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ABSTRACT 

Shengxu, Xia. Ph.D., Purdue University, August 2016. Continuum Dislocation Dynamics 

Modelling of the Deformation of Single Crystals. Major Professor: Anter El-Azab. 

 

 

A continuum dislocation dynamics model was developed for simulation of the 

deformation of Face Centred Cubic (FCC) single crystals. In this model, dislocations are 

described by a set of vector fields, one per slip system, whose evolution is governed by 

curl-type kinetic equations describing the transport of dislocation lines. These kinetic 

equations are closed by specifying the velocity field in terms of a mobility law in which 

the driving force is obtained by solving the Cauchy’s equilibrium equation for stress. The 

coupled kinetic equations and crystal mechanics equations are numerically solved in a 

staggered fashion using a custom finite element approach featuring the use of Galerkin 

and Least Squares finite element methods for the mechanics and dislocation kinetics parts, 

respectively, on a mesh generated on an FCC superlattice. The spatial resolution of the 

mesh was determined based on the annihilation distance between opposite dislocations. 

Cross slip rates from discrete dislocation simulation have been incorporated into the 

continuum model by time coarse graining involving time series analysis. The overall 

model provides a full solution of the crystal deformation problem, including the space 

and time evolution of the dislocation density and all internal elastic and plastic fields. 

Under periodic boundary conditions, the model has been applied to predict the stress-

strain behaviour of FCC crystal as well as the dislocation patterns for both monotonic and 
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cyclic loading conditions. For monotonic loading, the cell structure is predicted and the 

wavelength is detected and shown to satisfy the empirical similitude law. The dislocation 

patterns are found to depend on the loading mode, monotonic versus cyclic, as well as the 

crystal orientation. For cyclic loading, the famous vein structure was also predicted by 

the model and the composition of dislocation veins are analysed. All results are compared 

with experiments and other discrete dislocation dynamics simulations, yielding a good 

agreement. An important finding of this investigation is that cross slip was found to be 

critical in triggering cell structure formation under monotonic loading and that the 

average cell size evolution was found to strongly depend on the cross slip rate.  
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CHAPTER 1. INTRODUCTION 

Plastic deformation of crystals is fundamental to strength of metals as it is related to the 

ductility, hardening failure of this class of materials. Plasticity of metals is carried by 

dislocations, which were originally proposed to interpret the difference between the 

theoretical and actual shear strengths of crystals. In the experiments that were done 

during 1920s, single crystals yield at much lower stress level than theoretically predicted 

and develop slip bands [1–5]. Based on these observations, Taylor [6], Polanyi [7] and 

Orowan [8–10] proposed almost at the same time the concept of dislocations—a linear 

defect which glides under the influence of shear stress causing deformation of crystals. 

The movement of these defects results in irreversible crystallographic and shape change 

of the crystal, inducing so-called plasticity. The resistance of metal to plastic deformation 

derives its origin from the impediment of dislocation motion due to precipitates [11], 

solute atoms [12,13], and mutual interactions among the dislocations themselves [14]. 

Figure 1.1 plots the lattice structure for (a) an edge dislocation and (b) a section of 

dislocation curve which has edge and screw properties at two ends. A pure edge 

dislocation can be regarded as a result of the presence of an extra half plane of atoms in 

an otherwise perfect crystal. The position of the edge dislocation, in the case of figure 

1.1(a), is located at the bottom of the extra half plane, with its line direction along the 

lower edge of the plane of atoms. Such an extra plane introduces distortion and stress in 
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the crystal. A pure screw dislocation can be constructed by slicing and shearing half of 

the crystal, as plotted in figure 1.1(b) at point A. Between a pure screw dislocation and a 

pure edge dislocation (point A and point B, respectively), the dislocation line has a mixed 

character. A dislocation line, from another angle of point, can be viewed as the boundary 

between slipped and un-slipped area. Thus, a dislocation line must either form a loop or 

ends on the boundary of a crystal [15] but without being broken within the crystal. 

        

Figure 1.1. An illustration of (a) an edge dislocation line and (b) a curved 

dislocation line. 

The Burgers vector [16] is defined to represent the direction and the magnitude of 

lattice distortion associated with a dislocation. A perfect Burgers vector always 

corresponds in direction to a close-packed row of atoms and in magnitude to the distance 

between two neighbouring atoms in that row [15]. A dislocation line possessing a perfect 

Burgers vector is called a perfect dislocation which may decompose, depending on 

crystallography [17], into partial dislocations, each of which is associated with a partial 

Burgers vector. The slip plane is the plane on which dislocations glide and the slip 

(a) (b) 
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direction is in the direction of a perfect Burgers vector. From a crystallographic 

perspective, a slip plane is preferably a plane on which atoms are most closely packed 

and a slip direction is also close packed direction in the slip plane. A combination of slip 

plane and slip direction constitutes a slip system. A Face Centred Crystal (FCC) has 

twelve {111}<110> type slip systems [18]. The plastic deformation takes place as a result 

of motion of dislocations on their slip planes. Unlike elastic deformation which occurs as 

a result of distortion of crystal lattice, the plastic slip essentially changes the way in 

which atoms are connected and is thus irreversible. Dislocations can leave traces when 

they pass in crystals and such traces are observed as slip bands in experiments [19–22]. 

The motion of dislocations is governed by the local stress field in accordance with 

the Peach-Koehler force [23] on dislocation lines. The latter depends on the stress field 

and Burgers vector and line direction of the dislocation. It is important to note that 

dislocations produce internal stress field around themselves. Such a stress field, 

according to the calculations by Volterra’s singular model [24] and Peierls-Nabarro’s 

non-singular model [25,26], has a long range character, i.e., the magnitude of stress 

decays with the distance to the order of one. The long range effect of internal stress 

implies that the behaviour of a dislocation segment is not only affected by dislocations 

close to it but also those dislocations which are far from it, but which are large in number. 

When dislocations are close enough to each other, they might interact by short range 

reactions which lead to jogs, kinks, annihilations [27]. Dislocations with new Burgers 

vector may also come into existence if this is energetically preferred [28], forming sessile 

locks [29–31] and glissile junctions [32]. All these junctions and interactions contribute 

to the impediment of dislocation motion to various degrees [33–37], resulting in the 
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phenomenon of strain hardening. One can imagine this by comparing the journey of a 

moving dislocation to the scenario in which a horizontal long rod is passing through a 

forest made of other dislocations [38]. Forest hardening derives from this conception 

[38–40]. 

The concept of dislocations only existed in theory until the first report of them in 

experiments enabled by Transmission Electron Microscopy (TEM) technology in 1950s 

[41]. Since then, experimentalists have been conducting extensive works on observing 

the landscape of dislocations in various materials under various conditions. It is 

commonly found that dislocations organize into patterns which are characterized by 

inhomogeneous distribution of dislocation dense and poor areas in space: the ladder and 

vein structures come into existence in single slip fatigue tests [42,43]; labyrinth structures 

are seen in multi-slip fatigued experiments [44]; cell structure reveals itself in multi-slip 

monotonic loading conditions [45,46]. Figure 1.2 plots typical patterns observed under 

fatigue and monotonic loadings. 
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Figure 1.2. Dislocation structure in copper single crystal: (a) Persistent 

Slip Bands (PSB) ladder structure and vein structure on {121}-type slice 

in a crystal oriented for single slip, adopted from [47]. (b) Dislocation cell 

structure on (001) slice in a [001] crystal under monotonic loading at 19% 

strain, adopted from [45] 

It is clear that the external loading does not smear dislocations through the space, 

but rather favours their clustering into rich and poor areas because such an organized 

pattern is energetically preferred to a homogeneous distribution [47–49]. The ladder 

structure shown in figure 1.2 contributes to the formation of persistent slip bands [50] 

which eventually lead to the fatigue crack initiation [51,52] by causing extrusions and 

intrusions that give rise to the strong localization of strain and stress [53]. The cell 

structure in figure 1.2(b) is thought to be related to recrystallization process [54,55] in 

which subgrains gradually establish themselves within a single crystal [56–59]. The 

patterning of dislocations is thus significant both from a theoretical standpoint and metal 

processing and metal performance.  

Vein structure

PBS

(a) 
(b) 
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The conventional plasticity [60] and crystal plasticity [61–63] theories, however, 

make no allowance for the consideration of these linear defects and thus prove to be 

unable to predict the heterogeneous distribution of dislocations and strain. In addition, the 

need to reveal the underlying mechanisms for hardening and patterning also requests the 

modelling of dislocation system from first principles. Furthermore, the results from 

modelling might drive new discoveries in experiments just as the proposal of dislocations 

precedes the spot of them in laboratories.  

Thus, stimulated by experimental findings and motivated by the challenges, 

scientists start to develop models for dislocation evolution, which is referred to as 

dislocation dynamics and to which this dissertation is dedicated. The models of 

dislocation dynamics can be generally divided into two groups: the discrete dislocation 

dynamics [35,64–67] and continuum dislocation dynamics [68–73]. The discrete 

dislocation dynamics discretizes dislocation lines into sequences of segments connected 

by nodes. The entire simulation of dislocation motion is realized by managing the 

configuration of the collection of segments and nodes. The continuum dislocation 

dynamics does not treat the system at detailed level but rather replaces the dislocation 

lines with the description of mathematical fields which are governed by kinetic equations. 

The advantage of the continuum dislocation dynamics exists in the fact that the 

dislocation multiplication does not add any difficulty to the computational burden as in 

the discrete dislocation dynamics and thus larger strain level is prospective. Nevertheless, 

a comprehensive 3D continuum dislocation dynamics model illustrated with extensive 

examples is still far from completion.  
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Motivated by the need to predict the dislocation patterns, the present work is 

dedicated to the development of continuum dislocation dynamics for FCC single crystals 

under different mechanical loadings. A continuum model is first constructed, in which the 

dislocations are characterized by vector fields governed by curl-type kinetic equations. 

Such vector fields represent oriented dislocation densities on various slip systems. The 

evolution of dislocations and mechanical stress field are coupled by Orowan’s law and 

mobility law. The implementation of the model delivers results that are in agreement with 

experiments in many respects. The model couples the dislocation kinetic (transport) 

equations with crystal mechanics. This coupling is two-way. The dislocation density field 

is evolved as a result of motion induced by the Peach and Koehler force resulting from 

the local stress field in the crystal. This evolution leads to accumulation of plastic strain, 

which is treated as an eigenstrain in the equations of crystal mechanics. The solution of 

the mechanics part thus depends on the evolution of the dislocations by incorporating the 

time dependent or evolving eigenstrain. The loop is closed by using the resulting local 

stress to compute the local Peach and Koehler force that drives the dislocation field 

evolution further.  

This dissertation is arranged as what follows. Chapter 2 presents a review on 

relevant works including experiments, discrete dislocation dynamics models, and 

continuum dislocation models. The previous results regarding dislocation patterning are 

also included. Starting from chapter 3, we introduce the continuum model along with its 

numerical solution strategy and illustrate elementary solutions. As the solution requires 

cross slip rates as input, a methodology of deriving such rates from discrete dislocation 

dynamics is presented in Chapter 4. As shown, this calibration process leads to 
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significant improvement of the model predictions of the stress-train behaviour and 

patterns. In chapter 5, the model results for monotonic loading are presented including 

dislocation patterning, the influence of cross-slip, and the effect of crystal orientation. 

Chapter 6 extends the application of the continuum model to the simulation of dislocation 

patterns and hysteresis under cyclic loading. A summary of the current research, its 

significance and a future outlook are finally presented in Chapter 7. 
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CHAPTER 2. RESEARCH BACKGROUND 

This chapter presents a concise review of experimental results and models related to the 

current work. The dislocation patterns obtained from experiments are reviewed first, 

followed by discrete and continuum dislocation dynamics models along with some results 

that illustrate the importance of the modelling approach used in this dissertation. 

 

2.1 Dislocation Patterns in Experiments 

Dislocation patterning has been widely reported in the experimental literature. The 

concentration of dislocations into dense and poor areas is mainly because such a 

patterning is energetically appealing to dislocations than a homogeneous distribution. 

There are also kinetic and kinematic factors influencing this patterning or self-

organization of dislocations. In the case of monotonic loading, the patterns of dislocations 

show dependence on the orientation of the crystal [74–76]. In general, dislocation walls 

are inclined to be parallel with the crystallographic planes which have relatively higher 

Schmid factor than the other planes [75], which is more pronounced in the single-slip 

cases. In the case of multislip situation, where several crystallographic systems may have 

about the same in Schmid factor, dislocations tend to form cells whose walls that may (in 

the cases of [110] and [111] type loading) or may not (in the case of [001] type loading) 
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parallel to any of crystallographic planes. In references [74,75] , dislocation patterns are 

grouped into three types shown in figure 2.1.  

     

 

Figure 2.1. Orientation dependence of dislocation patterns, adopted from 

[75]: (a) Type 1 structure appears in the loading direction which favours 

the activation of single slip system, (b) Type 2 cell structure appears in 

crystals oriented around [001] direction, and (c) Type 3 cell structure 

appears in crystals near [111] direction. 

Type 1 structure (plotted in figure 2.1(a)) is often observed in single slip crystals in 

which dislocation walls are evidently parallel to the traces of slip planes on the selected 

sections. Type 2 structure is an isotropic cell structure which is found in [001] crystals 

(shown in figure 2.1(b)). Type 3 structure is also cell structure, but in which the walls 

show the inclination of being parallel with traces of slip planes (see figure 2.1(c)). 

(a) (b) 

(c) 
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A considerable amount of works has been done to analyse the property of these 

patterns. The cell structure of dislocation-dense walls is analysed geometrically to yield 

the fractal dimension of the pattern and its relationship with strain-hardening process 

[77,78]. A positive power law relationship has been established between fractal 

dimension and flow stress for different orientations of copper single crystals [78]. The 

size of dislocation-depleted area (interior cell size), on the other hand, defines the 

wavelength of dislocation structure [79,80]. Experiments [81–85] have revealed the 

relationship between wavelength and the hardening stress, yielding the famous similitude 

law [48,86,87].  

    

Figure 2.2. Dislocation structure in fatigued copper single crystals oriented 

for multislip: (a) labyrinth structure in [001] crystals, adopted from [44], 

and (b) cell structure in [112]  crystals, adopted from [88]. 

The dislocation patterns for a cyclically deformed crystal vary to quite an extent 

with a number of factors including the orientation of crystal [88,89], the amplitude of 

plastic deformation [89–91], and the temperature [92]. The pattern composed of vein-

(a) (b) 
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channel and ladders, as shown in figure 1.2(a), is typically observed in the grains oriented 

for single slip [93]. The multislip cyclic loading around [001] facilitates the formation of 

well-saturated labyrinth structure consisted of dislocation walls perpendicular and 

parallel to the loading direction [94]. A compilation and analysis of orientation 

dependence of dislocation patterns is made in [95]. The amplitude of plastic strain has its 

consequence on the final saturation stress [96] and also the type of dislocation patterns 

[90]. Figure 2.2 shows labyrinth structure and cell structure in fatigued single crystals 

oriented for multislip. 

 

2.2 Dislocation Dynamics Simulations 

Discrete dislocation dynamics models were first proposed in 1980s. They aim to simulate 

the evolution of discretized dislocation lines embedded in the elastic medium [97]. A few 

models were developed, which differ in such factors as the dimension, the methods of 

discretization of dislocation lines, the treatments of boundary conditions and the 

implementation of short range reactions. 2D dislocation models were developed first. 

These models treat infinitely long, straight and parallel dislocation lines or either pure 

screws or pure edges character [98]. Multiple gliding planes can be taken into account 

[99] and many features that originate from 3D configuration can be borrowed from the 

analysis of curved dislocation lines in 3D space [100]. Despite its oversimplification, 2D 

models are still within the options of dislocation models and applied to monotonic 

loading [66], fatigue [101] and crack simulations [102]. While these models served as a 

starting point, they are still in use. However, they will not be discussed further in order to 

concentrate on 3D models, which are more relevant to the current work. 
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2.2.1  The ‘microMegas’ Model 

In 1990s, Kubin et al. proposed a model [103] which leads to the later development of the 

‘microMegas’ code [104]. The model is characterized by lattice based discretization of 

dislocations in which the dislocation segments may take on a finite number of directions  

[64,105]. As such, the gliding directions, which are normal to the segments, are also 

confined to a certain number of directions on slip planes. In this manner, a continuous 

dislocation line can be approximated by a succession of straight segments comprised only 

of screws and edges, which is schematically plotted in figure 2.3(a) for a loop. A 

refinement has been made on the discretization of segments from four directions (edges 

and screws in both directions) to eight directions with the addition of mixed type 

segments, which is plotted in figure 2.3(b). Further refinement of more prescribed 

directions is possible but the overall enhancement saturates fast [104]. 

      

Figure 2.3. Discretization of a dislocation loop in the microMegas model 

in (a) a pure edge and screw scheme, adopted from [106] and (b) a refined 

eight directions model, adopted from [104]. 

(a) (b) 
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The force applied to a dislocation segment includes a number of components [106]. 

The external force depends on the loading and the properties of segments, Burgers vector 

and line direction. Internal force exists because of the long-range feature of the mutual 

interaction between dislocations. It is summed over the contributions from all 

dislocations except the neighbouring ones [106]. Line tension, caused by the 

neighbouring segments, is a virtual force reflecting the tendency of dislocation lines to 

decrease their curvature [104]. Image forces are also applied, which depend on the type 

of the boundary condition. 

The relationship between the force and the velocity is specified by a number of rules 

[104]. Short range reactions are explicitly modelled for annihilation and dipole formation. 

In the model implemented in microMegas, the new formed segment of junction is 

regarded as nothing but the intersecting part of its parent segments. The work of 

controlling junction formation is left for the stress field to determine whether to zip or 

unzip the two parent segments. All junctions are treated as sessile and glissile junctions 

are not considered [104]. The performance of microMegas model shows great agreement 

with experiments and it has been used in many types of simulations [107–111].  

 

2.2.2 The ‘ParaDis’ Model 

In 1990, Hirth et al. [112,113] proposed a 3D dislocation dynamics model which at a 

later point motivated the development of the ParaDis code [114]. In the latter, the 

discretised segments of dislocations can be oriented in arbitrary directions in 3D, as 

shown in figure 2.4(a). The network is updated by changing the positions of the nodes as 
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well as by adding or subtracting the nodes if necessary [115]. In this method, the 

movement of segments is not confined to any prescribed directions as is in microMegas.  

The Peach-Koehler force is evaluated for each segment within the network by 

summing the contributions of Peach-Koehler force from all the other segments: 

 
seg

app

,

N

PK PK

iseg jseg

jseg j iseg

F F F
 

 
1

,  (2.1) 

where 
isegF  is the total force on segment iseg , PK

jsegF  the Peach-Koehler force contributed 

by segment jseg , 
segN  total number of segments, 

app

PKF  the Peach-Koehler force caused 

by the applied stress field. 

Then the segment forces are distributed to the nodes based on a linear interpolation, 

as shown in figure 2.4(b). The scenario now can be described as a collection of nodes 

node{ , 1,2,..., }i i Nr  associated with a collection of nodal forces node{ , 1,2,..., }i i NF . The 

motion of the one point on a segment is locally described by [115]: 

 drag ( ) ( ( )) ( ) f x B ξ x v x ,  (2.2) 

where 
drag

f  is the dragging force at point x , ( )v x  the velocity, ( ( ))B ξ x  the tangent 

dependent drag coefficient matrix which contains gliding, cross-slip, climbing 

information in it, ( )ξ x  the tangent at point x . Once the virtual work principle is applied 

to the configuration of the network [116], the relationship between nodal velocities and 

nodal forces are obtained as follows [115]: 
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ij j i

j

B v F ,  (2.3) 

where i  and j  are nodal indexes, 
jv  the nodal velocity, B  is global stiffness matrix 

which should not be confused with ( ( ))B ξ x  in equation (2.2). Equation (2.3) is a set of 

linear equations which are solved at each time step to determine the nodal velocities. 

    

Figure 2.4. A schematic of the discretization method of dislocation lines in 

ParaDis model (a) and the calculation of forces for each node (b). The 

dislocation network consists of arbitrarily oriented segments which are 

connected by nodes at the end of each segment. Burgers vector is 

conserved through the network. The forces are associated with nodes in 

the way that the nodal force is computed as a weighted average of two 

neighbouring segment forces. (a) is adopted from [114] and (b) is adopted 

from [115]. 

The topological information of the network is kept and modified through the 

simulation. New nodes are added to a segment if its length surpasses a prescribed upper 

limit and old nodes are deleted if the segment is too short. The short range reactions are 

implemented when the distance between dislocation segments is below a prescribed 

limitation, only above which the elastic field holds. A new segment is produced by the 

(b) (a) 
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two reacted segments in the way that the Burgers vector of the new one is the sum of its 

‘parents’. Both sessile and glissile junctions are represented by monitoring the Burgers 

vector of the newly generated segments. Some applications of the ParaDis model can be 

found in [117–119].  

 

2.2.3 Parametric Discrete Dislocation Dynamics Models 

It is a common feature in microMegas model and in ParaDis models that the curved 

dislocation lines are discretized into straight lines. Such is not the case in some other 

models. Ghoniem proposed a model in which the discretized segments are curved cubic 

hermit splines [120], see figure 2.5. The tangent on each segment are differing from point 

to point and are dependent on the parameter w, ranging from 0 to 1, see figure 2.5(b). 

One of the main features of the model is its efficiency in calculating the elastic stress 

field of complex shape ensembles of dislocations by using a fast numerical quadrature 

sum [120]. Generalized coordinates are used for obtaining the motion of the curved 

segments by applying a variational principle. One of the merits of this model is that it 

reduces the computational burden by allowing more freedom of a segment in both length 

and shape.  
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Figure 2.5. Parametric model of discrete dislocation dynamics: (a) 

ensemble of segments, and (b) a single curved dislocation segment. 

Adopted from [121]. 

 

2.2.4 Comments on Discrete Dislocation Models 

Discrete dislocation dynamics (DDD) has achieved a considerable amount of results that 

explain experimental results to various degrees. The method is originally proposed two 

decades ago by Amodeo and Ghoniem [97] and Canova and Kubin [122]. The DDD 

model is widely used for different types of loading conditions for different types of 

crystals [118,123–127]. The simulations of fatigue and crack propagation are also 

realized by the discrete models [102,128–130]. Not only are the simulated results agree 

with experiments but also the simulations reveal the mechanisms underlying the 

observable phenomena [33,131,132]. 

Despite the great achievements accomplished by discrete dislocation dynamics, the 

intrinsic dependence on the tracking of dislocation lines makes the method expensive in 

computation, which deteriorates its performance when the dislocation density increases 

with strain [113,133] in a linear or even super-linear manner. An alternative option is 

(a) (b) 
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continuum dislocation dynamics, in which dislocations are represented by density fields 

that evolve in space and time. The following section reviews the progress in developing 

continuum dislocation dynamics models. 

 

2.3 Continuum Dislocation Dynamics Models 

The thought of considering dislocations as continuously distributed can be dated back to 

Nye [134] who first proposed the dislocation density tensor and related it with the lattice 

curvature. Kröner [135] continued to clarify the presence of dislocation density tensor as 

a result of incompatible plastic distortion within the crystal. Kondo [136] and Bilby [137] 

constructed the differential geometry theory for single dislocation lines. Although were 

not successful in predicting plasticity, these early works paved the road toward the 

modern continuum dislocation dynamics formulations discussed below. 

 

2.3.1 Acharya’s PMFDM Model 

Based on the idea of curl relationship between dislocation density and plastic distortion 

tensors, Acharya and coworkers [69,138,139] proposed field dislocation mechanics 

(FDM) in which equations governing the evolution of the dislocation field (represented 

by a tensor) and the crystal mechanics take on the form: 

 

 

( ) ( )

: ( )

( )

C

 

  

      

       

   

χ α

χ

z α v

u z χ

α α v s

0

0

.  (2.4) 
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where α  is dislocation density tensor, χ  the incompatible part of the elastic distortion 

tensor, v  the dislocation velocity vector, u  the total displacement, z  the perturbed 

displacement due to the incompatible part of elastic distortion, s  the nucleation rate 

tensor of dislocations. The first equation in (2.4) is derived by Kröner for the definition of 

dislocation density tensor [140]; the second equation imposes a divergence free constraint 

on χ ; the third equation is Orowan’s law written in a tensor format continuous fields; the 

fourth equation is the equilibrium equation for stress field; the last equation is the kinetic 

equation for α .  

Apparently, physical fields listed in (2.4) are coupled in the way that the second-

order tensor α  acts as a central role. Equation (2.4) is not closed due to the unspecified 

parameters v  and s . In the implementation, the theory is closed with constitutive 

designation of the velocity field v  and the nucleation term s  by borrowing relationships 

from crystal plasticity [63]. Such a constitutive specification renders the model 

phenomenological [141]. Acharya’s model demonstrates the applicability of the curl type 

kinetic equations on the mesoscale level. The model delivers good results in agreement 

with experiments for a 3D cube where a single slip system is activated [138]. 

 

2.3.2 Sethna’s Model 

In the same line but without any phenomenological prescription, Limkumnerd and Sethna 

[70,142] developed a mesoscale theory where the evolution equation for dislocation 

density tensor is given by the flux term of Burgers vector [143]: 
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 ik ijq j qkJ
t

 


  


,  (2.5) 

where 
ik  is the second order density tensor, amounting to α  in equation (2.4) in 

Acharya’s model; 
qkJ  is flux tensor which in a sense amounts to α v  in the last one of 

equations (2.4). The flux is related to the plastic distortion P

ij  tensor  in the following 

way [143]: 

 

P

ij

ijJ
t





,  (2.6) 

where P

ij  amounts to χ  in Acharya’s model. The plastic distortion tensor P

ij  is solved 

by variational principle which is expressed mathematically [143]:  

 P

Pij

ij

F

t







 


,  (2.7) 

where F  is a functional of P

ij  representing the free energy (elastic energy) induced by 

stress field,   the material dependent constant. P

ij  is eventually dependent on stress 

tensor which can be related to dislocation density tensor but in Fourier space [70]:  

 ( ) ( ) ( )K   k k k ,  (2.8) 

where K  is a function of position k  in Fourier space. The stress field in equation (2.8) 

is both expressed and solved in Fourier space during the simulation. It can be seen that to 

some degree that Sethna’s model shares some features with Acharya’s model in terms of 
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the curl relationship between plastic distortion and dislocation density tensor, but they 

differ in the constitutive closure [143]. The model is applied to simulate the relaxation of 

an initially plastically distorted cube, where fractal features were found to form. 

 

2.3.3 Diffusion-reaction Type Model 

In analogy to the chemical process, The model proposed by Walgraef and Aifantis 

[68,144,145] describes dislocation system in diffusion-reaction type equation which reads 

[68]: 

 ( )t R   J ,  (2.9) 

where   is the scalar field of dislocation density, J  the flux term denoting diffusion of 

dislocations, ( )R   the production or annihilation term which denotes reactions. The total 

density   is divided into immobile and mobile components which are governed by their 

respective equations expressed in the form [145]: 

 
( , )

( , )

t I I I I M

t M M M I M

R

R

  

  

   

   

J

J
,  (2.10) 

where I  and M  , IJ  and MJ  , IR  and MR  are immobile and mobile dislocation 

densities, flux terms, reaction terms respectively. When specifying the flux term IJ , 

which describes the motion of dislocations, the model appeals to crystal plasticity 

expression for velocity, which is written in power law relationship [145]: 

 (( / ) )mV V   0 ,  (2.11) 
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where V  represents velocity which turns out to be dependent on the ratio between critical 

shear stress 0  and resolved shear stress  .  

The diffusion-reaction type model has been successful in predicting the patterns in 

cyclic loading as persistent slip bands [146] and labyrinth [147] structures seen in 

experiments.  

 

2.3.4 Statistical Models 

In the late 90s, Groma and Zaiser [148–150] applied statistical mechanics to analyse the 

system of straight parallel edge dislocations, ending up with the kinetic equation of 

advection-reaction type. The governing equations of dislocation density scalar in their 

model can be written in the following form [149]: 

 

( ) ( ( ) ( )) ( , ,...)

( ) ( ( ) ( ))

B k f
t

k B
t

   

 


  




  



r

r

r b r r

r b r r 0

,  (2.12) 

where r
 denotes the spatial gradient, B  the dislocation mobility [148], b  Burgers 

vector, ( , ,...)f    source term.   and k  correspond to total and geometrically necessary 

dislocation densities respectively [151] and they are expressed as: 

 
k

  

 

 

 

 

 
,  (2.13) 

where   and   are densities of dislocation with positive and negative Burgers vectors 

respectively. The second terms on the left hand side of equation (2.12) is first-order 
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spatial derivative of density which reflects advection, in contrast to diffusion-reaction 

model in which the second order differentiation is applied to density quantity.  

The numerical implementation of Groma’s model delivers results in good 

comparison with discrete dislocation models [152] and predicts a certain dislocation 

patterns [149]. However, the availability of the kinetic equation was limited to 2D case 

until El-Azab [72,117] formulated a general 3D statistical modelling. El-Azab pointed 

out that the dislocations on given slip system can be described by a scalar field in multi-

dimensional phase space, which can be described by a kinetic equation of the form [72]: 

 ( , , , ) ( , , , )v t S t
t

  
 

     
 

xv v x v x v ,  (2.14) 

where   is the scalar dislocation density at point ( , , , )tx v  in the phase space which is 

spanned by the generalized coordinates of position, x , orientation,  , velocity, v , and 

time, t . The source term S  appears on the right hand side of equation (2.14) to take into 

account the annihilation, multiplication, short-range reactions, and cross-slip. The 

operator x  represents spatial gradient, describing dislocation transport while v  

represents gradient but in velocity phase space. Taking the zeroth order velocity moment 

of the last equation leads to kinetic equations describing the density field of dislocations 

in each slip system [153]. A stochastic procedure [107,154,155] has been applied to data 

from discrete dislocation dynamics simulation to determine the source terms in the 

kinetic equations for the density.  
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2.3.5 Hochrainer’s Model 

Motivated by El-Azab’s approach, Hochrainer [156] and co-workers [156–158] 

developed the continuum model that favours the representation of dislocations of multi-

direction and multi-curvature at one single spatial point. In this approach, Kröner’s 

second order dislocation density tensor is generalized into a tensor field in 4D space in 

which the real space is supplemented by an angular dimension denoting dislocation 

orientation. Figure 2.6 plots a 2D loop extended into 3D space, where the vertical axis 

represents the angular dimension ranging from 0 to 2π [158]. 

 

Figure 2.6. A continuous curve (in red) physically located on 2D plane is 

‘lifted’ to 3D configuration space, forming a ‘spiral’ shape (in blue). The 

vertical axis is the angular dimension. The arrows on the curves show the 

generalized velocity field. Adopted from [158]. 
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A generalized second order density tensor II
α  is introduced, which plays a central 

part in the model [157,159]. Its definition is given by [159]: 

 II ( , ) ( , )   α p L p b ,  (2.15) 

where p  and   are coordinates in real space and in angular space, respectively;   is 

scalar density and L  is the tangent of dislocation line; b  is Burgers vector. Equation 

(2.15) is similar in the form to the earlier work by Nye for the definition of second order 

dislocation density tensor [134]. The evolution equation for the model reads [159]: 

 
ˆ ( )

ˆ ˆ ˆ( )

t

t

qv

q q v

 



   

     L L

V

V
,  (2.16) 

where V  and v  are generalized and scalar velocity respectively, q  the curvature; 

ˆ
      denotes the differential operation in the higher dimension space. 

The addition of an orientation dimension makes possible multiple directions of 

dislocation lines at a single point. In principle, the model is closely related to the 

statistical model proposed by El-Azab but the dislocations in the later one are described 

in scalar quantity. It must be noted that the price for the lift in dimension is the 

computational burden which can however be avoided following the procedure described 

in [159]. Hochrainer’s model was implemented for some simplified cases such as micro-

bending [158] and mechanical annealing [159]. 2D patterns were shown to form in a 

minimal model of continuum dislocation plasticity based on Hochrainer’s dislocation 

density tensor [160] but 3D results are yet to be demonstrated. 
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2.3.6 The Phase Field Model 

Koslowski proposed the phase field model from the angle of the energy of dislocation 

evolution during elasto-plastic process [161]. The principle of minimization of energy 

leads to the problem  [161]: 

 inf inf [ | ]
Y X

E
 

 
 

,  (2.17) 

where function ( ) x  is normalized slip distribution, ( ) x  represents the number of 

dislocations that have ever passed over point x , X  and Y  the configuration space of 

phase fields and slip fields respectively [73]. The functional E  in equation (2.17) is the 

total energy given by: 

ˆ[ | ]
( )

b b
E d x K d k b d x

d

 
     


       t m

2 2 22 2 2 2

2

1

2 2 4
,  (2.18) 

where   is the shear modulus, b  the Burgers vector, d  the interplanar distance, t  the 

traction on the slip plane caused by external stress, and m  the normal to the slip plane. 

̂  denotes the Fourier transformation of  . In equation (2.18), the first integration 

represents the core energy, the second one is the elastic interaction energy, and the last 

one is the energy of the external system of forces. 

The phase field model has demonstrated its ability in predicting dislocation patterns 

under monotonic and cyclic loading conditions [161] as well as for single and multiple 

slips [73]. Scaling laws are also revealed from the simulation by this model [162]. Its 

application even extends to the simulation of non-metallic materials [163]. 
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2.3.7 Comments on Continuum Models 

The continuum dislocation dynamics models were proposed earlier than the discrete 

models and still remain to be an active research area. The common feature shared by all 

the types of continuum models is the governing equation(s) which describe the evolution 

of continuous fields which can be scalar(s), vector(s), or tensor(s), in 3D or higher 

dimension space. Unlike discrete models, the forms governing equation(s) differ a lot 

among the continuum models mainly because of the differences in representing the 

dislocation systems. 

A great amount of progress has been realized by continuum models. For example, it 

is well known in experiments that crystalline materials show size effects at small scales 

[164–168]. This characteristic has been successfully predicted by continuum models 

[138]. The continuum model also predicts dislocation patterns that are in agreement with 

experiments in many situations [143,147,160,161,169], which will be presented in the 

section follows. 

 

2.4 Dislocation Patterns in Simulations 

This section is concerned with dislocation patterns obtained from the above mentioned 

discrete and continuum dislocation dynamics models. It will be seen that the discrete 

dislocation dynamics models can predict patterns but the continuum models do not yet 

make prediction of patterns consistent with 3D bulk plasticity. 
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2.4.1 Dislocation Patterns in Discrete Models 

It was noticed earlier that even in some simplified 2D models [170,171] or 2.5D [99], 

dislocations organize into patterns with a certain measurable wavelength which delivers 

scaling laws [99]. Figure 2.7 shows a patterned edge dislocation ensemble under cyclic 

((a)) and monotonic ((b)) loading conditions. Under cyclic loading circumstance, 

dislocation walls composed of edge dipoles arrange vertically along y-axis; while 

monotonic loading seems to facilitate the formation of cells whose walls are in parallel 

with slip systems. 

      

Figure 2.7. Dislocation patterns in (a) 2D and (b) 2.5D simulations: (a) 

cyclic loading and (b) monotonic loading. The model in (b) includes 2 slip 

systems. In both images, inhomogeneous and isotropic arrangements of 

edge dislocations emerge to form into certain patterns composed of 

dislocation-free and dislocation-dense areas. (a) is adopted from [171] and 

(b) is adopted from [99]. 

The implementation of 3D discrete models also predicts dislocation patterns under 

different loading conditions, as shown in figure 2.8. Dislocations tend to be arranged 

along some preferred crystallographic directions which could be the traces of slip planes 

(a) 

(b) 
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on the sliced sections. The model leading to the pattern shown in figure 2.8(a) activates 

only two slip systems and the crystal is subjected to cyclic loading. The model delivering 

the pattern in figure 2.8 (b) activates multiple slip systems for a monotonically loaded 

single crystal.  

      

Figure 2.8. Dislocations organize into patterns under (a) cyclic loading and 

(b) monotonic loading conditions in 3D. (a) is adopted from [128] and (b) 

is adopted from [172].  

 

2.4.2 Dislocation Patterns in Continuum Models 

The diffusion-reaction type model predicts the evolution of dislocations from a random 

initial state to a labyrinth structure that is observed in fatigue experiments [44,47,90]. A 

comparison between simulation and TEM images is plotted in figure 2.9. It is to be noted 

that the diffusion-reaction model predicts dislocation walls oriented along slip planes, 

while in experiments the walls are along the directions parallel or vertical to [001] 

loading axis [89], which might be attributed to the lack in the model to include some 

(a) (b) 
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reactions. So crystallographically, the model and experiment are not in agreement. 

Moreover, while the experimental pattern occurs as a result of dislocation self-

organization in 3D, the model solves equations in a 2D domain, ignoring all 3D effects. 

The comparison must thus be considered with some care about the differences. 

      

Figure 2.9. Labyrinth structure of dislocations shown from (a) reaction-

diffusion model and (b) experiment. The labyrinth structure shows good 

agreement between TEM images and simulations in shape but not in the 

orientation. (a) is quoted from [147] and (b) is from [44].  

Cell structures are conspicuous in monotonically loaded single crystals especially 

when multiple slip systems are activated (see figure 2.10(b)). The continuum models also 

demonstrate their ability in reproducing some patterns. The relaxation process of an 

initially distorted crystal is simulated by Sethna’s model, yielding the fractal structure 

plotted in figure 2.10.  

 

 

 

(a) (b) 
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Figure 2.10. Comparison of dislocation distribution between (a) 

continuum simulation and (b) TEM images. (a) plots GND density from 

Sethna’s model and (b) is obtained from copper single crystal loaded 

along [001] to the stress of 76.5MPa. Striking resemblance is shown 

between modelling and experiments. Both are adopted from [143]. 

Sandfeld [160] observed dislocation patterning by solving Hochrainer’s model in 2D 

where the specimen is subjected to external loading. The difference between figure 2.10 

and 2.11 in physics is that the former numerical example does not apply external loading 

but the later one does. The cells formed under loading conditions [160] have closed walls 

and resemble those observed in experiments to a more extent than the unloaded case 

[143]. Relevant fields obtained from Hochrainer’s model are shown in figure 2.11. 

Although a similarity between simulation and experiment is observed when one 

compares figure 2.11 and figure 2.1(b), this observation is hard to explain as the model 

simulates a single slip situation, which is known experimentally to not yield cellular 

struture. 

 

(a) (b) 
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Figure 2.11 Total dislocation density (a) and scaled curvature density (b) 

in 2D simulations using Hochrainer’s model. Adopted from [160].  

 

2.5 Motivation of the Current Research 

In general, the discrete dislocation dynamics simulation approach aims to track the 

evolution of discrete systems of dislocations in space and time. The geometrically 

increasing burden in computation limits its application to larger domains (>10μm) and to 

longer simulation time. In order to avoid such computational limitations, some 

compromise, or simplification, has to be made by either reducing the number of slip 

systems [128] or reducing the density of dislocation segments [172], or by some other 

approaches. In attempting to avoid the increasing computational burden, however, 

discrete dislocation dynamics models may suffer idealizations that lead to discounting 

important physics. 

Continuum modeling, on the other hand, oriented at an ultimate goal of general 

governing equations for physical fields, is relatively more immune from computational 

limitations. Yet the continuum modelling still requires significant progress. The PFMDF 

(a) (b) 
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model [141], which resorts to empirical rules, should be considered as an important effort 

in transition from crystal plasticity to dislocation dynamics. The same situation applies to 

diffusion-reaction model devoid of the advection which is an intrinsic feature of 

dislocations. Sethna’s model [143] takes no phenomenological assumption and represents 

advection, but the lack of separation of dislocation density between different slip systems 

limits the capability of the model to capture the slip heterogeneity as well as detailed 

events of dislocation lines, such as cross-slip and short-range reactions. The models that 

employ expression in higher dimension space [72,157] raise a potential computational 

challenge which might become obvious when it comes to 3D simulation. 

It is worthwhile to keep in mind that the discrete dislocation dynamics’ advantage of 

accuracy in tracking individual dislocation segments and the merit of continuum model in 

computational cost (supposedly) can be combined to yield a hybrid model, as is realized 

by Zbib and co-workers [173–175]. In their model, the dislocation motion simulated at 

microscopic scale is coupled with the stress solved at macroscopic scale in such a way 

that the former provides the latter with plastic deformation that serves as eigenstrain [176] 

in equilibrium equation, presenting a typical example of multiscale modelling for 

materials. However, as long as the discrete simulation is still implemented and the long-

range interaction between dislocation segments is still computed, the concern on the 

growing computational burden may not be cleared completely. 

Motivated by the above-mentioned achievements in dislocation simulation and 

being aware of insufficiency in current models, a 3D continuum dislocation dynamics 

model is developed. This model couples the dislocation kinetics with crystal mechanics, 

stress equilibrium and deformation kinematics. A vector representation of the dislocation 
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density field is employed to encompass both the density magnitude and line orientation, 

which leads to kinetic equation of a curl type. The equation is closed by associated elastic 

boundary value problem where the plastic strain is treated as an eigenstrain field. The rate 

of cross-slip, which is used as a parameter in the continuum model, is obtained by 

discrete dislocation simulation, showing the general framework of embedding parameters 

from statistics of discrete dislocation simulation into the continuum model. The 

effectiveness of this continuum representation is demonstrated here by simulating the 

dislocation patterning under monotonic and cyclic loadings, showing that the model 

captures the main dislocation patterns observed in experiments. The results agree with 

experimental results and with results of previous simulations. 
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CHAPTER 3. CONTINUUM DISLOCATION DYNAMICS 

In this chapter, the kinetic equations governing dislocation density evolution are 

developed and their connection with stress boundary value problem is accomplished by 

invoking the framework of crystal plasticity. The model is developed for small 

deformation situations. The chapter is arranged as follows: section 3.1 presents a detailed 

derivation of kinetic equations for dislocations; section 3.2 shows how the dislocation 

kinetics is closed with plasticity theory without resorting to phenomenological arguments; 

periodic boundary conditions are implemented in the model, which is presented in section 

3.3; section 3.4 is dedicated to the numerical treatment of the equations. 

 

3.1 The Kinetic Equations  

Despite the discrete nature of dislocations, it is their large density that makes a continuum 

representation possible, which is an important postulate of the current work. The 

proposed model regards dislocations to be continuously distributed in the crystal and 

considers the linearized kinematics of small deformation. Since a vector representation of 

the dislocation density will be used, a first goal is to derive the equation of motion of 

dislocations with that representation in mind. In order to do so, we start with a single slip 

system and the tensor representation of dislocations at sufficiently small resolution, 

which will be clarified at a later point. For a reason that will be explained later, we 
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concentrate on dislocation bundles of the same Burgers vector before generalizing the 

formalism to arbitrary dislocation system. A bundle of dislocations is defined here as a 

set of continuously distributed dislocation lines of a given Burgers vector that have only 

one line direction at every point in space. Such bundles may fully lie on a single slip 

system or on two collinear slip systems in the case of cross-slip.  

With the dislocation bundle picture in mind, the second order dislocation density 

tensor α , following Kröner’s development [135], is defined in terms of the plastic 

distortion tensor p
β  by: 

 p. α β  (3.1) 

The time differentiation of equation (3.1) yields: 

 P α β . (3.2) 

In the above, the rate of plastic distortion at a point in space can be obtained by 

Orowan’s law, which presents in tensor form as [177]: 

 p   β v α , (3.3) 

where v  is the dislocation velocity field. The above equation makes it possible to update 

the plastic distortion p
β  from the movement of dislocations. Insertion of equation (3.3) 

into equation (3.2) generates the equation for the time rate of change of the p
β  tensor 

through the velocity field v , 

 ( )  α v α . (3.4) 
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Because dislocations are spatial curves with line orientation, a vector field 

representation of their density field is appropriate, which is denoted by ρ . Consider again 

a dislocation bundle with a unit tangent ξ  at an arbitrary point on its slip plane. A scalar 

density   may also be defined such that 

 ρ ξ . (3.5) 

The dislocation density tensor α  given by equation (3.1) can be interpreted as tensor 

product of the dislocation density vector ρ  and the Burgers vector b  of the dislocation 

bundles [134], 

  α ρ b . (3.6) 

The assumption that all dislocation lines in a bundle share a common Burgers vector 

makes the simplification of equation (3.4) in terms of the vector field ρ  possible by 

exploiting expression (3.6). Substitution of the latter into the former yields 

 ( ( ))    ρ b v ρ b . (3.7) 

It is shown below that the Burgers vector b , which is a constant vector, drops from the 

above equation to yield an evolution law for the vector field itself. In doing so, equation 

(3.7) is first expressed using the Cartesian index notation, 

 ( )i j ipn p nmk m k jb e e v b   .  (3.8) 

Applying the tensors on both sides of (3.8) to the vector b  gives 
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( )      ( )i j j ipn p nmk m k j j i ipn p nmk m kb b e e v b b e e v        .  (3.9) 

Reverting back to the direct notation, equation (3.9) now reads: 

 ( )  ρ v ρ .  (3.10) 

Equation (3.10) preserves the form of equation (3.4) and serves as the main kinetic 

equation that describes the motion of dislocations. The merit of equation (3.10) lies in the 

fact that it describes the bowing of a dislocation line and hence the line length increases 

in a natural way, and it can easily incorporate cross-slip and climb by allowing the 

direction of the velocity vector to change out of a glide plane and onto the cross-slip 

plane or normal to the slip plane, respectively. The physical process of dislocation 

annihilation is realized in the equation by the cancelling of ρ  field with opposite 

directions. It is to be noted that equation (3.10) holds only for a dislocation bundle and 

cannot apply to a situation where multiple dislocation directions exist at a given point in 

space. 

On the other hand, the plastic tensor p
β  in equation (3.3) can be expressed in the 

form: 

 p β S , (3.11) 

where   is the plastic shear strain and S  is Schmidt tensor, / b S n b , with n  being 

the unit normal to the slip plane and b  the Burgers vector with magnitude b . The 

evolution law for the plastic slip is 
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b


  n v ρ . (3.12) 

Equation (3.10) and equation (3.12) are used together in the model to evolve dislocation 

density field and eigen-distortion field simultaneously. The latter quantity is required in 

the elastic boundary value problem for the stress field. 

The underlying idea of equation (3.10) is that the dislocation density vector ρ  flows 

in the direction and at the magnitude of velocity v , which enables the incorporation of 

cross slip. Assigning the dislocation density ρ  to a particular slip system is then 

necessary. Incorporating cross slip then changes the kinetic equation to the form: 

 
* *

cs cs( )l l l l l l l     ρ v ρ ρ ρ ,  (3.13) 

where 
lρ  is dislocation density vector on slip system l , lv  is the glide velocity of 

dislocations on that slip system, 
*

cs

l lρ  is the cross slip rate leaving from l  to *l , and 
*

cs

l lρ  

is the cross-slip rate in the opposite direction. The rate of cross-slip in the governing 

equation (3.13), 
*

cs

l lρ  is expressed in the form 

 
*

cs cs cs cs cs( )l l l l l l lp p I  ρ ρ ρ ζ ,  (3.14) 

where cs

lp  is the probability rate, cs( )lI ζ  an indicator for screw dislocation which takes 

the value of 1 if the dislocation is screw and 0 if otherwise, cs

lζ  the tangent of vector lρ .  
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3.2 Crystal Plasticity 

Up to now, equation (3.13) is open because the velocity fields are not yet determined. In 

a pure crystal, the velocity depends on the local stress and temperature. Previous models 

[139,158,178,179] either assume a form of the velocity or use phenomenological 

assumptions to close the kinetic equation (3.10). Such assumptions are useful but they 

introduce empirical parameters which requires experimental fitting. In this work, and 

without loss of generosity, only the glide motion of dislocations is considered for which 

the velocity magnitude is assumed to be linearly related to the resolved shear stress,  

 v M ,  (3.15) 

with M  being a mobility coefficient and   the resolved shear stress. This form applies 

to velocities on all slip systems where the resolved shear stress is computed from the 

following equation: 

 : ( ) / b   σ S σn b .  (3.16) 

where S  is the Schmid factor for the slip system characterized by slip plane normal n  

and slip direction: / bb . 

The stress tensor σ  appearing in equation (3.16) is often decomposed according to 

sources into three parts: applied loads, image stress, long-range dislocation stress [174]. 

Regardless of how stress is handled, the total stress field satisfies the equilibrium 

equation 

 0 σ .  (3.17) 
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The stress field is equal to elastic tensor C  times elastic strain, e
ε , via Hooke’s law: 

e tot p: : ( )  σ C ε C ε ε . The elastic strain itself is the difference between the total strain, 

tot
ε , and the plastic strain, p

ε . Therefore, equation (3.17) can be expressed as 

 tot p[ : ( )] 0  C ε ε ,  (3.18) 

where p
ε  is regarded as eigenstrain field [176] which is given by the summation of 

plastic strain of all slip systems, 

 
ss ss

p p p

1 1

sym sym  =sym
N N

l l l

l l


 

   ε β β S .  (3.19) 

In equation (3.19), ssN  is the number of slip systems and p

lβ  is the plastic distortion 

contributed by slip system l  to the overall distortion.  

 

3.3 Boundary Conditions 

Various boundary conditions are adopted in dislocation dynamics and among them 

periodic boundary condition is employed here. This is justified by the fact that we will try 

to simulate the bulk crystal behaviour. Periodicity implies that the dislocations exiting 

from one side enter into the opposite side. To realize this, two quantities should be equal 

at the opposite sides: the dislocation density and the velocity. Dislocation density can be 

directly set to the same on the left and right, top and bottom, rear and front while solving 

kinetic equations. The periodicity of velocity field requires a periodic stress field within 

the bulk of the crystal. For this purpose, the total strain in equation (3.18) is decomposed 
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into the average strain ε , which is controlled by strain rate and independent of spatial 

points, and a perturbation strain ε ; that is 

 tot  ε ε ε .  (3.20) 

Accordingly, the displacement field is also decomposed into two parts: a linear part 

u  whose (symmetric) gradient is ε  and a perturbation part u  whose (symmetric) 

gradient is ε . The former one is calculated in accordance with the imposed strain and 

represents the displacement due to the external loading mechanism; the latter gives ε  in 

the form sym( ) ε u . Following the above development, equation (3.18) can be 

rewritten in the following form: 

 p[ : (sym( ) sym( ))] 0    C u ε β .  (3.21) 

In the above equation, periodic boundary condition is applied on u . Equation (3.21) is 

suited for any elastic boundary problem of plastically distorted bulk and the constraint on 

u  ensures the equivalent stress and, in turn, dislocation velocity on opposite boundaries. 

 

3.4 Numerical Treatments 

The overall continuum dislocation dynamics model for mesoscale crystal plasticity 

consists of two sets of partial differential equations: equation (3.13) which governs 

dislocation density evolution and equation (3.21) which delivers stress field upon solving 

for the displacement field, separating the plastic strain and applying Hooke’s law. We 

adopt a staggered numerical scheme for their coupled solution, which favours appropriate 

numerical treatments towards the equations according to their respective characteristics. 
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The treatments to equation (3.13) and (3.21) are first presented in this section with 

illustration of numerical examples. The overall numerical scheme is given in section 

3.4.3 and the detailed discretization of space and time is presented in section 3.4.4. 

 

3.4.1 Galerkin Finite Element Method for the Equilibrium Equation 

The equilibrium equation (3.21) is rather conventional and can be solved using a standard 

Galerkin finite element method; see [176] and [180] , for example, for details of the 

implementation. During the simulation process, the stiffness matrix of the discretized 

system remains unchanged and only the load vector varies as the eigenstrain p
ε  

(representing the plastic distortion) changes as dislocations evolve. Therefore, only one 

LU decomposition step of the stiffness matrix is needed and reused at all steps throughout 

the simulation. Equation (3.12) represents the evolution of plastic slip and the two-step 

Adams-Bashforth method [181] is used in each time step to perform the update, which 

owns second-order accuracy. 

Two examples are shown here by calculating self-stress field around an edge 

dislocation and a dislocation loop. 

Suppose an edge dislocation is created by cutting half-through a perfect cubic crystal 

along the plane ABCD denoted in figure 3.1(a). The upper part is then stretched outward 

in the direction and by the amount of Burgers vector. Finally, the upper and lower parts 

are recombined along the line B’C’ as seen in figure 3.1(b). In this way, an edge is 

formed on the surface of the crystal and an edge dislocation appears inside with the extra 

half plane below, see figure 3.1(b). Due to the break of the uniqueness of the 
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displacement field in the presence of dislocation, the original BC line is actually 

separated into two lines: B’C’ and B’’C’’. 

      

Figure 3.1. A perfect cubic crystal (a) is cut through ABCD to produce an 

edge dislocation (b) with line sense in the direction of AD. 

The continuum method will represent such a case by the introduction of a prescribed 

plastic distortion field p  β n b  into a lamella around the plane ABCD. This 

simplified case is solved by equation (3.18) with the finite boundary condition that 

prevents rigid body motion. The numerically calculated stress component xz  is 

compared with analytical solution for an edge dislocation in figure 3.2. The linear elastic 

solutions of the stress components approaches infinity close to the dislocation core. The 

numerical solution given by equation (3.18) however has a finite value even at the exact 

position of dislocation. Apart from this difference, the fields in both cases show the 

similarity with each other. 
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Figure 3.2. Comparison of stress component xz  around an edge 

dislocation between analytical solution (a) and numerical solution (b). 

Slight differences exit away from the core due to image fields present in 

case (a). 

The stress field of a dislocation loop can also be computed by embedding into the 

cube an eigenstrain field which has the non-trivial value in a disk of a small thickness as 

shown in figure 3.3. Figure 3.4 shows the iso-surface of stress component xz  given by 

continuum solution and numerical solution respectively. The stress field is normalized by 

dividing by /b R , where R  is the radius of the dislocation loop. The similarity of the 

iso-surface between continuum representation and discrete computation illustrates the 

accuracy of the eigenstrain method in capturing the stress field which plays an essential 

role in the kinetics of dislocations. 

Unit: Pa
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Figure 3.3. Stress field generated from a dislocation loop (a) is computed 

by embedding an eigenstrain field into the cube in (b). The non-vanishing 

area of the eigenstrain is of a disk shape that is bounded by the dislocation 

loop itself. 

The success in solving kinetic equations to describe the motion of dislocations 

where the velocity or the underlying stress field is set as known and in solving the elastic 

boundary problem for the desired stress field while dislocation configuration is known 

lays down the foundation for the coupled scheme proposed in the following sections. 
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Figure 3.4. Iso-surface ( 0.08xz  ) of a dislocation loop computed from 

continuum model by the usage of eigenstrain concept (a) and from discrete 

dislocation method (b) adopted from [182]. 

 

3.4.2 Least-square Finite Element Method for the Curl Equation 

Equation (3.13) describes the evolution of dislocation density on a single slip plane. The 

dislocation lines must stay continuous on a pair of collinear slip systems, which, in FCC 

crystal, contain of pairs of slip planes, say, l  and *l , sharing one Burgers vector. Thus 

the following divergence free condition applies to the dislocation density: 

 
*( ) 0.l l  ρ ρ   (3.22) 

The subscript l  will be dropped for simplicity when no confusion arises. 

To implement cross slip, the density on a given slip system is separated into two 

parts: csρ  corresponding to part that will cross slip and part that will continue to glide 

on the original plane, g cs ρ ρ ρ . Over a time step t , the cross slip density is 

determined by the probability rate cs

lp  described in equation (3.14): 
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 cs cs cs( )l lp t p   ρ ρ ρ ,  (3.23) 

Following the numerical scheme adopted in discrete dislocation simulation, cross slip 

happens only when the following conditions are all satisfied [183]: 1. The resolved shear 

stress computed from section 3.2 must be in favour of the cross slip; 2. A Monte Carlo 

method is used to determine whether a cross slip will take place; 3. We make an 

allowance for cs

lζ  to align with 15º to the pure screw direction. A fraction csρ  given by 

equation (3.23) cross slips given that all criteria of the process are satisfied. The 

corresponding velocities are associated with csρ  and g
ρ  for updating dislocation 

densities in the following way: 

 

g g g

cs cs cs

( )

( ) 

   

   

ρ v ρ

ρ v ρ
,  (3.24) 

where g g gvv ζ  and cs cs csvv ζ  with g
ζ  and g

ζ  being the velocity directions in glide and 

cross-slip planes respectively.  

The separation of the total density into gliding and cross slipping parts is also done 

in equation (3.12) and it has the final form as 

 

g g g g

cs cs cs cs

/

/

b

b



 

  

  

n v ρ

n v ρ
.  (3.25) 

When solving equation (3.24), condition (3.22) is used as constraint on the solution of ρ  

to ensure continuity at all steps. 
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The dislocation kinetic equations (3.24) are hyperbolic partial differential equations 

describing the evolution of the dislocation density field through the transport and bow-out 

of dislocations. Numerical diffusion and dispersion are two issues associated with the 

discretization of hyperbolic PDEs. In addition, within a wide array of numerical methods, 

there exists a trade-off between the numerical oscillation caused by dispersion and the 

smearing of the peak caused by diffusion [184]. In the scheme adopted here, the 

dispersion is not a concern because the designation of velocity is controlled by the 

direction of dislocation density. Keeping this in mind, we choose the first order implicit 

discretization to handle the time derivatives, which proves to be almost dispersion-free as 

can be seen later. A least square finite element method (LSFEM) [185], which suits well 

for the first-order spatial differential operators [186], is then selected to solve the 

equation after time discretization. The entire scheme is presented as follows. 

For convenience, a complete list of equations involved is as follows: 

 

g g g

cs cs cs

g cs

( )

( )

0 ( )

 

  

  

  

ρ v ρ

ρ v ρ

ρ ρ

,  (3.26) 

which is then rewritten in a matrix form: 

 0[ ] [ ] [ ] [ ] [ ]t x y zA A A A A
x y z

    
  

   
  

.  (3.27) 
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In equation (3.27), the unknown [ ]  consists of both gliding dislocation density and 

cross slip density such that g g g cs cs cs

1 2 3 1 2 3[ ] [ , , , , , ]T        and the coefficient matrix: 

tA , 0A , xA  
yA  and zA  are all of dimension 76. They are given by: 

g

3 3 0

cs

3 3 0 0

1 3 1 3 1 3 1 3

g g g

cs cs cs

0 0

0 , 0

[0] [0] [0] [0]

0 0 0

0 , 0 , 0 ,

[1,0,0] [1,0,0] [0,1,0] [0,1,0] [0,0,1] [0,0,1]

t

x y z

x x y y z z

I A

A I A A

A A A

A A A A A A





   

  
  

    
   
   

     
     

       
     
     

 

where g

0A , g

xA , 
g

yA  and g

zA  are 33 matrices, 

g g g g

2 2 3 3 2 1 3 1

g g g g

0 1 2 1 1 3 3 3 2

g g g

1 3 2 3 2 2 1 1

g g g g

2 1 3 1

g g g g g

2 1 3 2

g g g g

3 1 3 2

0 0 0 0 0

0 ,   0 0 0 ,   0 ,

0 0 0 0 0

g

g

g g

x y z

v v v v

A v v v v

v v v v

v v v v

A v v A A v v

v v v v

     
 

      
      

     
    

        
           

 

and the matrices cs

0A , cs

xA , cs

yA  and cs

zA  have the same expressions with replacing the 

superscript g with cs. After the temporal discretization by using first-order implicit 

method, equation (3.27) reads:  

 
1([ ] )n n nL P   ,  (3.28) 

where the differential operator ([ ])nL   and 
nP  depend on the information at time n t  as 

follows: 
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0 7 6

7 6

([ ]) [ ( )] [ ]

[ ] [ ]

n

t x y z

n n

t

L A tA t A A A
x y z

P A 





  
         

  

 

.  (3.29) 

LSFEM works by minimizing the least-square residual, R  which is expressed as a 

functional, 

  
2

1([ ] )n n nR L P d 


   ,  (3.30) 

where   is the spatial domain of the problem. The minimization follows from setting the 

variation of R  to be zero, namely 

  1 12 ([ ] ) ([ ] ) 0n n n n nR L P L d   


    ,  (3.31) 

where [ ]  is variation of [ ] . The above equation leads to the weak form of equation 

(3.28): 

 ([ ]), ([ ]) ([ ]),n n n nL L L P  
 

 ,  (3.32) 

with the inner products defined by: 

 ,f g fgd




  .  (3.33) 

It is worth noting that the weak form given by Galerkin FEM for the same problem has 

the form: [ ], ([ ]) [ ],n nL P  
 

 , where the differential operator ([ ])nL   only 

applies to [ ] , as opposed to the case of least square FEM. The Galerkin FEM suffers 
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spurious oscillation in the case of first order systems [186] and cannot accommodate the 

extra divergence free condition directly. 

By discritizing [ ]  and [ ]  piecewise in the space, equation (3.32) eventually 

leads to the desired set of linear algebraic equations: 

 1n n nK U R  ,  (3.34) 

in which both stiffness matrix nK  and the load vector nR  are evaluated based on the 

information at time step n . 

Several examples are presented here for illustrating the solution given by above-

mentioned Backward-Euler/LSFEM for the curl equations. Starting from a simple 

example, a dislocation loop is put in a square domain where a velocity field is applied in 

radial direction such that the loop expands. Figure 3.5 shows the initial condition and the 

expanded loop, plotted in terms of the magnitude of vector ρ , by solving the governing 

equation (3.10).It is noted here that the value of ρ  itself is not of great importance 

because the examples of this section serve merely as numerical examination and the 

parameters used are not physics. As expected, the numerical diffusion is inevitable from 

first-order backward Euler discretization while the oscillation is very little if at all 

existent. The employed curl equation furnishes the loop with perfect continuity after 

expansion.  
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Figure 3.5. Expansion of a dislocation loop: (a) initial and (b) final 

configurations. The colour scales in both (a) and (b) are the same, 

implying the occurrence of some numerical diffusion. Nonetheless, there 

is no numerical oscillation and the continuity of the loop is preserved. 

One might expect the change of the shape of the dislocation loop if the velocity field 

is arranged appropriately. In figure 3.6 the velocity is associated with dislocation density 

vector in a perpendicular way and its magnitude gradually decreases to zero near the 

boundary. As a result, the dislocations pile up at the vicinity of the boundary and 

transforms to square shape. Similar results can be found in reference [187] with the 

difference that the dislocation is represented by second order tensor rather than vector. 
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Figure 3.6. An initially circular dislocation loop (a) transforms into square 

one (b) by expansion and manipulation of the velocity field. 

The vector description used here leads to an easier manipulation of dislocation 

bundles through the desired velocity distribution. Equation (3.24) which accounts for 

cross slip is implemented in 3D domain where a dislocation loop is located in a 

prescribed velocity field that directs dislocations to expand and cross slip to a collinear 

plane, as shown in figure 3.7. In this example, all screw dislocations in the bundle are 

allowed to cross slip by setting cs 1p  . It is to be noted here that in order to preserve 

the connection of dislocation bundles, the divergence free condition (3.22) applies to the 

whole set of collinear slip systems. 
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Figure 3.7. Cross-slip simulation: a bundle of dislocation loops glides and 

cross-slips to a collinear slip plane. In this case, the probability csp  is set 

equal to unity. 

When csp  is less than unity, only a fraction of screw bundle of dislocations will 

cross slip and the remaining fraction continues on the original plane. Such a case is 

illustrated in figure 3.8, where three snapshots are presented during the process that the 

screw dislocations cross slip twice between collinear slip systems. The fractions of cross 

slip are prescribed arbitrarily in this example by setting cs 0.79p   for the first event 

and cs 0.52p   for the second. The divergence free condition is also applied to the total 

density ρ . 
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Figure 3.8. A dislocation loop cross-slips twice between a set of collinear 

slip systems: (a) is the initial prescribed loop, (b) is the configuration after 

the first cross-slip, and (c) is the final configuration where the original one 

bundle converts into three bundles on different slip planes belonging to 

two slip systems. 

The above examples demonstrate the accurate capture of dislocation bundle 

behaviour by the kinetic equations when the velocity field and csp  are prescribed. As 

discussed in section 3.2, the stress field within the crystal generates the velocity field and 

it is also involved in the determination of csp . Sample solution of stress field is 

presented in the following section for prescribed dislocation configuration before the 

kinetics and equilibrium solutions are coupled to solve the plasticity problem. 

 

3.4.3 The Coupled Numerical Scheme for Simulation 

As presented above, the overall numerical implementation of continuum dislocation 

dynamics consists of two parts, the kinetic equations for the dislocation density evolution 

(3.24) and the plastic distortion field (3.25), and the stress equilibrium equation (3.17). 

Once the velocity field in equation (3.24) and equation (3.25) is determined,ρ  and   
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fields can be updated with ease; once the plastic (eigenstrain) field is prescribed in 

equation (3.18) the stress field and subsequently the velocity field is determined. The 

overall problem is treated with a staggered scheme described as follows. The initial 

plastic distortion P
β  is prescribed for each slip system and the associated dislocation 

density vector is calculated by using equation (3.1) and (3.6). The plastic distortion is the 

eigenstrain used in equation (3.18) to solve the stress field which yields velocity field for 

the next time step through equation (3.15). The overall scheme is repeated until a stop 

criterion *ε ε  is reached, as shown in figure 3.9. 

 

Figure 3.9. A flowchart of the computational algorithm. The stress 

equilibrium equation is coupled with dislocation kinetics through a 

staggered scheme. 
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( )

( ) 

   

   
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  
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3.4.4 Discretization in Spatial and Temporal Dimensions 

A distinctive feature of dislocation motion is that they always glide on crystallographic 

planes. In order to capture the planar motion accurately, the mesh should be constructed 

in such a way that the density field is interpolated using only the nodal values of the field 

on the same plane. In this manner, the interpolation of the local density field over the 

elements should decouple density values on different parallel slip planes. This can be 

made possible by a mesh with nodes and their connections that form a superlattice of the 

crystallographic structure of the crystal under consideration. Keeping this in mind, the 3D 

space of the crystal can be filled with octahedral and tetrahedral elements. At this point, 

octahedral elements are split to two pyramids sharing the base. Thus two types of 

elements are used, and the detailed process of filling the 3D space with these elements is 

shown in figure 3.10. 
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Figure 3.10. Construction of a superlattice mesh in FCC crystals: (a) 

arranging octahedrons on (001) planes, (b) stacking layers of octahedrons 

to fill 3D space, (c) filling up the voids with tetrahedral elements, (d) crop 

the extra pyramid elements at top and bottom layers, and (e) filling the 

boundaries to make them flat. It has been found more convenient to select 

the x, y and z coordinates along the [110] , [110]  and [001]  directions, 

respectively. 

In figure 3.10 and also in the following simulations, the x, y, and z axis are aligned 

with [110] , [110] , and [001]  directions, respectively, for convenience. Viewing from the 

outside, the surface of the bulk seems to be meshed regularly with hexahedral elements 

but the crystal structure is represented inside as can be seen from figure 3.11 which 

shows the triangular mesh on slip planes. 
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Figure 3.11. Triangular mesh on {111} slip planes of an FCC lattice. All 

primary slip occurs on the {111} type planes in FCC crystals. The x, y and 

z coordinates are along the [110] , [110]  and [001]  directions, respectively. 

What is shown in figure 3.11 is merely the structure of the mesh. As of the spatial 

resolution, the size of one element should also be adjusted according to the physics of 

dislocations. The vector field ρ  used in the model represents a bundle of dislocations of 

the same Burgers vector, slip plane and orientation, meaning that there is only one value 

at a spatial node. Suppose that the mesh is fine enough to the extent that the size of 

element is on the order of Burgers vector, all of the detailed knowledge of dislocations 

within the crystal can be represented accurately. However, such a fine mesh is neither 

computationally practical nor necessary because dislocations with opposite Burgers 

vector and close to each other will naturally annihilate themselves. Out of this 

consideration, the element size is chosen on the order of the annihilation distance of 

dislocations of opposite signs so that the vector representation of the density is consistent 

with physical situations in which the annihilation has readily occurred. The dependence 

of annihilation distance on the property of dislocations is reported in references 

[106,188] , in which the distance is measured at 1.6 nm for edge dislocations and 50 nm ~ 

(a) (b)
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500 nm for screw dislocations. Based on this knowledge, the distance between parallel 

{111} planes in the model is set to be around 20 nm, which is tiny in comparison with the 

domain dimension, ~ 5 µm. 

The temporal discretization is realized on the basis of a balance between stability, 

accuracy and efficiency. In our case, stability is not a concern because the implicit Euler 

method is adopted here, which is unconditionally stable. For efficiency and accuracy, the 

time step is chosen adaptively so that in each time step the fastest moving dislocation 

lines cannot move over the size of an element. Here, the adaptive time step varies around 

6 ns which is about 10 times or more that used in discrete simulation [107]. 
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CHAPTER 4. TIME COARSE GRAINING OF CROSS SLIP RATE 

In discrete dislocation simulation, the probability of cross-slip event is calculated by 

using the information of a segment and crystal parameters [122,189–191]. It is given in 

the following form: 

 
0 0 B

( , ) exp
L t W

P L t A
L t k T

  
   

  
,  (4.1) 

where 0L  and 0t  are reference length and time, L  and t  the length of the segment and 

time step, W  the activation energy, Bk  and T  are Boltzmann constant and absolute 

temperature respectively, and A  is a scaling factor.  The activation energy is written as 

(g)

int( )IIIW V    , and 

(cs)

eff( )IIIW V    , 

for immobilized and mobilized dislocations respectively. The resolved shear stress III   is 

the thermally activated critical stress for the onset of stage III in the stress-strain curves 

of fcc crystals [104], which is 30 MPa for copper. V  is activation volume which is 

around 500b
3
 for copper singe crystal, depending on the resolved shear stress [192]. But 

such a method is not available for continuum model where the information of the length 

of segment is in lack. An alternative way to avoid this problem is to implement a 
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corresponding discrete dislocation simulation first and incorporate the data into the 

continuum model. 

This chapter presents the method to incorporate discrete dislocation data of cross 

slip rate into the continuum dislocation dynamics model, which is achieved by applying 

time series analysis and a coarse-graining process to the cross slip data from discrete 

dislocation dynamics simulations. The desired form of continuum cross-slip rate is 

presented first, followed by a definition of cross-slip rate in discrete simulation. Next, the 

time series analysis is presented followed by the results. 

 

4.1 Cross-slip Rate in Continuum Dislocation Dynamics 

The cross slip probability rate cs

lp  used in chapter 3 is required in order to solve the 

dislocation transport equations. A previous work [155] makes an attempt to define the 

cross-slip rate as a coarse grained parameter of the corresponding discrete dislocation 

dynamics rate. The procedure will be followed here with some modifications. Without 

loss of generality, the cross-slip probability rate cs

lp  in the continuum model is regarded 

as a function of time and space: 

 cs cs cs( , ) ( ) ( , )l l lp t p t t x x ,  (4.2) 

where cs ( )lp t  is the smooth function of time, cs ( , )l t x  is a fluctuation term which depends 

both on time and space. Equation (4.2) is valid under the assumption that the temporally 

oscillated cross-slip rate in discrete dislocation simulation can be represented by a coarse-

grained ensemble average and a spatial fluctuation term in the continuum model. This 



65 

 

6
5
 

assumption is justified in the following sections by applying coarse-graining process on 

the discrete data.  

So the goal set by continuum model for the corresponding discrete simulation is to 

find the function cs ( )lp t  from discrete data and also the probability density function from 

which the fluctuation term cs ( , )l t x  is sampled. 

 

4.2 Cross-slip in Discrete Dislocation Dynamics 

The cross-slip rate in discrete dislocation simulation is given by [155]: 

 

cs

,,

cs cs cs

, ( )

l nl n

l n l

R
t








ζ
,  (4.3) 

where l  is the slip system number, t  time step in discrete simulation, n  the time step 

number,   denotes the ensemble average, 
cs

,l n  represents the density of dislocations 

that cross-slipped from system l  to its cross-slip system during t  time, 
cs cs

, ( )l n l ζ  

represents the total screw density on slip system l .  

Because the discrete dislocation model treats cross-slip as random events in time and 

space, the discrete cross-slip rate computed from equation (4.3) cannot be directly 

employed in the continuum model which is based on the mesoscale modelling at a larger 

time scale. It is also incorrect to smooth the cross-slip rate in a casual way because the 

averaging process should take into account the physics of dislocations rather than just 

data. The earlier works [72,153] lay foundations for bridging such a gap by applying the 

statistics to the system of dislocations, acquiring the dislocation kinetic equations in 
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continuum form. This series of works essentially solves the scaling issue in space. The 

following works [107,154,155] implement 3D dislocation simulation to find the 

parameters used in dislocation kinetic equations. Under the assumption of statistical 

homogeneity of bulk plasticity, the work reported in [155] performs volumetric average 

over discrete dislocation dynamics data and argues that the temporal gap can be solved by 

a coarse-graining process which is based on the theory of time series analysis [193,194]. 

 

4.3 Time Series Analysis 

In statistics, an array of the observations towards a random variable can be arranged 

chronologically to form a time series: 
t

x t T{ , } , where the observed value 
t

x  is drawn 

from a random variable tX  at time t . The purpose of time series analysis is to reveal the 

characteristic of random series 
t

X t T{ , }  through the historically observed values 
t

x  

and even forecast the values in the future [194]. Time series can be generally divided into 

two types: stationary and non-stationary. The stationary series are relatively simple and 

also sufficiently studied during the past years, which is characterized by a constant mean 

value, an invariant variance, and the immunity of any seasonal change [193]. That is, the 

random variable tX  is independent of time t  for a stationary time series and thus the 

observed series 
t

x  can be viewed as a sample of a random variable X .  

Non-stationary time series differ from the stationary ones in the way that the 

features of random variables tX  such as mean average, standard variance, etc. change 

over the time. One way to study a non-stationary time series is to transform it into a 

stationary one. For example, the difference operator is demonstrated to be effective in 
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removing the change in the mean value—or in another word, the trend—of 
t

X . The first 

order difference operator ( )   is defined by [193]: 

 t t tX X X    1 ,  (4.4) 

which gives a new series { , }tX t T  . The k-th order difference of 
tX  is obtained by 

applying the operator to k

tX 1  and is denoted by k

tX . It has been illustrated that 

2k   is enough to remove the trend [155] in cross-slip rate. In some cases, the change in 

variance of 
t

X  can be removed by taking the logarithmic value of the original 

observations.  

In the case that a time series fails to be stationarized by any transformation, it may 

still be segmented into piecewise stationary series [195]: 

 
 { , },{ , },...,{ , }

...

nt t t n n

n

X t T X t T X t T

T T T T

  

   

1 21 1 2 2

1 2

,  (4.5) 

where each subset { , },
it i iX t T  1,2,...,i n  is stationary and all analytical methods for 

stationary series can thus be applied for it. It is important to keep in mind that each 

segment has individual stochastic quantities such as mean value, variance, etc., which 

might differ from segment to segment. 

It is of interest to define the correlation time for a stationary series in order to 

perform the coarse-graining process as seen later. Suppose that the random variable is 

found to be stationary from t1  to t2  of a time series, the correlation time within this 

segment is defined by: 
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c ( ) ( )

t t

T c d c d   
 

  
2 1

0 0
,  (4.6) 

where ( )c   is the correlation function given by: 

 
(( )( ))

( ) t tE X X
c  




 
 ,  (4.7) 

where   and   are mean value and variance of the stationary segment, respectively, and 

the numerator is the covariance and ( )E   denotes the expected value.  

The coarse-graining process is presented in the next section based on the data 

obtained according to equation (4.3) and the equations from (4.4) to (4.7).   

 

4.4 Coarse-graining of the Discrete Cross-slip Rate 

In order to bridge the scaling gap in space and time between discrete and continuum 

simulations, coarse graining is required. Here, the spatial scaling issue has been taken 

care of by the ensemble average in equation (4.3); the time scale issue is handled with 

coarse-graining process based on time series analysis shown in 4.3. 

The first step to perform coarse-graining is to collect the data from discrete 

dislocation simulation. To this end, a copper single crystal of a cubic shape with a 5 m 

edge is subjected to a monotonic loading controlled by an applied rate of strain of 30/s 

along the [001] crystallographic direction. The crystal is filled with dislocation network 

of density of 110
12

 m
-2

 after relaxation. The dislocation dynamics code microMegas 

[104] is used. 
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Equation (4.3) is used for obtaining cross-slip rates on all of 12 slip systems, 

1, 2,3,...,12l  . The slip systems are indexed in table 4.1 for convenience. The original 

time series ,

cs

l nR  are plotted in figure 4.1, where all slip systems exhibit oscillatory 

behaviour in  ,

cs

l nR . But for active slip systems, on which Schmid factors are non-trivial 

according to table 4.1, larger oscillation generally takes place during early stage of the 

loading process. For inactive slip systems, 5,6,7,8l   in the simulation, the oscillation 

keeps being serious and the overall trend seems to remain at a trivial level. The difference 

arises from the difference of externally resolved shear stress on active and inactive slip 

systems. For active slip systems, the external shear stress is smaller in comparison with 

the internal stress field at earlier stage of the simulation but becomes larger until to be 

dominant at larger strain. Thus the main driving force for cross-slip events on active slip 

systems are transiting from the internal stress field, which is more of randomness, to 

external loading, which is uniformly distributed and stably increased within the cube. The 

external loading, on the other hand, fails to influence the inactive slip system due to a 

trivial Schmid factor, which causes the more oscillatory and almost none trending cross-

slip events on them. It is also noted that the time series for a pair of collinear slip systems 

seem to be correlated but not exactly the same in spite of their symmetry regarding the 

tensile axis. The difference in initial dislocation configurations between a pair of 

collinear slip systems must have an influence on the subsequent occurrence of cross-slip 

events.  
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Table 4.1. Slip system in FCC crystals 

Slip system index Slip plane Slip direction 
Schmidt factor for 

[001] loading 

1 (111)  [101]  0.41 

2 (111)  [101]  0.41 

3 (111)  
[011]  0.41 

4 (111)  
[011]  -0.41 

5 (111)  [110]  0.0 

6 (111)
 [110]  0.0 

7 (111)  
[110]  0.0 

8 (111)  
[110]  0.0 

9 (111)  [011]  -0.41 

10 (111)  [011]  -0.41 

11 (111)  
[101]  -0.41 

12 (111)  
[101]  0.41 
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Figure 4.1. The original time series of cross-slip rates of all 12 slip 

systems (SS stands for slip system). Slip systems 1, 2, 3, 4, 9, 10, 11, and 

12 are active slip systems which exhibit increasing trend and decreasing 

oscillation. The inactive ones show no obvious trend and the oscillations 

remain to be serious.  

SS 1 SS 2 

SS 3 SS 4 

SS 5 SS 6 

SS 7 SS 8 

SS 9 SS 10 

SS 11 SS 12 
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The application of equation (4.4) to the cross-slip time series ,

cs

l nR  creates a new time 

series by removing the trend from the original one. New series are referred to as 

difference series and denoted by 
cs

lR  for slip system l  . Figure 4.2 shows all twelve 

difference series. 

 

 

 

Figure 4.2. The difference series of cross-slip rates for all slip systems and 

the boundaries of stationary segments (red vertical lines). It can be seen 

from these figures that the variances of the series tend to decline with time, 

but the overall trend is removed by the difference operation. 

  

SS 1 SS 2 

SS 3 SS 4 

SS 5 SS 6 
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Figure 4.2. (continued) The difference series of cross-slip rates for all slip 

systems and the boundaries of stationary segments (red vertical lines). It 

can be seen from these figures that the variances of the series tend to 

decline with time, but the overall trend is removed by the difference 

operation. 

The trends associated with all original cross-slip rates are removed by the first order 

differencing scheme and the series seem to be symmetric about the time axis. The 

symmetry of cs

lR  arises from the wavy behaviour of cs

lR  during consecutive time steps, 

cs

lR  upsurges to a higher value and then drops to the value close to the one before the rise. 

It is also seen that the variances of difference series are changing through the simulation, 

which makes the overall series non-stationary and such volatility cannot be simply 

SS 7 SS 8 

SS 9 SS 10 

SS 11 SS 12 
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removed by taking differences, neither by taking logarithm. Further inspection shows that 

the series 
cs

lR  can be segmented into piecewise stationary sub-series. This task is 

fulfilled with Brandt’s Generalized Likelihood Ratio method (GLR) [196], which detects 

the series segment boundaries by measuring the dissimilarity between two sliding 

windows within which the series are modelled auto-regressively [195]. Figure 4.2 marks 

boundaries of stationary series in vertical red lines such that 
cs

lR  is approximately 

stationary between two neighbouring red lines. In general, the number of segments is 

bigger on inactive slip systems than on active slip systems and bigger during earlier 

stages than during later stages within active slip systems. This is due to the above-

discussed reason that cross-slip events are mainly dominated by the internal stress field 

for inactive slip systems and for active slip systems but at earlier stages. As simulation 

goes on, the stably increasing applied resolved shear stress are becoming dominant on 

active slip systems and thus makes the series there more stable in their oscillations and 

thus less number of segments is needed. On the contrary, for inactive slip systems, 

however, the cross-slip rates are generally much less predictable and change vividly in 

oscillation (see SS 7 for example).  

One of the quantitative ways to represent the tendency of 
cs

lR  series towards 

stationarity is to calculate the correlation time within each segment. Two cross-slip 

events that fall within the correlation time are considered to be correlated and those 

separating longer than this time scale are thought as independent. The longer the 

correlation time, the more connection exists between events. Due to this reason, the 

correlation time can also be treated as the coarse-graining time which serves as a 
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temporal window span within which an average process is applied to discrete cross-slip 

rates 
cs

lR  to yield the data for later usage in the continuum model [155]. 

Equation (4.6) is applied to 
cs

lR  piecewise for all slip systems and the correlation 

times are shown in figure 4.3. Despite oscillation, the correlation time does increase with 

simulation time on active slip systems but remains to be trivial on inactive slip systems. 

The final correlation time on active slip systems is around or close to 0.05 s, which is on 

the same order of magnitude with previous results [155].  
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Figure 4.3. Correlation time of time series of cross-slip rates for all slip 

systems. The recorded points correspond to the middle times of sub-series 

which is stationary. 

The correlation time for a stationary sub-series is used as the coarse-graining time 

over which the average value of 
cs

lR  is taken as: 

 
2

1
cg cs( ) ( ') ( ') '

t
l l

t
R t R t w t t dt  ,  (4.8) 
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where cg ( )lR t  is the coarse-grained cross-slip rate at time t  and for slip system l , 
1t  and 

2t  the starting and end point of the stationary series, respectively, ( )w t t  the weighting 

function with the non-trivial value over the averaging window which is equal to the 

correlation time. Several kinds of weighting functions were tried, which gave similar 

results to the simple average method, which is used here for simplicity. Figure 4.4 shows 

the coarse-grained time series for all slip systems. It is apparent that the oscillation in 

coarse-grained series cg ( )lR t  is much smaller than original ones 
cs

lR  especially for active 

slip systems, inferred from the comparison between figure 4.4 and 4.1. The final cross-

slip rates range from 0.005/ns to 0.015/ns, depending on individual slip systems, contrary 

to what is thought before in [155] which implies a constant universal cross-slip rate for 

all active slip systems. Slip systems l = 5,6,7, and 8 in general remain to be trivial and 

oscillatory due to their inactivity. 

The coarse-grained data cg ( )lR t  is only the volumetric average cross-slip rate at time 

t . This can now be split into the ensemble average cs ( )lp t  and spatial fluctuation cs ( , )l t x  

for the cross slip probability, for use in continuum simulations. A smoothing process is 

used here to recast the coarse-grained cross-slip rates in this form, namely equation (4.2).  
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Figure 4.4. The coarse-grained time series of cross-slip rates on all slip 

systems. The coarse-grained time series is much less oscillatory than the 

original ones shown in figure 4.1. It is noted that the final cross-slip rates 

are not the same even within active slip systems. 

A segmentation of the coarse-grained series was performed again before the 

smoothing process, given that the coarse-grained series is also piecewise stationary and 

that a probability density function only holds for a stationary segment. It is within the 

expectation that cs ( )lp t  should be smoother than the coarse-grained series because its 

fluctuation term cs ( , )l t x  has been separated out. The method of GLR is used but for 
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coarse-grained series plotted in figure 4.4. Locally Weighted Scatterplot Smoothing 

(LOWESS) method [197,198] is used for the smoothing process. Figure 4.5 illustrates the 

idea: one zoomed-in sub-series is replaced with a smooth trend 
cg

lR  plus a fluctuation 

term cg

lR , from the latter of which the probability density function is generated and 

plotted on the right inset. The example is chosen from slip system 3. The above 

procedure is repeated for each stationary segments and the final smoothed cross-slip rates 

are plotted in figure 4.6, where the fluctuation is not shown for clearness reason. The 

terms in equation (4.2) now have their concrete data input as: 

cs cs cs cs cs

cg cg( ) ( ),     ( ) ( ),    and   ( , ) ( ) ( , )l l

l l l l lp t R t t R t p t p t t     x x .  (4.9) 

In the implementation of equation (4.9) in the continuum model, the fluctuation term 

cs ( , )l t x  is sampled from the cumulative density function for cs ( )l t  within respective 

segments. 
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Figure 4.5. The smoothing process for extracting a trend plus a fluctuation. 

The 
3

cg ( )R t  series, which is chosen as an example, is first divided into 

stationary segments (one of them is zoomed in in the left inset) and then 

the smoothing process is done within each segment. A probability density 

function and a cumulative density function for the fluctuation term is 

plotted on the right inset, which is used for sampling. 
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Figure 4.6. The smoothed cross-slip rates for all slip systems. The 

ensemble average term cs ( )lp t  in equation (4.2) is set to be equal to the 

value plotted above for corresponding slip systems. The spatial fluctuation 

term cs ( , )l t x  is not plotted here but is implemented in the continuum 

model by sampling process. 



82 

 

8
2
 

CHAPTER 5. MODEL RESULTS: MONOTONIC LOADING 

In this chapter, the results from the implementation of the continuum model outlined in 

chapter 3 are presented. A copper single crystal of the same size with the one used in 

discrete simulation in chapter 4 is subjected to monotonic loading which is controlled by 

the strain rate of 30/s. The initial dislocation density is also set approximately equal to the 

discrete simulation, which is about 1.0×10
12

/m
2
. The simulations are carried out with the 

numerical scheme given in 3.4 and the program is parallelized with Message Passing 

Interface (MPI) protocol. It takes about several hundred cores on Purdue University’s 

Hansen and Rice clusters for the continuum model to reach about 1.5% strain level in one 

month. Admittedly, it is a heavy computational task partly due to the reason that the 

stiffness matrix for kinetic equations must be recalculated during each time step. But it is 

still a decent one considering that the 3D feature associated with the mesoscale 

simulation. The corresponding discrete simulation would be initially faster, as it takes 

only about 2 weeks for it to reach the same strain level but the computational 

performance in discrete simulations drops so fast that it almost suspends after 1.5% or so. 

In the case of continuum simulation, the initial computational performance is not as fast 

as the discrete one due to the solution of equation on a fine mesh, but that computational 

speed never drops and keeps almost constant regardless of dislocation population. 
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The results obtained by the continuum model are compared with both discrete 

simulations and experiments. The emphasis of the results is given to dislocation patterns 

under different simulation conditions. This chapter investigates two factors that may 

influence the simulation results: the cross-slip and loading orientation. Four cross-slip 

conditions are used for investigation of cross-slip influence, they are: no cross-slip, 

constant large cross-slip rate, constant smaller cross-slip rate and cross-slip rates obtained 

from discrete simulation. In general, when the cross-slip rates from discrete simulation 

are employed by the coarse-graining process discussed in chapter 4, the simulation yields 

realistic results. On the other hand, the similitude relationship [99] seems to be 

unchanged by the variation of cross-slip rates, neither by the number of slip systems 

implemented in the simulation. 

The monotonic loadings are also arranged in three directions: [001], [110], [111] 

respectively to investigate the orientation dependence. For this purpose, the cross-slip 

data are provided from the corresponding discrete dislocation simulations in these three 

directions. The results are compared qualitatively with experiments which are often 

aimed at dislocation patterns at finite strain levels (>10%, e.g.). For convenience, the 

simulation examples in this chapter are numbered and their differing conditions are listed 

in table 5.1. Aside from these differences, all other parameters used in all simulations are 

set the same, see table 5.2.  
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Table 5.1. Simulation conditions 

Simulation index Number of SS
a
 Cross-slip scheme Tensile orientation 

I 8 No cross-slip [001] 

II 8 
cs 0.48lp   [001] 

III 12 
cs 0.1lp   [001] 

IV 12 Equation (4.2) [001] 

V 12 Equation (4.2) [110] 

VI 12 Equation (4.2) [111] 

Note: 
a
SS stands for slip system(s). 

 

Table 5.2. Simulation parameters 

Parameter Value 

Strain rate 30/s 

Young’s modulus 117GPa (copper) 

Poisson ratio 0.34 (copper) 

Initial dislocation density 1.07×10
12

/m
2
  

Magnitude of Burgers vector 0.256 nm (copper) 

Dislocation mobility 10
-4

 Pa
-1

s
-1
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5.1 Strain Hardening in [001] Axis 

This section discusses results of simulations I and II, in which the loading axis is in [001] 

direction. These two sets of simulations both have eight slip systems but differ in the 

activation of cross-slip. Subsection 5.1.1 presents the results regarding the statistical 

quantities while subsection 5.1.2 discusses dislocation density patterns with and without 

cross-slip activation. 

 

5.1.1 Statistical Quantities Given by Continuum Model 

Simulation I and II differ in their activation of cross-slip. In order to manifest the effect 

of cross-slip, the probability cs

lp  is set to be much larger than the actual ones obtained 

from discrete simulation. The curves of stress and average dislocation density against 

applied strain for simulation I and II are plotted in figure 5.1. The average dislocation 

density is calculated from the following expression: 

 

Total

2 2 2

Total 1 2 3

1 1

1
d

( ) ( ) ( )
N N

l l l l

l l

 

    





 

 


   



 
,  (5.1) 

where l  is dislocation density scalar on slip system l  , N  the number of slip system 

and in simulations I and II, 8N  ;   the whole simulation domain, Total  the total 

density at one spatial point.  

The yielding points are much higher in continuum simulations than in discrete 

simulations and experiments. Several reasons are responsible for the unrealistically high 
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stress level. First of all, there are only eight active slip systems simulated in simulations I 

and II. The inactive slip systems, although they do not contribute many dislocations to the 

slip systems [155], they still have influence over the simulation results through 

interaction with dislocations on active ones. The absence of elastic anisotropy in the 

implementation of the elastic part of the model might also contribute to the high yielding 

point and flow stress according to discrete dislocation simulation [182]. The results also 

show a certain degree of the mesh dependence [199] since the distance between two slip 

plane of the mesh is much larger than the annihilation distance of edge dislocations. It is 

also seen that the crystal exhibits strain hardening almost immediately after the yielding 

point. This arises from the symmetry of all active slip systems regarding the axis of 

tensile loading. 

The cross-slip activation is found to have considerable effect on the simulation 

results. On the mechanical part, the activation of it brings down the yielding point but 

increases the hardening rate. At first, the motion of dislocations is enhanced by cross-slip, 

which induces the ‘softening’ of the material. At larger strain values, however, cross-slip 

leads to density multiplication and rapid hardening. Therefore, an unrealistically high 

cross-slip level brings about an unrealistically high hardening rate to simulation II. On the 

dislocation part, the activation of cross-slip gives rise to the continual increase of average 

dislocation density due to the same reason of mutual interaction. 
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Figure 5.1. Stress-strain (a) and dislocation density evolution (b) curves 

for simulation I and simulation II. In simulation I, cross-slip is disenabled 

whereas in simulation II cross-slip is deliberately set at an unrealistically 

much higher level in order to check its influence.  

 

5.1.2 Dislocation Density Pattern 

The patterns of total dislocation density Total  in equation (5.1) for simulations I and II is 

captured at strain level of 0.5% and plotted in figure 5.2 where the patterns without and 

with cross-slip activation are distinguished clearly by the cell structure formed in the 

latter case. From the surface view in figure 5.2(b), the cell structure is composed of two 

parts: the wall-like dislocation-dense areas and dislocation-free regions. Figure 5.2(c) 

shows that the network of total dislocation density exists in 3D space and when projected 

onto on (001) section, cell structure is observed there. The comparison between 

dislocation pattern without and with cross-slip demonstrates the positive influence of 

cross-slip on the formation of dislocation patterns, which coincides with previous discrete 

dislocation simulations [172]. 

(a) (b) 
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The emergence of cell pattern, which was found in experiments but at finite strain 

level [200], is related to the subdivision and recrystallization of a single crystal. The 

much earlier appearance of the cell structure in the simulation II is of course due to the 

unrealistically high cross-slip rate, since the cross-slip of screw dislocations favours the 

formation of dislocation patterns. It is also to be noted that the TEM micrographs of 

dislocations are obtained on thin foils of thickness up to hundred nanometers and their 

preparation requires polishing and other kinds of treatments [53]. So TEM micrographs 

actually do not capture total dislocations due to relaxation. Recent results of TEM image 

also report the organization of dislocations into cell-like structure in 2% deformed pure 

copper [201]. 

     

Figure 5.2. Dislocation density patterns for simulation I (a) without cross-

slip and simulation II (b and c with cross-slip) at strain level of 0.5%. Cell 

structure is obvious when the cross-slip is activated with a large 

probability (~0.48). (c) shows the transparent view of dislocation density 

in 3D space and cell structure on (001) plane.  

The distorted shape of the crystal is plotted in figure 5.3(a) and (b) for the 

correspondent states in figure 5.2(a) and (b) by adding the perturbed displacement u  in 

(a) (b) (c) 



89 

 

8
9
 

equation (3.21) to the original nodal positions. The displacement associated with the 

average strain ε  is removed to amplify the distortion of the crystal by plotting u  only. 

When the cross-slip is disabled, the slip pattern on the surface of the cube is mainly in 

parallel with <110> type slip directions, represented by solid line in figure 5.3(a), and the 

traces of slip planes on the surfaces, represented by dashed line in figure 5.3(a). They are 

formed by dislocations leaving the surface. However, when cross-slip is activated, the 

distorted shape shows granular feature and the straight slip bands associated with single 

slip behaviour do not dominate any longer. 

    

Figure 5.3. Crystal distortion in simulation I (a) and II (b) at 0.5% strain. 

The linear displacement associated with average strain is suppressed and 

only the perturbation displacement u  is displayed with a magnification of 

200 times.  

The above results of stress-strain and dislocation density curves have demonstrated 

the ability of the continuum model to predict the mechanical and microstructural 

phenomena in single crystal in qualitative agreement with experiments. Cross-slip is 

demonstrated to have influence on both the macroscopic behaviour of the single crystal 

(a) (b) 
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and the microstructural formation of dislocations. In the following sections, simulations 

III and VI are presented by changing the schemes of cross-slip implementation as well as 

the number of slip systems. The purposes are to adjust the simulation conditions to 

realistic situations in experiments as well as to investigate the influence of cross-slip and 

number of slip systems in monotonic strain hardening.  

 

5.2 Influence of Cross-slip Rate on Results 

The number of simulated slip systems in simulations III and IV is set to be 12 and they 

are controlled by two different schemes of cross-slip: a constant cross-slip probability 

cs 0.1lp   and the cross-slip rates given by equation (4.2) where the data are specified by 

equation (4.9) through the coarse-graining process applied to discrete data. The stress-

strain and dislocation density curves for simulations III and VI are plotted in figure 5.4.  
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Figure 5.4. The stress-strain (a) and dislocation density evolution (b) 

curves under simulation conditions III and IV where all twelve slip 

systems are activated. 

By incorporating cross-slip rate from discrete simulation, the yielding point in 

simulation IV reduces about one half from simulation III to about the same magnitude 

given by the discrete simulations and experiments, and the hardening rate also decreases. 

The cross-slip probability in simulation IV is about 0.03 in each time step, which is only 

one third of the probability implemented in simulation III (~ 0.1). Thus, the significantly 

high cross-slip rate in simulations II and III makes the material ‘harder.’ Ignoring the 

cross slip difference between active and inactive slip systems in simulation III 

exaggerates the effect of cross-slip.  

The calibrated cross-slip rates for inactive slip systems are actually close to trivial. 

Although the stress level after the incorporation of discrete data in simulation IV is still 

larger than the experiments [45], which is because of the lack of short range reactions and 

the mesh size dependency, it is already shown here that the incorporation of parameters 

from discrete dislocation simulation improves the performance of the continuum model 

to a great extent. 

(a) (b) 
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The total dislocation patterns are plotted in figure 5.5 for simulations III and IV at 

three strain levels. The cell structure in simulation III emerges immeidately after yielding 

and develops quickly to a a very clear version as seen in figure 5.5(c). During their 

evolution, cells seem to increase in number and decrease in their average sizes. A finer 

cell structure contributes to strain hardening process by reducing the mean free path [132] 

of dislocations which are impeded or trapped by the network of cell structure. 

In simulation IV, where the cross-slip rates are obtained by coarse graining, the 

dislocations organize into cell structure at a slower pace. At the strain level of 1.28%, the 

clarity in the dislocation density pattern is close to the one of simulation III at the strain 

level of 0.5%. Besides, the cell size in figure 5.5(f) appears to be larger than the one in 

figure 5.5(c), resulting in a smaller value in flow stress. That is, the implementation of 

parameter from discrete dislocation simulation defers the formation of cell structure and 

its subsequent fragrmentation process. According to the observation in section 5.1, cross-

slip has positive influence on the formation of cell structure, so a smaller cross-slip rate 

implemented in simulation IV than in simulation III delays the emergence of cell 

structure. The late emergence of the cell structure at the level around or above 1.5 % is 

more in accordance with experiments [201]. 
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Figure 5.5. Dislocation density patterns from simulations III ( (a), (b), (c) ) 

and IV ( (d), (e), (f) ). The first, second and third columns correspond to 

strains of 0.5%, 1.0%, and 1.28% respectively. It is seen that the cell 

patterns in simulation III is clearer than in IV because of the difference in 

the setting of cross-slip rates. 

One can see that the simulation examples from I to IV differ in cross-slip rate and 

the number of slip systems. The results from these simulations vary from no cell pattern 

to a clear cell structure. It is thus of interest to examine from these cases the common law 

that governs the feature of dislocation patterns. One of the relationships that is widely 

accepted and observed is the similitude law [202,203] which states the relationship 

between resolved shear stress and pattern wavelength of dislocation structures. In the 

following section, the attempt is made to extract the similitude law by measuring the 

average cell sizes. 

(a) (b) (c) 

(d) (e) (f) 
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5.3 Similitude Law 

The similitude law for dislocation microstructures states that the wavelength for 

dislocation density pattern is inversely proportional to the resolved shear stress, which 

can be expressed in the following formula [202]: 

 
G

K
b




 ,  (5.2) 

where   is the average wavelength of the pattern, b  the magnitude of Burgers vector, 

G  Shear modulus,   the resolved shear stress, K  similitude coefficient. The average 

wavelength   can be calculated from the 2D dislocation structure which is sliced from 

the 3D structure as shown in figure 5.2(c). The following procedures are implemented to 

obtain the representative   for [001] type loading.  

First of all, 20 sections parallel to (001) plane are made to display dislocation 

density patterns on them. For each section, the Gaussian blur and sharpening algorithms 

are applied successively to make the cells more salient. Watershed method [204], which 

is one of the methods widely employed in the segmentation of grey-scale images [205], is 

used to detect cells, yielding the result illustrated in figure 5.6(b). The area of each cell, 

iA , is calculated by pixel counting and an equivalent diameter id  is obtained by: 

 i
i

A
d




4
.  (5.3) 

 The same process is repeated for all cells on the 20 sections and the wavelength is 

defined as the average value of id :  
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cell

1

N

i

i

d


  ,  (5.4) 

where 
cellN  is the total number of cells detected on all sections.  

The above mentioned process is repeated at different strain levels for simulations II, 

III and IV, and for I no effort is made for measuring cells because there is no cell 

formation. The resolved shear stress   is calculated by multiplying the hardening stress 

with the Schmid factor of active slip systems. It is investigated through experiments 

[58,82,83,85] and previous simulations [99] that the similitude coefficient K  ranges 

from 5.0 to 10.0 under different circumstances. 

   

Figure 5.6. Watershed method for the detection of cell structure on (001) 

sections. (a) displays the dislocation density pattern processed by 

highlighting the contrast. (b) shows the cells detected from pattern (a) by 

using watershed method. The sample used here is from simulation III, at 

the strain level of 1.5%. 

Based upon the data obtained from continuum dislocation model and the average 

wavelength calculated from equation (5.4), the relationship between / b  and /G   is 

(a) 

(b) 
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plotted in figure 5.7 for simulation samples II, III, and IV. For each simulation condition, 

an attempted line is fit for discrete sampled points which are computed from the above 

mentioned procedures. It is to be noted that the error bar associated with each point 

stands for one standard deviation from the mean value of cell sizes. The attempted 

coefficients in all three simulations are 7.48, 7.53, and 7.06 respectively, all of which are 

in accordance with experimental results [202] which are in favour of similitude 

coefficient around 7.0. Another important phenomenon seen from figure 5.7 is that all 

sampled points seem to be located around a common line indicated by a dashed line, 

despite the differences in simulation conditions in terms of the numbers of slip systems 

and cross-slip schemes, and also the difference in the value of resolved shear stress 

between simulation IV and the other two. 
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Figure 5.7. The simulation law attempted from three simulation conditions 

with various schemes in cross-slip rates and the numbers of simulated slip 

systems. A line is fit to the sampled points in each condition, which yields 

coefficient K  around 7.0. In spite of different conditions applied, all 

sampled points appear to be around the same line (dashed) whose tangent 

is estimated to be 6.56K  .  

The conformity to the same similitude law of all data indicates that the main reason 

for hardening stress is the wavelength of dislocation patterns. A pattern featured by a 

smaller average cell size shrinks the space for dislocations to move freely and enhances 

the probability of the immobilization. Thus, the material is hardened by the loss of freely 

moving dislocations, or saying the loss of capability for the accommodation of plastic 

strain. Furthermore, the relationship between the flow stress and wavelength is 

demonstrated to be fixed by a linear relationship characterized by a constant similitude 

coefficient K . The coefficient is relatively smaller in simulation IV, which might be 

attributed to the clarity of the cell patterns. If the dislocation pattern is as blurred as seen 
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in figure 5.5(e), it becomes hard to clarify a cell region and the detected cell patterns 

suffer from over-segmentation by watershed method [204], resulting in underestimated 

radii of cells.  

On the other hand, the observation of a similitude law in figure 5.7 demonstrates that 

  given by equation (5.4) suffices to represent the characteristic wavelength that should 

ideally be calculated from a 3D analysis, at least when the cell structure is full-fledged. 

 

5.4 Orientation Dependence of Crystal Response 

The dislocation patterns under different loading orientations did not show dissimilarity 

with each other in the early experiments [79]. But more experiments [45,200,206–209] 

have demonstrated that the structures of dislocation walls are influenced considerably by 

the orientation of tensile axes, which is supported by further examinations on both 

polycrystalline [74] and single crystalline [75]. Reference [75] renders a compilation of 

experimental results and divides dislocation structures into three types, each of which is 

associated with a domain in the stereographic triangle of an FCC material. From all the 

results reviewed, in general, a monotonic tensile loading around <001>-type direction 

favours the formation of near isotropic cell structures as has been shown in figure 2.1(b); 

tensile loading around <111>-type orientation direction facilitates the concentration of 

dislocations onto {111}-type slip planes, but with a deviation angle of about 30 degrees, 

forming dislocation walls as seen in figure 2.1(c); tensile axes in the most part of 

stereographic triangle which are in favour of single slip activation result in dislocation 

walls orientated very closely to slip planes with a mere deviation of 2-3 degrees. 
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Reference [76] provides with the compilation of types of patterns associated with tensile 

orientations in a stereographic triangle. 

These results from experiments motive the interest of investigating the dependence 

of dislocation patterns in the simulation. Simulations V and VI are thus initiated to 

subject the cube to [110] and [111] monotonic loadings to examine the orientation 

dependence. The loading orientation is applied by varying the applied strain tensor ε  in 

equation (3.21). The magnitude of strain is kept in the simulation to be within the domain 

of small deformation (around 1.0% or so), in contrast to experiments where the 

specimens are often loaded up to finite strain level (above 10% or even close or above 

100%). It is done so for theoretical reason that the continuum model is built upon small 

deformation assumption and for practical reason that quite amount of computational 

resources are required for the simulation even up to 2.0%. 

It is important to note that the cross-slip rates should also be obtained from the 

corresponding discrete simulations of different loading axes, since orientations have 

direct effect on the activated slip systems through Schmid factors. To this end, discrete 

dislocation simulations are performed with [110] and [111] orientations for the collection 

of data of cross-slip rates. The method used for coarse-graining is the same as stated in 

chapter 4.  

This section first presents the orientation dependence of cross-slip rates and the 

stress-strain curve. The results are compared between discrete and continuum simulations. 

Then the attempts are made to compare patterns in continuum numerical simulations with 

experimental data in all three tensile axes. Subsection 5.4.2 presents a qualitative 

comparison in 3D cube and on 2D slices; subsection 5.4.3 gives an analytical way to 
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draw the angle feature from the simulations and compare the deviation angles with those 

conventionally measured in experiments. 

 

5.4.1 Orientation Dependence of Cross Slip 

The coarse-graining process for cross-slip rates detailed in chapter 4 is done to the data 

collected from discrete dislocation simulations in [110] and [111] orientations. The final 

smoothed trends for [110] and [111] loadings are respectively plotted in figure 5.8 and 

5.9 for all slip systems. It is important to keep in mind that fluctuation term cg ( )lR t  in 

equation (4.9) is not plotted in these two figures for clarity but is implemented by 

sampling the cumulative density functions that are obtained piecewise as discussed in 

chapter 4.  

For [110] loading, the indices of active slip systems are 1, 4, 9 and 11, whose 

Schmid factor in magnitude is 0.408, the same as in [001] loading. Being different from 

[001] loading, the cross-slip rates turn out to be more complicated in terms of active and 

inactive slip systems. It was concluded that the cross-slip rates increase with applied 

strain on active slip systems but remain trivial on inactive slip systems in [001] loading, 

such is not the case in [110] loading. The similarity in cross-slip rates between collinear 

active slip systems does not exist either, e.g. slip system 1 and slip system 2. The reason 

for the complexity in cross-slip rates lies in the fact that the no pair of collinear slip 

systems is activated simultaneously in [110] loading situation. The slip systems 1, 4, 9, 

11 are active slip systems, but their collinear slip systems are not. Thus the asymmetry of 

a pair of collinear slip systems regarding [110] loading axis brings about the less 

correlation in cross-slip rates between them and adds more complexity. During the 
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implementation of discrete dislocation simulations, the comparison is made between the 

resolved shear stresses on gliding plane and cross-slip plane such that the later must be 

larger than the former one for an actual occurrence of cross-slip [104]. In the case of [110] 

loading, the resolved shear stress on only one of a pair of collinear slip systems is stably 

influenced by the external loading and another one is entirely dominated by the internal 

stress which is more sporadic in time and space.  

The active slip systems under [111] loading are 3, 4, 7, 8, 11 and 12 with a Schmid 

factor of about 0.272. Slip systems 3 and 4, 7 and 8, and 11 and 12 are pairs of collinear 

slip systems respectively. It is seen in figure 5.9 that each pair of them shares a similarity 

in the trends of cross-slip rates, due to the symmetry reason. It is noted that cross-slip rate 

on collinear slip systems 3 and 4 increases very slowly comparing with the other two 

pairs. The initial configurations of dislocations might play a role in the evolution of 

cross-slip rates for individual slip systems. Figures 4.6 , 5.8, and 5.9 together show 

dependence of cross-slip rates on different loading orientations. It is thus reasonable to 

incorporate cross-slip rate into the continuum model to represent a real situation before 

any possible laws are found. 
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Figure 5.8. Cross-slip rates obtained from discrete dislocation simulation. 

The loading axis is along [110] direction. The behaviour of cross-slip rates 

exhibits complexity. Slip system 11 is active but cross-slip rates of it keep 

being trivial through the simulation. Slip system 1 and 2 are collinear slip 

systems but exhibit different evolution trends. 
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Figure 5.9. Cross-slip rates obtained from discrete dislocation simulation. 

The loading axis is along [111] direction. Each pair of collinear slip 

systems exhibits similar evolution path in cross-slip rates due to their 

symmetry regarding the loading axis. 
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Figure 5.10 shows the results of stress-train and dislocation density curves by 

discrete dislocation simulation and continuum simulations which take the cross-slip rates 

shown in figure 4.6, 5.8 and 5.9 as trends. In figure 5.10(a) and (c), the stress is 

calculated as the average stress along the tensile axis. The total dislocation density is 

calculated from equation (5.1) for continuum simulation and calculated by the following 

equation: 

 
seg

dis

Total

N

i

i

l
V




 
1

1
,  (5.5) 

for discrete simulation, where il  is length of segment i , 
segN  the total number of 

segments on all slip systems, V  the volume of the body. 
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Figure 5.10. Stress-strain and dislocation density curves by discrete 

dislocation simulations, (a) and (b), and continuum simulations, (c) and 

(d). The orientation dependence shown from discrete and continuum 

simulations is in qualitative agreement with each other. 

In both discrete and continuum simulations, the hardening rate for [111] direction 

loading tends to be highest, followed by [001] and [110] loadings. The Schmid factor in 

[111] loading (~0.272) is smaller than in the other two orientations (both of ~0.408). 

When the crystal is oriented in a direction with smaller Schmid factor, most of the 

applied strain is accommodated elastically, which results in larger stress. In simulating 

the [110] loading case, the Schmid factor is as large as in [001] loading (~0.408) but the 

number of active slip systems (4 in [110] loading) is only as half of those in [001] loading. 

This leads to less interaction between dislocations on different slip systems in the case of 

[110] loading and a lower hardening rate and slow variation of the flow stress with 

(a) 

(b) 

(c) 

(d) 
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applied strain. For the same reason, the dislocation multiplication in the case of [110] 

loading is also limited compared with [001] and [111] loading. 

 

5.4.2 Orientation Dependence of Dislocation Microstructures 

In addition to the above mentioned orientation dependence of cross slip rates, Schmid 

factor and the number of active slip systems, differences in dislocation patterns were also 

observed. To this end, figure 5.11, figure 5.12, and figure 5.13 plot dislocation patterns in 

continuum simulation and in the experiments for <001>, <110>, and <111> types of 

orientations or in close directions. In those figures, the cube surfaces in simulations are 

chosen as close as possible to the ones chosen in TEM images for qualitative comparison. 

In figure 5.11, where <001>-type loading is applied, both simulation and experiment 

produce images with cell structures on {001} and {110} type planes. When <110>-type 

loading is applied as shown in figure 5.12, the dislocation structure exhibits orientation 

preference in the direction of the trace lines of {111}-type slip planes both in the 

simulation and in experiments. This orientation dependence is also observed in <111>-

type loading as plotted in figure 5.13 but to lesser extent.  
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Figure 5.11. Dislocation patterns from (a) continuum simulation at strain 

level = 1.36% and (b) from experiment at strain level ~34%. The tensile 

axes for both are of <001> type. The TEM image (b) is taken from [76]. 

 

    

Figure 5.12. Dislocation patterns from (a) continuum simulation at strain 

level = 1.5% and (b) from experiment at strain level ~34%. The tensile 

axes for both are of <110> type. The TEM image (b) is taken from [76]. 

The {111} lines in red in part (a) are traces of {111}-type slip planes. The 

traces of the same type are shown in (b). 

  

(a) 

(b) 

(a) 

(b) 
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Figure 5.13. Dislocation patterns from (a) continuum simulation at strain 

level = 1.5% and (b) from experiment at strain level ~34%. The tensile 

axes for both are of <111> type. the TEM image (b) is taken from [76]. 

The above comparison between the density patterns on the surface of the 3D cube 

demonstrates the similarity between continuum dislocation dynamics predictions and 

experiments. Further comparisons are shown in figures 5.14 and 5.15, where the 

dislocation density patterns are shown on various crystallographic planes and compared 

with corresponding experimental data available. The types of the planes as well as the 

directions of images are kept the same in these figures.  

The microstructure on (101)  plane in both simulations and experiments for [111] 

orientation shows similar orientation preference. The image size in figure 5.14(a) is about 

a quarter of area in figure 5.14(b), coinciding with the difference in dimensions between 

the two. For loading along [001] direction and on (001) plane (see figure 5.15(a) and (b)), 

the simulation result agrees well with experimental data in forming the cell structure. The 

preference in the orientation of dislocation walls is less pronounced in comparison with 

figure 5.14, where the loading is applied along [111] direction. There exists a difference 

between numerical simulation and TEM images in figure 5.15(c) and (d), both of which 

(a) 

(b) 
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show (100) sections perpendicular to [001]. The (100) section from simulation data 

shows isotropic cell structure while the slice of (100) crystallographic planes obtained 

from TEM shows obvious elongation of dislocation walls along [001] tensile direction. 

This is because the deformation in the experiment is much larger than in the simulation 

by orders of magnitude. Consequently, the movement of dislocations in experiments are 

not only driven by the stress field but also by the motion of material points that they are 

associated with. The material points have the tendency to move along the tensile direction 

in the experiment. As a result of this, the dislocation microstructures are also elongated in 

[001] direction. Such a feature due to finite deformation is neither modelled nor attained 

in the simulation, which is beyond the scope of current work. 

     

Figure 5.14. Dislocation microstructures on (101)  plane for [111] tensile 

in (a) simulations and (b) experimental data taken from [45]. The domain 

in simulation is about 4μm and in the experiment is about 7μm. The 

resolved shear strain is about 0.37% in simulation and 40% in the 

experiment. 

(a) (b) 
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Figure 5.15. Dislocation microstructures on {001}-type planes for [001] 

tensile in simulations((a) and (c)) and TEM images ((b) and (d)) taken 

from [45]. The (001) plane shown in (a) and (b) is perpendicular to the 

tensile axis whereas the (100) plane shown in (c) and (d) is parallel with 

tensile axis. The resolved shear strain is 0.61% in the simulation and 19% 

in the experiment. 

It is important to point out here that the simulations differ significantly from 

experiments in both the magnitude of strain and sample size. For the reasons that have 

been stated, the data provided by simulation fall within the small deformation regime, in 

contrast to over 10% of strain in the experiments. The dimension of the domain of the 

simulation domain is also smaller than in experiments for the reason of computational 

limitation. Despite all these differences, the qualitative agreement between the 

simulations (at small strain) and the experiments (at large strain level) implicates that 

(a) (b) 

(c) 

(d) 
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even during the very early stage of strain hardening the dislocations organize into the 

structure indicative of the microstructure in the succeeding larger strain and such an 

organization is affected by the orientation of the loading axis in the same way as in the 

larger strain level.  

Quantitative analysis has been accomplished in experiments by measuring the 

deviation angle of dislocation walls from the slip plane, which is referred to as trace 

analysis [75,76]. Such a direct measurement is not applicable in case of numerical 

simulation because, although the dislocation walls have started to show orientation 

preference, the arrangement of walls is still too vague for their angles to be identified 

clearly, which is again attributed to the insufficient strain level. However, this issue can 

be addressed by numerically detecting the orientation of those unclearly oriented images. 

 

5.4.3 Analysis of Dislocation Patterns for Different Tensile Orientations 

The 2D autocorrelation function (referred to as ACF) of an image can be used as a tool to 

recover some hidden facts of an image—including the preferred orientation [210]. For an 

isotropic pattern, the central part of the ACF is circular with a peak at the origin. 

Depending on the wavelength of the pattern, other weaker peaks might appear far from 

the center. For anisotropic patterns, which might not seem clear in real space or are hard 

to identify by the naked eyes, ACF remains high along the preferred directions of the 

image and decays faster in the short-ranged correlation directions. In another words, the 

central part is elongated in certain directions of the image. In the case of the analysis of 

dislocation density patterns such as in figure 5.14(a), the orientation inclination is 

obvious but the determination of the exact angle of this inclination may suffer from 
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subjective judgement. With the hope to detect the angle as objective as possible, the ACF 

analysis procedures are employed and applied to the images of dislocation density 

patterns on sections. 

By definition, the autocorrelation of an image is the convolution of the image with 

itself and it is defined in the following formula [210]: 

( , ) ( , ) ( , )

( , ) ( , ) ,

fC x y f x y f x y

f x y f x x y y dxdy
 

 

   

     
  (5.6) 

for an infinite domain, where ( , )fC x y   stands for the autocorrelation function for the 

original function ( , )f x y . In the case of dislocations and considering a finite domain, the 

ensemble average can be taken over the domain [143]: 

 ( , ) ( , ) ( , )C x y x y x x y y         ,  (5.7) 

where   denotes the ensemble average, ( , )x y  represents the dislocation density 

distribution on the plane. It is to be noted that the autocorrelation calculation does not 

subtract the mean value from ( , )x y  in order to avoid the negative value in C . 

Although this is possible, it does not aid the detection of anisotropy of the original image.  

Keeping in mind that the TEM images are obtained from a slice of the thickness up 

to 100 nm, the analysis of dislocation microstructures from numerical simulations should 

also be done on similar slices. Ideally speaking, a slice within the simulated cube should 

be first cut and relaxed first to take into consideration the free surface effects but this 
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effect is assumed to be minor. On the other hand, the current simulations suit better a 

comparison with dislocation pattern observation by x-ray diffraction technology [211].  

The following procedures are conducted at the post-processing stage in the 

simulation to mimic the acquisition of TEM images in experiments. First of all, a slice of 

the thickness about 120 nm, which spans the distance of four grid points, are cut from the 

cube. Four sections, each of which is located on one mesh point in the direction of 

thickness, are taken to plot total dislocation density pattern on each of them. The ACF 

analysis is completed for the four respective images, yielding four correlation fields 

which are finally averaged to yield an average autocorrelation field, from which direction 

of dislocation walls within the slice is expected to be detected and quantified. The above 

process can be summarized mathematically by: 

 ( , )( , ) ( , )
i x y

i

C x y C x y 


    
4

1

,  (5.8) 

where i  is the scalar density function of total dislocations on the i-th section within a 

slice. The trace analysis can be processed based on the correlation information embodied 

in ( , )C x y   .  

The results of correlation analysis are shown in figures 5.16 , 5.17 and 5.18 for [001], 

[110], and [111] loading directions, respectively. The slices chosen from the simulations 

are all of {110}-type because the section of this type is parallel to the direction of cubic 

edges. The sections parallel to the cube edges are the same in shape and size, so it makes 

sense to average the values on these parallel sections. The images of ACFs all have 

twofold symmetry about the origin. The pair of perpendicular green lines in ACFs 
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denotes 0x   and 0y  . Relevant crystallographic directions and planes are also 

tagged in these figures. 

The dominant feature of ( , )C x y    in the case of [001] loading is the nearly 

circular central part with peak at the origin, see figure 5.16(b). The surrounding dark 

areas outside the circular central part and near the rim in figure 5.16(b) arise due to finite 

wavelength of the pattern and the periodic boundary condition used in the simulation 

[107] (edge effects), so they are not of concern. The circular shape of the central part of 

the ACF indicates that no obvious orientation preference is detected by the 

autocorrelation fields. The cell structure is thus near isotropic when the specimen is 

subjected to [001] loading, coinciding with the experimental results [76]. 

When the loading is applied along the [110] direction, the dislocation pattern on 

(110)  slices shows orientation preference but, at small strains, such a preference cannot 

be quantitatively characterized until the ACF analysis is applied. More distinguishable 

images and measurable anisotropy are plotted in figure 5.17(b). The high-value area is 

elongated in two dominant directions which are tagged with solid blue lines. It can be 

argued, based on the explanation on the meaning of ACF that these two directions are 

approximately corresponding to the preferred directions of dislocation walls in 

simulations. In figure 5.17(b), the traces of {111} slip planes are also included and they 

are actually oriented in <121>-type directions. Then the task of trace analysis for 

dislocation patterns obtained in the simulation can be fulfilled by measuring the angles 

between {111} traces (represented by dashed red lines) and directions of dislocation 
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walls (regarded in the directions of solid blue lines). According to this method, it is found 

that the deviation angles are 2.8 and 4.9 degrees for the chosen slice. 

Figure 5.18 shows the same representative images in the process of trace analysis 

but in [111] loading. Unlike in figure 5.17(b) where the averaged ACF shows two 

directions of dislocation walls, it is found that only one orientation seems to be the 

dominant direction of dislocation walls. The reason is that the two {111}-type slip planes, 

which are represented by dashed red lines in figure 5.18 (b), are not symmetric regarding 

the loading axis in terms of Schmid factors. The (111)  slip plane, being closer to the 

wall direction in figure 5.18(b), contains two slip directions, while the (111)  slip plane 

accommodates no slip directions at all. Hence, the dislocation walls are mainly 

constituted by dislocations coming from slip planes containing active slip directions so 

that the walls are more inclined to active slip planes. The deviation angle between the 

wall and the trace is measured to be about 28 degrees from the ACF figure. 
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Figure 5.16. Dislocation density on one of the four sections within a (110)  

slice (a) and ( , )C x y    averaged over all four sections (b). The four 

sections are similar to each other in terms of dislocation density 

distribution, and so only one of them is displayed in part (a). The domain 

size is about 5μm and the analysis is done at a strain level of 1.5% for 

[001] loading axis. 

 

      

Figure 5.17. Dislocation density on one of the four sections within a (110)  

slice (a) and ( , )C x y    averaged over all four sections (b). Only one of 

images of four sections within a thin slice is displayed in part (a). The 

domain size is about 5μm and the analysis is done at a strain level of 1.5% 

for [110] loading axis. 

 

(a) (b) 

(a) 

(b) 
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Figure 5.18. Dislocation density on one of the four sections within a (110)  

slice (a) and ( , )C x y    averaged over all four sections (b). (a) is 

representative of the four images averaged out and the others are similar in 

pattern. Two traces of {111} slip planes are represented by red dashed line. 

The domain size is about 5μm and the analysis is done at a strain level of 

1.5% for [111] loading axis. 

On the aspect of experiments, the deviation of dislocation boundaries from the slip 

plane was measured to be 3 degrees for the crystal is oriented for [541] [209] which is in 

vicinity to the simulated [110] loading. The ACF analysis applied to patterns in the 

simulation gives deviation angles between 2 to 5 degrees in [110] loading (simulation V). 

The simulated [111] loading was conducted by Kawasaki and co-workers [45] in 

laboratories. In their experiment, the deviation angle between dislocation boundaries and 

slip planes is measured to be 29 degrees, only 3.5% different from the simulation here. 

Reference [76] measured the deviation angle to be 2° for type I structure and 25°for type 

III structure, which correspond to [110] and [111] loading directions in the simulations, 

respectively. 

In short, the above measurement of the deviation angle between dislocation wall and 

the trace of slip planes based on the detected direction on ACF images coincides with the 

(a) 

(b) 



118 

 

1
1
8
 

experiments to a large extent. The dislocation-dense areas can be either recognized by 

different types: geometrical necessary boundaries (GNBs), incidental dislocation 

boundaries (IDBs), microbands (MBs), dense dislocation walls (DDWs), etc., 

[49,212,213], or without distinction between such structures [214]. In the previous study 

by discrete dislocation dynamics [215], the latter approach is adopted. The analysis by 

ACF in the current process essentially belongs to the later also since the dislocation 

patterns shown on sections are total dislocation density. The reason for this lies in the 

different strain levels existing in numerical simulations and experiments. The strain level 

in current simulations is too small for the emergence of dislocation boundaries of 

different types. 
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CHAPTER 6. MODEL RESULTS: CYCLIC LOADING 

The failure of metals by fatigue has important safety and economic consequences. When 

a material is subjected to the loads of cyclic nature, it fails at much lower stresses than 

would be required for failure in a tensile test [53]. A fatigue fracture always starts with a 

small crack which grows in length under repeated stresses. It is the movement of 

dislocations during cyclic loading that gives rise to the extrusion and intrusion that lead to 

the initiation of cracks [216]. Thus the prevention of fatigue failures cannot be 

accomplished quite well without a good understanding of dislocations kinetics under 

cyclic loading. 

In this chapter, continuum dislocation dynamics is applied to fatigue simulations, 

with the objective of checking the model’s ability to predict the characteristic patterns 

observed under fatigue loading in experiments. As a test problem, cyclic loading along 

[001] is imposed on the cube with the strain rate of 30/s and a prescribed plastic 

limitation of 0.15%. For the same reason as in the previous simulations, the cross-slip 

rate is first obtained from a discrete dislocation simulation. The results from continuum 

model are compared with those from discrete dislocation simulation as well as with those 

in experiments, with a focus on the dislocation density patterns from the continuum 

simulation. 
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6.1 Cross-slip Rates from Discrete Dislocation Dynamics 

Discrete dislocation dynamics simulations were conducted for a specimen of the same 

size and subjected to the same loading condition as used in the continuum model. The 

microMegas code was used for this purpose. Time series analysis presented in chapter 4 

is implemented so as to obtain 
cg ( )lR t  and 

cg ( )lR t  in equation (4.9) when the cube is 

cyclically loaded. Once the smoothed time series, for example 
cg ( )lR t  is obtained, it is 

plotted against cumulative plastic strain pl,

cum

n  which is obtained from the following 

equation:  

 
pl, pl,

cum

n
n i

i

 


 
1

,  (6.1) 

where pl,i  is the increment of plastic strain from time step i 1  to i , n  denotes the n-

th time step, pl,

cum

n  the cumulative plastic strain. Due to the absolute value taken for pl,i , 

which itself can be positive or negative depending on loading direction, pl,

cum

n  always 

increases with time.  

Cumulative plastic strain is chosen instead of time as a scale for cross-slip rate due 

to the need to synchronize the loading and unloading control in discrete and continuum 

simulations. It was found in the previous monotonic simulations that plastic strain is not 

synchronized in time for discrete and continuum simulations (see figure 5.10). It takes 

more time for the crystal to yield in continuum dynamics than in discrete dynamics given 

that the yielding stress is higher (about 2 times but on the same magnitude of the order) 

under the same strain rate. As a result, when it is time for the reverse loading to be 
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applied on the crystal in the discrete simulation, the plastic strain has not yet reached to 

the prescribed limit of plasticity. So if the cross-slip rate were implemented in terms of 

time rather than plasticity scale, the simulation by continuum dynamics would at some 

time during loading period take unloading cross-slip rates generated from discrete 

dynamics, which may lead to a less accurate result. However, the common employment 

of plastic strain amplitude in both discrete and continuum simulations enables the 

simulation in both cases to be synchronized by cumulative plastic strain. Furthermore, 

The cumulative plastic strain is also frequently used as a scale in fatigue and damage in 

experiments [217–219]. The task to replace time t  in function 
cg ( )lR t  with pl,

cum

n  is 

straightforward since pl,

cum

n  according to equation (6.1) is a function of t . 
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Figure 6.1. cg ( )lR t , ( 1,2,...,6)l   in fatigue test from discrete dislocation 

simulation. The total dislocation density is plotted together with each 

cg ( )lR t  so as to identify cycles. 
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Figure 6.1. (continued) cg ( )lR t , ( 7,8,...,12)l   in fatigue test from discrete 

dislocation simulation. The total dislocation density is plotted together 

with each cg ( )lR t  so as to identify cycles. 

The term cg ( )lR t  after coarse-graining and smoothing, which represents the trend, is 

plotted in figure 6.1 for all 12 slip systems. Up to 5 cycles are finished by the simulation 

and the total dislocation density (the black curve in figure 6.1) increases in general but 
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with rises and declines in accordance with loading and unloading. The trend of cross-slip 

rates for active slip systems, which are 1, 2, 3, 4, 9, 10, 11 and 12, show increasing 

feature while only trivial wavy feature in pl,n

cg cum( )lR   is associated with inactive slip 

systems, coinciding with previous observations for monotonic loading plotted in figure 

4.6.  

The cross-slip rates in some slip systems as 1, 3, and 11 show the saturation 

behaviour towards the end of simulation, while some seem to be still in increase at the 

end of 5 cycles. Slip system 2 even shows a cyclic behaviour in cross-slip rates with 

cumulative plastic strain, such is however not observed on the other slip systems. All 

these features demonstrate that the cross-slip is a complex behaviour even when viewed 

stochastically at a coarse-grained level. There might or might not be some universal laws 

that can relate cross-slip rate with time or plasticity, which is beyond the scope of current 

progress. In short, it is at least reasonable to incorporate the data (as plotted in figure 6.1) 

directly before any further summarization is made. 

 

6.2 Fatigue Results by Continuum Dislocation Dynamics 

The dislocation density and stress-plastic strain curves from continuum dislocation 

dynamics for fatigue are plotted in figure 6.2. Due to the limitation of data obtained from 

discrete dislocation simulation and the computing time, only about 5 cycles are finished 

by the continuum model. The typical shape of hysteresis loops is observed in the stress-

strain curve shown in figure 6.2(a), where the material exhibits cyclic hardening, 

coinciding with experiments [43,44,47,94,96] and other simulations [128,129,220]. The 

flow stress level is higher than in experiment for the same reasons discussed in chapter 5. 
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The Bauschinger effect, which is commonly observed in experiments and in simulations 

[101,138,221], reveals itself in figure 6.2(a). For example, the first unloading takes place 

at about 70MPa while the yielding in the opposite direction happens around -50MPa, 

delivering a difference about 20% between both directions. 

The cyclic hardening is most pronounced during first and second cycles but the 

continual increase in stress is moderate in later cycles (towards 5 cycles), indicating a 

saturation feature. The profile of the hysteresis loop is also changing, developing from a 

round shape to a sharp cornered shape and again into a round shape, coinciding 

qualitatively with the experiment [96].  

       

Figure 6.2. (a) dislocation density and (b) stress-strain curves obtained 

from continuum dislocation dynamics for fatigue simulation up to 5 cycles. 

The stress strain curve shows typical hysteresis loops with Bauschinger 

effect reflected. The dislocation density increases during the entire 

simulation in an oscillatory manner with the applied loads.  

The dislocation density curve in figure 6.2(b) shows cyclically increasing feature: 

the density increases while the material is strained by tension or compression; it 

decreases while the material is relaxed by unloading. This feature coincides with the total 

(a) 

(b) 
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density curves plotted in figure 6.1 from discrete dislocation simulation, justifying the 

synchronization by using cumulative plastic strain for the incorporation of cross-slip rates. 

The average dislocation density increases pretty fast at first two cycles but slows down in 

the later cycles, also indicating the tendency towards a final saturation status, in 

correspondence with the stress-plastic strain behaviour.  

It is often observed in experiments that fatigue gives rise to the patterning of 

dislocations within crystals, depending on many factors [219]. Since saturation status is 

seen to be close in the continuum simulation, dislocations might already form certain 

structures in this particular test. The next section is dedicated to the discussion of 

dislocation patterns during the cyclic loading simulated by the continuum model. For 

convenience, three sample points are tagged in figure 6.2(b) to denote the snapshot time. 

 

6.3 Dislocation Density Pattern during Fatigue 

Plenty of results have been obtained regarding dislocation patterns in FCC single crystals 

under cyclic loading during past years [46,48,51,88,92,94,96,222–224]. The saturated 

patterns in cyclic loading are dependent on plastic amplitude [89], orientation [88], and 

temperature [92]. The amplitude and orientation dependencies are of interest among all 

the factors, especially in context of the simulation presented here. 

The orientation of crystal has its influence on the cyclic stress-strain curve which is 

first plotted by Mughrabi [96]. For single-slip-oriented copper single crystals, plateau 

period is observed during which the saturated hardening stress is not changed by increase 

in plastic amplitude. This period ranges approximately from 10
-4

 to 10
-2

 of plastic strain 

amplitude [96]. Before this period, veins are observed at low values of plastic strain 
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amplitude whereas the persistent slip bands are observed within the plateau stage because 

of their ability in accommodating more plastic deformation. The persistent slip bands are 

identified by their ladder-like arrangement of dislocations, see figure 1.2(a). Towards and 

after the end of plateau stage, other structures like labyrinth and cells are observed, 

depending on crystal orientation, which can be ascribed to the secondary slip [90]. 

The cyclic stress-strain curve changes its shape in plateau behaviour if the crystal is 

otherwise oriented such that multiple slip systems are activated from the beginning [225]. 

The dislocation patterns show its diversity with respect to different orientations also. The 

labyrinth structure is universally found in <001> crystals as shown in figure 2.9, where 

the walls are constituted of persistent slip bands [51]. Cell structure is often associated 

with <111> crystals and abundant persistent slip bands are prominent with <011> crystals 

[89].  

The discrete dislocation models also achieve some of the results that are seen in 

those experiments [124,128,130,220,226]. However, a continuum model is seldom used 

for the fatigue simulation to produce dislocation patterns especially when it comes to 3-

dimensional modelling. This section presents the dislocation patterns obtained from the 

continuum simulation of cyclic loading. At first, the pattern is displayed with scalar 

dislocation density on surfaces and sections of the cube. Further investigation into the 

dislocation structure is enabled by vector representation of dislocation density on 

individual slip systems, which is presented in section 6.3.2. 
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6.3.1 Scalar Dislocation Density Pattern   

Viewed from the surface, the cube is exhibiting patterning during the fatigue process, as 

plotted in figure 6.3. Dislocations, which are represented by total dislocation density, are 

not forming cell structure even after about 5 cycles, unlike monotonic loading case, 

where the total dislocations form cell structure at pretty earlier stage of the simulation. 

Nevertheless, the inhomogeneity feature of dislocation structure is also preserved in the 

fatigue test.  

      

Figure 6.3. Dislocation density on the surface of the cube at (a) point A 

(the end of the first cycle) and (b) point C (within the 5-th cycle). No 

prominent cell features are observed through the cyclic loading simulation. 

Although the total dislocation density does not show well-formed structure on the 

surface, the model can be employed further to display partial dislocation density, which is 

the dislocation density on one slip system, on a slip plane. The scalar dislocation density 

on an individual slip system at a point reads: 

 
2 2 2

,1 ,2 ,3( ) ( ) ( )l l l l      ,  (6.2) 

(a) (b) 
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where l  is the scalar of the vector 
lρ . The quantity l  is plotted on one section from 

(111) slip plane in figure 6.4 at different strain levels, where l  is chosen to be (111)[011]  

slip system, one of the active slip direction on that plane. It is clearly seen that the partial 

density l  on a slip plane gradually organizes into the clear vein structure which is 

constituted of dislocation walls along the direction perpendicular to the Burgers vector 

direction (namely, [211] ). Furthermore, the vein structure is seen refining itself by 

decreasing the distance between the walls in the same sense as in the refinement of cell 

structure in the monotonic loading case. The decrease in the distance between dislocation 

walls provides less free space for dislocations to glide on the slip plane and thus causes 

cyclic hardening [227].  

        

Figure 6.4. Partial dislocation density on a slip plane at (a) point A (the 

end of the first cycle) (b) point B (the end of the third cycle), and (c) point 

C (within the 5-th cycle).  

The vein structure shown in the above simulation results on (111) slice has been 

typically observed in experiments [47,88,222] for years. Figure 6.5 shows a clear vein 

(a) (b) 
(c) 
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structure on (111) slip plane in the [117]  copper single crystal (a) and single-slip oriented 

copper single crystal (b), the tensile direction of the former of which is close to [001] 

direction used in the current simulation. The qualitative similarity can be immediately 

seen when one compares figure 6.5 with figure 6.4(b) and (c). 

      

Figure 6.5. (a) Experimental dislocation structure on (111) foil after 

saturation of the cyclic loading along [117]  axis, adopted from [88]. (b) 

Vein structure on (111)  plane in a copper single crystal oriented for 

single slip, adopted from [91]. 

 

6.3.2 Composition of Vein Structure 

It is commonly regarded by experimentalists [216] and modellers [171] that the vein 

structure is mainly composed of edge dipolar walls with screw dislocations gliding 

between them. The reason for this is that the dipolar walls are stable under stress of 

opposite signs in cyclic loading [14]. Figure 6.6 schematically illustrates the 

arrangements of dislocations in different organizations of vein structures. Two typical 

structures are observed in TEM micrograph for fatigued crystals: the matrix structure and 

(a) (b) 
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persistent slip bands [91]. The matrix structure is characterized by an irregular 

arrangement of veins, which is plotted in figure 6.6(a). The persistent slip bands, on the 

other hand, appear in a form of regular ladder-like structure oriented along the primary 

Burgers vector, which is plotted in figure 6.6(b). In experiments, the persistent slip bands 

are often seen being embedded in the surrounding vein structure [47,223]. What figure 

6.6(c) shows is a schematic illustration of idealized slab-matrix structure in which the 

matrix experiences homogeneous deformation while the slabs do not deform [228]. Such 

a structure accommodates long range rotation between successive matrix areas which can 

be attributed to plastic strain incompatibility. The common feature existing in the veins, 

walls and slabs is the edge dipoles which may evolve into different structure depending 

on situations (loading directions, magnitude of plastic deformation, slip planes, etc.) 
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Figure 6.6. Theoretical models of vein structure appearing in fatigued fcc 

single crystals: (a) and (b) shows dislocation arrangements in matrix and 

persistent slip band structure respectively, adopted from [14]. (c) shows 

the slab-matrix model, reproduced from [228]. 

The scenario in the continuum simulation can be examined by checking the 

component of dislocations in the vein-like structure plotted in figure 6.4. The edge 

component of dislocations is extracted by applying a dot product to dislocation density 

vector with edge dislocation line sense: 

 edge edgel  ξ ,  (6.3) 

where lρ  stands for dislocation density vector of slip system l , edgeξ  the line sense of 

pure edge dislocation of Burgers vector [011]  on slip plane (111). The edge component 

(a) (b) 

(c) 
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can be positive or negative, indicating edges of different signs. In a sense, the dislocation 

density vector is filtered out to produce an edge component.  

In figure 6.7(a), a (111) slice of the thickness of 130 nm is chosen from the cube at 

sample point C with partial dislocation density plotted on the surface of it. The 

dislocations on (111) plane are aligned in the direction of [211] , being parallel with pure 

edge direction on that plane. On two vertical planes to (111), namely (211)  and (110) , 

dislocations are concentrated in dense areas in dark dots. Figure 6.7(b) plots the edge 

component by the application of equation (6.3) on the same slice as in figure 6.7(a). 

Several features of veins can be revealed by the plotting of edge components. First of all, 

the dislocation dense area on (111) plane is mainly composed of edge dislocations. The 

whole dislocation density tends to be smaller in magnitude at the place where the edge 

density is lower. The edges are alternating in their signs violently from positive to 

negative signs within one straight vein, which is more prominent on (211)  plane where 

the cross sections of veins are seen. This means that the dislocation veins are composed 

of edge dislocation dipoles which include opposite edges in sign.  

    

Figure 6.7. (a) The vein structure viewed from a (111) slice with the 

thickness of 130 nm at sample point C. (b) the edge component of veins 

on the surface of the same slice.  

(a) (b) 
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Partly due to the resolution limitation, the continuum model implemented here 

cannot exactly present the detailed dipoles in which edges are in shorter distance to each 

other than the resolution of the mesh (~30 nm). Ideally speaking, the resolution should be 

on the magnitude of Burgers vector since the annihilation distance between edges is quite 

small (~1.6 nm) [188], which is not practical. However, future extension of the model 

will allow the presence of multiple orientations at a given point in space. The continuum 

model with oversized resolution must induce some numerical smearing effect regarding 

edge dislocations. Nevertheless, the present model characterizes the constituents of veins 

correctly in a qualitative sense. 

It must be kept in mind that from the experimental literatures discussed at the 

beginning of this chapter, the <001> crystal demonstrates labyrinth structure in 

dislocations. However, vein structure shown in the continuum simulation mimics more 

the single slip situation in experiments. The main reason for the failure of dislocations to 

reach a labyrinth structure in simulation can be again attributed to the insufficient number 

of cycles (in experiments, observations are often made up to tens of thousands of cycles). 

It is proposed that the labyrinth structure arises from a critical type of short-range 

reactions occurring among edges from different slip systems [95]: 

 

1 1
[101] [101] [001]

2 2

1 1
[101] [101] [100]

2 2

 

 

,  (6.4) 

which leads to formation of new slip systems of the type {100}<001>.  The intersection 

between dislocations on the new born slip systems with {010} type plane forms the 
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eventual labyrinth structure. In the current model, however, short-range reactions other 

than annihilation are not yet considered. This renders the dislocations described in the 

continuum model at the current status more influenced by the long range stress effects. 

Indeed, previous explanations, e.g., in figure 6.6(c), emphasize more the long range 

effects in fatigue pattern formation. 
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CHAPTER 7. SUMMARY AND OUTLOOK 

Dislocations are critical in studying the deformation mechanism of metals [229]. 

However, their collective behaviour still poses a great theoretical challenge. The 

complexity of dislocation systems arises from their one-dimensional nature, long range 

effects, and the multitude of crystallographic processes they undergo, e.g., cross slip and 

short range reactions. The fact that they are one-dimensional objects, although straight 

forward to handle, posed for a long time a mathematical challenge to modellers trying to 

study their collective behaviour – in classical literature, only particle systems are well 

modelled. The long range feature of stress field also contributes to the difficulty 

especially for discrete simulation where the cut off radius should ideally be the entire 

domain. This nature of the dislocation systems made it hard to tackle practical 

deformation problems in bulk plasticity using discrete dislocation dynamics. This aspect 

is exacerbated by various short range reactions. Finally, the multiplication of dislocation 

density during hardening adds difficulty to discrete simulation because of the O(N
2
) 

increase in computational burden.  

Various continuum dislocation dynamics models were developed as a way to avoid 

these difficulties. The current model is one that gave results closer to experiments for the 

first time. By representing dislocations as vector fields, the continuum model captures the 

position and orientation information of dislocations. Although the model does not yet 
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permit the presence of multiple line directions at a continuum point in space [72,159], a 

practical solution to circumvent the consequences by controlling the mesh size to be on 

the magnitude of annihilation distance proved to be a satisfactory initial step. In any case, 

the merit of describing dislocations as physical fields is that it enabled the continuum 

model to predict the deformation behaviour of crystals, including all mechanical field and 

dislocation patterns solutions, in a reasonable time and to higher strain values than 

achieved in discrete simulations. The future extension to finite deformation is 

straightforward, which is inconceivable for discrete dislocation dynamics.  

Unlike in the discrete model, where the short range reactions are implemented by 

referring to Frank’s energy criterion, dislocations repulsion and attraction as dictated by 

the stress field can take care of all short range reactions. Indeed, annihilation is taken care 

of in the current model and future extension will take into consideration the formation of 

glissile junctions. Cross-slip of screw dislocations, a thermally activated process, is 

handled by incorporating the data from a corresponding discrete dislocation simulation 

using a time series procedure for temporal coarse graining. This connection with discrete 

dislocation dynamics models should be viewed as a different method from the hybrid 

model proposed by Zbib and co-workers [175] because the former only takes parameters 

from discrete simulation while Zbib’s multiscale model utilizes discrete simulation to 

evolve the dislocation systems within a crystal plasticity framework. 

The implementation of continuum model is supported by a robust staggered 

numerical scheme that couples the kinetics of dislocations and stress field solution. The 

stress field is solved by Galerkin’s finite element method which is well known for its 

accuracy in elliptical equations, the case with equilibrium equations [230]. The kinetic 
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equations are solved by Least Square Finite Element Method which is shown to be 

reliable for hyperbolic equations [186]. The superlattice meshing proposed here to 

reproduce all slip planes of an FCC crystal and accurately capture the 2D motion of 

dislocations proved to be a critical part of the solution scheme. The integration scheme of 

the hyperbolic transport equations, although suffers slight diffusion, was found to be 

robust against dispersion. The reason is that, unlike the case of scalar functions, the 

density vector and the velocity vector are coupled which leads to smoothing any 

fluctuations in the wake of propagating density profiles.  

The continuum model shows promising results in an array of 3D simulations. The 

stress-strain and dislocation density evolution curves are in qualitative agreement with 

experiments and other discrete dislocation dynamics simulations. It is observed for the 

first time in any simulation, at least using continuum dislocation dynamics models, that 

dislocations are organizing into clear cell patterns under monotonic loading of [001] type. 

Prediction of this kind of self-organization of dislocations has been the number 1 reason 

dislocation dynamics simulations was pursued for the first time in the mid-1980s. It took 

almost 30 years of research to achieve that goal, thanks to the progress made on 

continuum modelling side dislocations.  

It is also found that cross-slip serves as a mechanism for triggering the formation of 

cell structure: the larger the cross-slip rate is in the simulations, the earlier and sharper the 

cell structure. It is also discovered that the utilization of realistic data from discrete 

simulation improves the model to make it closer to discrete simulation results, the only 

available results for benchmarking at small strains. The similitude law is checked with 

various conditions regarding cross-slip rates and the number of simulated slip systems, 
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yielding a nearly universal curve for all cases [001] cases simulated. This finding not 

reveals the mechanism underlying strain hardening of fcc single crystal but also shows 

that these mechanisms are well represented in the model. The simulations also exposed 

the orientation dependence of both the hardening rate and dislocation patterns. No 

anisotropy is found in [001] crystal due to its symmetry with respect of slip systems 

whereas pronounced orientation preference of dislocation dense areas is observed in [111] 

and [110] crystals. The results are all compared with experiments which show similarity 

but, again, at much larger strain level. It is thus not unreasonable to make the argument 

here that the patterning of dislocations at small strain level paves the way for forming the 

lamellar structures observed at large strains for loading orientations different from [001].  

The fatigue test has also been run to test the continuum model by simulating plastic 

strain controlled cycles of load reversals. Although the number of cycles is limited due to 

computational issues to only several, dislocations were found to arrange into vein 

structure on respective slip systems and the veins are examined constituted of edge 

dipoles, in agreement with experiments and theoretical models. 

All the test examples not only affirm the validity of the continuum model presented 

here but also provide original discoveries of mechanisms and detailed structures which 

are not observable in experiments. This, however, should not be seen as a final point in 

the exploration of continuum dislocation dynamics modelling, but rather as an initial 

development of this approach. Actually, as this dissertation is being developed, new 

continuum models are seen to be proposed [231]. 

The current continuum model still has resolution issue in mesh size especially 

towards edge dislocations which possess a smaller annihilation distance. This 
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disadvantage is perhaps one of the reasons a labyrinth structure for [001] fatigued crystal 

was not observed, where reactions between edge components are important. Other 

reactions (e.g. glissile reactions) are also lacking which affects the accuracy of 

predictions to some extent. Further development of the model should be based on either 

the decrease in mesh size at the cost of computation or the capture of short range reaction 

by change in equations somehow. 

The model improvement with regard to cross slip by incorporating data from 

discrete dislocation dynamics is an advantage, because it seems as redundancy also: the 

simulation should be conducted twice for one example, one by discrete and another one 

by continuum. This is not true, however, since the purpose of running discrete 

simulations is to learn the statistical representation of cross slip at the continuum scales. 

This learning process will continue in the future until we are able to develop models in 

that respect. 

As a final remark, future extension of the model to accommodate finite deformation 

is a must in order to simulate levels of deformation encountered in experiments and in 

metal processing. 
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