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ABSTRACT

Heim, Jordan M. Ph.D., Purdue University, December 2015. The Determination of
the Half-Life of 32Si and Time Varying Nuclear Decay. Major Professor: Ephraim
Fischbach.

The aim of this work is to make an accurate determination of the half-life of 32Si as

well as to investigate reported variations in nuclear decay rates. Primarily, we focus

on a previous experiment at Brookhaven National Lab (BNL) [1], which measured the

ratio of interwoven 32Si and 36Cl decays over a 4 yr period and reported unexplained

annual periodicities. Utilizing the very same sources and shuffling apparatus, we have

observed the decay of 32Si and 36Cl for more than 6,000 hours each, over the last ∼ 2

yr, while recording ∼ 5× 106 individual environmental readings. The half-life of 32Si,

which has been quoted between 101(18) yr and 330(40) yr, is redetermined by this

data to be 159.4 yr± 1.9 yr (statistical)± 3.7 yr (systematic) with χ2
DOF = 1.01. We

have also observed a periodic signal in the 32Si/36Cl ratio decay data, similar to that in

the original experiment at BNL, which we analyze at length. Finally, a related topic

concerning self-induced decay and its relationship to systematic dead-time corrections

is presented.



1

1. Introduction

The behavior of radioactive isotopes is generally thought to be well-understood, and

the practice of determining half-lives is seemingly straightforward. Yet many reported

values are discrepant far beyond the collective uncertainties. Half-life determinations

of 32Si, studied in this work, have ranged from ∼100 yr to more than 300 yr. Further,

a number of nuclear decay experiments have observed persistent and unexplained tem-

poral features in the data. Across a multitude of geographical locations, experimental

designs, implemented technologies, and isotopes studied, one commonality appears

to be small periodic modulations in the observed decay rates (see Table 1.1). The

frequencies reported suggest a possible connection to the Sun, which is further bol-

stered by evidence of a positive relationship between solar indices data and anomalous

behavior of nuclear decay [24].

Irrespective of the source of these anomalies, they deserve to be resolved; impli-

cations to the field of metrology notwithstanding, the importance of nuclear decay

across a multitude of scientific and medical applications merits further study. In the

following chapters, we discuss our work in attempting to address the issue by con-

structing an experiment designed to redetermine the half-life of 32Si, while recording

a large set of environmental and systematic data with which any potential decay rate

modulation can be compared. We also discuss a related topic concerning self-induced

decay and its relationship to rate-related losses and systematic dead-time corrections.

In order to provide additional perspective, an overview of relevant historical events is

provided in the next chapter, which will follow the events as presented in [25], [26],

and [27].
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Isotope Decay Type Detector Type Radiation Measured Effect/Periodicity Observed Reference

3H β− Photodiodes β− 1 yr−1 [2]

3H β− Liquid Scintillator β− 1 d−1, 12.1 yr−1, 1 yr−1 [3]

3H β− Liquid Scintillator β− ∼ 12.5 yr−1 [4]

3H β− Solid State (Si) β− ∼ 2 yr−1 [5]

22Na/44Ti β+, κ Solid State (Ge) γ 1 yr−1 [6]

36Cl β− Proportional β− 1 yr−1, 11.7 yr−1, 2.1 yr−1 [7, 8, 9]

36Cl β− Geiger–Müller β− 1 yr−1 [10]

54Mn κ Scintillation γ Solar flare [11]

54Mn κ Scintillation γ 1 yr−1 [12]

54Mn β− Scintillation γ 1 yr−1 [13]

60Co β− Geiger–Müller β−, γ 1 yr−1 [14, 15]

60Co β− Scintillation γ 1 d−1, 12.1 yr−1 [16]

85Kr β− Ion Chamber γ 1 yr−1 [17]

90Sr/90Y β− Geiger–Müller β− 1 yr−1, 11.7 yr−1 [14, 15,18]

108mAg κ Ion Chamber γ 1 yr−1 [17]

133Ba β− Ion Chamber γ 1 yr−1 [19]

137Cs β− Scintillation γ 1 d−1, 12.1 yr−1 [16]

152Eu β−, κ Solid State (Ge) γ 1 yr−1 [20]

152Eu β−, κ Ion Chamber γ 1 yr−1 [17]

154Eu β−, κ Ion Chamber γ 1 yr−1 [17]

222Rn α, β− Scintillation γ 1 yr−1, 11.7 yr−1, 2.1 yr−1 [21, 22]

226Ra α, β− Ion Chamber γ 1 yr−1, 11.7 yr−1, 2.1 yr−1 [7, 23,9]

239Pu β− Solid State α 1 d−1, 13.5 yr−1, 1 yr−1 [3]

Table 1.1
Various experiments in which time-dependent nuclear decay rates have
been observed [6]. For each entry the observed nuclides and their dominant
decay modes are exhibited. Observed periodicities in the decay rates are
noted.
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2. Historical Considerations

2.1 X-rays

The history of radioactivity begins with Roentgen’s 1895 discovery of what would

become known as x-rays, since further investigation into this new phenomenon quickly

led to the discovery of radioactivity, itself. Roentgen was in the midst of repeating

an experiment on cathode rays (electrons) originally carried out by Heinrich Hertz

and his student Phillipp Lenard. While recreating a specific experimental design of

Lenard’s, Roentgen found “...if one covers the [cathode ray] tube with a fairly close-

fitting mantle of thin black cardboard, one observes in the completely darkened room

that a paper screen painted with barium platinocyanide placed near the apparatus

glows brightly or becomes fluorescent with each discharge, regardless of whether the

coated surface or the other side is turned toward the discharge tube. This fluorescence

is still visible at a distance of two meters from the apparatus” [25]. Roentgen was

reportedly so astounded by his findings that he had to convince himself repeatedly

of what he observed. Indeed, he mentioned to his wife only that he was working on

something which would make people say he had probably gone crazy. After publishing

his results complete with several x-ray images (including the now famous image of

his wife’s hand) on Jan 1, 1896, the news quickly traversed the western world. The

scientific community was electrified; shortly after, it was said by a young Ernest

Rutherford that “...the great object is to find the theory of matter before anyone else,

for nearly every professor in Europe is now on the warpath” [25].
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2.2 Uranic Rays

The aforementioned connection between x-rays and radioactivity lies with Henri

Becquerel. It was briefly believed that these x-rays might be connected with phospho-

rescence, so Becquerel’s study of uranic salts was a natural progression. His method

of experimentation was thus described in his own words: “One wraps a photographic

plate...in two sheets of very thick black paper...so that the plate does not fog during

a day’s exposure to sunlight. A plate of the phosphorescent substance is laid above

the paper on the outside and the whole is exposed to the sun for several hours [to

excite the phosphorescent substance]. When the photographic plate is subsequently

developed, one observes the silhouette of the phosphorescent substance, appearing

in black on the negative. If a coin or a sheet of metal...is placed between the phos-

phorescent material and the paper, then the image of these objects can be seen to

appear on the negative” [25]. It is understandable, then, that these phosphorescent

phenomena were thought to be producing x-rays. A week later, Becquerel was again

experimenting with a photographic plate, when he found the sky to be overcast. He

returned his plate and uranic salts to a dark cabinet to be used another day. After

several days of cloud cover, Becquerel decided to develop the photographic plate and

was amazed to find that the plate was not blank but darkened just as if the uranium

had been exposed to sunlight. Thus began a series of experiments which led to the

discovery of radioactivity.

2.3 Rutherford, Curies, et al.

Becquerel’s discovery did not gain the immediate notoriety that Roentgen’s had.

Indeed, in the next year only a few short papers on the subject were published. What

would later be seen as an important development, however, was the new interest in

uranic rays by two young scientists: Ernest Rutherford and Marie Curie. Curie de-

cided to study these uranic rays in 1897, and in April 1898, she submitted her first

paper on radioactivity. In this paper, she made a few important new observations.
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Firstly, she had found a new radioactive substance - thorium - showing that the phe-

nomenon was not unique to uranium (this had also been discovered, unbeknownst

to her, by Schmidt a couple of months earlier). Secondly, she concluded that the

activity of uranium increased as the amount of uranium increased - a more quantita-

tive description than Becquerel had given. Thirdly, she suggested that “radioactive

properties are a diagnostic for the discovery of new substances” [25].

Pierre Curie, now very interested in this research, joined his wife in the endeavour

to test this new idea. They had observed that a sample of pitchblende exhibited an

activity about 4 times the level expected for uranium. Since previous observations

of uranium had shown the activity to be “...proportional to the amount of uranium

present and independent of its combinations with other inactive elements” [27], i.e.

radioactivity was an atomic property, it was thought the relatively high levels of

radiation might be due to the presence of another radioactive element. The two

proceeded to analyze the chemical separation of pitchblende, and by December 1898,

they had found two new radioactive elements - polonium and radium.

Around this same time, Ernest Rutherford was beginning his research on radioac-

tivity at the Cavendish Laboratory in Cambridge, which led to several important

discoveries. His experiments had shown that certain refraction and polarization prop-

erties, which Becquerel had claimed to observe, were not present, and that electrical

currents in gaseous media were indicative of ionization of the gas by radiation; this

provided a more direct means of measurement of radioactivity. He also found that

uranium emitted “at least two distinct types of radiation - one that is very readily

absorbed, which will be termed for convenience the α-radiation, and the other of a

more penetrative character, which will be termed the β-radiation” [25]. He quantified

this phenomenon by observing the effects of intervening materials on the intensity of

the radiation detected. He showed that radiation from thorium was diminished sig-

nificantly by a thin sheet of paper, but subsequent sheets did not continue to produce

such a large effect (See Table 2.1) [28]. This indicates the presence of two differing

types of radiation - one easily absorbed and the other more penetrating. Furthermore,
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Number of Layers Rate of

of Paper Discharge

0 1

1 0.74

2 0.74

5 0.72

10 0.67

20 0.55

Table 2.1
Rate of electric discharge from a thorium sample as a function of thickness
of intervening paper. Each layer was 0.008 cm thick. It can be seen that
the rate of discharge is immediately affected to a large extent by the first
sheet of paper and affected to a much smaller degree by subsequent sheets.
This indicates one type of radiation is easily stopped by the paper, while
the other is much more penetrative in nature [28].

Rutherford found that thorium emitted an additional radioactive substance, whose

constituents “retain their radioactive powers for several minutes” [28]. In addition to

having directly observed part of a decay chain, he had essentially discovered that dif-

ferent elements exhibit different half-lives. Rutherford also noticed that the radiation

produced by thorium was affected greatly by small currents of air from opening and

closing a door across the room from the experimental apparatus. This led him to ex-

periment with controlled air currents while monitoring the decay rate of the thorium

sample (Figure 2.1). He found, by isolating the newly produced emanation, that the

intensity of radiation fell off rather quickly compared to that of uranium and thorium.

Specifically, he showed that it dropped to half its original value in approximately one

minute and decayed according to a geometrical progression in time (see Table 2.2 and

Figure 2.2). He went on to show [28] that the intensity of radiation as a function of
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Time (s) Current (A)

0 1

28 0.69

62 0.51

118 0.23

155 0.14

210 0.067

272 0.041

360 0.018

Table 2.2
Rutherford’s measurements of the decay of ‘emanation’ (228Ra) from tho-
rium in time [28]. Potential Difference noted to be 100 V.

Figure 2.1. Schematic of the apparatus used by Rutherford to isolate the
‘emanation’, or new radioactive substance produced by thorium oxide at
location A. The emanation was carried by a current of air through the
metal tube, B, into C, where it ionized a gas and produced current [28].
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Figure 2.2. Current through Rutherford’s gas detector as a function of
time [28].

time follows:

I(t) = Ioe
−λt (2.1)

F. Soddy became a colleague of Rutherford when he gained employment at McGill

University in 1900. The two began collaborating on experiments in radioactivity, and

over the next few years, they constructed a general theory of radioactivity, which

was published in several papers between September 1902 and May 1903. The theory

contains six important claims. Written in a more modern terminology, they read:

i: The elements uranium, thorium, and radium continuously decay to new ele-

ments, which are also radioactive.

ii: Multiple decays through the decay chain are successive rather than simultane-

ous.

iii: The changes to an atom due to radioactivity are different from those seen in

chemistry since the phenomenon is intra-atomic in nature.
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iv: The number of atoms which decay in some time is proportional to the number

of atoms that have not yet decayed, and this proportion is characteristic of and

constant for the substance. This leads to the exponential decay law: n = noe
-λt,

where the average life of an atom is 1/λ

v: α -particles are positively charged with a mass to charge ratio over 1000 times

that of an electron. If α -particles and electrons have the same charge, this

implies the α -particle has a mass similar to that of a hydrogen atom.

vi: The radiation emitted from atoms undergoing radioactive decay may not simply

accompany the change of one substance into another, but actually embody the

change itself.

In these early days, scientists tried to probe the nature of radioactive decay by all

manner of interesting and clever experiments involving large changes in temperature

and pressure, strong magnetic fields, and other such environmental parameters. One

of the more dramatic experiments, conducted by Rutherford and Petavel, observed

the γ-ray activity of a radium sample, which was placed inside a steel-encased cordite

bomb. During the explosion, a temperature of 2500 ◦C and a pressure of roughly 1000

atm was estimated to have occurred, but no change in the γ-ray activity was observed.

Many such experiments led early scientists to conclude that the decay constant of a

radioactive substance was independent of the extranuclear environment [29], [30].

2.4 K-capture

It is now well-known that certain processes, such as electron-capture, are sensitive

to their environment insofar as it affects the orbital electrons’ wave function. For

example, the probability of electron-capture occurring in a given atom depends on

the K-orbital electrons’ wave function multiplied by the spin wave function [31]:

ψe =
√
Z3/πa30 e

−Zr/a0

1

0

 or

0

1

 (2.2)
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By subjecting substances which undergo electron-capture to large electromagnetic

fields, for example, one can affect the wave function of an orbital electron enough to

change the decay rate slightly. This phenomenon is well-understood and is separate

from our research interests.

2.5 Emery

G.T. Emery’s paper, “Perturbation of Nuclear Decay Rates” [30], published in

1972, provides insight into the development of our understanding of decay rate con-

siderations. He notes that, “One of the paradigms of nuclear science since the very

early days of its study has been the general understanding that the half-life, or decay

constant, of a radioactive substance is independent of extranuclear considerations.”

He goes on to detail how scientists arrived at this conclusion; “Early workers tried to

change the decay constants of various members of the natural radioactive series by

varying the temperature between 24 ◦K and 1280 ◦K, by applying pressure of up to

2000 atm, by taking sources down into mines and up to the Jungfraujoch [a moun-

tain pass in the Alps], by applying magnetic fields of up to 83,000 Gauss, by whirling

sources in centrifuges, and by many other ingenious techniques...Especially dramatic

was an experiment of Rutherford and Petavel, who put a sample of radium ema-

nation inside a steel-encased cordite bomb. Even though temperatures of 2500 ◦C

and pressures of 1000 atm were estimated to have occurred during the explosion, no

discontinuity in the activity of the sample was observed.”
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3. Modern Experiments

Oscillations in decay rates, the subject of the present work, have been documented in

modern experiments but have typically been attributed to conventional environmental

parameters such as temperature, humidity, and pressure changes, which may affect

the detection apparatus. Certainly, these, along with other similar considerations,

deserve scrutiny. However, analysis has also been presented which maintains that

these factors cannot fully account for the effects seen in some experiments.

3.1 BNL

We became aware of the reported decay rate variations while investigating the

possibility of using radioactive sources as random number generators. In the course

of our research, we encountered a paper published by Alburger, et al. [1] regarding

a half-life experiment performed at Brookhaven National Laboratory (BNL), which

appeared to show some time dependence in the decay rate of their samples. Their

experiment measured the half-life of 32Si through the use of an automatic sample

changer, which compared the counts collected for the silicon source to a long-lived

reference, 36Cl (T1/2 = 301, 000yr), so as to allow for corrections due to systematic

effects. Data were collected monthly between 1982 and 1986, totaling 53 data points,

each of which consisted of the sum of twenty 30-minute counting periods for 32Si inter-

woven with 20 30-minutes counting periods for the reference source. When the ratios

of 32Si to 36Cl were plotted against time, a clear oscillatory behavior was observed

with a magnitude approximately three times the statistical uncertainty of the data

(see Figure 3.1). In order to compare the data from year to year, the counts were

corrected for decay, normalized, and plotted according to the month in which they

were collected (Figure 3.2). An annual oscillation is clearly evident.
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Figure 3.1. Figure 2 of [1] shows the ratio 32Si/36Cl counts over 48 months.
Each data point is the average of 4 10-hour runs. Error bars were arbitrar-
ily quoted at three times the statistical uncertainties by the researchers.

Characterization of the system suggested that effects due to shifting high voltage,

air pressure, gas flow, and discriminator settings were too small to account for the

fluctuations seen in the data. Environmental temperature and relative humidity were

not recorded until the last several months of the experiment, when it was realized that

they might be responsible for the fluctuations. Based on the limited measurements,

it was estimated that these may account for fluctuations on the order of one standard

deviation but were still not large enough to explain the magnitude of the effect seen

in the data. Further analysis by Jenkins et al. [32], supports the claim that these

environmental effects cannot fully explain the phenomenon.
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Figure 3.2. Figure 4 of [1] shows the previously presented data plotted,
yearly, on top of one another. T = 0 is January 1. An arbitrary sine
function fit gives an amplitude of 3.4 standard deviations (Error bars are
statistical uncertainties).

3.2 PTB

The subsequent search for additional long-term nuclear decay data, yielded a paper

regarding an experiment in which decay data were collected at regular time intervals

for many years as part of a study on detector stability. The experiment, conducted by

Siegert et al. [20], at the Physikalisch-Technische Bundesanstalt (PTB) in Germany,

observed the decay of europium isotopes as well as 226Ra for more than twenty years.

The experiment, in part, utilized a pressurized 4πγ ionization chamber for which

a long-lived 226Ra (T1/2 = 1600 yr) source was used as a reference. An automated

sample changer cycled through measurements of a 154Eu source, the reference source,

and the background at regular intervals. The researchers noted, “The raw data from

the ionization chamber measurement show small periodic fluctuations, unless taken
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as ratios to the ionization current of the 226Ra reference source...They may be fitted

by a superposition of an exponential decay and a periodic function such as a cosine

function with a yearly period.” It should be noted that a similar signal was also seen

in their secondary setup (utilizing a 152Eu source and a Ge(Li) detector) but with a

phase shift of about half a year relative to the ionization chamber. Interestingly, the

226Ra signal correlated strongly with the 1/R2 Earth-Sun separation (1/R2
ES), as did

the BNL data. Futhermore, there is an overlap of approximately 2 years in the data

sets, allowing us to evaluate the concurrence of this effect in data collected in different

parts of the world using completely different equipment (Figure 3.3). Siegert et al.

Figure 3.3. Raw BNL (32Si/36Cl ratio) and PTB (226Ra) data plotted
against 1/R2

ES, where RES is the Earth-Sun separation, show a compelling
similarity.

attributed the oscillation to an effect of seasonal variations in background activity

due to radon levels. However, Jenkins, Mundy, and Fischbach have argued [32] that
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the radon mechanism proposed by Siegert et al. cannot, in fact, explain the periodic

signal.

3.3 Ellis

Another instance of a periodic signal in decay rates is seen in a 1990 paper by

Kenneth J. Ellis titled “The Effective Half-Life of a Broad Beam 238PuBe Total Body

Neutron Irradiator” [13]. In vivo neutron activation analysis is used to ascertain the

elemental make-up of the human body or to track changes in one’s elemental make

up over time, so it is important to know precisely the effective half-life of the PuBe

source. Ellis’s study centered on determining the changes in the thermal neutron flux

provided by the medical irradiator over time.

The irradiator utilized, in total, fourteen 50 Ci PuBe sources aligned above and

below the person’s body. The activity induced in the body was then observed by 54

NaI detectors positioned in two 9 × 3 arrays above and below the patient. Two types

of standards were used to calibrate and monitor the performance of the detectors:

i) nine 137Cs sources placed daily between the upper and lower detectors along the

middle row of the array and counted for 60 s. This calibration data showed no periodic

signal. ii) a Lucite rod containing nine samples of epoxied manganese powder along

its length. The rod was irradiated and placed in the counting apparatus such that the

manganese sources lined up with the detectors in the same way as the 137Cs sources.

A total of 255 calibrations were made using the rod, and in this data, Ellis noticed a

periodic variation.

It was concluded that “a seasonal difference of approximately 0.5% is seen between

the winter and summer months” in this 56Mn standard. Ellis also noted that a

change in the counting efficiency of the system over time could be ruled out based

on 137Cs calibration data, whose half-life measurements, using the same system, were

in excellent agreement with the accepted values in existing literature. By calculating
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the effects of a build-up of daughter products and the presence of other isotopes of

Pu, Ellis determined that the results would be too small to explain the discrepancies.

3.4 54Mn at Purdue

Jenkins and Fischbach report a perturbation in the decay rate of 54Mn during

a solar flare on December 13, 2006 [11], supporting earlier evidence of a correlation

between nuclear decay rates and Earth-Sun distance [7]. A 1 µCi sample of 54Mn

was used in conjunction with a Bicron 2 × 2-inch NaI(Tl) crystal detector, Ortec

PMT base with preamplifier, spectroscopy amplifier, and Maestro32 MCA software

to record the 834.8 keV γ-ray emitted by the de-excitation of 54Cr accompanying

K-capture by 54Mn. Attention was given to shielding the detector as well as to main-

taining a temperature-stable environment. Although it has been suggested in the

past that the solar neutrino flux on Earth may be affected by solar flares, existing

experimental evidence is lacking. Jenkins and Fischbach propose that neutrinos from

the solar flare were detected via the change in decay rate of 54Mn. The solar flare

occurred near the middle of the period of data collection (December 2, 2006 to Jan-

uary 2, 2007), though it was not realized at the time. Data from the Geostationary

Operational Environmental Satellites (GOES), show spikes in both the x-ray and the

proton flux from the Sun during the event. The 54Mn decay data are shown with the

x-ray flux recorded by the GOES-11 satellite in figures 3.4 and 3.5. One can see that

some of the x-ray spikes are accompanied by obvious dips in the 54Mn count rate,

while others are not. The authors note that this discrepancy may provide clues as to

the mechanisms which produce solar flares. Further, they suggest that changes in the

54Mn decay rate which are not coincident with abnormal x-ray fluxes may be due to

flares occurring on the far side of the Sun or other types of solar events. They refer-

ence one example: “In particular, the dip on 22 December (09:04 EST) was coincident

in time with a severe solar storm, but did not have an associated x-ray spike” [11]. A

statistical analysis of the time-coincident data yielded a probability on the order of
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Figure 3.4. 54Mn decay data superimposed on GOES-11 solar x-ray flux.
Multiple deviations in the 54Mn count rate are seen to be coincident in
time with spikes in the solar x-ray flux [11].

1×10-13 of a random coincidence of a solar flare occurring with the large fluctuation

in the Mn data. The further occurrence of a second such coincidence several days

later indicates an overall probability which is “negligibly small”, that this was simply

a statistical accident.

Due to known electromagnetic effects produced by solar flares, such as power

surges and changing local magnetic fields, the authors investigated the possibility

that the changes in count rate originated in the hardware rather than the manganese

sample, itself. Neither of the relevant power plants detected unusual properties in

the grid, and, furthermore, the absence of any alarm indicates that the line voltage

remained between 115 V and 126 V. The effect of varying line voltage would be a slight

shift in the peak energy, which was automatically monitored and would be corrected
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Figure 3.5. Normalized 54Mn counts per 4 hours superimposed with 4-
hour integrated x-ray flux [11].

for by the MCA software. There was reportedly no significant change to either the

peak shape or location during the relevant period. In order to characterize the effects

of changing local magnetic fields, the detector and photomultiplier tube (PMT) were

set up within a pair of Helmholtz coils and a similar γ-ray emitter was monitored

while varying the magnetic field up to 200 times that of any fluctuation measured

in December 2006. The decay data (Figure 3.6) lack any statistically significant

fluctuations. However, the most compelling evidence against an apparatus-dependent

effect, as described by the authors, lies in the fact that the change in the 54Mn decay

rate begins more than a day before any spike in the GOES satellite data is seen.

They argue that it is unlikely that other electromagnetic disturbances would reach

the Earth before the x-rays, so it is reasonable to exclude the possibility of this effect

being due to conventional electromagnetic effects associated with solar flares.

Consideration of the possibility of a changing neutrino flux, due to the solar flare,

as the cause of the dip in count rate is given. Due to the orientation of the Earth at
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Figure 3.6. Each data point is a 10-second sum of counts of 137Cs collected
while varying the local magnetic field. The field strength was varied be-
tween 0 and 2BEarth [11]

.

the time the x-ray spike was detected, the supposed neutrinos had to pass through

roughly 9000 km of Earth before arriving at the 54Mn source. Furthermore, a decline

in the count rate preceded the maximum dip for 40 hours, though no diurnal signal is

seen in the data as the Earth went through 1.7 revolutions. Hence, conventional elec-

tromagnetic effects and charged particles are dismissed as possible explanations. The

authors suggest that neutrinos or neutrino-like particles, capable of passing through

the Earth, may be responsible for the effect.

3.5 OSU

An additional set of decay data showing periodic oscillations comes from the Ohio

State University Research Reactor (OSURR) and is analyzed by Jenkins et al. [10]. At

the facility, a 36Cl check source was used for weekly calibrations of a G-M detector,



20

purposed for collecting data from contamination survey wipes. The weekly data

consists of a 120-second collection of gross counts with the 36Cl source in the detector

and a 600-second background count. Beginning in 2006, the check source’s geometry

inside the detector was controlled so that the placement was replicated for each run.

A total of 337 data points were collected between January 7, 2005 and June 17, 2011.

Each data point was normalized by dividing by the average count rate of all data

points and plotted by date along with 1/R2 between Earth and Sun (Figure 3.7).

The data exhibit an oscillation with a relative phase of the count rate similar to the

BNL and PTB data. Analyzing the data by means of a power spectrum yields a clear

frequency of 1 year (Figure 3.8).

The OSU data are of special interest, because they were collected using a G-

M detector. These detectors are very simple in operation, as they require neither

pre-amplifier nor amplifier for recording events. The temperature and pressure sta-

bilities of similar G-M detectors have been well-documented and are not likely to be

a contributing factor within the ranges observed at the OSURR facility.

3.6 Parkhomov

A.G. Parkhomov presented analyses of the periodicities found in several long-term

radioactivity measurements [15], which showed variations in the activity of β-decays

of 3H, 56Mn, 32Si, 36Cl, 60Co, 137Cs, 90Sr-90Y, and the daughter products of 226Ra.

These variations were not found, however, in the α-sources 238Pu and 239Pu (See Table

3.1).

Parkhomov found that eight different radionuclides exhibited fluctuations with a

period of one year. Given that the data were collected by various groups using five

different types of detectors and exhibited close agreement in magnitude and phase,

Parkhomov concludes that one can “...state with confidence that the underlying cause

of the periodic patterns in the count rates are the variations in the rates of radioac-
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b

Figure 3.7. Normalized, weekly 36Cl gross counts collected as part of a
calibration routine at the OSURR overlayed with 1/R2

ES distance between
Earth and Sun [10].

tive decays rather than the drifts and non-stabilities of registering equipment” [15].

Spectral analysis yielded several significant periods in the data (Figure 3.9).

The one-year period displayed the largest peak-to-trough variation at 0.13% of

the average count rate, while near-month periods had an amplitude of around 0.01%.

Diurnal periods are also discussed, and it is argued that the total effects cannot

be described simply by orientation relative to some anisotropy in space, nor by an

influence due to solar neutrinos. The latter argument is based on the apparently

weak interaction of high energy neutrinos with matter. Parkhomov then considers

the hypothesis that β-decay is influenced by relic neutrinos. He argues that the data

is in agreement, qualitatively, with expected effects due to the flux of these slow

neutrinos through Earth.
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Figure 3.8. Power spectrum of OSU calibration data clearly shows an
annual signal is present [10].

Figure 3.9. FFT analysis of 90Sr-90Y decay data converted to periods in
units of days. The amplitude represents the percentage of the average
count rate a given frequency contributes [15].
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Table 3.1
Summary overview of several radioactivity experiments as they pertain to
variations in count rates [15].

3.7 Falkenberg

In the early 1980s, E.D. Falkenberg performed an 18-month experiment in which he

monitored the decay of a tritium sample in order to determine if a periodic fluctuation,

correlated with the solar neutrino flux, could be found [2]. The experimental setup

consisted of a phosphorescent material containing tritium located near an array of

photo diodes, whose sum current was recorded and analyzed. Falkenberg notes that

special care was taken to avoid seasonal effects and long-term drifts. Characterization

of the DAQ system yielded an overall temperature drift of 0.35% / ◦C with ± 0.01

◦C short-term stability and ± 0.08 ◦C long-term stability. Falkenberg notes that

the data collected reflect degradation effects on his detection system as well as the

decay of the tritium, itself. Furthermore, he argues that the adequate suppression

of environmental effects allows the assumption that this degradation is aperiodic,

which, in turn, allows any periodic fluctuation present to be attributed to the decay

of tritium rather than any degradation effect. Falkenberg’s analysis showed that a
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significant sinusoidal fluctuation with a yearly period and an amplitude of 0.37 % is

present in the data.

3.8 Baurov

Y.A. Baurov et al. presented data and analysis of the β-decay count rate of 137Cs

and 60Co collected between December 1998 and April 1999 [16]. The experimental

setup consisted of one NaI detector to monitor background activity, a second NaI

detector monitoring the decay of a 137Cs source, and a BGO scintillator for the 60Co

source. The detectors were placed inside Permalloy cylinders meant to shield the

PMTs from effects of the magnetic field, and data on both count rates and energy

distributions were collected along with temperature and power-source voltage levels.

The data analyzed was subject to minimal discrimination, having only low-energy

noise cut off. After accounting for the temperature dependence of the decay rate, a

Fourier transformation showed two distinct periods of 24 hours and 27 days.

3.9 Steinitz

G. Steinitz et al. studied samples of 222Rn in order to probe the nature of known

temporal variations in radiation levels associated with the substance [21]. Typical

explanations of these variations include varying atmospheric conditions and subtle

geodynamic processes. Specifically, “...atmospheric pressure and temperature have

been proposed for the origin of the periodic signals observed in 222Rn time series.

However, other studies indicate that a consistent meteorological influence cannot

be identified as giving rise to variability in 222Rn time series...” [21]. Data from

the Israel Geodynamic Radon Project, collected along the western boundary fault

of the Dead Sea transform, exhibit: “a) unambiguous temporal signature types; b)

recurrence at the different locations within the same geologic unit; and c) similar

features recorded in diverse geographic, geological and geodynamic situations. The

main types recognized are multi-year, annual radon, multi-day and daily-radon signals
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as well as intense variations lasting up to several hours” [21]. Analysis of a further

dataset led the authors to conclude that the annual and daily radon signals were

likely caused by “a solar irradiance related process” [21].

In order to further understand the causes of these variations in radiation levels,

the authors conducted three experiments utilizing sealed volumes containing samples

of radon. In the first two experiments, multiple gamma detectors were placed outside

the sealed volume in differing orientations. The data from experiment 1 exhibited

large temporal variations consisting of a small, long term decrease, subtle, irregular,

multi-day variations, and larger, periodic diurnal signals, whose amplitude was 10-

25% of the nominal radiation level. Experiment 2 exhibited the same signals, with

amplitudes of the diurnal component at 10-30% of the nominal value. Perhaps the

most interesting observation was that “Dissimilar manifestations of the [daily radon]

signal were recorded by gamma sensors located at different positions around the

222Rn system indicating that the radiation pattern from 222Rn in the experimental

volume was non-uniform both spatially and in time. Such variation patterns cannot

be attributed to release-emanation-exhalation processes, to mass transfer/exchange

with the surrounding, nor with variations in pressure or temperature” [21].

While the first two experiments employed gamma detectors outside the sealed

volume containing radon, experiment 3 utilized internal and external gamma detectors

as well as an internal alpha detector. It was observed that as the 222Rn came into

secular equilibrium inside the tank, the amplitude of the daily-radon signal increased

proportionally. This implies that the periodic signal originates within the 222Rn gas

inside the sealed container. An annual periodicity with a maximum in the summer

and a minimum in the winter is clearly seen by the three internal detectors. There

is a phase lag of 15-20 days in the alpha signal with respect to the gamma, while the

environmental temperature peak lags that of the gamma signal by roughly 30 days.

Further, the authors found that multi-day signals were observed by all detectors, as

were daily periodicities, which differed among the detectors in amplitude, shape, and

phase. The implication of the dissimilar yet related signals is that “such variation
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patterns cannot be explained in terms of a varying concentration of a component

[radon] of the gas phase within the confined system” [21]. Examination of the daily

signal by means of the daily amplitude showed a reverse seasonal relationship between

the alpha and gamma signals, i.e., the gamma data exhibit a maximum in the summer,

while the alpha data show a maximum in the winter. A fast Fourier transform (FFT)

analysis of the daily-radon signals yielded frequencies which match well-known solar

tide frequencies of 24 h, 12 h, and 8 h. These observations led the authors to propose

“that an external influence related to solar irradiance interacts with the 222Rn system,

homogeneously dispersed in the gas phase, leading to a spatially non-homogeneous

radiation” [21].

3.10 Schnoll

Schnoll, et al. have found evidence of persistent, time-dependent, fine-structure

features in several data sets, ranging from the biological to the physical domain and

covering more than forty years [3]. In 1955, an experiment concerning the rates

of biochemical reactions resulted in data points clustered mostly around a few dis-

crete values. This was unexpected but initially attributed to a handful of biological

phenomena. Subsequent experiments, however, apparently showed that these expla-

nations were not sufficient. It was reported that they “...observed a striking similarity

in the fine structure of histograms in different experiments, and an obvious regularity

as they changed their shape in consecutive experiments.” As the researchers sought

to isolate the origin of this effect, their experiments transformed from biological in

nature to purely physical. They eventually took detailed measurements of radioac-

tive decay and, remarkably, found very similar fine-structure features in their two

independent experiments. They note that, “Twenty-five years of research brought us

to the conclusion that the discrete nature of the distributions of measured quantities

is a nontrivial and universal feature.” Further measurements of radioactive decay

were taken with various detector types on a handful of different elements and decay
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processes, taking care to eliminate or account for environmental contributors. As

mentioned previously, Schnoll et al. found the shapes of their various histograms

changed over time. Further analysis showed a strong likelihood of these shapes re-

peating with periods of 24 hours, 27 days, and 365 days. This led them to consider

the source of the phenomenon as cosmogonic in nature.

Figure 3.10. Figure 1 of [3] illustrates common features in measurements
of radioactive decay of a 55Fe sample.

3.11 DAMA/LIBRA

The following discusses a past analysis done in collaboration with J. Nistor, which

is of interest to the current discusison. DAMA/LIBRA is a second-generation ex-
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periment designed, in part, to exploit the theorized annual modulation signature of

dark matter in the galactic halo ( [33], [34], [35], [36], [37], [38] ). The experiment

is located in Italy at the underground Gran Sasso National Laboratory and began

collecting data in March of 2003. Special attention has been given to the building

materials in order to ensure low levels of radioactivity. The experiment utilizes ap-

proximately 250 kg of highly radio-pure NaI(Tl) housed along with the rest of the

DAQ system inside 1 m of concrete made from Gran Sasso rock and further shielded

by lead and paraffin [33]. Multiple systems are in place to seal out environmental

radon, and a sensor monitors and records the level in the experimental room. Stable

operating temperatures are ensured by means of a redundant air conditioning sys-

tem, and operating conditions are recorded with the experimental data. The 250 kg

of NaI(Tl) comprises 25 detectors, each of size 10.2 × 10.2 × 25.4 cm3. The 9.70

kg detectors are arranged in 5 rows by 5 columns, and along with two PMTs for

each detector, are housed in a sealed, low-radioactive-copper enclosure flushed with

high-purity N2.

As of 2010, DAMA/LIBRA had accumulated an exposure of 0.87 ton×yr over

6 years, which is combined with DAMA/NaI’s 7-year 0.29 ton×yr exposure. The

cumulative data (1.17 ton×yr) are plotted in Figure 3.11 [35]. Since the probability

of a dark matter particle interacting with more than one detector is negligible, only

single-hit events are analyzed in a normal data run. A software energy threshold of 2

keV is also applied. Indeed, while the single-hit residuals show features consistent with

a dark matter modulation signal, analysis of multiple-hit events yields no such signal.

One interpretation of the DAMA/LIBRA data, which is of interest to our research, is

that a modulation of 40K contamination in the NaI detectors could explain the signal

being seen.
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Figure 3.11. Figure 1 from reference [35] shows the combined 11-year,
single-hit event residuals from DAMA/NaI and DAMA/LIBRA in the 2 -
6 keV range. The zero time, t0, corresponds to January 1 of the first year
of data. Horizontal bars represent the time bin-width. The fit curve is a
cosine function with period = 1 yr and phase which corresponds to June
2.

Contaminants

Even with the careful selection of materials, there exists some level of undesired

radioactivity in various components of the installation, which may affect the back-

ground signal. Some information about these contaminants has been reported by the

group, but complete data remains undisclosed. Kudryavstev, Robinson, and Spooner

conducted Monte Carlo simulations of expected background rates, using their exist-

ing knowledge of modelling background signals and their experience in running the

NAIAD dark matter experiment [39]. A synopsis of their results and interpretations

is presented here.

The event rate in a given energy bin can be written as:

R(E, t) = b(E) + S0(E) + Sm(E)cos(ω(t− t0)), (3.1)



30

where b is the background rate, S0 is the non-modulated component of the dark

matter signal, Sm is the amplitude of the modulated component of the dark matter

signal, ω is the frequency of modulation, and t0 is the time of the signal maximum.

Given, that the time-dependent, modulated portion of the dark matter signal will

contribute nothing when averaged over an integer number of years, one can test the

agreement between the sum of the reconstructed spectrum of the signal, S0(E), and

the background, b(E), with the measured spectrum. To this end, the expected back-

ground signal is simulated.

The analysis considers three possibilities for background radioactivity, including

sources external to the NaI crystals, sources within the crystal’s volume, and sources

within the thin surface layer of the crystals. The two latter simulations gave similar

results, so only the first two scenarios will be discussed here. A model was constructed

using the published geometry of the DAMA/LIBRA set-up, and for the first case,

background radiation was simulated to originate in the PMTs attached to the crystals

by light guides. For normalization, the concentrations of radioactive isotopes used

were typical of ultra-low background PMTs. These are in the range of 20 - 60 ppb

for 238U, 232Th, and natK. Considering DAMA/LIBRA’s method of data collection,

only single-hit events above 0.5 keV were included.

Next, background sources distributed evenly throughout the crystal volume were

modelled. In addition to uranium, thorium, and potassium contaminants, 129I and

22Na were included. The concentration values reported by DAMA were used for nor-

malization, here, although the available data is not complete. Figure 3.12 shows the

combined simulated events. The simulated signal (solid curve) below 10 keV is about

an order of magnitude smaller than DAMA/LIBRA’s reported 1 event/kg/day/keV.

A signal similar in amplitude to that reported by DAMA/LIBRA, was achieved by

simulating 2 to 8 times the reported contamination levels of 238U, 232Th, and natK

in the crystal (dashed curve). Similarly, the results of higher external contamination

(dotted curve) is shown.
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Figure 3.12. Figure 4 from reference [39] shows the combined events from
simulated background radiation in the PMTs and crystals. The solid line
represents the assumed contamination levels, while the dotted and dashed
lines represent increased levels of contamination in an attempt to make the
simulated data fit DAMA/LIBRA’s reported signal (See text for details)

.

Figure 3.13 shows the low-energy simulated events, using the aforementioned in-

creased contamination levels. The simulated spectrum is compared to the measured

signal in three ways: i) no WIMP signal subtraction (open squares), ii) subtraction

of signal from 60 GeV (assumed) WIMPs with σSI = 7 x 10−6 pb (filled squares),

and iii) subtraction with σSI = 2 x 10−6 pb (empty circles).

Decay Rate Modulation

Kudryavstev et al. note that further adjustments are needed in order to bring

the simulated background into better agreement with the measured data, but we are



32

Figure 3.13. Figure 5 from reference [39] shows the combined low-energy
events from simulated, background (solid curve) for increased concentra-
tions of contaminants. The measured DAMA/LIBRA signal is shown
using open squares. The filled squares and open circles represent this
signal after subtracting assumed contributions from 60 GeV WIMPs

.

mainly interested in the small peak near 3 keV. It is clear in Figure 3.13 that this peak

is due to the simulated 40K contamination present in the crystal. As Kudryavstev,

Robinson, and Spooner note, this may explain the annual modulation DAMA/LIBRA

sees around the 3 keV peak.

Naturally occurring potassium consists of 0.0117% 40K, which has a half-life of

approximately 1.25 × 109 yr. 40K’s branching ratio is roughly 89% β decay to the

ground state of 40Ca (Figure 3.14) and 11% electron capture to an excited state of 40Ar

(Figure 3.15) [40], which yields a 1461 keV γ (nuclear de-excitation). Additionally,
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3.2 keV of energy is liberated through x-rays or auger electrons associated with the

replacement of the captured K-shell electron.

Due to a short interaction length, the 3.2 keV x-rays or auger electrons are es-

sentially always collected by the originating detector, while the 1461 keV γ-rays may

escape and interact with adjacent detectors. The DAMA/LIBRA collaboration has

looked at these double-hit events, consisting of a low-energy event in one detector

and a higher-energy event in an adjacent detector (see Figure 3.16). The correlation

between the 1461 keV γ-ray with a 3.2 keV event is clear. In fact, DAMA/LIBRA

analyzed the detection efficiency for such double-hit events in order to place a limit

on the contamination of natK in their detectors.

Figure 3.14. Decay scheme for 40K via β to the ground state of 40Ca [40].

Figure 3.15. Decay scheme for 40K via electron capture to 40Ar [40]

.
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DAMA’s analysis of the coincidence data illustrated in Figure 3.16 places the natK

content in the crystals at ∼ 20 ppb [33], so the total amount of 40K in the NaI target

can be estimated by the following

MnatK = 20× 10−9 ×M∗
target

M40K = 0.000117×MnatK = 2.34× 10−12 ×M∗
target

= 5.45× 10−10 kg

(3.2)

where M is mass. Hence, the total particle concentration of 40K is given as

N40K =
M40K

m40K

×6.022×1023 =
5.45× 10−10kg

39.964× 10−3kg/mol
×6.022×1023 = 8.2×1015 atoms

(3.3)

The decay of 40K into 40Ar via electron-capture occurs with a branching ratio of

10.72% and involves a K-shell electron approximately 76% of the time. Its half-life

is 1.248 × 109 years or T1/2 = 4.55 × 1011 days (half-life taken as quoted by DAMA

collaboration [35]). Therefore the number of k-capture events per day is on the order

of:

R = 0.1072× 0.76× λ×N40K = 0.1072× 0.76× 1.52× 10−12× 8.2× 1015 = 1054 cpd

(3.4)

where λ = log 2/T1/2 = 1.52×10−12d−1. This rate is approximately 4.5 cpd/kg, which

corresponds to 2.3 cpd/kg/keV, some fraction of which likely contribute to their single

hit event rate of 1.3 cpd/kg/keV. The various reports of modulation in radioactive

decay data that are outlined in this chapter have motivated us to investigate the issue

further. In the next chapter, we discuss our work in independently studying the decay

of 32Si, utilizing the source observed in the previously discussed BNL experiment.
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Figure 3.16. Figure 9 of reference [33] shows low-energy events occurring
in one detector as a function of simultaneous events in other detectors.
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4. NuHaven

4.1 Overview

The sample changer implemented in the original BNL measurements [1] of the

half-life of 32Si was provided to us and modified for the NuHaven (NH) experiment.

Modifications include a collar designed to secure our detector to the sample changer

(Figure 4.1), sensors for automatic confirmation of sample placement, and snubbers

to dampen the motion of the sample cart as it arrives at the end of the rails. We built

a modern data acquisition (DAQ) system including additional environmental control

and extensive logging. The sample changer was placed in a modified 55-gallon steel

drum and kept at a controlled pressure with dry nitrogen, which also allowed us

to minimize variations in relative humidity, while the temperature of the room was

controlled by means of a water-cooled air conditioner. This allowed us to remove

the window-mounted air conditioner and heavily insulate the windows in order to

improve temperature stability in the room. The DAQ system consists of a 2-inch

Bicron plastic scintillation detector coupled with an Ortec 276 base with preamp. A

spectroscopy amplifier and MCA connected to a PC running Maestro32 and custom

LabVIEW software make up the rest of the DAQ system.

The original 36Cl and 32Si samples used in the BNL experiment were also provided

to us. The 32Si sample was produced using SiO2 enriched in 30Si to 95.55% from Oak

Ridge National Laboratory [1]. The triton beam facility at BNL was then used

to produce the 30Si(t,p)32Si reaction, beginning in December 1968. When available

between other experiments, the triton beam was used to irradiate the target, and by

April 1969, the target had received a total beam charge of 1150 µAhr (4.14 Coulombs).

Considerable chemical processing of the sample began in late 1971 in order to remove

organic compounds in the epoxy used to secure the SiO2 powder for irradiation.
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Figure 4.1. Detector mount fabricated to accommodate the new detector
on the original BNL sample changer. The detector slides down into the
top plate of the sample changer, and the collar attached to the detector
holds it at the desired height.

Finally, 47.7 mg of SiO2 powder was cemented in a brass source holder and bonded

with electrically conducting cement to an aluminum foil so as to prevent possible

surface charging of the source.

The sample changer alternates between the long-lived 36Cl and 32Si every 30 min-

utes for the duration of each run (200 cycles, book-ended by background measure-

ments). This interweaving of 36Cl and 32Si observations is designed to minimize the

effect of systematics in the DAQ system. Temperature, pressure and %RH are mon-

itored by a NIST traceable data logger (TR-73U by T&D Corp.) inside the drum

and capable of ±0.3◦ C, ±5%RH, and ±1.5 hPa accuracy. The readings have been

shown to be repeatable to the tenths digit, the limit of the resolution of the device.

Based on the pressure reading, the software determines the desired state of a valve
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(open/close), controlling the flow of nitrogen into the drum. The magnetic field is

monitored with a 3-axis magnetometer running on an Arduino micro-controller, and

the high voltage supplied to the detector is recorded with an ADC, as is the line

voltage. All of these parameters are recorded by the LabVIEW program every 60

seconds (See figures 4.2 and 4.3).

Figure 4.2. Custom Interface for controlling, monitoring, and logging
environmental data.
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Det. Orientation B Orientation Coil Current (A) Count Rate (cps) Peak Pos. (Channel)

Horizontal Down -2.31 A 104.81 cps 84

Horizontal Off 0 A 104.85 cps 85

Horizontal Up 2.04 A 105.4 cps 85

Vertical Down -2.3 A 121.57 cps 65

Vertical Down -1.1 A 122.49 cps 85

Vertical Off 0 A 122.87 cps 84

Vertical Up 1.1 A 122.10 cps 86

Vertical Up 2.3 A 121.86 cps 71

Table 4.1
Characterization of detector’s response due to changing magnetic field.
Since we found that the detector was possibly susceptible to changes in
magnetic field along the detector axis, we repeated the above measure-
ments for 1.1 A coil current and an extended acquisition time. These
observations confirmed that no significant change in CR or peak location
occurred for a magnetic field of 2 Gauss (approx. 4 times Earth’s magnetic
field).

4.2 System Characterization

Several tests were performed on the system in order to characterize its dependence

on changing environmental conditions. The detector was placed in various orienta-

tions relative to a controllable magnetic field produced by a set of Helmholtz coils.

The detector response was evaluated at approximately 2 Gauss (1.1 amp coil current)

and 4.6 Gauss (2.3 amp coil current) in axial and perpendicular orientations (relative

to the detector axis), and the 36Cl sample was observed for changing count rates and

peak position. At 2 Gauss (4 times the Earth’s magnetic field), no significant change

in count rate or peak position was found, but at 4.6 Gauss, the peak position shifted

significantly for the case where the magnetic field was oriented axially relative to the

detector (see Table 4.1).

The DAQ system and high voltage (HV) supply were connected to a constant

voltage tranformer, whose output is nominally 117 V, in order to mitigate effects

from fluctuating line voltage. The HV output was found to be stable to 0.1 V given
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an input ranging from 109 to 125 volts. The output only began to drop when the

input was decreased to 92.1 V. The NIM bin DAQ electronics, whose specifications

require 103 - 129 V, were also tested in the same range of applied voltage and found

to be stable to better than one channel in gain.

Early characterizations based on temperature showed that the HV output varied

with temperature at around 0.8 channels/ ◦C. However, the recording of the HV

output mitigates the need to extrapolate this relationship from the room’s tempera-

ture. The recent addition of a peltier temperature control system has allowed us to

more precisely characterize the system’s dependence on both temperature and HV

while isolating the HV supply from the rest of the DAQ components. The detector

with PMT and NIM bin were characterized by incrementing the temperature of their

enclosure 1 ◦C at a time, between 21 ◦C and 25 ◦C and recording the decay spectra.

Separately, the dependence on detector voltage was quantified by changing the HV

in 5 V increments while holding the temperature of these components constant. The

observed counts per 30-minute interval for both 32Si and 36Cl are shown in figures 4.4

- 4.7.

Although determining the ratio of 32Si to 36Cl largely mitigates systematic effects,

the unique energy spectra of the two samples respond to a change in detector voltage

differently. An increase in voltage brings fractionally more low-energy counts into the

integration region for 36Cl than what is pushed out at the upper end. The opposite

is true for 32Si, so not only are the effects different in magnitude but also opposite in

direction. 36Cl shows a fractional dependence on detector voltage of approximately

2.4× 10−4/V, while 32Si exhibits approximately −1.6× 10−4/V. In order to account

for these effects, a scaling algorithm, discussed in the next section, was developed.

The effect of temperature on the detector and DAQ system is much less evident. The

36Cl data show no obvious effect, though the 32Si data exhibit an increased spread

during and after the cooling period. In order to ensure that no solid angle changes

due to placement occurred while characterizing for temperature and HV, the 36Cl

data were taken while increasing those parameters, independently, and the 32Si data
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Figure 4.5. 30-minute raw and scaled 32Si counts while changing the
detector voltage.
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were collected while bringing them back down. The samples were shuttled back and

forth, as usual, while holding the parameters constant, to allow evaluation of the

scaling operation at different set points. The asymmetry in increasing and decreasing

the temperature is thought to be responsible for the increase in spread in 32Si counts

observed, perhaps due to differences in effects of thermal expansion versus contraction

of the sample changer. The fact that the spread remains after the measured air

temperature in the drum stabilizes leaves open the possibility of variation in sample

placement under the detector. In either event, the effect is included in the systematic

uncertainty determination, though a longer characterization is planned in the future

in order to investigate this further.

4.2.1 Scaling Algorithm

The aforementioned scaling algorithm was developed by V. Barnes, D. Neff, and

H. Kaplan. The process evaluates an archetypal spectrum for each isotope and applies

the requisite energy scaling to all other spectra in order to correct for gain shifts. In

order to establish a standard gain, a set of spectra collected while the gain was stable,

are averaged together to produce an archetype ROOT histogram object. Subsequent

spectra’s histograms are then compared to the archetype and accordion-scaled in

energy by computationally minimizing the bin-by-bin differences.

The efficacy of the scaling algorithm can be seen by comparing the scaled and

non-scaled data in figures 4.4 - 4.7. The relationship between the computed scaling

parameters and the detector voltage is also shown in Figure 4.8. It is clear that the

scaling parameters track the detector voltage, as expected.

4.3 Counting Procedure

The 32Si and 36Cl samples were placed on symmetric, micrometer-adjustable

source holders in the sample changer and positioned 2.00 mm ±0.02mm from the

face of the detector and locked in place. A piston driven with nitrogen gas moves
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the desired source into place under the detector automatically when requested by

the DAQ software, and once the sample is confirmed to be in position by a sensor,

an 1800 s live-time collection of the energy spectrum begins. The nitrogen exhaust

generated from changing samples is piped out of the drum, avoiding fluctuations due

to sample changing. Each run of 200 cycles is book-ended by 30 minute collection

of background activities (see Figure 4.9), which are nominally less than 2.0 cps, with

a variation of less than 0.3 cps. This is slightly lower than the level observed in the

BNL experiment (∼ 6.5 cps) in the two background measurements they took – one

preceding the experiment and one at its conclusion – even when accounting for the

differences in count rate of their samples. The variation in Bg activity during the

BNL experiment is unknown.

4.4 Half-life Determination

The following analysis proceeds without background subtraction for comparison

to the BNL observations, but it is followed by a separate analysis showing the effect

of background removal. Between June 2013 and June 2015, more than 3 × 109 32Si

decays and 6× 109 36Cl decays were recorded. These data provide good statistics for

determining the half-life of 32Si despite the relatively short observation time, compared

to its half-life. As previously noted, each sample was observed in an alternating

fashion, such that the data points for 36Cl and 32Si are interwoven. This procedure

helps ensure that systematic effects are not preferentially affecting one sample, as

might occur if one were to observe each sample for days or weeks at a time. In

determining the half-life of 32Si, the ratio of 32Si/36Cl is analyzed so as to suppress

such systematic effects. What results should yield an accurate half-life for 32Si, as

the half-life of 36Cl (T1/2,Cl ≈ 300, 000 yr) is very long compared to the length of the

experiment (i.e. the slope of the 36Cl data is expected to be zero).

In the following analysis on the half-life of 32Si, systematic errors are determined

from the characterization data previously presented. Although the scaling algorithm
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was shown to mitigate the effects due to gain shifts to within the statistical error

bars, we quote the contribution of HV to systematic uncertainty as equal to the

size of the statistical uncertainty of each datum. The increased spread observed in

the 32Si characterization data, during and after the temperature changes, motivates

an additional increase of 1σstatistical in reported systematic uncertainty. A longer

characterization in the future may allow this to be reduced.

Due to low stability in the first two months of collection, (during which adjust-

ments were still being made to the experimental setup), these data were removed from

the analysis, yielding a start date of August 9, 2013. Additionally, an unexplained

month-long increase in 36Cl counts between February and March 2014 resulted in a

small but significant decrease in ratio data. This was also removed in order to en-

sure that the half-life determination is as accurate as possible. A handful of outliers

generated from days on which only one or a few 30-minute cycles took place (usually

due to technical issues) were excluded as well.

The remaining data (Figure 4.10) were averaged over one-day intervals, assigned

uncertainties, and the ratio fit to an exponential function:

f(t) = Ae−λt (4.1)

where A is the amplitude, λ is the decay constant, and t is time. The fitting procedure

weights a datum by the associated uncertainty and utilizes the Levenberg - Marquardt

algorithm, which minimizes χ2, defined by,

χ2 =
N∑
i=1

1

δM2
i

[Mi − f (ti;A, λ)]2 (4.2)

where N is the number of data points, Mi is the ith datum, ti, is the time associated

with the ith datum, A is the amplitude, and λ is the decay constant.

As noted above, only the spectra collected on a given calendar day were averaged

together; days on which a run was started or ended, for example, do not contain 24

hours worth of data collection. The best fit exponential yields T1/2 = 162.2 yr ±

1.8 yr (statistical) ± 3.5 yr (systematic) with χ2
DOF = 1.02, where χ2

DOF is χ2 per
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degree of freedom. The residuals of the purely-exponential fit are plotted in Figure

4.11 and fitted to a cosine function, while the histogram of the residuals is shown

in Figure 4.12. The period of this cosine fit was then input as the expected period

in a combined exponential+cosine fit (equation 4.3) to the non-Bg-corrected ratio

decay data, in order to remove the effect of the oscillatory behavior on the half-life

determination (see Figure 4.13).

F (t) = Ae(−λt)(1 +Bcos(ωt+ φ)) (4.3)

This fit yielded a half-life of 160.3 yr ± 1.9 yr (statistical) ± 3.7 yr (systematic) with

a period of 1.13 ± 0.23 yr and χ2
DOF = 0.96. The residuals of this fit are plotted in

Figure 4.14, and the histogram is shown in Figure 4.15.

We note that forcing the period to 1 yr improved χ2
DOF slightly as well as the

distribution of residuals as seen in Figure 4.16. In iterating this observation, the phase

resulting from the forced fit was then held constant, while allowing the period to once

again be free, resulting in a further improvement to the distribution of residuals,

as seen in figures 4.17 and 4.18. Under these conditions, the resulting period was

1.03± 0.03 yr.

The combined exponential+cosine function is important to consider, as a cyclic

signal (of any origin) of non-integer periods present in the data will affect the half-life

determination. In the case at hand, the non-Bg-corrected data are found to fit best

to a sinusoidal curve whose period (1.13± 0.23 yr), indicates that it has not returned

to its minimum at tfinal. The effect of excluding this behavior from the fit, is an

artificially long half-life, and we indeed see the purely-exponential function yields a

half-life ∼ 2 yr longer than the combined exponential+cosine function.
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4.5 Variation in Decay Rate

An additional aim of this experiment was to investigate the variation in decay

rate observed in the original experiment at BNL. As previously noted, the residuals

of the exponential fit to the daily mean non-Bg-corrected ratio (Figure 4.11), exhibit

a periodic variation with an amplitude of approximately 1× 10−4. A power spectrum

analysis by Peter Sturrock on 32Si yields the most significant frequency at 0.93 yr−1

(see Figure 4.19), whereas 36Cl shows no 1 yr−1 frequency (see Figure 4.20). The

power spectrum of the 32Si/36Cl ratio data exhibits a primary frequency at 0.86 yr−1

(Figure 4.21. It is also worth noting that his analysis showed the standard deviation

of the NH data to be approximately 1/3 that found in his analysis of the BNL data.

Figure 4.19. A power spectrum analysis of 32Si shows the most significant
frequency at 0.93 yr−1.

Data were collected for temperature, pressure, relative humidity, magnetic field,

line voltage, and high voltage over the course of the experiment. Each parameter was
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Figure 4.20. A power spectrum analysis of 36Cl is absent of the strong 1
yr periodic signal seen in 32Si. The leftmost peak is located at 0.55 yr−1.

recorded at one-minute intervals and averaged to match the analysis of the decay data

(see Figure 4.22. The variation in daily average temperature is typically less than

±2 ◦C. The recorded pressure data show excellent stability, stable to a few tenths of an

hPa, apart from a few larger deviations due to infrequent hardware issues. Similarly,

the %RH was stable to better than ±1% at almost all times. Typical variations in

the observed magnetic field during normal data acquisition were less than 10 mG

(Figure 4.23). We witnessed an apparent shift in the baseline magnitude on the order

of 50 mG, but the change was primarily in the the longitudinal components, whereas

the axial component (relative to the detector) was shown to be the most significant

to detector behavior. Even if the aforementioned change in the magnetic field had

been along the detector axis, it is still twenty times below the 2 Gauss level, shown

to be a safe region of operation. Given the step-wise nature of this change, it is likely
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Figure 4.21. Power spectrum of 32Si/36Cl exhibits a primary frequency of
0.86 yr−1.

that other equipment in the room was moved or that the sensor shifted, physically.

The line voltage varied between 115 and 119 V, which falls well within the bounds

of stability shown by our characterization of the system, discussed earlier. The high

voltage was seen to vary between 950 V and 955 V before we lowered the set point,

and typically between 935 V and 940 V after. As previously discussed, we applied a

scaling algorithm in an attempt to correct for these variations.
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4.6 Correlation

IBM’s SPSS statistical software package was utilized in quantifying the correlation

between decay data and environmental parameters. A multiple linear regression was

performed on the data set consisting of nearly 600 daily-mean data points contained

in each of the parameters. Since the 32Si/36Cl ratio exhibits a natural trend over

time, due to 32Si’s shorter half-life, the fractional residuals of the exponential fit to

the ratio data were used in this analysis. The regression yielded a weak, negative

correlation to temperature, with a Pearson value of -0.15, while the detector voltage

showed a weak (but positive) correlation of 0.16. Finally, the correlation to 1/R2
ES

was 0.11. Due to the strong collinearity between temperature and %RH, the latter

was not included in the correlation analysis; it’s correlation to ratio decay data was

seen to be essentially the opposite of temperature, as expected. Table 4.2 shows the

correlation values between the decay data and environmental parameters.

Modeling the simultaneous behavior of all parameters, yielded a global Pearson

correlation of 0.229 for an R2 of 0.052. The three most important predictors of the

resulting model were reported to be HV, temperature, and 1/R2
ES, in decreasing order.

It is no surprise that the detector voltage is the most significant predictor. If anything,

the weak Pearson correlation coefficient assigned to HV speaks to the efficacy of the

scaling algorithm in correcting for gain shifts. Further, given the effect temperature

was shown to have on the HV supply, and the relationship between temperature and

1/R2
ES, these results are not particularly enlightening on their own.

A rolling correlation was performed between a given set of data (ratio residuals,

for example) and the remaining parameters. That is, the correlation was evaluated for

each iterated offset (in days) of the given set to static sets of the other parameters.

First, we consider the correlations produced by rolling 1/R2
ES, as this is both of

interest to our research, and relatively easy to interpret. In Figure 4.24, we see that the

magnitude of correlation between 1/R2
ES and temperature is maximal (and negative)

for a phase of zero. One may also note that the correlation between line voltage
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and 1/R2
ES is large, but with a significant phase shift. Line voltage understandably

exhibits a yearly periodicity, in which case it will certainly correlate strongly to some

set of shifted 1/R2
ES data. The phase for maximal correlation of high voltage to 1/R2

ES

is zero, most likely exhibiting the effect of temperature on the HV supply. We note a

non-zero phase for maximal correlation to the ratio decay data, which is interesting

for two reasons. The first is that effects due to detector voltage are expected to

produce a signal in phase with the HV supply as well as the temperature, due to the

former’s response to the latter. The second reason this observation is interesting is

that similar phases in decay data have been previously reported [41].

Further analysis by means of a rolling correlation of the individual 32Si and 36Cl

decay data, as opposed to the ratio data, yields disparate behavior in terms of phase

for maximal correlation (see Figure 4.25) to 1/R2
ES, resulting in the phase shift of

the ratio. From our characterization of the DAQ system, it was determined that a

larger detector voltage increases the observed counts of 36Cl, while decreasing those

of 32Si. The resulting 32Si/36Cl ratio must then decrease for an increase in detector

voltage. However, we also found that heating the HV supply resulted in a decrease in

voltage, indicating that the effect of seasonal temperature fluctuations should work

to increase the 32Si/36Cl ratio in the summer and decrease it in the winter. Our decay

data, on the other hand, show the opposite behavior.

We now turn to rolling through the index of the ratio decay data residuals, while

correlating to the environmental parameters, including 1/R2
ES. We find, here, that

temperature and HV show the largest correlation values for zero shift in date of the

residuals data set (see Figure 4.26). Again, we see that the largest correlation to

Earth-Sun distance exists for a non-zero shift in index of the residuals.

Finally, we compare the variation in decay rate observed at BNL, with the same

samples, to that noted above. In the BNL experiment, Alburger and Harbottle ob-

served a variation in the ratio with a 1 yr period, as shown in Figure 3.2. We fit

their 32Si/36Cl ratio decay data to a pure exponential function with the same method

utilized in the analysis of our data and plot the residuals for each on the same graph
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Residuals Temperature Pressure HV LV 1/R2

Residuals 1 -0.147 -0.012 0.161 0.052 0.111

Temperature -0.147 1 0.047 -0.453 0.198 -0.694

Pressure -0.012 0.047 1 0.082 -0.086 -0.085

HV 0.161 -0.453 0.082 1 -0.447 0.214

LV 0.052 0.198 -0.086 -0.447 1 -0.022

1/R2 0.111 -0.694 -0.085 0.214 -0.022 1

Table 4.2
Table of Pearson Correlation values for environmental parameters and
residuals of non-Bg-corrected 32Si/36Cl ratio decay data.
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(see Figure 4.27). For cleanliness, the NH data are collapsed to monthly mean values,

approximating their frequency of data points. Each year of the respective experiment

is represented by a different shade of red or blue. In Figure 4.28, the residual values

for a given month are further averaged into a single data point for each experiment.

The similarity of the observed deviation from the exponential fits is clear. We note

that the magnitude of the averaged residuals in the NH experiment is approximately

a factor of 4 smaller than those observed in the BNL experiment. This may provide

insight as to the cause of the variation; it is assumed that the temperature control is

tighter in the NH experiment, but the necessary systematic recordings were not made

during the BNL experiment, as this variation was unexpected. It will be interesting

to observe the behavior of the residuals with highly stable temperature and HV in

future NH data.

We previously argued that the fractional effect of HV on the 36Cl and 32Si data,

as well as the ratio data, was smaller than the statistical error bars. Allowing for
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systematic effects of the same magnitude as the statistical error bars yields fractional

count rate dependencies (on detector voltage) large enough in size to encompass the

periodic signal. With that said, however, our data show approximately the opposite

phase as would be expected based on the behavior of the data in our characterization

studies. One might argue that the scaling algorithm is simply over-correcting the

data, yielding this opposing behavior, but analysis of the scaled and unscaled ratio

data in Figure 4.8 shows that the ratio of the second half of the data set (represented

on the right side of the graph), after scaling remains slightly higher than the scaled

data on the left hand side, indicating that the algorithm is not over-correcting this

data. The fact that the observed signal is essentially opposite to the characterized

temperature-dependent HV effect deserves further investigation.
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4.7 Background

As the BNL experiment was solely intended to determine the half-life of 32Si, the

relatively low background (Bg) rate was deemed negligible and not recorded over the

course of the experiment. Thus, we cannot state the variation in Bg during that

experiment. However, based on the amplitude of modulation (∼ 1 × 10−3) observed

in the BNL data and the reported count rates of 32Si (247 cps) and 36Cl (358 cps),

which are assumed to include the nominal Bg, we can estimate the change in Bg

which could cause the modulation by:

(1 + A)× RSi

RCl

=
RSi + δRBg

RCl + δRBg

(4.4)

where δRBg is the nominal change in background activity that would cause a modu-

lation amplitude, A. Inserting the reported count rates for 32Si, 36Cl, and A yields:

(1 + 1× 10−3)× 247

358
=

(247 + δRBg)cps

(358 + δRBg)cps

which results in:

δRBg = 0.8cps

as the amplitude of Bg variation required to manifest a modulation of 1×10−3 in the

ratio decay data.

In the NH experiment, the full-spectrum Bg varied between ∼3000 and ∼3500

counts per 1800 s collection (Figure 4.9), bookending each set of 200 32Si/36Cl cy-

cles. The decreased stability in background, seen in the latter half of the figure, is

suspected to be due to larger drifts in the HV supply, as suggested by Figure 4.29.

In order to subtract the Bg activity from the region of integration (ROI) of the de-

cay data, the nearest background observation is interpolated using the determined

scaling parameter of each individual 32Si and 36Cl cycle. Although the accordion

scaling algorithm greatly reduces effects due to gain shifts, a varying background will

not be sufficiently corrected for without removing it independently. We see evidence
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Figure 4.29. Daily average HV records overlayed with manually esti-
mated background activity suggests that the variation in the observed
background is driven by the detector voltage (HV).

of this in Figure 4.30, which shows the residuals of the exponential fit to the non-

Bg-corrected 32Si/36Cl ratio decay data overlayed with manually estimated ROI Bg

activity. The manual estimate simply multiplied all full-scale Bg data by 0.45, esti-

mating the fraction of counts in the ROI region, and linearly interpolating between

adjacent Bg measurements, without referencing the recorded detector voltage. It is

certainly compelling enough to require a robust background removal.

In order to determine a reasonable magnitude for the possible effect of the vari-

ation of corrected Bg, we average the estimated ROI bg activities between January

1 and April 1, 2014, during which the modulation of the ratio decay data is maxi-

mally positive, as well as between July 1 and October 1, 2014, when the modulation

is maximally negative. Using the difference in these values, equation 4.4 suggests

the contribution of varying Bg is approximately 2×10−4. This is large enough to

account for the variation seen in our non-Bg-subtracted ratio decay data, though it
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assumes the accordion scaling performed on the data does nothing to suppress the

changes in Bg, which is unlikely. It may useful to quantify this suppression by artifi-

cially increasing the Bg in a future characterization. We proceed by subtracting the

computationally-determined Bg from the 32Si and 36Cl data.

After the background counts in the ROI are determined for each 32Si and 36Cl

cycle, individually, they are subtracted, propagating statistical uncertainties. These

data are combined into daily mean 32Si/36Cl ratios and fit with a purely exponen-

tial function, weighted by total statistical and systematic uncertainties (Figure 4.31.

The half-life determination of this fit yields T1/2 = 161.8 yr ± 1.7 yr (statistical) ±

3.3 yr (systematic) with χ2
DOF = 1.07, which agrees very well with Thomsen’s deter-

mination [42]. The residuals of this fit and the associated histogram are presented

in Figure 4.32 and 4.33, respectively. Comparison to the non-Bg-corrected residuals

(Figure 4.11) indicates a marginal decrease in amplitude of approximately 4.5×10−6.

The determined period of the cosine fit moved closer to 1 yr, as well, though a
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Figure 4.30. Residuals of the earlier exponential fit to non-Bg-corrected
ratio data overlayed with manually estimated background activity.
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Figure 4.31. Exponential fit to the Bg-corrected ratio decay data yields
T1/2 = 161.8yr ± 1.7 yr (statistical) ± 3.3 yr (systematic) with χ2

DOF =
1.07.

more robust frequency analysis is desired. We note that these results are unexpected

after having observed the relationship between the non-Bg-corrected residuals and

the estimated Bg activities, as it was presumed that the more robust Bg subtrac-

tion would remove the observed modulation. We are scrutinizing the Bg removal

procedure to ensure it is effective. Although the initial suggestion (to Igor Pro’s

iterative fitting process) for the cosine’s period was approximately 1 yr, as in the

earlier analysis, various initial values above and below this failed to produce any

obvious improvement in χ2
DOF and distribution of residuals. Utilizing the period

and phase from the cosine fit (Figure 4.32), we once again employ a combined ex-

ponential+cosine function (Figure 4.34) with the aim of removing the effect of a
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Figure 4.33. Histogram of the residuals of the cosine fit in Figure 4.32.
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Figure 4.34. The combined exponential+cosine function 4.3 fit to the Bg-
corrected ratio decay data yields T1/2 = 159.4 yr ± 1.9 yr (statistical) ±
3.7 yr (systematic) with χ2

DOF = 1.01.

non-integer number of oscillatory cycles on the half-life determination. The result is

T1/2 = 159.4 yr ± 1.9 yr (statistical) ± 3.7 yr (systematic) withχ2
DOF = 1.01. Based

on all of our analysis presented here, on the 32Si/36Cl data, we regard this is as the

most reliable half-life determination and present it as our result.

The results of repeating the regression analysis on the Bg-corrected data (using

SPSS statistical software) are presented in Table 4.3. Compared to the correlation

analysis performed on the non-Bg-corrected data, temperature and HV show a slightly

weaker correlation to the fractional ratio residuals, while 1/R2
ES exhibits a slightly

stronger correlation. Building a model based on the simultaneous behavior of the

above parameters results in a somewhat lower global Pearson correlation coefficient of
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Residuals Temperature Pressure HV LV 1/R2

Residuals 1 -0.126 -0.010 0.127 0.082 0.120

Temperature -0.126 1 0.048 -0.452 0.193 -0.696

Pressure -0.010 0.048 1 0.080 -0.085 -0.083

HV 0.127 -0.452 0.080 1 -0.448 0.222

LV 0.082 0.193 -0.085 -0.448 1 -0.014

1/R2 0.120 -0.696 -0.083 0.222 -0.014 1

Table 4.3
Table of Pearson Correlation values for environmental parameters and
residuals of Bg-corrected 32Si/36Cl ratio decay data.

0.218, and we note that 1/R2
ES moved up to the most important predictor (previously

3rd after temperature and HV) reported by SPSS. The overall model scored 4.8%

accuracy, similar to the previous model for the non-Bg-corrected data. A rolling

correlation on the Bg-corrected data did not exhibit any notable changes, nor did the

stacked month-by-month BNL and NH residual plots, so further discussion of these

is skipped, for brevity.

4.8 Extended Half-Life Determination

An interesting opportunity arises from the fact that we have observed the same

physical samples first studied by Alberger and Harbottle at BNL. Due to the de-

sign of BNL and NH experiments, namely utilizing the ratio of 32Si/36Cl in order

to determine the half-life, differing systematics are suppressed. In the case of gain

shifts manifesting differently in the two isotopes, we have corrected for the effect,

as discussed previously. Thus, we perform an extended fit over the entire 33 years

containing the two observation periods, which greatly increases the baseline of the

determination to a significant fraction of 32Si’s half-life. Because the intrinsic event

rate should lie along the same exponential curve, we can solve for the requisite ‘ge-

ometric factor’ arising from differences in solid angle subtended by the respective
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detectors, by which to shift the NH data up or down. All NH data are scaled by

the same value, such that these data are not biased by the operation. The significant

increase in the baseline constrains the fit to a much higher degree than was achievable

in previous direct counting determinations, yielding a relatively small uncertainty on

the determined half-life. For this exercise, we have used the non-Bg-subtracted NH

data, mirroring the non-removal in the BNL data.

The functional form to which the entire data set is fit can be written as

f(t) =
[
A× e−λt

] (
1−H (t)

)
+
[
Γ× A× e−λt

]
H (t) (4.5)

where the Heaviside function, H (t), is defined by:

H(t) =

0, t < Jan1, 2013;

1, t > Jan1, 2013;

and Γ in a geometric scaling factor.

In order to determine Γ, Excel’s solver function was utilized to perform an iterative

minimization of χ2
DOF (arising from an exponential fit), while allowing λ, Γ, and A to

vary. For consistency and presentation, the NH data were multiplied by the geometric

factor, and the entire data set was fit to an exponential using Igor. Given the matching

period and phase of oscillation, shown in Figs. 4.27 and 4.28, the data were also fit to

the previously defined combined exponential+cosine function 4.3. The difference in

half-life determinations between the two fits was 0.07 yr, with the combined function

yielding a slightly better χ2
DOF (See Fig. 4.35).

To show the fit of the cosine term to the data, separate graphs are shown (Figs.

4.36 and 4.37), scaled to the individual data sets. Histograms of the residuals re-

sulting from the purely exponential fit and the combined exponential+cosine fit are

presented in Figs. 4.38 and 4.39. The half-life of 32Si determined by the best-fit
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exponential+cosine function is 160.0 ± 0.11 yr (statistical) ± 0.22 yr (systematic),

with a period of 1.07 ± 0.01 yr and a χ2
DOF 0.96.

Finally, performing a global half-life determination across the BNL and Bg-corrected

NH data shows improvements in the fit. Figures 4.40 and 4.41 show the global fit,

zoomed in on the time domain of each experiment.

The fit results in a half-life of 161.7 yr ± 0.11 yr (statistical) ± 0.22 yr (systematic)

with χ2
DOF = 1.01. The histogram of the residuals of this fit is shown in figure 4.42.

The fact that the global fits to the BNL and NH data sets result in approximately

the same χ2
DOF as the individual NH analysis is a good indicator that the analysis

is reasonable. The 33 yr span of the combined data set offers further confidence in

the NH half-life determination, as it covers a significant fraction of the half-life and

is consistent with the earlier determination.

4.9 Summary

Half-life determinations from various experiments are listed in Table 4.4, exhibit-

ing a clear lack of consensus. The grouping of determined values by method, suggests

that the discrepancies are of systematic origin, though we note that our determi-

nation is consistent with Thomsen’s AMS + activity result [42], which differs from

the other AMS determinations substantially. Although not large, the discrepancy

between our determination and that of the BNL experiment is possibly explained by

the unknown contribution of their background or more obscure systematic effects in

either experiment.

Referring back to equation 4.4 once again, we can make a basic estimate on the size

of trend in the Bg at BNL that would be required to bring our half-life determinations

into agreement. Adjusting each SiBNL and ClBNL datum by a linear trend between

+0.1 cps (in the beginning) and -0.1 cps (at the end), we determine an adjustment to

their half-life determination of ∼ 3 yr, which would make our respective determina-

tions consistent at the 1σ level. It may be interesting to investigate the cosmic muon
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Method T1/2 (yr) Reference

Ice Core 330(40) Clausen [43]

222, 277 Clausen → Demaster [44]

Sedimentary Core 276(32) Demaster [44]

217(29) Demaster → Cumming [45]

AMS 101(18) Kutschera et al. [46]

108(18) Elmore et al. [47]

132(13) Chen et al. [48]

Activity + AMS 133(9) Hofmann et al. [49]

162(12) Thomsen et al. [42]

Direct Decay Measurement 172(4) Alburger et al. [1]

159.4(5.6) This Work

Table 4.4
Summary of half-life determinations for 32Si, grouped by method.

flux during this period as well as comparing it to the period of the NH experiment

regarding both the half-life determinations and observed cyclic modulation.

The analysis of the NH data both before and after Bg subtraction has been instruc-

tive for several reasons. First, it allows us to better understand the BNL data and the

likelihood of Bg fluctuations causing the observed periodic modulation of their decay

data. As previously noted, a seasonal change in background of approximately 0.8 cps

could have affected their ratio decay data at the level of 1× 10−3. However, analysis

of our own data showed that removing the Bg only marginally affected the observed

modulation. In light of these results, we are scrutinizing the Bg correction algorithm

to be certain we are achieving optimal results. The need for daily Bg observation has

become clear and is being implemented as we move forward.

Additionally, we aim to improve our experimental platform in a few other areas,

using the knowledge gained during this phase. These improvements include main-

taining highly stable temperature and HV, conducting longer term, more precise
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characterizations of the platform, and evaluating possible improvements to the scal-

ing process. Heightened stability in HV, alone, will greatly diminish the range over

which the scaling algorithm is required to operate.
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Figure 4.36. BNL data region of the extended fit to the combined expo-
nential+cosine function (eq:4.3).
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Figure 4.38. Histogram of residuals of a purely exponential fit to the
extended BNL and non-Bg-corrected NH data set.
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Figure 4.39. Histogram of residuals of the combined exponential+cosine
fit to the extended BNL and non-Bg-corrected NH data set.
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Figure 4.40. BNL portion of the global exponential+cosine fit to the BNL
and Bg-corrected NH data, simultaneously.
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Figure 4.41. NH portion of the global exponential+cosine fit to the BNL
and Bg-corrected NH data, simultaneously.
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Figure 4.42. Histogram of the residuals for the global exponential+cosine
fit to the BNL and Bg-corrected NH data.



85

5. Self-Induced Decay

5.1 Background

Anomalies encountered during preliminary analysis for a seemingly unrelated ex-

periment (discussed in the next section), provided the motivation for revisiting the

SID prescription, which was done in collaboration with J. Nistor [50]. A number of

reported periodic variations in nuclear decay rates is (see Table 1.1). The observed

frequencies suggest an association with the Sun, as in the case of an annual signal

presumed to arise from the annual variation of the Earth–Sun distance [51], a (10–15)

yr−1 variation associated with the Sun’s rotation [52,23], a Rieger periodicity [9], and

a short-term statistically significant change in the 54Mn decay rate coincident with

a solar flare [11]. Further evidence of a connection between nuclear decay and solar

indices data is reported in [24]. A possible mechanism to account for a solar influence

would be a coupling of the decaying system to solar neutrinos (ν�) via some as yet

unknown interaction.

A test of the solar neutrino hypothesis was carried out in Refs. [53] and [54], which

compared the decay rates of 198Au in a thin gold foil, a gold wire, and a gold sphere

having both the same mass (1 mg) and the same specific activity. The basis for this

comparison was the observation that the electron-antineutrinos (ν̄e) produced from

those 198Au atoms undergoing decay would bathe the undecayed atoms in the sphere

in a flux of ν̄e that could be comparable to (or even greater than) ambient ν� flux. If

the effects of ν̄e on a decaying atom were similar to those of ν�, then the decay rate

of the spherical sample could be measurably different from that of the foil or wire,

in which most ν̄e would presumably leave the sample without significant influence on

the decay process. It is clear that this hypothesized “self–induced decay” (SID) effect

in the sphere is a non-linear phenomenon since its effect on the activity of the sample
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Run T1/2 exp (hr) χ2
exp T1/2 SID (hr) χ2

SID

Au105 64.365 ± 0.007 1.44 64.642 ± 0.008 0.98

Au301 64.062 ± 0.017 1.52 64.629 ± 0.019 1.04

Au401 64.394 ± 0.005 1.56 64.610 ± 0.006 1.12

Au501 64.484 ± 0.007 1.10 64.574 ± 0.008 1.05

Au502 64.078 ± 0.004 6.32 64.672 ± 0.005 1.05

Table 5.1
Exponential and SID fits to net counts for various 198Au data sets. The
NIST published value for 198Au is T1/2 = 64.684± 0.005 hr.

depends on the activity itself. As shown in Ref. [53], the SID effect is characterized

(to first order) by the differential equation

− dN(t)

dt
≡ −Ṅ ∼= λ0N(t)

[
1 + ξ

N(t)

N0

]
, (5.1)

where λ0 is the decay constant in the absence of SID (i.e. ξ = 0), N is the number of

activated nuclei, and N0 ≡ N(t = 0).

The objective of this discussion is to highlight the similarities of predicted SID

behavior to that of typical dead-time effects, which are a consequence of the fact that

detector dead-time effects are also non–linear in the activity of the sample (or more

precisely the count rate). Hence, dead-time effects could be confused with the SID

effect and vice versa. The result is that certain dead-time corrections may remove

non–linearity in decay data which may arise from fundamentally physical, rather than

instrumental, origins.

5.2 Experimental Motivation

A reactor based experiment was designed to irradiate several short-lived isotopes

on a regular basis and subsequently observe them via direct decay measurements

in order to determine the half-lives repeatedly throughout the year. The primary
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objective was to determine whether these shorter lived isotopes exhibit an annual

time-dependence in their decay rates, similar to the those presented in Table 1.1,

which would otherwise be obscured by their short life-times. During the course of this

experiment, we experienced significant obstacles due to technical reactor issues and

maintenance. Though the original scope of the experiment was unable to be realized,

it provided the means for the analysis presented in this section. The samples studied

are listed in Table 5.2.

Isotope Decay Mode Half-life Significant Photons (keV) Intensity

116mIn β− : 100.00% 54.29 m 411.8 95.62%

56Mn β− : 100.00% 2.5789 h

846.754 98.9%

1810.72 27.2%

2113.05 14.3%

187W β−: 100.00% 23.72 h

479.53 26.6%

551.55 6.14%

618.37 7.57%

685.81 33.2%

772.87 5.02%

76As β−: 100.00% 1.0942 d

559.10 45.0%

657.05 6.2%

1216.08 3.42%

198Au β−: 100.00% 2.6952 d 411.80 95.62%

122Sb
β−: 97.59%

2.7238 d
564.24 70.67%

ε: 2.41% 692.65 3.85%

Table 5.2
Isotopes under study in the PUR1 reactor experiment with energy of
prominent gammas in each istotope’s spectrum.
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5.2.1 Experimental Setup

Up to three samples were run simultaneously utilizing two [Bicron] 3-inch NaI(Tl)well

detectors and an HPGe detector. The well detectors were connected to Ortec Di-

gibases and a PC running Ortec’s Maestro32 MCA software, while the HPGe setup

used Ortec nim-bin modules connected to a PC running the same Maestro MCA

software. Each well detector is housed in a two-inch-thick lead cave to minimize

background counts and events from the other sample (see Figure 5.1). The HPGe

setup was in a separate room, and the detector was housed inside a cylindrical copper

shield. The 116mIn and 187W samples, due to their complex energy spectra, were run

on the HPGe setup due to the greater energy resolution afforded.

Figure 5.1. Each NaI well detector is housed in a 2-inch-thick lead cave.
The sample vials are placed in the well for counting.
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5.2.2 Sample Preparation

The mass of each sample was optimized based on the available neutron flux near

the core of PUR1 and the relevant reaction cross section for neutron capture, such

that a convenient time of irradiation was achieved. The mass was recorded and the

sample placed in a small polyethylene vial and heat sealed (see figure 5.2). The vial

was then cleaned with ethyl alcohol and rinsed with deionized water before being

labeled with a unique ID number so that a sample’s run history could be tracked.

Several samples of each isotope were utilized in order to allow an observed sample to

return to low activity before being irradiated again; typically, samples were allow to

‘cool’ for 10 half-lives or more.

Figure 5.2. The samples were weighed and sealed in a polyethylene vial,
cleaned and labeled.

5.2.3 Procedure

According to a weekly schedule, a sample was lowered into the reactor pool ad-

jacent to the core for a predetermined length of time in order to achieve an initial

activity optimized for data collection. After the allotted time, the sample was pulled
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from the reactor and immediately checked for activity using a Geiger counter. If the

activity level was suitable, the sample was placed into a well detector for counting.

Otherwise, the sample was allowed to cool, briefly, or lowered back into the reactor

as needed. We chose ∼3500 cps as a suitable initial count rate so as to minimize

dead time while still accumulating sufficient data for statistical considerations. The

activity of a sample at the end of irradiation is given by:

A0 = NφσS (5.2)

where N = number of target particles in sample, φ = neutron flux through target,

σ = reaction cross section, and the saturation, S, is given by:

S = 1− e−ln(2)ti/t1/2

where t1/2 = half-life of sample and ti = irradiation time. Typical irradiation times

were 3-5 min.

5.3 Analysis

Of particular interest to the discussion on SID are the data collected on 198Au,

which were in the form of thin foils, typically of mass 12-13 mg. The integral data

from the dominant 412 keV peak were analyzed using a weighted least-squares fit

to an exponential function. Half-life determinations were near the expected value

(T1/2 = 64.684(5) hr), but exhibited unexpected variations within subsets of the data,

and for data sets with significantly higher count rates. Further analysis repeatedly

showed an anomaly in the residuals of the detrended count rates, as depicted in Figure

5.3, which are expected to be distributed normally about unity. Similar anomalies

were seen in data from other nuclides measured with different detection systems. In

the process of investigating the role of dead-time in this behavior, it was discovered
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that a SID-corrected function yielded better fits and produced more consistent results

for half-life determinations. As shown in appendix A.2, it turns out that the behavior

of a sample experiencing a SID effect is functionally indistinguishable (to first order

in ξ), from the behavior under a systematic over-correction of the dead-time. With

that in mind, we present the former case, though the corrections are applicable in

both circumstances.

To evaluate the possible presence of a SID effect in our samples, the decay data

were analyzed by a weighted best-fit to the first-order SID function (see discussion

in section. A.1). The relevant fit parameters were then used to detrend the decay

data, and the results (illustrated in Figure 5.3) closely matched the SID prediction

presented in Ref. [53]. A SID presence would initially cause depopulation of the

sample more quickly than predicted by purely exponential behavior. This in turn

would cause the future decay rate to be smaller than expected under exponential

behavior, with the crossover necessarily occurring at T1/2.

Calculated values for χ2
DOF , presented in Table 5.1, show improvement for the

SID prescription compared to an exponential fit. Of particular note is run ‘Au502’,

whose initial activity was roughly double that of the next most active 198Au sample

observed. A higher specific activity would be expected to lead to a more pronounced

SID effect. While the SID prescription continues to fit very well with this larger

non-exponential behavior, the purely exponential fit is poor, yielding χ2
DOF ≈ 6.

Analysis of the residuals of the net counts for both the purely exponential fit and

the SID fit highlights the differences between the two methods of analysis presented

here. The histogram of residuals for the SID fit, presented in Fig. 5.4, shows an

approximately Gaussian distribution, whereas the corresponding distribution for the

exponential fit is skewed. Plots of the residuals as a function of time further highlight

the differences; under the SID prescription, the residuals exhibit a relatively normal

distribution about zero, whereas the residuals of the exponential fit show a marked

departure. The shape of the exponential-fit residuals is consistent with the sample

initially decaying faster than predicted by an exponential model. Analysis of data for
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Isotope T1/2 exp (days) Avg χ2
exp (min, max) T1/2 SID (days) Avg χ2

SID (min, max)

198Au 2.68426 ± 3.9×10−5 2.39 (1.10, 6.32) 2.6929 ± 1.4×10−4 1.05 (0.98, 1.12)

76As 1.09159 ± 8.7×10−5 1.17 (1.03, 1.29) 1.0906 ± 3.6×10−4 1.14 (1.00, 1.24)

122Sb 2.67735 ± 9.5×10−5 5.30 (1.72, 12.3) 2.6531 ± 3.5×10−4 2.06 (1.14, 3.33)

56Mn 0.10690 ± 5.9×10−5 8.38 (1.14, 24.5) 0.10755 ± 1.26×10−5 1.19 (0.78, 2.01)

116mIn 0.037906 ± 9.3×10−6 1.83 (0.97, 2.17) 0.03763 ± 1.8×10−5 1.25 (0.95, 2.14)

Table 5.3
Weighted averages of the half-lives of various isotopes using exponential
and SID fits to net counts. The associated mean χ2

DOF and range are
presented.

other nuclides also shows improvements in fit under SID analysis. Table 5.3 displays

the averages of the determined half-life for each nuclide, weighted by the associated

error for each datum in the determination. The average χ2
DOF for the exponential and

SID fits is also presented, including the range. In all cases, the SID model provides

a better description of the data than a pure exponential model. It is important to

note that the improvement in fit is not simply due to adding an additional parameter;

traditional ad-hoc dead-time corrections introduce an additional parameter, as well,

as shown in appendix A.2. The result is that such dead-time corrections would result

in discarding any existing SID or similar rate-proportional effect.

However, as previously indicated, it is also true that a larger initial activity cor-

responds to a higher count rate, and hence, increased dead-time in our experiment.

While the Gedcke-Hale live-time clock utilized in this experiment corrects for rate-

related losses such as dead-time and pileup, there exists an uncertainty in each time-

correction. A systematic over/under correction would produce the same behavior, to

first order, as the SID prediction. In either case, these results show the need for a pro-

cedure with which to correct for rate-related losses, especially when the observation

period of the experiment is comparable to the half-life of the sample being studied.

Although, in this case, it is impossible to decouple the two possible sources of the

effect, it is possible to design an experiment which can distinguish between the two.
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6. Conclusion

For the ∼ 2 yr period represented in this work, we analyzed approximately 6,000 hours

worth of data for each sample and have determined the half-life of 32Si to be 159.4 yr

±1.9 yr (statistical) ± 3.7 yr (systematic). A longer term characterization may allow

the quoted systematic error to be reduced, however the values of χ2
DOF obtained in

our analyses indicate that we have sufficiently accounted for the uncertainties. Our

half-life determination is consistent with that by Thomsen et. al. [42], and the results

of performing extended fits across the BNL and NH data lends greater confidence in

this determination.

We have also attempted to more fully understand the presence of reported mod-

ulation in decay data by carefully remeasuring the decay rates of 32Si and 36Cl while

controlling and monitoring the environment of the experiment. Over the period in-

cluded in the analysis, we recorded approximately 5×106 individual environmental

readings. We found that the signal that was observed in the BNL data persisted in

the NH experiment but was of smaller amplitude. This appears to suggest that the

attention we have given to controlling for environmental effects reduced the variation.

However, we have also reasoned that it is unlikely that the variation in temperature

or detector voltage (presumably the most important factors, given the results of our

correlation analysis and the degree to which we controlled the other parameters) is re-

sponsible for the modulation, since the 32Si/36Cl ratio exhibits the opposite behavior

of what our characterization studies demonstrate. Further, our Bg corrections do not

suppress the modulation to any significant degree, and bring the primary frequency

of the modulation closer to 1 yr−1.

We also note that although power spectrum analysis by P. Sturrock on both the

BNL and non-Bg-corrected NH data show differing oscillatory behavior of the 36Si

vs 36Cl samples between the two experiments, the ratio yields a similar variation.
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This provides support for the efficacy of utilizing the ratio data in order to miti-

gate compounded systematic effects. Frequency analysis of the Bg-corrected data

is forthcoming. Given the relationship of the data from the two experiments, we

have presented a methodology for combining them to produce an extended 30+ yr

global fit, which imposes an additional constraint compared to the standard practice

of averaging reported values.

Finally, we have presented an analysis of the SID effect with respect to its sim-

ilarity to rate-related losses in the counting system. Our analysis shows that, at

minimum, the fitting model we present provides a convenient way to correct for these

losses as well as the possibility that an existing phenomenological effect might be

discarded with traditional dead-time corrections.

Our future plans for the NH experiment will address the technical issues encoun-

tered during this phase. We will begin collecting daily Bg observations and conduct

further evaluation of the the Bg correction and scaling algorithms. The extended tem-

perature stability provided by the PID-controlled peltier unit now affords us great

latitude in characterizing the precise temperature dependence of our experimental

platform while decoupling the HV supply from these imposed temperature changes,

not to mention the benefit to our data acquisition in general. One can also imagine

imposing a varying temperature regimen, which is different than the natural environ-

mental cycle, in order to further investigate the issue. Additionally, a highly stable HV

supply will address the issues regarding gain shifts that we encountered. Comparing

the data collected under these conditions to the previous data, especially regarding

the magnitude and phase of variation in the residuals, should be quite informative.



APPENDICES
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A. Self-Induced Decay

A.1 SID Phenomenology

On a phenomenological basis, a natural way to investigate the periodicities pre-

sented in Table 1.1, as well as a possible influence from neutrinos, is to model the

behavior as a modification to the standard exponential decay law, −dN/dt = λN ,

where the decay parameter λ experiences a time–dependent perturbation,1 i.e.,

λ = λ0 + λ1(t) . (A.1)

Since the perturbation is presumed to arise from an interaction with neutrinos or an-

tineutrinos (which will henceforth be referred to as neutrinos), λ1 will be proportional

to (or more generally, a function of) the ambient neutrino flux, which in principle may

have contributions from a variety of sources (e.g. solar neutrinos, CνB relic neutrinos,

geologic and atmospheric neutrinos, and artificial/reactor-generated neutrinos). For

such an exotic interaction to exist in nature, past experimental observations constrain

λ1 to be much less than λ0, at least for conditions typically encountered in terrestrial

experiments.2 This constraint suggests that it is appropriate to simplify subsequent

expressions to lowest order in λ1/λ0. For the purpose of comparing SID with dead-

time behavior, higher order SID terms will be discarded. The one exception will be

throughout the discussion of the “extremal” behavior associated with SID.

As mentioned in Sec. 5, it is hypothesized that a sample undergoing β–decay or

K–capture may in fact be able to affect its own rate of decay. Specifically, those

atoms which have yet to decay will be bathed in a flux of neutrinos produced from

the decaying atoms within the sample. Therefore, a sample with a sufficient internal

1We note that a time–dependence in λ does not necessarily imply a departure from randomness, but
rather suggests a deviation in the probability distribution which governs the decay.
2One could imagine locations where the ambient neutrino flux is significantly larger than that en-
countered on Earth—such as near or within stellar bodies, for instance.
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neutrino flux (i.e., greater than the ν� flux) should exhibit an experimentally de-

tectable deviation in its decay rate. It is perhaps surprising that an internal neutrino

flux significantly higher than the ν� flux is achievable in relatively small samples, as

was accomplished in [53,54] with a 1 mg gold sphere, foil, and wire.

Given such a case, where the various contributions to the total neutrino flux

(within a given sample) are dominated by the the internally generated neutrino flux,

it is reasonable to neglect all but this internal source and express the perturbation in

the decay parameter as

λ1 = −pṄ. (A.2)

Explicitly, it is here presumed that the perturbation is proportional to the density

of emitted neutrinos, which in turn is proportional to the decay rate (p being the

dimensionless proportionality constant). To be more general than Eq. (A.2), the

decay parameter may contain additional contributions arising from external neutri-

nos (which is presumed to be the case for the periodicities observed in Table 1.1).

However, for the specific case of a short-lived isotope, one would expect the time-

dependence in λ to arise primarily from Ṅ , while the ν� contribution, for instance,

would remain approximately constant during the sample’s short lifetime. Using Eq.

(A.2), the perturbed system can be characterized by the differential equation:

−Ṅ =
(
λ0 − pṄ

)
N (A.3)

=
λ0N

1− pN
. (A.4)

Before presenting a solution to Eq. (A.4), which is relevant for comparison with

dead-time effects, we highlight a few points which have not been previously presented

elsewhere. Since λdt can be regarded as the probability for an unstable atom to decay

within a small time interval dt, it is reasonable to interpret λ1dt as the probability

within this time for an activated atom to decay, due to the proposed SID effect. In

other words, the probability for an atom to decay is the sum of two distinct ways in

which the decay can occur: a spontaneous decay (λ0dt), or an induced decay (λ1dt).

In this context, the constant of proportionality in Eq. (A.2) can be regarded as the
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probability (per emitted neutrino) for a SID to occur, since −Ṅdt is the approximate

number of neutrinos emitted in time dt.3 Therefore, each neutrino emitted within a

population of N activated atoms is expected to induce pN decays. It may appear

at first glance that pN could exceed unity if a single neutrino were able to influence

multiple unstable atoms while traveling within the sample. In fact, one could in

principle attempt to irradiate a sample continuously until N becomes large enough so

that pN is greater than unity; however, the technical question is how such a sample

would be created.

To address this question, first consider an “ideal” sample of identical stable atoms

which can be irradiated at will by placing the sample in a reactor, for example. Since

the activated atoms in the sample will subsequently decay, there is a limit to how

many stable atoms become activated—a limit which is reached when the decay rate

of the sample (which increases as more atoms are activated) equals the activation rate

of the reactor. If the sample being considered decays according to Eq. (A.4), then as

pN approaches unity the decay rate diverges. No matter how powerful the reactor,

the activation rate will be insufficient to activate more than 1/p atoms within the

sample, i.e,

Nmax = 1/p . (A.5)

This new example of secular equilibrium is depicted in Fig. A.1, and is in stark

contrast to a sample governed by the standard decay law, for which the absolute

maximum number of activated atoms is limited to the total number of atoms within

the population. From this discussion, there is an unavoidable upper bound on pN

such that:

ξ ≡ pN0 < 1 , (A.6)

where N0 < Nmax is the number of activated atoms immediately after the activation

process is completed. Note that the SID parameter ξ is the quantity which may be

3It may be that p is negative, in which case, −p is the probability of inhibiting a decay event from
occurring. The treatment that follows will assume a positive value for p, but the treatment for
negative p is readily inferred.
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N (# of Activated Atoms)
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Figure A.1. An illustration depicting secular equilibrium for a sample
exhibiting the SID behavior (red curve) and a sample undergoing standard
exponential decay (blue curve). For a given activation rate, equilibrium
is reached with fewer activated atoms for a sample undergoing SID decay,
and the absolute maximum number of activated atoms is Nmax = 1/p.

directly measurable by experiment since it represents the fractional change in the

decay rate from the expected behavior at t = 0.

Finally, given the aforementioned interpretation of p, we could have derived Eq.

(A.4) simply by adding up all of the decays expected within a short time interval dt

through the distinct ways a decay can occur. Since there are λ0Ndt decays expected

to occur randomly, there will also be this many neutrinos available to stimulate ad-

ditional events. With pN being the number of SID events expected per neutrino,

λ0Ndt(pN) would be the expected number of induced decays. However, these SID

decays, in turn, produce additional neutrinos for which λ0Ndt(pN)2 decays are ex-

pected. The pattern continues since at each stage the additional decays in turn pro-
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duce additional neutrinos. Therefore, we can express the total number of expected

decays, per unit time, as

− Ṅ = λ0N + pλ0N
2 + ... = λ0N

∞∑
j=0

(pN)j , (A.7)

where the right side of Eq. (A.7) will always converge for |ξ| < 1, and is readily

identified with Eq. (A.4). From this construction it is evident that “higher–order SID

processes” will have little influence on the total decay rate of the sample given that

|ξ| is presumably much smaller than unity. Furthermore, Eq. (5.1) can be obtained

by retaining only the first two terms in Eq. (A.7).

The exact solution to Eq. (A.4) is most likely never required. Nevertheless, an

implicit solution is obtained by integration, yielding

N(t)e−ξN(t)/N0 = N0e
−λ0te−ξ. (A.8)

We can expand Eq. (A.8) in (pseudo) powers of ξ by making use of the Lagrange

inversion theorem,

N(t) =
N0

ξ

∞∑
j=1

jj−1

j!

(
ξe−ξe−λ0t

)j
, (A.9)

where ξ is assured to fall within the radius of convergence on purely physical grounds.

However, it is worth emphasizing that Eq. (A.9) is an accurate solution for situations

up to ξ = 1, and therefore may be useful in studying the extremal behavior following

from the preceding discussion. The decay rate, nξ(t) ≡ −dN/dt, can be determined

from Eq. (A.9) as a series expansion. For typical situations it is sufficient to truncate

the expansion to first order in ξ, in which case the decay rate becomes

nξ(t) =
nξ(0)

1 + 2ξ
e−λ0t

(
1 + 2ξe−λ0t

)
, (A.10)

where nξ(0) is the initial decay rate, and the truncation error is on the order of O(ξ2).

In general, terminating the expansion to the jth term results in a remainder Rj(ξ, t)

which decays much more quickly in time than the activity of the sample. In fact, this

remainder is comparable to Rj(ξ, t) ∼
(
ξe1−ξe−λ0t

)j+1
. Furthermore, we see directly
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from Eq. (A.4) that the initial SID rate nξ(0) is greater (when ξ > 0) than the initial

non-perturbed rate, and the two are related according to

(1− ξ)nξ(0) = n0(0) , (A.11)

where n0(0) ≡ λ0N0 is typically understood to be the initial activity of a sample.

In past discussions in the literature ( [53], [54]), one useful quantity that has been

studied is the ratio of decay rates with and without a SID effect:

g(x, ξ) ≡ nξ
n0

= 1− ξ + 2ξe−x . (A.12)

Previous searches for the SID effect (such as those conducted in Refs. [53] and [54])

sought to compare samples of similar activities but differing geometries. In this case,

the values of ξ will differ between the samples due to the geometric dependence on p.

Consequently, the ratio of the decay rates of one sample to the other is expected to

have a temporal trend proportional to g(λ0t,∆ξ), where ∆ξ is the difference between

the values of ξ for each sample. A plot of g(x,∆ξ) is shown in Fig. 1 of Ref. [53].

It will be useful in what follows to rewrite nξ in terms of a purely exponential rate

in order to compare this behavior to the perturbations associated with dead-time,

which will be discussed in Sec. A.2. In fact, the event rate as seen by the front end

of a detector can be written as

mξ(t) = m0(t) [1 + βm0(t)] , (A.13)

where β ≡ 2ξ/m0(0), and m0(t) represents an exponential decay rate with decay

constant λ0. It is apparent from Eq. (A.13) that the fractional change in the count

rate (mξ −m0)/m0 shares the same time–dependence as m0(t). It is also true that

rate-related perturbations associated with dead-time losses are proportional to the

count rate. Therefore, we turn now to investigate the effects of dead-time on detector

event rates and compare these effects the SID rates discussed above.
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A.2 Dead-time behavior

We proceed in this section to a discussion of dead-time behavior with the aim

of exhibiting the similarity between dead-time effects and those arising from the SID

behavior. Rate-related losses due to dead-time may arise from any part of the counting

system, and the magnitude of these losses is directly proportional to the counting

rate itself. Many procedures exist to correct for rate-related losses. Typically these

procedures are validated under conditions far more severe than those found in routine

metrology, and thus are considered well-motivated. The subject of this section is to

study a few simple dead-time models in an effort to elucidate their effects on time-

dependent event rates. To this end, we consider the somewhat idealized behaviors of

extending and non-extending dead-time.

A.2.1 Extending dead-time

Pileup in the amplifier (also called random summing) is a classic case of extending

dead-time. When counting rates are relatively high, the random spacing of radiation

pulses may result in interfering effects between pulses. Peak pileup occurs if two

pulses are sufficiently coincident in time that they are treated as a single pulse in

the counting system. The effect of peak pileup of two events is to essentially shift

both from their proper position in the energy spectrum. Tail pileup, which can occur

significantly even at relatively low count rates, involves the superposition of two

slightly overlapping pulses. The main effect of tail pileup on the measurement is to

worsen and distort the spectrum resolution.

The counting losses which result from pileup can be modeled as those events which

occur within a time spacing less than a particular time following a previous event.

Let α denote the minimum time by which two events must be spaced in order for each

event to be resolved properly, I represent the instantaneous event rate of the decay

within the detector, and I ′ represent the measured event rate out of the amplifier.

The fraction of events which are spaced by a time interval between T and T + dT
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is given by IdT exp (−IT ), which can be interpreted as the probability of all nuclei

surviving for a time T followed by a decay in a time dT . Therefore, the fraction of

events which are not piled up, f , is given by

f =

∫ ∞
α

e−IT IdT = e−αI . (A.14)

Consequently, if only those events free from pileup contribute to the measured rate,

then the measured rate I ′ can be expressed as

I ′ = Ie−αI , (A.15)

where the extending dead-time (pileup) parameter α can be determined in successive

counting experiments through a least-squares type fit. Pileup correction factors fP ,

by which each datum is adjusted, take the form

fP ≡
I

I ′
= eαI . (A.16)

Another representation of these correction factors is obtained by using the macro-

scopic dead-time (DT ) to approximate the counting rate, yielding

I

I ′
= eP (DT/LT ) , (A.17)

where LT denotes the detector livetime for the counting period. The unknown pileup

constant P along with I are determined from a least-squares fit of ln I ′ = ln I −

P (DT/LT ). It is worth noting that in either case, the constants P and α are usually

not measured directly. Rather, they are best-fit determinations of a least-square or

χ2 type minimization procedure.

It is a curious observation that a SID–related deviation from an exponentially

decaying event rate resembles the effect of pileup in the amplifier. In fact, expanding

Eq. (A.15) in powers of α, we obtain

I ′(t) = I(t) [1− αI (t)] +O(α2), (A.18)

which bears the same form as Eq. (A.13) for an exponentially decaying source. Al-

though α is strictly positive to represent losses from pileup, ξ can be positive or
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negative depending on the particular mechanism – appearing as “rate-related gains”

(ξ > 0) or rate-related losses (ξ < 0).

The similarity of Eqs. (A.13) and (A.18) raises the question of what the effect from

pileup would be on a SID–perturbed count rate, mξ(t). As outlined above, the general

form of Eq. (A.15) is obtained by considering the probability for two incoming events

to occur within a particular time interval. Furthermore, these events are assumed to

be governed by a Poisson process, or equivalently, presumed to occur randomly in

time and independent from one another. While the condition for randomness may

remain valid when considering a SID process, the condition for independence falls

under scrutiny. Namely, each induced decay is the result of prior events and therefore

cannot be considered to occur independently. In fact, it is likely that each SID event

would essentially occur almost simultaneously with the event which induced it, and

therefore a disproportionately large number of events would be subjected to peak

pileup.

The derivation of an exact expression analogous to Eq. (A.15) for a SID process

would require a rigorous development of the distribution of time intervals for this

process. An approximation suitable when ξ is sufficiently small can be obtained by

estimating an atom’s survival probability for a time T to be N(T )/N0, where N(T ) is

given by Eq. (A.9). Additionally, the probability for an atom to decay is necessarily

time–dependent, as underscored in the modified form for λ(t). To lowest order in ξ,

the effect from pileup on a SID event rate mξ, given in Eq. (A.13), can be represented

as

I ′(t) = m0(t)e
−α′m0(t). (A.19)

where α′ ≡ α−β = α−2ξ/m0(0) can be considered the “effective” pileup parameter,

and O(α · ξ) terms are considered to be of higher order. Since m0 represents a pure

exponential decay rate, the result obtained in Eq. (A.19) demonstrates that a SID–

modified input signal can be mistaken for an exponential decay rate (with the same

decay constant λ0) after subject to pileup. Therefore, procedures which correct each
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datum for pulse pileup could remove a SID perturbation almost entirely with an

incorrect determination of the pileup parameter, α, or P .

A standard hardware solution to pileup is accomplished through the use of a pulser

to estimate the correction factor as the ratio of pulser frequency with and without

a source. Suppose a periodic pulse generator with frequency IP is used to add an

artificial peak to the spectrum being studied. Since the true input rate of the pulser is

known, a measurement of the counts in the artificial peak allows for a determination

of the fraction of events free from pileup. Once again, this fraction is given by Eq.

(A.14) for a Poisson governed decay rate, and therefore the output rate from the

pulser, I ′P , can be expressed as

I ′P = IP e
−αI , (A.20)

where I once again represents the true event rate due to the decay. On the other

hand for a SID event rate, Eq. (A.20) is unaffected to first order in ξ. This can be

explained by the fact that the fraction of events which are free from pileup, f , is

unaffected to lowest order in ξ. The perturbation to the output signal arises solely

from the increase in the event rate. Since the pulser input rate is independent of

the decay rate, the pulser method of correcting for pileup losses is immune from the

removal of first-order SID effects.

A.2.2 Non-extending dead-time

Non-extending dead-time is perhaps the simplest model for a detector’s response

to an input signal I. For this model, the counting systems is “busy” (i.e. unable

to receive any additional pulses) for a fixed time τ after each registered event. As a

result, the measured counting rate, I ′, will be an underestimate of the true event rate

according to:

I ′ =
I

1 + τI
. (A.21)

The total amount of time for which the detector is “dead” during a counting inter-

val, called the macroscopic dead-time DT , is given simply as the total accumulation



107

of these small intervals τ for the total number of registered events. That is to say, if

M is the total number of registered counts in a time CT , then the detector is unable

to register events for a time given by DT = Mτ . The effective livetime (LT ) counting

interval, therefore, is the time LT = CT −DT .

When the true event rate into a detector is small (that is when the time between

events ∼ 1/I is significant in comparison to the detector response time τ), the non-

extending dead-time behavior given by Eq. (A.21) will agree with the extending dead-

time model in Eq. (A.15). We can see this from expanding Eq. (A.21) in powers of

τI:

I ′ =
I

1 + τI
= I

(
1− τI +O

(
τ 2I2

))
. (A.22)

Although the two models agree for low event rates, the behaviors diverge signifi-

cantly for high rates, and for the non-paralyzable model described by Eq. (A.21), the

observed count rate will asymptote to a value of 1/τ for large, true event rates.

It is common practice in nuclear spectrometry to perform successive counting mea-

surements by fixing the livetime clock, since the dead-time DT is expected to change

during each measurement when the decaying source has a lifetime comparable to the

total time through which the experiment is conducted. If, on the other hand, the

clock time CT is fixed, the true counting intervals will differ for different measure-

ments. This issue can be addressed either by manual correction of the livetime or by

automatically fixing the livetime clock in the multi-channel analyzer (MCA). There

are various “livetime clocks” built into the systems widely used in research and in-

dustry. The Gedcke-Hale livetime clock is an example of one of the more well-proven,

reliable livetime clocks.

Bias can be introduced in a counting measurement by inaccuracy in the livetime

clock. The degree of this bias appears small in general, and over-correction by the

MCA livetime clock appears most common in practice. One test of the livetime clock

performance would be to insert a pulser into the counting system and compare the

measured rate with the rate measured directly with a precision frequency counter.

As a simple model, the effect of overcorrection (or bias) in the livetime clock can be
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thought of as an error δτ in Eq. (A.21) associated with each registered pulse. Then,

the perturbation from this dead-time overcorrection can be estimated as:

δI =

(
∂I

∂τ

)
δτ (A.23)

=

(
I ′

1− τI ′

)2

δτ = I2δτ . (A.24)

We thus see that the effect of this bias is to overestimate the counting rate in a manner

once again similar to the SID perturbation given by Eq. (A.13),

I + δI = I (1 + δτI) . (A.25)

In fact, systematic over or under-correction in the livetime clock may lead to an

observable behavior identical to the SID behavior.
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