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ABSTRACT

Kim, Jinhak Ph.D., Purdue University, August 2016. Cardinality constrained opti-
mization problems. Major Professor: Mohit Tawarmalani.

In this thesis, we examine optimization problems with a constraint that allows for

only a certain number of variables to be nonzero. This constraint, which is called a

cardinality constraint, has received considerable attention in a number of areas such

as machine learning, statistics, computational finance, and operations management.

Despite their practical needs, most optimization problems with a cardinality con-

straints are hard to solve due to their nonconvexity. We focus on constructing tight

convex relaxations to such problems.

We first study linear programs with a cardinality constraint (CCLPs). A procedure

that yields cutting planes for any given vector that violates the cardinality constraint

is developed. These cutting planes are derived from a disjunctive relaxation of the

problem. The separation problem is recast as a network optimization problem where

the network is constructed from a simplex tableau of the LP relaxation. We then

present a procedure to generate a facet-defining inequality of the disjunctive relaxation

using a variant of Prim’s algorithm.

Second, we study an optimization formulation of sparse principal component anal-

ysis (sparse PCA). The formulation is a quadratically constrained quadratic problem

with a cardinality constraint. The feasible set has a special structure which we call

permutation-invariance. This structure allows us to construct the convex hull of the

feasible set of the model. The convex hull is written through a majorization inequality

that can be modeled using a polynomial number variables and linear inequalities. We

then show that sparse PCA can be reformulated as a continuous convex maximization

problem without a cardinality constraint. In addition, we derive SDP relaxations for
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the reformulation. The relaxations are developed based on majorization arguments.

The resulting relaxation is provably tighter than the prevalent SDP relaxation pro-

posed in [24]. Our preliminary computational results show that our SDP relaxation

has gaps 90% smaller than those of the classical SDP relaxation.

Third, we introduce other approaches for CCLPs. We first present a facial dis-

junctive reformulation for CCLPs and a finitely-convergent cutting plane algorithm.

A generalized reformulation-linearization technique (RLT) is introduced to character-

ize the convex hull of the feasible set of CCLPs. As a special subclass of CCLP, we

study the cardinality-constrainted knapsack problem (CCKP). We developed families

of valid inequalities based on disjunctions for the cardinality constraint.
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1. Introduction

Considerable attention has been paid to optimization problems with a constraint

that allows only up to a certain number of variables to be nonzero. We call such a

constraint a cardinality constraint and any optimization problem containing such a

constraint a cardinality constrained optimization problem (CCOP).

In this thesis, we present relaxation strategies for certain classes of CCOPs using

various techniques developed in the fields of mixed-integer linear programming, global

optimization, convex and nonconvex optimization.

CCOPs arise in fields as diverse as computational finance, supply chain manage-

ment, statistical data analysis, and machine learning. They are used in cardinality-

constrained optimal portfolio selection problems in quantitative finance [14, 18, 22,

27, 43, 49, 52, 54]. These problems are variants of the Markowitz mean-variance

model where the objective is to minimize a quadratic risk measure under linear

constraints along with a restriction that the number of securities chosen for in-

vestment is sufficiently small. They also arise in index tracking investment strate-

gies [10, 28, 41, 42, 60, 62]. These problems are modeled as time series optimization

models where the objective is to minimize a quadratic tracking error under budget

constraints and a restriction that the number of securities selected for investment

is small. Facility location problems are classical supply chain management models

where a company must decide where to locate facilities. The variant of the problem

where at most p warehouses can be opened is known as the p-median problem, and

has been extensively studied in the literature [1,9,21,25,38,47,55]. In statistical data

analysis, principal component analysis (PCA) is a well-known technique for dimen-

sion reduction. It finds principal components as linear combinations of the original

variables. When the coefficients of many variables in these linear combinations are

nonzero, the principal components can be hard to interpret. In order to find principal
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components that are easier to explain, a cardinality constraint (referred to as a spar-

sity constraint) is sometimes imposed on the original problem. The resulting problem

is known as sparse principal component analysis (sparse PCA); see [24,35,46,75]. En-

semble pruning [73] and variable selection in multiple regression [12,13] are also often

modeled as CCOPs.

Although CCOPs find uses in a variety of applications, they are hard to solve to

global optimality. Perhaps the simplest of these problems, which involves optimiz-

ing a linear function over the intersection of a continuous knapsack polytope and a

cardinality constraint, is already NP-hard [26]. Further, large instances of practical

problems are computationally challenging to solve [14,26,54].

For a decision variable x ∈ Rn, card(x) represents the number of nonzero compo-

nents or the cardinality of x. A cardinality constraint is written as card(x) ≤ K for

some positive integerK ∈ {1, . . . , n−1}. In this thesis, we assume thatK > 1 because

the problem is trivial when K = 1. Therefore, we also assume that n ≥ 3. Various

strategies have been proposed to model cardinality constraints, and to leverage clas-

sical MIP branch-and-cut methodologies in the solution of cardinality-constrained

problems. When variables x are bounded, auxiliary binary variables can be intro-

duced to model the cardinality constraint. That is, for bounds l, u ∈ Rn such that

liui ≤ 0 for i = 1, . . . , n, constraints l ≤ x ≤ u,

card(x) ≤ K

can be replaced with 
l ◦ z ≤ x ≤ u ◦ z,

1
ᵀz ≤ K,

z ∈ {0, 1}n

where ◦ is the Hardamard product and 1 ∈ Rn is the vector whose components are

all equal to one.

When the constraints of the initial problem are linear, such an approach allows

the use of branch-and-cut algorithms developed for mixed integer programs (MIPs).
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This reformulation also allows for the use of cutting planes derived for cardinality-

constrained problems; see [71,72].

In [8] a specialized branch-and-bound algorithm was proposed to solve problems

with cardinality constraints where K ∈ {1, 2}. These techniques were adapted to

logically constrained linear programs [48], mixed integer quadratic programs [14],

and to cardinality-constrained knapsack problems in [26]. Moreover, [26] develops

valid inequalities for cardinality constrained knapsack problems (CCKPs) that can

be used for cardinality constraint linear programs (CCLPs).

This thesis is organized as follows. In Chapter 2, we develop a procedure that

generates cutting planes for CCLPs. For a given LP relaxation of a CCLP and a

basic feasible solution, we construct a disjunctive relaxation of the corresponding

simplex tableau from which we derive the desired cuts. Specifically, if the given basic

feasible solution violates the cardinality constraint, there exists at least K + 1 basic

variables that correspond to nonzero components of the solution. Then, a disjunctive

relaxation of the cardinality requirement can be obtained by imposing a disjunction

that forces at least one of those basic variables to be nonpositive. We characterize

the closed convex hull of this disjunctive relaxation by obtaining the extreme ray

representation of each disjunct and by proving that facet-defining inequalities can be

obtained by solving a dual network optimization problem. We further observe that the

nontrivial facet-defining inequalities of the relaxation directly relate to a particular

class of subgraphs, which we call label-connected spanning trees, of a bipartite network

that can be constructed for the the simplex tableau. This procedure generalizes the

E&R procedure [56] recently developed in the context of complementarity problems.

We then describe a polynomial-time Prim-like algorithm that tightens any given valid

inequality of the disjunctive relaxation into a facet-defining inequality. As a special

case, we constructively show how the c-max cut, which is a well-known disjunctive cut,

can be strengthened to a facet-defining inequality of the convex hull of our disjunctive

relaxation when it is not.
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Chapter 3 focuses on reformulation and relaxation techniques for an optimization

formulation of sparse principal component analysis (sparse PCA). Sparse PCA seeks

to find a sparse eigenvector of a given covariance matrix for a centered data matrix.

We first provide an extended formulation for the convex hull of sparse PCA by study-

ing the dual of the separation problem. The derivation of the convex hull is possible

because of a special symmetry structure of the feasible set. More specifically, if a point

is in the feasible set, so are all its permutations. We call this property permutation-

invariance. Permutation-invariance enables us to represent the convex hull through

a majorization inequality which can be modeled using a polynomial number of addi-

tional variables and linear constraints. The underlying idea is to construct the convex

hull over the simplex {x : x1 ≥ · · · ≥ xn ≥ 0} and replicate it onto the remaining

region. By replacing the feasible set of sparse PCA with its convex hull, we relax

sparse PCA to a convex maximization problem. We then show that the relaxation

is a reformulation of sparse PCA by showing that any optimal solution to the refor-

mulated problem that violates the cardinality constraint can always be transformed

to a point that satisfies the cardinality constraint and achieves the same objective

function value. In addition, we present semidefinite programming (SDP) relaxations

for sparse PCA based on majorization arguments on matrix variables. We prove that

our SDP relaxations are strictly tighter than a well-known SDP relaxation proposed

in [24]. Preliminary computational results obtained for the pitprops dataset and for

randomly generated covariance matrices show that our SDP relaxations have gaps

90% smaller than those of the classical relaxation.

In Chapter 4, we study other approaches to CCLPs. First, we formulate CCLPs

as facial disjunctive programs by representing the cardinality constraint in conjunc-

tive normal form. That is, card(x) ≤ K is equivalent to enforcing that every

subset of {x1, . . . , xn} of size K + 1 includes at least one zero, or equivalently,∧
J∈{1,...,n},|J |=K+1

∨
j∈J(xj = 0). The facial structure of the disjunctive set enables us

to apply the finitely-convergent cutting plane algorithm developed by Jeroslow [40].

We then present a generalized reformulation-linearization technique (RLT) to build
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the convex hull of the feasible set of the CCLP. Based on the work of [67], we pro-

pose a product factor for generalized RLT that is a ratio of multilinear terms. In the

remainder of the chapter, we focus on developing valid inequalities for CCKPs. The

derivation is based on the following disjunction that is equivalent to the cardinality

constraint card(x) ≤ K: for a given m ∈ {0, . . . , K},

card(xI) ≤ m ∨ card(xN\I) ≤ K −m− 1

for any I ⊂ N where xI denotes the |I|-dimensional subvector of x corresponding to

the index set I. This enables us to construct a new valid inequality from a given valid

inequality. We show that the procedure generates a facet-defining inequality from a

given facet-defining inequality under certain conditions. We also demonstrate that

many valid inequalities proposed in [26] can be derived by our procedure. Finally, we

show how to derive some valid inequalities using lifting arguments.

In the last chapter, we summarize the contributions of this dissertation and present

directions for future research.
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2. On cutting planes for cardinality constrained linear

programming

In this chapter, we derive cutting planes for cardinality-constrained linear programs

(CCLPs). These inequalities can be used to separate any basic feasible solution of

an LP relaxation of the problem, assuming that this solution violates the cardinality

requirement. To derive them, we first relax the given simplex tableau into a disjunc-

tive set, expressed in the space of nonbasic variables. We establish that coefficients

of valid inequalities for the closed convex hull of this set obey ratios that can be com-

puted directly from the simplex tableau. We show that a transportation problem can

be used to separate these inequalities. We then give a constructive procedure to gen-

erate violated facet-defining inequalities for the closed convex hull of the disjunctive

set using a variant of Prim’s algorithm.

2.1 Introduction

In this chapter, we focus on CCOPs, where the optimization problem is linear and

refer to them as cardinality-constrained linear programs (CCLPs). A CCLP can be

formulated as

maximize cᵀx+ dᵀy

subject to Ax+By ≤ b

x, y ≥ 0

card(x) ≤ K,

where c, x ∈ Rp, d, y ∈ Rq, b ∈ Rm, A ∈ Rm×p, B ∈ Rm×q, and K is a fixed positive

integer with K < p. Our treatment extends to problems with multiple cardinality
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constraints. However, for the sake of simplicity in the exposition, we only consider a

single cardinality constraint in this research.

We conduct a polyhedral study of CCLPs in the space of original problem vari-

ables. In particular, we use information contained in feasible simplex tableaux of LP

relaxations of CCLPs to construct strong valid inequalities. Our underlying mo-

tivation is that, avoiding the introduction of unnecessary indicator variables will

help maintain the original problem structure, and might lead to streamlined solu-

tion approaches for these problems. Although we are not aware of previous studies of

tableau-based cuts for cardinality-constrained problems, such inequalities have been

proposed in the literature in the context of MIPs, quadratic programming, concave

programming, and linear complementarity problems [2, 7, 29,32,37,58,69].

The remainder of this chapter is organized as follows. In Section 2.2, we show

that violated cuts for CCLPs can be generated from a disjunctive relaxation of any

simplex tableau corresponding to a basic feasible solution violating the cardinality

requirement. This disjunctive relaxation has (K + 1) disjuncts, each with a single

nontrivial constraint. We also show that the analysis of the closed convex hull of this

set can be performed in the space of nonbasic variables. In Section 2.3, we give a

characterization of the closed convex hull based on the extreme ray representation

of each disjunct, without the use of disjunctive programming. This characterization

relates coefficients of facet-defining inequalities to extreme points of a polyhedron,

that we give in closed-form. In Section 2.4, we show that there exists a nonlinear

transformation that establishes an isomorphism between the face-lattice of this poly-

hedron and that of the dual of a transportation problem. In Section 2.5, we prove

that nontrivial facet-defining inequalities of the closed convex hull of the disjunctive

set correspond to label-connected spanning trees of the bipartite network associated

with the transportation problem. This result allows us to provide, in Section 2.6, a

simple explicit constructive procedure for the derivation of nontrivial facet-defining

inequalities. It also yields a polynomial time algorithm for the generation of such

inequalities, and give a precise characterization of when a commonly used disjunctive
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cut, which we refer to as c-max cut, is facet-defining for the disjunctive relaxation.

We give concluding remarks in Section 2.7.

2.2 Disjunctive relaxation of a simplex tableau with a cardinality con-

straint

Given an LP relaxation of a CCLP, we next describe an approach to construct

cardinality-based cutting planes. We assume that we know a basic feasible solution

of this LP relaxation that violates the cardinality constraint, card(x) ≤ K, together

with an explicit description of the associated simplex tableau. Denoting the basic

variables in this tableau by v (indexed by set M), and the nonbasic variables by t

(indexed by set V), we then write the simplex tableau as

vl = v∗l −
∑

i∈V fliti, ∀l ∈M,

vl ≥ 0, ∀l ∈M,

ti ≥ 0, ∀i ∈ V ,

(2.1)

where v∗l ≥ 0 for l ∈ M. Since we have assumed that the current basic solution

(v, t) = (v∗, 0) does not satisfy the cardinality constraint, there exists a subset L ⊆M

of basic variables such that (i) |L| = K + 1, (ii) variables vl for l ∈ L appear in the

cardinality constraint, and (iii) v∗l > 0 for l ∈ L. We construct the desired disjunctive

relaxation by (i) relaxing the cardinality constraint card(x) ≤ K into the disjunction∨
l∈L(vl ≤ 0), which forces one of the K + 1 variables in L to be nonpositive, (ii)

removing the nonnegativity requirements on basic variables, and (iii) omitting the

tableau constraints associated with basic variables vM\L. We therefore study

Q̄ :=

(v, t) ∈ R|L|+|V| :

vl = v∗l −
∑

i∈V fliti, ∀l ∈ L,

ti ≥ 0, ∀i ∈ V∨
l∈L(vl ≤ 0)

 , (2.2)

where each equality in the above set corresponds to a basic variable in L, and rep-

resents it as an affine function of the nonbasic variables. If a nonbasic variable is a

slack variable for a constraint in Ax+By ≤ b, then an inequality valid for Q̄ can be
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written in the space of original problem variables using the defining inequality for the

slack variable. We remark that the relaxations applied to the initial simplex tableau

in order to obtain Q̄ resemble those made to obtain the corner relaxation of an MIP;

see [31].

Since Q̄ is a finite union of polyhedra, cl conv(Q̄) is a polyhedron; see Theorem

19.6 in [59] for instance.

Proposition 2.2.1 The set cl conv(Q̄) is a polyhedron. �

A linear inequality is valid for Q̄ if and only if it is valid for cl conv(Q̄). We

therefore seek to characterize the valid inequalities of cl conv(Q̄). We next show that

this can be achieved by studying cl conv(Q) where Q is the projection of Q̄ onto the

space of nonbasic variables t. Formally, for each l ∈ L, define

Ql :=

{
t ∈ R|V| :

∑
i∈V

fliti ≥ v∗l , ti ≥ 0, ∀i ∈ V

}

and set Q :=
⋃
l∈LQl. We assume without loss of generality that V = {1, . . . , n}. Let

h∗(t) =

v∗
0

 +

−F
I

 t, where the entry (l, i) of matrix F is fli, as used in the

definition of Q̄ in (2.2). It is clear that h∗(·) is an affine map, and that Q̄ = h∗(Q).

Lemma 1 For i = 1, . . . , p, let Pi ∈ Rn be nonempty polyhedra. Also let h : Rn →

Rm be an affine map. Then

h (cl conv (
⋃p
i=1 Pi)) = cl conv (

⋃p
i=1 h(Pi)) .

Proof It is easy to show that h(
⋃p
i=1 Pi) =

⋃p
i=1 h(Pi). Then,

cl conv (
⋃p
i=1 h(Pi)) = cl conv (h (

⋃p
i=1 Pi))

= cl (h (conv (
⋃p
i=1 Pi)))

⊇ h (cl conv (
⋃p
i=1 Pi)) ,
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where the second equality results from the fact that convex hull operators and affine

maps commute, and the last inclusion follows from the continuity of h. On the other

hand, it is straightforward that

conv (
⋃p
i=1 h(Pi)) = conv (h (

⋃p
i=1 Pi))

= h (conv (
⋃p
i=1 Pi))

⊆ h (cl conv (
⋃p
i=1 Pi)) .

By Theorem 19.6 in [59], cl conv (
⋃p
i=1 Pi) is a polyhedron and hence its affine trans-

formation is a polyhedron. This implies that h (cl conv (
⋃p
i=1 Pi)) is a closed set and

that cl conv (
⋃p
i=1 h(Pi)) ⊆ h (cl conv (

⋃p
i=1 Pi)).

For the affine function h∗(·) described above, Lemma 1 implies

Proposition 2.2.2 It holds that cl conv(Q̄) = h∗ (cl conv(Q)).

In the remainder of this chapter, we restrict our attention to the study of cl conv(Q)

since Proposition 2.2.2 shows that this is sufficient to characterize cl conv(Q̄).

Since we assumed that v∗l > 0 for l ∈ L, we may scale each constraint so that

v∗l = 1. That is, for l ∈ L,

Ql =

{
t :
∑
i∈V

fliti ≥ 1, ti ≥ 0,∀i ∈ V

}
.

For each l ∈ L, define

I l+ = {i ∈ V : fli > 0},

I l− = {i ∈ V : fli < 0},

I l0 = {i ∈ V : fli = 0}.

Throughout the chapter, we assume without loss of generality that Ql 6= ∅ for each

l ∈ L. In fact, if Ql = ∅ for some l ∈ L, then we can simply drop the corresponding

set from the disjunction. It is simple to verify that Ql = ∅ if and only if fli ≤ 0 for all

i ∈ V . For this reason, we make the following assumption in the rest of the chapter.
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Assumption 1 For each l ∈ L, I l+ 6= ∅.

Proposition 2.2.3 Polyhedron Ql is full-dimensional. Further, cl conv(Q) is also

full-dimensional.

Proof By Assumption 1, I l+ 6= ∅. Choose i ∈ I l+ and consider the point(
1

fli
+ 1

)
ei +

∑
k∈V\{i}

εek,

where ε is positive but sufficiently small. This point is in the interior of Ql and hence

Ql is full-dimensional. Further, since Ql ⊆ Q, then cl conv(Q) is also full-dimensional.

We next argue that there are valid inequalities of cl conv(Q) that can be used

to separate the basic feasible solution associated with the initial simplex tableau

(2.1), if this solution violates the cardinality requirement. For instance, consider the

inequality ∑
i∈V

(c−max)iti ≥ 1 (2.3)

where (c−max)i = max{fli : l ∈ L} for i ∈ V . This inequality, which we refer to

hereafter as c-max cut was introduced in [37] for complementarity problems. Com-

plementarity problems are special instances of cardinality problems requiring that at

most one of the variables takes a nonzero value. The c-max cut can be easily seen

to be valid for cl conv(Q) because
∑

i∈V(c−max)iti ≥
∑

i∈V fliti ≥ 1 for all t ∈ Ql

and l ∈ L, i.e., it is valid for each disjunct Ql. Moreover, it separates the closed

convex hull from t = 0 because this point violates (2.3). For the particular case

when |L| = 2, it is shown in [56] that the c-max cut is not always facet-defining for

cl conv(Q) and is not sufficient to provide a complete description of the nontrivial

inequalities of cl conv(Q). In this chapter, we provide a complete description of the

nontrivial facet-defining inequalities of cl conv(Q). We show that all nontrivial facet-

defining inequalities of cl conv(Q) cut off the current basic feasible solution of (2.1),

and we precisely characterize when the c-max cut is strong.
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2.3 A characterization of cl conv(Q)

In this section, we provide a characterization of the facet-defining inequalities of

cl conv(Q). Recall that Minkowski-Weyl’s theorem, see Theorem 7.13 in [36] for in-

stance, establishes that a polyhedron can be represented in two forms, either using

its vertices and extreme rays or as a finite intersection of half-spaces. Following [74],

we refer to the former representation as a V-polyhedron, and to the latter as a H-

polyhedron. Through the rest of the chapter, we alternate between these representa-

tions when studying cl conv(Q). We also find it more convenient to study a certain

homogenization of Q. We show in Proposition 2.3.4 that studying this homogeniza-

tion is without loss of generality.

Let V0 := V ∪ {0}. Define Q0
l to be the homogenization of Ql obtained as

Q0
l :=

{
t := (t1, . . . , tn, t0) ∈ R|V0| :

∑
i∈V

fliti ≥ t0, t ≥ 0

}
.

After defining fl0 := −1 and fl := (fl1, . . . , fln, fl0)ᵀ, we can rewrite Q0
l as

Q0
l =

{
t ∈ R|V0| : fᵀl t ≥ 0, t ≥ 0

}
.

We refer to fᵀl t ≥ 0 as the nontrivial constraint of disjunct l. It is clear that Q0
l is

a polyhedral cone. Referring to
⋃
l∈LQ

0
l as Q0, it is also clear that cl conv(Q0) is a

cone. We next describe how these cones relate to the sets we originally introduced.

For a nonempty convex set C, we define K(C) := {λ(d, 1) : d ∈ C, λ > 0}.

Proposition 2.3.1 It holds that

1. Q0
l = cl(K(Ql)).

2. cl conv(Q0) = cl(K(cl conv(Q))).

Proof First, we prove 1. We refer to K(Ql) as K. To show cl(K) ⊆ Q0
l , consider

λ(d, 1) ∈ K for some λ > 0 and d ∈ Ql. Then,
∑

i∈V flidi ≥ 1. Since λ(d, 1) ≥ 0

and fᵀl λ(d, 1) = λ(
∑

i∈V flidi − 1) ≥ 0, then λ(d, 1) ∈ Q0
l . Since Q0

l is a closed set,
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cl(K) ⊆ Q0
l . To show Q0

l ⊆ cl(K), consider (d, d0) ∈ Q0
l . If d0 > 0, then d/d0 ∈ Ql

and hence (d, d0) = d0(d/d0, 1) ∈ K. Now, assume d0 = 0. Then,
∑

i∈V flidi ≥ 0.

Since Ql 6= ∅ by Assumption 1, we may select d′ ∈ Ql. Then, for any µ > 0,

d′ + µd ∈ Ql because
∑

i∈V fli(d
′ + µd)i =

∑
i∈V flid

′
i + µ

∑
i∈V flidi ≥ 1. Hence

(1/µ)(d′ + µd, 1) ∈ K. Observe that limµ→∞(1/µ)(d′ + µd, 1) = (d, 0). Therefore,

(d, d0) = (d, 0) ∈ cl(K).

We next prove 2. Clearly, cl conv(Q0) ⊇ K(cl conv(Q)) because K(cl conv(Q)) ⊆

cl conv(K(Q)) ⊆ cl conv(Q0), where the first inclusion holds because cl conv(Q) ⊆

cl conv(K(Q)) and cl conv(K(Q)) is a cone, and the second inclusion is because

K(Q) =
⋃
l∈LK(Ql) ⊆

⋃
l∈LQ

0
l = Q0. For the reverse inclusion, observe that:

Q0 =
⋃
l∈L

Q0
l =

⋃
l∈L

cl(K(Ql)) ⊆ cl(K cl conv(Q))),

where the first equality is by definition of Q0, the second by Part 1, and the first

inclusion is because Ql ⊆ cl conv(Q). Since cl(K(cl conv(Q))) is closed and convex,

cl conv(Q0) ⊆ cl(K(cl conv(Q))).

Propositions 2.2.3 and 2.3.1 directly yield

Corollary 1 Polyhedron cl conv(Q0) is full-dimensional.

In Proposition 2.3.2, we present V-polyhedron representations of Q0
l and Ql. This

result allows us to build V-polyhedron representations of cl conv(Q0) and cl conv(Q)

in Corollary 2.

Proposition 2.3.2 Define

R0
l = {fliej − fljei ∈ R|V0| : i ∈ I l+, j ∈ I l− ∪ {0}} ∪ {ek ∈ R|V0| : k ∈ I l+ ∪ I l0},

Vl =

{
1

fli
ei ∈ R|V| : i ∈ I l+

}
,

Rl = {fliej − fljei ∈ R|V| : i ∈ I l+, j ∈ I l−} ∪ {ek ∈ R|V| : k ∈ I l+ ∪ I l0}.

Then Q0
l = cone(R0

l ) and Ql = conv (Vl) + cone(Rl). Further all the given points and

rays are extremal.
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Proof We first show that Q0
l = cone(R0

l ). Since Q0
l is a cone in the nonnegative

orthant, it is pointed. This implies that all the points in the cone can be written as

a conic combination of its extreme rays. Let r be a ray of Q0
l . Then, r is extreme

if and only if it belongs to the intersection of n = |V0| − 1 independent hyperplanes

among {t ∈ R|V0| : fᵀl t = 0} and {t ∈ R|V0| : tk = 0}, for k ∈ V0. First, for each

i ∈ V0, suppose that these n hyperplanes are {t : tk = 0} for k 6= i. Then rk = 0

for all k 6= i and hence r = ρei with ρ > 0. In order to be a ray, this vector must

satisfy fᵀl r ≥ 0, i.e., i must be chosen in I l+ ∪ I l0 . Next, suppose that these n

hyperplanes are {t ∈ R|V0| : fᵀl t = 0} and {t ∈ R|V0| : tk = 0} for k 6= i, j for

some i, j ∈ V0. Then the face defined by the intersection of these hyperplanes is

F := {t ∈ R|V0| : fliti + fljtj = 0, t ≥ 0, tk = 0,∀k 6= i, j}. In order for r to be a

ray, F 6= {0} and hence fliflj ≤ 0. By independence, fli 6= 0 or flj 6= 0. If fli = 0

or flj = 0 then we have that r = ek for some k ∈ I l0. Now assume that fliflj < 0.

Without loss of generality, assume that fli > 0 and flj < 0. Then, r = fliej − fljei
where i ∈ I l+ and j ∈ I l− ∪ {0}. We conclude that R0

l is precisely the collection of

extreme rays of Q0
l , and therefore Q0

l = cone(R0
l ).

We next prove that Ql = conv (Vl) + cone(Rl). By Proposition 2.3.1 and by

Lemma 5.41 of [36], we have that

Ql = conv(V ′l ) + cone(R′l)

where V ′l is the set of vectors t
t0

in R|V| obtained from rays (t, t0) of Q0
l whose com-

ponent t0 is nonzero, and R′l is the set of vectors t in R|V| obtained from rays (t, t0)

of Q0
l where t0 = 0. Thus, V ′l = Vl and R′l = Rl. Extremality follows directly from

the extremality of rays in R0
l .

The result of Proposition 2.3.2 yields a V-polyhedron representation for the closed

convex hull of the union of the associated disjuncts.

Corollary 2 The V-polyhedron representations of cl conv(Q0) and cl conv(Q) are

cl conv(Q0) = cone(R0),

cl conv(Q) = conv(V ) + cone(R),
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where R0 :=
⋃
l∈LR

0
l , V :=

⋃
l∈L Vl, and R :=

⋃
l∈LRl.

We now seek to better understand the coefficient vectors β ∈ R|V| and β′ ∈ R|V0|

that give rise to strong valid inequalities of cl conv(Q) and cl conv(Q0), respectively.

We show next that β and β′ are closely related.

Proposition 2.3.3 Inequality ∑
i∈V

βiti ≥ γ (2.4)

is valid for cl conv(Q) if and only if inequality∑
i∈V

βiti ≥ γt0 (2.5)

is valid for cl conv(Q0).

Proof For the direct implication, suppose that (2.4) is valid for cl conv(Q). Take

any (d, d0) ∈ K(cl conv(Q)). By definition, (d, d0) = d0( d
d0
, 1) where d0 > 0 and

d
d0
∈ cl conv(Q). It follows that

∑
i∈V βidi ≥ γd0. This shows that (2.5) is valid for

K(cl conv(Q)), and therefore, by Proposition 2.3.1, for cl conv(Q0). For the reverse

implication, suppose now that (2.5) is valid for cl conv(Q0). Take any d ∈ Q. Then

(d, 1) ∈ Q0. Since (2.5) is valid for cl conv(Q0), then
∑

i∈V βidi ≥ γ. This shows that

(2.4) is valid for cl conv(Q).

The following result shows that characterizing the facets of cl conv(Q0) is equiva-

lent to characterizing the facets of cl conv(Q).

Proposition 2.3.4 Inequality (2.4) is facet-defining for cl conv(Q) if and only if in-

equality (2.5) is facet-defining for cl conv(Q0) and is not a scalar multiple of t0 ≥ 0.

Proof The fact that validity is preserved is shown in Proposition 2.3.3. Suppose

now that (2.4) is facet-defining for cl conv(Q). Then there exist n = |V| affinely

independent points w1, . . . , wn of cl conv(Q) that satisfy (2.4) at equality. Points

(wj, 1) belong to cl conv(Q0) for all j ∈ V and satisfy (2.5) at equality. Since {wj :
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j ∈ V} are affinely independent, {(wj, 1) : j ∈ V} are linearly independent. This

proves that (2.5) is facet-defining for cl conv(Q0). Clearly, (2.5) is not t0 ≥ 0 as

otherwise (2.4) would be 0ᵀt ≥ −1, which is not facet-defining for cl conv(Q).

Conversely, suppose that (2.5) is facet-defining for cl conv(Q0). Since cl conv(Q0)

is a full-dimensional polyhedral cone, there exist n linearly independent extreme rays

(rj, rj0) of cl conv(Q0) that satisfy (2.5) at equality. Suppose rj0 = 0 for all j ∈ V .

Observe that {rj : j ∈ V} are linearly independent and βᵀrj = 0 for all j ∈ V . This

shows that β = 0. However, this is not possible as (2.5) would then correspond to the

face of cl conv(Q0) induced by t0 ≥ 0. Therefore, there must exist j ∈ V such that

rj0 6= 0. Define I1 = {j′ ∈ V : rj
′

0 6= 0}( 6= ∅) and I2 = {j′ ∈ V : rj
′

0 = 0}. Then, for

j ∈ I1, βᵀ r
j

rj0
= 1

rj0
βᵀrj = γ. Further, for k ∈ I2, βᵀrk = 0. Fix j0 ∈ I1, and consider

the sets of points {
rj

rj0
: j ∈ I1

}
∪
{
rj0

rj00

+ rk : k ∈ I2

}
.

It is clear that these points satisfy (2.4) at equality and that they belong to cl conv(Q)

by Proposition 2.3.1. It remains to prove that they are affinely independent, which

can be established easily because the linear independence of vectors{
rj

rj0
− rj0

rj00

: j ∈ I1 \ {j0}
}
∪
{
rk : k ∈ I2

}
follows from the assumed independence of {(rj, r0), j ∈ V}. Therefore, (2.4) is facet-

defining for cl conv(Q).

In the remainder of this chapter, we prefer to study cl conv(Q0) because, being

homogeneous, it allows for a unified treatment of the extreme points and extreme

rays of Q, and thus permits a more streamlined presentation.

We are now ready to further investigate the structure of coefficient vectors associ-

ated with facet-defining inequalities (2.5) of cl conv(Q0). In particular, we will show

in Proposition 2.3.6 that, except for some simple inequalities we describe next, most

facet-defining inequalities are such that γ > 0.
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For i ∈ V0, we refer to the inequalities ti ≥ 0 of cl conv(Q0) as trivial. For

notational convenience, we redefine I l− := I l−∪{0}. Hence I l+, I l−, and I l0 exclusively

partition V0. We also define

I+ = {i ∈ V0 : fli > 0 for some l ∈ L} =
⋃
l∈L I l+,

I− = {i ∈ V0 : fli < 0 for all l ∈ L} =
⋂
l∈L I l−,

I0 = V0 \ (I+ ∪ I−).

It is clear that 0 ∈ I− and it follows from Assumption 1 that I+ 6= ∅. We establish

next that trivial inequalities are typically facet-defining for cl conv(Q0).

Proposition 2.3.5 Trivial inequality ti ≥ 0 is facet-defining for cl conv(Q0) if and

only if

1. i ∈ I− ∪ I0, or

2. i ∈ I+ and |I+| ≥ 2.

Proof Inequality ti ≥ 0 is clearly valid for cl conv(Q0). Assume first that i ∈ I−∪I0.

Since I+ 6= ∅, there exists j ∈ I+ and l ∈ L such that flj > 0. Consider the point

∑
k∈V0\{i,j}

εek +
1−

∑
k∈V0\{i,j} εflk

flj
ej (2.6)

for ε positive and sufficiently small. This point is in the relative interior of Q0
l ∩ {t ∈

R|V0| : ti = 0}. Hence, it is in the relative interior of cl conv(Q0)∩{t ∈ R|V0| : ti = 0}.

It follows that ti ≥ 0 is facet-defining for cl conv(Q0). Next, assume that i ∈ I+.

If |I+| ≥ 2, there exists j ∈ I+ \ {i} and l ∈ L such that flj > 0. Then, (2.6) is

an interior point of Q0
l ∩ {t ∈ R|V0| : ti = 0} and hence ti ≥ 0 is facet-defining for

cl conv(Q0). Suppose I+ = {i} and j ∈ I−. Then, for each l ∈ L, every point in

Q0
l ∩ {t ∈ R|V0| : ti = 0} satisfies tj = 0. It follows that ti ≥ 0 defines a face of

cl conv(Q0) of dimension at least two less than that of cl conv(Q0), showing that this

inequality is not facet-defining.
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Proposition 2.3.5 shows that trivial inequalities ti ≥ 0 are facet-defining unless

i ∈ I+ and |I+| = 1. In the remainder of this chapter, we consider β to be a vector in

R|V0|. We show next that the sign of the entries of coefficient vectors β for nontrivial

facet-defining inequalities of cl conv(Q0) can be deduced directly from the sets I+, I−,

and I0.

Proposition 2.3.6 Let ∑
i∈V0

βiti ≥ 0. (2.7)

be a nontrivial facet-defining inequality for cl conv(Q0). Then

1. βi ≥ −max{fli : l ∈ L}β0 for i ∈ I+,

2. βj < 0 for j ∈ I−,

3. βk = 0 if max{flk : l ∈ L} = 0.

In particular, βi > 0 for i ∈ I+.

Proof Consider a nontrivial facet-defining inequality (2.7). Observe that βi ≥ 0 for

i ∈ I+ ∪ I0 because ei is a ray of Q0.

We first prove 1. Choose j′ ∈ I− with βj′ < 0. Such a j′ exists because otherwise,

(2.7) is implied by trivial inequalities. Let i ∈ I l+ for some l ∈ L. Since fliej′ − flj′ei
is a ray for cl conv(Q0), it follows that βi ≥ max{fli : l ∈ L} βj′

flj′
> 0. Remember now

that 0 ∈ I−. If β0 < 0, Part 1 follows easily since fl0 = −1. If β0 = 0, Part 1 simply

states that βi ≥ 0 while the inequality just proven for j′ is stronger.

We now prove 2 and 3. Consider j ∈ I− ∪ I0. There exists an extreme ray r

of cl conv(Q0) such that βᵀr = 0 and rj > 0 because otherwise, (2.7) is a trivial

inequality. Proposition 2.3.2 shows that this ray can be of one of two forms. First

assume that r = fliej − fljei for some l ∈ L and i ∈ I l+. As shown above, βi > 0. It

follows from βᵀr = 0 that βj < 0. This shows Part 2 when j ∈ I− and shows that it

is not the desired ray when j ∈ I0 as it contradicts the already established relation
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βj ≥ 0. Now, consider j ∈ I0. We must have that r = ej. This shows that βj = 0

proving Part 3.

Example 1 Consider the set Q0 with disjuncts defined by the constraints

5t1 −3t2 +0t3 +1t4 −5t5 −t0 ≥ 0

3t1 −1t2 +2t3 −3t4 −3t5 −t0 ≥ 0

4t1 −6t2 +4t3 −2t4 +0t5 −t0 ≥ 0

2t1 −2t2 −2t3 +0t4 −2t5 −t0 ≥ 0.

(2.8)

Then

I+ = {1, 3, 4}, I− = {2, 0}, and I0 = {5}.

We use PORTA [19, 20] to obtain the extreme rays of each disjunct independently.

We then run PORTA again based on this collection of extreme rays to obtain all facet-

defining inequalities of cl conv(Q0). The resulting nontrivial facet-defining inequalities

are
5t1 −5

3
t2 +4t3 +t4 +0t5 −t0 ≥ 0

9t1 −3t2 +6t3 +t4 +0t5 −t0 ≥ 0

6t1 −2t2 +4t3 +t4 +0t5 −t0 ≥ 0.

(2.9)

We observe that, as argued in Proposition 2.3.6, βi > 0 for i ∈ I+, βi < 0 for i ∈ I−
and β5 = 0 in all nontrivial facet-defining inequalities (2.9).

Proposition 2.3.6 shows that nontrivial facet-defining inequalities of cl conv(Q0)

are such that βk is zero for each index k for which the tableau coefficients satisfy

flk ≤ 0 for all l ∈ L and fl′k = 0 for some l′ ∈ L. Then, it is clear that cl conv(Q) =

{t = (t−k, tk) : t−k ∈ cl conv(Q−k), tk ∈ R+} where t−k is the vector obtained by

dropping component tk from t and Q−k := projt−k
(Q). Thus, it is sufficient to study

cl conv(Q−k). For this reason, we make the following assumption in the remainder of

the chapter.

Assumption 2 I0 = ∅.
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With Assumption 2, it follows that I+ and I− exclusively partition V0.

We next derive an H-polyhedron representation of cl conv(Q0). We obtain the lin-

ear inequalities of this representation by considering the dual cone of its V-polyhedron

representation, which was obtained in Corollary 2. For a given cone C ⊆ Rn, we de-

note the dual cone of C by C∗. Recall that C∗ = {y ∈ Rn : yᵀx ≥ 0, ∀x ∈ C}. As

we established in Corollary 2 that cl conv(Q0) = cone(R0) where R0 :=
⋃
l∈LR

0
l , it is

easy to see that βᵀt ≥ 0 is a valid inequality for cl conv(Q0) if and only if βᵀr ≥ 0

for all r ∈ R0. Therefore, the coefficient vectors of valid inequalities for cl conv(Q0)

belong to

B1 =

β ∈ R|V0| :
fliβj − fljβi ≥ 0, ∀(i, j) ∈ I l+ × I l−, l ∈ L

βk ≥ 0, ∀k ∈ I l+ ∪ I l0, l ∈ L

 , (2.10)

where we use B1 as a shorthand notation for [cl conv(Q0)]∗.

Among the facet-defining inequalities of cl conv(Q0), trivial inequalities are not

useful in practice, since they do not cut off the basic solution associated with simplex

tableau (2.1). We therefore concentrate on nontrivial facet-defining inequalities of

cl conv(Q0), which have β0 < 0 as shown in Proposition 2.3.6. Therefore, by scaling

if necessary, we may assume that β0 = −1. For this reason, we focus our ensuing

study on B2 := B1 ∩ {β ∈ R|V0| : β0 = −1}, and show that the description of this

polyhedron requires fewer constraints than those given in (2.10).

Proposition 2.3.7 For (i, j) ∈ I+ × I−, define

wij = min

{
−flj
fli

: fli > 0, l ∈ L
}
. (2.11)

Then

B2 =

β ∈ R|V0| :
βj + wijβi ≥ 0, ∀(i, j) ∈ I+ × I−
β0 = −1

 . (2.12)

Proof Just as in the proof of Proposition 2.3.6, when β0 < 0, the inequalities βk ≥ 0

for k ∈ I l+∪I l0 do not support B1 and can therefore be dropped. Now, for any i ∈ I l+
and j ∈ I l−, βi ≥

fli
flj
βj. This inequality is redundant if j ∈ I+ because, as argued

above, βi > 0. Therefore, j ∈ I−. Maximizing fli
flj
βj yields (2.12).
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It is easy to see that the coefficients β ∈ B2 are sign-constrained. Therefore, B2

has no lines. Because B2 does not have a line, it has at least one extreme point; see

Corollary 18.5.3 in [59]. We mention that B2 does also have rays, including vectors

ei for i ∈ I+ ∪ I−\{0}.

We next show that there is a one-to-one correspondence between the nontrivial

facet-defining inequalities of cl conv(Q0) and the extreme points of B2.

Theorem 2.3.1 Any inequality βᵀt ≥ 0 with β0 = −1 is facet-defining for cl conv(Q0)

if and only if β is an extreme point of B2.

Proof For a facet-defining inequality, βᵀt ≥ 0 of cl conv(Q0), β is an extreme point

of B2 because of the n linearly independent tight constraints βᵀrj = 0, one for each

tight linearly independent extreme ray rj of cl conv(Q0) and the equality constraint

β0 = −1. For the reverse inclusion, the tight constraints, besides β0 = −1, each yield

a linearly independent extreme ray tight for the inequality.

Extreme rays ofB2 also lead to valid inequalities for cl conv(Q0). In fact, consider a

solution β and an extreme ray ρ of B2. Clearly, ρ0 = 0. For all τ ≥ 0, β+τρ ∈ B2, and

therefore the inequality (β + τρ)ᵀt ≥ 0 is valid for cl conv(Q0). Dividing throughout

by τ and letting τ → ∞, we then conclude that ρᵀt ≥ 0, an inequality with ρ0 = 0,

is valid for cl conv(Q0). If this inequality is facet-defining for cl conv(Q0), then it

must be one of the trivial ones. However, extreme rays, unlike extreme points, do not

necessarily yield facet-defining inequalities for cl conv(Q0). We next illustrate these

observations, together with the statement of Theorem 2.3.1.

Example 1 (continued) For the set Q0 with disjuncts defined by (2.8) and where

variable t5 has been removed, we compute that w12 := min
{

3
5
, 1

3
, 6

4
, 2

2

}
= 1

3
, w10 :=
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min
{

1
5
, 1

3
, 1

4
, 1

2

}
= 1

5
, w32 := min

{
1
2
, 6

4

}
= 1

2
, w30 := min

{
1
2
, 1

4

}
= 1

4
, w42 := 3, and

w40 := 1. It then follows from Proposition 2.3.7 that

B2 =



(β1, β2, β3, β4, β0) ∈ R5 :

β2 + 1
3
β1 ≥ 0

β0 + 1
5
β1 ≥ 0

β2 + 1
2
β3 ≥ 0

β0 + 1
4
β3 ≥ 0

β2 + 3β4 ≥ 0

β0 + β4 ≥ 0

β0 = −1



.

Coefficient vectors of all facet-defining inequalities of cl conv(Q0) that cut off the solu-

tion (0, 0, 0, 0, 1) belong to B2. For instance, the coefficient vector β = (5,−5
3
, 4, 1,−1)

belongs to B2. Further, it satisfies the following system of linearly independent equa-

tions β2 + 1
3
β1 = 0, β0 + 1

5
β1 = 0, β0 + 1

4
β3 = 0, β0 + β4 = 0, and β0 = −1. Since the

system has a unique solution, β is an extreme point of B2. This extreme point is the

coefficient vector of the first facet-defining inequality of (2.9) (where we have omitted

the coefficient β5 since I0 = {5}). It can also be verified that (3,−1, 2, 1
3
, 0) is an

extreme ray of B2. It corresponds to the valid inequality 3t1− t2 +2t3 + 1
3
t4 ≥ 0, which

is not facet-defining for cl conv(Q0) since it can be obtained as a conic combination

of the second facet-defining inequality of (2.9) and t0 ≥ 0 with equal weights of 1
3
.

2.4 Dual network formulation of B2

In this section, we present a nonlinear transformation that maps (a subset of) the

polyhedron B2 to the feasible region of the dual of a transportation problem. We show

that this transformation preserves the face-lattice of B2 (see below for a definition.)

We use these results in Section 2.5 to establish a correspondence between the extreme

points of B2, i.e., the nontrivial facet-defining inequalities of cl conv(Q0), and certain

spanning trees of a suitably defined transportation network.
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We have shown in Proposition 2.3.6 that if β is an extreme point of B2, βi > 0

for all i ∈ I+ and βj < 0 for all j ∈ I−. Define A = {β ∈ R|V0| : βi > 0, βj < 0,∀i ∈

I+, ∀j ∈ I−}. Observe that, for any β ∈ B2 ∩ A and for (i, j) ∈ I+ × I−,

βj + wijβi ≥ 0 ⇐⇒ −βj
βi
≤ wij ⇐⇒ log(−βj)− log(βi) ≤ log(wij).

All the logarithms computed above are well-defined under the conditions of A. Define

T : A→ R|V0| by

[T (β)]k := log |βk| =

 log(βk) if k ∈ I+

log(−βk) if k ∈ I−.

Its inverse transformation T−1 is

[T−1(δ)]k =

 eδk if k ∈ I+

−eδk if k ∈ I−.

After introducing the new variables δi = log(βi), for i ∈ I+ and δj = log(−βj),

for j ∈ I−, and the constants cij = log(wij), for (i, j) ∈ I+ × I−, we define

D1 :=
{
δ ∈ R|V0| : δj − δi ≤ cij, ∀(i, j) ∈ I+ × I−

}
,

D2 :=
{
δ ∈ R|V0| : δj − δi ≤ cij, δ0 = 0,∀(i, j) ∈ I+ × I−

}
.

Proposition 2.4.1 It holds that T (B2 ∩ A) = D2.

It is clear that for β ∈ B2 ∩ A and δ = T (β) ∈ D2,

βj + wijβi = 0 ⇐⇒ δj − δi = cij, (2.13)

βj + wijβi ≤ 0 ⇐⇒ δj − δi ≤ cij. (2.14)

LetH(E) be the subgraph of the complete bipartite graphG := (I+, I−) with edge

set E ⊆ I+ × I−. Let P,Q ∈ R|I+|×|I−| be two matrices. We create the |E| × (n+ 1)

matrix M(H(E), P,Q) by fixing an ordering of the edges of E (say lexicographical)

and by assigning the row of M(H(E), P,Q) corresponding to edge {i, j} ∈ E to be

the vector Pijeᵀj +Qije
ᵀ
i .
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Lemma 2 Assume that H(E) is a subforest of G. Assume also that Pij 6= 0 and

Qij 6= 0 for all {i, j} ∈ E. Then M(H(E), P,Q) has full rank.

Proof Suppose H(E) is a subforest of G. Since |E| < n+ 1, we only need to prove

independence of the rows ofM(H(E), P,Q). For a positive integer k = 1, . . . , |E|−1,

observe that the (k + 1)th row of M(H(E), P,Q) introduces a new nonzero entry,

which was zero in the first k rows because H(E) does not contain a cycle, Pij 6= 0

and Qij 6= 0. This shows that the rows of M(H(E), P,Q) are independent.

Define J to be the |I+| × |I−| matrix of ones and W to be the |I+| × |I−| matrix

whose (i, j) entry is wij. For any E ⊆ I+ × I− such that H(E) is a forest, Lemma 2

shows that both matrices M(H(E),J,−J) and M(H(E),J,W) have full rank.

Proposition 2.4.2 Let H(E) be a subgraph of G with n = |V0| − 1 edges such that

rank(M(H(E),J,W)) = n and M(H(E),J,W)β = 0 for some β ∈ B2. Then H(E)

is a tree of G.

Proof Assume by contradiction that H(E) has a cycle C, and let βC be the compo-

nents of β associated with nodes of C. LetM ′ be the n×n submatrix ofM(H(E),J,W)

associated with cycle C. Then it is easy to verify thatM ′ is nonsingular andM ′βC = 0

which implies that βC = 0. Since G is bipartite, C contains a node k ∈ I+, and so

βk = 0. Because β ∈ B2, it satisfies β0 + wk0βk ≥ 0, which implies that β0 ≥ 0. This

is a contradiction to the fact that β0 = −1. Since H(E) has n edges, n+ 1 nodes and

no cycle, it is a tree.

A finite partially ordered set (S,≤), or poset, is the association of a finite set S with

a relation “≤” which is (i) reflexive: x ≤ x for all x ∈ S, (ii) transitive: x ≤ y and

y ≤ z imply x ≤ z, and (iii) antisymmetric: x ≤ y and y ≤ x imply x = y. The

face-lattice of a polyhedron P is the poset of its faces, partially ordered by inclusion.

We say that two posets (S,≤) and (S ′,�) are isomorphic if there is a bijection T (·)

from S to S ′ such that s1 ≤ s2 if and only if T (s1) � T (s2). Moreover, we say two

polyhedra are isomorphic if their face-lattices are isomorphic.
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Proposition 2.4.3 Polyhedra D2 and B2 are isomorphic.

Proof Given a polyhedron P ⊆ Rn, we define F(P ) to be the set of faces of P .

Given E ⊆ I+ × I−, we define

B2|E = {β ∈ B2 | βj + wijβi = 0, ∀(i, j) ∈ E}

D2|E = {δ ∈ D2 | δj − δi = cij,∀(i, j) ∈ E}.

Clearly, B2|E and D2|E are (possibly empty) faces of B2 and D2, respectively.

Given a nonempty face F of B2, we denote by E(F ) the largest subset E ⊆ I+ × I−
such that F = B2|E. In particular, for every point β∗ in the relative interior of F ,

β∗j + wijβ
∗
i < 0 for (i, j) ∈ (I+ × I−)\E(F ). Similarly, given a nonempty face F ′ of

D2, we denote by E′(F ′) the largest subset E ′ ⊆ I+ × I− such that F ′ = D2|E′ . For

every point δ∗ in the relative interior of F ′, δj − δi < cij for (i, j) ∈ (I+×I−)\E′(F ′).

Next, we define ϕ : F(B2) 7→ F(D2) to be such that ϕ(F ) = D2|E(F ) for any

nonempty face F ∈ F(B2) and ϕ(∅) = ∅. We show that ϕ is a bijection by construct-

ing an inverse to ϕ. Define ψ : F(D2) 7→ F(B2) to be such that ψ(F ′) = B2|E′(F ′)
for any nonempty face F ′ ∈ F(D2) and ψ(∅) = ∅. First, we argue that if F ∈ F(B2)

and F ′ = ϕ(F ), then E(F ) = E′(F ′). Consider a point β̄ in the relative interior of

F and an extreme point β̃ of that face. The line segment [β̄, β̃) is in the relative

interior of F ; see Theorem 6.1 of [59]. Further, there exists a point β on this line

segment, sufficiently close to β̃, that belongs to A. Define δ = T (β). It follows from

(2.13) and (2.14) that δ belongs to the relative interior of F ′ and that E(F ) = E′(F ′).

Similarly, if F ′ ∈ F(D2) and F ′′ = ψ(F ′), then E′(F ′) = E(F ′′). Second, we argue

that for each F ∈ F(B2), ψ(ϕ(F )) = F . The result is clear when F = ∅. When

F 6= ∅, define F ′ = ϕ(F ) and F ′′ = ψ(F ′). It follows from the above discussion that

E(F ) = E′(F ′) = E(F ′′) Therefore F ′′ = B2|E(F ′′) = B2|E(F ) = F .

To conclude the proof, consider two faces F1 and F2 of F(B2) such that F1 ⊆ F2.

Define F ′1 = ϕ(F1) and F ′2 = ϕ(F2). Since F1 ⊆ F2, then E(F1) ⊇ E(F2). It follows

from the above discussion that E′(F ′1) ⊇ E′(F ′2), showing that ϕ(F1) = F ′1 ⊆ F ′2 =

ϕ(F2).
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It is shown in Theorem 10.1 of [17] that two isomorphic polytopes have the same

dimension, and that faces matched through the bijection T (·) have identical dimen-

sions. The proof idea extends to our setting.

The proof of Proposition 2.4.3 shows that there is a one-to-one correspondence

between the faces of dimension one of B2 and D2. We obtain

Corollary 3 If u is an extreme point of D2 then T−1(u) is an extreme point of B2.

Conversely, if v is an extreme point of B2 then T (v) is an extreme point of D2.

Extreme points of D2 can be exposed as unique optimal solutions to certain linear

programs (LPs) over D2, or equivalently can be obtained from optimal solutions of

certain LPs over D1. In order for such LPs to have an optimal extreme point solution,

the objective coefficient vector should be chosen in the polar cone of the recession

cone of the feasible set. The recession cones of D1 and D2 are

rec(D1) = {δ ∈ R|V0| : δj − δi ≤ 0,∀(i, j) ∈ I+ × I−},

rec(D2) = {δ ∈ R|V0| : δj − δi ≤ 0, δ0 = 0,∀(i, j) ∈ I+ × I−}.

We next derive a V-polyhedron description of rec(D1) and rec(D2). In this result,

we let 1 =
∑

k∈V0 ek. For a set of vectors V , we define lin(V ) to be the linear subspace

generated by V . For notational convenience, we write lin(v) = lin({v}) for a vector

v.

Proposition 2.4.4

1. Let R2 = {ei : i ∈ I+} ∪ {−ej : j ∈ I− \ {0}} ∪ {1 − e0}. Then rec(D2) =

cone(R2).

2. Let R1 = {ei : i ∈ I+} ∪ {−ej : j ∈ I−}. Then rec(D1) = cone(R1) + lin(1).

Proof Assume that δ ∈ rec(D2). Let a = min{δi : i ∈ I+} and b = max{δj : j ∈

I−}. Then, b ≥ δ0 = 0. Furthermore, δj ≤ b ≤ a ≤ δi, for i ∈ I+ and j ∈ I−. We

can then write

δ = b(1− e0) +
∑

j∈I−\{0}

(b− δj)(−ej) +
∑
i∈I+

(δi − b)ei,
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which shows that rec(D2) ⊆ cone(R2). Observe next that R2 ⊆ rec(D2) since the

elements of R2 are rays of D2. Therefore cone(R2) ⊆ rec(D2), proving 1. We next

show that rec(D1) = rec(D2) + lin(1), which will prove 2 since 1− e0 ∈ −e0 + lin(1).

To prove the forward inclusion (⊆), consider δ′ in rec(D1). Then δ′ − δ′01 belongs to

rec(D2). To prove the reverse inclusion (⊇), consider δ′ in rec(D2) and t ∈ R. It is

clear that δ′ + t1 ∈ rec(D1).

By definition of polar cone,

(rec(D1))o := {y : yᵀx ≤ 0, x ∈ rec(D1)}

= {y : yᵀx ≤ 0, x ∈ R1 ∪ {−1,1}}

=

y :

yᵀei ≤ 0, ∀i ∈ I+

yᵀ(−ej) ≤ 0, ∀j ∈ I−
yᵀ1 = 0


=

y :

yi ≤ 0, ∀i ∈ I+

yj ≥ 0, ∀j ∈ I−∑
k∈V0 yk = 0

 .

Similar to B2, it is simple to verify that D2 does not contain lines, and therefore

has at least one extreme point. We next show that each extreme point of D2 can be

derived from an optimal solution of an LP over D1 by setting an appropriate objective

vector y in ri (rec(D1)o). Define s := −yI+ and d := yI− . The desired LP is

max −
∑
i∈I+

siδi +
∑
j∈I−

djδj

s.t. δj − δi ≤ cij, ∀(i, j) ∈ I+ × I−. (2.15)

Its dual is the transportation problem:

min
∑
i∈I+

∑
j∈I−

cijxij

s.t.
∑
j∈I−

xij = si, ∀i ∈ I+,∑
i∈I+

xij = dj, ∀j ∈ I−, (2.16)

xij ≥ 0 ∀(i, j) ∈ I+ × I−.
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We next argue that both primal (2.16) and dual (2.15) problems are feasible,

thereby showing that optimal primal and dual solutions exist. The primal problem

(2.16) is feasible because
∑

j∈I− dj =
∑

i∈I+ si. The c-max cut shows that the dual

problem (2.16) is feasible. In fact, let c−max be the coefficient vector of the c-max

cut. This vector is in B2. Furthermore, (c−max)i > 0 for i ∈ I+ and (c−max)j < 0

for j ∈ I−. Therefore, (c−max) ∈ B2 ∩ A. It follows that T (c−max) ∈ D2 ⊆ D1.

The fact that D1 is nonempty also follows from Proposition 2.4.3.

Proposition 2.4.4 shows that D1 has a lineality. It follows that the faces of D1

of smallest dimension are edges. Because (2.15) has an optimal solution, it must

therefore be that it has an edge of optimal solutions. Let δ′ be a solution on this

edge. There are n active constraints of D1 at δ′. Now define δ∗ = δ′ − δ′01. Then,

−
∑
i∈I+

siδ
∗
i +

∑
j∈I−

djδ
∗
j = −

∑
i∈I+

si(δ
′
i − δ0) +

∑
j∈I−

dj(δ
′
j − δ0)

= −
∑
i∈I+

siδ
′
i +

∑
j∈I−

djδ
′
j + δ0(

∑
i∈I+

si −
∑
j∈I−

dj)

= −
∑
i∈I+

siδ
′
i +

∑
j∈I−

djδ
′
j.

Hence δ∗ has the same objective function value as δ′. Moreover, δ∗ satisfies all

the constraints in (2.15) because δ∗j − δ∗i = (δ′j − δ′0) − (δ′i − δ′0) = δ′j − δ′i ≤ cij for

all (i, j) ∈ I+ × I−. Clearly, δ∗ is an extreme point of D2 since it satisfies δ∗0 = 0

in addition to the n independent constraints active at δ′. Proposition 2.4.3 then

implies that β∗ = T−1(δ∗) is an extreme point of B2, i.e., the coefficient vector of a

facet-defining inequality for cl conv(Q0) that cuts off (t1, . . . , tn, t0) = (0, . . . , 0, 1).

Because basic feasible solutions of (2.16) correspond to certain spanning trees

of G, it is natural to suspect that facet-defining inequalities of cl conv(Q0) can be

associated to those spanning trees. We explore this correspondence in the following

section.
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2.5 Label-connected trees and facet-defining inequalities of cl conv(Q0)

In this section, we show that facet-defining inequalities for cl conv(Q0) correspond

to certain subtrees of the complete undirected bipartite graph G = (I+, I−). Recall

that, in (2.11), we associated a weight wij to each arc {i, j} where i ∈ I+ and j ∈ I−.

To streamline notation, we define wji := 1
wij

for (i, j) ∈ I+ × I−.

Consider a spanning tree S of G. Then for any node i ∈ I+∪I− \{0} there exists

a unique path from node 0 to node i in S. We denote this path P0i by

(0 =)i0 − i1 − i2 − · · · − ip(= i).

We say that an inequality βᵀt ≥ 0 (or the associated coefficient vector β) is induced

by the spanning tree S if

βi := (−1)pβ0wi0i1wi1i2 . . . wip−1ip

for each i ∈ V . It follows directly from the definition of induced inequality that, on

path P0i, if 0 ≤ q < r ≤ p

βir = (−1)r−qβiqwiqiq+1wiq+1iq+2 . . . wir−1ir . (2.17)

In particular, if two distinct spanning trees S and S ′ of G share the same path

from node iq to node ir, then it follows from (2.17) that

βSir
βSiq

=
βS
′

ir

βS
′

iq

(2.18)

where βS and βS′ represent the coefficient vectors induced by spanning trees S and

S ′, respectively.

We will show in Proposition 2.5.1 that every facet-defining inequality is induced by

a spanning tree of G. However, not all spanning trees of G induce valid inequalities,

as we illustrate in the following example.

Example 2 Consider the set Q0 with disjuncts defined by the following inequalities

4t1 +3t2 −t3 −t0 ≥ 0

5t1 +t2 −2t3 −t0 ≥ 0

5t1 +2t2 −2t3 −t0 ≥ 0.
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We have that I+ = {1, 2} and I− = {3, 0}. Further, edge weights can be computed to

be w13 = 1
4
,w10 = 1

5
, w23 = 1

3
, w20 = 1

3
.

Two spanning trees of G are shown in Figure 2.1. The inequality induced by the

subtree of Figure 2.1(a) is 5t1 +3t2−t3−t0 ≥ 0. This inequality is the c-max cut and,

hence, is valid for cl conv(Q0). Furthermore, it can be verified to be facet-defining for

this set. The inequality induced by the subtree of Figure 2.1(b) is 5t1+3t2− 5
4
t3−t0 ≥ 0,

which is not valid because it cuts off the feasible point (0, 1, 3, 0) ∈ Q0
1 ⊆ cl conv(Q0).

1 3

2 0

I+ I−

w10 = 1
5

w23 = 1
3

w20 = 1
3

(a) Tree inducing 5t1 + 3t2 − t3 − t0 ≥ 0

1 3

2 0

I+ I−
w13 = 1

4

w10 = 1
5

w20 = 1
3

(b) Tree inducing 5t1 + 3t2 − 5
4 t3 − t0 ≥ 0

Figure 2.1.: Spanning trees and induced inequalities for Example 2

Example 2 shows that not all spanning trees of G induce a valid inequality. The

reason is that the induced coefficients may violate an inequality corresponding to

an edge that is not included in the spanning tree. We refer to a spanning tree that

induces a valid inequality as a feasible spanning tree. We next show that any inequality

induced by a feasible spanning tree is facet-defining for cl conv(Q0).

Proposition 2.5.1 Inequality βᵀt ≥ 0 with β0 = −1 is facet-defining for cl conv(Q0)

if and only if β is induced by a feasible spanning tree of G.

Proof Let βᵀt ≥ 0 with β0 = −1 be a facet-defining inequality for cl conv(Q0).

Then, by Theorem 2.3.1, β is an extreme point of B2. Since β is an extreme point
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of B2, it belongs to n = |V0| − 1 hyperplanes of the form {β ∈ R|V0| : βj + wijβi =

0} whose coefficient vectors are linearly independent, in addition to β0 = −1. By

Proposition 2.4.2, the subgraph with respect to β forms a spanning tree of G.

For the converse, suppose βᵀt ≥ 0 with β0 = −1 is induced by a feasible spanning

tree. The validity of βᵀt ≥ 0 follows directly from the definition of a feasible spanning

tree. By construction, see (2.17), coefficients β satisfy n equations of the form βj +

wijβi = 0, one for each edge of the tree. Lemma 2 shows that these n coefficient vectors

are independent. Therefore, β is an extreme point of B2. Hence, Theorem 2.3.1

implies that βᵀt ≥ 0 is facet-defining for cl conv(Q0).

We next introduce the notion of label-connectivity. Let S be a spanning tree of G

with edge set E ⊆ I+ × I−. A function L : E → L is called a label-function if

L({i, j}) ∈
{
l ∈ L : fli > 0,−flj

fli
= wij

}
for each {i, j} ∈ E. In words, L({i, j}) returns the index l of an inequality in the

description of Q0 with fli > 0 and the property that the ratio of the coefficient of

tj over that of ti equals −wij. Because the ratio wij might be achieved in different

rows, several label-functions might be associated with a single spanning tree. For this

reason, we define the set of all the label-functions of spanning tree S by L(S). We

write S(E,L) to refer to a specific spanning tree with edge set E and label-function L.

We say there is a label-disconnection for label l in S(E,L) if the subgraph of S(E,L)

induced by the edges of label l is disconnected. It is easily seen that this definition is

equivalent to stating that there exists a path in S(E,L) where two edges with label l

are connected within the tree using a path whose edges do not have label l. Finally,

we say that a spanning tree S with edge set E is label-connected if there exists a

label-function L ∈ L(S) such that S(E,L) does not exhibit label-disconnection for

any l ∈ L. Otherwise it is label-disconnected.

Example 2 (continued) In Figure 2.2, we add all possible valid edge labels to the

edges of the spanning trees presented in Figure 2.1. In Figure 2.2(a), we observe that
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1 3

2 0

I+ I−

2,31

1

(a) Tree inducing 5t1 + 3t2 − t3 − t0 ≥ 0

1 3

2 0

I+ I−
1

2,3

1

(b) Tree inducing 5t1 + 3t2 − 5
4 t3 − t0 ≥ 0

Figure 2.2.: Possible edge labels for two spanning trees of Example 2

there are two possible labels for edge {1, 0}, each of which determines that w10 = 1
5
.

We see that, independent of the choice of label for edge {1, 0}, the spanning tree does

not exhibit any label-disconnection. It is therefore label-connected. In Figure 2.2(b),

we observe that independent of the choice of label for edge {1, 0}, the spanning tree

will exhibit a label-disconnection for label 1 along the path 3− 1− 0− 2. We conclude

that this spanning tree is label-disconnected.

Label-connected spanning trees do not necessarily induce valid inequalities and not

all feasible trees that induce a facet-defining inequality are label-connected. However,

we show next via an example and later prove that, for facet-defining inequalities,

there exists a feasible spanning tree that is label-connected.

Example 3 Consider the set Q0 with disjuncts defined by the following inequalities

25
4
t1 −5

2
t2 + 5

16
t3 +15

4
t4 −t0 ≥ 0

5t1 −5
2
t2 +t3 +7

2
t4 −t0 ≥ 0.

For this set, we have that I+ = {1, 3, 4} and I− = {2, 0}. We compute that w10 = 4
25
,

w30 = 1, w40 = 4
15
, w12 = 2

5
, w32 = 5

2
and w42 = 2

3
. Corresponding edge labels

are l10 = 1, l30 = 2, l40 = 1, l12 = 1, l32 = 2, and l42 = 1. The spanning tree of
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Figure 2.3(a) is label-disconnected. The spanning tree of Figure 2.3(b), however, is

label-connected. These spanning trees both induce the facet-defining inequality

1/4 (25t1 − 10t2 + 4t3 + 15t4 − 4t0) ≥ 0. (2.19)

1

2

3

0

4

I+ I−
1

2

2

1

(a) Label-disconnected spanning tree

1

2

3

0

4

I+ I−
1

2

2
1

(b) Label-connected spanning tree

Figure 2.3.: Two spanning trees inducing (2.19) in Example 3

Lemma 3 Consider a facet-defining inequality induced by a spanning tree S for which

there is a label-disconnection for label l. Let C1 and C2 be any two distinct components

in the subgraph induced by edges with label l. Then, there exists a non-empty subtree

of C2 that can be detached from C2 and attached to C1, using an edge with label l,

without changing the rest of the tree or the corresponding facet-defining inequality.

Proof Since the given facet-defining inequality is induced by a spanning tree, there

exists a unique path from a node in C1 to a node in C2 that contains no edge from

C1 or C2. Let the starting node be i1 ∈ C1 and the ending node be j1 ∈ C2.

Further, let i2 be a neighbor of i1 in C1, and j2 be a neighbor of j1 in C2. Let

i′ ∈ I+∩{i1, i2}, j′ ∈ {i1, i2}\{i′} and let i′′ ∈ I+∩{j1, j2}, j′′ ∈ {j1, j2}\{i′′}. Since

edges (i′, j′) and (i′′, j′′) have label l, it follows that

βj′ = βi′
flj′

fli′
, and βj′′ = βi′′

flj′′

fli′′
. (2.20)
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Further, since the spanning tree yields a valid inequality,

βi′′
flj′

fli′′
≤ βj′ , and βi′

flj′′

fli′
≤ βj′′ . (2.21)

We write

βi′′
flj′

fli′′
≤ βj′ = βi′

flj′

fli′
= βi′

flj′′

fli′

flj′

flj′′
≤ βj′′

flj′

flj′′
= βi′′

flj′

fli′′
, (2.22)

where the inequalities hold because of (2.21) and the equalities holds because of

(2.20). Therefore, equality holds throughout and

βj′′ = βi′
flj′′

fli′
, and βj′ = βi′′

flj′

fli′′
. (2.23)

Now create a new spanning tree by deleting arc (j1, j2) from S and by connecting j2

to the one node among i1 and i2 that belongs to the other partition of the bipartite

graph. Call this node k and refer to the resulting spanning tree as S ′. Clearly S ′

contains a label-connected component for label l that subsumes C1 and has at least

one more arc. Further, the label of both the edge added and the edge removed is l,

while all other edges and their labels remain unchanged. For any node i, βi is obtained

by taking products of −wi′j′ for edges 〈i′, j′〉 along the path from 0 assuming β0 = −1.

We split this path into three parts from 0 to ī, ī to j̄, and j̄ to i, where ī (resp. j̄)

is the first (resp. last) of the nodes {i1, i2, j1, j2} encountered along this path. Since

the arcs from 0 to ī remain untouched and so do the arcs from j̄ to i, the ratios βī
β0

and βi
βj̄

are preserved. We have already shown that the tree preserves βj̄
βī
. Taking a

product, we see that βi is preserved.

Example 3 (continued) We have seen that the spanning tree of Figure 2.3(a) is

feasible, but is label-disconnected. Label-1 disconnection occurs on the path 1 − 2 −

3 − 0 − 4, as L({1, 2}) = L({4, 0}) = 1 and L({3, 2}) = L({3, 0}) = 2. Consider

edge {4, 2}. It is shown in Example 3 that L({4, 2}) = 1. Replacing edge {4, 0}

with {4, 2} in the spanning tree does not change the induced inequality and yields the

label-connected spanning tree shown in Figure 2.3(b).
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Theorem 2.5.1 Let βᵀt ≥ 0 be a non-trivial facet-defining inequality for cl conv(Q0).

Then, there exists a label-connected feasible spanning tree that induces it.

Proof If βᵀt ≥ 0 is a nontrivial facet-defining inequality, Proposition 2.5.1 shows

that it is induced by a feasible spanning tree. We prove the existence of a label-

connected feasible spanning tree by contradiction. Let T be the set of all feasible

spanning trees that induce this inequality. Note that T 6= ∅, T is a finite set, and

each tree in T is disconnected for some label. For any tree T ∈ T , let l(T ) be the

smallest label index for which it exhibits disconnection. Let l′ = max{l(T ) : T ∈ T }

and let C(T, l) be the size of the largest connected component of label l in T . Choose

T ′ ∈ Argmax{C(T, l′) : T ∈ T , l(T ) = l′}.

Using Lemma 3, we can construct T ′′ from T ′ by choosing C1 as a component of

size C(T ′, l′). Since T ′′ is obtained without altering labels on any arc with labels

other than l′, labels that were previously connected remain connected. Further, T ′′

has a connected component for label l′ of size larger than C(T ′, l′). The existence of

T ′′ contradicts the definition of T ′, proving that there must exist a label-connected

feasible spanning tree in T .

Example 4 Consider the set Q0 defined in Example 1, where variable t5 has been

omitted. We record all spanning trees of G(I+, I−) in Table 2.1. In particular, the

columns of Table 2.1 contain the edges of each spanning tree, the coefficient β this

spanning tree induces, and, in the case where the tree is infeasible, one edge that

β violates. We conclude that cl conv(Q0) has only three nontrivial facet-defining in-

equalities, which were previously listed in (2.9). It can be easily verified that the three

feasible spanning trees are label-connected.
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Table 2.1: Feasible spanning trees for Example 4

Edge 1 Edge 2 Edge 3 Edge 4 β Violated

Edge

Tree 1 (1, 2) (1, 0) (3, 2) (4, 2) 1/9(45,−15, 30, 5,−9) (3, 0)

Tree 2 (1, 2) (1, 0) (3, 0) (4, 2) 1/9(45,−15, 36, 5,−9) (4, 0)

Tree 3 (1, 2) (3, 2) (3, 0) (4, 2) 1/3(18,−6, 12, 2,−3) (4, 0)

Tree 4 (1, 0) (3, 2) (3, 0) (4, 2) 1/3(15,−6, 12, 2,−3) (4, 0)

Tree 5 (1, 2) (1, 0) (3, 2) (4, 0) 1/3(15,−5, 10, 3,−3) (3, 0)

Tree 6 (1, 2) (1, 0) (3, 0) (4, 0) 1/3(15,−5, 12, 3,−3) −

Tree 7 (1, 2) (3, 2) (3, 0) (4, 0) (6,−2, 4, 1,−1) −

Tree 8 (1, 0) (3, 2) (3, 0) (4, 0) (5,−2, 4, 1,−1) (1, 2)

Tree 9 (1, 2) (3, 2) (4, 2) (4, 0) (9,−3, 6, 1,−1) −

Tree 10 (1, 0) (3, 2) (4, 2) (4, 0) (5,−3, 6, 1,−1) (1, 2)

Tree 11 (1, 2) (3, 0) (4, 2) (4, 0) (9,−3, 4, 1,−1) (3, 2)

Tree 12 (1, 0) (3, 0) (4, 2) (4, 0) (5,−3, 4, 1,−1) (3, 2)
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2.6 Generalized Equate-and-Relax procedure for CCLPs

The Equate-and-Relax (E&R) procedure was recently proposed in [56] to construct

the closed convex hull of

Qc = {x ∈ Rn : aᵀx ≥ 1, x ≥ 0} ∪ {x ∈ Rn : bᵀx ≥ 1, x ≥ 0} ,

where a, b ∈ Rn, a 6≤ 0 and b 6≤ 0. Set Qc occurs when relaxing, in a manner similar

to that used here, a simplex tableau associated with the LP relaxation of a linear

program with complementarity constraints.

The E&R procedure generates valid inequalities for cl conv(Qc). It has two steps.

In the E-step, either the right-hand-side, or a variable xi whose coefficients ai and bi

are of the same sign is chosen. The nontrivial disjunct constraints aᵀx ≥ 1 and bᵀx ≥ 1

are then multiplied by suitable nonnegative scalars α and γ so that their right-hand-

sides or the coefficients of variable xi become equal, i.e., α = γ or αai = γbi. In the

R-step, a valid inequality is created by setting the coefficient of each variable to be the

maximum of its coefficients in the scaled disjunct inequalities. The right-hand-side of

the inequality is set to the minimum of the right-hand-sides of the scaled inequalities.

More precisely, the valid inequality produced is
n∑
i=1

max{αai, γbi}xi ≥ min{α, γ}. (2.24)

When α = γ > 0, (2.24) is the c-max cut described in Section 2.2. It is shown in [56]

that the family of E&R cuts characterizes cl conv(Qc).

The E&R result can be seen as a tightening of classical results in disjunctive

programming. The fact that, for all α ≥ 0 and γ ≥ 0, (2.24) is valid for cl conv(Qc)

follows from [4]. The fact that every facet-defining inequality of cl conv(Qc) is of

the form (2.24) for some α and γ also follows from LP duality. The requirement

that α = γ or αai = γbi for some i, which is not explicit in traditional disjunctive

programming constructs, allows the set of multipliers to be restricted to a finite

collection. Although they collectively describe cl conv(Qc), not all E&R inequalities

are facet-defining for cl conv(Qc). In [56], a partial characterization of when E&R
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inequalities are facet-defining for complementarity problems is provided. Even for

the c-max cut, no precise characterization of when it is facet-defining is available.

In this section, we provide a precise characterization of when an E&R inequality

is facet-defining for cl conv(Qc). En route, we generalize E&R to the cardinality

setting. We also describe a low-order polynomial time algorithm to strengthen a

given inequality so that it becomes facet-defining for cl conv(Q0).

Recall that we are interested in Q0 =
⋃
l∈LQ

0
l with |L| = K + 1 where Q0

l = {t ∈

R|V0| : fᵀl t ≥ 0, t ≥ 0} and fl0 = −1 for all l ∈ L. For multipliers ul ≥ 0, where l ∈ L,

we derive the following valid inequality∑
i∈V

max
l∈L
{ulfli} ti ≥ 0. (2.25)

It follows from [4] that the collection of inequalities of the form (2.25) characterizes

cl conv(Q0). We show next that it is sufficient to consider weights associated with

feasible label-connected spanning trees. We first illustrate the result on an example.

Example 5 Consider the set Q0 defined in Example 1, where variable t5 has been

omitted. Using multipliers
(
1, 5

3
, 1, 1

)
, we obtain

5t1 −
5

3
t2 + 4t3 + t4 − t0 ≥ 0, (2.26)

an inequality that is facet-defining inequality for cl conv(Q0); see (2.9)a.

Given a nontrivial facet-defining inequality, we next describe how to derive it

using (2.25) by computing the appropriate multipliers ul for l ∈ L. If βᵀt ≥ 0 is a

nontrivial facet-defining inequality of cl conv(Q0), then by Theorem 2.5.1 there exists

a label-connected feasible spanning tree T that induces it.

Consider 0 as the root node for the spanning tree T . For each label l ∈ L that

appears in the tree, let ḟl be the node with smallest distance (measured in number

of arcs) from 0 among all nodes incident to an arc with label l. Let {`n}n=1,...,r be
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the sequence of distinct labels encountered on the path from 0 to ḟl and let `r+1 be

l. Let

ul =


r+1∏
j=2

f`j−1ḟ`j

f`jḟ`j

if r ≥ 1

1 if r = 0.

(2.27)

For labels l that do not appear in the spanning tree T , let

ul ∈
[
max

{
βj
flj

: j ∈ I−
}
,min

{
βi
fli

: i ∈ I+, fli > 0

}]
. (2.28)

This procedure can be intuitively explained as follows. For each l ∈ L, we obtain

the subgraph induced by all arcs with label l. This subgraph is a (possibly empty)

tree because T is label-connected. We refer to it as Sl and to its node set as N(Sl).

If Sl is empty, then the constraint of disjunct l does not play an active role in the

derivation of the inequality. If Sl is not empty, the valid inequality produced is such

that the coefficients of variables ti for i ∈ N(Sl) are a common multiple ul of their

coefficients in the nontrivial constraint of disjunct l. This multiple ul is chosen to be

1 if 0 ∈ N(Sl). Otherwise ul is computed so that the scaled coefficients in disjuncts l

and `r of the variable tḟl
are equal. In the complementarity case, where |L| = 2, this

procedure boils down to aggregating scaled constraints using (2.24) such that either

the right-hand-sides match or one of the variables has the same coefficient in both

constraints.

Proposition 2.6.1 Any nontrivial facet-defining inequality of cl conv(Q0) induced

by a feasible label-connected spanning tree T can be expressed as (2.25) by selecting

weights ul for l ∈ L as in (2.27) and (2.28).

Proof First, we argue that weights ul are well-defined for l ∈ L. For labels l that

appear in T , weights are uniquely defined by (2.27) since label-connectedness implies

that ḟl is uniquely defined. For labels l that do not appear in T , the interval described

in (2.28) is nonempty because T is feasible and therefore fliβj−fljβi ≥ 0 implies that
βi
fli
≥ βj

flj
for all i ∈ I+ with fli > 0 and j ∈ I−.
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Second, we show that the given weights are nonnegative. When l does not appear

in T , ul is chosen according to (2.28). The lower bound of this interval is positive,

proving the claim. Assume therefore that label l appears in the tree T . Let k be a node

incident to an arc of label l. Assume that the path from 0 to k is (k0(= 0), . . . , ks, k)

with sequence of labels {`′n}n=1,...,s+1 and sequence of distinct labels {`n}n=1,...,r where

`r+1 = l. Note that the node associating `n and `n+1 for n = 1, . . . , r is ḟ`n+1 and

hence

βk = (−1)s+1wk0,k1 . . . wks,kβ0

=
f`′1k1

f`′1k0

. . .
f`′sks
f`′sks−1

f`′s+1k

f`′s+1ks

β0

=
f`1ḟ`2

f`1ḟ`1

f`2ḟ`3

f`2ḟ`2

. . .
f`rḟ`r+1

f`rḟ`r

f`r+1k

f`r+1ḟ`r+1

β0

=
f`1ḟ`2

−1

f`2ḟ`3

f`2ḟ`2

. . .
f`rḟ`r+1

f`rḟ`r

f`r+1k

f`r+1ḟ`r+1

(−1) (2.29)

=


(∏r+1

j=2

f`j−1ḟ`j

f`j ḟ`j

)
f`r+1k if r ≥ 1

f`r+1k if r = 0

= ulflk.

If k ∈ I−, βk < 0 and flk < 0. It follows from (2.29) that ul = βk
fk
> 0. If k ∈ I+,

then βk > 0 and flk > 0. It follows from (2.29) that ul = βk
fk
> 0.

Finally, we show that with the given weights, (2.25) yields the desired inequality.

Let k ∈ V0. It follows directly from (2.29) that βk ≤ maxl∈L{ulflk}. We next show

that βk ≥ max{ulflk : l ∈ L}. If l is not in the tree, the definition of the interval

(2.28) directly implies that βk ≥ ulflk. Consider therefore the situation where l is in

the tree. Assume for a contradiction that βk < ulflk. Let C1 be the set of nodes in the

connected component for label l. Then, for any i ∈ C1, βi = ulfli. This shows that

k /∈ C1. Choose a node k′ in C1 that belongs to I− if k ∈ I+ and that belongs to I+

if k ∈ I−. Because k′ ∈ C1, ul =
βk′
flk′

. Our assumption then implies that βk <
βk′
flk′
flk,

which is a contradiction to the fact that T is feasible.
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Example 5 (continued) Consider the spanning tree shown in Figure 2.4, which is

label-connected and feasible. Because labels 1 and 3 are adjacent to node 0, we set

1

2

3

0

4

I+ I−
2

1
3

1

Figure 2.4.: Label-connected feasible spanning tree for Example 5

u1 = 1 and u3 = 1. Then, u2 = 5
3
because f21 = 3 and f11 = 5. Finally, u4 can be

any value in [1, 5/2], because label 4 does not appear in the tree. Using these weights

yields (2.26).

We next describe a procedure that starts from a valid inequality for cl conv(Q0)

that is not facet-defining, and expresses it as a conic combination of “stronger" valid

inequalities. In order to express this result, given a vector β ∈ B2, we introduce

the notation dB2(β) = dim(F ), where F is the face of B2 that contains β in its

relative interior. Although this result can be proven in a more general setting, the

specialized proof we give here has the advantage of yielding a low-order polynomial

time algorithm for strengthening a valid inequality of cl conv(Q0) into a facet-defining

inequality.

Proposition 2.6.2 Let βᵀt ≥ 0 be a valid inequality for cl conv(Q0) with β0 < 0 that

is not facet-defining, i.e., dB2(β) = k > 0. Then either

1. there exist two valid inequalities β̄ᵀt ≥ 0 and β̃ᵀt ≥ 0 and θ ∈ (0, 1) such that

β = θβ̄ + (1− θ)β̃, dB2(β̄) < k and dB2(β̃) < k, or
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2. there exists a valid inequality β̄ᵀt ≥ 0 such that β̄ ≤ β and dB2(β̄) < k.

Proof Let βᵀt ≥ 0 be the given inequality. The coefficient vector β can be assumed

to satisfy

βj + wijβi ≥ 0, ∀(i, j) ∈ I+ × I−,

βi ≥ 0, ∀i ∈ I+,

βj ≤ 0, ∀j ∈ I−,

β0 = −1,

i.e., β ∈ B2. For i ∈ I+, define

δi =

 log βi if βi > 0,

−∞ if βi = 0.

For j ∈ I−, define

δj =

 log(−βj) if βj < 0,

−∞ if βj = 0.

Given δ, we construct the subgraph Gδ(I+, I−) of G(I+, I−) induced by the edges

(i, j) for which inequality δj − δi ≤ cij is satisfied at equality by δ. Subgraph

Gδ(I+, I−) is disconnected. In fact, if it was connected, any spanning tree would

induce βᵀt ≥ 0, and being feasible, would contradict the fact that this inequality is

not facet-defining for cl conv(Q0); see Proposition 2.5.1.

Let C1 and C2 be the partition of V0 where C1 is the node set of the connected

component of Gδ(I+, I−) that contains 0 and C2 = V0 \ C1. Compute

∆+ = min {δi − δj + cij : i ∈ C1 ∩ I+, j ∈ C2 ∩ I−} ,

∆− = max {−cij − δi + δj : i ∈ C2 ∩ I+, j ∈ C1 ∩ I−} .

There is at least one arc connecting C1 with C2 in G(I+, I−). If not, C2∩I+ = ∅,

which means C1 ∩ I+ ⊇ I+ 6= ∅, yielding a contradiction to C2 6= ∅. Let χ(C)

denote the indicator vector of C. Clearly, at least one of ∆+ and ∆− is well-defined.

When ∆+ is not well defined then χ(C2) (resp. −χ(C1)) is a recession direction of
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D2 when C2 ∩ I− = ∅ (resp. C1 ∩ I+ = ∅) and we express δ = (δ + ∆−χ(C2)) −

∆−χ(C2) (resp. δ = (δ − ∆−χ(C1)) + ∆−χ(C1)). Similarly, when ∆− is not well

defined, C2 ∩ I+ = ∅ then −χ(C2) is a recession direction for D2 and we express

δ = (δ + ∆+χ(C2)) − ∆+χ(C2). Finally, when ∆+ and ∆− are well defined, we

express δ = ∆+

∆+−∆−
(δ + ∆−χ(C2)) − ∆−

∆+−∆−
(δ + ∆+χ(C2)). The result still works

after the transformation β = eδ because for ∆′,∆′′ ≥ 0 and some set of nodes C, the

perturbation δ+∆′χ(C) (resp. δ−∆′′χ(C)) yields an inequality β′ = e∆′χ(C)◦β (resp.

β′′ = e−∆′′χ(C) ◦β), where ◦ denotes Hadamard product. Since e−∆′′ ≤ 1 ≤ e∆′ , β can

be expressed as a convex combination of β′ and β′′. The case with recession cones also

follows by letting ∆ → ∞. Since the size of C1 increases each time, the inequalities

we use (if not the trivial recession directions) come from a smaller dimension face of

D2 and, hence of B2.

We now illustrate the procedure used in the proof of Proposition 2.6.2.

Example 5 (continued) Consider the inequality

21t1 − 7t2 + 20t3 + 4t4 − 4t0 ≥ 0 (2.30)

which is valid for cl conv(Q0) since it can be obtained applying (2.25) using weight vec-

tor u = (4, 7, 5, 7). We next express (2.30) as a weighted sum of facet-defining inequal-

ities of cl conv(Q0) using the procedure underlying the proof of Proposition 2.6.2. Let

β = (21,−7, 20, 4,−4). For this vector β, only the two inequalities β2 +w12β1 ≥ 0 and

β0 +w40β4 ≥ 0 are satisfied at equality. It follows that C1 = {4, 0} and C2 = {1, 2, 3}.

For f = 12/7 and g = 20/21, define β′ = (21f,−7f, 20f, 4,−4) = (36,−12, 240/7, 4,−4)

and β′′ = (21g,−7g, 20g, 4,−4) = (20,−20/3, 400/21, 4,−4) and express

β =
1− g
f − g

β′ +
f − 1

f − g
β′′ =

1

16
β′ +

15

16
β′′. (2.31)

We now apply the procedure again, for β1 = β′ and β2 = β′′. For β1, only the

three inequalities β2 + w12β1 ≥ 0, β0 + w40β4 ≥ 0, and β2 + w42β4 ≥ 0 are satisfied
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at equality. It follows that C1 = {1, 2, 4, 0} and C2 = {3}. For g = 7/10, define

β1,′′ = (36,−12, 240/7 g, 4,−4) = (36,−12, 24, 4,−4). We write that

β1 = β1,′′ + (0, 0, 240/7 (1− g), 0, 0) = β1,′′ + (0, 0, 72/7, 0, 0). (2.32)

Then, β1,′′ is a non-trivial facet-defining inequality because the tight constraints form

a spanning tree. For β2, only the three inequalities β2+w12β1 ≥ 0, β0+w40β4 ≥ 0, and

β0 +w10β1 ≥ 0 are satisfied at equality. It follows that C1 = {1, 2, 4, 0} and C2 = {3}.

For g = 21/25, define β2,′′ = (20,−20/3, 400/21 g, 4,−4) = (20,−20/3, 16, 4,−4). We write

that

β2 = β2,′′ + (0, 0, 400/21 (1− g), 0, 0) = β2,′′ + (0, 0, 64/21, 0, 0). (2.33)

Again β2,′′ is facet-defining. Combining (2.31), (2.32) and (2.33), we obtain

β = 1/16β1,′′ + 15/16β2,′′ + 7/2(0, 0, 1, 0, 0).

In other words, (2.30) can be expressed as a weighted combination of (2.9)b, (2.9)a

and t3 ≥ 0 with weights 4/16, 60/16, 7/2, respectively.

It was observed in [56] that the c-max cut is not always facet-defining for the case

where |L| = 2. Using the algorithm underlying the proof of Proposition 2.6.2, we

show next that, the coefficients of a c-max cut that is not facet-defining can always

be strengthened to lead to a facet-defining inequality.

Proposition 2.6.3 Any c-max cut can be expressed as a conic combination of a sin-

gle nontrivial facet-defining inequality together with trivial inequalities. Moreover, the

coefficients of the c-max cut and those of the single nontrivial facet-defining inequality

are identical for each i ∈ I+.

Proof In the proof of Proposition 2.6.2, if C1 ⊇ I+, ∆− is not defined, then the

inequality is expressed as a conic combination of a tighter valid inequality and a

trivial inequality, where the coefficients of variables in C1 do not change. Therefore,

we only need to show that throughout the procedure C1 ⊇ I+. This is clearly true at
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the beginning because the coefficient for each i ∈ I+ is derived from the inequality

l ∈ Argmaxl fli. It is also true at each subsequent step because C1 grows at each step

of the procedure.

The question of when the c-max cut is facet-defining for cl conv(Q0) with |L| = 2,

was raised but left open in [56]. The proofs of Propositions 2.6.2 and 2.6.3 answer

this question in the general case where |L| ≥ 2. In fact, a c-max cut βᵀt ≥ 0 is

facet-defining for cl conv(Q0) precisely when C2 = ∅ at the first step in the proof of

Proposition 2.6.2. Since I+ ⊆ C1, this condition is equivalent to stating that each

node j ∈ I− \ {0} is such that βj +wijβi = 0 for some i ∈ I+. In terms of the initial

problem formulation, this observation can be restated as follows.

Corollary 4 A c-max cut βT t ≥ 0 is facet-defining for cl conv(Q0) if and only if for

each j ∈ I−\{0}, there exists an l ∈ L and i ∈ I+ such that βi = fli and βj = flj.

We may also use the constructive procedure used in the proof of Proposition 2.6.2

to design an algorithm to “tighten" a valid inequality for cl conv(Q0) into a facet-

defining of cl conv(Q0). We choose to develop such an algorithm in the space of δ

variables. A similar procedure could be developed in the space of β variables. The

underlying idea is to expand the subgraph of tight equalities in D1 for the given δ

into a connected graph, while maintaining feasibility for the non-tight inequalities.

Algorithm 1 presents the pseudo-code for this constructive procedure. It is a

slight variation on Prim’s algorithm for minimum weight spanning trees; see [57]. It

requires sets I+ and I−, a coefficient vector δ ∈ D1, and the matrix C = [cij] where

cij = log(wij). Define sji = sij = cij − δj + δi for i ∈ I+ and j ∈ I−. It is clear

that sji = sij ≥ 0 since δ ∈ D1. We will show later that δ + key∗ corresponds to a

facet-defining inequality where key∗ is the key after the algorithm terminates.

For a given node set X ⊆ V0, the operation Extract-Min(X) (resp. Extract-

Max(X)) removes and returns the element of X with the smallest (resp. largest) key.

We also define Min(X) := mini∈X key[i] and Max(X) := maxi∈X key[i]. We denote

by Q+ (resp. Q−) the max-priority queue in I+ (resp. min-priority queue in I−)
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1: k ← 0, Q+ ← I+, Q− ← I− \ {0}

2: key[i]← −si0, ∀i ∈ Q+, key[i]←∞, ∀i ∈ Q−, key[0]← 0

3: while Q+ 6= ∅ or Q− 6= ∅ do

4: if Min(Q−)− key[k] ≤ key[k]−Max(Q+) then

5: k ← Extract-Min(Q−)

6: else

7: k ← Extract-Max(Q+)

8: end if

9: for i ∈ Adj[k] do

10: if i ∈ I+ then

11: key[i]← max{key[i],−sik + key[k]}

12: else

13: key[i]← min{key[i], ski + key[k]}

14: end if

15: end for

16: end while

Algorithm 1: Cut-Strengthening (S = [sij], I+, I−)
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whose keys are not yet finalized. We let Q = Q+ ∪ Q−. For a node v, Adj[v] is the

set of nodes adjacent to v in Q.

Let H represent the sequence of nodes extracted during the successive iterations

of the while loop. For nodes i and j, we write j ≺ i if j occurs in H before i.

We define key[0] = 0. Then, for i ∈ Q+ (resp. Q−\{0}), we define key[i] to be

maxj∈I−\Q−,j≺i−sij + key[j] (resp. minj∈I+\Q+,j≺i sij + key[j]). We use induction to

show that keys follow this definition. The base case can be verified via the initial

assignment of keys and the convention that min{∅} =∞. If we assume that the keys

satisfy the above definition before the iteration, then since k ≺ i for any i ∈ Q\{k},

the definition remains valid after the step 11 (resp. step 13). It is clear that once a

node is extracted, the key of the node never changes in the remainder of the algorithm.

We first show that min(Q−)−key[k] ≥ 0 and key[k]−max(Q+) ≥ 0 at step 4 of the

algorithm. This is clearly true for the base case. We assume that these inequalities

are true and we choose to extract k′ at either step 5 or step 7. We will only argue that

the above inequalities hold for k′ selected at step 5 because the other case is similar.

We first argue that the result holds before step 9. If k′ was selected at step 5, i.e.,

k′ ∈ Q−, then the first inequality holds because k′ was chosen to be the node with

minimum key in Q−. The second inequality holds because key[k′] − key[k] ≥ 0 and

key[k]−max(Q+) ≥ 0 by induction hypothesis. Now, we show that these inequalities

continue to hold until the step 4 of the next iteration. In particular, observe that

for j ∈ Q− (resp. j ∈ Q+), since key[j] ≥ key[k′] (resp. key[j] ≤ key[k′]) before the

update in step 13 (resp. step 11) and sjk′ ≥ 0, it remains so after the update as well.

Now, we show that at each iteration of the algorithm where node k′ is extracted,

δ+
∑

j�k′ key[j]χ({j}) + key[k′]χ(Q) defines a valid cut. This is trivially true for the

base case. We now consider the case when k′ is extracted. The incremental change

to the vector is (key[k′] − key[k])χ(Q ∪ {k′}), where k immediately precedes k′ in

H. Clearly, this change does not affect any inequality in D1 expressed for nodes i

and j which both precede k′ or both succeed k′. Therefore, we only need to concern

ourselves with an inequality with respect to i and j where i � k′ � j. Assume
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j ∈ Q+. If k′ ∈ I+, then the result follows because 0 ≤ sij + key[j] − key[i] ≤

sij +key[k′]−key[i] because k′ is the maximizer in Q+. On the other hand, if k′ ∈ I−,

then sij+key[k′]−key[i] ≥ 0 if k′ = i and sij+key[k′]−key[i] ≥ sij+key[k]−key[i] ≥ 0,

where the first inequality follows because key[k′]−key[k] ≥ 0 by our earlier proof and

the second inequality by the induction hypothesis and because key[i] was not updated.

The proof for the case j ∈ Q− is similar.

It follows from the definition of keys that at least one of the inequalities with

respect to k′ and its predecessors becomes tight. Since the procedure only stops when

all the nodes are visited, it follows that the graph of tight inequalities is connected

at the end and δ +
∑

j∈V0 key
∗[j]χ({j}) defines a facet-defining inequality.

We now show that all the tight inequalities remain tight during the procedure.

In particular, assume sij = 0. Assume j � i where j ∈ I− (the proof for j ∈ I+ is

similar). Clearly, when k = j at step 4, key[j] ≥ key[i]. However, key[i] ≥ key[j]

because of the previous update at step 11. Therefore, key[j] − key[i] = 0. Then,

because of the condition in step 4, the keys added match key[i]. Therefore, there is no

update to key[i] because key[i] ≥ −sik+key[k] follows from sik ≥ 0 and key[i] = key[k].

The above algorithm can be implemented using heaps for both Q+ and Q−. If

the graph G(I+, I−) has n nodes and e edges, it requires O(n) Insert, O(n) Min,

O(n) Max, O(n) Extract-Min and Extract-Max, and O(e) Decrease-Key

operations. With Fibonacci heaps, the running time is O(e + n log n) which exactly

matches that of Prim’s algorithm. We summarize the above discussion as follows.

Corollary 5 From any valid inequality of cl conv(Q0), Algorithm 1 constructs a facet-

defining inequality in time O(e+n log n). Further, the facet obtained contains the face

defined by the initial inequality.

2.7 Conclusion

Given an LP relaxation of the problem, and a basic solution that does not satisfy

the cardinality requirement, we derive violated valid inequalities that can be generated
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in polynomial time. These inequalities are facet-defining for a disjunctive relaxation of

the problem. The separation is carried out by solving a network-flow problem in the

original problem space instead of a higher-dimensional cut-generation LP typically

used in disjunctive programming. We show that facet-defining inequalities can be

associated with label-connected feasible spanning trees of a suitably defined bipartite

graph and, consequently, derive various insights into their structure and validity. Us-

ing these insights, we modify the recently proposed E&R procedure, which generates

cuts for complementarity problems, to the more general setting involving cardinality

constraints. Our analysis reveals conditions under which the c-max cut, a cut widely

used in the complementarity literature, is not facet-defining and can be improved

using a simple procedure. More generally, we develop a fast separation procedure

that tightens valid inequalities into facet-defining inequalities for our relaxation using

a Prim-type combinatorial algorithm.
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3. Semidefinite programming relaxations for sparse principal

component analysis

In this chapter, we provide a characterization of the convex hull of the feasible set

of an optimization formulation of sparse principal component analysis (sparse PCA).

Sparse PCA seeks to find a linear combination of a small number of the variables

of some data that explains most of its variance. We obtain a description of the

convex hull in a lifted space by dualizing the separation problem and making use of

majorization inequalities. This interpretation allows us to express each point in the

convex hull as a convex combination of points that satisfy the cardinality constraint.

Based on the convex hull result, we prove that sparse PCA can be reformulated as

a continuous convex maximization problem. We next propose an SDP relaxation in

a lifted space. Our preliminary computational experiments show that the gaps of

our SDP relaxations are more than 90% smaller than those of the SDP relaxation

proposed by d’Aspremont et al. [24] on the pitprops problem and on test problems

with randomly generated covariance matrices.

3.1 Introduction

Principal component analysis (PCA) is a dimension reduction technique in ex-

ploratory multivariate statistical analysis with a wide variety of applications such as

image compression, gene expression, portfolio hedging, and quality control. We refer

the readers to [44] for additional applications of PCA. Given a dataset with intercor-

related variables, PCA generates a sequence of mutually uncorrelated variables called

principal components (PCs) which are linear combinations of the variables in the data

in a way that the first PC exhibits the largest variance of the dataset, and succeeding

PCs exhibit the largest variance of the dataset under an orthogonality requirement
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with the preceding PCs. PCs can be equivalently defined as unit eigenvectors of the

centered covariance matrix of the dataset. More specifically, suppose the original

dataset has n variables and assume that Σ is the centered covariance matrix for the

dataset. Then, the ith PC is the eigenvector associated with the ith largest eigenvalue

for i = 1, . . . , n. Therefore, the first PC is an optimal solution to

maximize xTΣx

subject to ‖x‖ ≤ 1.
(3.1)

Principal components are linear combinations of most of the variables of the data.

It is therefore often difficult to understand what each PC represents. To make the

interpretation simpler, it is useful to find variables which are linear combinations of

a small number of original variables. The problem of calculating such sparse loadings

is called sparse principal component analysis (sparse PCA). By adding a sparsity (or

cardinality) constraint to (3.1), sparse PCA can be formulated as

maximize xTΣx

subject to ‖x‖ ≤ 1,

card(x) ≤ K

(3.2)

where 1 < K < n and card(x) represents the number of nonzero components of x.

Tillmann and Pfetsch [68] showed that sparse PCA is NP-hard in the strong sense.

Sparse PCA has been extensively studied in the literature. Moghaddam et al.

[53] used a greedy algorithm and branch-and-bound methods for sparse PCA and

d’Aspremont et al. [23] proposed a modified greedy algorithm whose running time

is O(n3). Jolliffe et al. [45] proposed SCoTLASS which adds a l1-norm regulariza-

tion similar to LASSO in regression. Zou et al. [75] formulated sparse PCA as a

regression-type optimization problem and impose an elastic net constraint on the re-

gression coefficients. To the best of the author’s knowledge, the first SDP relaxation

for sparse PCA was proposed by d’Aspremont et al. [24] which the authors solve us-

ing. Sriperumbudur et al. [66] considered generalized eigenvalue problems with sparse

PCA as a special case and proposed a DC-based algorithm to find a local optimal
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solution. Shen and Huang [63] proposed a method to extract sparse PCs by solving a

low rank matrix approximation problem. Journée et al. [46] reformulated sparse PCA

as maximizing a convex function over a compact set and generalized a power method

to find a locally optimal solution. Lu and Zhang [50] developed an augmented La-

grangian method to find sparse and nearly uncorrelated components with orthogonal

loading vectors which exhibit as much of the total variance as possible. More recently,

an iterative thresholding approach was developed by Ma [51].

For every vector x (resp. matrix X), |x| (resp. |X|) represents the vector

(resp. matrix) of component-wise absolute values of x (resp. X). A permutation

of {1, . . . , n} is defined as a bijection from {1, . . . , n} to itself. For a permutation σ

of {1, . . . , n}, we define the permutation of a vector x ∈ Rn with respect to σ as the

vector whose ith component is xσ(i). Given a point x ∈ Rn, the permutahedron with

respect to x, which we denote by Perm(x), is the convex hull of permutations of x.

The matrix corresponding to a permutation σ, which we denote by Pσ, is called the

permutation matrix associated with σ. That is, for every x ∈ Rn, [Pσx]i = xσ(i). The

set of all the permutation matrices is denoted by P . A set S is called sign-invariant

if x ∈ S and |x| = |y| imply that y ∈ S. A set S is called permutation-invariant if

and only if x ∈ S implies Px ∈ S for all P ∈ P . The polar S◦ of a set S ∈ Rn is

defined as S◦ := {y ∈ Rn : xᵀy ≤ 1 for all x ∈ S}. We denote the trace of a matrix X

by Tr(X). Further, for a given matrix X, we denote by diag(X) the diagonal matrix

whose diagonal elements match those of X. The diagonal matrix whose diagonal

entries equal to the vector x is denoted by diag(x). For vector x ∈ Rn, x[i] represents

the ith largest component of x for all i = 1, . . . , n. Given two vectors x, y ∈ Rn, x

majorizes y if and only if∑j
i=1 x[i] ≥

∑j
i=1 y[i], j = 1, . . . , n− 1∑n

i=1 xi =
∑n

i=1 yi
(3.3)

and we denote the system (3.3) by x ≥m y and refer to it as a majorization inequality.

We mention that majorization is typically written using “�”, but we reserve this

symbol for positive semidefiniteness. Furthermore, we use “≥” to state that a vector
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is component-wise nonnegative. The set of n-by-n symmetric matrices is denoted by

Sn. A matrix is called doubly stochastic if each rows and columns sums up to 1. We

denote the p-by-q matrix of ones by J(p, q).

Majorization has an elegant geometric interpretation. To describe it, we introduce

Schur’s result on the relationship between majorization and doubly stochastic matri-

ces and Birkhoff’s Theorem on the characterization of doubly stochastic matrices.

Theorem 3.1.1 (Schur [61], 1923) x ≥m y if and only if y = Dx for some doubly

stochastic matrix D. �

Theorem 3.1.2 (Birkhoff Theorem [15], 1946) The set of doubly stochastic ma-

trices is the convex hull of the permutation matrices. �

Corollary 6 x ≥m y if and only if y is a convex combination of permutations of x,

or, equivalently y ∈ Perm(x).

In this chapter, we first characterize the convex hull of the feasible set of (3.2)

based on its sign- and permutation-invariance structure by dualizing a separation

problem (Section 3.2). The convex hull is written through a majorization inequality

which provides a geometric interpretation for points in the convex hull: each point

in the convex hull can be written as a convex combination of points that satisfy the

cardinality constraint. Based on the characterization of the convex hull, we refor-

mulate sparse PCA as a continuous convex maximization problem by providing a

procedure to convert a optimal to the convex maximization into an optimal solution

that satisfies the cardinality constraint. We then introduce a new SDP relaxation

based on the reformulation derived from majorization (Section 3.3). We show that

our SDP relaxation generalizes that proposed by d’Aspremont et al. [24]. Lastly,

we present preliminary computational results for pitprops problems and problems

with randomly generated covariance matrices that show that the gaps of our SDP

relaxations are more than 90% smaller than the gaps of the classical SDP relaxation

(Section 3.4).
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3.2 Characterization of the convex hull of sparse PCA

3.2.1 Separation problem

Let F = {x ∈ Rn : ‖x‖ ≤ 1, card(x) ≤ K} be the feasible set of sparse PCA.

Given t ∈ Rn, consider the following separation problem:

z∗(t) = max{tᵀβ : βᵀx ≤ 1 is valid for F}. (3.4)

Observe that ±ei, 0 ∈ F for all i = 1, . . . , n. This shows that 0 is in the interior of

conv(F ). Hence we assume without loss of generality that the right-hand-side of the

valid inequality is 1 by scaling coefficients.

Lemma 4 (3.4) has an optimal solution.

Proof Observe first that F ◦ = (conv(F ))◦ since an inequality is valid for F if and

only if it is valid for conv(F ). Since F is a finite union of compact set, F is compact

and hence so is conv(F ) (see Proposition 1.3.2 of [11], for example). Since 0 is in the

interior of conv(F ), its dual F ◦ is compact (see page 47 of [34], for example). The

result follows.

It is straightforward that t ∈ conv(F ) if and only if z∗(t) ≤ 1. The next proposition

gives a characterization of when an inequality is valid.

Proposition 3.2.1 βᵀx ≤ 1 is valid for F if and only if |β|2[1] + · · ·+ |β|2[K] ≤ 1.

Proof Suppose βᵀx ≤ 1 is valid for F . Let σ be a permutation such that |β|σ(1) ≥

· · · ≥ |β|σ(n). Define β̄ by

β̄i =

 βi if i ∈ {σ(1), . . . , σ(K)},

0 otherwise.
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Let x̄ := β̄/‖β̄‖. Then, x̄ ∈ F because ‖x̄‖ = 1 and card(x̄) ≤ K. Further, βᵀx̄ =

‖β̄‖ ≤ 1. This shows that |β|2[1] + · · · + |β|2[K] = |β|2σ(1) + · · · + |β|2σ(K) = ‖β̄‖2 ≤ 1.

Conversely, suppose |β|2[1] + · · ·+ |β|2[K] ≤ 1. Consider any x ∈ F . Then,

βᵀx = β1x1 + · · ·+ βnxn ≤ |β|[1]|x|[1] + · · ·+ |β|[n]|x|[n]

= |β|[1]|x|[1] + · · ·+ |β|[K]|x|[K]

≤ ‖(|β|[1], . . . , |β|[K])‖ ≤ 1,

where the first inequality holds by the rearrangement inequality, the second equality

results from the the cardinality constraint, and the second inequality holds by Cauchy-

Schwarz. We conclude that βᵀx ≤ 1 is valid for F .

Corollary 7 F ◦ is sign- and permutation-invariant. �

Proposition 3.2.2

1. Suppose β∗ is an optimal solution to (3.4). Then, tiβ∗i ≥ 0 for i = 1, . . . , n,

2. Suppose that β∗ is an optimal solution to (3.4) and that |t|σ(1) ≥ · · · ≥ |t|σ(n)

for some permutation σ for Rn. Then,

|β∗|σ(1) ≥ · · · ≥ |β∗|σ(n).

3. There exists an optimal solution to (3.4) β∗∗ such that |β∗∗|[K] = · · · = |β∗∗|[n].

Proof Suppose there exists i such that tiβ∗i < 0. Then, replacing β∗i with −β∗i , the

objective function value improves strictly, which produces the desired contradiction.

Part 2 is directly from the rearrangement inequality and Corollary 7. For Part 3,

consider an optimal solution β∗ to (3.4) and assume that |β∗|σ(1) ≥ · · · ≥ |β∗|σ(n) for

some permutation σ. Then, the vector β∗∗ obtained from β∗ by replacing β∗σ(i) for

i = K + 1, . . . , n with sign(ti)|β∗|σ(K) is also optimal for (3.4) by Proposition 3.2.1.

The result follows.
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Suppose |t|σ(1) ≥ · · · ≥ |t|σ(n) for some permutation σ for Rn. Proposition 3.2.2

shows that (3.4) can be rewritten as

z∗(t) = maximize
∑K−1

i=1 |t|σ(i)|β|σ(i) +
(∑n

i=K |t|σ(i)

)
|β|σ(K)

subject to |β|σ(1) ≥ · · · ≥ |β|σ(K),

|β|2σ(1) + · · ·+ |β|2σ(K) ≤ 1

(3.5)

or equivalently,

z∗(t) = maximize
∑K−1

i=1 |t|σ(i)γi +
(∑n

i=K |t|σ(i)

)
γK

subject to γ1 ≥ · · · ≥ γK ≥ 0,

γ2
1 + · · ·+ γ2

K ≤ 1.

(3.6)

Recall that t ∈ conv(F ) if and only if z∗(t) ≤ 1. When z∗(t) > 1, an inequality

which cuts off t from conv(F ) can be obtained from an optimal solution to (3.6)

by an appropriate permutation and sign-conversion based on Proposition 3.2.2. The

separation problem not only gives us a separating scheme but it also provides us with

a description of the convex hull. To see this, consider the dual of (3.6):

minimize ‖u‖2

subject to u1 = |t|σ(1) + λ1,

ui = |t|σ(i) + λi − λi−1, i = 2, . . . , K − 1,

uK =
∑n

i=K |t|σ(i) − λK−1,

λ ≥ 0.

The objective function of the dual should be ‖u‖. We replace it with ‖u‖2 since it

simplifies the analysis and does not modify the set of optimal solutions to the problem.

After simplifying further, we obtain

minimize ‖u‖2

subject to
∑j

i=1 ui ≥
∑j

i=1 |t|σ(i), j = 1, . . . , K − 1,∑K
i=1 ui =

∑n
i=1 |t|σ(i)

or equivalently,

minimize ‖u‖2

subject to
∑j

i=1 ui ≥
∑j

i=1 |t|[i], j = 1, . . . , K − 1,∑K
i=1 ui =

∑n
i=1 |t|i.

(3.7)
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Observe that if u∗ is an optimal solution to (3.7), then so is (u∗[1], . . . , u
∗
[K]). Therefore,

we can add the constraints u1 ≥ · · · ≥ uK to the formulation.

Proposition 3.2.3 Suppose u∗ is an optimal solution to (3.7). Then, u∗ ≥ 0.

Proof First, it is clear that t = 0 if and only if u∗ = 0. Hence we assume that

t 6= 0 and hence u∗1 > 0. Assume by contradiction that there exists an integer

M ∈ {1, . . . , K − 1} such that u∗1 ≥ · · · ≥ u∗M ≥ 0 > u∗M+1 ≥ · · · ≥ u∗K . Then,

as
∑K

j=1 u
∗
j > 0, there exists a unique i ∈ {1, . . . ,M} such that

∑K
j=i u

∗
j ≥ 0 and∑K

j=i+1 u
∗
j < 0. Define ū as

ūj =


u∗j , j ∈ {1, . . . , i− 1},∑K

j=i u
∗
j j = i,

0, j ∈ {i+ 1, . . . , K}.

Then, ū ≥ 0 and ū is feasible for (3.7). Moreover, it is easy to show that u∗ ≥m ū.

By strict convexity of the objective function of (3.7), ‖u∗‖ > ‖ū‖. This is the desired

contradiction.

Consequently, we can reformulate (3.7) as

minimize ‖u‖2

subject to u1 ≥ · · · ≥ uK ≥ 0,∑j
i=1 ui ≥

∑j
i=1 |t|[i], j = 1, . . . , K − 1,∑K

i=1 ui =
∑n

i=1 |t|i,

(3.8)

We now assume that t is a variable and recall the fact that t ∈ conv(F ) if and

only if z∗(t) ≤ 1.

3.2.2 Characterization of the convex hull

We next augment u ∈ RK into (u, 0) ∈ Rn and redefine u := (u, 0). Define

∆ = {u : u1 ≥ · · · ≥ un ≥ 0}. The following result gives a characterization of

conv(F ).
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Theorem 3.2.1 conv(F ) = {t : u ∈ F ∩∆, u ≥m |t|}.

Proof Define G = {t : u ∈ F ∩∆, u ≥m |t|}. First, observe that

F ∩∆ =

u :

‖u‖ ≤ 1,

card(u) ≤ K,

u1 ≥ · · · ≥ un ≥ 0

 =

u :

‖u‖ ≤ 1,

u1 ≥ · · · ≥ uK ≥ 0,

uK+1 = · · · = un = 0


and hence it is convex. Since it is clear that Slater’s condition holds, by strong duality,

t ∈ conv(F ) if and only if there exists u ∈ RK such that ‖u‖ ≤ 1 and (t, u) is feasible

for (3.8). Therefore, we have that

conv(F ) =

t :

u ∈ F ∩∆,∑j
i=1 ui ≥

∑j
i=1 |t|[i], j = 1, . . . , K − 1,∑K

i=1 ui =
∑n

i=1 |t|i

 . (3.9)

First, suppose t ∈ conv(F ) so that there exists u such that (t, u) satisfies all the

inequalities in (3.9). Then, for j = K, . . . , n− 1,

j∑
i=1

ui =
K∑
i=1

ui =
n∑
i=1

|t|i ≥
j∑
i=1

|t|[i].

Similarly,
∑n

i=1 ui =
∑n

i=1 |t|i and hence t ∈ G. Conversely, suppose t ∈ G. Then,

there exists u ∈ F ∩ ∆ such that u ≥m |t|. It follows that
∑K

i=1 ui =
∑n

i=1 ui =∑n
i=1 |t|i and hence t ∈ conv(F ). Therefore, conv(F ) = {t : u ∈ F ∩∆, u ≥m |t|}.

The fact that (3.9) is convex can be verified directly since the functions t 7→∑j
i=1 |t|[i] for j = 1, . . . , K − 1 are convex.

The majorization inequality yields the following geometric interpretation. It is

easy to show that x ∈ conv(F ) implies that |x| ∈ conv(F ∩ Rn
+). Therefore, the

convex hull of the entire region is obtained by replicating the convex hull over Rn
+.

Observe that t ∈ conv(F ∩Rn
+) if and only if t can be written as a convex combination

of some point u ∈ F ∩∆ and its permutations. In other words, t ∈ Perm(u) for some

u ∈ F ∩∆.
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Example 6 Consider the case where n = 3 and K = 2. Figure 3.1a shows the F and

the simplicial cone ∆ in the first quadrant. For a fixed u ∈ F ∩∆, the permutahedron

generated by u is shown Figure 3.1b. The convex hull of sparse PCA in the first

quadrant is then obtained by taking the union of all the possible permutahedra (see

Figure 3.1c), that is, conv(F ∩ R3
+) =

⋃
u∈F∩∆ Perm(u). By replicating the result in

the first quadrant, we obtain the convex hull in R3 as shown in Figure 3.1d.

(a) F and ∆ (b) Perm(u) for some u ∈ F ∩∆

(c) conv(F ∩R3
+) (d) conv(F )
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We next introduce variables v and w to model |t| in the above convex hull formu-

lation. That is, we replace |t| with y and add constraints y = v + w, t = v − w, and

v, w ≥ 0 to the system. We obtain

conv(F ) =



t ∈ Rn :

‖u‖ ≤ 1,

u1 ≥ · · · ≥ uK ≥ 0,

uK+1 = · · · = un = 0,∑j
i=1 ui ≥

∑j
i=1 y[i], j = 1, . . . , K − 1,∑K

i=1 ui =
∑n

i=1 yi,

y = v + w, t = v − w,

v, w ≥ 0



. (3.10)

The following result shows an alternative characterization for the convex hull

obtained by modeling the sum of j-largest components of y for all j = 1, . . . , K − 1.

Theorem 3.2.2

conv(F ) =



t ∈ Rn :

‖u‖ ≤ 1,

u1 ≥ · · · ≥ uK ≥ 0,

uK+1 = · · · = un = 0,∑j
i=1 ui ≥ jrj +

∑n
i=1 s

j
i , j = 1, . . . , K − 1,∑K

i=1 ui =
∑n

i=1 yi,

y = v + w, t = v − w,

v, w ≥ 0,

yi ≤ rj + sji , j ∈ {1, . . . , K − 1}, i ∈ 1, . . . , n,

s ≥ 0



. (3.11)

Proof Denote the set on the right-hand-side of (3.11) by G. It is clear that G is

convex. Suppose t ∈ conv(F ). Then, there exist u, y, v, w ∈ Rn that satisfy the
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constraints in (3.10). For a given j ∈ {1, . . . , K − 1} and a set of real numbers

{y1, . . . , yn}, consider the following optimization problem

maximize y1z1 + · · ·+ ynzn

subject to z1 + · · ·+ zn = j,

0 ≤ z ≤ 1.

. (3.12)

Observe that (3.12) returns
∑j

i=1 y[i] and, by strong duality, so does its dual

minimize jr +
∑n

i=1 si

subject to yi ≤ si + r, i = 1, . . . , n,

s ≥ 0.

. (3.13)

It follows that there exist s ∈ Rn and r ∈ R such that

jrj +
∑n

i=1 s
j
i =

∑j
i=1 y[i],

yi ≤ sji + rj,

sj ≥ 0.

Since j can be chosen arbitrarily in {1, . . . , K − 1}, conv(F ) ⊆ projt(G).

Conversely, suppose t ∈ projt(G). Then, there exist u, s, r, y, v, and w that satisfy

the constraints in (3.11). Then, for each j ∈ {1, . . . , K−1}, weak duality implies that

jrj +
∑n

i=1 s
j
i ≥

∑j
i=1 y[i]. Therefore,

∑j
i=1 ui ≥

∑j
i=1 y[i] for all j ∈ {1, . . . , K − 1}

which implies that conv(F ) ⊇ projt(G).

Alternatively, we can make use of the formulation of the permutahedron proposed

by Goemans [30] to model the majorization inequality. Then, the majorization in-

equality x ≥m y can be modeled as y ∈ Perm(x) which corresponds to a set of linear

inequalities.

3.2.3 Recovery of an optimal solution

The convex hull result enables us to build the following relaxation of sparse PCA

as follows:

max{xᵀΣx : x ∈ G} (3.14)
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where G is defined as the right-hand-side of (3.11).

Proposition 3.2.4 Suppose that Σ � 0. Then, an optimal solution x∗ to (3.14) is

an optimal solution to (3.2).

Proof Assume by contradiction that card(x∗) > K. Then, since F is a disjunctive

set and x∗ /∈ F , there exist vi ∈ F and λi > 0 for i = 1, . . . , t where t ≥ 2 such that

x∗ =
∑t

i=1 λiu
i and

∑t
i=1 λi = 1. Let f(x) = xᵀΣx. Using the fact that f is strictly

convex and that x∗ is a global maximizer, we write

f(x∗) <
t∑
i=1

λif(vi) ≤
t∑
i=1

λif(x∗) = f(x∗),

which is the desired contradiction. Therefore, card(x∗) ≤ K and hence x∗ ∈ F .

Now we study the case where Σ � 0. Consider a permutation σ ∈ P such that

|x∗|σ(1) ≥ · · · ≥ |x∗|σ(n) and define x̄ to be the vector with components x̄i = |x∗|σ(i) for

i = 1, . . . , n. Furthermore, define δ ∈ RK by δi = 1
K−i+1

∑n
k=i x̄k for i ∈ {1, . . . , K}

and let m ∈ Argmin{δ1, . . . , δK}. We next define ū as

ūi =


x̄i, i = 1, . . . ,m− 1,

δm, i = m, . . . ,K,

0, i = K + 1, . . . , n.

When m = 1, define ū1 = δ1. For any vector v ∈ Rn and permutation σ ∈ P , we

define Fσ(v) ∈ Rn as

[Fσ(v)]i = sign(x∗i )vσ−1(i)

for i = 1, . . . , n. Observe that Fσ(x̄) = x∗ and define u∗ := Fσ(ū).

Proposition 3.2.5 Suppose x∗ is an optimal solution to (3.14) and σ ∈ P , x̄ ∈

Rn, δ ∈ RK ,m ∈ {1, . . . , K}, ū ∈ Rn, and u∗ ∈ Rn are constructed as above. Then,

1. δi+1 − δi = 1
K−i+1

(δi+1 − x̄i) = 1
K−i(δi − x̄i) for i = 1, . . . , K − 1.

2. δ1 ≥ · · · ≥ δm and δm ≤ · · · ≤ δK.
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3. ū ≥m x̄.

4. ū ∈ F ∩∆.

Proof For i = 1, . . . , K − 1,

δi+1 − δi =
1

K − i

n∑
k=i+1

x̄k −
1

K − i+ 1

n∑
k=i

x̄k

=
1

(K − i)(K − i+ 1)

{
(K − i+ 1)

n∑
k=i+1

x̄k − (K − i)
n∑
k=i

x̄k

}

=
1

(K − i)(K − i+ 1)

{
n∑

k=i+1

x̄k − (K − i)x̄i

}

=
1

K − i+ 1
(δi+1 − x̄i)

=
1

(K − i)(K − i+ 1)

{
n∑
k=i

x̄k − (K − i+ 1)x̄i

}
=

1

K − i
(δi − x̄i).

The first part follows. For the second part, observe that δi+1 ≥ δi implies that

δi+1 ≥ x̄i ≥ x̄i+1 by the first part and hence δi+2 ≥ δi+1 is obtained by the first part.

Similarly, δi+1 ≤ δi implies that δi ≤ x̄i−1 and hence δi ≤ δi−1. This proves the second

part.

We next show that ū majorizes x̄. Observe that x̄m−1 ≥ δm because of the fact

δm ≤ δm−1 and part 1. This shows that ūi, i = 1, . . . , n are nonincreasing. By

construction,
∑n

k=1 ūk =
∑n

k=1 x̄k and
∑j

k=1 ūk =
∑j

k=1 x̄k for each j = 1, . . . ,m− 1.

By part 1, δm+1 ≥ δm implies that δm ≥ x̄m ≥ · · · ≥ x̄K . This shows that ū ≥m x̄.

Since ū ∈ ∆ and card(ū) ≤ K by its construction, it remains to show that ‖ū‖ ≤ 1.

Define γ̄ ∈ Rn as follows:

γ̄i =

 ūi/‖ū‖, i ∈ {1, . . . , K},

ūK/‖ū‖, i ∈ {K + 1, . . . , n}.
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Now, consider an optimal solution γ to (3.6) with respect to t = x̄ and define γ̄ as

γ̄i = γi for i = 1, . . . , K − 1 and γ̄i = γK for i = K, . . . , n. Observe that

n∑
i=1

x̄iγ̄i =
K−1∑
i=1

x̄iγ̄i +

(
n∑

i=K

x̄i

)
γ̄K

=
1

‖ū‖

{
K∑
i=1

x̄iūi +

(
n∑

i=K+1

x̄i

)
ūK

}

=
1

‖ū‖

{
m−1∑
i=1

x̄iūi +
K∑
i=m

x̄iūi +

(
n∑

i=K+1

x̄i

)
ūK

}

=
1

‖ū‖

{
m−1∑
i=1

ū2
i +

(
K∑
i=m

x̄i

)
δm +

(
n∑

i=K+1

x̄i

)
δm

}

=
1

‖ū‖

{
m−1∑
i=1

ū2
i +

(
n∑

i=m

x̄i

)
δm

}

=
1

‖ū‖

{
m−1∑
i=1

ū2
i + (K −m+ 1)δ2

m

}

=
1

‖ū‖

K∑
i=1

ū2
i = ‖ū‖,

where the fourth equality holds by the definition of ū and the sixth equality holds

because of the definition of δm as 1
K−m+1

∑n
i=m x̄i. Since x∗ ∈ conv(F ) and γ̄ is

feasible for (3.6),

n∑
i=1

x̄iγ̄i =
K−1∑
i=1

|x∗|σ(i)γ̄i +

(
n∑

i=K

|x∗|σ(i)

)
γ̄K ≤ 1.

This shows that ‖ū‖ ≤ 1. It follows ū ∈ F ∩∆.

Theorem 3.2.3 Suppose x∗, σ, and u∗ are defined as previously. Then, u∗ is an

optimal solution to (3.2).

Proof Consider the separation problem

max{(x∗)ᵀβ : βᵀx ≤ 1 is valid for F}. (3.15)

It is clear that the coefficient vector of any valid inequality which passes through x∗

is an optimal solution to the separation problem and vice-versa. Let β∗ be an optimal
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solution to (3.15). Then, By Proposition 3.2.2, |β∗|σ(1) ≥ · · · ≥ |β∗|σ(n) and x∗iβ∗i ≥ 0

for i = 1, . . . , n. Since u∗ ≥m x∗, we can write x∗ =
∑

P∈P λP (Pu∗) where λP ≥ 0 and∑
P∈P λP = 1. Suppose (β∗)ᵀx∗ > (β∗)ᵀ(Pu∗) for all permutation matrices P ∈ P .

Then,

(β∗)ᵀx∗ = (β∗)ᵀ
∑
P∈P

λP (Pu∗) =
∑
P∈P

λP (β∗)ᵀ(Pu∗) <
∑
P∈P

λP (β∗)ᵀx∗ = (β∗)ᵀx∗,

yielding a contradiction. Therefore, there exists P ∈ P such that (β∗)ᵀx∗ = (β∗)ᵀ(Pu∗).

But, by the rearrangement inequality, (β∗)ᵀu∗ ≥ (β∗)ᵀ(Pu∗) and hence (β∗)ᵀx∗ =

(β∗)ᵀu∗ = 1. This implies that if x∗ satisfies a valid inequality at equality then u∗

also satisfies the inequality at equality. We next argue that x∗ can be written as a

convex combination of points including u∗ with a positive coefficient. By the previ-

ous argument, we consider a minimal dimensional face F of Perm(u∗) that contains

x∗. Since F is of minimum dimension, x∗ is in its relative interior. It follows from

Minkowski-Carathéodory Theorem (see Theorem 8.11 of [65], for example) that there

exist extreme points vi, i = 1, . . . , t of F such that

x∗ =
∑t

i=1 λiv
i,

λi > 0, i = 1, . . . , t,∑t
i=1 λi = 1,

u∗ ∈ {vi : i = 1, . . . , t}.

Convexity of the objective function f(x) = xᵀΣx then implies that

f(x∗) = f

(
t∑
i=1

λiv
t

)
≤

t∑
i=1

λif(vi) ≤ f(x∗).

Since all above inequalities must hold at equality and λi > 0, i = 1, . . . , t, we conclude

that f(x∗) = f(vi) for all i = 1, . . . , t. Therefore, (x∗)ᵀΣ(x∗) = (u∗)ᵀΣ(u∗).

3.3 SDP relaxation for sparse PCA

In the preceding sections, we have discussed how to reformulate sparse PCA as a

non-convex QCQP (convex maximization problem) by characterizing the convex hull
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of its feasible set, and by showing that an optimal solution that satisfies the cardinality

requirement can be created from one that does not. In this section, we present an

SDP relaxation for the reformulation and show that the relaxation generalizes the SDP

relaxation proposed in [24], which is the tightest SDP relaxation in the literature.

For notational clarity, we regard u ∈ RK and write (u, 0) to represent the lifted

vector in Rn.

We first lift vector variables x and u to matrix variables X ∈ Sn and U ∈ SK ,

representing xxᵀ and uuᵀ, respectively. We consider the relaxations X � 0 and

U � 0. The constraint ‖u‖ ≤ 1 can be imposed as Tr(U) ≤ 1 under the condition

that U = uuᵀ.

Recall from Theorem 3.2.1 that conv(F ) = {x : u ∈ F ∩ ∆, u ≥m |x|}. Suppose

x∗ is an optimal solution to sparse PCA. Define u∗ by u∗i = |x∗|[i] for i ∈ {1, . . . , K}.

Then, it is clear that (u∗, 0) ∈ F ∩∆ and (u∗, 0) ≥m |x∗|. Therefore, we can narrow

down our focus on vectors u and x such that |x| is a permutation of (u, 0) ∈ F ∩∆.

Hence, any convex constraint implied under this premise can be imposed. In matrix

variable space, we can assume that |X| equals to

U 0

0 0

 after permuting rows and

columns appropriately. It is clear that such U and X satisfy that Tr(U) = Tr(|X|)

and 1ᵀU1 = 1
ᵀ|X|1. When X � 0, we have that Tr(|X|) = Tr(X). Therefore,

Tr(U) = Tr(X) (3.16)

can be imposed. The equality 1ᵀU1 = 1
ᵀ|X|1, however, is nonconvex and hence we

impose the convex relaxation

1
ᵀU1 ≥ 1ᵀ|X|1. (3.17)
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The above discussion yields the following SDP relaxation:

maximize Tr(ΣX)

subject to Tr(U) ≤ 1,

Tr(U) = Tr(X),

1
ᵀU1 ≥ 1ᵀ|X|1,

X � 0, U � 0,

X ∈ Sn, U ∈ SK .

(3.18)

Suppose (X∗, U∗) is a feasible solution to (3.18) and assume that Tr(U∗) < 1. Then,

we can scale U∗ and X∗ by a positive scalar λ > 1 so that Tr(λU∗) = 1, while still sat-

isfying all constraints of (3.18). Further, Tr(Σ(λX∗)) = λTr(ΣX∗) > Tr(ΣX∗). We

conclude that optimal solutions (X∗, U∗) to (3.18) satisfy Tr(U∗) = 1. Consequently,

we obtain the following SDP relaxation:

maximize Tr(ΣX)

subject to Tr(U) = 1,

Tr(U) = Tr(X),

1
ᵀU1 ≥ 1ᵀ|X|1,

X � 0, U � 0,

X ∈ Sn, U ∈ SK .

(3.19)

We denote the feasible set of (3.19) by Fbasic.

The most commonly used SDP relaxation for sparse PCA was introduced in [24]

and is given by:
maximize Tr(ΣX)

subject to Tr(X) = 1,

1
ᵀ|X|1 ≤ K,

X � 0.

(3.20)

We denote the feasible set of (3.20) by Fd.

Lemma 5 Let A be an n× n matrix with Aii = a for all i and Aij = b for all i 6= j.

Then, the eigenvalues of A are a− b (with multiplicity n− 1) and a+ (n− 1)b.
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Proof It is known that eigenvalues of J(n, n) are n, 0, . . . , 0. Since A = bJ(n, n) +

(a− b)I, the eigenvalues of A are bn+ (a− b), a− b, . . . , a− b. The result follows.

Proposition 3.3.1 projX Fbasic = Fd.

Proof Let (X,U) ∈ Fbasic. Then, Tr(X) = Tr(U) = 1 and X � 0. We next show

that 1ᵀ|X|1 ≤ K. Consider the function p(x) = xᵀUx. Then, by the convexity of p,

we have that

1
ᵀ|X|1 ≤ 1ᵀU1 = p(1) = K2p

(
1

K
1

)
= K2p

(
K∑
i=1

1

K
ei

)
≤ K2 1

K

K∑
i=1

p(ei)

= KTr(U) ≤ K.

Next, suppose X ∈ Fd. Define U by Uii = 1
K

for i = 1, . . . , K and Uij = 1
ᵀ|X|1−1
K(K−1)

for i 6= j. Observe that U ≥ 0. Furthermore, 1
K
≥ 1

ᵀ|X|1−1
K(K−1)

because 1ᵀ|X|1 ≤ K.

By construction, Tr(U) = 1 = Tr(X) and 1ᵀU1 = 1
ᵀ|X|1. It remains to show that

U � 0. Observe that U is of the form of A in Lemma 5 and hence the eigenvalues

of U are a + (K − 1)b, a − b, . . . , a − b where a = 1
K

and b = 1
ᵀ|X|1−1
K(K−1)

. Since all its

eigenvalues are nonnegative, we have that U � 0.

We next construct additional inequalities to tighten the feasible set of (3.19).

Since u is nonnegative and in nonincreasing order, uuᵀ is nonnegative and each of its

row or column is in nonincreasing order. Therefore, we can impose the constraints:

U ≥ 0,

Ui,j ≥ Ui,j+1, i ∈ {1, . . . , K}, j ∈ {1, . . . , K − 1},

Ui,j ≥ Ui+1,j, i ∈ {1, . . . , K − 1}, j ∈ {1, . . . , K}.

(3.21)

Given matrix X, denote the jth largest component of the ith row of X by Xi,[j].

We model |X| by replacing it to Y and adding constraints Y = V + W and X =

V −W for nonnegative matrix variables V and W . Under the premise that U equals

to |X|(= Y ) after permuting rows and columns appropriately, we can impose the

following constraints:
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Diagonal majorization: It is clear that we can impose

diag(U) ≥m diag(Y ), (3.22)

which we call diagonal majorization.

Upper-sum majorization: For each p ∈ {1, . . . , n}, define Up ∈ Rn and Y p ∈ Rn

as follows:
U
p

i :=
∑p

j=1 Ui,[j] =
∑p

j=1 Ui,j,

Y
p

i :=
∑p

j=1 Yi,[j]

under the constraints (3.21). Then, we impose inequalities

U
p ≥m Y

p
, p = 1, . . . , n (3.23)

which we call upper-sum majorization inequality.

Observe that each Y p

i is the sum of p-largest components of ith row of Y . It can

therefore be modeled using the technique used in Theorem 3.2.2. In particular, each

inequality in (3.23) can be decomposed into n− 1 inequalities and one equality. We

only need to model the right-hand-sides of the inequalities since components of U are

already in nonincreasing order. Since each of the right-hand-sides of the inequalities

is a sum of q-largest components of the vector (Y
p

1, . . . , Y
p

n) for some q = 1, . . . , K−1,

it can be modeled in a similar fashion. As a special case of upper-sum majorization,

consider the case where p = n,

U
n ≥m Y

n
. (3.24)

While upper-sum majorization inequalites for p = 1, . . . , K − 1 require applying the

modeling technique twice, only one step of modeling is needed when p = n. We call

this constraint row-sum majorization inequality. We refer to the relaxation (3.19)

with additional constraints (3.21) and (3.22) as diagonal relaxation and denote its

feasible set as Fdiag. The feasible set of the SDP relaxation obtained by replacing

the diagonal majorization inequality with the row-sum majorization inequality are

denoted by Frowsum. After imposing all the constraints, we obtain an SDP relaxation

which we call (mSDP). We refer to its feasible set as FmSDP.
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We next argue that Fdiag and Frowsum are proper subsets of Fd after projection.

Lemma 6 For any U ∈ SK, suppose Tr(U) ≤ 1,1ᵀU1 ≥ K, and U � 0. Then,

U = 1
K
J(K,K).

Proof For any square matrixX, we denote the vector of eigenvalues in nonincreasing

order by λ(X) Then,

K ≤ 1ᵀU1 = Tr(UJ(K,K)) ≤ λ(U)ᵀλ(J(K,K)) ≤ Kλ(U)1 ≤ K

where the second inequality is from Fan’s inequality (see Theorem 1.2.1 of [16], for

example), the third inequality is from the fact that the eigenvalues of J(1, 1) are

K, 0, . . . , 0, and the last inequality is from the conditions Tr(U) ≤ 1 and U � 0.

It follows that the eigenvalues of U are 1, 0, . . . , 0. Further, the second inequal-

ity holds at equality if and only if there exists an orthogonal matrix V such that

U = V ᵀdiag(λ(U))V and J(K,K) = V ᵀdiag(λ(J(K,K))V . Since diag(λ(U)) =

1
K
diag(λ(J(K,K)), then U = 1

K
J(K,K).

Proposition 3.3.2 projX FD ( F̄d and projX FR ( F̄d.

Proof We consider the following system
x1 + · · ·+ xn =

√
K,

x2
1 + · · ·+ x2

n = 1,

xi ≥ 0, i = 1, . . . , n.

It is clear that all the permutations of u defined as ui = 1√
K

for i = 1, . . . , K and

ui = 0 for i = K + 1, . . . , n are solutions to the system. Define w(c) ∈ Rn as

w(c)1 = c and w(c)i = 1−c
n−1

for i = 2, . . . , n. Consider the strictly concave function

g(x) =
∑n

i=1

√
xi. Observe that g(w(1)) = 1 and g(w( 1

n
)) =

√
n. By the Intermediate

Value Theorem, there exists c′ ∈ ( 1
n
, 1) such that g(w(c′)) =

√
K. By taking the

component-wise square root of w(c′), we obtain a solution x to the system that

is not a permutation of u. Define X = xxᵀ. Suppose there exists U such that
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(X,U) ∈ Fbasic and (diag(U), 0) ≥m diag(|X|). By Lemma 6, U = 1
K
J(K,K). Then,

diag(|X|) ∈ Perm(diag(U)). Moreover, diag(|X|) is not a permutation of diag(U).

Therefore, by strict concavity of g and the fact that g(Pdiag(U)) =
√
K for all

permutation matrices P ,
√
K < g(diag(|X|)) = x1 + · · · + xn =

√
K, yielding the

desired contradiction.

For Part 2, we consider the same matrix U and X described in the proof of the

first part and write them as uuᵀ and xxᵀ respectively. Suppose that they satisfy

the row-sum majorization. By row-sum majorization and the fact that U and X

are of rank 1, we have that (
∑n

i=1 ui)u ≥m (
∑n

i=1 xi)x. This implies that u ≥m x,

concluding that x is a convex combination of u and its permutations. consider the

strictly convex function h(x) = ‖x‖2. Since x is not a permutation of u and h(Pu) = 1

for all permutations P , 1 = h(u) > h(x) = 1, providing a contradiction.

We next present an illustrative example in R3 for which our SDP relaxation returns

the global optimal solution to the sparse PCA while (3.20) does not.

Example 7 For Σ =
[

4 2 2
2 1 1
2 1 1

]
and consider the following sparse PCA

maximize xTΣx

subject to ‖x‖ ≤ 1,

card(x) ≤ 2

A global optimal solution can be obtained by finding the 2×2 principal submatrix which

maximizes the leading eigenvalue. Then, the eigenvector of the optimal principal sub-

matrix gives the optimal solution to the sparse PCA and the optimum is the maximal

leading eigenvalue. It can be verified that the optimum is attained when x3 = 0 (or

x2 = 0) with optimal solution
[

2√
5

1√
5

0
]ᵀ

and the optimal value is z∗E = 5. The

optimal solution corresponding to the SDP relaxation (3.20) is

X∗D =


8/9 2/9 2/9

2/9 1/18 1/18

2/9 1/18 1/18

 = (x∗D)(x∗D)ᵀ
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where x∗D =
[

2
√

2
3

√
2

6

√
2

6

]ᵀ
. While the optimal solution satisfies the rank-1 con-

straint, the corresponding optimal value is z∗D = Tr(ΣX∗D) = 50/9 ≈ 5.556. Observe

that the optimal value of the separation problem (3.6) is 1.0541 which exceeds 1 and

it indicates that x∗D /∈ conv(F ). Furthermore, the optimal solution γ∗ =
[

2√
5

1√
5

]ᵀ
to (3.6) corresponds to the cutting plane βᵀx ≤ 1 in the original variable space where

β =
[

2√
5

1√
5

1√
5

]ᵀ
.

The corresponding cut in the matrix space is

Tr(BX) ≤ 1 (3.25)

where B = ββᵀ. In this example, the relaxation (3.20) with additional constraint

(3.25) gives the optimal value 5. On the other hand, our row-sum relaxation returns

the global optimal value z∗rowsum = 5. The corresponding optimal solution is

X∗rowsum =


4/5 1/5 1/5

1/5 1/10 0

1/5 0 1/10

 .

3.4 Preliminary computational results

In this section, we report the results of preliminary computational tests with CVX

2.1 [33] for problems of small dimension. We compare the tightness of our SDP

relaxations and of (3.20). To obtain global optimal solutions to our test problems,

we implemented an exhaustive search algorithm that compares eigenvalues of all ( n
K )

K ×K submatrices.

3.4.1 pitprops problem

pitprops [39] is one of the most commonly used problems for sparse PCA algo-

rithms. The instance has 13 variables and 180 observations.

For the sake of exposition, we report test results for the row-sum relaxation and

upper-sum relaxation in Table 3.1 and 3.2. z∗E represents the global optimal value
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Table 3.1: Optimal values and gaps closed for the test problem pitprops

K z∗E z∗D z∗rowsum Gap Closed (%) z∗mSDP Gap closed (%)

3 2.475 2.522 2.495 57.86 12.475 100.00

4 2.937 3.017 12.967 62.83 12.948 87.15

5 3.406 3.458 3.407 97.97 13.406 100.00

6 3.771 3.814 3.771 100.00 13.771 100.00

7 3.996 4.032 3.996 100.00 13.996 100.00

8 4.069 4.145 4.073 94.22 14.072 95.48

9 4.139 4.206 14.139 100.00 14.139 100.00

10 4.173 4.219 4.177 91.32 14.177 91.41

Average 88.025 Average 96.76

for the sparse PCA and z∗D represents the optimal value for SDP relaxation (3.20).

We denote the optimal value for the SDP relaxation with constraints (3.21), (3.22),

and (3.24) by z∗rowsum. The optimal value for the SDP relaxation after imposing all

the constraints is denoted by z∗mSDP . Table 3.1 shows the test results for cardinality

K = 3, . . . , 10. To measure the relative tightness of a relaxation when compared to

(3.20), we calculate “gap closed” as(
z∗D − z∗SDP
z∗D − z∗E

)
× 100.

where z∗SDP is one of z∗D, z∗rowsum, and z∗mSDP.

The output status Inaccurate/Solved indicates that CVX could not determine

the solution within the default numerical tolerance, but returned a solution using a

relaxed tolerance.

For this particular test problems, the relaxation with feasible set Frowsum reduces

the gaps of (3.20) by more than 88% and with FmSDP reduces by more than 96% on

average, returning global optimal solutions for some problems.
1”Inaccurate/Solved” CVX output
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3.4.2 Test results with randomly generated matrices

We next report test results for randomly generated covariance matrices. Random

matrices are generated as follows:

1. Choose a random integer m ∈ {1, . . . , n} for the number of nonzero eigenvalues

of the matrix by setting m = dnUe where U ∼ U(0, 1).

2. Generate m random vectors vi ∈ Rn ∼ N (0, In), i = 1, . . . ,m for rank-1 matri-

ces.

3. Generate m positive random eigenvalues λi ∼ U(0, 1), i = 1, . . . ,m.

4. Then, construct the desired random covariance matrix as Σ =
∑m

i=1 λiviv
ᵀ
i .

The tests are performed for problems with size n ∈ {4, . . . , 10} and cardinalities

K ∈ {2, . . . , bn/3c}. Note that the reported results are based on the test problems

with CVX outputs status “Solved” or “Inaccurate/Solved”. See Table 3.2. We

observe that our SDP relaxations improve the gaps of the SDP relaxation (3.20) by

more than 90% (on average).

3.5 Conclusion

Sparse principal component analysis was introduced as a way to resolve inter-

pretability issues in principal component analysis and has received considerable at-

tention by researchers in machine learning, statistics, and optimization. This problem

is known to be NP-hard and the main difficulty resides in the cardinality constraint

which allows for only a certain number of loadings to be nonzero. In this chapter,

we derive the convex hull of an optimization formulation for finding the first sparse

principal component by considering the separation problem and its dual. The convex

hull is written through a majorization inequality which can be modeled using linear

inequalities in a higher dimensional space. The majorization inequality allows us to
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Table 3.2: Test results for randomly generated covariance matrices

Average gap closed (%)

n K # Test Problems z∗rowsum z∗mSDP

4 2 100 94.993 95.459

5 2 100 94.184 96.689

6 2 100 91.454 95.163

7 2 50 88.892 93.179

7 3 50 90.285 93.086

8 2 50 88.689 92.481

8 3 20 93.434 95.053

9 2 20 87.928 94.963

9 3 20 78.115 87.835

10 2 20 75.478 85.015

10 3 20 85.036 88.827

10 4 20 77.327 81.311

Overall Average 90.180 93.559

interpret each point of the convex hull as a convex combination of points that sat-

isfy the cardinality constraint. Furthermore, we show that the relaxation obtained

by replacing the feasible set by its convex hull is a reformulation of the problem by

showing that, for any optimal solution of the relaxation that does not satisfy the

cardinality constraint, we can recover an equivalent optimal solution that satisfies

the cardinality constraint. We next study a SDP relaxation. Under the fact that

optimal solutions X can be written as xxᵀ where card(x) ≤ K, we derive cuts which

represent the natural majorization relationship between X and the sorted version of

X. In particular, we derive diagonal majorization and upper-sum majorization. Our

preliminary computational results show that the gaps of our SDP relaxation are more

than 90% (on average) smaller than those of (3.20).



77

4. Facial disjunctive programming formulation and generalized

RLT for cardinality constrained linear programming

In this chapter, we study convexification techniques for linear programs with a cardi-

nality constraint. A facial disjunctive program formulation is developed to construct

a finitely convergent cutting plane algorithm. We also use a ratio of multilinear terms

as product factors to generalize the reformulation-linearization technique (RLT) to

problems with a cardinality constraint. Using this approach we develop relaxation

schemes that converge to the convex hull of solutions when the feasible region is com-

pact. We then develop valid inequalities for the feasible set of cardinality-constrained

knapsack problems based on disjunctive equivalents of the cardinality constraint.

4.1 Introduction

We study the optimization problem:

maximize cTx

subject to Ax ≤ b (4.1)

0 ≤ x ≤ 1

card(x) ≤ K

where c ∈ Rn, A ∈ Rm×Rn, and b ∈ Rm. Observe that (4.1) is trivial when K = 1 or

K = n. Therefore, we assume that 1 < K < n. de Farias and Nemhauser [26] derived

lifted inequalities for the case where m = 1, where (4.1) is called the cardinality-

constrained knapsack problem (CCKP). They showed that CCKP is NP-hard.
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Typically, (4.1) is modeled as a 0-1 MILP by introducing auxiliary binary vari-

ables:

maximize cTx

subject to Ax ≤ b

0 ≤ x ≤ z (4.2)

1
ᵀz ≤ K

z ∈ {0, 1}n.

Although generic MILP solvers can be used to solve (4.2), it is often desirable to

construct formulations without using integer variables. Some potential benefits of

this approach are discussed in [26].

In this chapter, we model (4.1) as a facial disjunctive program. This particular

structure enables us to construct a finitely convergent cutting-plane algorithm using

the seminal work by Jeroslow [40].

4.2 Facial Disjunctive Program Formulation

4.2.1 Formulation and sequential convexification

A disjunctive set is a set of points satisfying inequalities connected by ∧ (conjunc-

tions) and ∨ (disjunctions). A disjunctive programming is an optimization problem

with linear objective whose feasible set is a disjunctive set. Any disjunctive set has

an equivalent conjunctive normal form
{
x ∈ Rn :

∧q
h=1

(∨
j∈Jh(djx ≥ dj0)

)}
. For a

given polyhedron F0, a disjunction
∨
j∈J(djx ≥ dj0) is called facial with respect to F0

if F0 ∩ {x ∈ Rn : djx ≥ dj0} is a face of F0, for all j ∈ J . A disjunctive program

is called facial if all the disjunctions of the conjunctive normal form of the feasible

set are facial with respect to F0. Balas [3, 4] showed that the convex hull of the set

F =
{
x ∈ F0 :

∧q
h=1

(∨
j∈Jh(djx ≥ dj0)

)}
can be obtained by sequentially imposing
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disjunctions in the conjunctive normal form on F0 if F is facial. That is, if we define

S0 = F0 and

Sh := conv

(
Sh−1 ∩

{
x :

∨
j∈Jh

(djx ≥ dj0)

})
.

Then Sq = conv(F ). We refer to [4] for more details about disjunctive programs.

We next reformulate (4.1) as the following optimization problem

maximize cᵀx

subject to Ax ≤ b (4.3)

0 ≤ x ≤ 1∏
j∈J

xj = 0, ∀J ∈ JK+1,

where Ji := {A ⊆ {1, . . . , n} : |A| = i} for i = 1, . . . , n.

Problem (4.3) is a facial disjunctive program because the constraint
∏

j∈J xj = 0

can be written as
∨
j∈J(xj = 0) and it is a facial constraint because the constraints

x ≥ 0 are valid for F0 = {x ∈ Rn : Ax ≤ b, 0 ≤ x ≤ 1}. In the next proposition, we

prove the equivalence of the two formulations.

Proposition 4.2.1 (4.1) and (4.3) are equivalent.

Proof Suppose that card(x) ≤ K. Then, for any choice of a set ofK+1 components

of x, there exists at least one zero component. This proves that
∏

j∈J xj = 0 for all

J ∈ JK+1. Conversely, suppose that x satisfies
∏

j∈J xj = 0 for all J ∈ JK+1 and

that card(x) > K. By choosing an index set J ∈ JK+1 in the support of x, we have∏
j∈J xj 6= 0 which yields the desired contradiction.

4.2.2 Finitely convergent cutting plane algorithm

In this section, we propose a finitely convergent cutting plane algorithm to solve

(4.1). Recall that

F0 = {x ∈ Rn : Ax ≤ b, 0 ≤ x ≤ 1},

F = F0 ∩
(⋂

J∈JK+1
{x :

∏
j∈J xj = 0}

)
.
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For each J ∈ JK+1, define FJ := {x ∈ F0 :
∏

j∈J xj = 0}. Since Fj is a union

of polyhedra, its convex hull can be obtained in a higher dimensional space using

disjunctive programming [3, 5]. Let Ā = [Aᵀ − I I]ᵀ and b̄ = [b 0 1]. For a given

polyhedron B = {x : Āx ≤ b̄}, define

P ∗J (B) = {(α, β) : α = uᵀj Ā+ u0
jej, β = u0

j b̄, uj ≥ 0,∀j ∈ J}

PJ(B) = {x : αᵀx ≤ β, ∀(α, β) ∈ P ∗J (B)}.

Suppose t ∈ conv(B \
⋃
j∈J{x : xj = 0}). Consider the following linear program:

maximize tᵀα− β

subject to (α, β) ∈ P ∗J (B) ∩ S (4.4)

where S is a normalization set. An optimal solution to (4.4) defines a face of conv(B∩⋃
j∈J{x : xj = 0}) and the corresponding inequality cuts off t. We denote the vertex

set of a polyhedron P by vert(P ).

A general cutting plane procedure to solve (4.1) is given below:

1: G = {x ∈ Rn : Ax ≤ b, 0 ≤ x ≤ 1} and t ∈ Argmax{cᵀx : x ∈ G} ∩ vert(G)

2: while card(t) > K do

3: Let J ∈ JK+1 be such that
∏

j∈J tj 6= 0.

4: Let (α, β) be an extreme point optimal solution to (4.4) with respect to t and

PJ(G).

5: G← G ∩ {x : αᵀx ≤ β}.

6: t ∈ Argmax{cᵀx : x ∈ G}.

7: end while

Algorithm 2: General cutting plane algorithm

The procedure of Algorithm 2 does not converge in finite time in general. Jeroslow

[40] developed a cutting plane algorithm for facial disjunctive programs that termi-

nates in finite time. One of the important insights of the procedure is that, one does
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not use G in the cut-generating LP, but a superset, and the facial structure of the

disjunction enables generate valid inequalities that cut off t and result in an algo-

rithm that only performs a finitely number of iterations. Following the same idea

as Jeroslow, we propose the following cutting plane algorithm. For use in this new

algorithm, we use notations analogous to those of Balas [6]. We first label those

q := |JK+1| index sets in JK+1 in a certain order ≤L:

J1 ≤L J2 ≤L . . . ≤L Jq.

One may choose the lexicographical order, for instance. In each iteration of proce-

dure, the current polyhedron G is defined by F0 intersected with a set of half spaces

corresponding to the cuts introduced so far. For j = 1, . . . , q, a cut that appears in

the definition of G is called k-cut if it was generated as a cut using the kth disjunction,∨
j∈Jk(xj = 0). Let Gk be F0 intersected by half spaces corresponding to i-cuts for

i = 1, . . . , k. We define G0 = F0. Then, the following algorithm returns an optimal

solution to (4.1) in a finite number of iterations.

1: G = {x ∈ Rn : Ax ≤ b, 0 ≤ x ≤ 1} and t ∈ Argmax{cᵀx : x ∈ G} ∩ vert(G)

2: while card(t) > K do

3: Let Jk ∈ Argmax{J ∈ JK+1 :
∏

j∈J tj 6= 0} under the order ≤L.

4: Let (α, β) be an extreme point optimal solution to (4.4) with respect to t and

PJk(Gk−1).

5: G← G ∩ {x : αᵀx ≤ β}.

6: t ∈ Argmax{cᵀx : x ∈ G}.

7: end while

Algorithm 3: Finitely convergent cutting plane algorithm

Theorem 4.2.1 Algorithm 3 finds an optimal solution to (4.1) in a finite number of

iterations.
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Proof We first prove that t is a vertex of Gk in the beginning of each iteration. If

k = q then Gk = G, and hence t is a vertex of Gk. If we assume k < q, then t does

not violate the qth constraint and hence
∏

j∈Jq tj = 0. Therefore, we have

t ∈ Gq−1 ∩

x :
∏
j∈Jq

xj = 0

 ⊆ conv

Gq−1 ∩

x :
∏
j∈Jq

xj = 0


 ⊆ Gq.

The last inclusion holds because any q-cut is valid for conv(Gq−1∩{x :
∏

j∈Jq xj = 0})

by its construction. This shows that t is a vertex ofGq−1∩{x :
∏

j∈Jq xj = 0}. Because

of the facial structure, it is also a vertex of Gq−1. Consequently, by induction, we

obtain, t is a vertex of Gk. Next, we show that t /∈ PJk(Gk−1) to conclude that

the cutting plane cuts of t. Suppose t ∈ PJk(Gk−1). Since PJk(Gk−1) ⊆ Gk and

t ∈ vert(Gk), t ∈ vert(PJk(Gk−1)). This implies that t satisfies kth disjunction and it

produces the desired contradiction. It remains to show that only a finite number of

iterations is needed to obtain an optimal solution. To show this, we only need to prove

that there are only finitely many k-cuts for k = 1, . . . , q. To use induction, consider

first k = 1. Since a 1-cut is generated by solving a linear program constructed from the

disjunction
∨
j∈J1

(xj = 0) together with G0 = F0, all the possible 1-cuts correspond

to the vertices of P ∗J1
(B)∩ S. Since this feasible set is independent of iteration steps,

there exist only finitely many 1-cuts. Now assume that the number of i-cuts is finite

for i = 1, . . . , k − 1. A k-cut is obtained by the disjunction
∨
j∈Jk(xj = 0) together

with Gk−1. Since the number of i-cuts are finite for i = 1, . . . , k − 1 after a sufficient

number of iterations, Gk−1 will no longer be updated and a k-cuts will be obtained

as a vertex of PJk(Gk−1). Thus, there are only finitely many k-cuts. This shows that

the algorithm is finitely convergent.

4.3 Generalized Reformulation-Linearization Technique

4.3.1 Barycentric coordinates

Definition 4.3.1 Let P be a polytope. Real valued functions bv : P → R, v ∈ v(P )

are called barycentric coordinates if
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1. (non-negativity) bv(x) ≥ 0, v ∈ v(P ), x ∈ P ,

2. (partition of unity)
∑

v∈v(P ) bv(x) = 1, x ∈ P ,

3. (linear precision)
∑

v∈v(P ) bv(x) · v = x.

In short, barycentric coordinates are the coefficients of a convex combination of

vertices of P that can be used to obtain x ∈ P .

Example 8 (Barycentric coordinates for the hyper cube in Rn) It is easy to

show that n-dimensional unit cube has 2n vertices, each of which corresponds to a

subset of J = {1, . . . , n}. Let vA =
∑

i∈A ei. Then {vA | A ⊆ J} is the vertex set of

the hypercube. It is easy to show that barycentric coordinates are

bvA(x) =
∏
i∈A

xi
∏
i∈J\A

(1− xi).

Barycentric coordinates are identical to the multipliers used in reformulation-linearization

technique [64] of level-n.

Warren [70] developed explicit barycentric coordinates for general convex sets.

4.3.2 Inclusion certificates

Tawarmalani [67] defined the concept of inclusion certificates as a probability mea-

sure. We use a restricted definition in the context of disjunctive programming. Let

Π1, . . . ,Πp be convex sets. Suppose W is such that
⋃p
i=1 Πi ⊆ W ⊆ conv(

⋃p
i=1 Πi).

For any x ∈ W , a p-tuple of functions (b1(x), . . . , bp(x)) is called an inclusion certifi-

cate if there exist vi(x) ∈ Πi, i = 1, . . . , p such that bi(x) ≥ 0, and bi(x), i = 1, . . . , p

are barycentric coordinates of conv{v1(x), . . . , vp(x)}. Barycentric coordinates form

a special case of inclusion certificates where each Πi is either the empty set or a

singleton. In general, inclusion certificates are not unique.

Example 9 Let Π1 = {x ∈ R2
+ : x2 = 0} and Π2 = {x ∈ R2

+ : x1 = 0}. It is clear

that conv(
⋃2
i=1 Πi) = R2

+. For any x ∈ R2
+, we define bi(x) = xi

x1+x2
, i = 1, 2 and
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v1(x) = (x1 + x2, 0) and v2(x) = (0, x1 + x2). It is clear that
∑n

i=1 bi(x) = 1 and

bi(x) ≥ 0. Moreover,

b1(x)v1(x) + b2(x)v2(x) =
x1

x1 + x2

(x1 + x2, 0) +
x2

x1 + x2

(0, x1 + x2) = (x1, x2) = x.

Thus, (b1(x), b2(x)) is an inclusion certificate.

For m = 1, . . . , n and J ∈ Jm, define ΠJ = {x ∈ Rn
+ : xj = 0, j /∈ J}. Observe

that
⋃
J∈Jm ΠJ = {x ∈ Rn : card(x) ≤ m}.

Proposition 4.3.1 Define bJ(x) =
∏

j∈J xj∑
J∈Jm

∏
j∈J xj

. Then ({bJ(x) : J ∈ Jm}) is an

inclusion certificate for
⋃
J∈Jm ΠJ .

Proof Define vJ(x) by

(vJ(x))i =

 0 if i /∈ J

xi + 1
m

∑
k/∈J xk if i ∈ J.

Let J i
m = {J ∈ Jm : i ∈ J}. Observe that each term of∑

J∈J i
m

∏
j∈J\{i}

xj
∑
k/∈J

xk (4.5)

is of the form
∏

j∈I xj where I ∈ Jm \ J i
m. For any I ∈ Jm \ J i

m, I can be written

as (I \ {h}) ∪ {h} for h ∈ I. Let Jh = (I \ {h}) ∪ {i}. Then Jh ∈ J i
m and

∏
j∈I xj =

(
∏

j∈Jh\{i} xj)xh. This shows that
∏

j∈I xj is one of the terms of (4.5). Since any h ∈ I

be chosen, there are m = |I| identical terms that can be found in (4.5). This shows

that ∑
J∈J i

m

∏
j∈J\{i}

xj
∑
k/∈J

xk = m
∑

J∈Jm\J i
m

∏
j∈J

xj.
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Therefore,

∑
J∈J i

m

bJ(x)(vJ(x))i =
∑
J∈J i

m

∏
j∈J xj∑

J∈Jm
∏

j∈J xj

(
xi +

1

m

∑
k/∈J

xk

)

=

(
1∑

J∈Jm
∏

j∈J xj

) ∑
J∈J i

m

{∏
j∈J

xj

(
xi +

1

m

∑
k/∈J

xk

)}

=

(
1∑

J∈Jm
∏

j∈J xj

)∑
J∈J i

m

xi
∏
j∈J

xj +
1

m

∑
J∈J i

m

∏
j∈J

xj
∑
k/∈J

xk


= xi

(
1∑

J∈Jm
∏

j∈J xj

)∑
J∈J i

m

∏
j∈J

xj +
1

m

∑
J∈J i

m

∏
j∈J\{i}

xj
∑
k/∈J

xk


= xi

(
1∑

J∈Jm
∏

j∈J xj

)∑
J∈J i

m

∏
j∈J

xj +
∑

J∈Jm\J i
m

∏
j∈J

xj


= xi

(
1∑

J∈Jm
∏

j∈J xj

) ∑
J∈Jm

∏
j∈J

xj = xi

This shows that
∑

J∈J bJ(x)vJ(x) = x.

Inclusion certificates play an important role in disjunctive programming because,

by specifying inclusion certificates and the corresponding vertex points of each dis-

junction, each point in the convex set can be specified. We first introduce a repre-

sentation of the convex hull of a disjunctive set. Let Πi, i = 1, . . . , p be convex sets.

It follows from the definition of convex hull that

C := conv

(
p⋃
i=1

Πi

)
= conv


x :

x =
∑p

i=1 λixi

xi ∈ Πi, ∀i = 1, . . . , p∑p
i=1 λi = 1

λi ≥ 0


.

Balas [5] proved that, in the case where each Πi is a polyhedron, the closed convex

hull can be represented as a projection of a higher dimensional polyhedron. For

general sets Πi, we have the same result.



86

Proposition 4.3.2 Define

C ′ :=


x :

x =
∑p

i=1 zi,

zi ∈ λiΠi, ∀i = 1, . . . , p∑p
i=1 λi = 1,

λi ≥ 0, ∀i = 1, . . . , p


.

Then C ′ is convex and C ′ = C.

Proof Consider a convex combination x =
∑p

i=1 αixi ∈ C. That is, we have xi ∈ Πi,

αi ≥ 0, and
∑p

i=1 αi = 1. Define λi = αi and zi = αixi. Then
∑p

i=1 zi =
∑p

i=1 αixi =

x,
∑p

i=1 λi =
∑p

i=1 αi = 1, and λi = αi ≥ 0. Moreover, zi = αixi ∈ αiΠi because

xi ∈ Πi. This shows that C ⊆ C ′. Conversely, let x ∈ C ′ so that there exist zi

and λi ≥ 0 such that
∑p

i=1 λi = 1, zi ∈ λiΠi, and x =
∑p

i=1 zi. Let I = {i =

1, . . . , p : λi 6= 0}. Define xi := zi
λi

for i ∈ I. Then xi ∈ Πi. Observe that for i /∈ I,

zi = 0 because zi ∈ 0 · Πi. Therefore, x =
∑p

i=1 zi =
∑

i∈I zi =
∑

i∈I λixi. Thus

x ∈ conv(
⋃
i∈I Πi) ⊆ conv(

⋃p
i=1 Πi) = C.

Theorem 4.3.1 Let (b1(x), . . . , bp(x)) be an inclusion certificate with vertex points

vi(x), i = 1, . . . , p for
⋃p
i=1 Πi. Then

C = C̄ := {x : bi(x)vi(x) ∈ bi(x)Πi, i = 1, . . . , p} .

Proof Since (b1(x), . . . , bp(x)) is an inclusion certificate, vi(x) ≥ 0 and
∑p

i=1 vi(x) =

1. By setting λi = bi(x) and zi = bi(x)vi(x), we can show that C̄ ⊆ C ′. We next show

that C ⊆ C̄. By definition, for any x ∈ C, vi(x) ∈ Πi. Thus, bi(x)vi(x) ∈ bi(x)Πi for

any i = 1, . . . , p and hence x ∈ C̄. Since C = C ′, we have C ⊆ C̄ ⊆ C ′ = C and thus

C = C̄.

The above theorem shows that a specific choice of inclusion certificate is enough

to describe all points in the convex hull.
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4.3.3 Convexification using generalized RLT

Tawarmalani [67] proved that inclusion certificates of disjunctive set can be used

as product factors for convexifying a compact disjunctive set under some technical

conditions. Based on the inclusion certificates in Proposition 4.3.1, we develop a

generalized reformulation-linearization technique. Recall that

bJ(x) =

∏
j∈J xj∑

I∈JK

∏
j∈I xj

, J ∈ JK

are inclusion certificates for x ∈ Rn
+ with support

⋃
I∈JK ΠI .

The generalized reformulation-linearization technique is as follows:

Step 1. Reformulation Step: Multiply all the constraints for LP by bJ(x), J ∈

JK . In doing so, a list of rational inequalities is obtained.

Step 2. Linearization Step: For each i = 1, . . . , n, linearize the rational inequal-

ities by substituting new variables yJ for bJ(x) and new variables y(i, J) for

bJ(x)xi . Set y(i, J) = 0 if i /∈ J . Impose additional constraints
∑

J∈JK yJ = 1∑
j∈J∈JK y(j, J) = xj, j ∈ N

Call the resulting polyhedron Y .

Step 3. Projection Step: Project Y onto the space of x-variables. Call the result-

ing polyhedron X.

Theorem 4.3.2 X = conv(F ).

Proof We first show that X ⊇ conv(F ). Since X is a polyhedron (hence convex),

it suffices to show that X ⊇ F . Let x0 ∈ F and hence card(x0) ≤ K. Define

y0
J = bJ(x0), y0(j, J) = bJ(x0)x0

j , j ∈ J ∈ JK .
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Define y(J) = [y(1, J) . . . y(n, J)] and y0(J) = [y0(1, J) . . . y0(n, J)]. Suppose

LP = {x : Dx ≤ d}. Then Y = {(x, y(J), yJ : J ∈ JK) : Dy(J) ≤ dyJ}. It suffices

to show that (x0, y0(J), y0
J : J ∈ JK) ∈ Y . Observe that

Dy0(J) = DbJ(x0)x0 ≤ bJ(x0)d = dy0
J .

Thus, X ⊇ conv(F ).

We next show that X ⊆ conv(F ) Let ΠJ = LP ∩ {x : xj = 0, j /∈ J} and define

C1 =


x :

x =
∑

J∈JK zJ ,

zJ ∈ λJΠJ , J ∈ JK∑
J∈JK λJ = 1,

λJ ≥ 0, J ∈ JK


,

Notice that C1 deals with all generic forms of zJ and λJ where y(J) and yJ are a

special case. Therefore, X ⊆ C1. By Balas’ lifting theorem [5], C1 = conv(
⋃
J∈JK ΠJ).

Therefore, X ⊆ conv(F ).

4.4 Valid inequalities for cardinality constrained knapsack problem

In this section, we derive valid inequalities for the feasible set of the CCKP:

maximize cᵀx

subject to aᵀx ≤ b (4.6)

0 ≤ x ≤ 1,

card(x) ≤ K

where c, a, x ∈ Rn and b ∈ R. We let F be the feasible set of (4.6), LPS be its

linear relaxation and PS = conv(F ) to be notationally consistent with [26]. Given

any disjoint index sets I, J and any set P ⊆ Rn, we define P (I, J) = P ∩ {x : xI =

0, xJ = 1}. de Farias and Nemhauser [26] proved that CCKP is NP-hard and derived

valid and facet-defining inequalities for PS in the original space of variables. They

used the notion of cover and cover inequality to derive these inequalities. Even though
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they presented various explicit forms for facet-defining inequalities, many others are

yet to be identified.

We propose a procedure to create a valid inequality for F directly from another

valid inequality for F . Under certain conditions, the procedure can be shown to

generate a facet-defining inequality from a different facet-defining inequality. This

enables us to construct hierarchies of facet-defining inequalities and to build families

of facet-defining inequalities for PS.

Given any vector x, we denote its ith largest component by x[i]. If
∑K

i=1 a[i] ≤ b.

Then, the cardinality constraint is redundant and (4.6) is a standard continuous

knapsack problem. For this reason, we make the following assumption.

Assumption 3
∑K

i=1 a[i] > b.

4.4.1 Preprocessing

It is easy to show that an optimal solution to CCKP has at most one fractional

component. It is also clear that if ci ≥ cj, ai ≤ aj, and x∗j 6= 0, then x∗i = 1. When

ci ≥ cj and ai ≤ aj we say that i is preferred over j and we denote it by i � j. We

refer to i1 � · · · � ik as a preference chain and define k to be the length of the chain.

We list some properties of preference chains

1. If i� j and x∗j > 0, then x∗i = 1.

2. If i� j and x∗i < 1, then x∗j = 0.

3. If there exist at least K indices that are preferred to j, then x∗j = 0.

Example 10 Consider the following CCKP

maximize 2x1 + 3x2 + x3 + 4x4

subject to 10x1 + 5x2 + 4x3 + x4 ≤ 7

card(x) ≤ 2

0 ≤ x ≤ 1.
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We observe that c4 > c2 > c1 > c3 and a1 > a2 > a3 > a4. Thus, 4 � 2 � 1 and

4� 3. This proves that x∗1 = 0. Furthermore, since x = 0 is not an optimal solution,

x∗4 > 0. If x∗4 is fractional (< 1) then all other components of optimal solution must

be zero. By projecting the original problem onto x4-space, we obtain a trivial optimal

solution x∗4 = 1 since a4 ≤ b, yielding a contradiction to the fact that x∗4 is fractional.

Thus, x∗4 = 1. After projecting the problem over the space with x4 = 1 and x1 = 0,

the CCKP reduces to
maximize 3x2 + x3

subject to 5x2 + 4x3 ≤ 6

card(x) ≤ 1

0 ≤ x ≤ 1.

4.4.2 Two-term disjunction method: δ-inequalities and its variants

Proposition 4.4.1 For m = 0, 1, . . . , K, card(x) ≤ K if and only if

card(xI) ≤ m ∨ card(xN\I) ≤ K −m− 1

for all I ⊆ N .

Proof Suppose card(x) ≤ K and assume that card(xI) > m and card(xN\I) >

K − m − 1 for some I ⊆ N . Since cardinality is integer, card(xI) ≥ m + 1 and

card(xN\I) ≥ K −m. It follows that card(x) = card(xI) + card(xN\I) ≥ K + 1. This

contradicts the fact that card(x) ≤ K.

Conversely, suppose card(xI) ≤ m or card(xN\I) ≤ K −m− 1 for all I ⊆ N and

assume by contradiction that card(x) ≥ K + 1. Then there exists an index set I0

such that I0 ⊆ supp(x) and |I0| = m + 1 where supp(x) represents the set of indices

i with xi 6= 0. Then card(xN\I0) ≥ K −m yields the desired contradiction.

Thus, for a fixed I ⊆ {1, . . . , n}, we can consider the disjunction to represent F

as shown in Table 4.1. Let AI and BI be the sets corresponding to the disjunct 1 and
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Table 4.1: Two-term disjunction for F

Disjunct 1 Disjunct 2

cardinality constraint card(xI) ≤ m card(xN\I) ≤ K −m− 1

knapsack inequality
∑

j∈N ajxj ≤ b
∑

j∈N ajxj ≤ b

box constraints
xi ≤ 1, ∀i = 1, . . . , n

−xi ≤ 0, ∀i = 1, . . . , n

xi ≤ 1, ∀i = 1, . . . , n

−xi ≤ 0, ∀i = 1, . . . , n

2 respectively. For an index set I and a positive integer k, define akI as

akI :=

 (aI)[1] + · · ·+ (aI)[k] if k ≤ |I|∑
j∈I aj if k > |I|.

For an index set I ⊆ N , the cardinality constraint card(xI) ≤ m can be re-

laxed into the linear inequality
∑

j∈I xj ≤ m. Furthermore, for any valid inequality∑
j∈I fjxj ≤ f0, it is easy to show that

∑
j∈I fjxj ≤ min{f0, f

m
I } is implied by∑

j∈I xj ≤ m and 0 ≤ xj ≤ 1 for j ∈ I. Consequently, disjunct 1 can be relaxed

without the use of a cardinality constraint as

∑
j∈I xj ≤ m∑
j∈N ajxj ≤ b

xi ≤ 1, ∀i = 1, . . . , n

−xi ≤ 0, ∀i = 1, . . . , n.

Let RAI be the set corresponding to the relaxation. Therefore, any valid inequality

for RAI can be expressed as∑
j∈I

(αA + βAaj + δAi − εAi )xj +
∑
j∈N\I

(βAaj + δAi − εAi )xj ≤ αAm+ βAb+
∑
i∈N

δAi

where all the multipliers are nonnegative.
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Similarly, disjunct 2 can be relaxed without the use of a cardinality constraint as

∑
j∈N\I xj ≤ K −m− 1∑
j∈N ajxj ≤ b

xi ≤ 1, ∀i = 1, . . . , n

−xi ≤ 0, ∀i = 1, . . . , n.

Any valid inequality for RBI can be expressed as∑
j∈I

(βBaj+δ
B
i −εBi )xj+

∑
j∈N\I

(αB+βBaj+δ
B
i −εBi )xj ≤ αB(K−m−1)+βBb+

∑
i∈N

δBi .

Therefore, based on the given disjunction, we have a generic form of valid in-

equalities for PS ⊆ conv(RAI ∪RBI) whose coefficients are solutions to the following

system of equations:
αA + βAaj + δAi − εAi = βBaj + δBi − εBi , j ∈ I

βAaj + δAi − εAi = αB + βBaj + δBi − εBi , j ∈ N \ I

αAm+ βAb+
∑

i∈N δ
A
i = αB(K −m− 1) + βBb+

∑
i∈N δ

B
i .

We pay particular attention to the case where m = 0 since card(xI) = 0 implies

that card(xN\I) ≤ K and this enables us to add extra inequality
∑

j∈N\I xj ≤ K which

strengthen the relaxation. More generally, consider the disjunction
∨m
p=0(card(xI) =

p) for card(xI) ≤ m. We can add
∑

j∈N\I xj ≤ K − p in the set of inequalities of

the disjunct card(xI) = p to strengthen the relaxation. The resulting inequality is

clearly valid for PS. We will show that it produces a strong valid inequality under

some technical conditions.

The following application of the disjunctive argument produces a valid inequal-

ity for PS from another valid inequality for PS without considering the knapsack

inequality defining CCKP. When we start from a facet-defining inequality, the result-

ing valid inequality may be another facet-defining inequality under some technical

conditions.

Theorem 4.4.1 Suppose that ∑
j∈N

fjxj ≤ f0 (4.7)
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is a valid inequality for PS. Let J be a subset of N such that |J | = K and
∑

j∈J fj <

f0. Define δ = f0 −
∑

j∈J fj. Let

T (J) = {j ∈ N : fj ≤ fJ},

H(J) = N \ (J ∪ T (J))

where fJ = min{fj : j ∈ J}. Then∑
j∈H(J)

fjxj +
∑

j∈J∪T (J)

(fj + δ)xj ≤ f0 + (K − 1)δ (4.8)

is a valid inequality for PS.

Proof We derive (4.8) using disjunctive arguments. We denote x = (xH(J), xJ , xT (J))

where xA consists of components of x whose indices belong to A. From the cardinality

constraint, we consider the disjunction

card(xH(J)) ≤ 0 ∨ card(xJ∪T (J)) ≤ K − 1. (4.9)

We use (4.9) instead of the cardinality constraint. We will show that (4.8) is valid for

both the disjuncts PS ∩{x : card(xH(J)) ≤ 0} and PS ∩{x : card(xJ∪T (J)) ≤ K− 1}.

First, consider PS ∩ {x : card(xH(J)) ≤ 0}. Then, together with the condition∑
j∈J∪T (J) fjxj ≤

∑
j∈J fj, we have∑

j∈J∪T (J)

(fj + δ)xj =
∑

j∈J∪T (J)

fjxj + δ
∑

j∈J∪T (J)

xj ≤
∑
j∈J

fj +Kδ = f0 + (K − 1)δ.

Since card(xH(J)) = 0,
∑

j∈H(J) fjxj = 0. Thus we conclude that (4.8) is valid for

PS ∩ {x : card(xH(J)) ≤ 0}.

On the other hand, consider PS ∩ {x : card(xJ∪H(J)) ≤ K − 1}. The inequality

defining the disjunct shows that
∑

j∈J∪T (J) xj ≤ K − 1 and hence
∑

j∈J∪T (J) δxj ≤

(K − 1)δ. Adding this inequality to (4.7) yields (4.8).

We call (4.8) a δ-inequality with respect to (4.7). Starting from the knapsack in-

equality,k which is trivially valid for PS, one can sequentially apply Theorem 4.4.1

to obtain many valid inequalities for PS.
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We next present a result that describes when a δ-inequality is facet-defining. For

A ⊂ J ∪ T (J) and i ∈ H(J) such that |A| = K − 1 and fi +
∑

j∈A fj ≥ f0, we define

v(i,A) := eA +
b−

∑
j∈A fj

fi
ei.

Suppose m ∈ Argmin{fj : j ∈ J} and define M := {j ∈ N : fj = fm}. It is clear

that M ⊆ J ∪ T (J). Consider the following sets:

V 1
J = {e(J\M)∪B : B ⊆M, |B| = |J ∩M |},

V 2
J =

{
v(i,A) : A ⊂ J ∪ T (J), |A| = K − 1, fi +

∑
j∈A fj ≥ f0

}
,

VJ = V 1
J ∪̇ V 2

J .

We next argue that VJ is the set of vertices of PS on the face induced by the δ-

inequality.

Theorem 4.4.2 Define FJ = PS∩{x : x satisfies (4.8) at equality}. Then ext(FJ) =

VJ .

Proof We first show that ext(FJ) ⊆ VJ . Since the δ-inequality is valid for PS,

it defines a (possibly empty) face of PS. Therefore, ext(FJ) ⊆ vert(PS). Suppose

v ∈ ext(FJ). Then ∑
j∈H(J)

fjvj +
∑

j∈J∪T (J)

(fj + δ)vj = f0 + (K − 1)δ. (4.10)

We consider two cases. Assume first that
∑

j∈N fjvj = f0. Subtracting this relation

from (4.10) shows that
∑

j∈J∪T (J) vj = K−1. Since v contains at most one fractional

component, vJ∪T (J) is binary. Then, vH(J) 6= 0 because∑
j∈H(J)

fjvj =
∑
j∈N

fjvj −
∑

j∈J∪T (J)

fjvj ≥ f0 −

(∑
j∈J

fj − fm

)
= δ + fm > 0.

Hence card(vH(J)) = 1. Pick i ∈ H(J) and A ⊆ J∪T (J) such that |A| = K−1, vi 6= 0,

and fivi +
∑

j∈A fj = f0. Hence vi =
f0−

∑
j∈A fj

fi
. Therefore, v = eA +

f0−
∑

j∈A fj

fi
ei =

v(i,A) ∈ VJ . Assume second that
∑

j∈N fjvj < f0. Then, since v satisfies (4.8) at

equality,

0 >
∑
j∈N

fjvj − f0 = δ

K − 1−
∑

j∈J∪T (J)

vj

 .
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This shows that
∑

j∈J∪T (J) vj > K − 1 and hence vJ∪T (J) carries all the cardinality of

v. Then,

f0 + (K − 1)δ =
∑

j∈H(J)

fjvj +
∑

j∈J∪T (J)

(fj + δ)vj =
∑

j∈J∪T (J)

(fj + δ)vj ≤ f0 + (K − 1)δ.

The last inequality holds at equality only if
∑

j∈J∪T (J)(fj +δ)vj =
∑

j∈J(fj +δ). This

is equivalent to stating that∑
j∈J∪T (J)

fjvj = (sum of K largest fjs in {fj : j ∈ J ∪ T (J)}).

Therefore, vj = 1 for all j ∈ (J \M)∪B where B ⊆M and |B| = |J ∩M |. Therefore,

v = e(J\M)∪B ∈ VJ .

We next prove that ext(FJ) ⊇ VJ . It suffices to show that any point in Vj is a

vertex of PS that satisfies (4.4.1) at equality. For A and i where v(i,A) is well-defined,

v(i,A) is a vertex of PS because v(i,A) has cardinalityK, contains at most one fractional

component and satisfies∑
j∈N

fj(v
(i,A))j =

∑
j∈A

fj + fi

(
b−

∑
j∈A fj

fi

)
= f0.

This shows that v(i,A) is a vertex of PS. Moreover, v(i,A) satisfies the δ-inequality at

equality because∑
j∈H(J)

fj(v
(i,A))j+

∑
j∈J∪T (J)

(fj+δ)(v
(i,A))j =

∑
j∈A

(fj+δ)+fi

(
b−

∑
j∈A fj

fi

)
= f0+(K−1)δ.

Consider now any point e(J\M)∪B,∑
j∈N

fj(e(J\M)∪B)j =
∑

j∈(J\M)∪B

fj =
∑
j∈J

fj −
∑

j∈J∩M

fm +
∑
j∈B

fm

=
∑

j∈J fj − |J ∩M |fm + |B|fm =
∑

j∈J fj = f0 − δ < f0.
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Since it has cardinality K, it is a vertex of PS. For the δ-inequality,∑
j∈H(J)

fj(e(J\M)∪B)j +
∑

j∈J∪T (J)

(fj + δ)(e(J\M)∪B)j =
∑

j∈J∪T (J)

(fj + δ)(e(J\M)∪B)j

=
∑

j∈(J\M)∪B

(fj + δ) =
∑
j∈J

(fj + δ)−
∑

j∈J∩M

(fj + δ) +
∑
j∈B

(fj + δ)

=
∑
j∈J

(fj + δ)−
∑

j∈J∩M

(fm + δ) +
∑
j∈B

(fm + δ)

=
∑
j∈J

fj +Kδ − |J ∩M |(fm + δ) + |B|(fm + δ) = b− δ +Kδ = f0 + (K − 1)δ

Thus, ext(FJ) = VJ .

Corollary 8 (4.8) is facet-defining if and only if VJ contains n affinely independent

vectors.

Proposition 4.4.2 If min{fj : j ∈ H(J)} − fm < δ then (4.8) is not facet-defining.

Proof Let mH = Argmin{fj : j ∈ H(J)} and hence fmH
− fm < δ. Let v ∈ VJ .

If v ∈ V 1
J then it is clear that vmH

= 0. We next consider v ∈ V 2
J . Assume by

contradiction that vmH
> 0. Since v ∈ V 2

J , fmH
+
∑

j∈A fj ≥ f0 for some A ⊆ J∪T (J)

with |A| = K − 1. Then

fmH
− fm ≥ f0 −

∑
j∈A

fj − fm ≥ f0 −
∑

j∈J\{m}

fj − fm = δ,

which yields a contradiction. Therefore, vmH
= 0. If there exists n affinely inde-

pendent points in VJ , then the facet-defining inequality corresponding to VJ should

be xmH
≥ 0, which inequality (4.8) is not. Hence there does not exist n affinely

independent points in VJ . This shows that (4.8) is not facet-defining.

Proposition 4.4.3 Let m2 ∈ Argmin{fj : j ∈ J \ {m}}, MH ∈ Argmax{fj : j ∈

H(J)}, and mT ∈ Argmin{fj : j ∈ T (J)}. Suppose fmT
< fm. If fMH

− fm − fm2 −

fmT
< δ then (4.8) is not facet-defining.
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Proof Let v ∈ VJ . Since fmT
< fm, vmT

= 0 if v ∈ V 1
J . Suppose v ∈ V 2

J and assume

that vmT
= 1. Then there exists i ∈ H(J) and A ⊆ J ∪ T (J) with mT ∈ A such that

fi +
∑

j∈A fj ≥ f0. Hence

f0 ≤ fi +
∑

j∈A\{mT }

fj + fmT

≤ fMH
+

∑
j∈J\{m,m2}

fj + fmT

= fMH
+
∑
j∈J

fj − fm − fm2 + fmT

= fMH
+ f0 − δ − fm − fm2 + fmT

.

Therefore, fMH
− fm − fm2 + fmT

≥ δ, which contradicts the assumption. Hence

vmT
= 0. This shows that (4.8) is not facet-defining.

The following result is obtained by considering m = 1 in the disjunctive argument.

Proposition 4.4.4 Suppose K ≥ 2. Let (4.7) be a valid inequality for PS. Let

J ⊆ N be such that |J | = K and
∑

j∈J fj < b. Let δ = f0 −
∑

j∈J fj. Let j∗ ∈

Argmax{fj : j ∈ N} and define β by

β =

 max{fj : j ∈ T (J)} if T (J) 6= ∅

0 otherwise.

Suppose j∗ ∈ J and fj∗ − β ≥ δ. Then∑
j∈H(J)∪{j∗}

fjxj +
∑

j∈J∪T (J)\{j∗}

(fj + δ)xj ≤ f0 + (K − 2)δ (4.11)

is valid for PS.

Proof Consider the following disjunction for the cardinality constraint:

card(xH(J)∪{j∗}) = 0 ∨ card(xH(J)∪{j∗}) = 1 ∨ card(xJ∪T (J)\{j∗}) ≤ K − 2. (4.12)

The first two disjuncts can be written as card(xH(J)∪{j∗}) ≤ 1. The negation of (4.12)

is therefore

card(xH(J)∪{j∗}) ≥ 2 ∧ card(xJ∪T (J)\{j∗}) ≥ K − 1,
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which is equivalent to card(x) ≥ K + 1. Hence (4.12) is equivalent to the cardinality

constraint. For convenience, we denote the sets that represent the three disjuncts by

A,B, and C respectively.

We first consider PS ∩A. Since card(xH(J)∪{j∗}) = 0, card(xJ∪T (J)\{j∗}) ≤ K and

hence
∑

j∈J∪T (J)\{j∗} xj ≤ K, we have that∑
j∈J∪T (J)\{j∗}

fjxj ≤
∑
j∈J

fj − fj∗ + β = f0 − δ − fj∗ + β ≤ f0 − 2δ.

Therefore,

∑
j∈H(J)∪{j∗}

fjxj +
∑

j∈J∪T (J)\{j∗}

(fj + δ)xj =
∑

j∈J∪T (J)\{j∗}

fjxj + δ

 ∑
j∈J∪T (J)\{j∗}

xj


≤ f0 − 2δ +Kδ = f0 + (K − 2)δ.

Next, from disjunct PS ∩ B, we have that card(xJ∪T (J)\{j∗}) ≤ K − 1. It follows

that
∑

j∈J∪T (J)\{j∗} δxj ≤ (K − 1)δ and∑
j∈J∪T (J)\{j∗}

fjxj ≤
∑
j∈J

fj − fj∗ = f0 − δ − fj∗ .

We also have that
∑

j∈H(J)∪{j∗} fjxj ≤ fj∗ . Therefore,∑
j∈H(J)∪{j∗}

fjxj +
∑

j∈J∪T (J)\{j∗}

(fj +δ)xj ≤ fj∗+f0−δ−fj∗+(K−1)δ = f0 +(K−2)δ.

Finally, we consider PS ∩ C. From the cardinality constraint of the disjunct, we

have that ∑
j∈J∪T (J)\{j∗}

xj ≤ K − 2.

Adding a multiple of this inequality to (4.7), we obtain that (4.11) is valid for PS∩C.

Proposition 4.4.4 can be generalized based on the number of largest coefficients J

contains.
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Proposition 4.4.5 Let m ∈ {1, . . . , K}. Let (4.7) be a valid inequality for PS.

Without loss of generality, assume that f1 ≥ f2 ≥ · · · ≥ fn. Let J ⊆ N be such that

|J | = K and
∑

j∈J fj < b. Let δ = f0 −
∑

j∈J fj. Define

β1 =

 max{fk : k ∈ T (J)} if |T (J)| ≥ 1

0 otherwise

For j ≥ 2, let

βj =

 max{fk : k ∈ T (J) \ {1, . . . , j − 1}} if |T (J)| ≥ j

0 otherwise

Suppose {1, . . . ,m} ⊆ J and
∑m

j=i+1 fj −
∑m−i

j=1 βj ≥ (m − i)δ for i = 0, . . . ,m − 1.

Then ∑
H(J)∪{1,...,m}

fjxj +
∑

j∈J∪T (J)\{1,...,m}

(fj + δ)xj ≤ f0 + (K −m− 1)δ (4.13)

is valid for PS.

Proof We omit the proof because it is similar to that of Proposition 4.4.4.

Example 11 Consider CCKP with K = 3 and knapsack inequality

12x1 + 6x2 + 4x3 + 2x4 + 2x5 ≤ 19.

We first consider the knapsack inequality itself as a valid inequality of PS. Choosing

J = {1, 3, 4}, we have H(J) = ∅, T (J) = {5}, and δ = 1. Set J contains 1 and we

compute that f1 − β1 = f1 − f5 = 10 > δ. Hence we can apply Proposition 4.4.5 to

obtain that

12x1 + 6x2 + 5x3 + 3x4 + 3x5 ≤ 20 (4.14)

is valid for PS. This inequality is facet-defining for PS but cannot be obtained using

Proposition 4.4.1. Moreover, (4.14) is stronger than the δ-inequality 13x1 + 6x2 +

5x3 + 3x4 + 3x5 ≤ 21 because x1 ≤ 1 is valid for PS. Consider (4.14) as a valid
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inequality for PS. We can apply Proposition 4.4.5 with J = {1, 4, 5}. In this case,

δ = 2 and β1 = 0. Further, f1 − β1 = f1 = 12 ≥ δ = 2. Hence the resulting valid

inequality is

12x1 + 6x2 + 5x3 + 5x4 + 5x5 ≤ 22. (4.15)

This inequality is facet-defining for PS and stronger than the δ-inequality, 14x1 +

6x2 + 5x3 + 5x4 + 5x5 ≤ 24. Further (4.15) cannot be obtained using δ-method.

We next derive valid inequalities directly from the knapsack constraint
∑n

j=1 ajxj ≤

b that defines CCKP.

Proposition 4.4.6 Suppose K ≥ 2. Define m ∈ Argmin{
∑n

j=n−t+1 aj : b − a1 <∑n
j=n−t+1 aj < b, t = 1, . . . , K − 1}. Assume that there exists j ≤ n − m such

that aj +
∑n

k=n−m+1 ak < b and let j∗ ∈ Argmax{aj : aj +
∑n

k=n−m+1 ak < b}. Let

J = {j∗, n−m+ 1, . . . , n} and δ = b−
∑

j∈J aj. Also assume that b+ δ ≤ aj∗. Then(
aj∗

δ + aj∗

)
a1x1 +

∑
j∈(N\{1})\(J\{j∗})

ajxj +
∑

j∈J\{j∗}

(aj + δ)xj ≤ b+ (K − 2)δ (4.16)

is valid for PS.

Proof For any x ∈ vert(PS), if x1 = 0, we only need to consider the inequality∑
j∈(N\{1})\(J\{j∗})

ajxj +
∑

j∈J\{j∗}

(aj + δ)xj ≤ b+ (K − 2)δ (4.17)

in PS({1}, ∅). Since 1 /∈ J , by Proposition 4.4.4, (4.17) is valid for PS({1}, ∅).

Suppose x1 = 1 and assume K ≥ 3. Then
∑

j∈N\{1} ajxj ≤ b − a1. By Proposi-

tion 4.4.4, ∑
j∈(N\{1})\(J\{j∗})

ajxj +
∑

j∈J\{j∗}

(aj + δ)xj ≤ b− a1 + (K − 3)δ

is valid for PS(∅, {1}). Thus(
aj∗

δ + aj∗

)
a1x1 +

∑
j∈(N\{1})\(J\{j∗})

ajxj +
∑

j∈J\{j∗}

(aj + δ)xj

=
aj∗a1

δ + aj∗
+

∑
j∈(N\{1})\(J\{j∗})

ajxj +
∑

j∈J\{j∗}

(aj + δ)xj

≤ aj∗a1

δ + aj∗
+ b− a1 + (K − 3)δ ≤ b+ (K − 2)δ.
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If x1 = 1 andK = 2, by constructionm = 1 and J = {j∗, n}. Hence δ = b−a∗j−an > 0

and a1 + an > b. This shows that xn is fractional and hence x satisfies the knapsack

constraint at equality. That is, xn = b−a1

an
. Therefore,(

aj∗

δ + aj∗

)
a1x1 +

∑
j∈(N\{1})\(J\{j∗})

ajxj +
∑

j∈J\{j∗}

(aj + δ)xj

=

(
aj∗

δ + aj∗

)
a1 + (an + δ)

b− a1

an
=

a1a
∗
j

b− an
+

(b− a1)(b− a∗j)
an

=
a1a

∗
jan + (b− a1)(b− a∗j)(b− an)

an(b− an)
= b+

b(a1 + an − b)(a∗j + an − b)
an(b− an)

≤ b

= b+ (K − 2)δ.

Now suppose x1 is fractional and K ≥ 2. We consider the following disjunction

for the cardinality constraint:

card
(
x(N\{1})\(J\{j∗})

)
≤ 0 ∨ card

(
xJ\{j∗}

)
≤ K − 2.

We denote the above disjuncts by A, and B respectively.

We first consider the disjunct PS ∩ A. Observe that card(x(N\{1})\(J\{j∗})) = 0

implies that card(xJ\{j∗}) ≤ K − 1. Thus, we have that
∑

j∈J\{j∗} ajxj ≤
∑

j∈J aj −

aj∗ = b − δ − aj∗ and
∑

j∈J\{j∗} xj ≤ K − 1. Since x1 is fractional, x satisfies the

knapsack inequality at equality. That is,

a1x1 +
∑

j∈J\{j∗}

ajxj = b.

Hence

a1x1 = b−
∑

j∈J\{j∗}

ajxj = δ + aj∗ .

Therefore, (
aj∗

δ + aj∗

)
a1x1 +

∑
j∈(N\{1})\(J\{j∗})

ajxj +
∑

j∈J\{j∗}

(aj + δ)xj

= aj∗ +
∑

j∈J\{j∗}

ajxj + δ
∑

j∈J\{j∗}

xj

≤ aj∗ + b− δ − aj∗ + (K − 1)δ = b+ (K − 2)δ.
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Next, we consider PS ∩ B. Since the knapsack inequality is valid, we have that∑
j∈N ajxj ≤ b. The disjunct constraint imposes that

∑
j∈J\{j∗} xj ≤ K − 2. Hence(

aj∗

δ + aj∗

)
a1x1 +

∑
j∈(N\{1})\(J\{j∗})

ajxj +
∑

j∈J\{j∗}

(aj + δ)xj

≤ a1x1 +
∑

j∈(N\{1})\(J\{j∗})

ajxj +
∑

j∈J\{j∗}

(aj + δ)xj ≤ b+ (K − 2)δ. (4.18)

Example 12 Consider CCKP with n = 5, K = 2, and knapsack inequality

30x1 + 27x2 + 10x3 + 7x4 + 4x5 ≤ 32.

Let J = {2, 5}. Then, δ = 1. Inequality (4.16) takes its form

405

14
x1+27x2+10x3+7x4+5x5 ≤ 32 ⇐⇒ 405x1+378x2+140x3+98x4+70x5 ≤ 448.

The above inequality is facet-defining for PS.

4.4.3 Derivation of known inequalities for the literature

In this section, we derive some inequalities introduced in [26] using our disjunctive

arguments.

Proposition 4.4.7 (Theorem 2, [26]) The inequality

∑
j∈N

max

{
aj, b−

K−1∑
i=1

ai

}
xj ≤ b (4.19)

is valid for PS.

Proof We recall the assumption that a1 ≥ · · · ≥ an and
∑K

i=1 ai > b. If aj +∑K−1
i=1 ai ≥ b for all j ∈ N , then (4.19) is nothing but the knapsack inequality.

Hence here we assume that there exists j ∈ N such that aj +
∑K−1

i=1 ai < b. Define

α = b −
∑K−1

i=1 ai. Since
∑K

i=1 ai > b, then aK > α. We first define an index j∗ as

follow:

j∗ = min {j : aj < α, j ∈ N} .
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Let A = {1, . . . , j∗ − 1}. Consider the following disjunction on the cardinality con-

straint:

(card(xA) ≤ K − 1) ∨ (card(xN\A) ≤ 0)

⇐⇒
K−1∨
k=0

(card(xA) = k) ∨ (card(xN\A) = 0).

For every k = 0, . . . , K − 1, consider the disjunct card(xA) = k and the corre-

sponding disjunct for PS. For any vertex x of PS, we have that card(xN\A) ≤ K−k.

Then
j∗−1∑
i=1

ajxj +
n∑

i=j∗

αxj ≤
k∑
i=1

aj + α(K − k)

=
K−1∑
i=1

aj −
K−1∑
i=k+1

aj + α(K − k)

= b− α−
K−1∑
i=k+1

aj + α(K − k)

≤ b− (K − k − 1)(aK−1 − α) ≤ b.

For the disjunct card(xN\A) = 0,

j∗−1∑
i=1

ajxj +
n∑

i=j∗

αxj =

j∗−1∑
i=1

ajxj ≤
n∑
i=1

ajxj ≤ b.

Therefore, (4.4.7) is valid for PS.

Proposition 4.4.8 (Theorem 3, [26]) Let α = b−
∑n

j=n−K+2 aj and suppose an−K+

an−K+1 − an ≤ α. Then ∑
j∈N

max{aj, α}xj ≤ αK (4.20)

is valid for PS.

Proof Define j∗ := Argmin{j : aj ≤ α, j ∈ N} and denote A = {1, . . . , j∗− 1} and

B = {j∗, . . . , n}. We consider the following disjunction for the cardinality constraint:

(card(xA) ≤ 0) ∨
K−1∨
k=0

(
card(xN\A) = k

)



104

Consider further the case where a vertex x of PS satisfies the first disjunct card(xA) =

0. Then card(xB) ≤ K and hence
∑

j∈A ajxj + α
∑

j∈B xj = α
∑n

j=j∗ xj ≤ αK.

Consider the second case where x satisfies card(xB) = k for some k = 0, . . . , K−1.

Then
∑

j∈A ajxj ≤ b−
∑n

j=n−k+1 aj and
∑

j∈B xj ≤ k. Moreover, for any j ≥ n−K+2,

α− aj ≥ an−K + an−K+1 − an − aj ≥ 0.

Therefore, ∑
j∈A

ajxj + α
∑
j∈B

xj ≤ b−
n∑

j=n−k+1

aj + αk

= b−
n∑

j=n−K+2

aj +
n−k∑

j=n−K+2

aj + αk

≤ α + α(K − k − 1) + αk = αK.

Observe that Proposition 4.4.8 does not require the condition α < a1 which is imposed

in Theorem 3 of [26]. The condition α < a1 implies that max{a1, α} = a1 and hence

it is consistent with [26]. When α ≥ aj for j ≥ n−K + 2, (4.20) is still valid for PS.

4.4.4 Derivation of the δ-inequality via lifting

In this subsection, we derive (4.8) using lifting arguments. We first relabel the

indices of J as n1, . . . , nK so that fn1 ≥ · · · ≥ fnK
. Consider the following valid

inequality ∑
j∈J

(fj + δ)xj ≤ f0 + (K − 1)δ

⇐⇒
K∑
j=1

(fnj
+ δ)xnj

≤ f0 + (K − 1)δ

for PS(N \ J, ∅) where
∑

j∈J fj < f0 and δ = f0 −
∑

j∈J fj.

For some k ∈ N \ J , we want to find gk such that
K∑
j=1

(fnj
+ δ)xnj

+ gkxk ≤ f0 + (K − 1)δ (4.21)
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is valid for PS(N \ (J ∪ {k}), ∅).

The lifting function is

Ψ(z) = min

f0 + (K − 1)δ −
∑K

j=1(fnj
+ δ)xnj

:

∑
j∈N fjxj ≤ f0 − z

x ∈ [0, 1]n

card(x) ≤ K − 1


= f0 + (K − 1)δ −max


∑K

j=1(fnj
+ δ)xnj

:

∑K
j=1 fnj

xnj
≤ f0 − z

x ∈ [0, 1]n

card(x) ≤ K − 1

 .

Proposition 4.4.9 z ≤ Ψ(z).

Proof Consider the feasible set of the maximization problem in the definition of

Ψ(z). Any x in the set satisfies
∑K

j=1 xnj
≤ K−1 because of the cardinality constraint.

It follows that
K∑
j=1

(fnj
+ δ)xnj

=
K∑
j=1

fnj
xnj

+ δ
K∑
j=1

xnj
≤ f0 − z + δ(K − 1)

Therefore, we have that Ψ(z) ≥ f0 + (K − 1)δ − (f0 − z + δ(K − 1)) = z.

It is easy to verify that if gk satisfies gkxk ≤ Ψ(fkxk) for all xk ∈ [0, 1] then (4.21)

is valid for PS(N \ (J ∪ {k}), ∅). Therefore, the lifted inequality

K∑
j=1

(fnj
+ δ)xnj

+ fkxk ≤ f0 + (K − 1)δ (4.22)

is valid for PS(N \ (J ∪ {k}), ∅).

Next, we pick a variable xi other than xn1 , . . . , xnK
, and xk. We want to find gk

such that
∑K

j=1(fnj
+ δ)xnj

+ fkxk + gixi ≤ f0 + (K − 1)δ is valid for PS(N \ (J ∪

{k, i}), ∅).
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The lifting function is

Ψ(z) = min

f0 + (K − 1)δ −
∑K

j=1(fnj
+ δ)xnj

− fkxk :

∑
j∈N fjxj ≤ f0 − z,

x ∈ [0, 1]n,

card(x) ≤ K − 1


= f0 + (K − 1)δ

−max


∑K

j=1(fnj
+ δ)xnj

+ fkxk :

∑K
j=1 fnj

xnj
+ fkxk ≤ f0 − z,

x ∈ [0, 1]n,

card(x) ≤ K − 1

 .

Note that Ψ(0) = 0. It is obvious that Ψ(z) ≥ z and hence
∑K

j=1(fnj
+ δ)xnj

+fkxk +

fixi ≤ f0 + (K − 1)δ is valid for PS(N \ (J ∪ {k, i}), ∅). Iterating this process, we

obtain that ∑
j∈J

(fj + δ)xj +
∑
j∈N\J

fjxj ≤ f0 + (K − 1)δ

is valid inequality for PS.

4.5 New valid inequalities via lifting

Consider the valid inequality ∑
j∈J

fjxj ≤ f0 − δ

for PS(N \ J, ∅). By the cardinality constraint,∑
j∈J∪T (J)

fjxj ≤ f0 − δ. (4.23)

is valid for PS(N \ (J ∪ T (J)), ∅).

For k /∈ J ∪ T (J), we need to find gk such that∑
j∈J∪T (J)

fjxj + gkxk ≤ f0 − δ.
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is valid for PS(N \ (J ∪ T (J) ∪ {k}), ∅). The lifting function here is

Ψ(z) = min

f0 − δ −
∑

j∈J∪T (J) fjxj :

∑
j∈N fjxj ≤ f0 − z

x ∈ [0, 1]n

card(x) ≤ K − 1


= f0 − δ −max


∑

j∈J∪T (J) fjxj :

∑
j∈J∪T (J) fjxj ≤ f0 − z

x ∈ [0, 1]n

card(x) ≤ K − 1

 .

Letm ∈ Argmin{fj : j ∈ J} and assume 0 < z ≤ δ+fm. Notice that
∑

j∈J fj−fm
is an upper bound of

∑
j∈J∪T (J) fjxj and eJ−m :=

∑
j∈J ej − em achieves its optimal

value. Moreover, this solution is feasible because card(eJ−m) = K − 1 and∑
j∈J∪T (J)

fje
J−m
j =

∑
j∈J

fj − fm = f0 − δ − fm ≤ f0 − z.

This shows that Ψ(z) = f0 − δ − (f0 − δ − fm) = fm.

Suppose δ + fm ≤ z ≤ f0. We have∑
j∈J

fj − fm = f0 − δ − fm ≥ f0 − z.

This shows that there exists x0 with cardinality K − 1 such that
∑

j∈J∪T (J) fjx
0
j =

f0 − z and hence

max


∑

j∈J∪T (J)

fjxj :

∑
j∈J∪T (J) fjxj ≤ f0 − z

x ∈ [0, 1]n

card(x) ≤ K − 1

 = f0 − z.

Therefore we obtain

Ψ(z) = f0 − δ − (f0 − z) = z − δ

for δ + fm ≤ z ≤ f0. If z > f0 the problem is infeasible and therefore Ψ(z) = ∞.

Thus, we have

Ψ(z) =



0 z ∈ (−∞, 0]

fm z ∈ (0, δ + fm]

z − δ z ∈ [δ + fm, f0]

∞ z ∈ (f0,∞).
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Figure 4.1.: Ψ(z) and its linear under-estimator for (4.23)

It is clear that fm
δ+fm

z ≤ Ψ(z). It follows that fm
δ+fm

fkxk ≤ Ψ(fkxk). We conclude

that gk = fm
δ+fm

fk is a valid lifting coefficient. We obtain

∑
j∈J∪T (J)

fjxj +
fmfk
δ + fm

xk ≤ f0 − δ

or equivalently,

(δ + fm)
∑

j∈J∪T (J)

fjxj + fmfkxk ≤ (δ + fm)(f0 − δ)

is a valid inequality for PS(N \ (J ∪ T (J) ∪ {k}), ∅).

Define f (1) by f
(1)
j = fj for j ∈ J ∪ T (J) and f

(1)
k = fmfk

δ+fm
. Next, for i /∈

(J ∪T (J)∪{k}), we need to find gi such that
∑

j∈J∪T (J) f
(1)
j xj +f

(1)
k xk+gixi ≤ f0−δ

is a valid inequality for PS(N \ (J ∪ T (J) ∪ {k, i}), ∅). Consider the lifting function

Ψ(z):
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Ψ(z) = min

f0 − δ −
∑

j∈J∪T (J) f
(1)
j xj − f (1)

k xk :

∑
j∈N f

(1)
j xj ≤ f0 − z

x ∈ [0, 1]n

card(x) ≤ K − 1


= f0 − δ

−max


∑

j∈J∪T (J) f
(1)
j xj + f

(1)
k xk :

∑
j∈J∪T (J) f

(1)
j xj + f

(1)
k xk ≤ f0 − z

x ∈ [0, 1]n

card(x) ≤ K − 1

 .

Let L be the set of indices in J ∪ T (J) ∪ {k} for the (K − 1)-largest f (1)
j s. Suppose

0 < z ≤ f0−
∑

j∈L f
(1)
j . Then eL :=

∑
j∈L ej is feasible for the maximization problem

because card(eL) = K − 1 and∑
j∈J∪T (J)

f
(1)
j (eL)j + f

(1)
k (eL)k =

∑
j∈L

f
(1)
j ≤ f0 − z.

By the maximality of L, the maximum is
∑

j∈L f
(1)
j and hence

Ψ(z) = f0 − δ −
∑
j∈L

f
(1)
j .

For f0 −
∑

j∈L f
(1)
j ≤ z ≤ f0, we observe that

∑
j∈L f

(1) ≥ f0 − z. This shows that

there exists x0 such that ∑
j∈J∪T (J)

f
(1)
j x0

j + f
(1)
k x0

k = f0 − z.

Hence we have Ψ(z) = f0 − δ − (f0 − z) = z − δ. Therefore, we have

Ψ(z) =



0 z ∈ (−∞, 0]

f0 − δ −
∑

j∈L f
(1)
j z ∈ (0, f0 −

∑
j∈L f

(1)
j ]

z − δ z ∈ [f0 −
∑

j∈L f
(1)
j , f0]

∞ z ∈ (f0,∞).

Figure 4.2 shows the graph of the lifting function and a linear under-estimator.
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Figure 4.2.: Ψ(z) and its linear under-estimator for Proposition 4.5.1

Thus, we have that Ψ(z) ≥
(
f0−δ−

∑
j∈L f

(1)
j

f0−
∑

j∈L f
(1)
j

)
z. Therefore, we have

gi =
f0 − δ −

∑
j∈L f

(1)
j

f0 −
∑

j∈L f
(1)
j

fi

is a valid lifting coefficient. We obtain the following valid inequality for PS(N−\(J∪

T (J) ∪ {k, i}, ∅):

∑
j∈J∪T (J)

f
(1)
j xj + f

(1)
k xk +

(
f0 − δ −

∑
j∈L f

(1)
j

f0 −
∑

j∈L f
(1)
j

fi

)
xi ≤ f0 − δ.

Proposition 4.5.1 By iterating the above procedure we will obtain a valid inequality

for PS.

Example 13 Consider CCKP with n = 7, cardinality K = 4 and knapsack inequality

15x1 + 11x2 + 6x3 + 5x4 + 3x5 + 3x6 + x7 ≤ 25.

Set J = {1, 4, 5, 7} and hence T (J) = ∅ and δ = 25− (15 + 5 + 3 + 1) = 1. The seed

inequality

15x1 + 5x4 + 3x5 + x7 ≤ 24
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is valid for PS({2, 3, 6}, ∅). For variable x6, we want to find g6 such that 15x1 +5x4 +

3x5 + g6x6 + x7 ≤ 24 is valid for PS({2, 3}, ∅). We have g6 = 25−1−23
25−23

3 = 3/2. This

shows that

15x1 + 5x4 + 3x5 +
3

2
x6 + x7 ≤ 24

is valid for PS({2, 3}, ∅). For variable x3, we want to find g3 such that 15x1 + g3x3 +

5x4 + 3x5 + 3
2
x6 + x7 ≤ 24 is valid for PS({2}, ∅). We compute that g3 = 1

2
6 = 3.

This shows that

15x1 + 3x3 + 5x4 + 3x5 +
3

2
x6 + x7 ≤ 24

is valid for PS({2}, ∅). For variable x2, we want to find g2 such that 15x1 + g2x2 +

3x3 + 5x4 + 3x5 + 3
2
x6 + x7 ≤ 24 is valid for PS. We compute that g2 = 1

2
11. This

shows that

15x1 + 11
2
x2 + 3x3 + 5x4 + 3x5 + 3

2
x6 + x7 ≤ 24

⇐⇒ 30x1 + 11x2 + 6x3 + 10x4 + 6x5 + 3x6 + 2x7 ≤ 48

is valid for PS. Even though the resulting inequality is not facet-defining, it is satisfied

at equality by the following extreme points of its feasible region

(1, 0, 0, 1, 1,
2

3
, 0), (1, 0,

1

3
, 1, 1, 0, 0), (1,

2

11
, 0, 1, 1, 0, 0), (1, 0, 0, 1, 1, 0, 1).
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5. Concluding remarks

5.1 Conclusion

In this thesis, we have studied certain classes of cardinality constrained optimiza-

tion problems. We first designed a cut-generating procedure for CCLPs based on the

simplex tableau associated with a basic feasible solution of the linear relaxation. To

this end, we characterized the closed convex hull of a disjunctive relaxation of the

tableau. This disjunctive relaxation is obtained by taking K+1 non-zero components

of the basic feasible solution and imposing that the corresponding basic variables are

nonpositive. The result can be used to improve the c-max cut, a popular disjunc-

tive cut in the literature, and to generalize the E&R procedure recently developed

for complementarity problems [56]. Facet-defining inequalities for the closed convex

hull were shown to correspond to spanning trees with a special structure we call

label-connectivity. This construction enables us to design a polynomial time cut-

strengthening algorithm.

We next studied sparse PCA, which is the problem of finding a sparse eigenvector

that explains most of the variance of some data. The original optimization problem

was reformulated as a convex maximization problem and semidefinite relaxations are

introduced. The construction is based on the fact that the feasible set is permutation-

invariant. The convex hull was written through a majorization inequality that can be

modeled with a polynomial number of additional variables and linear constraints. Our

SDP relaxations were shown to be tighter than that proposed in [24] and preliminary

computational experiments showed that considerable portion of gaps remaining in

the SDP relaxation in [24] are eliminated by our SDP relaxations.

Lastly, we studied CCLPs. A facial disjunctive program reformulation was pre-

sented to take advantage of Jeroslow’s finite-convergent cutting plane algorithm [40].
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We also generalized RLT to the cardinality setting and proposed to use product fac-

tors as ratios of multilinear terms. As a special type of CCLPs, we investigated valid

inequalities for CCKPs based on disjunctions for the cardinality constraint.

5.2 Future research directions

Implementing and improving the tableau-based cut-generating procedure

While the procedure we described in Chapter 2 generates a valid inequality that

cuts off any given basic feasible solution to an LP relaxation that does not satisfy

the cardinality constraint, the convergence of the resulting cutting plane algorithm

to an optimal solution to the CCLP has not yet been studied. Further, it would

be valuable to conduct computational experiments to evaluate the strength of the

generated cutting planes. Finally, the choice of disjunctive relaxation for the tableau

depends on which K+ 1 basic variables are selected. It would be interesting to study

which choices of K+1 basic variables can be shown to be superior to others. Another

avenue of future work is to generalize disjunction we studied to one that forces m out

of K +m variables to be nonpositive.

Sparse vector recovery from an optimal matrix solution

We showed that sparse PCA can be reformulated as a convex maximization prob-

lem by verifying that a sparse vector can be recovered from a non-sparse vector so-

lution. In SDP relaxations, however, a matrix optimal solution possesses more useful

information about the global solution and returns a better objective value. There-

fore, it would be desirable to find a sparse vector that explains as much variance as

the matrix solution does. This question is closely related to sparse rank-1 matrix

recovery.
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Relaxation for optimization for multiple sparse eigenvectors

Sparse PCA aims to find a single sparse vector that explains most of the variance of

some data. In practice, it is often important to compute multiple sparse eigenvectors

that explains a majority of the total variance. Current methods to find multiple

sparse eigenvectors are mostly based on greedy or heuristic algorithms. According to

the definition of total variance explained by a set of variables in [63], we can formulate

this problem as

maximize Tr(ΣP )

subject to P = V (V ᵀV )−1V ᵀ, V =
[
v1 . . . vm

]
,

card(vi) ≤ K, i = 1, . . . ,m,

‖vi‖ = 1, i = 1, . . . ,m.

When m = 2, it can be written as

maximize
1

1− s2
[xᵀΣx+ yᵀΣy − s(xᵀΣy + yᵀΣx)]

subject to s = xᵀy,

card(x) ≤ K, card(y) ≤ K,

‖x‖ = ‖y‖ = 1

x, y ∈ Rn, s ∈ R.

One of our next goals is to design tractable convex relaxations for this formulation.

Convexification of CCKPs

In spite of its structural simplicity, little is known about the convex hull of a

CCKP. PORTA outputs for small-sized problems show that many of its facet-defining

inequalities can be derived using the two-term disjunction approaches we used in the

thesis. We plan on investigating further the polyhedral structure of CCKPs to develop

valid inequalities for its convex hull.
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