is a comparison of the Top-2 prediction percentages 

for our method, along with Xenosite17, RS-Predictor12, and SmartCYP2, along with the 

random prediction rate.  The major difference between CyPredict and the other methods is 

the use of structure-based information.  CyPredict uses both ligand-based and structure-

based methods, while the other methods are purely ligand-based, using quantum chemical 

and topological descriptors.   Our method produced the highest successful prediction rate 

for seven of the nine tested CYP isozymes, with the exceptions being 2C19 and 2-D6.  For 

CYP2C19, our rate was 87% as compared to 89% for Xenosite.  For CYP2-D6, our rate 

was 84% compared to 89% for Xenosite and 86% for RS-Predictor.  For the other isozymes, 

our method performed 3% to 15% better than the next best method, and our average 

prediction rate was 92% compared to 87% for Xenosite, 84% for RS-Predictor, and 82% 

for SMARTCyp.  
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Table 4.6: Comparison of Cyp SoM Prediction Methods 

Method 1A2 2A6 2B6 2C8 2C9 2C19 2D6 2E1 3A4 Ave. 

Lill 90.0 93.0 98.7 100 96.0 87.2 83.7 89.0 90.0 92.0 

Xenosite17 87.1 85.7 83.4 88.7 86.7 89.0 88.5 83.5 87.6 87.0 

RS-

Predictor12 

83.4 85.7 82.1 83.8 84.5 86.2 85.9 82.8 82.3 84.3 

SMARTCyp2 80.0 86.0 77.0 83.0 84.0 86.0 83.0 82.0 78.0 82.1 

Random 26.0 31.9 24.8 22.6 22.2 20.2 21.1 36.5 21.0 25.3 
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Another key factor in these comparisons is the validation method for the models.  

Xenosite used leave-one-out cross-validation, while RS-Predictor and SMARTCyp used 

10-fold validation.  These methods use multiple models with test sets of either one 

compound (leave-one-out) or 10% of compounds (10%).  In comparison, our test sets range 

from approximately 50% to 90% of our ligands.  These large test sets indicate that our 

models have retained significant predictive power while avoiding possible overfitting of 

the data. 

4.7 Conclusions 

With these last studies, we have shown that we are successfully able to extend our 

model to other CYP isozymes beyond 2C9.  Our models compare favorably with the 

current best-performing CYP SoM prediction techniques, and in several cases significantly 

outperform them.  In addition, we have identified a specific area of concern to focus on for 

improving our methods: increasing docking accuracy.  Currently, this is the weakest 

portion of our method, as the pseudoreceptor modeling process is generally able to 

correctly select active ligand poses if one has been generated by the docking process.  

Beyond improving docking, any further improvements in the process will require more 

complex calculations, such as QM/MM methods, as the second largest source of error we 

found is in the SMARTCyp scoring process. 

In addition, the completed CYP models are being made freely available to academic 

users for SoM prediction through a webserver using the Nanohub platform.18 The server 

will be available at https://nanohub.org/tools/cypredict/. 
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CHATER 5. FUTURE DIRECTIONS 

 

5.1 Research Summary 

The overall goal of my research was the application and development of the 

advancement of combined ligand-based and structure-based techniques, namely 

pseudoreceptor-based methods, with a focus on surface-based pseudoreceptors.  While the 

goal of pseudoreceptor methods is to produce a protein-like structure to interact with 

ligands, there has been a lack of use of protein structural data in the guiding of the creation 

of the pseudoreceptors.  In Chapter 2, analysis of the interaction surface between protein 

crystal structure and co-crystallized ligand for the refined set of the PDBbind database was 

presented.   These surfaces represented the ideal pseudoreceptor, as they mapped the true 

interactions of protein and ligand, and the analysis showed that the majority of protein-

ligand interactions can be mapped by a few of Gaussian-based descriptors that have 

parameters that fall into a small range of values.  In Chapter 3, a means of tuning surface-

based pseudoreceptors to accurately replicate protein binding pocket topology as from 

known binding ligands will be presented. 

In Chapter 4, I will discuss the implementation of the refinement of our group’s 

previous work on SoM prediction, which includes the use of a modified version of the 

RAPTOR pseudoreceptor package.  The modification was the inclusion of reactivity scores 

from the SMARTCYP package as term in the RAPTOR scoring function.   The 
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motivation for the inclusion of RAPTOR was as a means of generating a model which 

could reliably select binding poses with the known SoM close to the heme of CYP.  This 

method was implemented as a means to counteract the difficulties arising from the large 

number of poses generated by the ensemble docking process.  The initial modeling was 

performed on CYP2C9, but was later extended to eight other CYP isozymes.  In this final 

chapter, we will discuss several possible methods for continuing or improving upon the 

research discussed in this thesis. 

 

5.2 Pseudoreceptor Method 

To extend the work presented in Chapters 2 and 3, we have worked to implement a 

new pseudoreceptor-based QSAR package based on the RAPTOR package but with 

improvements based on the insights presented in this thesis.  Significant progress has been 

made on this new computational tool, but it has not yet reached completion.  In addition to 

improvements to the pseudoreceptor method, we have also chosen to move to Python from 

the C-based languages for the primary programming language.  Python is well-suited for 

file and data management tasks, but lacks speed for intense computations.  We have used 

weave to integrate fast C code for those portions of the code with large numbers of complex 

calculations.  The method alterations are primarily focused on a Correlated Mutli-surface 

Model and an altered machine learning and scoring method. 
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5.2.1 Correlated Multi-surface (CMS) Model 

 After our analysis in Chapter 3, where we determined that a single iso-surface is 

unable to represent the flexible binding pocket of a protein for diverse ligands, we 

developed a CMS model.  Our first thought was to simply use multiple independent iso-

surfaces of varying iso-level values.  Each iso-surface is generated from the ligand 

occupancy values via the Marching Cubes algorithm.  After consideration though, we had 

a number of concerns with this process.  With independent iso-surfaces, even regions where 

the surfaces are very close together, the algorithm could have assigned sets of radically 

different Gaussians to the surfaces, which is not realistic.  If the shells are representing the 

same region and conformation of a protein, they should have identical physico-chemical 

(electrostatic, hydrophobic, hydrogen bond) properties.  To address this, we decided to 

correlate the iso-surfaces if they are physically close to each other.  To determine 

correlation, for each vertex of each iso-surface, the closest vertex (as determined by 

distance scaled by angle between the vertices) of every other iso-surface is found.  If the 

closest vertex is within a certain cut-off, the vertices are then linked to each other, which 

is important when generating the initial Gaussians and in the genetic algorithm. 

 After generating and correlating our multiple iso-surfaces, we generate our initial 

Gaussian regions via the following process.  First, we determine the total strength of every 

ligand atom’s interactions with every shell that contains that atom.  (A shell contains a 

ligand atom if the iso-level of that shell is lower than the occupancy value at that atom’s 

coordinates.)  This strength is determined by the same functions as used for the protein in 

the PLSIA algorithm presented in Chapter 2.  From the ten vertices with the largest value 

for a property, one is randomly selected and a Gaussian is generated using random value 
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parameters, with ranges determined from our previous work.  This Gaussian is then mapped 

to the surrounding surface, and a Gaussian region is determined.  If the surface point where 

the center of the Gaussian is correlated, this Gaussian is propagated to all correlated iso-

surfaces.  All members of the Gaussian region are then excluded, and the ten strongest non-

excluded vertices are found and a new center chosen.  This process repeats up to a 

maximum number of iterations for all properties of all shells, with correlated regions 

counting towards the maximum.  In order to provide more diverse models, the maximum 

number of iterations is randomly determined. 

 

5.2.2 Scoring and Machine Learning 

 The Gaussian-mapped shells are then passed to the machine learning algorithm for 

the creation of the final pseudoreceptor model.  We have implemented the PyEvolve 

genetic algorithm package with customized functions.  We have implemented correlated 

cross-over and mutation functions.  In the cross-over function, the algorithm selects one 

Gaussian from one of the parent models and then swaps that Gaussian and all its correlated 

Gaussians with a set of correlated Gaussians of the appropriate physico-chemical property 

from the other parent.  This cross-over is also restricted by a distance cut-off between the 

locations of centers of the Gaussians: only Gaussians located in the approximately the same 

location may be swapped.  The mutation function also works amongst correlated Gaussians.  

The allowed mutations are addition, deletion, moving the center along a single edge of the 

iso-surface, and change of Gaussian parameter (radius, amplitude, and angle).  These 

mutations are propagated to all correlated Gaussians, and correlated Gaussians are created 

or deleted if necessary. 
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After a certain number of steps, we export the top models from the genetic 

algorithm to a Monte Carlo optimization algorithm along with the initial ligand 

conformations from the alignment process.  In the Monte Carlo process, the ligand 

conformations are allowed to translate as well as rotate.  The best pose for each ligand 

conformation, as scored using the same scoring function as in the genetic algorithm, is 

returned to the pseudoreceptor program for all Monte Carlo models.  The best scored pose 

for each ligand conformation from amongst all the Monte Carlo models is identified and 

selected.  These poses are then used to generate a new pseudoreceptor model (new iso-

surfaces and genetic models) until a set number of iterations of the full process have been 

completed, then the final predictions are generated. 

These processes will be scored by computing the interaction between the fields 

from the Gaussian surfaces directly with the ligand atoms.  Typically, scores are computed 

between the ligand atoms and the discrete grid points.  This point-to-point pairwise scoring 

not only creates a large number of descriptors which can lead to overfitting; it does not 

replicate the surfaces found in actual protein-ligand interactions.  With our process, instead 

of each grid point being independent, regions of the iso-surface are linked by Gaussian 

functions where the properties of the entire region are determined by the four 2-D Gaussian 

parameters.  We are currently scoring the Gaussians with a simple modified piece-wise 

linear pairwise (PLP) scoring function combined with an electrostatic term.  The 

electrostatics are computed by computing the pairwise Coulombic interaction between the 

ligand atoms and the iso-surface vertices of electrostatic Gaussians.  Hydrophobic, steric, 

and hydrogen bond terms are calculated using a modified PLP function (Gehlhaar, 1995).  

The PLP scoring function follows the general form shown in Figure 5.1, and is calculated 
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between ligand atoms and the iso-surface vertices appropriate Gaussian regions, except the 

steric term is calculated with the full iso-surface instead of Gaussian regions.  The 

individual interactions are then scaled according the Gaussian value of the vertex. 

 

5.3 CYP SoM Prediction 

 As illustrated in Chapter 4, we have achieved significant success with our algorithm 

for the prediction of SoMs for a number of CYP isozymes, but we also feel there are 

potential avenues to improve and extend the method.  First, as mentioned previously, one 

major issue is docking accuracy, which is typically less than 100% for the CYP isozymes.  

Second, while we have tested the performance on a single CYP isozyme at a time, we have 

not explored trying to predict SoM’s against multiple CYP isozymes simultaneously. 

 

5.3.1 Docking Accuracy 

 As previously mentioned, with our method, if we can obtain an active docking pose, 

the pseudoreceptor model can generally identify that pose.  Therefore, the major source of 

error for our models is in the docking process.  We found that increasing the number of 

protein ensemble members was not successful in remedying this issue.  This is supported 

by our studies of CYP2C9, where we found insignificant increase in model accuracy when 

using more than six protein structure models.  The other CYP isozymes seem to follow this 

trend, adding structures above a certain minimum does not significantly improve docking 

accuracy. 

 During our analysis of our results, we found the ligands that were not always 

successfully docked often had active poses that were poorly ranked.  Currently, we only 
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take the top ten ligand poses into consideration, and the active poses for these ligands are 

generally ranked close to ten if successfully docked at all.  Therefore, to increase docking 

accuracy, one possible solution is to increase the number of generated docking poses.  This 

is not an ideal solution, as this increases the number of poor poses for those ligands for 

which we can find active poses in the top ten.  This can eventually cause difficulties for the 

pseudoreceptor modeling process.  Another possible solution is iterating the docking 

process.  As we know from our previous studies, we can occasionally find active poses 

from the difficult ligands.  Therefore, if we run the docking process multiple times, an 

active pose may be generated.  As we would still only generate the top ten poses for each 

iteration, the ratio of active to decoy poses should remain relatively constant, which should 

theoretically be favorable to purely increasing the number of accepted poses.  That is, while 

both processes could decrease QSAR accuracy due to an increased number of docking 

poses, the iterative process should have a better ratio of active to decoy poses, so long as 

the docking scoring process is better than random and an equivalent total number of poses 

are generated..  Extensive docking studies are needed to determine which method is 

preferred, as it is dependent on both how likely we are to find an active pose at a given 

rank, and how this changes when the total number of ranks is increased.  Another 

alternative is an additional docking processing step where the poses are scored with a more 

accurate function, such as MM/PBSA or MM/GBSA.  While using more sophisticated 

scoring function would increase the computational cost of docking, it might be possible to 

maintain or reduce the number of necessary poses. 
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5.3.2 CYP Selectivity 

 The percentage of approved drugs that the CYP isozymes, studied in this thesis, 

metabolize was discussed in Chapter 4.  The sum of these percentages is well above 100%, 

which is indicative of one of the issues of metabolism: multiple metabolic pathways.  In 

our studies, we have only worked with known ligands for each CYP isozyme.  While being 

able to reliably predict where each isozyme will metabolize a ligand, it is also important to 

be able to predict which isozymes will metabolize a given ligand. 

 In order to assess the ability of our method to address this problem, instead of using 

a tailored ligand set for each isozyme, we will repeat our studies with a combined ligand 

set formed from the individual isozyme sets.  For each isozyme, those ligands that are not 

known to be metabolized by that isozyme will have all their docking poses classified as 

decoy poses.  The selectivity of our method for each isozyme will then be determined by 

analyzing the scores of the known ligands, most likely using a method such as a receiver 

operating characteristic curve.  This analysis would give a score of one if our method scores 

all known metabolites ahead of all known inactive compounds, and gives a score of zero 

for the reverse scenario. 
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APPENDIX 

 

This appendix contains supplementary tables S1-S11 for Chapter 3. 
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Table A1: Protein systems and corresponding pdb codes 
 

Protein System PDB Entries 

HIV-PR 1a94 

 1aaq 

 1g2k 

 1g35 

 1gnm 

 1gnn 

 1gno 

 1hbv 

ERα 1gwq 

 1gwr 

 1x7e 

 2p15 

 2q70 

 2qe4 

 2qgt 

CDK - 20 1b38 

 1h00 

 1h0v 

 1h0w 

 1h07 

 1ke5 

 1pxm 

 1pnx 

 1pxp 

 1q8t 

 1q8u 

 1q8w 

 1rej 

 1stc 

 1vyz 

 1y91 

 1yds 

 1ydt 

 2uzn 

 2uzo 
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Protein System PDB Entries 

CDK - 10 1q8u 

 1q8w 

 1rej 

 1stc 

 1vyz 

 1y91 

 1yds 

 1ydt 

 2uzn 

 2uzo 

CDK - 5 1y91 

 1yds 

 1ydt 

 2uzn 

 2uzo 
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Table A2: Occupancy Distribution of Estrogen Receptor 

 

c-value Fraction of surface points with target occupancy 

1.4 0.001 0.072 0.183 0.167 0.153 0.126 0.096 0.073 0.044 0.026 0.017 0.015 0.008 0.009 0.006 0.002 0.001 0.002 0.000 0.000 0.000 0.000 

2 0.000 0.012 0.052 0.083 0.102 0.122 0.128 0.112 0.106 0.081 0.074 0.045 0.029 0.018 0.016 0.008 0.005 0.005 0.002 0.000 0.000 0.000 

2.5 0.000 0.002 0.028 0.033 0.041 0.067 0.091 0.103 0.118 0.111 0.103 0.090 0.084 0.050 0.027 0.020 0.014 0.012 0.003 0.002 0.000 0.000 

3 0.000 0.000 0.016 0.030 0.016 0.017 0.044 0.068 0.081 0.104 0.122 0.115 0.111 0.095 0.077 0.045 0.027 0.017 0.009 0.005 0.000 0.000 

Target 0 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975 1.000 
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Table A3: Cumulative Occupancy of Estrogen Receptor 

 

c-value Cumulative Occupancy Fraction 

1.4 1.000 0.999 0.927 0.744 0.577 0.424 0.298 0.202 0.129 0.085 0.059 0.042 0.028 0.019 0.011 0.005 0.003 0.002 0.000 0.000 0.000 0.000 

2 1.000 1.000 0.988 0.936 0.854 0.751 0.630 0.502 0.390 0.284 0.203 0.128 0.084 0.055 0.036 0.021 0.013 0.008 0.003 0.000 0.000 0.000 

2.5 1.000 1.000 0.998 0.969 0.936 0.895 0.827 0.737 0.634 0.516 0.406 0.302 0.212 0.128 0.078 0.051 0.031 0.017 0.005 0.002 0.000 0.000 

3 1.000 1.000 1.000 0.984 0.954 0.939 0.922 0.877 0.809 0.729 0.624 0.502 0.387 0.275 0.180 0.103 0.058 0.031 0.014 0.005 0.000 0.000 

Target 0.000 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975 1.000 
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Table A4: Occupancy Distribution of HIV-PR 

 
 
 
 
 

c-value Fraction of surface points with target occupancy 

1.4 0.049 0.146 0.151 0.147 0.137 0.114 0.088 0.064 0.044 0.026 0.016 0.009 0.005 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.011 0.095 0.090 0.083 0.089 0.102 0.108 0.105 0.089 0.072 0.059 0.042 0.028 0.017 0.008 0.003 0.000 0.000 0.000 0.000 0.000 0.000 

2.5 0.001 0.059 0.063 0.063 0.059 0.066 0.077 0.092 0.098 0.096 0.092 0.076 0.064 0.045 0.028 0.015 0.005 0.001 0.000 0.000 0.000 0.000 

3 0.000 0.029 0.045 0.048 0.048 0.048 0.051 0.065 0.076 0.091 0.096 0.100 0.094 0.081 0.060 0.043 0.021 0.006 0.000 0.000 0.000 0.000 

Target 0.000 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975 1.000 
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Table A5: Cumulative Occupancy of HIV-PR 

 
c-value Cumulative Occupancy Fraction 

1.4 1.000 0.951 0.805 0.654 0.507 0.369 0.255 0.167 0.103 0.059 0.032 0.016 0.007 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 1.000 0.989 0.894 0.804 0.721 0.632 0.530 0.422 0.317 0.228 0.156 0.097 0.055 0.027 0.010 0.003 0.000 0.000 0.000 0.000 0.000 0.000 

2.5 1.000 0.999 0.941 0.878 0.815 0.755 0.689 0.612 0.520 0.422 0.326 0.234 0.158 0.094 0.049 0.021 0.005 0.001 0.000 0.000 0.000 0.000 

3 1.000 1.000 0.971 0.927 0.879 0.831 0.783 0.732 0.668 0.592 0.500 0.404 0.305 0.211 0.130 0.071 0.028 0.006 0.000 0.000 0.000 0.000 

Target 0.000 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975 1.000 
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Table A6: Occupancy Distribution of CDK-20 

 

c-value Fraction of surface points with target occupancy 

1.4 0.014 0.182 0.221 0.150 0.105 0.077 0.062 0.051 0.043 0.037 0.026 0.018 0.009 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.003 0.095 0.143 0.136 0.125 0.097 0.082 0.069 0.058 0.048 0.040 0.038 0.030 0.023 0.010 0.003 0.000 0.000 0.000 0.000 0.000 0.000 

2.5 0.000 0.058 0.095 0.097 0.108 0.105 0.096 0.080 0.073 0.061 0.052 0.044 0.042 0.038 0.029 0.017 0.005 0.000 0.000 0.000 0.000 0.000 

3 0.000 0.033 0.070 0.063 0.077 0.096 0.093 0.094 0.079 0.076 0.066 0.057 0.047 0.045 0.044 0.037 0.020 0.003 0.000 0.000 0.000 0.000 

Target 0 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975 1.000 
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Table A7: Cumulative Occupancy of CDK-20 
 

c-value Cumulative Occupancy Fraction 

1.4 1.000 0.986 0.804 0.583 0.433 0.328 0.251 0.189 0.138 0.095 0.058 0.031 0.013 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 1.000 0.997 0.902 0.759 0.623 0.499 0.402 0.320 0.251 0.193 0.146 0.105 0.067 0.037 0.014 0.004 0.000 0.000 0.000 0.000 0.000 0.000 

2.5 1.000 1.000 0.942 0.846 0.750 0.642 0.537 0.440 0.361 0.288 0.227 0.175 0.131 0.089 0.051 0.022 0.005 0.000 0.000 0.000 0.000 0.000 

3 1.000 1.000 0.967 0.897 0.834 0.757 0.662 0.569 0.475 0.395 0.319 0.253 0.196 0.149 0.104 0.060 0.023 0.003 0.000 0.000 0.000 0.000 

Target 0.000 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975 1.000 
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Table A8: Occupancy Distribution of CDK-10 

c-value Fraction of surface points with target occupancy 

1.4 0.043 0.160 0.188 0.153 0.102 0.072 0.058 0.045 0.043 0.037 0.032 0.026 0.019 0.010 0.007 0.003 0.002 0.000 0.000 0.000 0.000 0.000 

2 0.022 0.088 0.112 0.133 0.116 0.097 0.076 0.060 0.052 0.048 0.042 0.041 0.035 0.030 0.023 0.013 0.008 0.003 0.001 0.000 0.000 0.000 

2.5 0.012 0.055 0.072 0.088 0.106 0.102 0.087 0.076 0.064 0.053 0.052 0.049 0.043 0.043 0.035 0.030 0.019 0.010 0.004 0.000 0.000 0.000 

3 0.008 0.034 0.050 0.060 0.072 0.084 0.095 0.082 0.074 0.067 0.058 0.054 0.053 0.050 0.047 0.042 0.035 0.022 0.010 0.002 0.000 0.000 

Target 0.000 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975 1.000 
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Table A9: Cumulative Occupancy of CDK-10 

 

c-value Cumulative Occupancy Fraction 

1.4 1.000 0.957 0.797 0.608 0.456 0.354 0.282 0.223 0.178 0.135 0.098 0.066 0.040 0.021 0.012 0.005 0.002 0.000 0.000 0.000 0.000 0.000 

2 1.000 0.978 0.890 0.778 0.645 0.529 0.432 0.356 0.296 0.244 0.196 0.154 0.112 0.077 0.047 0.024 0.012 0.004 0.001 0.000 0.000 0.000 

2.5 1.000 0.988 0.933 0.860 0.772 0.666 0.564 0.477 0.401 0.338 0.284 0.232 0.183 0.140 0.097 0.063 0.033 0.014 0.004 0.000 0.000 0.000 

3 1.000 0.992 0.958 0.908 0.848 0.776 0.692 0.597 0.515 0.441 0.374 0.315 0.261 0.208 0.158 0.112 0.069 0.034 0.012 0.002 0.000 0.000 

Target 0.000 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975 1.000 
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Table A10: Occupancy Distribution of CDK-5 

 

c-value Fraction of surface points with target occupancy 

1.4 0.080 0.168 0.154 0.126 0.098 0.073 0.056 0.050 0.045 0.036 0.034 0.032 0.022 0.012 0.007 0.004 0.002 0.000 0.000 0.000 0.000 0.000 

2 0.040 0.102 0.100 0.100 0.100 0.093 0.079 0.068 0.056 0.050 0.045 0.042 0.036 0.032 0.027 0.017 0.008 0.004 0.001 0.000 0.000 0.000 

2.5 0.024 0.068 0.065 0.075 0.081 0.081 0.086 0.080 0.074 0.066 0.055 0.049 0.046 0.040 0.034 0.034 0.025 0.012 0.005 0.001 0.000 0.000 

3 0.013 0.045 0.049 0.051 0.060 0.065 0.071 0.078 0.080 0.077 0.074 0.063 0.054 0.049 0.043 0.041 0.042 0.030 0.012 0.003 0.000 0.000 

Occupa

ncy 0.000 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975 1.000 
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Table A11: Cumulative Occupancy of CDK-5 

c-value Cumulative Occupancy Fraction 

1.4 1.000 0.920 0.751 0.597 0.471 0.373 0.300 0.244 0.194 0.149 0.114 0.080 0.048 0.026 0.014 0.007 0.003 0.000 0.000 0.000 0.000 0.000 

2 1.000 0.960 0.858 0.758 0.658 0.558 0.465 0.387 0.318 0.262 0.212 0.167 0.126 0.090 0.058 0.031 0.014 0.005 0.001 0.000 0.000 0.000 

2.5 1.000 0.976 0.908 0.843 0.768 0.687 0.606 0.520 0.441 0.367 0.301 0.246 0.196 0.151 0.111 0.077 0.043 0.018 0.006 0.001 0.000 0.000 

3 1.000 0.987 0.941 0.892 0.842 0.782 0.717 0.646 0.568 0.488 0.410 0.336 0.273 0.219 0.171 0.128 0.087 0.045 0.015 0.003 0.000 0.000 

Target 0.000 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975 1.000 
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