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ABSTRACT

Degenstein, John C. PhD, Purdue University, May 2016. Fast-Pyrolysis of Biomass
Related Model Compounds: A Novel Approach to Experimental Study and Modeling.
Major Professors: Rakesh Agrawal, W. Nicholas Delgass, and Fabio H. Ribeiro.

Fast pyrolysis is a potentially attractive method for converting biomass to a low

energy-density liquid (bio-oil) that can be further upgraded for use as fuel. Cur-

rently there is no agreement concerning the reaction pathways and mechanisms for

pyrolysis of any individual component of biomass. This information is important for

optimization of the fast-pyrolysis process. The work was divided into four areas, 1–

development and validation of analytical methods and reactors, 2–the utilization of

these methods to study pyrolysis of biomass and related models, 3–use of available

biomass conversion pathways to propose potential integration with the existing fuel

and chemicals markets, and 4–a proposed kinetic and multiphase reactor model for

the physical and chemical processes that occur during pyrolysis.

In the first area, mass spectrometric methodology was developed for the determi-

nation and manipulation of the initial products of fast-pyrolysis of carbohydrates and

lignin-related molecules. A fast-pyrolysis probe/linear quadrupole ion trap mass spec-

trometer combination was used to study the quenched initial fast-pyrolysis products,

those that first left the hot pyrolysis surface. The quenched products were ionized in

an atmospheric pressure chemical ionization (APCI) source infused with one of two

ionization reagents, chloroform or ammonium hydroxide, to aid in ionization. Liquid

chromatography-mass spectrometry (LC-MS) methods were also developed and uti-

lized for quantitative characterization of the liquid products from a lab-scale pyrolysis

reactor.
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In the second area, the aforementioned pyrolysis probe / mass spectrometric

methodology was used to study pyrolysis of cellulose (and related models), of lignin

model compounds, and of biomass. Based on several observations, the fast pyrolysis

of cellulose is suggested to initiate predominantly via two competing processes: the

formation of anhydro-oligosaccharides, such as cellobiosan, cellotriosan, and cellopen-

tosan (major route), and the elimination of glycolaldehyde (or isomeric) units from

the reducing end of oligosaccharides formed from cellulose during fast pyrolysis. Sev-

eral products were shown to result entirely from fragmentation of the reducing end of

cellobiose, leaving the nonreducing end intact in these products. These findings are

in disagreement with mechanisms proposed previously.

Also, in the second area, fast-pyrolysis of several guaiacyl β-O-4 lignin model

compounds was studied using both pyroylsis mass spectrometry and pyrolysis gas-

chromatography mass spectrometry. The results indicate that the lignin oligomers

undergo a number of different types of reaction pathways including Maccoll elimina-

tion, homolytic bond dissociation, and elimination of formaldehyde and water.

Also in the second area, a lab-scale, high-pressure, continuous-flow fast-hydro-

pyrolysis and vapor-phase catalytic hydrodeoxygenation (HDO) reactor was tested

with cellulose as a model biomass feedstock while varying temperature, pressure and

gas composition. The major compounds in the liquid from cellulose fast-pyrolysis

(27 bar, 520◦C) are levoglucosan and its isomers, formic acid, glycolaldehyde, and

water, constituting 51 wt%, 11 wt%, 8 wt% and 24 wt% of liquid respectively. The

formation of permanent gases (CO, CO2, CH4) and glycolaldehyde and formic acid

increased with increasing pyrolysis temperature in the range of 480◦C-580◦C in high-

pressure cellulose fast-pyrolysis, in the absence of hydrogen. Our results showed that

high pressures of hydrogen did not have a significant effect on the fast-hydropyrolysis

of cellulose at 480◦C but suppressed the formation of reactive light oxygenate species

like glycolaldehyde and formic acid at 580◦C.

In the third area, over 50% yield of oxygenated hydrocarbons was obtained from

the lignin fraction of biomass using a novel Zn/Pd/C catalyst. Genetically modi-
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fied poplar enhanced in syringyl (S) monomer content yielded only a single prod-

uct, dihydroeugenol. Lignin-derived methoxyphenols can be deoxygenated further to

propylcyclohexane. This effective conversion of lignin enables several newly proposed

conversion pathways to useful fuels and chemicals based on conversion of lignin into

intact hydrocarbons.

In the fourth area, a new kinetic and multiphase reactor model for the physical

and chemical processes that occur during pyrolysis is proposed. This model helps

explain the observed difference in average molecular weight between the pyrolysis

probe / mass spectrometric reactor and reactors with higher gas-phase temperatures.



1

1. INTRODUCTION

With the environmental concerns associated with utilizing petroleum-based resources,

new economically competitive sources of fuels and chemicals based upon renewable

resources are needed. In addition to this, domestic energy security can be enhanced by

utilizing renewable fuel resources, which is particularly important for countries that

produce less fuel than they consume. There are several routes to produce fuels and/or

chemicals from lignocellulosic biomass including gasification together with Fischer-

Tropsch, enzymatic saccharification with fermentation, catalytic fast-pyrolysis, and

fast-pyrolysis combined with downstream hydrodeoxygenation (HDO) among many

others. Fast-pyrolysis, which is defined as the rapid heating of material in the absence

of oxygen up to at least ∼400◦C, is a potentially viable approach to produce both

fuel and chemical precursors from lignocellulosic biomass. Fast-pyrolysis combined

with HDO has been recently demonstrated as a capable process to produce drop-in

hydrocarbons (some of which are in the fuel range) directly from biomass in as little

as 20 seconds.[1]

Fast-pyrolysis also has several other advantages over the other aforementioned

biomass conversion processes. Enzymatic saccharification and fermentation have the

key disadvantages of typically producing ethanol which is not a drop-in fuel, they lose

CO2 sourced from lignocellulosic biomass during cell respiration and they only convert

the cellulosic component of biomass. Furthermore, typical enzymatic saccharification

processes utilize extremely long residence times of ∼72 hours, which increases capital

expenditures. Loss of CO2 during cell respiration is a critical disadvantage which

leads to overall carbon recoveries from biomass that are ∼35%. This means that in

the long term, greater land resources are required to meet the world’s transportation

needs. Indeed, even the ability to utilize large amounts of ethanol is in question
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in the United States since starch-based ethanol has reached the upper limit of the

“blending wall” as a gasoline additive. This means that additional ethanol which is

produced from new sources such as from lignocellulosic biomass has a limited and

uncertain market and must directly compete with the existing starch-based ethanol

producers. Drop-in hydrocarbon fuels, on the other hand, can compete directly with

neat gasoline for which both the market and potential impact are much larger.

Biomass itself is composed of 3 major structural components; lignin, hemicellulose

and cellulose. The structures of these components in planta may vary season-to-

season, plant-to-plant and species-to-species. Cellulose is the largest component by

weight of lignocellulosic biomass and also possesses the simplest polymeric structure,

with between hundreds and thousands of dehydrated glucose building blocks linked

together via glycosidic bonds.[2, 3] Thus, cellulose and related glucosaccharides are

logical starting points for the study of biomass pyrolysis and as of 2016 have been the

subject of numerous pyrolysis studies.[1, 4–11]

Lignin is another major component of biomass, and due to its relatively low

carbon-to-oxygen ratio, contains the most carbon and has the highest energy den-

sity.[12] Furthermore, lignin is composed of monomers with aromatic rings which are

desirable for both fuel and chemicals applications. Detailed studies of pyrolysis of

lignin are still lacking due to the use of either model compounds that are too simple

[13], extracted from biomass [14] or with a structure that is not the same as any link-

age commonly found in plants [15]. Extracted lignin is not a good model for lignin

in planta because it has been shown that the extraction process breaks many of the

common β-O-4 linkages that are present in biomass.[16]

Lastly, hemicellulose is a cross linked polymeric network of 5 and 6-carbon sugars

which are mainly xylose but also contain arabinose, glucose and galactose.[17] Studies

concerning pyrolysis of hemicellulose are also lacking due to the use of extracted hemi-

cellulose [18] and a lack of studies of pyrolysis of the related small oligomeric sugars,

as was undertaken with cellulose/glucosaccharides. It is not known if the extraction

process destroys the hemicellulose structure as has been shown with lignin, but the
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substructural complexity of hemicellulose does indicate the need to perform more

detailed studies of models that contain the different substructural features present in

planta.

1.1 Research Objectives

Pyrolysis has been an active area of research for several decades, and many re-

searchers have studied pyrolysis of cellulose in particular. Despite this enormous

literature of prior experimental and some recent computational results we sought to

learn more via both a novel experimental approach, but also in direct conjunction

with theory. Our novel experimental approach has thus far involved use of an appa-

ratus which quickly quenches and analyzes the products of pyrolysis. Our hypothesis

is that being able to analyze volatile products of any size will allow us to gain insights

into reaction pathways and mechanisms which heretofore were not possible. On top

of this, we have utilized this methodology to readily ascertain the fate of isotopic

labels selectively incorporated into model compounds.

1.2 Thesis Objectives

The primary goal of the research in this dissertation centers around furthering

understanding pyrolysis of the various aforementioned components of biomass via an

approach that involves the heavy use of surrogate model compounds with some of

the same features as the in planta components. In Chapter 2 the development of

the original methods for pyrolysis - mass spectrometry are described in detail as well

as pyrolysis data from pyrolysis of cellobiose (a dimeric model for cellulose). Next,

in Chapter 3 results of fast-hydropyrolysis and hydrodeoxygenation of cellulose was

attempted using some initial candidate catalysts, and the lab-scale reactor system

was described in detail. In Chapters 4 and 5 detailed study of a range of cellulose

model compounds was performed, combining theory, experimental results and isotopic

labeling. In Chapters 6 and 7, pyrolysis of several β-O-4 lignin model compounds is
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reported using pyrolysis - mass spectrometry (along with a related new pyrolysis -

mass spectrometry method) and pyrolysis - GC/MS in each chapter respectively. In

Chapter 8 a new technology for extracting and upgrading lignin is reported, along

with pyrolysis - mass spectrometry of the initial biomass and residues and a vision

for using lignin in the existing fuel and chemicals markets. Lastly, in Chapter 9 a

proposed kinetic multiphase model for pyrolysis of glucosaccharides is described.
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2. ON-LINE MASS SPECTROMETRIC METHODS FOR THE

DETERMINATION OF THE PRIMARY PRODUCTS OF FAST PYROLYSIS OF

CARBOHYDRATES AND FOR THEIR GAS-PHASE MANIPULATION

2.1 Introduction

With declining light petroleum resources along with various environmental con-

cerns of petroleum based energy, new fuel sources are needed.[19–21] Fast pyrolysis,

the rapid heating of material in the absence of oxygen, is a potentially viable approach

to produce fuels along with other valuable chemicals from lignocellulosic biomass.[2,

20–23] This is due to the ability of pyrolysis to break down vast polymers into smaller,

volatile, carbon containing molecules that retain most of the energy-rich chemical

bonds.[24, 25] Cellulose is the most abundant and simplest polymer in biomass, con-

sisting of hundreds to thousands of dehydrated glucose building blocks (molecular

weight (MW) 162 Da) linked together via glycosidic bonds.[2, 3] Thus, cellulose and

related carbohydrates are a logical starting point for the study of biomass pyrolysis.

Most current carbohydrate fast pyrolysis reactors produce so-called bio-oils that

are viscous liquids with several detrimental properties that prevent them from being

used as a fuel, including their tendency to degrade over time.[2, 19, 20, 26–30] Bio-oils

are complex, oxygen-rich mixtures with roughly half the heating value of gasoline.[26,

28] Hence, they require catalytic upgrading. The upgrading process is hindered by

the complexity of bio-oils as well as their compositional dependence on the time and

temperature that the primary pyrolysis products experience within the reactor.[29, 31,

32] The first compounds that leave the surface of the pyroprobe ribbon are considered

here as the primary products.

To better understand the reactor parameters that lead to the complexity of bio-

oils, the primary products of carbohydrate pyrolysis need to be determined. Further,
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information on how they react within a pyrolysis reactor is also necessary. The fast

pyrolysis reactors used to study carbohydrates have residence times that range from

hundreds of milliseconds up to several seconds.[33, 34] Due to the length of these re-

action times and the condensation of the products into a liquid oil, which is known to

degrade over time, the final liquid pyrolysis products no longer resemble the primary

products since they have undergone secondary gas-phase and solution reactions.[2,

32, 35] Previously, in order to address this problem, fast-pyrolysis experiments have

been coupled with gas chromatography/mass spectrometry (GC/MS) to carry out

on-line studies of primary pyrolysis products.[4–7, 18, 36, 37] Based on these and

other studies, levoglucosan is widely believed to be the major primary product of cel-

lulose fast pyrolysis although some studies suggest formation of other small molecules

concurrently with the formation of levoglucosan.[4, 7, 38, 39] A serious limitation of

the GC/MS approach is that it only allows the determination of relatively volatile

and thermally stable compounds. Carbohydrates larger than a single monomeric unit

(MW 162 Da) cannot be detected by GC/MS without derivatization.[27, 38, 40]

In order to address above problems, a different on-line mass spectrometric anal-

ysis method, without a GC, is needed. Further, this analytical method needs to be

coupled with a device capable of very fast pyrolysis (preferably with up to 20,000◦C

× s−1 heating rate) in order to be able to observe and study the primary products.

To achieve these goals, two fast pyrolysis/tandem mass spectrometry systems were

devised, one to determine the primary products of carbohydrate fast pyrolysis and

another one to study how changes in temperature and residence time change the ex-

tent of secondary reactions of the primary products in order to simulate a pyrolysis

reactor. The results obtained using both systems for model compounds as well as

cellobiose are described below.
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2.2 Experimental Section

2.2.1 Materials

Hydroxyacetone (technical grade 90%; CAS 116-09-6), furfural (99%, CAS 98-01-

1), 5-hydroxymethylfurfural (99%, CAS 67-47-0), levoglucosan (99%, CAS 498-07-7),

chloroform (ChromasolvPlus for HPLC, 99.9% with amylene stabilizer, CAS 67-66-

3), and glycolaldehyde dimer (CAS 23147-58-2) were purchased from Sigma Aldrich.

Cellobiosan (>95%, CAS 35405-71-1) and cellobiose (∼98%, CAS 528-50-7) were

purchased from Carbosynth, methanol (Optima LC/MS ∼99.9%, CAS 67-56-1) was

purchased from Fisher Scientific, ammonium hydroxide (28-30% as NH3, CAS 1336-

21-6) was purchased from Mallinckrodt Chemicals, cellotriosan (98%, CAS 78797-

67-8) was purchased from LC Scientific, and compressed nitrogen cylinder (∼99.9%,

CAS 7727-37-9) was purchased from Indiana Oxygen. All chemicals except for the

glycolaldehyde dimer were used without further modification. Glycolaldehyde dimer

was converted to monomers (CAS 141-46-8) via dissolving in water and heating at

65◦C for 10 minutes.[41]

2.2.2 Mass Spectrometry

Detection and characterization of cellobiose fast pyrolysis products was performed

using a Thermo Scientific (Waltham, MA) LTQ linear quadrupole ion trap (LQIT)

mass spectrometer coupled with a Finnigan Surveyor Liquid Chromatograph (LC)

MS Pump Plus. High resolution data to determine elemental compositions were

collected using a 7 Tesla Thermo Scientific LTQ-FT-ICR. Solutions for direct injection

experiments of model compounds were made at a concentration of 10-5 M in 3 mL

methanol : water (50 : 50 v/v) with either 200 µL of chloroform for negative ion

mode chloride attachment or 200 µL ammonium hydroxide for positive ion mode

ammonium attachment. The solutions were pumped into an APCI source via the

APCI probe at a rate of 3 µL/min with a solution of methanol : water (50 : 50

v/v) tee-infused from the LC at a rate of 100 µL/min. During pyrolysis experiments,
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either chloroform : methanol (50 : 50 v/v) or ammonium hydroxide : water (50 :

50 v/v) solution was pumped into the APCI source via the APCI probe at a rate of

10 µL/min with a solution of methanol : water (50 : 50 v/v) tee-infused from the

LC at a rate of 100 µL/min. The instrumental variables of the LQIT were set to the

following values for all experiments: discharge current 5.0 µA, vaporizer temperature

300◦C, sheath gas (N2) flow 40 arbitrary units, auxiliary gas flow (N2) 10 arbitrary

units, sweep gas flow (N2) 0 arbitrary units, capillary temperature 250◦C, capillary

voltage -1 V, and tube lens voltage -105 V. Collisionally activated dissociation (CAD)

experiments used an ion isolation window of ± 2 Daltons (Da), with the normalized

collision energy ranging from 5 up to 30 arbitrary units and activation time being 30

ms. Data collection and processing was carried out using Xcalibur 2.1 software.

2.2.3 Pyroprobe

All pyrolysis experiments were performed using a Pyroprobe 5200 purchased from

CDS Analytical (Oxford, PA). The pyroprobe uses a resistively heated platinum rib-

bon (2.1 mm x 35 mm x 0.1 mm) with the ability to heat at rates up to 20,000◦C ×

s−1. Based on previous work in other laboratories, platinum is not acting as a catalyst

during the pyrolysis experiments.[42, 43] Roughly tens to hundreds of micrograms of

sample were loaded onto the platinum ribbon and held onto the surface via electro-

static attractions. This method of loading of the ribbon resulted in a submonolayer

of sample on its surface. This was done to ensure rapid and uniform heat transfer to

all particles. The ribbon was heated up to 600◦C at a rate of 1,000◦C × s−1 resulting

in a heating time of 0.6 s. The pyroprobe was maintained at 600◦C for 1 s. This

final temperature and rate of temperature increase were selected due to minimal char

formation (optical observation) under these conditions.
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2.2.4 Determination of the Primary Products of Fast Pyrolysis of Cellobiose

The tip on the probe described above was inserted into the ionization chamber of

the LQIT through a home-built adaptor that was placed into the unused atmospheric

pressure photoionization (APPI) port. This adaptor positioned the platinum ribbon

approximately 5 mm in front of and 5 mm below the skimmer cone/inlet of the LQIT.

A diagram of this setup is shown in Figure 2.1. Once pyrolysis occurred, the evapo-

rated products were immediately diluted via diffusion into the 2 L ionization chamber

and subsequently quenched via collisions with nitrogen gas (at about 100◦C), which

prevented secondary reactions. The products were ionized and characterized by multi-

stage tandem mass spectrometry experiments. For ammonium attachment in positive

ion mode, the average standard deviations of the product ions’ relative abundances

were about 7%. For chloride attachment in negative ion mode, the average standard

deviations of the product ions’ relative abundances were about 5%.

2.2.5 Apparatus for Exploring the Reactivity of the Primary Products of Fast Py-
rolysis

To explore the secondary reactions of the primary pyrolysis products, a home-built

aluminum flow tube was constructed to prevent immediate quenching of the primary

products. The tip of the pyroprobe was placed in the end of the heated aluminum

tube. Preheated nitrogen gas was passed through the flow tube and over the platinum

ribbon to sweep the products though the flow tube and into the ionization zone of

the LQIT where they were quenched and ionized. A diagram of this setup is also

shown in Figure 2.1. To adapt the instrument for the placement of the flow tube

into the ionization area, the window in the front door of the ionization chamber was

replaced with a piece of ceramic with a hole in the center that had the same diameter

as the flow tube. The flow tube and nitrogen gas were kept at the same temperature

by using a temperature control system. This configuration allowed the study of the

effects of temperature and residence time on the reactions of the primary products
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Figure 2.1. A cut away diagram of the ionization chamber in front of the
LQIT. The pyroprobe (in blue) is shown in both the direct pyrolysis (left)
orientation and within the flow tube (right). The direction of gas flow is
indicated by the dashed arrow.

within the flow tube. The residence times were estimated by determining the time it

takes for the gas with a known flow rate to pass through the flow tube with a known

internal volume.

2.3 Results and Discussion

As discussed above, in order to develop methodology for the determination of the

primary products of fast pyrolysis of carbohydrates, and to examine their secondary

reactions, two pyrolysis probe setups were coupled with a LQIT mass spectrometer.

In the setup for analysis of the primary pyrolysis products, the effluent from the

pyroprobe was quenched and ionized by APCI immediately after evaporation into

the ion source, followed by analysis of the ions in the LQIT mass spectrometer. In
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the other setup, the pyrolysis products were provided time in a flow tube to undergo

secondary and tertiary reactions before quenching and determination of the products.

Six model compounds commonly formed during carbohydrate pyrolysis,[3, 44]

glycolaldehyde, hydroxyacetone, furfural, 5-hydroxymethylfurfural, levoglucosan, and

cellobiosan, were first examined to select an appropriate APCI ionization method for

the pyrolysis products. Negative ion mode APCI doped with chloroform has been

reported to create chloride anions that readily add to carbohydrates with nearly equal

efficiencies and without extensive fragmentation.[45–48] Hence, each of the six model

compounds was introduced individually into the APCI source via direct injection

while using chloroform dopant. The results obtained using direct injection show that

although this method formed stable chloride anion adducts with no fragmentation for

most compounds, it formed deprotonated hydroxyacetone instead of a chloride anion

adduct and did not ionize glycolaldehyde and furfural.

Since negative ion mode chloride anion attachment could not be used to ion-

ize all of the model compounds, a complementary ionization technique was tested.

Ammonium hydroxide dopant in positive ion mode chemical ionization and APCI

is known to form stable ammonium adducts with carbohydrate residues and to pro-

duce either protonated molecules or molecular ions of related low molecular weight

molecules.[48–50] Hence, each of the six model compounds was individually intro-

duced into the APCI source both via direct injection and by vaporizing them off the

heated pyrolysis probe while using ammonium hydroxide dopant. This approach was

found to ionize all six model compounds without fragmentation. However, the dif-

ferent analytes produced different types of ions (ammonium adducts, molecular ions

and/or protonated molecules) when they were introduced via direct injection. The

situation was better when the compounds were evaporated from the heated pyroprobe

since then the ammonium adducts dominated for most model compounds. However,

furfural, glycolaldehyde and 5-hydroxymethylfurfural still formed more than one type

of ion and hydroxyacetone only produced a molecular ion. It is important to note

that during heated pyroprobe introduction of glycolaldehyde, the ionized dimer was
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observed for both ionization methods, indicating that the method that was used to

break down the glycolaldehyde dimer did not cause complete dissociation or reasso-

ciation occurred on the pyroprobe as the solvent evaporated. This may be the reason

for the inability to observe glycolaldehyde in some of the experiments.

Finally, an equimolar mixture of all six model compounds (the concentration

of glycolaldehyde was not exactly known due to the incomplete conversion of its

dimer to glycolaldehyde) was injected into the ion source and analyzed by using both

ionization methods to determine whether the detection of some of the compounds

may be hindered by the presence of compounds with greater ionization efficiencies.

The mass spectrum obtained using positive ion mode with ammonium hydroxide

dopant (Figure 2.2) shows that all six compounds can be observed if they are present

in roughly equal proportions. Interestingly, only 5-hydroxymethylfurfural produced

more than one ion (it produced two). The response factors of the compounds varied

widely.

Chloride attachment APCI did not ionize glycolaldehyde, hydroxyacetone, and

furfural in the mixture introduced via direct injection or by the heated pyroprobe. 5-

Hydroxymethyl-furfural, levoglucosan, and cellobiosan produced solely chloride anion

adducts. Levoglucosan and cellobiosan were evaporated and ionized with almost

equal efficiency for both introduction methods (Figure 2.3). 5-Hydroxymethylfurfural

yielded a very low signal due to its low chloride anion affinity (it contains only one

hydroxyl group).

Once it was realized that the ammonium hydroxide dopant method can be used

to ionize all six model compounds but not with equal response factors and that the

chloroform dopant method yields semi-quantitative information for carbohydrates but

not for smaller model compounds, both ionization methods were used to examine the

primary products of fast pyrolysis of cellobiose by using the direct pyrolysis setup

described above. Surprisingly, all but a few pyrolysis products were ionized by both

methods (Figure 2.4). All compounds larger than levoglucosan demonstrated 100%

ammonium or chloride attachment. Levoglucosan showed both adducts as well as
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Figure 2.2. An APCI/ammonium hydroxide positive ion mass spectrum
of an equimolar mixture of six model compounds introduced via direct
injection (the molar ratio of glycolaldehyde is estimated to be between
0-2 due to the unknown extent of glycolaldehyde dimer breakdown). All
model compounds were ionized but not equally efficiently.

protonated (positive ion mode) and deprotonated molecules (negative ion mode).

The compounds smaller than levoglucosan did not show adducts but instead were

either protonated (positive ion mode) or deprotonated (negative ion mode).

Several primary products were detected for fast pyrolysis of cellobiose (Figure 2.4).

Their elemental compositions were determined by using high-resolution experiments.

Many of these products arise from losses of water (18 Da), formaldehyde (30 Da) and

glycolaldehyde (60 Da) in various combinations. Hence, although water, formaldehyde

and glycolaldehyde were not efficiently detected in these experiments, their formation

can be inferred from the reactions observed. In addition to these compounds, among

the products observed, only levoglucosan (MW 162) and 5-hydroxymethylfurfural

(MW 126) have been reported in the literature as major final fast pyrolysis products

of cellobiose.[4, 7] This is not surprising since most previous studies have employed
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Figure 2.3. An APCI/chloroform negative ion mass spectrum of an
equimolar mixture of six model compounds introduced via the heated py-
roprobe (the molar ratio of glycolaldehyde is estimated to be between 0-2
due to the unknown extent of glycolaldehyde dimer breakdown). Three
model compounds were not ionized.

GC-MS analysis. For example, the largest molecules observed in such previous stud-

ies were levoglucosan and its isomers.[4, 7] Hence, it is not unexpected that several

products that had not been previously reported were observed to be present in large

quantities (Table 2.1), including glucose, cellobiosan and cellobiose that has lost gly-

colaldehyde or an isomeric molecule. The most abundant product with an elemental

composition of C8H14O7 is likely to have the structure shown in Figure 2.4. This

structure is proposed due to the similarity of the ionized molecule’s CAD mass spec-

trum to that published for an authentic ion in a previous study.[51] Due to the

semi-quantitative nature of the chloride attachment method,[46] approximate rela-

tive quantitation can be achieved for molecules with at least two hydroxyl groups

by considering the relative abundances of their chloride adducts (Table 2.1). The

relative molar percent for the molecules that do not form chloride anion adducts was
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Figure 2.4. Mass spectra of the primary products of fast pyrolysis of
cellobiose ionized using ammonium attachment in positive ion mode (top)
and chloride attachment in negative ion mode (bottom). All elemental
compositions were determined using high resolution data collected in an
LQIT/FT-ICR. Ionized levoglucosan has m/z values of 163 and 180 in the
top spectrum and m/z values of 161 and 197 in the bottom spectrum. All
ions with m/z values lower than 170 correspond to protonated molecules
in the top spectrum and deprotonated molecules in the bottom spectrum,
and hence have m/z values that differ by two units. Protonated C4H4O2

molecule (m/z 85) is only seen in the top spectrum, while deprotonated
C5H6O3 molecule (m/z 113) is only seen in the bottom spectrum. Other-
wise, the spectra show the same ionized molecules. The most abundant
product’s (C8H14O7) proposed structure is shown in the top spectrum.

estimated (Table 2.1) using relative ionization efficiencies for ammonium cation at-

tachment determined for model compounds under the same conditions as in pyrolysis

experiments. Deprotonated 5-hydroxymethylfurfural (m/z 127; identified based on

the identical CAD mass spectra measured for the unknown ion and the deprotonated

authentic 5-hydroxymethylfurfural) is considered first.
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Table 2.1.
Approximated average relative molar abundances of the primary products
of fast pyrolysis of cellobiose normalized to the most abundant product
(with standard deviations based on three experiments).

MW
Elemental

Composition

Average

Relative Molar

Abundance

(%)

84 C4H4O2 8 ± 7

114 C5H6O3 Not Estimated

126 C6H6O3 7 ± 3

144 C6H8O4 13 ± 9

162 (no adduct

formation)
C6H10O5 Not Estimated

162 C6H10O5 10 ± 4

180 C6H12O6 70 ± 9

222 C8H14O7 100 ± 0

252 C9H16O8 11 ± 3

264 C10H16O8 17 ± 4

282 C10H18O9 61 ± 19

324 C12H20O10 20 ± 3

342 C12H22O11 34 ± 6
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Based on the mass spectrum shown in Figure 2.2, the ionization efficiency of 5-

hydroxymethylfurfural is 75 ± 1% of that of cellobiosan. To correct for this bias, the

relative abundance measured for 5-hydroxymethylfurfural formed in fast pyrolysis of

cellobiose and ionized by protonation upon ammonium APCI (ion of m/z 127; Fig-

ure 2.4, top) was multiplied by 1.33, resulting in a corrected relative molar abundance

of 15 ± 6%. This corrected relative molar abundance of 5-hydroxymethylfurfural was

then divided by the relative abundance measured (using the same approach) for cel-

lobiosan formed in pyrolysis of cellobiose in order to get the molar ratio of these

two pyrolysis products: 0.3 ± 0.1 moles of 5-hydroxymethylfurfural for every mole

of cellobiosan. The molar ratio (0.3) was then correlated back to the molecules that

could be ionized by chloride attachment by multiplying it by the relative abundance

measured by using chloride attachment mass spectrometry for cellobiosan produced

upon fast pyrolysis of cellobiose (26 ± 3% when taking into account the 37 Cl isotope)

to obtain a value 7 ± 3%. Hence, the approximate relative molar abundance of 5-

hydroxymethyl furfural was found to be 7 ± 3% relative to the abundance of the ions

of m/z 257 (most abundant ions in the bottom spectrum in Figure 2.4). Equation 1,

given in supplementary information, illustrates how the calculation was carried out.

Based on their measured elemental compositions, the ions of m/z 145 and m/z 85

(Figure 2.4, top), derived from molecules formed upon fast pyrolysis of cellobiose and

ionized by ammonium attachment, are furan derivatives. The ionization efficiencies

of these molecules were assumed to be the same as for 5-hydroxymethylfurfural and

their measured relative abundances were corrected in the same way as that of 5-

hydroxymethylfurfural. The relative abundances of the deprotonated molecules of

m/z 161 and 113 (negative ion mode) are not included in Table 2.1. The former is an

isomer of levoglucosan (that does not form a chloride adduct like levoglucosan), not a

furan derivative, and neither one is a chloride adduct; hence, it is not possible at this

time to reasonably estimate their ionization efficiencies. The approximate relative

abundances of the most abundant primary products of fast pyrolysis of cellobiose are

listed in Table 2.1.
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In order to determine the types of secondary reactions that may be expected for

the primary fast pyrolysis products of cellobiose, it was pyrolyzed inside the flow tube

(described in detail in the Experimental Section). The primary products of cellobiose

were allowed to react for 2 s and 11 s at two different temperatures (300◦C and 400◦C).

Similar product distributions were measured using both ionization methods. Hence,

only results obtained using positive ion mode ionization are discussed below. The cor-

responding negative ion mode ionization mass spectra are presented in Figure A.1.

Figure 2.5 shows that most of the primary fast pyrolysis products of cellobiose react

away, ultimately producing anhydro-oligosaccharides up to cellopentosan or an isomer

under the conditions used. The ability of anhydrosugars to polymerize is not a new

phenomenon.[52–56] The most abundant primary product of cellobiose with the ele-

mental composition C8H14O7 (its ammonium adduct has the m/z value of 240) reacts

away rapidly. Hence, it is not unexpected that this product has not been reported

in the literature. These findings demonstrate that a method other than GC/MS is

needed to detect many of the products formed upon reactions of the primary pyrolysis

products of cellobiose (and other carbohydrates). These results also suggest that the

larger anhydro-oligosaccharides (cellotetrosan, cellopentosan, etc., or their isomers)

that have been detected in bio-oils via HPLC analysis are likely, to some extent, to

be formed via polymerization reactions of the primary fast pyrolysis products as op-

posed to incomplete breakdown of the pyrolyzed carbohydrate.[40] This hypothesis

was confirmed by measuring CAD mass spectra for selected fragment ions of authen-

tic cellotriosan (MW 486 Da) after ionization by chloride attachment. These CAD

mass spectra were compared to those measured for the analogous fragment ions of

the unknown trimer pyrolysis product formed from cellobiose within the flow tube

(m/z 521; Figure 2.5). The MS2 mass spectra of the chloride attached cellotriosan

and unknown trimer (m/z 521) display solely HCl loss resulting in fragment ions of

m/z 485. The ions of m/z 485 correspond to the deprotonated cellotriosan and un-

known trimer molecules. They were isolated and subjected to further CAD to obtain

the mass spectra presented in Figure 2.6, left. The deprotonated trimer produced
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several fragment ions of various m/z values that are not produced during the CAD of

authentic deprotonated cellotriosan (i.e., ions of m/z 467, 365, and 347) but both pro-

duced an abundant fragment ion of m/z 323 corresponding to the loss of a molecule

with a MW of 162 Da. The fragment ions of m/z 323 were isolated and subjected to

CAD to produce the spectra in Figure 2.6, right. Again, several new fragment ions

were produced upon CAD of ions of m/z of 323 formed from the unknown trimer

compared to those produced from authentic cellotriosan (i.e., ions of m/z 305, 275,

and 203). From the CAD mass spectra presented in Figure 2.6, the unknown trimer

is concluded to be a mixture of isomers, including cellotriosan.

Figure 2.5. Mass spectra collected after the primary products of fast
pyrolysis of cellobiose were allowed to undergo reactions for 2 s at 300◦C
(top), 2s at 400◦C (middle) and 11 s at 400◦C (bottom) and ionized using
ammonium attachment in positive ion mode. All elemental compositions
were determined using high resolution data collected in an LQIT/FT-
ICR. All ions with m/z values lower than 170 correspond to protonated
molecules.
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Figure 2.6. CAD mass spectra measured for authentic cellotriosan ion-
ized via chloride attachment in negative ion mode and the unknown trimer
(ionized in the same manner) formed upon pyrolysis of cellobiose in the
flow tube. The chloride attached cellotriosan and trimer (m/z 521) were
isolated and subjected to CAD which resulted in HCl loss, forming frag-
ment ions of m/z 485, corresponding to the deprotonated molecules of
cellotriosan and the unknown trimer. These deprotonated molecules were
subjected to CAD to obtain the mass spectra shown top left and bottom
left, respectively. Both ions produced an abundant fragment ion corre-
sponding to the loss of a molecule with MW 162 Da to yield an ion of m/z
323. The fragment ions of m/z 323 were isolated and subjected to CAD to
produce the mass spectra shown top right and bottom right, respectively.

2.4 Conclusions

Two fast pyrolysis/tandem mass spectrometry systems were devised, one to de-

termine the primary products of fast pyrolysis of carbohydrates and another one

to study how changes in temperature and residence time change the extent of sec-

ondary reactions of the primary products in order to simulate a pyrolysis reactor.

Two complementary ionization methods were chosen to detect the pyrolysis prod-

ucts: APCI doped with chloroform in the negative ion mode and APCI doped with

ammonium hydroxide in the positive ion mode. Examination of an equimolar mixture



21

of six model compounds commonly produced during carbohydrate pyrolysis (glyco-

laldehyde, hydroxyacetone, furfural, 5-hydroxymethylfurfural, levoglucosan, and cel-

lobiosan) demonstrated that the positive ion mode APCI doped with ammonium

hydroxide allows the detection of all these compounds but they do not have equal

response factors. On the other hand, examination of the same mixture by using

the negative ion mode APCI method revealed roughly equal ionization efficiency for

compounds with at least two hydroxyl groups, consistent with previous studies for

this method.[46] Hence, this ionization method allows semiquantitative analysis of

carbohydrates produced during pyrolysis of oligosaccharides. However, this method

cannot be used to detect pyrolysis products with fewer than two hydroxyl groups. A

rough estimate of the relative molar abundances of the pyrolysis products that did

not form chloride anion adducts was obtained using ionization efficiencies of model

compounds determined using ammonium attachment in positive ion mode or chloride

attachment in negative ion mode.

The fast pyrolysis/MS systems described above were used to examine fast pyrol-

ysis of cellobiose. The primary fast pyrolysis products of cellobiose were determined

to consist of only a handful of compounds that quickly polymerize to form anhydro-

oligosaccharides when allowed to react at high temperatures for an extended period

of time. The primary and secondary fast pyrolysis products of cellobiose include com-

pounds that cannot be detected using GC/MS analysis that was employed in many

previous studies.[7] These findings demonstrate that a method other than GC/MS is

necessary to detect the primary, secondary and possibly also final products of fast

pyrolysis of carbohydrates. Further, the results suggest that the complexity of bio-oils

may arise, in part, from a variety of polymerization reactions of the primary pyrolysis

products. Comparison of the CAD mass spectra measured for authentic deprotonated

cellotriosan and the deprotonated unknown trimer formed in flow tube pyrolysis of

cellobiose suggests that along with the formation of cellotriosan, other isomers are

also formed in the flow tube, likely due to polymerization of the primary products.

It should be noted here that while previous studies report that the composition of
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bio-oil can be altered by changing process parameters (such as residence time), our

work indicates that the complexity of the product distribution is generally lower at

lower residence times and temperatures.[4, 40] Finally, the pyrolysis/MS methods de-

veloped here require only micrograms of sample and provide a fast approach for the

examination of the influence of pyrolysis conditions and different feedstocks on the

primary and secondary pyrolysis products of carbohydrates.

2.5 Acknowledgements

Reprinted with permission from M.R. Hurt, J.C. Degenstein, P. Gawecki, D.J.

Borton II, N.R. Vinueza, L. Yang, et al., On-Line Mass Spectrometric Methods for

the Determination of the Primary Products of Fast Pyrolysis of Carbohydrates and

for Their Gas-Phase Manipulation, Analytical Chemistry 85 (2013) 10927–10934.

doi:10.1021/ac402380h. Copyright 2013 American Chemical Society.



23

3. HIGH-PRESSURE FAST-PYROLYSIS, FAST-HYDROPYROLYSIS AND

CATALYTIC HYDRODEOXYGENATION OF CELLULOSE: PRODUCTION OF

LIQUID FUEL FROM BIOMASS

3.1 Introduction

Traditionally, liquid transportation fuels have been produced from fossil-based

petroleum sources. In the context of a petroleum-deprived future, it is imperative

to look for sustainable carbon sources in conjunction with more efficient process

pathways for producing high-energy-density liquid fuels. Sustainably available (SA)

biomass comprised of crop and forest residues, agriculture and municipal waste, etc.

is one such carbon source for producing liquid fuels to meet the large demand for

transportation.[24, 57] Agrawal et al. suggested a sustainable H2Bioil process for con-

version of biomass to liquid fuels, where biomass is co-fed to a fast-hydropyrolysis and

hydrodeoxygenation (HDO) reactor system along with H2 produced from a carbon-

free energy source like solar, to produce liquid fuels in a single step process.[58–60]

This process seems practically realizable because of its modest estimated hydrogen

consumption of 0.11 kg H2/L oil, reasonably high estimated carbon efficiency (∼70%)

and estimated energy recovery (215 ege ton−1).[24] This process is also economically

attractive at a break-even crude oil price in the range of $ 99/bbl to $ 116/bbl, based

on different economic scenarios.[61] Clearly, experimental demonstration of H2Bioil

based processes could have a significant impact on the transportation sector, which

is primarily dependent on liquid fuels. This paper presents an experimental approach

for the practical realization of the H2Bioil process.

Fast-pyrolysis involves the rapid heating of biomass at near atmospheric pressure

in an inert gas environment to temperatures of ∼500◦C and subsequent condensation

of the vapors to form a liquid bio-oil.[62] This bio-oil is a high oxygen content, acidic
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liquid product with energy content similar to that of the feed biomass and requires

further hydroprocessing under severe conditions to be upgraded to transportation

grade fuel.[19, 28] As an alternative to this two step approach, the H2Bioil process

is based on continuous-flow biomass fast-hydropyrolysis, which is the rapid heating

of biomass at heating rates >100◦C/s in the presence of high pressure hydrogen, to

produce hydropyrolysis vapors which are upgraded in the vapor phase by catalytic

HDO and quenched to form a high-energy-density, deoxygenated liquid product that

can supplement petroleum-based liquid fuels or potentially be used directly as a fuel.

This conversion process is envisioned to operate at high hydrogen partial pressures

(up to 50 bar or higher) so the HDO reaction rates would be higher due to increased

availability of hydrogen at high partial pressures.[63] Vapor phase catalytic upgrading

is chosen to avoid secondary reactions during condensation and revaporization of the

pyrolysis vapors.[63]

In the literature, there have been no systematic studies in a continuous-flow high-

pressure lab-scale reactor for understanding the effect of process parameters and cat-

alysts on fast-hydropyrolysis and direct downstream HDO. There have been some

experimental demonstrations of fixed bed batch hydropyrolysis[64–68] and batch pres-

surized pyrolysis.[69–72] These studies have shown preliminary proof of the changes

in pyrolysis products with high inert pressures and the deoxygenation capability of

high pressures (>100 bar) of H2 in presence of a suitable catalyst. Pindoria et al.[73]

and Rocha et al. showed that a two stage approach combining hydropyrolysis and

catalytic upgrading could lead to bio-oils with relatively low oxygen content in the

presence of an appropriate catalyst in the second stage.[74] Zhang et al. and Meesuk

et al. used fluidized bed reactors with batch mode biomass feed to show that pres-

ence of hydrogen atmosphere increased water content in the bio-oils and presence of

a nickel catalyst improved deoxygenation, respectively.[75, 76] Work by Melligan and

coworkers, with a micro-scale batch setup, showed that biomass hydropyrolysis along

with catalytic upgrading increased yields of aromatic hydrocarbons.[77] Catalytic

fast-pyrolysis, using fluidized bed and circulating fluidized bed reactors, with zeolite
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catalysts leads to bio-oils with relatively low (∼21wt%) oxygen content with ∼25%

carbon recovery as aromatics and light olefins.[78, 79] It has been proposed, how-

ever, that supplementary hydrogen would be required to further improve the carbon

recovery and deoxygenation.1 There have been studies on continuous-flow catalytic

hydropyrolysis, which have claimed the production of a fungible hydrocarbon prod-

uct from biomass using a fluidized bed reactor, but they do not use detailed liquid

product composition characterization to look at the effects of high pressure (up to 50

bar), presence of hydrogen, hydropyrolysis temperature and catalysts.[80, 81]

In this study, we present the design and construction of a continuous-flow high-

pressure reactor for fast-hydropyrolysis followed by a downstream vapor-phase cat-

alytic HDO reactor. We also present results from experiments that were designed to

systematically understand the effect of temperature on fast-pyrolysis, the presence

of hydrogen in fast-hydropyrolysis, reactor performance with reaction pressure (25

bar and 50 bar), and the effect of different candidate downstream HDO catalysts.

We have developed and used a liquid-chromatography-mass spectrometry (LC-MS)

method for detailed characterization and quantitative analysis of the liquid prod-

ucts from the experiments. Cellulose, which constitutes about 35-50% of the whole

lignocellulosic biomass,[2] was used as a biomass model compound for all the experi-

ments reported in this paper. This reactor system has been successfully tested with

real biomass feedstocks as well, but, cellulose as a feedstock produces a simpler set

of pyrolysis products as compared to whole biomass, which aided in the systematic

understanding of the effect of different reaction conditions on the products.

3.2 Experimental Methods

3.2.1 Reactor Design

The reactor system designed, built and used for this study is shown in Figure 3.1.

The process flow diagram of the setup is shown in supplementary information (SI)

Figure B.4. This is a continuous-flow, lab-scale, high-pressure fast-hydropyrolysis
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(FHP) reactor with a downstream vapor-phase, fixed-bed catalytic hydrodeoxygena-

tion (HDO) reactor. This reactor system was designed for use at high temperatures

(up to 650◦C for FHP reactor and up to 500◦C for the HDO reactor) and high-

pressures (up to 100 bar) with the capability of operating in an inert (He or He

plus N2) or hydrogen environment. The materials of construction are stainless steel

grades 316, 316H and 324. All the connections that operate at high temperature

are made with standard American Society of Mechanical Engineers (ASME) flanges

rated above at least 100 bar at the highest operating temperature of the component.

The reactor design is based on ASME B16.5 flange standards and B31.3 process pip-

ing codes. Hydrogen safety systems (Figure B.4) like hydrogen detectors, automatic

shut-off valves, redundant pressure relief and emergency exhaust were included in the

reactor system for safe use of high-pressure hydrogen.

The gas/vapor residence time in the fast-hydropyrolysis reactor is about 2-5 sec-

onds and the overall residence time for the complete reactor system is about 15-35

seconds. Biomass or model biomass feedstock, such as cellulose, is fed to the reactor

system using an in-house-built high-pressure biomass screw feeder capable of feeding

at the rates of 0.1-20 g × min−1. The feedstock is entrained in a flow of hydrogen

and inert gases, with a total gas flow rate of ∼30-40 std. L × min−1, for feeding into

the FHP reactor. The FHP reactor is an ablative cyclone-type pyrolysis reactor that

is specially designed and optimized for high-pressure operation. Design factors for

the cyclone reactor such as vapor residence time, particle residence time, reactor di-

mensions, inlet location and angle were optimized for best reactor performance based

on the testing of a series of prototype reactors and work reported in the literature

for near atmospheric-pressure fast-pyrolysis of biomass.[82] In the FHP reactor, the

char is collected below the reactor in the char collector, and the vapors exit from the

top of the reactor. The vapors then move through a transfer section to the down-

stream fixed-bed vapor-phase catalytic HDO reactor where they are upgraded. The

upgraded vapor products are condensed with a concentric tube heat exchanger. Most

of the products are condensed in the first stage, which is a coalescing filter. Residual
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Figure 3.1. 3D model sketch of the reactor system.

vapors are condensed in the second stage, comprised of a liquid trap cooled with a

mixture of ice and water. Liquids from both the collection stages are mixed together

for analysis of the final liquid product. After liquid product separation, the remain-

ing permanent gases are analyzed using an on-stream gas chromatograph (GC) with

nitrogen as an internal standard. The reactor system is monitored and controlled by

a custom in-house-built process control system based on LabVIEW. Detailed design

information about the reactor system is available in the supplementary information

of this publication. Full construction drawings of the reactor are available on request

from the authors.
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3.3 Experimental Approach

High-pressure cellulose fast-pyrolysis experiments (Table 3.1) were conducted at

different temperatures (480◦C to 580◦C) at 27 bar pressure of inert gas (25 bar helium

and 2 bar nitrogen as an internal standard for on-stream GC analysis). Experiments

were also conducted at 54 bar of inert gas pressure to examine the effect of reaction

pressure on reactor performance. High-pressure cellulose fast-hydropyrolysis experi-

ments (Table 3.2) were conducted at 25 bar and 50 bar of hydrogen partial pressure

(total pressure of 27 bar and 54 bar, respectively, including 2 bar and 4 bar nitrogen

as an internal standard for on-stream GC analysis) at 480◦C hydropyrolysis tem-

perature. Experiments were also conducted at 580◦C hydropyrolysis temperature to

understand the effect of hydrogen at the highest temperature in the temperature

range chosen. The gas/vapor residence time in the fast-hydropyrolysis reactor was

∼2 seconds and ∼4 seconds for all 27 bar and 54 bar experiments, respectively.

The experiments with vapor-phase downstream catalytic HDO (Table 3.3) were

conducted at a fast-hydropyrolysis temperature of ∼550◦C and a catalyst bed temper-

ature of ∼375◦C. Commercially available candidate catalysts were chosen for compar-

ison of extent of deoxygenation (Equation 1) and effect on the overall product distri-

bution and yields. The catalysts tested were transition metals Ruthenium (Ru) and

Platinum (Pt) supported on γ-alumina (γ-Al2O3, henceforth referred to as Al2O3).

The catalysts were reduced in situ with flowing hydrogen at 375◦C for 2 hours prior

to each experiment. Al2O3 was also tested to understand the effect of support inde-

pendently.

Extent of deoxygenation (dry basis)/% = 100%×

(
O
C

)
cellulose,dry

−
(
O
C

)
liquid,dry(

O
C

)
cellulose,dry

(3.1)

The overall cellulose conversion pathway is shown in Figure 3.2. The cellulose feed

rate was∼0.8-0.9 g×min−1 in all the experiments. The overall mass balance in all the

experiments was 80-95%. The unaccounted fraction is attributed to product collection

losses during, and after, the high-pressure experiments due to gas/vapor product
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Table 3.1.
Experimental conditions and product distribution† summary for experi-
ments of cellulose fast-pyrolysis.

Run 1 Run 2 Run 3 Run 4 Run 5

Total pressure / bar 27 27 27 27 54

Helium partial pressure / bar 25 25 25 25 50

Nitrogen partial pressure / bar 2 2 2 2 4

Average fast-pyrolysis temperature / ◦C 480 520 550 580 480

Liquid yield / wt % of feed 69.2 68.7 68.6 63.7 56.5

Char yield / wt % of feed 7.7 11.8 9.3 10.6 20.4

Gas yield / wt % of feed 6.9 10.3 15.6 18.8 7.2

CO / wt % of feed 2.9 5.4 9.8 13.4 2.3

CO2 / wt % of feed 3.9 4.6 5.4 4.7 4.8

CH4 / wt % of feed 0.1 0.3 0.4 0.7 0.1

Overall Mass Balance / % 83.8 90.8 93.5 93.1 84.1

† Error in product distribution ∼ ±5-10%
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Table 3.2.
Experimental conditions and product distribution† summary for experi-
ments of cellulose fast-hydropyrolysis without HDO catalyst.

Run 6 Run 7 Run 8

Total pressure / bar 27 27 54

Hydrogen partial pressure / bar 25 17 50

Helium partial pressure / bar 0 9 0

Nitrogen partial pressure / bar 2 1 4

Average fast-hydropyrolysis temperature / ◦C 480 580 480

Liquid yield / wt % of feed 66.9 62.1 51.3

Char yield / wt % of feed 8.3 11 27.1

Gas yield / wt % of feed 5.5 15.6 8.3

CO / wt % of feed 2.1 9.6 2.6

CO2 / wt % of feed 3.2 5 5.5

CH4 / wt % of feed 0.2 1 0.2

Overall Mass Balance / % 80.7 88.7 86.7

† Error in product distribution ∼ ±5-10%
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Table 3.3.
Experimental conditions for experiments of catalytic HDO of cellulose
fast-hydropyrolysis vapors and base case experiment without HDO cata-
lyst.

Run 7 Run 9 Run 10 Run 11

Total pressure / bar 27 27 27 27

Hydrogen partial

pressure / bar
17 9 9 9

Helium partial

pressure / bar
9 15 15 15

Nitrogen partial

pressure / bar
1 3 3 3

Average

fast-hydropyrolysis

temperature / ◦C

580 550 550 550

HDO catalyst
No

Catalyst
Al2O3

2%

Ru/Al2O3

2%

Pt/Al2O3

Weight hourly space

velocity (WHSV) /

hr−1

- 9 9 9

Average catalyst

bed temperature /

◦C

- 375 375 375
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dilution as a result of high feed gas standard condition flow rates needed for low

reactor residence times. The typical experimental error in all the product distributions

was ∼±5-10% (standard deviation) based on duplicate repeats of experiments. The

experiments were typically conducted for about 1 hour. After each experiment, the

reactor was depressurized, liquid and solid products and the remainders of the feed in

the screw feeder were weighed, and catalyst coke yield was measured through catalyst

weight gain. All these data were used to check the overall mass balance. The total

liquid product was the sum of liquid products collected in the two traps, weight change

of coalescing filter element and liquid holdup in the reactor. The liquid holdup in

the reactor system was calculated by flushing solvent (ethanol) through the reactor

after each experiment and evaporating the solvent at room temperature to measure

the residue.

Figure 3.2. Schematic of overall cellulose conversion pathway.

3.3.1 Liquid Product Analysis

The liquid products from the different experiments were analyzed by several dif-

ferent analytical techniques. They were first analyzed for the elemental (C, H, O)

composition and water content through Karl Fisher titration, both performed by

Galbraith Laboratories (Knoxville, TN). The carbon and hydrogen contents were
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measured by combustion techniques and the oxygen content was calculated based on

difference. The elemental analysis and water content were used to calculate a dry

basis elemental composition of the liquid products and for calculating the extent of

deoxygenation on a dry basis. Then, for the quantitative characterization of the liq-

uid product, we have developed a liquid chromatography-mass spectrometry (LC-MS)

analytical method.

3.3.2 Liquid-chromatography mass-spectrometry (LC-MS) method development

Methods using gas chromatography-mass spectrometry (GC/MS) are excellent

for performing analysis of compounds with atmospheric pressure boiling points of

up to 300◦C, but can cause thermal degradation during the volatilization of species

that are non volatile at these temperatures. Thus methods in which these lower

volatility species could be analyzed without degradation were desired. Indeed, several

publications have indicated the presence of oligomeric anhydro-saccharides in the

pyrolysis product distribution.[6, 32, 40] Hence, this LC-MS method was developed

specifically for its ability to separate oligomeric sugars, monomeric sugars, and furan

related compounds such as 5-hydroxymethylfurfural, and furfural, while remaining

stable in the acidic medium typical of the cellulose fast-pyrolysis liquid products.29 We

have tested this method using oligomeric anhydro-saccharides up to 3 units in length

(cellotriosan, 1,6-anhydro-β-D-cellotriose). This method was specifically developed

for analysis of pyrolysis products from the cellulose fraction of whole biomass, and

could also be useful with the hemicellulose pyrolysis product fraction. We note,

however, that this method may not be applicable as-is for lignin pyrolysis products

due to their lower polarity.

For the LC-MS analysis, an Agilent 1200 LC with a Ultraviolet/Visible (UV/VIS)

diode array detector and a refractive index detector (RID) and an Agilent (Santa

Clara, CA) single quadrupole mass spectrometer (MS 6975) with an atmospheric

pressure chemical ionization source were used. A Rezex ROA LC column supplied by

Phenomenex (Torrance, CA) with a 300mm column length (Part No. 00H-0138-K0)
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was used with 0.1 wt% formic acid in water as the mobile phase. The recommended

mobile phase for this column is 0.005N H2SO4 in high purity water, but to improve

compatibility with the mass spectrometer, the acid was changed to 0.1wt% of formic

acid (in high purity water) for enhanced volatility and reduced corrosivity. This

mobile phase was pumped isocratically at 0.5 mL × min−1, after vacuum degassing,

through the column which was maintained at 80◦C. The RID sample and reference

cells were controlled at 55◦C and the reference cell was purged before every analysis.

The chloride anion attachment based atmospheric pressure chemical ionization

(APCI) method reported by Vinueza et al.[46] for analyzing sugar-based compounds

has been used in this study for identification of compounds ionizable with this tech-

nique. The ionization conditions were defined by the APCI source operated at 300◦C

with a N2 flow of 5 L × min−1 in negative ionization mode, a corona current of 10 µA,

capillary voltage of 3000 V, and fragmentor voltage of 2 V. Figure B.5 (Supplementary

Information) shows the schematic of the LC-MS setup along with the syringe pump

that was used for the injection of an equal volume mixture of methanol and chloroform

for the chloride attachment of the ions. The RID was calibrated for 14 compounds

as shown in Table B.1 and Figure B.6. The 14 compounds were chosen based on

work in the literature that reported on the pyrolysis products of cellulose analyzed

mainly with a gas-chromatography-mass-spectrometry (GC-MS) technique.[4, 6, 7,

83] The retention times of the compounds in the LC-MS, based on pure compound

injections, and their mass spectra were used for identification of the compounds. All

the experimental liquid product samples were diluted 100 times in the mobile phase

and a 10 µL injection volume was used. All the samples were analyzed with duplicate

repeats to calculate the analytical errors.

3.3.3 Materials

The cellulose feedstock used in all experiments was 50 µm microcrystalline cellu-

lose from Sigma Aldrich (St Louis, MO). Ultra high purity (99.999%) grade hydrogen,

high purity (99.995%) grade helium and high purity (99.995%) grade nitrogen were



35

used for the experiments. We note that in all experiments nitrogen is added as an in-

ternal standard gas. Catalysts used in this study were Al2O3 (Sasol, 1.8 mm diameter

extrudates), 2% Pt/ Al2O3 (Alfa Aesar, 2.5 mm diameter trilobes) and 2% Ru/Al2O3

(Alfa Aesar, 3.2 mm diameter extrudates). Pure compounds for LC-MS calibration

viz. levoglucosan (1,6-anhydro-β-D-glucopyranose, ≥99% purity), formic acid (≥95%

purity), acetic acid (≥99% purity), glycolaldehyde dimer, hydroxyacetone (≥90%

purity), furfural (2-furaldehyde, ≥99% purity), 5-hydroxymethyl furfural (5-HMF,

≥99% purity), acetone (≥99.8% purity), methanol (≥99.9% purity) and ethanol

(≥99.5% purity) were purchased from Sigma Aldrich. Cellobiosan (1,6-anhydro-β-

D-cellobiose, ≥95% purity), levogalactosan (1,6-anhydro-β-D-galactopyranose, ≥97%

purity), 1,6:2,3-dianhydro-β-D-mannopyranose (DAMP, ≥98% purity) and levoglu-

cosenone (≥95% purity) were purchased from Carbosynth Limited (Compton, Berk-

shire, UK).

3.4 Results and Discussion

3.4.1 High-pressure cellulose fast-pyrolysis products

Figure 3.3 (a) shows a typical liquid product composition, based on the LC-MS

analysis, from a high-pressure fast-pyrolysis experiment at 27 bar total inert pres-

sure and 520◦C pyrolysis temperature (Run 2 in Table 3.1). The most abundant

compounds seen were levoglucosan and its isomers (∼51wt% of the liquid), light

oxygenates like glycolaldehyde (∼8wt% of the liquid), formic acid (∼11wt% of the

liquid), hydroxyacetone (∼1wt% of the liquid) and a small amount (∼1wt% of the

liquid) of cellobiosan. No oligomers higher than the anhydrosugar dimer (cellobiosan)

were seen in the liquid product. Water constituted ∼24wt% of the total mass of the

liquid product. With the 15 compounds (including water), about 95% of the total

mass of the liquid product can be accounted for. The overall mass balance for this

experiment was ∼91% with a liquid yield of ∼69 wt% of the feed cellulose, char yield
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of ∼12 wt% of the feed cellulose and permanent gas yield of ∼10 wt% of the feed

cellulose, shown in Table 3.1.

Figure 3.3. (a) Bar graph showing typical liquid product composition
data, from LC/MS analysis, of cellulose fast-pyrolysis at 27 bar total
inert pressure in the cyclone-type reactor used in this study. (b) Bar
graph showing liquid product composition data of cellulose fast-pyrolysis
at 1 bar inert pressure in a fluidized bed reactor, from Patwardhan et
al.[6]

Figures 3.3 (a) and (b) show a comparison of the high-pressure (27 bar) cellu-

lose fast-pyrolysis liquid product composition from this cyclone-type reactor with

previously reported results on a fluidized bed reactor, at 1 bar reaction pressure, in

Patwardhan et al.[6] The vapor residence time in the cyclone-type reactor, at 27 bar,

is ∼2 seconds and comparable to the vapor residence time in the fluidized bed reactor

in Patwardhan et al.[6] The composition of levoglucosan, glycolaldehyde, formic acid

, hydroxyacetone and furfural in the product agrees closely with the previously re-

ported results despite the differences in the fast-pyrolysis reactor configurations and

reaction pressure.[6] However, the composition of water and cellobiosan (anhydro

sugar oligomers) in the liquid product differed from those reported in Patwardhan
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et al.[6] The higher content of water in the liquid product from this reactor is due

to higher char yield of ∼12 wt% of feed cellulose versus ∼2 wt% of feed cellulose

in their study.[6] We note that this difference in char formation cannot be solely

attributed to the difference in reaction pressure because the reactor configurations

(cyclone-type vs. fluidized bed) could play an important role. In a later section,

we provide a potential explanation for the increase in char yield (and corresponding

increase in water yield) with increase in reaction pressure (25 bar to 50 bar) with this

cyclone-type fast-pyrolysis reactor configuration. The higher production of oligomeric

sugars in the previously reported fluidized bed reactor was explained by additional

secondary reactions in their reactor as compared to the ablative cyclone-type reac-

tor used in this study which produced a lower yield of oligomeric anhydro-sugars.[6]

Moreover, the LC-MS technique developed and used for this study measures the con-

tent of oligomeric anhydro-sugars directly and does not rely on acid-hydrolysis for

their measurement, as used in their study.[6] The liquid product from cellulose fast-

pyrolysis is a complex mixture of reactive compounds, and thus acid-hydrolysis or

derivatization may cause additional undesired reactions during analysis. Thus, the

origin of these differences in the production of oligomers from different reactors and

operating conditions needs further study.

3.4.2 Effect of temperature in high-pressure cellulose fast-pyrolysis

Figure 3.4 shows the increase in the formation of light oxygenate molecules like

glycolaldehyde and formic acid and the decrease in the formation of levoglucosan and

its isomers as the pyrolysis temperature increases from 480◦C to 580◦C. Figure 3.5

shows that the gas yield increases and the liquid yield decreases with increasing

temperature of fast-pyrolysis or fast-hydropyrolysis. As shown in Figure 3.4 and

Table 3.1, there was no trend in the char yield, and corresponding water yield, with

the fast-pyrolysis temperature, within experimental error.

In this temperature range the formation of light oxygenates like glycolaldehyde and

formic acid increases and formation of levoglucosan and its isomers decreases in high-
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Figure 3.4. Graph showing trends in content of light oxygenate molecules,
levoglucosan and its isomers in the liquid products from cellulose fast-
pyrolysis at 480◦C, 520◦C, 550◦C and 580◦C. All runs were at 25 bar in
helium at a total inert pressure of 27 bar.

pressure cellulose fast-pyrolysis (Figure 3.4), consistent with work in the literature

on cellulose fast-pyrolysis at atmospheric pressure.[84] The corresponding increase in

yield of permanent gases and decrease in the yield of liquid (Figure 3.5), is similar to

results in the literature on atmospheric pressure fast-pyrolysis.[2] The increase in the

yield of light oxygenates and permanent gases with increasing pyrolysis temperature

has been attributed to secondary thermal cracking of the primary pyrolysis vapors.[2,

6, 62, 84]
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Figure 3.5. Variation of liquid and gas yields with pyrolysis temperature
in high-pressure cellulose fast-pyrolysis and cellulose fast-hydropyrolysis
at 27 bar total pressure.

3.4.3 Effect of hydrogen in cellulose fast-hydropyrolysis and comparison of reactor
performance with reaction pressure, at 480◦C

At 25 bar helium or hydrogen partial pressure and 480◦C pyrolysis tempera-

ture, the LC-MS identification and quantification showed no significant differences

in the composition of the liquid product from cellulose fast-pyrolysis versus fast-

hydropyrolysis (Figure 3.6). Also, there are no significant differences, within exper-

imental error, in the product yields of solids, liquids and gases (Tables 3.1 and 3.2)

from the experiments at 25 bar helium or hydrogen partial and 480◦C pyrolysis tem-

perature.
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Figure 3.6. Bar graph showing differences in liquid product composition
between fast-pyrolysis (25 bar He, 50 bar He) and fast-hydropyrolysis (25
bar H2, 50 bar H2) at 27 bar and 54 bar total pressure with 480◦C pyrolysis
temperature.

At 50 bar helium or hydrogen partial pressure and 480◦C pyrolysis tempera-

ture, there were also no significant differences seen, within analytical error of the

LC-MS method, in the compositions of the liquid products from fast-pyrolysis and

fast-hydropyrolysis (Figure 3.6). In the 50 bar experiments there was higher char

yield and corresponding water yield as compared to the 25 bar experiments in both

fast-pyrolysis and fast-hydropyrolysis, but the permanent gas yields were comparable

(Tables 3.1 and 3.2).

The lack of an effect of hydrogen shows that at these pyrolysis conditions hydrogen

molecules are not sufficiently activated to enter the reaction mechanism. The liquid,
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char and gas yields at 50 bar helium as compared to 50 bar hydrogen partial pressure

were comparable, within experimental error. In the 50 bar experiments, however, in

both the helium and hydrogen environments there was a significant increase in char

formation as compared to the 25 bar experiments (Tables 3.1 and 3.2). Thermal

conductivities of hydrogen and helium are nearly independent of pressure at 480◦C.

Since the char yields are similar between the experiments with hydrogen and helium

at the same pressure, we conclude that the gas thermal conductivity is not the main

reason for the char increase from 25 bar to 50 bar.

Hence, this difference in char yields in the 50 bar versus 25 bar experiments is

attributed to the difference in the hydrodynamics of the entrained cellulose particles

and feed gas at 25 bar versus 50 bar. At 50 bar total pressure the hydrodynamics

are different than at 25 bar because the reactor inlet feed gas velocity (feed cellulose

entraining velocity) at 50 bar was half of that at 25 bar since both were fed at the same

standard condition total feed gas flow rate (∼38 std. L × min−1). The cyclone radial

velocity, as calculated based on reactor inlet feed gas velocity and fluid properties at

operating conditions,[85] is lower in the 50 bar experiments as compared to the 25

bar experiments. Hence, the lower cyclone radial velocity leads to a decrease in the

number of cellulose particles that impinge on the heated inner walls of this cyclone-

type reactor. The particles that do not impinge the wall experience a lower heating

rate since the gas-solid heating rate is lower than solid-solid heating rate, which leads

to higher char formation. Higher char formation in the 50 bar experiments leads to

higher water content and lower content of levoglucosan and its isomers in the liquid

products as compared to 25 bar experiments.

3.4.4 Effect of hydrogen in cellulose fast-hydropyrolysis (25 bar H2) at 580◦C

While hydrogen had no significant effect at 25 bar partial pressure and 480◦C,

there were differences in the liquid product composition between fast-pyrolysis versus

fast-hydropyrolysis at 580◦C (Figure 3.7). At this higher temperature, yield of reac-

tive light oxygenates like formic acid and glycolaldehyde decreased in the presence of
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hydrogen. The reaction of hydrogen with these reactive oxygenates at these higher

temperatures leads to a higher water content in the fast-hydropyrolysis liquid prod-

uct as compared to the fast-pyrolysis case (Figure 3.7). However, we note that the

movement of carbon, due to suppression of reactive light oxygenates, could not be

conclusively tracked, with the 14 identified compounds on the LC-MS method, for the

comparison at 580◦C. The product yields of liquids, char and gases were comparable,

within experimental error, for 25 bar helium versus 25 bar hydrogen partial pressure

at 580◦C (Tables 3.1 and 3.2).

Figure 3.7. Graph showing differences in content of light oxygenate
molecules, water, levoglucosan and its isomers in the liquid products from
cellulose fast-pyrolysis and fast-hydropyrolysis at 580◦C pyrolysis temper-
ature.
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3.4.5 Effect of candidate catalysts for HDO of cellulose fast-hydropyrolysis vapors

Table 3.3 shows the experimental conditions, while Figures 3.8 (a) and (b) show

the product yields and gas phase compositions for base case fast-hydropyrolysis with

no HDO catalyst and fast-hydropyrolysis runs with Al2O3, 2% Ru/Al2O3 and with

2% Pt/Al2O3 in the downstream vapor-phase HDO reactor. Figure 3.9 shows the

differences in the liquid product composition from these experiments and Figure 3.10

shows the conversions of levoglucosan and its isomers, glycolaldehyde and formic acid

in the presence of the different candidate HDO catalysts as compared to the base

case fast-hydropyrolysis with no HDO catalyst. We note that conversions on this

basis show the ability of the HDO reactor to further deoxygenate the effluent from

the fast-hydropyrolysis reactor.

Table 3.4 shows the elemental analysis (carbon, hydrogen and oxygen), O/C and

H/C ratios on a dry basis, water content of the liquid product and calculated extent

of deoxygenation on a dry basis for these experiments with different candidate HDO

catalysts.

The water content in the liquid product progressively increased in the presence of

Al2O3, 2% Ru/ Al2O3 and 2% Pt/Al2O3 as compared to the base case without cat-

alyst. The oxygen content on dry basis in the liquid product progressively decreased

in the same order of Al2O3, 2% Ru/Al2O3 and 2% Pt/Al2O3 as compared to the base

case without catalyst. The O/C ratio also decreased in the same order. The H/C

ratio was the highest in the case of the Pt catalyst. The extent of deoxygenation on

a dry basis, in the liquid product as compared to the feed, increased from ∼14%, in

the base case, to ∼20% in the presence of the Al2O3 catalyst, ∼22% with the Ru

catalyst and ∼27% with the Pt catalyst (Table 3.4).

The liquid and permanent gas yields (Figure 3.8 (a)) in the presence of Al2O3 were

similar to those in the base case experiment. The total solids (char and coke on the

catalyst) yield was higher in presence of Al2O3 due to coking on the Al2O3 surface.

The liquid yields in the experiments in the presence of the Ru and Pt catalysts were
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Table 3.4.
Elemental analysis (carbon, hydrogen and oxygen), water content,
H/C ratio, O/C ratio extent of deoxygenation (dry basis) from fast-
hydropyrolysis experiments with candidate HDO catalysts and base case
comparison with fast-hydropyrolysis experiment without HDO catalyst.
Dry cellulose: (O/C) = 0.83, (H/C) = 1.67.

Fast-Hydro-

pyrolysis no

catalyst

Fast-Hydro-

pyrolysis

Al2O3

Fast-Hydro-

pyrolysis 2%

Ru/Al2O3

Fast-Hydro-

pyrolysis 2%

Pt/Al2O3

Carbon (dry

basis) / wt % of

liquid

47.8 49.8 50.5 50.9

Hydrogen (dry

basis) / wt % of

liquid

6.1 6 6 7.5

Oxygen (dry

basis, by

difference) / wt

% of liquid

46.1 44.2 43.5 41.6

Water Content /

wt % of liquid
23.5 31.1 45.7 47.8

H/C ratio (dry

basis)
1.53 1.45 1.41 1.77

O/C ratio (dry

basis)
0.72 0.67 0.65 0.61

Extent of

deoxygenation

(dry basis) / %

13.6 19.6 22 26.8
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lower than for the base case due to loss of carbon to the gas phase in the form of

methane and CO respectively. The yield of methane (Figure 3.8 (b)) in the gas phase

increased from ∼1wt% of feed cellulose in the base case to ∼9wt% of feed cellulose in

the presence of the 2% Ru/Al2O3 catalyst. The yield of CO in the gas phase increased

from ∼10wt% of feed cellulose in the base case to ∼25wt% of feed cellulose in the

presence of the 2% Pt/Al2O3 catalyst.

The comparison of liquid product compositions from these experiments (Fig-

ure 3.9) showed that the content of levoglucosan and its isomers, glycolaldehyde

and formic acid progressively decreased in the presence of Al2O3, 2% Ru/ Al2O3 and

2% Pt/ Al2O3 as compared to the base case without catalyst. The conversion of

levoglucosan and its isomers (Figure 3.10) increased from ∼26% both in the presence

of Al2O3 and 2% Ru/Al2O3 to ∼48% in presence of 2% Pt/Al2O3. Similarly, the

conversion of glycolaldehyde and formic acid also increased in the order of Al2O3

< 2% Ru/Al2O3 < 2%Pt/Al2O3. The total contents of other identified compounds

(Figure 3.9) were similar between all the candidate HDO catalysts experiments and

the base case.

In the downstream vapor-phase catalytic HDO experiments the predominant re-

action pathways were dehydration on Al2O3, methanation on Ru and decarbonylation

on Pt. Al2O3 is known to promote acid catalyzed dehydration reactions,[86, 87] which

lead to higher water content in the liquid products and higher coking of the Al2O3

surface by the resulting olefins. Coking was avoided on the Al2O3 supported Pt and

Ru catalysts because they favor hydrogenation on the metal site after the dehydration

on the Al2O3. Both Pt and Ru favor C-C bond cleavage reactions that lead to loss

of carbon to the gas phase, in the form of carbon monoxide in the case of Pt and

methane in the case of Ru, at the expense of levoglucosan and its isomers and reactive

light oxygenates, and hence lead to lower liquid yields with both the catalysts. The

Pt catalyst showed the highest extent of deoxygenation (∼27%) but also lead to the

lowest carbon recovery in the liquid product. Among these experiments, the liquid

product with the Pt catalyst had the highest H/C ratio due to the hydrogenation pro-
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moted by Pt. The Pt catalyst also resulted in the highest conversion of levoglucosan

and its isomers (∼48%) and the reactive light oxygenates of glycolaldehyde (∼94%)

and formic acid (∼91%) as compared to the base case fast-hydropyrolysis without a

HDO catalyst.

None of these catalysts is an ideal choice for HDO catalysis in the H2Bioil process,

however, because they lower the carbon recovery in the liquid product as compared

to fast-hydropyrolysis without a HDO catalyst. Ideal choices for catalysts for H2Bioil

process need to have a balance of acid and metal functionalities, where the acid sites

promote dehydration of the OH groups to remove oxygen as water and the metal

sites aid in hydrogenation with chemisorbed hydrogen. In addition, the ideal metal

sites should favor C-O hydrogenolysis reactions rather than other pathways like C-

C hydrogenolysis, decarbonylation and decarboxylation that lead to loss of precious

carbon atoms to the permanent gas products. We are currently investigating and

developing suitable catalysts for the HDO reaction.

3.5 Conclusions

A high-pressure continuous-flow fast-hydropyrolysis and downstream vapor-phase

catalytic hydrodeoxygenation (HDO) reactor was successfully designed, built, and

used to convert cellulose as a model biomass feedstock. A liquid chromatography-mass

spectrometry (LC-MS) based method was also developed for quantitative character-

ization of cellulose pyrolysis liquid products. Experiments show that the formation

of permanent gases and light oxygenate species like glycolaldehyde and formic acid

increased with increasing pyrolysis temperature in high-pressure fast-pyrolysis. In

cellulose fast-hydropyrolysis, hydrogen was not active at a temperature of 480◦C,

even up to 50 bar of hydrogen partial pressure and thus gave no differentiation in

performance relative to fast pyrolysis in inert atmosphere. At a higher temperature

of 580◦C, however, the presence of high-pressure hydrogen suppresses the formation

of light oxygenate species like glycolaldehyde and formic acid. In our reactor system,

increasing reaction pressure from 27 bar to 54 bar, at the same standard feed gas flow
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rate, led to higher char yields which was attributed to a lower overall rate of heat

transfer. Candidate HDO catalysts Al2O3, 2% Ru/Al2O3 and 2% Pt/Al2O3 improved

the extents of deoxygenation of the cellulose fast-hydropyrolysis vapors, but these cat-

alysts are not the ideal choices for the H2Bioil process, because they favor C-C bond

cleavage and lower the carbon recovery in the liquid product. However, our reactor

configuration provides a proven platform for testing further candidate vapor-phase

HDO catalysts to improve the extent of deoxygenation with higher carbon recovery

in the liquid product.

3.6 Acknowledgements

Reproduced from Ref. [8] with permission from The Royal Society of Chemistry
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Figure 3.8. Comparison of (a) product yields and (b) gas phase
compositions from fast-hydropyrolysis with no HDO catalyst and fast-
hydropyrolysis with Al2O3, 2% Ru/Al2O3, 2% Pt/Al2O3 candidate HDO
catalysts. Reaction conditions: Base case experiment with no HDO cata-
lyst: PH2 = 17 bar, Ptotal = 27 bar, fast-hydropyrolysis temperature =
580◦C; Experiments with candidate HDO catalysts: PH2= 9 bar, Ptotal
= 27 bar, catalyst bed temperature = 375◦C, weight hourly space velocity
(WHSV) = 9 hr−1, fast-hydropyrolysis temperature = 550◦C.
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Figure 3.9. Comparison of liquid product compositions from fast-
hydropyrolysis with no HDO catalyst and fast-hydropyrolysis with Al2O3,
2% Ru/Al2O3, 2% Pt/Al2O3 candidate HDO catalysts. Reaction condi-
tions: Base case experiment with no HDO catalyst: PH2= 17 bar, Ptotal
= 27 bar, fast-hydropyrolysis temperature = 580◦C; Experiments with
candidate HDO catalysts: PH2= 9 bar, Ptotal = 27 bar, catalyst bed
temperature = 375◦C, weight hourly space velocity (WHSV) = 9 hr−1,
fast-hydropyrolysis temperature = 550◦C.
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Figure 3.10. Comparison of conversions of levoglucosan and its isomers,
glycolaldehyde and formic acid in fast-hydropyrolysis with Al2O3, 2%
Ru/Al2O3 and 2% Pt/Al2O3 candidate HDO catalysts as compared to
base case fast-hydropyrolysis with no HDO catalyst.
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4. MASS SPECTROMETRIC STUDIES OF FAST PYROLYSIS OF CELLULOSE

4.1 Introduction

Fast pyrolysis (rapid heating in an inert atmosphere) is an attractive alternative

for the conversion of biomass to fuels or valuable chemicals since it is a relatively

simple and scalable process.[3, 4, 6, 19, 84, 88–90] Most studies thus far have focused

on fast pyrolysis of cellulose since it is the simplest polymer in biomass.[3, 4, 6, 19,

84, 88–90] Unfortunately, even for cellulose, the final fast pyrolysis products (often

referred to as biooil in the literature) are a complex unstable mixture of molecules

having an oxygen content too high to be used (directly) as a fuel.[3, 4, 6, 19, 84, 88–

90] Upgrading this mixture is hindered by its extreme complexity, which arises from

numerous competing and consecutive reactions both during and after pyrolysis.[3, 4,

6, 19, 84, 88–90] Currently, no agreement exists in the literature on the mechanisms

(e.g., radical, ionic, or neither) of fast pyrolysis reactions of cellulose, the sequence

of these reactions, or the identity of the primary products of fast pyrolysis, although

anhydro-oligomers in general have been proposed as intermediates several times.[3, 4,

6, 19, 40, 84, 88–91]

With the aim of gaining a deeper understanding of the fast pyrolysis of cellu-

lose, which may allow better control over the final products, the primary products

of fast pyrolysis of cellulose, cellobiose, cellotriose, cellotetraose, cellopentaose, and

cellohexaose (Figure 4.1), as well as cellobiosan, cellotriosan and cellopentosan, were

determined using a previously described mass spectrometry methodology.[9] Primary

products, as considered here, are the very first products to evaporate from the hot

surface (at 600◦C) where pyrolysis occurs.

The reactor configuration utilized in this work was specifically designed to detect

the primary products and not to allow them to undergo further reactions.[9] It has
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Figure 4.1. The carbohydrate molecules studied here contain two to six d-
glucose units coupled to each other in a linear manner via β(1-4) linkages,
just as in cellulose.

been previously reported that pyrolysis reactor configuration is of critical importance

to the product distribution produced from fast pyrolysis of cellulose.[4, 6, 19] Hence,

the primary products detected here may not be the same detected in a reactor of

a different design. The gaseous molecules were ion-ized via APCI using either chlo-

roform in methanol (negative ion mode; Cl- attachment) or am-monium hydroxide

in water (positive ion mode; NH+
4 or proton attachment) in order to ensure that all

products were ionized and detected.[9] Based on previous model compound studies,

both methods have been found to ionize all major pyrolysis products of cellobiose

(some minor products were ionized by only one of the two methods).[9] Hence, only

the positive ion mode results are discussed below. The structures of most of the ions

formed from cellobiose and cellulose have been examined [9, 10] previously by using

MS2 experiments (i.e., by isolating them and subjecting them to collision-activated

dissociation (CAD)). When necessary, the structures of the fragment ions were ex-

amined by isolating them and subjecting them to CAD (MS3 experiment).[9] Where

possible, structures were confirmed by analyzing authentic compounds. High resolu-

tion mass spectral data needed to determine elemental compositions of the ions were

collected using a Thermo Scientific LQIT/Fourier-transform ion cyclotron resonance

mass spectrometer.[9] Similar studies were carried out in this research for the fast py-
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rolysis products of cellotriose, cellotetraose, cellopentaose, and cellohexaose, as well

as cellobiosan, cellotriosan and cellopentosan.

4.2 Experimental Methods

The pyrolysis method employed here is based on the coupling of a very fast-heating

(up to 20,000◦C × s−1) Pyroprobe 5200 (CDS Analytical, Oxford, PA) to a Thermo

Scientific LTQ linear quadrupole ion trap (LQIT) mass spectrometer (Waltham, MA)

through a custom-built adaptor.[9] The pyrolysis probe uses a resistively-heated plat-

inum ribbon (2.1 mm x 35 mm x 0.1 mm). The pyrolysis probe was placed inside

the atmospheric pressure chemical ionization (APCI) source of the linear quadrupole

ion trap and the ribbon was heated up to 600◦C at a rate of 1,000◦C × s−1. The

primary products of pyrolysis evaporated into a nitrogen atmosphere at 100◦C in the

ion source and were quenched. The gaseous molecules were ionized via APCI using

ammonium hydroxide in water (positive ion mode; NH+
4 or proton attachment). The

structures of the ions were examined by CAD in MS2 and MS3 experiments and their

elemental compositions were determined by high-resolution measurements by using a

Thermo Scientific LQIT/Fourier-transform ion cyclotron resonance mass spectrome-

ter. It should be noted here that we are currently unable to determine mass balance

for this pyrolysis experiment. However, quantitation of the pyrolysis products was

performed using pyrolysis-GC/MS set-up (see Supporting Information).

4.3 Results and Discussion

The primary products of fast pyrolysis of cellobiose, the simplest compound stud-

ied, are shown in Fig. 4.2 (top).[9, 10] The relative abundances of the ions reflect the

relative abundances of the products that produced them, as verified earlier by using

authentic compounds.[9] Only ten major products were observed (with an abundance

of at least 10% compared to the most abundant product) and they are consistent with

those recently reported in the literature.[9, 10] The unambiguously identified products



54

include hydroxymethylfurfural (protonated molecule; m/z 127), levoglucosan (NH+
4

adduct; m/z 180), glucose (NH+
4 adduct; m/z 198), glucosylpyrano-β-glycolaldehyde

(NH+
4 adduct; m/z 240; note that this product is formed [10] by loss of two gly-

colaldehyde units (or isomers) from cellobiose), and cellobiosan (NH+
4 adduct; m/z

342).[9] Based on our preliminary computational studies, formation of cellobiosan has

the lowest energy barrier of these reactions.[10] Two levoglucosan isomers were gen-

erated: one that forms an NH+
4 adduct (m/z 180) like the authentic compound and

one that does not (protonated molecule; m/z 163).[9, 10] This finding is in agreement

with an earlier report wherein the a structure (anhydroglucofuranose) was proposed

for the second isomer.[92] It is also noteworthy that levoglucosan is not the major

primary product of fast pyrolysis although it is a major final product.[3, 19, 84, 88] In

prior reports that utilized on-stream fast pyrolysis-GC/MS, the largest molecules that

were observed for cellulose (and oligosaccharide) pyrolysis were levoglucosan and its

isomers.[84, 88] This may be explained by the high final temperature of about 300◦C

typically used in GC analysis, which opens the possibility for secondary reactions of

larger primary products. Further, the pyrolysis-MS reactor discussed here achieves

both pyrolysis and downstream analysis in as little as 125 ± 57 ms (see Supplemen-

tary Information for details) whereas a pyrolysis-GC/MS reactor requires from 2 up

to 30 minutes, depending on the elution times of the products.

All the major products observed upon fast pyrolysis of cellobiose were also ob-

served for cellotriose, cellotetraose, cellopentaose, cellohexaose, and even cellulose,

albeit with different relative abundances. Specifically, the abundances of glucosyl-

pyrano-β-glycolaldehyde (m/z 240; dominant product for cellobiose formed via loss

of two glycolaldehyde molecules (or isomers)), glucose (m/z 198), cellobiose that has

lost a glycolaldehyde molecule (or isomer; m/z 300), and cellobiose that has lost both

a glycolaldehyde molecule (or isomer) and a water molecule (m/z 282), decrease sys-

tematically proceeding from the dimer to trimer, tetramer, pentamer, hexamer and

cellulose. For example, Figure 4.2 shows a comparison of the primary products of fast

pyrolysis of cellobiose (top) and cellohexaose (bottom). It is obvious that the four
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Figure 4.2. Positive ion mode mass spectra showing the primary prod-
ucts of the fast pyrolysis of cellobiose (top) and cellohexaose (bottom)
ionized by APCI with ammonium hydroxide. The ions whose relative
abundances differ the most are indicated with dotted lines. Two isomers
of levoglucosan were observed, levoglucosan itself (ion of m/z 180) and
another isomer (ion of m/z 163). All the structures shown for cellobiose
have been identified [9] by CAD mass spectral comparison using authentic
compounds.

products listed above (highlighted with dotted lines in Fig. 4.2) have substantially

lower abundances for cellohexaose than for cellobiose. For cellulose, their abundances

are even lower, as shown in Fig. 4.3 (bottom). These findings suggest that the four

products described above are somehow associated with the terminal glucose units

because the ratio of the terminal units to the total number of glucose units decreases

as the size of the oligomer increases. Indeed, the end-group-to-monomer ratio has

been reported to be a vital descriptor of cellulose pyrolysis chemistry.[89, 90]

In addition to the products observed for cellobiose, the oligomers studied generated

two larger products: a molecule likely to be cellobiosylpyrano-β-glycolaldehyde (NH+
4

adduct; m/z 402) and cellotriosan (NH+
4 adduct; m/z 504; verified by comparison of

its CAD mass spectrum to an authentic sample). Cellulose also produced a very small
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amount of cellotetrosan (NH+
4 adduct; m/z 666; verified by comparison of its CAD

mass spectrum to an authentic sample; Fig. 4.3, bottom). Hence, cellotriosan appears

to be the largest product with a significant abundance that is able to efficiently escape

the hot pyrolysis surface for cellotriose and the larger oligosaccharides as well as

cellulose during fast pyrolysis at 600◦C.

Figure 4.3. Positive ion mode mass spectra showing the primary products
of the fast pyrolysis of cellotriosan (top) and cellulose (bottom) ionized
by APCI with ammonium hydroxide. Some of the ions having the same
m/z ratio are indicated with a dotted line.

Inspired by above observations, fast pyrolysis of cellotriosan was also performed.

Cellobiosan dominates this product distribution. However, all major products ob-

served for cellobiose and the oligomers were also observed, with the following excep-

tions: glucose (m/z 198), glucosylpyrano-β-glycolaldehyde (m/z 240), the product

corresponding to cellobiose that has lost a glycolaldehyde molecule (or isomer; m/z

300) and the product corresponding to cellobi-ose that has lost both a glycolaldehyde

(or isomer) and a water molecule (m/z 282). These are the four products mentioned

above to be somehow associated with the terminal glucose units. Since the reducing

end in cellotriosan has been modified compared to cellotriose, and cellotriose yields

these four products but cellotriosan does not, the formation of these four products is
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likely to depend on the presence of the reducing end in cellotriose. The same is true

for cellobiosan (Fig. 4.4) except that no ions larger than m/z 342 (ionized cellobiosan)

were observed. The mechanisms of these fragmentations are currently being investi-

gated using quantum chemical calculations. The most surprising finding made in this

study is that the fast pyrolysis product distribution of cellotriosan (and cellopentosan)

is nearly identical to that of cellulose (Fig. 4.3). The most significant differences are

the formation of glucosylpyrano-β-glycolaldehyde (m/z 240) and cellobiosylpyrano-β-

glycolaldehyde (m/z 402) for cellulose but not for cellotriosan (or cellopentosan).These

two products correspond to cellotriose that has lost two glycolaldehyde molecules (or

isomers) (m/z 402) and cellobiose that has undergone the same losses (m/z 240).

These findings suggest that the fast pyrolysis of cellulose may be initiated predomi-

nantly via two competing processes - formation of anhydro-oligosaccharides, such as

cellobiosan, cellotriosan and cellopentosan (major route), and elimination of glyco-

laldehyde (or isomeric) units from the reducing end of oligosaccharides formed from

cellulose during fast pyrolysis (minor route leading to products of m/z 240 and 402;

Scheme 4.5).

Figure 4.4. A positive ion mode mass spectrum showing the primary
products of the fast pyrolysis of cellobiosan (m/z 342) ionized by APCI
with ammonium hydroxide. The ions of m/z 85, 127, 145, 163, 180, and
195 are also formed for cellotriosan, cellopentosan and cellulose. The ion
of m/z 324 results from the loss of H2O from the ion of m/z 342.
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4.4 Conclusions

The results suggest that molecules larger than cellotriosan are not able to effi-

ciently leave the heated surface during fast pyrolysis of oligosaccharides at 600◦C.

Instead, they un-dergo further degradation on the hot surface. The observation of

very similar primary product distributions for fast pyrolysis of cellotriosan and cel-

lulose suggests that cellotriosan presents an excellent small-molecule surrogate for

cellulose, and it should be a much better choice than glucose, which has been consid-

ered previously.[89, 90]

Based on the primary products observed for cellotriosan and cellulose, fast pyroly-

sis of cellulose under the conditions used here may be initiated predominantly via two

competing pathways - formation of small anhydro-oligosaccharides (but not predomi-

nantly levoglucosan, as suggested in the literature [3, 19, 84, 88–90]) that either evap-

orate from the hot pyroprobe surface or degrade to yield most of the other primary

products (major pathway), and elimination of glycolaldehyde (or isomeric) molecules

from the reducing end of small oligosaccharides formed from cellulose during pyrol-

ysis upon addition of water to yield volatile cellobiosylpyrano-β-glycolaldehyde and

glucosylpyrano-β-glycolaldehyde molecules (ions of m/z 240 and 402; Scheme 4.5).

Reactions of the primary products of fast pyrolysis are currently under investigation

in order to understand better how the final fast pyrolysis products are formed. These

reactions may explain why levoglucosan is a major final fast pyrolysis product but

not a major primary product.
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Figure 4.5. A simple schematic of the major fast pyrolysis pathways pro-
posed for oligosaccharides formed from cellulose during fast pyrolysis upon
addition of water. The cleavages indicated in red are thought to occur in
the middle of a cellulose chain. The cleavages indicated in blue and green
likely occur only at the reducing terminals, which for long chains of cellu-
lose represent a small overall fraction of the total units. Hence, they are
minor pathways.
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5. FAST PYROLYSIS OF 13C-LABELED CELLOBIOSES: GAINING INSIGHTS

INTO THE MECHANISMS OF FAST PYROLYSIS OF CARBOHYDRATES

Fast pyrolysis is an efficient method for converting biomass to a low energy-density

liquid (bio-oil) that can be further upgraded for use as fuel.[2] Optimization of fast

pyrolysis to maximize the yields of compounds containing six or more carbons, which

represent some of the most valuable potential end products, requires detailed knowl-

edge of the dominant pyrolysis reactions.[93] However, the pathways and mechanisms

(e.g., stepwise radical or ionic or concerted) of fast pyrolysis reactions are still largely

unknown even for cellulose, the simplest component of biomass, as well as for anal-

ogous di- and oligosaccharides.[88, 93] The goal of this study was to explore these

mechanisms by using selective 13C isotope labeling since this has not been performed

previously.

The inherent capability of mass spectrometers to separate ions that differ in their

mass-to-charge ratios (such as those with and without a 13C label) makes the com-

bination of this technique with fast pyrolysis of selectively labeled carbohydrates a

powerful approach for mechanistic studies. We report here the results obtained upon

examination of the initial fast-pyrolysis products of unlabeled cellobiose (a glucose

dimer with the same linkage as in cellulose; see Figure 5.1) and four selectively 13C-

labeled cellobioses by tandem mass spectrometry. It should be noted that “initial”

products are defined here as the products that first leave the heated surface of the fast-

pyrolysis probe. The experimental studies were complemented by extensive quantum

chemical calculations.

The pyrolysis/tandem mass spectrometry technique utilized here has been de-

scribed in detail in the literature.[9] It combines a pyrolysis probe that can be heated

very fast (up to 20 000◦C × s−1) with a Thermo Scientific linear quadrupole ion
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Figure 5.1. Positive ion-mode mass spectra showing the initial fast-
pyrolysis products (either as ammonium adducts or protonated molecules)
of (a) glucopyranosyl[1-13C]glucose and (b) unlabeled cellobiose ionized
by APCI with ammonium hydroxide dopant. The structures of the intact
molecules are shown at the far right in each spectrum. The products that
are 13C-labeled in the top spectrum are connected with red dotted lines
to the corresponding unlabeled products in the lower spectrum.

trap (LQIT) mass spectrometer. This technique was used to study the initial fast-

pyrolysis products of cellobiose and four selectively 13C-labeled cellobioses: commer-

cially available [1-13C]glucopyranosylglucose and glucopyranosyl[1-13C]glucose (Omi-

cron Biochemicals, South Bend, IN) as well as glucopyranosyl[3-13C]glucose and

glucopyranosyl[5-13C]glucose (synthesized according to literature procedures).[94, 95]

The pyrolysis probe uses a resistively heated flat platinum ribbon (2.1 mm × 35 mm

× 0.1 mm), which was placed inside the atmospheric-pressure chemical ionization

(APCI) source of the LQIT. The ribbon was heated to 600◦C at a rate of 1000◦C

× s−1. The initial products of pyrolysis evaporated from the heated surface into a

nitrogen atmosphere at 100◦C (at atmospheric pressure) in the ion source and were

quenched. It should be noted that this approach is very different from that used
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in laboratory pyrolysis reactors, since laboratory pyrolysis reactors generally utilize

heated surfaces in combination with heated gaseous environments. A soft ionization

method, APCI with ammonium hydroxide dopant, was utilized to ionize the products

since this method typically generates [9] only one ion (either the NH+
4 adduct or the

protonated molecule) without fragmentation for each product molecule of the type

of interest here. The reactor and analysis suites were designed to prevent fragmen-

tation of the pyrolysis products. Mass balances cannot be obtained using this new

methodology; however, relative abundances of the products were determined, and

much larger pyrolysis products were detected than reported previously.[4, 9, 90] Each

reported mass spectrum is a result of a weighted average (based on total ion current)

of the individual mass spectra measured during pyrolysis. No significant changes were

detected in the product distribution during cellobiose pyrolysis; in other words, the

relative abundances were constant during pyrolysis.

The structures of most of the ions were examined by using MS2 experiments (i.e.,

by isolating them and subjecting them to collision-activated dissociation (CAD)).

When necessary, the structures of the fragment ions were examined by isolating

them and subjecting them to further CAD (MS3 experiment). High-resolution data

needed to determine the elemental compositions of the ions were collected using an

LQIT/Fourier-transform ion cyclotron resonance mass spectrometer coupled with the

pyrolysis probe as described above.

The initial fast pyrolysis products of unlabeled cellobiose are shown in Figure 5.1b,

and they are in agreement with those reported previously.[9] The identified products

include hydroxymethylfurfural (protonated molecule of m/z 127), levoglucosan (NH+
4

adduct of m/z 180 and a protonated molecule of m/z 163), glucose (NH+
4 adduct of

m/z 198), and β-D-glucopyranosylglycolaldehyde (NH+
4 adduct of m/z 240). β-D-

Glucopyranosylglycolaldehyde is likely formed upon the loss of two glycolaldehyde

(or isomeric) molecules from cellobiose upon fast pyrolysis. On the other hand, the

pyrolysis product generating ions of m/z 300 (NH+
4 adduct) is formed via the loss

of a single glycolaldehyde (or isomeric) molecule from cellobiose, and the product
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generating ions of m/z 282 (NH+
4 adduct) is formed via the loss of glycolaldehyde (or

isomeric) molecule and water from cellobiose. Evidence in support of these products

being initial products instead of secondary products was obtained from the previously

determined structure of the β-D-glucopyranosylglycolaldehyde product.[9] The glyco-

sidic bond (i.e., the C-O bond at the oxygen atom on the carbon adjacent to the ring

oxygen) in this pyrolysis product is still in the same position and has the same stere-

ochemistry (β-1) as in cellobiose. If β-D-glucopyranosyl-glycolaldehyde were not an

initial product but instead the result of recombination of smaller initial products, one

would expect a mixture of linkage positions and stereochemistry. These larger prod-

ucts (>162 Da) are typically not seen with pyrolysis/GC-MS methodologies because

of their thermal instability and low volatility, which may at least partially explain

the incomplete mass balance of previous oligosaccharide pyrolysis studies.[4, 90] The

results presented here are in agreement with recent mechanistic studies suggesting

that glycolaldehyde may form directly from cellobiose (or a longer glucosaccharide)

rather than through a glucose intermediate.[96–98]

The ionized initial fast-pyrolysis products of glucopyranosyl-[1-13C]glucose (with

the label at the reducing end or the end containing a free hydroxyl group on the carbon

adjacent to the ring oxygen) are shown in the mass spectrum in Figure 5.1a. Com-

parison of these products to those produced from unlabeled cellobiose (Figure 5.1b)

revealed that only one product is partially 13C-labeled (levoglucosan, NH+
4 adducts

of m/z 180 and 181), while all of the others are either completely labeled or do

not contain the label at all. Specifically, cellobiosan (NH+
4 adduct of m/z 343) and

the product formed via loss of water from cellobiosan (NH+
4 adduct of m/z 325)

are completely 13C-labeled, as expected, while all of the other products are unla-

beled (Figure 5.1a). For example, glucose, β-D-glucopyranosylglycolaldehyde and

β-D-glucopyranosylerythrose contain intact rings that originate exclusively from the

nonreducing end since they have no label. The formation of glucose from the nonre-

ducing end of cellobiose must occur via scission of the aglyconic bond (i.e., the other

C-O bond of the oxygen atom involved in the glycosidic linkage) rather than the glyco-
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sidic bond as previously proposed.[88, 99] In the literature, the only mechanisms that

explain formation of glucose involve glycosidic bond cleavage and thermohydrolysis,

which form glucose either from the reducing end only or from the reducing and nonre-

ducing ends in equal amounts, respectively.[84, 88, 100] On the contrary, the present

results indicate that the formation of glucose occurs exclusively from the nonreducing

end of cellobiose (within the detection limits of our pyrolysis/MS experiment). This

observation suggests that there is at least one additional glucose formation pathway

that has not been proposed in the literature. Work is underway to explore alternate

reaction pathways that explain formation of glucose from the nonreducing end.

The results also demonstrate that the first glycolaldehyde (or isomeric) molecule

eliminated from cellobiose upon pyrolysis contains the 13C label (NH+
4 adduct of

m/z 300); this process must involve the loss of 13C-1 and most likely C-2 of the

reducing end of cellobiose. Identification of the origin of the initially eliminated

glycolaldehyde on the basis of carbon labeling indicates that certain mechanisms may

be more feasible than others. For example, the retro-aldol mechanism considered

here and elsewhere results in the elimination of glycolaldehyde from the C-1 and C-2

positions.[84, 100] On the other hand, 1,2-dehydration followed by retro-Diels-Alder

reaction would result in elimination of glycolaldehyde from the C-5 and C-6 positions.

Levoglucosan must be formed via at least two pathways since two different ions

(NH+
4 adducts of m/z 180 and 181, corresponding to ammoniated molecules with and

without the 13C label) are produced. Hence, levoglucosan is likely formed from both

the reducing and nonreducing ends of cellobiose. The ionized initial fast-pyrolysis

products of another labeled cellobiose, [1-13C]glucopyranosylglucose, with a 13C label

in the nonreducing end, are shown in the mass spectrum in Figure 5.2a. Comparison

of these products to those obtained for unlabeled cellobiose revealed that all of the

ionized products with m/z values greater than 180 contain the 13C label. These

results support the above conclusion that glucose is produced exclusively from the

nonreducing end of cellobiose. Further, both labeled and unlabeled levoglucosan were

observed, in agreement with the above proposal that more than one mechanism must
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lead to levoglucosan and that it is likely to be formed from both the reducing and

nonreducing ends. Finally, the results show that the first two glycolaldehyde (or

isomeric) molecules eliminated from cellobiose come from the reducing end.

Figure 5.2. Positive ion-mode mass spectra showing the initial fast-
pyrolysis products (either as ammonium adducts or protonated molecules)
of (a)[1-13C]glucopyranosylglucose and (b) glucopyranosyl[3-13C]glucose
ionized by APCI with ammonium hydroxide dopant. The structures of
the intact molecules are shown at the far right in each spectrum. The only
product that is labeled in the top spectrum but unlabeled in the bottom
spectrum is glucose, as indicated by a red dotted line. The ion labeled
with * corresponds to an unknown impurity.

In order to explore the mechanism for the elimination of the second glycolalde-

hyde (or isomeric) molecule from the reducing end of cellobiose (to yield the NH+
4

adduct of m/z 240 for the unlabeled cellobiose), a third 13C-labeled cellobiose, gluco-

pyranosyl[3-13C]glucose, was synthesized. The ionized initial fast-pyrolysis products

of this compound are shown in the mass spectrum in Figure 5.2b. The presence of a

major ion of m/z 301 (containing 13C) supports the above finding that the first gly-

colaldehyde (or isomeric) molecule eliminated from cellobiose upon pyrolysis contains
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C-1 and C-2 of the reducing end (i.e., to form the ion of m/z 301). Furthermore,

since elimination of the second glycolaldehyde (or isomeric) molecule yields an ion

of m/z 241 (containing 13C), this glycolaldehyde unit must contain C-5 and C-6 of

the reducing end. Examination of a fourth 13C-labeled compound, glucopyranosyl[5-

13C]glucose, confirmed all of the above conclusions. In particular, the elimination of

C-5 of the reducing end in the second eliminated glycolaldehyde (or isomeric) molecule

was verified by the observation of β-D-glucopyranosylglycolaldehyde with no 13C.

Quantum chemical calculations [101] at 600◦C (see the Supporting Information

for calculations performed at 25◦C) at the M06-2X/6-311++G(d,p)//M06-2X/6-

311++G(d,p) level of theory [102, 103] revealed a low-energy pathway for the consecu-

tive elimination of one glycolaldehyde and two isomeric ethenediol molecules from cel-

lobiose, eventually producing levoglucosan (Figure 5.3) (it is well-known that ethene-

diol converts readily into its tautomer glycolaldehyde; therefore, β-D-glucopyranosyl-

ethenediol was assumed to readily tautomerize to β-D-glucopyranosylglycolaldehyde).

This pathway is consistent with the 13C-labeling results described above. Work to

identify additional pathways leading to levoglucosan and the other observed products

is in progress.

In conclusion, identification of the initial fast-pyrolysis products of selectively

13C-labeled cellobioses using a previously reported [9] experimental method has been

demonstrated to be a powerful approach for exploring the details of the initial reac-

tions in the fast pyrolysis of cellobiose. Several products that are likely to be pro-

duced by consecutive glycolaldehyde (or isomer) eliminations from the reducing end

of cellobiose, including levoglucosan, were observed. Literature mechanisms proposed

for the fast pyrolysis of cellobiose are not consistent with the results reported here.

Quantum chemical calculations revealed a feasible low-energy pathway for some of

the products observed.[88] Since many of the initial products have molecular weights

greater than those of the final pyrolysis products reported for cellobiose in the liter-

ature,[4, 90] these initial products may be intermediates in the formation of the final

products, which include light oxygenated hydrocarbons.
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Figure 5.3. Calculated free energies (kcal mol−1) of intermediates and
transition states (square brackets) for the formation of levoglucosan from
cellobiose via consecutive losses of one glycolaldehyde (GA) and two
ethenediol (EDL) molecules (which are likely to eventually tautomerize to
glycolaldehyde) at 600◦C obtained at the M06-2X/6-311++G(d,p)//M06-
2X/6-311++G(d,p) level of theory. The location of a 13C label at C-1 in
the reducing end is indicated by a red circle, at C-3 by a blue circle, and at
C-5 by a green circle. The mass-to-charge (m/z) ratios are for unlabeled
cellobiose.

Minimization of the production of low-molecular-weight oxygenated hydrocarbons

is an important goal for fast pyrolysis of cellulose in order to maximize the production

of fuel and high-value chemical products. Knowledge of the fragmentation pathways

occurring during fast pyrolysis of smaller carbohydrates will contribute to the knowl-

edge of fast pyrolysis of cellulose and ultimately fast pyrolysis of whole biomass, pos-

sibly enabling the tailoring of the product distribution obtained upon fast pyrolysis

of whole biomass.
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6. DETERMINATION OF THE PRIMARY FAST PYROLYSIS PRODUCTS OF

SYNTHETIC G-LIGNIN OLIGOMERS WITH β-O-4 LINKAGES VIA ON-LINE

MASS SPECTROMETRY

6.1 Introduction

Fast pyrolysis holds a great potential for directly converting solid biomass into

liquid biofuel when coupled with immediate downstream upgrading.[12, 19, 104–106]

Lignocellulosic biomass is one of the most abundant renewable resources on earth.

Lignin is the second most abundant component of this biomass (about 15% -30%

by weight).[21, 107–110] Currently, lignin extracted from whole biomass by using

methods such as organosolv and kraft is used as the starting material for pyrolysis.

Several studies on pyrolysis of extracted lignins have been published over the past

several decades.[111–114] However, due to the complex and often poorly characterized

nature of these extracted lignins, the reaction mechanisms and primary products of

fast pyrolysis of intact lignin, which are essential for understanding the fast pyrolysis

process of biomass, are still poorly understood.

Since the examination of the fast pyrolysis processes of lignin is challenging, some

studies have focused on the pyrolysis of monomeric lignin model compounds, such

as guaiacol, syringol, isoeugenol, and vanillin. Free radical mechanisms have been

proposed as the dominant pyrolysis mechanisms for these compounds.[115, 116] Dur-

ing the fast pyrolysis of guaiacol, methyl radical loss followed by two CO losses were

observed as the primary radical products by using the gas chromatograph with a

mass spectrometer (py-GC/MS). The imaging photoelectron photoion coincidence

(iPEPICO) with VUV synchrotron radiation was also used to monitor the radical de-

composition product during the fast pyrolysis.[117] The author proposed that these

radicals could initiate reactions to produce recombination and rearrangement sec-
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ondary products, such as 2-hydroxybenzaldehyde in the case of guaiacol.[117] How-

ever, in an early study, both free radical mechanisms and concerted mechanisms were

proposed for the fast pyrolysis of guaiacol.[115] The fast pyrolysis behavior of dimers

with β-O-4 linkages have been also studied.[118] Phenethyl phenyl ether, which is

an analog of β-O-4 lignin dimer, is often used for pyrolysis studies. Fast pyrolysis of

phenethyl phenyl ether at 500◦C proceeded by C-O and C-C bond cleavages, in a 37:1

ratio, to produce styrene plus phenol as the dominant products.[118] Through exam-

ination of the deuterium isotope effect, it was shown that the C-O cleavage occurs by

homolysis and by 1,2-elimination in a ratio of 1.4:1, respectively.[118] A comprehensive

computational study on the fast pyrolysis of phenethyl phenyl ether derivatives with

different functional groups was conducted. The homolytic oxygen-carbon bond dis-

sociation enthalpy was calculated to be substantially lowered by oxygen substituents

situated at the phenyl ring adjacent to the ether oxygen.[119] The reaction rates of

hydrogen atom abstraction from methoxy phenethyl phenyl ethers by phenoxy and

benzyl radicals were calculated.[120] The results showed that methoxy substituents

decelerated the hydrogen atom abstraction by the phenoxy radical but not for benzyl

radical.[120] Phenyl-shift reaction (Figure 6.1) for the β-radical of phenethyl phenyl

ether during fast pyrolysis is an integral step in the fast pyrolysis of phenethyl phenyl

ether. This reaction was calculated to proceed through an oxaspiro[2.5]octadienyl

radical intermediate and substituents on the phenethyl ring were reported to have

only little influence on the rate constants.[121] Both computational and experimen-

tal studies have been conducted on fast pyrolysis of phenethyl phenyl ether over a

wide temperature range of 300◦C - 1350◦C.[13] The initial fast products were di-

rectly detected by photoionization time-of-flight mass spectrometry and by cryogenic

matrix-isolated infrared spectroscopy.[13] Based on the results (Figure 6.2), It was

suggested that concerted nonradical elimination reactions (retro-ene and Maccoll re-

actions) dominate over free radical reactions under typical fast pyrolytic conditions

(<600◦C).[13] Direct C-O bond homolysis was proposed to initiate radical chain mech-

anism during pyrolysis of a β-O-4 lignin dimer 1-(4-hydroxy-3-methoxyphenyl)-2-(2-
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methoxyphenoxy)-1,3-propandiol.[122] It has been reported that the product distri-

butions of fast pyrolysis of lignin dimers are more complex than those of monomers

because more secondary reactions occur.[123] In a recent study, fast pyrolysis of a fully

acetylated β-O-4 polymeric lignin model compound was studied. A free radical reac-

tion pathway was proposed to explain the products.[123] However, compared to the

fast pyrolysis of lignin monomers, the fast pyrolysis products of the lignin polymers

were reported to undergo more secondary and tertiary reactions, which complicates

the interpretation of the results.[123]

Figure 6.1. The proposed phenyl-shift reaction for the β-radical of
phenethyl phenyl ether during fast pyrolysis.[121]

Since very few studies [13, 117] are available on the determination of the fast pyrol-

ysis primary products of lignin monomers and dimers, it is obvious that more studies

on the primary products and mechanisms of fast pyrolysis reactions of lignin model

compounds are needed to further unravel the complicated processes involved. Previ-

ously, fast pyrolysis experiments have been coupled with gas chromatography/mass

spectrometry (py-GC/MS) to carry out on-line studies of the primary and later py-

rolysis products [14] of organosolv lignin. The primary products were proposed to

be monomers that form oligomeric products through radical repolymerization.[14] In

a recent study, organosolv lignin was pyrolyzed in a micropyrolyzer and the vapor

was directly analyzed using online GC/MS, or recovered in a cold solvent and then

analyzed using gel permeation chromatography and high-resolution FT-ICR mass

spectrometry.[124] A total of 569 phenolic compounds with molecular weight less

than 504 Da were found using py-GC/MS. The molecular weight of the pyrolysis
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Figure 6.2. Four proposed routes for the initial decomposition of phenethyl
phenyl ether during fast pyrolysis. Routes a and b involve free radical
mechanisms. Routes c and d involve retroene and Maccoll reactions, re-
spectively.[13]

products measured by GC/MS were found to be smaller than phenolic oligomers in

condensed bio-oil recovered from fast pyrolysis reactors. The most abundant phe-

nolic compounds among these smaller molecules were monomers followed by dimers,

trimers and tetramers according to gel permeation chromatogram. It was proposed

that reactive phenolic monomers could reoligomerize during fast pyrolysis.[124] A lim-

itation of the GC/MS approach is that it only allows relatively volatile and thermally

stable compounds to be observed and it may not allow detection of primary products

with high molecular weight. Thus, only certain lignin dimer and monomer products

can be detected (MW < 300Da).[9, 14, 124]

In order to overcome the above limitations of pyrolysis/GC/MS, an on-line mass

spectrometric analysis method published recently[28] was employed to detect the

primary products of fast pyrolysis of lignin model compounds ranging from trimers
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to a polymer. The primary products are defined here as the products that first leave

the hot pyrolysis surface. This is likely to be the first time that pure lignin oligomers

(larger than dimer) are studied in fast pyrolysis. All the lignin model compounds

were synthesized and the synthetic procedures were described in a separate paper.

All model compounds contain the β-O-4 linkage as this is the most abundant type

of a lignin linkage in nature, constituting about 50% of the linkages in total lignin in

softwood.[12]

6.2 Results and Discussion

Four β-O-4 lignin model compounds 1-4 (Figure 6.3) were used in this study,

i.e., two trimers (1 and 2), one tetramer (3) and one polymer (4). The degree of

polymerization (n) of polymer 4 is about 20.[125] The synthesis procedures used for

1-4 have been described previously.[125] All phenyl rings in compounds 1-3 are named

starting from the phenolic 4-end on the left to 1-end on the right as A, B, and C rings

for trimers 1 and 2 and A, B, C, and D rings for tetramer 3 (Figure 6.3). The A

ring is named as the 4-end unit. The B ring in 1 and 2 and the B and C rings in

3 are named as middle units. The C ring in 1 and 2 and D ring in 3 are named as

1-end unit. Compounds 1 and 3 share the same 4-end, middle and 1-end units, which

is also true for compounds 2 and 4. However, the 1-end unit (guaiacol) of 1 and 3

is different from the 1-end unit (guaiacol with a 1,3-propanediol moiety) of 2 and

4. The difference in the 1-end units among these compounds could allow the facile

identification of 1-end unit related pyrolysis products.

For fast pyrolysis experiments, the lignin model compounds 1-4 (1mg) were loaded

onto the ribbon of the pyrolysis probe, which was then heated at a rate of 1000◦C/s

up to a final temperature of 600◦C and held there for one second. During pyrolysis,

the primary products evaporated off the ribbon and were quenched by nitrogen gas

in the ion source, instantly ionized by (-)APCI with ammonia hydroxide dopant, [16,

126, 127] and then detected by a linear quadrupole ion trap (LQIT) mass spectrome-

ter. Because (-)APCI with ammonium hydroxide as dopant facilitates the ionization
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Figure 6.3. The lignin model compounds (1-4) used in this study. The β-
O-4 linkages in compounds 1-3 are in trans relative configuration. Polymer
4 has a ratio of 1:1 for cis/trans β-O-4 linkages. The number n is about
20 for 4.

of phenolic moieties, all the lignin pyrolysis products with a free phenol group are

expected to be ionized and detected at nearly equal efficiency. The total residence

plus analysis time (the time between when the pyrolysis probe starts heating and

the detection of the first pyrolysis products by the mass spectrometer) was 125 ± 57

ms.[34] The short residence time minimizes secondary reactions. Under the above fast

pyrolysis conditions, the β-O-4 lignin dimer undergoes thermal evaporation rather

than complete pyrolysis since the β-O-4 lignin dimer molecule is the only product

observed during fast pyrolysis. Hence, the lignin trimers and tetramer 1-3 are the

smallest model compounds studied.

In this section, a detailed comparison of the primary fast pyrolysis products of 1-4

will be presented. Then the possible mechanisms for fast pyrolysis of β-O-4 lignin are

discussed using tetramer 3 as an example.
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6.2.1 Comparison of the primary fast pyrolysis products of 1-4

The negative-mode APCI mass spectra (MS1) measured for the primary fast py-

rolysis products of compounds 1-3 are shown in Figure 6.4. The ionized pyrolysis

products are distributed in monomeric (m/z 100-250), dimeric (m/z 250-450), trimeric

(m/z 450-600) and tetrameric (m/z 600-750) mass regions according to their mass-to-

charge ratio (m/z). The deprotonated 1-3 (m/z 515, 589 and 711) are observed in the

mass spectra, indicating that some intact 1-3 molecules were able to evaporate off the

ribbon without being fragmented. The ionized pyrolysis products came directly from

the molecules without any H2O and CH2O losses during pyrolysis are called key py-

rolysis products, such as AB (m/z 391 of deprotonated form) and BC (m/z 319) of 1.

The structures of these deprotonated key pyrolysis products were confirmed through

CAD via comparison to CAD measured for deprotonated authentic compounds in a

previous study (e.g., ions of m/z 319, 271 and 515 for 3, Figures E.1, E.2, E.3 in

supporting information). For example, as shown in Figure E.1, the MS2 spectrum of

the deprotonated β-O-4 dimer (m/z 319) obtained through direct injection of a syn-

thesized dimer into the ion source followed by ionization is similar to that measured

for an ion of m/z 319 isolated from the MS1 pyrolysis/ionization mass spectrum of

3 (Figure 6.5). This means that the structures of these two m/z 319 ions are the

same. This is also true for dimer ion m/z 271 (Figure E.2) and trimer ion m/z

515 (Figure E.3). This observation demonstrated that these primary lignin pyrolysis

products came directly from the fragmentation of the parent molecules 1-3 and not

via repolymerization of monomeric products, which is in disagreement with a previous

report that the primary fast pyrolysis products of lignin are monomers and the lignin

oligomers observed after pyrolysis came from repolymerization of the monomers.[14]

The dimeric and monomeric pyrolysis products were the most abundant products

for 1-3. In the monomer mass region (Figure 6.4), the ionized 4-end A unit, a the key

ionized pyrolysis product (m/z 195), can be easily identified for 1-3 that share the

same 4-end A unit. 1 and 3 share the same 1-end C or D unit. Indeed, a key ionized
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Figure 6.4. The negative-mode APCI mass spectra (MS1) measured for
compounds 1-3 after fast pyrolysis.

pyrolysis product (m/z 123) of the 1-end C or D unit of 1 and 3 can be identified.

The ionized 1-end C unit of 2 (m/z 197) can also be detected. In the monomer region,

all three compounds show similar pyrolysis products.

The proposed structures of monomer pyrolysis products of 3 in the mass range of

m/z 100-200 are shown in Figure 6.6. These structures were deduced based on their

elemental compositions and CAD patterns (Table E.1). Some monomeric pyrolysis

products observed in this study are consistent with those published in previous reports

of pyrolysis/GC/MS of organosolv lignin,[15] such as 2-methoxyphenol and coniferyl

alcohol.

In the dimer mass region (Figure 6.4), three key ionized pyrolysis products are

identified: ions with m/z 319 (BC or CD unit for 1 and 3), m/z 391 (AB unit for 1-3
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Figure 6.5. Proposed structures for several monomeric fast pyrolysis prod-
ucts (detected as deprotonated molecules) of 3. Ion m/z 164 in the box is
radical anion.

and BC unit for 3) and m/z 393 (BC unit for 2). Most other ionized dimer pyrolysis

products are formed through different degrees of H2O and CH2O losses from these

three dimer key pyrolysis product (Table E.1). For example, the dimeric pyrolysis

products of 3 are shown in Figure 6.6. Three ionized key pyrolysis products (a with

m/z 515, b with m/z 391 and c with m/z 319) are identified. Other dimeric pyrolysis

products are formed through H2O and CH2O losses from these three products. In the

trimer mass region, a key ionized pyrolysis product of m/z 515 is visible for tetramer

3. The observed tetrameric, trimeric, dimeric and monomeric pyrolysis products of

1-3 are summarized in Table E.1 in supporting information.

As for fast pyrolysis of the polymer 4 (Figure 6.7), the dimers and monomers

are the major products, as for 1-3. Small amounts of trimers and tetramers could

be also detected. However, no oligomers (deprotonated molecules with m/z values
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Figure 6.6. Dimeric fast pyrolysis products (detected as deprotonated
molecules) of 3. Three key pyrolysis product with m/z 515 (a), m/z
391(b) and m/z 319 (c) as well as other pyrolysis products with different
degrees of H2O and CH2O losses from the key products can be identified.

>800) larger than the tetramer could be detected, which indicates that the largest

oligomer that is volatile enough to leave the ribbon surface intact is a tetramer. Hence,

oligomers larger than tetramers break down into tetramers or smaller molecules be-

fore evaporating from the heated ribbon surface during fast pyrolysis. 3 and 4 yield

similar pyrolysis products in the dimer and monomer regions (Figure 6.4). Three key

pyrolysis products ions of 4 (m/z 195, 391 and 393) can be observed. The deproto-

nated pyrolysis products of m/z 319 and m/z 271 (formed by H2O and CH2O losses

from ion of m/z 319) represent the CD dimer 1-end unit of 3 whereas polymer 4 does

not contain this 1-end dimer unit. The 1-end dimer unit of 4 is detected as ion of

m/z 393. The ion of m/z 393 is the same as the 1-end dimer BC unit of 2. Since both

3 and 4 share the same 4-end and middle units, they form the same key pyrolysis
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dimer product (ion of m/z 391) as well as all the other pyrolysis products arising via

H2O and CH2O losses from this key pyrolysis product. This finding confirms that

the ionized 1-end monomer unit, middle dimer units and 4-end dimer unit of poly-

mer 4 can be detected. The observation of similar pyrolysis products for polymer 4

and tetramer 3 implies that they share similar pyrolysis mechanisms, which will be

discussed in the next section. Moreover, this finding demonstrates that tetramer 3 is

a good surrogate to study pyrolysis of β-O-4 lignin polymers.

Figure 6.7. The negative-mode APCI mass spectrum (MS1) measured for
polymer 4 after fast pyrolysis and the comparison of the monomer and
dimer regions for polymer 4 and tetramer 3. The ions of m/z 319 and 271
are not found in the mass spectrum of polymer 4 since 4 does not have
the same end units as tetramer 3.
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6.2.2 Insights into the mechanisms of fast pyrolysis of β-O-4 lignin tetramer 3: con-
certed nonradical elimination mechanisms vs radical mechanisms

It is essential to understand the mechanism(s) for the cleavage of the β-O-4 link-

age during fast pyrolysis since this mechanism is directly related to primary product

formation. As described as above, both radical and non-radical mechanisms were

proposed for fast pyrolysis.[13–15, 117–123] In this section, lignin tetramer 3 is used

to illustrate the possible mechanisms leading to the formation of the primary pyrol-

ysis products. As shown in the previous section, the major dimeric, trimeric and

tetrameric pyrolysis products are nonradical products for compounds 1-4, indicating

that nonradical mechanisms are involved in the cleavage of β-O-4 linkages during py-

rolysis. Evidence in support for concerted nonradical elimination mechanisms comes

from the key pyrolysis product ions (m/z 195, 319, 391 and 393). First, the obser-

vation of all these products for 1-4 during fast pyrolysis implies that the mechanism

leading to these products is energetically favored. As shown in Figure 6.8, the bar-

rier for concerted Maccoll elimination of β-O-4 linkage is calculated to be only 44.8

kcal/mol. The previous study [123] demonstrated that the homolytic bond dissocia-

tion energies for the C-O and C-C bonds (radical mechanism) in the β-O-4 linkage

are 69 kcal/mol and 76 kcal/mol, respectively, which is much more than the barrier

for Maccoll elimination. Moreover, the barrier for concerted H2O and CH2O losses

was calculated to be only 44 kcal/mol (Figure 6.8), which is similar to the barrier of

Maccoll elimination (45 kcal/mol, Figure 6.8), The similar barriers for Maccoll elim-

ination and concerted H2O and CH2O losses indicates that both processes can occur

simultaneously during fast pyrolysis, which is also confirmed by experimental data.

Second, if the mechanism of cleavage of the β-O-4 linkage proceeds through radical

mechanism to form these key pyrolysis products, more radical related products, such

as H abstraction products and polymerized products, can be expected. However,

none of these radical related products were observed as major product.

The third piece of evidence comes from the comparison of the mass spectrum mea-

sured for the pyrolysis products of 3 (MS1) and the collision-activated dissociation
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Figure 6.8. Proposed fast pyrolysis mechanisms for the cleavage of β-
O-4 linkages and the elimination of water and formaldehyde. The energy
barriers for these processes were calculated at the B3LYP/6-31G(d,p) level
of theory.[30]
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(CAD) products of deprotonated 3 (MS2) (Figure 6.9). CAD is achieved through the

collision of the ionized molecule with helium buffer gas in the ion trap of the mass

spectrometer. Obviously, CAD is a lower energy fragmentation process compared

with fast pyrolysis. In previous studies, the gas-phase fragmentation mechanisms of

deprotonated lignin oligomers 1-3 were examined.[16, 126, 127] Both charge-driven

and charge-remote (concerted) mechanisms were proposed for the cleavage of β-O-4

linkages during CAD.[16, 126, 127] As shown in Figure 6.9, key product ions such

as ions of m/z 587, 515, 391, 319 and 195, are observed in both the pyrolysis mass

spectrum and the CAD spectrum, which implies that these two completely different

process may share similar mechanisms. Moreover, these products were to be formed

through concerted elimination during CAD. This finding indicates that concerted

Maccoll elimination is the favored low energy fragmentation pathway. There are

also some clear differences between the pyrolysis mass spectrum and the CAD mass

spectrum of 3. First, the ions of m/z 693 and m/z 663 in the CAD mass spectrum

is formed through charge-driven H2O and CH2O losses during CAD. The H2O loss

has a barrier of only 10 kcal/mol. However, in the pyrolysis mass spectrum, only

small amounts of deprotonated pyrolysis products of m/z 663 are observed, which

are likely formed through concerted elimination of H2O and CH2O with a barrier of

44 kcal/mol. Second, the pyrolysis mass spectrum shows more than twenty ionized

products (Table E.1) with different degrees of H2O and CH2O losses from the key

pyrolysis products whereas only six similar products (m/z 693, 663, 539, 467, 343,

271) are found in the CAD mass spectrum. These two differences clearly indicate

that fast pyrolysis is a higher energy fragmentation process. In conclusion, as shown

in Figure 6.10, concerted Maccoll elimination is proposed to be the dominant mecha-

nism leading to the cleavage of β-O-4 linkages and the formation of the key pyrolysis

products. Simultaneous concerted H2O and CH2O losses occur from these key pyrol-

ysis products, leading to the formation of the primary monomer, dimer, trimer and

tetramer pyrolysis products during the first 125 ± 57 ms of fast pyrolysis.
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Figure 6.9. The top mass spectrum (MS1) shows all the major primary
fast pyrolysis products of compound 3 that were ionized under APCI
negative mode. The bottom negative-mode APCI mass spectrum (MS2)
shows the CAD fragment ions of deprotonated 3 introduced into the mass
spectrometer using direct injection. Ions marked in bold (m/z 587, 515,
391, 319 and 195) are key pyrolysis products formed through Maccoll
elimination from deprotonated 3 without H2O and CH2O losses.

6.3 Conclusions

The primary fast pyrolysis products of four β-O-4 lignin model compounds were

determined using a linear quadrupole ion trap mass spectrometer coupled with a

fast heating pyrolysis probe. Both calculations and experimental data suggest that

cleavages of the β-O-4 linkages likely occur via concerted Maccoll elimination rather

than radical mechanisms Based on the results presented here, the first steps of fast

pyrolysis of lignin oligomers mainly involve concerted Maccoll eliminations as well
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Figure 6.10. The proposed primary products for fast pyrolysis of 3.
Compound 3 yields trimer, dimer and monomer fragments via concerted
Maccoll elimination (E) upon rapid heating. Simultaneous water and
formaldehyde losses also occur during this process. The resulting prod-
ucts are evaporated off the ribbon surface, ionized and detected by the
mass spectrometer.

as concerted H2O and CH2O losses to give primary pyrolysis products ranging from

monomers to tetramers. The lignin tetramer was found to be the largest oligomer

that could evaporate intact off the ribbon surface during pyrolysis. Finally, lignin

tetramer 3 was discovered to be a good surrogate to study the details of pyrolysis of

β-O-4 lignin polymers.



85

6.4 Experimental Methods

6.4.1 Materials

The synthesis of the lignin model compounds 1-4 is described.[30] Methanol (Op-

tima LC/MS ≥99.9%, CAS 67-56-1) was purchased from Fisher Scientific, ammonium

hydroxide (28-30% as NH3, CAS 1336-21-6) was purchased from Mallinckrodt Chem-

icals, and compressed nitrogen gas (≥99.9%, CAS 7727-37-9) was purchased from

Indiana Oxygen. All purchased chemicals were used without further purification.

6.4.2 Mass Spectrometry

Detection and characterization of lignin fast pyrolysis products was performed

using a Thermo Scientific (Waltham, MA) LTQ linear quadrupole ion trap (LQIT)

mass spectrometer, as described previously.[9, 10] High resolution data to determine

elemental compositions were collected using a 7 Tesla Thermo Scientific LTQ-FT-

ICR. Solutions for direct injection experiments of model compounds were made at

a concentration of 10−5 M in 3 mL methanol : water (50 : 50 v/v) with 200 µL

ammonium hydroxide dopant for negative ion mode mass spectrometry. The solutions

were pumped into an APCI source via the APCI probe at a rate of 3 µL/min with a

solution of methanol : water (50 : 50 v/v) tee-infused from the LC at a rate of 100

µL/min. During pyrolysis experiments, ammonium hydroxide: water (75 : 25 v/v)

dopant solution was pumped into the APCI source via the APCI probe at a rate of 1

µL/min with a solution of methanol : water (50 : 50 v/v) tee-infused from the LC at a

rate of 300 µL/min. The variables of the LQIT were set to the following values for all

experiments: discharge current 5.0 µA, vaporizer temperature 300◦C, sheath gas (N2)

flow 40 arbitrary units, auxiliary gas flow (N2) 10 arbitrary units, sweep gas flow (N2)

0 arbitrary units, capillary temperature 250◦C, capillary voltage -1 V, and tube lens

voltage -105 V. Collisionally activated dissociation (CAD) experiments used an ion

isolation window of ± 2 Daltons (Da), with the normalized collision energy ranging
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from 5 up to 30 arbitrary units and activation time being 30 ms. Data collection and

processing was carried out using Xcalibur 2.1 software.

6.4.3 Pyrolysis

All pyrolysis experiments were performed using an experimental set-up published

earlier.[9, 10] The pyrolysis probe is based on a Pyroprobe 5200HP purchased from

CDS Analytical (Oxford, PA). The pyrolysis probe uses a resistively heated plat-

inum ribbon (2.1 mm × 35 mm × 0.1 mm) with the ability to heat at rates up to

20,000◦C × s−1. Based on previous work in other laboratories, platinum does not

act as a catalyst during the pyrolysis experiments.[42, 43] Roughly tens to hundreds

of micrograms of sample were loaded onto the platinum ribbon and held onto the

surface via electrostatic attraction. This method of loading of the ribbon resulted in

a submonolayer of sample on its surface. This was done to ensure rapid and uniform

heat transfer to all particles. The ribbon was heated up to 600◦C at a rate of 1,000◦C

× s−1 resulting in a heating time of 0.6 s. The pyroprobe was maintained at 600◦C

for 1 s.

6.4.4 Determination of the primary products of fast pyrolysis of lignin model com-
pounds

The tip of the probe described above was inserted into the ionization chamber of

the LQIT through a home-built adaptor that was placed into the unused atmospheric

pressure photoionization (APPI) port. This adaptor positioned the platinum ribbon

approximately 5 mm in front of and 5 mm below the skimmer cone/inlet of the LQIT.

A diagram of this setup has been published previously.[9] Once pyrolysis occurred,

the evaporated products were immediately diluted via diffusion into the 2 L ionization

chamber and subsequently quenched via collisions with nitrogen gas (at about 100◦C),

which prevented secondary reactions. The products were ionized and characterized

by multi-stage tandem mass spectrometry experiments.
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7. FAST PYROLYSIS OF GUAIACYL LIGNIN MODEL COMPOUNDS WITH

β-O-4 LINKAGES

7.1 Introduction

Biomass is a major source of renewable carbon which can be converted to hydro-

carbon fuel with the aim of reducing the dependence on fossil based sources. The

CO2 emissions from biomass-based renewable fuels can be considered to be part of a

renewable cycle of carbon emissions. Fast pyrolysis followed by catalytic hydrodeoxy-

genation is considered a promising biomass conversion route to produce drop in hydro-

carbon fuels.[26] Fast pyrolysis is the process of heating biomass to a high temperature

(400-600◦C), with high heating rates in the presence of inert with a low vapor residence

time before condensation of the bio-oil.[128] Typical crude bio-oil derived from fast

pyrolysis of wood possesses a low energy density (17 MJ/kg) while that of petroleum

is ∼40 MJ/kg.[26, 128] This low energy density is primarily due to high oxygen con-

tent (35-40 wt%), and hence it is necessary to remove oxygen to <1% for utilizing it as

a fuel. However, upgrading condensed bio-oil (hydrotreating) has several drawbacks

like secondary reactions during revaporisation of bio-oil leading to an overall reduced

yield of products as well as due to reactor plugging as well as catalyst coking.[129]

To overcome these obstacles, the H2Bioil process was proposed as an integrated high

pressure fast hydropyrolysis and catalytic vapor phase hydrodeoxygenation (HDO)

pathway for conversion of biomass to produce high energy density fuel.[58, 60, 61,

63, 130] In order to develop a suitable catalyst for hydrodeoxygenation, it is very

important to understand the vapor phase composition of the fast pyrolysis products

of biomass. As such the vapor phase residence time between pyrolysis and catalytic

hydrodeoxygenation becomes a critical parameter for tailoring the pyrolysis product

distribution by promoting/mitigating the secondary reactions occurring in the vapor
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phase. Neumann et al. have shown that presence of lignin dimeric species results

in higher degree of coking over zeolites as compared to monomeric counterparts.[131]

In this study we have investigated the effect of vapor phase residence time on the

product distribution from pyrolysis of model lignin oligomers.

Biomass is primarily composed of three types of polymers; cellulose, hemicellulose,

and lignin, which are intertwined to make the structural framework of the plants.

Although, lignin only constitutes 10-30% of lignocellulosic biomass it accounts for

25-40% of the energy content of biomass, this is in part due to the higher C/O ratio

than cellulose and hemicellulose.[132] Additionally, the presence of aromatic rings in

the structural framework of the lignin polymer makes it a highly attractive source

of a high-octane hydrocarbon fuel . Typically lignin is extracted from biomass by

different types of processes, such as the organosolv process.[12, 133, 134] Numerous

lignin pyrolysis studies have been performed with extracted lignin to study the effect

of pyrolysis parameters on the product distribution. An increase in temperature

was shown to decrease the amount of char left behind while increasing the yield of

bio-oil.[135] The char yield from lignin pyrolysis was found to vary between 10-60%

depending on the temperature and heating rate, while the yield for bio-oil was in the

range of 20-60%.[15, 114, 133, 135–138] The products identified in the lignin pyrolysis

bio-oils have a distribution of monomeric and oligomeric molecules. The formation of

oligomers is a debated topic in literature with significant evidence for their formation

by oligomerization of monomeric species in the condensed bio-oil.[14] However, in

another study oligomeric molecules have been shown to be directly formed during

pyrolysis of lignin and are proposed to be precursors to monomeric molecules.[139] The

contribution of the oligomeric species to the initial vapor phase product distribution

is unclear due to an absence of quantitative analytical tools for online analysis of

oligomer-containing vapors. One of the objectives of this study is to understand the

contribution of dimeric species to the initial product distribution via online GC/MS

studies of pyrolysis of lignin model compounds.
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In the literature, several studies have been published on pyrolysis of lignin where

multiple analytical techniques were utilized due to the wide molecular weight range

(50-2000 Da) of the detected products.[14, 137, 139, 140] It is clear that a single

analytical technique is not capable of providing qualitative and quantitative results

for condensed bio-oil. Common techniques used for identification of lignin pyrolysis

products are GC/MS, MBMS (molecular beam mass spectrometry), FTIR, and mass

spectrometry with an arsenal of different ionization methods.[124, 141–145] Amongst

these, GC/MS is the most widely used tool for identification and quantification of

monomeric products from lignin pyrolysis. Whereas HPLC and GPC (liquid chro-

matography techniques), have been frequently used for analysis of oligomeric products

in the bio-oil.[14, 124, 139, 146] Depending on the type of lignin pyrolyzed and the

pyrolysis conditions, monomeric products may account for anywhere between 15 and

60% of the product distribution.[113, 147] In a scenario where the amount of oligomers

is >10%, GC/MS is not entirely sufficient for quantitative analysis due to low volatil-

ity of oligomer molecules. Previously, Guillen and Ibargoitia [148] have shown that

lignin derived dimers can be qualitatively observed with GC-MS. However, there is a

need to develop quantitative gas chromatography for lignin derived dimers as it would

enable the analysis of a significant proportion of the vapor phase product distribu-

tion. In this manuscript we have developed a quantitative analytical technique using

a GC/MS for the monomer and dimer fractions of the lignin pyrolysis products.

It is known that extracted lignin may undergo structural changes depending on the

severity of the extraction process.[16, 134] Another shortcoming of extracted lignin

is that it may have a higher proportion of impurities and mineral content, which

has been shown to affect the product distribution and bio-oil yield.[149] As a result,

synthetic model polymers have been previously employed for studying the pathways

and mechanisms of lignin pyrolysis.[13, 147, 150–154] Lignin is a heteropolymer with

three major types of building blocks (coniferyl, syringyl and coumaryl) and at least 8

different types of linkages connecting the monomer units to form a cross linked poly-

mer.[12] The β-O-4 linkage is the most abundant type of linkage and accounts for
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up to 50% of the linkages in softwood lignin. Therefore synthetic model dimers and

polymers with β-O ether linkages have been studied widely to understand the bond

cleavage pathways as well as mechanism. From previous studies it can be concluded

that the mechanism of β-O ether bond cleavage is majorly dependent on two factors

1) Substituents on the α and γ carbon atoms of the model compound 2) Temperature

of pyrolysis. Jarvis et al [13] have observed that below 1000◦C the dominant reac-

tions in cleavage of β-O ether bond are retro-ene and Maccoll reactions, while above

1000◦C homolytic bond scission plays a prominent role as well.[122] Huaming et. al.

(Chapter 6) have provided evidence based on theory and experiments for a dominant

non-radical based mechanism for β-O-4 cleavage during pyrolysis at 600◦C. In another

study with a model dimer, it was shown that the presence of an -OH substituent on

the γ carbon, modifies the β-O ether bond cleavage mechanism when compared with

other substituents like -H.[122, 155] This indicates that choice of model compound

also plays an important role in the governing mechanism for β-O ether bond scis-

sion, and the model compound should be an accurate structural representation of

the natural lignin polymer. Therefore, in this study we have chosen synthetic model

compounds with -OH substituent on the α and γ carbon atoms.

7.2 Experimental Methods

7.2.1 Reactor Description

Lignin pyrolysis experiments were carried out using a Pyroprobe 5200 HP (CDS

Analytical Inc.) connected to an online Gas Chromatograph (7890A) equipped with

a Flame ionization detector and a Mass Spectrometer (5975C). A resistively heated

Pt coil was used as a heating source for pyrolysis of the lignin model compounds. A

known weight of the reactant sample was loaded in a quartz tube (0.15cm ID X 2.5cm

length) which was subsequently placed in the opening of the Pt coil. A heating rate

of 1000◦C × s−1 was used to attain a final temperature of 500◦C during pyrolysis

of the sample. The pyrolysis vapors were flushed out from the quartz tube by the
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carrier gas (He) and carried into the GC/MS. The GC was equipped with an HP-

5ms column (solid phase - 5% diphenyl and 95% dimethylpolysiloaxane (5PMPS))

connected to a three way splitter with auxiliary gas input. The flow from the col-

umn was split to the FID and MS with synchronized peaks for quantification and

identification, respectively. Multiple columns with different dimensions (as shown in

Table 7.1) were tested to obtain a suitable configuration for quantitative analysis of

lignin derived dimeric molecules. The details about the column selection procedure

have been provided in the results section.

7.2.2 Loading and Reactor Operation

The sample was coated on the inner surface of the quartz tube and the amount

of sample was measured by weighing the quartz tube before and after the sample

loading. The sample (0.2-1 mg) was coated on the inner walls of the quartz tube by

mechanical force. No quartz wool was loaded in the quartz tube so that the carrier gas

would flow through the tube and carry out the vapors efficiently. This was critical for

accurate control of the vapor phase residence time after pyrolysis. The sample loading

procedure was tested via carrier gas flow experiments to ensure that the sample was

firmly coated to the wall and was not dislodged by the flowing gas before pyrolysis.

After loading the sample, the quartz tube was placed inside the Pt coil, which is

mounted on a probe. The probe was then placed inside the pyrolysis chamber (refer

to Figure F.2) and the air was flushed out using nitrogen. The valves were switched

to introduce the carrier gas (He) and flush out the nitrogen. The pyrolysis chamber

was then heated by an external heater to a temperature of 300◦C in ∼10 s followed by

the Pt coil being heated to a final temperature of 500◦C at a heating rate of 1000◦C

× s−1. The pyrolysis vapors were carried out from the quartz tube, through the heat

traced transfer tubing into the online GC-MS. The split/splitless inlet of the GC was

maintained at a temperature of 300◦C and a split ratio of 100:1 was used for the

standard runs. For column 4, the oven was initially maintained at 33◦C for 10 min,

followed by a 10◦C × s−1 ramp to 320◦C. The final temperature was held for 10 min.
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7.2.3 Product Identification and Quantification

The peaks observed in the gas chromatogram (FID) were quantified on the basis of

calibrations made by using standard compounds. The identification of the observed

products was performed by comparing the EI spectrum from the mass spectrometer

to those in the MS NIST (National Institute of Standards and Technology) database.

Some of the compounds which were not available in the database were identified

by comparison with those from similar experiments performed with pyrolysis-MS

analytical technique (Chapter 6). The char analysis was obtained by weighing the

quartz tube after pyrolysis and obtaining the difference with the weight of the empty

quartz tube.

7.2.4 Model Compound Synthesis

The lignin model compounds (Figure 7.1) used for pyrolysis in this study (with

the exception of Dimer 1) were synthesized at Purdue University. Dimer 1 (Guaiacyl-

glycerol-β-guaiacyl ether, >97% purity) was obtained from TCI America. Trimer

2, tetramer 3, trimer 4 were synthesized using the procedure outlined in Huaming

et al. Polymer 5 was synthesized by the procedure outlined by Kishimoto et al.

and its structure was verified by using NMR.[156] For the synthesized molecules the

structural conformity was tested by using HNMR and CNMR studies.

7.3 Results

7.3.1 Quantitative analysis of dimeric molecules using a GC/MS

Fast pyrolysis of the lignin component of the biomass is known to produce a

distribution of molecules composed of monomeric, dimeric, and oligomeric depoly-

merization products. However quantitative analysis of oligomers derived from lignin

via GC-MS is considered to be a challenge due to their low volatility. Typically, liquid

chromatography techniques (gel permeation chromatography, HPLC) have been used

to identify and quantify the aforementioned oligomeric fraction of bio-oil.[146] How-
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Figure 7.1. Lignin model compounds (1-5) used in this study. Numbers
inside the rings are for notation purposes only, relevant end groups are
highlighted in blue.

ever, liquid chromatography techniques are unsuitable for determining the accurate

vapor phase product distribution due to secondary reactions accompanying conden-

sation of the pyrolysis vapors.[14] Therefore, online analysis of vapor phase pyrolysis

products is essential for understanding 1) The pathways governing depolymerisation

of lignin during pyrolysis and 2) Designing a downstream catalyst for direct vapor

phase hydrodeoxygenation of the pyrolysis products.

In our efforts to develop a quantitative method of analysis of lignin derived dimeric

species, we tested four different columns on the GC/MS (Table 7.1). Dimer 1 was

chosen as a model dimer, and each column configuration was tested with online vapor

phase analysis of pyrolysis products from dimer 1 . The observed product distribution

has been divided into two major groups, namely monomeric products and dimer 1.

The overall mass balance for column 1 was ∼40% with ∼27% yield of monomeric
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products. For column 2, which has a lower solid phase thickness (0.25 µm), the overall

mass balance increased to ∼72% with ∼26% yield of monomeric products. Decreasing

the solid phase thickness possibly reduced the interactions of the dimeric molecules

resulting in more molecules being able to elute out from the column. Column 3 did not

have any solid phase and was unable to provide an adequate degree of resolution for

the observed products, making identification and quantification very difficult. Column

4 was fabricated by using a fraction of the length from column 2 to reduce the total

interactions with the solid phase while still retaining an adequate degree of resolution

to delineate the observed peaks. The overall mass balance with column 4 was ∼98%

with 27% yield to monomeric products. From column 1, 2 and 4 we observed an

increase in the quantified amount of dimer 1 and other dimeric molecules, while the

total amount of monomers remained constant. Increasing interactions with the solid

phase can cause the dimeric species to get trapped in the column and hence cannot

be detected. Table 7.2 shows the increase in the dimeric species observed when the

total solid phase volume was decreased by two orders of magnitude from column 1-4.

It should also be noted that the dimeric species do not breakdown or degrade to

form monomers, since the total amount of monomers observed over different columns

(each column having different elution times for dimer 1 - Table F.3) remains constant.

Similar results were also obtained for the tetramer 3, with an increase in the quantified

dimeric species from column 1 to column 4 (Table 7.3). These results indicate that

column 4 is suitable for quantitative analysis of lignin derived pyrolysis products

comprising of monomers and dimers. This study has also demonstrated that one

frequently used, commercially available configuration of GC column (Column 3) is

not suitable for quantitative analysis of lignin derived dimeric species, since only a

small proportion may be observed.

7.3.2 Pyrolysis of Dimer 1

As shown in Table 7.2, the overall mass balance achieved during pyrolysis of dimer

1 was>97%, when the column 4 was used for analysis of the products. The monomeric
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Table 7.2.
Lumped pyrolysis products of dimer 1 as a function of the columns tested.

Column #
Solid phase

volume / mm3

Dimer 1 / %

wt of feed

Monomeric

species / % wt

of feed

Total mass

balance / %

wt of feed

Column 1 37.4 5.6 26.4 40.2

Column 2 3.8 39.4 26.3 72

Column 4 0.3 63.4 25.3 97.9

Table 7.3.
Lumped pyrolysis products of tetramer 3 as a function of the columns
tested.

Column #
Solid phase

volume / mm3

Dimeric

species / % wt

of feed

Monomeric

species / % wt

of feed

Total mass

balance / %

wt of feed

Column 1 37.4 3.6 42.8 68.7

Column 2 3.8 18.1 40.6 77.6

Column 4 0.3 30.9 41.5 94.4
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products accounted for 25.3 wt% of dimer 1 pyrolyzed, the detailed product distri-

bution of major identified molecules is provided in Table 7.4. The major monomeric

products observed as a result of β-O-4 bond cleavage were guaiacol and coniferyl al-

cohol. Guaiacol was formed from the end group aromatic ring (blue aromatic ring in

Figure 7.1), which does not have an alkyl substituent, with the expected ∼12 wt%

theoretical abundance (moles of dimer 1 converted via β-O-4 bond scission = total

moles of guaiacol formed). However since such end groups are not a significant part

of the natural lignin polymer, guaiacol is not expected to be a major product from

lignin pyrolysis. As a consequence, the high abundance of guaiacol can be considered

as an artifact of the model compound. Therefore, the major product from β-O-4

bond cleavage of dimer 1 was coniferyl alcohol. The dimeric products account for

∼70% of the pyrolysis products of the dimer 1 model compound pyrolyzed. It is also

interesting to note that ∼64 wt% of dimer 1 evaporated cleanly during pyrolysis, and

was detected unaltered in the GC/MS.

7.3.3 Pyrolysis of Trimer 2, Tetramer 3, Trimer 4 and Polymer 5

From the results in Table 7.4, it can be seen that similar monomeric products were

observed for dimer 1 , trimer 2, and tetramer 3, with varying abundances. The varying

proportions of the monomeric species can be attributed to, a) varying proportion of

guaiacyl end group (blue aromatic rings in Figure 7.1, b) varying degree of evaporation

versus pyrolysis. It should be noted that for all the model compounds the major

monomeric product observed was coniferyl alcohol. Amongst the dimeric products,

only two molecules were identified (dimer 1 and 2-methoxy-4-(2-(2-methoxyphenoxy)-

vinyl)phenol), due to lack of suitable matches in the NIST identification database for

the other products. However, Huaming et al. ( 6) have been able identify dimeric

molecular species using MSn experiments which would also be expected to be a part

of the pyrolysis product distribution here. Dimer 1 was not detected from pyrolysis of

trimer 4 and polymer 5 due to absence of the guaiacyl end group. However for all the

model compounds, the abundance of the dimeric species was greater than or equal
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Table 7.4.
Quantified pyrolysis product distribution (wt% of starting model com-
pound) of various lignin model compounds.

Compound
Dimer

1

Trimer

2

Tetramer

3

Trimer

4

Polymer

5

Light Oxygenated

Hydrocarbons (C1-C3)
(a)

1.8 8.9 7 7.3 7.4

Monomeric species(b)

Guaiacol (2-methoxy-phenol) 12.1 12.7 7.8 1.8 1.7

4-methoxyl-4-methylphenol n.d. n.d. 0.1 0.2 0.5

3-methoxy-benzaldehyde 0.4 0.4 0.4 n.d. n.d.

2-methoxy-4-vinylphenol 0.1 0.3 0.5 1.5 1.5

4-hydroxy-3-methoxybenzaldehyde 0.5 1.7 2 1.5 2.9

1-(4-hydroxy-3-methoxyphenyl)-

ethan-1-one
0.6 1.9 2.1 1.8 1.7

1-(4-hydroxy-3-methoxyphenyl)-

prop-2-en-1-one
1.5 3.5 3.8 3.2 2.5

4-(3-hydroxyprop-1-en-1-yl)-2-

methoxyphenol
0.6 1.8 2.2 2.4 1.8

3-(4-hydroxy-3-methoxyphenyl)-

acrylaldehyde
0.3 0.9 0.9 1.6 1.1

Coniferyl alcohol (4-(3-hydroxy-

prop-1-en-1-yl)-2-methoxyphenol)
5.9 14.9 16.6 19.9 14.4

3-hydroxy-1-(4-hydroxy-3-methoxy-

phenyl)propan-1-one
1.8 1.6 1.3 0.7 0.4

Other monomeric species 1.7 2 3.8 9.9 10.4

Dimeric species(a)

Dimer 1 63.4 18.4 16 n.d. n.d.

2-methoxy-4-(2-(2-methoxy-

phenoxy)vinyl)phenol
1.2 1.8 1.5 n.d. n.d.

Other dimeric species 6 9.6 13.4 22.6 19

Char n.d. 12.5 15 22.2 27

Total 97.9 92.9 94.4 96.7 92.3

(a) Formaldehyde and residual solvents were used during model compound synthesis

(b) Structures for the monomeric and dimeric species are shown in Figure 2
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to 19%, indicating that they made up a significant proportion of the vapor phase

product distribution.

7.4 Discussion

7.4.1 Product distribution from lignin model compounds

As discussed previously, a significant proportion (>60%) of the dimer 1 was de-

tected intact after pyrolysis. A similar result was reported in literature by Kawamoto

et al. with ∼50% of dimer 1 evaporating under pyrolysis conditions.[155] This result

is a consequence of two competing phenomenon occurring while the model compound

is being heated to the pyrolysis temperature, evaporation and structural change

due to pyrolysis. The relative proportion of products obtained from evaporation

and pyrolysis are primarily governed by the volatility of the reactant molecule and

the temperature of pyrolysis. As such, dimer 1 is not an ideal molecule to study

the effect of pyrolysis parameters on the product distribution from lignin pyroly-

sis due to significant evaporation under fast pyrolysis conditions. However, study-

ing pyrolysis of dimer 1 provided valuable information not only about the types

of products that would be expected from pyrolysis of lignin, but also the reaction

pathways. Two major reaction pathways were observed, a) cleavage of the β-O-

4 linkage to form guaiacol and coniferyl alcohol, b) formaldehyde (γ elimination)

and water loss. Studies by Kawamoto et al. have previously reported these two

pathways during pyrolysis of dimer 1.[155] Pathway 1, which is the cleavage of the

β-O-4 linkage was the major pathway for formation of monomeric species, while

Pathway 2 was a minor pathway which resulted in formation of the dimeric species,

2-methoxy-4-(2-(2-methoxyphenoxy)vinyl)phenol), as shown in Figure 7.2. In ad-

dition to these two pathways, we observed significant amounts of other monomeric

products. The other monomeric products may be formed by alternate pathways

as well as by secondary transformations from coniferyl alcohol.[157] All the major

identified monomeric species have the characteristic phenolic and methoxy groups re-
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spectively at para and meta positions relative to the substituted alkyl chain as shown

in Figure 7.3. Also, a major fraction (>85%) of the observed monomeric products

(excluding guaiacol, from the end group) were composed of 10 carbon atoms indi-

cating a low degree of C-C bond scission during pyrolysis (Table F.2). Monomeric

products with 8 or 9 carbon atoms per molecule were observed due to carbon losses

occurring from the substituted alkyl side chain.

Figure 7.2. Two pathways observed during pyrolysis of dimer 1.

As stated earlier, the major monomeric product observed was coniferyl alcohol

and had the highest absolute abundance for all the model compounds 1-5. However,

the absolute abundance varied for each of the model compounds 1-5, primarily due to

a change in the degree of polymerization which resulted in a prominent guaiacyl end

group effect (different relative proportion of guaiacol to monomeric fragments after

β-O-4 bond scission). Additional causes include the extent of β-O-4 bond scission

which was different for each of the model compounds. One can hypothesize that the

extent of β-O-4 bond scission is not only dependent on the volatility of the parent

molecule but also the volatility of the molecular fragments formed during pyrolysis.

For instance, if the β-O-4 linkage # 1 in trimer 2 cleaves via pathway 1, it will produce

a dimeric species dimer 6 and guaiacol (as shown in Figure 7.4). While with cleavage of

β-O-4 linkage # 2 it will produce dimer 1 and a monomeric product, coniferyl alcohol
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Figure 7.3. Structures of the major products from pyrolysis of lignin model
compounds.

(Figure 7.4). The dimeric species comprising of the guaiacyl end group (dimer 1)

will have a higher volatility as compared to its counterpart (dimer 6), in part due

to its lower molecular weight (see Table F.1 for estimated boiling points). As such

there is a higher propensity for dimer 6 to undergo secondary reactions before being
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vaporized. This is evident in Table 7.4 since the total amount of dimer 1 observed

is ∼2 times that of the total amount of other dimeric species (the majority of which

can be assumed to originate from cleavage of β-O-4 linkage # 1). Furthermore model

compounds trimer 4 and polymer 5 are devoid of the guaiacyl end group, which is

reflected in a drastic decrease in the amount of guaiacol observed when compared

with that for model compounds 1-3. These differences make it difficult to directly

compare the monomeric product distribution amongst the five model compounds.

Therefore, to compare the monomeric product distribution, all the products were

normalized by the absolute abundance (wt% of feed) of the major monomeric product,

coniferyl alcohol. The results have been shown in Table 7.5. It is evident that the

relative normalized proportion of all the major identified products (with the exception

of 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)propan-1-one ) is similar irrespective of

the model compound 1-5 pyrolyzed. Guaiacol was formed in different proportions

depending on the end group ratio (the ratio of blue to red rings from Figure 7.1) for

model compounds 1-3 and hence not included in Table 7.5. These results suggest

that reactions occurring during β-O-4 bond scission are probably independent of the

degree of polymerization, and the nature of the end group (presence or absence of

alkyl substituent on the guaiacyl end group) does not play a dominant role. Although

the nature of the end group may influence the monomeric products formed as a result

of secondary reactions of products formed via pathway 2, it can be considered a minor

effect and would contribute to the variation in the relative proportion.

7.4.2 Char Formation

Char is the residue that is left behind during pyrolysis of biomass, and numer-

ous studies have been carried out on char formation during pyrolysis of extracted

lignin. Lignin is a considered a significant contributor to char during biomass pyroly-

sis therefore it is necessary to understand the factors which influence char formation

with the goal to increase the carbon yield. Here, we have systematically studied the

amount of char formed as a function of the degree of polymerization by keeping all
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Table 7.5.
Relative abundances of identified monomeric pyrolysis products normal-
ized with respect to coniferyl alcohol (4-(3-hydroxyprop-1-en-1-yl)-2--
methoxyphenol).

Compound
Dimer

1

Trimer

2

Tetramer

3

Trimer

4

Polymer

5

Monomeric species

2-methoxy-4-vinylphenol 1.4 1.8 2.7 7.8 10.7

4-hydroxy-3-methoxybenzaldehyde 8.2 11.6 12.3 7.3 20.1

1-(4-hydroxy-3-methoxyphenyl)-

ethan-1-one
10.1 12.8 12.7 8.9 11.9

1-(4-hydroxy-3-methoxyphenyl)-

prop-2-en-1-one
25.9 23.4 22.7 16.3 17

4-(3-hydroxyprop-1-en-1-yl)-2-

methoxyphenol
9.4 11.9 13.2 12.2 12.3

3-(4-hydroxy-3-methoxyphenyl)-

acrylaldehyde
5.9 5.8 5.4 8 7.7

4-(3-hydroxyprop-1-en-1-yl)-2-

methoxyphenol
100 100 100 100 100

3-hydroxy-1-(4-hydroxy-3-methoxy-

phenyl)propan-1-one
31.2 10.9 8.1 3.6 2.8
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Figure 7.4. Transformation of trimer 2 to potential products via pathway
1.

the other influencing parameters constant. Additionally there was no influence of in-

organic impurities on char formation since pure synthetic lignin oligomers have been

used in this study. It was observed that the quantity of char formed increased with

an increase in the degree of polymerization for model compounds 1,2,3,5 as shown

in Figure 7.5. The degree of polymerization is indirectly linked to the volatility of

the parent molecule as well as the number of bonds that need to be broken to form

fragments which have a rate of vaporization that is high relative to the rates of subse-

quent reactions. Therefore it seems logical that char formation is proportional to the

degree of polymerization of the lignin model compounds. Kotake et al. have predicted

a ”‘polymer effect”’ which states that, the pyrolysis fragments tend to spend more

time on the heated surface when more bonds are required to be broken, resulting in

greater extent of char formation.[158] A comparison of the char yields between trimer

2 (12.5%) and trimer 4 (22.2%) showed a notable increase in the amount of char

formed for trimer 4. In the case of trimer 4, the end group has an alkyl substituent

which results in an increase in the molecular weight and as well as the predicted

boiling point of the compound when compared to trimer 2 (Table F.1). Additionally,

the monomers/dimers formed from the substituted end group as a result of β-O-4

bond cleavage have a lower volatility, as compared to those from trimer 2. These
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factors could explain an increase in the amount of char formation which progressively

increases up to that produced by polymer 5 (Dp = 20).

Figure 7.5. Char yield as a function of the degree of polymerization of the
lignin model compounds.

An additional factor for char formation could be the concentration of coniferyl

alcohol species at the pyrolysis surface. Studies have shown that when heated to

temperature greater than 250◦C, coniferyl alcohol undergoes polymerization reactions

in addition to char formation, evaporation and secondary reactions to form other

monomeric species.[157–160] On further investigation under pyrolysis conditions of

500◦C, formation of dimeric molecules from coniferyl alcohol was observed along with

formation of char, ∼10% (Table F.4). Only∼35% of it evaporated intact, proving that

it is an extremely reactive species and could be responsible for formation of char during

pyrolysis of the model polymers. Condensation reactions have also been observed

with lignin monomers having a Cα=Cβ which could be precursors for polymerization

and eventual formation of char.[159] The expected concentration of coniferyl alcohol

species and its oligomeric counterparts at the pyrolysis surface is also proportional
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to the degree of polymerization (Figure F.2). Therefore polymerization of pyrolysis

fragments (monomeric and oligomeric) with Cα=Cβ could also result in formation of

char which has been shown to possess a polyaromatic structure.[135]

7.4.3 Effect of Vapor Phase Residence Time

Vapor phase residence time is considered to be a critical parameter in controlling

the product distribution from fast pyrolysis of biomass. Previous studies have sug-

gested that the primary products of lignin pyrolysis are monomeric compounds which

subsequently undergo secondary reactions that lead to the formation of oligomers.[14,

124] There is evidence that these reactions occur during/after condensation of the py-

rolysis vapors and are aided by presence of acidic species in the bio-oil. However, it

is unclear whether the oligomerization reactions also occur in the vapor phase. Hoek-

stra et al. performed vapor phase residence time studies on pyrolysis vapors from

pine wood and observed a decrease in the yield of pyrolytic lignin (from bio-oil) with

an increase in the residence time.[149] This result points towards a decrease in the

average molecular weight of the product distribution from biomass, however there is

little information on the composition of the pyrolytic lignin and the condensed bio-

oil. In order to understand the nature of these secondary reactions, we performed

lignin pyrolysis experiments at different vapor phase residence times by varying the

gas flow rate through the pyrolysis zone. It should be noted that condensation was

entirely avoided by having online analysis GC/MS capability and fully heat-traced

transfer lines. The residence times were calculated based on the gas flow rate and the

estimated volume between the sample quartz tube and the GC column. The pyrolysis

and analysis conditions were identical for these experiments and any change in the

product distribution was attributed to a change in the vapor phase residence time.

These experiments were limited to the two model compounds, dimer 1 and poly-

mer 5, and the residence time was varied from 0.5 s to 3 s while maintaining the

temperature of the entire post pyrolysis zone at 300◦C. At the lowest residence time

(0.5 s), the pyrolysis product distribution from dimer 1 comprised of ∼63% of the
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dimer 1, and as the residence time was increased to 3 s the amount of dimer 1 observed

went down to ∼24% (Figure 7.6). This was indicative of the dimer 1 undergoing sec-

ondary transformation to form other products in the vapor phase. The decrease in

the dimer 1 abundance was simultaneously accompanied by an increase in the total

monomeric products observed, thereby providing evidence for β-O-4 bond scission

in the vapor phase. The most abundant monomeric product observed was coniferyl

alcohol and its yield increased with an increase in the residence time. 2-methoxy-4-

(2-(2-methoxyphenoxy)vinyl)phenol (MW 272 Da) also showed an increasing trend

lending credence to the existence of a parallel pathway 2 for formation a dimeric

species with a lower molecular weight than the parent species (MW 320 Da). The de-

tailed product distribution from dimer 1 as a function of the residence time has been

tabulated in Table F.7. These results illustrate that the average molecular weight

of the pyrolysis product distribution decreases with an increase in the vapor phase

residence time and is attributed primarily to the β-O-4 bond scission.

Polymer 5 was also pyrolyzed under identical conditions to verify the observations

from the residence time studies with dimer 1. As stated previously, we were unable

to identify the structures of dimeric species that were produced during pyrolysis of

the polymer 5. As a consequence, the entire product distribution in the dimer range

has been lumped together. The total quantified dimeric products account for ∼19%

at the low residence time of 0.5 s and decrease to ∼13.5% at a residence time of

1.6 s. The overall yield to the dimeric products is low compared to that from dimer

1 in part due to low volatility of the dimeric products formed from the polymer as

they are expected have a substituted alkyl side chain on both the aromatic rings (i.e.

dimer 6, Figure F.1) . These results indicate that the initial vapor phase products

from pyrolysis are formed by thermal depolymerisation of the lignin oligomers and

are volatile enough to vaporize. These initial vapor phase products include monomers

and dimers and possibly a minor fraction of trimers. The estimated boiling point for

trimers is in excess of 690◦C (Table F.1) and hence trimers are expected to constitute

only a minor fraction of the vapor phase under our standard pyrolysis conditions
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Figure 7.6. Yield of products from pyrolysis of dimer 1 as a function of
vapor phase residence time. Dimer 1 (squares), Monomeric species (tri-
angles), Coniferyl alcohol(circles), 2-methoxy-4-(2-(2-methoxyphenoxy)-
vinyl)phenol (diamonds).

(500◦C). These products are then subjected to secondary reactions as they traverse

through the heat traced tubing at 300◦C before being quenched at the inlet of the

online GC-MS. As a consequence of these secondary reactions, the dimers and trimers

breakdown to form monomers.

7.4.4 Primary Products of Lignin Pyrolysis

There is no general consensus in literature about the primary products of pyroly-

sis, which are generally regarded as either the first products to enter the vapor phase,

or in a somewhat different interpretation, the major quantifiable products of pyrol-

ysis. Analysis of these primary vapor phase products hold the key to understanding

the pyrolysis pathways. In this study we have observed both monomeric and dimeric
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Figure 7.7. Yield of products from pyrolysis of polymer 5 as a function of
vapor phase residence time. Dimeric species (squares), Monomeric species
(triangles).

species at the lowest residence time of 0.5 s for lignin model compounds. These

dimeric species undergo secondary reactions with an increase in the residence time. If

one were to extrapolate this backwards, it would be prudent to say that the primary

products of pyrolysis comprise of monomers, dimers and possibly trimers. This is in

agreement with results in literature from Zhou et al., [139] who observed oligomers

as primary products in their wire mesh reactor with instant quenching of the va-

pors. These experiments were carried out under vacuum conditions, which resulted

in higher volatility for the oligomeric species when compared with other studies which

were conducted at ambient pressure. Therefore when addressing the issue of primary

products it is important to acknowledge the role of pyrolysis conditions under which

these products are detected. While oligomeric fragments are formed by depolymer-

ization of lignin, their abundance in the vapor phase as primary products will depend

on their volatility under the local temperature and pressure conditions during pyrol-
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ysis. From this study, it can be concluded that primary vapor phase products from

lignin pyrolysis are a mixture of monomers and oligomers whose relative proportion

is dependent on their structure and pyrolysis conditions.

7.5 Conclusions

In this study we have developed a new approach for analysis of lignin derived

dimeric species via an online GC/MS. Pyrolysis experiments were carried out with

model lignin polymers with this approach to attain greater than 90% mass closure.

This study provides quantitative results on pyrolysis of pure lignin model compounds

with β-O-4 linkages to understand the underlying factors that govern the product dis-

tribution without the unwanted effects from impurities (inorganic, sugars and multiple

poorly characterized reactants) which are generally present in extracted lignins. The

major monomeric product observed from β-O-4 bond scission was coniferyl alcohol. A

significant proportion of the pyrolysis products from the all of the model compounds

tested comprised ofwere dimeric species with greater than 19% abundance. The rela-

tive ratios of major monomeric compounds were similar for all the model compounds

indicating that the nature of β-O-4 bond scission was independent of the degree of

polymerization. The amount of char formed increased with the degree of polymeriza-

tion providing insight into the factors which govern char formation like the volatility

and reactivity of the fragments formed during pyrolysis. Additionally, vapor phase

residence time was shown to have an important effect on the product distribution due

to secondary reactions. An increase in the vapor phase residence time resulted in the

dimeric species breaking down to form monomeric products thereby decreasing the

average molecular weight of the product distribution. Vapor phase primary products

from lignin pyrolysis comprised of both monomeric and dimeric species (and possibly

trimeric species) which underwent secondary (cracking/depolymerization) reactions

in the vapor phase. This has important implications on the ability to tailor the

vapor phase product distribution from lignin before it is passed over a catalyst for

hydrodeoxygenation.
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8. A SYNERGISTIC BIOREFINERY BASED ON CATALYTIC CONVERSION

OF LIGNIN PRIOR TO CELLULOSE STARTING FROM LIGNOCELLULOSIC

BIOMASS

8.1 Introduction

Production of liquid fuels and chemicals from lignocellulosic biomass is an integral

part of the solution to the energy grand challenge.[161] Biorefinery concepts for the

production of liquid fuels and chemicals from biomass have been developed and some

commercially implemented.[162–164] However, any renewable platform must provide

both liquid fuels and commodity chemicals on a large scale. For example, in 2012 the

U.S. consumed ∼4.6 billion barrels of liquid fuels and produced greater than 90 Mton

of organic commodity chemicals, respectively (including ∼8 Mton of benzene).[165–

167] Cellulosic conversion methods to ethanol and other liquid fuels make use of only

the carbohydrate components of biomass (∼50-60% by weight).[168–170] In compari-

son, the lignin component (20-30% by weight but accounting for ∼37% of the carbon

in biomass) inhibits the conversion of cellulose and constitutes a major waste stream

that is burned for its heat value in most applications.[12] Therefore, lignin represents

an opportunity for meeting the demand for a renewable platform of aromatic fuels and

commodity chemicals (e.g. benzene, toluene, xylene (BTX), styrene, and cumene).

As a result, methods for the selective conversion of lignin are important.[12]

The concept of lignin utilization to produce high-value products is not new.[171,

172] However, actual reaction schemes to effectively convert lignin with high yield to

useful end-products remains a significant challenge. There are processes that produce

organosolv lignin separating it from hemicellulose and cellulose, but the resulting

organosolv lignin fraction is an extremely complex mixture, which upgrading to a

reasonable number of products in any significant yields is yet to be demonstrated.[16]
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Currently one of the few notable commercial processes utilizes lingo-sulfonate lignin

derived from sulfite pulping to produce vanillin at a maximum yield of only 7.5%

by mass.[173] Even though new catalysts have been reported for the cleavage of

ether C-O bonds and hydrodeoxygenation (HDO) of lignin model compounds, only

limited successes have been reported with lignin or biomass.[174–181] Heterogeneous

Ni catalysts have been used recently with lignosulfonate to give a mixture of phenolic

compounds and dimeric lignin fragments with removal of the sulfur as H2S.[180] Ford

and co-workers have reported a catalytic method in supercritical methanol at 300-

320◦C and 160-220 bar of H2 that converts the lignified components of biomass to

hydrogenated cyclic alcohols.[181] A recent report has appeared on the conversion of

birch sawdust to phenolic compounds utilizing a Ni/C catalyst.[182, 183] Previously

we reported on a catalytic system that could cleave the β-O-4 linkages found in lignin

dimeric and polymeric model compounds with high selectivity and yields.[184]

Here we present the use of a bimetallic catalyst based on Zn and nanoparticulate

Pd in a selective conversion process compatible with diverse species of intact woody

biomass. The catalyst produces a single lignin-derived product stream in high yields,

leaving essentially all polysaccharide components of the biomass as a solid residue,

which we have demonstrated undergoes enzymatic hydrolysis, resulting in high yields

of glucose (Figure 8.1). In addition to several wild type species of poplar, conversion

of genetically modified poplar that contain high S type lignin is described.[185] This

type of bioengineering offers a method to control the potential products from reactions

involving biomass. Furthermore, methoxypropylphenols similar to those produced

during this catalytic reduction of lignin can be converted quantitatively in a second

step using a bifunctional Pt-Mo catalyst to hydrocarbon fuel or propylbenzene. The

latter serves as platform for production of aromatic chemicals.

8.2 Selective Catalytic Conversion of Lignin

Our biomass conversion process is accomplished via a bimetallic catalytic system

composed of ZnII sites and metallic Pd nanoparticles (3-4 nm) dispersed on a car-
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Figure 8.1. Selective depolymerization and hydrodeoxygenation (HDO)
of lignin first from wood biomass to give a lignin-derived hydrocarbon
platform and glucose from the carbohydrate residue.

bon support. This bimetallic system has been shown previously to have a synergistic

effect that cleaves β-O-4 linkages found in model compounds more effectively then

either component alone.[184] For this catalytic process the biomass was first milled

to pass through a 40 mesh screen then washed consecutively with water and ethanol

via soxhlet extraction. Three different types of pretreated wild-type (WT) poplar

(species within the genus Populus) wood were reacted with the Zn/Pd/C catalyst

in methanol (MeOH) at 225◦C and 500 psig of H2 which resulted in 40-54% of the

available lignin being converted to two products: 2-methoxy-4-propylphenol (dihy-

droeugenol) and 2,6-dimethoxy-4-propylphenol (Table 8.1, entries 1, 3, and 4, and

Figure 8.2A). Based on our experimental results, Zn, Pd, and H2 are all required

for catalysis. Control reactions with poplar biomass using Zn alone gave minimal

conversion to multiple oxygenated products and no products were generated in the

absence of H2. Reactions of poplar wood with Pd/C alone gave low yields of more

highly oxygenated methoxypropylphenol products. To facilitate separation and recy-

cling (shown in Table G.1) of the Zn/Pd/C catalyst, we ran the reaction employing

a microporous cage (325 mesh) to separate the Pd/C from the biomass. Such a cage

allows the solvent and solute to access the catalyst and leaves behind a cellulosic

biomass residue that is Pd/C free. This result is also consistent with the mechanism



114

proposed in our previous study with model compounds where the Zn can be desorbed

from the carbon surface and is free to pass in and out of the microporous cage.[184]

Figure 8.2. Single ion monitoring ESI(-)/HPLC/MS of lignin products
(m/z 165 and m/z 195) from (a) WT-717 poplar and (b) 717-F5H, a
high-S transgenic line. CAD MS/MS of (c) deprotonated 2,6-dimethoxy-
4-propylphenol and (d) deprotonated dihydroeugenol derived from WT-
717 poplar.

The described preparation/pretreatment of biomass is minimal and all the steps

are scalable, an important prerequisite of any process for large-scale application in a

biorefinery. The two products reflect guaiacyl (G) and syringyl (S) lignin components

present in WT poplar and illustrate the applicability of our catalysis to variants

within the genus Populus. Following our single-step catalytic conversion, the starting

biomass is fractionated into two forms, the first is a solid residue that is easily filtered

and the second consists of products that are soluble in MeOH. The MeOH liquid-

phase contains the methoxypropylphenol products shown in Table 8.1 and a small
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Table 8.1.
Conversion of lignin starting with intact lignocellulosic biomass over
Zn/Pd/C catalyst.
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amount of soluble sugars that mostly originate from hemicellulose (Table G.2 and

Table G.5). An additional phenolic product of methylparaben was detected and

quantified from the reaction with the poplar species (Table G.1). This product is

extracted in various quantities from all reactions using poplar, even those without

catalyst present, and its exact origin is unknown as the amounts of H lignin found

in the poplar species is very low (Table G.3). There is no evidence that the solvent,

MeOH, is consumed during this reaction and its volatility makes it easy to separate

from both the phenolic products and sugar residue. Upon removal of methanol,

dihydroeugenol and 2,6-dimethoxypropylphenol can be extracted from the remaining

residue using diethylether. NMR spectra of this extract confirm it consists of mainly

two products with small amounts of unidentified impurities (see Supp. Inf. of Parsell

et. al [186]). The non-ether soluble fraction was also analyzed via NMR and gave

spectra with features consistent with sugars and aromatic lignin fragments suggesting

that a portion of our unaccounted for lignin is present in the methanol solution.[186]

This fraction was then subjected to analysis for carbohydrates and found to contain

a majority of xylans with smaller amounts of glucans and arabinans (Table G.5).

In comparison to the Pd-Zn catalytic process described above for intact wood

biomass, organosolv lignin contains hundreds of compounds,[173] rendering its con-

version to a reasonable number of products extremely difficult (Figure G.1c).

8.3 Carbohydrate Residue Retains its Value

To determine the composition of the leftover carbohydrate residue it was digested

by acid hydrolysis, which produced mainly glucose (Table G.6). This leftover car-

bohydrate residue was subjected to cellulase enzyme digestion, giving 95% of the

theoretical glucose yield.[187] In comparison, intact poplar wood released only 11%

of theoretical glucose from cellulase enzyme digestion over the same time period.

These results are consistent with those reported in the literature showing that cellu-

lose can be hydrolyzed by enzymes once lignin is removed, as lignin and deactivates

cellulase enzymes.[188] The sugars from hydrolysis as well as the sugars present in
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the MeOH phase were analyzed allowing mass balance closure of 74% of the starting

biomass weight in quantified products (Figure 8.3). Our results illustrate the positive

impact of lignin conversion by the Zn/Pd/C catalyst on enhancing sugar yields from

poplar. Furthermore, the released sugar can be upgraded by known biological and

chemical catalytic conversion processes that have been developed independently for

pure carbohydrates.[189, 190]

Figure 8.3. Mass balance after catalytic cleavage and HDO of WT poplar
lignin over Zn/Pd/C catalyst. *Mass of phenolic products includes all
quantified phenolics and also accounts for the loss of O into H2O during
HDO. Liquid Phase sugars were quantified by HPLC analysis. The solid
phase residue was hydrolyzed with acid. Then glucose, arabinose, and
xylose were quantified by HPLC analysis.

The availability of the leftover carbohydrate residue for direct conversion was

demonstrated by subjecting the sample to analytical fast pyrolysis in a pyroprobe /

mass spectrometer developed previously for the determination of primary pyrolysis

products.[9] The results obtained for pure cellulose and the leftover carbohydrate

residue derived from woody biomass are compared in Figure 8.4, together with fast-

pyrolysis products of raw woody biomass. The solid residue behaved similarly to

pure cellulose, yielding a similar product distribution, the main product of which was

cellobiosan. This result is in sharp contrast to the highly complex mixture obtained

upon fast pyrolysis of the lignified raw biomass (Figure 8.4A).
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Figure 8.4. Positive mode ammonium attachment Atmospheric Pressure
Chemical Ionization mass spectra measured for fast pyrolysis [9] products
of (a) WT-LORRE poplar, (b) carbohydrate residue from WT poplar
after our one-step catalytic conversion of lignin over Zn/Pd/C, and (c)
pure crystalline cellulose.

8.4 Genetic Variants Control Products

Lignin is made by radical polymerization of p-hydroxyphenyl (H), G, and S

monomeric units to give various linkage types (Figure 8.1). The most ubiquitous

linkage is the β-O-4. H, G, and S subunit abundance in lignin varies depending on

the plant species, and the availability of different monomers can be manipulated ge-

netically.[191, 192] To evaluate whether such engineered lignins can be successfully

converted using our process, we employed a genetically engineered line (717-F5H)
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with high-S lignin (Table 8.1, entry 2).[185, 193] Unmodified WT-717 poplar gives

a ∼1:2 ratio of dihydroeugenol to 2,6-dimethoxy-4-propylphenol. In comparison the

high-S line gives a greater yield of 2,6-dimethoxy-4-propylphenol with a final product

distribution of 1:6 (Figure 8.2B). The results from this experiment demonstrate how

tailoring biomass through genetic control can affect the product distribution.

Wood from other tree species, such as pine, white birch, and eucalyptus, can also

be broken down by our catalyst (Table 8.1, entries 5-7). Pine contains exclusively

G lignin and has very high lignin content (30% by weight). Pine gave exclusively

dihydroeugenol as the phenolic product but with lower yield compared to poplar and

birch, presumably due to the high degree of cross-linking in G lignins. Although the

lignin content of white birch is only 16% by weight, it gave an impressive yield (52%)

(Table 8.1, entry 6); whereas, the combination of high lignin content (24% by weight)

and high yield 49% from eucalyptus produced the greatest overall yield of products

from a mass standpoint (∼12% of the total biomass converted to the two phenolic

products).

8.5 Lignin-Derived Fuel and Chemical Platform

While the methoxypropylphenol products have value as chemicals, we have also

developed novel catalysis for their conversion to the high-octane liquid fuel propylben-

zene (Figure 8.1). When dihydroeugenol; 2,6-dimethoxy-4-propylphenol; or a mixture

of the two was reacted with H2 over a Pt-Mo bimetallic catalyst at 300◦C and 342

psig H2, propylcyclohexane and propylbenzene were obtained in >97% and ∼0.7%

yield, respectively (Table G.8a). This is the highest reported yield of hydrocarbons

from the continuous, vapor-phase reaction of lignin-derived methoxypropylphenols to

date. The propylcyclohexane can be aromatized via a dehydrogenation reaction to

give additional propylbenzene and return 3 equivalents of the H2 used in the hydro-

genation of methoxypropylphenols over the Pt-Mo catalyst.[194, 195] Current work

is aimed at the direct production of propylbenzene from methoxypropylphenols.
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The effective lignin processing demonstrated here opens a new direction for biore-

finery configurations and synergies. The catalytic depolymerization of lignin into

methoxypropylphenols employs the lignin portion of biomass first, while simultane-

ously leaving behind an essentially intact solid-carbohydrate fraction that can be

further processed via traditional biorefinery methods. Utilization of all components

of lignocellulosic biomass feedstock (lignin, cellulose, and hemicellulose) is critical

for maximizing fuel and chemical yield per acre. The selective production of two

methoxypropylphenols and their further conversion to the hydrocarbon propylcyclo-

hexane/propylbenzene platform reported here enables many options for the conver-

sion of the natural aromatic structure of lignin into currently used aromatic chemicals

that were previously not viable. In addition, we envision a biorefinery that encom-

passes multiple synergies (as opposed to conventional biorefineries involving only one

processing method) designed to minimize chemical bond breaking by making products

that exploit the natural structure of biomass.

The lignin-derived methoxypropylphenols can be used in the fragrance indus-

try (i.e. dihydroeugenol), as well as be catalytically upgraded to a variety of fuels

(e.g. propylbenzene, toluene, etc.) and chemicals (e.g. propane, methanol, ben-

zene, cumene, para-xylene, ethylbenzene, styrene, phenol, and acetone) as shown in

Figure 8.5. We have demonstrated high-yield production of the hydrocarbon propyl-

cyclohexane from lignin. Propylcyclohexane can be converted via dehydrogenation to

propylbenzene, which can be hydrocracked subsequently to benzene and propane.[196]

Benzene can be used as a chemical building block for production of fuels and chemicals

via a variety of known and practiced conversions, such as: alkylation of benzene with

co-produced propane (propylene after dehydrogenation) to form cumene, alkylation

with co-produced MeOH to form toluene or xylenes, or alkylation with ethanol or

ethylene to form ethylbenzene and styrene.[197, 198] The propane produced can be

dehydrogenated and employed for polymer production or converted further to acetone;

which when reacted with phenol forms the polycarbonate monomer, bisphenol-A.[199]



121

Figure 8.5. Pathways for the production of renewable fuels (in blue) and
chemicals (in green) from the lignin portion of biomass. Methoxypropyl-
phenols can be used as is for the fragrance industry (dihydroeugenol), or
can be catalytically tailored to fuels (such as propylbenzene and toluene)
or used for the production of chemicals (such as propane, methanol, ben-
zene, cumene, para-xylene, ethylbenzene, styrene, phenol, and acetone).

The solid carbohydrate fraction can be further processed to fuels and chemicals

by currently employed chemistries such as liquid-phase (catalytic) processing and

biological conversion such as fermentation, or thermochemical processes such as fast

hydropyrolysis or gasification followed by further catalytic upgrading.[2] Additionally,

the waste from some steps, such as carbonaceous residue or char, can be utilized by

feeding to a thermo-chemical unit (fast-pyrolysis or gasification) for conversion into

a variety of intermediate products that can be upgraded.

New synergies emerge from integration of lignin and carbohydrate chemistries. For

example, in Figure 8.5, we show alkylation of benzene with methanol to form para-

xylene (an important chemical) or alkylbenzene molecules as fuels. The methanol can

be sourced from cleavage of the methoxy groups of methoxypropylphenols or produced

from the breakdown of the carbohydrate fraction. Additionally, methanol derived

from the biomass itself can be used as the solvent for the lignin depolymerization
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step with the aforementioned Zn/Pd/C catalyst. Styrene can be produced through

an integrated pathway involving alkylation of benzene using ethylene or renewable

ethanol produced from sugar fermentation.

In addition to the pathways discussed above, the development of new and more-

direct pathways are immediately recognizable, utilizing the natural aromatic lignin

structure (aromatic ring, alkyl and oxygen substituents) and minimizing the number

of conversion steps to generate renewable commodities. For example, cumene could be

synthesized directly from propylbenzene via isomerization of the propyl substituent,

and hydrocracking of propylphenol could afford a direct route to phenol and propane.

Some of these transformations present the need to develop new chemistries start-

ing from a variety of different intermediate chemicals that go beyond “traditional”

chemistry used in the petrochemical industry.

8.6 Conclusion

Catalytic conversion of lignin to discrete phenolic molecules was achieved with

good yields utilizing a process that produces a clean carbohydrate residue. This was

accomplished under reasonable conditions (225◦C, 500 psi H2) using a synergistic

Pd/C and Zn system that cleaves and deoxygenates the β-O-4 linkages in native

lignin. These lignin-derived methoxypropylphenols can be further converted to a

variety of valuable aromatic fuels and chemicals. This new approach to utilization of

lignin enables the future biorefinery to obtain higher yields of fuels and chemicals. The

newfound ability to utilize lignin-first for fuels and chemicals presents a new paradigm

for biofuel production in which lignin is potentially more valuable than cellulose and

provides opportunity for plant biologists to tailor biomass that contains more lignin.

Mapping of products based on the natural structure of lignin identifies new chemical

transformations and catalysis that will stimulate target driven fundamental research.
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8.7 Materials and Methods

Pd/C (5 wt%) was purchased from Strem Chemicals (Newburyport, MA). 4-Allyl-

2,6-dimethoxyphenol (98% purity) was purchased from Alfa Aesar (Ward Hill, MA).

Isoeugenol, eugenol, 2-methoxy-4-propylphenol (all >98% purity) and ammonium for-

mate (>99% purity) were purchased from Sigma-Aldrich (St. Louis, MO). 2-Methoxy-

4-methylphenol (98% purity) and methylparaben (>99% purity) were obtained from

TCI America (Portland, OR). High-performance liquid chromatography-mass spec-

trometry (HPLC-MS) grade water and acetonitrile were purchased from Fisher Sci-

entific (Pittsburgh, PA). All chemicals were used without further purification. A

Zorbax SB-C18 column (4.6 × 250 mm, 5 µm particle size) was purchased from Agi-

lent Technologies (Santa Clara, CA). 2,6-Dimethoxy-4-propylphenol was synthesized

as outlined below.

Poplar genotype NM-6 (Populus nigra x P. maximowiczii, WT-LORRE) was pro-

vided by Adam Wiese of the USDA Northern Research Station in Rhinelander, Wis-

consin.[200] Hybrid aspen INRA 717-1B4 (P. tremula × P. alba, WT-717), Poplar

(P. nigra × P. maximowiczii) WT-NM-6, the genetically engineered line 717-F5H and

WT-White Birch (Betula papyrifera) were provided by Purdue University’s Depart-

ment of Forestry and Natural Resources Department. The WT lodgepole pine (Pinus

contorta) was provided by Mr. Jerry Warner (COL, U.S. Army Ret.), Managing

Director of Defense LifeSciences, LLC (Alexandria, VA). The WT-Eucalyptus (Eu-

calyptus grandis x E. urophylla) was provided by William H. Rottman, ArborGen,

Inc. (Ridgeville, SC).

2,6-Dimethoxy-4-propylphenol was synthesized through the hydrogenation of the

side chain of 4-allyl-2,6-dimethoxyphenol. 4-Allyl-2,6-dimethoxyphenol was dissolved

in a suspension of Pd/C (5 wt%, 105 mg) in 15 mL MeOH (1.945 g, 10.1 mmol).

The reaction mixture was placed in a stainless steel Parr reactor, pressurized with

500 psig bar H2 and heated at 60◦C for 3 hours. Pd/C was removed by filtration and

methanol was removed in vacuo to yield 2,6-dimethoxy-4-propylphenol as a colorless
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oil. The reaction product was further purified on a silica-gel column with a mobile

phase of 17% ethyl acetate and 83% hexanes. [1H]NMR (CDCl3) δ 0.93 (t, 3H, CH3),

1.61 (s, 2H, CH2), 2.50 (t, 2H, CH2), 3.85 (s, 6H, OCH3), 5.42 (s, 1H, OH), 6.39 (s,

2H, ArH).

Biomass was first milled to pass through a 40 mesh screen using a Mini Wiley

Mill (Thomas Scientific, Swedesboro, NJ). Biomass was washed consecutively with

water and ethanol soxhlet using the LAP Determination of Extractives in Biomass

procedure.[201] Following soxhlet extraction, the biomass was dried and evaluated

using a moisture analyzer (Halogen model HB43-S, Mettler-Toledo LLC, Columbus,

OH).

In a typical experiment, 1.0 g of biomass, Pd/C (5 wt%), ZnCl2 (5-10 wt%),

methanol (30 mL), and glass stir bar were added to a stainless steel Parr reactor,

which was subsequently sealed. While stirring the mixture was purged with UHP

grade H2 for ∼1 min, then pressurized with H2 (500 psig, 34 bar). The mixture was

heated to 225◦C. This temperature was maintained for ca. 12 hours. The reaction

was terminated by removing the heat and cooling the reactor to room temperature

(WARNING! Use caution when handling and venting the reactor; reduced Pd/C

with methanol is flammable). The reaction mixture was filtered to remove Pd/C

and remaining solid biomass residue. This Pd/C/biomass mixture was washed with

additional MeOH and the filtrate was collected and diluted in a volumetric flask. This

solution was analyzed by GC-FID and HPLC/MS as described below to determine

amounts of methoxypropylphenols.

8.8 Acknowledgements
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9. A NOVEL THEORY OF THE PHYSICAL AND CHEMICAL PROCESSES OF

PYROLYSIS

There have been many attempts to create kinetic models that describe the behavior of

pyroylsis of biomass-related materials, with the main focus being on cellulose and re-

lated glucosaccharides. The initial cellulose pyrolysis model from Broido et. al. [202]

was a lumped parameter model that utilized experimental kinetic parameters with

an intermediate “active cellulose”. This approach produced very close agreement in

the rate of pyrolysis between the model and experimental results. The disadvantage

of the lumped approach is that knowledge of the important steps to the overall prod-

uct yields is not captured by such a simplistic model. The issue with developing a

more complicated individual-component/individual-reaction model, is that it requires

measurement of individual kinetic parameters, something which is almost always not

possible during pyrolysis of cellulose, which involves hundreds of separate reactions

that happen simultaneously.

Much more recently, Vinu et. al. [84] published a detailed model based upon

individual components with individual kinetic parameters which were sourced pri-

marily from Density Functional Theory (DFT) calculations with a few parameters

used from experimental kinetic studies. Despite the huge increase in complexity of

their approach, they were able to show good agreement in the model yields and ex-

perimental yields. This success was due in part to fitting some of the pre-exponential

factors to improve the model/experimental agreement. Another major factor in the

excellent agreement, however, was the use of one critical kinetic parameter, Ea, for

hydrolysis of cellobiose which was taken from an experimental kinetic study despite

the fact this is readily calculatable using DFT.[84, 203] One major issue with this

activation energy was that it was measured at conditions far away from the conditions
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at which the experimental pyrolysis data were generated. The experimental pyrolysis

data were gathered between 400 and 650◦C whereas this hydrolysis parameter was

estimated in liquid water with sulfuric acid at between 100 and 140◦C. Furthermore,

this barrier is one of the lowest barriers used in their kinetic model with a value of

approximately 34 kcal/mol.[84, 203] Also, it is well known that Brønsted acids cat-

alyze hydrolysis reactions and thus for these reasons this parameter should not have

been used in their model.

The other major issue, which is also related to hydrolysis, is the overall formulation

of the Vinu et. al. model.[84] What occurs physically during pyrolysis of cellulose

is a transition to a short lived reacting liquid intermediate which is accompanied by

evaporation into the gas-phase environment where reactions can continue to happen

depending on the conditions.[204, 205] In the model from Vinu et. al. [84] the authors

formulated a reaction network which is heavily reliant on a glucose intermediate,

from which many of the observed small molecules are produced. This is problematic

because glucose can only be formed in their reaction network from the hydrolysis of

the β-1,4 bonds present in the cellulose or glucosaccharides, and yet the experimental

data were gathered at temperatures in excess of 400◦C, far above the boiling point of

water at the atmospheric pressure used in the experiments. Thus the use of a batch

reactor model in Vinu et. al. presents a physically unrealistic situation in which

large concentrations of water are able to accumulate and participate in the reaction

network via hydrolysis.[84]

Thus, it is the opinion of this author that the aforementioned agreement of the

Vinu et. al. model [84] with the experimental data are fortuitous and/or a result of

fitted parameters rather than illustrative of the accuracy of the approach. For this

reason, it is worthwhile to formulate a new kinetic model of cellulose / glucosaccharide

pyrolysis which captures the phase change observed experimentally by Teixeira et.

al.[204] In Figure 9.1 a schematic of this proposed model is shown.

The proposed model in Figure 9.1 is attractive for a number of important reasons.

The first of which is that it is capable of more accurately capturing the concentrations
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Figure 9.1. A new model for pyrolysis that utilizes reactions in both the
intermediate liquid and gas phases. The liquid droplet is assumed to be
at a uniform temperature and composition and shrinks from an initial
size due to evaporation and reaction, which is modeled by a semi-batch
reactor. The gas-phase is also assumed to be at a uniform temperature
and composition, but conforms more closely to a CSTR model due to the
continuous gas flow. (Note: not drawn to scale)

of the species in each individual phase. In other words, something which is extremely

volatile (e.g. water) will rapidly enter the gas phase where it may still participate

in reactions. Secondly, the model is capable of using different temperatures for the

liquid and gas-phases. This advantage is of particular importance to this thesis due to

our experimental observations of extremely large products, which is in direct conflict

with previous experimental studies (see Chapters 2, 4, 5, 6 and 8 for further detailed

discussion of this issue). The preliminary results from this model have shown that
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if a low temperature of 150◦C is chosen for the gas phase versus a liquid phase

temperature of 600◦C the products produced by the model are similar in average

molecular weight to what is observed experimentally. Conversely, if 600◦C is used for

both phases, then the results better approximate the results reported in the literature

by other researchers as well as the data shown in Chapter 3 (collected using a different

reactor).

Parameterization of this model is particularly important to generate meaningful

results. As done by Vinu et. al. use of a combination of kinetic parameters primarily

from DFT with a few experimentally measured kinetic parameters (such as for Char

formation) is the preferred approach. The primary difficulty arises from estimating

the needed liquid vapor pressure information to correctly predict the rate at which

the droplet evaporates. This is especially challenging because experimental vapor

pressures for many of the reactants, intermediates and products are not available.

Thus, a method for predicting pure component vapor pressures is needed. Also, the

saccharide and saccharide-derived molecules in question are both extremely polar and

often extremely large. Group contribution methods were not designed to predict the

vapor pressures of many of these species, and indeed do not accurately predict the va-

por pressure of the most non-ideal components when compared to the sparse amount

of available experimental vapor pressure data.[206, 207] Our preliminary results show

that using molecular dynamics can accurately predict vapor pressures of the species

in the model.
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10. SUMMARY

The main goal of this section is to provide recommendations for future work, since

there is a conclusion section in each dissertation chapter. The major remaining issues

concerning pyrolysis of cellulose and related models is twofold; the need to elucidate

the mechanism for production of glucose from the non-reducing end of cellobiose, and

secondly to test our hypothesis of end-chain-initiation via pyrolysis of a carbon-13

labeled cellotriose.

Lignin model compound linkage type on the other hand could open up completely

new mechanisms, and the results presented here with only β-O-4 linkages is only one

of the roughly eight important lignin linkages found in native lignin.[12] Thus, the best

research direction is towards new linkage lignin models. Eventually connections must

be drawn with native lignin, but how to perform this study in a controlled fashion

is still somewhat elusive. One option is to pyrolyze genetically modified Arabidopsis

Thaliana of which the S-lignin component likely possesses a greater percentage of

β-O-4 linkages than the wild plants. Hemicellulose pyrolysis is another area in which

there are many opportunities for study of pyrolysis due to the branched nature of the

structure of this component in planta.

Study into the mechanisms that govern char formation is another critical research

direction since approximately∼30% of the carbon may end up in char during pyrolysis

of whole biomass. Any reduction of char formation would be of great interest to the

biofuels community since it would increase fuel yield per acre. The primary issue

concerns how to obtain useful information about the pathways and mechanisms for

char formation, since presumably molecules that form char are never able to leave

the reactor wall. Thus, analyzing the vapor phase product distribution may not yield

much information about how the char is formed.
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During my Ph.D. there was always one point of frustration which was the only

semi-quantitative nature of the pyrolysis - mass spectrometry setup described in de-

tail in Chapter 2. We made several attempts to improve the value of our results

by performing various types of calibrations to achieve truly quantitative datum, but

were ultimately not successful in achieving this. One of the reasons for not being able

to perform these calibrations centered a on quirk of the mass spectrometers used in

this study, known as the tube lens. This lens attempts to prevent neutral molecules

from entering the high vacuum region of the instrument by forcing the ions through

a sharp bend. The problem with this approach is that adjusting the value of the tube

lens can completely alter the relative abundances of ions measured by the instrument.

In Chapter 2 we detailed an attempt to calibrate these relative abundances, but the

validity of this approach depends on being able to directly compare direct injection

through the Atmospheric Pressure Chemical Ionization (APCI) source versus pyrol-

ysis in which products are directly introduced into the vapor phase. In the future,

it would be extremely valuable to repeat some of the experiments detailed in this

dissertation on several different types of mass spectrometers and compare the relative

abundances of the ions observed by each instrument. Furthermore, faster scanning

rates that are provided by time-of-flight mass spectrometers may yield additional

information about the time dependence of the pyrolysis product distributions.
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A. SUPPORTING INFORMATION FOR ON-LINE MASS SPECTROMETRIC

METHODS FOR THE DETERMINATION OF THE PRIMARY PRODUCTS OF

FAST PYROLYSIS OF CARBOHYDRATES AND FOR THEIR GAS-PHASE

MANIPULATION

Below is the equation used to calculate the relative molar abundances of compounds

that could not be ionized by chloride attachment but were ionized upon ammonium

attachment.

(A.1)

Example calculation for 5-hydroxymethylfurfural using above equation: 11 ± 5%

(5-hydroxymethylfurfural + NH+
4 ) × 1.33 ± 0.02 (ionization bias) ÷ 52 ± 6% (cel-

lobiosan + NH4+)× 26± 3% (cellobiosan + Cl−) = 7± 3% (5-hydroxymethylfurfural

+ Cl−)
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Figure A.1. Mass spectra collected after the primary products of fast
pyrolysis of cellobiose were allowed to undergo reactions for 2 s at 300◦C
(top), 2s at 400◦C (middle) and 11 s at 400◦C (bottom) and ionized using
chloride attachment in negative ion mode. All elemental compositions
were determined using high resolution data collected in an LQIT/FT-
ICR. All ions with m/z values lower than 170 correspond to deprotonated
molecules.
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B. SUPPORTING INFORMATION FOR HIGH-PRESSURE FAST-PYROLYSIS,

FAST-HYDROPYROLYSIS AND CATALYTIC HYDRODEOXYGENATION OF

CELLULOSE: PRODUCTION OF LIQUID FUEL FROM BIOMASS

B.1 Screw feeder design

The purpose of the screw feeders is to introduce biomass or biomass model com-

pounds into the reactor system at high pressures of up to 68 bar. The screw feeder

consists of a feed hopper containing the solids, an auger tube with the screw and a

feed chamber, which is a steel box on the right side of the screw feeder (as shown

in Figure S.1). These different parts are connected using Conflat (CF) flanges. The

material of construction of the screw feeder is stainless steel 316 except for the 1-in

glass window attached to the feed chamber. The window has a maximum working

pressure of 95 bar at room temperature. The feed hopper and the feed chamber can

be purged with inert gas prior to any experiment. The screw feeder is driven by

an Applied Motion M400 electric servo motor which is connected to the feeder via

magnetic coupling and therefore isolated from the high pressure environment. The

screw feeder is capable of feed rates in the range of 0.1 to 20 g × min−1.

B.2 High pressure reactor design

B.2.1 Fast-hydropyrolysis Reactor

A cross sectional view of the fast-hydropyrolysis reactor is shown in Figure S.2.

The body of the cyclone reactor is machined from stainless-steel type-347 round bar

and has an OD and ID maximum of 2.375-in and 1.69-in respectively, corresponding

to schedule 160 pipe. At 650◦C, the basic allowable stress for TP347 seamless pipe is

4.4 ksi (5.9 ksi at 600◦C) which corresponds to an internal design pressure of 110 bar

(or 145 bar at 600◦C). The flange connection at the top of the reactor is a F316H 2-in
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Figure B.1. Picture of high pressure biomass screw feeder.

# 2500 B16.5 flange which has a maximum working pressure of 106.5 bar at 650◦C.

At the bottom of the reactor, the OD and ID are 1.05-in and 0.614-in respectively

which corresponds to schedule 160 pipe and has an internal design pressure of 179

bar. The bottom flange, which is used to connect to the char collector, is a F316H #

1500 3/4-in B16.5 flange which has a maximum working pressure of 106 bar at 593◦C.

The char collector was machined from stainless-steel type-316 round bar and has

an OD of 3.5-in and an ID of 2.626-in, equivalent to schedule 160 pipe. At 315◦C, the

char collector body has an internal design gage pressure of 381 bar. The bottom of

the collector uses F316H # 600 3-in B16.5 flanges for access to the inside of collector

if needed. These have a maximum working pressure of 100 bar at 40◦C.

B.2.2 Downstream fixed-bed vapor-phase hydrodeoxygenation (HDO) Reactor

The HDO reactor, shown in Figure S.3, itself is simply an empty tube with a

porous metal frit that supports the catalyst bed. It is made from 1/2-in schedule 80

A312 TP316 piping and socket-welded to F316H # 1500 B16.5 flange connections.

The pipe has an internal design gage pressure of 236 bar at 650◦C. The flanges have
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Figure B.2. Cross section view of high-pressure cyclone-type fast-
hydropyrolysis reactor.

maximum working pressure of 106 bar at 593◦C. The connector from the cyclone

reactor to the secondary reactor is made from 1/2-in schedule 80 A312 TP316 piping

and uses 1/2-in F316H # 1500 and 2-in F316H # 2500 B16.5 flange connections.

Again, these flanges have a maximum working pressure of 132 and 106.5 bar at 650◦C

respectively.

B.2.3 Condenser and Gas/Liquid Separation

The purpose of this step is to cool and condense the pyrolysis vapors to 15-20◦C

and then separate them from the permanent gas stream. The vapor quenching system
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Figure B.3. Cross section view of downstream fixed-bed vapor-phase HDO
reactor.

consists of a concentric-tube countercurrent condenser. Gas and vapors pass through

the center tube which is cooled by circulation of 50/50 mixture of ethylene glycol

and water at 5◦C. The condensed vapors are separated from permanent gases in a

Swagelok coalescence filter, which utilizes a glass fiber filter element to help coalesce

liquids and is rated to 68 bar at ambient temperature. After passing through the filter,

gases are passed through a stainless steel trap, which is cooled using ice-water mixture
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to collect any remaining condensable liquids. The gas stream is then depressurized

via a backpressure regulator and sent to exhaust and GC analysis streams.

The tube portion of the shell and tube condenser is made from schedule 80 A312

TP316 piping and connects to the secondary reactor or connector with a 1/2-in #

1500 B16.5 flange. The pipe has an internal design gage pressure of 236 bar at

650◦C. The flanges have maximum working pressure of 106 bar at 593◦C. The exit of

the condenser connects to the coalescence filter via 1/4-in A312 TP316 tube with a

wall thickness of 0.028-in welded to a 1/4-in fVCR connector which has an allowable

working pressure of 275 bar at 100◦C

Figure B.4. Process flow diagram of the complete reactor system along
with the hydrogen safety systems like hydrogen detectors, automatic shut-
off valves, excess flow valves, redundant pressure relief and emergency
exhaust.
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Table B.1.
Chemical compounds identified and quantified for LC-MS analysis of liq-
uid products from all experiments.

Chemical

Compound

Retention

Time / min

Calibration

Range / g ×

L−1

Cellobiosan 11.3 0 - 0.7

Levogalactosan 15.5 0 - 8.0

Levoglucosan 16.1 0 - 6.2

Glycolaldehyde 17 0 - 3.2

Formic Acid 18 0 - 6.1

Acetic Acid 19.3 0 - 3.2

1,6:2,3-Dianhydro-b-

D-mannopyranose

(DAMP)

20.9 0 - 2.0

Hydroxyacetone 21.5 0 - 1.9

Methanol 24.3 0 - 4.3

Acetone 26.9 0 - 2.8

Ethanol 27.6 0 - 2.0

Levoglucosenone 33.5 0 - 2.2

5-Hydroxymethyl-

furfural

(5-HMF)

33.9 0 - 1.0

Furfural 47.3 0 - 0.6
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Figure B.5. Simplified schematic of the LC-MS setup for the analysis
of liquid products from all experiments. Model numbers of the Agilent
LC-MS modules are shown below each unit. Relevant analysis method
parameters are shown above each unit.
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Figure B.6. LC-MS calibrations of the 14 chemical compounds used for
quantification
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C. SUPPORTING INFORMATION FOR MASS SPECTROMETRIC STUDIES

OF FAST PYROLYSIS OF CELLULOSE

C.1 Pyrolysis Probe - Mass Spectrometer Residence Time Experimental

Ex-situ temperature measurements were done in order to measure the tempera-

ture of the platinum ribbon on the CDS Analytical Pyroprobe. A LASCON infrared

pyrometer (Dr.Mergenthaler GmbH & Co.KG, Germany) was connected to the py-

roprobe via a homebuilt triggering device that employs an optoisolator as shown in

Figure C.1.

Figure C.1. A block diagram showing the set-up for ex-situ temperature
measurements for the pyroprobe.

The residence time plus analysis time of pyrolysis products was measured as shown

in Figure C.2. The IR pyrometer was used to trigger the pyroprobe, the oscilloscope

(Tektronix, Beaverton, OR) and the LQIT mass spectrometer simultaneously. When

the IR pyrometer was started, it triggered the pyroprobe and the oscilloscope via

the optoisolator trigger used for ex-situ experiments. The mass spectrometer was

triggered by the IR Pyrometer using an analog output configured for Transistor-

Transistor Logic (TTL) operation. In order to have a high sampling rate, the Thermo

Scientific (Chatham, MA) LTQ mass spectrometer was operated in the Turbo Scan
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mode with Automatic Gain Control set to off and fill time set to 1 ms. Under these

conditions, the mass spectrometer recorded data at the rate of 40 ms/scan. The

ultra-fast scan rate comes with a price of lower mass resolution but provides a better

estimate of the time point when inflection is observed in the total ion current.

Figure C.2. A block diagram showing the set-up for in-situ residence plus
analysis time measurements for the pyrolysis/MS setup.

Channel 1 was connected to the triggering device and was used to trigger the

oscilloscope. Channel 2 connected to the oscilloscope measured the current passing

through the pyroprobe filament, a spike in which represented the time at which the

pyroprobe started heating. As soon as the IR pyrometer was started, the pyroprobe

started the run cycle before heating up, and oscilloscope and mass spectrometer

started collecting data immediately. The residence and analysis times were deter-

mined by measuring the time lag between when the pyroprobe reached 275◦C (the

lowest temperature at which pyrolysis products were reliably observed) and when the

pyrolysis products were first seen in the mass spectrometer. A detailed schematic of

the electronic setup used for the residence and analysis time measurement is available

upon request.
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C.2 Pyrolysis Probe - Gas Chromatograph / Mass Spectrometer

A modified Pyroprobe 5200 HP (CDS Analytical Inc.) was connected to an online

GC/MS. In the case of the pyrolysis-GC/MS experiments, a resistively heated Pt coil

was used as the heating source for pyrolysis of cellulose and cellotriosan. A known

weight (0.2 - 0.7mg) of the reactant sample was loaded in a cylindrical quartz tube

(O.D. = 2.52mm, I.D. = 1.91mm, L = 25.3mm) which was placed in the open end of

the Pt coil. This assembly was placed in the pyroprobe interface which was flushed

prior to pyrolysis with He to remove air. The pyrolysis probe interface was then heated

to a temperature of 300◦C, after which the Pt coil was heated to 600◦C, at a heating

rate of 1000◦C × s−1. A stream of helium carrier gas carried the pyrolysis products

from the quartz tube to the GC/MS inlet via a heat traced transfer line. All the

vapor-phase products were analyzed with an online Agilent 7890N gas chromatograph

with a HP-5ms (30m × 250mm × 0.25µm) column connected to an Agilent 3-way

splitter, which split the flow to a Flame Ionization Detector and an electron ionization

Agilent 5975C Mass Spectrometer. The GC column was kept at 33◦C for 10 minutes

and then heated to 300◦C at a heating rate of 10◦C × min−1 and held at 300◦C

for 20 minutes providing optimum time for all observable products to elute. The

pyrolysis products were quantified against standard calibration curves developed for

compounds levoglucosan, glycolaldehyde, furfural, hydroxymethyl furfural (HMF),

hydroxyacetone, and acetic acid. The permanent gases were quantified using the MS

detector against calibration curves for CO and CO2. The char was quantified by

weighing the quartz tube three times during every experimental run: empty (1st),

with sample (2nd) and after pyrolysis (3rd). The difference between the second and

first weights was used to calculate the weight of the sample loaded, while that between

the third and first weights were used to calculate the amount of char left behind after

pyrolysis.
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Table C.1.
Quantitative pyrolysis product distribution produced from the Pyrolysis-
GC/MS reactor for pyrolysis of cellotriosan and cellulose.

Compound Cellotriosan Cellulose

6 carbons

levoglucosan 45 ± 2.9 44 ± 2.6

other anhydrosugars 4.5 ± 0.75 5.5 ± 0.35

1,6-anhydroglucofuranose 1.5 ± 0.37 2.6 ± 0.23

ADGH 1.6 ± 0.42 2.7 ± 0.23

5-hydroxymethylfurfural 1.4 ± 0.08 1.4 ± 0.07

levoglucosenone 0.22 ± 0.05 0.19 ± 0.06

DAGP 0.22 ± 0.05 0.14 ± 0.02

HMCP 0.13 ± 0.01 n.d.

5 carbons

1,2-cyclopentanedione 0.59 ± 0.20 0.3 ± 0.01

furfural 0.37 ± 0.01 0.44 ± 0.06

2-methyl-furan 0.13 ± 0.04 0.08 ± 0

1,3-cyclopentadiene 0.08 ± 0.02 0.06 ± 0.01

3 and 4 carbons

methylglyoxal 2.4 ± 0.48 1.6 ± 0.08

1-hydroxy-2-propanone 0.58 ± 0.20 0.26 ± 0.01

methyl vinyl ketone 0.48 ± 0.07 0.42 ± 0.02

DHHF 0.20 ± 0.03 0.23 ± 0.01

2-propenal 0.14 ± 0.02 n.d.

Light oxygenates

glycolaldehyde 6.6 ± 0.5 9.2 ± 1.2

acetaldehyde and glyoxal 0.4 ± 0.12 0.4 ± 0.02

formaldehyde 0.25 ± 0.06 0.17 ± 0.03

Permanent gases

methane 0.15 ± 0.04 0.15 ± 0.02

carbon monoxide 3.5 ± 0.28 2.1 ± 0.11

carbon dioxide 4.8 ± 0.57 3.6 ± 0.18

Other

water (assumed) 5 5

char 5.8 ± 0.35 11 ± 1.2

unidentified and minor 9 5.5

Total 95 ± 7.6 96 ± 6.5

Abbreviations: n.d., not detected; ADGH, 1,5-anhydro-4-deoxy-D-glycero-hex-1-en-3-ulose; DAGP, 1,4:3,6-

dianhydro-α-D-glucopyranose; HMCP, 2-hydroxy-3-methyl-2-cyclopenten-1-on; DHHF, dihydro-4-hydroxy-2(3H)-

furanone
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D. SUPPORTING INFORMATION FOR FAST PYROLYSIS OF 13C-LABELED

CELLOBIOSES: GAINING INSIGHTS INTO THE MECHANISMS OF FAST

PYROLYSIS OF CARBOHYDRATES

In the process of synthesizing labeled the two labeled cellobioses, the following proce-

dure was employed. Many 1H and 13C spectra were gathered to verify the structure

of the intermediates. For the sake of brevity, those NMR spectra are not reproduced

here, but are instead available from the published supporting information for De-

genstein et. al. J. Org. Chem. 2015, 80 (3), 1909.[10] In the following text the

references to these NMR figures are kept as (Figure) S1 through S18.[10] The online

supporting information for this article also contains additional information on the

DFT calculations performed including, for example, the geometries in xyz format for

the optimized structures of reactants, products and transition states.[10]

D.1 Synthesis of Labeled Cellobioses.

3-13C-β-D-Glucose and [1-13C]glucopyranosylglucose were purchased from Omi-

cron Bio-chemicals. The synthesized compounds (for the syntheses, see below) were

purified by column chromatography on a Teledyne-ISCO CombiFlash system with a

silica gel column. These compounds were characterized by 1H and 13C NMR spec-

troscopy and high-resolution mass spectrometry. The reactions were performed under

an argon atmosphere if needed. Solvents were purified and/or predried as necessary.

Analytical thin-layer chromatography (TLC) was used to monitor the reactions. Visu-

alization was accomplished with UV light (254 nm) and by ethanol/H2SO4 TLC stain.

CDCl3,CDOD, and D2O were used as NMR solvents. 1H NMR spectra were acquired

on a 400 MHz instrument, and the chemical shifts (δ) are reported relative to the resid-

ual solvent peak. 13C NMR spectra were acquired on a 100 MHz instrument, and the
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chemical shifts are reported in parts per million relative to the residual solvent peak.

When reporting spectral data, the format chemical shift (integration, multiplicity, J

value(s) in Hz, identification) was used with the following multiplicity abbreviations: s

= singlet, d = doublet, t = triplet, q = quartet, m = multiplet. The elemental compo-

sitions were obtained using high-resolution mass spectrometry and ESI in positive-ion

mode, and the measured m/z values are reported. The previously synthesized com-

pound 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl trichloroacetimi-date (S7) was pre-

pared from commercially available 2,3,4,6-tetra-O-benzyl-D-glucopyranose by follow-

ing a literature procedure.[208] The synthesis of labeled cellobioses glucopyranosyl[3-

13C]glucose (S9) and glucopyranosyl[5-13C]glucose (S17) are shown in Schemes 1 and

2, respectively.

Figure D.1. Synthesis of Glucopyranosyl[3-13C]glucose

1,2,3,4,6-Penta-O-acetyl-3-13C-β-D-glucopyranoside (S1).[209] To a solution of ace-

tic anhydride (6 mL) was added sodium acetate trihydrate (1.13 g, 8.3 mmol, 3 equiv).

The mixture was refluxed at 90◦C for 20 min, and then the labeled D-glucose (0.5 g,

2.8 mmol) was added. The resulting mixture was stirred for 4 h and then concen-

trated, dissolved in methanol, and recrystallized with cold water. A white solid was

then filtered and dried to afford S2 (1.00 g, 92%). 1H NMR (400 Hz, CDCl3, δ): 2.02,

2.03, 2.04, 2.09, and 2.12 (15H, s, CH3), 3.84-3.87 (1H, m, CH), 4.10-4.13 (1H, m,

CH2), 4.28-4.32 (1H, dd, J1 =8,J2 = 4, CH), 5.04-5.09 (d, 1H, J = 8, CH), 5.13-5.17
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(m, 1H, CH), 5.42-5.47 (m, 1H, CH), 5.72-5.74 (d, 1H, J = 8, CH). 13C NMR (100

Hz, CDCl3, δ): 170.6, 170.1, 169.4, 169.2, 168.9, 91.7, 89.1, 74.0, 69.8, 67.8, 67.5,

61.5, 20.7. HRMS (ESI): calcd for 13CC15H22O11Na [M + Na]+, 414.1093; measured,

414.1086.

Benzyl 2,3,4,6-Tetra-O-acetyl-3-13C-β-D-glucopyranoside (S2).[95] To a solution of

penta-O-acetylglucose S1 (1.00 g, 2.56 mmol) and benzyl alcohol (0.61 mL, 5.60 mmol)

in anhydrous CH2Cl2 (10 mL) was added BF3:Et2O (0.41 mL, 3.33 mmol). The

reaction mixture was stirred at room temperature (RT) for 24 h and diluted with 5%

aqueous NaHCO3 (10 mL). The organic layer was separated, washed sequentially with

aqueous NaHCO3 (10 mL) and water (10 mL), dried over Na2SO4, and concentrated.

The crude product was recrystallized from EtOH to give S2 (0.55 g, 49%). 1H NMR

(400 Hz, CDCl3, δ): 7.39-7.27 (5H, m, Ar-H), 5.13-4.99 (3H, m, CH, H2, H3, and

H4), 4.88 (1H, d, J = 12, CH2), 4.61 (1H, d, J = 12, CH2), 4.60 (1H, d, J = 8, CH,

H1), 4.30 (1H, dd, J = 12, 4, CH, H6), 4.19 (1H, dd, J = 12, 2, CH, H6), 3.67-3.64

(1H, m, CH, H5), 2.09 (3H, s, CH3), 2.00 (3H, s, CH3), 1.99 (3H, s, CH3), 1.98 (3H, s,

CH3).
13C NMR (100 Hz, CDCl3, δ): 170.6, 170.2, 169.3, 169.2, 136.6, 128.4, 127.9,

127.8, 127.7, 99.2, 77.0, 76.7, 72.7, 71.7, 71.4, 70.6, 70.1, 69.7, 68.5, 68.1, 20.5. HRMS

(ESI): calcd for 13CC20H26O10Na [M + Na]+, 462.1424; measured, 462.1410.

Benzyl 3-13C-β-D-Glucopyranoside (S3).[95] A mixture of benzyl 2,3,4,6-tetra-O-

acetyl-β-D-glucopyranoside (0.896 g, 2.50 mmol), MeOH (16 mL), triethylamine (2

mL), and H2O (2 mL) was stirred for 5 h. The reaction was concentrated in vacuo,

and the resulting residue was purified by chromatography (5:1 CH2Cl2/CH3OH) to

give S3 (0.44 g, 81%). 1H NMR (400 Hz, CD3OD, δ): 7.43-7.25 (5H, m, Ar-H), 4.78

(2H, ABq, J = 16, PhCH2), 4.36 (1H, d, J =8 Hz, CH, H1), 3.89 (1H, dd, J = 12, 2,

CH, H6), 3.70 (1H, dd, J = 12, 6, CH, H6), 3.35-3.15 (4H, m, CH, H2, H3, H4, and

H5). 13C NMR (100 Hz, CDCl3, δ): 139.1, 129.3, 129.2, 128.7, 103.3, 78.1, 75.1, 74.9,

74.1, 71.8, 71.4, 62.8. HRMS (ESI): calcd for 13CC12H18O6Na [M + Na]+, 294.1030;

measured, 294.0988.
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Figure D.2. Synthesis of Glucopyranosyl[5-13C]glucose

Benzyl 4,6-O-Benzylidene-3-13C-β-D-glucopyranoside (S4).[95] To a mixture of

benzyl β-D-glucopyranoside (0.21 g, 0.78 mmol) and benzaldehyde dimethyl acetal

(0.14 mL, 0.94 mmol) in dimethylformamide (DMF) (2 mL) at RT was added p-

toluenesulfonic acid (TsOH:H2O) (37 mg, 0.195 mmol). The reaction mixture was

stirred for 5 min, heated to 80◦C, and stirred for 2.5 h. The mixture was cooled to

RT and subsequently concentrated at reduced pressure. The resulting residue was

partitioned between CH2Cl2 (20 mL) and saturated Na2CO3 (20 mL). The layers

were separated, and the aqueous layer was extracted with CH2Cl2 (3 × 10 mL). The

combined organic layers were washed with water (2 × 10 mL) and brine (10 mL),

dried over MgSO4, and concentrated. Purification of the resulting residue by flash

chromatography (1:1 EtOAc/hexanes) provided the desired product (0.21 g, 75%) as

a white solid. 1H NMR (400 Hz, CDCl3, δ): 7.50-7.48 (2H, m, Ar-H), 7.37-7.29 (8H,

m, Ar-H), 5.46 (1H, s, benzylidene CH), 4.88 (1H, d, J = 12, CH2), 4.59 (1H, d, J =

12, CH2), 4.53 (1H, d, J = 8, CH, H1), 4.31 (1H, dd, J = 8, 4, CH, H4), 3.59-3.76

(2H, m, CH, C6, H3), 3.63-3.58 (4H, m, CH, H6, H2, and 2OH), 3.35-3.30 (1H, m,

CH, H5). 13C NMR (100 Hz, CDCl3, δ): 137.0, 136.8, 129.2, 128.5, 128.1, 128.0,

126.3, 102.2, 101.8, 80.6, 80.2, 77.4, 77.0, 76.71, 74.6, 74.2, 73.0, 72.8, 71.2, 68.5, 66.2.

HRMS (ESI): calcd for 13CC20H22O6Na [M + Na]+, 382.1314; measured, 382.1310.
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4,6-O-Benzylidene-1,2,3-tri-O-benzyl-3-13C-β-D-glucopyranoside (S5).[210] S4 (par-

tially protected, 0.21 g, 0.58 mmol) was added to anhydrous DMF (2 mL), and the

mixture was stirred at 0◦C for 30 min. NaH in mineral oil (60%) (94 mg, 2.32 mmol)

was then added under argon in small portions over 30 min, with the temperature

being maintained at 0◦C. Tetrabutylammonium iodide (54 mg, 0.14 mmol) was then

added, and the mixture was stirred for a further 2 h at 0◦C. Benzyl bromide (0.21

mL, 1.74 mmol) was then added slowly. The reaction mixture was stirred at 0◦C for a

further 30 min, allowed to warm to room temperature, and stirred for 24 h. Methanol

was added slowly to destroy the excess NaH, and the solvents were then removed in

vacuo. The residue was subjected to column chromatography with 3:2 hexane/ethyl

acetate to furnish S5 as a pale-yellow oil (0.3 g, 81%). 1H NMR (400 Hz, CDCl3,

δ): 7.48-7.34 (20H, m, Ar-H), 5.65 (1H, s, CH, H7), 5.04-4.71 (8H, m, CH, CH2),

4.48-4.44 (1H, dd, J = 8, 4, CH, H4), 3.92-3.76 (2H, m, CH, H6, H3), 3.66-3.60 (2H,

m, CH, H6, H2), 3.53-3.48 (1H, m, CH, H5). 13C NMR (100 Hz, CDCl3, δ): 138.5,

137.1, 129.0, 128.3, 127.6, 126.0, 103.2, 101.1, 80.9, 80.7, 77.4, 76.8, 75.4, 75.1, 71.6,

68.8, 66.1. HRMS (ESI): calcd for 13CC33H34O6Na [M + Na]+, 562.2253; measured,

562.2227.

1,2,3,6-Tetra-O-benzyl-3-13C-β-D-glucopyranoside (S6).[210] Triethylsilane (0.27

mL, 1.68 mM) and trifluoroacetic acid (0.13 mL, 1.68 mmol) were added to a solution

of S5 (0.3 g, 0.56 mmol) in anhydrous CH2Cl2 (10 mL) at 0◦C. The solution was stirred

at RT for 6 h. The reaction mixture was diluted with EtOAc (approximately 20 mL),

neutralized with saturated aqueous NaHCO3 and brine, dried over Na2SO4, and

evaporated to dryness. The residue was purified by flash column chromatography

(3:10 EtOAc/hexane) to get S6 (0.2 g, 60%) as a colorless oil. 1H NMR (400 Hz,

CDCl3, δ): 7.45-7.29 (20H, m, Ar-H), 5.02-4.64 (8H, m, CH2), 4.58 (1H, d, J = 8,

CH, H1), 3.86-3.48 (6H, m, CH, CH2, ring CH), 2.60 (1H, s, OH). 13C NMR (100 Hz,

CDCl3, δ): 138.6, 138.3, 137.5, 128.1, 127.8, 102.5, 84.3, 84.1, 83.8, 82.5, 81.7, 81.4,

77.3, 77.0, 76.7, 75.2, 74.7, 74.1, 73.6, 717, 71.3, 71.1, 70.2. HRMS (ESI): calcd for

13CC33H36O6Na [M + Na]+, 564.2433; measured, 564.2465.
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2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl-(1-4)-tetra-O-benzyl-3-13C-β-D-gluco-

pyranoside (S8).[210] To a solution of S6 (0.1 g, 0.18 mmol) and S7 (0.12 g, 0.18 mmol)

in anhydrous CH2Cl2 (5 mL) was added BF3:Et2O(3 µL, 0.018 mmol) at -72◦C. Af-

ter the solution was stirred at -72◦C for 1 h, the reaction mixture was neutralized

with triethylamine. The residue was purified by flash column chromatography (1:8

EtOAc/hexane) to give S8 as a 1:3 mixture of α and β isomers (0.12 g, 55%) as a

colorless syrup. 1H NMR (400 Hz, CDCl3, δ): 7.42-7.19 (40H, m, Ar-H), 5.15-4.46

(18H, m, CH, PhCH2, H1, H1’), 3.92-3.35 (12H, m, CH, CH2, ring CH). 13C NMR

(100 Hz, CDCl3, δ): 139.3, 138.6, 137.6, 128.3, 127.8, 127.5, 102.4, 84.8, 83.1, 78.0,

77.3, 76.7, 75.5, 74.9, 73.2, 70.9, 69.0, 68.2. HRMS (ESI): calcd for 13CC68H70O11Na

[M + Na]+, 1086.4849; measured, 1086.4846.

Glucopyranosyl[3-13C]glucose (S9).[210] A solution of S8 (0.12 g, 1.15 mmol) in

MeOH (10 mL) was hydrogenated in the presence of 10% Pd/C (15 mg) at atmo-

spheric pressure at RT for 36 h. After the catalyst was filtered off, the reaction

mixture was evaporated to give S9 (α:β = 1:3, 34 mg, 87%) as a colorless solid. 1H

NMR (400 Hz, D2O, δ): 4.56 (1H, d, J = 8, CH, H1’), 4.41 (1H, d, J = 8, CH, H1),

3.83- 3.15 (12H, m, CH, CH2, ring CH). 13C NMR (100 Hz, D2O, δ): 103.1, 96.3,

92.4, 76.8, 76.6, 76.1, 75.4, 74.9, 74.6, 73.8, 72.1, 70.7, 70.0, 61.0, 60.5. HRMS (ESI):

calcd for 13CC11H22O11Na [M + Na]+, 366.1060; measured, 366.1068.

Glucopyranosyl[5-13C]glucose (S17).[210] The same synthesis strategy as described

above for S9 was employed for the synthesis of glucopyranosyl[5-13C]glucose (S17).

A solution of S16 (0.12 g, 1.15 mmol) in MeOH (10 mL) was hydrogenated in the

presence of 10%Pd/C (15 mg) at atmospheric pressure at RT for 36 h. After the

catalyst was filtered off, the reaction mixture was evaporated to give S17 (α:β = 1:3,

34 mg, 87%) as a colorless solid. 1H NMR (500 MHz, D2O, δ): 4.56 (1H, d, J = 5, CH,

C1’), 4.41 (1H, d, J = 5, CH, C1), 3.83-3.15 (12H, m, CH, CH2, ring CH). 13C NMR

(125 MHz, D2O, δ): 102.5, 95.6, 91.7, 78.8, 78.5, 78.3, 75.9, 75.4, 74.7, 74.2, 73.8,

71.7, 71.2, 71.1, 70.0, 69.4, 60.5, 60.1, 59.9. HRMS (ESI): calcd for 13CC11H22O11Na

[M + Na]+, 366.1060; measured, 366.1066.



175

E. SUPPORTING INFORMATION FOR DETERMINATION OF THE PRIMARY

FAST PYROLYSIS PRODUCTS OF SYNTHETIC G-LIGNIN OLIGOMERS

WITH β-O-4 LINKAGES VIA ON-LINE MASS SPECTROMETRY

Figure E.1. The CAD pattern of m/z 319 isolated from the pyrolysis
spectrum of 3 is the same as the CAD pattern of authentic dimer using
direct inject.
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Table E.1.
All major tetrameric, trimeric, dimeric and monomeric pyrolysis product
ions of 1-3 with m/z, relative abundances and fragment sequences. Water
(W) and formaldehyde (F) losses are also indicated. Ions in bold are
parent fragment ions.
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Table E.2.
CAD of small lignin products produced upon pyrolysis of β-O-4 G-Lignin
tetramer along with proposed structures.
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Figure E.2. The CAD pattern of m/z 271 isolated from the pyrolysis
spectrum of 3 is the same as the CAD pattern of m/z 271 from authentic
dimer using direct inject.
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Figure E.3. The CAD pattern of m/z 515 isolated from the pyrolysis
spectrum of 3 is the same as the CAD pattern of m/z 515 from authentic
1 using direct inject.
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F. SUPPLEMENTARY INFORMATION FOR FAST PYROLYSIS OF

GUAIACYL LIGNIN MODEL COMPOUNDS WITH β-O-4 LINKAGES

F.1 Estimation of Lights, CO, and CO2

It was not possible to estimate CO and CO2, since it was not detected in the

FID. The column used for analysis of lignin pyrolysis products is a shortened HP-

5ms column and as a result is not suitable for separating the light molecules. As

a consequence, it was not possible to achieve baseline separation for the peaks of

formaldehyde, acetaldehyde and other minor lights which are expected from pyrol-

ysis of the lignin model compounds. Additionally CO and CO2 also eluted along

with the broad lights peaks, however their contribution to the FID signal can be

considered negligible since CO has a very low response factor and CO2 cannot be

detected. Additionally, in the mass spectrometer, the major ion fragments from CO2

and acetaldehyde overlap making it difficult to estimate CO2 by calibrating for m/z

44 signal in the mass spectrometer for CO2. Preliminary estimations from m/z 44

and m/z 28 indicate no more than 1% of the contribution from CO and CO2.

F.2 Estimation of Water

Estimation of water was performed taking into account the amount of oxygen

lost from the monomeric species (depending the structures identified) as compared to

their precursors in the model compound. For polymer 5 and trimer 4 it was estimated

to be 4-5% depending on the residence time. For all other model compounds it was

<4%.
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F.3 Char Yield versus Coniferyl Alcohol

Figure F.3 shows the char yield and the coniferyl alcohol fraction in vapor phase

pyrolysis products as a function of the degree of polymerization. Coniferyl alcohol

was used since it was the most abundant monomeric species bearing a Cα=Cβ bond,

however it was not the only compound with Cα=Cβ bond in the product distribution.

Other species having Cα=Cβ bonds are expected to be a part of the dimer fraction

(i.e. dimer 6), but they could not be identified due to experimental limitations. These

species are expected to be a part of polymer 5 to a greater extent as compared to

model compounds 1-3 due to nature of end group, and hence a higher proportion

of aromatic rings with alkyl substituents. It should be kept in mind that although,

Cα=Cβ bond bearing molecules have been shown to be prone to char formation via

condensation reactions, it is not the only factor contributing to char formation. The

fact that coniferyl alcohol pyrolysis produced less char than tetramer 3, trimer 4,

and polymer 5 also indicated presence of other contributing factors which have been

mentioned previously.

Figure F.1. Structure of lignin model compound Dimer 1 and predicted
lignin fragment Dimer 6.
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Table F.1.
Predicted boiling point of the lignin model compounds aim to show the
relative volatility of the model compounds. Boiling point predicted via
Joback fragmentation method modified by S.E. Stein.

Table F.2.
Weight percentage of monomeric species based on the number of carbon
atoms in the molecule.

Table F.3.
Elution time for dimer 1 for each of the different columns tested.
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Table F.4.
Quantified lumped pyrolysis product distribution from coniferyl alcohol
in wt% of the reactant.

Table F.5.
Quantified pyrolysis product distribution from dimer 1 as a function of
the vapor phase residence time in wt% of the reactant.



184

Table F.6.
Quantified pyrolysis product distribution from polymer 5 as a function of
the vapor phase residence time in wt% of the reactant.
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Table F.7.
Detailed pyrolysis product distribution produced from dimer 1 as a func-
tion of the vapor phase residence time in wt% of the reactant fed.
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Figure F.2. Schematic of experimental setup (Py-GC/MS) for pyrolysis
studies with Lignin model compounds. Red box indicates the heated zone
(T=300◦C).

Figure F.3. Char yield and coniferyl alcohol fraction in the vapor phase
pyrolysis products as a function of the degree of polymerization of the
lignin model compounds.
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G. SUPPLEMENTARY INFORMATION FOR A SYNERGISTIC BIOREFINERY

BASED ON CATALYTIC CONVERSION OF LIGNIN PRIOR TO CELLULOSE

STARTING FROM LIGNOCELLULOSIC BIOMASS

G.1 HPLC/MS Analysis

G.1.1 Instrumentation

All analyses were performed using a Thermo Scientific linear quadrupole ion trap

(LQIT)-Fourier transform ion cyclotron resonance (FT-ICR; 7 T magnet) mass spec-

trometer coupled with a Surveyor Plus HPLC. The HPLC system consisted of a

quaternary pump, autosampler, thermostatted column compartment, and photodi-

ode array (PDA) detector. The LQIT was equipped with an ESI source. HPLC

eluent (flow rate of 500 µL/min) was mixed via a T connector with a 10 mg/mL

sodium hydroxide water solution (flow rate of 0.1 µL/min) and connected to the ion

source. This allows for efficient negative ion generation by ESI.[126] The LQIT-FT-

ICR mass spectrometer was operated using the LTQ Tune Plus interface. Xcalibur

2.0 software was used for HPLC/MS data analysis. Automated gain control was used

to ensure a stable ion signal. A nominal pressure of 0.65 × 10−5 Torr, as read by an

ion gauge, was maintained in the higher pressure LQIT vacuum manifold and 2.0 ×

10−10 Torr in the FT-ICR vacuum manifold, as read by an ion gauge.

G.1.2 High-performance liquid chromatography/high-resolution tandem mass spec-
trometry

All samples were introduced into the HPLC/MS via an autosampler as a full-loop

injection volume (25 µL) for high reproducibility. 1 mg/L ammonium formate in water

(A) and 1 mg/mL ammonium formate in acetonitrile (B) were used as the mobile-

phase solvents. Ammonium formate was used to encourage negative ion production.
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Table G.1.
HPLC/MS quantitation of all soluble aromatic/phenolic products from
lignin conversion and HDO over Zn/Pd/C catalyst in MeOH.
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A nonlinear, two-slope gradient was used (35% A and 65% B at 30.0 min to 5% A and

95% B at 55.0 min). The column was placed in a thermostatted column compartment

that maintained the column at a temperature of 30◦C to increase the reproducibility

of the retention times and peak widths. The PDA detector for HPLC was set at

280 nm. The exact conditions used for ionization of the analytes and injection of the

ions into the mass spectrometer were optimized using a stock solution of 2-methoxy-4-

propylphenol in a 0.15 mg/mL NaOH 50:50 acetonitrile/water solution. All ion optics

were optimized using the automated tuning features of the LTQ Tune Plus interface.

The ESI probe position was optimized manually for optimal signal. The following ESI

conditions were used: sheath gas pressure 60 (arbitrary units), auxiliary gas pressure

30 (arbitrary units), sweep gas pressure 0 (arbitrary units), and spray voltage 3.50

kV. For the analysis of lignin conversion products, data-dependent scans were used.

Data-dependent scanning involves the instrument automatically selecting the most

abundant ions from the ion source, one after another, for further experiments. This

allows for separate MS acquisitions to be performed simultaneously for the same ions

in the two different mass analyzers of the LQIT-FT-ICR wherein the higher duty-

cycle LQIT performs tandem mass spectral acquisitions for the selected ions, while

the lower duty-cycle FT-ICR carries out high-resolution measurements for elemental

composition determination for the same ions. A resolving power of 400,000 at m/z

400 was used in the FT-ICR. The MS2 experiments involve the isolation (using a

mass/charge ratio window of 2 Th) and fragmentation of selected ions formed upon

negative ion-mode ESI spiked with NaOH. The ions were kinetically excited and

allowed to undergo collisions with helium target gas for 30 ms at a q value of 0.25

and at normalized collision energy [211] of 40%. The most abundant product ion

formed in the MS2 experiments was subjected to a further stage of ion isolation and

fragmentation (MS3). See example data in Figure G.1.
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Table G.2.
Reaction mass balance after catalytic cleavage and HDO of WT poplar
lignin over Zn/Pd/C catalyst.
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Figure G.1. (a) HPLC/MS and (b) HPLC/UV spectra of poplar WT-
LORRE 225◦C and 500 psig H2 in MeOH for 12 hours (c) HPLC/UV
spectra of organosolv poplar.

G.1.3 Quantitation of aromatic products from lignin conversion

Standard solutions, each consisting of, dihydroeugenol, 2,6-dimethoxy-4-propyl-

phenol, and methylparaben, were made from 1.0 mM stock solutions and diluted to

a final volume of 1.0 mL with the following final concentrations: 0.005, 0.010, 0.050,

0.10, and 0.15 mM. Vanillyl alcohol was used as the internal standard (0.1 mM) and
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Table G.3.
DFRC analysis of lignin composition for each of the biomass samples.

was added into each of the five standard solutions. A full-loop injection was performed

for each standard solution; thus, a total volume of 25 µL was injected onto the column.

After separation, selected ion chromatograms for deprotonated dihydroeugenol, 2,6-

dimethoxy-4-propylphenol, methylparaben, and vanillyl alcohol were extracted from

measured mass spectrometric data by Thermo Xcalibur Quan Browser software and

used to create calibration curves.

G.2 Determination of Lignin Content in Washed Biomass

DFRC (Derivatization Followed by Reductive Cleavage). Composition of lignin

was determined by DFRC analysis as previously reported.3 Briefly, 15 mg of cell-wall

samples were resuspended in 20% acetyl bromide solution, containing 4,4’-ethylidene-

bisphenol dissolved in acetic acid as an internal standard. The dissolved lignin solu-

tion was dried down, dissolved in 2 mL of dioxane/acetic acid/ water (5/4/1, v/v/v)

and reacted with 50 mg of Zn dust for 25 minutes. The reaction products were puri-

fied with C-18 SPE columns (Supelco), and acetylated with pyridine/acetic anhydride

(2/3, v/v). The lignin derivatives were analyzed by gas chromatography/flame ion-

ization detection (GC-FID) (Model 7890A, Agilent Technologies, Santa Clara, CA)

using response factors relative to the internal standard of 0.80 for p-coumaryl al-

cohol peracetate, 0.82 for coniferyl alcohol peracetate, and 0.74 for sinapyl alcohol

peracetate (see Table G.3).
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Table G.4.
Acetyl bromide soluble lignin content analysis (ABSL).

G.2.1 Acetyl Bromide Soluble Lignin (ABSL)

Lignin content was determined by the acetyl bromide method.[212, 213] The dried

samples (between 2 and 5 mg) were added to a 10-mL glass tube with 2.5 mL of 25%

acetyl bromide in acetic acid. The tubes were tightly sealed with Teflon lined caps.

Tubes were stirred overnight at room temperature until the wall tissue completely

dissolved. The samples were transferred to a 50-mL volumetric flasks containing 2

mL 2 M NaOH. The tubes were rinsed with acetic acid to complete the transfer.

0.35 mL of 0.5 M freshly prepared hydroxylamine hydrochloride was added to the

volumetric flasks which were then made up to 50 mL with acetic acid and inverted

several times. The absorbance of the solutions was recorded at 280 nm with UV/Vis

spectrophotometer (Model DU730, Beckman Coulter, Brea, CA). (see Table G.4)
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Table G.5.
Sugar content of the MeOH fraction after extraction of phenolic products
from lignin.

G.3 Determination of Carbohydrates

G.3.1 Liquid Fraction

To determine sugar content in the methanol fraction, 20 mL of H2O was added to

10 mL methanol and the resulting solution extracted 3 times with 20 mL of Et2O in

each extraction to remove small organic fragments and aromatics (Table G.5). The

methanol was then removed under reduced pressure. The carbohydrates in the water

layer were quantified by HPLC following the sulfuric acid digestion using a method

previously developed by Sluiter et al.[214]

G.3.2 Solid Residue

The remaining cellulosic residue for each biomass was collected on filter paper

then dried (Table G.6). The moisture content of each sample was measured and the

carbohydrates in the samples were quantified via HPLC after sulfuric acid digestion

following the method previously developed by Sluiter et al.[215] HPLC analysis was
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Table G.6.
Sugar content of the remaining cellulosic solid residue after lignin conver-
sion over Zn/Pd/C as determined via acid hydrolysis with HPLC analysis.

performed using an Aminex HPX-87H 300 × 7.8 mm column (Bio-Rad Laboratories,

Hercules, CA) with a refractive index detector (model 2414, Waters Corporation,

Milford, MA) in an Alliance Waters 2695 Separations Module (Waters Corporation,

Milford, MA). Column temperature was maintained at 65 ◦C. The mobile phase was

5 mM H2SO4 at a flow rate of 0.6 mL/min.

G.4 Enzymatic Hydrolysis

G.4.1 Pd/C free solid residue

Using compositional analysis data, biomass samples equal to the equivalent of 0.1g

cellulose were added to plastic vials (Table G.7). Added to each vial was 5.0 ml of

citrate buffer (0.1 M, pH 4.8, containing 2% NaN3). CTEC cellulase was added to

the vials at a concentration of 60 fpu (filter paper units), and the total volume was

brought to 10 ml with distilled water. Reaction controls for the biomass contained

buffer, water, and the identical amount of biomass in 10 ml volume. Cellulase controls
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Table G.7.
Enzymatic Hydrolysis of Pd/C free biomass residue after reaction under
catalytic HDO conditions.

were prepared with CTEC cellulase, buffer, and water in 10 ml volume. Samples were

sealed and agitated 50◦C for 76 hours. After 76 hours, the glucose concentration in

each sample was analyzed by HPLC. The low concentrations of glucose detected

in control reactions were subtracted from the yields of the corresponding biomass

reactions.

G.5 Pyrolysis of the Cellulosic Solid Residue from the Biomass

Pyrolysis experiments were performed using a Pyroprobe 5200 HP supplied by

CDS Analytical (Oxford, PA). The pyroprobe is equipped with a resistively heated

platinum coil surrounding a quartz tube capable of heating at up to 20,000◦C/s.

Sample was loaded on the inside of the quartz tube and then pyrolyzed with a heat-

ing rate of 1,000◦C/s at a temperature of 600◦C for 3 seconds. The pyrolysis was

performed inside the atmospheric chemical ionization (APCI) source of a Thermo

Scientific (Waltham, MA) LTQ linear quadrupole ion trap (LQIT). The pyrolysis

products evaporating from the probe were immediately quenched in a 100◦C region

where they were ionized via either positive or negative mode APCI (see example data

in Figure G.2). The corona discharge was operated at 3,000 V with a discharge cur-

rent of 4 µA. Ionization of pyrolysis products was achieved with the aid of dopants

infused into the APCI source through the APCI probe. In both positive and negative

mode APCI, a 50:50 (v/v) solution of ammonium hydroxide:water was co-fed through
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a T connector with a 50:50 (v/v) solution of methanol:water. In positive mode APCI,

the flow rates were 3 µL/min for the ammonium hydroxide:methanol solution and 300

µL/min for the methanol:water solution. With positive mode APCI, analytes were

ionized either by protonation ([M+H+]) or ammoniation ([M+NH4
+]). In negative

mode APCI, the flow rates were 1 µL/min for the ammonium hydroxide:methanol so-

lution and 300 µL/min for the methanol:water solution. With negative mode APCI,

the analytes are deprotonated ([M-H]-).

Figure G.2. Pyrolysis of unreacted raw eucalyptus WT (a) and eucalyptus
WT residue (b) in Ammonium Positive Attachment mode.

G.6 Hydrodeoxygenation Reaction of Dihydroeugenol to Hydrocarbons, Propylcy-
clohexane and Propylbenzene - Continuous Vapor-Phase Reactor

G.6.1 Calculating % Yield

The % yield of products is based on the total mass of the products and removed

O divided by the mass of the lignin content of each sample as shown in the following

equation.
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% yield =
dihydroeugenol (mg) + 2,6-dimethoxy-4-propyl phenol (mg) + removed O (mg)

initial weight of biomass (mg)×ABSL Lignin %× 100
(G.1)

The hydrodeoxygenation reaction of 2-methoxy-4-propylphenol (dihydroeugenol)

was conducted in a high-pressure, vapor-phase, fixed-bed, plug-flow, continuous,

stainless-steel reactor at 300◦C and a total pressure of 350 psig. During reaction, the

hydrogen (Praxair UHP) partial pressure was 342.4 psig, 2-methoxy-4-propylphenol

(Sigma-Aldrich >99%) partial pressure was 1.1 psig, and Argon (used as an internal

standard, 99.997%) partial pressure was 6.5 psig. The weight hourly space velocity

(WHSV, gram dihydroeugenol.gram catalyst-1.h-1) was 5.1.

The catalyst used was a bimetallic PtMo with a 5 wt% Pt loading and a 1:1 atomic

Pt:Mo ratio using multi-walled carbon nanotubes (MWCNT) (Cheaptubes, Inc.) as

the support. The catalyst was prepared via sequential incipient wetness impregna-

tion of the MWCNT support. First, an aqueous solution of tetraammineplatinum(II)

nitrate (Pt(NH3)4(NO3)2, Sigma-Aldrich) was added and the 5% Pt/MWCNT was

dried overnight at 60◦C in air. Then, an aqueous solution of ammonium heptamolyb-

date ((NH4)6Mo7O24 · 4 H2O), Sigma-Aldrich) was added, and the 5% PtMo(1:1)/MW-

CNT catalyst was dried overnight at 120◦C in air. The catalyst was reduced at 200

psig in situ in 50 sccm H2 and 75 sccm He at 450◦C for 2 hours. The catalyst loading

in the reactor was 110 mg, with the catalyst bed diluted with quartz powder in a 10:1

quartz to catalyst ratio.

All gas- and vapor-phase products were analyzed with an online Agilent 6890N gas

chromatograph with a Carboxen-1000 column connected to a thermal conductivity

detector and a SPB-1 capillary column connected to an Agilent Deans Switch 3-way

splitter which split the flow to a Flame Ionization Detector and Agilent 5973N Mass

Spectrometer. Mass balances closed to 100% ± 5%.

Under these conditions, the product propylcyclohexane was produced in >97%

yield, as can be seen in Table G.8. Yield is defined as:



199

Table G.8.
(a) Product yields of the high-pressure, vapor-phase hydrodeoxygena-
tion reaction of 2-methoxy-4-propylphenol (dihydroeugenol) at 100% con-
version in the continuous reactor. (b) Comparison of product yields
of the high-pressure, vapor-phase hydrodeoxygenation reaction of dihy-
droeugenol, 2,6-dimethoxy-4-propylphenol and a 50:50 mixture at 100%
conversion in the micro-scale pulse reactor and the continuous reactor.

Moles of Ring Product

Moles of Dihydroeugenol Converted
× Conversion of Dihydroeugenol (G.2)

Ring products include all compounds that contain a ring structure (i.e., all prod-

ucts except methanol, methane, and water that are produced from removal of the

oxygenated ring substituents).

G.7 Hydrodeoxygenation Reaction of Dihydroeugenol and 2,6-Dimethoxy-4-propyl-
phenol to Hydrocarbons, Propylcyclohexane and Propylbenzene - Micro-Scale
Pulse Reactor

The hydrodeoxygenation reaction of 2-methoxy-4-propylphenol (dihydroeugenol)

and 2,6-dimethoxy-4-propylphenol was conducted in a pulsed, high-pressure, fixed-

bed reactor at 300◦C and a total pressure of 350 psig (24 bar). The pulse reactor used

is a modified Pyroprobe 5200 HP, manufactured by CDS Analytical, Inc. A known

amount of reactant was loaded in the quartz tube and placed in a chamber at 350 psig

pressure of hydrogen. The quartz tube was heated using the Pt coil to vaporize the
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reactant, which was carried to the fixed-bed reactor as a pulse by the flowing hydrogen

gas. During reaction, a pulse of the reactant (dihydroeugenol (Sigma-Aldrich >99%)

and/or 2,6-dimethoxy-4-propylphenol) in hydrogen (Praxair UHP) at a pressure of

350 psig was passed over a catalyst and analyzed using a downstream GC-FID-MS

detector.

The catalyst used was a bimetallic PtMo with a 5 wt% Pt loading and a 1:1

atomic Pt:Mo ratio using multiwalled carbon nanotubes (MWCNT) as the support.

The preparation and reduction procedure has been described in the earlier section of

the document.

All gas- and vapor-phase products were analyzed with an online Agilent 7890N

gas chromatograph with a DB1701 column connected to an Agilent Deans Switch

3-way splitter which split the flow to a Flame Ionization Detector and an Agilent

5975C Mass Spectrometer. Mass balances closed to 100% ± 5%.

Under these conditions, the product propylcyclohexane was produced in >97%

yield, as can be seen in Table G.8. Yield is defined as:

Moles of Ring Product

Moles of Dihydroeugenol Converted
× Conversion of Dihydroeugenol (G.3)

Ring products include all compounds that contain a ring structure (i.e., all prod-

ucts except methanol, methane and water which are produced from removal of the

oxygenated ring substituents). Table G.7 shows the comparison of the product yields

in the micro-scale pulse reactor and the continuous reactor. Table G.7 shows that

>97% yield is obtained for the product propylcyclohexane with either reactant di-

hydroeugenol or 2,6-dimethoxy-4-propylphenol, or with a 50:50 (V:V) mixture of

dihydroeugenol and 2,6-dimethoxy-4-propylphenol.
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