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ABSTRACT

Wang, Yan Ph.D., Purdue University, August 2016. Multiscale Simulations of Ther-
mal Transport in Graphene-based Materials and across Metal-semiconductor Inter-
faces. Major Professor: Xiulin Ruan, School of Mechanical Engineering.

The rapid advance in modern electronics and photonics is pushing device design

to the micro- and nano-scale, and the resulting high power density imposes immense

challenges to thermal management. When device size shrinks to the same order of or

even below the wavelength or mean-free-path of heat carriers, the transport of heat

carriers and the interaction between them will differ from those in the macroscopic

regime. This imposes challenges on designing micro/nano-devices with required ther-

mal performance, while, at the same time, also opens the door for designing novel

materials and structures with promising thermal properties.

This research explores structures with unique heat transfer properties for thermal

management applications. It also seeks to build a more accurate and comprehensive

understanding of electron and phonon transport, and the coupling between them, in

order to guide the design of strategies to enhance heat dissipation in solid-state de-

vices. Graphene is a unique material with 2D lattice structure and single-atomic-layer

thickness, and we explore several mechanisms that can affect thermal transport in it.

The thermal conductivity (κ) of zigzag-edged graphene nanoribbons (GNRs) is found

to be higher than that of armchair-edge ones in our molecular dynamics (MD) simu-

lations, and phonon localization at edges is attributed to underlie such edge-chirality

dependence. Thermal rectification (TR) is a phenomenon in which heat flows more

easily in one direction than in the opposite direction, which is particularly useful for

thermal management. Using MD simulations, we find significant TR in asymmetri-

cally defected GNRs and pristine GNRs with asymmetric geometry. However, TR in

these two structures arises from different mechanisms. In the former case, GNRs are
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pristine on one side while defective on the other, and TR is caused by the different

temperature dependence of the thermal conductivity of the two sides. In the latter

case, TR can be enabled by phonon lateral confinement when the width of the GNR

is smaller than the phonon mean free path. These findings will provide useful guid-

ance to the fabrication of thermal rectifiers from pristine materials including but not

limited to graphene.

A two-temperature non-equilibrium MD simulation technique is developed to

atomistically model electron-phonon coupled thermal transport across metal/semiconductor

interfaces. On the metal side, the lattice part of thermal transport is modeled with

MD while the electronic part is simultaneously modeled with the Fourier’s law using

the finite difference method. On the semiconductor side, electrons are neglected and

only phonons are considered. Our method naturally accounts for the effect of de-

fects, interface, temperature, etc., on thermal properties of phonons and also includes

the coupling between electron and phonon. We use this technique to compute the

thermal boundary resistance (TBR) of Si/Cu and CNT/Cu interfaces. In a region

within a “cooling lengt” distance to the interface, electron and phonon are revealed to

be in thermal non-equilibrium, which considerably impedes heat transfer across the

interface. The TBR of CNT/Cu interfaces predicted using our method is in better

agreement with experimental results than conventional MD methods.

A two-temperature Boltzmann transport equation method is also built, which

considers electron and phonon on both sides of the interface. It was reported that an

interlayer with intermediate phonon spectra between two dielectric materials could

reduce the phononic interfacial thermal resistance. In this work, we show that an

appropriate choice of interlayer materials with relatively strong electron-phonon cou-

pling could significantly enhance interfacial thermal transport across metal-dielectric

interfaces. Our Boltzmann transport simulations demonstrate that such enhancement

is achieved by the elimination of electron-phonon nonequilibrium near the original

metal-dielectric interface. Moreover, we reveal that interlayer can substantially ac-

celerate hot electron cooling in thin films with weak electron-phonon coupling, for
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example, Cu, Ag, and Au, supported on a dielectric substrate. At the same time,

lattice heating in the thin film is largely reduced.

A Monte-Carlo simulation approach is proposed to solve electron-phonon coupled

thermal transport problems in metal-semiconductor heterojunctions. This approach

enables us to conduct a spectral electron-phonon simulation considering the selection

rules for three-phonon scatterings. We demonstrate the approach using a Au-Si bi-

layer system under ultrafast laser radiation. Nonequilibrium between electrons and

different phonon modes are observed. This approach enables first-principles-based

simulation of heat transfer across metal-nonmetal interfaces, which will be useful for

designing thermoelectric devices and for thermal management of electronic devices.

The results from this study offer new understandings of nanoscale thermal trans-

port involving multiple types of heat carriers, and the approaches developed have

strong predictive capability, which will aid the thermal design of novel micro- or

nano-devices. This research also provides new perspectives of atomic- and nano-scale

engineering of materials and structures to enhance efficiency of thermal management.
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1. INTRODUCTION

With the rapid advance in nanotechnology, the size of modern electronic and photonic

devices have shrunk to the nanoscale and the resulting high power density starts to

impose immense challenges on thermal management. It was recently reported that the

Moore’s law, which has governed the advancement of semiconductor industry since the

1960s, will end soon. [1] The clock rate, which determines how fast microprocessors

execute instructions, has stopped increasing since 2004. The reason is that heat

dissipation, which increases as the clock rate increases, has become a fundamental

problem limiting further downscaling of chip feature size. In nano-sized devices, the

interfacial thermal resistance between different components is usually the bottleneck

for heat dissipation. Understanding the mechanism of interfacial thermal transport

across various dissimilar materials is thus of fundamental importance to the thermal

management of electronic devices and the development of thermal interface materials.

Moreover, in electronic devices, multiple types of energy carriers such as electrons and

phonons are usually involved. When device size shrinks to the same order of or even

below the wavelength or the mean-free-path of heat carriers, the carrier transport and

interaction will differ from those in the macroscopic regime, of which the effect on

thermal transport is not fully understood. This imposes challenges to thermal design

using conventional methods based on the Fourier’s law, which cannot model ballistic

or ballistic-diffusive thermal transport accurately. On the other hand, it opens the

door for designing novel structures with promising thermal properties.

1.1 Thermal Issues in Electronic Devices

The aggressive decrease in the size of electronic and photonic devices and the fast

increase in their operating frequencies have resulted in extremely high power density,
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which is detrimental to the performance, reliability, and lifetime of devices. [2] For

example, the silicon-nanowire-based field effect transistor reported in Ref. [3] has a

cross-sectional area of 23×80 nm2. [3] In this transistor, an electrical bias generates an

electric field that accelerates electrons, which will then scatter with phonons and lose

their energy to the lattice. Correspondingly, the lattice, especially that near the drain,

will be heated to a higher temperature and thereby reducing the mobility of electrons.

Moreover, electron energy is preferably injected into optical phonons rather than

acoustic phonons in the Joule heating process. However, optical phonons, in most

cases, are less effective in transferring heat than acoustic ones. As a consequence, heat

has to be transferred to acoustic phonons first and be dissipated away thereafter. [2]

Moreover, the size of the cross-section of the silicon nanowire is smaller than the

mean-free-path of many phonon modes in silicon. In this case, phonon transport in

the lateral directions is mostly in the ballistic regime and conventional heat diffusion

theory based on the Fourier’s law is no longer valid.

In the transducer of heat-assisted magnetic recording (HAMR) devices, surface

plasmon polaritons are first excited by a laser and then propagate towards the tip.

During the above process, the electromagnetic field is amplified by several orders

of magnitude, which creates intense local heating to the disk medium and thereby

writing a “bit” to the disk. The physical size of a “bit” in the hard disk can be around

25×150 nm2 [4] and the I/O speed is limited by how fast the “bit” can be heated

or cooled to the threshold temperature. Therefore, thermal design is essential to the

performance of this device and a comprehensive understanding of carrier transport

and interaction in nanosized structures is important.

Moreover, in micro- and nano-devices, the stacking of metal, semiconductor,

and insulator is inevitable and the interface between different components is usu-

ally the bottleneck for heat dissipation. Rigorous predictive simulation approaches

and schemes that can enhance thermal transport across interfaces are urgently needed

for thermal management of modern devices.
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1.2 Thermal Transport in Graphene

Graphene has been recognized as a potential substitute for silicon in the electronics

industry mainly owing to its outstanding electronic properties [5]. The tunable band-

gap opening and edge-chirality dependent electronic property of graphene nanoribbon

(GNR), a narrow strip of graphene, makes the vast application of graphene-based

devices even more promising [5, 6]. The high thermal conductivity (κ) of graphene

and GNR renders them intrinsically advantageous over silicon-based devices in terms

of heat dissipation. [7–9] In some applications, graphene is an active component of

the device, e.g. graphene transistors. In other cases, graphene is used as a thermal

interface material to fill the air gaps at interfaces. In both scenarios, a high κ and

low interfacial thermal resistance (RI) are desired. Graphene may be vertically (end-

contact) or horizontally (side-contact) aligned with the substrate depending on the

application, and the heat transfer mechanism should be different due to the different

ways of phonon-phonon coupling across the interface.

1.2.1 Horizontal Alignment of Graphene on Substrate

For thermal transport across graphene/dielectric interface, Ong et al. [10] studied

the thermal transport across graphene/silica interface with Green-Kubo molecular dy-

namics simulations and the nonequilibrium Green’s function (NEGF) method, where

the coupling between graphene phonons and substrate surface phonons was believed to

be the dominant mechanism for interfacial thermal transport. As shown in Fig. 1.1a,

NEGF calculation suggests that most of the heat transfer is aided by out-of-plane

phonons in graphene, while in-plane ones are much less effective in transporting en-

ergy across the interface. Ong et al. also conducted spectral energy density (SED)

analysis for graphene, which showed that ZA phonons with moderate wave vectors

couples with the substrate most strongly. They attributed such behavior to flexural

resonance as described by Persson and Ueba [11], who proposed that GI should be
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Figure 1.1. (a) GI resolved by polarization, i.e., in-plane (xy) and
out-of-plane (z), as a function of T . (b) and (c) GI,measured and GI,real

as a function of filling fraction. Panels reproduced with permission
from: (a) Ref. 10; (b) and (c), Ref. 12.

dominated by the coupling between the flexural mode in graphene and the Rayleigh

mode at the substrate surface.

As for graphene/metal interfaces, density-functional theory (DFT) calculations

have revealed that the bonding between graphene and various metals can be cate-

gorized into two types — chemisorption and physisorption — of which the former is

characterized by strong bonding which opens a band gap in graphene while the latter

is weak that the Dirac-cone energy band of graphene is preserved [13]. Mao et al.

calculated RI of the side-contact interface between graphene and different metals (Ni,

Cu, Au, Pd) using the first-principles NEGF method [14]. The room-temperature RI
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of those interfaces was found to vary by one order of magnitude, but not monotoni-

cally decrease with increasing interfacial bonding strength.

1.2.2 Vertical Alignment of Graphene on Substrate

For vertical graphene on substrates, the computationally predicted RI is usu-

ally orders of magnitude lower than experimental data, and the incomplete filling of

graphene or CNT at the interface was believed to account for most of the discrep-

ancies [15, 16]. A parameter, which is often referred to as filling fraction or volume

fraction, is defined as the ratio of the contact area to the surface area of the sub-

strate. The contact area is wδ and πdδ for graphene and CNT in end-contact with

substrate, respectively. The real GI is usually computed from the measured values

by GI,real = GI,measured/filling fraction, but it is not known whether such linear de-

pendence still holds when there is considerable interlayer coupling between graphene

flakes at high filling fractions. Vallabhaneni et al. [12] used NEMD simulations to

study the filling fraction dependence of GI for graphene/Si interfaces. The Tersoff

potential for covalent C-Si bonding was used in their simulations. GI,real was found

to increase linearly with the filling fraction, indicating a negligible effect of interlayer

coupling on GI . They also computed the effective GI considering the highest possible

filling fraction for graphene in end-contact with Si, and the values are in the range

of 0.2-1.2 GW/m2-K, which are still orders of magnitude higher than experimental

values [15–17], suggesting much room for improvement in graphene and CNT based

thermal management solely by increasing the filling fraction.

In graphene-based nanocomposites, graphene flakes are embeded in an organic

matrix so that both the horizontal and vertical alignment of graphene exist in such

structures. Graphene flakes may improve the alignment of organic molecules adjacent

to their surfaces, which can affect the organic phase thermal conductivity. In addition,

the edges of graphene flakes are usually passivated with hydrogen or oxygen atoms

and such edge passivation was shown to affect the thermal conductance between
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graphene flakes [18]. Hu et al. studied graphene embeded in organic matrix with

MD simulations and observed that graphene can enhance the κ of nanocomposites

significantly [19, 20].

1.2.3 3D Architectures

Pillared graphene architectures (PGA) [21, 22] have been proposed for thermal

management applications, where the PGA is built in such a way that phonons can

transport easily in the two dimensions of the graphene plane, and can also readily

propagate in the third dimension which is parallel to the vertically aligned CNTs. This

design may be a solution to the practical problem of using graphene and CNT as TIMs,

i.e., the very low κ in the directions perpendicular to the graphene plane or CNT axis,

which could seriously degrade heat dissipation performance when they are misaligned.

Varshney et al. claimed that phonon scatterings at the CNT/graphene junctions

dominate the overall thermal resistance of PGA based on NEMD simulations [21],

and phonon transmission across individual CNT/graphene junction was modeled with

the phonon WP method by Lee et al. [22].

1.2.4 Beyond Phonon-phonon Coupling

In the above, the interfacial thermal transport is contributed solely by phonon-

phonon coupling across the interface between graphene and other materials. It should

be noted that thermal transport across the interface between graphene and metals

not only depends on phonon properties, but also on electron properties as well as

electron-phonon coupling [23, 24]. Besides, surface phonon-polariton scattering has

also been revealed to account for a significant part of heat dissipation from graphene

to polar substrates, e.g., SiO2 and hexagonal boron nitride (h-BN) [25]. Rigorous

atomistic modeling of the above processes would benefit the thermal management of

graphene-based devices but it is still lacking.
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1.3 Thermal Rectification

Thermal rectification (TR) is a phenomenon in which heat flow is directional

dependent, i.e., heat current changes in magnitude as the temperature bias is reversed.

A dimensionless parameter, thermal rectification ratio (η), is usually used to quantify

TR, which is defined as

η =
κforward − κreverse

κreverse
× 100%, (1.1)

where the subscripts forward and reverse denote the two opposite directions pointing

from one end to the other. TR is a thermal analogue of the electrical diode where

the current carrying ability of the device under forward bias is much higher than

under reverse bias. A perfect thermal rectifier would be one that is highly thermal

conductive in one direction while insulating in the other, and it is expected to work

as a promising thermal management component of electronics as chip size continues

decreasing or as a basic component for thermal computing [26].

Although the earliest proposal of TR in bulk 3D materials dates back to 1930s [27],

only since the middle of the last decade has extensive attention been paid to CNT and

graphene based systems [9, 12, 28–35]. To date, proposed thermal rectifiers include

physically/chemically functionalized GNRs and CNTs, or heterojunctions composed

of GNR/CNT and other materials. In all the existing designs, a spatial asymmetry

in geometry, defect concentration, isotope concentration, or an interface between

two materials is necessary for TR to occur, and η can be tuned by adjusting the

magnitude of such asymmetries [29–31]. Many other factors were also found to affect

η, for instance, high T usually reduces η, high ∆T enhances η, while η decreases with

the length of the system to zero in the bulk limit [35], or saturates when the length

increases [31].

Despite that many schemes are possible to be applied to make thermal rectifiers,

the fact that η can be reduced by the presence of lattice disorders such as edge rough-

ness [36] and defects [35,36] may make it difficult for the observation of significant TR
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experimentally, considering that η may not be high enough to prevail measurement

uncertainties.

1.4 Numerical Methods for Thermal Transport

In this section, we review a few numerical methods for modeling thermal transport

in solids, in particular, classical molecular dynamics (MD) simulations, the nonequi-

librium Green’s function (NEGF) method, and Boltzmann transport equation (BTE)

methods in conjunction with phonon properties predicted via other tools, e.g., den-

sity functional perturbation theory. These methods can either capture the thermal

transport behavior from all phonon modes as a whole, or track the contribution from

a single phonon mode based on its relaxation time, mean-free-path (MFP) and ve-

locity. They are appropriate for different phonon transport regimes or aspects, since

they deal with phonons in different manners, such as wave vs particle nature, time

vs frequency domain, different thermodynamic conditions, and different boundary

conditions (BC).

1.4.1 Classical Molecular Dynamics Simulations

Classical MD simulations model the movements of atoms based on the Newton’s

second law of motion and a knowledge of the interatomic potentials. They can di-

rectly model phonon thermal transport and naturally account for atomic details of the

structure such as defects, interface, strain, surface reconstruction, etc., which can pro-

vide atomic-level insights to thermal transport. Several MD schemes have been used

for modeling heat transfer, for instance, non-equilibrium MD (NEMD) [37], reverse

NEMD (RNEMD) [38], equilibrium MD (EMD) [37], thermal relaxation method [19],

wave-packet (WP) method [39], and phonon normal mode analysis (NMA) [40, 41].

The accuracy of MD is limited by the quality of empirical interatomic potentials

(EIP), and this has stimulated the invention of first-principles MD [42], which has

also been applied to thermal modeling recently [43–45]. The heat capacity in classical
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MD is the classical Dulong-Petit limit, i.e., Cp = 3NAkB, which deviates from the

quantum Cp at temperatures below the Debye temperature ΘD. This is a drawback

for high ΘD materials like graphene [46].

Non-equilibrium and reverse non-equilibrium molecular dynamicsNEMD

and RNEMD methods [37,38] are commonly used methods in computing the κ of ma-

terials. A constant temperature gradient ∇T is imposed across the simulation cell

to generate a constant heat current J in the NEMD simulations, and vice versa for

RNEMD. Based on the Fourier’s law, κ can be computed as κ = J/(∇T ·A), where A

is the cross-sectional area of the simulated cell. In either NEMD or RNEMD, ∇T or

J has to be maintained by two thermostats. The scattering of phonons by boundaries

or thermostats should limit the phonon MFP λ as

λ−1 = λ−1
∞ + L−1, (1.2)

where λ∞ is the intrinsic phonon MFP in the bulk limit and L was taken as the

distance between thermostats in Ref.37. Such size effect is significant for graphene,

whose κ has a large contribution from phonons with long λ. An extrapolation method

[37,47] based on Eq. (1.2) has been recommended to compute the κ in the bulk limit,

i.e., extrapolating the κ’s of several simulation cells of different length to infinite

length. These methods are conceptually simple and easy to implement into MD

simulations, and reasonable agreement with experiment can be achieved despite the

unphysically large temperature gradient across the nanosized simulation domain [37].

A convergence study can be performed to ensure that the system is in the linear

response regime where κ does not depend on ∇T . It should be noted that the use of

Eq. (1.2) implicitly assumes that a finite bulk-limit λ and hence κ must exist, which

may not be the case for certain low-dimensional systems of which the κ diverges with

length [48–50]. As NEMD and RNEMD are essentially the same despite the reversed

cause-and-effect relation between J and ∇T , we will refer to both of them as NEMD

in this review.

Green-Kubo method The Green-Kubo method is commonly employed in EMD

(we will refer to this method as GK-MD), which uses the heat current fluctuations to
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calculate κ based on the fluctuation-dissipation theorem [37,51,52]. Specifically, κ in

the x direction can be computed as [51]

κx =
1

kBV T 2

∫ ∞

0

< Jx(t)Jx(0) > dt, (1.3)

where kB, V , t and Jx denote the Boltzmann constant, volume of the simulation

cell, time and the heat current in the x direction. < Jx(t)Jx(0) > is the heat cur-

rent autocorrelation function (HCACF). We present the above formulation of the

Green-Kubo method instead of the more frequently cited, isotropic one [37] because

graphene, GNR and CNT are anisotropic and hence Eq. (1.3) causes less confusion

for the application to these materials. Besides evaluating κ from the direct integral of

the HCACF using Eq. (1.3), the HCACF can also be fitted to an exponential decay

curve first and then integrated [53]. So far, single [53], double [52] and triple [54] ex-

ponential fitting to the HCACF have been used to achieve acceptable fitting qualities.

The finite size of the supercells used in EMD simulations can affect κ in GK-MD [55],

and Ref. 56 also found that sufficiently long autocorrelation length is needed to accu-

rately predict the κ of GNRs. Therefore, a convergence study on supercell size and

autocorrelation length is needed.

Phonon wave-packet method The phonon WP method is a straightforward

way to capture the dynamic propagation and scattering of phonons by boundary,

interface, defect, etc. At the beginning of the simulation, the atoms are displaced

from their equilibrium positions accroding to a formular [39] which corresponds to a

wave packet centered at a specific phonon mode (k,ω) of the material and standing at

a specific position. Then the wave packet propagates towards the scatter at the group

velocity of the corresponding phonon mode. By computing the total energy of the

wave packet before and after its collision with the scattering center, the transmission

coefficient can be evaluated. One limitation of the WP method is that it cannot

capture anharmonic phonon scatterings due to the ∼0K simulation environment.

Normal mode analysis Similar to GK-MD, NMA is also used in EMD sim-

ulations. Based on the relaxation time approximation (RTA), NMA can be used to

compute κ using the extracted phonon dispersion and spectral phonon relaxation time
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τ(k,ω) [57]. The prediction of τ in NMA can be achieved in both time domain [40,58]

by computing the decay rate of spectral energy and frequency domain [59] by calcu-

lating the linewidth of spectral energy, of which the latter is the so-called spectral

energy density (SED) analysis. Using the predicted mode-wise τ and vg (from the

phonon dispersion) for each phonon mode (k, ν), where ν denotes the index of phonon

branches, κ can be evaluated under the RTA as

κx =
∑

k

∑

ν

c(k, ν)v2g,x(k, ν)τ(k, ν), (1.4)

where the subscript x indicates the longitudinal direction. An advantage of this

method over NEMD and GK-MD is that the the spectral vg, τ , and λ can be com-

puted, which gives more details of phonons.

1.4.2 Nonequilibrium Green’s Function Method

Similar to the phonon WP method discussed above, the NEGF approach, some-

times referred to as atomistic Green’s function, also deals with the transmission of

phonons. Unlike classical MD simulations, NEGF is valid at sub-ΘD temperatures

due to the quantum treatment of phonon distribution using the Bose-Einstein statis-

tics. In NEGF, the transmission function Ξ(ω) across the system can be computed

based on the Green’s functions built from the interatomic force constants of the sys-

tem. Details about the phonon NEGF approach can be found in Refs. 60 and 61.

The heat flux and hence the thermal conductance can be computed using Ξ(ω) via

the Landauer formula [60] as

J =

∫

h̄ω

2π
Ξ(ω) [n1(ω, T1)− n2(ω, T2)] dω, (1.5)

and

G =

∣

∣

∣

∣

1

T1 − T2

∫

h̄ω

2π
Ξ(ω) [n1(ω, T1)− n2(ω, T2)] dω

∣

∣

∣

∣

, (1.6)

where n1 and n2 are the phonon occupation number of the two leads, which are

at T1 and T2, respectively. This method can be referred to as “first-principles” if
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the force constants are extracted from density-functional theory (DFT) calculations.

Force constants predicted from tight-binding calculations were also used in NEGF

calculations [62]. For large systems containing hundreds of atoms or more, first-

principles calculations of the force constant matrix is computationally forbidden, so

the EIPs as those adopted by classical MD simulations have been used [63]. So

far in most NEGF studies only the harmonic force constants are used, limiting the

credibility of such approach to low temperatures at which the anharmonic phonon-

phonon scattering is insignificant. Recently, anharmonic atomistic Green’s function

calculation has also been attempted [64].

1.4.3 Boltzmann Transport Equation

Based on the perturbation theory, the phonon BTE for a phonon mode i under a

temperature gradient ∇⃗T is given as [51,65]

−v⃗g,i · ∇⃗T
∂ni

∂T
+

(

∂ni

∂t

)

collision

= 0, (1.7)

which describes the balance of phonon population n (occupation number) between

the diffusive drift (first term) and collision (second term, also refered to as scattering)

of phonons. Several techniques for thermal transport modeling based on Eq. (1.7) has

been developed [65, 66]. The most widely used are those based on the single-mode

relaxation time approximation (SMRTA), where every mode is assigned a relaxation

time (τi) accounting for the net effect of different scattering mechanisms, i.e., the

collision term in Eq. (1.7) is approximated as
(

∂ni

∂t

)

collision

=
ni,o − ni

τi
, (1.8)

where ni,o is the occupation number of phonon mode i under thermal equilibrium,

i.e., the Bose-Einstein distribution. The relaxation time τ is the time constant for

a phonon mode to return to its equilibrium occupation from a nonequilibrium one.

SMRTA is only a first-order approximation to the phonon BTE, which neglects the

deviation of τ from equilibrium values when the system is in non-equilibrium states.
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Beyond the SMRTA, Omini and Sparavigna [66] developed an iterative scheme that

can solve the linearized Boltzmann equation accurately, which has been adopted

by Broido and coworkers on phonon thermal transport in various solids, including

graphene and CNTs, in the past few years [67, 68]. This method takes into account

the modification to τ due to non-equilibrium population of all the phonons undergoing

various scattering processes, so it does not suffer from the limitations of the SMRTA.

For high-κ materials such as graphene and CNTs, the relaxation time of the Umklapp

(U) process is strongly modified owing to the shift of equilibrium phonon population

by the strong normal (N) process. As a result, the iterative scheme is more accurate

than SMRTA, especially for high-κ materials with strong N process [69].

It is beneficial to make a comparison between this iterative BTE method with the

NMA method discussed in Section 1.4.1 as both methods deal with phonon scatterings

spectrally. On one hand, the iterative BTE method is advantageous over the NMA

method in that the former gives an accurate solution to the linearized phonon BTE

while the latter computes κ based on SMRTA. In addition, τ computed from NMA

contains contributions from both N and U processes, so directly using the as-predicted

τ tends to underestimate κ because only the U process directly contributes to thermal

resistance. On the other hand, NMA has the advantage that it can capture the lattice

anharmonicity to all orders, while the iterative BTE method is usually limited to first-

order anharmonicity. Lindsay et al. have suggested that the neglect of higher-order

anharmonicities could result in inaccurate prediction of the length-dependence of κ

in SWCNTs [69].

1.5 Objective

This research explores structures with unique heat transfer properties for thermal

management applications. It also seeks to build a more accurate and comprehensive

understanding of electron, phonon transport, and the coupling between them, in order

to guide the design of strategies to enhance heat dissipation in solid-state devices.
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1.6 Organization of this thesis

This thesis is organized as follows. In Chapter 2, we study the thermal con-

ductivity of graphene and graphene nanoribbons. In Chapter 3, we investigate the

thermal rectification phenomenon in graphene and graphene nanoribbon, and strive

to generalize the idea to a broader class of nanostructures. Chapter 4 is on thermal

transport in superlattices and random multilayers, in which we investigate coher-

ent and incoherent phonon transport in multi-layered structures and their promise as

thermoelectric materials for active on-chip thermal management. In Chapter 5, we in-

troduce a two-temperature nonequilibrium molecular dynamics method to investigate

electron-phonon coupled thermal transport across metal-nonmetal interfaces. Chap-

ter 6 deals with first-principles evaluation of phonon-phonon and phonon-electron

scattering rate, which allows us to compute the lattice thermal conductivity of mate-

rials. In Chapter 7, we introduce a 1D electron-phonon coupled Boltzmann transport

equation method and use it to investigate the effect of metallic interlayer on thermal

transport across Au/Si interface and on hot electron cooling dynamics in Au thin

films. In Chapter 8, we describe a Monte Carlo method to solve 3D electron-phonon

coupled Boltzmann transport equations. Finally, we conclude this work in Chapter

9.
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2. THERMAL CONDUCTIVITY OF GRAPHENE NANORIBBONS

2.1 Introduction

Graphene has been recognized as a potential substitute for silicon in the electronics

industry, mainly owing to its outstanding electronic and thermal properties [5, 7–9].

The tunable band-gap opening and edge-chirality dependent electronic property of

graphene nanoribbon (GNR), a narrow strip of graphene, makes the vast application

of graphene-based devices even more promising [5,6]. GNR has also been predicted to

have edge-chirality dependent thermal conductivity (κ), which was mostly predicted

to be higher in zigzag-edged GNRs (zGNR) than armchair-edged ones (aGNR), i.e.,

∆κ = κzGNR − κaGNR > 0, though the underlying mechanism remains to be an open

question [9, 70–73].

The notable difference between the topology of zigzag and armchair edges can

lead people to attribute ∆κ to the surface/edge roughness scattering as usually seen

in nanostructures [73–75]. As for thermal transport, the consideration of the sur-

face/edge roughness scattering is usually meaningful only when the RMS height of

the surface/edge variation (δ) is comparable to the dominant phonon wavelength

(λdom) for carrying heat. For narrow GNRs, the thermal conductance (G) can be

estimated by integrating the Landauer formula over the entire first Brillouin zone

(FBZ) as,

G(T ) =

∫

FBZ

vg(k)

2π
Ξ(k)h̄ω(k)

∂f o(T )

∂T
dk, (2.1)

where vg, Ξ, h̄ω and f o are the group velocity, transmission probability, energy and

distribution of the phonons. We consider phonons with a sinusoidal dispersion, ω(k) =

ωmax sin(ka/2), with a denoting the lattice constant of graphene (2.46Å) and ωmax =

250 THz the cutoff angular frequency. The form of f o depends on whether the system

is quantum or classical and Ξ is taken to be a constant.
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Figure 2.1 indicates that long wavelength phonons (λdom > 1 nm) dominate ther-

mal transport in GNRs. The wave nature of phonons indicates that it is beyond the

resolution of those phonons with a λ much longer than the δ of the smooth edges

of the GNRs (δzGNR ≈ 0.2Å, δaGNR ≈ 0.6Å) to distinguish their edge structure,

and hence edge roughness scattering should be excluded as the cause for the large

∆κ observed in previous studies using molecular dynamics (MD) or Green’s function

method [9, 72]. A mechanism relatively independent to λ will be explored in this

work.

2.2 Methodology

It should be noted that previous MD studies on ∆κ mainly used non-equilibrium

technique, which might suffer severe size effect due to the strong phonon–thermal

bath scattering and the applied temperature bias induces extremely high temper-

ature gradient and hence seriously inhomogeneous thermal strain in the nanosized

simulation cells. Unfortunately, the κ of GNR relies greatly on system length and

strain, and it is not clear whether these factors will affect the validity of those MD

studies qualitatively. Herein we use the LAMMPS package [76] to perform equilib-

rium MD simulations to calculate the κ of GNRs with the Green-Kubo method. The

optimized Tersoff potential parameters [77], which are characterized by more accurate

phonon dispersion and anharmonicity than the original set [78], are used to model

C-C interactions. The periodic boundary condition (bc) is applied to the length di-

rection and free bc is used for the other two directions. κ is calculated from the

longitudinal (subscript L) heat current autocorrelation function (HCACF) by

κLL =
V

kBT 2

∫ τ

0

⟨JL(τ)JL(0)⟩ dτ (2.2)

where V and T are the volume and temperature of the GNR, and kB is the Boltzmann

constant. The full heat current vector J⃗ is computed as

J⃗(t) =
1

V

{

∑

i

v⃗iϵi +
1

2

∑

i,j,i ̸=j

r⃗ij(F⃗ij · v⃗i) +
∑

i,j,k

r⃗ij
[

F⃗j(ijk) · v⃗j
]

}

(2.3)
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where v⃗ and ϵ denote the velocity and energy of the atom i, and r⃗ and F⃗ are the

distance and the two/three-body interaction between different atoms (i, j or k). The

GNR is first relaxed at zero pressure and prescribed temperature via the Nosé-Hoover

thermostat for 0.8 ns (0.4 fs/step). Then it is switched into the NVE ensemble for

another 10.8 ns of which the last 10 ns are used to calculate the HCACF. We have

found that an autocorrelation (AC) length shorter than 5 ns can result in largely

inaccurate results, thus a sufficiently long AC length is crucial for the validity of this

method. We have also checked the length (l) dependence of κ, and a saturating trend

starts when l > 6.0 nm but longer l suffers much less statistical fluctuation. A system

length of 15 nm is used for all simulations in this work. This method does not need

thermal bath during the data production process, resulting in much less phonon–

thermal bath scattering and thermal strain inhomogeneity, which is advantageous to

previous MD works [9, 79, 80].

2.3 Results and Discussions

We compare the κ of aGNRs and zGNRs in Fig. 2.2. As shown in Fig. 2.2a,

both κaGNR and κzGNR decrease with T while the latter is always higher. The T

dependence is mainly due to the enhanced Umklapp scattering, and it affects zGNR

more strongly than aGNR so that the κ of them eventually becomes the same at

temperatures higher than 600 K, when Umklapp scattering dominates. These results

agree qualitatively with previous MD simulations [79,80], though they obtained lower

κ due to the size effect or the different interatomic potential used. Figure 2.2b shows

that κ increases with width for both types of GNRs. The κ of bulk graphene is

also computed by applying the periodic bc to the width direction, and the values are

essentially the same for the zigzag and armchair directions (∼1200 W/m-K) at 300

K. This indicates that the presence of edges in GNR breaks the isotropy of κ of bulk

graphene, endowing it with chirality and width dependence.
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Noting that Eq. (2.3) can be used to compute the local heat flux vector for a spe-

cific group of atoms, we calculate the cross-sectional distribution of the longitudinal

heat flux in GNRs, i.e., α = Local J/Total J . As shown in the inset of Fig. 2.3, the

cross-section of a GNR is uniformly divided into eight columns, and a constant heat

flux (1.0 eV/ps) is added to or subtracted from either end by directly rescaling the ki-

netic energy to establish a steady-state heat conduction condition with constant heat

flow. The α for aGNRs and zGNRs are plotted in Fig. 2.3, and we note that the heat

flow near edges is significantly suppressed, especially in aGNRs. Similar phenomenon

has been reported in Si/Ge core-shell nanowires, Si nanowires and nanotubes, where

phonon localization was found to suppress the heat transport near the surface of the

nanowire or nanotube greatly [81,82]. Here our results suggest that smooth edges in

nanoscale 2D materials can also play a crucial role in thermal transport.
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To further explore the underlying mechanism, we calculate the phonon vibrational

density of states (vDOS) and the phonon participation ratio (p) [83]. The former is

calculated from the Fourier transform of the velocity-velocity AC functions, and the

latter, defined for each eigen-mode (γ), is computed as

p−1
γ = N

∑

i

(
∑

ξ

ϵ∗iξ,γϵiξ,γ)
2 (2.4)

where ϵiξ,γ is the eigen-vector component of the γth normal mode of the lattice vibra-

tion in polarization ξ (x, y or z), and i sums over all the atoms of interest. We use

the superposed ∗ symbol to denote complex conjugate in this work. By definition,

pγ = 1 if the γth mode is completely delocalized and pγ = 1/N for complete localiza-

tion. As shown in Fig. 2.4a, the vDOS is almost the same for bulk graphene, aGNR

and zGNR at most frequencies except strong peaks or valleys present in both aGNR

and zGNR while absent in bulk graphene near the center and the tail of the vDOS.

Figure. 2.4b shows that these modes are localized, which cannot transport thermal

energy as efficiently as the delocalized ones [81, 83].

Based on Eq. (2.4), we can evaluate the spatial distribution of eigen-modes in a

specific range, Γ = {γ : pγ < pc}, by

Φξ,Γ(i) =

∑

γ∈Γ
ϵ∗iξ,γϵiξ,γ

∑

j

∑

γ∈Γ
ϵ∗jξ,γϵjξ,γ

(2.5)

where pc denotes a criteria for localization. In Fig. 2.4c, we plot the Φξ=z for the

modes within Γ = {γ : pγ < 0.4} for aGNR and zGNRs, and Γ = ΓaGNR ∪ ΓzGNR for

graphene, where a large value of Φ indicates a high concentration of the corresponding

set of eigen-modes at atom i. It is obvious that the localized modes indicated by

Fig. 2.4b are localized on the edges of GNRs, and is stronger in aGNR than in zGNR.

Moreover, the magnitude of Φ decreases exponentially with the distance to edges,

which results in less suppression of thermal transport in the central region of GNRs.

These phonon spectra analyses combined with the non-uniform heat flux distribution

shown in Fig. 2.3 indicate that the strong edge localization of phonons suppresses
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thermal transport in GNRs greatly and is responsible for the ∆κ between aGNR

and zGNR. Besides, localized modes can induce inelastic phonon scatterings at the

boundary, which reduces κ if the interaction is anharmonic.

2.4 Summary

To summarize, we conducted equilibrium MD simulations with the optimized

Tersoff potential, and confirmed that κ of zGNRs is higher than that of aGNRs with

the same width at a wide range of temperature, though κ was found to be the same

for the zigzag and armchair directions in bulk graphene. Edge roughness scattering

should be excluded as the reason for such phenomenon, since the dominant phonon

wavelength estimated from the Landauer formula can be orders of magnitude longer

than the difference between the δ of smooth zigzag and armchair edges, and hence

it lacks the resolving power to distinguish between them. By decomposing the heat

flux along the width direction of a GNR, we observed strong suppression of thermal

transport at edges. Analyses on the vDOS and the participation ratio revealed strong

localization of phonons in regions near and at the edges of GNRs, especially aGNRs,

which suppresses thermal transport. Besides, the enhanced phonon scattering by

those localized modes can further reduce κ. Our work revealed the importance of

edges to thermal transport in GNRs, and indicates an efficient way to tune the thermal

property of 2D materials by engineering the edges.
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3. THERMAL RECTIFICATION

3.1 Introduction

Inspired by the impact of electric diodes on the electronics industry, extensive

attention has been given to the search of rectification of various other transport

processes [26, 28, 84]. Thermal rectification (TR) is a diode-like behavior where the

heat current changes in magnitude when the applied temperature (T ) bias is reversed

in direction. A perfect thermal rectifier would be one that is highly thermal conductive

in one direction while insulating in the other, and it is expected to work as a promising

thermal management component of electronics as chip size continues decreasing, or

as a stand-alone thermally driven computing system replacing the electronic ones in

certain conditions.

Numerous studies have predicted or demonstrated the existence of TR in bulk

or nanosized systems, most of which are heterojunctions (HJ) or graded systems

[28, 34, 35, 85–89]. For two-segment systems, TR was usually attributed to the dif-

ferent T -dependence of the thermal conductivity (κ) [86, 87], and for interfaces TR

has been interpreted as the different phonon spectra mismatch before and after re-

versing the applied T bias [85]. Phonon localization was suggested to play a role as

well [90,91]. Recently, TR was also predicted to occur in asymmetric pristine carbon

nanostructures [9, 31,34], which are composed of a single material and are attractive

for their simple structure and high thermal conductance. Here by “single material”

we mean a single and homogeneous material, hence for instance a system composed of

both pristine and defected segments is not qualified as a “single material”. However,

the origin of TR in such homogeneous nanostructures remains unclear. In this work,

we use molecular dynamics and analytical derivations, that phonon confinement in

the lateral dimension is required for TR to occur in asymmetric homogeneous struc-
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tures made of a single material. We further show that phonon lateral confinement

can enable several possible mechanisms which lead to TR, and when the system

lateral size becomes large, all these mechanisms do not hold any more, hence TR

disappears. This work reveals the key role played by phonon lateral confinement

due to edge/surface effects of phonons in TR in asymmetric homogeneous structures,

and will provide rational guidance for both theoreticians and experimentalists for the

design and application of this new type of thermal rectifier.

3.2 Homogeneous Nanoribbon

Non-equilibrium molecular dynamics (NEMD) simulations are performed for graphene

nanoribbons (GNR) using the LAMMPS package [76]. The optimized Tersoff poten-

tial [77] is adopted for modeling C-C interactions. Schematics of the supercells are

shown in Fig. 3.1a, where the atoms at the two ends are fixed to make a suspended

structure, and the free boundary condition is applied to the Y and Z directions. The

GNRs are first relaxed in the NVT ensemble for 5× 106 time steps (0.4 fs/step) with

the Nosé-Hoover thermostat. Then NEMD is performed for another 8 × 106 steps.

We use the Berendsen thermostat as heat baths, and maintain the same number of

atoms adjacent to the two ends of the GNR at different T (300 K for the hot end

and 300 K−∆T the cold). The net heat current due to the bias ∆T is computed

as J = (∂Ehot/∂t+ ∂Ecold/∂t) /2, where Ehot and Ecold are the total energy that

has been added to or subtracted from the atoms in the hot and cold thermostats,

respectively.

The TR ratio (η) is defined as

η =
κforward

κbackward
− 1 =

Jforward

Jbackward
− 1 (3.1)

where the subscripts indicate whether the rectifier is operated at forward (heat flows

left-to-right or wider-to-narrower) or backward bias. Figure 3.1b shows J as a function

of the imposed |∆T | in a trapezoidal-GNR. Sufficiently high ∆T is needed to initiate

TR and the direction of decreasing width (η > 0) is favored, which is consistent with
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Figure 3.1. (a) geometrical definition of the length (L) and width (w)
of the trapezoidal-GNRs and T-shaped GNRs; the width ratio of the
GNRs is maintained at 3:1; the forward direction is indicated by the
arrows. (b) heat current in a trapezoidal-GNR as a function of |∆T |.
(c) temperature profiles in the trapezoidal-GNRs. (d) η as a function
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√
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trapezoidal-GNRs. Figure reproduced from Ref. [92].
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Figure 3.2. Schematic of the structure of an arbitrary shape applied
with forward (left) and backward (right) temperature bias. S1 and
S2 denote two surfaces maintained at Thot and Tcold respectively for
the forward direction and reversed for the backward direction. Sins

denotes insulating (adiabatic) thermal boundaries. Jf and Jb are the

total heat transfer rates, and J⃗ ′′

f (x⃗) and J⃗ ′′

b(x⃗) are the local heat
fluxes. Figure reproduced from Ref. [92].

previous studies on triangular ones [9,31]. The temperature profiles for the forward

and backward cases are plotted in Fig. 3.1c, which demonstrates higher temperature

gradient and hence lower κ at narrower region. As the length (L) and width (w) of

the trapezoidal-GNR change by the same scale (L= 2
√

(3)w) when its size changes,

we also study T-shaped GNRs (the lower structure in Fig. 3.1a) to evaluate which

dimension has a more profound effect on TR. As shown in Fig. 3.1d, η of T-shaped

GNRs decreases quickly with increasing w, but much more slowly with L, indicating

that a sufficiently small lateral dimension is crucial for TR. In such narrow GNRs,

phonons propagating in or close to the length direction are the predominant heat

carriers, and the upper and lower edges are the dominant phonon scattering centers.

The strong lateral size dependence of TR motivates us to formally check if TR

can exist in asymmetric structures of bulk size. We consider an asymmetric geometry

with arbitrary dimension and shape as shown in Fig. 3.2, of which the surfaces S1

and S2 are maintained at Thot and Tcold respectively for the case of forward bias and

vice versa for backward, and the remaining surfaces are insulated. For the insulated
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(adiabatic) surfaces Sins’s shown in Fig. 3.2, we have ∂T
∂ν⃗ |Sins

= 0, where ν⃗ is the

surface normal vector. Heat conduction is governed by the heat diffusion equation,

∇⃗ ·
{

κ [T (x⃗)] · ∇⃗T (x⃗)
}

= 0, (3.2)

where κ is the thermal conductivity tensor which only depends on temperature

in the bulk regime, but it is not necessarily isotropic. If we set the axes of the

coordinate system along the principal directions, i.e., κ is diagonal, we can lin-

earize Eq. (3.2) through the Kirchhoff transformation by defining a new quantity,

Ki(T ) =
∫ T

ϵ κi,i(T )dT + κi,i(ϵ), where κii is the ith component of the diagonal of the

thermal conductivity tensor. It is evident that κi,i(T ) =
∂Ki(T )

∂T . Physically, ϵ can be

of any non-negative value as long as it is lower than any phase-change temperature.

Therefore,

κi,i[T (x⃗)] ·
∂T (x⃗)

∂xi
=
∂Ki[T (x⃗)]

∂xi
, (3.3)

and Eq. (3.2) becomes
∑

i

∂2Ki

∂x2
i

= 0. (3.4)

For the forward and backward cases, the only difference regarding Eq. (3.4) is

the boundary conditions at the two surfaces S1 and S2. We now have a complete set

of partial differential equations together with boundary conditions for the two cases,

which are
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N
∑

i=1

∂2Ki,f

∂x2
i

= 0,

∂Kf

∂ν⃗ |Sins
= 0,

Ki,f |S1
= Ki(Thot),

Ki,f |S2
= Ki(Tcold),

(3.5)
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for the forward case, and
⎧

⎪

⎪

⎪

⎪
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⎪

⎨
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⎪

⎪

⎩

N
∑

i=1

∂2Ki,b

∂x2
i

= 0,

∂Kb

∂ν⃗ |Sins
= 0,

Ki,b|S1
= Ki(Tcold),

Ki,b|S2
= Ki(Thot),

(3.6)

for the backward case, respectively. Summing up Eqs. 3.5 and 3.6 generates
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N
∑

i=1

∂2Ki,t

∂x2
i

= 0

∂Kt

∂ν⃗ |Sins
= 0,

Ki,t|S1
= Ki(Thot) +Ki(Tcold),

Ki,t|S2
= Ki(Tcold) +Ki(Thot).

(3.7)

where we have defined Ki,t[T (x⃗)] = Ki,f [T (x⃗)] +Ki,b[T (x⃗)]. The subscripts f , b, and

t stand for ”forward”, ”backward”, and ”total”, respectively.

The solution to Eq. (3.7) is unique and must be a constant

Ki,t = Ki(Thot) +Ki(Tcold) = const. (3.8)

Therefore,
∂Ki,t

∂xi
=
∂Ki,f

∂xi
+
∂Ki,b

∂xi
= 0. (3.9)

Plugging in Eq. (3.3) leads to

κ(Tf ) ·
∂Tf

∂x⃗
+ κ(Tb) ·

∂Tb

∂x⃗
= 0, or J⃗ ′′

f (x⃗) + J⃗ ′′

b(x⃗) = 0, (3.10)

which means that for any N-dimensional structure with anisotropic and

temperature-dependent κ, at any position x, the local heat flux vectors

(J⃗ ′′

b and J⃗ ′′

b) in the forward and backward cases are of the same mag-

nitude but in opposite directions. As an immediate result, the heat transfer

rates for the two cases must be equal, i.e., Jf = Jb. This is a strong conclusion of

the absence of TR in bulk-size single-material homogeneous structures. To verify
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Figure 3.3. Numerical verification for isotropic κ. The inset is the
structure used for the numerical calculations. The heat flux, which has
x and the y components, is measured along an arbitrary path (from
the filled circle to the filled square) as a function of the distance to
the starting point. f and b represent forward and backward cases,
respectively. Figure reproduced from Ref. [92].

Eq. (3.10), we have also solved the heat transfer problem for the systems in Fig. 3.2

using the finite element method. The structure is a right trapzoid, as shown in the

inset of Fig. 3.3. For the forward case, the temperature is maintained at 600 K on

the left end, and 10 K on the right end, and vice versa for backward. We consider

both isotropic κ and anisotropic κ cases, and the results are plotted in Fig. 3.3 and

Fig. 3.4, respectively, with the κ-T curves in Fig. 3.5.

We select an arbitrary path across the structure, and measure the the heat flux

vector J⃗ ′′ as a function of position on this path. In both Fig. 3.3 and Fig. 3.4, the

heat flux vectors at any position are same in magnitude but opposite in direction for

forward and backward cases. The results verifies our analytical proof of the absence

of thermal rectification in asymmetric bulk-size single material.

It should be noted that for bulk-size heterojunctions, κ not only depends on

temperature, but also on space, leading to the possibility of TR [88,89,93]. This is a

different behavior from that of bulk-sized homogeneous structures of a single material.
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The fact that single materials with a bulk lateral dimension cannot generate TR

indicates that the phonon lateral confinement is necessary for TR to occur. This

is a key finding of this work. In the phonon lateral confinement regime, the effects

of lateral boundary on phonon properties are important. To explore why phonon

lateral confinement is necessary, we examine several mechanisms that are known to

be relevant in other TR systems.

We first examine the phonon spectra mechanism [31], i.e., the amount of over-

lap (Ψ) between the phonon spectra of the two sides of the structure changes after

switching the thermostats. It has been commonly used to explain TR across inter-

faces between two dissimilar materials [35,85,94,95]. The vibrational density of states

(vDOS) in Fig. 3.6a is computed as the Fourier transform of the out-of-plane compo-

nent of the atomic velocity-velocity autocorrelation function. The vDOS is broadened

when cutting a bulk graphene into a nanoribbon where edges are present. In parallel

with Eq. (3.1), we define H = Ψforward/Ψbackward − 1 to quantify the phonon spec-

tra overlap. Figure 3.6b shows that the spectra overlaps are indeed different before

and after switching the thermostats for both in-plane (p = X − Y ) and out-of-plane

(p = Z) polarizations. We note that such difference is enabled by the small ribbon

width, so that the local phonon spectra not only depends on temperature, but also on

the width. The dependence of phonon spectra on the lateral size of nanostructures

was observed previously [96]. TR due to phonon spectra mismatch resulted from

device-thermostat interactions was reported in a diamond nano-pyramid [90]. If the

width increases to macroscopic size, the local phonon spectra will only depend on

the temperature, and the phonon spectra overlap will be the same before and after

switching the thermostats, thus TR vanishes. In contrast, the difference in phonon

spectra overlap across interface in heterojunctions [35,85,94,95] is enabled by two dif-

ferent materials, not by the confined lateral dimension. Hence, increasing the lateral

dimension for an interface will not affect its TR.
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The second possible mechanism is the inseparable dependence of κ on T and space,

which has usually been used to explain TR in bulk materials, such as two-segment

bars of different materials [86, 87, 93]. Note that κ is given as

κ ∝
∫

dωvg(ω)λ(ω)h̄ωD(ω)∂[n(ω, T )]/∂T, (3.11)

where ω, vg, λ, D and n are the angular frequency, group velocity, mean free path,

density of states and the distribution function of phonons, respectively, and h̄ is the

reduced Planck constant. For our GNR, the phonon lateral confinement effect can

make both λ and D dependent on the width, so that the local κ becomes space-

dependent. Such width-dependent κ of GNR has been previously reported [56, 70,

80, 97]. Under this condition, heat conduction does not follow Eq. (3.10), and TR

can occur. Here we note that the inseparability in asymmetric GNRs is enabled

by the phonon lateral confinement effect [56], not by using two different materials

in the two-segment bars. As the width of the asymmetric GNR increases to bulk

size, κ only depends on T , thereby no TR can occur. Also, it is apparent that the

inseparable thermal conductivity mechanism and the phonon spectra mechanism are

not independent, since κ depends partially on D(ω).

To explicitly show the role played by the small width on λ(ω), we explore the

third possible mechanism — phonon localization, which has been suggested as a

mechanism of TR in Ref. 34 for carbon nanocones and also reported in Ref. 90 for

diamond nano-pyramid.

We use the participation ratio defined in Eq. (2.4) to quantify phonon localization,

where we refer to p < 0.4 as phonon localization, which ensures that all phonons in

the bulk graphene are delocalized under this criteria. We can also picture the spatial

distribution of a specific range (Λ) of normal modes using Eq. (2.5). A larger value

of φiα,Λ indicates stronger localization of modes Λ on the ith atom.

Figure 3.7a shows pλ for the bulk graphene and a T-shaped GNR. As we can see, pλ

of the GNR is usually less than that of the bulk graphene, indicating stronger phonon

localization in the former. The spatial distribution of the localized modes (LM) shown

in Figs. 3.7b and c reveals that localized modes prefer edges. When heat flows in the
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direction of increasing width (Fig. 3.7c), more LMs can be found on the narrower

end, which acts as the bottleneck of thermal transport channel in such narrow GNRs.

Therefore, delocalized modes have a narrower channel of propagation, and hence the

effective κ is reduced. Phonon localization can also be enhanced on the wider side

when heat flows in the decreasing width direction (Fig. 3.7b), but has less effect

on thermal transport since the channel bottleneck is usually still the narrower end.

Besides, LMs on edges can act as collision centers for other phonons, which alters λ(ω)

and makes it space-dependent. In this sense, the phonon edge localization mechanism

is correlated to the inseparable thermal conductivity mechanism through the space-

dependent λ(ω). The above mechanism selects the direction of decreasing width as

the favored direction of thermal rectifiers. When the GNR width increases to bulk

size, three-phonon scattering dominates while edge scattering becomes unimportant,

hence, TR disappears as depicted in Fig. 3.1d.

To explore the origin of edge localization, we examine the spring constant spectra

of the edge atoms and the interior ones in T-shaped GNRs. By calculating the

restoring force ∆F after a small displacement ∆r of an atom, we can obtain the

spring constant spectra of C atoms in different regions of a GNR with Γ = −∆F/∆r.

The results are plotted in Fig. 3.8. Compared with the interior atoms, the spring

constant spectra of the edge atoms are broadened into higher and lower strength

regions. The interior atoms have a much better translational symmetry than edge

atoms that lose neighbors on one side. The low frequency tail results from the loss

of neighbor atoms, which makes the environment softer; on the other hand, the high

frequency tail is caused by reconstructions of the edge C-C bonds [91], which shortens

the bonding length and makes the bonds harder. The distorted spring constant

spectra place edge atoms in a quite different force environment from interior ones,

which facilitates the generation of LMs. Moreover, since temperature affects the

mean square displacement of C atoms directly, the spring constant disorder can be

amplified by higher T . Consequently, higher∆T and asymmetric geometry are needed

to generate LMs asymmetrically and hence rectify heat flow, which can be confirmed
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Figure 3.8. Spring constant spectra of (a): in-plane motion and (b):
out-of-plane motion of atoms. Figure reproduced from Ref. [92].

by Fig. 3.1b and d. As the non-equilibrium Green’s function (NEGF) method uses

constant spring constants due to the high computational cost requested by a T-

dependent and anharmonic one, the previous NEGF study predicts no TR for two-

terminal GNRs since no asymmetric phonon spectra like Fig. 3.7b and c can be

generated, and multiple-terminal devices are needed which produces TR owing to a

different mechanism [98].

Phonon spectra of materials are usually broad, but the localization of phonons are

selective to only certain modes. The broad spectra of phonons limits the efficiency of

TR significantly below its electric counterpart which benefits from the fact that only a

narrow spectra of electrons around the Fermi level contribute to conductance. In view

of this analogy, TR can be potentially enhanced by narrowing the phonon spectra,

such that all modes are localized in one direction of heat transport but delocalized in

the opposite.
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In the above, we have shown that TR in asymmetric GNRs can be explained

by three possible mechanisms: phonon spectra overlap, inseparable dependence of κ

on T and space, and phonon edge localization. All mechanisms require small GNR

width so that phonons are confined. Therefore, phonon lateral confinement is the

fundamental origin of TR in such asymmetric homogeneous materials. Based on

these findings, we have also checked other asymmetric nanostructures such as non-

uniform nanowires, thin films, and quantum dots, as shown in Fig. 3.9, which may also

exhibit TR if they are in the phonon confinement regime, i.e., the lateral dimension

is small enough compared to λ. It should be noted that Fig. 3.9e shows a structure

similar to that proposed in Ref. 99, but in our case the edges of both sides of the

teeth are smooth, while in Ref. 99 the specularities of the two sides are different.

In addition, our mechanism is significantly different from Lee et al.’s mechanism of

phonon confinement. [90] Our phonon edge confinement is in the device itself, while

Lee et al.’s confinement focuses on the interaction between the device and contacts.

These mechanisms can possibly be combined to achieve higher η. We note that a

recent experimental study reported TR in large-size reduced graphene oxide [100],

and the TR was attributed to the asymmetric geometry. Based on our findings, we

argue that the asymmetric geometry is not sufficient and their TR is probably due

to other mechanisms or experimental uncertainty. For example, graphene with both

pristine and defected segments can sustain TR at large size. [35]

3.3 Asymmetrically Defected Graphene Nanoribbon

Defect engineering is also a promising approach for making thermal rectifiers.

Here we propose the pristine-defected GNR as a promising thermal rectifier and

systematically study the effects of design parameters. Compared with other materials,

the 2D nature of graphene and GNR allows for much easier artificial introduction of

defects, which is essential for tailoring the thermal and electrical properties of pristine

materials for various applications including TR.
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(a)  η=0.39 (b)  η=0.18

(c) η=0.33
(d) η=0.10

(e) η=0.24

Figure 3.9. Homogeneous nanostructures as potential thermal recti-
fiers: (a) nano thin films with non-uniform thickness, (b) asymmet-
ric quantum dots, (c) nano thin films with non-uniform width, (d)
non-uniform nanowires, and (e) thermal rectifier series as proposed in
literature [99], but with atomic smoothness for all edges. Directions
of higher κ and the value of η are indicated. (a)-(d) have diamond
lattice while (e) is cut from graphene, and all η’s are calculated using
the optimized Tersoff potential at T = 300 K and ∆T = 90 K. Figure
reproduced from Ref. [92].
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As shown in Fig. 3.10a, single-vacancy (SV) and di-vacancy (DV) can be created

by removing a single C atom or two neighboring atoms. If a C-C bond is rotated

by 90◦, four hexagons in the graphene lattice are transformed into two pentagons

and two heptagons, which forms the Stone-Wales defect [SW(55-77)]. These types of

point defects were found to reduce the κ of pristine GNRs significantly (> 65%) with

a concentration of one defect per thousand atoms [101]. Substitutional silicon defect

(Si) was also predicted to be stable in GNRs and correlated with a drastic reduction

of κ in a first-principles study [102]. In our work, defects are created randomly,

based on a prescribed concentration (α), in the right side of the GNR, as indicated

by the dashed line in Fig. 3.10b. α is defined as the ratio of the number of defected

nodes to the total number of the nodes in the right side of the hexagon network. Non-

equilibrium molecular dynamics is performed using LAMMPS [76]. Periodic boundary

condition is applied to the width (Y) direction to eliminate the edge effects, as the

dangling edges are also defects (extended defect) in a broad sense [101]. We have

checked that the width has minor effect on simulation results for GNRs wider than

3.3 nm, and hence the 4.0 nm wide GNRs used here suffer negligible size effects in the

Y direction. The outermost columns of atoms at the two ends of the GNR in the X

direction are fixed to avoid the sublimation of atoms, and free boundary condition is

applied to the cross-plane direction. The C-Si and C-C interactions are modeled with

the original [78] and the optimized [77] Tersoff potential, respectively. The GNR is

first relaxed at zero pressure and constant temperature, T , for 3 ×106 time steps (0.25

fs per step) using the Nosé-Hoover thermostat. Then, two different temperatures, i.e.,

T + ∆T/2 and T − ∆T/2, are applied to regions adjacent to the ends of the GNR

using two Nosé-Hoover thermostats, and steady state is achieved after 0.5 ns. The

simulation is then continued for another 2 ns for data collection. The heat current

resulting from the temperature bias, ∆T , is computed as J =
(

dEhot

dt + dEcold

dt

)

/

2,

where Ehot and Ecold are the total energy that has been added to or subtracted from

the atoms in the hot and cold thermostats, respectively.



40

Single-vacancy
(SV)

Pristine region Defected region

(a)

(b)

Di-vacancy
(DV)

Substitutional Si
(Si)

Stone-Wales
[SW(5577)]

X

Y

Figure 3.10. (a) Types of point defect studied in this work. (b) Sim-
ulation domain setup for pdGNRs. The dashed line divides the GNR
into pristine region and defected region, where defects are randomly
created inside the latter. Figure reproduced from Ref. [35].
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We herein study the effect of T , ∆T , α, type of defect, length of the GNR,

and the ratio of the length of the pristine region to that of the defected region

(RL = Lpristine/Ldefected), thus covering most of the factors that may affect ther-

mal properties of defected GNRs greatly. To account for the randomness of defects,

twelve independent simulations are run on independently generated GNRs with ran-

dom defects for each data point.

First, we evaluate η in GNRs composed of a 7 nm long pristine region and a

7 nm long defected region. GNRs with four types of defect, i.e., SV, DV, Si and

SW(55-77), are studied in separate simulations with α = 1.5%. We vary the average

temperature T and use ∆T = 90 K for all cases. As shown in Fig. 3.11, TR is

significant (η ≈ 0.7 for SV and Si, and η ≈ 0.3 for DV and SW(55-77)) at 200 K,

but weakens at higher temperatures. Similar trend was also found in other types of

thermal rectifiers [9,31,34], and is usually attributed to the mismatch of the phonon

spectra between the two sides of a rectifier. When the average temperature increases,

such difference becomes weaker with respect to the total vibrational energy, and hence

TR is suppressed. Comparing η of different types of defect at the same T , we find

GNRs with SV and Si defects rectify heat flow more strongly than those with DV

and SW(55-77) defects. Note that each DV or SW(55-77) defect contributes two

defected nodes to the carbon network of graphene, i.e., two defected nodes per defect.

Accordingly, with the same α (same number of defected nodes), SV and Si defects

are more scattered than DV and SW(55-77), and hence the formers tune the phonon

transport more strongly than the latters. Ref. [101] revealed that with α = 0.1%, SV

defects reduce the κ of GNRs by 81%, while DV and SW(55-77) only reduce it by

61%, in consistency with our work.

We plot η of pdGNRs as a function of length (L) for different ∆T in Fig. 3.12a,

and observe that |η| increases as ∆T increases, consistent with previous studies [62].

Notably, |η| decreases as the GNR length increases up to 100 nm as predicted by

MD, indicating that this type of thermal rectifier has the best rectifying power at

small size. This observation inspires us to check whether thermal rectification should
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Figure 3.11. Temperature dependence of η for pdGNRs with different
types of point defect. Figure reproduced from Ref. [35].
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MD

Fourier equation

∆T = 90 K

Figure 3.12. (a) η as a function of L of the pdGNRs for different
∆T . Data points denoted by unfilled and filled markers are computed
by MD simulation and by solving the 1D, steady-state Fourier heat
conduction equation, respectively. (b) η as a function of α for pdGNRs
with different RL. Figure reproduced from Ref. [35].

diminish at macroscopic size. Here we consider (L ≥ 2 µm) where heat conduction

transits to the diffusive regime, and we use the conventional Fourier equation to

evaluate TR. We fit the κ of pristine and defected GNRs [101] as a function of

temperature, and numerically solve the 1D, steady-state heat conduction equation

∇x{κ[x, T (x)]∇xT} = 0 with the temperature at the two ends maintained at 300 K

+ ∆T/2 and 300 K − ∆T/2, respectively. In this regime, pdGNRs show a length-

independent TR of 3-5% for the different ∆T considered here. The TR mechanism

becomes the same as the bulk thermal rectifier proposed in Ref. [89], i.e., the κ(x, T )

is not a separable function of x and T . This non-diminishing, length-independent

TR in macroscopic defected GNR is distinct from that of rectifiers using asymmetric

shapes [9, 31], which completely lose TR at macroscopic length, as explained in the

last section.
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Hp=Z

Hp=X-Y

Figure 3.13. (a) vDOS of the perfect region and defected region for
opposite heat flow directions. (b) H and η for various ∆T . Figure
reproduced from Ref. [35].

We then consider the effect of RL. RL → ∞ means a pristine GNR, while RL → 0

means a homogeneously defected GNR. Both extremes reduce to a symmetric struc-

ture and thus cannot rectify heat flow. Figure 3.12b shows that a moderate partition

(RL ≈ 1.0) of the pristine and defected region usually generates higher |η| than biased

cases. Similarly, a medium α (0.5% ∼ 1.5%) is also preferable to the extremes, since

very low α corresponds to pristine GNR and very high α reduces κ too much for both

directions. Thus, as for defect engineering, we conclude that an α on the order of

1% is needed for TR, compared with 0.1% for notably reducing κ and 0.0001% for

tailoring electronic properties.

Figure 3.13 shows the vibrational density of states (vDOS), which is the summa-

tion of the Fourier transform of the autocorrelation function of atomic velocities in

each polarization (p = X, Y, Z) [62]. For both forward (J+) and reversed (J−) heat

flow, we calculate the overlap (S) between the acoustic region of the vDOS of the

pristine and defected region using the method in Ref. [62]. In parallel with Eq. (1.1),

we compute H = (S+ − S−)/S− for both in-plane (X-Y) and out-of-plane (Z) po-
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larizations to show the change of S when the sign of ∆T reverses. Consistent with

previous studies [62, 103], η and H have the same sign and show quite strong posi-

tive correlation, which confirms the suitability of the spectra overlap theory [62] as a

qualitative explanation to TR.

As a final remark, note that in contrast to other GNR-based thermal rectifiers

[9,31] of asymmetric shape that induces asymmetric boundary scattering of phonons

[28], the asymmetrically defected GNRs proposed here favor large width, thus saving

the need for complicated patterning process in making the narrow and regular shapes.

For very narrow GNRs, there is very high concentration of edge defects [101], and

they dominate the thermal transport instead of the asymmetrically introduced point

defects, and hence TR is greatly reduced.

3.4 Summary

To summarize, we have found that phonon confinement is the origin for TR in

asymmetric homogeneous materials, and that TR diminishes in bulk-sized ones. We

have shown three possible mechanisms for TR in asymmetric GNRs: phonon spectra

overlap, inseparable dependence of κ on temperature and space, and phonon edge

localization. These mechanisms are related to each other in a complicated manner.

The width-dependent phonon spectra D(ω) can contribute to the space-dependence

of κ. Also, the phonon edge localization can make λ(ω) space-dependent, which also

contributes to the space-dependence of κ. The third mechanism explicitly shows the

role played by the edges in the phonon confinement regime. When the lateral size of

the device approaches the bulk limit, such edge effect is smeared out by three-phonon

scatterings and TR disappears. We also show that other asymmetric nanostructures,

such as asymmetric nanowires, thin films and quantum dots, of a single material are

potential thermal rectifiers.

We have also studied the TR effect in asymmetrically defected GNRs using clas-

sical molecular dynamics simulations. Low T , high ∆T , moderate α (∼ 1%) and RL,
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and short system length were found to be optimum for high thermal rectifying effi-

ciency of the thermal rectifier proposed in this work. We also revealed that SV and Si

defects tune thermal transport more strongly than DV and SW(55-77) defects with

the same concentration, and are thus preferable in making thermal rectifiers. The

thermal rectification decreases as the GNR length increases and eventually stabilizes

at a length-independent value for macroscopic length when heat conduction transits

to the diffusive regime. This work extends defect engineering to the field of thermal

management and thermal signal manipulation with 2D thermal rectifiers.
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4. THERMAL TRANSPORT IN MULTILAYER STRUCTURES

4.1 Introduction

Thermoelectric effect is a phenomenon in which a temperature bias generates

electrical voltage (Seebeck effect) or an electrical current generates temperature bias

(Peltier effect). The Peltier effect can be used for on-chip cooling of electronic devices,

in which a thermoelectric component is attached to the hot spot and an electrical

current is used to remove the heat actively from it.

The energy conversion efficiency of a thermoelectric material is related to the

dimensionless figure of merit (ZT) as

ZT =
S2σT

κe + κL
, (4.1)

where S is the Seebeck coefficient, σ is the electrical conductivity, κe is the electronic

thermal conductivity, and κL is the lattice thermal conductivity. As σ is directly

coupled to κe by the Wiedemann-Franz law as

κe
σ

= LW−FT, (4.2)

where LW−F is the Lorentz number, Eq. (4.1) can transformed into

ZT =
S2

LW−F + κL

σT

. (4.3)

Equation (4.3) suggests that increasing S or σ, or reducing κL can increase ZT .

Extensive efforts have been made to develop SLs for thermoelectric applications

owing to their low κL. [104–107] One benefit of the SL structure is the feasibility to

tune its κ by controlling Lp or the interface conditions, e.g., roughness and species

mixing.

Phonon transport in the cross-plane direction of a superlattice (SL) may manifest

particle-like or wave-like characteristics depending on how far a phonon can trans-

port coherently without losing its phase information. [108] If phase breaking happens
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quickly, for instance, before a phonon travels through one period (Lp) of the SL, both

the phonon propagation in each layer and the transmission/reflection at each individ-

ual interfaces will be similar to those in a single-interface heterojunction regardless

of the SL structure. In this case, phonons are incoherent and can be treated as par-

ticles. In contrast, if a phonon can transport coherently over a distance of several

Lp’s, phonon interference due to multiple reflections at the periodic interfaces leads to

new phonon spectra. In such case, the wave nature of phonons should be considered.

In the particle-like regime, κ increases with increasing Lp due to the reduction in

the density of interfaces that hinder phonon transport. In contrast, κ decreases with

increasing Lp due to reduced group velocities and enlarged band gaps when the wave-

like behavior dominates. [109,110] The coexistence of these two opposite trends, i.e.,

κ first decreases and then increases with increasing Lp in a single κ-Lp curve, has been

observed in experiments and numerical studies, [111–117] and the minimum κ was

proposed as a signature of the transition between the wave-regime and the particle-

regime. [111] However, κ was found to increase monotonically with increasing Lp in

most experiments, [118–120] implying a predominance of incoherent phonon trans-

port. The presence of interface roughness or species mixing was proposed to cause

the disappearance of coherent phonon heat transfer characteristics, [113,121,122] and

these defects were also seen as opportunities for reducing the κ of SLs. [113, 123]

The properties of specific coherent phonon modes have been measured experimen-

tally, [124] while the importance of coherent phonons to the overall thermal transport

has only recently been addressed by Luckyanova et al.’s experiment. [125] In their

work, κ was found to increase almost linearly with the total length of AlGaAs/GaAs

SLs at 30-297 K, which was attributed to coherent phonon conduction. The trend

that κ increases with increasing SL length has been observed in previous molecular

dynamics simulations, [115,121,122,126,127] but little attention was paid to the role

played by coherent phonons. It is reasonable to expect that coherent phonons are

the dominant heat carriers in long SLs as those in Luckyanova et al.’s experiment,

and mechanisms that suppress the transport of coherent phonons should be effec-
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tive in reducing κ. The transport of various other types of waves, e.g., electron and

photon, can be substantially suppressed in disordered systems due to Anderson local-

ization. [128–131] The localization of phonons in low-dimensional disordered media

was also studied, [132–135] however, inadequate attention was paid to the overall

thermal transport properties of 3D systems. [136]

In previous computational studies on SL, phonons were either treated incoherently

[137,138] or coherently [109,111,114,116]. Taking a binary SL composed of alternating

layers of material A and B as an example, the incoherent treatment assumes that all

phonons propagate across distinct A and B layers successively and transmit/reflect

at the A/B or B/A interfaces in a similar way as a single interface between A and B.

In contrast, the coherent approach acquires phonon properties from the superlattice

phonon spectra corresponding to a large unit cell (UC) composed of one layer of A

and one layer of B. However, both methods have their own drawbacks. The incoherent

approach cannot explain the trend that κmay decrease with increasing Lp as observed

in MD simulations, while the coherent treatment contradicts the fact that the phase-

breaking length, or the coherence length (Lφ) of some phonons may be comparable

to or shorter than Lp. Accordingly, we argue that a more accurate discription of

phonons in SL should consider the coexistence of incoherent phonons that retain the

properties of A and B materials and have short Lφ in terms of Lp, and coherent ones

possessing properties arising from the new large UC of the SL and can travel without

phase breaking over a distance of several Lp’s.

In this work, we investigate the thermal transport in binary SLs and random mul-

tilayers (RML), i.e., alternating A and B layers of random thickness, using nonequi-

librium molecular dynamics (NEMD) simulations. We build a model considering the

coexistence of coherent phonons and incoherent phonons in SL or RML to intreprete

our NEMD results, and explore the properties of coherent and incoherent phonons

in these multi-layer structures. Perfect SL and RML are an ideal pair of systems for

isolating the contribution of coherent phonons and incoherent ones to heat transfer.

With the same total length and average layer thickness, SL and RML should have ap-
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Figure 4.1. Phonon dispersions along the [100] direction. (a) LJ
crystals (ϵ = 16ϵAr) with atomic masses of m = 40 g/mol (m40) and
m = 90 g/mol (m90). (b) A SL built from repetitions of 1 UC thick
of m40 layer and 1 UC thick of m90 layer (1UC×1UC) along the [100]
direction. (c) A 2UC×2UC SL.

proximately the same scattering rate of incoherent phonons due to the same interface

density, while coherent phonons are localized in long RMLs and thereby their contri-

bution to κ can be neglected. As a consequence, the difference in thermal transport

properties between a SL and the corresponding RML gives a good estimation of the

contribution by coherent phonons in the SL.

This chapter is organized as follows. Section 4.2 describes the setup of our MD

simulations and model structures. In Section 4.3, we propose a two-phonon model

considering the coexistence of coherent and incoherent phonons in SL and RML. In

Section 4.4, we present our simulation results and interpret them with our two-phonon

model. Finally, we conclude this chapter in Section 4.5.
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4.2 Methodology

4.2.1 Simulation Setup

We conduct NEMD simulations on conceptual atomic systems in which the inter-

atomic interactions are modeled by the Lennard-Jones (LJ) potential,

φij(rij) = 4ϵ

[

(

σ

rij

)12

−
(

σ

rij

)6
]

, (4.4)

where φij and rij are the pairwise interaction potential energy and the distance be-

tween atoms i and j, and σ and ϵ are the zero-potential-energy pair separation and

the potential well depth, respectively. LJ systems have been widely used in con-

ceptual studies owing to their lower computational cost than many other potential

forms, as well as the simplicity in independently controlling the lattice constant (by

σ) and the interatomic interaction strength (by ϵ). The parameter set of σAr = 0.34

nm, ϵAr = 0.0104 eV and a cutoff radius of 2.5σAr have been adopted in previous

studies on solid argon. [139, 140] A higher ϵ in LJ systems corresponds to a longer

phonon mean free path (MFP), thus enabling us to study the effect of MFP on ther-

mal properties. We will study two types of LJ systems, i.e., one with ϵ = 4ϵAr and

the other with ϵ = 16ϵAr for the interaction between all atoms, which will be referred

to as LJ04ϵAr and LJ16ϵAr, respectively. The zero-potential-energy pair separation

and the cutoff radius are σAr and 2.5σAr for all LJ systems studied in this work.

The binary LJ systems studied in this work have two types of atomic masses,

i.e., mA = 40.0 g/mol and mB = 90.0 g/mol, which will be referred to as m40 and

m90. Figure 4.1a shows the phonon dispersions of the LJ16ϵAr-m40 and LJ16ϵAr-m90

crystals, and Figs. 4.1b and c show those of a LJ16ϵAr-m40-m90 SL which is built

from alternating layers of 1 UC thick m40 and 1 UC thick m90 (1UC×1UC) and

those of a 2UC×2UC SL, respectively. As we can see, the phonon bands are flatter

in the SL than in m40 and m90 crystals, and SL with thicker layers (2UC×2UC) has

flatter bands than that with thinner layers (1UC×1UC).
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Figure 4.2. (a) Schematic of the simulation domain setup in this work.
Lbath is the length of the heat bath and Ltot is the total length of the
device. The hot (cold) bath is maintained at T +∆T/2 (T −∆T/2).
TL and TR are the steady-state local temperature at the buffer regions
next to the two ends of the device. J is the steady-state heat current.
(b) Superlattice made of alternating layers of m40 and m90 with layer
thickness δm40 and δm90, respectively. (c) Superlattice of which the
UC is a random 4-layer (R4L-SL). (d) Random multilayer (RML).
(e) Superlattice with interface mixing (IM-SL). (f) Superlattice with
interface roughness (IR-SL). (g) Random multilayer with interface
mixing (IM-RML).
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The simulation domain setup is shown in Fig. 4.2a. The device of length Ltot is

sandwiched between two heat baths of length Lbath, and ∼1 nm thick of atoms (the

dark regions) at the two ends are frozen to work as the fixed boundary condition

(bc). We leave two 8.4 nm long buffer regions between the device and each of the

two heat baths to extract the temperature at the two ends of the device, i.e., TL and

TR, as shown in Fig. 4.2a. The thermal conductance G of the system is computed as

G = J/ [A(TL − TR)], where A is the cross-sectional area of the device and J is the

steady-state heat current, i.e., the amount of kinetic energy artificially injected into

(extracted from) the hot (cold) heat bath per unit time. Then κ can be calculated

as κ = GLtot. We use ∆t = 2 fs and ∆t = 1 fs for the LJ04ϵAr and LJ16ϵAr

systems as the simulation time step size based on the criteria given in Ref. 139, i.e.,

∆t ≈ 0.002
√

σ2m/ϵ.

Our NEMD simulations (at temperature T ) are conducted in the following process.

(1) the periodic bc is applied to all three directions (X as the length direction, Y and

Z as the lateral directions) and each atom is given a random velocity vector based on

the Gaussian distribution function with a mean of 0 and a variance corresponding to

a temperature of 5 K. (2) the entire supercell is relaxed in the NPT ensemble targeted

at zero pressure and temperature T for 200 ps. (3) the entire supercell is relaxed in

the NPT ensemble at zero pressure and temperature T for 300 ps. (4) ∼1 nm layer

of atoms at both ends of the supercell are frozen and kept so, which is equivalent

to applying the fixed bc to the X direction. (5) the simulation is switched to NVE

integrations except that the velocities of the atoms in the two heat bath regions are

rescaled to a temperature of T +∆T/2 or T −∆T/2 every simulation step and the

atoms in the fixed boundary regions are frozen. Step (5) lasts 10-40 ns depending on

the length of the supercell to ensure that the NEMD simulation reaches steady state.

Longer supercells need longer time to reach steaty state.
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4.2.2 Model Structures

Figures 1b-g show the model structures composed of 50% m40 atoms and 50%

m90 atoms. The model structures are constructed by the stacking of face-centered-

cubic UCs along the [100] direction. The SL is created from periodic repetition of

m40 and m90 layers of constant thickness δm40 and δm90, i.e., δm40/m90,i = δm40/m90,j .

Accordingly, Lp = 2δm40 = 2δm90 in this work. However, if the repetition happens

every four layers, i.e., δm40/m90,i ̸= δm40/m90,i+1 but δm40/m90,i = δm40/m90,i+2, then it

is a SL with a random 4-layer as UC (R4L-SL), similar to the SLs with complex

UCs in Ref. 139. If the thicknesses of m40 and m90 layers are totally randomized, a

SL becomes a random multilayer (RML). The order of randomness in RML can be

controlled by setting an upper limit to the deviation (|∆δ|) of δi from the average

thickness δ. Take an RML with δ = 8 UC for example, δi can only be 7, 8 and

9 UC if we enforce |∆δ| ≤ 1 UC, but it can be 6-10 UC (more randomized) when

|∆δ| ≤ 2 UC. In this work, RMLs without an upper limit of |∆δ|, which is the totally

randomized case, will be referred to as RML and those with an upper limit will be

denoted as “RML, |∆δ| ≤ N UC”. A comparison between SL, R4L-SL and RMLs

with different degrees of randomness in δ can reveal the effect of randomness in δ on

thermal transport properties of multi-layer structures.

As a comparison with RMLs, we will also study SLs with interface mixing (IM-

SL) and those with interface roughness (IR-SL), of which the schematic structures are

shown in Fig. 4.2e and 4.2f, respectively. Interface mixing, sometimes called interface

alloying, can happen at different levels: the weakest case is that only one atomic

layer at the end of the m40 layer is mixed with the adjacent one atomic layer of

m90; while the strongest case is when the whole SL becomes a homogeneous alloy.

Interface roughness is characterized by the angle θ’s shown in Fig. 4.2f. If the θ’s of

all interfaces are the same, the structure is still periodic and hence remain as a SL. If

the θ’s are different and random, the wavy interfaces are more like realistic roughness

despite that there are usually voids at the interface.
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Figure 4.3. Histogram of κ normalized by the corresponding average
for 48 individual samples for SLs with 16 layers (16L-SL), RMLs with
16 layers (16L-RML), SLs with 64 layers (64L-SL) and RMLs with 64
layers (64L-RML), of which the average layer thickness δ = 4.3 nm.

4.2.3 Convergence Study

Table 7.1 lists the effect of heat bath length Lbath, temperature bias ∆T and cross-

sectional area A on the thermal conductivity prediction for LJ04ϵAr and LJ16ϵAr SLs.

The SL has a total length Ltot = 137 nm and a uniform layer thickness δ = 4.3 nm.

Notably, the predicted κ increases with Lbath and saturates when Lbath = 33.8 nm for

LJ04ϵAr and when Lbath = 270.2 nm for LJ16ϵAr. Beyond these lengths, κ does not

depend on the length of the heat bath, which can be viewed as semi-infinite in terms

of heat transfer and they are used in our simulations. Based on Table 7.1, we use

A = 6 UC × 6 UC and ∆T = 6 K. Another scheme for NEMD calculation of κ is by

applying a constant heat current and measure the resulting ∆T , which has been used

in previous studies on SLs. [122, 127, 139, 141]. The κ predicted from this method is

κ = 5.43 W/m-K when Lbath = 270.2 nm, ϵ = 16ϵAr, A = 6 UC × 6 UC, and the

measured ∆T is approximately 5.4 K, which is in good agreement with the constant

∆T scheme used by us.
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Table 4.1. The effect of heat bath length Lbath, temperature bias ∆T
and cross-sectional area A on the prediction of the thermal conduc-
tivity κ of LJ04ϵAr and LJ16ϵAr SLs with layer thickness δ = 4.3 nm
and total device length Ltot = 137 nm at T = 30 K.

ϵ (ϵAr) ∆T (K) Lbath(nm) A (UC×UC) κ (W/m-K)

4 6.0 16.9 6× 6 1.29

4 6.0 33.8 6× 6 1.37

4 6.0 67.6 6× 6 1.34

4 6.0 33.8 9× 9 1.34

4 10.0 33.8 6× 6 1.38

16 6.0 67.6 6× 6 4.52

16 6.0 135.1 6× 6 5.24

16 6.0 270.2 6× 6 5.54

16 6.0 405.3 6× 6 5.50

16 6.0 270.2 4× 4 5.75

16 6.0 270.2 9× 9 5.62

16 10.0 270.2 6× 6 5.79
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4.2.4 Simulation Uncertainty

To quantify the uncertainty associated with our NEMD simulations, we conduct

48 individual simulations for SLs with 16 layers (16L-SL), RMLs with 16 layers (16L-

RML), SLs with 64 layers (64L-SL) and RMLs with 64 layers (64L-RML), of which the

average layer thickness δ = 4.3 nm. The histogram of the computed κ’s normalized

by their average are shown in Fig. 4.3. The uncertainty is defined as the standard

deviation of κ normalized by the average κ, which are 2.2%, 5.7%, 2.3% and 3.8%

for 16L-SL, 16L-RML, 64L-SL and 64L-RML, respectively. There are several sources

of uncertainty in our NEMD simulations. For SLs, the uncertainty comes from the

statistical nature of molecular dynamics, where the difference in initial conditions

and process can lead to slightly different results. However, a RML can have different

configurations due to the many possible arrangements of δi’s for given Ltot and δ.

Such variation in δi’s may add to the uncertainty. As we can see in Fig. 4.3 as well as

the normalized standard deviations mentioned above, the simulated κ’s of RMLs are

more dispersed than those of SLs. The uncertainty is even larger for RMLs with less

layers (16L-RML) than those with more layers (64L-RML). The reason is that there

is a higher chance that 64L-RML is fully randomized than 16L-RML, and κ depends

considerably on the degree of randomness in δ when δ is not fully randomized, which

will be demonstrated later.

4.3 Two-phonon Model

Previous studies on SLs either treat all phonons as incoherent particles possessing

properties of individual layers or as coherent waves with properties determined by the

superlattice phonon spectra. Herein we will demonstrate that both approaches are

special cases of a more general model, which accounts for the coexistence of coherent

and incoherent phonons in one system. In such two-phonon model, we divide phonons

in a SL into two groups, i.e., incoherent ones with the phonon spectra of individual
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m40 and m90 layers as shown in Fig. 4.1a, and coherent ones with the superlattice

phonon spectra as those in Fig. 4.1b and c.

Thermal conductance is related to MFP λ by [142]

G = G0
λ

λ+ Ltot
, (4.5)

where the subscript 0 indicates ballistic-limit quantity. Correspondingly, thermal

conductivity κ is

κ = GLtot = G0
λLtot

λ+ Ltot
, (4.6)

which indicates that κ increases almost linearly with the total length when Ltot ≪ λ

(ballistic regime) while it saturates at a constant value when Ltot ≫ λ (diffusive

regime). Such relation has been employed for phonon transport to compute the κ of

silicon and Bi2Te3 and good agreement with experiment was achieved. [143,144]

By treating the coherent phonons and incoherent phonons as gray media, the

thermal conductance G of SL can be expressed as

GSL = Gcoh +Ginc

= Gcoh,0
λcoh

λcoh + Ltot
+Ginc,0

λinc
λinc + Ltot

,
(4.7)

where the subscripts coh and inc denote coherent and incoherent phonon, respectively.

In a random medium, e.g., RML, the Anderson localization of carriers would lead to

exponential decay of G when Ltot increases. Noting that such localization works on

coherent phonons only, we modify the first term in Eq. (4.7) to include an exponential,

GRML = Gcoh +Ginc

= Gcoh,0
λcoh

λcoh + Ltot
exp

(

−
Ltot

Lloc

)

+Ginc,0
λinc

λinc + Ltot
,

(4.8)

where Lloc is the localization length which describes how fast G decays in random

media. As for the first term on the right hand side, the exponential decays much

faster than λinc/(λinc + Ltot) especially if λcoh > Lloc. Therefore, the latter can be

approximated as unity and Eq. (4.8) becomes

GRML = Gcoh +Ginc

= Gcoh,0 exp

(

−
Ltot

Lloc

)

+Ginc,0
λinc

λinc + Ltot
.

(4.9)
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When Ltot is large, the exponential term in Eq. (4.9) can be neglected as it decays

much faster than the second term on the right hand side, i.e., coherent phonon con-

tribution is negligible. Therefore,

GRML,Ltot≫Lloc
≈ Ginc = Ginc,0

λinc
λinc + Ltot

. (4.10)

For short RMLs, there may still be noticeable contribution of G from coherent

phonons, which can be obtained by subtracting Eq. (4.10) from Eq. (4.9),

Gcoh,RML = Gcoh,0 exp

(

−
Ltot

Lloc

)

. (4.11)

With the same Ltot and δ, SL and RML have the same interface density; there-

fore, the scattering rates of incoherent phonons should be approximately the same in

SL and RML. This is different from IM-SL and IR-SL in which mass difference or

roughness scatters both coherent and incoherent phonons. Subtracting Eq. (4.10) (G

of RML) from Eq. (4.7) (G of SL), we can get the G contributed solely by coherent

phonons in SL, which is

Gcoh,SL = GSL −Ginc = Gcoh,0
λcoh

λcoh + Ltot
. (4.12)

It is worth mentioning that as Eq. (4.12) is deducted from Eq. (4.10), the validity of

Eq. (4.12) only holds when Ltot ≫ Lloc (Ltot = 3Lloc ensures more than 95% reduction

in Gcoh in RMLs).

4.4 Results and Discussions

4.4.1 Effect of Random Layer Thickness

Figures 4.4a and 4.4b show the fitting of our simulation data in the Ltot ≫ Lloc

regime (the values of Lloc will be presented later) with the two-phonon model depicted

by Eqs. 4.7-4.12. Through the model fitting, we obtain Ginc,0 = 225.7 MW/m2−K,

λinc = 13.1 nm, Gcoh,0 = 26.9 MW/m2−K and λcoh = 327.3 nm for LJ16ϵAr systems,

and Ginc,0 = 104.8 MW/m2−K, λinc = 13.1 nm for LJ04ϵAr ones. It is difficult to
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Figure 4.4. (a) and (b): G of SL, R4L-SL and RML as a function of
Ltot for LJ04ϵAr systems (a) and LJ16ϵAr ones (b), and the solid lines
are fitting curves based on Eq. (4.7) and Eq. (4.10). (c) and (d): κ
of SL, R4L-SL and RML as a function of Ltot for LJ04ϵAr systems (c)
and LJ16ϵAr ones (d), respectively, and the dashed lines are guides
for the eyes. For all cases, The average layer thickness δ = 4.3 nm.
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extract credible Gcoh,0 and λcoh for LJ04ϵAr systems due to the considerably large

fluctuation in the data for Gcoh. The above values are physically reasonable in the

following aspects. First, Ginc,0 ≫ Gcoh,0. This is because a phonon must satisfy at

least two conditions to be coherent, that is, satisfying the phonon dispersion of the

SL and the coherence length Lφ extends several layers, while it just needs to satisfy

the dispersion of the material of the layer it stands in to be incoherent. Consequently,

there should be more incoherent phonons than coherent ones in a SL. Besides, the

group velocities of coherent phonons (slope of the dispersion curves in Fig. 4.1b and

c) are generally lower than those of incoherent phonons (slope of the dispersion curves

in Fig. 4.1a). As the ballistic conductance is proportional to the number of phonons

and their group velocity, it is reasonable to find a lower Gcoh,0 than Ginc,0. Second,

λcoh ≫ λinc. This is reasonable considering that incoherent phonons suffer a lot

of interface scatterings owing to the high interface density, while coherent phonons

barely see the interfaces and are only scattered by intrinsic processes such as mini-

band Umklapp scatterings. [145]

Figures 4.4c and 4.4d show the κ of SL, R4L-SL and RML as a function of Ltot.

As we can see, the κ of all these structures increases with the total length. Such trend

has been observed experimentally by Luckyanova et al. in GaAs/AlAs SLs and was

attributed to coherent phonons which see the SL as a new crystalline material. [125]

In particular, κ increases almost linearly with Ltot when Ltot < 100 nm in Fig. 4.4d,

and similarly in Luckyanova et al.’s experiment. Similar size effect has been observed

in NEMD simulations on single crystals [37] and SLs, [115,121,122,126,127] and the

analytical model κ−1 ∝ (λ−1
∞ +L−1

tot) was usually adopted to rationalize it, where λ∞ is

the bulk-limit intrinsic phonon MFP of the material. Comparing Figs. 4.4c and 4.4d,

the increase in κSL is much slower in LJ04ϵAr SLs than in LJ16ϵAr ones, indicating

larger λ∞ in the latter. If we compare the κ of SL, R4L-SL and RML, it is apparent

that κ decreases as the randomness in layer thickness δ increases, which agrees with

previous studies. [139, 146] Specifically, Landry et al. [139] showed that SLs with

complex UCs of more than two layers have lower κ than those with simple UCs of
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(a) (b)

Figure 4.5. (a) Fitting of simulation data using the two-phonon
model depicted by Eqs. 4.7-4.12. (b) Top panel: MFP λ of coherent
phonons and incoherent phonons in SLs and the localization length
Lloc of coherent phonons in RMLs; bottom panel: ballistic-limit ther-
mal conductance G0 of coherent phonons and incoherent ones in SLs.

only two layers; Frachioni and White [146] reported lower κ of silicon-based RMLs

than SLs. In Figs. 4.4c and 4.4d, κ of RML increases much more slowly than that of

SLs and almost levels off, which results from the localization of coherent phonons in

RMLs and will be discussed in detail later. We should also note that the randomness

in δ is more effective in reducing κSL for LJ16ϵAr systems than LJ04ϵAr ones, implying

more prominent coherent phonon contribution to heat conduction in SLs composed

of materials with longer phonon MFP. The underlying mechanism will be discussed

in the following section.

In Fig. 4.5a, we fit our simulation data with Eqs. 4.7-4.12 in the following manner.

(1) Eq. (4.10) and Eq. (4.12) are used to fit the data for GRML and GSL −GRML in

the range of Ltot > 200 nm to get Gcoh,0, Ginc,0, λcoh and λinc. We enforce Ltot > 200

nm since the utility of Eq. (4.12) requires the coherent phonon contribution to GRML

to be negligible (Ltot > 3Lloc). In this step, the lines indicated as Gcoh,SL and Ginc

can be obtained. (2) Subtracting the Ginc’s obtained in step (1) from the data for

GRML’s, we can obtain a series of data Gcoh,RML decaying exponentially (green left-

pointing triangles in Fig. 4.5a). We can get Lloc by fitting the data for Gcoh,RML with
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Eq. (4.11). (3) The summation of Gcoh,SL and Ginc gives GSL according to Eq. (4.7),

and the result (the dark line indicated as Ginc + Gcoh in Fig. 4.5a) agrees well with

the GSL’s predicted from our simulations (dark squares), again demonstrating the

applicability of our two-phonon model to multi-layer structures.

The top panel of Fig. 4.5b shows λcoh and λinc in SLs (left Y-axis) or Lloc of coher-

ent phonons in RMLs (right Y-axis) extracted using the fitting procedures illustrated

above. We can see that λinc increases significantly with increasing δ, which arises

from decreased density of interfaces that hinder the forward propagation of incoher-

ent phonons. Also, λcoh is always larger than λinc. This is because the interfaces are

lattice discontinuities for incoherent phonons while they are merely an essential part

of the SL UC for coherent phonons. Lloc also increases with δ, but it is shorter than

80 nm for all the δ’s we studied. Therefore, the contribution of coherent phonons

to GRML is negligible in RMLs with Ltot > 200 nm, and the validity of the step (1)

of the above fitting procedures is confirmed. We need to point out that the wide

spectrum of phonons implies that Lloc may not be the same for all phonon modes, so

GRML −Ginc do not necessarily decay exactly exponentially.

The bottom panel of Fig. 4.5b shows the ballistic-limit thermal conductance G0 as

a function of δ for coherent phonons in SL, and incoherent phonons in SL and RML.

Notably, Gcoh decreases quickly with increasing δ. This is because the phonon group

velocity decreases with increasing δ due to zone folding, which has been illustrated

in previous lattice dynamics studies. [109,147]

4.4.2 Transition between Coherent and Incoherent Behavior

In Section 4.3, we claimed that the coherence length Lφ of phonons must ex-

tends several δ’s so that enough phonon interferences can occur to form the superlat-

tice phonon spectra for coherent phonons; otherwise the phonons primarily manifest

themselves as incoherent particles. To provide evidence for this argument, we explore

the correlation between κSL − κRML and Lφ/δ in this section. κSL − κRML quanti-
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Figure 4.6. (a) and (b): Left Y-axis is for the thermal conductivity
of SL, RML and the difference between them as a function of temper-
ature; right Y-axis is for the ratio of MFP to average layer thickness
as a function of T . (a) is for δ = 1.1 nm and (b) is for δ = 4.3 nm.
(c) and (d): Left Y-axis is for the κ of SL, RML and the difference
between them as a function of δ; right Y-axis is for λ/δ as a function
of T . (c) and (d) are for T = 30 K and T = 100 K, respectively. The
solid lines are guides for the eyes.



65

fies coherent phonon contribution to heat conduction, while Lφ/δ specifies how many

layers a phonon can transport through coherently. Our argument can be justified if

a positive correlation can be found.

In pristine bulk crystalline materials, both the normal process and Umklapp pro-

cess are inelastic and thereby can break the phase of phonons, while only the Umk-

lapp process causes thermal resistance (momentum-breaking). But when there is

roughness or other types of defect, which are usually more momentum-breaking than

phase-breaking, Lφ can be comparable to or longer than the MFP λ. [108] Herein

we use λ to interpret the phase-breaking related phenomenon, i.e., the transition

between coherent and incoherent behavior of phonons, based on the notion that Lφ

and λ should be positively correlated in SLs and RMLs with atomically smooth and

planar interfaces.

We estimate the average group velocity as

v−1 =
v−1
LA + 2v−1

TA

3
, (4.13)

which considers the longitudinal acoustic branch (subscript LA) and the two degen-

erate transverse acoustic branches (TA). λ can be estimated from λ = 3κ/(cv). Here

c is the classical heat capacity of the LJ crystal, which is c = 3kBn with kB denoting

the Boltzmann constant and n the atom number density. The lattice constant a of the

LJ16ϵAr crystal is (5.278± 0.008) Å in the temperature range studied here (30 K-150

K), so n = 4/a3 ≈ 2.72×1028 m−3 and hence c = 1.13×106 J/m3-K. vLA and vTA are

estimated as the Brillouin zone center group velocity of the corresponding branches

in Fig. 4.1a, and we get vLA,m40 = 4135 m/s, vTA,m40 = 3053 m/s, vLA,m90 = 2748

m/s and vTA,m90 = 2039 m/s. Finally, the average λ of m40 and m90 crystals are

taken as λ−1 = λ−1
m40 + λ−1

m90.

Figures 4.6a and 4.6b show κ (left Y axis) and λ/δ (right Y axis) as a function

of temperature for δ = 1.1 nm and δ = 4.3 nm, respectively. λ decreases with in-

creasing T due to enhanced Umklapp scatterings, and hence the ratio λ/δ decreases.

In each panel, the difference between the κ of SL and that of RML, which is at-

tributed to coherent phonons, decreases as T rises. The reason is that the phase of
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phonons breaks more quickly with enhanced inelastic scatterings at higher T , and,

as a consequence, more coherent phonons transform into incoherent ones. As there

are less coherent phonons than incoherent ones, and incoherent phonons have much

shorter MFP (Fig. 4.5b), the above transformation cannot cause significant increase

in κinc (or κRML). As a result, there is no notable increase in the κ of RMLs when T

increases even though coherent phonons are transforming into incoherent ones.

In Figs. 4.6c and d, κ is plotted as a function of δ. It is clear that the difference

between κSL and κRML decreases with increasing δ. Larger δ means more phase-

breaking scatterings before a phonon propagates from one interface to the next, which

transforms coherent phonons into incoherent ones. The extreme case is when δ is so

large that all phonons behave incoherently and thereby κSL = κRML. In addition,

κRML increases substantially with increasing δ owing to decreased interface density.

Similar trend was also reported for SLs with interface mixing or roughness, indicating

a predominance of incoherent phonons. [122, 137] In Figs. 4.6a-d, the κ contributed

by coherent phonons (unfilled triangles) is positively correlated with the ratio λ/δ

(crosses), supporting our argument mentioned at the beginning of this section.

Recall that in Section 4.4.1 and Fig. 4.5b, we estimated the ballistic-limit thermal

conductance G0 and the intrinsic MFP λ of coherent and incoherent phonons in SLs,

and found G0,coh ≪ G0,inc and λcoh ≫ λinc. Accordingly, the κ-δ relation in SLs as

shown in Figs. 4.6c and d can be understood in this way — the decreasing trend for

small δ’s is caused by the fast decrease in G0,coh owing to the quickly reduced vg,

while the increasing trend for large δ’s is caused by the increase in λinc owing to the

reduced interface density.

4.4.3 Thermal Boundary Resistance of Individual Interfaces in SL and

RML

In Section 4.4.1, we have considered the SL or RML as a homogeneous device and

studied the overall κ or G of the device. In this section, we will evaluate how the
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Figure 4.7. Temperature profiles (left Y-axis) and the thermal bound-
ary resistances of each individual interface (right Y-axis) for: (a) a
SL with δ = 4.3 nm and Ltot = 68.4 nm; (b) a RML with δ = 4.3
nm and Ltot = 68.4 nm; (c) a SL with δ = 4.3 nm and Ltot = 34.2
nm; (d) a SL with δ = 17.1 nm and Ltot = 273.5 nm. The red dashed
lines show the diffusive limit of the thermal boundary resistance, i.e.,
3.4× 10−9 m2K/W.
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thermal boundary resistance, Ri = 1/Gi, of each individual interface i varies with the

position of interfaces as well as structural parameters such as δ and Ltot.

Figures 4.7a-d show the temperature profiles (dots) and thermal boundary resis-

tance Ri (crosses) of individual interfaces obtained from our NEMD simulations. Ri

is computed as Ri = A∆Ti/J and plotted with respect to the right Y-axis, where ∆Ti

is the temperature drop at the ith interface.

Comparing Fig. 4.7a and Fig. 4.7b, which are for a SL and a RML respectively,

we can see that R’s of the interfaces in the RML are generally higher than those in

the corresponding SL. This is because both coherent and incoherent phonons transfer

heat in the SL while coherent ones are localized in the RML. In Fig. 4.7a, we can see

that Ri is almost constant (Ri ≈ 0.7× 10−9 m2K/W) in the central region of the SL,

but Ri ≈ 2.4 × 10−9 m2K/W for the interfaces at the end of the SL (closest to the

heat baths). Similar observations have been made by Samvedi and Tomar on Si/Ge

SLs, and the higher R of the interfaces closest to the heat baths was attributed to

the filtering of phonons that originate from the heat bath but are not coherent in

the SL, i.e., not following the phonon dispersion of the SL. [126] The nearly uniform

R’s shown in Fig. 4.7b support such explanation, as coherent phonons are negligible

in RMLs. In SLs, we expect phonons to show stronger incoherent characteristics,

manifested as a higher R, near the ends of the SL than near the center. In SLs with

many periods, R will decreases from the ends to the center and levels off as shown in

Fig. 4.7a and d; while in short SLs, R may keep decreasing till the center of the SL,

as shown in Fig. 4.7c. Therefore, we expect stronger coherent phonon characteristics

in longer SLs than in shorter ones. The nonuniform R’s in SLs indicate that our

homogeneous treatment of SLs, especially short ones, may induce certain amount of

errors.

The diffusive-limit thermal boundary resistance Rs is obtained from NEMD simu-

lations on single-interface heterojunctions of m40 and m90 crystals, where long enough

m40 and m90 sides are used so that R does not change with increasing system length.

Figures 4.7a-d show that the R’s of individual interfaces are lower than the bulk limit
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Rs of 3.4× 10−9 m2K/W. Figure 4.7c (for a SL with δ = 4.3 nm) and Fig. 4.7d (for a

SL with δ = 17.1 nm) reveal that Ri’s are generally higher in SLs with thicker layers.

Similar behaviors were observed in Si/Ge systems, where a thin Si (or Ge) film was

sandwiched between two Ge (or Si) substrates. [110] The total thermal resistance of

the thin film plus the two interfaces was found to increase with the film thickness

until it reaches the diffusive limit in Ref. 110.

One may think that the κ-Ltot relation in Figs. 4.4c and 4.4d contradicts the

temperature profiles in Figs. 4.7a, 4.7c and 4.7d for SLs: on one hand, the notable

increase in κ with Ltot seems to indicate a ballistic thermal transport regime; on the

other hand, there is no temperature discontinuity at the interface between the heat

baths and the device, exibiting diffusive thermal transport feature. To understand

such “contradiction”, we should note that as there are more incoherent phonon modes

in the device as explained in Section 4.4.1, incoherent phonons dominate the heat

capacity and hence the temperature profile. As they have short MFP (λinc ≪ Ltot),

the temperature profile thus shows a diffusive feature. On the other hand, coherent

phonons dominate thermal transport and they have long MFP, therefore κ keeps

increasing with Ltot, showing a ballistic feature.

4.4.4 Comparison between the Effect of Random Layer Thickness, Inter-

face Mixing, and Interface Roughness

The scattering and localization of phonons in SL and RML with perfect interfaces

or with interface defects can be qualitatively described by the phase diagrams plotted

in Figs. 4.8a-d. As shown in Fig. 4.8a, we categorize phonons in a SL into four

groups. (I) lw-coh: coherent phonons (coh) of which the coherence length extends

several layers, and the wavelength is longer than the characteristic size of interface

defects (lw) so that they can propagate through the defects without being scattered.

(II) sw-coh: coherent phonons with wavelength shorter than the interface defects (sw)

and therefore can be scattered diffusely at the interfaces into all directions. (III) lw-
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Figure 4.8. (a) Phase-diagram of the thermal conductance con-
tributed by phonons characterized by different length scales, i.e., long-
wavelength (lw), short-wavelength(sw), coherent (coh) or incoherent
(inc). (b), (c) and (d) are the phase diagrams for RML with perfect
interfaces, SL with interface defects and RML with interface defects,
respectively.
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inc: incoherent phonons (inc) of which the coherence length is shorter or comparable

to δ but the wavelength is longer than the interface defects so they are not scattered

at the interfaces. (IV) sw-inc: incoherent phonons with wavelength shorter than the

interface defects and hence can be scattered at interfaces.

As illustrated in Fig. 4.8b, coherent phonons (lw-coh and sw-coh) in perfect RMLs

can be localized and hence their contribution to G is suppressed significantly to

Gcoh = αGcoh,SL, where α is much less than unity as localization in RMLs is effective

in suppressing coherent phonon transport. Figure 4.8c demonstrates that in SLs with

interface defects such as roughness or species mixing, short wavelength phonons (sw-

coh and sw-inc) can be scattered diffusely by these defects and their contribution to

G is thus reduced to Gsw = βGsw,SL, where 0 < β < 1. Figure 4.8d shows that

in a RML with interface defects, long wavelength phonons cannot be affected by the

defects; nonetheless, lw-coh can be localized to αGlw−coh,SL due to the RML structure.

Typically, lattice defects do not break the phase of phonons, so sw-coh can still be

localized in RML. However, as sw-coh phonons are scattered into all directions at

the interface, it becomes more difficult to localize these 3D phonons [108]. So the

localization mechanism will only suppress Gsw−coh to γGsw−coh,SL (α < γ < 1). The

above phase-diagram analysis of scattering and localization mechanisms in SL and

RML is only qualitative and certain details are also missing. For example, interface

defects can also introduce disorder to the lattice, and thereby coherent phonons can

be localized to some extent in SLs. Despite the rough grouping of phonons, the above

phase diagrams show that coherent and incoherent phonons in IM-SL, IR-SL and

IM-RML behave in much more complicated ways than those in RMLs and we shall

leave detailed analysis of phonon properties in those complicated structures to our

future work.

Figure 4.9a shows the κ of SLs and RMLs with different degrees of randomness

in δ. The meaning of ∆δ has been described in Section 4.2.2. As we can see, κ is

greatly reduced by randomizing the δ of a SL with δ = 4.3 nm (8 UC) by only 1 UC,

and a 2-UC randomness in δ can almost reduce its κ to the RML limit. This finding
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Figure 4.9. (a) Comparison of the thermal conductivity of SL and
RMLs with different degree of randomness in layer thickness δ as a
function of the total length. (b) Comparison of the thermal conductiv-
ity of perfect SLs and those with different types of interface roughness.
(c) Comparison of the thermal conductivity of perfect SLs and those
with different degrees of interface mixing. (d) Thermal conductance
of SL, RML, IM-SL, IR-SL and IM-RML as a function of the total
length. All structures have δ = 4.3 nm, or 8 UC.
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has important implication for experiments — if δ cannot be controlled precisely,

significant reduction in κ can occur for SLs with small δ and incoherent phonon

conduction will dominate.

Figure 4.2f is the schematic of a SL with IR. The periodicity of the SL is preserved

if the angles and directions of the roughness at each interface are the same (periodic

roughness), i.e., it is still a SL; otherwise the periodicity will be destroyed. As shown

in Fig. 4.9b, the κ’s of SLs with periodic roughness are lower than the corresponding

SLs with atomically smooth planar interfaces. If the angles are totally randomized, κ

can be further reduced. The above observations can be explained qualitatively in this

way. Coherent phonons can still transport without localization in SLs with periodic

roughness, since they are still periodic and have a UC. However, the roughness can

scatter incoherent phonons, thus making the κ lower than that of SLs with planar

interfaces. In SLs with random roughness, coherent phonons can be localized by the

randomness and incoherent phonons can be scattered by the interfaces, and thereby

more reduction in κ is expected.

As shown in Fig. 4.9c, 1 UC thick of interface mixing can reduce κ substantially,

and 2 UC can almost reduce the κ of SLs to the alloy limit. Besides, both the κ of SLs

and that of alloys depend on Ltot, which agrees with the experiments by Luckyanova

et al. [125] and Cheaito et al. [148] showing length-dependent κ of SLs and alloys.

Therefore, the comparison between the κ of SLs and alloys is meaningful only when

they are of the same length.

Figure 4.9d shows the thermal conductance G as a function of device length for SL,

RML, IM-SL and IR-SL, and RMLs with 1UC thick of interface mixing (IM-RML). G

drops quickly with Ltot in RML, IM-SL, IR-SL and IM-RML but much more slowly in

SL. As we have seen in Fig. 4.5a, the G of SL drops at a speed of ∼ λ/(λ+Ltot) while

G of RML drops almost exponentially when Ltot is small. The speed of reduction

in G of IM-SL and IR-SL is between that of SL and RMLs, while that of IM-RML

is similar to RML. Even though the interfaces in RML are atomically smooth and

planar, just by randomizing the layer thickness we can reduce the κ of SLs to the level
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of reduction that can be achieved by interface mixing or roughness. We should note

that in RMLs, the reduction is only caused by localization of coherent phonons, while

in IM-SL and IR-SL, the imperfect interfaces also cause diffuse scattering to phonons.

However, the periodic structure of SL is mostly preserved in IM-SL and IR-SL, even

though the interface mixing or roughness can scatter phonons. Thus, we believe that

coherent phonons can still transport heat in IM-SLs and IR-SLs, but are suppressed

by the weak localization due to disorders and scattered by the mass-difference or the

roughnesses at the interfaces.

4.5 Summary

To summarize, we have conducted NEMD simulations on conceptual binary Lennard-

Jones systems and proposed a two-phonon model to intrepret the simulation results

for SLs and RMLs. Our model considers the coexistence of coherent and incoherent

phonon contribution to heat conduction in SLs and RMLs, and can fit the simula-

tion data very well. κSL and κRML were found to increase with the total length of

the structure, while κRML < κSL and κRML saturates at a finite value much sooner

than κSL. We attribute the increasing κ with total length in SLs to coherent phonon

transport, and the lower κ of RML than SL to the localization of coherent phonons

due to the random layer thickness. Using the two-phonon model, we also extracted

the phonon MFP and ballistic-limit thermal conductance of coherent phonons and

incoherent phonons. The κ of RMLs can be as low as that of SLs with interface

mixing or roughness, even though RMLs have atomically smooth and planar inter-

faces. Nonetheless, the reduction of κ in these structures may result from different

mechanisms, e.g. localization and scattering, and display different G-Ltot relations.

Based on our findings, we propose RMLs as low-κ materials that may be used for

thermoelectric appications.

As a final remark, we note that as the current model considers all coherent phonons

and incoherent ones as two grey media, the fact that different phonon modes can
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have different MFP and wavelength is significantly neglected, and the nonequilibrium

between phonons [149] are not considered. A possible extension of our model would

be a spectral treatment of phonon modes. Besides, when metal layers are involved,

electron-phonon scattering can also considerably destroy the phase of phonons and

electron-phonon nonequilibrium near the interface can also play a role in determining

the thermal transport properties [24].
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5. TWO-TEMPERATURE MOLECULAR DYNAMICS SIMULATION OF

THERMAL TRANSPORT ACROSS METAL-NONMETAL INTERFACES

5.1 Introduction

Theoretical approaches such as acoustic mismatch model (AMM) and diffuse mis-

match model (DMM) correspond to the lower and upper bounds of interfacial thermal

resistance RI between materials and can achieve reasonable agreement with experi-

ments [150]. Atomic level methods such as non-equilibrium Green’s function (NEGF)

method [151, 152] and equilibrium/non-equilibrium molecular dynamics (MD) simu-

lations [153, 154] have also been extensively used to calculate RI for various inter-

faces. Both NEGF and MD simulations only need equilibrium lattice structure and

interatomic potential as inputs, and phonon properties such as density of states, dis-

persion relations and phonon transmittance exist naturally. In modeling inelastic

phonon scattering, NEGF method is usually limited to low dimensional systems due

to its high computational cost. MD simulations can model such effect as well as other

complicated conditions such as the atomic reconstruction at the interface straightfor-

wardly, which is not as easily and accurately accessible by other methods. However,

MD has its own drawbacks, such as finite size effect [37] and its inability to capture

quantum effect [155], which can usually be circumvented or minimized with proper

simulation domain design and quantum correction to the simulation results. Obvi-

ously, all the above methods only accounte for phononic thermal transport, while the

contribution of electrons is neglected. Such simplification is restricted to be valid only

for interfaces between nonmetals, where electrons contribute much less than phonons

to heat transfer. When metals, semi-metals, or heavily-doped semiconductors are

involved, the electronic contribution to heat conduction has to be included.
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One approach to conveniently include electron-phonon coupling is the two tem-

perature model (TTM), which designates electron and phonon as two separate sub-

systems and assigns a temperature for each channel [23]. It was shown using this

model that electron-phonon coupling could have notable effect on thermal transport

across metal-nonmetal interfaces. [23] Compared to those phononic methods men-

tioned above, more energy transport channels such as electronic thermal transport

and electron-phonon interactions are added, leading to better approximation [23] to

realistic energy transport events in materials where electrons are important. To date,

TTM, combined with MD, has been used to study non-equilibrium, transient pro-

cesses such as short pulse laser melting [156], cascade radiation induced defects and

displacement [157], etc., which demonstrated that the incorporation of electrons could

often generate significant deviations from what was predicted by MD alone. For the

purpose of modeling interfacial thermal transport, TTM has so far been used quali-

tatively to analyze the contribution of electrons [23], while TTM alone cannot model

thermal interface resistance due to phonons. An approach that can quantitatively in-

clude electron and phonon is needed for modeling interfacial thermal transport across

metal-nonmetal interfaces.

In this chapter, we use a two-temperature non-equilibrium molecular dynamics

method, through a combination of TTM and MD, to effectively simulate thermal

transport across metal-nonmetal interfaces. We first derive an analytical solution to

1D steady-state heat conduction across metal-nonmetal system, of which the two ends

are maintained at different prescribed temperatures (Dirichlet boundary condition).

An exact expression of thermal resistances is obtained. Then, we describe the two-

temperature molecular dynamics approach, in which phonon transport is modeled

using MD and electron transport is modeled using the finite difference method. This

approach achieves simultaneous modeling of phonons and electrons in a single simu-

lation, and captures electron-phonon non-equilibrium successfully. This approach is

then demonstrated via two case studies: Si-Cu and CNT-Cu interfaces. Our work

demonstrate the importance of electron-phonon coupling to the accurate prediction of
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thermal transport across metal-nonmetal interfaces, which leads to better agreement

with experimental data than phononic MD alone.

5.2 Theory

5.2.1 Two-temperature Model

As mentioned above, TTM depicts the coupled electronic and phononic thermal

transport in a quite simple picture, through separated temperature fields and a shared

coupling term [158,159]. The temporal and spatial evolution of temperature fields in

this model can be generalized to two coupled heat diffusion equations as

ρece
∂Te

∂t
= ∇ · (κe∇Te)− gep(Te − Tp) + ρere, (5.1a)

ρpcp
∂Tp

∂t
= ∇ · (κp∇Tp) + gep(Te − Tp) + ρprp, (5.1b)

where ρ, c, T , and κ denote the density, specific heat, temperature field, and ther-

mal conductivity of electrons (subscript e) or phonons (subscript p). gep is the

electron-phonon coupling parameter, which will be discussed in the following sec-

tion. r is a mass normalized source term, including all the external sources of en-

ergy exchange/transition events such as the effects of electronic stopping, laser cool-

ing/heating, Peltier cooling/heating and Joule heating, etc.

Equation (7.3)a and b have been used extensively to describe transient processes

such as laser melting or radiation damage, or to capture the strength of electron-

phonon coupling in metals [160]. A few attempts [23, 161] have been made to utilize

the TTM scheme to determine the electronic contribution to the interface resistance.

In order to gain a both qualitative and quantitative insight into the importance of

TTM to this topic, we will also start with an analytical derivation of a 1D interfacial

thermal transport problem with Dirichlet boundary condition (prescribed boundary

temperatures).

The representative temperature profiles for thermal transport across a metal-

nonmetal interface are shown in Fig. 5.1. l denotes the length of the left side (sub-
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Figure 5.1. Representative temperature profiles in TTM for a metal-
nonmetal interface. Tn, Tp and Te are temperature profiles for phonons
in the nonmetal side, phonons in the metal side and electrons in
the metal side. Tfit is a linear fit of the temperature profile of the
electron-phonon equilibrium region. In the metal side near the in-
terface, electrons and phonons have different temperature, which in-
dicates electron-phonon non-equilibrium. ∆Tep and ∆Tpp denote the
temperature continuity related to the electron-phonon coupling in the
metal side and the phonon-phonon coupling across the interface, re-
spectively. ∆T = ∆Tep +∆Tpp is the total temperature jump at the
interface. Figure reproduced from Ref. [24].
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script L) or right side (subscript R), which are metal and nonmetal, respectively.

TL and TR are prescribed temperatures at the left and right end, which form the

Dirichlet boundary conditions for this heat transfer problem. T with subscripts n

(phonons in the nonmetal side), p (phonons in the metal side), e (electrons in the

metal side) and fit (the linear fit of the temperature profile of the electron-phonon

equilibrium region) denote corresponding temperature field as a function of position,

x. Herein we assume that electrons in the nonmetal side does not contribute to heat

conduction, so that electronic heat transfer is confined in the metal side only. This

assumption is reasonable considering that electrons only account for ∼ 0.02% of the

overall thermal transport in Si, and less than ∼ 10% even in metallic single-walled

CNTs at room temperature. We are not addressing the term, r, in Eq. (7.3), which

accounts for electronic stopping effects, laser heating/cooling, etc., since they are not

in the scope of this work but can be easily implemented in this TTM-MD method if

accurate models for these processes are available. Consequently, for 1D steady state

heat transport with constant values of κe, κp, we obtain the electron/phonon energy

diffusion equations coupled via the electron-phonon coupling term, gep.

d2Te

dx2
−

gep(Te − Tp)

κe
= 0 (5.2a)

d2Tp

dx2
+

gep(Te − Tp)

κp
= 0 (5.2b)

Equations 5.2a and 5.2b are essentially the same as the starting equations in Ref. [23].

Subtracting Eq. (5.2a) from Eq. (5.2b),

d2θ

dx2
− γ2θ = 0 (5.3)

where θ = Tp − Te and

γ =

√

gep(
1

κe
+

1

κp
) (5.4)

Note that the boundary condition at the far end of the metal is θ|x→−∞ = 0. The

solution to Eq. (5.3) is thus θ = c · exp(γx), where c is a constant of integration to

be determined. Accordingly, ∇θ|x=0 = γ · c.
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Let us denote the steady-state heat current resulting from the temperature bias,

TL−TR, as J , which is positive for left-to-right direction and vice versa. Recall that J

is assumed to be carried by both electrons and phonons in the metal side and only by

phonons in the nonmetal side, thereby we have another set of boundary conditions at

the interface, which are −J = κn∇Tn|x=0 = κp∇Tp|x=0 and ∇Te|x=0 = 0, and hence

∇θ|x=0 = ∇Tp|x=0 −∇Te|x=0 = ∇Tp|x=0 = −
J

κp
(5.5)

We combine ∇θ|x=0 = γ · c with Eq. (5.5) and get c = − J
γκp

, so

θ = −
J

γκp
exp(−γ|x|) (5.6)

Equation (5.6) enables us to define a non-equilibrium length, or cooling length [161],

which quantifies the electron-phonon non-equilibrium distance. Specifically, if we

define such a characteristic length as the distance between the position of θmax and

5%θmax, then

lNE ≈
3

γ
=

3
√

gep(
1
κe

+ 1
κp
)

(5.7)

In metal, the overall Fourier’s law considering both electrons and phonons is

−J = κp∇Tp + κe∇Te (5.8)

and from Eq. (5.6), we know

∇θ = ∇Tp −∇Te = −
J

κp
exp(γx) (5.9)

Combining Eq. (5.8) and Eq. (5.9), it is easy to solve for ∇Tp and ∇Te. Integrating

the results with the Dirichlet boundary conditions, we obtain the exact temperature

field in the metal side,

Te =
J

κe + κp

[

1

γ
exp(γx)−

1

γ
exp(−γlL)− x− lL

]

+ TL (5.10a)

Tp =
J

κe + κp

[

1

γ
exp(γx)−

1

γ
exp(−γlL)− x− lL

]

+ TL −
J

γκp
exp(γx)(5.10b)

As a first approximation, we assume that thermal transport across metal-nonmetal

interface is only contributed by phonon-phonon coupling, i.e., phonon-mediated. Such
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assumption is commonly adopted in theoretical methods such as DMM and AMM.

However, a refined model would consider the penetration of electrons into the non-

metal side, which will be considered in our future work. We define the interfacial

thermal conductance caused by such phonon-phonon coupling as hpp, and correspond-

ingly,
J

(Tp − Tn)|x=0
= hpp (5.11)

On the nonmetal side, the Fourier’s law is

κn∇Tn = −J (5.12)

With one boundary condition as Tn|x=lR = TR, Eq. (5.12) leads to

Tn|x=0 = TR +
J · lR
κn

(5.13)

Combining Eqs.5.10, 5.11 and 5.13, we finally get

Rtot =
TL − TR

J
=

lL
κe + κp

+
1

hpp
+ (

κe
κe + κp

)
3

2 (
1

gepκp
)
1

2 +
lR
κn

(5.14)

Evidently, Eq. (5.14) indicates that the metal-nonmetal system can be described as a

series thermal circuit. More specifically, the first and the last term on the right hand

side of Eq. (5.14) are the formal Fourier thermal resistance of the metal and nonmetal

segments, respectively. The second and third terms are the interfacial thermal resis-

tances associated with phonon-phonon coupling (Rpp) and electron-phonon coupling

(Rep), respectively. Our result is essentially the same as [23]’s work [23] though for

different boundary conditions. Subtracting the two bulk thermal resistances, it is

evident that the interfacial thermal resistance can be written as

RI =
∆T

J
= Rpp +Rep =

1

hpp
+ (

κe
κe + κp

)
3

2 (
1

gepκp
)
1

2 . (5.15)

where ∆T = (Tn−Tfit)|x=0, and is indicated in Fig. 5.1 as the summation of ∆Tep and

∆Tpp, corresponding to the interfacial temperature noncontinuity related to electron-

phonon coupling in the metal side and phonon-phonon coupling across the interface,

respectively.
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Table 5.1. gep for Cu obtained via various methods.

Reference Method gep (1016 W/m3-K)

[162] ab initio ∼ 5.5 1.

[163] pump-probe experiment through

time-resolved transmissivity

∼ 10

[164] ab initio 8.43

[160] pump-probe experiment through

transient thermoreflectance spec-

troscopy

26 2

5.2.2 Input Parameters

In practice, the utilization of TTM is usually quite cumbersome due to its in-

put parameters, i.e., ce, κe and gep. Lin et al. conducted comprehensive studies on

the temperature dependence of ce for eight representative metals from first princi-

ple [162], and a linear relation between ce and Te is usually valid for a temperature

below 1,000 K, a regime for most thermal interface applications. κe can be approx-

imated via the Wiedemann-Franz law based on a knowledge of the Lorenz number

and electrical conductivity, given that most electron-electron collisions are elastic,

which has been adopted in previous TTM works [157]. Another way to calculate κe,

as stated in Ref. [162], is through the Drude model, which does not guarantee better

approximations due to the complicated temperature dependence of ce and electron-

phonon and electron-electron scattering rates [162]. Tremendous efforts have been

made in search of an accurate model of electron-phonon interactions in various ma-

terials [160, 162, 163, 165, 166]. [165] divide electron-phonon interactions, through a

cutoff ion velocity [165, 166], into two distinct regimes, i.e., electronic stopping and

electron-phonon coupling. The former regime is characterized by ballistic movement

of ions with extremely high energy, e.g., 8.6 eV for Fe [165], which is not present in

most interfacial thermal transport problems. On the other hand, electron-phonon cou-
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pling dominates the overall electron-phonon interactions in a solid-state crystal, where

atoms vibrate around their equilibrium positions. Various methods [160, 162–164]

have been applied to calculate the electron-phonon coupling coefficient, gep, as a lin-

ear approximation of electron-phonon energy exchange through the gep(Te−Tp) term

in TTM. However, the obtained gep’s can vary by an order of magnitude for the

same material (see Table. 5.1 for a list of measured gep for Cu), which suggests the

inaccuracy, to a certain extent, of the linear approximation.

For the purpose of thermal transport modeling, MD simulation is advantageous

with respect to other theoretical approaches, e.g., AMM and DMM, in modeling ther-

mal transport processes in that it naturally includes the effects of interface bonding

and topography, without sophisticated assumptions on those properties. The only

inputs needed by MD simulation are the atomic structure and empirical inter-atomic

potentials. MD simulations have been used extensively to compute thermal boundary

conductance (resistance) across solid-solid interfaces [110], however, mainly limited

to nonmetals. To incorporate electronic effects into the modeling of radiation damage

simulations, [165] introduced a TTM-MD simulation scheme capable of accounting

for electron-phonon coupling, electronic stopping and both the temporal and spatial

evolution of the phononic and electronic subsystems [165, 166]. Subsequently, [159]

modified [165]’s design to an energy-conserving version by adding a communication

process between the electronic and atomic subsystems [159]. Herein we adopt [159]’s

version, using the LAMMPS package [76] (we have modified its ttm module to sup-

port non-periodic boundary conditions), to perform non-equilibrium MD simulation

for phonon degree of freedom, which is coupled with finite difference (FD) calculation

for the electron degree of freedom.

In parallel with Eqs. 7.3a and 7.3b, the TTM-MD simulation models coupled elec-

tronic subsystem and phononic subsystem simultaneously, as illustrated in Fig. 5.2.

Phononic heat diffusion (Eq. (7.3b) except the last term) is still modeled by the

usual MD technique. κp is thus calculated implicitly by MD, where its dependence

on temperature, interface atomic reconstruction [167] and mixing [168] are included.
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Tp = average
T of atoms in 
this grid

Atoms in MD

FD grid

Te for each 
FD grid 

Figure 5.2. Illustration of the coupled electronic and phononic sub-
systems using FD and MD in TTM-MD simulations. Lines represent
FD grids, with solid ones denoting the grid of interest. Dots are atoms
in MD simulations, with enlarged ones denoting the atoms inside the
FD grid of interest. Thermal transport in the electronic subsystem is
modeled by solving Eq. (7.3a) using FD method, where each grid has
its own Te, and Tp is the average temperature of the MD atoms in-
side this grid. Phononic subsystem is modeled by the MD simulation,
with each atom subject to a Langevin force, which equilibrates their
temperatures to the Te of the overlapping FD grid. Figure reproduced
from Ref. [24].
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In addition, in the TTM-MD approach, electron-phonon non-equilibrium near the

interface leads to phonon generation, which can disturb the original phonon scatter-

ing, and hence affects phonon transport. This feature is neglected in [23]’s analytical

treatment [23], where κp was calculated elsewhere. The electronic subsystem is mod-

eled by solving Eq. (7.3a) iteratively with the FD method. Phonons and electrons are

coupled via the gep(Te − Tp) term in Eq. (7.3), where Te is the electron temperature

of each FD grid, and Tp is the average temperature of the MD atoms inside that grid.

In practice, the equation of motion for an atom i in the MD part is in the form

of a Langevin thermostat [157,165,166]:

mi
∂vi

∂t
= Fi(t)− γivi + F̃i(t) (5.16)

where m and v are merely the atomic mass and velocity. Fi is the total force exerted

on atom i, evaluated via empirical inter-atomic potentials. γi is a friction term rep-

resenting the energy loss by electron-ion interactions, and is directly related to gep

as [165]

γi =
migep
3nikB

(5.17)

with n denoting the atom number density and kB the Boltzmann constant. F̃i(t) is a

random force term commonly seen in Langevin dynamics, and for this specific case,

F̃i(t) =

√

24kBTeγi
∆t

R̃i (5.18)

where ∆t is the temporal interval of the simulation and R̃ is a random vector

[R1, R2, R3] with Rj ∈ [−0.5, 0.5]. The summation of the last two terms of Eq. (5.16),

i.e., −γivi + F̃i(t), equilibrates the electronic and phononic subsystems to a shared

temperature [159,165].

So far, we have gone through a complete process of the evolution of the phononic

subsystem in the MD part. The total energy transferred from the electronic subsystem

to the phononic one through the Langevin force, −γivi + F̃i(t) in Eq. (5.16), is

thus [157,159]

Ẽep =
[

−γivi + F̃i(t)
]

vi∆t (5.19)
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Finally, we replace gep(Te − Tp) with Ẽep in Eq. (7.3a), establishing a complete elec-

tronic thermal diffusion process, and the total energy of the whole system is also

conserved. It should be noted that the validity of both the MD simulation and the

FD calculation of electronic heat diffusion is based on the assumption of local equilib-

rium. To satisfy this criteria, the number of atoms accounted for by each grid should

be larger than a critical value to make sure the fluctuation of temperature is small

enough, which is in contrast to the discrete nature of FD which prefers finer grids. We

have checked our simulations on Si-Cu and CNT-Cu systems, and the temporal lo-

cal temperature fluctuation is usually below 15% when each grid contains more than

1,000 atoms. To successfully model interfacial thermal transport processes, where

electron-phonon non-equilibrium adjacent to the interface is crucial, we should also

make sure that the FD grids should be sufficiently shorter than lNE in the heat flow

direction, as defined by Eq. (5.7).

5.3 Case Studies

5.3.1 Pure Copper

To verify that this TTM-MD method is capable of modeling coupled electronic

and phononic thermal transport in metals, we first calculate the thermal conductivity

of a homogeneous Cu (mCu = 63.55 g/mol, and ∼ 72 nm × 4 nm × 4 nm) in the [100]

direction, as shown in Fig. 5.3a. We do not consider its natural abundance (69.15%

63Cu and 30.85% 65Cu) here since the corresponding mass-disorder is negligible in

terms of thermal transport. In the MD domain, the outermost layer of atoms on

both ends of the Cu are fixed, while the periodic boundary condition is applied to the

lateral directions. The FD calculation contains 100× 1× 1 girds, which corresponds

to 600 atoms/grid. This ensures a temperature fluctuation in each FD grid less than

10%, which is well compatible with the local equilibrium requirement. Adiabatic

thermal boundary condition is used at the two ends of the FD domain, which allows

for the establishment of a steady temperature gradient. The embedded-atom method
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Figure 5.3. (a): the simulation setup. (b) and (c): the steady-
state temperature profiles obtained in conventional MD and TTM-MD
simulations on pure Cu. Electron-phonon non-equilibrium can be seen
at and near the thermostat region in (b). Electron and phonon are
always in equilibrium in (c) since we use κe = 0. Figure reproduced
from Ref. [24].
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(EAM) [169] is adopted for Cu-Cu interactions. The system is first relaxed in the NVT

ensemble (300 K) via the Nosé-Hoover thermostat for 0.5 ns with a time step of 0.5 fs.

After that, the system is switched to non-equilibrium MD, where atomic temperatures

at the two ends are maintained at 350 K and 250 K, respectively, through a direct

velocity scaling algorithm implemented in LAMMPS. The resulting heat current J is

calculated by J = (JL − JR)/2, where JL and JR are the amount of kinetic energy

injected into the left and right thermostat per unit time. Such non-equilibrium MD

simulation is continued for 9 × 106 steps, of which the last 4.5 × 106 steps are used

for data production and post-processing.

We conduct both conventional MD and TTM-MD, and in the latter case we use

κe = 401 W/m-K, which is actually the total κ of Cu at room temperature. Since

the lattice contribution to thermal transport in Cu is rather small compared with the

electronic part, previous studies [160] usually used the total κ as a first approximation

for κe. Besides, we use the value of 2.6 × 1017 W/m3-K, as obtained from [160]’s

experiment, for gep. The corresponding steady-state temperature profiles are plotted

in Fig. 5.3b. The temperature gradient ∂T/∂x can be extracted from the central part

of the temperature profiles, where they are linear for both methods and Te = Tp for

TTM-MD. The two electron-phonon non-equilibrium regions near the thermostats

are due to the fact that we only apply thermostats to phonons in the TTM-MD

simulation, which does not violate the validity of this method as long as we calculate

κ with the linear temperature profile in electron-phonon equilibrium region (central

part of the structure). As a verification for this method, we also perform TTM-MD

with κe = 0, corresponding to lNE = 0 from Eq. (5.7). In the resulting temperature

profile, Fig. 5.3c, electrons and phonons have the same temperature all the way from

the hot thermostat to the cold one, indicating excellent agreement between our TTM-

MD simulation and the analytical solution. Thermal conductivity, κ, is obtained

according to the Fourier’s law of heat conduction:

κ = −
J/A

∂T/∂x
(5.20)

where A is the cross-sectional area of the Cu.
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Table 5.2. κ of Cu obtained via different methods. Table reproduced
from Ref. [24].

Source Method κ (W/m-K)

Ref. [170] Experiment ∼ 401

Ref. [171] Equilibrium MD ∼ 15

Ref. [172] Non-equilibrium MD ∼ 10.4

This work Non-equilibrium MD 13.6±1.4

This work TTM-MD 415±11
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Table. 5.2 lists the experimental value [170] of κ, and those calculated in previous

theoretical studies [171,172] and in this work, using conventional MD and TTM-MD.

As can be seen, κ’s from conventional MD are below 15 W/m-K, which only accounts

for the phononic thermal transport. TTM-MD predicts κ = 415±11 W/m-K, where

the electronic contribution is set to be 401 W/m-K, and the phonon contribution

accounts for the rest, suggesting the capability of this TTM-MD method in accounting

for the electronic contribution to κ.

5.3.2 Si-Cu Interface

Modern integrated circuit (IC) industry relies significantly on Si and Cu as wafers

(substrates) or interconnects. The presence of Si-Cu interface is inevitable and plays

an increasingly important role in determining the thermal and electrical performance

as the dimension of the devices drops to micro- and nano-scale. Herein we perform

MD as well as TTM-MD simulations on thermal transport across a system composed

of Si (∼ 35 nm × 5.4 nm × 5.4 nm) and Cu (∼ 100 nm × 5.4 nm × 5.4 nm) in

contact via their (100) faces, which are initially separated by 3.15 Å. In the MD part

for both methods, we apply the periodic boundary condition to all directions, i.e., x,

y and z. The many-body Tersoff potential [78] and EAM [169] are used for Si-Si and

Cu-Cu interactions, respectively. Interfacial interactions between Si and Cu atoms

are modeled via a Morse-type potential function [173],

U = De

[

e−2α(r−r0) − 2e−α(r−r0)
]

(5.21)

where De = 0.9 eV, α = 1.11 Å−1 and r0 = 3.15 Å, with a cutoff radius of 3.5 Å.

Such pair potential function has been adopted previously to study Cu nanocluster

diffusion [174] and deposition [173] associated with CNT or Si. The accuracy of this

potential in thermal transport prediction has not been validated yet, and here we

use it in the purpose of demonstrating the TTM-MD approach. Potential refinement

may be needed in the future for accurate prediction for the Si-Cu interface. The

system is first relaxed at zero pressure and constant temperature via the Nosé-Hoover
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Figure 5.4. (a) illustrates the simulation domain setup, where the
segments denoted by different colors are fixed end, hot thermostat,
Si system, Cu system, cold thermostat and fixed end from left to
right. (b) shows the steady-state temperature profiles obtained in
conventional MD and TTM-MD simulations on a Si-Cu system. The
inset is a zoom-in of Te and Tp adjacent to the interface. Figure
reproduced from Ref. [24].

thermostat for 0.5 ns. Then the outermost 20 Å of atoms on both ends are fixed, as

shown in Fig. 5.4a, so that phonons cannot transport from one end to the other end of

the simulation cell directly across the periodic boundary. In other words, the periodic

boundary condition is replaced with the fixed one for the x direction. After that, we

designate the regions (∼ 10 nm long) ajacent to the inner boundary of the fixed ends

as thermostats, and keep injecting a constant heat flux, J = 3.2 × 10−7 W, into one

thermostat, while subtracting the same amount from the other simultinously. We only

use FD calculation for the Cu part, instead of the whole structure. The FD domain

is divided into 128 × 1 × 1 grids, corresponding to more than 1,800 Cu atoms/grid,

thus limiting the local temperature fluctuation within 15%.

The steady-state temperature profiles obtained from both conventional MD and

TTM-MD simulations are plotted in Fig. 5.4b. It should be noted that, to clearly

compare these two methods, we apply the Dirichlet boundary condition using the

direct velocity rescaling method [76] for this case, with a fixed temperature bias of 80



93

K, instead of the constant heat flux method we use for all the other simulations in this

and following sections. On the Si side, Tp,TTM−MD has much larger slope than Tp,MD

since the total heat current is much higher in the former case, due to the addition

of electronic thermal transport channel that greatly reduces the thermal resistivity

of Cu. On the Cu side, the reduced thermal resistivity of Cu leads to much lower

slope of Tp,TTM−MD than Tp,MD. The electron-phonon non-equilibrium, of which the

analytical form has been shown in Fig. 5.1, can be clearly seen in the inset of Fig. 5.4,

where Te is almost flat near the interface, consistent with its adiabatic nature. From

the temperature profiles, we can obtain the temperature jump at the interface, ∆T ,

in the same way as shown in Fig. 5.1. The interfacial thermal resistance is thus

RI =
A∆T

J
(5.22)

As discussed in Section 7.3, great caution should be exercised in choosing ap-

propriate input parameters, i.e., κe, ce and gep, from many candidates in TTM-MD.

However, many metals such as Cu, Au, Pt and W have fairly constant values of κ in

the range of 200 K to 1,000 K [170]. Specifically, κ of Cu decreases gradually from

410 W/m-K at 200 K to 360 W/m-K at 1,000 K, where κp is only around 10 W/m-

K [171]. Equation (5.14) suggests that when κe ≫ κp, Rep is independent of κe since

Rep ≈ (gepκp)−0.5. As a test, we calculate RI using κe ranging from 10 W/m-K to 450

W/m-K, with constant values of gep and ce. As shown in Fig. 5.5, RI increases with κe

at first, but saturates when κe > 100 W/m-K. Therefore, in the range of temperature

at which we perform TTM-MD simulations on Cu, κe has negligible effect on RI , and

we can safely use κe = 401 W/m-K for all calculations. Similarly, Eq. (5.14) reveals

that ce should also be insignificant in steady-state interfacial thermal transport prob-

lems. We compare the results using a constant ce and a temperature dependent ce

(its volumetric form is Ce = 96.8 J/m3-K2 × Te) in Fig. 5.6, and evidently, the effect

on RI is minor, as expected.

[162] has calculated gep for various metals including Cu for Te ranging from room

temperature to 2 × 104 K, where gep is almost constant below 2,000 K [162]. Subse-

quently, [175] found better agreement with experimental observation of the temporal
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Figure 5.5. κe dependence of RI predicted by TTM-MD simulations.
RI saturates when κe > 100 W/m-K. The data for MD (crosses) are
duplicates of the single data obtained from repeated MD simulations
at 300 K. Figure reproduced from Ref. [24].
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Figure 5.6. RI calculated from MD and TTM-MD simulations for
Si-Cu interface. gep,1 = 2.6 × 1017 W/m3-K, and gep,2 = 5.5 × 1016

W/m3-K. ce(T) means the use of temperature dependent volumetric
heat capacity Ce (= 96.8 J/m3-K2 × Te) in TTM-MD simulation.
Figure reproduced from Ref. [24].

evolution of Te using [162]’s data than [163]’s. Herein, for the sake of accurate cal-

culation as well as evaluating the importance of gep, we compute RI using gep,1 [160]

= 2.6 × 1017 W/m3-K, and gep,2 [162] = 5.5×1016 W/m3-K, respectively. As shown

in Fig. 5.6, gep,1 results in significantly higher (by > 25%) RI than conventional MD,

and gep,2 predicts even higher RI , which agrees with the trend predicted by Eq. (5.14).

Using Eq. (5.14) with κe = 401 W/m-K and κp = 13.6 W/m-K (Table 5.2), we can

calculate Rep to be ∼ 0.5×10−3 mm2-K/W and ∼ 1.1×10−3 mm2-K/W for gep,1 and

gep,2, respectively. If we simply add Rep to Rpp (dark crosses in Fig. 5.6), which is

the method used in Ref. [23], the values are 2.6×10−3 mm2-K/W and 3.2×10−3 mm2-

K/W at 300 K, which overpredicts the TTM-MD results by 6% and 15%, respectively.

The neglection of electronic effect on phononic thermal transport, by simple summa-

tion of Rpp and Rep obtained from separate calculations, leads to inherent inaccuracy

of previous analytical approaches [23, 161], and hence TTM-MD is preferred in that

sense.
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(a) (b)
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t

Figure 5.7. (a): perspective view (front) of the CNT-Cu interface;
(b): schematic of the definition of the cross-sectional area of the Cu
substrate (As) and the contact (Ac) in Eq. (5.23). Figure reproduced
from Ref. [24].

5.3.3 CNT-Cu Interface

CNT and graphene, of which both intrinsically possess very high κ and elastic

modulus, have been proposed as excellent thermal interface materials [176,177] to fill

gaps between solid-solid surfaces, e.g., silicon dies, heat sinks, etc. In this section,

we conduct TTM-MD simulations on thermal transport across CNT-Cu interface.

Similar to Si-Cu, we use the same Morse-type potential function (De = 2.277 eV, α

= 1.7 Å−1 and r0 = 2.2 Å) [174] for C-Cu interactions, with a cutoff radius of 2.5 Å.

The equilibrium structure is shown in Fig. 5.7a, where strong atomic reconstruction of

CNT near the interface [167] can be seen due to the rather strong interaction between

C and Cu. The zigzag CNT (100.0 nm long and 3.6 nm in diameter) is in end-contact

with the (100) face of Cu (100 nm × 5.4 nm × 5.4 nm), with an initial separation of

2.2 Å. All the other simulation setup details are the same as our Si-Cu simulations

in Section 5.3.2.

Special caution should be made to the definition of RI for CNT-Cu interfaces due

to the hollow geometry of CNTs. Herein we calculate RI of CNT-Cu as the thermal

resistance per unit cross-sectional area of the substrate (As, see Fig. 5.7b), i.e., Cu in

this work, which is

RI =
As∆T

J
=

Ac∆T

J

(

As

Ac

)

(5.23)
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Table 5.3. Comparison of RI of CNT-Cu interface from MD, TTM-
MD and experiment. Table reproduced from Ref. [24].

Source Method RI (mm2-K/W)

Ref. [176] Experiment3 1±0.5

Ref. [176] Experiment4 0.9∼ 0.5

This work Non-equilibrium MD 0.18±0.02

This work TTM-MD 0.23±0.03
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Figure 5.8. RI calculated from MD and TTM-MD simulations for the
CNT-Cu interface, where Ac/As = 1.0% is used. Figure reproduced
from Ref. [24].

where Ac is the real contact area between CNT and Cu, i.e., the annular area of CNT

for complete contact conditions. Ac is calculated by Ac = πDt, where D and t (0.335

nm) are the diameter and wall thickness of the CNT, respectively. Ac/As is usually

referred to as the CNT engagement factor [16]. As pointed out in Ref. [16], Ac/As is

usually between 0.5%–0.9%, which leads to a large RI of CNT-metal interfaces. In

Ref. [176], the scanning electron microscope image implies that Ac/As ≈ 1.89%, if we

assume that CNTs and the Cu sheet are in complete contact. We will calculate RI

for CNT-Cu using a medium value of Ac/As, i.e., 1.0%.

The temperature dependence of RI is calculated using both MD and TTM-MD,

where gep = 5.5 × 1016 W/m3-K and Ce = 96.8 J/m3-K2 × Te are used. As shown

in Fig. 5.8, the TTM-MD predicts higher RI than MD alone by a factor of ∼ 30%
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on average. We compare RI at 300 K calculated by MD and TTM-MD simulations

with experimental data in Table. 5.3. We should note that if we use gep = 2.6× 1017

W/m3-K, RI will be ∼ 0.21 mm2-K/W, which indicates that an accurate value of gep

is crutial to the prediction of RI .

5.4 Summary

We have used TTM-MD simulation to achieve simultaneous modeling of coupled

phononic and electronic thermal transport in metal-nonmetal systems in a single

simulation. By incorporating the electron degree of freedom to the phononic MD

simulation, we are able to capture the non-equilibrium between electron and phonon

in a steady-state heat conduction condition, which plays an important role in thermal

transport across metal-nonmetal interfaces. The simulation results obtained using

this TTM-MD method are physically more sound and are in better agreement with

experimental data compared to those obtained using conventional MD simulations.
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6. FIRST-PRINCIPLES CALCULATION OF PHONON-ELECTRON AND

PHONON-PHONON SCATTERING RATES IN SOLIDS

6.1 Introduction

An important implication of the two-temperature model (TTM) is that the ther-

mal conductivity κ of metals affects not only thermal transport inside metallic com-

ponents, but also heat transfer across metal-dielectric interfaces. [23] Despite that a

knowledge of the lattice thermal conductivity κL is required to model thermal trans-

port in systems including metallic components, the lattice κ of most metals is yet

to be fully understood. One such topic is how the lattice κ of metals is affected

by electrons. Even though electron density is not the sole factor to determine the

electron-phonon coupling constant Gep, it could shed some light on a qualitative es-

timation of the relative magnitude of Gep in materials. In low-doped semiconductors

and insulators, which have very low electron density, phonon scattering by electrons

is much rarer than scattering by other phonons at temperatures around or above

the Debye temperature. For heavily-doped semiconductors, semimetals, and metals,

however, the high electron density might lead to a different story. For example, it

was reported that phonon-electron (p-e) scattering could reduce the phonon lifetime

significantly in heavily-doped silicon. [178] Moreover, it is well known that there is

a wide span of Gep in metals. [162] For instance, Gep is on the order of 1 × 1016

W/m2-K in copper (Cu), silver (Ag), and gold (Au) at room temperature, while it

is on the order of 1 × 1017 ∼ 1018 W/m3-K in aluminum (Al), platinum (Pt), and

nickel (Ni). [162] As the magnitude of Gep characterizes the strength of scattering of

electrons by phonons, it is thereby natural to expect that the scattering of phonons

by electrons is stronger in Al, Pt, and Ni than in Cu, Ag, and Au. Phonon transport

in metals is limited by phonon scattering by various sources, for example, phonons,
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electrons, impurities, and defects, etc. At temperatures comparable to or above the

Debye temperature, phonon-phonon (p-p) scattering is believed to dominate phonon

relaxation in Cu, Ag, and Au while p-e scattering is neglected. [179] However, it is

unclear whether p-e scattering is also negligible in metals known to have stronger

electron-phonon coupling than Cu, Ag, and Au. Moreover, as illustrated in litera-

ture, [23,24], the effective thermal boundary resistance of a metal-dielectric interface

is proportional to κ−0.5
L . Therefore, an accurate knowledge of κL is important for

thermal modeling of metal-dielectric systems.

In this chapter, we present first-principles calculations of p-p and p-e scattering

rates in Cu, Ag, Au, Al, Pt, and Ni. With these quantities, we are able to compute

the lattice κ of these metals and evaluate the relative importance of p-p and p-e

scattering on lattice κ.

6.2 Methodology

A phonon is a quantum of lattice vibration and can be described with a quantum

number λ = (ν,q), where q denotes wave vector and ν denotes branch index. A

phonon can be scattered through interaction with other phonons, electrons, impu-

rities, etc. The overall scattering rate of a phonon mode can be estimated by the

Matthiessen’s rule as γλ = γppλ + γpeλ + ..., where γppλ and γpeλ are scattering rates

of p-p and p-e scattering, respectively. In this work, γpp and γpe will be calculated

separately, both from first-principles, of which the details are described below.

6.2.1 Phonon-phonon Scattering

The p-p scattering contribution (three-phonon process only) to γλ is given by the

Fermi’s golden rule (FGR) as [180,181]

γppλ =
h̄π

4N

+
∑

λ1λ2

2
n1 − n2

ωω1ω2
|V +

λλ1λ2
|2δ(ω+ω1−ω2)+

h̄π

8N

−
∑

λ1λ2

n1 + n2 + 1

ωω1ω2
|V −

λλ1λ2
|2δ(ω−ω1−ω2),

(6.1)
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where the first term on the right hand side is for phonon absorption (two phonons

combine into one) while the second term is for phonon emission (one phonon splits

into two). In addition, N is the number of discrete q points of the Γ-centered q grid

for sampling the first Brilloin zone (FBZ), h̄ is the reduced Planck constant, n is the

Bose-Einstein distribution function, and ω is the phonon frequency. The summation
±
∑

over phonon modes requires conservation of quasimomentum: q2 = q ± q1 +Q,

in which Q is the reciprocal lattice vector with Q = 0 denoting normal process

while Q ̸= 0 denoting Umklapp process. δ is the Dirac delta function, which is

approximated by a Gaussian or Lorentzian function in practice. The terms V ±
λλ1λ2

are

the scattering matrix elements, which are calculated as [181]

V ±
λλ1λ2

=
Nb
∑

l1

N,N
∑

l2,l3

3,3,3
∑

α1α2α3

∂3E

∂rα1

l1
∂rα2

l2
∂rα3

l3

eα1

λ (l1)e
α2

j1,±q1
(l2)e

α3

j2,−q2
(l3)

√
ml1ml2ml3

, (6.2)

where m is the atomic mass and eν,q is the normalized eigenvector of the phonon

mode λ = (ν,q). In Eq. (6.2), l1, l2, and l3 run over atomic indices (l1 runs over only

the atoms in the center unit cell, which contains Nb basis atoms), and α1,α2, and α3

represent Cartisian coordinates. The third-order partial derivative is the anharmonic

interatomic force constant (IFC) obtained from first-principles, in which E is the total

energy of the whole system and rα1

l1
denotes the α1 component of the displacement of

atom l1.

In addition to third-order IFCs for Eq. (6.2), one also needs the eigenvalues and

eigenvectors of phonon modes to compute γppλ based on Eqs. 6.1-6.2. The eigenval-

ues and eigenvectors are obtained from lattice dynamics calculations that require

second-order IFCs. In this work, the second-order IFCs are obtained through Fourier

transforming reciprocal-space dynamical matrices calculated from the linear-response

theory, which is implemented in Quantum ESPRESSO [182, 183]. Force constants

obtained in this way suffers less error due to long-range interactions than another

widely used method, the small-displacement method. [184] The third-order IFCs are

obtained through a finite-difference supercell approach, in which Quantum Espresso

is used to compute the forces for a minimal set of displaced supercell configurations.
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In all the density-functional theory (DFT) calculations, the Troullier-Martins

normconserving pseudopotentials are used. DFT calculations for second-order IFCs

are conducted with a k-space sampling and integration on a 24× 24× 24 Monkhorst-

Pack grid and an energy cut-off of Ecut for the truncation of the plane wave basis set.

Ecut is set to be 100 Ry for Cu, Ag, Au and 120 Ry for Al, Pt, and Ni. In all cases, a

Marzari-Vanderbilt cold smearing of 0.02 Ry is used to speed up the convergence of

the self-consistent calculations. A q-grid with 5×5×5 q points is used for Cu, Ag, and

Ag, while a denser q-grid of 16×16×16 is used for Al, Pt, and Ni . The convergence

of phonon dispersion with respect to k-grid density, q-grid density, energy cut-off,

and smearing energy has been carefully checked, and the aforementioned values of

these parameters ensure convergence within about 2% on phonon frequencies at Γ

and X points and less than 0.001 Ry/atom difference in energy. DFT calculations

for third-order IFCs are performed on supercells containing 4 × 4 × 4 primitive unit

cells. A Γ-point algorithm in Quantum ESPRESSO is used for Cu, Ag, and Au for

efficient DFT calculation while a 3× 3× 3 k-grid is used for Al, Pt, and Ni.

Two types of exchange-correlation functionals are used, i.e., Generalized Gra-

dient Approximation (GGA) [185] and Local Density Approximation (LDA) [186].

Generally speaking, LDA tends to overestimate bonding energies and underestimate

bond lengths, and vice versa for GGA. Since the harmonic and anharmonic IFCs

are derivatives of the energy, as a general rule both sets of constants will be larger

in magnitude when computed using the LDA. Accordingly, phonon frequencies and

scattering rates are usually overestimated by LDA while underestimated by GGA.

This, however, might lead to a fictitious cancelation of error for the prediction of

thermal conductivity, which is positively correlated to phonon frequencies (heat ca-

pacity) while negatively correlated to scattering rates. Finally, the second-order and

third-order IFCs are feeded to ShengBTE [187] to obtain γppλ on a 16×16×16 q-grid.
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6.2.2 Phonon-electron Scattering

The phonon-electron scattering rate from the FGR is computed as [180]

γpeλ =
2π

h̄

∑

k,i,j

|gλjk+q,ik)|2fik[1− fjk+q]

× {nλδ[ϵik − ϵjk+q + h̄ωλ]− (nλ + 1)δ[ϵik − ϵjk+q − h̄ωλ]},
(6.3)

where g is the electron-phonon matrix element, f is the Fermi-Dirac distribution

function, k is the electron wavevector, i and j are electron band indices, ϵ is the

electron energy, and ω is the phonon frequency. The electron-phonon matrix element

is calculated as

gλjk+q,ik =

√

h̄

2ωλ
⟨ψjk+q| ∂Uλ |ψik⟩ , (6.4)

which describes the transition of an electron at a Bloch state ik into another state

at ik + q by a phonon at state λ = (q, ν). In Eq. (6.4), ψ is a ground-state Bloch

wavefunction and U is the self-consistent Kohn-Sham potential felt by electrons, which

depends on the atomic positions. ∂Uλ denotes the first-order derivative of the Kohn-

Sham potential with respect to phonon displacement. Details regarding this quantity

can be found in literature. [188]

Under the relaxation time approximation, the scattering rate (inverse lifetime) of

phonon mode λ is [189]

γpeλ =
1

τ epλ
=

2π

h̄

∑

k,i,j

|gλjk+q,ik)|2[fik − fjk+q]

× δ(ϵik − ϵjk+q + h̄ωλ).

(6.5)

As we can see, the rate for the scattering of a phonon by electrons only depends on

the number of electron states (f) available under the relaxation time approximation,

while phonon distribution n is not present in Eq. (6.6).

Since the energy span of phonons is much smaller than that of electrons, Eq. (6.5)

can be approximated as

γpeλ ≈ 2πωλ

∑

k,i,j

|gλjk+q,ik)|2
∂f(ϵik, T )

∂ϵ
× δ(ϵik − ϵjk+q + h̄ωλ), (6.6)



104

where ∂f/∂ϵ is a “Fermi window” that peaks at the Fermi level. An important prop-

erty of this function is that it broadens as temperature increases with its integral

over the full ϵ-space always being unity. In other words, p-e scattering rate is essen-

tially a weighted average of p-e scattering matrix elements for electron states near

the Fermi surface that satisfy energy conservation enforced by the Dirac delta func-

tion. Eq. (6.5) indicates that in order to have low/high p-e scattering rates, the metal

should have small/large scattering matrix element g and low/high electron density of

states (eDOS) in the Fermi window.

The electron-phonon matrix elements are calculated using ABINIT [190] using

the same Troullier-Martins normconserving pseudopotentials as those for IFC calcu-

lations. The electron-phonon matrix elements are evaluated on a 16× 16× 16 k-grid

and a 16 × 16 × 16 q-grid. In fact, even with a coarser 12 × 12 × 12 k-grid and a

12× 12× 12 q-grid, the values of γpe differ by no more than 5% in most cases, which

suggests the values of γpe obtained on the 16× 16× 16 k-grid and q-grid pair should

be well converged.

6.2.3 Lattice Thermal Conductivity

Finally, the lattice thermal conductivity tensor can be calculated as

κL,αβ =
∑

λ

cv,λvλ,αvλ,βτλ, (6.7)

where cv,λ is the volumetric specific heat of a phonon mode λ and is calculated as

cv,λ = (h̄ωλ)
2nλ(nλ + 1). (6.8)

Since it is almost impossible to verify our calculations on p-p and p-e scatter-

ings directly, we will compare our results of lattice constants (a), phonon dispersion

relations, and electron-phonon coupling parameter λep, which is also refered to as

the mass enhancement factor, with literature values. The phonon dispersions are

presented in Fig. 6.1-6.5, and λep’s are calculated using the formalism described in

Ref. [193] and listed in Tab. 7.1. We can see that the calculated λep generally fall in
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Table 6.1. Material properties of Cu, Ag, Au, Al, Pt, and Ni. The 2nd
column is the electron configuration of these elements. Columns 3 and
4 are the lattice constants calculated through structural relaxation in
this work using LDA and GGA, respectively, while column 5 shows
the experimental data. Columns 6 and 7 are the electron-phonon mass
enhancement parameter (λep) calculated in this work using LDA and
GGA, respectively, and column 8 lists the data from literature.

Material e− configuration aLDA (Å) aGGA(Å) aexp.(Å) λepLDA λepGGA λepliterature

Cu [Ar]3d104s1 3.668 3.553 3.610 0.138 0.142 0.13 [191]

Ag [Kr]3d104s1 4.210 4.067 4.090 0.135 0.160 0.12 [191]

Au [Xe]3d104s1 4.183 4.075 4.080 0.189 0.212 0.15 [191]

Al [Ne]3s23p1 4.046 3.961 4.050 0.377 0.389 0.38 [192]

Pt [Xe]4f 145d96s1 3.995 3.914 3.920 0.559 0.612 0.66 [191]

Ni [Ar]4s23d8 3.544 3.441 3.520 0.239 0.257 0.31 [191]
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the range of literature values. This means that our calculation can at least capture

electron-phonon interactions near the Fermi surface with reasonable accuracy.

It is worth noting that, since GGA considers the gradient of the charge density at

each position, it generally works better for molecules in which there are abrupt charge

density changes with respect to position, whereas LDA works better for metallic sys-

tems. [194] However, we will see that GGA results agree better with experimental

data of lattice constant, phonon dispersion relations, and electron-phonon mass en-

hancement factor than LDA for certain metals. Therefore, in this work, we present

the results from both LDA and GGA approximations.

6.3 Results and Discussions

6.3.1 Cu, Ag, and Au: Noble Metals with Weak Electron-phonon Inter-

action

Cu, Ag, and Au are noble metals sharing several attributes such as low electrical

resistivity and high ductility. All three metals have a single s-orbital electron on top

of a fully filled d-orbital electron shell. As a result, the Fermi level of Cu, Ag, and

Au lies on the s-band, which has low eDOS, as shown in Fig. 6.1a, Fig. 6.2a, and

Fig. 6.3a. This, as discussed in Ref. [162], leads to a low Gep, which characterizes

how fast the thermal energy in hot electrons can be transferred into phonons in the

material. [162] Moreover, the s-bands of these metals are rather flat and the d-bands

of these metals are well below the Fermi level, and even the Fermi window for 1,000

K shown in Figs. 6.1a, 6.2a, and 6.3a has no visible overlap with the d-bands, which

suggests insignificant change in electron-phonon interactions below 1,000 K. Since

they have low g and low eDOS in the Fermi window, these metals are expected to

have low p-e scattering rates, according to Eq. (6.6).

The phonon dispersion relations of Cu, Ag, and Au in the Γ-X direction in the FBZ

calculated in this work as well as experimental data [195, 197, 198] are shown in the

inset of Fig. 6.1a, Fig. 6.2a, and Fig. 6.3a. As we can see, GGA predicts better phonon
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Figure 6.1. Results for Cu. (a) Electronic density of states as well as
the Fermi window at 300 K and 1,000 K. All data in this panel and
below are obtained under the GGA approximation otherwise men-
tioned. The inset shows the phonon dispersion relations calculated
in this work as well as experimental data. [195] (b) and (c) Contour
plot of the p-p and p-e scattering rates in the kx-ky plane of the FBZ.
(d) Lattice thermal conductivity computed from first-principles with
the LDA and GGA approximations with and without the effect of p-e
scattering. The inset shows κL when only p-e scattering is considered.
Figure reproduced from Ref. [196].
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Figure 6.2. Results for Ag. (a) Electronic density of states as well as
the Fermi window at 300 K and 1,000 K. All calculations are obtained
under the LDA approximation otherwise mentioned. The inset shows
the phonon dispersion relations in the Γ-X direction in the FBZ cal-
culated in this work as well as experimental data. [197] (b) and (c)
Contour plot of γpp and γpe in the kx-ky plane of the FBZ of Ag. (d) κL
with and without the effect of electron-phonon scattering. The inset
shows κL when only p-e scattering is considered. Figure reproduced
from Ref. [196].
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dispersion relations for Cu, while LDA works better for Ag and Au. Specifically, the

frequency of the longitudinal acoustic (LA) branch of Cu is overestimated by LDA

while the frequency of both the LA and transverse acoustic (TA) branches of Ag and

Au are underestimated by GGA, which agrees with previous DFT calculations. [179]

Figures 6.1b and c show the room-temperature p-p and p-e scattering rates, or, γpp

and γpe, in the kx-ky plane of the FBZ. γpp is on the order of 1 ps−1, similar to

that of Si, while γpe is generally two orders of magnitude lower than γpp. It is worth

mentioning that, even with an electron density of ∼ 8.5 × 1022cm−3, the γpe of the

LA branch of Cu is on the same order of magnitude as the γpe of the LA phonons

and one order of magnitude lower than that of the LO phonons in heavily-doped Si

with a carrier concentration of 1 × 1021cm−3. [178] This is also true for Ag and Au,

both of which are characterized by weak p-e scattering, as shown in Figs 6.2b, 6.2c,

6.3b, and 6.3c.

We can also see that the γpp’s of Cu, Ag, and Au are on the same order of mag-

nitude. However, since they have very different atomic masses, with Cu the lightest

while Au the heaviest, the lattice thermal conductivity κL of them differs significantly

owing to the difference in phonon group velocities. As shown in Figs. 6.1d, 6.2d, and

6.3d, the κL of Cu is the highest among the three metals, while that of Au is the

lowest. In all cases, κL decreases with temperature due to enhanced p-p scattering.

In addition, the κL from LDA and GGA can differ by as much as 50% in certain

cases. We suggest using the values from GGA for Cu while those from LDA for Ag

and Au, as they predict more accurate phonon dispersions than the other for the

corresponding material. It is worth mentioning that Makinson’s model [199] predicts

a converged κL in the high-temperature limit when only p-e scattering is considered,

while Ziman’s model [200] predicts a diverged κL. In our work, which considers de-

tailed electronic band structure near the Fermi surface, κL is found to decrease with

increasing T between 200-900 K for Cu, Ag, and Au.
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Figure 6.3. Results for Au. (a) Electronic density of states as well as
the Fermi window at 300 K and 1,000 K. All calculations are obtained
under the LDA approximation otherwise mentioned. The inset shows
the phonon dispersion relations calculated in this work as well as
experimental data. [198] (b) and (c) Contour plot of γpp and γpe in the
kx-ky plane of the FBZ. (d) κL with and without the effect of electron-
phonon scattering. The inset shows κL when only p-e scattering is
considered. Figure reproduced from Ref. [196].
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Figure 6.4. Results for Pt. (a) Electronic density of states as well as
the Fermi window at 300 K and 1,000 K. All calculations are obtained
under the LDA approximation otherwise mentioned. The inset shows
the phonon dispersion relations calculated in this work as well as
experimental data (dark symbols). [201] (b) and (c) Contour plot of
γpp and γpe in the kx-ky plane of the FBZ. (d) κL with and without
the effect of electron-phonon scattering. The inset at the upper left
corner shows κL when only p-e scattering is considered, and the inset
at the upper right corner shows the cumulative thermal conductivity
with respect to phonon mean-free-path at 300 K. Figure reproduced
from Ref. [196].

6.3.2 Pt and Ni: d-band Metals with Strong Electron-phonon Interaction

Pt and Ni are d-band metals, which are characterized by a Fermi level located at

the d-band (overlapped with s-band and p-band) with high eDOS. Therefore, e-ph
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interaction can be very strong in these materials since there are many electron states

available for e-p scattering. The strong e-p interaction is manifested by a high e-p

coupling constant Gep on the order of 1018W/m3-K at room temperature, which is

two orders of magnitude higher than that of Cu, Ag, and Au. [162]

Figure 6.4a shows the eDOS of Pt, in which the Fermi level is located at the

d-band. Evidently, the eDOS at the Fermi level for Pt is much higher than that for

Cu, Ag, and Au in Figs.6.1a, 6.2a, and 6.3a. The inset of Fig. 6.4a shows the phonon

dispersion relations. As we can see, LDA predicts more accurate phonon dispersion

relations for Pt than GGA.

Figures 6.4b and c show the γpp and γpe of Pt. γpe is roughly on the same order of

magnitude as, though still lower than, γpp. In particular, γpp is lower near the center

of the FBZ, which indicates that p-e scattering is relatively more significant than at

the boundary. The inset of Fig. 6.4d displays the cumulative thermal conductivity of

Pt with respect to phonon mean-free-path (MFP). As we can see, most of the κL is

contributed by phonons with MFP in the range of 1-10 nm. Moreover, phonons with

longer MFP (> 5 nm) are more significantly affected by p-e scattering than those with

shorter MFP, since the long-MFP phonons are mostly modes near the FBZ center

with relatively weaker p-p scattering. The discrepancies between the κL predicted

from the LDA and GGA approximations are not as much as those for Cu, Ag, and

Au. In particular, the short MFP region of the cumulative thermal conductivity

curves agree with each other very well. In Fig. 6.4d, we can see that p-e scattering

reduces the κL by 15% at room temperature, and it is even more important at sub-

room-temperature regime, where Umklapp p-p scattering becomes weaker while p-p

scattering is less affected.

Figure 6.5a shows the eDOS of Ni, which, similar to Pt, has high eDOS at the

Fermi level. The inset shows the phonon dispersion curves. Evidently, the results from

GGA agree with experimental data much better than those from LDA. Figure 6.5b

and 6.5c are γpp and γpe of Ni. Similar to Pt, γpp and γpe are comparable to each

other. In Fig. 6.5d, we can see that the p-e scattering reduces κL significantly by about
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30% at room temperature and is even more important at sub-room-temperatures. The

cumulative κL curve in the inset of Fig. 6.5d indicates that p-e scattering substantially

affects the κL of phonon modes with a wide span of MFP, not just limited to long-

MFP ones as in Pt. Unlike Cu, Ag, and Au, κL increases with T in the high-

temperature regime when only p-e scattering is considered, which seems to support

Ziman’s model. [200] Finally, it is worth mentioning that, considering its total thermal

conductivity of 91 W/m-K at room temperature, the κL of Ni is comparable to

the electronic thermal conductivity. This is unlike most metals in which the lattice

thermal conductivity is much lower than the electronic part.

6.3.3 Al: Metal with Intermediate Electron-phonon Coupling Constant

Aluminum, as a prototype of free-electron-like metals, is among the first metals

that are studied ab initio. The quadratic-shape eDOS shown in Fig. 6.6a is one

signature of the free-electron nature of Al. The γpp and γpe of Al are shown in

Fig. 6.6b and Fig. 6.6c. A somewhat unexpected feature of the γpe data is that it is

much lower than γpp, contrary to the common notion that it is a metal with a quite

high Gep (for exmaple, Gep = 2.46×1017W/m3-K at room temperature in Ref. [162]).

Moreover, Fig. 6.6d shows that p-e scattering has negligible effect on the κL of Al,

unlike Ni and Pt. In fact, the Gep of Al is about one order of magnitude lower than

that of Ni and Pt. A rough estimation of γpe is Gep/cp. With cp similar between Ni,

Al, and Pt, the difference in Gep suggests γpe should also be much lower in Al than

the other two, which agrees with our results. Moreover, the highest γpe occurs in the

high frequency spectrum of phonons (near the boundary of the FBZ), while these

phonons only contribute a small amount of heat transfer to the overall κL.

6.4 Summary

To conclude, we extracted from first-principles the phonon scattering rates in sev-

eral metals considering the contribution from both p-p and p-e scattering processes.
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Figure 6.5. Results for Ni. (a) Electronic density of states as well as
the Fermi window at 300 K and 1,000 K. All calculations are obtained
under the GGA approximation otherwise mentioned. The inset shows
the phonon dispersion relations calculated in this work as well as
experimental data (dark symbols). [202] (b) and (c) Contour plot of
γpp and γpe in the kx-ky plane of the FBZ. (d) κL considering p-e
scattering only, p-p scattering only, and both p-e and p-p scattering.
The inset shows the cumulative thermal conductivity with respect to
phonon mean-free-path at 300 K. Figure reproduced from Ref. [196].
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Figure 6.6. Results for Al. (a) Electronic density of states as well as
the Fermi window at 300 K and 1,000 K. All calculations are obtained
under the GGA approximation otherwise mentioned. The inset shows
the phonon dispersion relations calculated in this work as well as
experimental data (dark symbols). [203] (b) and (c) Contour plot of
γpp and γpe in the kx-ky plane of the FBZ. (d) κL with and without
the effect of electron-phonon scattering. The inset shows κL when
only p-e scattering is considered. Figure reproduced from Ref. [196].
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It was found that p-e scattering is negligible in Cu, Ag, Au, and Al while it is signifi-

cant in Pt and Ni at room temperature. Specifically, the room temperature κL of Cu,

Ag, Au, and Al predicted from density-functional theory calculations with the local-

density approximation are 16.9, 5.2, 2.6, and 5.8 W/m-K, respectively, when only

p-p scattering is considered. p-e scattering was found to be negligible in determin-

ing κL. In contrast, the room-temperature κL of Pt and Ni is reduced from 7.1 and

33.2 W/m-K to 5.8 and 23.2 W/m-K by p-e scattering. Moreover, the effect of p-e

scattering on lattice thermal conductivity becomes stronger at sub-room-temperature

range.
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7. TWO-TEMPERATURE BOLTZMANN TRANSPORT EQUATION

SIMULATION OF THERMAL TRANSPORT ACROSS LAYERED

METAL-NONMETAL STRUCTURES

7.1 Introduction

In addition to engineering the thermal conductivity of materials for thermal man-

agement, previous studies have also demonstrated various schemes to manipulate

thermal transport across solid-solid interfaces, for example, introduction of interface

roughness, hierarchical alignment of multiple interfaces, and insertion of an interlayer

with intermediate vibrational properties between the two materials. The aforemen-

tioned schemes primarily focus on engineering phonon transport, while much less at-

tention was paid to the electron side. Moreover, it was revealed that electron-phonon

interaction plays an important role in thermal transport across metal-dielectric inter-

faces, [23,24] suggesting the feasibility of controlling interfacial thermal transport by

manipulating the electron degree-of-freedom.

The coexistence of electron and phonon channels, however, makes thermal trans-

port occur in a rather complicated manner. In pump-probe experiments, for instance,

laser radiation rapidly elevates the electron temperature to thousands of Kelvin in a

time scale of tens to hundreds of femtoseconds, while the lattice (phonons) remains

cool. Subsequently, the deposition of heat from hot electrons to cold phonons occurs

in a time scale of the order of electron-phonon relaxation time (1-10 ps), which ren-

ders the electrons and phonons almost in thermal equilibrium with each other yet

still at a temperature higher than the substrate. Finally, the gradual heat dissipation

across the interface and then into the substrate starts to dominate in a time span

of nanoseconds. Obviously, the transient thermal process described above is char-

acterized by the dominance of different thermal transport channels in a sequential
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manner. In contrast, steady-state thermal transport reflects the summation of all the

existing channels. A rigorous understanding of the above thermal transport processes

is therefore important for the management of the overall heat transfer characteristics

of electronic and photonic devices.

In this chapter, we strive to understand various heat transfer pathways and eval-

uate the effect of interlayer on interfacial thermal transport and hot electron cooling

dynamics in metal-dielectric systems. Herein we perform simulations including rele-

vant electron-phonon coupling and phonon transmission processes to show that ap-

plying an appropriate interlayer can be a practical way to enhance thermal transport

across metal-dielectric interfaces. Moreover, we also evaluate the effect of interlayer

on hot electron cooling dynamics during ultrafast laser heating. We will show that

this is of practical importance because of interlayer’s two competing effects on a de-

vice: on one hand, it reduces lattice heating and thereby extending device lifetime; on

the other hand, it accelerates the energy loss of hot electrons, which degrades energy

efficiency.

7.2 Two-temperature Boltzmann Transport Equation

We combine the BTE method with the two-temperature model (TTM) by in-

cluding an electron-phonon coupling term in both the phononic and the electronic

BTEs,

∂ee
∂t

+ ve ·∇ee =
e0e − ee
τe

−Gep(Te − Tp) + ṙe, (7.1a)

∂ep
∂t

+ vp ·∇ep =
e0p − ep
τp

+Gep(Te − Tp) + ṙp, (7.1b)

where ee and ep are the energy density of electrons and phonons, respectively, and Gep

is the electron-phonon coupling constant. ee and ep are related to the electron and

phonon temperatures via ee = 0.5γeT 2
e and ep = CpTp (classical limit), where γe is

the electron heat capacity constant and Cp is the phonon heat capacity. In addition,

v denotes velocity, τ is relaxation time, and ṙ is volumetric heat generation rate.
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The lattice Boltzmann method [204] (LBM) is used to solve the above BTE equa-

tions in the metal film. The simulation domain is divided into discrete grids (finite

volumes) of size ∆xd, with d denoting the dimension. In the two-temperature BTE,

Eqs. 7.1a and 7.1b are discretized as follows

ee,α,x+∆xe,t+∆t = (1− we)ee,α,x,t + wee
0
e,α,x,t −Gep[

e0e,α,x,t
ce

−
e0p,α,x,t
cp

]∆t, (7.2a)

ep,α,x+∆xp,t+∆t = (1− wp)ep,α,x,t + wpe
0
p,α,x,t +Gep[

e0e,α,x,t
ce

−
e0p,α,x,t
cp

]∆t, (7.2b)

where α is the index for transport directions, which is either forward + or backward

− in the 1D BTE here. e0e and e0p are the equilibrium energy density of electrons and

phonons, which are approximated as (ee,+ + ee,−)/2 and (ep,+ + ep,−)/2, respectively.

In addition, we = ∆t/τe and wp = ∆t/τp, where τe and τp denote the relaxation

time of electrons and phonons, respectively. In this work the computational grid

size is mode-dependent, that is, ∆xe = ve∆t and ∆xp = vp∆t, which is different

from the mode-dependent time step size scheme used in previous LBM-based BTE

calculations. [205] We note that ve ≫ vp in most metals and semiconductors, with

the former usually being close to the Fermi velocity vf (on the order of 1 × 106m/s)

and the latter approximately being the phonon group velocity vs (on the order of

1 × 103m/s). The great mismatch between vf and vs makes ∆xe and ∆xp differ

by almost three orders of magnitude. As a result, each electron grid is coupled to

thousands of phonon grids.

The fact that the thickness of the thin film is usually between 20-200 nm while

the substrate is usually much thicker renders a full BTE calculation for both sides

rather computationally demanding, especially when multiple phonon modes or elec-

tron modes are included. Because the substrate is usually much thicker than the

mean-free-path of the heat carriers, we use the diffusive TTM,

Ce
∂Te

∂t
= ∇ · (κe∇Te)−Gep(Te − Tp) + ṙe, (7.3a)

Cp
∂Tp

∂t
= ∇ · (κp∇Tp) +Gep(Te − Tp) + ṙp, (7.3b)
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to model the heat transfer in the substrate. In the above equations, C, T , κ, and ṙ are

the heat capacity, temperature, thermal conductivity, and volumetric heat generation

rate of electrons (subscript e) and phonons (subscript p), respectively. Gep is the

electron-phonon coupling constant, which describes the strength of thermal coupling

between electrons and phonons.

In the diffusive TTM calculation, the phonon channel and the electron channel

are discretized uniformly with the same ∆xF , and Eq. (7.3a) and Eq. (7.3b) are

discretized and rearranged as

Te,x,t+∆t = (1− 2αe − βep)Te,x,t + αe(Te,x+∆xF ,t + Te,x−∆xF ,t) + βepTp,x,t, (7.4a)

Tp,x,t+∆t = (1− 2αp − βpe)Tp,x,t + αp(Tp,x+∆xF ,t + Tp,x−∆xF ,t) + βpeTe,x,t, (7.4b)

where αe = ∆tκe/[ce(∆xF )2], βep = ∆tGep/ce, αp = ∆tκp/[cp(∆xF )2], and βpe =

∆tGep/cp. This coupled BTE-Fourier scheme is able to capture the ballistic nature of

heat transfer in the metal film and account for the diffusive thermal transport inside

the substrate effectively and efficiently, which has been used for phonon transport

previously. [206]

7.3 Input Parameters

The BTE simulation described in the last section requires several input parame-

ters: velocity v, heat capacity c (or the electron heat capacity constant γ), and lifetime

τ of electrons and phonons, as well as the electron-phonon coupling constant Gep. The

values of ve, γ, and Gep can be obtained from literature, while the calculation of other

parameters is presented in this section.
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7.3.1 Bulk Properties: vp, cp, τp, and τe

In metals, both phonon and electron contribute to thermal transport. As the total

thermal conductivity κtot and electrical conductivity σ of metals are usually available,

one can roughly estimate the phononic part based on

κtot = κp + κe, (7.5)

in which the electronic thermal conductivity κe can be estimated by the Wiedemann-

Franz law,

κe = LTσ, (7.6)

where L is the Lorenz number. The Sommerfield value of 2.44 × 10−8WΩK−2 was

derived for L in degenerate metals, semi-metals, or semiconductors. However, we note

that Eq. (7.5) is a rather rough approach to estimate κp .1 Herein we adopt the κp,

heat capacity, and phonon dispersion relations obtained from first-principles calcula-

tions in the last chapter. We will solve the BTE equations under a gray approximation

where average phonon properties are used. vp is calculated as the average Brillouin

Zone center group velocity (in the Γ-X direction) of the three acoustic branches as

v−1
p = (v−1

LA + v−1
TA,1 + v−1

TA,2)/3, (7.7)

where LA and TA (two branches) denote the longitudinal and transverse acoustic

branch, respectively. The average phonon relaxation time τp is estimated from the

kinetic theory,

κp = cpv
2
pτp/3. (7.8)

It is worth mentioning that even though such gray approximation has been widely

used to interpret experiments, it inherently neglects the influence of spectral phonon

and electron properties on heat transfer. In this work, we deliberately choose to use

a gray model because it is accurate enough to capture the effect of interlayer on the

1For example, the κp of Nickel based on Eq. (7.5) is 91 W/m-K - 2.44 × 10−8 × 300 × 1.43 × 107

W/m-K = -14 W/m-K, which is not physical.
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Table 7.1. Average phonon and electron properties of Au, Al, Pt,
and Si used in the BTE or Fourier calculations. Table reproduced
from Ref. [207].

Quantity Au Al Pt Si

vp (×103m/s) 1.85 3.43 1.91 6.40

cp (×106 J/m3-K) 2.40 2.43 2.67 1.66

τp (ps) 0.95 0.58 1.79 6.53

κp (W/m-K) 2.6 5.5 5.8 148.0

κtot (W/m-K) 314.0 [208] 205.0 [208] 71.6 [208] 148.0

κe (W/m-K) 311.4 199.5 65.8 N/A

ve (×106 m/s) 1.40 [209] 2.03 [209] 0.46 N/A

γe (W/m3-K2) 62.9 [162] 91.2 [162] 748.1 [162] N/A

τe(fs) 25.3 5.3 4.1 N/A

Gep (×1016 W/m3-K) 2.6 [162] 24.6 [162] 108.7 [162] N/A

overall heat transfer characteristics of the system of interest, while a more complicated

spectral model is not necessary.

After we obtain κp, κe can be obtained by Eq. (7.5) with a knowledge of the

experimental value of the total thermal conductivity. The relaxation time of electrons

can be estimated in a similar way as Eq. (7.8) for phonons. Table 7.1 lists the

average phonon and electron properties of Au, Al, Pt, and Si to be used in the BTE

simulations.
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7.3.2 Interfacial Thermal Transport Properties

Phonon transmission We use the diffuse mismatch model (DMM) to calculate

phonon transmission coefficients. The Rpp between two materials is computed using

full phonon dispersion relations over the entire first Brillouin zone (FBZ) as [210]

R−1
pp = Gpp =

1

VFBZNk

∑

νk,vνkAx>0

(h̄ωνk)2

kBT 2
vνkAxΞAB,νkf(ωνk, T )[f(ωνk, T ) + 1], (7.9)

where VFBZ is the volume of the FBZ, h̄ is the reduced Planck constant, Nk is the

number of grids we have divided the FBZ into, that is, 16 × 16 × 16 uniform grids

of volume ∆VA and ∆VB. In addition, vνkAx is the group velocity of a phonon mode

with wavevector k and polarization ν in material A projected in the x direction, and

f is the distribution function. The elastic phonon transmission coefficient ΞAB for

phonon transmission from material A to material B is calculated using DMM as

ΞAB(ω) =
∆VB

∑

νk vνkBxδωνk,ω

∆VA

∑

νk vνkAxδωνk,ω +∆VB

∑

νk vνkBxδωνk,ω
, (7.10)

where δωνk,ω is the Kronecker delta function. The Rpp’s of Au-Si, Au-Al, Au-Pt, Al-Si,

and Pt-Si as a function of temperature computed in this way are plotted in Fig. 7.1b.

It is worth mentioning that the vibrational density of states of Al and Pt are between

those of Au and Si, as shown in Fig. 7.1a. As a result, both the Gpp of Au-Al/Pt

and that of Al/Pt-Si are higher than the Gpp of Au-Si. Therefore, adding a thin layer

of Al or Pt to Au-Si interface should not increase the effective interfacial thermal

resistance significantly in terms of phonon transport. Later we will see that a thin

Al or Pt interlayer could even enhance interfacial thermal transport by reducing the

nonequilibrium between electrons and phonons near the interface.

Electron transmission Electron transmission across the interface between metal

and low-doped semiconductor is usually a thermionic emission process, which has an

effective thermal conductance lower than or comparable to its phonon counterpart.

Moreover, the very low density of free electrons (or holes) in the low-doped semicon-

ductor renders it difficult for electronic heat to be dissipated further into the sub-
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(a) (b)

Figure 7.1. (a) The vibrational density of states of Au, Al, Pt, and
Si. (b) The interfacial thermal resistance, electronic (Ree) or phononic
(Rpp), for various interfaces. Figure reproduced from Ref. [207].
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strate. Therefore, the electron transmission channel is negligible in metal-low-doped

semiconductor systems.

For electron transport across the interface between two metals, Gundrum et al.

extended the DMM for phonon to electron. [211] Specifically, the electronic interfacial

thermal resistance Ree can be computed as

R−1
ee = Gee =

ZAZB

4(ZA + ZB)
, (7.11)

where ZA = ce,Ave,A and ZB = ce,Bve,B. As shown in Fig. 7.1b, the computed Ree’s

are 1-2 orders of magnitude lower than corresponding Rpp’s but are very close to the

Ree’s measured in Gundrum et al.’s experiments for metal-metal interfaces. [211]

7.4 Results and Discussions

7.4.1 Steady-State Thermal Transport

In practical applications, a thin Cr, Ti, or Pt layer is usually deposited on the

Si substrate before the deposition of the Au layer as an adhesion layer or diffusion

barrier. It has been reported that a Ti interlayer at the Au-Si interface can enhance

the effective thermal conductance significantly owing to the enhanced bonding at the

interface. [212] We note that Al and Pt have 1-2 orders of magnitude higher Gep

than Au, which may reduce the interfacial thermal resistance due to electron-phonon

nonequilibrium near the interface. To assess this effect, we calculate the effective R for

Au-Si interfaces with and without an interlayer of Al or Pt, of which the schematics

are shown in Fig. 7.2a.

In our simulations, we maintain the surface of the Au film, as shown in Fig. 7.2a,

at 310 K while the bottom of the Si substrate at 290 K. The effective interfacial

thermal resistance Reff is computed as

Reff =
20K

J
−

lAu

κAu
−

lSi
κSi

, (7.12)

where J is the heat flux (in W/m2), and lAu and lSi are the thickness of the Au and

Si segment respectively.
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(a) (b)

System: Au/Si

Temperature bias: 20 K

Heat flux: 1.35 GW/m2 

System: Au/10nm-Pt/Si

Temperature bias: 20 K

Heat flux: 2.59 GW/m2 

Au Si

Au Si

310 K 290 K

310 K 290 K

Heat current

Heat current

(c) (d)

Figure 7.2. (a) Schematic illustration of the simulated Au-Si and Au-
interlayer-Si systems. (b) The ratio of the effective interfacial thermal
resistance, Reff , to the original interfacial thermal resistance, Roriginal,
as a function of interlayer thickness. (c) and (d) Temperature profiles
of electron and phonon obtained in the simulation. Figure reproduced
from Ref. [207].
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In Fig. 7.2b we show the effective interfacial thermal resistance normalized by that

of a direct Au-Si interface (Roriginal = 1.33× 10−8m2K/W) as a function of interlayer

thickness. To account for the possibility of non-ideal contact between the Au film

and the interlayer, which causes lower Gee, additional simulations using 20% of the

theoretical value of Gee predicted by Eq. (7.11) are also conducted. The artificially

reduced Gee’s are much lower than the experimental values for metal-metal interfaces

reported in Ref. [211], therefore we assert that it can well represent the lower limit

of the Gee of well-welded Au-Al and Au-Pt interfaces. As we can see in Fig. 7.2b,

for both ideal or non-ideal contact cases, the interfacial thermal resistance is reduced

significantly by the interlayer, suggesting the robustness of this scheme to enhance

interfacial thermal transport. Reff is higher when Gee is lower as it becomes more

difficult for hot electrons in the Au film to transport into the Al or Pt interlayer and

then equilibrate with phonons. Moreover, the effective interfacial thermal resistance

Reff increases with interlayer thickness, since the thermal resistance of the interlayer

itself increases as linterlayer/κinterlayer.

Figure 7.2c and 7.2d are the temperature profiles of electron and phonon ob-

tained in our simulations on Au-Si and Au-Pt-Si systems. A notable electron-phonon

nonequilibrium region can be seen near the interface in Fig. 7.2c, while this region is

significantly reduced by the Pt interlayer, as shown in Fig. 7.2d. The elimination of

the nonequilibrium region leads to reduced Reff .

Therefore, we conclude that interlayers can significantly affect the thermal trans-

port across metal/dielectric interfaces if the heat dissipation across the original in-

terface is limited by large electron-phonon nonequilibrium. This is usually true for

metals with weak electron-phonon coupling, for example, Cu, Ag, and Au, and inter-

layers with strong electron-phonon coupling, for example, Al, Pt, Cr, and Ti.
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Figure 7.3. (a) Heat transfer channels in Au-Si without an inter-
layer. (I) and (II) denote lattice heat transfer channels, with (I)
denoting electron-phonon coupling while (II) denoting phonon trans-
mission into the substrate. (b) Heat transfer channels in Au-Si with
an interlayer. (I) denotes the same process as that in (a), while (III)
denotes backflow of heat from the hotter interlayer lattice to the Au
lattice. The heat flow direction indicated by the dashed arrow is also
possible, for example, when Gep of the interlayer is lower than that
of Au. (c) Transient electron temperature at the surface of a Au
thin film for different interlayer thickness, Gee between Au film and
interlayer, and interlayer material.Figure reproduced from Ref. [207].
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7.4.2 Ultrafast Electron Cooling in Au Thin Films

The pump-probe technique has been used to evaluate the electron-phonon coupling

constant Gep of metals. In a pump-probe measurement, a pump laser is injected to

the metal thin film in which the temperature of electrons can be elevated to thousands

of Kelvins in tens to hundreds of femtoseconds. Subsequently, the hot electrons are

cooled down by the colder lattice, and the cooling curve allows one to evaluate Gep.

Similar process also happens in practical applications such as heat-assisted magnetic

recording. In this section we assess the effect of interlayers on hot electron cooling

dynamics in Au thin films.

The simulations are conducted to mimic Guo et al.’s pump-probe experiments

[213], in which a pump laser with a pulse width of 390 fs was used. All the parameters

of the laser in our simulations are the same as those in Ref. [213]. In Figs. 7.3a and

b we show the possible heat transfer pathways in the Au-Si system without (a) and

with (b) an interlayer. When Au is in direct contact with Si, initially hot electrons

dissipate heat into the lattice through electron-phonon coupling, and then the hot

Au lattice transfers heat into the Si lattice. When there is an interlayer between

Au and Si, an additional channel is created, in which hot electrons carry heat into

the interlayer and deposit heat into the interlayer lattice. If the interlayer has much

higher Gep than Au, the lattice temperature of the interlayer increases more quickly

than Au. This leads to backflow of phononic heat from the interlayer to the Au

lattice. The above heat transfer pathways are indicated as (I),(II), and (III), and

their effect on lattice heating will be discussed later. The direction indicated by the

dashed arrow for channel (III) is when the interlayer has lower Gep than Au.

As shown in Fig 7.3c, the electron temperature increases to 2,000-3,000 K within

hundreds of femtoseconds and then decreases at a much lower speed. Moreover,

adding an interlayer accelerates hot electron cooling substantially. The acceleration

arises from the new electron cooling channel created by the interlayer, as shown in

Fig. 7.3b. Specifically, hot electrons in Au can readily transmit across the Au-Al
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Figure 7.4. (a) Lattice temperature rise of the Au film as a func-
tion of time for different interlayer thickness or Gee. A laser fluence
of 20 J/m2 is used for all cases. The heating or cooling of the Au
lattice is dominated by different mechanisms at different stages: (I)
heat transfer from hot electrons; (II) heat dissipation into the sub-
strate; (III) backflow of heat from the hotter interlayer lattice. (b)
Lattice temperature rise of the interlayer as a function of time. Figure
reproduced from Ref. [207].

or Au-Pt interface and then rapidly dissipate heat into the Al or Pt lattice due

to their high Gep. To consider the effect of interface nonideality, we also conduct

additional simulations in which we reduce the Gee of Au-interlayer interface to 20%

of the theoretical value. It is obvious that even for the reduced Gee cases, a Pt or Al

interlayer can accelerate hot electron cooling substantially. We also study the effect

of interlayer thickness by simulating two different structures: one with a 10-nm thick

interlayer while the other with a 20-nm interlayer. As shown in Fig. 7.3c, electron

temperature drops more quickly in the case with thicker interlayer. This is because a

thicker interlayer has a larger volume V to absorb electronic heat through electron-

phonon coupling, of which the heat transfer rate is on the order of Gep,interlayerVinterlayer.

In Fig. 7.4a we show the lattice temperature rise (Tp − 300 K) as a function of

time. As we can see, the lattice temperature of the Au film in the no-interlayer case

increases at the beginning due to electron-phonon coupling (channel I), and decreases
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thereafter due to heat dissipation into the substrate (channel II). The above two

competing processes, I and II, lead to a maximum lattice temperature (Tp,max), which

is an important factor determining the lifetime of devices. In many applications, a

high Tp,max degrades or even destroys the device and therefore should be minimized.

As we can see, adding an interlayer of Al or Pt helps to reduce Tp,max significantly.

For the cases with interlayers, as shown in Fig. 7.4a, the lattice temperature of Au

increases at two distinctly different speeds. Similar to the no-interlayer case, the

initial fast increase in Tp is due to electron-phonon coupling, while the subsequent

slower increase is caused by phononic heat transfer from the hotter lattice of the

interlayer (channel III). Moreover, thicker interlayer or higher Gee between the Au

film and the interlayer reduces Tp,max more significantly .

The above observations can be understood more clearly by Fig. 7.4b, where we

plot the lattice temperature rise in the interlayer as a function of time. Comparing

Fig. 7.4a and Fig. 7.4b, we can see that the temperature rise in the interlayer is much

higher than that in the Au film. This is because the hot electrons in the Au film

transfer heat into the interlayer quickly due to the high Gee and then dissipate heat

into the interlayer lattice rapidly due to the high Gep. The above channel is much

more efficient in transferring heat from hot electrons to the lattice than the electron-

phonon coupling channel in the Au film, which has much lower Gep than Pt and Al.

As a result, most of the electron energy is deposited into the interlayer lattice rather

than the Au lattice. Moreover, a higher Gee leads to faster transfer of electronic heat

from Au film to the interlayer and a thicker interlayer has a larger volume to absorb

electronic heat, of which both reduce the lattice temperature rise in Au.

As a final remark of this section, we note that adding an interlayer of Al or Pt to the

Au-Si interface has two-fold effects on the heat transfer characteristics of the system.

On one hand, it accelerates hot electron cooling and thereby causes more energy loss,

which should be minimized for energy efficiency; on the other hand, it reduces lattice

heating in the Au thin film significantly, which could assist in maintaining a longer
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device lifetime. This means that sophisticated thermal design is needed to achieve an

optimal balance between device performance and lifetime.

7.5 Summary

We built a two-temperature Boltzmann transport equation method for modeling

thermal transport in metal thin films. We compare the heat transfer rate from dif-

ferent interfacial thermal transport pathways for different film thickness and initial

electron temperature. The results indicate that the direct interface electron-phonon

coupling becomes more important when the metal film gets thinner. On the other

hand, we also found that the electron transmission is negligible in terms of heat trans-

fer in this model as there is not efficient channel to remove the heat from the hot

electrons at the substrate surface, due to the low κe and gep in intrinsic or low-doped

Si. However, this model only considers electronic heat transfer across the interface

due to the thermionic emission, but not the number transfer to the substrate. At high

temperatures, the emitted electrons dope the substrate, increasing its carrier density

and consequently its κe and gep. This mechanism may decrease Rpe of the substrate

significantly, which makes electron transmission an important mechanism.
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8. MONTE CARLO BASED SPECTRAL BOLTZMANN SIMULATION OF

ELECTRON-PHONON COUPLED THERMAL TRANSPORT ACROSS

METAL-SEMICONDUCTOR INTERFACES

8.1 Introduction

An accurate predictive modeling of heat transfer is important for the design of

novel materials and structures for various applications such as thermoelectrics and

thermal management. Several methods have been developed to model heat transfer

in solids. Classical molecular dynamics (MD) models the vibration of atoms based on

the Newton’s second law of motion. The interactions between atoms are described by

empirical interatomic potentials. MD can directly model phonon transport and nat-

urally account for atomic-level structural details, such as interfaces, defects, strain,

surface reconstruction, etc. Schemes such as equilibrium/nonequilibrium MD, wave-

packet method, and spectral energy density analysis have been used for modeling

heat transfer or quantifying the contribution of individual phonon modes to thermal

conductivity. The disadvantage of classical MD is also obvious. First, its accuracy

is limited by the quality of empirical interatomic potentials, which were mostly de-

veloped for purposes other than heat transfer. Second, heat capacity in classical MD

corresponds to the Dulong-Petit limit, while in a quantum system it increases from

zero to the Dulong-Petit limit gradually as temperature increases. The above two

issues usually make the accuracy of classical MD questionable when dealing with

materials with a high Debye temperature.

First-principles-based methods enables a parameter-free calculation of phonon and

electron properties, which have been used for evaluating the thermal properties of

materials. The nonequilibrium Green’s function (NEGF) approach has been used to

calculate the thermal conductance of single materials and between different materials.
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[60, 61, 152] Since harmonic force constants can be obtained from first-principles,

NEGF used in this way is usually referred to as first-principles. One major drawback

of current NEGF scheme is the complexity to include realistic anharmonic effects,

therefore only harmonic force constants were used in most NEGF calculations.

First-principles molecular dynamics (FPMD) simulations, either in the form of

NEMD or anharmonic lattice dynamics have been used to predict thermal conduc-

tivity of materials. [59, 214] However, limited by its high computational cost, small

supercells and short simulation time were used in FPMD simulations. This restricts

this approach for a wider application for materials with long phonon mean-free-path

or long phonon relaxation time, which typically requires a large unit cell or a long

simulation time. Anharmonic lattice dynamics can be used to predicted phonon

properties based on force constants obtained from first-principles. This approach has

been used under the relaxation time approximation (RTA) for evaluating the lattice

thermal conductivity of materials. Beyond the RTA, Omini and Sparavigna [66] suc-

cessfully solved the linearized Boltzmann equation iteratively, which was later adopted

by Broido and coworkers for calculating the lattice thermal conductivity of various

materials in the last decade. [181] This method deals with three-phonon scattering

processes in a self-consistent manner that deviation from Bose-Einstein distribution

of phonons due to phonon-phonon scatterings are captured, which is important for

materials with weak momentum-conserving process (or N-process) such as graphene.

To model heat transfer across solid-solid interfaces, various methods have been

proposed and used. For example, the two-temperature molecular dynamics method

has been used to simulate electron-phonon coupled thermal transport across inter-

faces, as discussed in Chapter 5. Besides, a gray, two-temperature Boltzmann trans-

port equation method along with parameters obtained from first-principles was also

used, as discussed in Chapter 7. To allow for first-principles based mode-wise simula-

tion of electron-phonon coupled thermal transport, a Boltzmann transport equation

framework is promising. However, as one can expect, it must involve complicated

meshing for complicated geometries and. In fact, its computational cost is too high
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even for most of the supercomputers. Monte Carlo technique has been used exten-

sively to reduce the computational cost of such deterministic method at the sacrifice

of accuracy. [215–218] In fact, as long as we include enough statistic samplings, for

example, simulation time and number of phonon/electron modes, it is possible to

achieve an acceptable accuracy. Mazumder and Majumdar proposed a Monte Carlo

technique based on the assumption of small perturbations, in which all phonon modes

are forced to equilibrium state at the end of every simulation step. [215] This was

followed by Lacroix and Joulain, who improved the scheme by treating the normal

process and Umklapp process of phonon-phonon scatterings differently. [216] Chen

et al. proposed a genetic algorithm to model the normal process and Umklapp pro-

cess separately and ensure the conservation of momentum and energy. [217] Péraud

and Hadjiconstantinou proposed an energy-based variance-reduced Monte Carlo tech-

nique that reduces the computational cost significantly by simulating only the devi-

ation from equilibrium. [218] This approach also adopts Mazumder and Majumdar’s

scheme of small perturbation and therefore not suitable for simulating heat transfer

under large perturbations.

In this work, we introduce a Monte Carlo approach to solve Boltzmann transport

equations for mode-wise electron-phonon coupled thermal transport across metal-

nonmetal interfaces. All the input parameters can be obtained from first-principles

and the Fermi’s Golden Rule is used to evaluate the scattering rates of phonon-phonon

processes on-the-fly. Specifically, phonons are modeled similar to Mazumder and

Majumdar’s scheme but the requirement for thermodynamic equilibrium is relaxed.

Electrons are modeled as a gray medium and implemented as local heat baths to

phonons to reduce the computational cost. This method can be used for predictive

simulation of heat transfer in nanodevices involving metal-nonmetal interfaces.
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8.2 Methodology: Monte Carlo Boltzmann Solver

The phonon and electron Boltzmann transport equations are [180]

δNν(r, q, t)

δt
+ vg,ν(r, q, t)∇δNν(r, q, t) =

[

δNν(r, q, t)

δt

]

scattering

, (8.1)

and
δfν(r, k, t)

δt
+ ve,ν(r, k, t)∇δfν(r, k, t) =

[

δfν(r, k, t)

δt

]

scattering

, (8.2)

respectively, where N is the phonon number density, f is the electron number density,

r is position, q is phonon wave vector, k is electron wave vector, t is time, ν is the

polarization of phonon wave vectors, µ is the branch number in the electronic band

structure, vg is the group velocity of phonon modes, and ve is the velocity of electrons

(in many cases can be safely approximated as vF , the Fermi velocity). The scattering

terms on the right hand side of the equations determines how electron and phonon

modes changes into others. The relaxation time approximation (RTA) is the most

popular approximation of the scattering terms, in which the scattering rate for each

phonon mode are modeled by a “relaxation time” τ . In spectral simulations, different

electron or phonon modes can have different τ , where in gray simulations a common

τ is used for all modes.

In most of the BTE simulations of electrons or phonons, a constant or quasi-

equilibrium relaxation time is used. However, it is possible that when the system is

in nonequilibrium, for example, when the phonon distribution is distorted from the

Bose-Eienstein distribution or the electron distribution is distorted from the Fermi-

Dirac distribution, it is possible that the relaxation time of a certain phonon or

electron mode will be different from its quasi-equilibrium value (that calculated based

on Bose-Eienstein or Fermi-Dirac statistics). Therefore, a simulation that allows real-

time calculation of scattering rates based on the local population of electron or phonon

modes will be advantageous for highly nonequilibrium cases, for example, laser pump-

probe experiments.

In this work, we propose a spectral Monte Carlo approach for electron-phonon cou-

pled thermal transport, of which the flowchart is shown in Fig. 8.1. Specifically, we
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Figure 8.1. Flowchart of our Monte Carlo simulation of electron-
phonon coupled thermal transport.
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initialize the system with electron and phonon density profile fµ(r, k, 0) and Nν(r, q, 0)

based on the local temperature. During each step, the heat carriers move by v × dt.

At the end of each step, scattering events are selected based on random numbers

generate by pseudo-random number engines. The scatering rates can be determined

in various way, from the conventional relaxation time approximation approches to

real-time Fermi’s Golden Rule calculations based on the local electron and phonon

density. Using the relaxation time approximation requires that a local equilibrium

must be enforced each time step. In practice, phonon distribution is forced to follow a

Bose-Einstein distribution after phonon-phonon scattering process (creation and an-

nihilation process shown in Fig. 8.1), even if it has become a distorted, nonequilibrium

distribution right after the scatterings. The above procedure is achieved by matching

the total local energies of the as-obtained phonon distribution with an equilibrium

Bose-Einstein distribution. As we can see, no non-equilibrium between phonons is

allowed in such treatment. This method, though, saves a lot of computational efforts,

ensures convergence of simulation in most cases, and allows simulation of large (mi-

croscale) system and long temporal scales (nanosecond-microsecond). In this work, in

order to capture the nonequilibrium between phonon modes, we have relaxed the re-

quirement of local equilibrium. In the simulation, we divide the simulation domain in

to cubic grids. Each phonon searches in the same grid for possible phonons to scatter

with, i.e., those satisfying energy and momentum conservation (or quasi-momentum

conservation for the Umklapp process). This is different from a realistic case, where

each phonon might possibly scatter with phonons everywhere in the range of its path.

However, the treatment of this range is approximated by this cutoff scheme based on

the notion that there is a higher chance for phonons to scatter with phonons closer

to themselves. More than 80% of the simulation time is consumed by the phonon

searching process.
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Figure 8.2. Illustration of the simulated Au/Si structure.
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8.3 Results and Discussions

In this work, we simulate a typical heat transfer process in pump-probe experi-

ments, in which a short-duration “pump” laser is used to inject a large amount of heat

flux into the electrons in the metal. After the laser radiation, electron temperature

in the metal thin film becomes very high and electrons start depositing energy into

the lattice, or phonons, in the metal, since phonons are still at room temperature. As

phonon temperature increases, phonon transmission across the interface enables heat

dissipation from the hot metal thin film into the Si substrate. The simulated structure

is shown in Fig. 8.2. Both the thin film and the Si substrate are 20 nm long. The left

end is an adiabatic (reflective) surface and the right end is a constant-temperature

heat bath with a length of 1 nm, in which phonon distribution is enforced to be equi-

librium Bose-Einstein distribution at 300 K at the beginning of every simulation step.

We conduct simulations using same parameters for laser as Guo et al.’s experiment,

in which a 390 fs-long laser was used to heat up the electrons in the metal thin film.

Figure 8.3 shows our simulation of heat transfer in a Au-thin-filim/Si-substrate

system. Figure 8.3a shows how the average temperature of electron and different

phonon modes vary with time. As we can see, electron temperature drops quickly

from ∼3,000 K to ∼400 K in about 10 ps. During the same period, the temperature of

LA and TA modes increases gradually. The fluctuation in the temperature of the LA

an TA modes is quite large compared to the absolute temperature. The fluctuation

can be reduced by including more phonon modes in the simulation. However, this

will make the computation too expensive at the moment. Similar to pump-probe

experiments, we can also obtain the electron-phonon coupling constant Gep by fitting

the electron temperature decay to an exponential function, Te(t) ∝ exp(−Gept/ce),

in which we assume lumped capacitance of the electron system. From the curve in

Fig. 8.3a, Gep is found to be 1.7×1016W/m3-K, which agrees reasonably well with the

input of 2.5×1016W/m3-K.
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Figure 8.3. Simulation results for a Au/Si system under ultrafast
laser radiation. (a) average temperature of electron, LA phonon, and
TA phonon as a function of time. The dark line is an exponential fit
of the temperature of electrons in the thin film. (b)-(d) temperature
profiles at different time instants after the laser radiation.
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Figure 8.3b-d show the temperature profiles at different time instants after the

laser radiation. In Fig. 8.3b, we can see that at the beginning of the simulation,

electron temperature in the thin film is 3,000 K. In Fig. 8.3c, we can see that electron

temperature is quite uniform in the metal and it has reduced to ∼900 K at t=7ps. It

is quite obvious that the temperature of LA modes is generally higher than TA modes.

This is even more obvious in Fig. 8.3d. The nonequilibrium between different modes

can possibly cause an increased thermal resistance for interfacial thermal transport,

similar to our previous work on electron-phonon coupled thermal transport across

metal-nonmetal interfaces. Figure 8.3d shows that at t=10ps, electron temperature

has dropped to ∼500 K, and the temperature of LA and TA phonons have increased,

while the nonequilibrium between LA and TA modes persists.

8.4 Summary

In this work, we have developed a Monte-Carlo simulation approach to solve for

thermal transport in metal-nonmetal heterojunctions contributed by both electrons

and phonons. This approach enables us to conduct a spectral electron-phonon sim-

ulation considering the selection rules for three-phonon scatterings. To reduce the

computational cost while preserving the accuracy of the physicical quantaties of inter-

est, we also simplied the simulation by different degrees though a gray approximation

of electron channel. We demonstrated the approach using a Au-Si bilayer system un-

der ultrafast laser radiation. Nonequilibrium between electrons and different phonon

modes were observed. This approach enables first-principles-based simulation of heat

transfer across metal-nonmetal interfaces, which will be useful for designing thermo-

electric devices and for thermal management of electronic devices.
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9. SUMMARY

In this work, we have explored several mechanisms that can affect thermal transport

in graphene and its derivatives. The thermal conductivity of zigzag-edged GNRs

is found to be higher than that of armchair-edge ones in our MD simulations, and

phonon localization at edges is attributed to underlie such edge-chirality dependence.

Thermal rectification TR is a phenomenon in which heat flows faster in one direc-

tion while slower in the opposite direction, which is particularly useful for thermal

management. Using MD simulations, we have found significant TR in asymmetri-

cally defected GNRs and pristine GNRs with asymmetric geometry. However, TR in

these two structures arises from different mechanisms. In the former case, GNRs are

pristine on one side while defective on the other, and TR is caused by the different

temperature dependence of the k of the two sides. In the latter case, TR can be en-

abled by phonon lateral confinement when the width of the GNR is smaller than the

phonon mean free path. These findings will provide useful guidance to the fabrication

of thermal rectifiers from pristine materials including but not limited to graphene.

We have conducted NEMD simulations on conceptual binary Lennard-Jones sys-

tems and proposed a two-phonon model to intrepret the simulation results for su-

perlattices and random multilayers. Our model considers the coexistence of coherent

and incoherent phonon contribution to heat conduction in SLs and RMLs, and can

fit the simulation data very well. κSL and κRML were found to increase with the

total length of the structure, while κRML < κSL and κRML saturates at a finite value

much sooner than κSL. We attribute the increasing κ with total length in SLs to

coherent phonon transport, and the lower κ of RML than SL to the localization of

coherent phonons due to the random layer thickness. Using the two-phonon model,

we also extracted the phonon MFP and ballistic-limit thermal conductance of coher-

ent phonons and incoherent phonons. The κ of RMLs can be as low as that of SLs
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with interface mixing or roughness, even though RMLs have atomically smooth and

planar interfaces. Nonetheless, the reduction of κ in these structures may result from

different mechanisms, e.g. localization and scattering, and display different G-Ltot

relations. Based on our findings, we propose RMLs as low-κ materials that may be

used for thermoelectric applications. This work also shows the great tunability of

thermal transport in multilayer structures, and our findings are beneficial for thermal

management of them.

A two-temperature non-equilibrium MD simulation technique has been developed

to atomically model electron-phonon coupled thermal transport across interfaces be-

tween metals and semiconductors. On the metal side, the lattice part of thermal

transport is modeled with MD while the electronic part is simultaneously modeled

with the Fourier’s law using the finite difference method. On the semiconductor side,

electrons are neglected and only phonons are considered. Our method naturally ac-

counts for the effect of defects, interface, temperature, etc., on thermal properties

of phonons and also includes the coupling between electron and phonon. We have

used this technique to compute the thermal boundary resistance (TBR) of Si/Cu and

CNT/Cu interfaces. In a region within a ”cooling length” distance to the interface,

electron and phonon are revealed to be in thermal non-equilibrium, which consid-

erably impedes heat transfer across the interface. The TBR of CNT/Cu interfaces

predicted using our method is in better agreement with experimental results than

conventional MD methods.

A two-temperature Boltzmann transport equation method has also been built.

We conducted BTE simulations to study electron-phonon coupled thermal transport

in Au-Si systems. We demonstrated that by applying an interlayer with stronger

electron-phonon coupling than the original metal film, the effective interfacial ther-

mal resistance can be significantly reduced. This is because the interlayer can drag

electrons and phonons back into equilibrium efficiently, thereby reducing the resis-

tance caused by the nonequilibrium between electrons and phonons. Moreover, we

observed that interlayers can also cause a faster energy loss of hot electrons. The
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reduced interfacial resistance and accelerated electron cooling impose a tradeoff be-

tween the lifetime and the energy efficiency of the device, which requires sophisticated

thermal design.

We also extracted from first-principles the phonon scattering rates in several met-

als considering the contribution from both phonon-phonon and phonon-electron scat-

tering processes. It was found that phonon-electron scattering is negligible in Cu, Ag,

Au, and Al while it is significant in Pt and Ni at room temperature. Specifically, the

room temperature κL of Cu, Ag, Au, and Al predicted from density-functional theory

calculations with the local-density approximation are 16.9, 5.2, 2.6, and 5.8 W/m-

K, respectively, when only phonon-phonon scattering is considered, while phonon-

electron scattering was found to be negligible in determining κL. In contrast, the

room-temperature κL of Pt and Ni is reduced from 7.1 and 33.2 W/m-K to 5.8 and

23.2 W/m-K by phonon-electron scattering.

Finally, we developed a Monte-Carlo approach to solve heat transfer problems

in metal-nonmetal heterojunctions including both electrons and phonons. This ap-

proach enables us to conduct a spectral electron-phonon simulation considering the

selection rules for three-phonon scatterings. To reduce the computational cost while

preserving the accuracy of the physical quantities of interest, we also simplified the

simulation by different degrees though a gray approximation of electron channel. We

demonstrated the approach using a Au-Si bilayer system under ultrafast laser radia-

tion. Nonequilibrium between electrons and different phonon modes were observed.

This approach enables first-principles-based simulation of heat transfer across metal-

nonmetal interfaces, which will be useful for designing thermoelectric devices and for

thermal management of electronic devices.

The results obtained in this study will provide a deeper understanding of nanoscale

thermal transport involving multiple types of heat carriers, and the approaches de-

veloped will aid the thermal design of micro- and nano-devices. This research also

provides new perspectives of atomic- and nano-scale engineering of materials and

structures to enhance efficiency of thermal management.
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