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ABSTRACT

Jensen, Daniel S. Ph.D., Purdue University, August 2016. Density-to-Potential In-
versions in Density Functional Theory. Major Professor: Adam Wasserman.

Density functional theory and many of its extensions are formally exact quan-

tum many-body theories. In practice, however, implementations of these theories use

approximations for all but the most trivial systems. We present a set of inversion

methods to numerically compute the exact potentials corresponding to given input

densities. The results of these inversions may then be used to evaluate the quality

of different density functional approximations and guide the design of new approx-

imations. The inversion methods use classical gradient-based optimization routines

that are constrained to satisfy the governing partial differential equations. Numerous

examples are given to illustrate the strengths and weaknesses of the different inversion

methods.
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1

1. Introduction

Sections 1.1-1.4 of this chapter have been adapted from the master’s thesis entitled

‘Real-space Time-domain Approach to Time Dependent Current Density Functional

Theory’ written by the author. [1]

Density functional theory (DFT) is a formally exact quantum many-body theory. It

is usually applied to electronic structure problems where the nuclei are fixed and the

electrons depend parametrically on the coordinates of the nuclei. The most pop-

ular implementation of DFT uses the Kohn-Sham auxiliary system and results in

independent-particle equations that are usually solved self-consistently. In the Kohn-

Sham approach to DFT all of the non-trivial many-body effects are placed in the

exchange-correlation functional. This work focuses on the inverse problem of DFT,

where the exchange-correlation potential for a model system is found from a given in-

put density. The results of inverse problems in DFT are often used to test approximate

exchange-correlation functionals and guide the development of new approximations.

1.1 The Quantum Many-Body Problem

The non-relativistic time-independent Hamiltonian of N electrons and K nuclei

may be written in the coordinate representation as

Ĥ →

Te

︷ ︸︸ ︷
N∑

i=1

−∆i

2
+

Tn

︷ ︸︸ ︷
K∑

n=1

−∆n

2Mn

+

Vee

︷ ︸︸ ︷
N∑

i=1

N∑

j>i

1

|ri − rj|

+

Ven

︷ ︸︸ ︷
K∑

n=1

N∑

i=1

−Zn

|ri −Rn|
+

Vnn

︷ ︸︸ ︷
K∑

n=1

K∑

n′>n

ZnZn′

|Rn −Rn′ | ,

(1.1)



2

whereMn is the mass of the nth nucleus, Zn is the charge of the nth nucleus, Rn is the

position of the nth nucleus, ri is the position of the ith electron, and ∆ = ∇
2 = ∇ ·∇

is the Laplacian. [2, Pg. 44] The first term Te is the kinetic energy of the electrons,

Tn is the kinetic energy of the nuclei, Vee is the electron-electron potential energy,

Ven is the electron-nucleus potential energy, and Vnn is the nucleus-nucleus potential

energy. Equation 1.1 and all other equations in this dissertation are written in the

system of atomic units where the unit of energy is the Hartree, which is about twice

the ionization energy of hydrogen. [3, Pg. 4]

The many-body wave function Ψ corresponding to the Hamiltonian of Eq. (1.1)

is the solution of the time-dependent Schrödinger equation

ı
∂

∂t
Ψ(x1, . . . ,xN ,R1, . . . ,RK , t) = ĤΨ(x1, . . . ,xN ,R1, . . . ,RK , t) , (1.2)

where xi = (ri, σi) and σi is the spin coordinate of the ith electron. The wave function

Ψ contains all of the information that can be known about the system at a given time

t. [4, Pg. 28] Equation 1.2 is a linear partial differential equation (PDE) with 3M+3N

spatial variables. Due to the extremely large number of variables in Eq. (1.2), direct

solution methods are usually limited to extremely small systems of four particles or

less [2, Pg. 44] or use stochastic-like techniques [5, Pg. 369].

1.2 The Born-Oppenheimer Approximation

A major reduction in the complexity of Eq. (1.2) results from separating the de-

grees of freedom of the nuclei and electrons in what is known as the Born-Oppenheimer

approximation. For simplicity we will exclude time-dependent external fields in this

introduction so that we can perform separation of variables on Eq. (1.2) and work

with just the time-independent Schrödinger equation,

ĤΨ(x1, . . . ,xN ,R1, . . . ,RK) = EΨ(x1, . . . ,xN ,R1, . . . ,RK) . (1.3)
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Equation (1.3) yields a set of eigenvalues Ek and eigenfunctions Ψk such that the

general solution can be written as

Ψ =
∑

k

ck exp
(

− ı

~
Ekt
)

Ψk, (1.4)

where the ck are determined by the initial conditions of our system. [4, Pgs. 42-44]

At the heart of the Born-Oppenheimer approximation is the assumption that the

wave function can be written as the product of a nuclear and electronic wave function

with the electronic wave function depending only parametrically on the positions of

the nuclei,

Ψ(x1, . . . ,xN ,R1, . . . ,RK) = Φ(x1, . . . ,xN ; R1, . . . ,RK)Θ(R1, . . . ,RK) , (1.5)

where variables after the semicolons are fixed parameters. Using this approximation

to replace Ψ in Eq. (1.1) we have the following pair of equations

HelecΦ(x1, . . . ,xN ; R1, . . . ,RK) =Ee(;R1, . . . ,RK)

· Φ(x1, . . . ,xN ; R1, . . . ,RK) (1.6)

and HnucΘ(R1, . . . ,RK) =EnΘ(R1, . . . ,RK) , (1.7)

where Helec is the electronic Hamiltonian

Helec →

Te

︷ ︸︸ ︷
N∑

i=1

−∆i

2
+

Vee

︷ ︸︸ ︷
N∑

i=1

N∑

j>i

1

|ri − rj|
+

Ven

︷ ︸︸ ︷
K∑

n=1

N∑

i=1

−Zn

|ri −Rn|
(1.8)

and Hnuc is the nuclear Hamiltonian

Hnuc →

Tn

︷ ︸︸ ︷
K∑

n=1

−∆n

2Mn

+Ee +

Vnn

︷ ︸︸ ︷
K∑

n=1

K∑

n′>n

ZnZn′

|Rn −Rn′ | . (1.9)
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In deriving these equations we have neglected the two terms

−Θ(R1, . . . ,RK)
K∑

n=1

1

2Mn

∆Rn
Φ(x1, . . . ,xN ; R1, . . . ,RK) and (1.10a)

−
K∑

n=1

1

Mn

∇Rn
Θ(R1, . . . ,RK) ·∇Rn

Φ(x1, . . . ,xN ; R1, . . . ,RK) (1.10b)

on the basis that they are small contributions as explained in Ref. [2, Pg. 81].

Simple justification for the Born-Oppenheimer approximation comes from the fact

that the nuclei are much more massive than the electrons, (mn/me ≈ 1839 and

mp/me ≈ 1836), and therefore move much slower on average. The result of this

approximation as seen in Eqs. (1.6) and (1.7) is that we have a clear separation of the

degrees of freedom of the electrons from those of the nuclei. In the remainder of this

document we will focus mainly on the electronic structure problem of Eq. (1.6). The

main disadvantage to using the Born-Oppenheimer approximation is that electron-

phonon couplings are neglected and their effects must be studied perturbatively when

using this approximation.

1.3 Density Functional Theory

Although the Hamiltonian in Eq. (1.8) is greatly simplified over that of Eq. (1.1)

it is still intractable due to the large number of degrees of freedom stemming from

the Vee term. There are several approaches that attack this problem by replacing this

complicated term with an effective potential Veff resulting in a Hamiltonian that is

simply a sum of one-electron Hamiltonians,

HIP →
N∑

i=1









Te

︷ ︸︸ ︷

−∆i

2
+Veff(xi; R1, . . . ,RK) +

Ven

︷ ︸︸ ︷
K∑

n=1

−Zn

|ri −Rn|









(1.11)
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where HIP is called the ‘independent-particle’ Hamiltonian.1 Some approaches, such

as the Hartree-Fock approximation, achieve this replacement by treating the term

approximately in a manner similar to the mean field theory approach of statistical

mechanics. [2, Pg. 47] Other approaches, such as DFT and some post-Hartree-Fock

methods, attempt to include all of the effects of Vee in a systematic way while still using

an independent-particle Hamiltonian. Although each approach has its advantages

and disadvantages, we choose to focus on DFT due to its ability to handle very large

numbers of electrons. It should be noted that the potential Veff in Eq. (1.11) is, in

general, a nonlocal operator that depends on the same wave function that it is acting

upon. This nonlocality in Veff leads to a nonlinear set of equations that are usually

solved self-consistently.

As mentioned above, DFT is particularly useful for solving Eq. (1.8) because it

can be used to model large finite and periodic systems. (See Ref. [6, Ch. 23] for some

examples of large systems including giant fullerenes and DNA molecules.) This is

made possible mainly by working with the particle density

n(r) =
〈Φ |n̂(r)|Φ〉
〈Φ | Φ〉 = N

∑

σ1

´

dx2 · · · dxN |Φ(r, σ1,x2, . . . ,xN)|2
´

dx1dx2 · · · dxN |Φ(x1,x2 . . . ,xN)|2
, (1.12)

where n̂(r) =
∑N

i=1 δ(r− ri) is the density operator. [6, Pg. 54] Notice that n(r) in Eq.

(1.12) only depends on 3 spatial variables in comparison with the 3N spatial variables

that the complicated many-body electronic wave function in Eq. (1.6) depends on.

(Here we are still assuming that there are N electrons.) Justification for this switch

in focus from wave function to density comes from the Hohenberg-Kohn theorems

described below.

The two Hohenberg-Kohn theorems developed in 1964 form the theoretical foun-

dation of DFT. [7] The main result of the first Hohenberg-Kohn theorem is that all

1The Ven term in Eq. (1.11) is usually called the external potential Vext in DFT and does not have
to be the electron-nucleus interaction for DFT to be valid.
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properties of a system obeying Eq. (1.6) can be found using only the ground state

density

n0 (r) =
〈Φ0 |n̂ (r)|Φ0〉

〈Φ0 | Φ0〉
, (1.13)

where Φ0 is the ground-state wave function. The main result of the second Hohenberg-

Kohn theorem is that there exists a universal functional of the density E[n] with

a global minimum equal to the exact ground-state energy for any given external

potential. The density that minimizes this functional is the exact ground state density

so by combining the two theorems we see that if we have the correct energy functional

E[n] then we have an exact theory of many-body systems appropriately named density

functional theory. [6, Sec. 6.2] That such a functional exists was clarified later in

the constrained search formulation of Levy and Lieb, which hinges on the ability to

express the density in terms of an N -electron wave function. [6, Pg. 126]

1.4 The Kohn-Sham Approach

The Hohenberg-Kohn theorems provide a theoretical foundation for DFT but they

do not describe a procedure for actually finding the functional E[n] in the second

Hohenberg-Kohn theorem. One procedure was provided by Kohn and Sham in 1965

[8] and is the reason why DFT has become such a powerful tool in electronic structure

calculations. In this approach the functional in the second Hohenberg-Kohn theorem

is written as2

E[n] = Ts[n] +

ˆ

drn(r)Ven(r) + EH[n] + Exc[n] , (1.14)

where Ts is the kinetic energy functional of a noninteracting electron gas, EH is the

classical Coulomb interaction functional

EH[n] =
1

2

ˆ

dr

ˆ

dr′
n(r)n(r′)

|r− r′| (1.15)

2This energy functional is only well-defined for periodic systems if we add the ion-ion interaction
energy functional to make the system neutral.
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and Exc is the exchange-correlation functional representing the energy from all cor-

relation effects3 and any other energy not accounted for in the other three terms.

Applying the calculus of variations to Eq. (1.14) results in the Kohn-Sham (KS)

Schrödinger-like equations,

ǫkφ
σ
k(r) =

[

−∆

2
+ V σ

eff

([
n↑, n↓

]
, r
)
]

φσ
k(r) , (1.16a)

n(r) =
∑

σ=↑,↓

n(r, σ) =
∑

σ=↑,↓

Nσ
∑

k=1

|φσ
k(r)|2 , (1.16b)

V σ
eff

([
n↑, n↓

]
, r
)
= Ven(r) + VH([n] , r) + V σ

xc

([
n↑, n↓

]
, r
)
, (1.16c)

where V σ
xc =

δExc[n↑,n↓]
δnσ is the exchange-correlation potential and

VH([n] , r) =

ˆ

dr′ n(r′)
1

|r− r′| (1.17)

is the Hartree potential. These equations are of the desired independent-electron

form shown in Eq. (1.11) but must be solved self-consistently since the potential

V σ
eff depends on the spin densities n↑ and n↓, which in turn depends on the unknown

independent-electron orbitals
{

φ↑
k

}

and
{

φ↓
k

}

. As seen in Eq. (1.16), the KS ap-

proach rests on the assumption that the true ground-state electron density can be

written as the density of an independent-electron system.4 This assumption is known

as the KS ansatz and has been proven for discretized systems. [9] If the KS ansatz

is true for a given system then the KS approach will, in principle, solve Eq. (1.6)

exactly.

The KS approach to DFT is very powerful because the exchange-correlation en-

ergy is generally a small contribution to the total energy and is independent of the

external potential Ven(r). [10] Although the exact exchange-correlation functional is

not known, hundreds of exchange-correlation approximations have been proposed and

3Exchange is just a special form of correlation stemming from the Pauli exclusion principle.
4The Kohn-Sham ansatz is often referred to in DFT literature as the noninteracting-v-
representability question.
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are readily available for inclusion in DFT programs. [11] These approximations typi-

cally treat Exc as a local or nearly local functional of the density. [6] Despite the large

number of approximate exchange-correlation functionals, there is a continual effort

to improve their accuracy, generality, and reliability to better predict the electronic

structure of matter. [10]

The KS method described above can be generalized and applied to a wider range of

problems. [6, Pg. 148] Time-dependent density functional theory (TDDFT) extends

DFT into the time domain and allows us to describe excitations. Partition density

functional theory (PDFT) and its time-dependent extension are two more general-

izations that allow us to work intuitively with fragments. These generalizations and

others often require approximations to new functionals and their corresponding func-

tional derivatives. A basic introduction to these generalizations is presented in Chs.

3-5.

1.5 Density-to-Potential Inverse Problems

In the direct problem of DFT we use an approximate exchange-correlation poten-

tial to solve the KS equations [Eq. (1.16)] for the unknown density. In the inverse

problem of DFT, the KS equations are used to find the exchange-correlation poten-

tial from a known density. This difference in input and output variables is shown

in Tab. 1.1 and leads to major differences in solution methods for the two prob-

lems. We refer to the inverse problem of DFT as a density-to-potential inversion and

the numerical methods required for solving this problem are the main focus of this

work. In this section we give a brief introduction to inverse problems and explain

how density-to-potential inversions can be used within DFT.

Inverse problems are common in science and have been central in quantum me-

chanics since its inception. Much of what we know about the structure of matter has

come from scattering experiments, [4, Pg. 278] which can be described mathemati-

cally as inverse problems. A variety of mathematical and numerical techniques exist
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Table 1.1.
Input and output of the direct and inverse DFT problems.

Problem Input Output
Direct V σ

xc n
Inverse n V σ

xc

for solving scattering problems as well as other inverse problems. [12] These methods

are often very different from the methods used for solving the direct problems due to

the inverse problems’ mathematical structure and input data.

According to Hadamard, [13] a problem is well-posed if a solution exists, it is

unique, and it depends continuously on the data. If any of the three properties listed

above are violated then the problem is ill-posed. The forward or direct problem of

DFT is well-posed thanks to the proofs mentioned in Sec. 1.3 and the usually ana-

lytic nature of the functionals in Eq. (1.14). The inverse problem of DFT can also

be well-posed for discretized systems as proven in Ref. 9 but often errors and miss-

ing information in the input density lead to the violation of Hadamard’s well-posed

conditions. In such cases special precautions must be taken in designing inversion

methods that converge to the true solution of the inverse problem.

Regularization is the general term used to describe a method for solving ill-posed

problems. Some regularization methods are as simple as stopping an optimization

according to an a posteriori parameter choice rule while others, such as total variation,

can be sophisticated and very challenging mathematical and programming exercises.

[14, Pg. 9] Often the form of regularization is chosen to penalize features known

to be incorrect based on a priori information about the solution. For a thorough

review of regularization and inverse problem theory see Refs. 14–16. The density-to-

potential inversion methods presented in this work are designed explicitly to include

regularization when needed.

By designing our inversion methods to include regularization, we are able to build

robust algorithms that do not rely on inverse crimes. The term ‘inverse crime’ is

commonly used in inverse problem theory to describe an inversion method relying
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on a cancellation of errors between the data simulation and reconstruction methods.

[16, Pg. 7] Inverse crimes are often committed in DFT inversions when the same

discretization is used for both the direct and inverse problems. Inversion methods

that rely on inverse crimes are very limiting in the number of systems that can be

studied and will likely fail when applied to experimental data.

One possible motivation for studying the inverse problem of DFT is to bench-

mark the many approximate exchange-correlation functionals mentioned in Sec. 1.4.

Benchmarking is usually done on model systems where the density is either known an-

alytically or found numerically through a direct solution of the electronic Schrödinger

equation [Eq. (1.6)]. As seen in Ch. 2, major features of the exact exchange-correlation

potential are often found to be missing in popular approximations and thus the inverse

problem can help guide the development of new approximations.

Perhaps an even more important reason to study the inverse problem of DFT

comes from its connection with the optimized effective potential (OEP) method. In

the OEP method the exchange-correlation functional is an explicit functional of the

KS orbitals and therefore an implicit functional of the density. As pointed out in

Ref. [17], the optimization procedures used in the OEP method can be adapted to

perform density-to-potential inversions and vice versa. Similarly, when TDDFT is ap-

plied to problems in quantum optimal control theory (QOCT) the resulting equations

and algorithms are very similar to the algorithms used in the time-dependent density-

to-potential inversions. These connections with the OEP method and QOCT show

that density-to-potential inversions are also important predictive tools in addition to

their use in benchmarking approximate functionals.

1.6 Overview

The preceding sections serve as a very general introduction to DFT and density-to-

potential inversions. In this section we summarize the tools and theory used through-

out the remainder of this work. A visual depiction of these tools and theory can be
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n → v Inversions

Computer Science

Numerical
Optimization

Numerical
Analysis

StabilityAccuracy

Mathematics

Inverse Problem
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Constrained
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Kohn-Sham
Equations

QOCTOEP

Figure 1.1. A tree diagram showing the tools and theory involved in
density-to-potential inversions.

seen in Fig. 1.1. We also describe the scope of the document and some properties of

our inversion algorithms that are common to all of the methods presented in Chs. 2-5.

As explained in Sec. 1.5, we are primarily concerned with finding the exchange-

correlation potentials of different target densities. Some inversion methods are also

capable of finding the value of the exchange-correlation functional evaluated at a given

target density. [17] Not all of our methods are capable of recovering this information

and it is not discussed further in this work.

We make a special effort to verify the integrity and robustness of our inversion

algorithms presented in Chs. 2-5. Our test cases are mostly noninteracting systems

because we can focus just on recovering the known external potential. These systems

may seem trivial but the inverse problems are just as difficult as the inverse problems

corresponding to interacting densities and provide great insight into the design of

inversion algorithms. We also strive to use different algorithms and grids for the

direct problems in the cases that we don’t have analytic formulas for the target

densities. This is not strictly necessary but helps avoid any reliance on inverse crimes

as described in Sec. 1.5. The numerical errors in both the inversion methods and
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the target densities used as input are also tracked carefully to avoid problems with

overfitting. In general, a great deal of numerical analysis is used throughout this work

to make sure that our inversion methods are both correct and efficient.

All of the examples in this work are one-dimensional systems for simplicity but the

formulas are written for multidimensional systems to aid future development. We use

the finite difference method for our calculations similar to the Octopus TDDFT code.

[18] The finite difference method has proven to be capable of producing distributional

solutions and other sharp features that would be difficult to find using basis sets. We

also limit our studies to spin-compensated systems and drop the spin index on most

formulas. For better agreement with common notation in DFT, we use lowercase

letters for the potentials and refer to the electron-nucleus potential as the external

potential (i.e. Ven = vext).

Chapter 2 contains a more in-depth description of the KS equations and a vari-

ety of numerical methods for solving both the direct and inverse problems of DFT.

Chapters 3-5 discuss PDFT, TDDFT, and partition time-dependent density func-

tional theory (P-TDDFT) in relation to density-to-potential inversions. We conclude

in Ch. 6 with a brief summary of the different inversion methods presented in this

work and several proposals for improving them.
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2. Inversions in Density Functional Theory

In this chapter we explore density functional theory (DFT) within the Kohn-Sham

(KS) formalism. We examine both the direct and inverse problems of DFT with a

special emphasis on the algorithms for solving the inverse problem. Two new inversion

methods based on PDE-constrained optimization and constrained variational methods

are introduced in Secs. 2.3.3 and 2.3.4. We compare and constrast the different

inversion methods using several one-dimensional model systems.

2.1 Density Functional Theory

The intent of this section is to delve deeper into the mathematical structure of

the KS equations already introduced in Sec. 1.4. Although the direct and inverse

problems of DFT share the same KS equations, there are several important differences

between them that we highlight in this section. These differences lead to very different

algorithms and convergence criteria as seen in Secs. 2.2-2.3.

The KS equations for a closed-shell system with 2N electrons can be written as

εjφj(r) =

[

−∆

2
+ vKS([n] , r)

]

φj(r), (2.1a)

n(r) = 2
N∑

j=1

∣
∣
∣φj(r)

∣
∣
∣

2

, (2.1b)

vKS([n] , r) = vext(r) + vH([n] , r) + vxc([n] , r) , (2.1c)

where the orbitals are constrained to be orthonormal:

〈φj|φk〉 = δj,k =







1 if j = k

0 otherwise

. (2.2)
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The potentials in Eq. (2.1) are defined in Sec. 1.4 and the underlined quantities are

unknown when solving the direct problem. The orbitals are usually chosen such that

their corresponding eigenvalues {εj} form the set of lowest possible eigenvalues. The

KS equations for the inverse problem of DFT

εjφj(r) =

[

−∆

2
+ vKS([n] , r)

]

φj(r), (2.3a)

n(r) = 2
N∑

j=1

∣
∣
∣φj(r)

∣
∣
∣

2

, (2.3b)

vKS([n] , r) = vext(r) + vH([n] , r) + vxc([n] , r), (2.3c)

only differ from the direct problem in the unknowns as indicated by underlining.

Equation (2.1a) is a nonlinear eigenvalue problem due to the KS potential’s density

dependence whereas Eq. (2.3a) is a linear eigenvalue problem. The inverse problem

is still nonlinear but the nonlinearity comes from the definition of the density shown

in Eq. (2.3b). This subtle difference in nonlinearity means that the mixing schemes

prevalent in numerical methods for the direct problem, (see, e.g., Sec. 2.2), are not

needed in solving the eigenvalue problem in Eq.(2.3a). Additionally, the definition

of the density in Eq. (2.3b) puts constraints on the values of the KS orbitals when

solving the inverse problem that aren’t present in the direct problem. These additional

constraints are exploited in the inversion method described in Sec. 2.3.4. Finally, the

nonlinearity in both problems makes the choice of initial guess very important as

convergence is not guaranteed in many numerical methods when poor initial guesses

are used. [5]

The KS equations apply to both finite and extended systems provided that the

appropriate boundary conditions are applied. In the direct problem of DFT the

orbitals are usually constrained to satisfy periodic or box-type (Dirichlet) boundary

conditions as dictated by the system being studied. [19] In the inverse problem the

boundary conditions only need to be correctly represented in the Laplacian and the

density constraint forces the orbitals to have the correct behavior at the boundaries.
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If boundary conditions are imposed on the orbitals in the inverse problem then it is

important that they agree with the density constraint as explained in Sec. A.1.

As mentioned in Sec. 1.5, uniqueness is a key ingredient in solving both direct

and inverse problems. Although the density in DFT is a unique quantity in both the

forward and inverse problems, the KS orbitals that it is built from are not unique. As

seen in Eq. (2.1b), the density is formed from the absolute value squared of the orbitals

and therefore the orbitals can only be unique up to a phase factor. Furthermore, any

unitary transformation of the KS orbitals will also produce the same density and

some variational methods can exploit this property to speed up convergence as seen

in Sec. 2.3.4. The potentials in Eq. (2.1c) are also a source of nonuniqueness as they

are only unique up to a constant. [9]. As seen in Sec. 2.3, most density-to-potential

inversion methods force the unknown potential to be unique by imposing restrictions

of some form.

Convergence in the direct problem of DFT is usually achieved by refining the dis-

cretization of the system by adding more basis functions, plane waves, grid points,

etc. [6] Since the potentials are usually given by analytic formulas, the KS equations

can be solved to a prescribed tolerance dependent only on the level of discretization

employed. In the inverse problem of DFT, convergence is limited by both the dis-

cretization method and the quality of the target density. Although most of the test

cases presented in this work have analytic formulas for the target densities, most tar-

get densities of real interest are not known analytically. If the numerical error present

in a given target density is not accounted for properly in a density-to-potential in-

version then overfitting becomes a problem and unphysical features develop in the

recovered potential. Examples of overfitting and convergence limits related to the

relative error of the target density are given in Sec. A.1.
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2.2 Direct-Problem Methods

A variety of numerical methods for solving the KS equations exist and can be

placed in essentially three different categories: plane waves and grid methods, local-

ized atomic-(like) orbitals, and atomic sphere methods. [6] We use the finite difference

grid method throughout this work due to its simplicity and for other reasons men-

tioned in Sec. 1.6. In this section we review several aspects of the finite difference

formulation of DFT that are necessary for solving the direct problem and also rele-

vant to some of the inverse problem methods in Sec. 2.3. A more thorough review of

the finite difference method applied to DFT can be found in Ref. 20.

The orbitals, potentials, and density in the KS equations are represented as dis-

crete points on a grid when using the finite difference method. The potentials are

diagonal in the coordinate representation and the Laplacian is a very sparse matrix

operator depending on the approximation used. An example fourth-order Laplacian

with box-type boundary conditions on a regularly spaced grid with ten points is
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, (2.4)

where h is the grid spacing. Different orders of approximate finite difference operators

can be derived using the algorithm described in Ref. 21. Custom meshes can also be

used that conform to the geometry of a given system as explained in Ref. 19. One
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disadvantage of the finite difference method applied to DFT is the lack of a variational

principle but this can be remedied using the formulation given in Ref. [22] if needed.

A variety of numerical algorithms are available for computing the potentials in

Eq. (2.1c). The Hartree potential vH shown in Eq. (1.17) is equivalent to the Poisson

equation

∆v(r) = −4πn(r) (2.5)

and has been studied extensively. The fast Fourier transform, fast multipole method,

and conjugate gradient methods are just a few of the available algorithms for com-

puting vH; a thorough review of these methods can be found in Ref. 23. Since most of

the interacting examples in this work are one-dimensional and use custom electron-

electron interaction potentials, we use direct numerical integration to compute the

interaction potential via the formula

vH([n] , r) =

ˆ

dr′ n(r′) vee (r− r′) . (2.6)

As explained in Sec. 1.4, there are many approximate exchange-correlation functionals

and corresponding potentials. The libxc library contains a wide selection of these ap-

proximations and is easily incorporated in DFT programs. [11] Exchange-correlation

approximations can also be derived for systems with custom electron-electron inter-

actions as shown in Refs. 24 and 25.

The KS equations are usually solved using sparse matrix eigenvalue solvers in

contrast to the dense solvers typically used in basis-set methods. [20] The examples in

this work use the eigs and eig banded eigenvalue solvers in the SciPy library, which

are interfaces to routines in the lapack and arpack libraries respectively. [26] These

solvers are capable of computing the eigenvalues and eigenvectors of a sparse matrix to

machine precision and are very efficient when only a few eigenvalues and eigenvectors

are needed. If the potentials used in a given calculation are exact and the solvers are

allowed to converge to machine precision then the majority of the numerical error will

come from the discretization of the Laplacian. An example of this error is shown in
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Fig. 2.1 for the ground state density of the harmonic oscillator using a second-order

approximate Laplacian. Although the majority of the error is in the central region,

Fig. 2.2 shows that the relative error is actually largest in the asymptotic regions.

The approximate finite difference operators are very accurate in regions where the

orbitals are well represented by polynomials and are less accurate in the asymptotic

region where the orbitals are dominated by exponential decay. The large relative

error is largely inconsequential for most direct DFT problems with almost no effect

on the total energies but it does play a strong role in the inverse problem as shown in

Sec. 2.3. This example also shows that the errors in most direct DFT problems are

systematic rather than random noise typical of experimental data and must also be

accounted for in the inverse problem as explained in App. A.
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Figure 2.1. The ground state density of the harmonic oscillator com-
pared to a numerical approximation using the eig banded routine
and a second-order finite difference approximation to the Laplacian
(top). The majority of the error is in the high-density central region
(bottom).
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Figure 2.2. The same densities displayed in Fig. 2.1 are displayed on
a logarithmic scale (top). The relative error in the asymptotic regions
is orders of magnitude larger than the relative error in the central
region (bottom).

The previous example of a noninteracting system only required solving one eigen-

value problem but a typical DFT calculation for an interacting system requires mul-

tiple eigenvalue solves in what is known as the self-consistent field (SCF) method.

The initial density guess for a given system is inserted into the right-hand side of

Eq. (2.1a), the eigenvalue problem is solved for a new set of orbitals, the orbitals

are inserted into Eq. (2.1b) to produce a new density, and the cycle repeats until a

convergence criterion is reached. This method is usually modified to avoid oscillating

densities by mixing the new density with previous densities via the direct inversion in

the iterative subspace (DIIS) method [27]) or some other form of mixing. [19] Often

the SCF loop is stopped when the change in density or the change in each eigenvalue

becomes smaller than a prescribed value but this does not guarantee global conver-
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gence. A more detailed analysis of numerical convergence in DFT calculations can

be found in Ref. 5.

2.3 Inverse-Problem Methods

As is the case with the direct problem, there exist an assortment of numerical

methods for solving the inverse problem of DFT each with its own set of advantages

and disadvantages. Here we review several density-to-potential algorithms, introduce

two new inversion methods, and benchmark the different schemes using a variety of

target densities. All of the methods are presented using the finite-difference method

and may include small adaptations made to convert algorithms that were originally

designed for basis-set methods. We conclude this section with a set of benchmark

density-to-potential inversions.

2.3.1 One-Orbital Formula

The one-orbital inversion formula

vKS([n] , r) =
∆φ0(r)

2φ0(r)
=

∆
√

n0(r)

2
√

n0(r)
(2.7)

can be derived simply by setting the energy to zero and solving for the KS potential

in Eq. (2.1) in terms of the ground state density n0. (We are allowed to set the

energy to zero because the potential is only unique up to a constant as explained in

Sec. 2.1.) This formula is exact for one electron or two electrons with opposite spins

and is often referred to as the bosonic or one-electron potential. [28] Although at first

glance the one-orbital formula appears somewhat trivial, it is helpful in unraveling

many of the numerical problems common to all density-to-potential algorithms and

can even serve as a useful approximation for systems with many electrons.

Although the one-orbital formula is exact for one-electron and most closed-shell

two-electron systems, it must be carefully implemented numerically to avoid spurious
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results. As seen in Sec. A.1, noisy densities can easily produce wildly inaccurate

potentials when using Eq. (2.7) and finite difference operators. Such noisy behavior

is unphysical because densities arising from the Schrödinger equation are theoretically

continuous even when generated by singular potentials. [4] The following examples

show how to appropriately smooth target densities based on the noise level before

inserting them into the one-orbital formula.

We first illustrate smoothing using the particle-in-a-box ground state density as

shown in Sec. C.1. If we take the exact ground-state density nexact
0 and add a small

amount of weighted noise generated from the standard normal distribution N(µ, σ2)

[29] according to the formula

nnoise
0 = nexact

0

[
1 + N

(
0, 1× 10−10

)]
, (2.8)

then the potential resulting from the one-orbital formula will also be noisy with

a level proportional to the number of grid points. This noise can be removed by

fitting a cubic spline to the target density weighted by the inverse of the approximate

standard deviation w = 1/(σ ∗ napprox
0 ). We implement this smoothing procedure

using the UnivariateSpline routine in the SciPy library and the results are shown

in Fig. 2.3 for a box of length 5 with varying numbers of grid points. This example

shows that smoothing is essential for dense grids with errors but not as important

on coarse grids since the derivative of the error doesn’t dominate in the one-orbital

formula as explained in Sec. A.1.

The target density in the previous example was well approximated by a cubic

spline but other target densities may need additional modifications before smoothing

is applied. In particular, exponentially decaying densities are not adequately de-

scribed by cubic splines unless they are first logarithmically transformed. We show

how this can be done using the ground-state of the harmonic oscillator with the same

weighted noise given by Eq. (2.8). In this case we take the logarithm of the noisy

density, fit this new quantity to a cubic spline using the weights w = 1/ log(1 + σ),
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Figure 2.3. The ground-state density of a particle-in-a-box is con-
taminated with weighted randomly-distributed noise (top) and then
inserted into the one-orbital formula before smoothing (default) and
after smoothing (spline) via a weighted cubic spline (bottom). The
smoothing has increasing importance as the number of grid points
is increased from 101 (left) to 501 (right) even thought the target
density’s error level is the same.

and then exponentiate the result to get the smoothed target density. The potential

produced using this logarithmic scaling before fitting is much more accurate in the

asympototic region than the potential produced with no scaling before smoothing as

seen in Fig. 2.4. We refer to this smoothing procedure later in this work as the loga-

rithmic smoothing method. Figure 2.4 also shows that even highly singular potentials

can be recovered using this method provided that the locations of zero density are

first averaged with their nearest neighbors before applying the scaling and smoothing.

As the grid is refined, the singular nature of the potentials becomes more pronounced

with this procedure.
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Figure 2.4. The ground-state density of the harmonic oscillator is con-
taminated with weighted randomly-distributed noise (top left) and
then inserted into the one-orbital formula without smoothing (de-
fault), with smoothing (spline), and with a logarithmic transform be-
fore smoothing (log spline) via a weighted cubic spline (bottom left).
The process is repeated on the right for the density of the first ex-
cited state and the distinct delta-well singularity [30] in the potential
at x = 0 is recovered.

In the previous examples we were able to correctly smooth the target densities

by having estimates of the standard deviation at each grid point. Such information

would be typical of an experimentally determined density but most of the error pat-

terns encountered in our density-to-potential inversions come from computationally

determined densities using interacting wave function methods. In these cases we can

use error estimates to compute the correct weights for the smoothing procedure. We

show how this can be done by computing the ground state density of the harmonic

oscillator using the infinite-to-finite spatial grid mapping of Ref. 31 with a scaling
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parameter of α = 2. (We purposely use a different grid to compute the target density

in order to avoid comitting an inverse crime.) We compute the target density on this

grid once with a second-order discretization of the Laplacian and 101 points, (labeled

nO(2)), and then again with a fourth-order approximate Laplacian and 201 points, (la-

beled nO(4)). These two densities are linearly interpolated to the same equally-spaced

grid shown in Fig. 2.4 and subtracted from each other to form an error estimate at

each grid point. We then apply the logarithmically scaled spline fitting procedure

described above with the approximate weights w = 1/
∣
∣log nO(2) − log nO(4)

∣
∣ and the

exact weights w = 1/
∣
∣log nO(2) − log nexact

∣
∣. The results of this calculation are dis-

played in Fig. 2.5 and show that the error pattern of the approximate target density

is far more systematic than the random noise error patterns in the previous examples.

The smoothing using approximate weights underestimates the potential at the edges

of the box because the error estimate is too small in that region. If the error esti-

mate is computed using 501 points instead of 201 points in the fourth-order density

computation then the potential is recovered correctly in the entire box. This example

illustrates the need not only for error estimates but also for the need to put bounds on

the error estimates either through computing additional error estimates or through

statistical means.

Even if the target density is correctly smoothed before applying the one-orbital

formula, the finite difference operator used to approximate the Laplacian can severely

limit the accuracy of a density-to-potential inversion. As was the case with the

spline fitting procedure described above for exponentially decaying densities, the finite

difference method performs poorly in the asymptotic region unless extra precautions

are taken. In Sec. 2.3.3 we show how the finite difference operators can be modified

to treat much of the exponential decay analytically through a scaling procedure.

Figure 2.6 shows a comparison of the one-orbital formula applied to the exact ground

state of the harmonic oscillator with and without scaling the finite difference operator.
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Figure 2.5. The ground-state density of the harmonic oscillator is
computed using an infinite-to-finite spatial grid mapping (top) and
then inserted into the one-orbital formula with both approximate and
exact scaling weights (middle). The approximate weights are com-
puted using an error estimate that tends to underestimate the error
in the asymptotic region (bottom) and leads to an underestimated
potential in that region.
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Figure 2.6. The ground-state density of the harmonic oscillator is
inserted into the one-orbital formula without scaling (default) and
with density scaling (scaled). The scaled finite difference operator
performs much better in the asymptotic region |x| > 4 and doesn’t
have problems near the edges of the box.

Although the one-orbital formula is only exact for one- or two-electron systems, it

is a remarkably good approximation for systems with large regions where the target

density is dominated by one orbital. We illustrate the power of this approximation

by applying it to a target density formed from the sum of the ground state and first

two excited states of the harmonic oscillator. The harmonic potential is correctly

recovered in the asymptotic region where most of the density comes from the second

excited state as seen in Fig 2.7. The potential in the central region is not correct but it

is a smooth approximation and is the same order of magnitude as the correct potential.

Furthermore, the cost of the this approximation is simply one sparse matrix-vector

multiplication followed by an array division, which is negligible in comparison to the

many sparse matrix-vector multiplications typically needed to solve the eigenvalue

problem in Eq. (2.3a).

The examples in this section demonstrate how the convergence criteria for DFT

inverse problems are different from those of the direct problem. These examples and
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Figure 2.7. The densities of the ground-state and first two excited
states of the harmonic oscillator (top) are summed and inserted into
the one-orbital formula with density scaling (scaled). The resulting
potential is an excellent approximation in the region |x| > 2 where
the second excited state density is the dominant contribution to the
total density.

Sec. A.1 clearly show that the size and location of the relative error in the target den-

sity is the main constraint on the accuracy of the potential resulting from a density-

to-potential inversion. In many cases the target density must first be smoothed before

performing an inversion and its standard deviation is the key ingredient in performing
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this smoothing operation correctly. The accuracy of the finite difference operators

also puts a strict limit on the quality of the recovered potential as some operators

simply aren’t good approximations in certain regions of rapidly changing density. Fi-

nally, the computational cost of the inverse problem using the one-orbital formula is

much cheaper in these examples than the forward problem and can serve as a useful

approximation for many-electron systems.

2.3.2 Previous Methods

A number of density-to-potential inversion methods have been developed besides

the one-orbital inversion formula described in Sec. 2.3.1. In this section we look at the

iterative inversion method of Ref. 32 and the direct optimization method of Ref. 17. A

more complete review of the available density-to-potential inversion methods is found

in Ref. 17. The two inversion schemes described in this section are fairly representative

of the available methods and serve as useful benchmarks later in this chapter. The

target density in the remainder of this chapter is written as ñ for consistency with later

chapters and to distiguish it from the intermediate densities created in the iterative

procedures that we describe here. We also drop the KS subscript on the KS potential

vKS(r) to simplify the presentation.

The iterative inversion method of van Leeuwen and Baerends described in Ref. 32

is derived by multiplying both sides of Eq. (2.3a) by φ∗
j , summing over j, and then

dividing by the density given in Eq. (2.3b) to produce the formula

vKS(r) =
2

n(r)

N∑

j=1

φ∗
j(r)

∆

2
φj(r) + εj |φj(r)|2 . (2.9)
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This formula is then turned into an iterative scheme by placing the target density in

the denominator and iterating until convergence via the formula

vk+1
KS (r) =

2

ñ(r)

N∑

j

1

2
φk∗
j (r)∇2φk

j (r) + ǫkj
∣
∣φk

j (r)
∣
∣
2

=
1

ñ(r)

[
nk(r) vk(r)

]
=
nk(r)

ñ(r)
vk(r) , (2.10)

where k is the iteration index. This iterative scheme simply increases vk+1
KS (r) in

regions where nk(r) > ñ(r) and decreases it in regions where nk(r) < ñ(r) as seen in

the last line of Eq. (2.10). The iterations are stopped when

max
r

∣
∣
∣
∣
1− nk(r)

ñ(r)

∣
∣
∣
∣
< ǫ (2.11)

for some desired threshold ε. This scheme is sensitive to the initial potential guess

v0KS(r) and usually requires a prefactor to avoid wild potential oscillations. Refer-

ence 32 suggests choosing this prefactor by enforcing the condition

1− δ < γ
n0(r)

ñ(r)
< 1 + δ, (2.12)

where δ ≈ 0.05 and γ is the prefactor.

This iterative inversion scheme of van Leeuwen and Baerends is very easy to

implement as it only requires a partial differential equation (PDE) solver to produce

the new density nk(r) at each iteration. We do, however, make some modifications

to the original scheme by not enforcing boundary conditions on the potential and by

using the formula

vk+1
KS (r) = vk(r) + γ

nk(r)− ñ(r)

ñ(r)
(2.13)

instead of Eq. (2.10). We don’t enforce boundary conditions on the potential be-

cause many of the test cases we use recover the external potential with unknown

boundary conditions as opposed to just the exchange-correlation potential with its

known asymptotic behavior. [32] We use Eq. (2.13) instead of Eq. (2.10) because it
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still uses the same principle of increasing (decreasing) the potential in regions where

the density is too large (small) but does not need boundary conditions to function

properly. (Other modifications are also possible such as the use of an approximate

density-density response matrix to help guide the iterations.) [33] This method pro-

duces smooth potentials by construction provided that the underlying eigenvalue

solver produces smooth orbitals. The reliance on a prefactor, however, requires some

manual intervention or sophisticated selection rules to ensure convergence. Large

prefactors may result in wildly oscillating potentials that never converge while small

prefactors may produce very small potential changes that take an inordinate amount

of time to converge. Choosing a prefactor is usually not a problem for isolated inver-

sions but can become very tedious when repeatedly applying the procedure to cases

with many similar inversions such as in the creation of dissociation curves. [34]

The Wu-Yang inversion algorithm first introduced in Ref. 17 is one of the more so-

phisticated and versatile DFT inversion methods. In this inversion algorithm the Levy

constrained-search formulation of DFT is modified to produce a direct optimization

method for the KS kinetic energy density functional. The functional

Ws[v(r)] =
N∑

j=1

〈

φj

∣
∣
∣ T̂
∣
∣
∣φj

〉

+

ˆ

dr v(r) [n(r)− ñ(r)] (2.14)

is maximized to produce the optimal potential corresponding to the target density

ñ(r). This maximization is usually performed using classical optimization routines

and is very efficient because the required first derivatives (Jacobian values) are given

by the simple formula
δWs[v(r)]

δv(r)
= n(r)− ñ(r) . (2.15)

There is very little extra computational effort required to compute these deriva-

tives because the density is already computed at each iteration while computing

Eq. (2.14). The second derivatives (Hessian values) can also be computed either

through first-order perturbation theory [17] or via the discrete adjoint-method de-

scribed in Sec. 2.3.3.
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The Wu-Yang inversion algorithm was developed originally for the optimized ef-

fective potential (OEP) method of DFT and later modified for the DFT inverse

problem. [17,35] The method is efficient and robust when implemented properly but

can suffer from rounding errors as shown at the end of Sec. A.1. It can also produce

unphysical highly oscillatory potentials when an unbalanced basis set is used without

regularization. [36]

2.3.3 PDE-Constrained Optimization

The inversion schemes described in Sec. 2.3.2 rely on modifications to the KS

equations or underlying energy functionals. Such modifications are not essential in

creating DFT inversion methods as we show in this section through the use of PDE-

constrained optimization. Although conceptually simpler than many other inversion

procedures, PDE-constrained optimization can be difficult to implement due to the

large number of unknowns and and programming challenges involved in the opti-

mization procedure. In this section we give a brief introduction to PDE-constrained

optimization in the context of DFT inverse problems and address many of these chal-

lenges. We also introduce an important scaling concept that plays a critical role in

increasing the accuracy of the potential in the asymptotic regions of DFT inverse

problems.

PDE-constrained optimization applied to the DFT inverse problem amounts to a

fitting procedure in which the unknown potential is optimized until the corresponding

density matches the target density. We use the weighted least-squares cost functional

F [v] =
1

2

∥
∥
∥

√

w(r) [n([v] , r)− ñ(r)]
∥
∥
∥

2

2
(2.16)

as our measure of fitness, where the subscript 2 indicates the L2 norm and w(r)

is a positive definite weighting function. The density n([v] , r) comes from solving

Eqs. (2.3a) and (2.3b) for a given potential chosen during the optimization proce-

dure. The numerical minimization of the discretized Eq. (2.16) usually involves a
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very large number of unknown potential values and generally requires the use of

gradient/Jacobian-based optimization algorithms. [37] The derivation, programming,

and computation of these gradients, [functional derivatives of the cost functional given

by Eq. (2.16)], is the main difficulty in applying PDE-constrained optimization to the

DFT inverse problem.

We use the discrete adjoint-method to compute the cost functional derivatives

of Eq. (2.16). This method is also called the discretize-then-differentiate method

because the cost functional is first discretized and then differentiated with respect to

the potential. [38] Section B.1 contains a complete derivation of the discrete adjoint

equations for the DFT inverse problem in multiple dimensions. These derivatives are

then employed in the truncated-Newton (TN) algorithm of Ref. 39 as implemented

in the SciPy library [26] to optimize the unknown potential until a desired density

fit is found. The computational cost of computing the cost functional derivatives

via the discrete adjoint-method is roughly the same as computing the cost functional

depending on the choice of linear solver.

The PDE-constrained inversion method outlined above can also suffer from round-

ing errors similar to the Wu-Yang algorithm described in Sec. 2.3.2. These errors can

be avoided simply by weighting the densities in the asymptotic region more heavily

than the high-density regions. One possibility is to set w(r) = 1/ [ñ(r)]2 so that the

relative error is minimized instead of the absolute error. This weighting scheme in

combination with the rescaling described below allows us to accurately reproduce the

unknown potential in all regions of a given density-to-potential problem.

As mentioned in Sec. 2.3.1, the finite difference operators used to approximate the

Laplacian are not very accurate in regions where the exponential decay dominates

the behavior of the KS orbitals. The finite difference operators would be accurate

in all regions if we could apply them to the logarithm of the orbitals similar to the

logarithmic spline fitting procedure described in Sec. 2.3.1. The KS orbitals, however,
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are not positive semidefinite like the particle density so we instead write them as

φj(r) =
√

ñ(r)χj(r) and solve for the scaled orbitals {χj(r)} in the KS equations

εj
√

n(r)χj(r) =

[

−∆

2
+ v(r)

]
√

n(r)χj(r) and (2.17a)

n(r) = 2
N∑

j=1

∣
∣
∣

√

n(r)χj(r)
∣
∣
∣

2

. (2.17b)

After distributing the Laplacian and canceling common factors, Eq. (2.17a) can be

rewritten as

εjχj(r) = −1

2

[

∆
√

n(r)
√

n(r)
χj(r) + 2

∇
√

n(r)
√

n(r)
·∇χj(r) + ∆χj(r)

]

+ v(r)χj(r) . (2.18)

The scaling factor can also be written as

√

ñ(r) = exp

{
1

2
log ñ(r)

}

(2.19)

and differentiated to produce the terms

∇
√

ñ(r)
√

ñ(r)
=

1

2
∇ log ñ(r) and (2.20)

∆
√

ñ(r)
√

ñ(r)
=

1

2

[
1

2
|∇ log ñ(r)|2 +∆ log ñ(r)

]

. (2.21)

The derivatives of log ñ(r) and {χj(r)} are well approximated by the finite difference

operators described in Sec. 2.2 because they do not decay exponentially. An example

of the scaled orbitals for a system consisting of the first three orbitals of the harmonic

oscillator can be seen in Fig. 2.8.

Although it is common to enforce boundary conditions on the orbitals when solving

the KS equations, we simply let the numerical optimization routine choose the ideal

boundary conditions by modifying the potential at the edges of the simulation box.
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Figure 2.8. The first three orbitals of the one-dimensional simple har-
monic oscillator without scaling (top) and with scaling by the square
root of the molecular density (bottom).

Section A.1 shows how difficult it can be to match the true boundary conditions

of the orbitals and also the negative impact approximate boundary conditions can

have on the potential near the boundaries. This negative impact is also illustrated

in Fig. 2.9 in which the PDE-constrained optimization procedure outlined above is

applied to a target density formed from the sum of the ground state and first two

excited states of the harmonic oscillator. This example clearly shows that enforcing

approximate zero derivative boundary conditions on the scaled orbitals results in the

incorrect potential at the boundary whereas the potential is recovered correctly when

no boundary conditions are applied. If the target density happens to be produced

using artificial boundary conditions then the potential recovered when not applying

boundary conditions on the orbitals may have several incorrect values at the edge of

the simulation box as shown in some of the examples of Sec. 2.4.

2.3.4 Constrained Variational Method

The previous inversion methods described in this chapter all require the solution of

an eigenvalue problem at each iteration. In the case of small systems this is not a se-
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Figure 2.9. The potentials produced in a density-to-potential inver-
sion using the inversion method of Sec. 2.3.3 and a target density
formed from the sum of the ground state and first two excited states
of the harmonic oscillator. The potential is correct at the boundaries
when no boundary conditions are applied to the scaled orbitals (No
BCs) and incorrect when the first derivative of the scaled orbitals is
set to zero at the boundaries (χ′

j(±L) ≈ 0).

vere constraint but as the system size increases the solution of the eigenvalue problem

begins to dominate the computation. [5] Although dismissed in Ref. [17] as “difficult

to perform”, the Levy constrained-search formulation can be used directly to per-

form a density-to-potential inversion without repeatedly solving eigenvalue problems

at each iteration. In this section we show how to overcome many of the difficulties

involved in this constrained-search inversion method through the use of scaling and

regularization.

In the Levy constrained-search formulation of DFT, the noninteracting kinetic

energy is minimized subject to the constraints that the orbitals are orthonormal and



36

produce the molecular density of the real system. The functional to be minimized in

this search can be written using Lagrange multipliers as

J ({φj}) =
Norbs∑

j=1

ˆ

dr

{

|∇φj|2 + vKS(r)
[
φ2
j(r)− ñ(r)

]

+

Norbs∑

k=j

εj,k (φj(r)φk(r)− δj,k)

}

, (2.22)

where the orbitals are assumed to be real for simplicity of presentation. This ex-

pression can be used directly in a constrained numerical optimization program to

find the orbitals and KS potential for a given target density without the need to

solve an eigenvalue problem at each iteration. It does, however, suffer from the same

rounding errors involved in the Wu-Yang algorithm as it still involves a minimization

of the noninteracting kinetic energy. Furthermore, the orthonormality and density

constraints can easily lead to unphysical orbitals as they compete with one another

in the optimization.

In order to resolve the issues mentioned above, we use the scaled orbitals intro-

duced in Sec. 2.3.3 and regularize them via the expression

α

Norbs∑

j=1

ˆ

dr |∇χj(r)|2 , (2.23)

where α > 0 is the regularization parameter chosen via the discrepancy principle. [14]

The density constraint with the scaled orbitals is

Norbs∑

j=1

ˆ

dr
[
χ2
j(r)− 1

]
. (2.24)

0 = 2φαv +

(
α∑

m=1

εm,αφm +

Norbs∑

n=α

εα,nφn

)

−∆φα, (2.25)

No boundary conditions are applied to the orbitals for reasons explained in Sec. 2.3.3.
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Optimizing the noninteracting kinetic energy using the scaled and regularized

orbitals produces a set of orthonormal orbitals that are a unitary transformation

of the KS orbitals. [40] We use the ipopt library [41] to perform this constrained

minimization. The KS potential can be extracted from these orbitals by solving the

set of linear equations

{
ˆ

drφβ(r)∆φα(r) = 2

ˆ

drφβ(r)φα(r) vKS(r)

+

(
α∑

m=1

εm,αφm(r) +

Norbs∑

n=α

εα,nφn(r)

)}

(2.26)

where α, β = 1, . . . , Norbs. This linear system can be solved efficiently using a sparse

least-squares solver in which the full matrix is never explicitly created. An example

of this density-to-potential inversion procedure with two different regularization pa-

rameters is shown in Fig. 2.10 for a target density formed from the sum of the ground

state and first two excited state densities of the harmonic oscillator.

2.4 Inversion Examples

The inversion methods described in Sec. 2.3 each have strengths and weaknesses

that are best illustrated by examples. We first present several DFT inversions for

noninteracting systems in which the external potential is recovered and compared with

the exact answer. We then present density-to-potential inversions for one-dimensional

models of an atom and a molecule. Unless otherwise noted, the examples all use the

one-orbital approximation as the initial guess for the unknown potential. Table 2.1

displays the abbreviations used in this section to distiguish the different inversion

methods.
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Figure 2.10. The scaled orbitals and density of a constrained varia-
tional density-to-potential inversion with two different regularization
parameters (top). The orthonormalization constraint dominates in
the under-regularized example (right) producing wild oscillations in
the high-density region. The corresponding potentials (bottom) are
found by solving Eq. 2.26.

Table 2.1.

The labels used to identify each DFT inversion method for the inver-
sion examples of Sec. 2.4.

Inversion Method Label Description
PDE-constrained optimization PDE Sec. 2.3.3
van Leeuwen and Baerends vLB Sec. 2.3.2

Wu and Yang WY Sec. 2.3.2
Constrained Variational CV Sec. 2.3.4

2.4.1 Noninteracting Harmonic Potential Inversion

Our first inversion example is a noninteracting system of six electrons in the

harmonic potential v(x) = 1
2
x2. The target density is the sum of the ground state
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and first two excited-state densities formed from Eqs. C.6-C.8 with each orbital doubly

occupied as indicated in Eq. 2.1b. The potentials recovered from this density using

the inversion methods of Sec. 2.3 are shown in Fig. 2.11. The potential is only unique

up to a constant so we also plot the differences between the recovered and exact

potentials with the more constant differences indicating better recovered potentials.

The rounding errors in the WY algorithm’s functional dominate in the region |x| > 4

as explained near the end of Sec. A.1. The unscaled finite-difference scheme used in

the vLB method is not accurate in the region |x| > 4 and leads to an incorrect higher

curvature in that region. Both the WY and vLB methods can likely be modified to

include scaling to better match the CV and PDE methods.

2.4.2 One-Dimensional Beryllium

One-dimensional atomic and molecular models are often used in exploring DFT

because many quantities can be found exactly or to very high accuracy with lit-

tle computational effort. [33] In this section we look at a one-dimensional model of

beryllium using the exponential interaction

vexp(x) = A exp (κ |x|) , (2.27)

where A = 1.071295 and κ−1 = 2.385345. This electronic interaction was first in-

troduced in Ref. 24 as an alternative to the soft-Coulomb interaction. The tails of

this interaction are weaker than the soft-Coulomb interaction to more closely match

the shorter-ranged three-dimensional Coulomb interaction when screening is consid-

ered. Cusps are also present in this interaction in analogy with three-dimensional

Coulombic systems as seen in this and the following LiH examples.

The target density of our one-dimensional beryllium atom is computed using the

density matrix renormalization group (DMRG), where the exponential interaction

is much faster to compute. [24] This density does contain some numerical error in

the asymptotic regions so we smooth it using the logarithmic smoothing procedure
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Figure 2.11. The potentials produced in a density-to-potential inver-
sion using the inversion methods described in Sec. 2.3 and a target
density formed from the sum of the ground state and first two excited
states of the harmonic oscillator (top). The correct potential is only
unique up to a constant so we also plot the difference vapprox − vexact

(bottom) with the more constant lines being an indication of correct-
ness.

described in Sec. 2.3.1 The external potential is vext(x) = −4vexp(x) and the Hartree

potential is found using Eq. 2.6 with vee(x) = vexp(x). The KS potential is found

using the method described in Sec. 2.3.3. The exchange-correlation potential is then

found by subtracting the Hartree and external potentials from the KS potential. The

results are shown in Fig. 2.4.2 and clearly show the cusp behavior resulting from the

exponential interaction.
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Figure 2.12. The density (top) for a one-dimensional model of beryl-
lium using an exponential interaction as described in Sec. 2.4.2. The
Hartree, external, KS and exchange-correlation potentials are also
displayed (bottom).

2.4.3 One-Dimensional Lithium Hydride

In this section we consider a one-dimensional model of lithium hydride using the

exponential interaction described in Sec. 2.4.2. The external potential is vext(x) =

−vexp(x) − 3vexp(x) and the Hartree potential is again found using Eq. 2.6 with

vee(x) = vexp(x). The target density is found using the DMRG and the KS potential

is computed using the method described in Sec. 2.3.3. The densities and potentials

are shown at four separation distances in Fig. 2.13. As the molecule dissociates, the
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KS potential forms a characteristic step and peak in the internuclear region present

in similar studies. [42] These features can be seen in more detail in Fig. 2.14.
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Figure 2.13. The density and corresponding potentials for a one-
dimensional model of lithium hydride using an exponential interac-
tion. The quantities are computed at various separation distances R
to show the formation of a peak in the exchange-correlation potential
in the internuclear region at large separations.
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3. Inversions in Partition Density Functional Theory

This chapter contains work from the article entitled ‘Comment on “Application of par-

tition density-functional theory to one-dimensional models”’ written by Peter Elliott,

Adam Wasserman, Kieron Burke, and the author. [43]

3.1 Partition Density Functional Theory

Partition theory is one of several methods for partitioning the electronic density

of a system into a sum of fragment densities. [44] It was originally designed to resolve

several issues in chemical reactivity theory [45] and has since been unified with den-

sity functional theory (DFT) to calculate molecular properties of systems via DFT

calculations on isolated fragments. [43, 46] This fragment-based DFT is known as

partition density functional theory (PDFT) and is analogous to DFT in that sys-

tems of interacting fragments are mapped onto systems of noninteracting fragments

experiencing a common potential similar to how a system of interacting electrons is

mapped onto a system of noninteracting electrons in DFT. The common potential

that the noninteracting fragments feel is known as the partition potential and it is

the functional derivative of the partition energy.

Partition density functional theory has several unique features that differentiate

it from many other fragment-based density functional theories. [44] The partition po-

tential in PDFT is the same for all fragments and the resulting fragment densities are

uniquely determined by the fragmentation choice. [45] Noninteger numbers of elec-

trons are allowed in the fragments through the use of the ensemble method of Ref. 47.

These and other properties of PDFT are being used to develop new approximations

that address the limitations of current approximations within DFT. In particular,

progress is being made in resolving delocalization and static correlation errors that
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plague standard DFT calculations through the development of simple partition energy

functionals that use standard exchange-correlation functionals. [34]

In this chapter we review the basic theory of PDFT and introduce the reader

to the inverse PDFT problem. The inversion method of Ref. 46 is used to find the

partition potential and fragment occupations numbers for several one-dimensional

model systems.

3.1.1 The Direct and Inverse Problems

In PDFT the external potential vext(r) is split into a sum of fragment potentials

{vα(r)} such that

vext(r) =
∑

α

vα(r) , (3.1)

where the fragment potentials are arbitrary but usually chosen based on chemical

intuition. [44] The energy of each fragment Eα and the total fragment energy Ef are

defined as

Eα[nα] = F [nα] +

ˆ

drnα(r) vα(r) and (3.2)

Ef [nα] =
∑

α

Eα[nα] . (3.3)

Partition theory requires Ef to be minimized subject to the constraint that the frag-

ment densities add up to the correct molecular density

n(r) =
∑

α

nα(r) (3.4)

and that the fragment occupations add up to the correct number of electrons

N =
∑

α

Nα. (3.5)
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These constraints can be enforced using Lagrange multipliers and minimizing the

grand potential [48]

G = Ef +

ˆ

d3r vp(r)

(
∑

α

nα(r)− n(r)

)

− µ

(
∑

α

Nα −N

)

. (3.6)

The Lagrange multiplier µ is the chemical potential of the system and the Lagrange

multiplier vp(r) is the global partition potential. Each fragment is allowed to have

noninteger occupations as described below.

Minimization of the grand potential in Eq. (3.6) is one way to solve the PDFT

problem but it requires access to the density of the entire system at the outset.

Although there are cases where the system density is already known in advance, it is

usually found self consistently via a set of Kohn-Sham (KS)-like equations. In this

chapter we use the procedure given in Ref. 46 with the equations

ǫj,αφj,α(r) = −∆

2
φj,α(r) + vKS,f,α[nα, nα](r)φj,α(r) , (3.7a)

vKS,f,α[nα, nα](r) = vKS[nα](r) + {vext(r) + vHxc[n](r)− vKS[n](r)} , (3.7b)

= vα(r) + vp(r) + vHxc[nα](r) , and (3.7c)

nα(r) = n(r)− nα(r) . (3.7d)

The subscript ‘KS, f’ indicates an effective KS-like potential for the fragment α and

the ‘Hxc’ subscript refers to the Hartree-exchange-correlation potential vH([n] , r) +

vxc([n] , r). The fragment densities are defined according to the Perdew, Parr, Levy,

and Balduz (PPLB) ensemble formulation of DFT with

nα(r) = (1− να)npα(r) + ναnpα+1(r) (3.8)

where Nα = pα + να, pα a nonnegative integer, 0 ≤ να ≤ 1, and

F [nα] = (1− να)F [npα ] + ναF [npα+1] . (3.9)
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The functional F is the so-called universal functional

F [n] = min
Ψ→n(r)

〈Ψ|T̂ + V̂ee|Ψ〉 . (3.10)

In the direct problem of PDFT an approximate partition potential and corre-

sponding functional are usually used to compute the fragment densities and total

molecular density. [49] This approximation is additional to any DFT approxima-

tions used in the fragment calculations for the exchange-correlation functional and

corresponding potential. If the exact partition potential is known and the same

exchange-correlation approximation is used consistently in a PDFT calculation then

the resulting molecular density will be identical to a standard DFT calculation using

the same exchange-correlation approximation. [50] There are, however, some advan-

tages to using approximate partition energy functionals and Ref. 49 shows how they

can be used to avoid errors in standard DFT calculations.

Several simple one-dimensional examples of PDFT are given in Figs. 3.1-3.4 to

help illustrate how it works in practice. Figure 3.1 shows a molecular calculation of

four noninteracting electrons in the external potential vext(x) =
∑4

a=1 ṽa(x), where

ṽ1(x) =
−1.2

cosh2 (x+ 4) /1.5
, ṽ2(x) =

−1.2

cosh2 (x+ 2) /1.5
, ṽ3(x) =

−1

cosh2 (x− 2)
,

and ṽ4(x) =
−1

cosh2 (x− 4)
. (3.11)

Figures 3.2, 3.3, and 3.4 show how the external potential of the total system can be

partitioned into two, three, and four separate fragments, respectively. The resulting

fragment densities are very localized and the partition potential is attractive between

all of the fragments. The partition potential, however, will not always be attractive

as can be seen in places around the left fragments in Fig. 3.4 due to the large amount

of density overlap in that region. The partition potential and occupation numbers are

found numerically in all of these examples by way of a density-to-potential inversion

using the procedures described in Sec. 3.2.
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Figure 3.1. The molecular density (top) and external potential (bot-
tom) for a system of four noninteracting electrons in one partition.

In the inverse problem of PDFT the partition potential and fragment occupations

are recovered from a given target molecular density and choice of external potential

partitioning. This is similar to the DFT inverse problem except for the fact that the

exchange-correlation potential is also used in the PDFT problem and is an additional

unknown for interacting systems. Thus the partition potential can be found within

a given exchange-correlation approximation or using additional inversions to find the

exact exchange-correlation potentials. In this chapter we only treat noninteracting

systems in which the exchange-correlation potentials are zero for simplicity.

3.2 Inversion Algorithm

The partition potential vp(r), chemical potential µ, and occupation numbers {Nα}
are the central quantities in an inverse PDFT problem. Several methods exist to

extract these quantities as explained in Ref. 49. As mentioned earlier, we use the
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Figure 3.2. The fragment densities (top) and potentials (bottom) for
a system of four noninteracting electrons with the molecules on the
left and right in different partitions.

method of Ref. 46 to solve for these unknowns and illustrate the convergence of this

procedure with an example.

The inversion procedure begins by solving the standard DFT problem for each

isolated fragment to produce a set of densities
{

n
(0)
α

}

as an initial guess. We set the

initial partition potential v
(0)
p (r) to zero as an initial guess. The partition potential

and fragment occupations are then updated according to the formulas

v(k+1)
p (r) = v(k)p (r) +

(
vext(r)− vext

[
n(k)
]
(r)
)
and (3.12)

N (k+1)
α = N (k)

α − Γ
(
µ(k)
α − µ(k)

)
, (3.13)

where Γ is a positive constant, µ̄ is the average of the fragment chemical potentials,

and vext
[
n(k)
]
(r) is the result of a DFT inversion for the molecular density at iteration

k. The update procedure described in Eq. (3.12) ensures that the partition potential
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Figure 3.3. The fragment densities (top) and potentials (bottom) for
a system of four noninteracting electrons. The molecules on the left
and right are in separate partitions and the molecule on the right is
broken into two additional partitions.

is the same for each fragment as discussed in Ref. 43. The choice of Γ simply affects

the convergence rate of the occupation numbers.

As an example of this inversion procedure we calculate the partition potential,

occupation numbers, and chemical potential of a noninteracting system of eight elec-

trons in the potential vext(x) =
∑8

a=1 ṽa(x), where

ṽa(x) =
−1

cosh2 [x− (−10.5 + 3a)]
(3.14)

The fragment potentials are v1(x) =
∑2

a=1 ṽa(x), v2(x) =
∑4

a=3 ṽa(x), v3(x) =
∑6

a=5 ṽa(x), and v4(x) =
∑8

a=7 ṽa(x). The results of this PDFT inversion are shown

in Fig. 3.5 and the converged chemical potential is −0.578. The partition potential is

attractive in the central region and between the fragments but it is slightly repulsive

in the region |x| > 6. The convergence of the occupation numbers for two different
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Figure 3.4. The fragment densities (top) and potentials (bottom) for
a system of four noninteracting electrons. Each of the four nuclei
forms a separate partition.

Γ values is also shown in Fig. 3.5 and have the same limit. (Only the occupation

numbers for one side of the box are shown because the system is symmetric through

the origin.) It is important in this inversion method to ensure that the DFT inversion

performed at each iteration in computing vext
[
n(k)
]
(r) contains no systematic errors

because they will build up and pollute the partition potential at later iterations.
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Figure 3.5. The fragment and molecular densities (top) for a system
of eight noninteracting electrons in an external potential consisting
of eight equally spaced inverse hyperbolic cosine squared potentials
(dashed blue, middle). The converged partition potential (solid black,
middle) for this system is attractive in the region |x| < 6 and repulsive
in the region |x| > 6. The convergence of the fragment occupation
numbers (bottom) shows that the system prefers nonintegral occupa-
tion values.



54



55

4. Inversions in Time-Dependent Density Functional Theory

This chapter contains work from the article entitled ‘Numerical density-to-potential

inversions in time-dependent density functional theory’ written by Adam Wasserman

and the author. [51]

We treat the density-to-potential inverse problem of time-dependent density func-

tional theory as an optimization problem with a partial differential equation con-

straint. The unknown potential is recovered from a target density by applying a

multilevel optimization method controlled by error estimates. We employ a classi-

cal optimization routine using gradients efficiently computed by the discrete-adjoint

method. The inverted potential has both a real and imaginary part to reduce reflec-

tions at the boundaries and other numerical artifacts. We demonstrate this method

on model one-dimensional systems. The method can be straightforwardly extended

to a variety of numerical solvers of the time-dependent Kohn-Sham equations and to

systems in higher dimensions.

4.1 Time-Dependent Density Functional Theory

Time-dependent density-functional theory (TDDFT) is a formally exact theory

for time-dependent many-body systems. It uses the time-dependent density n (r, t)

as the basic variable instead of the many-body wave function. This is made possible

by the Runge-Gross theorem, which shows that for a given electronic Hamiltonian

and initial state there exists a unique mapping between the density n (r, t) and the

external potential vext (r, t) up to an arbitrary time-dependent constant. [52] The

Kohn-Sham formalism can also be applied to TDDFT in what is known as Kohn-

Sham time-dependent density functional theory.
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4.1.1 The Direct and Inverse Problems

In Kohn-Sham TDDFT we define a non-interacting system of particles moving in

an effective potential vs (r, t). The initial Kohn-Sham state Φ0 from a DFT calculation

is propagated in time via the time-dependent Kohn-Sham (TDKS) equations

ı
∂

∂t
φi (r, t) =

[

−1

2
∇

2 + vs (r, t)

]

φi (r, t) , (4.1)

where the TDKS potential is

vs (r, t) = vext (r, t) + vH (r, t) + vxc (r, t) . (4.2)

The density is then given by

ns (r, t) =
∑

i

|φi (r, t)|2 (4.3)

and is, by definition, equal to the density of the interacting system:

ns (r, t) = n (r, t) . (4.4)

The existence of the TDKS potential vs is guaranteed through the proof of Ref. [53].

The exchange-correlation portion of vs (r, t) is difficult to find because it is a functional

of the history of the density n (r, t′ < t), the initial interacting state Ψ0, and the initial

KS state Φ0. This added complication in TDDFT is currently its greatest weakness

as we still do not have a useful universal functional of time. [6, Pg. 148] Adiabatic

approximations are typically used but have varying levels of success. [54]

Time-dependent density functional theory (TDDFT) is a formally exact theory

that has found widespread use in areas where interactions are important but the direct

solution of the Schrödinger equation is too demanding. [55] The original theoretical

basis for TDDFT comes from a proof of the one-to-one mapping between a given

time-dependent density and external potential for a compatible initial interacting
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many-body state. [52] The Kohn-Sham (KS) formulation of TDDFT uses the one-to-

one mapping to define a noninteracting system that moves in an effective potential

and reproduces the density of the interacting system. The effective potential is called

the KS potential and the exchange-correlation part of this potential contains the

complicated many-body effects. The exchange-correlation potential is approximated

in all nontrivial TDDFT calculations.

The forward or direct problem in TDDFT is to find the time-dependent density

from an approximate exchange-correlation potential via the time-dependent Kohn-

Sham (TDKS) equations. [52] This forward problem is well posed in the sense of

Hadamard, [13] which means that a solution exists, it is unique, and it depends

continuously on the data. Thanks to these properties, there currently exist several

numerically accurate and stable methods for solving the forward problem. [56] How-

ever, the inverse problem of numerically finding the potential from a given density

requires extra precautions to avoid violating one or more of Hadamard’s existence,

uniqueness, and stability conditions. The goal of this paper is to explain what these

extra precautions are and show how the inverse problem of TDDFT can also be solved

with a variety of numerical methods.

The inverse problem of TDDFT is mainly of interest to developers of approxi-

mate exchange-correlation functionals. In this case the inverse problem is solved to

find the exchange-correlation potential for systems where the many-body density is

known and examined to see what important features should be present in approxi-

mate potentials. Such studies have shown dynamical step structures with spatial and

temporal nonlocal density dependence, [57,58] an initial-state dependence and corre-

sponding memory effects, [30, 59] and v-representability problems for certain lattice

systems. [60, 61] Similarly, related inverse problems for extensions of TDDFT such

as time-dependent current density functional theory (TDCDFT) [62] and partition

time-dependent density functional theory (P-TDDFT) [63] are also instrumental in

developing new approximations.
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4.2 Inversion Algorithms

Several density-to-potential inversion schemes for TDDFT already exist despite

the challenging nature of the problem. In the case of one-orbital systems there are

analytical inversion formulas [64,65] that are numerically stable everywhere the den-

sity is nonzero but can produce unphysical oscillations in the inverted potential in

certain low-density regions as seen in Ref. 65. The inversion algorithms in Refs. 58,59

move beyond one-orbital systems and are successful provided that extra precautions

are taken to maintain stability. The inversion method of Ref. 59 smooths the inverted

potential at each time step in order to obtain stability and the algorithm of Ref. 58

uses a gauge transformation to improve numerical stability.

Our experience has shown that the stability problems hinted at in the previous

paragraph arise mainly from two implementation issues. The first issue is the step-

by-step (in time) nature of all but the one-orbital inversion formulas. In Refs. 58–60

the potential at a given time step is found from an iterative procedure that only uses

information from the previous time step. As explained in Ref. 66, this is theoretically

correct to do but assumes that the potential at a given time step can be recovered with

negligible error. If the potential at a given time step does have a nonnegligible error

then it will severely reduce the accuracy of the inversion at later time steps. This effect

can be alleviated somewhat through smoothing, [59] gauge transformations, [58], or

regularization methods [60] but it eventually ruins the solution in longer time runs

or when the density comes close to failing the conditions for v-representability.

The second stability issue involves a division by the target density present in all

of the current TDDFT inversion algorithms. [58, 59, 64, 65] Such divisions are also

common in density functional theory (DFT) inversion algorithms. [32] In both cases

the density division serves to rescale the problem and accelerate the inversion in the

low-density regions. Unfortunately, the relative error of the density in the asymptotic

regions of nonperiodic TDDFT problems can be inaccurate by orders of magnitude

unless special boundary conditions are applied. [67] The inaccuracy can be lessened
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somewhat by computing the interacting target density on the same grid with the same

boundary conditions and similar propagator as the noninteracting KS system. [58]

This restriction will give the densities more similar asymptotic properties but is a

severe restriction on the systems that can be studied and is not guaranteed to work

for longer time runs. We briefly illustrate this stability problem and other numerical

issues in App. A.

In this paper we present an unconditionally stable TDDFT inversion algorithm

that avoids the stability problems described above. The algorithm is based on a con-

strained partial differential equation (PDE) optimization framework and is described

in Sec. 4.3. Section 4.3.1 contains a broad overview of the algorithm with details on

how the method can be scaled to higher dimensions and applied to problems with

missing or noisy data. Section. 4.3.2 contains numerical details specific to the in-

version examples shown in Sec. 4.4. The various strengths and weaknesses of the

algorithm are discussed in Sec. A.2 along with possible improvements.

4.3 Inversion via PDE-constrained optimization

The TDDFT density-to-potential inverse problem is a nonlinear parameter identi-

fication problem. The exchange-correlation potential vxc (r, t) is usually the unknown

parameter to be recovered from a given target density and initial conditions. The

density n (r, t) must satisfy the TDKS equations

ı
∂

∂t
φj (r, t) =

[

−1

2
∇

2 + vext (r, t) + vH ([n] , r, t) (4.5)

+ vxc ([Ψ0,Φ0, n] , r, t)

]

φj (r, t) and

n (r, t) = 2
N∑

j=1

|φj (r, t)|2 , (4.6)

where {φj} are the KS orbitals, vext is the external potential, vH is the Hartree poten-

tial, vxc is the exchange-correlation potential, Ψ0 is the initial interacting many-body
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state, and Φ0 is the initial noninteracting state. The already complicated functional

dependence of the exchange-correlation potential is further complicated by a depen-

dence on the history of the density n (r, t′ < t). [57] Equations 4.5 and 4.6 are written

for a closed-shell system with 2N electrons. A thorough explanation of the TDKS

equations can be found in Ref. 66. The source of nonlinearity for this inverse problem

is described in detail in Ref. 53.

In this section we show how to apply PDE-constrained optimization to the TDDFT

inverse problem. In most of our examples the PDE constraint is the TDKS equations

shown in Eqs. 4.5-4.6. PDE-constrained optimization is a common solution method

for nonlinear parameter identification, optimal control, and optimal design problems

governed by PDEs. [37] In fact, the mathematical structure and computational design

of the quantum optimal control theory (QOCT) problem using TDDFT [68] is very

similar to the inversion method we describe here. We also use insights gained from

general QOCT problems described in Refs. 69, 70.

4.3.1 TDDFT inversion algorithm

In our TDDFT density-to-potential inversions we minimize the cost functional

Fn [v] =
1

2
‖n ([v] , r, t)− ñ (r, t)‖ 2

2 , (4.7)

where n ([v] , r, t) is the probability density corresponding to the potential v and the

subscript 2 refers to the L2 norm. One can also minimize2

Fj [v] =
1

2

∥
∥
∥j ([v] , r, t)− j̃ (r, t)

∥
∥
∥

2

2
, (4.8)

where j (r, t) is the current probability density but it is only required if the system is

periodic in space and TDCDFT is needed. [71] The target densities ñ and j̃ are fixed

2All of the examples in this chapter are finite systems so we only use Eq. (4.7). We have used
Eq. (4.8) for some of these systems but the results are very similar with no clear advantage over
Eq. 4.7.
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during the minimization. In most cases the potential v corresponds to the exchange-

correlation potential vxc but it could also be the partition potential vp as in Sec. 4.4.4.

In most TDDFT inversions the external potential is given and the Hartree potential

can be precomputed using the target density so that only the exchange-correlation

potential is unknown.

Many classical optimization routines require derivatives of the cost functional be-

ing minimized. [72] We compute these derivatives with the discrete-adjoint method

[73] due to the constraints of our inverse problem. In particular, we need a very

large number of parameters to describe the potential being inverted and many of the

propagators for the TDKS equations rely on iterative methods. [56] Finite difference,

automatic differentiation, and continuous adjoint methods could also be used but we

found the discrete-adjoint method to work best for our inversions. A thorough com-

parison of these different methods applied to a QOCT problem can be found in Ref. 69

and also concludes that the discrete-adjoint method is the most effective method for

computing QOCT cost-functional derivatives. The discrete adjoint formula for a

general cost functional and multistep TDKS propagator is given in App. B.

We employ a multilevel inversion scheme to accelerate our numerical inversions.

The method is driven by error estimates to avoid fitting to errors in both the target

density and the discretization method applied to the TDKS equations. The general

method is similar to that described in Ref. 74 but we use an error estimate for the

cost functional instead of the norm of the cost-functional gradient. A guess for the

unknown potential is given at the first level, an error estimate is computed, and a

gradient-based optimizer minimizes the cost functional. The optimizer stops when the

error estimate from either the target density or the propagation method is reached.

The grid is then refined, the potential at the current iteration is interpolated to

the finer grid, and the process repeats until the potential converges to the user’s

desired accuracy or the target density error is reached. If the discretization method’s

spatial and temporal order of accuracies are similar then we quadratically increase

the number of points on the temporal grid and linearly increase the number of points
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on the spatial grid at each level. This refinement difference is due to the structure of

the time-dependent Schrödinger equation as explained in Ref. 70.

The multilevel inversion scheme described above is efficient, flexible, and robust

by design. Much of the efficiency comes from using a constrained-PDE formulation

of the inverse problem and only searching over the space of potentials that satisfy the

TDKS equations. The choice of optimization and discretization methods is flexible

and this flexibility can further increase the scheme’s efficiency as described below.

The use of error estimates ensures that the inverted potential at each level of the

multilevel scheme satisfies two different discretizations of the TDKS equations, (the

two schemes used to produce the error estimate), to avoid fitting to numerical errors.

Furthermore, by including the error estimate for the target density in the algorithm

we are able to look at a wide range of target densities as shown in Sec. 4.4. The

formulas in this section and App. B apply to multiple dimensions so our inversion

method is not limited to one-dimensional toy problems.

Our inversion scheme also contains a number of disadvantages largely dependent

on the choice of discretization and optimization methods. Some of these disadvantages

are discussed here as well as in Sec. A.2 with suggestions for possible improvements.

As is common in PDE-constrained optimization, the discretization of the TDDFT

inverse problem tends to produce very large systems of equations with many unknown

variables. [37] Furthermore, our optimization problems are poorly scaled because the

densities in the asymptotic regions are orders of magnitude smaller than the densities

near the nuclei. The multilevel method used in tandem with a large-scale optimization

routine insensitive to poor scaling is very effective at dealing with these two issues.

Our choice of classical optimizer and grid refinements described in Sec. 4.3.2 partially

resolves these issues but still struggles in some of the low-density regions.

Our experience has shown that density reflections from the computational bound-

aries and the lack of norm preservation in propagators of the TDKS equations greatly

hinder the optimization portion of our algorithm and lead to spurious numerical arti-

facts in the inverted potentials. In order to reduce the reflections from the boundaries
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we implement the exponential complex absorbing boundary condition described in

Ref. 75. Although we could use higher-order propagators to better preserve the norm

of the density we instead allow the imaginary portion of the potential to be variable

and make constant shifts at each time step. These constant shifts allow the optimizer

to renormalize the density and avoid spurious potential jumps as explained in App. A.

The examples that we consider in Sec. 4.4 all appear to be well posed in that they

approach a unique answer up to a purely time-dependent function. Analytically, the

arbitrary purely time-dependent function in the Runge-Gross Theorem [52] doesn’t

affect the solution but numerically it does as shown in App. A. The optimizer appears

to choose this function based on the initial guess and the grid parameters with a strong

preference for continuous functions. A similar phenomenon occurs in the ground state

DFT problem where the numerical PDE solver chooses the arbitrary phase of the KS

orbitals based on the choice of grid parameters as seen in App. A.

In the case that we do encounter an ill-posed TDDFT inverse problem, (perhaps

from incomplete experimental observations), a variety of regularization methods can

be used to solve the problem. [14] One possibility is to use Tikhonov regularization

by adding a Sobolev H1 penalty functional

R ([v] , α) = α

(

‖∇v‖ 2
2 +

∥
∥
∥
∥

∂v

∂t

∥
∥
∥
∥

2

2

)

, (4.9)

to the cost functional, where α > 0 is the regularization parameter. This functional

penalizes highly oscillatory potentials and is similar to the penalty functionals used

in QOCT problems. [68] Other cost functionals could be devised that favor potentials

satisfying exact conditions such as those described in Ref. 76.

4.3.2 Numerical implementation

In this section we describe the numerical details of the multilevel TDDFT inversion

algorithm described in Sec. 4.3.1. We specify the finite difference schemes used for
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discretizing the TDKS equations and how they are employed in the optimization

procedure. Details about the optimization procedure, boundary conditions, initial

guess, and grid refinement are given. The role of the imaginary part of the potential

is also explained.

We mainly use two different finite difference schemes to discretize the TDKS

equations during the inversion procedure. The Crank-Nicolson (CN) propagator [56]

combined with a fourth-order finite difference approximation to the Laplacian is used

at every iteration. This scheme is relatively simple to differentiate when implementing

the discrete-adjoint method thanks to the linear nature of the operators as shown in

App. B. During some of the iterations, we also implement the enforced time-reversal

symmetry (ETRS) method [56] with an eighth-order finite difference approximation

to the Laplacian. This higher-order method is used to compute error estimates and

thus avoid fitting to numerical errors from the CN scheme. Both discretizations

are for uniformly-spaced temporal and spatial grids with infinitely-high walls at the

boundaries. The target densities in Secs. 4.4.3 and 4.4.5 are computed using different

discretizations as explained in detail in those sections. The presence of an imaginary

potential discussed below affects the stability of both discretization schemes. In

particular, the negative imaginary portions of the potential become positive during

backwards propagation of the TDKS equations and can lead to unbounded growth.

We therefore store the TDKS orbitals during the forward propagation for use in the

adjoint equations. Another way to avoid backwards propagations and reduce memory

requirements is through the use of a checkpointing scheme. [77]

The examples in Secs. 4.4.1-4.4.4 use an initial grid spacing of 1 for both the

temporal and spatial grids. The example in Sec. 4.4.5 uses initial grid spacings of 0.1

since the external potential is already known and the initial error is so small. The

number of grid points increases according to the formulas t (1 +M2) and x (1 +M),

where M is the current level, t is the initial number of temporal grid points, and x

is the initial number of spatial grid points. The solution at a given level is linearly

interpolated to the new grid before beginning the next level of optimization. The
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exponential complex absorbing potential of Ref. 75 is applied to 25% of the total

grid at both boundaries with a value of −ı obtained at the edges for the examples

in Secs. 4.4.1-4.4.4. The example in Sec. 4.4.5 uses a smaller value of −ı/100 at the

edges to avoid losing too much density. This absorbing potential is not optimized for

any of the problems and simply reduces density reflections from the boundaries. We

also allow the imaginary part of the potential between the absorbing portions to vary

by constant shifts and thus renormalize the density that is lost at the boundaries.

We begin the inversion procedure by providing a guess for the unknown potential.

Currently we use an initial guess of zero as this allows us to clearly see how the

optimization is proceeding. (More physically-motivated guesses could be used perhaps

based on the one-orbital formulas in Refs. 64, 65.) The error estimate F err
n is then

found using the formula

F err
n [v] =

1

2

∥
∥nCN ([v] , r, t)− nETRS ([v] , r, t)

∥
∥

2

2
τ, (4.10)

where nCN and nETRS are the densities found using the CN and ETRS discretizations,

respectively and τ = 10. (A similar formula can be used when the current density is

the basic variable as in Eq. 4.8.) Since the L2 norm can produce overflow we scale

it by the product of the grid spacings. This scaling also allows us to compare costs

on different grids as it is essentially a numerical approximation to the continuous L2

norm computed with the midpoint integration rule.

The truncated-Newton (TN) algorithm of Ref. 39 as implemented in the SciPy

library [26] is used to perform the optimization at each level of the multilevel scheme.

This algorithm and other gradient-based optimization routines tend to produce large

changes in the cost functionals during the initial iterations and smaller changes later in

the optimization. Because of these large initial changes, we update the error estimate

on a base-10 logarithmic scale during each optimization to avoid fitting to numerical

errors. The optimization at a given level ends when the optimizer has reduced the cost

functional to either the error estimate from Eq. 4.10 or the error estimate provided by
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the user for the target density. If a line search fails during the optimization then we

add 1% random noise to the potential at the current iteration. These two precautions

of updating the error estimate and recovering from failed line searches only play a

role in our examples in Sec. 4.4 when coarse grids are being used.

4.4 Inversion examples

In this section we present several benchmark inversion examples as well as some

comparison examples from other TDDFT inversion algorithms. The benchmark ex-

amples illustrate many of the strengths and limitations of our inversion algorithm

described in Sec. 4.3. The other inversion examples demonstrate the generality and

unconditional stability of our algorithm.

4.4.1 Noninteracting harmonic potential theorem inversion

In our first benchmark example we form a noninteracting system of three orbitals

satisfying the harmonic potential theorem [78]. The initial KS orbitals are the ground

and first two excited states of the harmonic oscillator given in Eqs. C.6-C.7. The

time-dependent density to be inverted

n (x, t) =
2∑

i=0

|ψi [x− xs (t)]|2 , (4.11)

is the initial density shifted harmonically by

xs (t) =
F0

1− ω2
sin (ωt) . (4.12)

The exact KS potential that produces Eq. 4.11 is

v (x, t) =
1

2
x2 − F0 sin (ωt) x+ C (t) , (4.13)
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where C (t) is an arbitrary time-dependent function. In the following inversions we

set F0 = 1 and ω = 0.3. The spatial grid runs from −10 to 10 and the temporal grid

runs from 0 to approximately 63 for a total of three complete cycles.

The target density provided by Eq. 4.11 is analytic so our only limitations in this

problem come from discretizing the TDKS equations. We perform eleven levels of

our multilevel inversion algorithm with the final grid containing 6263 temporal points

and 221 spatial points. In Fig. 4.1 we plot the inverted and exact potentials along

with the error in the inverted density. We also plot several snapshots of the same

data in Fig. 4.2. The potential is only recovered succesfully in the regions where

the density is larger than 10−3 as seen clearly in Fig. 4.2. Furthermore, there are

numerical artifacts in the form of small wiggles in the inverted potential indicating

a lack of convergence. This example clearly indicates how the inversion procedure

using the L2 norm fits the larger densities first and then works down to the smaller

densities in the asymptotic region.

4.4.2 Particle in a harmonic potential well

In this example we invert the density

n (x, t) = [cos (ωt)ψ0 (x) + sin (ωt)ψ1 (x)]
2 , (4.14)

where ψ0 and ψ1 are given in Eqs. C.6-C.7 and ω = 2π/100. The initial KS orbital

is ψ0 (x). The original problem considered in Ref. 60 replaces the time variable with

the function τ (t) = t4/ (1 + t3) in order to include only gentle perturbations of the

density at times t ≪ 50. Our results show that the nodes in the density of Eq. 4.14

are the main source of difficulty for this problem as opposed to the initial density

changes as explained below.
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Figure 4.1. The inverted potential (left), exact potential (center left),
and density error (right) for a system of three orbitals satisfying the
harmonic potential theorem as described in Sec. 4.4.1. Values of the
exact potential greater than 15 are masked for better comparison with
the inverted potential. The exact density at the edge of the box at
t = 0 is about 4 × 10−40 so the very small density differences on the
order of 10−46 for short times (t < 1) show that the inverted and
exact densities agree to about 6 digits of precision. This same level of
accuracy will likely be required at later times to correctly invert the
density in the asymptotic regions. A similar analysis applies to the
logarithmic plots in Figs. 4.3, 4.5, 4.7, and 4.9.
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noninteracting system of three orbitals satisfying the harmonic po-
tential theorem. The red dashed lines indicate exact values and the
solid black lines are the results of our numerical inversion algorithm.
The solid gray line is the imaginary portion of the potential.
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As a one-orbital system, the density in Eq. 4.14 can be inverted to find the KS

potential using the one-orbital inversion formula of Ref. 64. The orbital at all times

t 6= 50n, n an integer, is φ (x, t) = eıα(x,t) |f (x, t)|, where

α (x, t) =
ω log

∣
∣
√
2 sin (ωt) x+ cos (ωt)

∣
∣

tan (ωt)

− ω cos2 (ωt)− ω

sin (ωt)
[√

2 sin (ωt) x+ cos (ωt)
] and (4.15)

f (x, t) = cos (ωt)ψ0 (x) + sin (ωt)ψ1 (x) . (4.16)

The nodes in the density are located at x = −1/
[√

2 tan (ωt)
]
and produce strong

singularities in the potential according to the formula

δ [f (x, t)]
[fx (x, t)]

2

|f (x, t)| , (4.17)

where δ is the delta function. The inversion in Ref. 60 likely fails around t = 5

because the node is well within the computational box by that time and the inversion

algorithm being used divides by the density.

The target density provided by Eq. 4.14 is analytic so our only limitations in this

problem come from discretizing the TDKS equations. We perform eleven levels of

our multilevel inversion algorithm with the final grid containing 5556 temporal points

running from 0 to 55 and 177 spatial points running from -8 to 8. In Fig. 4.3 we

plot the inverted and exact potentials along with the error in the inverted density.

We also plot several snapshots of the same data in Fig. 4.4. Our inversion algorithm

clearly captures the highly singular behavior of this potential without any special

modifications to account for the singularities. It does, however, fail to recover the

asymptotic behavior similar to the example in Sec. 4.4.1.
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Figure 4.3. The inverted potential (left), exact potential (center left),
and density error (right) for a particle in a harmonic potential well
as described in Sec. 4.4.2. Values of the exact potential outside the
range [-10, 10] are masked for better comparison with the inverted
potential.
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Figure 4.4. Snapshots of the inversion described in Sec. 4.4.2 for
a particle in a harmonic potential well. The delta function for our
inverted potential has a maximum value of approximately 92 and the
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lines indicate exact values and the solid black lines are the results of
our numerical inversion algorithm. The solid gray line is the imaginary
portion of the potential.
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4.4.3 Sudden turn-on potential inversion

In this benchmark problem we invert the density of a sudden turn-on potential.

The potential to be inverted is

v (x, t) = − cosh−1 (x+ 2)−H (t− 1) cosh−1 (x− 4) , (4.18)

where H is the Heaviside function. The wells are purposely placed asymetrically in

the computational region to make sure that symmetry does not aid the inversion

procedure. We approximate the Heaviside function using the formula

H (t) ≈ [1 + exp (−2kt)]−1 , (4.19)

where k = 10. The initial KS system is the ground state of an electron in the left

well. At t = 1 the right well suddenly appears and the electron very slowly shuttles

back and forth between the two wells.

In this example we do not have an analytic form of the density so we compute

it numerically along with an error estimate. If the same propagation method and

grid are used for both the forward and inverse problems then it is possible to get

nearly perfect results. Such a simulation is often referred to as an inverse crime and

is not representative of a typical TDDFT inversion. (For a thorough review of inverse

crimes see Ref. 16.) For this reason we compute the target density on a different

grid with a different spatial discretization. We implement the infinite-to-finite spatial

grid mapping of Ref. 31 with a scaling parameter of α = 8 to reduce reflections at

the boundaries. This mapping is used with both the CN and ETRS propagators,

where the second derivative is sixth-order in the CN method and eighth-order in the

ETRS method. The temporal grid has 20001 temporal grid points running from 0

to 500 and 2001 spatial grid points. The cost functional is computed once using the

CN propagator and then again with the ETRS propagator to form an error estimate

using Eq. 4.10.
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Figure 4.5. The inverted potential (left), exact potential (center left),
and density error (right) for a sudden turn-on potential at t = 1 as
described in Sec. 4.4.3.

We perform three levels of our multilevel inversion algorithm with the final grid

containing 5001 temporal points and 201 spatial points. At this level of the algorithm

the target density’s error estimate is not obtained so the convergence criterion is just

that of Eq. 4.10. In Fig. 4.5 we plot the inverted and exact potentials along with

the error in the inverted density. We also plot several snapshots of the same data

in Fig. 4.6. These results show that our inversion method is capable of performing

very long density-to-potential inversions in time with no stability issues. However, we

again see that the potential is not resolved in the asymptotic region and the density

is only accurate to approximately 10−3. Unfortunately, the density in the asymptotic

region is the only density that changes significantly right after the second potential

appears so our inversion misses this change and shows the second potential appearing

later than it should. There are also several sharp wiggles as seen in Fig. 4.6 resulting

from this delayed reaction as the optimizer unphysically shifts density from one well

to the other that would have been in the correct location if the second well had

appeared at the correct time.
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4.4.4 Partition Time-Dependent Density Functional Theory Inversion

In this example we have an electron subject to the electric field

vE (x, t) = xE0 sin (ωt) f (t) , (4.20)

where ω = 0.3, E0 = 0.1, and f (t) = exp (−t2/25) is the pulse envelope. The pulse

envelope is the only addition made here to the original example given in Ref. 63 in

order to avoid excessive ionization. The static external potential is composed of two

soft-Coulomb potentials of equal depth

va (x) = −1/

√

(x+ 2)2 + 1 and

vb (x) = −1/

√

(x− 2)2 + 1.

The target density is found using the same infinite-to-finite spatial grid mapping

described in Sec. 4.4.3 with α = 4. There are 1676 temporal grid points running from

0 to approximately 42. The other discretization parameters and procedures used to

compute the target density are the same as those used in Sec. 4.4.3.

In the inverse P-TDDFT problem we search for the unknown partition potential

satisfying the TDKS equations

ı
∂

∂t
φα (x, t) =

[

−1

2

∂2

∂x2
+ vα (x, t) + vp (x, t)

]

φα (x, t) , (4.21)

where α = 1, 2 and

v1 (x, t) = va (x) + vE (x, t) ,

v2 (x, t) = vb (x) + vE (x, t) .

For additional details about this partitioning choice and P-TDDFT in general, see

Ch. 5 and Ref. 63. We perform 11 levels of our multilevel inversion algorithm with
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Figure 4.7. The inverted partition potential (left) and density error
(right) for a one-electron system partitioned in two pieces with an
applied electric field as described in Sec. 4.4.4. Values of the partition
potential below -5 are masked.

the final grid containing 4142 temporal points and 221 spatial points. In Fig. 4.7 we

plot the partition potential and the density error. We also plot several snapshots of

the same data in Fig. 4.8. These results highlight our inversion method’s ability to

model rapidly changing systems with strong external fields. In contrast, the inversion

algorithm in Ref. 63 fails to model this system shortly after t = 5. (These results are

directly comparable since the envelope function does not suppress the electric field

significantly until after t = 5.)

4.4.5 Two Interacting-Electrons Inversion

In this example we invert the density from two spinless electrons interacting

through the soft-Coulomb interaction

Vee (xi,xj) = (|xi − xj|+ 0.1)−1 . (4.22)
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The external potential is

Vext (x1, x2, t) =
2∑

i=1

αx10i − βx4i − εxiH (t) , (4.23)

where α = 5× 10−11, β = 1.3× 10−4, ε = 0.1, and H is the Heaviside function. This

external potential has a long flat barrier that the electrons can tunnel across and the

uniform electric field drives this tunneling towards the right. This example is also

studied in Ref. 58 and we use the same values to allow for a direct comparison.

We compute the interacting target density by combining the Peaceman-Rachford

alternating direction implicit (ADI) method with the CN algorithm. We use a tem-

poral grid spacing of 0.002 and a spatial grid spacing of 0.05 as in Ref. 58 but run

our simulation for twice as long in time. Figures 4.9 and 4.10 show the results of

our multilevel inversion algorithm for 5 levels, (2731 points in time and 1801 points

in space). The effect of the Hartree exchange-correlation potential on the density

during the times studied is minimal and our algorithm doesn’t change it from the

initial guess of zero. Since our algorithm uses the L2 norm it focuses on the large

densities and is not able to resolve the very small features in the central region studied

in Ref. 58. Our algorith is, however, completely stable and the error estimates keep

it from fitting to numerical errors in this example.
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5. Inversions in Partition Time-Dependent Density

Functional Theory

This chapter contains work from the article entitled ‘Fragment-Based Time-Dependent

Density Functional Theory’ written by Adam Wasserman, Mart́ın Mosquera, and the

author. [63]

5.1 Partition Time-Dependent Density Functional Theory

Partition time-dependent density functional theory (P-TDDFT) is an extension

of partition density functional theory (PDFT) to time-dependent systems. For a

given electronic Hamiltonian, initial state, and fragmentation choice, there is a unique

single-particle time-dependent partition potential vp(r, t). If vp(r, t) is added to each

fragment potential then the sum of the resulting fragment densities is equal to the

exact molecular density at all times. The uniqueness of this time-dependent partition

potential is shown in Ref. [63] using a proof analogous to the Runge-Gross theorem.

5.1.1 The Direct and Inverse Problems

In a P-TDDFT calculation the initial states resulting from a PDFT calculation

are propagated independently in time via the time-dependent Kohn-Sham fragment

equations,

ı
∂

∂t
φi,α(r, t) =

[

−∆

2
+ vKS,α(r, t)

]

φi,α(r, t) , (5.1)

where the fragment TDKS potentials are

vKS,α(r, t) = vxc,α(r, t) + vH(r, t) + vα(r, t) + vp(r, t) . (5.2)
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In practice the time-dependent partition potential vp(r, t) must be approximated for

nontrivial systems. The molecular density is then given by

n(r, t) =
∑

α

nα(r, t) =
∑

i,α

fi,α |φi,α(r, t)|2 . (5.3)

The occupation numbers fi,α are constant in time because the Hamiltonians

Ĥα(t) = T̂ + V̂ee +

ˆ

d3r [vα(r, t) + vp(r, t)] n̂(r) (5.4)

are particle conserving.

The direct and inverse problems of P-TDDFT are similar to the PDFT problems

described in Sec. 3.1.1. The partition potential is usually approximated in the direct

problem and is the main unknown in the inverse problem. The exchange-correlation

potential is also unknown similar to the inverse PDFT problem but the occupation

numbers are not allowed to vary as they do in a PDFT inversion.

5.2 Inversion Algorithms

Our first P-TDDFT inversion method uses a step-wise optimization procedure

to find the time-dependent partition potential vp(r, t) given a target density ñ(r, t),

target current density j̃(r, t), and set of fragment potentials {vα(r, t)}. The density

and current density of the total system are found at each time step using the Crank-

Nicolson propagator with a second-order discretization of the Laplacian. (Other prop-

agation methods may also be used.) A guess is made for the partition potential at

the next unknown time and the fragment wave functions are propagated forward in

time using this guess. (For small time steps the value of the partition potential at

the previous time step works well.) The fragment densities ({nα} , {jα}) are found

using these fragment wave functions and added together to form an approximation to

the total densities (n, j). The errors nerr = n− ñ and jerr = j − j̃ are computed and

the residual norm (nerr/nexact)+norm (jerr/jexact) is used in the optimizer of Ref. [79],
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with the L2 norm. The division by nexact and jexact weights the error in the asymptotic

regions to help increase the convergence rate, similar to the weighting used in [80].

Figure 5.1 shows the results of a P-TDDFT calculation for the one-dimensional

model of an electron in a laser field described in Sec. 4.4.4 but using the algorithm de-

scribed above. The resulting fragment densities and potentials are shown in Fig. 5.1.

Figure 5.2 shows the results of using a frozen and instantaneous approximate partition

potential with the frozen approximation outperforming the instantaneous approxima-

tion. On this particular inversion problem, the algorithm described above is unstable

at times greater than 6 and produces a divergent partition potential at those times.

This instability arises from large relative errors in the asymptotic regions as described

in Sec. A.2. The partial differential equation (PDE) constrained inversion method

described in Sec. 4.3.1 is stable at all times and can be used to find the partition

potential at later times as seen in Figs. 4.7 and 4.8.
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6. Summary

We have presented a series of algorithms for performing density-to-potential inversions

in density functional theory (DFT), partition density functional theory (PDFT), time-

dependent density functional theory (TDDFT), and partition time-dependent density

functional theory (P-TDDFT). These algorithms have favorable scaling properties

and permit large-scale inversions. Although the examples in this work are all one-

dimensional model systems, the algorithms are written in multiple dimensions to help

transition to more realistic systems in the future. We have also presented a detailed

numerical analysis that points to the relative error as the main limitation in density-

to-potential inversions and the need for error estimates in performing these inversions

properly.

Due to the somewhat separate development of the time-independent (Chs. 2-3)

and time-dependent (Chs. 4-5) inversion algorithms, some features are missing in

the time-independent schemes while present in the time-dependent schemes and vice

versa. In particular, the multilevel idea used in Ch. 4 is not yet implemented in

the time-independent inversion algorithms and is likely to dramatically reduce the

execution time as it does in time-dependent inversions. Likewise, the orbital scaling

introduced in Sec. 2.3.4 for DFT inversions is likely needed to recover the asymptotic

potentials in time-dependent inversions. It also remains to be seen if the constrained

variational method described in Sec. 2.3.4 can be adapted for time-dependent density-

to-potential inversions.

The inversion methods presented in this work use the finite difference method

for solving the governing partial differential equations (PDEs) but are by no means

restricted to this solution method. We would also like to apply these methods to

the common basis function methods described in Ref. 6 (Pgs. 233-234). The insight

we have gained through our many test cases and numerical analysis with the finite
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difference method will likely guide this development. This insight can also be used to

improve other inversion methods as hinted at in Sec. 2.4.1. In particular, the scaled-

orbital regularization presented in Sec. 2.3.4 is perhaps a more natural regularization

than the potential regularization presented in Ref. [36] for improving the Wu-Yang

algorithm. This regularization should also make it possible to examine more realistic

examples including possibly ill-posed densities from experimental data.

Our original intent in developing inversion algorithms was to benchmark approx-

imate exchange-correlation approximations and create new approximations within

DFT. During this development, however, several new and interesting applications

have come to light that warrant further study. For example, by allowing the optimiz-

ers to choose boundary conditions for the potential in both the DFT and TDDFT

inversions, it should be possible to extract new approximate boundary conditions and

compare them to other state-of-the-art methods. [67] Likewise, the orbital scaling in-

troduced in Sec. 2.3.3 could be modified for the direct DFT problem as an alternative

to using adaptive grid methods. [19] Thanks to the very similar structure between the

optimized effective potential (OEP) method and the DFT inverse problem, algorithm

development in one area can lead directly to improvements in the other as seen in

the development of the Wu-Yang inversion algorithm from a previous OEP optimiza-

tion method. [17] Similarly, the TDDFT version of quantum optimal control theory

(QOCT) [68] has a very similar structure to the TDDFT inverse problem and can

likely benefit mutually from new developments in our TDDFT inversion methods. We

plan to continue exploring these new areas of DFT and refine the density-to-potential

inversion methods described in this work.
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[41] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming. Mathe-
matical Programming, 106(1):25–57, April 2005.

[42] David G. Tempel, Todd J. Mart́ınez, and Neepa T. Maitra. Revisiting Molecular
Dissociation in Density Functional Theory: A Simple Model. Journal of Chemical
Theory and Computation, 5(4):770–780, April 2009.



90

[43] Peter Elliott, Daniel Jensen, Adam Wasserman, and Kieron Burke. Comment on
“Application of partition density-functional theory to one-dimensional models”.
Physical Review A, 89(2):026501, February 2014.

[44] Jonathan Nafziger and Adam Wasserman. Density-Based Partitioning Methods
for Ground-State Molecular Calculations. The Journal of Physical Chemistry A,
118(36):7623–7639, September 2014.

[45] Morrel Cohen and Adam Wasserman. On Hardness and Electronegativity
Equalization in Chemical Reactivity Theory. Journal of Statistical Physics,
125(5):1121–1139, 2006.

[46] Peter Elliott, Kieron Burke, Morrel H. Cohen, and Adam Wasserman. Partition
density-functional theory. Physical Review A, 82(2):024501, 2010.

[47] John P. Perdew, Robert G. Parr, Mel Levy, and Jose L. Balduz. Density-
Functional Theory for Fractional Particle Number: Derivative Discontinuities
of the Energy. Physical Review Letters, 49(23):1691–1694, December 1982.

[48] Morrel H. Cohen and Adam Wasserman. On the Foundations of Chemical Re-
activity Theory. J. Phys. Chem. A, 111(11):2229–2242, 2007.

[49] Jonathan Nafziger. Partition density functional theory. PhD thesis, Purdue
University, 2015.

[50] Jonathan Nafziger, Qin Wu, and Adam Wasserman. Molecular binding ener-
gies from partition density functional theory. The Journal of Chemical Physics,
135(23):234101, December 2011.

[51] Daniel S. Jensen and Adam Wasserman. Numerical density-to-potential inver-
sions in time-dependent density functional theory. Physical Chemistry Chemical
Physics, March 2016.

[52] Erich Runge and E. K. U. Gross. Density-Functional Theory for Time-Dependent
Systems. Physical Review Letters, 52(12):997–1000, March 1984.

[53] M. Farzanehpour and I. V. Tokatly. Time-dependent density functional theory
on a lattice. Physical Review B, 86(12):125130, September 2012.

[54] Johanna I. Fuks and Neepa T. Maitra. Challenging adiabatic time-dependent
density functional theory with a Hubbard dimer: the case of time-resolved
long-range charge transfer. Physical Chemistry Chemical Physics, 16(28):14504–
14513, June 2014.

[55] Miguel A.L. Marques, Carsten A. Ullrich, Fernando Nogueira, Angel Rubio,
Kieron Burke, and Eberhard K. U. Gross, editors. Time-Dependent Density
Functional Theory. Lecture Notes in Physics. 2006. DOI: 10.1007/b11767107.

[56] Alberto Castro, Miguel A. L. Marques, and Angel Rubio. Propagators for
the time-dependent Kohn–Sham equations. The Journal of Chemical Physics,
121(8):3425, August 2004.

[57] P. Elliott, J. I. Fuks, A. Rubio, and N. T. Maitra. Universal Dynamical Steps
in the Exact Time-Dependent Exchange-Correlation Potential. Physical Review
Letters, 109(26):266404, December 2012.



91

[58] M. J. P. Hodgson, J. D. Ramsden, J. B. J. Chapman, P. Lillystone, and R. W.
Godby. Exact time-dependent density-functional potentials for strongly corre-
lated tunneling electrons. Physical Review B, 88(24):241102, December 2013.

[59] S. E. B. Nielsen, M. Ruggenthaler, and R. van Leeuwen. Many-body quantum
dynamics from the density. EPL (Europhysics Letters), 101(3):33001, February
2013.

[60] Roi Baer. On the mapping of time-dependent densities onto potentials in quan-
tum mechanics. The Journal of Chemical Physics, 128(4):044103–044103–4, Jan-
uary 2008.

[61] Yonghui Li and C. A. Ullrich. Time-dependent V-representability on lattice
systems. The Journal of Chemical Physics, 129(4):044105–044105–8, July 2008.

[62] Giovanni Vignale. Mapping from current densities to vector potentials in time-
dependent current density functional theory. Physical Review B, 70(20):201102,
November 2004.

[63] Mart́ın A. Mosquera, Daniel Jensen, and Adam Wasserman. Fragment-
Based Time-Dependent Density Functional Theory. Physical Review Letters,
111(2):023001, July 2013.

[64] Paul Hessler, Neepa T. Maitra, and Kieron Burke. Correlation in time-dependent
density-functional theory. The Journal of Chemical Physics, 117(1):72–81, July
2002.
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A. Numerical Issues

This appendix contains a discussion of several numerical issues that arise in per-

forming density-to-potential inversions. The description of each numerical issue is

accompanied by an example to better illustrate its difficulty and importance. We

treat the time-independent and time-dependent inversions separately although some

of the time-independent numerical issues also apply to the time-dependent case.

A.1 Time-Independent Inversions

A number of numerical problems arise in performing time-independent density-

to-potential inversions that are often very difficult to isolate. In this section we use

very basic one-dimensional models to show how boundary conditions, relative error,

and rounding errors all set convergence limits on density-to-potential inversions. We

employ the one-orbital formula shown in Eq. (2.7) and a grid ranging from −4 to 4

with 51 points in the examples of this section unless otherwise noted.

Many of the inversion schemes mentioned in Sec. 2.3 impose boundary conditions

on the orbitals that don’t have to agree with the target density’s boundary conditions.

A mismatch in boundary conditions can place severe constraints on the accuracy of

density-to-potential inversions in the boundary regions as we illustrate here with

an example. For simplicity, we take the density of the ground state of the simple

harmonic oscillator and set it to zero at the edge of our simulation box as typically

occurs with box-type (Dirichlet) boundary conditions. The one-orbital formula should

give us the exact potential for this problem but for this modified density the potential

is not recovered properly near the boundaries. The number of incorrect points near

the boundaries increases as higher-order finite difference schemes are used to represent
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the Laplacian due to the increased nonlocality of the finite difference operators. The

adverse effects of these mismatched boundary conditions are illustrated in Fig. A.1.

One common method for avoiding the mismatch in boundary conditions described

above is to compute the target density with the same boundary conditions and a very

similar numerical method. In Fig. A.2 we compute the ground state density of the

harmonic oscillator numerically with box-type boundary conditions and a second-

order finite difference approximation to the Laplacian as explained in Sec. 2.2. If

the same finite difference approximation is used in the one-orbital formula then the

resulting potential is almost exact everywhere. This type of inversion is known as an

inverse crime and is explained in more detail in Sec. 1.5. It is a very fragile method

as a simple change to a fourth-order approximate Laplacian with the same box-type

boundary conditions does not have the same error cancellation and produces worse

values than the second-order method.

Both of the preceding examples assume a perfect knowledge of the target density

but this is not a realistic assumption for most inverse problems. The wave function

numerical methods used in computing interacting densities are often very different

from density functional theory (DFT) numerical methods [24] and the correct bound-

ary conditions are not always known beforehand. It is far more realistic to assume

that the target density in a density-to-potential inversion has some numerical error

that must be accounted for to avoid overfitting. In order to illustrate the effects of

numerical noise in the target density, we take the ground state orbital of the sim-

ple harmonic oscillator, add in a small amount of noise generated from the standard

normal distribution N(µ, σ2), [29] and put the density corresponding to this modified

orbital in the one-orbital formula. The results of this inversion in Fig. A.3 are very

poor especially in the asymptotic region. If we add a relative error to the ground

state orbital instead of the uniform error described above then the resulting potential

is still noisy but the noise level is now the same everywhere as seen in Fig. A.4. These

two examples show that the relative error of the target density sets a limit on the

convergence in density-to-potential inversions. Figure A.5 shows that simply increas-
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Figure A.1. The degradation of a density-to-potential inversion when
forcing incorrect boundary conditions on the orbitals. The ground-
state density of the simple harmonic oscillator is modified to be ex-
actly zero at the boundaries as commonly occurs when box-type
(Dirichlet) boundary conditions are enforced (top). The potentials
produced from this density with the one-orbital inversion formula and
a second-order discretization of the Laplacian are incorrect near the
boundaries (middle). More points are incorrect when a fourth-order
approximation to the Laplacian is used in the one-orbital formula
(bottom).
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Figure A.2. The frailty of inverse crimes in a density-to-potential
inversion. The ground state density of the harmonic oscillator is com-
puted numerically using a second-order approximation to the Lapla-
cian (top). Applying the one-orbital formula to this density with a
second-order approximate Laplacian produces nearly the exact poten-
tial (middle) and is an inverse crime. A fourth-order approximation
in the one-orbital formula actually gives worse values most noticeable
near the boundaries (bottom).
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ing the number of grid points actually makes the inverted potential worse when the

same amount of error is present in the target density.
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Figure A.3. The effects of random noise in a density-to-potential
inversion. When the ground-state of the simple harmonic oscillator
contains noise, (i.e. ñ0 = [φ0 +N(µ = 0, σ2 = 2.5× 10−5)]

2
), the re-

sulting potential is very noisy everywhere but especially in the asymp-
totic region.

As mentioned in the previous examples, higher-order finite difference operators

don’t always improve density-to-potential inversions and boundary conditions often

have a dramatic impact on the quality of an inversion. Another way to study the

delicate balance between finite difference operators and boundary conditions is to

use the ground state density of a particle in a box in the one-orbital formula. If we

compute the derivative in Eq. (2.7) with one finite difference operator on the left side

of the simulation box and a different operator on the right then the resulting second
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Figure A.4. The effects of weighted random noise in a density-
to-potential inversion. When the ground-state of the simple har-
monic oscillator contains noise weighted by the orbital, (i.e. ñ0 =
{φ0 [1 +N(µ = 0, σ2 = 2.5× 10−5)]}2), the resulting potential is uni-
formly noisy. This indicates that the relative error in the target den-
sity sets a convergence limit in density-to-potential inversions.

derivative has different error patterns on both sides of the box. The resulting potential

has a jump between the left and right sides of the box as seen in Fig. A.6. Although

one usually doesn’t mix finite difference operators inside the simulation box, different

operators are often used at the boundaries and produce similar jumps even if the

operators are the same order of accuracy. An example of this jump at the boundary

can be seen in Fig. A.6 at the right boundary where a fourth-order backwards finite-

difference operator produces a different error pattern than the fourth-order centered

operator used elsewhere. (See Eq. (2.4) for the matrix representation of this fourth-

order finite-difference operator.)
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Figure A.5. The effects of weighted random noise and increased grid
resolution in a density-to-potential inversion. When twice the number
of grid points are used in the example displayed in Fig. A.4 the re-
sulting potential is actually worse and shows that increased resolution
does not necessarily improve density-to-potential inversions.

Many of the somewhat counterintuitive behaviors shown in the preceding examples

can be understood mathematically by studying the effects of errors in the one-orbital

formula. If we have the exact density of a one orbital system then the potential is

given by the formula

vi =
φ′′
i + εfdi
2φi

, (A.1)

where φi =
√
ni and ε

fd
i is the error of the approximate second derivative at the point

xi. In the example shown in Fig. A.6 there are different error patterns εfdi for the left-

and right-hand sides of the box and this difference is magnified during the inversion
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Figure A.6. The effects of combining two different finite difference
operators in a density-to-potential inversion. The second derivative
is computed with a second-order method on the left side of the box
and a fourth-order method on the right (top). The error patterns on
both sides of the box are smooth but there is a distinct gap between
them (middle). The resulting potential (bottom) also has a gap cor-
responding to the difference in error patterns and a small gap at the
right boundary where a backwards finite-difference operator is used
(bottom inset).

because of the division by the square root of the density. A more realistic example
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includes some numerical error εni in the density being inverted and the inversion

formula becomes

vi =
(φi + εni )

′′

2 (φi + εni )
=
φ′′
i + εfdi + (εni )

′′

2 (φi + εni )
. (A.2)

If the noise εni is not smooth then its second derivative will be very noisy and dominate

the other terms in Eq. (A.2). Figure A.7 shows an example where a very small

normally distributed error severely limits the accuracy of the potential.

Rounding errors play an important role in many of the inversions methods de-

pendent upon numerical optimization methods. The Wu-Yang algorithm discussed

in Sec. 2.3 needs to compute the kinetic energy at each iteration of a given numer-

ical optimization routine. If the density of a system decays exponentially then the

kinetic energy from the asymptotic regions is very small in comparison to values near

the nuclei. Even if the values of the kinetic energy density can be computed ac-

curately in all regions of a simulation, adding all of the values together to get the

total kinetic energy will often result in rounding errors due to the large differences

in magnitude involved. In Fig. A.8 we apply the Wu-Yang inversion algorithm to

the ground-state density of the harmonic oscillator on a grid with 51 points ranging

from −8 to 8. Both the gradient-based truncated-Newton (TN) algorithm [39] and

the non-gradient-based modified Powell’s method [81] fail to resolve the density in

the asymptotic region, (|x| > 5.5), when used in the Wu-Yang inversion method. The

abrupt cutoffs near −5.5 and 5.5 are a result of rounding errors when computing the

kinetic energy with double-precision floating point numbers. If we use the midpoint

integration rule to compute the kinetic energy in the region |x| < 5.5 the result in

double precision arithmetic is 0.2500000000000231 and the same method used in the

region |x| > 5.5 produces the value −2.32460041955568× 10−14. When the two num-

bers above are added together, most of the smaller number’s significant digits are

lost and this loss of information limits the accuracy of the recovered potential in the

asymptotic region. The same example performed using single-precision floating point
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Figure A.7. The effects of combining two different finite difference op-
erators in a density-to-potential inversion with a noisy density. This
example is identical to the one shown in Fig. A.6 except the input den-
sity contains noise, (i.e. ñ0 = {φ0 [1 +N(µ = 0, σ2 = 1× 10−10)]}2).
This is another example where higher-order methods can actually pro-
duce worse results than simpler lower-order methods.

numbers gives an even stricter cutoff near −3.5 and 3.5 as seen in Fig. A.9. In this

second example the kinetic energy in the region |x| < 3.5 is 0.25000963 when using

single-point precision numbers compared to a value of −9.6271506e−06 in the region

|x| > 3.5, which again results in a loss of significant figures when added together.
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Figure A.8. The effects of rounding errors in a density-to-potential
inversion with double-precision numbers. Both the TN and modified
Powell’s optimizers fail to resolve the potential in the region |x| > 5.5
(top) when used in the Wu-Yang algorithm and an initial guess of
zero. The kinetic energy density is orders of magnitude smaller in the
asymptotic region than it is in the region |x| < 5.5 (bottom) and this
leads to loss of precision when computing the total kinetic energy.

The preceding examples of time-independent density-to-potential inversions illus-

trate many of the pitfalls in performing numerical density-to-potential inversions.

Simply refining the grid or increasing the accuracy of the kinetic energy operator

does not guarantee an improved density-to-potential inversion and in many cases will

worsen the solution. In cases where the error pattern is not known explicitly it is

actually not correct to fit the density exactly as even small density errors can lead to

large artifacts in the potential. Finally, inversions reliant on numerical optimization
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Figure A.9. The effects of rounding errors in a density-to-potential
inversion with single-precision numbers. This example is identical to
the one shown in Fig. A.8 except that the kinetic energy sum uses
single-precision numbers. In this case the potential is only recovered
in the region |x| < 3.5 due to more severe rounding errors from the
use of single-precision numbers.

routines often suffer from rounding errors, which set yet another hard limit on the

convergence of density-to-potential inversions.

A.2 Time-Dependent Inversions

In this section we illustrate how the numerical discretization of the time-dependent

Kohn-Sham (TDKS) equations affects time-dependent density-to-potential inversion

algorithms. We show how spatially constant shifts in the potential change the nor-

malization of the density depending on the propagation scheme. An analogy with



105

the arbitrary phase in ground-state DFT calculations is made. The sensitivity of the

density in the asymptotic regions to different grid spacings is also examined for a

model problem.

Theoretically, the potentials in the TDKS equations are only unique up to an

arbitrary purely time-dependent function. [52] However, in most numerical imple-

mentations a spatially constant shift in time will change the norm of the density. We

illustrate this by examining the time development of the ground state of the har-

monic oscillator, (Eq. C.6), propagating in the potential v (x, t) = αH (t− 1) + x2/2,

where H is the Heaviside function and the TDKS equations are discretized using the

Crank-Nicolson (CN) propagator. In Fig. A.10 we see a 20% loss in density when

α = 100 and dt = 0.01, where dt is the temporal grid spacing. (This result is largely

independent of the spatial grid spacing.) The CN method struggles to accurately

simulate changes in the potential on the order of the inverse grid spacing 1/dt. Of

course higher-order methods and smaller grid spacings will reduce this loss but the

discretization choice still removes some of the potential’s nonuniqueness. This situ-

ation is similar to the arbitrary phase in the ground-state Kohn-Sham (KS) orbitals

being chosen by the numerical solver as illustrated in Fig. A.11.

We now illustrate the sensitivity of the density in the asymptotic region to the

discretization of the TDKS equations as mentioned in Sec. 4.2. For this illustration we

propagate the ground state of the harmonic oscillator, (Eq. C.6), in the potential given

by Eq. 4.13 using the CN propagator and two different discretizations of the Laplacian.

(Similar results are obtained by using the same discretization of the Laplacian and

varying the number of grid points.) Even though all of the other parameters in

the problem are identical, we can clearly see in Fig. A.12 that the relative error in

the asymptotic regions is orders of magnitude worse than the central region. This

error is largely a result of the particle-in-a-box boundary conditions that we use and

indicates a need for better boundary conditions. The error is not very important when

performing the forward time-dependent density functional theory (TDDFT) problem

but it places serious constraints on the inverse problem. In particular, algorithms
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spacing as explained in App. A.

−10 −5 0 5 10

x

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

399 points

400 points

Figure A.11. The arbitrary phase of the ground-state KS orbitals
chosen by the eig banded solver in the SciPy libary according to the
number of grid points used as mentioned in App. A.

that divide by the density will fail after this relative error has accumulated, (in our

example at t = 5), unless special precautions are taken.
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B. Discrete-Adjoint Method

The discrete-adjoint method is a very efficient method for computing cost functional

derivatives (discrete functional derivatives) in constrained-partial differential equation

(PDE) problems. [74] The main advantage to using adjoint methods is the ability to

accurately compute these derivatives for very large systems at the same or similar

cost required to compute the cost functionals. In this appendix we derive the discrete

adjoint equations for both time-independent and time-dependent density-to-potential

inversions.

Table B.1.
The notation for the discrete-adjoint derivations of Secs. B.1-B.2.

Notation Description
i Discrete spatial indices ix, iy, iz

∑Nx

i=1 Sum over all spatial indices
∑Nx

ix=1

∑Ny

iy=1

∑Nz

iz=1

Fn and Fj Cost functionals
L Lagrangian
ñ The target density

Norbs Number of Kohn-Sham orbitals
φm and χm The mth orbital and corresponding adjoint orbital

φ All Norbs orbitals grouped into a vector
wi,n Optional cost-functional weighting
�,n The vector form of a quantity � at time step n

B.1 Time-Independent Adjoint

The derivatives of the cost functional used in Sec. 2.3.3 for time-independent

density-to-potential inversions can be computed accurately and efficiently using the

discrete-adjoint method. In this section we show how these derivatives amount to a

sparse linear solve for each occupied orbital. This particular derivation is only valid for
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systems without degeneracies because it is based on the algebraic method described

in Ref. [82]. A similar derivation can be performed for systems with degeneracies

using the method of Ref. [83].

The discretized cost functional

F
[
φ
]
=

1

2

Nx∑

i=1

(
Norbs∑

m=1

φm ∗
i φm

i − ñi

)2

wi (B.1)

can be differentiated with respect to an arbitrary orbital

∂F

∂gγα
= wα

(
Norbs∑

m=1

φm ∗
α
φm
α
− ñi

)

φγ ∗
α
, (B.2)

where γ is the orbital index, and α = αx, αy, αz is the spatial index. The orbitals are

constrained to satisfy the Kohn-Sham (KS) equations and be normalized to one by

introducing the Lagrangian

L
[
v, φ, χ

]
= 2Re

{
Nx∑

i=1

Norbs∑

m=1

χm
i,n [H (v)φm − Emφm]∗

i

}

+

Norbs∑

m=1

εm (φm ∗
i φm

i − 1) (B.3)

in the total functional

J
[
v, φ, χ

]
= F

[
φ
]
− L

[
v, φ, χ

]
. (B.4)

Differentiating the total functional J with respect to the adjoint orbitals χ and

normalization multipliers {εm} gives the standard KS equations

0 =
∂J

∂χγ
α

∀α, γ ⇒ H(v)φm = Emφm and (B.5)

0 =
∂J

∂εγ
∀γ ⇒

Nx∑

i=1

φm ∗
i φm

i = 1. (B.6)
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The adjoint equations are found by differentiating with respect to the KS orbitals

and eigenvalues to produce a set of sparse linear equations





(
∂F
∂φγ

)∗

(
∂F
∂Eγ

)∗



 =




H†(v)− (Eγ)∗ φγ

− (φγ)† 0








χγ

εγ



 . (B.7)

After solving the direct and adjoint equations in Eqs. (B.5)-(B.7), the total derivative

is given by the expression

∂J

∂vα,β

= − ∂L
∂vα

= −2

Norbs∑

m=1

Nx∑

i=1

Re

{

(χm
i )

∗ ∂H(v)

∂vα
φm
i

}

. (B.8)

B.2 Time-Dependent Adjoint

The derivatives of the cost functionals Fn and Fj in Eqs. 4.7-4.8 are important

quantities needed when using classical optimization routines. In this appendix we

show how the discrete-adjoint method can be used to compute this gradient at the

cost of a backwards propagation of nonhomogeneous time-dependent Kohn-Sham-like

equations. The derivation below is for the Fn cost functional but only Eqs. B.9-B.10

change when using other real-valued cost functionals. The notation used below is

similar to that found in Refs. 68, 69 and is summarized in Table B.1.

We begin our derivation by discretizing the cost functional

Fn

[
φ
]
=

1

2

Nt∑

n=1

Nx∑

i=1

(
Norbs∑

m=1

φm ∗
i,n φ

m
i,n − ñi,n

)2

wi,n, (B.9)

and taking its first derivative with respect to an arbitrary orbital

∂Fn

∂φγ
α,β

= wα,β

(
Norbs∑

m=1

φm ∗
α,βφ

m
α,β − ñα,β

)

φγ ∗
α,β, (B.10)
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where γ is the orbital index, β is the time index, and α = αx, αy, αz is the spatial

index. The KS orbitals are constrained to satisfy a discretization of the KS equations

by including the Lagrangian

L
[
v, φ, χ

]
= 2Re







Nt∑

n=1

Nx∑

i=1

Norbs∑

m=1

χm
i,n

[

A (v,n)φ
m
,n −

Np∑

p=1

Bp (v,n−p)φ
m
,n−p

]∗

i






(B.11)

in the total functional

J
[
v, φ, χ

]
= F

[
φ
]
− L

[
v, φ, χ

]
. (B.12)

We now take various derivatives of the total functional in Eq. B.12 to derive the

total derivative of the cost functional. The forward propagation equations come from

a differentiation with respect to the adjoint variables:

0 =
∂J

∂χγ
α,β

∀α, β, γ ⇒ A (v,n)φ
m
,n =

Np∑

p=1

Bp (v,n−p)φ
m
,n−p, (B.13)

where n = 1, . . . , Nt, m = 1, . . . , Norbs, and Np is the number of steps in a multistep

discretization of the time-dependent Kohn-Sham (TDKS) equations with the generic

operators A and {Bp}. The adjoint equations come from a differentiation with respect

to the KS orbitals:

0 =
∂J

∂φγ
α,β

=
∂F

∂φγ
α,β

− ∂L
∂φγ

α,β

⇒ ∂L
∂φγ

α,β

=
∂F

∂φγ
α,β

⇒ A (v,n)
† χm

,n =

(
∂F

∂φm
,n

)∗

+

Np∑

p=1

Bp (v,n−p)
† χm

,n+p, (B.14)
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where χm
,n = 0 for all n > Nt. After solving for the KS and adjoint orbitals in Eqs. B.13

and B.14 we can find the total derivative using the expression

∂J

∂vα,β

= − ∂L
∂vα,β

= 2

Norbs∑

m=1

Nx∑

i=1

Re

{

−χm
i,β

[
∂

∂vα,β

A (v,β)φ
m
,β

]∗

i

+

Np∑

p=1

χm
i,p+β

∂

∂vα,β

Bp (v,β)φ
m
,β

}

, (B.15)

In the case of complex potentials we replace ∂/∂vα,β in Eq. B.15 with ∂/∂ Re (vα,β)

for the derivative with respect to the real part of the potential and then again with

∂/∂ Im (vα,β) for the derivative with respect to the imaginary part.

We conclude this appendix by giving an example of the discrete-adjoint method

applied to the Crank-Nicolson discretization of the TDKS equations in one dimension.

The operators for this method are A (v,n) = I+ ı∆t
2
Hn and B (v,n) = I− ı∆t

2
Hn, where

Hn = T +Vn, T is a discretization of the kinetic energy operator, and Vn is a diagonal

matrix with the potential v,n along the diagonal. The A operator real derivative is

∂

∂ Re (vα,β)
Ai,j (v,n) =







ı∆t
2

if α = i, j and β = n

0 otherwise

(B.16)

and the imaginary derivative is found from the same expression with −1 replacing

ı. The real and imaginary derivatives of the B operator are the negatives of the

corresponding A operator derivatives.
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C. Test Cases

This appendix contains the many formulas used in creating test cases for our density-

to-potential inversions. Most of the examples are for noninteracting systems where the

orbitals and potentials are known analytically for easier benchmarking as explained

in Sec. 1.6. All of the formulas are written in atomic units in the coordinate repre-

sentation. These examples can be used to test both the direct and inverse problems

of density functional theory (DFT).

C.1 Particle in a Box

The one dimensional particle-in-a-box potential v(x) = 0

v(x) =







0 if 0 < x < L

∞ otherwise

(C.1)

has eigenstates

φm(x) =

√

2

L
sin
(mπx

L

)

(C.2)

and energies Em = 1
2

(
mπ
L

)2
, where m is a positive integer. Although somewhat

trivial, this example is especially helpful in isolating programming errors associated

with the kinetic energy operator. It is also helpful in showing how error patterns

affect density-to-potential inversions as explained in Sec. A.1. In Nd dimensions the

potential is

v(x) =







0 if 0 < xi < Li, i = 1, . . . , Nd

∞ otherwise

(C.3)
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with corresponding eigenstates

φm(x) =

Nd∏

i=1

√
2

Li

sin

(
miπxi
Li

)

, (C.4)

where m is a Nd-dimensional vector of positive integers.

The particle-in-a-box example also serves as a useful test case for time-dependent

systems if the time-dependent Schrödinger equation is modified with a nonhomoge-

neous term f so that

ıψt = −1

2
∆ψ + vψ + f. (C.5)

One easily visualized formulation in one dimension is

ψ(t, x) =

√

2

L
sin
(πx

L

)

exp (ıg(t)) ,

V (t, x) =

√

2

L
cos
(πx

L

)

sin (ωtt) ,

f(t, x) = −
(

d

dt
g(t) +

ω 2
x

2
+ V (t, x)

)

ψ(t, x) ,

where g(t) = t or t2. (This formulation uses the ground state but other eigenstates

are equally valid.) This can be generalized to multiple dimensions and serves as a

useful test case for time-dependent propagation code.
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C.2 Simple Harmonic Oscillator

The simple harmonic oscillator is a standard example given in most quantum

mechanics texts. [4] The potential in one dimension is v(x) = 1
2
x2 and the energies

are Em = m+ 1
2
for all nonnegative integers m. The first three eigenstates are

ψ0 (x) = π−1/4e−
x2

2 , (C.6)

ψ1 (x) =

√
2x

π1/4
e−

x2

2 , and (C.7)

ψ2 (x) =
(2x2 − 1)√

2π1/4
e−

x2

2 . (C.8)

Simple time-dependent test cases using the harmonic potential can be formed

through the use of the harmonic potential theorem described in Ref. 78. Although

typically used when modeling interacting systems, target densities can also be formed

using a sum of densities from noninteracting electrons satisfying the harmonic poten-

tial theorem. Section. 4.4.1 shows one particular noninteracting example formed from

the orbitals

φi (t, x) = ψi [x− xs (t)] exp {ı [ẋs (t) x− S (t)− Eit]} , (C.9)

where

A =
F0

1− ω2
, (C.10)

xs (t) = A sin (ωt) , (C.11)

v (t, x) =
1

2
x2 − F0 sin (ωt) x, and (C.12)

S (t) =
A2

2

{

ω2

[
t

2
+

sin (2ωt)

4ω

]

−
[
t

2
− sin (2ωt)

4ω

]}

if t0 = 0. (C.13)
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