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ABSTRACT

Hunt, Steven A. PhD, Purdue University, May 2016. Thermoacoustic Oscillations in
Supercritical Fluid Flows. Major Professor: Stephen Heister.

Pressure oscillations in supercritical Jet-A fuel flowing through four parallel, heated

tubes connected to common manifolds have been observed in this study. Tests were

performed with fuel inlet temperatures ranging from 70◦F to 700◦F, and fuel pres-

sures ranging from 360-700 psi. Total fuel flow rate ranged from 5-55 lb/hr. Tubes

were heated by blowing 800-950◦F nitrogen over them. Acoustic-mode oscillations,

typically ranging from 100-500 Hz, occurred only when a large temperature gradient

was created inside the heated fuel tubes. Pressure oscillation amplitudes ranged from

0.1-1.0 psi. Oscillations at the inlet and outlet manifolds that were caused by a mode

with the characteristic length of a single fuel tube were separated by a phase lag

that was a function of the manifold cross-passage diameter. A lower-frequency mode

was also observed, which had a characteristic length based of the summed lengths of

a single fuel tube and a single manifold passage. An acoustic simulation using the

COMSOL Acoustics Module was performed to predict frequencies based on geometry

and flow conditions of the experiment.
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1. INTRODUCTION

The field of thermoacoustics pertains to coupled oscillations of pressure, motion, and

heat transfer in a fluid. These oscillations occur under many conditions, and are

applicable to many fields. Researchers have performed physical experiments under a

wide range of conditions, and analytical research on the subject has progressed from

purely qualitative, to simplified mathematical models, to numerical analysis using

computational fluid dynamics (CFD).

Some of the earliest documented oscillations were encountered by glassblowers

from the 19th century [1]. Loud noises emanated from glass tubes as they were

heated at a single end [2]. This prompted early study of thermoacoustics. More

mathematically-rigorous studies were performed by cryogenics researchers [3] who

encountered spontaneous vibrations in tubes of helium, particularly when one end of

the tube was much colder than the other. More recently, nuclear power engineers [4]

have experienced oscillations of moderating fluid as it is heated, and aerospace engi-

neers have encountered oscillations of combusting gas inside turbine engine combus-

tion chambers [5], as well as supercritically-heated fuels flowing through fuel-air heat

exchangers. The latter scenario motivates this study, as pressure spikes associated

with thermoacoustic oscillations can damage tubes and other hardware.

1.1 Previous Works

Griffith [5] took Schlieren photos and measured the heat transfer coefficient of

Freon 114A near its critical point. The fluid flowed through a 2-inch ID tube, and

was heated with nichrome wire inside the test section. Griffith observed bubble-like

activity in the fluid, which is likely what others have described as pseudoboiling.

Bubble-like activity occurred in fluids near the critical point, both above and below.
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Figure 1.1. Schlieren photos of pseudoboiling, courtesy of Griffith [5]
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However, it never occurred in highly-supercritical fluids. This activity did not affect

the heat transfer rates Griffith measured.

Hines and Wolf [6] performed early experiments to show thermoacoustic oscil-

lations in supercritical fuels. They tested turbulent flows of supercritical RP-1 and

diethylcyclohexane (DECH) through thin-walled tubes designed to replicate flowpaths

found in rocket cooling jackets. They found the slope of heat transfer coefficient vs.

the difference between bulk and wall temperature increased substantially just above

Tcr. At this temperature the heat transfer coefficient rose by up to 40 percent. A

similar increase is experienced with subcritical fluids when nucleate boiling begins,

although often larger in magnitude. Tests performed by Griffith [5], however, did not

show a significant change in heat transfer. Oscillations were often audible in their

tests; oscillations of well-defined frequency with uniform amplitude caused a sound

described as a clear and steady scream, whereas oscillations of varying amplitude

caused chugging or pulsing noises. Dominant frequencies encountered ranged from

1000-7500 Hz, and pressure amplitudes ranged from 50-380psi. Hines and Wolf un-

successfully attempted to eliminate these oscillations by placing the tube in cement

to damp the vibrations during a run.

Several tubes failed during testing. In three experiments at 2000psi, tubes rup-

tured without any evidence of oscillations. In experiments at 700psi, thin-walled test

sections developed hairline longitudinal cracks after a few minutes of oscillations.

Linne et al. [7] performed a design of experiments to generate a statistical model

predicting the stability of a flow. Their tests involved supercritical JP-7 fuel flowing

through a vertical, resistively-heated tube. An upstream preheater helped heat the

fuel to the necessary temperatures. Five independent variables were selected for

this study: test section length, test section inside diameter, mass flow rate, inlet

fluid temperature, and heat flux. Buoyancy was originally proposed as a driver of

oscillations, but based on the Reynolds and Grashof numbers calculated, buoyancy

was deemed negligible for all tests.
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Figure 1.2. Statistical model courtesy of Linne et al.

The stability analysis was based on the magnitude of RMS pressure. RMS wave-

forms led to probability distributions of fluid pressure occurring in each test case.

The authors arbitrarily selected an RMS pressure of 10 psi as the threshold between

a stable and an unstable condition.

To determine the reproducibility of the experiments, Linne et al. repeated several

test cases and compared the repeat results with the original results. The authors

claimed overall reproducibility to be less than optimal. The percent difference in RMS

pressure between repeat tests led them to generate three categories of reproducibility:

good, fair, and poor. Out of nine repeat experiments: three had good reproducibility,

three had fair, and three had poor. The cause of the irreproducibility could not be

determined.

The statistical model estimating RMS pressure is provided in 1.2, in terms of test

section length (L), inside diameter (Di), mass flow rate (ṁ), inlet temperature (Ti),

and heat flux (Q̇).

Certain terms describe the effects of a single variable, while others describe coupled

effects of two variables.

The model correctly predicted most, but not all, test points as being stable or

unstable. Figure 1.3 shows all the test points; incorrectly predicted points are circled.

Several trends can be inferred from this statistical model:

• All inlet temperature coefficients, direct and indirect, are negative.

– Instabilities should weaken with increasing inlet temperature.
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Figure 1.3. Statistical stability analysis courtesy of Linne et al.
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Figure 1.4. Temperature profile conducive to thermoacoustic oscillations
- courtesy of Linne et al.

• All mass flow rate coefficients, direct and indirect, are positive.

– Instabilities should strengthen with increasing mass flow rate.

• Coefficients of tube length diameter vary in sign, and are strongly coupled with

other variables. Overall, though, positive terms tend to cancel out negative

terms.

– Instabilities should strengthen (to varying degrees) with increasing tube

diameter and length.

Linne et al. hypothesized the temperature distribution shown in Figure 1.4 is

conducive to thermoacoustic oscillations.

This temperature distribution has the inlet fluid temperature below the critical

temperature, most of the wall above the critical temperature, and the fluid reach-

ing the critical temperature midway through the test section. Many other studies,
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Figure 1.5. Stability limit curves for helium courtesy of Rott

discussed below, also noted that oscillations would not occur if the fluid inlet tem-

perature were above the critical temperature.

This point in the tube where the critical temperature is reached may hold im-

portance to oscillations, as fluid properties such as specific heat vary the greatest in

this section. These rapid changes in fluid properties may lead to high derivatives of

temperature with respect to axial tube position (dT
dx
). In a cryogenic fluids study,

Rott treated this large temperature gradient as a step discontinuity in his analytical

studies [8] and [9]. He investigated acoustic resonance in tubes that are closed at one

end and contain a temperature discontinuity.

Rott formulated and solved two-dimensional, time-varying equations of continu-

ity, axial momentum, and energy. A stability limit for helium, which bounds the

maximum magnitude of temperature discontinuity (α), was generated in terms of the

location of temperature discontinuity in the tube (ξ), and the ratio of boundary layer

thickness to tube radius (Yc).

Temperature ratios below the curves cause stable flow, and temperature ratios

above the curves cause instabilities.

Faith et al. [10] experimented with supercritical Jet-A fuel, flowing it through first

a preheater, and then one of several types of resistively-heated tubes. They installed

21 equally-spaced tube wall thermocouples: some atop, and some underneath the
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Figure 1.6. Sample waveform courtesy of Faith et al.

tube. Mean pressure was varied between tests. Heat transfer power was increased

over a 5-10 minute period until oscillations began.

Heat transfer coefficient correlations were developed for laminar and turbulent

flows. Low heat transfer coefficients were often observed when the fuel was near its

pseudocritical temperature. Under low heat-flux conditions, the temperature varied

substantially from tube bottom to top.

Oscillations manifested in the form of whistling noises. Pressure fluctuations for

0.32-cm ID tubes ranged up to 350 psi. 150-psi amplitudes were seen in 0.16-cm ID

tubes. Primary frequencies varied between 1000 and 5000 Hz. A sample waveform is

shown in Figure 1.6.

Test runs at a lower mean pressure (500 psi) more frequently produced noises than

those at a higher mean pressure (1000 psi). Moreover, noises tended to be louder in

the lower pressure cases than the high pressure cases. This trend was explained by

the fact that larger viscosity and density gradients exist at lower pressures.
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During certain tests lasting 20 hours, whistling only began after several hours.

Coking may have caused this in part, as it was reported to increase turbulence,

increase the heat transfer coefficient, and decrease the tube temperature.

Hitch and Karpuk [11] studied vertical flow of MCH and JP-7 through a tube

heated by band heaters. Flow was driven by a positive-displacement pump. Their

test section consisted of eleven solid nickel cylinders. The length of each section was

2.5 in, making for a 26-in total length. The tube outer diameter was fixed at 2.25 in

and the ID varied between 0.13 in and 0.065 in.

They observed two distinct types of oscillations near the critical point: Helmholtz

oscillations (also known as bulk-mode oscillations) and acoustic-scale oscillations.

Helmholtz oscillations occurred with high amplitude and low frequency (1-2 Hz),

whereas acoustic oscillations occurred with low amplitude and high frequency (75-

450 Hz). Flows were always stable when the fluid pressure was much higher than the

critical pressure.

Aiming to eliminate oscillations and increase heat transfer, Hitch and Karpuk

tested several turbulating inserts: a twisted-tape insert, a louvered-tape insert, and a

static mixer. All three inserts were found to increase the heat transfer coefficient over

that of a basic tube. The static mixer caused the largest heat transfer improvement,

and reduced Helmholtz oscillations substantially. Flow stability could be maintained

with a static mixer until pressure was reduced to less than 1.1 times the critical

pressure. Hitch and Karpuk successfully eliminated oscillations even below the critical

pressure by using a damping valve to cause a flow restriction before the test section.

Herring’s [12] research was aimed at developing a robust and high-performance

fuel-air heat exchanger able to accept fuels near or above the supercritical point.

Supercritical JP-10 flowed through a single resistively-heated tube in his experimental

tests. Flows remained in the laminar regime. Independent variables included inlet

temperature, mass flow rate, input power, heated length, and total pipe length. He

also tested vertical and horizontal flows to determine the effect of buoyancy, and
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Figure 1.7. Oscillations encountered as function of reduced temperature
and pressure, courtesy of Herring

several types of wire coil inserts in an attempt to improve heat transfer and suppress

oscillations.

Similar to the results of Hitch and Karpuk, Herring observed bulk-mode oscilla-

tions for reduced pressures up to 1.5. He attributed the inability to produce oscil-

lations above this pressure to the insufficient wall temperatures his apparatus was

capable of. Linne et al. and Hines & Wolf reported oscillations at reduced pressures

over 2.

Figure 1.7 shows all Herring’s test points in terms of their dimensionless pressures

and temperatures. Different markers for test points are used to depict what type(s)

of oscillation, if any, were detected. In Herring’s nomenclature, pulsating oscillations

are equivalent to bulk-mode or Helmholtz oscillations.
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Like many other experimenters, Herring only experienced oscillations when the

wall temperature was above the pseudocritical temperature and the fuel inlet tem-

perature was below. Unlike the results of Hitch and Karpuk, however, the use of an

upstream damping valve did not prevent bulk-mode oscillations. Herring postulated

the dissimilarity was due to the different flow systems used: Hitch and Karpuk used

a pump-fed system, so the upstream section could be considered incompressible; Her-

ring (and Linne et al.) drove flows with high-pressure gaseous nitrogen, which could

apply a restoring force causing Helmholtz oscillations.

In an attempt to numerically predict oscillations, Herring developed a 1-D CFD

code based on inviscid, compressible Euler equations. Heat diffusion in the fluid

was ignored. For the test-section exit boundary condition, he originally intended to

choke the flow with an area change and set the outlet to atmospheric pressure. This

caused the code to become unstable, though, so he changed the pressure at the outlet

boundary to be closer to the test section pressure.

The output of his code did not match pressure fluctuations seen in experimen-

tal tests. The code predicted pressure fluctuations of about 10 Hz, which was on

a different order than that of bulk-mode and acoustic oscillations. One particular

assumption in Herring’s code has fallen into question: wall temperature was assumed

to be steady with time. However, his proposed driving mechanism involves wall tem-

peratures changing with time. It is plausible, although unproven, that considering

varying wall temperature would lead to the correct prediction of oscillations. Other

authors have postulated the boundary layer mechanics and radial temperature distri-

butions play an important role in oscillations; if this is true, then the improved 1-D

model suggested by Herring might not capture all the relevant mechanics.

Palumbo [13] expanded upon Herring’s thermoacoustic research by further inves-

tigating and attempting to predict oscillations in a supercritically-heated fuel. He

flowed supercritical methanol, a simulant to JP-10, through a resistively-heated ap-

paratus similar to Herring’s. The independent variables considered were: tube inner
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diameter, reduced pressure, mass flow rate, input power, and heated length. The

baseline quantities were as follows:

• Tube inner diameter: 0.069 in

• Tube length: 6 in

• Reduced pressure: 1.2

• Flow rate; 6 lb/hr

• Heat input: 600W

The baseline tests produced stable-looking acoustic vibrations at the onset of bulk-

mode oscillations. Bulk-mode oscillations occurred at 1.77 Hz and acoustic oscillations

occurred at 425 Hz.

Increasing the diameter to 0.093 in caused the bulk-mode frequency to decrease

and the acoustic mode to increase. Decreasing the diameter to 0.027 in caused the

bulk-mode frequency to drastically decrease to 0.07 Hz, and completely eliminated

acoustic oscillations.

Increasing the reduced pressure to 1.4 decreased the strength of both types of os-

cillations. By decreasing the reduced pressure to 1.0, bulk-mode oscillations decreased

in strength, while acoustic oscillations remained strong.

The lowest flow rate (4 lb/hr) tests produced stable-looking acoustic vibrations at

the onset of bulk-mode oscillations. An audible pinging noise, described as a hammer

on metal, emanated during this run. The highest flow rate (7 lb/hr) produced a sloppy

bulk-mode oscillations signal, and a smaller and less-uniform acoustical signature.

The baseline (and highest) heat input was 600W. Decreasing the heat input to

300W caused the frequency of bulk-mode oscillations to decrease to 0.35 Hz, drasti-

cally lower than the 1.77 Hz oscillations from the baseline case. The lower heat input

setting had a small effect on acoustic frequency, decreasing it to 400 Hz. A higher

heat input setting was not tested because of hardware limitations.
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Figure 1.8. Oscillations encountered as a function of reduced temperature
and pressure, courtesy of Palumbo

Figure 1.8 shows all test points in terms of their dimensionless pressures and

temperatures. The left graph considers the wall temperature at outlet, and the right

graph considers fluid temperature at outlet. Different markers for test points are used

to depict what type(s) of oscillation, if any, were detected.

These graphs imply that acoustic oscillations occur when the wall temperature is

above the pseudocritical temperature, and the fluid is below.

Palumbo highlighted the following as causes of bulk-mode oscillations:

• Oscillations occur because tube wall’s thermophysical properties, viz, resistivity,

change due to temperature variation.

• Resistivity changes cause wall’s periodic heating and cooling.

Fluid properties have large variability near critical point, as depicted by the graph

of the gradient of density vs. temperature and pressure:

A critical gradient of density for the onset of oscillation may exist for a given

combination of physical parameters.

In addition to physical tests, Palumbo wrote a lumped parameter model to predict

the outlet fluid temperature of the test rig. Stagnation pressure and atmospheric

pressure were assumed to be constant, as was the density outside the test section.
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Figure 1.9. Gradient of Density of Methanol, courtesy of Palumbo

Figure 1.10. Illustration of Palumbo’s testing apparatus, courtesy of
Palumbo
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Initial pressure, temperature, and mass flow rate could be specified in the code. Other

properties were evaluated via the NIST database.

The initial pressure in the tube was calculated with the Bernoulli equation with

respect to stagnation properties in the tank. Power input into the tube was calculated

using Ohm’s law. A first law energy balance was performed between the tube and

the fluid, considering heat loss through outside insulation. From the energy balance,

the change in wall temperature with respect to time was solved for. The Dittus-

Boelter equation was used to calculate the heat transfer coefficient. MATLAB’s ode45

solver solved for the temperature for all time steps. Given the temperature, the fluid

pressure, density, and mass flow rate at the next time step were then calculated.

The model matched experimental results under subcritical conditions, but severely

over-predicts the outlet temperature after the fluid reaches the critical temperature.

Palumbo believed that major heat loss was likely to occur over a two-inch non-

insulated section of the tube between the test section outlet and the thermocouple, so

the actual outlet temperatures from the test section were much higher than measured.

Also, the analysis assumed a constant tube thermal resistivity, when it actually could

vary substantially with temperature.

1.1.1 Selected test results from other experiments

The following table provides a sample of results from some of the cited publica-

tions. Several quantities in this table were not reported by the original authors, but

were calculated based on their reported data. These quantities include Reynolds and

Strouhal numbers, as well as T/Tr, which describes the heat input to the system.

Most tests were performed at pressures and temperatures near the critical point of

the associated fluid; Linne and Meyers tests broke this trend, with extremely high

reduced pressures and low reduced temperatures. Correlations between flow con-

ditions and pulsation characteristics are weak. Tests under high reduced pressure

tended to produce high acoustic-mode frequencies. Herrings results deviated from
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the norm; Herrings experiments often ran at above-average reduced pressures, and

below-average acoustic-mode frequencies. Little correlation can be made across stud-

ies regarding the individual effect of reduced temperature, tube diameter, heat input,

or the type of fuel used. It follows that oscillatory effects of flow conditions are

strongly coupled.

1.2 Hypotheses Describing Thermoacoustic Oscillations

Several authors hypothesized driving mechanisms for thermoacoustic oscillations.

This section paraphrases, illustrates, and compares these hypotheses.

1.2.1 Hines and Wolf Hypothesis

Hines and Wolf [6] proposed a mechanism for the oscillations they encountered.

1. For reduced pressure less than 2.5, a small temperature increase near the crit-

ical point appreciably thins the laminar boundary layer due to a reduction in

viscosity.

2. The thinner boundary layer leads to cooler wall temperatures.

3. A cooler wall decreases heating of incoming fluid, and the boundary layer thick-

ens.
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4. The thicker boundary layer causes hotter wall temperature, and cycle repeats.

No measurements of such wall temperature oscillations could be made with the

recording equipment Hines and Wolf employed.

1.2.2 Faith et al. Hypothesis

Faith et al. [10] proposed a mechanism that is effectively the same as Hines and

Wolfs:

1. Fuel heats up, causing viscosity to drop. The viscosity gradient is especially

high near critical point.

2. Viscosity drops, causing boundary layer to thin.
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3. Thinner boundary layer causes heat transfer coefficient to rise.

4. Higher heat transfer coefficient causes lower film temperature.

5. Lower film temperature causes viscosity to increase, and cycle repeats.

1.2.3 Herring Hypothesis

Herring proposed the following driving mechanism for bulk-mode oscillations:

1. Wall temp reaches threshold causing a sudden increase in heat flux.

2. Increased heat flux results in large fuel temperature change, and fuel expands.

3. Rapidly-expanding fuel is ejected from tube and creates pressure wave that

transmits the increased pressure throughout the system.
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4. Increased heat flux rapidly cools the tube.

5. Hot, low-density fuel is ejected into plenums, and is cooled by surrounding fuel.

6. This cooling causes fuel to compress and create more pressure fluctuations.

7. Cool fuel from the inlet re-enters tube as wall temperatures rise, and cycle

repeats.
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Herring remarked that the time between bulk-mode oscillations is related to the

amount of time for fuel to completely fill the tube, and the time for the wall temper-

ature to exceed the threshold value.

1.2.4 Summary of hypotheses

The three hypotheses discussed all attribute oscillations to periodic heating and

cooling of the fluid and tube wall. The theories disagree about the manner in which

oscillations manifest themselves. Hines & Wolf and Faith et al. described oscillations

in the form of growing and shrinking boundary layers, a function of the fluids viscosity.

Herrings description was more one-dimensional; periodic heating and cooling of the

fuel was said to cause changes in its density, thereby forcing the fluid in and out

of the heated tube with longitudinal waves. While these theories seem to differ

in their description of thermoacoustic waves, it is plausible they are both correct.

Thurston [14] characterized five distinct categories of oscillations, including acoustic-

scale and bulk-mode oscillations discussed in this report. The above hypotheses

may describe different categories of oscillation. However, no physical experiment or

numerical simulation has yet corroborated any of these proposed mechanisms.

1.2.5 Other causes of oscillations

Drivers besides thermoacoustic effects can cause oscillations in heat exchangers.

Although outside the scope of the present study, oscillations may be generated inside

a tube from turbulence or vortex shedding in crossflow. Blevins and Bressler [15], [16]

flowed air through a duct over an array of tubes instrumented with microphones to

measure acoustic oscillations and pressure transducers to measure oscillations caused

by turbulence. For low freestream air speeds, oscillations were detected due to vortex

shedding. The frequency of these oscillations could be predicted with the Strouhal

relationship; a Strouhal number of 0.22 was typical. Eisinger and Sullivan [17] studied

various tube bundle geometries and flow conditions, and encountered several oscilla-
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tion modes. These oscillations did not perfectly match those expected from vortex

shedding or turbulence, but it was suggested that oscillations from each of these

sources would interact, creating what was termed fluid-acoustic instabilities. Eisinger

and Sullivan attempted to use several preexisting criteria to predict oscillations, but

none of these criteria could predict oscillations with certainty. They were able to

suppress oscillations by several means: adding baffles and turning vanes inside the

ducting, and installing barriers inside the duct to increase acoustic damping.
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2. FACILITY DESCRIPTION

2.1 Design objectives and options

The present study requires a test article capable of generating conditions conducive

to supercritical fuel oscillations. Previous works have considered oscillations in a

single tube. This experiment considers four parallel tubes connected to common inlet

and outlet manifolds to more accurately simulate the flow paths of a fuel-air heat

exchanger. Non-uniform heating has been hypothesized to create oscillations as flow

is diverted from tubes with higher heating toward tubes with lower heating.

The test apparatus must provide a means for controlling and measuring the follow-

ing independent variables: fuel pressure, fuel mass flow rate, fuel inlet temperature,

and fuel temperature at the outlet of each of the four tubes. The manifold cross

passage diameter has also been chosen as an independent variable, so manifolds are

required to be interchangeable. The ability to use an infrared camera to measure the

wall temperature of each tube is also desired. With these requirements under consid-

eration, four design options were proposed for heating fuel to its critical temperature:

• Option 1: Cartridge heating of tubes placed in copper block

• Option 2: Inductive heating of tubes

• Option 3: Resistive heating of tubes

• Option 4: Air-heated tubes

2.1.1 Design option 1: cartridge heating of tubes placed in copper block

One proposed design would use nine 800W cartridge heaters installed inside a

copper block with four fuel flow paths drilled into it. Cartridge heaters could be
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controlled individually to create differential heating between each flow path. This

design is illustrated in Figure 2.1. The main advantage of this design was that it posed

the fewest safety hazards of the four designs. However, a copper block of the required

size would have a large thermal mass, making the changing of test conditions very

slow. Flow paths would require large spacing because of the positioning of cartridge

heaters. Such a large spacing does not accurately model the geometry of actual fuel-

air heat exchangers. This design option would also preclude the use of an infrared

camera to obtain a temperature distribution over the flow path.

2.1.2 Design option 2: inductive heating of tubes

Another proposed design involved inductive heating of tubes. To achieve this, an

oval-shaped coil would be wrapped around four tubes. Mutual inductance between

the coil and the tubes would cause the tubes to be heated if a current were placed

through the coil. Heat input to individual tubes could be adjusted by moving the

coil with respect to the tube bundle, or by applying flux intensifiers to individual

tubes. This option allowed for the use of an infrared camera to measure tube wall

temperatures, and great flexibility for tube spacing. Responsiveness for inductive

heating was expected to be better than that for cartridge heating because the thermal

mass is much smaller for the inductive heating option. However, the feasibility of this

option was unknown, as few experiments have been performed with such a device.

Instrumentation noise due to electromagnetic fields was deemed worrisome.

2.1.3 Design option 3: resistive heating

The third option considered uses a voltage source to generate a current across fuel

tubes, causing Joule heating. Such a design is extremely controllable; a rheostat for

each tube could be used to directly control heat input. Tube spacing is also flexible

in this design. Moreover, most previous supercritical fuel experiments heated fuel via

resistive tube heating, so the design is known to be capable of heating fuel to the
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Figure 2.1. Drawing of design option 1 - cartridge heating
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Figure 2.2. Drawing of design option 2 - inductive heating
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Figure 2.3. Drawing of design option 3 - resistive heating

desired conditions. However, for individual tubes to be given differential heating, all

four tubes must be electrically insulated from one another. Sealing an electrically-

insulated interface between tubes and manifolds requires relatively complicated man-

ufacturing processes. The large potential for hot leaks at the tube ends make this the

most hazardous design option considered. This design option is illustrated in Figure

2.3.
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2.1.4 Design option 4: air heating

The fourth design option involved flowing heated air across the fuel tubes. Hot

air used to heat each fuel tube would flow through separate channels with adjustable

louvers that would control how much air would flow through each channel. This design

option is illustrated in Figure 2.4. The air heating option offered many advantages

over the other options. The lack of current through the tubes and electric fields around

the tubes minimizes the risk of instrumentation interference. Metal-to-metal contact

between tubes and manifolds is permissible with air heating. Such a design could

be made optically accessible, so an infrared camera could be used to measure tube

wall temperatures. Air heating also heats tubes in a manner most-similar to actual

fuel-air heat exchangers, as the windward side of the tube will be receive more heat

flux than the leeward side. Unfortunately, the amount of heat transfer to each tube

is difficult to quantify with air heating. The extra working fluid also adds complexity

to the design and operation of the test article.

For the reasons noted above, Design option 4 was selected as the best option.

Nitrogen was selected as the working fluid rather than air because it could help

suppress a fire in the event of a fuel tube leak. The following sections provide a

detailed description of the resulting facility and instrumentation suite.

2.2 Facility overview

2.2.1 Flow paths

Experiments in the initial test campaign were performed in the High Pressure Lab-

oratory Gas Turbine Cell at Purdue University’s Zucrow Laboratories. A schematic

of the fuel flow path is shown in Figure 2.5.

Jet-A fuel was stored in a tank and delivered to the test article using an electric

fuel pump. The pump and tank are shown in Figure 2.6. The fuel’s dissolved oxygen

content was measured with a Mettler-Toledo Inpro 6850 oxygen sensor. The dissolved
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Figure 2.4. Drawing of design option 4 - air heating

Figure 2.5. Fuel flow path schematic
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Figure 2.6. Fuel tank and pump

oxygen content was reduced to below one percent of saturation by sparging it in

its tank with nitrogen before all tests. A nitrogen blanket purge prevented oxygen

buildup in the tank during testing.

Fuel flow rate was measured with a Coriolis flow meter (MicroMotion CMFS015M232N2BAECZZ),

downstream of the oxygen sensor and upstream of the fuel preheater. A computer-

actuated control valve upstream of the preheater controlled the fuel flow rate. The

fuel flow path upstream of the preheater, including an isolation valve, mass flow meter

and control valve, is shown in Figure 2.7.

The fuel preheater consists of 30 Watlow FIREROD cartridge heaters and eight

1/8-in diameter fuel tubes sandwiched between copper blocks. Figure 2.8 is a model

of a copper block used in the preheater. Figure 2.9 is a photo of the preheater as

installed in the laboratory. Two Omega CN616 controllers controlled the cartridge

heaters to maintain a desired preheater block temperature. Fuel enters and exits the

preheater through two inlet and outlet manifolds. This preheater has been described

further by Wiest.

The test section fuel tubes had an outer diameter of 1/8 in, inner diameter of

0.069 in, and length of 7.5 in. They were brazed to the manifolds in a parallel and
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Figure 2.7. Fuel flow path upstream of preheater

Figure 2.8. Drawing of copper block used in fuel preheater, courtesy of
Wiest
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Figure 2.9. Fuel preheater photo
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Figure 2.10. Manifold and tube assembly

coplanar orientation, with center-to-center spacing of 1/2 in. Manifolds and fuel

tubes were made of SS304 stainless steel. The manifolds used in the current study

had cross-passage diameters of 1/8 in and 1/4 in. Manifolds were also fabricated with

cross-passage diameters of 3/16 in, and may be used in future experiments. The tube-

manifold assembly is shown in Figure 2.10 and a cut-away view of a fuel manifold is

shown in Figure 2.11.

Fuel exiting the outlet manifold was cooled in a cooling bath, which consisted of

a coiled fuel tube submerged in a drum of water. The cooled fuel flowed through

a Swagelok SS-SS4 metering valve, which controlled the backpressure for the test

article. The flow coefficient of this valve is adjustable between 10-4 and 410-3. The

valve was controlled with a Hanbay MCL-050AF-1-SS4MG actuator. Fuel exited this

valve into a waste drum.

Fuel was heated in the test article by flowing hot nitrogen over the fuel tubes.

A schematic of the hot nitrogen flow path is provided in Figure 2.12. Nitrogen was

heated with an electrical heater, capable of heating 0.1 lb/hour of nitrogen to 1200F.
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Figure 2.11. Cut-away view of fuel manifold
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Figure 2.12. Nitrogen flow path schematic

The nitrogen flow rate was calculated using pressure and temperature measurements

upstream of a choked venturi. Each tube received heated nitrogen from a separate

channel of rectangular cross-section; nitrogen flow through individual channels was

adjusted with servo-actuated louvers upstream of the fuel tubes.

Upstream of the flow control louvers, a perforated plate equalized flow through

the four channels. Five layers of mesh with 1/16 inch diameter openings were placed

immediately downstream to break up jets created by the perforated plate. These

layers of mesh were held into place by the perforated plate and a reinforcement plate,

both of which were welded into the nitrogen flow path. The flow conditioning layers

are illustrated in Figure 2.13.

Nitrogen channels were cut into a SS304 block using wire EDM (electrical dis-

charge machining). The nitrogen channel width contracted from 7/8 in to 3/8 in to

increase the flow speed over the fuel tubes, thereby increasing heat transfer between

nitrogen and fuel. The nitrogen and fuel flow paths are shown together in Figure

2.14. A flow control louver is shown in Figure 2.15. A cut-away view of the nitrogen

flow path is shown in Figure 2.16.

Figure 2.17 and figure 2.18 are labeled photos of the test article as installed in

the laboratory. Thermafiber FRF insulation was placed over the hot nitrogen flow

path to minimize heat loss to the surroundings. This insulation was secured with

aluminum tape. Hot nitrogen, after flowing across the fuel tubes, exhausted directly

to the test cell.
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Figure 2.13. Nitrogen flow conditioning illustration

Figure 2.14. Test article overall view
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Figure 2.15. Flow control louver

Figure 2.16. Nitrogen flow path cut-away view
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Figure 2.17. Test article - side view
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Figure 2.18. Test article - rear view
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Figure 2.19. Micro Maestro 1350 USB servo controller, courtesy of Pololu

2.2.2 Instrumentation and uncertainty analysis

Oscillations were measured with fuel pressure transducers (Kulite ETL-GTS-190)

and type-K thermocouples (Omega GKMQSS-062U-6) installed inside inlet and outlet

manifolds one upstream and downstream of each fuel tube. Fuel mass flow rate

was measured with a Coriolis flow meter (MicroMotion CMFS015M232N2BAECZZ),

located upstream of the fuel preheater.

Each nitrogen flow control louver was actuated with its own Hitec HS-485HB servo

motor. All four servos were controlled by a computer via a Pololu Micro Maestro

1350 USB servo controller, shown in Figure 2.19. All valves were controlled with

an interface developed in LabVIEW 2007, shown in Figure 2.20. This software also

recorded pressures, temperatures and flow rates obtained from nearly all of the sensors

used in the experiment. Fuel manifold pressures were recorded through a separate

acquisition system (DSPCon DataFlex-1000A).
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Table 2.1. Bias errors for sensing equipment

Device Bias error

Fuel manifold pressure transducers +/- 60 psi

Nitrogen-side pressure transducer +/- 30 psi

All thermocouples +/- 8.7F

Fuel flow meter +/- 0.04 lb/hr

Tube diameter 0.006 in

Fuel properties +/- 15%

2.2.3 Uncertainty analysis

The uncertainty for several outputs was calculated with consideration to bias

errors present in the hardware used. Because outputs were sampled many times

for each recording, precision error was assumed negligible, and was ignored for the

uncertainty analysis. The bias errors for relevant dimensions and sensors used in the

experiments were calculated and are presented in Table 2.1.

The uncertainty of a calculated value Y, which is calculated using independent

measurements Xi containing uncertainties Pi, is calculated by the following equation

provided by Mills [18].

PY =

����
n�

i=1

(
∂Y

∂Xi

Pi)2 (2.1)

The uncertainty of heat transfer was calculated with the following formula:

PQ̇ =

�
(
∂Q̇

∂ṁ
Pṁ)2 + (

∂Q̇

∂cp
Pcp)

2 + (
∂Q̇

∂T1

PT1)
2 + (

∂Q̇

∂T2

PT2)
2 (2.2)

Substituting for heat transfer partial derivatives:

PQ̇ =
�
[cp(T2 − T1)Pṁ]2 + (ṁ(T2 − T1)Pcp)

2 + (−ṁcpPT1)
2 + (ṁcpPT2)

2 (2.3)
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For the worst-case scenario, the heat transfer uncertainty was calculated to be

33.2W (113.2 BTU/hr), which was 15.8% the total heat transfer. This case (ID

20140524 0359509) was determined the worst-case scenario because of its relatively

large temperature gradient (244F) which dominated over other terms in the calcula-

tion.
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3. RESULTS OF FIRST TEST CAMPAIGN

Tests were performed under nominal conditions of 360-700 psi fuel inlet pressure and

mass flow rate of 1.75-9.25 lb/hr per tube. Fuel manifold assemblies having cross-

passage diameters of 1/8 in and 1/4 in were used. Fuel preheating and nitrogen

flow control louver settings were varied between test cases. Hot nitrogen was either

blown on all tubes (when all channels were wide-open), or a single tube (when only

one channel was wide-open). Individual tube heating was investigated to determine

whether an oscillation beginning in one heated tube could cause oscillations to occur

in neighboring unheated tubes. Table 3.1 outlines variables that were varied for each

test case. A detailed test matrix is provided in the appendix. A total of 108 cases

were run, excluding cold-flow tests.

Table 3.1. Outline of test parameters

Manifold cross-passage diameter 1/8, 1/4 in

Inlet temperature 200, 300, 400, 500, 600, 700F

Fuel pressure 360, 400, 500, 600, 700 psi

Fuel mass flow rate (4 tubes combined) 7 - 37 lb/hr

Tube heating condition All tubes heated, one tube heated

Nitrogen was typically heated to the maximum temperature the heater was capa-

ble of, flowing at around 0.3 lb/s. The nitrogen temperature inside the test article

varied from case to case because of heat loss inside tubing, and was recorded for every

test condition. The fuel flow configuration is described in Figure 3.1. Only inlet and

outlet ports adjacent to Tube 4 were used. Pressure measurements were taken at the



46

Table 3.2. Ranges of flow properties

Nitrogen speed 200 - 800 ft/s

Fuel flow speed 0.45 - 3.12 ft/s

Fuel Reynolds number (ReD) 900 - 8700

Fuel reduced temperature (outlet) 0.27 - 0.94

Fuel reduced pressure 1.05 - 2.06

Fuel temperature change along tube length 0 - 180F

Fuel density change along tube length 0 - 4.4 lb/ft3

inlets and outlets of tubes 1-3. Pressure measurements for Tube 4 were unavailable

due to malfunctioning transducers in both manifolds.

A preliminary acoustic analysis was performed to predict frequencies for three

oscillatory modes: the fundamental acoustic resonant frequency for the tube, the

frequency for bulk-mode oscillations, and the frequency related to nitrogen vortex

shedding off fuel tubes. The fundamental acoustic frequency for a tube is given by

the equation:

facoustic =
a

2L
(3.1)

Here, a is the speed of sound of the fluid in the tube, and L is the length of the

tube. The bulk-mode frequency was predicted based on the residence time of the fuel

inside the tube.

fbulk =
1

tresidence
(3.2)

The frequency of oscillations caused by nitrogen vortex shedding off of fuel tubes

is predicted based on the Strouhal number for the nitrogen flow. Typically, vortex

shedding off of a cylinder corresponds to a Strouhal number of 0.2. The Strouhal

number based on tube outer diameter is defined by the following equation:

StD =
fvsD

vgas
(3.3)
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Figure 3.1. Fuel flow configuration used for all tests
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Table 3.3. Preliminary acoustic analysis inputs and predicted frequencies

Fundamental Acoustic Frequency

Speed of sound in fuel 1,437 ft/s

Tube length 7.5 in

Longitudinal acoustic mode 1,150 Hz

Bulk Mode Frequency

Fuel flow speed 0.45 - 3.12 ft/s

Fuel residence time in tubes 0.20 - 1.39 s

Bulk mode frequency 1.08 - 7.44 Hz

Fuel residence time in manifolds 1.7 - 49.3 s

Vortex Shedding Frequency

Assumed Strouhal number for vortex shedding 0.2

Fuel tube outer diameter 1/8 in

Nitrogen freestream speed over tube 200 - 800 ft/s

Vortex shedding frequency 3.8 - 15.4 kHz

where fvs is the frequency of vortex shedding, D is the outer diameter of the cylinder

in cross flow (or the fuel tube outer diameter), and vgas is the freestream speed of

nitrogen over the tube.

Table 3.3 outlines inputs and results for these preliminary analyses.

Two distinct modes of oscillations were encountered during testing. Bulk-mode

oscillations are characterized by relatively high amplitudes (above 2 psi) and low

frequencies (under 3 Hz). Acoustic-mode oscillations occurred with lower amplitudes

(under 1 psi) and higher frequencies (300-350 Hz). Many test cases exhibited both

oscillation modes superposed atop one another.
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A low-pass filter with 1 kHz cutoff frequency was used to reduce instrumentation

noise for manifold pressure traces intended to show bulk-mode oscillations. The

transducers produced noise signals with amplitudes of 0.6 psi. A band-pass filter

allowing frequency content from 100-500 Hz was applied to pressure traces intended

to show acoustic-mode oscillations. A complete list of test cases performed is provided

in the appendix. Trends proposed in this report reflect the results of every test case

run; however, pressure traces are only provided for select test cases.

3.1 Bulk-mode oscillations

Table 3.4 describes conditions for cases examined in this document for bulk-mode

oscillations.

Figure 3.2 shows measured manifold pressures for Case 1b (Tinlet=166.7degF,

p=404.2 psi). The temperature remained far below the critical temperature in this

case, and no significant oscillations occurred within the test section. Figure 3.3 shows

fuel and nitrogen temperature traces for Case 1b.

Figure 3.2. Case 1b manifold pressure traces (Tinlet=166.7degF, p=404.2
psi, all channels open)



50

T
ab

le
3.
4.

C
on

d
it
io
n
s
fo
r
se
le
ct

ca
se
s
in
vo
lv
in
g
b
u
lk
-m

o
d
e
os
ci
ll
at
io
n
s

C
as
e
n
u
m

In
le
t
fu
el

te
m
p

F
u
el

p
re
ss
u
re

F
u
el

fl
ow

ra
te

R
e D

H
ea
ti
n
g
se
tt
in
g

F
il
e
ID

(F
)

(p
si
)

(l
b
/h

r)

1b
16
6.
7

40
4.
2

21
.1

1,
11
8

A
ll
op

en
20
14
05
24

03
59
50
9

2b
37
2.
2

37
8.
7

22
.5

2,
38
4

A
ll
op

en
20
14
05
24

04
25
13
1

3b
46
5.
1

38
8.
7

22
.5

3,
19
8

A
ll
op

en
20
14
05
24

04
36
46
6

4b
59
4.
1

47
9.
7

20
.2

4,
53
3

A
ll
op

en
20
14
05
31

01
49
37
0

5b
62
4.
4

51
5.
3

20
.6

4,
43
2

N
o
N
2
fl
ow

20
14
07
16

22
04
06
4



51

Figure 3.3. Case 1b temperature traces (Tinlet=166.7degF, p=404.2 psi,
all channels open)

Figure 3.4 shows pressure oscillations for Case 2b (Tinlet=400◦F, p=400 psi). Os-

cillations with amplitudes of 1-2 psi were measured in the center tubes (2 and 3).

Lower-amplitude oscillations were encountered in the end tube (Tube 1), which car-

ried the coldest fuel. Fuel in Tube 1 was coldest because of heat loss through the

outside nitrogen channel wall and the longer residence time for fuel in the uninsulated

inlet manifold.

Figure 3.5 shows pressure oscillations for Case 3b (Tinlet=500degF, p=400 psi).

Oscillations of over 2 psi were encountered in this case. Smaller oscillations were once

again observed in the coolest channel.

Figure 3.6 shows pressure oscillations for Case 4b (Tinlet=600degF, p=500 psi).

The largest oscillations had amplitudes of 6 psi, and occurred in Tube 2.
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Figure 3.4. Case 2b manifold pressure traces (Tinlet=372.2degF, p=378.7
psi, all channels open)

Figure 3.5. Case 3b manifold pressure traces (Tinlet=500degF, p=400 psi,
all channels open)

Figure 3.7 is an autocorrelation plot for the six pressure signals in Case 4b, gener-

ated by the xcorr function in MATLAB [19]. The lack of any nonzero-lag peaks in all
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Figure 3.6. Case 4b pressure traces (Tinlet=600degF, p=500 psi, all chan-
nels open)

signals signifies that these bulk-mode oscillations are random, rather than periodic,

in nature. No discrete frequencies were found for any cases.

Figure 3.7. Case 4b pressure autocorrelation
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Bulk-mode oscillation amplitude was directly correlated with fluid temperature

over the range studied. Figure 3.8 compares the largest oscillation amplitudes ob-

served for each inlet temperature.

Figure 3.8. Comparison of pressure oscillation amplitude vs. fuel inlet
temperature

All of the data reported for bulk-mode oscillations came from tests involving the

manifold with a 1/8 in diameter cross passage. Test data with the 1/4 in manifold

passage diameter were also examined, and indicate that the cross passage diameter

does not significantly affect the character of bulk-mode oscillations. The parameters

of fuel pressure, fuel mass flow rate, and differential heating were also found to have

no clear or consistent effect on the character of bulk-mode oscillations. Two sets of

cases are presented below where fuel mass flow rate is varied, and other parameters

are intended to be held constant. Figure 3.9 compares oscillation amplitudes vs. fuel

mass flow rate for several cases with the small manifold passage, inlet temperature of

500degF and fuel pressure of 500 psi. Figure 3.10 compares oscillation amplitudes vs.

fuel mass flow rate for several cases with the large manifold passage, inlet temperature

of 600degF and fuel pressure of 400 psi.

Although Figure 3.10 displays a linear correlation between flow rate and pressure

amplitude, this correlation does not hold for the cases in Figure 3.9, or several other
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Figure 3.9. Bulk mode oscillation amplitude vs fuel mass flow rate for
T=500degF, p=500 psi

Figure 3.10. Bulk mode oscillation amplitude vs fuel mass flow rate for
T=600degF, p=400 psi

cases in the test campaign where mass flow rate was investigated as a parameter.

Bulk-mode oscillations may originate inside the test article, the preheater, or both.

For some test cases with high inlet temperatures and low flow rates, the preheater

flow path is the hottest surface the fuel contacts. Case 5b was run with fuel heated

exclusively by the electric preheater; fuel flowed through the test section tubes in

this case, but no heated nitrogen flowed over the tubes. Bulk-mode oscillations are
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present for this case, and have amplitudes and frequencies close to those found with

test-section heating.

Figure 3.11. Case 5b pressure traces (Tinlet=500degF, p=500 psi, no ni-
trogen flow)

3.2 Acoustic-mode oscillations

Oscillations with frequencies between 300-350 Hz occurred in many test cases. The

acoustic frequencies detected are far from those predicted for open tube resonance.

Moreover, these frequencies cannot be predicted by scaling data from previous studies

based on tube length. The 7.5-inch long tubes used in the present study were shorter

than most of those used in previous studies, yet the frequencies were an order of

magnitude lower than those found by Hines & Wolf [6], Faith et al. [10], and Linne

et al. [7]. A basic tube resonance calculation would predict the opposite trend. The

excited acoustic modes were therefore most likely characteristic of several tubes rather

than a single tube. Table 3.5 describes conditions for cases examined in this document

for acoustic-mode oscillations.
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Figure 3.12. Case 1a pressure trace

Fuel manifold pressure traces and power spectral density plots for Case 1a are

shown in Figures 3.12 and 3.13.

The spikes in the power spectral density (PSD) plot for Case 1a indicate frequency

content between 338-342 Hz in all tubes. These oscillations showed coupling: all inlet

pressure signals remained in phase with each other, and all outlet signals remained

in phase with each other.

Figure 3.14 is an autocorrelation plot for the six pressure signals for Case 1a. The

signals have autocorrelation factors ranging from 0.72 to 0.80, all peaking at 2.9ms

intervals.

Figure 3.15 is a cross-correlation plot between each of the tubes inlet and outlet

pressure signals, calculated with the xcorr [19] function in MATLAB. The x-position

of each peak denotes the time lag between inlet and outlet signals. Average phase lag,
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Figure 3.13. Case 1a power spectral density plot
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Figure 3.14. Case 1a pressure autocorrelation plot
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Figure 3.15. Case 1a pressure cross-correlation plot

defined as the average time lag divided by the average oscillation period, is tabulated

for all acoustic cases in Table 3.7 near the end of the section.

Figure 3.16 plots the temperature rise across each tube as a function of time

for Case 1a. Only Tube 1 received nitrogen heating, yet Tube 2 showed a larger

temperature rise. This result was likely due to the location of the thermocouples

inside the manifolds. Because of packaging constraints, thermocouples were installed

in the manifolds in a staggered pattern. This pattern is can be seen in Figure 2.14.

Half of the thermocouples in each transducer measured temperature inside a single

tube, and the other half measured temperature inside the manifold cross-passage; the

latter measured the temperature of a mixture of fuel from several tubes. Moreover,

the long residence time for fuel inside the manifold cross passage allowed heat diffusion

inside the manifold.
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Figure 3.16. Case 1a tube temperature rise plots
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Figure 3.17. Case 2a pressure trace

Figures 3.17-3.18 provide a pressure trace and power spectral density plots for

Case 2a. Figure 3.19 provides a cross-correlation for pressure signals.

These oscillations are less organized and weaker than those of case 1a. Coupled

oscillations overtake one another more drastically in this case. Frequency content

peaked between 337 and 338 Hz in all tubes. Oscillation amplitudes periodically

decreased to those found in zero data (∼0.1 psi). Only Tube 1 was heated in Case

1a, and only Tube 2 was heated in Case 2a. For this pair of test runs, the case where

Tube 1 was heated yielded stronger and more tightly-coupled oscillations than the

case where Tube 2 was heated. However, this trend did not apply to all cases.

Case 3a showed little in the way of discrete frequency content. Slight peaks did

appear on the PSD plot at 278 Hz and between 832 and 834 Hz. Oscillations show

some coupling, but often overtake one another. Oscillation amplitudes periodically

decreased to those found in zero data (0.1 psi).



64

Figure 3.18. Case 2a power spectral density plot
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Figure 3.19. Case 2a pressure cross-correlation plot
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Figure 3.20. Case 3a pressure trace
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Figure 3.21. Case 3a power spectral density plot
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Figure 3.22. Case 3a pressure cross-correlation plot
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Figure 3.23. Case 4a pressure trace
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Figure 3.24. Case 4a power spectral density plot
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Figure 3.25. Case 4a pressure cross-correlation plot
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Figure 3.26. Case 5a pressure trace

Case 4a showed strong frequency content at 338 Hz for all tubes. The same two

groups of oscillations described in Case 1a remained in phase for the entire data

sample of Case 4a.

Cases 1a through 4a were run using manifolds with large cross passage diameters.

Cases 5a through 7a used manifolds with small cross passage diameters.

Case 5a showed weak frequency content at 139 Hz. The two groups of oscillations

have a smaller phase offset here than in the large-manifold cases.

Case 6a exhibited weak oscillations at 338 Hz. Coupling occurred between the

inlet waveforms; however, the outlet waveforms followed each other less closely.

Case 7a exhibited the largest acoustic oscillation amplitudes seen (near 1 psi); it

was also run with a particularly low inlet fuel temperature (300degF). Oscillations

occurred at 337 Hz. The two groups of oscillations have a small phase offset, which

is typical for cases with small manifold cross passages.
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Figure 3.27. Case 5a power spectral density plot
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Figure 3.28. Case 5a pressure cross-correlation plot

Table 3.6. Summary of acoustic case results

Case num Density drop Acoustic-mode amplitude Acoustic-mode frequency

(lb/ft3) (psi) (Hz) (Hz)

1a 2.08 0.35 338-342

2a 2.16 0.21 337-338

3a 1.88 0.20 832-834

4a 1.73 0.44 338

5a 1.62 0.29 139

6a 1.54 0.22 338

7a 3.65 1.05 337
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Figure 3.29. Case 6a pressure trace
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Figure 3.30. Case 6a power spectral density plot
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Figure 3.31. Case 6a pressure cross-correlation plot
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Figure 3.32. Case 7a pressure trace

Table 3.7 presents the average phase lag between the inlet and outlet of each tube

in degrees. Because Cases 5a and 6a showed loose coupling, the phase lag was not

calculated for these cases.

For all cases with substantial acoustic oscillations, large phase lags (greater than

90 degrees) were observed in cases run with the large manifold cross passage. Small

phase lags (less than 60 degrees) were observed in cases run with the small manifold

cross passage.

The following trends regarding acoustic oscillations are proposed:

• Acoustic oscillations occur when a single tube is heated, but never occur when

all tubes are heated.

• No trends have yet been observed pertaining to which tube is heated.
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Figure 3.33. Case 7a power spectral density plot

Table 3.7. Inlet/outlet pressure oscillation phase lag for acoustic cases

Case num Tube 1 inlet/outlet phase lag Tube 2 Tube 3

(degrees) (degrees) (degrees)

1a 157.8 146.6 146.6

2a 122.1 109.2 133.5

3a 110.9 112.6 115.0

4a 170.3 170.3 170.3

5a N/A N/A N/A

6a N/A N/A N/A

7a 38.8 38.8 41.3
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Figure 3.34. Case 7a pressure cross-correlation plot
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• Cases with colder inlet temperatures tend to produce relatively large acoustic

oscillations. This may due to the larger temperature rise across the test section

in these cases.

• A large majority of oscillating cases had frequency content between 335 and

340 Hz, regardless of fuel temperature, pressure, mass flow rate, and manifold

geometry. Weak oscillations were detected in other frequency ranges in select

cases.

• The phase offset between the two groups of oscillations depends on cross passage

diameter. A large cross passage diameter is conducive to larger offset. However,

the passage diameter does not appear to affect the frequency or amplitude of

acoustic oscillations.
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4. RESULTS OF SECOND TEST CAMPAIGN

Tests were performed under nominal conditions of 400-700 psi fuel inlet pressure and

mass flow rate of 0.25-13.75 lb/hr per tube. Only the fuel manifold assembly with

1/4 in cross passage diameter was used. Fuel preheating and nitrogen flow control

louver settings were varied between test cases. Hot nitrogen was either blown on

all tubes (when all channels were wide-open), a single tube (when only one channel

was wide-open), or two tubes at a time. Table 4.1 outlines conditions for each test.

A total of 77 cases were run. Trends proposed in this report reflect the results of

every test case run; however, pressure traces are only provided for select test cases.

A complete test matrix, detailing conditons for each case, is included in Appendix B.

Several modifications were made to the test article between the first and second

test campaigns:

• The diameter of the fuel inlet tube, which connects to the inlet manifold shown

in Figure 2.10, was reduced from 1/4 in to 1/8 in outer diameter. This smaller

tube helps isolate acoustics inside the test section.

• The fuel inlet tube was heated with rope heaters to reduce the temperature

drop between preheater and test section.

• Functioning pressure transducers were restored in all four tube inlets and out-

lets.

Nitrogen was heated to the maximum temperature the laboratory’s electic air

heater was capable of, yielding temperatures between 811 and 957F at the test ar-

ticle. The nitrogen flow rate for baseline cases was 0.3 lb/s. In select cases, the

nitrogen flow rate was decreased to 0.08 lb/s. The second campaign focused on very

high and very low fuel preheating condition, whereas the first campaign focused on
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Table 4.1. Outline of test parameters

Manifold cross-passage diameter 1/4 in

Inlet temperature 70, 200, 300, 650, 675, 700F

Fuel pressure 400, 450, 500, 700 psi

Fuel mass flow rate (4 tubes combined) 1 - 55 lb/hr

Tube heating condition One, two, or all tubes heated
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moderate conditions. Results of the previous campaign indicated that high preheating

is conducive to bulk-mode oscillations because associated temperatures more closely

approach the critical temperature, whereas low preheating is conducive to acoustic-

mode oscillations due to the larger temperature gradients and resulting density drops

that occur under such conditions.

The same two distinct modes of oscillations were encountered during the sec-

ond test campaign: bulk-mode oscillations occurred with relatively high amplitudes

(above 2 psi) and low frequencies (under 3 Hz), while acoustic-mode oscillations

occurred with lower amplitudes (under 1 psi) and higher frequencies (140-450 Hz).

Many test cases exhibited both oscillation modes superposed atop one another. A

band-pass filter allowing frequency content from 100-1000 Hz was applied to pressure

traces intended to show acoustic-mode oscillations.

Bulk-mode behavior in the second test campaign was generally unchanged from

the first. Cases with substantial preheating tended to experience these oscillations.

However, it would appear that these oscillations originated from the fuel preheater;

the heating in the test section was inadequate to induce bulk-mode oscillations, as

bulk-mode oscillations were unchanged when fuel was heated exclusively in the pre-

heater.

While it was once theorized that oscillations were caused by the preheater’s in-

dividual elements cycling on and off to maintain a target temperature, oscillations

of similar magnitude and character also occurred when heater elements maintained

steady heat output. The analysis of the second test campaign shall be restricted

to acoustic-mode oscillations, as the bulk-mode oscillations originating in preheater,

have been discussed in the previous chapter.

Oscillations with frequencies between 140-450 Hz occurred in many test cases.

The observed oscillation frequencies in the second campaign strongly depended on

which tube was heated. As in the first test campaign, however, the 340 Hz oscilla-

tions frequently appeared in the second campaign. Table 4.2 describes conditions for

cases examined in this document for acoustic-mode oscillations. Excited mod es from
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Table 4.2. Conditions for select cases involving acoustic-mode oscillations

1/4 in manifold cross passage cases

Case Tinlet (F) pfuel (psi) ṁ (lb/hr) Heating Setting File ID

8a 340.9 400.7 25.7 Chan 1 open 20150624 1537483

9a 340.8 427.5 30.9 Chan 1 low-flow 20150624 1547385

10a 333.2 418.3 24.1 Chans 1 and 4 open 20150624 1536095

11a 268.1 398.1 30.1 Chan 2 open 20150625 0915291

12a 318.9 420.3 29.8 Chan 3 open 20150624 1643232

13a 317.2 407.9 26.5 Chan 4 open 20150624 1534134

these cases are representative of what modes are typically excited for a given heating

condition.
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Figure 4.1. Case 8a pressure trace (Tinlet=340.9F, p=400.7 psi, Tube 1
heated)

Fuel manifold pressure traces and power spectral density plots for Case 8a are

shown in Figures 4.1-4.2. The spikes in the power spectral density (PSD) plot for

Case 8a indicate frequency content at 141, 282, 352, and 423 Hz in all tubes. These

oscillations showed loose coupling between each tube’s inlet and outlet signals, but

the presence of many frequencies made the overall waveforms rather incoherent. The

frequencies for this case were typical of cases in the second campaign in which Tube 1

was heated. Amplitudes for this particular case were of a similar order of magnitude

as pressure transducer noise. However, the oscillations measured are likely acoustic in

nature due to their discrete frequency content, in contrast to the broadband content

typical of noise signals and hydrodynamic effects.
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Figure 4.2. Case 8a power spectral density plot (Tinlet=340.9F, p=400.7
psi, Tube 1 heated)
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Figure 4.3 and 4.4 provide a pressure trace and power spectral density plot for

Case 9a. This case is similar to Case 8a, except that the nitrogen flow rate has been

reduced by 75%. The rationale for this case was to test the theory from the first test

campaign that uneven tube heating is required for oscillations to occur. Recall that

cases in the first campaign often displayed oscillations when a single tube was heated,

but never displayed oscillations when all tubes were heated. It was unknown whether

the lack of oscillations during even tube heating was due to the fact that the tubes

weren’t heated unevenly, or that they each received only one fourth the flow rate of

nitrogen used in single tube heating cases.

Oscillations in Case 9a are disorganized and weak, having amplitudes and charac-

teristics similar to noise oscillations found in zero data (0̃.1 psi). Frequency content

for the signal is broadband, which is not indicative of acoustic activity. All other cases

with 1/4 the standard nitrogen mass flow rate yielded no oscillations as well. This

would indicate that insufficient energy was input into the tube to drive measurable

oscillations when all tubes were heated.
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Figure 4.3. Case 9a pressure trace (Tinlet=340.8F, p=427.5 psi, Tube 1
heated, low nitrogen flow)
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Figure 4.4. Case 9a power spectral density plot (Tinlet=340.8F, p=427.5
psi, Tube 1 heated, low nitrogen flow)
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Figure 4.5. Case 10a pressure trace (Tinlet=333.2F, p=418.3 psi, Tubes 1
and 4 heated)

Case 10a was run with Tubes 1 and 4 heated. No cases in the first test campaign

were performed with two tubes heated at a time. Figure 4.5 and 4.6 provide a pressure

trace and power spectral density plot for Case 10a. Strong frequency content was

detected at 341 Hz for Case 10a. Some frequency content was also detected at 389

and 482 Hz; however, these higher-frequency modes have amplitudes many orders

of magnitude weaker than the 341 Hz mode. The presence of oscillations having

large amplitude and discrete frequency content in the case in which several tubes

were heated (Case 10a), and the lack thereof when tubes were heated with low power

(Case 9a), indicates that differential tube heating is likely not required to produce

acoustic oscillations.
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Figure 4.6. Case 10a power spectral density plot (Tinlet=333.2F, p=418.3
psi, Tubes 1 and 4 heated)
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Figure 4.7. Case 11a pressure trace (Tinlet=268.1F, p=398.1 psi, Tube 2
heated)

Figures 4.7 and 4.8 provide a pressure trace and power spectral density plot for

Case 11a. Only Tube 1 was heated in Case 8a, whereas only Tube 2 was heated in

Case 11a. This case yielded much larger and more strongly-coupled oscillations with

a dominant frequency of 344 Hz. Activity was also detected at 144 Hz; however, this

lower-frequency mode is small enough in amplitude to be invisible on the pressure

trace. These aforementioned frequencies were typically detected in cases in which

only Tube 2 was heated during the second test campaign.
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Figure 4.8. Case 11a power spectral density plot (Tinlet=268.1F, p=398.1
psi, Tube 2 heated)
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Figure 4.9. Case 12a pressure trace (Tinlet=318.9F, p= 420.3 psi, Tube 3
heated)

Figures 4.9 and 4.10 provide a pressure trace and power spectral density plot for

Case 12a, in which only Tube 3 was heated. Case 12a showed oscillations at 244, 336,

and 389 Hz - the typical frequencies for cases with Tube 3 heated. The 244 Hz mode

was the strongest of the group, and tended to occur with minimal phase lag between

all inlet and outlet probes. Small phase lags between inlet and outlet were commonly

observed in cases in which the 3̃40 Hz mode did not dominate.
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Figure 4.10. Case 12a power spectral density plot (Tinlet=318.9F, p= 420.3
psi, Tube 3 heated)
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Figure 4.11. Case 13a pressure trace (Tinlet=317.2F, p=407.9 psi, Tube 4
heated)

Figures 4.11 and 4.12 provide a pressure trace and power spectral density plot

for Case 13a, in which only Tube 4 was heated. Case 13a showed strong frequency

content at 342 Hz for all tubes. Weaker frequency content was detected at 236 Hz.

These frequencies were often observed in cases in which Tube 4 was heated.

Power spectral density plots shown previously were representative of the entire

data set of conditions where a single tube was heated. Table 4.3 lists frequencies

detected for every test condition. Every cell represents a single test condition. Sim-

ilar to the first test campaign, frequencies between 330 and 355 Hz were frequently

detected. There is also strong trend between which tube is heated and which other

frequencies were detected: Heating Tubes 1 or 2 tended to generate 140 and 280

Hz oscillations, whereas heating Tube 3 or 4 generated 244 Hz oscillations. This

trend was not seen in the first test campaign. However, more cases were intentionally

performed in the second campaign with conditions known to induce acoustic-mode os-

cillations - that is, cases with low preheating and maximum tube heating to maximize
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psi, Tube 4 heated)
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the temperature gradient inside the fuel tubes. The first campaign was conducted

with coarser property increments, producing a smaller number of cases with strong

acoustic oscillations, which made trends more difficult to establish.

The frequency at which oscillations resonance is presumed to be largely a function

of the speed of sound of the fluid, which is a derived function of the fluid’s temper-

ature. Inlet temperatures were varied throughout the test campaign; however, the

vast majority of oscillating cases displayed frequencies between 330 and 355 Hz. The

invariance of frequency for changing inlet temperature, mass flow rate, and pressure

may come as a surprise. However, this invariance can be explained by an unintended

similarity between test cases in which oscillations were observed: tube outlet temper-

atures tended to remain nearly constant.

Tube outlet temperatures are suspected to remain within a narrow range for oscil-

lating cases due to a natural heating barrier illustrated in Figure 4.13, which is a plot

of specific heat versus temperature for Jet-A fuel. Specific heat spikes near the critical

temperature; as outlet temperature approaches this neighborhood, the effect of a unit

of heat input on temperature rise diminishes by an order of magnitude. Consider a

case in which fuel is heated from room temperature to near-critical conditions. For

a fixed heat input within the test section, a 100F inlet temperature increase would

result in a mere 25F outlet temperature increase. Furthermore, highly-preheated fuel

would receive less heat input inside the test section than non-preheated fuel due to

the smaller difference between fluid and wall temperature; this further diminishes the

effect of preheating on outlet temperature.

Thermocouples were installed upstream and downstream of each tube, but the

long residence times for fuel inside the manifolds prohibit accurate measurement of

individual tubes’ outlet temperatures due to conduction and mixing effects. However,

due to the natural heating barrier around the critical temperature, cases in which one

tube was heated with maximum nitrogen temperature and flow rate can be reasonably

assumed to have outlet temperatures within the neighborhood of Jet-A’s critical tem-

perature (750F). This assumption was used for the definition of temperature profiles
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generated for acoustic simulations. These simulations were performed to corroborate

frequencies observed in experiments, and are described in the following chapter.

Only coarse changes in heating nitrogen temperature and flow rate were made

for the two test campaigns. When nitrogen flow rate and temperature were set to

their maximum attainable settings, and this flow was directed at a single tube, os-

cillations were detected under most circumstances. Oscillations were never detected

when 1/4th of the maximum nitrogen flow rate was applied. However, intermediate

heating settings were not considered for the present study. It is hypothesized that

intermediate heating settings may increase the frequency of acoustic oscillations due

to higher associated sound speeds, while still providing sufficient energy to drive these

oscillations.

Although the majority of oscillating cases exhibited frequencies around 340 Hz,

some displayed other excited modes. If the 340 Hz mode is assumed to occur due to

open tube resonance of a single heated tube, an effective speed of sound for this tube

may be calculated with Equation 4.1.

aeff = 2Ltubef = 2(7.75in)(340Hz) = 5270in/s = 440ft/s (4.1)
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Figure 4.13. Specific heat versus temperature for Jet-A fuel
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The length of 7.75 in corresponds to the length of the physical tube plus the small

holes inside the manifold leading to the cross passages. A local speed of sound of 440

ft/s matches that of 740F fuel, which is slightly subcritical in temperature. Using

this effective sound speed, the frequency for open-tube resonance based on the length

of the heated tube (7.75 in) plus that of the outlet passage (1.5 in) is calculated in

Equation 4.2.

f2 =
aeff
2L

=
5270 in/s

2(7.75 + 1.5)in
= 285Hz (4.2)

This result closely matches a frequency commononly observed in experiments:

most cases in which either Tube 1 or 2 was heated yielded frequencies between 279

and 284 Hz. The 140 Hz subharmonic was also detected under similar conditions.

The 280 Hz modes tended to exhibit nearly 180 degree phase lag between inlet and

outlet, which is consistent with the theory that the inlet and outlet transducers lie

near opposite antinodes of a 2L mode acting at around 280 Hz. The 140 Hz modes

tended to occur with minimal phase lag between each signal. The length of this mode

may span one heated tube and the outlet manifold passage, as predicted by the simple

calculation. However, it most likely spans both cross passages. The added length of

the inlet manifold does not substantially affect the frequency calculated in Equation

4.2 because it is filled with cold fuel having a sound speed an order of magnitude faster

than that inside the outlet manifold. Addition of a unit length of passage containing

cold fuel affects frequency less than a unit length of passage with fuel near the critical

temperature. Cases in which Tubes 3 or 4 were heated did not exhibit the 140 or 280

Hz modes, possibly due to the lack of hot fuel in the outlet manifold. Tubes 3 and

4 were closer to the outlet port, so fuel residing in the outlet manifold tended to be

cooler in these cases.
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5. RESULTS OF ACOUSTIC SIMULATION

An acoustic model was developed using the linear acoustics solver in COMSOL Multi-

physics 5.2. The fundamental frequency for the flow geometry is predicted by solving

the Helmholtz equation, Equation 5.1, for eigenfrequencies ω. The lowest eigenfre-

quency was selected for each case.

∇·
�−1

ρ
(∇p)

�
=

ω2p

ρc2
(5.1)

Here, p is total acoustic pressure, c is the speed of sound, and ρ is density. Thermal

conduction, mean flow, and buoyancy effects are neglected for this analysis. The

linear acoustics solver only calculates eigenfrequencies for the system; no information

regarding amplitudes can be obtained from this analysis. A detailed description of

the COMSOL linear acoustics solver is provided in the COMSOL Acoustics Module

User’s Guide [20].

Temperature distributions were specified along the tubes and manifold passages’

axial directions. Temperatures were approximated as radially and tangentially con-

stant inside each cylinder. Mean inlet and outlet manifold temperatures were spec-

ified, and it was presumed that when a single tube was heated, the temperature

difference between its inlet and outlet would equal four times the temperature differ-

ence of the inlet and outlet mean temperatures.

A tetrahedral grid consisting of 40,342 elements, shown in Figure 5.1, was gener-

ated to simulate the fuel flow path used for the second test campaign. Quarter-inch

diameter manifold cross passages connected the four parallel fuel tubes to the fuel

inlet and outlet ports, the latter of which was larger in diameter. Both ports were

treated as open-wall acoustic boundaries. A grid independence study was performed
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Figure 5.1. Tetrahedral mesh of fuel flow path used for acoustic simulation
consisting of 40,342 elements

based on predicted frequencies to ensure accurate results, as illustrated in Figure 5.2

below.

The predicted frequency for a typical test case; in which Tinlet=300F, Toutlet=450F,

pmean=400psi, and only Tube 1 is heated; is plotted versus the number of grid elements

in Figure 5.2. A simulation using a grid with 40,342 elements predicted a frequency

within 1 Hz from that using a grid containing over ten times as many elements. This

level of accuracy was deemed acceptable, thus the grid was used for all simulations.

A summary of simulated cases is shown in Table 5.1. These cases were chosen to

determine the effect of several parameters on frequency: which tube is heated, inlet

temperature, and pressure.
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Table 5.1: List of cases simulated with COMSOL acous-

tic model

Tinlet (F) Toutlet (F) Heated tubes Pressure (psi) Primary freq (Hz)

100 288 Tube 1 400 337.2

200 359 Tube 1 400 339.7

300 431 Tube 1 400 339.1

400 502 Tube 1 400 337.4

500 574 Tube 1 400 331.1

600 645 Tube 1 400 313.4

700 717 Tube 1 400 256.0

300 450 Tube 1 400 284.8

300 450 Tube 2 400 333.0

300 450 Tube 3 400 363.3

300 450 Tube 4 400 389.2

300 450 All tubes 400 1550.3

300 350 Tube 1 400 1585.2

300 400 Tube 1 400 1084

300 410 Tube 1 400 948.8

300 420 Tube 1 400 771.5

300 430 Tube 1 400 381.6

300 440 Tube 1 400 299.6

300 475 Tube 1 400 264.4

300 500 Tube 1 400 254.9

300 525 Tube 1 400 258.0

300 550 Tube 1 400 263.1

300 600 Tube 1 400 275.6

300 650 Tube 1 400 296.1

300 700 Tube 1 400 316.4
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300 350 Tube 3 400 1638.5

300 400 Tube 3 400 1137.4

300 420 Tube 3 400 841.5

300 440 Tube 3 400 399.4

300 460 Tube 3 400 341.4

300 480 Tube 3 400 319.8

300 500 Tube 3 400 311.8

300 525 Tube 3 400 310.2

300 550 Tube 3 400 313.0

300 600 Tube 3 400 324.0

300 650 Tube 3 400 337.4

300 700 Tube 3 400 354.0

300 350 All tubes 400 1758.8

300 400 All tubes 400 1658.5

300 500 All tubes 400 1433

300 550 All tubes 400 1304.6

300 600 All tubes 400 1162.4

300 650 All tubes 400 1000.4

300 700 All tubes 400 793.9

300 725 All tubes 400 640.5

300 750 All tubes 400 361.3

300 800 All tubes 400 359.6

300 300 None 400 1851.9

300 450 Tube 1 450 311.4

300 450 Tube 1 500 344.1

300 450 Tube 1 550 400.5

300 450 Tube 1 600 470.0

300 450 Tube 1 700 602.5

300 450 Tube 1 800 699.5
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300 450 Tube 1 900 772.9

300 450 Tube 1 1000 832.5
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Figure 5.3. Predicted primary frequency versus inlet temperature for cases
in which Tube 1 is heated, p=400 psi, Toutlet=758F

As explained in the previous chapter, experimental cases associated with accous-

tic oscillations had the following conditions: fuel inlet temperature was at or below

300F and tube heating was maximized to hardware constraints. The large amount

of heat input most likely caused the fuel to be heated to a temperature in the neigh-

borhood of the critical temperature. Several cases were simulated with varying inlet

temperatures, and the heated tube’s outlet temperature constant. Predicted oscilla-

tion frequencies for different inlet temperatures are plotted in Figure 5.3. Tube 1 was

heated for all of these cases; the temperature distribution was approximated with a

logarithmic profile, and mean pressure was fixed at 400psi. Cases with inlet tempera-

tures under 400F yielded oscillations with consistent frequencies around 340Hz - the

most commonly observed frequency in experiments. Inlet temperature had little effect

on frequency within the range known to produce acoustic oscillations in experiments.

Above this range, frequencies decreased with rising inlet temperature.

The acoustic mode associated with a 200F inlet temperature is depicted by Figure

5.4, a color plot in which regions of high acoustic pressure are shaded with warm

colors. Hot fluid in the manifold allows the acoustic mode to enter that region. The
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Figure 5.4. Acoustic pressure field for case in which Tube 1 is heated,
p=400 psi, Tinlet=200F, and Toutlet=758F

aspect ratio of the geometry has been altered, and the manifold cross passages have

been truncated in this figure to improve clarity.

Figure 5.5 depicts the primary accoustic oscillation frequency versus which tube

was heated for test cases in which mean pressure was held at 400 psi, inlet tempera-

ture was maintained at 300F, and outlet temperature was maintained at 450F. Recall

that the fuel inlet and outlet ports were located near Tube 4, as shown in Figure 3.1.

Heating a tube far from the inlet and outlet ports caused low-frequency oscillations.

Heating a tube near the ports caused high-frequency oscillations. This trend owes

itself to the presence of hot fuel inside the manifold when far-away tubes are heated;

this hot, compressible fuel allows for waves to stretch into the outlet manifold, result-

ing in oscillations having longer-wavelengths and lower frequencies. Conversely, when

tubes near the ports are heated, the passages remain relatively cool; this cool, incom-

pressible fuel does not participate as much in acoustic oscillations, so oscillations are

constrained to the heated fuel tube.

Effective sound speeds were calculated based on the frequencies shown in Figure

5.5 and the corresponding distance between the heated tube inlet and manifold outlet.

These effective sound speed calculations assume open tube resonance, and are plotted
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Figure 5.5. Predicted primary frequency versus which tube is heated for
cases in which p=400 psi, Tinlet=300F, and Toutlet=450F
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Figure 5.6. Predicted effective sound speed versus which tube is heated
for cases in which p=400 psi, Tinlet=300F, and Toutlet=450F

in Figure 5.6. The resulting plot indicates that the effective sound speed follows the

trend mentioned in the previous paragraph. This trend is not linear, however, because

the temperature profiles and relationships between sound speed and temperature are

highly nonlinear.
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Figure 5.7. Acoustic pressure field for case in which Tube 1 is heated,
p=400 psi, Tinlet=300F, and Toutlet=450F

The acoustic mode caused by heating Tube 1 is depicted by Figure 5.7, a color

plot in which regions of high acoustic pressure are shaded with warm colors. Hot fluid

in the manifold allows the acoustic mode to enter that region. Figure 5.8 depicts a

case in which Tube 3 is heated; here, the acoustic mode remains more constrained

inside the heated tube.

A limitation of this acoustic simulation used is that property profiles within each

domain (i.e. tubes and manifolds) only vary in a single direction. To prevent erro-

neous results, temperature profiles at domain interfaces must be continuous. Tem-

peratures inside the outlet manifold must, therefore, match tube outlet temperatures.

For cases in which Tube 1 is heated, a gradual temperature decrease is imposed along

the outlet manifold, which likely approximates the acutal temperature distribution

reasonably well. In contrast, when Tube 4 is heated, a steep temperature rise and

drop surrounding Tube 4 are imposed in order to match tube outlet temperatures

while maintaining a manifold outlet temperature representing the average of the four

tubes. Such a temperature profile is unrealistic, as the actual temperature distribu-
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Figure 5.8. Acoustic pressure field for case in which Tube 3 is heated,
p=400 psi, Tinlet=300F, and Toutlet=450F
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Figure 5.9. Predicted primary frequency versus mean pressure for cases
in which Tube 1 is heated, Tinlet=300F, and Toutlet=450F

tion for this case is highly two-dimensional. In conclusion, more confidence can be

placed in simulations in which a tube far from the outlet ports was heated than those

in which a tube near the inlet was heated.

Figure 5.9 depicts the primary accoustic oscillation frequency versus mean pressure

for test cases in which Tube 1 was heated, mean pressure was held at 400 psi, and inlet

temperature was maintained at 300F. Sound speed correlates directly with pressure,

and accordingly, the simulation predicts higher frequencies for higher mean pressures.

Figure 5.10 depicts the primary accoustic oscillation frequency versus system-wide

temperature for test cases in which the mean pressure was held at 400 psi. No heat

is input to the tubes for these cases. The frequencies vary with the speed of sound of

the fluid. However, oscillations under these conditions would not be thermoacoustic

in nature because no temperature gradient exists within the flowpath.
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6. CONCLUSIONS

Measurable pressure oscillations have been generated under flow conditions and ge-

ometry relevant to fuel-air heat exchangers for gas turbine engines. Bulk mode os-

cillations, such as those shown in Figure 6.1, were observed with frequencies on the

order of 1Hz and amplitudes of 1-10 psi. Acoustic mode oscillations, such as those

shown in 6.2, were observed with frequencies on the order of 100-1000Hz, and with

amplitudes from 0.1-1.0 psi.

Bulk mode oscillations were originated from an external fuel preheater rather than

the test section itself; bulk-mode amplitudes were correlated with preheater exit tem-

perature. Acoustic-mode oscillations originated inside the heated test section tubes;

although they occurred at low pressure amplitudes with respect to the structural

Figure 6.1. Case 5b pressure traces (Tinlet=500degF, p=500 psi, no nitro-
gen flow)
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Figure 6.2. Case 7a pressure trace
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strength of metal tubes, these high frequency oscillations do pose a high-cycle fatigue

risk for heat exchanger components.

Conditions conducive to acoustic-mode oscillations consist of low fuel preheating

and large amounts of heating inside the test section. Oscillations tend to occur in

such settings because of the large temperature gradients, and associated density gra-

dients, these conditions provide. The experimental hardware was capable of flowing

nitrogen across fuel tubes at roughly 900F, which is 150F higher than the critical

temperature of Jet-A fuel. The spike in the fuel’s specific heat near the critical tem-

perature, depicted by Figure 4.13, created a natural heating barrier near the critical

temperature. Therefore, most cases with acoustic-mode oscillations were heated to

near-critical temperatures.

The most common oscillation frequency was around 340 Hz. These oscillations

are hypothesized to originate from a single heated fuel tube and travel into the fuel

manifolds. This oscillation mode was predicted by a COMSOL acoustic model, in

which realistic one-dimensional temperature profiles were input. Inlet temperature

had little effect on the frequency of this mode in both experimental and simulated test

cases. Inlet pressure signals remained in phase with one another, and outlet pressure

signals remained in phase with one another. The inlet and outlet pressure signals

were offset by a phase lag that was a function of the diameter of the fuel manifolds’

cross passages; large cross passage diameters yielded larger phase lags.

The second most common oscillation frequency was 280 Hz. Alongside it was

often its subharmonic oscillation at 140Hz. These modes were often observed when

tubes far from the fuel outlet passage (i.e. Tubes 1 and 2) were heated. A simple

calculation, shown in Equations 4.1 and 4.2, indicates that if an effective speed of

sound is calculated based on the length of a heated tube and a frequency of 340Hz,

the characteristic frequency of the heated tube plus the outlet manifold passage is

around 280 Hz. Inlet and outlet signals are all in phase for the 140Hz mode, but are

offset by a phase lag for the 280 Hz mode. This would indicate that the 280 Hz mode
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corresponds to a 2L open-tube resonance mode, whereas the 140 Hz signal shows

half-wave resonance.

6.1 Recommendations for Future Work

In the present study, heat input was varied coarsely, and was not accurately mea-

sured. The measurement of tube wall temperature at multiple axial locations would

allow for the calculation of heat input into the fuel; such a measurement could be

made with an infrared camera placed with each of the tubes in view, or thermocouples

welded to the fuel tubes. Fine sweeps of heat input could be performed to determine

the power required for the onset of acoustic-mode instabilities. Effort was made for

the present study to describe the shape and character of several commonly-occurring

acoustic modes based on observations from experiments and a preliminary acoustic

simuation. However, more sophisticated acoustic simulations with three-dimensional

property variations could aid in the accurate prediction of mode shapes. Fluid simu-

lations considering the effect of mean flow could further improve accuracy.

The equipment used for experiments was incapable of generating bulk-mode os-

cillations in Jet-A fuel within the heated test section. Bulk-mode instabilities could

be studied within the current flow geometry by either heating nitrogen with a more

powerful heater or choosing a simulent to Jet-A with a lower critical temperature,

such as methanol or a variety of refrigerants.

By measuring the amount of heat input required to induce oscillations at a variety

of flow conditions, one may attempt the formulation of a stability criterion using

dimensionless analysis. Such a dimensionless analysis has been performed on a data

set from an experiment in which a single tube was heated, and is included in Appendix

A.
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A. ANALYSIS OF PALUMBO’S SINGLE-TUBE

EXPERIMENT

A.1 Introduction

The objective of the present study is to more accurately predict the onset of

thermoacoustic instabilities under conditions relevant to hydrocarbon-based aviation

fuel systems. In order to safely and cheaply perform experiments, a simulant fluid

was selected to replicate a typical hydrocarbon fuel. Using the simulant fluid, a

range of variables believed to influence thermoacoustic oscillations will be examined.

Dimensionless groups of these variables have been created, from which a stability

criterion has been established. Additionally, a one-dimensional CFD code will be

written to aid characterization of oscillations observed in experiments.

A.2 Facility Description

Fig. A.1 is a summary of the main facility hardware. Methanol test fluid is loaded

into the run tank and pressurized with nitrogen. A pneumatic valve is used to connect

or disconnect the methanol tank with the test section. A Coriolis flow meter between

the tank and pneumatic valve measures the mass flow rate of the test fluid. The

fluid continues to a filter, and then an electric preheater, which consists of an array of

tubes sandwiched by copper blocks heated with cartridge heaters. The preheated fuel

then enters the test section, which consists of a tube undergoing electric resistance

heating. The test section is electrically insulated on each end with isolation flanges.

Downstream of the test section, the fluid passes through a cooling bath, filter, flow

control valve, sampling station, and finally a waste drum. A manual valve provides
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nitrogen for purging the test section.
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Figure A.1. Overall facility schematic.

The fluid enters the apparatus via the bottom isolation flange where it makes a

90-degree turn and flows vertically through the inlet plenum. The fluid then enters

the test section where it enetually enters the heated length of the test section, which

is the length between the electrical bus bars. The fluid then enters the outlet plenum

and exits via the isolation flange and a flexible hose.

Type K thermocouples were mounted in both the inlet and outlet plenums. The

tubes tested were too small to accomodate thermocouples, so only outer wall tem-

peratures were measured along the test section. Ungrounded thermocouples were

selected despite their relatively slow response times in order to minimize instrumen-

tation noise from the resistively-heated tube. Thermocouple locations are shown in

Fig. A.1 as annotations with the letter T. Wall temperatures are designated with a

’w’ subscript; fluid temperatures are designated with no subscript.
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Kulite ETL-GTS-190 (M) pressure transducers were placed in the inlet and outlet

plenum. These transducers are rated to temperatures up to 1025F and pressures of

3000 PSI. The special high frequency amplifier allows the transducer to be used up

to 150 KHz. Data recorded during experiments were sampled at 4 KHz. Transducer

locations are shown in Fig. A.1 as annotations with the letter P. Tab. A.1 lists values

for parameters varied throughout the experiments. The chosen reduced pressures of

1.0, 1.2, and 1.4 correspond to pressures of 1175, 1410, and 1645 psi.

Test Parameters

Heated Length � [ in ] 4,6

Tube O.D. Dout [ in ] 0.125

Tube I.D. Din [ in ] 0.027,0.069,0.093

Reduced Pressure pr 1.0,1.2,1.4

Mass Flow ṁ [ lbm
hr

] 4,5,6,7

Heat Input Q̇ [ Watts ] 0-800

Table A.1. Thermoacoustic testing matrix for methanol

Tab. A.2 lists distances between major components of the experiment.

A.3 Measurements

Unfiltered pressure traces obtained near the tube inlet and tank, as well as a mass

flow rate trace, are shown in Fig. A.2. Test section wall temperatures are shown

in Fig. A.3. Seven probes were evenly spaced along the tube; however, the fifth

and sixth thermocouples from the inlet failed, so results from the seventh have been

assigned to the Tw5. Fluid temperatures measured at the heated tube inlet and exit

are also included.
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Figure A.2. Unfiltered mass flow rate, tank pressure, and tube inlet pressure
of a sample selected case: Q̇ =550W, Din =0.069in, � =6in, ṁ =5lb/hr,
Pr =1.2
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Q̇ =550W, Din =0.069in, � =6in, ṁ =5lb/hr, Pr =1.2
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Table A.2. Distances along fuel flow path.

Flow Lengths

Tank to preheater L12 6 ft

Preheater inlet to exit L23 16 in

Preheater exit to test section inlet L34 22 in

Test section inlet to outlet L45 9.5 or 11 in

Test section outlet to cooling bath inlet L56 21 in

Cooling bath inlet to exit L56 80 ft

Cooling bath exit to control valve L67 2 ft

Oscillations are most prominently displayed in pressure traces near the test section

tube and the mass flow rate measurements. Throughout the test campaign, similar to

previous studies, two modes of oscillations were detected: the acoustic mode, charac-

terized by frequencies of 100-500 Hz; and the bulk mode, characterized by frequencies

from 1-5 Hz. Bulk mode oscillations tend to have amplitudes of over one order of

magnitude larger than the acoustic mode. The case illustrated in Figs. A.2-A.3 is

representative of the test campaign; both oscillation modes are present, but the bulk

mode dominates.

Bulk-mode oscillations are visible in some wall temperature traces, but the ampli-

tudes here are much smaller than those in the tube pressure and mass flow rate. These

wall temperature signals undergo damping and lag due to the thermal resistance of

the stainless steel tube. The bulk-mode is not well-displayed by thermocouples lo-

cated anywhere in the flow-path; this may be because the thermocouples are located

in wide plenums in which significant mixing occurs, interfering with the tempera-

ture oscillations due to bulk-mode oscillations. Because tube pressure and mass flow

rate measurements displayed the strongest oscillations, these measurements were cho-
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sen for the characterization of the phenomena and in the formulation of a stability

criterion.
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A.4 Data Analysis

Data from the thermoacoustic instability test article have been analyzed to de-

termine thresholds of several flow parameters for the occurrence of oscillations. In-

dependent variables include mean pressure (pmean), fuel mass flow rate (ṁ), heated

tube diameter (Din), heat input (Q̇), fuel density (ρ), and fuel viscosity (µ). Density

and viscosity were considered at the heated tube inlet. The dependent variable was

the pressure amplitude of the major acoustic mode.

A non dimensional analysis was performed in the interest of finding a window of

all independent variables that is non-conducive to oscillations. The Buckingham Pi

method yielded four dimensionless groups defined by Eq. A.1.

Π1 =
D4

inρpmean

ṁ2
,Π2 =

D4
inρpamp

ṁ2
,Π3 =

D4
inρ

2Q̇

ṁ3
,Π4 =

Dinµ

ṁ
=

const

ReD
(A.1)

The significance of these dimensionless groups are as follows: Π1 relates mean pres-

sure and dynamic pressure. Π2, the only output group, relates pressure oscillation

amplitude and dynamic pressure. Π3 relates thermal and kinetic energy transport.

Π4 acts like the Reynolds number for internal flow, relating viscous forces and mo-

mentum forces.

Eighty eight test cases were selected for examination from the 175 cases of Palumbo’s

entire data set. Cases with strong and consistent acoustic oscillations having distinct

major frequencies were chosen for analysis. Fig. A.4 shows example pressure and

mass flow rate waveforms of a selected case. Thick solid lines indicate signals filtered

to only pass the major frequency; dashed lines indicate raw signals.

Figure A.5 plots Π2 (dimensionless pressure amplitude) versus Π3 (dimensionless

heat input). Each line in the plot represents a range of Π1 (dimensionless mean pres-

sure) values; the median of each Π1 range is denoted on the legend. All values of Π4
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(inverse Reynolds number) were included in the plot indiscriminately, as the entire

range of its values was relatively small.

Unsurprisingly, the oscillation amplitude group tends to increase as the power

input group increases. A test case is considered stable if Π2, the dimensionless group

representing pressure amplitude, is near zero. Therefore, for each Π1 line, the loca-

tion of the x intercept represents the threshold dimensionless power input required for

oscillations to occur. This threshold power increases monotonically with increasing

Π1 (dimensionless mean pressure).

A predictive stability criterion, shown in Eq. A.2, quantifies the critical dimen-

sionless power causing oscillations as a function of dimensionless mean pressure.

Π3,crit = f(Π1) (A.2)

Figure A.6 plots Π3,crit (critical dimensionless power) for several values of Π1 (di-

mensionless mean pressure). Operating points beneath this curve would be predicted

as stable, and those above would be predicted to exhibit oscillations. A power-law

regression for Π3,crit versus Π1, is shown in Eq. A.3.

Π3,crit = 8.643Π1
1.155 − 2.945× 106 (A.3)

A linear regression for Π3,crit versus Π1, in which the y-intercept is forced to equal

zero, is shown in Eq. A.4.

Π3,crit = 46.2Π1 (A.4)

Substituting variables for the dimensionless groups and canceling like terms yields

the approximate maximum heat input for non-oscillating flow as a function of mean

pressure, mass flow rate, and fluid density. This relation is given in Eq. A.5.

Q̇crit = 46.2
pmeanṁ

ρ
(A.5)
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Figure A.7. Critical dimensionless heat input versus dimensionless mean
pressure for all 24 non-preheated cases from Wang et al. Cases performed
at p=2.5MPa designated by squares.

A.5 Comparison with Wang et al. Data

Wang et al. [21] heated RP-3 to supercritical temperatures, and investigated ther-

moacoustic oscillations therein. The method of generating a stability criterion dis-

cussed in the previous section shall be used with the data set reported by Wang et

al. Cases with preheating were excluded from this analysis. Figure A.7 depicts Π3,crit

(critical dimensionless power) for several values of Π1 (dimensionless mean pressure).

Operating points beneath this curve would be predicted as stable, and those above

would be predicted to exhibit oscillations.

Although a trend is evident, notable outliers exist on this plot. The worst outliers

corresponded to cases run with p=2.5MPa, which was the lowest pressure setting run

by Wang et al. This pressure corresponds to a reduced pressure of 1.09. These five

points, designated by squares in Fig. A.7, were excluded from the curve fit. The
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remaining 19 points, designated by circles, produced a much stronger trend. Several

factors may prevent the stability analysis from correctly predicting the threshold

power for low-pressure cases. The fuel may have unintentionally been pressurized

to a subcritical pressure in the lowest-pressure setting cases, due to either abnormal

fuel composition or pressure transducer error. Although this cannot be proven, the

behavior does match that which may be expected with subcritical-p fluids: the fluid

remains stable throughout the liquid phase, but will eventually exhibit instabilities

once sufficient power is input to boil a significant amount of the fuel. The energy

required to undergo actual boiling is larger than that required for pseudo-boiling.

A power-law regression for Π3,crit versus Π1 for Wang et al. data is shown in

Eq. A.6.

Π3,crit = 27.29Π1
0.7186 − 3.412× 104 (A.6)

A linear regression for Π3,crit versus Π1, in which the y-intercept is forced to equal

zero, is shown in Eq. A.7.

Π3,crit = 139.1Π1 (A.7)

Substituting variables for the dimensionless groups and canceling like terms yields

the approximate maximum heat input for non-oscillating flow as a function of mean

pressure, mass flow rate, and fluid density. This relation is given in Eq. A.8.

Q̇crit = 139.1
pmeanṁ

ρ
(A.8)

Although the correlation for Wang’s results does not match that for Palumbo’s, the

general behavior is the same: critical dimensionless power scales nearly linearly with

dimensionless mean pressure. The two correlations merely differ by their coefficients.

This coefficient may be a function of variables not captured within the dimensionless

groups selected, such as flow path geometry (viz. tube length or heated length) or

fluid properties. More experiments would need to be performed in order to determine

how to predict this coefficient.
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B. Supplementary Material

B.1 Test Procedures

The following test procedures were performed for all experiments.
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B.2 Facility Drawings and Specifications
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Figure B.1. Plumbing and instrumentation diagram
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(SUPPLIED BY KULITE)

.140(3.6)

.15
(3.8)

.425(10.8)

.210 DIA.
 (5.3)

“T”

CRUSH RING

CONSULT FACTORY FOR SPECS. ON SEALED GAGE
*NO SCREEN FOR 50 KHz (AND ABOVE) BANDWIDTH

INPUT
Pressure Range

3.5
50

7
100

14
200

21
300

35
500

70 BAR
1000 PSI

Operational Mode Absolute, Sealed Gage

Over Pressure 2 Times Rated Pressure

Burst Pressure 3 Times Rated Pressure

Pressure Media All Nonconductive, Noncorrosive Liquids or Gases (Most Conductive Liquids and Gases - Please Consult Factory) 

ELECTRICAL PERFORMANCE
Rated Electrical Excitation 12 ± 4VDC or 28 ± 4VDC

Maximum Electrical Current 25 mA

Output Impedance 200 Ohms (Typ.)

Output Range 0.5V to 5V ± 3% (2 Outputs)

Bandwidth (-3dB)
Output 1: DC to 5kHz (Option A), 50kHz* (Option B) or 150kHz* (Option C) 

Output 2: AC 10Hz to 5kHz (Option A), 50kHz* (Option B) or 150kHz* (Option C) 
(X10 Additional gain)

Output Filter Low Pass Filter Available per Customer Specification

Residual Unbalance 500mV ±1%

OUTPUT 
Resolution Infinitesimal

Natural Frequency (KHz) (Typ.) Greater Than 1000 KHz

Insulation Resistance 100 Megohm Min. @ 50 VDC

ENVIRONMENTAL
Operating Temperature Range

-65°F to +1000°F* (-55°C to +538°C) (Front End)
 -65°F to +257°F (-55°C to +125°C) (Connector + Amplifier)

Compensated Temperature Range +80°F to +850°F (+25°C to +454°C)

Thermal Zero Shift ± 1.5% FS/100°F (Typ.)

Thermal Sensitivity Shift ± 1.5% /100°F (Typ.)

Linear Vibration 50g Peak, Sine 10 to 2000 Hz

Humidity 100% Relative Humidity

Mechanical Shock 100g half Sine Wave 11 msec. Duation

PHYSICAL
Electrical Connection Burklin 70F 8251 Connector (Mating Connnector Supplied)

Weight 10 Grams (Nom.) Excluding Cable and Connector

Pressure Sensing Principle Fully Active Four Arm Wheatstone Bridge Dielectrically Isolated Silicon on Silicon Patented Leadless Technology

Mounting Torque 15 Inch-Pounds (Max.)    1.7 N-m

P/N "T"
190 10-32 UNF-2A

190M M 5 x .8

Figure B.2. Pressure transducer specification sheet, courtesy of Kulite
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1

1

2

2

3

3

4

4

A A

B B

C C

D D

SHEET 2  OF 2 

DRAWN

CHECKED

QA

MFG

MATERIAL

Stainless Steel AISI 304

Steven Hunt 8/5/2013

DWG NO

Air box 3

TITLE

Air Box

SIZE

C
SCALE

REV

2

THIRD ANGLE PROJECTION
DIMENSIONS ARE IN INCHES
DIMENSIONING AND TOLERANCING PER ASME
Y14.5M-1994
FRACTIONS ± 1/16

ANGLES ± 0�30'
MAX SURFACE ROUGHNESS 125 UNLESS 
OTHERWISE SPECIFIED

DECIMALS
.X ± .1
.XX ± .03
.XXX ± .010

5.3
.753.975

3.050
2.125

1.200

5.81

1.002 x 

4.002 x 

.29

.31

5.47

4.87

6 x 1/4-20 UNC - 2B � .75

5.75

5/8-18 UNF - 2B � .25

�.38 THRU

.50 .50

.60 5.78

.254 x 

Figure B.3. Drawing of nitrogen flow path enclosure (aka air box)
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SECTION C-C
SCALE 1 : 1

C C

1

1

2

2

3

3

4

4

A A

B B

C C

D D

SHEET 1  OF 1 

DRAWN

CHECKED

QA

MFG

MATERIAL

Stainless Steel AISI 304

Steven Hunt 8/5/2013

DWG NO

TITLE

Air box lid

SIZE

C
SCALE

REV

2

THIRD ANGLE PROJECTION
DIMENSIONS ARE IN INCHES
DIMENSIONING AND TOLERANCING PER ASME
Y14.5M-1994
FRACTIONS ± 1/16

ANGLES ± 0�30'
MAX SURFACE ROUGHNESS 125 UNLESS 
OTHERWISE SPECIFIED

DECIMALS
.X ± .1
.XX ± .03
.XXX ± .010

4 Fuel Tube Reliefs
See Air Box Drawing
Detail B

5.38

1.0 1.0

1.0 1.0

1.300
2.225

3.150

4.075

2.59
2.78

3.59
3.78

4.59
4.78

.125

1.8

.75
.5

5.00

.50

4 Louver Holes
See Air Box Drawing
Section A-A

3.38

Figure B.4. Drawing of top cover plate for nitrogen flow path enclosure
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1

1

2

2

3

3

4

4

A A

B B

C C

D D

SHEET 1  OF 1 

DRAWN

CHECKED

QA

MFG

APPROVED

Steven Hunt 9/24/2013

DWG NO

Louver

TITLE

Flow control louver

SIZE

C
SCALE

REV

�.252 x 

1.00

4.50

4.50

.50

.50

.50

.13

Figure B.5. Drawing of nitrogen flow control louver vane
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1

1

2

2

3

3

4

4

A A

B B

C C

D D

SHEET 1  OF 1 

DRAWN

CHECKED

QA

MFG

MATERIAL

Generic

Steven Hunt 9/24/2013

DWG NO

Flow conditioner

TITLE

Upstream air box

SIZE

C
SCALE

REV

THIRD ANGLE PROJECTION
DIMENSIONS ARE IN INCHES
DIMENSIONING AND TOLERANCING PER ASME
Y14.5M-1994
FRACTIONS ± 1/16

ANGLES ± 0�30'
MAX SURFACE ROUGHNESS 125 UNLESS 
OTHERWISE SPECIFIED

DECIMALS
.X ± .1
.XX ± .03
.XXX ± .010

�1.25 THRU
3 CIRCLES CONCENTRIC

7.38

MCMASTER PART NO 4347K411.25

5.75

�6.63
�6.36

7.50

4 x 10-32 UNF - 2B � .75

1.19
6.19

.38

.502 x 

6.882 x 

.882 x

6.502 x 

3.693 x 

Figure B.6. Drawing of nitrogen flow conditioning housing
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SECTION A-A
SCALE 2 : 1

A

A

1

1

2

2

3

3

4

4

A A

B B

C C

D D

SHEET 1  OF 1 

DRAWN

CHECKED

QA

MFG

MATERIAL

Stainless Steel AISI 304

Steven Hunt 8/1/2013

DWG NO

Manifold 1 8th

TITLE

Manifold - 1/8 in passage

SIZE

C
SCALE

REV

7

THIRD ANGLE PROJECTION
DIMENSIONS ARE IN INCHES
DIMENSIONING AND TOLERANCING PER ASME
Y14.5M-1994
FRACTIONS ± 1/16

ANGLES ± 0�30'
MAX SURFACE ROUGHNESS 125 UNLESS 
OTHERWISE SPECIFIED

DECIMALS
.X ± .1
.XX ± .03
.XXX ± .010

2 AS5202-2 PORTS

4 OUTLET HOLES
�.07 � .938

� �.126 - .000
.003+  � .375

MATCH TUBING TO BE BRAZED

3.00

1.95

�.069 � .64

CROSS-MANIFOLD PASSAGE
�.13 THRU

1.5 STK

.7502 x 

.641

1.50

1.2502 x 
1.7502 x 

2.2502 x 

AS5202-2 PORT FUEL INLET

4 TRANSDUCER HOLES
10-32 UNF - 2B � 3/8

NOTES: UNLESS OTHERWISE SPECIFIED
1. REMOVE ALL BURRS AND BREAK SHARP EDGES

5/16-24 UNF - 3B � .48
PILOT HOLE � .69

5/16-24 UNF - 3B � .48
PILOT HOLES � .577

�.13 � 1.01

.9382 x 

4 AS5202-2 PORTS 
FOR THERMOCOUPLES
5/16-24 UNF - 3B � .482
PILOT HOLES � .577

�.062 � .281

.942 x 

.502 x 
.634 x 

Figure B.7. Drawing of fuel manifold
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B.3 Additional Data Samples from Second Test Campaign

Time (s)
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0.04 Tube 1 inlet

Tube 1 outlet
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Tube 2 outlet

Tube 3 inlet

Tube 3 outlet

Tube 4 inlet

Tube 4 outlet

Figure B.8. Pressure traces for file ID 20150624 1428592
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Time (s)
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Figure B.9. Pressure traces for file ID 20150625 0828352
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Figure B.10. Pressure traces for file ID 20150624 1431177
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Time (s)
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P
re

s
s
u

re
 (

p
s
i)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
Tube 1 inlet

Tube 1 outlet

Tube 2 inlet

Tube 2 outlet

Tube 3 inlet

Tube 3 outlet

Tube 4 inlet

Tube 4 outlet

Figure B.11. Pressure traces for file ID 20150624 1447052
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Figure B.12. Pressure traces for file ID 20150625 0832125
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Time (s)
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Figure B.13. Pressure traces for file ID 20150624 1448503
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Figure B.14. Pressure traces for file ID 20150624 1501508
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32.776 32.777 32.778 32.779 32.78 32.781 32.782 32.783

P
re

s
s
u
re

 (
p
s
i)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06 Tube 1 inlet

Tube 1 outlet

Tube 2 inlet

Tube 2 outlet

Tube 3 inlet

Tube 3 outlet

Tube 4 inlet

Tube 4 outlet

Figure B.15. Pressure traces for file ID 20150625 0835172
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Figure B.16. Pressure traces for file ID 20150624 1503366
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Time (s)
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Figure B.17. Pressure traces for file ID 20150624 1529029
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Figure B.18. Pressure traces for file ID 20150625 0850427
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Figure B.19. Pressure traces for file ID 20150624 1653492
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Figure B.20. Pressure traces for file ID 20150625 0855519
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Figure B.21. Pressure traces for file ID 20150624 1702459
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Figure B.22. Pressure traces for file ID 20150625 0858515
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Figure B.23. Pressure traces for file ID 20150624 1707559
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Figure B.24. Pressure traces for file ID 20150624 1557129
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Figure B.25. Pressure traces for file ID 20150625 0919045
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Figure B.26. Pressure traces for file ID 20150624 1605591
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Figure B.27. Pressure traces for file ID 20150624 1638415
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Figure B.28. Pressure traces for file ID 20150624 1607338
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Figure B.29. Pressure traces for file ID 20150624 1625560

Time (s)

36.951 36.952 36.953 36.954 36.955 36.956 36.957 36.958 36.959 36.96 36.961

P
re

s
s
u
re

 (
p
s
i)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
Tube 1 inlet

Tube 1 outlet

Tube 2 inlet

Tube 2 outlet

Tube 3 inlet

Tube 3 outlet

Tube 4 inlet

Tube 4 outlet

Figure B.30. Pressure traces for file ID 20150625 0921508
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Figure B.31. Pressure traces for file ID 20150624 1634384
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Figure B.32. Pressure traces for file ID 20150624 1622049
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B.4 Test Matrices

B.4.1 First Test Campaign, Small Manifold Passage Cases
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Lo freq file Hi freq ID Hi freq file N2 Flow rate

200

400 20

All open 184320 861 20140524_0359509 0.306 850

Chan 1 open 185359 862 20140524_0401360 0.306 850

Chan 2 open 185512 863 20140524_0403138 0.306 850

300

All open 160706 883 20140531_0118203 0.307 864

Chan 1 open 161143 884 20140531_0119564 0.307 864

Chan 2 open 161322 885 20140531_0121427 0.307 864

400
All open 185935 864 20140524_0425131 0.256 870

Chan 1 open 191839 865 20140524_0426288 0.256 870

500

All open 192914 867 20140524_0436466 0.204 870

Chan 1 open 192946 868 20140524_0437475 0.204 870

Chan 2 open 193050 869 20140524_0438332 0.204 870

600

All open 163933 887 20140531_0149370 0.305 861

Chan 1 open 164318 888 20140531_0151236 0.305 861

Chan 2 open 164426 889 20140531_0152512 0.305 861

600

400

20

All open 150931 918 20140621_0023009 0.307 856

Chan 1 open 151718 919 20140621_0025205 0.307 853

Chan 2 open 151921 920 20140621_0028236 0.307 848

600

All open 152520 921 20140621_0034058 0.307 845

Chan 1 open 152827 922 20140621_0036317 0.307 845

Chan 2 open 153039 923 20140621_0038590 0.307 845

700

All open 153601 924 20140621_0043395 0.306 845

Chan 1 open 153719 925 20140621_0044593 0.306 845

Chan 2 open 153851 926 20140621_0046369 0.306 845

Chan 3 open 154034 927 20140621_0048248 0.306 845

700

400

20

All open 135125 907 20140620_2334172 0.309 835

Chan 1 open 142823 908 20140620_2336537 0.309 835

Chan 2 open 143106 909 20140620_2338516 0.309 835

500

All open 144147 910 20140620_2349277 0.309 833

Chan 1 open 144349 911 20140620_2352015 0.309 833

Chan 2 open 144543 912 20140620_2353376 0.308 834

Chan 3 open 144735 913 20140620_2355185 0.308 834

Chan 4 open 144901 914 20140620_2357283 0.308 834

600

All open 145218 915 20140621_0000121 0.308 834

Chan 1 open 145410 916 20140621_0002107 0.308 834

Chan 2 open 145606 917 20140621_0004275 0.308 834

Target 
Inlet 
Fuel 
Temp

Target 
Fuel 
Pressure

Target 
Fuel Mass 
Flow Rate

Louver 
Setting

Inlet N2 
Temp
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Target Inlet Fuel Temp Target Fuel Pressure Fuel mass flow rate Louver Setting Lo freq file Hi freq ID Hi freq file N2 Flow Rate Inlet N2 Temp

500

500

7
All open 140137 952 20140703_2310047 0.312 834

7
Chan 1 open 140536 953 20140703_2313032 0.312 834

7
Chan 2 open 140728 954 20140703_2315087 0.312 834

500

13
All open 142311 955 20140703_2330351 0.311 821

13
Chan 1 open 142529 956 20140703_2333167 0.311 820

13
Chan 2 open 142750 957 20140703_2335199 0.311 820

13
Chan 3 open 143044 958 20140703_2338075 0.311 820

13
Chan 4 open 143317 959 20140703_2340487 0.311 820

500

25
All open 150131 964 20140704_0009201 0.309 826

25
Chan 1 open 150428 965 20140703_0011387 0.309 826

25
Chan 2 open 150640 966 20140703_0014020 0.309 827

600

13 All open 144108 960 20140703_2348378 0.311 822

13 Chan 1 open 144318 961 20140703_2350581 0.31 822

13 Chan 2 open 144625 962 20140703_2354048 0.311 823
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B.4.2 First Test Campaign, Large Manifold Passage Cases

Target Inlet Fuel Temp Target Fuel Pressure Fuel mass flow rate Louver Setting Lo freq file Hi freq ID Hi freq file N2 Flow Rate Inlet N2 Temp

600

400

28

All open 125930 1089 20140905_1700226 0.296 832

Chan 1 open 130125 1090 20140905_1702202 0.295 820

Chan 2 open 130248 1091 20140905_1703463 0.295 825

20

All open 130554 1092 20140905_1708430 0.301 850

Chan 1 open 130908 1093 20140905_1710377 0.3 852

Chan 2 open 131054 1094 20140905_1712159 0.3 855

Chan 3 open 131240 1095 20140905_1714001 0.3 856

Chan 4 open 131414 1096 20140905_1715419 0.299 859

500 20

All open 131936 1097 20140905_1720559 0.299 866

Chan 1 open 132711 1099 20140905_1731261 0.295 862

Chan 2 open 133133 1100 20140905_1733158 0.298 864

400 12

All open 133959 1101 20140905_1741334 0.297 857

Chan 1 open 134159 1102 20140905_1743322 0.297 858

Chan 2 open 134337 1103 20140905_1745038 0.297 859

500 500 6

All open 134802 1104 20140905_1749167 0.296 862

Chan 1 open 134931 1105 20140905_1750441 0.296 864

Chan 2 open 135059 1106 20140905_1752125 0.296 864

600

500

12

All open 142848 1153 20141028_1328028 0.291 882

Chan 1 open 143035 1154 20141028_1330018 0.291 883

Chan 2 open 143212 1155 20141028_1331445 0.291 883

600

All open 141834 1149 20141028_1317450 0.291 875

Chan 1 open 141946 1150 20141028_1320493 0.291 878

Chan 2 open 142259 1151 20141028_1322292 0.291 878

Chan 3 open 142432 1152 20141028_1323576 0.291 878

500

37

All open 135530 1140 20141028_1257338 0.291 867

Chan 1 open 140323 1142 20141028_1302376 0.291 872

Chan 2 open 140540 1143 20141028_1304535 0.291 873

Chan 3 open 140711 1144 20141028_1306444 0.291 874

Chan 4 open 140851 1145 20141028_1308453 0.291 875

600

All open 141136 1146 20141028_1310549 0.291 875

Chan 1 open 141350 1147 20141028_1313025 0.291 875

Chan 2 open 141516 1148 20141028_1314343 0.291 875
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B.4.3 Second Test Campaign, Large Manifold Passage Cases

Louver Setting Hi freq file

650

400

8

All open 2355_24 1518 20150617_1803381 0.27 930

Chan 1 open 2357_19 1519 20150617_1805337 0.3 934

Chan 2 open 2359_02 1520 20150617_1807168 0.29 936

Chan 3 open 0000_45 1521 20150617_1808595 0.29 933

Chan 4 open 0002_36 1522 20150617_1810501 0.29 929

Chan 2 open, slowly sweeping 3 open 0004_30 1523 20150617_1812443 0.29 925

Chan 2 open, slowly sweeping 1 open 0005_51 1524 20150617_1814054 0.29 923

750 1

All open

Chan 1 open 0010_26 1525 20150617_1818408 0.29 919

Lost flow rate of fuel 0012_20 1526 20150617_1820349 0.29 919

750 450 40

All open 2331_46 1511 20150617_1740009 0.29 928

Chan 1 open 2334_50 1512 20150617_1743043 0.29 928

Chan 2 open 2336_57 1513 20150617_1745117 0.29 928

Chan 3 open 2339_03 1514 20150617_1747174 0.29 929

Chan 4 open 2340_59 1515 20150617_1749135 0.29 929

Chan 2 open, slowly sweeping 3 open 2342_54 1516 20150617_1751077 0.29 930

Chan 2 open, slowly sweeping 1 open 2344_49 1517 20150617_1753027

700 700 55

All open 0021_26 1527 20150617_1829402 0.29 918

Chan 1 open

Chan 2 open 0036_02 1528 20150617_1844165 0.3 900

Chan 3 open 0037_56 1529 20150617_1846111 0.3 905

675 450 23
All open

Chan 3 open 0046_25 1530 20150617_1854396 0.3 915

Target Inlet 
Fuel Temp

Target Fuel 
Pressure

Fuel mass 
flow rate

Lo freq 
file

Hi 
freq 
ID

N2 
Flow 
Rate

Inlet 
N2 
Temp
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Louver Setting Other Settings Hi freq file

Ambient 400

30

1 and 4 open 2018_14 1549 20150624_1426405 70 0.29 881

Chan 1 open 2020_33 1550 20150624_1428592 70 0.29 882 141

Chan 2 open 1420_10 1595 20150625_0828352 70 0.3 851 140, 280, 340

Chan 4 open 2022_52 1551 20150624_1431177 70 0.29 883 343

Chan 1 open, slowly sweeping 4 open 2025_31 1552 20150624_1433568 70 0.29 887

Chan 1 open 1/4 N2 flowrate 2028_20 1553 20150624_1436458 70 0.09 852

Chan 4 open 1/4 N2 flowrate 2030_00 1554 20150624_1438262 70 0.09 840

10

1 and 4 open 2036_39 1555 20150624_1445048 70 0.29 861

Chan 1 open 2038_39 1556 20150624_1447052 70 0.29 866 141,283,352

Chan 2 open 1423_46 1596 20150625_0832125 0.3 864 140, 279

Chan 4 open 2040_24 1557 20150624_1448503 70 0.29 877 343,239

Chan 1 open 1/4 N2 flowrate 2044_09 1559 20150624_1452350 70 0.09 840

Chan 4 open 1/4 N2 flowrate 2042_28 1558 20150624_1450538 70 0.09 845

5

1 and 4 open 2051_54 1560 20150624_1500205 70 0.28 811

Chan 1 open 2053_25 1561 20150624_1501508 70 0.28 843 142,250,284, 353

Chan 2 open 1426_50 1597 20150625_0835172 0.3 873 139,279

Chan 4 open 2055_10 1562 20150624_1503366 70 0.28 852 344,238

Chan 4 open, slowly sweeping 1 open 2056_53 1563 20150624_1505189 70 0.28 873

Chan 1 open 1/4 N2 flowrate 2059_18 1564 20150624_1507444 70 0.09 834

Chan 4 open 1/4 N2 flowrate 2100_59 1565 20150624_1509251 70 0.09 826

200 400

30

1 and 4 open 2118_29 1566 20150624_1526547 200 0.19 873

Chan 1 open 2120_37 1567 20150624_1529029 240 0.29 872 141, 282, 353,423

Chan 2 open 1442_16 1598 20150625_0850427 180 0.3 836 140, 279

Chan 3 open 2245_23 1589 20150624_1653492 250 0.29 925 244,335,389

Chan 3 open 1/4 N2 flowrate 2247_05 1590 20150624_1655306 240 0.09 882

10

1 and 4 open

Chan 1 open

Chan 2 open 1447_25 1599 20150625_0855519 195 0.3 849 139,280

Chan 3 open 2254_20 1591 20150624_1702459 250 0.29 894 243,335

Chan 4 open

Target Inlet 
Fuel Temp

Target Fuel 
Pressure

Fuel mass 
flow rate

Lo freq 
file

Hi 
freq 
ID

Set 
Point

N2 
Flow 
Rate

Inlet N2 
Temp

Strong oscillation 
freqs
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Louver Setting Other Settings Hi freq file
Target Inlet 
Fuel Temp

Target Fuel 
Pressure

Fuel mass 
flow rate

Lo freq 
file

Hi 
freq 
ID

Set 
Point

N2 
Flow 
Rate

Inlet N2 
Temp

Strong oscillation 
freqs

Min

1 and 4 open

Chan 1 open

Chan 2 open 1450_25 1600 20150625_0858515 200 0.3 860 139,279

Chan 3 open 2259_30 1592 20150624_1707559 250 0.29 914 243,336

Chan 3 open 1/4 N2 flowrate 2302_46 1593 20150624_1711121 255 0.08 856

300 400

30

1 and 4 open 2127_43 1569 20150624_1536095 335 0.29 889

Chan 1 open 2129_22 1570 20150624_1537483 340 0.29 896 141, 282, 352,423

Chan 2 open 1507_02 1601 20150625_0915291 270 0.3 845 344,144

Chan 3 open 2234_57 1588 20150624_1643232 320 0.29 919 244,336,389

Chan 4 open 2125_47 1568 20150624_1534134 310 0.29 882 342,236

Chan 1 open, slowly sweeping 4 open 2133_56 1571 20150624_1542219 340 0.29 940

1 and 4 open 1/4 N2 flowrate 2136_33 1572 20150624_1544595 340 0.09 886

Chan 1 open 1/4 N2 flowrate 2139_12 1573 20150624_1547385 340 0.09 867

Chan 4 open 1/4 N2 flowrate 2140_51 1574 20150624_1549175 340 0.09 859

10

1 and 4 open 2147_05 1575 20150624_1555311 360 0.29 957

Chan 2 open 1510_38 1602 20150625_0919045 280 0.3 844 340,144

Chan 1 open 2157_33 1577 20150624_1605591 370 0.29 821 142,284, 353,426

Chan 3 open 2230_15 1587 20150624_1638415 360 0.29 908 244,334,434

Chan 4 open 2159_08 1578 20150624_1607338 370 0.29 844 343,238

Chan 1 open 1/4 N2 flowrate 2202_37 1580 20150624_1611036 380 0.09 811

Chan 4 open 1/4 N2 flowrate 2200_59 1579 20150624_1609252 370 0.09 823

Min

1 and 4 open 2215_55 1584 20150624_1624217 370 0.29 879

Chan 1 open 2217_30 1585 20150624_1625560 370 0.29 886 141, 283, 353,424

Chan 2 open 1513_24 1603 20150625_0921508 295 0.3 856 342,141

Chan 3 open 2226_12 1586 20150624_1634384 370 0.29 885 448,338,245

Chan 4 open 2213_39 1583 20150624_1622049 380 0.29 873 345,240

Chan 1 open 1/4 N2 flowrate 2208_35 1581 20150624_1617014 390 0.09 815

Chan 4 open 1/4 N2 flowrate 2210_00 1582 20150624_1618262 390 0.09 814
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