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ABSTRACT

Eun, Joonyup Ph.D., Purdue University, August 2016. Models and Optimization for Elec-
tive Surgery Scheduling under Uncertainty Considering Patient Health Condition. Major
Professor: Yuehwern Yih.

The managerial aspects to run a healthcare system are becoming increasingly important

for patient safety. More than one patients are competing each other to be treated using

limited medical resources in a healthcare system. The limited medical resources include

surgeons, physicians, anesthesiologists, nurses, operating rooms, wards, etc. Therefore,

patient safety is related to how to run a healthcare system with the limited resources.

Surgery scheduling, one of the managerial aspects to run a healthcare system, can con-

tribute to improving patient safety. Diseases exacerbate patient health condition with the

increase of waiting time for surgery. Therefore, surgeons and patients may want to sched-

ule their surgeries as early as possible in order to escape from the risk of patients’ deaths or

the risk of turning the current diseases into more severe diseases. However, the needs may

not be satisfied due to the limited medical resources.

This research incorporates deteriorating patient health condition in elective surgery

scheduling to improve patient safety. Two different models are presented: elective surgery

scheduling models with 1) linearly deteriorating patient health condition and 2) step- de-

teriorating patient health condition. In this research, the basis to manage uncertainties in

surgery durations and/or patient health condition is sample average approximation. How-

ever, in general, the sample average approximation algorithm is time consuming. There-

fore, a fastest local search and a tabu search are also developed to solve large-size problems.
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1. INTRODUCTION

1.1 Background

Healthcare service providers have paid increased attention to patient safety in recent

decades [1]. To improve patient safety, medical science focuses on improving the reporting

and prevention of medical errors, the technical skills of surge, and the quality of medica-

tion [2–5]. In addition, even though it is not only for patient safety but also for human

safety, infection control has drawn much attention recently due to the propagation of fatal

infectious viruses such as ebola and swine flu. Likewise, most of approaches to improve

patient safety focus on improving medical skills. Those medical skills play important roles

for patient safety. However, patient safety cannot be improved without a wide range of

tools that identify the sources of patient risk [6]. For example, patients may not be treated

due to the lack of operating rooms (ORs) or wards in a hospital even though the hospital

has many competent doctors. Therefore, beyond the improvements of medical skills, other

aspects of a healthcare system should also be investigated.

The managerial aspects to run a healthcare system are becoming increasingly important

for patient safety [7]. Generally, more than one people are competing each other to use

limited resources in a system [8]. Likewise, more than one patients are competing each

other to be treated using limited medical resources in a healthcare system. The limited

medical resources include surgeons, physicians, anesthesiologists, nurses, ORs, wards, etc.

Therefore, patient safety is also related to how to run a healthcare system with the limited

resources. That is why operations research and management science are needed to run a

healthcare system.

Surgery scheduling, one of the managerial aspects to run a healthcare system, can con-

tribute to improving patient safety. Diseases exacerbate the health conditions of patients

with the increase of waiting time for surgeries. Therefore, surgeons and patients may want
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to perform the surgeries as early as possible in order to escape from the risk of patients’

deaths or turning the current diseases into more severe diseases. However, the resource lim-

itation on surgeons, anesthesiologists, nurses, ORs, and post-anesthesia care units (PACUs)

may not satisfy the needs of surgeons and patients who ask for early surgeries. Therefore,

surgical scheduler (anesthesiologists or surgeons) need to schedule surgeries considering

patient health condition. Roughly speaking, urgent patients should be scheduled first for

their surgeries while patients with good health conditions need to be scheduled later than

the urgent patients. In reality, surgical schedulers may often consider patient health con-

dition in scheduling surgeries. However, to the best of my knowledge, there is no known

surgery scheduling models which systematically consider patient health condition. A new

systematic mathematical model to incorporate patient health condition in surgery schedul-

ing needs to be developed.

On the other hand, reducing the cost for healthcare service is also important. The

healthcare expenditure in the U.S. is 17.5% of Gross Domestic Product (GDP) in 2014 and

projected to reach 19.6% of GDP by 2024 [9]. It means that people in the U.S. spends a

great portion of their incomes for healthcare service and continuously need to spend more

portion of their incomes to be healthy. Therefore, a wide range of efforts to reduce the

cost for healthcare service is needed. Figure 1.1 illustrates the healthcare expenditure in

the U.S. from 2000 to 2014 [10]. The healthcare expenditure in 2014 is more than twice

the healthcare expenditure in 2000. It is rapidly increasing and expected to be rapidly

increasing.

OR is the most cost intensive area in hospitals. Surgery operations comprise more than

40% of the expenses of hospitals [11–14]. Therefore, hospitals are under pressure to control

their surgical cost. With regard to surgery scheduling problems, minimizing overutilization

and underutilization of ORs can be considered to reduce the surgical costs of hospitals. The

schedule considering patient health condition prevents underutilization to some degree.

Overutilization of ORs has a great impact on the cost of hospitals. 100 U.S. hospitals

found, in a 2005 study, that it cost $62 on average to use an operating room for a minute

[15]. Since the cost of running surgery staff (surgeons, anesthesiologists, and nurses) may
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Figure 1.1. Healthcare expenditure from 2000 to 2014.

be more expensive during overtime, the cost to use an operating room during overtime is

expected more expensive than $62 per minute. Therefore, surgery scheduling problems

significantly need to deal with OR overutilization issues.

1.2 Objectives

The dissertation focuses on obtaining a schedule that incorporates the idea of maxi-

mizing the minimum patient health condition, which improves critical patient safety, and

analyze the schedule. The minimum patient health condition is defined as the health condi-

tion of the most critical patient. While the schedule maximizing total patient health condi-

tion can delay the surgery of the most critical patient for the benefits of the entire patients,

the schedule maximizing the minimum patient health condition prevents the risk of sen-
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tinel events. The idea of maximizing the minimum patient health condition has not been

discussed in previous work.

In addition, the dissertation contributes to solution methodologies to solve the elective

surgery scheduling problems. The uncertainty in surgery durations is considered in Chap-

ters 3 and 4, and that in patient health condition is considered in Chapter 5. The basis

of solution approaches to manage the uncertainties is the sample average approximation

(SAA) method [16]. However, the algorithm that implements the SAA method is time con-

suming for a problem described in Chapter 3. To make up for the time inefficiency of the

SAA method, heuristics with good performance (i.e., fastest ascent local search and tabu

search) are developed to solve large problems in Chapter 4. On the other hand, the SAA

method applied to a problem described in Chapter 5 provide effective solution within short

computation times.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, a broad review

of the literature on surgery scheduling and a brief review of the SAA method. Chapter 3

describes an elective surgery scheduling problem with linearly deteriorating patient health

condition. The problem is formulated as a stochastic mixed integer program (MIP) and

solved using the SAA method. However, since the SAA method is very time consuming

for the problem, two heuristics are proposed for the same problem in Chapter 4. Chapter

5 presents an elective surgery scheduling problem with step-deteriorating patient health

condition. The problem is also formulated as a stochastic MIP and solved using the SAA

method. The SAA method applied to the problem is efficient and effective. In addition to

the solution methodology, the analyses on the SAA solutions are presented in Chapter 5.

Finally, Chapter 6 discusses the conclusion of this dissertation and future research.
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2. LITERATURE REVIEW

Surgery scheduling problems have been extensively studied in the literature. Magerlein and

Martin [17], Przasnyski [18], Blake and Carter [19], Cardoen et al. [7], May et al. [20], and

Hulshof et al. [21] provide detailed literature reviews on surgery scheduling problems.

Different from the existing literature reviews, this chapter focuses more on the literature

related to consideration of OR overutilization since the overutilization of ORs is considered

in the problems of this dissertation.

In addition, surgery scheduling problems prioritizing patients and imposing waiting

time-dependent costs are presented in Section 2.2. A similar concept to patient health

condition presented in the dissertation is to classify patients into each priority group when

they are admitted to the waiting list and, according to the priority, impose patient-related

costs that increase in waiting time.

Finally, a brief review on the SAA method and the surgery scheduling literature using

the SAA method is presented in Section 2.3.

2.1 Overutilization of Operating Rooms

This section provides the surgery scheduling literature that considers the overutilization

of ORs. “Integer program” in this section means either “mixed integer program” or “pure

integer program”.

Adan and Vissers [22] decided the number of patients admitted to a specialty and the

combination of patients in terms of specialties. They considered the underutilization and

overutilization of ORs, wards, and intensive care units. They developed an integer program

to solve the proposed problem.

Bowers and Mould [23] focused on the surgery demand of orthopaedic trauma patients.

They incorporated the uncertainty in the surgery demand. They uses a simulation model to
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maximize the utilization of ORs. In addition, the overutilization of ORs were also examined

using the simulation model.

Bruni et al. [24] suggested three different recourse strategies, which can be adopted by

surgical schedulers selectively. Those recourse strategies are overtime of ORs, swapping

surgeries, and rescheduling surgeries. They considered the uncertainties in the arrival of

emergency patients and surgery durations. Tailored heuristics were developed to solve their

models.

Cardoen and Demeulemeester [25] modeled the patient flow in a hospital from ad-

mission to discharge. They observed the patient length of stay in each suite (pre-surgical

consultaion, surgery, and post-surgical consultation) of hospital and the utilization of each

suite using a discrete-event simulation and suggested the reasonable numbers of wards and

operating rooms. They used actual data of Belgian hospitals.

Chaabane et al. [26] suggested two surgery scheduling models. The first model is to

obtain a surgery schedule which minimizes the gap between the total supply and the weekly

requests of the surgical specialty. Another model is to obtain a surgery schedule which

minimizes the sum of the surgery operating cost and patient waiting time-dependent cost.

Integer programs are employed to solve those two models. They compared two models by

the rate of occupancy time of ORs, percentage of total surgeries performed, percentage of

planned surgical cases that actually performed, and overtime of ORs. Even though they

used real data of a Belgian university hospital, they estimated the surgery durations as the

means of the real data.

Denton and Gupta [27] suggested a surgery scheduling model which minimizes the

weighed sum of patient waiting time, undertime (underutilization) of an OR, and tardiness

of an OR. They used the L-shaped method [28] to solve the proposed problem. Denton

et al. [11] solved the same problem using the SAA method and several heuristics. They

compared the performances of the SAA method and the heuristics in terms of computation

time and the quality of solutions.

Denton et al. [29] proposed two types of surgery scheduling models. The first one is

the model to minimize the sum of the overtime cost of ORs and the fixed cost of opening
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ORs. In the problem, a surgical scheduler can decide whether to open each OR or not.

They developed bounds on the optimal solution in integer programs. Easy-to-implement

heuristics were also introduced and compared in the experiment.

Dexter [30] studied a decision to decide whether to move the last surgery of the day in an

OR to another empty OR to reduce overtime cost. They simulated two decision: performing

the surgery scheduled the last of the day and moving the surgery to another empty OR

having penalties for moving the surgery. The result that they found was depending on

parameters they set between overtime cost and moving penalties. They gave the range of

parameters that yields the decision.

Dexter and Macario [31] examined when to released allocated OR time for surgical

services to improve OR efficiency (underutilization and overutilization). They found that

postponing the decision whether to perform the surgery until early morning before surgery

reduces overtime at most 15 minutes compared to the case to fix the surgery schedule 5

days before surgery. They obtained this result from actual implementation.

Dexter and Traub [32] came up with two surgery scheduling strategies: earliest start

time and latest start time. They wanted to compare the OR efficiency between the two

scheduling rules. The surgery is scheduled into an OR as early as possible in the earliest

start time strategy, and the surgery is scheduled into an OR as late as possible in the latest

start time strategy. They simulated the two strategies under several scenarios. They found

that there are not significant differences of OR efficiency between two strategies.

Dexter et al. [33] studied about releasing the allocated OR time to another surgeries.

"Releasing OR time" means that assign one specialty’s allocated OR time for another spe-

cialty’s surgery which was already scheduled to other OR. Therefore, the OR that is releas-

ing it’s OR time may increase overutiliztion and the OR that lost the surgery previously

scheduled may experience underutilization. They observed the pattern of underutilization

and overutilization using actual implementation in a hospital.

Dexter et al. [34] experimented whether computer recommendations and status displays

to surgical staff helps to reduce overutilization and underutilization of ORs. They are three

types of decision aids to facilitate decision-making in ORs: passive status displays, active
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status displays, and/or command displays. They experimented the scenarios with/without

the decision aids. There were no big difference of OR efficiency with/without computer

recommendations and status displays. However, command displays increased the quality

of decisions in ORs.

Epstein and Dexter [35] tested that the error in OR information system data that tells

wrong information for surgeries and the operating rooms in which the surgeries should be

performed. In common sense, the error in OR information system data increases the under-

time and overtime of ORs and, thus, increases surgical staffing costs. It states that expensive

and time-consuming data-cleaning of the OR information system is needed. However, us-

ing a simulation, they concluded that the error of the OR information system data did not

significantly increase the undertime and overtime of ORs.

Fei et al. [36] suggested a surgery scheduling problem in which a set of surgeries are

assign to several multi-functional ORs. The objective the the problem was to minimize the

weighted sum of undertime and overtime cost of ORs. They used the Dantzig-Wolf [37]

decomposition to reformulate an original integer problem proposed as a set partitioning

problem. A branch-and-price algorithm which combines a branch-and-bound algorithm

and the column generation method had been developed. They showed that the solution

approach is capable of solving large problems.

Fügener et al. [38] considered multiple downstream units such as intensive care units

and general wards in a surgery scheduling problem. They focused on minimizing the fixed

cost, overcapacity cost, staffing cost, and weekend staffing cost of intensive care units and

general wards. They considered ORs as suppliers of patients. They did not include the

undertime or overtime cost of ORs in their objective function. However, since undertime

and overtime of ORs affect the cost of downstream units, This paper is included in this

literature review. They implemented a branch-and-bound algorithm after formulated the

problem as an integer problem. In addition, they suggested two heuristics and those were

compared to the branch-and-bound algorithm.

Gladish et al. [39] explained how to incorporate multi-objctive criteria in an integer

problem rather than specifying each objective. Like Lee and Yih [14], they used fuzzy
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sets for generating surgery durations. They applied possibility theory [40] to construct an

integer program. Using simulation, they demonstrated the decreasing number of patients

in the waiting list as their solutions applied to scheduling surgeries.

Guinet and Chaabane [41] proposed a surgery scheduling problem which minimizes

the sum of hospitalization cost, i.e., patient length of stay, and OR overtime cost. they

considered human resource limitation for surgeons. The showed that their problem is NP-

hard and developed a constructive heuristic which adds constraints to an integer problem

while the algorithm is being implemented.

Gupta [42] described various surgical operations and associated decision problems. He

divided the process of surgery scheduling into two parts. First, he suggested a elective

surgery booking control which was formulated as an integer program to consider down-

stream units such as PACUs, intensive care units, and wards. Then, he proposed a surgery

scheduling formulation which focused on the operations of ORs to minimize the weighted

sum of overutilization, underutilization, and tardiness of ORs.

Hans et al. [43] came up with a set of multi-objectives: minimizing overtime of ORs,

maximizing free OR-days, and maximizing utilization of ORs. They did not try to find the

solutions which give the optimal trade-off between the three objectives. They ranked the

objectives in terms of importance. Several constructive and local search heuristics were

proposed and those are compared. They used a historical data of an academic university in

the Netherlands.

Herring and Herrmann [44] focused on a single-day surgery scheduling problem be-

cause scheduling elective surgeries should be dynamic. Therefore, they solved a single-

day surgery scheduling problems sequentially as time elapses. They proposed a dynamic

programming formulation to minimize the weighted sum of patient blocking and deferral

cost and utilization cost of ORs. They analyzed the problem and suggested a stochastic

dynamic programming formulation. In addition, several heuristics were proposed. The

solution quality of the heuristics were extensively investigated.

Jebali et al. [45] introduced a two stage approach to schedule surgeries. The first stage is

to assign surgeries to operating rooms. The second stage is to sequence the assign surgeries
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to minimize the sum of patient hospitalization , OR undertime, and OR overtime cost.

There compared two strategies. The first strategy is surgery assignment decided in the first

stage is not reconsidered. The second strategy is surgery assignment decided in the first

stage is reconsidered to make it less constrained. They used integer program for both first

and second stage. They concluded that, as expected, the second strategy performed better

since it improves the utilization of ORs.

Lamiri et al. [46] prioritized two groups of patients: elective and emergency surgery

patients. It is assumed that surgeries for emergency patients should be performed on the

day of arrival. The sum of elective patient-related cost (e.g., hospitalization cost, patient

waiting time cost, etc.) and overtime cost of ORs were minimized in an integer program.

Since they assumed that surgery durations are stochastic, they generated the realization of

surgery durations using Monte Carlo simulation and incorporated it in the integer program.

Lamiri et al. [47] made an slight difference in the problem description of the Lamiri et

al.’s [46] problem. In addition to elective patient-related cost overtime cost of ORs, they

added undertime of ORs. The proposed problem were formulated as an integer program

and a column generation approached is proposed to solve the integer program. A dynamic

programming approach and local search algorithms that improve the solutions after obtain-

ing solutions from the column generation and dynamic programming were also introduced

and compared over several combinations.

Lebowitz [48] argued that surgeries with short surgery durations should be scheduled

first. He simulated several scenarios in term of surgery durations and observed patient and

surgeon waiting time, and overutilization and underutilization of ORs. In all measures he

observed, the SPT rule for surgery durations proved outstanding performance. He stated

that less inherent variability of short surgery durations improve the performance measures.

Lee and Yih [14] considered PACUs in a surgery scheduling problem. he formulated

it as a flexible job shop models and assumed fuzzy sets of surgery durations. Performance

measure they used were waiting times of patient and surgeons, undertime of ORs, and

completion time of all the surgical processes until discharged from PACUs. He solved the
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proposed problem using a generic algorithm and adding a solution-improving algorithm

after obtaining the solutions of the generic algorithm.

Mannino et al. [49] focused on two variants arisen from a large hospital in Norway. The

first is balancing the number of patients waiting for different specialties and the second is

minimizing the overtime of ORs. They suggested two integer programs with each objective.

For the second problem, they developed a light robustness approach. Deterministic surgery

durations are used in the integer program. Their formulations were solved by XPRESS-MP

19.00 and solutions were tested by simulation.

Marcon and Dexter [50] observed impact of surgery schedule on PACU staffing and

overutilization of ORs resulting from admission delays in PACUs. Seven surgery schedul-

ing rules in term of surgery duration were compared: (1) random assignment, (2) longest

surgeries first, (3) shortest surgeries first, (4) Jonhson’s scheduling rule [51], (5) half in-

crease and half decrease, (6) half decrease and half increase, and (7) mix of (5) and (6).

They used simulation to compare those seven scheduling rules. The best rules that mini-

mizes PACU staffing cost and overutilization of ORs were (5) and (7).

Marcon et al. [52] saw the surgery-related operations as "the fruit of negotiation of

different actors of the block such as surgeons, anesthetists, nurses, managerial staff, etc."

Therefore, they developed an integer problem focusing on the negotiation relationship.

The integer program minimizes the weighted sum of the difference of workload between

ORs and the risk of no surgery-realization. They solve the integer program and tested the

solutions of the integer program using simulation.

Marques et al. [53] assumed that the overtime of ORs is not permitted. Since there used

deterministic surgery durations, they could incorporate the constraint in an integer program.

The objective of the integer program was to maximize the utilization of ORs (i.e., minimize

the underutilization of ORs). Real data from a hospital in Portugal were used to evaluate

the solution of the integer program.

Min and Yih [13] proposed a surgery scheduling problem with consideration of PACUs

to minimize the weighed sum of patient-related cost (e.g., hospitalization cost depending

on waiting time) and overtime costs. They formulated the proposed problem as a two-stage
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stochastic model and solved it using the SAA method. The solutions of the SAA method

were compared to those of the expected value model and test data of simulations. Due to

the uni-modularity of the integer program proven in this paper, the SAA method provided

the solutions within reasonable computation times.

Min and Yih [54] considered the priorities of patients. Patients were divided by sev-

eral priority groups tagged as recommended surgery timings. Once surgeries passes their

recommended surgery timings, associated costs that increase depending on waiting time

for surgeries are imposed. They analyzed the problem and those properties found were

implemented in a dynamic programming. Three priority groups were actually tested in the

experiment.

Ogulata and Erol [55] introduced three stages of surgery scheduling: patient acceptance

planning, assignment to surgeon groups, and sequencing surgeries. To make a decision

at each stage, each stage was formulated as an integer program. Performance measures

selected were the underutilization and overutilization of ORs, balanced workload between

specialties, and patient waiting times. At each stage, appropriate performance measures

were incorporated in each integer program.

Ozkarahan [56] used a goal programming to consider the underutilization and overuti-

lization of ORs, waiting time of patients, and preferences of surgeons. Those performance

measures were represented as various terms in a formulation. The formulation allows a

surgical scheduler to adjust the weight of each term so that the surgical scheduler are able

to produce a surgery schedule easily under uncertain circumstance. This paper provided

extensive surgery duration statistics of various types of surgeries.

Pham and Klinkert [12] formulated a scheduling problem as a generalized job shop

scheduling problem. They considered the entire flow of patients in integrated hospitals:

preoperative stage (preoperative holding units), perioperative stage (ORs), and postopera-

tive stage (PACUs and intensive care units). An extensive integer program was proposed

to describe the entire flow of patients. However, assuming the deterministic surgery dura-

tions, they can prevent more complex formulation. The objective was designed to minimize
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the makespan (i.e., discharge time of last patient) and overtime of ORs was forced to be

minimized in the constraints.

Saadouli et al. [57] studied a elective surgery scheduling problem in an orthopedic

surgery division. They aimed to minimize the makespan of the operating rooms while

maintaining appropriate utilization of ORs. They used the 85th percentile of surgery dura-

tions in their MIP formulation to calculate the makespan.

Sciomachen et al. [58] ran simulation models for three scheduling rules: the longest

waiting time first, the longest surgery time first, and the shortest surgery time first. Through-

put (i.e., number of patients treated in ORs), utilization of ORs, number of overruns in ORs,

and overtime of ORs were observed under each rule. They used four different simulation

models changing the usage of input data collected.

Testi et al. [59] used a three phase approach for surgery scheduling: determining the

number of sessions to be scheduled weekly, assigning ward and OR on a specific day, and

determining sequence of surgeries within a day. First and second stages were formulated as

an integer programs, and the sequence decision on third stage was determined by simula-

tion. They focused on improving overtime and throughput of ORs, and on reducing waiting

list.

Tyler et al. [60] was motivated to answer about what the optimum utilization of ORs.

They set two operational goals: surgeries should start within 15 minutes of the scheduled

time and surgeries should end no more than 15 minutes past the planned end of the day. A

simulation model was used to observe the utilization of ORs. Within the operational goals

they set, they observed that 85% to 90% was the highest utilization rate of ORs.

Van Huele and Vanhoucke [61] studied on integrating the physician rostering problem

and the surgery scheduling problem. Their objective is to minimize overtime of the ORs.

They used a deterministic mixed integer program to formulate the problem and solve it

with CPLEX 12.5. They analyzed the solutions varying the number of ORs, time periods,

the number of days for surgeries, and the number of physicians.

Wullink et al. [62] studied on determining the best way to reserve OR time for emer-

gency surgeries. Two strategies for reserving emergency OR time were proposed: desig-
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nating emergency-dedicated ORs and sharing OR capacities with elective surgeries. Patient

waiting time, OR overtime, and OR utilization were evaluated. They simulated two strate-

gies and observed that, when emergency and elective patients shared OR capacities, OR

overtime, utilization, and patient waiting time for both elective cases and emergency cases

were significantly improved.

2.1.1 Performance Measures

This subsection summarizes performance measures in the literature introduced in Sec-

tion 2.1. See Tables 2.1, 2.2, and 2.3.

2.1.2 Solution Approaches and Consideration of Uncertainty in Surgery Durations

This subsection summarizes solution approaches and consideration of uncertain surgery

durations in the literature introduced in Section 2.1. See Tables 2.4, 2.5, and 2.6.
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2.2 Penalizing Waiting Time based on Group Priority

Cardoen et al. [7] classified the literature according to performance measures that eval-

uate surgery scheduling procedures; the performance measures are, for instance, waiting

time of patients, utilization of operating rooms, leveling of resources (e.g., operating rooms,

wards, and post-anesthesia care units), makespan (i.e., completion time of the last patient’s

recovery), number of patient deferrals or refusals, cost savings, and preferences of the dif-

ferent parties involved in the surgery scheduling.

However, to the best of my knowledge, there is a lack of surgery scheduling literature

that considers time-dependent patient health condition as a performance measure.

In the literature, a similar concept to patient health condition presented in this research

is to classify patients into each priority group when they are admitted to the waiting list and,

according to the priority, impose patient-related costs that increase with respect to waiting

time (e.g., hospitalization costs and penalties for passing the optimal surgery date).

When elective surgery patients and emergency surgery patients share the operation

room capacity, two groups of patients with different priorities are naturally considered.

Gerchak et al. [65] suggested an elective surgery scheduling problem under the assumption

that operating rooms can be utilized by emergency surgeries as well as elective surgeries,

and the number of emergency cases arriving each day is uncertain. Elective surgeries that

are unable to be scheduled for the requested day, due to the full capacity of the operating

rooms, are rescheduled penalizing the profit margin of a hospital. They decided the number

of elective surgeries scheduled in a day to maximize the expected profit for the hospital.

Lamiri et al. [46] dealt with a similar problem. The difference in the problem setting is the

use of a multi-period model, while Gerchak et al. [65] used a mono-period model. They

designed patient-related costs as a stepwise increasing function with respect to waiting time

in a multi-period model and obtained an elective surgery schedule to minimize the sum of

patient-related and overtime costs. In Gerchak et al. [65] and Lamiri et al. [46], patients

were prioritized into two groups: elective and emergency cases.
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There are a couple of papers that consider multiple patient groups to represent patient

priorities for elective surgery. Gupta [42] suggested an elective surgery booking control

with multiple patient groups. He divided all surgery types into multiple classes with each

group having a maximum delay the surgery must be performed by. Overtime costs that

are incurred to satisfy the maximum delays penalized the hospital’s profit which is the

objective function of his problem. Similarly, Min and Yih [54] used multiple patient groups

for their elective surgery scheduling problem. They did not specify the maximum delays.

However, they designed patient-related costs as a stepwise increasing function in a multi-

period setting and obtained an elective surgery schedule to minimize the sum of patient-

related costs and overtime costs like Lamiri et al. [46].

The problems that minimize total patient-related costs, in the previous work, can be

converted to those that maximize total patient health condition.

However, this study uses a different approach to formulate an elective surgery problem.

While the previous approaches can delay the surgery for the most critical patient to max-

imize total patient health condition and, therefore, expose the patient at risk of death, this

study focuses on improving critical-patient safety by maximizing minimum patient health

condition.

2.3 Sample Average Approximation Method

In order to discuss a methodology to solve a stochastic MIP presented in the disserta-

tion, the SAA method needs to be addressed. The general idea to tackle stochastic MIPs is

to convert the stochastic MIPs to the corresponding “deterministic equivalent” [66] models

and then solve the deterministic equivalent models using well-established techniques for

deterministic models. Most of the solution approaches that are currently available to tackle

stochastic MIPs, such as the integer L-shaped method [67], stochastic branch-and-bound

method [68], and SAA method, are implemented based on this general idea. A thorough

review of the SAA method is given in Kleywegt et al. [16]. “The basic idea of the SAA

method is simple indeed” [16]. A deterministic equivalent model with a set of scenarios
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is solved to approximate the objective function of the corresponding stochastic MIP. If the

deterministic equivalent model is solved several times changing the set of scenarios each

time, the quality (i.e., optimality gap) of solutions can be statistically obtained.

The SAA method was adopted in several papers to deal with surgery scheduling prob-

lems under uncertain surgery durations. Denton et al. [11] formulated an elective surgery

scheduling problem as an SAA model (i.e., deterministic equivalent model of a stochastic

MIP to implement the SAA method) to minimize the weighted sum of waiting time, idling

time, and overtime costs. They also proposed simple heuristics. Min and Yih [13] presented

an SAA model to minimize the weighted sum of patient-related and overtime costs. They

proved the total unimodularity of their SAA model so that some integer variables were able

to be relaxed as continuous variables. Mancilla and Storer [69] dealt with a similar SAA

model to that of Denton et al. [11]. They incorporated the Benders’ decomposition [70] to

the SAA method.

Since the algorithm that implements the SAA method is time consuming and, thus,

limited to solve large-size problems, the previous work developed heuristics [11], relaxed

integer variables as continuous variables [13], or added a decomposition technique to the

SAA method [69].

In a similar way to the above referenced work, this research develops heuristics in

Chapter 4 to provide effective solutions for large size problems, in addition to implementing

the SAA method to solve the proposed stochastic MIP.
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3. SAMPLE AVERAGE APPROXIMATION APPROACH TO

ELECTIVE SURGERY SCHEDULING WITH LINEARLY

DETERIORATING PATIENT HEALTH CONDITION

3.1 Introduction

Hospitals are under increasing pressure to improve patient safety [71]. Surgery schedul-

ing without considering patient health condition exposes patients at risk of death or de-

creases their safety.

This study incorporates deteriorating patient health condition in elective surgery schedul-

ing to improve patient safety. Diseases may exacerbate patient health condition with the

increase of waiting time for surgery. Abdominal disease is a good example for these dis-

eases. Abdominal disease is caused by inflammation, calculi, ulcers, abscesses, or malig-

nant tumors which exacerbate patient health condition over time [72].

In addition to patient health condition, overutilization of an operating room (OR) is con-

sidered in this study. Since more than 40% of a hospital’s expenses have been estimated

for surgery operation [11, 12], hospitals are under pressure to control their surgical costs.

With regard to OR planning problems, minimizing overutilization and/or underutilization

of ORs can be considered to reduce a hospital’s surgical costs. Since the schedule consid-

ering patient health condition already prevents underutilization to some degree, this study

deals with overutilization. Overutilization causes additional resource costs for surgeons,

anesthetists, nurses, and ORs [12].

The main purpose of this study is to obtain a schedule which provides the optimal

trade-off between two objectives: maximizing the minimum patient health condition and

minimizing total overtime. The minimum patient health condition is the health condition

of the most critical patient. A schedule maximizing the minimum patient health condition
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prevents patients to be at risk of sentinel events. However, the schedule may not be used

by hospitals since the schedule cannot restrict overtime. Therefore, the trade-off of the two

objectives, under uncertain surgery durations, is considered in this study.

The remainder of this chapter is organized as follows. The next section describes

the problem and formulates it as a stochastic mixed integer program (MIP). Section 3.3

presents the SAA method. The computational study for the SAA algorithm is presented in

Section 3.4. Section 3.5 concludes this chapter.

3.2 Problem Description

To schedule a surgery, surgical schedulers must know the time frame within which the

surgery should be performed [73]. The time frame is decided appropriately by clinicians

considering patient health condition [74, 75]. In other words, clinicians assess the health

condition of a patient when he/she is diagnosed and, according to his/her health condition,

set the critical time point by which the surgery should be performed.

This study uses the information about the current patient health condition and the crit-

ical time point to represent time-dependent patient health condition. The current patient

health condition can be determined by clinicians using generic measures (e.g., expected life

durations, impairments, and psychological/physical functions), disease-specific measures

(e.g., dyspnea index for lung disease [76], Karnofsky grade for cancer [77], and model for

end-stage liver disease score [78]), or some combination of them [79]. This study employs

the line connecting the two points (i.e., current patient health condition and critical time

point) as an approximation for deteriorating patient health condition.

A set of patients J = {1, . . . ,n} is to be scheduled for surgery in an OR on a day in the

set of available days for surgeries L = {1, . . . ,m}. Each patient j ∈ J is characterized by

its random surgery duration S j and its health condition HC j(t) which is given as a linearly

decreasing function depending on time t. Let b j be the initial health condition of patient j

at the beginning of day 1 and a j be the time by which the surgery for patient j should start.

If the surgery for patient j does not start by a j, the health condition of patient j can become
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very critical or patient j may become deceased. It is assumed that physicians or surgeons

are able to decide a j and b j. The health condition of patient j is defined in the problem as

follows:

HC j(t) :=−
b j

a j
t +b j a j,b j > 0 (3.1)

where t is 0 at the beginning of day 1.

Available time duration of an OR on day l ∈ L in which surgeries can be performed

without overtime is represented by dl , and time duration between dl and dl+1 is represented

by d′l . Since an OR may not be continuously run 24 hours due to staffing or maintenance,

allowable maximum overtime on day l, denoted by cl , is introduced. Figure 3.1 illustrates

the relationship among dl,d′l ,cl , and dl+1 over time t. Surgery for patient j can be scheduled

to the kth surgery , k ∈ K (being K the set of surgery sequence index on a day), on day l.

Total number of surgeries on day l is not fixed but an output of the model. The cardinality

of set J is the same as that of set K because the problem considers the possibility that all

patients are scheduled on a day. Therefore, the surgery assignment decision variable used

in the model is:

xkl
j =

 1, if a patient j is assigned to the kth surgery on day l

0, otherwise ( j ∈ J, k ∈ K, l ∈ L)

Let Ol be overtime on day l which exceeds the available time duration dl . Let Tj be the

surgery start time for patient j. The objective value of the problem has two components:

Figure 3.1. Relationship among dl,d′l ,cl , and dl+1.
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the minimum patient health condition and total overtime. Since the problem considers un-

certain surgery durations affecting the surgery start time of patient j and overtime on day

l, HC j(Tj) and Ol are also uncertain even in a fixed surgical schedule. Thus, the expected

value of the minimum patient health condition, E[min j{HC j(Tj)}], and the expected value

of total overtime, E[∑m
l=1 Ol], are considered in the objective function. Note that the two

components of the objective function have different units. Therefore, coefficient δ is used

to compensate for the two different units, and E[min j{HC j(Tj)}]− δE[∑m
l=1 Ol] is maxi-

mized. δ can be decided by surgical schedulers.

Let sµ

j be the mean surgery duration of patient j and M be a sufficiently large number.

A stochastic MIP used to formulate the problem of this study is as follows:

max E[Y −δ

m

∑
l=1

Ol] (3.2)

s.t.
n

∑
k=1

m

∑
l=1

xkl
j = 1, j = 1, ...,n (3.3)

n

∑
j=1

xkl
j ≤ 1, k = 1, ...,n; l = 1, ...m (3.4)

n

∑
j=1

xkl
j ≥

n

∑
j=1

xk+1,l
j , k = 1, ...,n−1; l = 1, ...,m (3.5)

n

∑
k=1

n

∑
j=1

sµ

j xkl
j −dl ≤ cl, l = 1, ...,m (3.6)

n

∑
k=1

n

∑
j=1

S jxkl
j −dl ≤ Ol, l = 1, ...,m (3.7)

−
b j

a j

[
l−1

∑
i=1

(
di +d

′
i

)
xkl

j +
k−1

∑
g=1

n

∑
h=1

Shxgl
h −M

(
1− xkl

j

)]
+b j ≥ Y,

j = 1, ...,n;k = 1, ...,n; l = 1, ...,m (3.8)
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xkl
j ∈ {0,1} , j = 1, ...,n;k = 1, ...,n; l = 1, ...,m (3.9)

Y free (3.10)

Ol ≥ 0, l = 1, ...,m (3.11)

Y in the objective function (3.2) is a variable for the minimum patient health condition

because the left-hand side of constraint (3.8) forces Y to become the minimum health con-

dition of the most critical patient. If xkl
j = 1 in constraint (3.8), the left-hand side yields the

health condition of patient j at the start time of patient j’s surgery. ∑
l−1
i=1

(
di +d

′
i

)
xkl

j deter-

mines the start time of day l and ∑
k−1
g=1 ∑

n
h=1 Shxgl

h determines total durations of preceding

surgeries on day l. Even though xkl
j = 0, ∑

k−1
g=1 ∑

n
h=1 Shxgl

h still remains. Therefore, M is sub-

tracted if xkl
j = 0. Constraint (3.3) imposes every patient to be scheduled. Constraint (3.4)

ensures that more than one surgery cannot be operated simultaneously. Constraint (3.5)

guarantees that any following surgery can be scheduled only after the preceding surgery

is assigned. Constraint (3.6) states that surgeries are able to be scheduled only if total

mean duration of surgeries fit within the time available for surgeries. This constraint is

widely used for the block scheduling system [11,13]. Overtime for each day is obtained in

constraint (3.7).

Note that solving the (deterministic) MIP for every realization of the uncertain surgery

durations is needed for the exact evaluation of the objective function in the stochastic MIP,

which is “computationally prohibitive” (see Ahmed and Shapiro [80] for detailed descrip-

tion of difficulties in solving stochastic MIPs). This chapter suggests the SAA method in

the following section.

3.3 Sample Average Approximation Method

This section constructs an SAA algorithm referring to Kleywegt et al. [16], Ahmed and

Shapiro [80], and Bayraksan and Morton [81].

Let ωr be the rth scenario that defines the rth realization of the random surgery duration

vector
→
S= (S1,S2, . . . ,Sn) and s j(ωr) be the element of scenario ωr that defines the surgery
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duration of patient j. Note that Y and Ol used for the stochastic MIP are approximated by

the objective function of the following SAA model. y(ωr) and ol(ωr) are used to represent

the realizations of Y and Ol respectively under scenario ωr. It is assumed that total number

of scenarios is q (i.e., the set of scenarios is {ωr|r = 1, . . . ,q}) to present an SAA model as

follows:

max
1
q

q

∑
r=1

[
y(ωr)−δ

m

∑
l=1

ol (ωr)

]
(3.12)

s.t.
n

∑
k=1

m

∑
l=1

xkl
j = 1, j = 1, ...,n (3.13)

n

∑
j=1

xkl
j ≤ 1, k = 1, ...,n; l = 1, ...,m (3.14)

n

∑
j=1

xkl
j ≥

n

∑
j=1

xk+1,l
j , k = 1, ...,n−1; l = 1, ...,m (3.15)

n

∑
k=1

n

∑
j=1

sµ

j xkl
j −dl ≤ cl, l = 1, ...,m (3.16)

n

∑
k=1

n

∑
j=1

s j(ωr)xkl
j −dl ≤ ol(ωr), l = 1, ...,m;r = 1, ...,q (3.17)

−
b j

a j

[
l−1

∑
i=1

(
di +d

′
i

)
xkl

j +
k−1

∑
g=1

n

∑
h=1

sh(ωr)x
gl
h −M

(
1− xkl

j

)]
+b j ≥ y(ωr),

j = 1, ...,n;k = 1, ...,n; l = 1, ...,m;r = 1, ...,q (3.18)

xkl
j ∈ {0,1} , j = 1, ...,n;k = 1, ...,n; l = 1, ...,m (3.19)

y(ωr) free r = 1, ...,q (3.20)

ol(ωr)≥ 0, l = 1, ...,m;r = 1, ...,q (3.21)

The SAA model needs to be solved several times with different sets of scenarios to

obtain statistical results. The statistical results ensure the quality of solutions. Let u be

the number of replications of the SAA model and ω
ρ
r be the scenario set {ωρ

r |r = 1, . . . ,q}
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used for the ρth SAA replication . The following definitions are used for a feasible schedule

X = {xkl
j | j ∈ J,k ∈ K, l ∈ L}:

φ(X) := E

[
Y (X ,~S)−δ

m

∑
l=1

Ol(X ,~S)

]
,

vρ
q (X ,ωρ

r ) :=
1
q

q

∑
r=1

[
y(X ,ωρ

r )−δ

m

∑
l=1

ol (X ,ωρ
r )

]
.

In the above definitions, Y (X ,~S) and Ol(X ,~S) represent Y and Ol in the stochastic MIP

respectively but indicate that Y and Ol are dependent on X and ~S. Likewise, y(X ,ω
ρ
r ) and

ol(X ,ω
ρ
r ) are another representations of y(ωρ

r ) and ol(ω
ρ
r ) respectively.

Let X∗ be the optimal solution of the stochastic MIP and Xρ∗ be the optimal solution

of the ρth SAA replication. The optimality gap is defined as φ(X∗)− φ(X̂) for a given

solution X̂ . φ(X∗) and φ(X̂) are estimated respectively by

ṽq
u :=

1
u

u

∑
ρ=1

vρ
q
(
Xρ∗,ωρ

r
)
, (3.22)

v̄q
u (X̂) :=

1
u

u

∑
κ=1

vκ
q
(
X̂ ,ωκ

r
)
. (3.23)

Note that ṽq
u is an optimistically biased estimator of φ(X∗) because

E
[
ṽq

u]= 1
u

u

∑
ρ=1

E
[
vρ

q
(
Xρ∗,ωρ

r
)]
≥ 1

u

u

∑
ρ=1

E[vρ
q (X

∗,ωρ
r )] =

1
u

u

∑
ρ=1

φ(X∗) = φ(X∗).

Note that v̄q
u(X̂) is an unbiased estimator of φ(X̂) because

E
[
v̄q

u (X̂)]= 1
u

u

∑
κ=1

E

[
1
q

q

∑
r=1

{
y
(

X̂ ,ω
κ

r

)
−δ

m

∑
l=1

ol

(
X̂ ,ω

κ

r

)}]

=
1
u

u

∑
κ=1

E

[
Y
(

X̂ ,~S
)
−δ

m

∑
l=1

Ol

(
X̂ ,~S

)]
= φ(X̂).

Since E[ṽq
u]≥ φ(X∗) and E[v̄q

u(X̂)] = φ(X̂), ṽq
u− v̄q

u(X̂) overestimates the optimality

gap φ(X∗)−φ(X̂).
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The variance of ṽq
u− v̄q

u(X̂) is
1

u(u−1)∑
u
ρ=1

[{
vρ

q
(
Xρ∗,ω

ρ
r
)
− vρ

q
(
X̂ ,ω

ρ
r
)}
−
{

ṽq
u− v̄q

u (X̂)}]2 because

Var
[
ṽq

u− v̄q
u(X̂)

]
=Var

[
1
u

u

∑
ρ=1

vρ
q (X

ρ∗,ωρ
r )−

1
u

u

∑
ρ=1

vρ
q
(
X̂ ,ωρ

r
)]

=
1
u2

{
Var

[
u

∑
ρ=1

vρ
q (X

ρ∗,ωρ
r )−

u

∑
ρ=1

vρ
q
(
X̂ ,ωρ

r
)]}

=
1
u2

u

∑
ρ=1

Var
[
vρ

q (X
ρ∗,ωρ

r )− vρ
q
(
X̂ ,ωρ

r
)]

=
1
u2

u

∑
ρ=1

1
u−1

u

∑
ρ=1

[{
vρ

q (x
ρ∗,ωρ

r )− vρ
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Note that ṽq

u− v̄q
u(X̂) is a sample mean of independent and identically distributed ran-

dom variables. Thus, ṽq
u− v̄q

u(X̂) is approximately normally distributed for sufficiently

large u by the central limit theorem. The 100(1−α)% confidence interval on the optimal-

ity gap (CIOOG) for a given solution X̂ can be constructed as follows:

ṽq
u− v̄q

u (X̂)+ zα

√
1

u(u−1)

u

∑
ρ=1

[{
vρ

q
(
Xρ∗,ω

ρ
r
)
− vρ

q
(
X̂ ,ω

ρ
r
)}
−
{

ṽq
u− v̄q

u
(
X̂
)}]2
(3.24)

where zα denotes the value such that P(Z > zα) = α; Z is a standard normal random

variable.

A proposed algorithm (SAA algorithm) for the problem of this study is as follows:

Step 1. Choose u and q.

Step 2. For each ρ = 1,2, . . . ,u, generate q scenarios and solve the ρth SAA replication.

Obtain the optimal solution Xρ∗ and the corresponding objective value vρ
q (Xρ∗,ω

ρ
r )

of the ρth SAA problem.

Step 3. Calculate ṽq
u by (3.22).

Step 4. For each ρ , calculate v̄q
u(Xρ∗) by (3.23).
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Step 5. Select one solution, denoted by X̂saa , that provides the maximum value of v̄q
u(Xρ∗).

Step 6. Construct the 100(1−α)% CIOOG for X̂saa by (3.24).

3.4 Computational Study

The numerical experiments to test the SAA algorithm described in Sections 3.3 are

presented in this section. The algorithm is implemented in the General Algebraic Modeling

System (GAMS) 24.1.3 with CPLEX 12.5.1 for solving MIPs on a PC with a 2.4GHz Core

i7 processor and 8GB RAM.

To generate the distribution of surgery duration S j, several statistics of the six abdomi-

nal surgery durations from Strum et al. [82] are used. They are liver transplantation (class

1), abdomen exploration (class 2), inguinal hernia repair (class 3), kidney transplantation

(class 4), laparoscopy and tubal cautery (class 5), and laparoscopic cholecystectomy (class

6). The percentages in Table 3.1 are calculated by the number of class’s surgeries divided

by the total number of abdominal surgeries. Surgeries are generated for the experiments

based on each class’s percentage. The study mean and study standard deviation ranges

are shown in Table 3.1. These values are computed by allowing ±20% deviation from the

mean and standard deviation of each class’s surgery durations [82] to reflect considerable

Table 3.1
Generating surgery durations.

Surgery
class

Percentagea Meana,b Standard
deviationa,b

Study meanb Study standard
deviationb

Class 1 23.83% 691 126 [552.8,829.2] [100.8,151.2]
Class 2 24.11% 194 89.4 [155.2,232.8] [71.52,107.28]
Class 3 21.16% 143 38.5 [114.4,171.6] [30.8,46.2]
Class 4 16.96% 328 50 [262.4,393.6] [40,60]
Class 5 7.52% 105 27.4 [84,126] [21.92,32.88]
Class 6 6.42% 219 47.2 [175.2,262.8] [37.73,56.64]

a statistics taken from Strum et al. [82].
b in minutes.
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variations in surgery durations [83, 84]. Then, the mean and standard deviation of S j are

randomly selected within the study mean and study standard deviation ranges. It is as-

sumed that S j follows the lognormal distribution because it is widely used due to its ability

to incorporate the variability inherent in surgery durations [85].

Patient health condition ranges from 0 (high risk of death or irrecoverable health con-

dition) to 100 (normal health condition) in this computational study. The scale for patient

health condition may be flexible depending on surgeons or physicians. However, it can be

normalized into the 100-scale.

Regarding m (number of available days for surgeries), since it is a possible schedule in

which only one surgery is performed for each day, m is set to be n (number of patients).

a j (critical time point) and b j (initial patient condition) are generated from the uniform

distribution over the intervals [1440 minutes, 2880×m minutes] and [30, 100] respectively.

Since this study does not focus on emergency surgery but on elective surgery, it is supposed

that patients can wait, without risk of death or irrecoverable health condition, for at least 1

day (1440 minutes) and initial health condition of each patient is not urgent (not below 30).

Other parameters used for the experiments are set to be as follows: dl (available time

duration on day l) = 480 minutes for all l, d′l (time duration between dl and dl+1) = 960

minutes for all l, and cl (allowable maximum overtime on day l) = 480 minutes for all l.

Table 3.2 demonstrates the trade-off between the computation time of the SAA algo-

rithm and the quality of SAA solutions. The SAA algorithm is tested for 36 cases of 10

instances each. As q and n increase, the average computation time of the SAA algorithm

increases exponentially so that about 5 hours are needed to solve a problem with q = 20, u

(number of SAA replications)= 10, and n = 10. It is also shown in Table 3.2 that statisti-

cally good solutions are obtained by increasing q.

The SAA algorithm with q = 20 provides near-optimal solutions. The average 95%

CIOOG of SAA solutions with q = 20 is 0.38. Since the 95% CIOOG overestimates the

optimality gap φ(X∗)−φ(X̂), and the 100-scale is used to represent patient health condition

in the experiments, 0.38 95% CIOOG is regarded as sufficiently small.
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Table 3.2
Performance of SAA algorithm.

q u n δ Average computation time (seconds) Average 95% CIOOG

5

5

8
0.05 83.649 0.470
0.1 75.476 0.602
0.2 60.929 1.736

10
0.05 1716.883 0.837
0.1 1217.869 2.015
0.2 1050.219 3.505

10

8
0.05 178.120 0.359
0.1 178.184 0.567
0.2 147.758 1.462

10
0.05 2927.354 0.630
0.1 2061.490 0.870
0.2 1721.164 2.034

Average (q = 5) 951.591 1.257

10

5

8
0.05 214.532 0.270
0.1 243.954 0.374
0.2 206.062 0.761

10
0.05 3663.980 0.239
0.1 2373.740 0.413
0.2 1888.483 0.925

10

8
0.05 530.693 0.271
0.1 545.988 0.486
0.2 498.849 0.864

10
0.05 6929.815 0.253
0.1 5480.185 0.459
0.2 4778.149 1.403

Average (q = 10) 2279.536 0.560

20

5

8
0.05 631.560 0.158
0.1 593.821 0.277
0.2 587.390 0.391

10
0.05 9360.266 0.208
0.1 8406.003 0.358
0.2 5935.091 0.946

10

8
0.05 1436.366 0.142
0.1 1087.477 0.237
0.2 1244.482 0.482

10
0.05 17938.709 0.205
0.1 15451.887 0.384
0.2 12308.934 0.773

Average (q = 20) 6248.499 0.380
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However, the SAA algorithm can only be used to schedule surgeries that have long

durations like transplantation (e.g., mean surgery durations for liver and kidney transplan-

tation are 691 and 328 minutes respectively [82]). Surgery schedules are typically made

on a weekly or monthly basis [11, 46, 53]. If more than two surgeries are assignable in a

day and, accordingly, more than ten surgeries should be scheduled for a week, the SAA

algorithm may not be appropriately used.

3.5 Conclusions

This chapter describes an OR planning problem under uncertain surgery durations and

models it as a stochastic MIP. The minimum patient health condition is considered to im-

prove patient safety, and total overtime is considered to reduce a hospital’s expenses. The

idea of maximizing the minimum patient health condition, which improves critical-patient

safety, has not been discussed in previous work.

The SAA algorithm is presented in this chapter. The SAA algorithm is constructed

solving the deterministic equivalent model (i.e., SAA model) of the proposed stochastic

MIP several times with different sets of scenarios. Even though the SAA algorithm can

yield good solutions which are statistically guaranteed, it is costly in terms of the computa-

tion time. To make up for the time inefficiency of the SAA algorithm and solve large-size

problems, two heuristics are developed in the following chapter.
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4. HEURISTIC APPROACHES TO ELECTIVE SURGERY

SCHEDULING WITH LINEARLY DETERIORATING PATIENT

HEALTH CONDITION

4.1 Introduction

This chapter deals with an elective surgery scheduling problem introduced in Chapter 3.

The problem aims to obtain a surgery schedule that provides the optimal trade-off between

maximizing the minimum patient health condition and minimizing total overtime of an OR.

The minimum patient health condition is the health condition of the most critical patient.

The main purpose of this chapter is to develop solution approaches that are able to solve

the problem within reasonable computation times while providing high-quality solutions.

This chapter presents two solution approaches: a fastest ascent local search and a tabu

search. Those are evaluated with the SAA algorithm.

The reminder of this chapter is organized as follows. The next section recalls the

stochastic MIP and SAA model of the problem. Section 4.3 illustrates a fastest ascent

local search and a tabu search. The two heuristics are compared with the SAA algorithm in

Section 4.4. Section 4.5 concludes this chapter.

4.2 Problem Description

This section recalls the problem introduced in Chapter 3. Notations used in the stochas-

tic MIP and SAA model are summarized in Table 4.1.

The stochastic MIP to formulate the problem is as follows:
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max E[Y −δ

m

∑
l=1

Ol] (4.1)

s.t.
n

∑
k=1

m

∑
l=1

xkl
j = 1, j = 1, ...,n (4.2)

n

∑
j=1

xkl
j ≤ 1, k = 1, ...,n; l = 1, ...m (4.3)

n

∑
j=1

xkl
j ≥

n

∑
j=1

xk+1,l
j , k = 1, ...,n−1; l = 1, ...,m (4.4)

n

∑
k=1

n

∑
j=1

sµ

j xkl
j −dl ≤ cl, l = 1, ...,m (4.5)

n

∑
k=1

n

∑
j=1

S jxkl
j −dl ≤ Ol, l = 1, ...,m (4.6)

−
b j

a j

[
l−1

∑
i=1

(
di +d

′
i

)
xkl

j +
k−1

∑
g=1

n

∑
h=1

Shxgl
h −M

(
1− xkl

j

)]
+b j ≥ Y,

j = 1, ...,n;k = 1, ...,n; l = 1, ...,m (4.7)

xkl
j ∈ {0,1} , j = 1, ...,n;k = 1, ...,n; l = 1, ...,m (4.8)

Y free (4.9)

Ol ≥ 0, l = 1, ...,m (4.10)

The SAA model of the stochastic MIP is as follows:

max
1
q

q

∑
r=1

[
y(ωr)−δ

m

∑
l=1

ol (ωr)

]
(4.11)

s.t.
n

∑
k=1

m

∑
l=1

xkl
j = 1, j = 1, ...,n (4.12)
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n

∑
j=1

xkl
j ≤ 1, k = 1, ...,n; l = 1, ...,m (4.13)

n

∑
j=1

xkl
j ≥

n

∑
j=1

xk+1,l
j , k = 1, ...,n−1; l = 1, ...,m (4.14)

n

∑
k=1

n

∑
j=1

sµ

j xkl
j −dl ≤ cl, l = 1, ...,m (4.15)

n

∑
k=1

n

∑
j=1

s j(ωr)xkl
j −dl ≤ ol(ωr), l = 1, ...,m;r = 1, ...,q (4.16)

−
b j

a j

[
l−1

∑
i=1

(
di +d

′
i

)
xkl

j +
k−1

∑
g=1

n

∑
h=1

sh(ωr)x
gl
h −M

(
1− xkl

j

)]
+b j ≥ y(ωr),

j = 1, ...,n;k = 1, ...,n; l = 1, ...,m;r = 1, ...,q (4.17)

xkl
j ∈ {0,1} , j = 1, ...,n;k = 1, ...,n; l = 1, ...,m (4.18)

y(ωr) free r = 1, ...,q (4.19)

ol(ωr)≥ 0, l = 1, ...,m;r = 1, ...,q (4.20)

4.3 Heuristic Approaches

A fastest ascent local search (FALS) and a tabu search (TS) are developed in this section

considering the trade-off between the efficiency of computational time and the effectiveness

of solutions. Sections 4.3.1, 4.3.2, and 4.3.3 illustrate key structural elements used in both

the FALS and TS. The overall procedures of the two heuristics are described in Sections

4.3.4 and 4.3.5 respectively.

4.3.1 Feasible Solution Acquisition

The heuristics use the optimal solution of the expected value model (EVM) for their

initial solutions. The EVM is obtained by replacing random parameters Y , Ol , and S j with
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Table 4.1
Notations used in stochastic MIP and SAA model

n number of patients to be scheduled for surgeries

m number of available days for surgeries

j patient index, j ∈ J, J = {1, ...,n}

k surgery sequence index on a day, k ∈ K, K = {1, ...,n}

l day index, l ∈ L, L = {1, ...,m}

S j random surgery duration for patient j

sµ

j mean surgery duration of patient j

a j critical time point by which the surgery for patient j should be per-
formed

b j initial health condition of patient j at the beginning of day 1

dl available time duration of an OR on day l in which surgeries can be
performed without overtime

d′l time duration (unavailable for surgeries) between dl and dl+1

cl allowable maximum overtime on day l

Ol overtime on day l which exceeds the available time duration dl

Y minimum patient health condition

M sufficiently large number

δ coefficient between Y and ∑
m
l=1 Ol

q number of scenarios

ωr rth scenario that defines the rth realization of the random surgery dura-
tion vector ~S = (S1,S2, ...,Sn), r = 1, ...,q

s j(ωr) element of scenario ωr that defines the surgery duration of patient j

y(ωr) realization of Y

ol(ωr) realization of Ol

xkl
j 1 if patient j is assigned to the kth surgery on day l. 0 otherwise.
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deterministic parameters y, ol , and sµ

j respectively in the stochastic MIP. Note that sµ

j is the

expected value of S j.

4.3.2 Solution Evaluation

The heuristics generate q scenarios with which they estimate the objective value of the

stochastic MIP for a given solution X̂ . Let Tj(X̂ ,~S) be the surgery start time of patient j

in X̂ under ~S, t j(X̂ ,ωr) be the surgery start time of patient j in X̂ under ωr, and ~sµ be the

mean surgery duration vector (sµ

1 ,s
µ

2 , ...,s
µ
n ). The objective value of X̂ is the weighted sum

of two components: E[Y (X̂ ,~S)] and E[∑m
l=1 Ol(X̂ ,~S)].

E[Y (X̂ ,~S)] can be written as

E
[

min
j

{
−

b j

a j
Tj

(
X̂ ,~S

)
+b j

}]
(4.21)

where

Tj(X̂ ,~S) := max
k,l

{
l−1

∑
i=1

(
di +d

′
i

)
x̂kl

j +
k−1

∑
g=1

n

∑
h=1

Shx̂gl
h −M

(
1− x̂kl

j

)}
.

An estimator of (4.21), which is used in Section 4.2, is

1
q

q

∑
r=1

min
j
{−

b j

a j
t j(X̂ ,ωr)+b j} (4.22)

where

t j(X̂ ,ωr) := max
k,l

{
l−1

∑
i=1

(
di +d

′
i

)
x̂kl

j +
k−1

∑
g=1

n

∑
h=1

sh(ωr)x̂
gl
h −M

(
1− x̂kl

j

)}
.
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(4.22) is used in the SAA model since it is an unbiased estimator of (4.21). However, the

computational load for (4.22) is heavy so that another estimator is used in the heuristics.

The heuristics estimate (4.21) by

min
j

{
−

b j

a j
t j(X̂ , ~sµ)+b j

}
(4.23)

where

t j(X̂ , ~sµ) := max
k,l

{
l−1

∑
i=1

(
di +d

′
i

)
x̂kl

j +
k−1

∑
g=1

n

∑
h=1

sµ

h x̂gl
h −M

(
1− x̂kl

j

)}
.

The heuristics reduce their computation time by a factor q as they calculate (4.23), instead

of (4.22), for a given solution. In addition, in most cases of SAA solutions, (4.23) is equal

or close to (4.22). 360 SAA solutions, which are obtained respectively for 360 instances in

Section 4.4, are analyzed to test the value difference between (4.23) and (4.22). The lowest

value for patient health condition is set to be 0, which indicates death or irrecoverable

health condition. On the other hand, the highest one is set to be 100 to represent normal

health condition. Refer to Section 4.4 for the setting of the other parameters. (4.23) is equal

to (4.22) in 344 out of 360 SAA solutions. If a patient assigned to the first surgery of any

available day is the most critical patient in an SAA solution for any given q scenarios and

~sµ , it is easy to show that (4.23) is equal to (4.22) in the SAA solution. Those 344 SAA

solutions belong to this category. Even though (4.23) is not equal to (4.22) in 16 out of 360

SAA solutions, the average value difference between (4.23) and (4.22) is just 0.097 which

is less than 0.1% of the range for patient health condition.

Let ol(X̂ ,ωr) be overtime on day l in X̂ under ωr. The heuristics estimate E[∑m
l=1 Ol(X̂ ,~S)],

with q scenarios, by
1
q

q

∑
r=1

m

∑
l=1

ol
(
X̂ ,ωr

)
(4.24)

where

ol(X̂ ,ωr) := max

{
0,

n

∑
k=1

n

∑
j=1

s j(ωr)x̂kl
j −dl

}
.
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Note that (4.24) is an unbiased estimator of E[∑m
l=1 Ol(X̂ ,~S)] and the same estimator used

in the SAA model.

To sum up, the heuristics evaluate a given solution X̂ = {x̂kl
j | j ∈ J,k ∈ K, l ∈ L}, with q

scenarios, by

min
j

{
−

b j

a j
t j(X̂ , ~sµ)+b j

}
−δ

1
q

q

∑
r=1

m

∑
l=1

ol(X̂ ,ωr) (4.25)

where

t j(X̂ , ~sµ) := max
k,l

{
l−1

∑
i=1

(
di +d

′
i

)
x̂kl

j +
k−1

∑
g=1

n

∑
h=1

sµ

h x̂gl
h −M

(
1− x̂kl

j

)}
,

ol(X̂ ,ωr) := max

{
0,

n

∑
k=1

n

∑
j=1

s j(ωr)x̂kl
j −dl

}
.

4.3.3 Neighborhood Structure

Once an initial solution, denoted by current x̂, is obtained, the heuristics start to search

for neighbor solutions based on the pairwise interchange mechanism [86]. Let tempx̂ be a

temporary solution. The heuristics put current x̂ into tempx̂. The surgery assignments for a

pair of patients are interchanged in tempx̂. Note that all the other surgery assignments except

for both interchanged surgery assignments in the current iteration remain the same in tempx̂.

If total mean duration of surgeries for each day fits within the time available for each day in

tempx̂, tempx̂ is a feasible neighbor solution so that it is considered for a move from current x̂.

However, this mechanism does not change the number of surgeries scheduled for each day.

Therefore, the heuristics add a dummy patient’s surgery to the last surgery scheduled for

each day, and make the assignments of a patient’s surgery and a dummy patient’s surgery

interchangeable.

To sum up, the neighborhood of the heuristics is all pairwise interchanges of surgery

assignments including dummy patient surgery assignments.
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4.3.4 Fastest Ascent Local Search

The FALS (also called a first improvement local search) explores neighbor solutions at

a current solution. Once the FALS finds a neighbor solution whose objective value (4.25) is

better than the current solution’s objective value (4.25), a move form the current solution to

the neighbor solution is made. This process continues until any neighbor solutions cannot

improve the objective value (4.25).

This study does not illustrate a steepest ascent local search (also called a best improve-

ment local search) which is an alternate strategy for exploring neighbor solutions [87] since

it can be seen as a part of the TS illustrated in Section 4.3.5. A steepest ascent local search

selects the best improvement in the entire neighborhood at each move while the TS selects

the best neighbor solution regardless of whether the best neighbor solution improves the

objective value (4.25) or not. It is obvious that TS solutions are at least as good as steepest

ascent local search solutions.

Procedure of the Fastest Ascent Local Search

Step 1. Choose q. Solve the EVM and set current x̂ := EVM’s optimal solution, f (current x̂) :=

objective value (4.25) of current x̂. Generate q scenarios.

Step 2. Add a dummy patient’s surgery (surgery duration:=0) to the last surgery scheduled

for each day in current x̂.

Step 3. Set k′ := 1, l′ := 1.

Step 4. If l′ ≤ m, go to step 5. Otherwise, terminate the algorithm.

Step 5. If k′ ≤ number of surgeries scheduled on day l′, go to step 6. Otherwise, set k′ :=

1, l′ := l′+1, and go to step 4.

Step 6. Find patient index j′ such that x j′
k′l′ = 1.

Step 7. Set k′′ := k′+1, l′′ := l′.
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Step 8. If l′′ ≤ m, go to step 9. Otherwise, set k′ := k′+1 and go to step 5.

Step 9. If k′′ ≤ number of surgeries scheduled on day l′′, go to step 10. Otherwise, set

k′′ := 1, l′′ := l′′+1, and go to step 8.

Step 10. Find patient index j′′ such that x j′′
k′′l′′ = 1.

Step 11. If patient j′ and patient j′′ are all dummy patients, set k′′ := k′′+1 and go to step

9. Otherwise, go to step 12.

Step 12. Set tempx̂ := current x̂. Interchange the assignments of patient j′’s surgery and pa-

tient j′′’s surgery in tempx̂. If the sums of mean surgery durations for l′ and l′′ fit

within the available time durations dl′ and dl′′ respectively in tempx̂, go to step 13.

Otherwise, set k′′ := k′′+1 and go to step 9.

Step 13. Set f (tempx̂) := objective value (4.25) of tempx̂. If f (tempx̂)> f (current x̂), set current x̂ :=

tempx̂, f (current x̂) := f (tempx̂), erase all dummy patients’ surgeries in current x̂, and go

to step 2. Otherwise, set k′′ := k′′+1 and go to step 9.

4.3.5 Tabu Search

TS is a metaheuristic that escapes from a local optimum by allowing non-improving

moves and forbidding cycling moves [88–90]. Even though the FALS provides its solutions

fast, the FALS terminates its algorithm when it reaches a local optimum (see Figure 4.1. A

TS is proposed in this section to continue the search beyond local optimality [91] (see 4.2).

A move is made from a current solution to its best neighbor solution in the entire neigh-

borhood at each iteration in the TS. The best neighbor solution does not have to be better

than the current solution for the move.

Tabu list is used to prevent the algorithm from cycling back to previously visited solu-

tions. The tabu list is a first-in-first-out (FIFO) queue with length γ (this length is called

tabu tenure) and each element of the tabu list is a pair of patient indices. At each move, the

TS puts both indices of patients, whose surgery assignments are interchanged in the move,
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Figure 4.1. How FALS obtains its solution.

into the tabu list as a pair. Reversing the pair’s surgery assignments is not considered during

γ moves.

To efficiently search for solutions within reasonable computation times, this paper in-

troduces search intensity. Search intensity is defined as the probability a neighbor solution

is evaluated for a move. The TS controls the search intensity as follows:

•When the algorithm starts with an initial solution, the search intensity is 1.

• If the objective value (4.25) of the best neighbor solution is better than that of the current

solution, the search intensity for the next move becomes 1.

• If the objective value (4.25) of the best neighbor solution is worse than or equal to that of

the current solution, the search intensity for the next move decreases by ∆.

•When the search intensity becomes 0, the algorithm terminates.

The idea behind the concept of the search intensity is that the algorithm should examine

“promising” [92] areas thoroughly not to miss the best solutions in those areas while the

algorithm skims non-promising areas to reduce the computational burden.
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Figure 4.2. How TS escapes from a local optimum.

Procedure of the Tabu Search

Step 1. Choose γ,∆,q. Solve the EVM and set current x̂ := EVM’s optimal solution, f (current x̂) :=

objective value (4.25) of current x̂, tabu list := ∅, search intensity := 1. Generate q

scenarios.

Step 2. Set best x̂ :=current x̂, f (best x̂) := f (current x̂).

Step 3. Add a dummy patient’s surgery (surgery duration:=0) to the last surgery scheduled

for each day in current x̂. Set f (bestneighborx̂) := −M (note that M is a sufficiently

large number).

Step 4. Set k′ := 1, l′ := 1.

Step 5. If l′ ≤ m, go to step 6. Otherwise, go to step 15.

Step 6. If k′ ≤ number of surgeries scheduled on day l′, go to step 7. Otherwise, set k′ :=

1, l′ := l′+1, and go to step 5.

Step 7. Find patient index j′ such that x j′
k′l′ = 1.
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Step 8. Set k′′ := k′+1, l′′ := l′.

Step 9. If l′′ ≤ m, go to step 10. Otherwise, set k′ := k′+1 and go to step 6.

Step 10. If k′′ ≤ number of surgeries scheduled on day l′′, go to step 11. Otherwise, set

k′′ := 1, l′′ := l′′+1, and go to step 9.

Step 11. Find patient index j′′ such that x j′′
k′′l′′ = 1.

Step 12. Generate a real number β from the uniform distribution over the interval [0,1]. If

patient j′ and patient j′′ are all dummy patients, β > search intensity, or ( j′, j′′) is

an element of tabu list, set k′′ := k′′+1 and go to step 10. Otherwise, go to step 13.

Step 13. Set tempx̂ := current x̂. Interchange the assignments of patient j′’s surgery and patient

j′′’s surgery in tempx̂. If the sums of mean surgery durations for days l′ and l′′ fit

within the available time durations dl′ and dl′′ respectively in tempx̂, go to step 14.

Otherwise, set k′′ := k′′+1 and go to step 10.

Step 14. Set f (tempx̂) := objective value (4.25) of tempx̂. If f (tempx̂) > f (bestneighborx̂), set

bestneighborx̂ := tempx̂, f (bestneighborx̂) := f (tempx̂),k′′ := k′′ + 1, tabu candidate :=

( j′′, j′), erase all dummy patients’ surgeries in bestneighborx̂, and go to step 10. Oth-

erwise, set k′′ := k′′+1 and go to step 10.

Step 15. If f (bestneighborx̂)> f (current x̂), set search intensity := 1. Otherwise, search intensity :=

search intensity−∆.

Step 16. If search intensity= 0, terminate the algorithm. Otherwise, set current x̂ := bestneighborx̂, f (current x̂) :=

f (bestneighborx̂), put tabu candidate into tabu list, and go to step 17.

Step 17. If f (current x̂)> f (best x̂), go to step 2. Otherwise, go to step 3.
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4.4 Computational Study

The numerical experiments to test the heuristics described in Section 4.3 are presented

in this section. Parameters are set to be the same as those in Section 3.4. Please refer to 3.4

to see the setting of parameters. The heuristics and the SAA algorithm are implemented in

the General Algebraic Modeling System (GAMS) 24.1.3 with CPLEX 12.5.1 for solving

MIPs on a PC with a 2.4GHz Core i7 processor and 8GB RAM.

A set of scenarios is used to obtain an SAA solution or a heuristic solution, and a

different set of 200 scenarios is used to evaluate the obtained solution X̂ = {x̂kl
j | j ∈ J,k ∈

K, l ∈ L}. X̂ is evaluated by

1
200

200

∑
r=1

min
j

{
−

b j

a j
max

k,l

{
l−1

∑
i=1

(
di +d

′
i

)
x̂kl

j +
k−1

∑
g=1

n

∑
h=1

sh(ωr)x̂
gl
h −M

(
1− x̂kl

j

)}
+b j

}

−δ
1

200

200

∑
r=1

m

∑
l=1

max

{
0,

n

∑
k=1

n

∑
j=1

s j(ωr)x̂kl
j −dl

}
. (4.26)

Note that (4.26) is the SAA objective value (4.11) of X̂ with 200 scenarios. It is supposed

in this computational study that when solutions are compared, the solutions are obtained

for the same instance (i.e., the same number of patients , the same critical time point and

initial patient condition for each patient, the same coefficient δ , and the same distribution

for each patient’s surgery duration), and the objective values (4.26) of the solutions are

obtained using the same test set of 200 scenarios.

The performance of the SAA algorithm with q = 20 and u = 10 is compared to that

of each heuristic since the SAA algorithm with q = 20 and u = 10 provides the best 95%

CIOOG on average. Since the SAA algorithm uses 200 scenarios in total (i.e., 20(q)×10(u))

to solve an instance for comparison, the FALS and TS use the same set of 200 scenarios to

solve the instance for the sake of fairness.

Table 4.2 demonstrates the effects of γ (tabu tenure) and ∆ (stepsize to decrease the

search intensity) on the quality of TS solutions. 10 instances with n = 20 and δ = 0.1 are

solved by the TS varying γ and ∆. It is easy to find that, in general, the selection of γ and ∆
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Table 4.3
Computation times of EVM, FALS, and TS.

Average computation time (seconds)
n δ EVM FALS TS

8
0.05 1.045 0.878 1130.531
0.1 1.359 0.830 902.425
0.2 1.742 1.026 1263.671

Average (n = 8) 1.382 0.911 1098.876

10
0.05 6.213 2.079 2131.505
0.1 5.473 2.224 1585.871
0.2 4.959 2.356 3157.691

Average (n = 10) 5.548 2.219 2291.689

15
0.05 166.805 21.960 1177.355
0.1 279.340 23.290 636.701
0.2 303.600 20.902 600.893

Average (n = 15) 249.915 22.051 804.983

20
0.05 5673.867 163.340 1683.541
0.1 3403.288 178.201 1749.867
0.2 3723.531 171.479 1320.860

Average (n = 20) 4266.895 171.007 1584.756

does not significantly improve or worsen the quality of TS solutions. For comparison with

the other algorithms, the combination of γ = 3 and ∆ = 0.05 is selected for the TS since

it gives a slightly better average objective value (4.26) than the other combinations. Note

that γ and ∆ are not used in the FALS and, therefore, a preliminary experiment to select the

parameters is not needed for the FALS.

This research presents the performances of the FALS and TS up to n = 20. Surgery

schedules are typically made on a weekly or monthly basis [11, 46, 53]. Therefore, it is

assumed that solutions (i.e., surgery schedules) should be, to be practical, at least for a

week. In the numerical experiments for instances with n = 20, FALS and TS solutions

always exceed the surgery capacity for 5 days. Therefore, n= 20 is considered large enough

in practice.

Table 4.3 illustrates the FALS and TS provide their solutions for large-size problems

within reasonable computation times. They were tested for 12 cases of 10 instances each.

The average computation times to solve the EVM and to implement each heuristic after
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Table 4.5
P-value of paired t-test (two-tailed) for the mean difference of objective values (4.26)

SAA TS FALS EVM

SAA - 0.726 (d f †= 59) 0.003*(d f †= 59) <0.001*(d f †= 59)
TS - - <0.001*(d f †= 119) <0.001*(d f †= 119)
FALS - - - <0.001*(d f †= 119)
EVM - - - -
* significant mean difference of objective values.
† degree of freedom.

obtaining an initial solution are summarized. As n increases, the computation time to

obtain an initial solution by solving the EVM increases exponentially so that it limits the

FALS and TS to solve large-size problems. However, an EVM solution serves as a lower-

bound solution of the FALS and TS. One thing that should be noticed in this table is that

the computation time of the TS is not very sensitive to the problem size due to the search

intensity mechanism. To solve an instance with n = 20, the FALS and TS spend less than

2 hours on average including the computation time to obtain an initial solution, while the

SAA algorithm cannot complete its procedure within a computation time limit of 12 hours

for any instances with n = 15 or 20.

Tables 4.4 and 4.5 illustrate the qualities of SAA, TS, FALS, and EVM solutions. EVM

solutions are used as benchmarks for the other algorithms’ solutions [93]. Table 4.4 shows

the average objective value (4.26) of each algorithm for 12 cases of 10 instances each and

the average difference of the objective values (4.26). In addition, the result of the two-

tailed paired t-test [94], to check the statistical significance for the mean difference of the

objective values (4.26), is described in Table 4.5.

The qualitative difference between TS and SAA solutions is not statistically significant.

Note that those SAA solutions are near-optimal but time-consuming to be obtained. The

TS remarkably improves its initial solutions with much shorter computation time than the

SAA algorithm’s computation time. The mean objective values (4.26) of SAA and TS

solutions are significantly better than that of FALS solutions. The mean objective value

(4.26) of FALS solutions is significantly better than that of EVM solutions. The solution
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improvement procedure of the FALS, from its initial solutions, is successful but not as

effective as that of the TS.

4.5 Conclusions

This chapter presents two heuristics (i.e., FALS and TS) for an elective surgery schedul-

ing problem with linearly deteriorating patient health condition.

The FALS provides its solutions faster than the TS. However, the quality of FALS

solutions is not as good as that of TS solutions. The computational study demonstrates,

through the comparison with the SAA algorithm, that the TS provides effective solutions

within reasonable computation times.



54

5. ELECTIVE SURGERY SCHEDULING WITH

STEP-DETERIORATING PATIENT HEALTH CONDITION

5.1 Introduction

Hospitals and healthcare organizations have paid increased attention to improving pa-

tient safety in recent decades [1]. However, most of approaches to improve patient safety

focus on the reporting and prevention of medical errors, [2, 3, 95], rather than on the man-

agerial aspect of a healthcare system.

This research is motivated by the fact that surgery scheduling considering patient health

condition can contribute to improving patient safety. Disease exacerbates patient health

condition with respect to waiting time for surgery. Surgeons and patients may want to

schedule their surgeries as early as possible in order to escape from the patients’ risks of

deaths or turning the current diseases into more severe diseases. However, the resource

limitation on surgeons, anesthesiologists, nurses, operating rooms (ORs), post-anesthesia

care units, etc., forces surgical schedulers to prioritize surgeries. Patient health condition

may be a key factor to consider in prioritizing and scheduling surgeries.

This study considers time-dependent patient health condition. Whenever patients are di-

agnosed by practitioners, patient health condition may be able to be recorded using severity

level measures such as Kanofsky grade [77], dyspnea index [76], and model for end-stage

liver disease score [78]). Karnofsky grade is given in Table 5.1 as an example of sever-

ity level measures for diseases. Those records can be grouped by diseases, ages, genders,

and/or disease histories at practitioners’ discretion. This study assumes to use those records

to represent patient health condition.

This study aims to provide the optimal solution to maximize the minimum patient health

condition. the minimum patient health condition is defined as the health condition of the
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most critical patient. The objective of maximizing the minimum patient health condition

allows the surgery schedule to minimize the possibility of sentinel events.

The remainder of this chapter is organized as follows. Section 5.2 describes the prob-

lem and formulates it as a stochastic MIP. In Section 5.3, an SAA algorithm is presented.

Section 5.4 presents the performance of the SAA algorithm and the analyses on the SAA

solutions. Finally, concluding remarks are made in Section 5.5.

5.2 Problem Description

A set of patients J = {1, . . . ,n} of a surgeon or a surgical group is scheduled for elective

surgeries in a given block schedule under a full-day block system, a half-day block system,

Table 5.1
An example of severity level measures for diseases.

Karnofsky Status Karnofsky Grade

Normal, no complaints 100

Able to carry on normal activities. Minor signs or symp-
toms of disease

90

Normal activity with effort 80

Care for self. Unable to carry on normal activity or to do
active work

70

Requires occasional assistance, but able to care for most of
his needs

60

Requires considerable assistance and frequent medical care 50

Disabled. Requires special care and assistance 40

Severly disabled. Hospitalisation indicated though death
nonimminent

30

Very sick. Hospitalisation necessary. Active supportive
treatment necessary

20

Moribund 10

Dead 0



56

or a hybrid system of full-day and half-day blocks. See Figure 5.1 for an example of each

block system. There are a set of available days L = {1, . . . ,m} for surgeries and a set of the

days Lb ⊂ L in which surgical blocks of the surgeon or the surgical group exist. Each day

l ∈ Lb has one or two surgical blocks (Being I the set of surgical blocks on a day) in which

surgeries by the surgeon or the surgical group can be performed.

The surgery for patient j ∈ J is assigned to block i ∈ I on day l ∈ Lb. Therefore, the

surgery assignment decision variable is as follows:

xil
j =

 1, if the surgery for patient j is assigned to block i on day l

0, otherwise (i ∈ I, j ∈ J, l ∈ Lb)

Each patient j is characterized by its mean surgery duration sµ

j and its random health

condition, denoted by H jl , on day l.

Let dil be available time duration of block i on day l in which surgeries of the surgeon

or the surgical group can be performed without overtime. dil can be manipulated depending

on the block system used. If a full-day block system is used, d1l should be non-zero and

d2l should be zero. If a half-day block system is used, both d1l and d2l should be non-

zero. Obviously, depending on day l, the two different block systems can be implemented

alternately (i.e., hybrid block system).

Figure 5.1. Examples of surgical block systems.
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Since a surgical block may not be continuously run over the specified overtime range

due to maintenance, staffing, or its next block’s schedule, allowable maximum overtime of

block i on day l, denoted by cil , is introduced.

The objective function of the problem is to maximize the minimum patient health con-

dition. Given a feasible schedule X = {xil
j |i ∈ I, j ∈ J, l ∈ Lb}, the health condition of

patient j is calculated by ∑l∈Lb
H jl ∑i∈I xil

j . Then, the minimum patient health condition,

denoted by Y , is min j{∑l∈Lb
H jl ∑i∈I xil

j }. Since the uncertainty in patient health condition

is considered in the problem, the expected value of minimum patient health condition, E[Y ]

is maximized in the objective function.

Note that the surgery sequence on a day does not affect the objective function. Surgeons

can determine the surgery sequence on a day based on their preferences.

A stochastic MIP to formulate the problem of this study is proposed as follows:

max E[Y ] (5.1)

s.t. ∑
i∈I

∑
l∈Lb

xil
j = 1, ∀ j ∈ J (5.2)

∑
j∈J

sµ

j xil
j −dil ≤ cil, ∀i ∈ I,∀l ∈ Lb (5.3)

∑
l∈Lb

H jl ∑
i∈I

xil
j ≥ Y, ∀ j ∈ J (5.4)

xil
j ∈ {0,1}, ∀i ∈ I,∀ j ∈ J,∀l ∈ Lb (5.5)

Y free (5.6)

Since the left-hand side of constraint (5.4) forces Y to be min j{∑l∈Lb
H jl ∑i∈I xil

j }, Y in

the objective function (5.1) is a variable for the minimum patient health condition. Con-

straint (5.2) ensures that every patient should be scheduled. Constraints (5.3) states that

surgeries are able to be assigned to a block only if total mean durations of surgeries fit

within the available time of the block for surgeries. This constraint is used to limit the

overtime of the block [11, 13].
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5.3 Sample Average Approximation

In this section, an SAA algorithm is developed referring to Kleywegt et al. [16] and

Shapiro [96]. An SAA algorithm is constructed solving an SAA model several times chang-

ing the sets of scenarios for the SAA model.

Let q be the number of scenarios for an SAA model. Let ωr be the rth scenario that de-

fines the rth realization of patient health condition vector ~H = (H11, . . . ,H1m,H21, . . . ,H2m,

. . . ,Hnm), r ∈ R, R = {1, . . . ,q} and hil(ωr) be the element of ωr that defines the health

condition of patient j on day l. Let y(ωr) be the realization of Y under scenario ωr. Note

that 1
q ∑r∈R y(ωr) in the following SAA model approximates E[Y ] in the stochastic MIP.

The SAA model corresponding to the stochastic MIP introduced in Section 5.2 is as

follows:

max
1
q ∑

r∈R
y(ωr) (5.7)

s.t. ∑
i∈I

∑
l∈Lb

xil
j = 1, ∀ j ∈ J (5.8)

∑
j∈J

sµ

j xil
j −dil ≤ cil, ∀i ∈ I,∀l ∈ Lb (5.9)

∑
l∈Lb

h jl(ωr)∑
i∈I

xil
j ≥ y(ωr), ∀ j ∈ J,∀r ∈ R (5.10)

xil
j ∈ {0,1}, ∀i ∈ I,∀ j ∈ J,∀l ∈ Lb (5.11)

y(ωr) free ∀r ∈ R (5.12)

Let u be the number of SAA replication and ω
ρ
r be the scenario set used for the ρth

SAA replications, ρ = {1, . . . ,u}.

For a feasible schedule X = {xil
j |i ∈ I, j ∈ J, l ∈ Lb}, the following definitions are used.

φ(X) := E
[
Y (X , ~H)

]
,

vρ
q (X ,ωρ

r ) :=
1
q ∑

r∈R
y(X ,ωρ

r ).
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Y (X , ~H) represents Y in the stochastic MIP but indicates that Y is dependent on X and ~H.

in the same way, y(x,ωρ
r ) is another representation of y(ωρ

r ).

Let X∗ be the optimal solution of the stochastic MIP. The optimality gap for a given

solution X̂ = {x̂il
j |i ∈ I, j ∈ J, l ∈ Lb} is defined as

φ(X∗)−φ(X̂).

Let Xρ∗ be the optimal solution of the ρth SAA solution. φ(X∗) is estimated by

ṽq
u :=

1
u

u

∑
ρ=1

vρ
q
(
Xρ∗,ωρ

r
)
. (5.13)

ṽq
u is a biased estimator of φ(X∗) because

E
[
ṽq

u]= 1
u

u

∑
ρ=1

E
[
vρ

q
(
Xρ∗,ωρ

r
)]
≥ 1

u

u

∑
ρ=1

E[vρ
q (X

∗,ωρ
r )] =

1
u

u

∑
ρ=1

φ(X∗) = φ(X∗).

φ(X̂) is estimated by

v̄q
u (X̂) :=

1
u

u

∑
κ=1

vκ
q
(
X̂ ,ωκ

r
)
. (5.14)

v̄q
u(X̂) is an unbiased estimator of φ(X̂) because

E
[
v̄q

u (X̂)]= 1
u

u

∑
κ=1

E[vκ
q (X̂ ,ωκ

r )] =
1
u

u

∑
κ=1

E

[
1
q ∑

r∈R
y(X̂ ,ωκ

r )

]

=
1
u

u

∑
κ=1

E
[
E[Y (X̂ , ~H)]

]
=

1
u

u

∑
κ=1

E[Y (X̂ , ~H)] =
1
u

u

∑
κ=1

φ(X̂) = φ(X̂).
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The variance of ṽq
u− v̄q

u(X̂) is calculated as follows:

Var
[
ṽq

u− v̄q
u(X̂)

]
=Var

[
1
u

u

∑
ρ=1

vρ
q (X

ρ∗,ωρ
r )−

1
u

u

∑
ρ=1

vρ
q
(
X̂ ,ωρ

r
)]

=
1
u2

{
Var

[
u

∑
ρ=1

vρ
q (X

ρ∗,ωρ
r )−

u

∑
ρ=1

vρ
q
(
X̂ ,ωρ

r
)]}

=
1
u2

u

∑
ρ=1

Var
[
vρ

q (X
ρ∗,ωρ

r )− vρ
q
(
X̂ ,ωρ

r
)]

=
1
u2

u

∑
ρ=1

1
u−1

u

∑
ρ=1

[{
vρ

q (x
ρ∗,ωρ

r )− vρ
q
(
X̂ ,ωρ

r
)}
−

{
1
u

u

∑
ρ=1

vρ
q (X

ρ∗,ωρ
r )−

1
u

u

∑
ρ=1

vρ
q
(
X̂ ,ωρ

r
)}]2

=
1

u(u−1)

u

∑
ρ=1

[{
vρ

q
(
Xρ∗,ωρ

r
)
− vρ

q
(
X̂ ,ωρ

r
)}
−
{

ṽq
u− v̄q

u (X̂)}]2.
Note that ṽq

u− v̄q
u(X̂) is a sample mean of independant and identically distributed

random variables and, thus, approximately normally distributed for sufficiently large u by

the central limit theorem. Therefore, 100(1−α)% confidence interval on the optimality

gap (CIOOG) for a given solution X̂ is

ṽq
u− v̄q

u (X̂)+ zα

√
1

u(u−1)

u

∑
ρ=1

[{
vρ

q
(
Xρ∗,ω

ρ
r
)
− vρ

q
(
X̂ ,ω

ρ
r
)}
−
{

ṽq
u− v̄q

u
(
X̂
)}]2
(5.15)

where zα denotes the value such that P(Z > zα) = α; Z is a standard normal random

variable.

An SAA algorithm proposed in this study is as follows:

Step 1. Choose u and q.

Step 2. For each ρ = 1,2, . . . ,u, generate q scenarios and solve the ρth SAA replication.

Obtain the optimal solution Xρ∗ and the corresponding objective value vρ
q (Xρ∗,ω

ρ
r )

of the ρth SAA problem.

Step 3. Calculate ṽq
u by (5.13).

Step 4. For each ρ , calculate v̄q
u(Xρ∗) by (5.14).

Step 5. Select one solution, denoted by X̂saa , that provides the maximum value of v̄q
u(Xρ∗).
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Step 6. Construct the 100(1−α)% CIOOG for X̂saa by (5.15).

5.4 Numerical Results

This section presents the performance of the SAA algorithm described in Section 5.3

and the analyses on the solutions. The SAA algorithm is implemented in the General

Algebraic Modeling System (GAMS) 24.1.3 on a PC with a 2.4 GHz Core i7 processor

and 8GB RAM. The GAMS uses CPLEX 12.5.1 for solving MIPs.

5.4.1 Performance of the SAA Algorithm

To generate the distribution of mean surgery duration sµ

j , several statistics of abdominal

surgery durations are taken from [82]. They are abdomen exploration (class 1), inguinal

hernia repair (class 2), laparoscopy and tubal cautery (class 3), and laparoscopic cholecys-

tectomy (class 4). Each class’s percentage of occurrence is calculated by the number of

each class’s surgeries divided by the total number of the four classes’ surgeries. Based on

the percentages, surgeries are generating. The study mean ranges are shown in Table 5.2.

These values are ±10% deviated from the mean of each class’s surgery duration to incor-

porate more variations in mean surgery durations so that the SAA algoritm can be tested

on a wide range of surgeries. sµ

j is randomly selected within the study mean range.

Table 5.2
Generating mean surgery durations.

Surgery class Percentage of occur-
rence

Mean (minutes) Study mean (min-
utes)

class 1 40.71% 194 [174.6, 213.4]
class 2 35.76% 143 [128.7, 157.3]
class 3 12.69% 105 [94.5, 115.5]
class 4 10.84% 219 [197.1, 240.9]

The scale for Karnofsky grade is used to represent patient health condition. It ranges

from 0 (death) to 100 (normal health condition). It is assumed that H j1 (initial health con-
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dition of patient j) follows the normal distribution with mean µ INIT and standard deviation

σ INIT , and the deteriorating rate from day l to day l + 1 follows the folded normal distri-

bution [97] with mean ∆µ jl and standard deviation ∆σ jl . Figure 5.2 illustrates how patient

health condition is generated. The parameters and the distributions are somewhat arbitrary

due to the lack of real data. However, those are made to represent the deteriorating trend of

patient health condition under the following suppositions. First, since this study focuses on

elective surgery, the initial health condition of each patient is not urgent (not below 30 on

average) and the possibility of patient health condition becoming 0 (death) within a month

is very low. Second, each patient needs to have a surgery, his/her initial health condition is

not in the normal range (not above 90 on average).

In this section, block day is defined as the day where the surgical block(s) of the surgeon

or the surgical group exist(s). Other parameters used for the experiments are set to be as

follows: Lb (set of block days) = {2,5,9,11,16,18,23,25} (i.e., the surgeon or the surgical

group has surgical blocks every Tuesday and Thursday for a month), d1l (available time of

the first block on day l) = 480 minutes ∀l ∈ Lb, d2l (available time of the second block on

day l) = 0 ∀l ∈ Lb, cil = 0 ∀i ∈ I,∀l ∈ Lb, and n (number of patients) = 16.

A set of scenarios is used to obtain an SAA solution, and a different set of 400 scenarios

is used to evaluate the obtained solution X̂ = {x̂il
j |i ∈ I, j ∈ J, l ∈ Lb}. X̂ is evaluated by

1
400

400

∑
r=1

min
j

{
∑

l∈Lb

h jl(ωr)∑
i∈I

x̂il
j

}
. (5.16)

When the objective values of solutions are compared in this section, it is supposed that

the solutions are obtained for the same instance (i.e, the same distribution for each patient’s

mean surgery duration and the same distribution for each patient’s health condition), and

the objective values of solutions are evaluated using the same set of 400 scenarios.

The SAA algorithm is tested for 40 cases of 10 instances each.

Table 5.3 demonstrates the trade-off between the computation time of the SAA algo-

rithm and the CIOOG. In general, as q (number of scenarios for an SAA replication) and

u (number of SAA replications) increase, the computation time of the SAA algoritm in-
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creases and the CIOOG of the solution decreases. In other words, to statistically prove that

the solution is very close to the optimal solution (i.e., near-optimal solution), large q and u

need to be used. However, it increases the computation time.

q and u can be selected based on the convergence of objective values (5.16). Figure 5.3

(a) shows the average objective value of the solutions with respect to q and u. The solution

with u= 10 and that with u= 20 converge asymptotically to the same objective value (5.16)

from q = 12. The algorithm may not need to increase u to find a better solution if q ≥ 12.

When u = 10, the convergence occurs at q = 12. When u = 20, the convergence occurs

at q = 10. Even though, in both cases, the solutions converge asymptotically to the same

objective value (5.16), the algorithm with q = 12 and u = 10 has less computation time that

that with q = 10 and u = 20. This study suggests to use q = 12 and u = 10 in practice and

the analyses presented in Section 5.4.2 use q = 12 and u = 10 to run the algorithm.

Figures 5.3 (a) and (b) also show that while the convergence of objective values (5.16)

occurs at q = 12 and u = 10 (or q = 10 and u = 20), the CIOOG keeps decreasing as q and

u increase. It tells that, even though the solutions with q = 12 and u = 10 is statistically

worse than those with q = 20 and u = 10, the actual quality (i.e., objective values (5.16))

of the solutions with q = 12 and u = 10 is as good as that of the solutions with q = 20 and

u = 10.

5.4.2 Analyses

This subsection analyzes the SAA solutions based on Ceteris Paribus [98]. The tech-

nique allows to manipulate one or two parameter(s) of patient health condition with other

parameters remaining the same and draw managerial insights from the solutions for elec-

tive surgery scheduling to maximize patient health condition. In the experiments for the

full-day block system, d1l is set to be 480 minutes for all l ∈ Lb and d2l is set to be 0 for

all l ∈ Lb, while, in the experiments for the half-day block system, both d1l and d2l are

set to be 240 minutes for all l ∈ Lb. It is supposed that Lb, cil , n and sµ

j are set to be the

same or generated on the same way in Subsection 5.4.1 unless stated otherwise. Recall
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Table 5.3
Performance of SAA algorithm.

q u Average computation time (seconds) Average 95% CIOOG

2 10 2.496 1.167
4 10 2.741 0.559
6 10 2.862 0.296
8 10 3.078 0.269
10 10 3.067 0.184
12 10 3.308 0.130
14 10 3.465 0.157
16 10 3.641 0.136
18 10 3.831 0.106
20 10 4.124 0.073

2 20 5.220 0.834
4 20 5.861 0.441
6 20 6.225 0.291
8 20 6.916 0.219
10 20 7.564 0.172
12 20 7.902 0.123
14 20 8.336 0.130
16 20 8.351 0.099
18 20 8.748 0.077
20 20 9.289 0.076
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(a) Average objective value (5.16) of SAA solutions

(b) Average 95% CIOOG

Figure 5.3. Selecting q and u, (a) average objective value (5.16) of SAA
solutions, (b) average 95% CIOOG.
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that Lb (set of block days)= {2,5,9,11,16,18,23,25}. For convenience, let "block day"

1,2,3,4,5,6,7, and 8 denote day 2,5,9,11,16,18,23 and 25, respectively.

Should sicker patients be scheduled earlier than others?

This analysis deals with the case that patients waiting for surgeries have different sever-

ity levels but patients’ disease progressions are assumed to be the same due to the lack of

data, based on a physician’s opinion, or because the historical data say the progressions

of such diseases are the same. The increment of H j1 is set to be 4: H1,1 = 30,H2,1 =

34, . . . ,H16,1 = 90. Disease progression parameters (i.e., ∆µ jl and ∆σ jl) are set to be the

same: ∆µ jl = 1,∆σ jl = 1 ∀ j ∈ J,∀l ∈ L\{m}.

Figure 5.4 shows the block days on which each patient is scheduled for surgery based on

his/her H j1. A bubble represents the percentage of instances each patient is assigned to each

block day out of 20 instances. Sicker patients tend to be scheduled earlier than others until

Table 5.4
Spearman rank correlation when the increment of H j1 is 4.

Spearman rank correlation
From To Full-day block system Half-day block system

30 38 0.739 0.707
30 42 0.792 0.814
30 46 0.789 0.886
30 50 0.811 0.919
30 54 0.815 0.899
30 58 0.850 0.878
30 62 0.873 0.879
30 66 0.841 0.863
30 70 0.855 0.884
30 74 0.821 0.876
30 78 0.800 0.856
30 82 0.789 0.844
30 86 0.778 0.826
30 90 0.762 0.821
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(a) Full-day block system

(b) Half-day block system

Figure 5.4. Block days on which each patient is scheduled for surgery
based on his/her H j1 when the increment of H j1 is 4, (a) full-day block
system, (b) half-day block system.
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the dotted lines. The dotted lines are decided observing Spearman rank correlation [94]

between H j1 and block day. Spearman rank correlation is calculated increasing H j1 (see

Table 5.4). The dotted lines are drawn when Spearman rank correlation starts to drop and

never goes up. According to Mukaka [99], correlation 0.7 (-0.7) to 1 (-1) is interpreted as

high correlation while correlation 0 to 0.3 (-0.3) is interpreted as negligible correlation. The

patients after the dotted lines tend to be assigned to the remaining slots arbitrarily rather

than being kept in the sequence. It is because the patient after the dotted line have little

likelihood to be the most critical patient even if they are assigned to the last block day.

Figure 5.5 shows that the surgery assignment when the increment of H j1 is 2. In this

case, the statement that sicker patient needs to be scheduled earlier applies to the entire

group of patients. The difference of the likelihood to be the most critical patient when

assigned to a block day is relatively small between patients. If patient A, who is sicker

than patient B, is schedule after patient B, the minimum patient health condition (i.e., ob-

jective value) may become worse. Therefore, the surgery sequence tends to be kept in the

increasing order of H j1.

The main findings in this analysis are summarized. To schedule a similar group of

patients in terms of initial patient health condition, the surgery sequence needs to be kept

in the increasing order of initial patient health condition. If the difference of initial pa-

tient health condition between patients is relatively large, patients can be divided into two

groups depending on whether the patient has the likelihood to be the most critical patient

or not when he/she is assigned to the last block day. The group having the likelihood to

be the most critical patient needs to be scheduled in the increasing order of initial patient

health condition. Another group can be assigned to the remaining slots in order to pursue a

secondary performance measure like reducing the number of block days used for surgeries.

Note that the number of blocks used for surgeries in the full-day block system is smaller

than that in the half-day block system since one large time duration can accommodate more

surgeries than two small time durations. It is found in all analyses of this subsection.
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(a) Full-day block system

(b) Half-day block system

Figure 5.5. Block days on which each patient is scheduled for surgery
based on his/her H j1 when the increment of H j1 is 2, (a) full-day block
system, (b) half-day block system.
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How to schedule if the variations of patients’ disease progressions are different

This analysis deals with the case that patients waiting for surgeries have the same initial

health condition and are predicted to deteriorate at the same rate on average but the varia-

tions of patients’ disease progressions are different. The increment of ∆σi j is set to be 0.2:

∆σ1l = 0.2,∆σ2l = 0.4, . . . ,∆σ16l = 3.4 ∀l ∈ L\{m}. H j1 is set to be 70 ∀ j ∈ J and ∆µ jl

is set to be 1 ∀ j ∈ J,∀l ∈ L\{m}.

Figure 5.6 shows, obtaining the solutions for 20 instances, the block days on which

each patient is scheduled for surgery based on his/her ∆σ jl . Patients tend to be scheduled

in the decreasing order of ∆σ jl . A patient having higher ∆σ jl has a higher likelihood to be

the most critical patient than others in any block days. Therefore, the patient is scheduled

first before the patient gets worse not to decrease the minimum patient health condition.

Even though this study presents a case that the increment of ∆σ jl is 0.2, this trend is kept

regardless of how large the increment is.

How to schedule if a patient is healthier (or sicker) than others but his/her health

condition deteriorates rapidly (or slowly)

This analysis deals with the case that a patient’s initial health condition is better (or

worse) than others but deteriorates rapidly (or slowly) due to the innate characteristic of the

disease.

First, Patient 1 is characterized by the following parameters: H11 = 80,∆µ1l = 2,∆σ1l =

1 ∀l ∈ L\{m}. Other patients have the following parameters: H j1 = 70,∆µ jl = 1,∆σ jl =

1 ∀ j ∈ J\{1},∀l ∈ L\{m}.

Figure 5.7 shows that the number of instances (out of 20 instances) Patient 1 is assigned

to each block. Patient 1 is scheduled before or on block day 4. Figure 5.8 explains the

reason why Patient 1 is scheduled before or on block day 4. Figure 5.8 is obtained using

400 scenarios for two different sets of patient health condition parameters described above.

Mean patient health condition of Patient 1 is higher than those of others before and on
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(a) Full-day block system

(b) Half-day block system

Figure 5.6. Block days on which each patient is scheduled for surgery
based on his/her ∆σ jl when the increment of ∆σ jl is 0.2, (a) full-day block
system, (b) half-day block system.
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(a) Full-day block system

(b) Half-day block system

Figure 5.7. Block days on which Patient 1 is scheduled for surgery when
Patient 1’s initial health condition is better than others but deteriorates
rapidly, (a) full-day block system, (b) half-day block system.
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Figure 5.8. Mean patient health condition depending on block days.
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block day 4. Therefore, to escape from the risk to be the most critical patient, Patient 1 is

scheduled before his/her mean health condition is lower than others’ health conditions.

Patient condition parameter are manipulated as follows to implement the opposite case

(i.e., a patient’s initial health condition is worse than others but deteriorates slowly): H11 =

70,∆µ1l = 1,∆σ1l = 1 ∀l ∈ L\{m}, H j1 = 80,∆µ jl = 2,∆σ jl = 1 ∀ j ∈ J\{1},∀l ∈ L\{m}.

In this case, Patient 1 is scheduled after or on block day 5 (see Figure 5.9) not to delay the

surgeries for other patients who are highly likely to be the most critical patient. However,

it does not mean that Patient 1 should be scheduled late.

If n (the number of patients) is 8, the number of block days used for surgeries is 3 or 4.

Then, during the block days used for surgeries, Patient 1’s mean health condition is always

lower than others’ health condition. Therefore, not to decrease the minimum patient health

condition, Patient 1 needs to be scheduled early (see Figure 5.10).
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(a) Full-day block system

(b) Half-day block system

Figure 5.9. Block days on which Patient 1 is scheduled for surgery when
Patient 1’s initial health condition is worse than others but deteriorates
slowly (n = 16), (a) full-day block system, (b) half-day block system.



77

(a) Full-day block system

(b) Half-day block system

Figure 5.10. Block days on which Patient 1 is scheduled for surgery when
Patient 1’s initial health condition is worse than others but deteriorates
slowly (n = 8), (a) full-day block system, (b) half-day block system.
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5.5 Conclusions

In this chapter, a elective surgery scheduling problem with step-deteriorating patient

health condition is described and formulated as a stochastic MIP. The problem incorporates

the concept of maximizing the minimum patient health condition, which improves critical-

patient safety.

An SAA algorithm is presented to solve the stochastic MIP in this chapter. The com-

putational study shows that the SAA algorithm applied to the elective surgery scheduling

problem with step-deteriorating patient health condition provides near-optimal solutions

within short computation times.

In addition, the SAA solutions are analyzed based on Ceteris Paribus [98]. It allows

to manipulate one or two parameter(s) of patient health condition with other parameters

remaining the same and draw managerial insights from the solutions. The analyses discuss

how to schedule (1) if the initial conditions of patients are different, (2) if the variations of

patients’ disease progressions are different, and (3) if a patient is healthier (or sicker) than

others but his/her health condition deteriorates rapidly (or slowly).
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6. CONCLUSIONS AND FUTURE RESEARCH

In this dissertation, elective surgery scheduling problems considering patient health con-

dition are discussed. Since the shape of a function to represent patient health condition

has rarely been studied in the field of medical science, a couple of shapes are suggested in

this dissertation. This dissertation also provides a taxonomy of the literature that considers

overtime according to performance measures, solution approaches, and whether to incor-

porate the uncertainty in surgery durations. Based on the taxonomy, it is easy to know that

the idea of maximizing patient health condition, which improves the most critical patient

safety, has not been discussed in the literature.

6.1 Sample Average Approximation Approach to Elective Surgery Scheduling with

Linearly Deteriorating Patient Health Condition

To schedule a surgery, surgical schedulers must know the time frame within which the

surgery should be performed [73]. The time frame is decided appropriately by clinicians

considering patient health condition [74, 75]. In other words, clinicians assess the health

condition of a patient when he/she is diagnosed and, according to his/her health condition,

set the critical time point by which the surgery should be performed. This study uses the

information about the current patient health condition and the critical time point. The line

connecting the two points (i.e., current patient health condition and critical time point) is

employed as an approximation for deteriorating patient health condition.

The objective of the problem is to find a surgery scheduling that provides the opti-

mal trade-off between maximizing minimum patient health condition and minimizing total

overtime of an OR. Since, in the problem, the uncertainty in surgery durations is incorpo-

rated, The sample average approximation method is employed to manage the uncertainty.

The advantage for using the sample average approximation method is that the quality of
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the obtained solution can be statistically obtained. However, the sample average approxi-

mation used for this problem is very time consuming and another solution approaches are

needed to solve large-size problems.

6.2 Heuristic Approach to Elective Surgery Scheduling with Linearly Deteriorating

Patient Health Condition

Heuristics are developed for the problem described in the previous chapter. Key struc-

tural elements to implement the heuristics are summarized as follows: how to obtain an

initial feasible solution, how to evaluate the current solution, and how to move from a cur-

rent solution to the next solution. Those are designed considering solution effectiveness

and algorithm efficiency.

Based on the key structural elements, a fastest ascent local search and a tabu search

are developed. The concept of search intensity to implement the tabu search is introduced.

The idea behind the concept of the search intensity is that the algorithm examine promising

areas thoroughly not to miss the best solutions in those areas while the algorithm skims

non-promising areas to reduce the computational burden. The fastest ascent local search

and the tabu search are compared with the sample average approximation algorithm in the

computational study. The computational study show that the tabu search provides near-

optimal solutions within reasonable computation times.

6.3 Elective Surgery Scheduling with Step-Deteriorating Patient Health Condition

In this study, it is assumed that patient severity levels are recorded whenever patients

are diagnosed by practitioners using severity level measures like Kanorfsky grade [77].

Those data are used to represent time-dependent patient health condition. The uncertainty

in patient health condition is considered in this study. The sample average approximation

method works well for this problem in terms of solution effectiveness and computation

time efficiency.
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The sample average approximation solutions are analyzed to discuss how to schedule

(1) if the initial severity levels of patients are different, (2) if the variations of patients’

disease progressions are different, and (3) if a patient is healthier (or sicker) than others but

his/her health condition deteriorates rapidly (or slowly).

6.4 Future Research

The following two broad topics will be pursued: 1) understanding dynamic patient

health condition and 2) its applications in healthcare delivery systems.

6.4.1 Understanding Dynamic Patient Health Condition

There are many disease-specific measures that indicate patient health condition. Exam-

ples of the disease-specific measures are dyspnea index (DI) for lung disease, Karnofsky

grade for cancer, and model for end-stage liver disease (MELD) score. Using the trajec-

tories of those measures and patient information (e.g., age, gender, smoking, and disease

history), The health condition patterns of individual patients will be characterized.

6.4.2 Applications of Dynamic Patient Health Condition in Healthcare Delivery Sys-

tems

First, the health condition patterns of individual patients will be used to reduce medical

costs in the diagnostic process. Making a diagnosis is a complex and difficult task that

requires sequential diagnostic tests. Patients sometimes undergo unnecessary tests and,

thereby, their medical costs increase. By incorporating the health condition patterns into

the diagnostic process, more cost-effective and time-efficient transition between diagnostic

tests will be implemented.

Second, the health condition patterns of individual patients will be used to extend my

doctoral research for surgery scheduling. The research focuses on incorporating patient

health condition to improve patient safety. However, due to the lack of relevant research and
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real-world data, the research uses a couple of simple but plausible functions to represent

patient health condition. The research will be extended to the one that incorporates the

health condition patterns supported by real-world data.
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APPENDIX A

PERFORMANCE OF SAA ALGORITHM (ELECTIVE SURGERY

SCHEDULING WITH LINEARLY DETERIORATING PATIENT

HEALTH CONDITION)

Table A.1
Computation times of SAA algorithm (all instances).

Computation time (seconds) for each instance
q u n δ 1 2 3 4 5 6 7 8 9 10 Average

5

5

8
0.05 181.341 24.753 227.643 15.816 22.159 20.144 88.060 39.210 31.270 186.093 83.649
0.1 120.940 40.741 229.741 20.987 22.507 25.472 71.993 41.821 40.739 139.819 75.476
0.2 55.635 27.769 130.477 18.597 23.754 32.538 65.105 57.585 33.380 164.451 60.929

10
0.05 321.710 450.133 2531.368 333.321 355.481 2323.166 1880.758 2650.369 5891.006 431.516 1716.883
0.1 306.030 438.815 1412.133 532.668 417.995 1623.054 1667.437 2116.416 3085.823 578.321 1217.869
0.2 326.030 230.835 1509.747 339.582 481.641 1310.193 1390.272 1322.649 3007.024 584.215 1050.219

10

8
0.05 357.956 53.569 456.328 42.978 51.428 61.038 168.624 95.967 71.620 421.696 178.120
0.1 244.533 70.181 450.358 48.225 54.007 74.196 200.308 97.903 86.167 455.964 178.184
0.2 120.126 60.320 315.208 45.352 53.569 92.983 162.147 130.593 83.408 413.870 147.758

10
0.05 544.682 1219.509 4089.155 805.499 506.738 4230.735 3085.782 5695.406 8244.698 851.331 2927.354
0.1 498.608 892.015 2068.049 922.526 516.967 3476.921 3035.539 3627.460 4472.538 1104.274 2061.490
0.2 414.510 838.364 2060.194 881.272 1020.663 2377.277 1935.939 2365.165 4351.246 967.011 1721.164

10

5

8
0.05 293.172 110.407 557.203 49.616 48.819 41.927 185.902 105.079 47.990 705.204 214.532
0.1 199.808 83.272 441.391 63.148 51.366 47.647 174.275 129.469 73.205 1175.961 243.954
0.2 143.597 160.357 339.220 80.830 47.695 84.418 175.062 113.642 74.621 841.182 206.062

10
0.05 591.206 1132.564 7141.613 964.514 915.802 5226.302 5157.630 3532.894 10952.100 1025.178 3663.980
0.1 520.300 1232.693 2401.573 1086.193 1057.737 3243.060 2657.279 3532.241 7000.968 1005.359 2373.740
0.2 560.448 879.072 1393.657 878.018 689.015 4250.163 2222.539 2447.276 4354.498 1210.144 1888.483

10

8
0.05 806.224 156.978 1501.199 134.704 136.001 108.562 502.096 321.383 145.242 1494.539 530.693
0.1 692.837 134.845 1214.732 187.040 146.319 169.850 473.897 336.833 195.594 1907.935 545.988
0.2 423.084 190.542 1133.538 165.582 161.640 189.207 470.280 254.451 223.369 1776.793 498.849

10
0.05 1270.995 2805.359 12932.600 1790.026 1732.888 10940.600 8827.412 7704.428 18905.500 2388.338 6929.815
0.1 1114.485 2140.684 5829.451 2265.343 3009.461 8283.681 5869.558 7602.265 16350.900 2336.024 5480.185
0.2 1052.305 2138.179 3400.560 2083.648 2280.505 8867.416 5872.861 6012.163 12852.500 3221.357 4778.149

20

5

8
0.05 675.195 113.890 1348.568 416.126 438.819 104.751 619.984 537.459 505.363 1555.443 631.560
0.1 638.629 183.970 1061.654 513.586 378.275 137.849 593.603 520.805 486.564 1423.274 593.821
0.2 433.236 176.183 1211.787 508.949 425.947 150.597 563.893 388.234 402.966 1612.105 587.390

10
0.05 1630.604 2542.025 6488.479 5541.384 2078.355 12297.300 13820.100 7727.314 28806.000 12671.100 9360.266
0.1 1296.204 2016.355 5425.773 15446.900 1658.682 12752.400 7293.387 5013.725 17226.400 15930.200 8406.003
0.2 1140.417 2126.810 4207.568 3637.753 3452.940 6833.046 6839.512 5777.662 13763.100 11572.100 5935.091

10

8
0.05 1369.083 259.288 2868.026 1067.133 959.646 223.586 1272.731 986.806 955.694 4401.667 1436.366
0.1 1257.574 281.373 2244.563 1092.202 658.085 286.731 1184.260 1062.581 724.110 2083.294 1087.477
0.2 935.602 296.736 2299.642 1119.493 918.173 444.524 1121.823 957.623 986.360 3364.842 1244.482

10
0.05 3159.211 4771.603 14904.300 12494.400 6417.575 29488.800 19910.000 15611.600 41622.400 31007.200 17938.709
0.1 2704.642 4058.410 8473.702 22857.800 6010.814 18462.600 15396.300 10582.900 34859.500 31112.200 15451.887
0.2 2370.693 4205.990 9445.770 10042.700 6643.884 16003.600 12532.500 10930.700 24555.900 26357.600 12308.934
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Table A.2
95% CIOOGs of SAA solutions (all instances).

95% CIOOG of SAA solution for each instance
q u n δ 1 2 3 4 5 6 7 8 9 10 Average

5

5

8
0.05 1.562 0.300 0.177 0.393 0.491 0.000 0.000 1.318 0.457 0.000 0.470
0.1 1.404 0.874 0.000 0.785 0.981 0.000 0.000 0.456 1.520 0.000 0.602
0.2 2.933 2.086 0.000 2.872 1.962 1.357 0.000 0.913 3.977 1.258 1.736

10
0.05 1.920 0.000 0.821 0.018 2.311 2.232 0.000 0.672 0.000 0.395 0.837
0.1 10.319 0.000 1.514 0.000 2.147 4.250 0.000 0.405 0.000 1.511 2.015
0.2 10.319 0.535 2.480 0.071 8.745 4.715 0.070 3.434 0.000 4.684 3.505

10

8
0.05 1.693 0.161 0.289 0.433 0.213 0.000 0.000 0.000 0.804 0.000 0.359
0.1 1.094 0.359 0.000 0.865 0.570 0.523 0.000 0.000 1.774 0.482 0.567
0.2 2.443 1.114 0.000 2.595 0.852 0.839 0.000 0.959 3.958 1.860 1.462

10
0.05 1.644 0.000 1.293 0.000 0.844 1.626 0.000 0.681 0.000 0.210 0.630
0.1 0.431 0.000 1.070 0.002 1.514 3.149 0.000 1.878 0.000 0.652 0.870
0.2 2.219 1.894 1.150 0.102 4.255 3.819 1.794 2.057 0.000 3.045 2.034

10

5

8
0.05 1.213 0.076 0.119 0.296 0.194 0.000 0.000 0.000 0.605 0.200 0.270
0.1 0.661 0.152 0.000 0.592 0.388 0.312 0.000 0.000 1.236 0.401 0.374
0.2 1.498 1.012 0.000 1.185 0.776 0.283 0.000 0.000 2.861 0.000 0.761

10
0.05 0.373 0.000 0.726 0.000 0.098 0.743 0.000 0.367 0.000 0.080 0.239
0.1 0.000 0.000 0.000 0.000 0.382 1.951 0.000 1.638 0.000 0.160 0.413
0.2 0.000 1.683 0.000 0.000 1.985 2.395 0.802 2.067 0.000 0.320 0.925

10

8
0.05 1.137 0.306 0.280 0.229 0.247 0.000 0.000 0.000 0.409 0.100 0.271
0.1 0.937 0.977 0.000 0.459 0.494 0.156 0.000 0.000 0.849 0.984 0.486
0.2 2.325 0.906 0.000 0.917 0.988 1.108 0.000 0.000 1.915 0.478 0.864

10
0.05 0.812 0.000 0.414 0.000 0.140 0.655 0.000 0.218 0.101 0.194 0.253
0.1 0.000 0.000 1.445 0.000 0.347 1.296 0.000 0.892 0.220 0.387 0.459
0.2 2.321 1.694 4.382 0.000 1.483 1.303 0.401 1.209 0.460 0.774 1.403

20

5

8
0.05 0.745 0.201 0.009 0.136 0.048 0.000 0.000 0.000 0.342 0.100 0.158
0.1 0.439 1.075 0.000 0.271 0.096 0.000 0.000 0.000 0.685 0.200 0.277
0.2 0.958 0.383 0.000 0.542 0.193 0.000 0.000 0.000 1.433 0.401 0.391

10
0.05 0.692 0.000 0.411 0.000 0.096 0.591 0.000 0.093 0.088 0.112 0.208
0.1 0.000 0.000 1.629 0.000 0.193 0.876 0.000 0.449 0.213 0.223 0.358
0.2 1.722 1.217 3.597 0.000 1.012 0.556 0.000 0.391 0.463 0.504 0.946

10

8
0.05 0.702 0.181 0.002 0.075 0.213 0.000 0.000 0.000 0.171 0.077 0.142
0.1 0.626 0.672 0.000 0.150 0.426 0.000 0.000 0.000 0.342 0.154 0.237
0.2 1.340 0.504 0.000 0.384 0.852 0.703 0.000 0.000 0.726 0.308 0.482

10
0.05 0.541 0.000 0.406 0.000 0.124 0.564 0.000 0.213 0.044 0.158 0.205
0.1 0.000 0.000 1.110 0.000 0.464 1.339 0.000 0.503 0.106 0.317 0.384
0.2 0.861 1.867 1.872 0.000 1.056 0.733 0.009 0.461 0.231 0.640 0.773
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Table A.3
Objective values (4.26) of SAA solutions (all instances).

Objective value (4.26) for each instance
q u n δ 1 2 3 4 5 6 7 8 9 10 Average

5

5

8
0.05 1.448 13.455 -3.645 38.432 11.814 16.931 11.764 20.542 22.847 18.294 15.188
0.1 -23.465 -5.146 -39.720 37.864 -6.372 2.862 -14.484 4.580 10.813 2.616 -3.045
0.2 -72.666 -42.293 -111.871 36.727 -42.744 -25.804 -66.980 -27.840 -13.256 -29.518 -39.624

10
0.05 8.812 -18.801 1.390 24.116 28.835 8.750 -0.293 6.247 16.232 20.892 9.618
0.1 -3.790 -64.602 -26.919 11.236 18.973 -9.389 -43.553 -13.733 -15.198 9.739 -13.724
0.2 -27.843 -156.206 -82.040 -14.537 -3.015 -42.579 -130.071 -53.693 -78.057 -13.523 -60.156

10

8
0.05 1.136 13.455 -3.645 38.432 12.134 16.931 11.764 20.988 22.215 18.357 15.177
0.1 -23.465 -5.090 -39.720 37.864 -5.732 2.862 -14.484 4.976 9.550 2.616 -3.062
0.2 -72.666 -42.127 -111.871 36.727 -41.464 -25.804 -66.980 -27.840 -15.781 -29.518 -39.733

10
0.05 7.910 -18.801 1.390 24.173 28.953 8.750 -0.293 6.247 16.232 20.892 9.545
0.1 -3.790 -64.602 -26.401 11.236 18.973 -8.952 -43.553 -13.733 -15.198 9.955 -13.606
0.2 -27.843 -156.206 -81.228 -14.537 -0.653 -41.753 -130.071 -52.154 -78.057 -12.563 -59.506

10

5

8
0.05 1.136 13.468 -3.645 38.432 12.134 16.931 11.764 20.988 22.215 18.294 15.172
0.1 -23.465 -5.064 -39.720 37.864 -5.732 2.862 -14.484 4.976 9.550 2.587 -3.063
0.2 -72.666 -42.180 -111.871 36.727 -41.464 -25.776 -66.980 -27.048 -15.781 -28.570 -39.561

10
0.05 8.236 -18.801 1.398 24.173 28.953 8.753 -0.293 6.247 16.232 21.120 9.602
0.1 -3.790 -64.602 -26.401 11.347 18.973 -8.881 -43.553 -13.733 -15.198 10.239 -13.560
0.2 -27.843 -156.206 -81.228 -14.306 -0.248 -42.105 -130.071 -52.154 -78.057 -11.522 -59.374

10

8
0.05 1.527 13.468 -3.645 38.432 11.814 16.931 11.764 20.988 22.847 18.294 15.242
0.1 -23.465 -5.064 -39.720 37.864 -6.372 2.862 -14.484 4.976 10.813 2.587 -3.000
0.2 -73.973 -42.365 -111.871 36.727 -42.744 -25.776 -66.980 -27.048 -13.256 -28.570 -39.586

10
0.05 8.236 -18.801 1.398 24.173 28.953 8.750 -0.293 6.247 16.232 21.120 9.601
0.1 -3.790 -64.602 -26.927 11.347 18.973 -8.881 -43.553 -13.733 -15.198 10.239 -13.613
0.2 -27.843 -156.206 -81.228 -14.306 -0.248 -42.105 -130.071 -52.154 -78.057 -11.522 -59.374

20

5

8
0.05 1.448 13.468 -3.645 38.432 11.814 16.931 11.764 20.988 22.847 18.294 15.234
0.1 -23.465 -5.064 -39.720 37.864 -6.372 2.862 -14.484 4.976 10.813 2.587 -3.000
0.2 -73.973 -42.419 -111.871 36.727 -42.744 -25.776 -66.980 -27.048 -13.256 -28.825 -39.616

10
0.05 8.236 -18.801 1.390 24.173 28.953 8.750 -0.293 6.247 16.232 21.120 9.601
0.1 -3.790 -64.602 -26.927 11.347 18.973 -8.881 -43.553 -13.733 -15.198 10.239 -13.613
0.2 -27.843 -156.206 -81.228 -14.306 -0.248 -42.105 -130.071 -52.154 -78.057 -11.522 -59.374

10

8
0.05 1.448 13.468 -3.645 38.432 11.814 16.931 11.764 20.988 22.847 18.357 15.240
0.1 -23.465 -5.090 -39.720 37.864 -6.372 2.862 -14.484 4.976 10.813 2.715 -2.990
0.2 -72.666 -42.365 -111.871 36.727 -42.744 -25.776 -66.980 -27.048 -13.256 -28.570 -39.455

10
0.05 8.236 -18.801 1.398 24.173 29.036 8.750 -0.293 6.247 16.232 21.065 9.604
0.1 -3.790 -64.602 -26.919 11.347 19.140 -8.874 -43.553 -13.733 -15.198 10.130 -13.605
0.2 -27.843 -156.206 -81.228 -14.306 -0.248 -41.851 -130.071 -52.154 -78.057 -11.740 -59.370
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APPENDIX B

PERFORMANCE OF EVM (ELECTIVE SURGERY SCHEDULING

WITH LINEARLY DETERIORATING PATIENT HEALTH

CONDITION)

Table B.1
Computation times to solve EVMs (all instances).

Computation time (seconds) for each instance
n δ 1 2 3 4 5 6 7 8 9 10 Average

0.05 2.164 0.854 1.230 0.638 0.923 0.888 1.272 0.790 1.142 0.547 1.045
8 0.1 3.300 0.754 1.306 0.635 1.358 1.149 1.645 0.892 1.629 0.921 1.359

0.2 3.595 0.885 2.855 0.531 1.224 3.833 1.091 1.015 1.641 0.752 1.742

0.05 5.614 16.275 5.533 1.696 3.203 9.970 7.227 5.830 5.476 1.306 6.213
10 0.1 4.191 15.160 3.870 1.773 2.293 6.316 2.670 8.640 8.472 1.345 5.473

0.2 5.538 16.196 3.929 1.788 3.204 3.681 3.097 3.293 7.180 1.685 4.959

0.05 111.718 111.835 616.174 106.546 151.152 64.130 157.712 112.932 64.877 170.977 166.805
15 0.1 133.969 553.034 776.040 85.794 291.204 86.945 222.422 214.217 202.552 227.218 279.340

0.2 373.550 296.374 651.320 146.609 601.338 122.169 175.061 154.185 343.847 171.542 303.600

0.05 1776.657 2137.340 2031.126 9213.350 2907.310 2123.424 1496.210 1860.233 25363.036 7829.986 5673.867
20 0.1 2891.058 2166.567 1413.514 6498.261 2700.519 3852.332 5819.370 2576.870 1456.003 4658.383 3403.288

0.2 1795.593 15064.438 1183.729 2345.358 3264.431 3651.541 3217.076 2473.027 2035.840 2204.273 3723.531

Table B.2
Objective values (4.26) of EVM solutions (all instances).

Objective value (4.26) of EVM solution for each instance
n δ 1 2 3 4 5 6 7 8 9 10 Average

0.05 1.833 12.756 -3.645 37.029 11.840 16.856 11.764 18.469 21.374 16.877 14.515
8 0.1 -24.279 -5.225 -39.720 35.059 -8.480 2.862 -17.890 1.950 8.794 -0.391 -4.732

0.2 -74.197 -44.979 -111.871 31.117 -44.667 -25.574 -81.326 -34.684 -17.292 -33.181 -43.665

0.05 8.454 -18.801 0.527 23.219 28.351 7.811 -0.293 5.412 16.232 18.912 8.982
10 0.1 -4.342 -64.602 -30.160 9.313 17.331 -9.514 -43.553 -14.892 -18.664 8.041 -15.104

0.2 -29.792 -156.206 -84.814 -14.528 -5.244 -48.299 -130.071 -60.496 -82.902 -27.800 -64.015

0.05 -18.061 -25.286 -75.224 -4.319 -54.327 3.488 -14.761 19.574 2.305 -35.016 -20.163
15 0.1 -80.570 -77.515 -180.784 -46.341 -137.306 -19.007 -60.690 -3.913 -21.102 -106.363 -73.359

0.2 -196.597 -179.904 -391.553 -122.109 -305.212 -64.839 -146.113 -52.825 -80.634 -253.927 -179.371

0.05 -1.969 -41.939 -31.852 -0.085 -80.560 -57.130 -70.127 -11.083 -69.748 -84.693 -44.919
20 0.1 -21.808 -100.011 -77.298 -24.177 -182.633 -133.314 -163.355 -44.628 -130.644 -169.480 -104.735

0.2 -61.311 -210.518 -158.661 -67.052 -385.871 -287.167 -340.885 -126.067 -255.856 -331.925 -222.531
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APPENDIX C

PERFORMANCE OF FALS (ELECTIVE SURGERY SCHEDULING

WITH LINEARLY DETERIORATING PATIENT HEALTH

CONDITION)

Table C.1
Computation times of FALS (all instances).

Computation time†(seconds) for each instance
n δ 1 2 3 4 5 6 7 8 9 10 Average

8
0.05 0.339 0.663 0.529 0.779 0.721 1.102 0.554 1.889 1.569 0.634 0.878
0.1 0.570 0.664 0.467 0.787 0.610 0.599 1.393 1.101 1.245 0.859 0.830
0.2 0.572 0.641 0.467 0.787 1.051 0.530 1.504 1.670 1.250 1.789 1.026

10
0.05 3.017 0.932 1.756 2.618 2.609 1.915 1.176 1.058 1.342 4.363 2.079
0.1 3.027 0.857 3.159 2.579 4.046 1.872 1.106 1.104 2.033 2.453 2.224
0.2 3.712 0.938 1.015 1.274 1.208 3.604 1.139 2.429 1.980 6.259 2.356

15
0.05 9.230 51.437 4.422 17.071 16.420 9.358 17.834 14.347 71.057 8.422 21.960
0.1 20.231 30.802 7.599 31.586 12.956 5.575 32.232 30.003 50.526 11.387 23.290
0.2 10.225 7.937 4.424 22.049 21.170 28.867 21.478 29.493 51.797 11.583 20.902

20
0.05 198.951 68.029 581.419 37.545 64.134 60.766 76.604 297.907 122.200 125.847 163.340
0.1 257.792 105.806 555.898 87.652 59.047 87.825 183.590 197.924 154.690 91.790 178.201
0.2 105.036 143.760 376.075 248.086 82.637 88.143 197.287 254.240 94.145 125.382 171.479

† computation time after obtaining an initial solution by solving the EVM.

Table C.2
Objective values (4.26) of FALS solutions (all instances).

Objective value (4.26) of FALS solution for each instance
n δ 1 2 3 4 5 6 7 8 9 10 Average

8
0.05 1.833 13.455 -3.645 38.432 11.814 16.931 11.764 20.790 22.847 17.804 15.202
0.1 -23.465 -5.160 -39.720 37.864 -8.480 2.862 -14.484 2.901 10.813 1.600 -3.527
0.2 -72.666 -42.180 -111.871 36.727 -42.744 -25.574 -66.980 -27.840 -13.256 -28.570 -39.495

10
0.05 8.129 -18.801 1.083 24.173 29.036 8.820 -0.293 5.412 16.232 21.065 9.486
0.1 -3.790 -64.602 -27.549 10.311 19.140 -8.881 -43.553 -14.892 -15.198 9.730 -13.928
0.2 -27.843 -156.206 -84.814 -14.537 -5.244 -42.358 -130.071 -53.693 -78.057 -12.110 -60.493

15
0.05 -18.058 -21.790 -75.224 -2.290 -53.777 3.612 -13.966 20.495 6.138 -33.871 -18.873
0.1 -74.376 -74.354 -180.667 -41.959 -136.086 -19.007 -55.576 -1.487 -18.026 -106.153 -70.769
0.2 -193.174 -178.196 -391.553 -117.865 -302.299 -57.095 -138.785 -46.955 -69.396 -250.656 -174.597

20
0.05 -0.826 -41.120 -27.834 -0.085 -80.010 -56.339 -68.520 -8.833 -68.449 -82.488 -43.451
0.1 -19.391 -97.368 -68.840 -22.082 -180.138 -130.248 -159.328 -42.619 -129.294 -164.882 -101.419
0.2 -53.562 -204.293 -150.267 -61.831 -381.236 -278.677 -331.426 -113.374 -252.251 -325.040 -215.196
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APPENDIX D

PERFORMANCE OF TS (ELECTIVE SURGERY SCHEDULING

WITH LINEARLY DETERIORATING PATIENT HEALTH

CONDITION)

Table D.1
Computation times of TS (all instances).

Computation time†(seconds) for each instance
n δ 1 2 3 4 5 6 7 8 9 10 Average

8
0.05 968.359 1011.224 1030.542 1306.679 956.824 1185.527 1099.796 1156.617 1344.643 1245.095 1130.531
0.1 1204.919 1075.554 845.075 1332.762 48.558 236.777 69.832 1398.420 1497.662 1314.694 902.425
0.2 1604.779 1067.688 1190.517 1296.584 1389.434 1187.688 1129.061 1152.708 1405.623 1212.626 1263.671

10
0.05 3054.865 2531.273 112.849 3137.687 3624.360 288.507 618.589 3448.480 815.738 3682.703 2131.505
0.1 3646.515 107.869 3153.156 3474.665 482.610 168.416 245.364 2545.554 1682.401 352.156 1585.871
0.2 3610.285 3154.074 2830.710 3357.050 3671.432 752.900 2833.969 3954.254 3909.677 3502.557 3157.691

15
0.05 296.315 2148.771 118.463 1054.695 649.531 302.183 2982.733 3244.757 813.007 163.090 1177.355
0.1 192.804 125.903 217.767 1453.319 453.670 101.721 582.679 1395.324 1626.044 217.780 636.701
0.2 213.577 826.155 937.832 203.323 950.428 718.913 519.172 587.400 968.989 83.144 600.893

20
0.05 2522.259 388.412 4723.522 954.646 448.470 276.777 4915.592 1248.780 655.723 701.227 1683.541
0.1 414.985 931.810 512.500 2227.918 3944.395 3603.628 622.336 2477.794 2166.249 597.053 1749.867
0.2 425.219 1777.297 1948.498 776.871 342.449 365.185 415.463 6451.159 168.720 537.740 1320.860

† computation time after obtaining an initial solution by solving the EVM.

Table D.2
Objective values (4.26) of TS solutions (all instances).

Objective value (4.26) of TS solution for each instance
n δ 1 2 3 4 5 6 7 8 9 10 Average

8
0.05 1.833 13.455 -3.645 38.432 11.814 16.931 11.764 20.988 22.847 18.357 15.278
0.1 -23.465 -5.160 -39.720 37.864 -6.372 2.862 -14.484 4.976 10.813 2.715 -2.997
0.2 -72.666 -42.366 -111.871 36.727 -42.744 -25.776 -66.980 -27.048 -13.256 -28.570 -39.455

10
0.05 8.236 -18.801 1.398 24.173 29.036 8.820 -0.293 6.247 16.232 21.065 9.611
0.1 -3.790 -64.602 -26.927 11.347 19.140 -8.881 -43.553 -13.733 -15.198 10.130 -13.607
0.2 -27.843 -156.206 -81.426 -14.306 -0.248 -41.851 -130.071 -52.154 -78.057 -11.740 -59.390

15
0.05 -17.670 -21.790 -75.224 -1.716 -53.777 5.536 -13.891 20.607 6.219 -33.871 -18.558
0.1 -72.254 -74.354 -180.667 -40.434 -136.086 -14.228 -55.576 -0.786 -18.662 -106.153 -69.920
0.2 -184.241 -176.962 -391.553 -117.865 -301.072 -50.295 -134.118 -44.076 -67.601 -250.697 -171.848

20
0.05 -0.283 -40.982 -27.648 -0.085 -80.092 -56.339 -68.520 -6.808 -67.957 -82.488 -43.120
0.1 -17.319 -97.368 -68.568 -17.986 -176.208 -130.224 -159.328 -42.619 -129.218 -164.882 -100.372
0.2 -53.470 -203.557 -149.986 -58.430 -380.008 -278.665 -331.426 -108.992 -252.251 -324.838 -214.162
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APPENDIX E

PERFORMANCE OF SAA ALGORITHM (ELECTIVE SURGERY

SCHEDULING WITH STEP- DETERIORATING PATIENT

HEALTH CONDITION)

Table E.1
Computation times of SAA algorithm (all instances).

Computation time (seconds) for each instance
q u 1 2 3 4 5 6 7 8 9 10 Average

2 10 2.140 1.953 2.109 2.250 2.235 2.047 3.154 3.367 2.141 3.559 2.496
4 10 2.953 2.125 2.203 2.188 2.016 2.063 3.307 3.435 3.444 3.675 2.741
6 10 2.500 2.313 2.485 2.297 2.301 2.235 3.351 3.617 3.611 3.907 2.862
8 10 2.735 2.391 2.641 3.109 2.490 3.182 3.423 3.413 3.454 3.945 3.078
10 10 2.828 2.485 2.625 2.922 2.372 2.297 3.819 3.501 3.751 4.074 3.067
12 10 2.782 2.641 3.251 3.078 2.484 3.385 3.590 3.613 3.981 4.270 3.308
14 10 3.000 2.860 2.938 3.437 2.875 3.287 3.644 4.199 4.111 4.297 3.465
16 10 2.937 2.735 3.453 3.704 2.985 3.078 3.793 3.893 4.052 5.775 3.641
18 10 3.563 2.751 3.641 4.329 3.453 3.282 4.070 4.266 4.152 4.798 3.831
20 10 3.844 3.547 4.125 3.829 4.469 3.422 4.125 4.418 4.459 5.001 4.124

2 20 4.735 4.156 4.469 4.750 4.657 4.297 6.553 6.718 4.844 7.018 5.220
4 20 4.844 4.485 5.125 5.016 5.007 4.532 7.064 6.891 7.116 8.529 5.861
6 20 5.485 5.501 4.860 5.766 5.763 5.298 7.062 7.334 7.468 7.717 6.225
8 20 7.298 5.706 6.641 6.907 6.604 5.985 7.546 7.162 6.767 8.547 6.916
10 20 7.798 6.548 7.220 7.845 6.469 7.110 7.650 7.658 8.135 9.204 7.564
12 20 7.813 7.000 7.673 7.566 6.900 7.016 8.649 8.412 8.348 9.642 7.902
14 20 8.360 7.688 7.594 7.704 6.891 7.091 9.936 9.280 8.485 10.333 8.336
16 20 7.485 7.673 7.845 8.016 6.958 7.257 8.657 8.624 10.375 10.617 8.351
18 20 7.579 7.126 9.563 9.114 7.260 7.809 8.548 8.924 10.012 11.545 8.748
20 20 8.610 7.204 8.392 10.219 7.172 8.837 9.522 9.751 11.101 12.079 9.289
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Table E.2
95% CIOOGs of SAA solutions (all instances)

95% CIOOG of SAA solution for each instance
q u 1 2 3 4 5 6 7 8 9 10 Average

2 10 1.412 1.302 1.099 0.985 2.143 0.166 1.030 0.403 1.684 1.445 1.167
4 10 0.184 0.617 0.595 1.246 0.467 0.000 0.124 0.457 1.149 0.753 0.559
6 10 0.158 0.360 0.483 0.332 0.118 0.135 0.000 0.025 0.706 0.640 0.296
8 10 0.233 0.226 0.455 0.287 0.246 0.063 0.000 0.134 0.616 0.432 0.269
10 10 0.194 0.055 0.414 0.243 0.182 0.050 0.000 0.038 0.419 0.244 0.184
12 10 0.162 0.036 0.316 0.115 0.153 0.000 0.000 0.028 0.282 0.208 0.130
14 10 0.149 0.095 0.308 0.302 0.125 0.037 0.000 0.205 0.332 0.014 0.157
16 10 0.090 0.078 0.273 0.288 0.123 0.032 0.000 0.103 0.187 0.187 0.136
18 10 0.111 0.021 0.181 0.319 0.070 0.000 0.000 0.072 0.218 0.068 0.106
20 10 0.077 0.000 0.181 0.210 0.087 0.000 0.000 0.017 0.127 0.035 0.073

2 20 0.559 0.945 0.679 1.337 0.650 0.125 0.436 0.775 1.566 1.263 0.834
4 20 0.198 0.477 0.529 0.552 0.264 0.103 0.000 0.362 1.277 0.643 0.441
6 20 0.146 0.285 0.439 0.369 0.198 0.245 0.104 0.012 0.586 0.526 0.291
8 20 0.129 0.167 0.383 0.480 0.159 0.033 0.000 0.014 0.450 0.376 0.219
10 20 0.113 0.028 0.340 0.462 0.092 0.047 0.000 0.104 0.294 0.237 0.172
12 20 0.099 0.026 0.287 0.282 0.077 0.000 0.000 0.014 0.239 0.203 0.123
14 20 0.088 0.048 0.229 0.258 0.065 0.005 0.000 0.104 0.346 0.159 0.130
16 20 0.070 0.039 0.188 0.286 0.070 0.000 0.000 0.009 0.203 0.127 0.099
18 20 0.064 0.011 0.116 0.273 0.006 0.000 0.000 0.036 0.184 0.078 0.077
20 20 0.091 0.013 0.208 0.189 0.028 0.000 0.000 0.013 0.127 0.096 0.076
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Table E.3
Objective values (5.16) of SAA solutions (all instances).

Objective value (5.16) of SAA solution for each instance
q u 1 2 3 4 5 6 7 8 9 10 Average

2 10 29.028 25.251 31.981 29.635 30.553 29.393 28.207 30.121 27.017 25.443 28.663
4 10 30.049 25.432 32.478 29.611 30.984 29.415 28.396 30.418 27.125 25.435 28.934
6 10 29.990 25.432 32.537 30.146 31.023 29.425 28.598 30.581 27.320 25.438 29.049
8 10 30.112 25.432 32.608 30.120 31.020 29.491 28.590 30.415 27.352 25.443 29.058
10 10 30.111 25.432 32.669 30.120 31.054 29.476 28.602 30.514 27.320 25.443 29.074
12 10 30.111 25.426 32.692 30.146 31.069 29.513 28.600 30.578 27.382 25.443 29.096
14 10 30.111 25.426 32.707 30.120 31.062 29.476 28.598 30.573 27.374 25.443 29.089
16 10 30.139 25.432 32.710 30.120 31.059 29.492 28.608 30.552 27.374 25.443 29.093
18 10 30.139 25.432 32.721 30.146 31.044 29.513 28.598 30.584 27.374 25.443 29.099
20 10 30.049 25.432 32.719 30.146 31.060 29.513 28.608 30.578 27.382 25.443 29.093

2 20 29.617 25.245 32.454 29.635 31.022 29.343 28.312 30.121 27.017 25.443 28.821
4 20 30.049 25.432 32.548 30.120 30.998 29.201 28.590 30.573 27.168 25.435 29.011
6 20 30.091 25.432 32.679 30.120 31.042 29.425 28.590 30.581 27.352 25.443 29.075
8 20 30.111 25.432 32.719 30.120 31.049 29.492 28.600 30.544 27.352 25.443 29.086
10 20 30.139 25.432 32.721 30.146 31.054 29.492 28.608 30.567 27.374 25.443 29.098
12 20 30.139 25.432 32.710 30.146 31.069 29.513 28.600 30.578 27.382 25.443 29.101
14 20 30.139 25.432 32.721 30.146 31.062 29.484 28.598 30.573 27.382 25.443 29.098
16 20 30.139 25.432 32.719 30.146 31.059 29.513 28.600 30.581 27.382 25.443 29.101
18 20 30.139 25.432 32.721 30.146 31.069 29.513 28.600 30.584 27.382 25.443 29.103
20 20 30.127 25.426 32.719 30.146 31.045 29.513 28.608 30.578 27.382 25.443 29.099
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APPENDIX F

BLOCK DAYS ON WHICH EACH PATIENT IS SCHEDULED FOR

SURGERY (ELECTIVE SURGERY SCHEDULING WITH STEP-

DETERIORATING PATIENT HEALTH CONDITION)

Table F.1
Block days on which each patient is scheduled for surgery based on his/her
H j1 when the increment of H j1 is 4 (all instances under full-day block
system).

Block day on which each patient is scheduled for surgery for each instance
j H j1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 38 1 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1
4 42 2 2 2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 2 2 2
5 46 2 1 2 3 3 1 3 1 2 3 3 2 3 4 3 3 3 3 3 3
6 50 3 3 3 4 3 4 4 2 4 2 4 2 3 1 4 4 4 2 2 3
7 54 2 5 2 4 3 3 3 4 3 5 1 3 4 3 6 4 4 4 4 2
8 58 3 4 6 4 5 3 2 3 4 4 4 5 4 5 4 6 5 4 5 4
9 62 4 5 5 6 6 4 6 3 6 4 5 5 5 5 6 2 6 5 5 5
10 66 4 3 5 5 4 6 6 6 5 4 3 7 2 4 3 3 4 6 1 6
11 70 5 3 4 7 4 8 7 4 6 7 6 4 7 7 5 5 6 5 4 5
12 74 5 4 7 1 2 6 5 7 4 3 4 6 7 8 5 5 3 3 6 5
13 78 6 6 4 6 7 4 5 3 3 7 7 4 6 5 7 1 6 6 3 4
14 82 6 7 3 5 1 5 4 6 7 5 5 6 6 6 6 6 3 6 5 7
15 86 7 6 7 3 5 7 7 5 6 7 6 8 5 6 4 1 7 3 6 4
16 90 4 7 6 3 6 5 4 5 5 6 7 3 5 3 7 3 5 8 6 6
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Table F.2
Block days on which each patient is scheduled for surgery based on his/her
H j1 when the increment of H j1 is 4 (all instances under half-day block
system).

Block day on which each patient is scheduled for surgery for each instance
j H j1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 38 2 1 1 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 1 2
4 42 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5 46 3 3 2 3 3 2 2 2 3 3 3 2 3 3 3 3 3 4 3 3
6 50 3 3 4 3 4 4 4 3 4 4 4 3 3 3 4 4 3 2 4 4
7 54 5 5 5 4 4 4 3 4 5 5 2 3 4 4 5 4 4 3 3 1
8 58 4 5 4 5 1 5 6 3 5 6 4 6 5 2 5 6 5 5 2 5
9 62 6 4 6 6 3 3 4 4 6 3 5 4 6 5 3 3 6 6 6 6
10 66 5 3 3 5 5 6 5 6 3 4 7 7 7 7 7 7 1 5 5 8
11 70 7 7 8 7 6 8 6 5 6 8 6 6 7 7 6 5 6 3 7 6
12 74 4 6 7 5 7 8 4 8 7 5 5 5 8 5 8 8 4 4 5 4
13 78 8 5 3 8 6 6 8 8 4 1 8 4 4 6 6 8 7 8 8 7
14 82 6 8 8 8 5 3 5 7 7 7 3 8 5 5 4 5 7 8 6 7
15 86 8 8 6 6 7 7 3 6 8 8 6 5 8 6 8 1 5 6 4 8
16 90 7 5 5 4 7 5 7 7 8 6 8 7 6 8 7 6 8 7 4 6
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Table F.3
Block days on which each patient is scheduled for surgery based on his/her
H j1 when the increment of H j1 is 2 (all instances under full-day block
system).

Block day on which each patient is scheduled for surgery for each instance
j H j1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 62 1 1 1 2 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1
3 64 1 1 2 2 2 2 1 2 1 2 2 1 2 1 2 1 2 2 1 1
4 66 2 2 2 1 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2
5 68 2 2 3 1 2 2 2 3 2 3 1 2 3 3 3 2 3 2 2 2
6 70 2 2 3 3 3 2 3 3 3 2 3 2 3 2 3 2 3 3 2 3
7 72 3 3 1 4 2 3 3 1 3 3 3 3 1 3 3 3 2 3 3 3
8 74 3 3 4 3 3 3 3 4 4 4 3 3 4 4 4 3 4 4 3 4
9 76 4 3 4 4 4 4 4 4 3 4 4 3 4 4 4 4 4 4 4 4
10 78 4 4 5 4 4 4 4 5 4 5 4 4 5 5 5 1 4 4 4 4
11 80 5 4 5 5 4 4 5 5 5 5 5 4 5 4 5 3 5 1 3 5
12 82 5 5 4 5 5 5 5 6 5 6 5 4 2 5 6 4 5 5 5 5
13 84 6 4 6 5 5 3 6 6 6 6 6 6 6 6 5 5 6 5 5 5
14 86 6 6 3 6 5 6 6 5 5 4 6 5 6 6 6 6 6 6 5 6
15 88 3 6 6 6 6 6 7 7 6 7 5 5 7 7 7 4 7 6 6 6
16 90 4 5 7 6 6 5 6 7 7 7 7 6 7 7 7 6 7 7 6 7
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Table F.4
Block days on which each patient is scheduled for surgery based on his/her
H j1 when the increment of H j1 is 2 (all instances under half-day block
system).

Block day on which each patient is scheduled for surgery for each instance
j H j1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 62 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1
3 64 2 2 2 2 1 2 1 2 1 2 2 2 2 2 2 2 1 2 1 1
4 66 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2
5 68 2 3 3 3 2 3 2 3 3 3 1 3 3 3 3 2 3 3 2 2
6 70 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 2 3 3 2 3
7 72 3 4 4 4 3 4 3 4 4 4 3 3 4 4 4 3 4 4 3 3
8 74 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 3 4 4 3 4
9 76 4 5 5 5 4 5 4 4 5 5 4 4 5 5 5 4 5 1 4 4
10 78 5 5 5 5 5 5 5 5 5 5 4 4 5 5 5 4 5 5 4 5
11 80 5 6 6 6 1 6 5 5 6 6 5 5 6 6 6 4 6 5 5 5
12 82 6 6 6 3 5 2 6 6 6 6 5 5 6 6 6 5 6 6 5 6
13 84 6 7 7 6 4 5 6 6 7 7 6 6 7 7 7 5 7 6 3 6
14 86 7 7 7 7 6 6 4 7 7 7 6 6 7 7 7 6 7 7 6 7
15 88 7 5 8 6 6 7 7 7 8 8 5 7 8 8 8 6 8 7 6 7
16 90 8 8 8 7 7 7 7 8 8 8 7 7 8 8 8 7 8 8 7 8
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Table F.5
Block days on which each patient is scheduled for surgery based on his/her
∆σ jl when the increment of ∆σ jl is 0.2 (all instances under full-day block
system).

Block day on which each patient is scheduled for surgery for each instance
j ∆σ jl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0.2 6 5 5 6 5 6 5 7 6 6 6 6 7 6 6 6 7 6 6 6
2 0.4 5 6 5 5 6 7 4 6 6 6 5 6 7 6 6 5 7 6 6 6
3 0.6 5 5 5 6 5 5 6 6 5 5 6 5 6 5 5 6 6 5 4 6
4 0.8 4 5 4 5 5 6 5 5 5 5 5 5 6 5 5 5 6 5 5 5
5 1 5 4 3 5 4 5 5 5 5 4 5 4 5 5 5 5 4 4 5 5
6 1.2 4 4 4 4 4 6 4 2 4 3 4 5 5 4 2 4 5 4 4 5
7 1.4 3 4 4 4 4 5 1 3 4 4 3 4 4 4 4 4 5 3 4 4
8 1.6 4 3 3 4 3 4 3 4 4 3 4 4 4 3 1 3 4 4 3 4
9 1.8 3 3 3 2 3 3 4 4 4 1 4 3 3 3 3 1 4 3 3 3
10 2 3 1 2 3 3 4 3 4 2 4 3 2 3 3 4 3 3 2 3 2
11 2.2 2 2 3 3 2 3 3 3 3 3 2 3 2 1 3 3 3 3 2 3
12 2.4 1 3 2 3 2 2 2 3 3 2 2 3 3 2 3 2 3 1 2 1
13 2.6 1 2 1 2 1 1 1 2 2 1 3 1 1 1 2 2 1 1 1 1
14 2.8 1 1 1 1 2 2 2 2 2 2 1 1 1 2 1 1 1 2 2 2
15 3 2 2 1 1 1 2 1 1 1 2 1 2 2 1 1 1 2 1 1 2
16 3.2 2 1 2 2 1 1 2 1 1 1 2 1 1 2 2 2 2 2 1 1
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Table F.6
Block days on which each patient is scheduled for surgery based on his/her
∆σ jl when the increment of ∆σ jl is 0.2 (all instances under half-day block
system).

Block day on which each patient is scheduled for surgery for each instance
j ∆σ jl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0.2 6 8 4 8 7 7 3 8 7 7 8 7 7 7 8 7 8 8 6 8
2 0.4 7 8 6 7 7 8 7 7 6 7 8 7 7 7 7 1 8 7 7 7
3 0.6 6 7 6 7 6 7 7 7 6 6 7 6 6 6 7 6 7 7 6 7
4 0.8 6 7 3 6 6 1 6 6 5 6 7 3 6 6 6 6 7 6 6 6
5 1 5 6 5 6 5 6 6 6 4 5 6 6 5 5 6 5 6 5 5 6
6 1.2 5 6 5 5 5 6 5 5 5 5 6 6 5 5 5 5 6 6 2 5
7 1.4 4 5 4 5 4 5 1 4 4 4 5 5 4 4 5 4 5 5 5 5
8 1.6 1 5 4 4 4 5 5 5 3 4 5 5 1 4 5 1 5 4 4 3
9 1.8 2 4 3 4 3 4 4 4 4 3 4 4 3 1 4 4 4 4 3 4
10 2 3 3 3 4 3 4 4 4 4 2 4 4 4 3 3 3 4 3 4 4
11 2.2 4 4 3 3 3 3 3 3 3 3 3 3 3 1 4 2 3 1 3 2
12 2.4 3 3 2 3 1 1 1 3 1 1 1 3 3 3 3 3 3 1 3 1
13 2.6 1 1 1 2 2 3 3 1 3 2 2 1 1 1 2 1 2 3 2 3
14 2.8 1 1 1 2 2 1 1 2 2 1 3 2 1 2 1 2 2 1 1 1
15 3 2 2 2 1 1 2 2 2 1 1 2 1 2 2 1 1 1 2 1 2
16 3.2 2 2 2 1 1 2 2 1 2 2 1 2 2 2 2 2 1 2 2 1
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