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ABSTRACT

Huixi, Zhao Ph.D., Purdue University, December 2016. Combining Markov Random
Field and Marked Point Process for Microscopy Image Modeling. Major Professor:
Mary L. Comer.

In many microscopy image analysis applications, it is of critical importance to ad-

dress both pixel-level segmentation and object-level feature extraction. While Markov

random field (MRF) models are useful for imposing local constraints at the pixel level,

they have limited capability for imposing global constraints. Marked Point Process

(MPP) models incorporate global information, such as shape, as a prior, but local

constraints, such as pixel-wise interaction, are not easily modeled.

To address the problem, we first propose a hybrid MRF/MPP model to incor-

porate both local and global constraints within one single energy function for image

analysis. Optimization using this model is performed using simulation schemes, in-

cluding reversible jump Markov chain Monte Carlo (RJ MCMC) and multiple birth

and death algorithms.

Secondly, we propose a two-pass multiple birth and death algorithm. In the death

step of the original multiple birth and death algorithm, objects which are killed in

later stages might affect the accuracy of the death rate of objects processed earlier,

especially for adjacent object pairs, where two objects have close interaction. In our

algorithm, we add a rebirth step after the death step to solve this problem.

Finally, we propose a joint MRF/MPP model. Unlike the hybrid model, where

the MRF is interpreted as an energy term within the MPP framework, this model

combines the MRF and the MPP into a joint probability distribution. We show

experiments to demonstrate the comparison of this model and the hybrid model.
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1. INTRODUCTION

The Markov random field (MRF) and Marked point process (MPP) are two powerful

image modeling tools. In the MRF model, the Markov property, represented by a

Gibbs distribution, can model pixel-wise interactions. Its effectiveness in imposing

local smoothness constraints is well-suited for image analysis. However, it has limita-

tions for imposing global constraints. For example, the geometric information of an

image cannot be conveniently modeled using a MRF.

On the other hand, the MPP model assumes that objects are distributed following

a random process consisting of points randomly located in space. Global constraints

can be incorporated more easily into the MPP model, where in addition to variables

representing the random locations of objects, a set of variables (marks) are assigned

to describe features of the objects. Since the MPP model is very useful for model-

ing the randomness of the locations and numbers of the target objects, it has been

used in various object detection applications [1,2]. The drawback of this object-level

representation lies in its difficulty in modeling local constraints, such as pixel-wise in-

teractions. As a result, in most cases the boundary information of the target objects

can not be precisely described. Furthermore, the accuracy of the object detection will

decline if the object boundaries do not follow exactly the geometric model.

In some image analysis applications, both pixel-level and object-level represen-

tations are of critical importance. For example, in microscopy images of material

systems, object-level microstructural features such as particle size and shape are es-

sential for identifying structure property correlations; pixel-level segmentation can

provide information to help characterize material properties that are determined by

the activity at interfaces between regions with different physical or chemical com-

positions. Unfortunately, neither MPP nor MRF alone is adequate to model this

hierarchical two-level information.
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We propose two models to perform both pixel classification (segmentation) and

object detection/identification. Specifically, the dissertation is organized as follows:

In Chapter 2, we introduce some general MPP models from the literature and

apply them to extract microstructure features from material images. We also describe

two optimization methods for the MPP model: multiple birth and death simulation

and reversible jump Markov chain Monte Carlo simulation [1, 3, 4].

In Chapter 3, we propose a modified multiple birth and death algorithm with a

two-pass death step. Such a modified algorithm serves as a faster alternative to the

original multiple birth and death algorithm, which can be used as an optimization

approach for both the MPP model and the hybrid MRF/MPP model.

In Chapter 4, we propose a hybrid MRF/MPP model, where the geometric prop-

erties of objects (global constraints) and pixel-wise interactions (local constraints) are

integrated into one energy function. We perform optimization with this model using

Monte Carlo simulation. Specifically, we employ multiple birth and death simulation

and reversible jump Markov chain Monte Carlo simulation for optimization for object

detection and segmentation.

In Chapter 5,we propose a joint MRF/MPP model. In this model, a conditional

posterior distribution of a joint object/segmentation configuration given an observed

image is proposed. This model differs from the hybrid MRF/MPP model in that, first,

this model combines the MRF and the MPP as a joint model, while the hybrid model

interprets MRF as a segmentation potential, which is embedded in the MPP frame-

work; and second, the relation between the object field and segmentation is modeled

as part of the prior distribution in our joint model. The joint object/segmentation

configuration is obtained by maximizing the posterior distribution. An alternating

minimization algorithm is used for optimization with this model.
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2. MARKED POINT PROCESS MODELS FOR

MICROSCOPE IMAGES

Marked point process (MPP) modeling [5–9] is a stochastic approach for object de-

tection. A point process model is very useful for modeling the random locations of

objects in an image. A set of random variables (or marks) can then be associated

with each point, or object, to describe properties of that object, leading to a marked

point process.

Consider S the image lattice, which is a compact subset of R2. A configuration of n

objects in an image is a finite unordered set of points {S1, S2, ..., Sn} ⊂ S with each Si

representing the random location of one object. For each object Si, there is a markMi.

The mark for an object contains random variables describing the object. Note that we

will use the term “mark” to refer to both the collection of random variables Mi and

each random variable in Mi itself. A marked object is defined as Wi = {Si,Mi} ∈ W ,

where W ⊂ S×M is the random marked object field. Taking the rectangle model as

an example, let M be the mark space, M = [amin, amax]× [bmin, bmax]× [0, π], where

the mark consists of two axis lengths and one orientation. Let ΩW denote the space

of all possible realizations of W . Then w = (w1, ..., wn) ∈ ΩW is a possible object

configuration.

We introduce a non-homogeneous Gibbs process on the configuration space. Let

y denote the observed image. The density of the marked point process is:

f(w|y) = 1

zmpp

exp{−Vmpp(w|y)} (2.1)

where zmpp is the normalizing constant. The energy function Vmpp(w|y) is divided

into two types of energy: the data energy V d
mpp(y|w) which describes how well object

w fits image y and the prior energy V p
mpp(w), describing the interactions between
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objects. Thus, the most likely configuration corresponds to a maximum a posteriori

MAP estimation of w:

ŵ = argmax
w∈W

f(w|y) = argmin
w∈W

[V d
mpp(y|w) + V p

mpp(w)] (2.2)

Usually, this MAP estimation is performed by a stochastic sampling scheme.

Since the number and locations of objects in images are often random, the MPP

is very suitable for object modeling. Recently, several MPP models have been shown

to be quite effective for object detection. Among them, Descombes et al. [1] proposed

an ellipse model to detect flamingos in remote sensing images. Perrin et al. [10, 11]

used the ellipse model for tree crown detection in remote sensing images. Avenel et

al. [12] used the ellipse model for breast cancer detection on medical images. Dong

et al. [13] used the ellipse model for rolling leukocytes detection in medical images.

Craciun et al. [14] also used the ellipse model for boat detection in harbors on high

resolution optical images. Yongtao et al. [15] and Gomes et al. [16] used a disk model

for tree detection from airborne / mobile laser scanning or LiDAR point cloud data.

Neeraj et al. [17] also used the disk model for Nuclei detection in microscopy images.

Kulikova et al. [18] included the active contour as an energy term in the MPP for tree

crown detection. Kulikova et al. [19] also used the active contour for nuclei extraction

from histopathological images. Kim et al. [20] proposed a channel model to detect

channels in microscope images of materials. Ortner et al. [21, 22] and Benedek et

al. [23] proposed a rectangle model to represent buildings in remote sensing images.

Borcs and Benedek [24] also used the rectangle model for vehicle detection in aerial

images. Borcs and Benedek [25] further advanced a L-2 MPP model which included

a prior term for groups of objects for vehicle detection. Stoica et al. [26] and Lacoste

et al. [2] proposed the “Candy model” to represent roads in aerial images as line

segments. Batool et al. [27] also used the Candy model to detect wrinkles in aging

human faces. Dengfeng et al. [28] modeled the joint points of connecting line segments

as objects to detect line structures in general images. Keresztes et al. [29] proposed a
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parabola model for fault detection in 2D sections of seismic blocks. Weina et al. [30]

proposed a mixture of Bernoulli shape prototypes which are learned from training

sequences to detect humans in video sequences. Utasi et al. [31, 32] extended this

model to a 3-D model for multi-view people detection. Sreetama et al. [33] proposed

a sphere model for Neurite tracing in medical imaging. Soubies et al. [34] proposed

a 3D ellipsoid model for nuclei extraction. Craciun et al. [35] proposed a spatio-

temporal marked point process for detection and tracking of moving objects.

In this chapter, we apply marked point process to Tin ball images and NiCrAl

images to extract material particles. We also represent the multiple birth and death

algorithm to get the MAP estimation of marked object configuration in each example.

2.1 Tin image example

The geometric shape of Tin balls can be approximately interpreted as sphere. On

2D images, we use circle model as the marked object to describe each Tin ball. As in

Figure 2.1(a), (x, y) ∈ S represents the location of the object while r ∈ M represents

the radius, which is the only mark of the circle model. We assume for this work the

radius is uniformly distributed between rmin and rmax value. Thus a circle object wi

is fully described as wi = {(xi, yi), ri}.

Let Dwi
⊂ S be the pixel site region projected by wi onto the image lattice. We

define the neighborhood system in (2.2) as: wi and wj are neighbors, denoted wi ∼ wj,

if Dwi
intersects Dwj

.

For a given object w from the marked object field, V d
mpp(y|w) is defined as the data

energy, which describes how well the object fits the observed image. We expect gray

values of pixels outside of the Tin ball particle boundary to be statistically different

from those within the boundary. Hence, for each w with marks m = {r} ∈ M , we

associate two auxiliary objects wα with marks mα = {r + 1} and wβ with marks

mβ = {r−1} at the same location as w. Then the inside region and outside region of
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(a) Tin ball image (b) Circle model

Fig. 2.1. Tin ball image and the circle model

w are defined as Ain(w) = Dwα −Dw and Aout(w) = Dw −Dwβ respectively (Figure

2.1 (b)).

We define function γw
in(s) and γw

out(s) as:

γw
in(s) =

 1 20 < I(s) < 150

0 otherwise
for s ∈ Ain(w)

γw
out(s) =

 1 I(s) < 5

0 otherwise
for s ∈ Aout(w)

γin(w) =
∑

s∈Ain(w)

γw
in(s) γout(w) =

∑
s∈Aout(w)

γw
out(s)

(2.3)

here, I(s) is the gray value of pixel s. Since there is not much noise in the Tin ball

image, background pixels usually have gray values less than 5. Thus γout(w) col-

lect all the background pixels in Aout(w). Likewise, in Ain(w), γin(w) collect pixels

corresponding to Tin ball boundary. As a consequence, γin(w) and γout(w) provide

information on how well Ain(w) fits the Tin ball boundary and Aout(w) fits the back-

ground.
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Then we calculate V d
mpp(y|w) as:

V d
mpp(y|w) = 1− Γ(y|w)

T
(2.4)

where

Γ(y|w) = γin(w)

|Ain(w)|
+

γout(w)

|Aout(w)|
(2.5)

here T is the threshold, which is set as 1 in this application.

Inspired by the Strauss Model [36], we use an overlapping penalizer as a prior to

describe the spatial interaction between objects. As in [37], the overlapping penalizer

R(wi, wj) is defined as the normalized intersection area, which is illustrated in Figure

2.2:

R(wi, wj) =
Dwi

∩Dwj

min(Dwi
, Dwj

)
(2.6)

Fig. 2.2. Overlapping penalty for intersected objects

Then the prior energy V p
mpp(w) is defined as:

V p
mpp(wi, wj) =

 R(wi, wj) if R(wi, wj) < Thoverlapping

∞ otherwise
(2.7)

Here we assign zero probability for any overlapping ratio greater than Thoverlapping.
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2.2 NiCrAl image example

In our application, a superellipse model is used as the object model to describe

the geometric shape of a NiCrAl particle [38]. The equation for a superellipse is given

by: ∣∣∣x
a

∣∣∣n + ∣∣∣y
b

∣∣∣n = 1 (2.8)

where a,b are the major and minor axes and n is a parameter to control the shape of

the curve. The value n = 3 best fit the shape of NiCrAl particle [38]. We also intro-

duce parameter θ to control the supperellispe orientation. Consequently, the mark

space associated with the object space is defined as M = [amin, amax]× [bmin, bmax]×

[0, π]. A NiCrAl image and the superellipse model are shown in Figure 2.3.

(a) NiCrAl image (b) superellipse model (c) marks of the model

Fig. 2.3. NiCrAl image and the superellipse model

We assume that a and b are uniformly distributed between the minimum and

maximum value. Theoretically, orientation of NiCrAl particle has only two values [38],

however, in realization there is usually some small fluctuation in the orientation, as

in Figure 2.4(a). As a consequence, θ is assumed to follow a mixture of two Gaussian

distributions with mean values 3
10
π and 7

10
π. The variance is set as 0.12 for both

Gaussians. The density of θ is illustrated in Figure 2.4(b).

Similar to what we did in the Tin ball example, for each object w, we use the

statistical differences of pixel gray value between object’s inside and outside region to
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(a) histogram of particle orientations (b) density of θ

Fig. 2.4. orientation of NiCrAl particles and the density of θ

define the data energy V d
mpp(w). Hence, for object w with marks m = {a, b, θ} ∈ M ,

we associate two auxiliary objects wα with marks mα = {a+1, b+1, θ} and wβ with

marks mβ = {a− 1, b− 1, θ} at the same location as w. Then the inside region and

outside region of w are defined as Ain(w) = Dwα − Dw and Aout(w) = Dw − Dwβ

respectively.

We assume pixel gray values in Ain(w) and Aout(w) follow Gaussian distributions.

This corresponds to a Gaussian noise observation model. We define the Bhattacharya

distance [39] B(y|w) between Ain(w) and Aout(w) as:

B(y|w) = (µin − µout)
2

4
√

σ2
in + σ2

out

− 1

2
log

2σinσout

σ2
in + σ2

out

(2.9)

where (µin, σin) and (µout, σout) are Gaussian parameters for Ain(w) and Aout(w).

Then the data energy V d
mpp(y|w) is defined as a likelihood function, which is calculated

from B(y|w), as in [1]:

V d
mpp(y|w) =

 1− B(y|w)
T

B(y|w) < T

exp(−B(y|w)−T
3B(y|w)

)− 1 B(y|w) ≥ T
(2.10)
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Figure 2.5 shows a plot of the data energy as a function of the distance between the

inside and outside region of w.

We use the overlapping penalizer in (2.7) to describe the spatial interaction be-

tween objects. Then V p
mpp(w) is calculated as (2.8).

Fig. 2.5. Plot of V d
mpp(y|w)

2.3 Optimization method

Our optimization goal is to find an object configuration that minimizes the energy

function Vmpp(w|y) and that has the minimum number of objects among all such

configurations. In general there is no closed-form solution to obtain such an optimized

configuration w, so we have to resort to iterative approaches.

2.3.1 Reversible jump Markov chain Monte Carlo algorithm

RJ MCMC [3, 4] is an extension of the Metropolis-Hastings algorithm, which

allows simulation of a multidimensional system. A sampler is proposed to simulate

a discrete time Markov Chain with stationary distribution π on the configuration

space, where π is the density function whose mass is entirely concentrated on the set

of configurations that minimize the energy function Vmpp(w|y). Different kernels are
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introduced to allow perturbations and dimension changes in the configuration space,

which is important since the number of objects in an image is random. Each kernel

performs a state transition from w to w′ according to a probability Qm(w → w′).

The transition is accepted according to the Green ratio to meet the detailed balance

equations, which ensures the process converges to π. The Green ratio is calculated

as [3]:

R(w,w′) = min

(
1,

Qm(w
′ → w))exp(−Vmpp(w

′|y))
Qm(w → w′))exp(−Vmpp(w|y))

)
(2.11)

Three types of kernel are explored to perform state transitions:

• Birth and death kernels : These kernels will add or remove an object from the

current configuration w. The corresponding mark is sampled according to spe-

cific distributions. The increase (birth kernel) and decrease (death kernel) in

configuration dimension theoretically ensure the process visits the whole con-

figuration space. However, this type of kernel alone usually leads to slow con-

vergence. To speed up, two other kernels are used.

• Perturbation kernel : This kernel involves changes of mark for an object in the

current configuration. The mark is updated according to specific distributions.

The dimension of the configuration space remains the same.

• Switch kernel : This kernel allows an object of a certain type to change to

another type. The dimension of the configuration space remains the same.

However, since the object type changes, the corresponding mark is also modified.

Usually RJ MCMC is embedded within a simulated annealing [40, 41] framework,

which replaces Vmpp(w|y) by Vmpp(w|y)/Tt. A logarithmic decrease of Tt to 0 theoret-

ically ensures the process converges to a global optimum [42,43].

With the benefit of the switch kernel, RJ MCMC is very suitable for models

including different types of objects.
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2.3.2 Multiple Birth and Death algorithm

Although different kernels are proposed to speed up the process, RJ MCMC only

treats one object at each iteration, which results in slow convergence speed. De-

scombes et al. [1] proposed a multiple birth and death algorithm to parallelize state

transitions for simple object interaction models such as the overlapping penalty prior.

It has been demonstrated to have faster convergence compared to RJ MCMC. Gen-

erally, the steps of the multiple birth and death algorithm are summarized as:

Initialization: start with an empty configuration w = ϕ, set the birth rate b rate =

b0, the inverse temperature α = α0 and the discretization step σ = σ0.

• Birth step: visit all pixels on the image lattice in raster order. For each pixel at

s, if no object is associated with it in the current configuration w, add wi with

probability σb rate.

a) if birth is chosen at s: w = w∪wi, sample each mark from its corresponding

distribution.

b) calculate V d
mpp(wi), assign wi to s.

• Death step: sort all elements in current configuration w by decreasing values of

V d
mpp(wi). For each wi taken in this order, compute the death rate as:

d1wi
=

σ exp(−α(Vmpp(w/{wi}|y)− Vmpp(w|y)))
1 + σ exp(−α(Vmpp(w/{wi}|y)− Vmpp(w|y)))

Delete wi from w with probability dwi
.

• Convergence test: If and only if all the objects that are born during the birth

step are killed during the death step, terminate the process. Otherwise, Let

α = α × F and σ = σ/F and go back to birth step, where F is the cooling

factor and go back to the birth step.

Although the multiple birth and death algorithm is faster than RJ MCMC, it

is limited to simple object interaction priors such as the overlapping penalizer. Its
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application to more sophisticated priors, such as the one in the Candy model, still

remains to be explored [1].

2.4 Experimental results

We apply marked point process to two examples: Tin ball images and NiCrAl

images. The objective is to identify all the particles in each example. To examine

the performance of our algorithm, we calculate the missed detection rate and false

detection rate. The missed detection rate is defined as the ratio of the number of

missed detecting objects to the total number of objects. The false detection rate is

defined as the ratio of the number of falsely detecting objects to the total number of

objects. Along the boundaries of the images in either example, some particles (Tin

balls or NiCrAl particles) only show a small portion of themselves. Since they do not

geometrically fit our model (circle model or supperellipse model), we do not consider

them as effective objects in the images. Thus they are not taken into account for

computing the missed detection rate and false detection rate.

In the Tin ball example, we set rmin as 2 and rmax as 200. Thoverlapping is set at

0.2. T in (2.4) is set as 1. We apply marked point process to two Tin ball images

with size 1024 × 1024. The algorithm is implemented in C and it takes about 30

minutes to get the result for each image on a i5 2.67 Ghz computer. Original images

and results are shown in Figure 2.6. Both missed detection rate and false detection

rate are shown in Table 2.1.

Table 2.1
Missed detection rate and false detection rate for Tin ball images

Image Missed detection rate False detection rate
Tin ball image 1 1.18% 0.04%
Tin ball image 2 1.39% 0.03%

Frome table 2.1, we can see our algorithm performs fairly good in identifying

Tin balls. After further investigation, we find all the missed Tin balls are of small
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(a) Tin ball image 1 (b) Tin ball image 2

(c) MPP result for Tin ball image 1 (d) MPP result for Tin ball image 2

Fig. 2.6. MPP result for Tin ball images

size with r ≤ 4. Furthermore, all the missed Tin balls look dim in the background

with average pixel gray value less than 30, while pixel gray values for background are

around 5. For the false detection part, it is because some Tin balls are under the

shadow of others, thus do not look like circle model any more. Both cases can be

found in Figure 2.8(a-b).
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In the NiCrAl particle example, we set Thoverlapping = 0.2. amin and bmin are set

as 5, while amax and bmax are 25. T is set as 20. Two Tin NiCrAl images with size

744 × 645 are used to test our algorithm. For each image, the computing time is

about 60 minutes on a i5 2.67 Ghz computer. Original images and results are shown

in Figure 2.7. Both missed detection rate and false detection rate are shown in Table

2.2.

Table 2.2
Missed detection rate and false detection rate for NiCrAl images

Image Missed detection rate False detection rate
NiCrAl image 1 0.25% 0.25%
NiCrAl image 2 1.17% 0.30%

Similar as the Tin ball example, all the missed particles are of small size with

major axis less than 6. In addition, the missed and falsely detected particles have

complicated boundary information, which can not be well represented by the superel-

lipse model. One example of the false detection is shown in Figure 2.8 (c) and (d).

2.5 Conclusion

In this chapter, we introduce the marked point process and the corresponding

optimization methods: RJ MCMC and the multiple birth and death algorithm. We

also apply MPP to Tin ball images and NiCrAl images to identify the material par-

ticles. The results show that MPP can effectively impose the geometric constraints

on material particles, especially when the shape of particles can be well described by

a mathematical model. It is very convenient to use MPP to address the interaction

between particles as well. However, we should note that when the particle’s shape

is too complicated to be simply described by the object model, the MPP detection

accuracy declines.
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(a) NiCrAl image 1 (b) NiCrAl image 2

(c) MPP result for NiCrAl image 1 (d) MPP result for NiCrAl image 2

Fig. 2.7. MPP result for NiCrAl images
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(a) Tin ball image (b) Tin MPP result (c) NiCrAl image (d) NiCrAl MPP result

Fig. 2.8. Examples of missed detection and false detection. In (a),
the Tin ball circled in red looks more like an ellipse than a circle.
It is identified as two overlaped objects in (b). The Tin ball circled
in yellow is too small (r = 2) and dim, which is missed detected in
(b). In (c), the circled NiCrAl particle is falsely detected because
its complicated shape cannot be well modeled by the supperellipse
model.
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3. A TWO-PASS MULTIPLE BIRTH AND DEATH

ALGORITHM

Multiple birth and death algorithm is an effective optimization method for the marked

point process, which is widely used for object detection in various applications such

as remote sensing and microscopy image analysis. However, in the death step, the

objects which are killed in later process might affect the death rate of the objects

treated earlier, especially for adjacent object pairs, where two objects have close

interaction. In practice, this problem will lead to slow convergence and inaccurate

result. In this chapter, we proposed a two-pass algorithm to solve this problem. We

present experimental results to show our method has faster convergence speed and

better performance than the original multiple birth and death algorithm.

3.1 Introduction

The multiple birth and death (MBD) algorithm, proposed in [1], is a popular

optimization method for marked point process with simple object interaction priors

such as the overlapping penalizer. Although [44, 45] proposed a multiple birth and

cut algorithm to reduce the number of parameters in MBD, it has slower convergence

speed and guarantees a local minimum. The general steps of MBD algorithm have

been introduced in chapter 2. In the original MBD algorithm, the death step pro-

cesses each object in the object configuration in descending order of the data term,

in which each object is removed from the configuration based on the corresponding

death rate. As the objects are handled one by one, the object configuration is dy-

namically updated accordingly. Since each object is treated just once, the death step

is considered as a one-pass method.
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For each object wi, the death rate is calculated from the energy loss if it is removed

from the object configuration at that time, which include both the data term and the

prior term. The prior term describes the interaction between wi and its neighbor

objects in the current configuration. However, if its neighbor objects are killed in the

later process of the death step, the prior term of wi at this moment might not be

reliable.

Although the MBD algorithm will theoretically converge to a minimum within the

simulated annealing framework, in practice we find this problem will pose a hazard

on the convergence speed and the accuracy of the result. In some applications, the

process cannot converge within a reasonable time. For simplicity, in the death step,

among all the objects sorted in descending order of the data term, we call such an

object, which has interactions with the objects ahead of it and gets itself killed at its

turn, a “phantom” object.

In this chapter, we advance a two-pass death step to solve the negative effect of

the “phantom” objects. In Section 3.2, we describe this two-pass mechanism. In

Section 3.3, we show the experiment results. We draw conclusion in Section 3.4.

3.2 A two-pass death step

We propose a two-pass method to find the “phantom” objects. The negative

effects by the “phantom” objects are removed in the second pass. The modified

MBD algorithm with the two-pass death step is as follows:

Initialization: start with an empty configuration w = ϕ, set the birth rate b rate =

b0, the inverse temperature α = α0 and the discretization step σ = σ0.

• Birth step: visit all pixels on the image lattice in raster order. For each pixel at

s, if no object is associated with it in the current configuration w, add wi with

probability σb rate.

a) if birth is chosen at s: w = w ∪ wi, sample each mark from its corre-

sponding distribution.
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b) calculate V d
mpp(wi), assign wi to s.

• Death step: Sort all objects in w in descending order of V d
mpp(wi).

a) first pass: Let w′ = {w′
1, w

′
2, ..., w

′
n} denote a copy of w, where w′

i =

wi,∀wi ∈ w. For every object w′
i taken in descending order of V d

mpp(w
′
i),

the corresponding death rate is calculated as:

d1w′
i
=

σ exp(−α(Vmpp(w
′/{w′

i}|y)− Vmpp(w
′|y)))

1 + σ exp(−α(Vmpp(w′/{w′
i}|y)− Vmpp(w′|y)))

Kill w′
i with probability d1w′

i
. If death is chosen for w′

i, w
′ = w′/{w′

i}.

b) second pass: sort all objects that are killed in the first pass in ascending

order of V d
mpp(w

′
i). For every object w′

i taken in this order, recalculate

its death rate d2w′
i
based on the current object configuration w′. If d2w′

i
is

different from d1w′
i
, give rebirth to w′

i with probability 1 − d2w′
i
. If rebirth

is chosen for w′
i

1) find the “phantom” object w′
j, whose interaction with w′

i causes the

difference between d1w′
i
and d2w′

i
. In w, move wj in front of wi.

2) w′ = w′ ∪ w′
i.

c) For every object wi taken in the current order of w, calculate the death

rate as:

dwi
=

σ exp(−α(Vmpp(w/{wi}|y)− Vmpp(w|y)))
1 + σ exp(−α(Vmpp(w/{wi}|y)− Vmpp(w|y)))

Kill wi with probability dwi
. If death is chosen for wi, w = w/{wi}.

• Convergence test: If and only if all the objects that are born during the birth

step are killed during the death step, terminate the process. Otherwise, Let

α = α × F and σ = σ/F and go back to birth step, where F is the cooling

factor and go back to the birth step.
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The difference between this algorithm and the original MBD algorithm is the

order we process the objects in the death step. In the death step of the original MBD

algorithm, each object is processed in the order of decreasing values of the data term.

In our algorithm, with the help of the second pass, we find the “phantom” objects

and move them in front of the objects whose death rates might be negatively affected

by these “phantom” objects. In this way, the “phantom” objects are processed earlier

and the hazard brought by them can be avoided. Since the order of the death step

only affects the convergence speed [44], our two-pass algorithm converges.

(a) (b)

Fig. 3.1. (a) NiCrAl image (b) the result of the birth step.

We take the NiCrAl image as an example. We use the same model as in chapter 1,

which use a superellipse model to define the data term and an overlapping penalizer

as the prior term. We only focus on the two adjacent NiCrAl particles (circled in

red) in Figure 3.2(a). The result of the birth step is presented in Figure 3.2(b), where

objects are shown in grey. Brighter areas are the overlapping regions between objects.

For the two particles of interest, there are two objects born for the upper particle and

three objects for the lower particle. For clarity, we use different colors to represent
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these five objects. The green and purple ones are the objects for the upper-right

particle while the pink, blue and yellow objects are for the lower-left particle.

Fig. 3.2. The original death step for the two particles of interest

Fig. 3.3. The second pass for the two particles of interest
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Figure 3.2 shows the process of the original death step. At each step, the object

to be processed is called the target object. The dashed block shows the interaction

of the target object with its neighbor objects. Based on the decreasing values of the

data term, the order we process these 5 objects is green, purple, yellow, blue and

pink. The green object is firstly killed because of both high data term and prior term

(large overlapping with the purple object and the yellow object). The second target

object is the purple one. Because of the overlapping with the yellow object, the high

prior term results in a high death rate, even if the data term is relatively low. The

purple object is killed accordingly. Later, the yellow and blue objects are also killed.

Because the yellow object is killed later, the prior term we calculated for the purple

object is not reliable. Here the yellow object is a so-called “phantom” object.

In our two-pass method, we process the objects in w′ the same way as in the

original death step. Figure 3.3 shows the second pass for processing the objects in w′.

It should be noted every object here is a copy of the object in w. The blue object,

which is the last one killed in the first pass, is firstly processed in the second pass. Its

death rate remains the same as that in the first pass. So it’s not given rebirth. The

yellow object is not added back according to the low rebirth rate brought by its large

overlapping with the pink object. We give rebirth to the purple object according to its

high rebirth rate. We add it back to w′ and find the yellow object as the “phantom”

object for the purple object. As a result, in w we move the yellow object in front of

the purple object. The green object is not given rebirth because of the low rebirth

rate.

Then we process the objects in w based on the current order, which is green,

yellow, purple, blue and pink.

3.3 Experiments

We test our algorithm on 10 NiCrAl alloy microscopy images. For comparison,

we apply both the original MBD algorithm and our two-pass method. The results
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(a)NiCrAl image 1 (b)original MBD result (c)two-pass MBD result

(d)NiCrAl image 2 (e)original MBD result (f)two-pass MBD result

Fig. 3.4. Results of the original multiple birth and death algorithm
and the two-pass multiple birth and death algorithm for NiCrAl im-
ages

show that in every image our method performs at least as good as the original MBD

algorithm. For images containing particle pairs, where two particles are very close to

each other, our method shows better performance and faster convergence. Figure 3.4

shows two comparison results for such case, where both images contain particle pairs

(circled in red). The results at iteration 127 are shown for both the original MBD

algorithm and our algorithm. In each case, the original algorithm failed to detect the

object circled in red.

Figure 3.5 shows the convergence of both algorithms for these two examples. For

Figure 3.5(a), our method converges to the global minimum (55 objects) at iteration
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25, while the original method does not converge even at iteration 219. For Figure

3.5(b), our method converges to the global minimum (85 objects) at the 156th itera-

tion and the original method fails to converge at iteration 219.

3.4 Conclusion

In the original death step of the multiple birth and death algorithm, the “phan-

tom” objects bring negative effect on the death rate calculation on objects prior to

them, leading to slow convergence. This problem will get severe in adjacent object

pairs, where two objects have close interaction with each other.

In this chapter, we proposed a two-pass multiple birth and death algorithm to

solve this problem. Experiments show our proposed method has faster convergence

speed and more accurate results compared to the original multiple birth and death

algorithm.
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(a) convergence for NiCrAl image 1

(b)convergence for NiCrAl image 2

Fig. 3.5. Convergence comparison of the original multiple birth and
death algorithm and the two-pass multiple birth and death algorithm
for NiCrAl images



27

4. A HYBRID MARKOV RANDOM FIELD/MARKED

POINT PROCESS MODEL FOR MICROSCOPE IMAGES

4.1 Introduction

Stochastic models have long served as powerful tools for image analysis. The

Markov Random Field (MRF) has become perhaps the most commonly used model

for a wide variety of applications. The MRF represents a Gibbs distribution in terms

of localized conditional probabilities satisfying a Markov property. The well-known

Ising and Potts MRF models [40,46] have a corresponding interpretation in statistical

mechanics. Thus, many physical phenomena are well modeled by an MRF. One

problem with the MRF model, however, is that it is difficult to incorporate certain

types of global information into the model, since the MRF is defined in terms of local

interactions. Such global information not only models high-level features as object

shape, size, etc, but also can help to improve the accuracy of the segmentation,

especially in noisy or low contrast images.

A multiplelayer MRF [47–51], or larger cliques system [52–54] can be used for

higher-level modeling, but these approaches still model the number and locations of

objects as deterministic. [55] introduced an object shape priori into MRF, where a

layered pictorial structure is used as a guidance for pixel-level segmentation. Such

pictorial structures can be trained from a large library of exemplars. This approach

mainly focuses on the segmentation of a single object or a small number of objects.

However, in some applications in the field of remote sensing, microscopy material and

medical imaging, where a large number of objects are randomly located in the image,

the approaches mentioned above are not flexible enough to represent the randomness

of the number and locations of objects, as well as the interactions between neighboring

objects.
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An alternative to the MRF for image modeling is the marked point process.

Marked point process (MPP) models have been proposed for modeling image ob-

jects [5–7]. A point process model is very useful for modeling the random locations

of objects in an image. A set of random variables (or marks) can then be associated

with each point, or object, to describe properties of that object, leading to a marked

point process. Since the number and locations of objects in images are often random,

the MPP is often more appropriate than the traditional MRF for object modeling.

(a) (b) (c)

Fig. 4.1. (a) NiCrAl image (b) MRF result (graph cuts) (c) MPP
result (superellipse model with multiple birth and death algorithm).

A problem with the MPP is that local constraints, such as pixel-wise interactions,

are difficult to model by an MPP. This drawback not only leads to imprecise boundary

descriptions, but also can impair the accuracy of object detection, especially when

object boundaries do not follow exactly the geometric model. Limitations of both the

MRF and the MPP are illustrated in Figure 4.1. Figure 4.1(a) shows a noisy, low-

contrast electron microscope image of a NiCrAl alloy. The MRF-based segmentation

(Figure 4.1(b)) is poor because of the low contrast between particles. Without global

constraints, boundaries between objects merge due to noise and the low contrast.

The MPP result (Figure 4.1(c)) is problematic because boundaries of particles are

imprecise due to the imperfect fit of the superellipse model.

In many microscopy image analysis applications, it is of critical importance to ad-

dress both pixel-level segmentation and object-level feature extraction. For example,
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in microscopy material systems,high-level microstructural features such as particle

size and shape are important for characterizing structure-property correlations, but

precise boundary localization is also of critical importance, because many proper-

ties of materials are determined by the activity at interfaces between regions having

different physical or chemical compositions. Pixel-level image information, such as

segmentations, are not sufficient alone, nor are object-level representations, to repre-

sent these microstructural features [56].

There have been methods proposed to exploit both models together for the purpose

of better segmentation and object detection. In [57], a top-down and bottom-up

approach was proposed to combine the MRF and the MPP. The bottom-up step

corresponds to the MRF based segmentation, while the top-down step represents

the MPP based object detection. Each step alternatively takes advantage of the

other one. Then two steps are iteratively performed until convergence. In [58], the

alternation between these two steps are replaced by a fusion/decision step that merges

the results from both steps into one classification. However, these interactive schemes

do not incorporate two models into one framework, nor do they jointly consider the

segmentation and the object fitting.

Fig. 4.2. A three-layer representation of image data.
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We propose such a model to perform both pixel classification (segmentation) and

object detection/identification. A three-layer representation is proposed, as shown in

Figure 4.2. The bottom layer is the measured image data, where each node represents

a pixel. The middle layer is the segmentation, which classifies each pixel of the image

to one of a set of possible classes. The top layer describes the structural features,

where each node represents a marked object, such as a grain or a particle in microscopy

images of materials. Unlike traditional schemes which try to impose local constraints

at the middle layer and global constraints at the top layer separately, our approach

incorporates both constraints into one hybrid framework. In this way, we utilize both

the geometric properties of objects (global constraints) and pixel-wise interactions

(local constraints) to optimize these two layers simultaneously.

We perform optimization with our model using Monte Carlo simulation. Specif-

ically, we employ two different approaches to optimization for object detection and

segmentation: multiple birth and death simulation and reversible jump Markov chain

Monte Carlo simulation [1, 3, 4]. Simulation is an important tool for optimizing our

model. This is because the density function of a MPP cannot be defined with re-

spect to the Lebesgue measure, since the process is represented as an unordered set

of points. Instead, we follow [7], and define our density function with respect to the

Lebesgue-Poisson measure. Because the density function for our model is not defined

with respect to the Lebesgue measure, traditional optimization techniques that rely

on gradients, such as gradient descent type approaches, cannot be used.

One note on terminology: Technically speaking, since our MPP model is repre-

sented by a Gibbs distribution, it can also be considered to be a Markov random

field, according to the Hammersley-Clifford Theorem. However, we distinguish the

two models in this paper based on whether the spatial locations for the process—

pixel lattice sites for the MRF, unordered points in Rn for the MPP—are modeled as

random variables (as in the MPP) or not (as in the MRF). We believe this distinction

is consistent with the literature.
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In Section 4.2, we describe our hybrid model and its use in joint object detection

and segmentation. Experimental results are shown in Section 4.3. We conclude in

Section 4.4.

4.2 A hybrid MRF/MPP model

Let Y = (Y1, ..., YN) denote the observed image and X = (X1, ..., XN) the seg-

mented image, both defined on a 2D lattice S, where N is the number of pixels

and the lattice sites are ordered from 1 to N . Both X and Y are random fields.

Particular sample realizations of Y and X will be denoted y = (y1, ..., yN
) and

x = (x1, ..., xN
). A configuration of n objects in an image is a finite unordered

set of points {S1, S2, ..., Sn} ⊂ S with each Si representing the random location of

one object. For each object Si, there is a mark Mi. The mark for an object contains

random variables describing the object. Note that we will use the term “mark” to

refer to both the collection of random variables Mi and each random variable in Mi

itself. A marked object is defined as Wi = {Si,Mi} ∈ W , where W ⊂ S ×M is the

random marked object field. Taking the rectangle model as an example, let M be the

mark space, M = [amin, amax] × [bmin, bmax] × [0, π], where the mark consists of two

axis lengths and one orientation. Let ΩW denote the space of all possible realizations

of W . Then w = (w1, ..., wn) ∈ ΩW is a possible object configuration.

For each object wi, we define an auxiliary object wγ
i , an enlarged version of wi

which covers a slightly larger image region, so that pixels both inside and outside the

object boundary are included. For example, for a rectangle object wi with mark m =

(a, b, θ), the corresponding wγ
i might have mark mγ = (a+ 2, b+ 2, θ). Let Dwγ

i
⊂ S

be the image region projected onto the lattice S by wγ
i . Then the segmentation of

object wi is defined as xwi
, which is the segmentation x restricted to the region Dwγ

i
.

Each object of interest is represented in our hybrid MRF/MPP model by a marked

object and its corresponding segmentation. A hybrid model for a NiCrAl particle is

illustrated in Figure 4.3.
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(a) (b) (c)

Fig. 4.3. An object of interest is represented by two parts: an object
part and a segmentation part. (a) a NiCrAl particle (b) object part
wi in white (c) segmentation part xwi

in white.

We introduce a non-homogeneous Gibbs process on the configuration space ΩW ,

with conditional probability density function:

f(w|y) = 1

Z
exp {−V (w|y)} (4.1)

where Z is a normalizing constant. Note that since the object locations form a

nonordered set of points, the density function f(w|y) cannot be defined with respect

to the Lebesgue measure. We assume the Poisson-Lebesgue measure instead, as in [7].

The neighborhood system with regard to this process is defined as: wi and wj are

neighbors, denoted wi ∼ wj, if Dwi
∩Dwj

is not empty. The energy function for the

Gibbs distribution is

V (w|y) =
∑
wi∈W

(Vo(wi, y) + Vs(x
MAP
wi

)) +
∑

wi∼wj

Vp(wi, wj) (4.2)

where Vo(wi, y) is defined as the object potential, an energy potential describing

how well object wi fits the observed image; Vs(x
MAP
wi

) is defined as the segmentation

potential, an energy potential based on the likelihood of the MAP segmentation

corresponding to object wi; and Vp(wi, wj) is an object interaction prior.
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We next specify potentials Vo(wi, y), Vs(x
MAP
wi

) and Vp(wi, wj) for our model.

4.3 Object potential for observed image

The object potential Vo(wi, y) describes how a given object wi fits the image data.

The potential is based on a shape model to impose geometric constraints. Often a

statistical difference in intensity values between the outside and the inside of an object

is used to define the object potential. The object potential will satisfy the following

two criteria [59]:

• An object which fits the image data better has lower potential.

• The best-fitting objects have negative potentials.

We use two different MPP models in this chapter. The first, a superellipse model,

proposed in [60], is given by the equation:

g(x, y) =
∣∣∣x
a

∣∣∣n + ∣∣∣y
b

∣∣∣n = 1 (4.3)

The superellipse model has been shown to fit NiCrAl particles well [60]. The

model has marks that include major and minor axis lengths a and b, respectively,

orientation θ and parameter n, which controls the shape of the superellipse model.

We assume that pixel values outside of the particle boundary are statistically different

from those within the boundary. For each wi with mark mi = (a, b, θ, n), we associate

two auxiliary objects wα
i with mark mα

i = (a + 1, b + 1, θ, n) and wβ
i with mark

mβ
i = (a − 1, b − 1, θ, n), at the same location as wi [1]. Then the inside region and

outside region of wi are defined as Ain(wi) = Dwα
i
−Dwi

and Aout(wi) = Dwi
−Dwβ

i

respectively (Figure 4.5(a)).

Pixel values in Ain(wi) and Aout(wi) are assumed to follow Gaussian distribu-

tions. This corresponds to a Gaussian noise observation model. As in [39], we use
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the Bhattacharyya distance to distinguish objects from background regions. The

Bhattacharyya distance B(wi, y) between Ain(wi) and Aout(wi) is given by:

B(wi, y) =
(µin − µout)

2

4
√

σ2
in + σ2

out

− 1

2
log

2σinσout

σ2
in + σ2

out

(4.4)

(a) (b)

Fig. 4.4. (a) plot of the object potential Vo(wi, y) versus the Bhat-
tacharyya distance B(wi, y) (b) plot of the object potential Vo(wi, y)
versus the Student’s t-test Twi

.

where (µin, σin) and (µout, σout) are Gaussian parameters for Ain(wi) and Aout(wi)

[39]. Then the object potential Vo(wi, y) is defined as a likelihood function, which is

calculated from B(wi, y), as in [1]:

Vo(wi, y) =

1− B(wi,y)
T

B(wi, y) < T

exp(−B(wi,y)−T
3B(wi,y)

)− 1 B(wi, y) ≥ T

(4.5)

Figure 4.4(a) shows a plot of the object potential as a function of the Bhat-

tacharyya distance between the inside and outside region of wi.

The second object model we will use is a line segment model. We propose a

Candy model, modified from that used in [2] to model line networks. A rectangle

model is used to represent each line segment, with mark m = (l, ω, θ), corresponding
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(a) (b)

Fig. 4.5. Inside and outside regions for object wi for (a) superellipse
model and (b) line segment model.

to the length, width and orientation. Similar to the superellipse model, the inside and

outside regions are assumed to follow Gaussian distributions with mean and variance

(µ1, σ1), (µ2, σ2) and (µ3, σ3) respectively (Figure 4.5(b)). In [2], the mean difference

Twi
is calculated as the minimum of the Student’s t-test values between the inside

and outside regions on either side:

Twi
= min(T 1

wi
(l, ω, θ), T 2

wi
(l, ω, θ)) (4.6)

where

T k
wi
(l, ω, θ) =

|µ1 − µk|√
σ2
1

n1
+

σ2
k

nk

k ∈ {2, 3} (4.7)

If the two outside regions are homogeneous, we can assume they follow the same

Gaussian model, so (µ2, σ2) = (µ3, σ3). The object potential Vo(wi, y) is a function of

Twi
, as in [2]:

Vo(wi, y) =


1 if Twi

< t1

1− 2
Twi−t1
t2−t1

if t2 6 Twi
6 t1

−1 if t2 < Twi

(4.8)
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The object potential Vo(wi, y) for the Candy model is plotted in Figure 4.4(b).

In the original Candy model, three types of line segments are defined: free seg-

ment, single segment and double segment [2]. As in Figure 4.6(a-c), the free segment

has two free ending points. The single segment has only one ending point connected,

and the double segment has two ending points connected. Two ending points are said

to be connected if they are within a distance less than ϵ of each other. The introduc-

tion of ϵ effectively helps to establish the interactions between nearby line segments,

not only the line segments that are totally connected. However, one problem is that

the results usually have many discontinuities between lines. Although [2] proposed

a “Quality Candy” model to alleviate this situation, the problem is not completely

solved. An alternative approach is to restrict ϵ to one pixel, where ending points

within a small distance (larger than 1) would no long be considered connected. How-

ever, we consider this too harsh a constraint, because line segments in Figure 4.6(b-c)

would be considered free segments, so the single or double segment properties would

not be captured for them.

Fig. 4.6. Five types of line segments.
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In this chapter, we introduce too more line segments: perfect single segment and

perfect double segment, as in Figure 4.6(d,e). A segment is defined as a perfect single

segment if one of its ending points is at the same location as the ending points of

other segments. As well, a perfect double segment has two ending points at the same

location as other segments’ ending points. We encourage single and double segments

to transform to perfect single and double segments, as described in the object inter-

action prior. In this way, we preserve the advantage of capturing interactions within

a distance ϵ as well as solving the problem of discontinuities in lines.

It should be noted that both the Bhattacharyya distance and Student’s t-test are

statistical approaches to measuring the difference between two data sets. Following

[39] and [2], we opt to use the Bhattacharyya distance for the superellipse model and

Student’s t-test for the Candy model. However, we believe both methods would be

adequate for our model. For example, [61] used the Bhattacharyya distance for the

Candy model. The advantages of each approach for our model, together with other

statistical difference test approaches, could be explored in future research.

4.4 Segmentation potential for observed image

The object potential imposes geometric constraints, but often the shape of an

object does not exactly fit the model. The object model is not sufficient to localize

complicated boundary information precisely. As a result, the accuracy of the ob-

ject detection and the precision of the segmentation can both decline. Therefore, a

segmentation potential is sought as a local constraint to better fit the object. The

segmentation potential is the part of the model that is based on an MRF.

For an object wi, the segmentation potential, denoted Vs(x
MAP
wi,λ

), incorporates

local constraints using an MRF. In particular, Vs(x
MAP
wi,λ

) describes how well the op-

timal maximum a posteriori (MAP) segmentation that best fits the object wi also

fits the image data. xMAP
wi,λ

is the MAP segmentation for object wi, where we make

the assumption that the segmentation associated with a particular wi with mark mi
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depends only on the image data covered by wγ
i with mark mγ

i , where wi and wγ
i are

centered at the same location. Thus,

xMAP
wi,λ

= argmax
xwi,λ

p(xwi,λ |ŷ(wi)) (4.9)

where ŷ(wi) ,
{
ys|s ∈ Dwγ

i

}
and λ = (λ1, λ2) is a weighting parameter. p(xwi,λ |ŷ(wi))

is the posterior probability of segmentation xwi,λ given image data ŷ(wi). It is equiv-

alent to obtain xMAP
wi,λ

by minimizing an energy function G(xwi,λ) over all possible

segmentations of object wi with parameter λ, where G(xwi,λ) , − ln(p(ŷ(wi)|xwi,λ))−

ln(p(xwi,λ)). Then the segmentation potential is defined as:

Vs(x
MAP
wi,λ

) ,
G(xMAP

wi,λ
)−G(xMAP

wi,0
)

|Dwi
|

(4.10)

where we use the notation:

G(xwi,λ) = G1
wi
(xwi

) +G2
wi
(xwi,λ1 ,λ2

)

G1
wi
(xwi

) = − ln(p(ŷ(wi)|xwi
)

G2
wi
(xwi,λ1 ,λ2

) = − ln(p(xwi,λ1 ,λ2
))

(4.11)

The value of G1
wi

at pixel s, is defined G1
wi
(xs), using a Gaussian model:

G1
wi
(xs) =

√
2πσxs +

(ys − µxs)
2

2σ2
xs

(4.12)

Note that we use the notation G1
wi

as a cost for both an object and a single pixel

classification. The meaning should be clear from context. The parameters µxs ,σ
2
xs

are the mean and variance of the observed Gaussian intensity for class xs, which we

estimate using a preprocessing method such as K-means.

For a given wi, we assume pixels inDwi
are more likely to belong to the object while

pixels in Dwγ
i
−Dwi

are more likely to belong to the background. As a consequence,
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G2
wi
(xwi,λ1 ,λ2

) is defined as a combination of a shape prior and a nonhomogeneous

Ising model, letting

G2
wi
(xwi,λ1 ,λ2

) = λ1δwi
(s, xs) +

∑
p,q∈D

w
γ
i

βp,q[1− δ(xp, xq)] (4.13)

where

δwi
(s, xs) =


−1 if s ∈ Dwi

and xs ∈ foreground

−1 if s ∈ Dwγ
i
−Dwi

and xs ∈ background

1 otherwise

(4.14)

βp,q =

β if p, q ∈ Dwi
or p, q ∈ Dwγ

i
−Dwi

β − λ2 otherwise

(4.15)

and

δ(xp, xq) =

1 if xp = xq

0 otherwise
(4.16)

The term δwi
(s, xs) encourages the segmentation to fit the object wi and λ1 is

a positive parameter. When s ∈ Dwi
and xs ∈ foreground or s ∈ Dγ

wi
− Dwi

and xs ∈ background, the pixel label xs complies with the assumed foreground or

background status based on the object wi, and we subtract an additional positive

energy term λ1 from Gwi
(xwi,λ). Otherwise, a penalty energy term λ1 is added.

βp,q is a location-adaptive interaction parameter, with 0 6 λ2 6 β. In this way, we

encourage smoothness in the segmentation within foreground and background regions

while discouraging smoothing across region boundaries (Figure 4.7).

We minimize G(xwi,λ) using graph cuts [62]. The paramters λ1, λ2 control the

degree of global constraints on the segmentation, while xwi,0 is the MRF-based seg-

mentation with no global constraints applied.
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Fig. 4.7. Illustration of G2
wi
(xwi

). Dwγ
i
−Dwi

is shown in yellow while
Dwi

is shown in light blue. In the four neighborhood system, red
dashed links between pixel sites correspond to βp,q = β and green
dashed links correspond to βp,q = β − λ2.

G(xwi,λ) measures how well a segmentation constrained by wi fits the image data.

Particularly, for a pixel s, when the pixel label complies with the assumed back-

ground/foreground, the energy difference between G(xwi,λ) and G(xwi,0) will decrease

between 0 and λ1. On the contrary, when the pixel label does not comply with the

assumed background/foreground, the energy difference will increase between 0 and

λ1. Both cases are illustrated within the graph cuts framework (Figure 4.8,4.9). For

a given wi, the minimum of G(xwi,λ) also corresponds to the best choice of mark for

the specific object.

The term Vs(x
MAP
wi,λ

) can be viewed as the energy of the most likely segmentation

constrained by geometric properties relative to that of the most likely segmentation

with no geometric constraints, normalized by the size of the object. It should be

noted that both object potential and segmentation potential try to choose a mark



41

Fig. 4.8. The left figure shows a graph for the green pixel. Its neigh-
bour pixels are colored in blue. Source and sink nodes represent the
background and foreground, respectively. a, b are the probabilities of
the pixel belonging to background or foreground. When the pixel’s
label is background, the link between the pixel and the sink gets cut.
If we also assume the green pixel’s label is background (right figure),
we add λ1 into a while subtracting λ1 from b. When we optimize
this graph, the link between the pixel and the sink will still get cut,
with an energy loss of λ1 for that link. While the added λ1 in the
link between the pixel and the source can flow to other pixels via
neighborhood links, the total energy will decrease between [0, λ1].

for a specific object, based on the MPP model and the MRF model, respectively.

For example, when we use the superellipse model for a NiCrAl particle with mark

m = (a, b, θ), the different marks chosen by the two potentials are illustrated in Figure

4.10.
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Fig. 4.9. When the pixel’s label is foreground, the link between the
pixel and the source gets cut. If we assume the green pixel’s label
is background (right figure), we add λ1 into a while subtracting λ1

from b. If λ1 is chosen relatively small, after the optimization, the
link between the pixel and the source will still get cut, with an energy
increase of λ1 for that link. While we subtract λ1 in the link between
the pixel and the sink, the energy flow coming from other pixels via
neighborhood links can decrease between [0, λ1]. The total energy will
increase between [0, λ1].

4.5 Object interaction prior

For an arbitrary object pair wi and wj, the object interaction prior is denoted

Vp(wi, wj), which describes the interactions between these two objects. The object

interaction prior characterizes interactions between objects, by penalizing or favoring

particular object behaviors through potentials in the energy function. A prior that

is widely used in many applications is the overlapping penalizer [1, 23, 37], which
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(a) (b) (c)

Fig. 4.10. (a) a NiCrAl particle (b) mark minimizing the object po-
tential, m = (21, 11, 0.21π) (c) mark minimizing the segmentation
potential with λ = (2, 0.4), m = (20, 10, 0.25π).

discourages spatial overlap for two adjacent objects. As in [37], the overlapping

penalizer R(wi, wj) is defined as the normalized intersection area:

R(wi, wj) =

∣∣Dwi
∩Dwj

∣∣
min(|Dwi

| ,
∣∣Dwj

∣∣) (4.17)

Then the object interaction prior is defined as:

Vp(wi, wj) =

 R(wi, wj) if R(wi, wj) < Toverlap

∞ otherwise
(4.18)

Here zero probability is assigned for any overlapping ratio greater than threshold

Toverlap.

More sophisticated object interaction priors can be designed to model more com-

plicated interaction patterns between objects. For example, in [24] an alignment term

to favor parallel objects in certain directions in vehicle detection applications was pro-

posed. The Candy model includes orientation terms to model patterns for crossing

and connecting lines, which is used to extract line networks in remote sensing [2].
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We define the object interaction prior for our modified Candy model as follows:

Vp(wi, wj) = η0n+ η1ns + η2nd + η3nps + η4npd

+ η5
∑

gio(wi, wj) + η6
∑

geo(wi, wj)
(4.19)

where n is the number of total line segments. ns, nd, nps, npd are the number of single,

double, perfect single and perfect double line segments respectively; ηi are constant

weights; gio and geo are potential functions for internal and external “bad” orientation

object pairs respectively, whose definition can be found in [2]. Rules for setting ηi

are described in [2]. In order to encourage single and double segments to transform

to perfect single and perfect double segments, we set η3 < η1, η4 < η2.

4.6 Parameter setting

The parameter λ, which affects the value of the segmentation potential, is intro-

duced in our hybrid model. This parameter controls to what extent the geometric

constraint is imposed on the segmentation for each object. When λ = (0, 0), the

segmentation potential is zero and the hybrid model regresses to the original MPP

model. Since there is no geometric shape constraint for λ = (0, 0), the corresponding

segmentation is the same as the MRF-based MAP segmentation. As we increase λ1,

the geometric constraint has more impact on the segmentation. The segmentations

for two adjacent NiCrAl particles with different values of λ1 are illustrated in Figure

4.11.

λ1 plays an important role in balancing the effect of geometric constraints on

the segmentation. The parameter λ2 effectively controls the amount of smoothing

across object boundaries. Since we have not developed an algorithm for optimizing

this parameter, we empirically set λ1 =
1
5
min{δx1 , δx2} and λ2 as 1

2
β to preserve the

boundary accuracy. The setting has shown good performance in experimental results.
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Fig. 4.11. Segmentations with different choices of λ1. Note that when
λ1 is large enough (λ1 = 10 in this case), the segmentation is over-
whelmed by the geometric constraint.

4.7 Optimization method

Our optimization goal is to find an object configuration that minimizes the en-

ergy function V (w|y) and that has the minimum number of objects among all such

configurations. For each object wi in the object configuration w, the corresponding

MRF-based MAP segmentation xMAP
wi,λ

is obtained in order to compute the segmen-

tation potential Vs(x
MAP
wi,λ

), by minimizing G(xwi,λ). As in the original MPP model,

in general there is no closed-form solution to obtain such an optimized configuration

w. Both the RJ MCMC and multiple birth and death algorithms can be used with

our hybrid model.
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4.8 Experiments

The proposed algorithm has been tested on three image data sets: NiCrAl parti-

cles, silicate and carbon foam images. We perform both object extraction and seg-

mentation. We also apply MPP-only object detection and the graph cuts algorithm

for comparison. Software from [62] is used for graph cuts.

4.8.1 NiCrAl images

Figure 4.12(a) presents a NiCrAl alloy microscopy image with dimension 744×645.

The main goal for this application is to identify each NiCrAl particle and obtain its

corresponding segmentation. The superellipse model has been shown to model well

the geometric shape of NiCrAl particles [38]. Since the value n = 3 best fits the shape

of NiCrAl particles [38], we use that value for n.

The axis lengths a,b are sampled uniformly between the minimum and maximum

values. Theoretically, in the NiCrAl alloy, there are only two possible orientations [38].

However, in reality there is usually some small fluctuation in the orientation for each

NiCrAl particle. As a result, we assume θ is distributed following a mixture of two

Gaussians with mean values 1
4
π and 3

4
π. The variance is set as 0.12 for both Gaussians.

We use the overlapping penalizer in Section 4.2 as a prior to describe the spatial

interaction between objects. The object potential is defined as in Section 4.2. We

use the two-pass multiple birth and death (MBD) algorithm for optimization. For

the MBD algorithm, we set λ = (2, 0.4) under the criterion in Section 4.2, and the

threshold T is set as 25 following [1]. We follow the guidelines in [1] to set the

parameters for multiple birth and death algorithm as b0 = 0.8, α0 = 10, σ0 = 0.9 and

the cooling factor as 1/0.98. The results are shown in Figure 4.12.

We use ten different images with dimension 744×645 to verify the performance of

our algorithm. Note that since we do not have enough ground truth images to effec-

tively train our model, we use parameter values that were determined experimentally

for our tests. In the object part, we use the missed detection rate (M.D.R.) and false
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.12. (a) original NiCrAl alloy image (b) MPP only result with
the MBD algorithm (c) proposed model (object part) with the MBD
algorithm (d) hand drawn segmentation (e)graph cuts result (f) pro-
posed model (segmentation part) with the MBD algorithm.
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object detection comparison

(a) (b) (c) (d) (e) (f)
segmentation comparison

(g) (h) (i) (j) (k) (l)

Fig. 4.13. comparison of object detection and segmentation based
on the MBD algorithm (a)crop 1(b) MPP-only result for crop 1 (c)
proposed model result for crop 1 (object part) (d) crop 2 (e)MPP-only
result for crop 2 (f)proposed model result for crop 2 (object part) (g)
crop 3 (h) graph cuts result for crop 3 (i) proposed model result for
crop 3 (segmentation part) (j) crop 4 (k) graph cuts result for crop 4
(l) proposed model result for crop 4.

detection rate (F.D.R.) defined in Chapter 1 to verify the detection performance.

Averages over the ten images of the missed and false detection rates for the MPP

model and the combined model are shown in Table 4.1. The result shows our hybrid

model has better performance in the accuracy of marks (orientation, axes lengths)

compared with the original MPP model (Figure 4.13 first row: two crops of Figure

4.12(a)).

Table 4.1
Missed and false detection rates for NiCrAl images

MBD
M.D.R. F.D.R.

MPP model 0.83% 3.25%
Hybrid model (object part) 0.83% 0.89%
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Table 4.2
Type I and Type II errors for NiCrAl images

Type I Type II
Graph cuts 3.46% 1.78%

Hybrid model (segmentation part) 0.68% 0.91%

In the segmentation part, averages over the ten images of both Type I and Type II

errors, which are defined as the ratio of misclassification of background and foreground

pixels to the number of pixels of the corresponding class, respectively, are listed in

Table 4.2. The result shows our algorithm performs better than graph cuts in both

Type I and Type II errors. As in Figure 4.13, second row, (two cropped areas from

Figure 4.12(a)), MRF based graph cuts method tends to misclassify the background

pixels lying between closely adjacent objects. In our algorithm, this merging effect

has been greatly reduced with the help of global constraints.

4.8.2 Silicate image

In this application, we aim to extract the silicate structures and obtain the cor-

responding segmentation of the image in Figure 4.15 (a), with dimension 804× 699.

The modified Candy model is used and each silicate is modeled as a connected set of

line segments. The object potential and segmentation potential for each line segment

are defined the same as in Section 4.2. We follow [2] to construct the interactions

between line segments as the geometric prior, which consists of an internal “bad”

orientation and an external “bad” orientation penalizers. RJ MCMC algorithm is

used as the optimization method.

The length and width for the line segments are sampled uniformly between the

minimum and maximum values. The orientation is sampled uniformly between [0, 2π].

We set λ = (3, 1). We follow the guidelines in [2] to set up the parameters for the

Candy model and RJ MCMC. Since the calculation of the object and segmentation

potential are time-consuming, similarly to [2] we precalculate these two potentials
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(a) (b)

Fig. 4.14. illustration of (a) object potentials and (b) segmentation
potentials for object with marks (l = 5, w = 4, θ = π/30) positioned
at every pixel site.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.15. (a) original silicate image (b) MPP only result with the
RJ MCMC algorithm (c) proposed model (object part) with the RJ
MCMC algorithm (d) hand drawn segmentation (e) graph cuts result
(f) proposed model (segmentation part) with the RJ MCMC algo-
rithm.
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to speed up the procedure. At every pixel site s, we position a line segment with

minimum length lmin for a fixed number of orientations No and widths Nω. We

calculate the object and segmentation potentials for every orientation θk, k = 1, ..., No

and width ωi,i=1,...,Nω and compute the potentials for site s:

V o
ωi,θk

(s) = Vo(y|ws(lmin, ωi, θk))

V s
ωi,θk

(s) = Vs(x
MAP
ws(lmin,ωi,θk)

)
(4.20)

where ws(lmin, ωi, θk) is the object with marks (lmin, ωi, θk) at site s. An illustration

of V o
4,π/30(s) and V s

4,π/30(s) for all pixels with lmin = 5 is shown in Figure 4.14. Low

potentials are colored in white while high potentials are in black.

Then the object potentials and segmentation potentials for an arbitrary object

with marks (l, ω, θ) are approximated by:

Vo(w, y) =
1

|w|
∑
p∈Dw

V o
ω,θ(p) Vs(x

MAP
w ) =

1

|w|
∑
p∈Dw

V s
ω,θ(p) (4.21)

Table 4.3
Missed and false detection rates for Silicate image

RJ MCMC
M.D.R. F.D.R.

MPP model 20.73% 3.79%
Hybrid model (object part) 10.36% 3.58%

Table 4.4
Type I and Type II errors for Silicate images

Type I Type II
Graph cuts 35.43% 1.01%

Hybrid model (segmentation part) 24.60% 1.30%

The results are shown in Figure 4.15. In the object part, we use the missed

detection rate (M.D.R.) and the false detection rate (F.D.R.), which are defined as
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the ratio of the length of omitted and overdetected line segments to the reference

length, respectively, to verify the performance. Both rates are listed in table 4.3. For

the segmentation part, Type I and Type II errors are listed in table 4.4. The results

show that with the benefit of segmentation potential, our model has lower missed

detection rate compared to the original MPP model. The corresponding segmentation

performs better in Type I error compared with graph cuts method, although slightly

worse in Type II error.

4.8.3 Carbon foam images

A Carbon foam microscopy image with dimension 627×700 is presented in Figure

4.16(a). There are some dark and light grey diagonal lines on the image, which are

artifacts from the acquisition process. These artifacts will cause adverse effects on

processing such as segmentation and further analysis. Our goal is to detect these

artifacts and inpaint the corresponding pixels.

We use the line segment model to represent the diagonal lines. Since for each

image, the diagonal lines have the same angle, the orientation for the model is pre-

defined as a constant. The length of each diagonal line is calculated as the distance

between the upper-left end and the lower-right end. The marks for this model are w

and v. w is the width of the line, which is uniformly sampled between [1, 4]. v ∈ 0, 1

is the line tag, where v = 0 represents a dark grey line and v = 1 represents a light

grey line.

We still use the overlapping penalizer in Section 4.2 as the object interaction prior.

We set the threshold Toverlap = 0 to forbid any overlapping between two line segment

models. The object potential is defined as in Section 4.2. We use the multiple birth

and death algorithm as the optimization method. We set λ = (3, 0.5). The parameters

for multiple birth and death algorithm are still set as b0 = 0.8, α0 = 10, σ0 = 0.9 and

the cooling factor as 1/0.98. The results are shown in Figure 4.16.
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In the object part, with the help of the segmentation potential, many more di-

agonal lines are successfully detected compared to the original MPP model. In the

segmentation part, our hybrid model shows better performance in preserving the line

continuity. The false detection is also reduced compared with the graph cuts based

MRF model. We inpaint each detected diagonal line with pixels outside the bound-

ary of the corresponding segmentation (Figure 4.16). We further use the MRF based

EM-MPM method [63] to segment both the original image (Figure 4.16(a)) and the

inpainted image (Figure 4.16(f)). The results are shown as Figure 4.16(g) and Figure

4.16(h). The results show that the artifacts are much alleviated compared with the

original image.

4.9 Conclusion

In this chapter, we proposed a hybrid model to analyze images at both the pixel

level and the object level. Our model combines the MRF and MPP into one hy-

brid framework. Therefore, both local constraints and global constraints contribute

to pixel-based segmentation and object-based identification. This model is adapted

with general optimization methods such as deterministic approaches like ICM algo-

rithm, or simulation schemes like RJ MCMC and multiple birth and death algorithms.

The experimental results show that in the object identification part, with the help of

local constraints, this hybrid model performs more accurately than the original MPP

in selecting object positions and marks. In the segmentation part, constrained by

the geometric shape, our hybrid model also has better performance than graph cuts

with the original MRF model. In spite of the computational complexity, paralleliza-

tion methods such as [64], can be explored as a speed-up to make our model more

applicable to large image data sets.
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Fig. 4.16. (a) original carbon foam image (b) MPP only result (c)
proposed alg. (object part) (d) graph cuts result (e) proposed alg.
(segmentation part) (f) inpainted result (g) MRF-based segmentation
for original image (h) MRF-based segmentation for inpainted image.
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5. A JOINT MARKOV RANDOM FIELD/MARKED

POINT PROCESS MODEL FOR MICROSCOPE IMAGES

5.1 Introduction

In Chapter 4, we proposed a hybrid MRF/MPP model. In that model, we incor-

porate the MRF model as an energy potential into the original MPP model. Thus,

the data fitting of an object consists of both an object potential, which imposes the

global constraints, and a segmentation potential, which imposes the local constraints.

However, such a segmentation potential involves a MAP optimization on the image

region that covers an object, which is usually time-consuming, with the computational

cost increasing nonlinearly as the object size increases.

In this chapter, we propose a joint MRF/MPP model, where a posterior probabil-

ity of a joint object/segmentation configuration given the observed image is proposed.

According to Bayes’ rule, this posterior probability is proportional to the product of

a prior and a likelihood. Unlike MRF or MPP, where the likelihood is defined as a

function describing how well the observed image fits the segmentation or object field,

our joint model interprets the likelihood as a data-fitting on both segmentation and

object fields. In addition, the prior in our model not only integrates the interactions

between neighboring pixel pairs (as in the MRF) and object pairs (as in the MPP),

but also incorporates a term describes the relations between the segmentation and

object field, which favors the consistency between them. This model combines the

MRF and the MPP as a joint model, while the hybrid model interprets MRF as a

segmentation potential, which is embedded in the MPP framework. The relation

between the object field and segmentation is modeled as a prior in our joint model.

The joint object/segmentation configuration is obtained by maximizing the posterior

probability. The alternating minimization algorithm is adopted, alternatively opti-
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mizing the posterior with respect to the segmentation or object configuration while

keeping the other one fixed.

In Section 5.2, we describe our model and the optimization method. We show

the experimental results and draw the conclusion in Section 5.3 and Section 5.4,

respectively.

5.2 The joint MRF/MPP model

Let S denote a 2D image lattice and N the number of pixels, where the lattice

sites are ordered from 1 to N . We define random fields Y and X on S, where

Y = (Y1, ..., YN) is denoted the observed image and X = (X1, ..., XN) the segmented

image. The segmented image distinguishes each pixel as either an object pixel or

a non-object pixel. A pixel is characterized as an object pixel if it belongs to an

object or a non-object pixel if it does not belong to any object. y = (y1, ..., yN
)

and x = (x1, ..., xN
) are particular sample realizations of Y and X respectively. A

marked object (point) is defined as Wi = {Si,Mi}, which is characterized by its

random location Si and a set of random variables (marks) Mi describing the object.

Taking the ellipse model as an example, the mark space M can be defined as M =

[amin, amax]× [bmin, bmax]× [0, π], consisting of two axis lengths and one orientation.

Note that we will use the term “mark” to refer to both the collection of random

variables Mi and each random variable in Mi itself. Then W ⊂ S ×M is defined as

the random marked object field. Let ΩW denote the space of all possible realizations

of W . Then w = (w1, ..., wn) ∈ ΩW is a possible object configuration, which is a finite

unordered set of marked objects in image S. We define the density function p(w, x|y)

such that the posterior probability of W,X given Y is:

P (W ∈ A,X = x|Y = y) =

∫
w∈A

p(w, x|y)dλ(w) (5.1)

where A is a set of possible realizations of the object field and λ(·) is the Lebesgue

measure.
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According to the Bayes’ rule, we have:

p(w, x|y) = f(y|w, x)p(w, x)
f(y)

(5.2)

f(y|w, x) is the conditional probability density function of y given w, x. p(w, x) is a

joint probability function such that P (W ∈ A,X = x) =
∫
w∈A p(w, x)dλ(w). f(y) is

the probability density function of y, which does not depend on w or x.

5.2.1 Model for observed image

In an MPP, the targeted object is usually described by a shape model, such as the

rectangle, disk or ellipse. The associated marks are used to characterize the geometric

information of the model, such as the axes length, orientation, etc.

In microscopy imaging, because of the physical characteristics of the image acqui-

sition system [38], we sometimes have a non-uniform illumination across the image;

the image is generally spatially non-stationary. As in Figure 5.1(a) - a microscope

neuron image from a mouse brain, the mild illumination variation phenomenon re-

sults in intensity inhomogeneities in both the neuron particles and background, which

brings difficulties on intensity based segmentation. Figure 5.1(b) shows the graph cuts

segmentation with two labels (one label representing the object regions and the other

representing the non-object regions), where a lot of pixels are misclassified. We can

alleviate this problem by imposing more labels. However, in this case, the one to one

correspondence between the labels and the object, non-object regions is gone. For

example, in Figure 5.1(c), where 4 labels are used for segmentation, pixels belonging

to label 1 can be either object pixels or non-object pixels.

In our joint model, we include the label as a mark to capture the intensity variation

of targeted objects. Denote L = {l0, l1..., ln} the set of labels, which consists of

finite number of labels n. Each label li is described as a Gaussian model with mean

and standard deviation (µli , σli). Such parameters can be determined by user or

estimated using a preprocessing method such as K-means [65], or an Expectation-
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(a) (b) (c)

Fig. 5.1. (a) Neuron image (b) graph cuts segmentation with 2 labels
(c) graph cuts segmentation with 4 labels.

Maximization (EM) approach in [63]. n is set large enough to capture the objects,

usually chosen empirically by user according to the severity of illumination variation

of the application. Take Figure 5.1 as an example, we consider 2 labels cannot capture

all the objects, but n = 4 is enough. If an object has mark l, the pixels belonging

to it are also labeled with l. Thus, if an ellipse model has mark m = {θ, a, b} in the

original MPP model, including one orientation and two axis lengths, in our model, it

will have mark m = {θ, a, b, l}.

Let f denote the set of labels that appear inside at least one object in the image;

b denote the set of labels that appear as non-object pixels in the image, where f ⊂ L

and b ⊂ L. To model the illumination variation, both the object regions and non-

object regions are represented with several labels. It should be noted that f and b

do not have to be disjoint. As the case in Figure 5.1(c), where labels are numbered

in ascending order of the intensity that represents the label, f = {l1, l2, l3} and

b = {l0, l1, l2}. Let xs denote the segmentation for pixel s. We classify s as an object

pixel if xs = l, where l ∈ f and l /∈ b; or if xs = l, where l ∈ f ∩ b and s belongs

to an object. Otherwise, we classify s as a non-object pixel. It should be noted

that another approach for the illumination change is to model the object pixels as a
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Gaussian Mixture Model. However, we have not found a way to incorporate GMM

into our joint model.

The model for the observed image is characterized by a likelihood function de-

scribing how well an observed image y fits the object field and segmentation w, x.

We assume the random variables (Y1, Y2, ..., YN) are conditionally independent given

the segmentation X and the object field W . Consider an object realization w =

(w1, w2, ..., wn). For each object wi, we define two auxiliary objects wτ
i and wγ

i . wτ
i

is a shrunk version of wi covering a slightly smaller image region, while wγ
i is an

enlarged version of wi which covers a slightly larger image region [60]. wτ
i and wγ

i

are determined by the model we use. For example, an ellipse model wi with mark

m = {θ, a, b, l}, will have wτ
i = {θ, a − 1, b − 1, l} and wγ

i = {θ, a + 1, b + 1, l};

while in the Candy model [2], where a line segment model wi is used with mark

m = {θ, a, b, l}, representing the orientation, width, length and label, we set the

corresponding wτ
i = {θ, a− 2, b, l} and wγ

i = {θ, a+ 2, b, l}.

Let Silhouette Sw denote the projection of w onto the pixel lattice upon which

Y and X are defined. Then we divide the image into four regions: the object inner

regions Swτ , the object inside boundary regions Sw/Swτ , the object outside boundary

regions Swγ/Sw and the remaining regions S/Swγ . As an example, the four regions

for an ellipse model are illustrated in Figure 5.2(a).

Let Gxs(ys;µxs , σxs) denote the Gaussian density function with mean µxs and

standard deviation σxs , where ys is the value of y at pixel s, and xs is the value of x

at pixel s.

In the object inner regions Swτ , pixels are assumed object pixels and follow the

same Gaussian distribution characterized by the label of the corresponding object.

Specifically, for an object wi with label lwi
, the pixels are modeled as:

g1(y, wi, x) =
∏

s∈Swτ
i

Gxs(ys;µxs=lwi
, σxs=lwi

) (5.3)
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In the object inside boundary regions Sw/Swτ and outside boundary regions

Swγ/Sw, we allow pixels to be classified as either object pixels or non-object pix-

els. This is because in most cases the geometric model does not follow exactly the

object boundaries. Figure 5.2(b) shows a NiCrAl particle and Figure 5.2(c) shows its

segmentation. In Figure 5.2(d), a superellipse model [60] is used to fit the particle.

Since the model cannot perfectly match the boundary, some non-object pixels are

inside the model while some object pixels are outside the model. For an object wi

with label lwi
, the corresponding pixels are modeled as:

g2(y, wi, x) =
∏

s∈Swi/Swτ
i

Gxs(ys;µxs , σxs)

∏
s∈S

w
γ
i
/Swi

Gxs(ys;µxs , σxs)
(5.4)

If s is classified as an object pixel, xs = lwi
; If s is classified as a non-object

pixel, we allow xs as any label in b except for lwi
, if lwi

∈ b. It should be noted that

although we model the pixels in both the inside and outside boundary regions with the

same distribution and label choices, we distinguish them in g2(wi). This is because

we encourage consistency between the object field and segmentation. Specifically,

we encourage pixels inside the boundary regions as object pixels and outside the

boundary regions as non-object pixels, which is described in the joint prior.

In the remaining regions S/Swγ , pixels are allowed to be classified as either object

pixels or non-object pixels:

g3(y, w, x) =
∏

s∈S/Swγ

Gxs(ys;µxs , σxs) (5.5)

where xs ∈ L can be arbitrarily chosen among the label space. If xs ∈ f and

xs /∈ b, we classify s as an object pixel, modeling the scenario where object regions

cannot be characterized by an object. Otherwise, we classify s as a non-object pixel.
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A special case is that if ls ∈ f ∩ b and it is not characterized by an object, we classify

it as an non-object pixel.

Then the image model is assumed to follow the product of the above Gaussian

distributions:

f(y|w, x) =
∏
wi∈w

[g1(y, wi, x)g2(y, wi, x)] · g3(y, w, x) (5.6)

(a) (b)

(c) (d)

Fig. 5.2. (a) Four regions for an ellipse model (b) NiCrAl image (c) the
corresponding segmentation (d)the superellipse model for the NiCrAl
particle with inside and outside boundary regions highlighted.
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5.2.2 Joint prior

p(w, x) is a joint probability mass function describing the interactions between

neighboring pixel pairs, object pairs and the relation between the object field and

segmentation.

The pixel neighborhood system for the image lattice S is defined the same as that

in an MRF. The corresponding collection of cliques is denoted C, where {r, s} ∈ C is

a pixel pair satisfying the neighboring relationship. Specifically, the 8-neighborhood

system [66] is used. The object neighborhood system is defined the same as that

in [1]: wi and wj are neighbors, denoted wi ∼ wj, if the objects satisfy a neighbor

relationship that depends on the specific MPP model used. Such a relationship defines

the object pairwise interactions. A commonly used relationship is: wi ∼ wj if and

only if d(wi, wj) < r, where d(., .) is the Euclidean distance and r is the interaction

threshold. In the candy model [2], a more complicated relationship is defined.

In addition to establishing the neighborhood systems for the pixels and objects,

which describe the interactions within the label field and object field respectively, we

characterize the relation between the object field and segmentation. We encourage

consistency between the object field and the segmentation. Specifically, for a pixel s,

if it belongs to a certain object, we encourage it to be classified as an object pixel;

if it does not belong to any object, we encourage it to be classified as a non-object

pixel. Then, we define the joint prior as:

p(w, x) =
1

Z
exp{−

∑
{r,s}∈C

β1(1− δ(xr, xs))−
∑

wi∼wj

β2t2(wi, wj)

−
∑
wi∈w

[
∑

s∈Swi/Swτ
i

α1t1(xs, lwi) +
∑

s∈S
w
γ
i
/Swi

α2δ(xs, lwi)]}
(5.7)

where

t1(a, b) =

−1 if a = b

1 if a ̸= b
(5.8)
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Z is the normalizing constant, and t2(wi, wj) is a function describing the interaction

of neighboring object pairs. β1 > 0 and β2 > 0 are the interaction parameters for

the pixel pair and object pair. αi > 0, i = {1, 2} are the weight parameters, which

impose a cost when the segmentation and object field are consistent or not.

Specifically, given an object wi, for pixel s ∈ Swi
/Swτ

i
,if xs ̸= lwi

, which means the

segmentation does not comply with the label of wi, an increase of α1 will be imposed;

for pixel s ∈ Swi
/Swτ

i
,if xs = lwi

, where the segmentation complies with the object

label, a decrease of α1 will be imposed; for pixel s ∈ Swγ
i
/Swi

, if xs = lwi
, where the

segmentation does not comply with the non-object status based on the object outside

boundary regions, an increase of α2 will be imposed.

5.2.3 Optimization approach

Our target is to find the (w, x) that maximizes the posterior probability p(w, x|y).

Since f(y) does not depend on w or x, it is equivalent to obtain a (w, x) that minimizes

the energy function V (w, x) = Vd(w, x) + Vp(w, x), where Vd(w, x) = −ln(f(y|w, x))

and Vp(w, x) = −ln(p(w, x)).

Minimizing over both w and x simultaneously is very difficult. Instead, we min-

imize V (w, x) with respect to w while keeping x fixed. Then we alternate the mini-

mization with respect to x while keeping w fixed. In other words, rather than solving

the original minimization problem over two variables, we solve a sequence of mini-

mization problems over only one variable. Such an approach, usually referred to as

the alternating minimization algorithm [67], is summarized as:

Algorithm 1: Minimization of the posterior probability

1 Initialization:
2 w0 = ∅, x0 = argmin

x
Vd(w

0, x) + Vp(w
0, x);

3 for k = 1, ..., n do
4 wk+1 = argmin

w
(Vd(w, x

k) + Vp(w, x
k));

5 xk+1 = argmin
x

(Vd(w
k+1, x) + Vp(w

k+1, x));
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where wk and xk represent the object configuration and segmentation at iteration

k.

Optimization over w

At iteration k, the object configuration that minimizes V (w, xk−1) is denoted wk =

argmin
w

(Vd(w, x
k−1) + Vp(w, x

k−1)).

For an object wi with label lwi
, given the current object configuration w, where

wi /∈ w, the energy change from adding candidate object wi to the current object field

is calculated for four different cases, as follows:

• Case 1: Pixel s ∈ Swτ
i
, xk−1

s ̸= lwi
. As in (5.3), we label pixels in the inner

regions with lwi
. The corresponding energy change is:

V 1
a (x

k−1

s ̸= lwi
) = E→lwi

(s) (5.9)

where

E→lwi
(s) =

(ys − µlwi
)2

2σ2
lwi

+ ln
√

2πσ2
lwi

−
(ys − µxk−1

s
)2

2σ2
xk−1
s

− ln
√
2πσ2

xk−1
s

+
∑

{r,s}∈C

β1(δ(xr, x
k−1

s )− δ(xr, lwi
))

(5.10)

from the model for p(w, x|y).

• Case 2: Pixel s ∈ Swi
/Swτ

i
, xk−1

s = lwi
. The corresponding energy change is:

V 2
a (x

k−1

s = lwi
) = −α1 (5.11)

• Case 3: Pixel s ∈ Swi
/Swτ

i
, xk−1

s ̸= lwi
. According to (5.4), it may remain at

its current label as a non-object pixel, or be re-labeled to lwi
as an object pixel,
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which will not be determined until the following segmentation optimization step.

However, in the segmentation optimization step, a pixel is usually classified with

the label that yields the minimum energy. Thus, we consider it reasonable to

calculate the energy change here as the minimum over these two possibilities:

V 3
a (x

k−1

s ̸= lwi
) = min[E→lwi

(s), α1] (5.12)

• Case 4: Pixel s ∈ Swγ
i
/Swi

, xk−1
s = lwi

. Similarly, since it may be classified as

a non-object pixel in the following segmentation optimization step, the energy

change is calculated as:

V 4
a (x

k−1

s = lwi
) = min[Elwi→

(s), α2] (5.13)

where

Elwi→
(s) =

(ys − µl◦)
2

2σ2
l◦

+ ln
√

2πσ2
l◦ −

(ys − µlwi
)2

2σ2
lwi

− ln
√

2πσ2
lwi

+
∑

{r,s}∈C

β1(δ(xr, lwi
)− δ(xr, l

◦))
(5.14)

from the model for p(w, x|y).

l◦ ∈ b/{lwi
} is the non-object label with minimum mean difference with lwi

,

where |µl◦ − µxk−1
s

| < |µlk − µxk−1
s

|,∀lk ∈ b/{lwi
, l◦}.

Thus, the energy change from adding wi to w is calculated as the energy change

corresponding to the four cases above, normalized by the size of wi, together with the

energy change from the object interaction:
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V a
wi

=
∑
wj∈w
wi∼wj

β2t2(wi, wj) +
1

|Swi
|
[
∑

s∈Swτ
i

V 1
a (x

k−1

s ̸= lwi
)

+
∑

s∈Swi/Swτ
i

(V 2
a (x

k−1

s = lwi
) + V 3

a (x
k−1

s ̸= lwi
))

+
∑

s∈S
w
γ
i
/Swi

V 4
a (x

k−1

s = lwi
)]

(5.15)

Likewise, we can calculate the energy change from removing an object wi ∈ w from

w. With the energy change from adding or deleting an object, the Green ratio [3]

can be calculated. Then we can obtain the optimized object configuration wk by a

stochastic simulation approach, such as RJ MCMC or a multiple birth and death

algorithm [1].

optimization over x

At iteration k, let xk = argmin
x

(Vd(w
k, x) + Vp(w

k, x)) denote the segmentation

that minimizes V (wk, x). This corresponds to a markov random field.

Since wk is fixed, xk can be obtained by the graph cuts algorithm [62,68]. Either

α expansion or α − β swap method is compatible with our model for multiple label

segmentation. Specifically, in the α − β swap method, for any two labels lA, lB ∈ L,

the weights of the edges between a pixel p and the two labels w1(p, lA), w1(p, lB), the

weight of the edge between two neighboring pixels w0(p, q) are listed in Table 5.1.

Sl = {p ∈ S|xp = l} is a subset of pixels classified with label l. Dp(l), usually

defined as a data term, describes how well a pixel p fits label l. From p(w, x|y), it is

calculated as:
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Table 5.1
Edge weights of α− β graph

edge weight for

w0(p, q) β1

{p, q} ∈ C
p, q /∈ SlA or

SlB

w1(p, lA)

Dp(lA) +∑
q∈Cp
q /∈SlA
q /∈SlB

β1 p /∈ SlA or SlB

w1(p, lB)

Dp(lB) +∑
q∈Cp
q /∈SlA
q /∈SlB

β1 p /∈ SlA or SlB

Dp(l) =


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2
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2

2σ2
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i
, l = lwi

∞ p ∈ Swτ
i
, l ̸= lwi

(ys−µl)
2

2σ2
l

+ ln
√
2πσ2

l − α1 p ∈ Swi
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5.2.4 Parameter setting

In (5.7), β1 is the smoothness parameter to encourage neighboring pixels having

the same label, which can be set following a deterministic approach in [69] or a

training approach in [70]. β2, the interaction parameter of neighboring objects, can

be set deterministically or estimated by an Expectation-Maximization approach [71].

α1, α2 are weighting parameters imposing costs when the label field and object

field are consistent or not. Specifically, in the object inside boundary region Sw/Swτ ,

if pixel’s label is consistent with the object field, a decrease energy of α1 will be

imposed; otherwise, an increase energy of α1 will be imposed. In the object outside

boundary regions Swγ/Sw, if pixel’s label is not consistent with the object field, an

increase energy of α2 will be imposed. These two parameters affect not only the

segmentation, but also the object detection result. Figure 5.3 shows the results for

the NiCrAl particle in Figure 5.2(b) with different choices of α1, α2. In Figure 5.3, as

we increase the values of α1, α2, the segmentation is influenced more by the geometric

model (supperellipse model in this case), while the object detection accuracy also

declines.

We have not developed an algorithm to optimize α1, α2. Empirically, we consider

[ 1
10
lnσmin,

1
2
lnσmin] a safe range to set α1, α2, where σmin is the minimum standard

deviation of all labels. Experiments show good performance with this setting.

5.3 Experimental results

We apply our algorithm to four microscopy image sets: NiCrAl alloy, neuron,

Silicate and wood images. Both object detection and segmentation are performed.

In the object detection part w, we use the missed detection rate (M.D.R.) and

false detection rate (F.D.R.) to verify the performance.We also applied the MPP-only

algorithm, our previous algorithm zhao 2014 [72] for comparison. In the segmentation

part x, we use the Type I and Type II errors for verification. We applied the graph

cuts segmentation and our hybrid model (zhao 2014) for comparison.
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(a) α1 = 0.2, α2 = 0.2

(b) α1 = 1.0, α2 = 1.0

(c) α1 = 3.0, α2 = 3.0

(d) α1 = 10.0, α2 = 10.0

Fig. 5.3. Results of Figure 2(b) with different parameter setting. For
each result, left is the object detection part, right is the segmentation
part.
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Figure 5.4(a) presents a NiCrAl alloy microscopy image with dimension 744 ×

645. The target for this application is to detect each NiCrAl particle and obtain its

corresponding segmentation. We classify the pixels into 2 labels (l0, l1) and each label

is characterized by a Gaussian model with intensity mean and variance (µi, δ
2
i ), where

i ∈ {0, 1}. The K-means is used to obtain the mean and variance of each label. We

use K-means in the following applications as well. We define f = {l1} and b = {l0}.

We use the superellipse model to describe the geometric shape of the NiCrAl particle,

with marks (a, b, θ, l). The long and short axes (a, b) are uniformly sampled between

the minimum and maximum values. Following [72], the orientation θ is sampled from

a mixture of two Gaussians with mean values 1
4
π and 3

4
π. The variance is set as

0.12 for both Gaussians. l is sampled from f , which is set as l1 in this application.

We set α1 = 1.2, α2 = 1.0 according to Section II. t2(wi, wj) is set the same as the

overlapping penalizer in [1]. We deterministically set β1 = β2 = 1. The two-pass

multiple birth and death algorithm and graph cuts are used for optimization over w

and x, respectively. The results are shown in Figure 5.4.

We verify the performance over 10 images. The average of miss and false detection

rates, as well as the Type II and Type III errors, are listed in Table 5.2 and 5.3. In

the object detection part, our algorithm has similar performance with zhao 2014.

Both algorithms perform better than the original MPP algorithm in the accuracy

of marks (orientation, axes lengths). In the segmentation part, our algorithm and

zhao 2014 have similar performance as well. The MRF based graph cuts method

tends to misclassify the non-object pixels lying between closely adjacent objects. Such

merging effect will negatively affect the identification of activities between neighboring

particles. In our algorithm and zhao 2014, this merging effect has been greatly reduced

with the help of global constraints.

Figure 5.5(a) presents a microscope neuron image with dimension of 501×501 from

a mouse brain slice, which consists of neuron particles and blood vessels. The target

is to detect all neuron particles and blood vessels whose cross-sections form an ellipse

shape, and obtain the corresponding segmentations. Since the illumination varies
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5.4. (a) NiCrAl image (b) MPP only result (c) zhao 2014 alg. (ob-
ject detection part) (d) proposed alg.(object detection part) (e)hand
drawn segmentation (f) MRF based Graph cuts result (g) zhao 2014
alg. (segmentation part) (h) proposed alg.(segmentation part)
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across the image, we classify pixels into 4 labels and each label is characterized by a

Gaussian model with intensity mean and variance (µi, δ
2
i ). The labels are numbered

in descending order of intensity mean, where l0 has the highest mean and l5 the

lowest. We define f = {l1, l2, l3} and b = {l0, l1, l2}. We use the ellipse model to

describe the geometric shape, with marks (a, b, θ, l). The long and short axes (a, b)

are uniformly sampled between the minimum and maximum values. The orientation

θ is uniformly sampled between [0, 2π]. l is uniformly sample from f . We set α1 =

α2 = 0.3. t2(wi, wj) is set as the overlapping penalizer. We deterministically set

β1 = β2 = 1. The two-pass multiple birth and death algorithm and graph cuts are

used for optimization over w and x, respectively. The results are shown in Figure 5.5.

We verify the performances over 40 images. The comparisons of the object detec-

tion and segmentation are listed in Table 5.2 and 5.3. In the object detection part,

our algorithm performs better than both mpp model and zhao 2014. It should be

noted that zhao 2014 does not take into account the label as a mark and assumes

pixels inside all objects follow the same Gaussian model. Such an assumption no

longer holds in this illumination variant application. The segmentation potential de-

rived from this assumption even impairs the detection of objects in some regions of

the image, resulting in more missed detection rate than the original MPP model. In

the segmentation part, our model also has better performance than the other two

methods.

Figure 5.6(a) shows a silicate image with dimension 804× 699. We aim to extract

the silicate structures and obtain the corresponding segmentation. 2 labels (l0, l1)

are used for pixel classification and we define f = {l1} and b = {l0}. We use a

modified Candy model [72] to model each silicate as a connected set of line segments.

Each line segment has marks (a, b, θ, l). The width and length (a, b) are uniformly

sampled between the minimum and maximum values. The orientation θ is uniformly

sampled between [0, 2π]. l is sampled from f , which is set as l1 in this application.

t2(wi, wj) is set as the object interaction prior in [72]. We set α1 = 4.0, α2 = 3.0. We
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5.5. (a) Neuron image (b) MPP result (c) zhao 2014 alg. (ob-
ject detection part) (d) proposed alg.(object detection part) (e)hand
drawn segmentation (f) Graph cuts results (g) zhao 2014 alg. (seg-
mentation part) (h) proposed alg.(segmentation part)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5.6. (a) Silicate image (b) MPP only result (c) zhao 2014 alg. (ob-
ject detection part) (d) proposed alg.(object detection part) (e)hand
drawn segmentation (f) Graph cuts results (g) zhao 2014 alg. (seg-
mentation part) (h) proposed alg.(segmentation part)
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(a) (b)

Fig. 5.7. (a) Wood image (b) graph cuts classification with three labels

deterministically set β1 = β2 = 1. The RJ MCMC algorithm and graph cuts are used

for optimization over w and x, respectively. The results are shown in Figure 5.6.

As shown in Table 5.2 and 5.3, in the object detection part, zhao 2014 and our

proposed algorithm have similar results. In the segmentation part, our proposed

algorithm has better accuracy and more natural boundaries segmentation with less

artifacts than zhao 2014. One of the reason is that in zhao 2014, the location-adaptive

interaction parameter βp,q can help to calculate the segmentation potential [72], it

also imposes artifacts along the segmentation boundary, especially when the object

boundary does not fit the segmentation perfectly, which is the case in this application.

Our algorithm has a consistent interaction parameter across the whole image, thus

has better accuracy in the boundaries segmentation.

Figure 5.7(a) shows a 634×634 microscopy image of a wood sample, which consists

of wood vessels (represented by largest ellipses), parenchyma cells (represented by

smaller ellipses), fibers and matrix. The size and shape information of vessels and

cells, which store water and food respectively, is important for further analysis of

the wood. We aim to detect the vessels and cells and obtain the segmentation.

We use three labels for pixel classification due to the intensity inhomogeneity in

both the object and non-object regions (Figure 5.7(b)). The labels are numbered
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5.8. (a) Wood image (b) MPP only result (c) zhao 2014 alg. (ob-
ject detection part) (d) proposed alg.(object detection part) (e)hand
drawn segmentation (f) Graph cuts results (g) zhao 2014 alg. (seg-
mentation part) (h) proposed alg.(segmentation part)
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Table 5.2
Object detection: missed and false detection rates

NiCrAl Neuron
M.D.R. F.D.R. M.D.R. F.D.R.

MPP 0.83% 3.25% 5.27% 6.66%
zhao 2014 0.83% 0.89% 9.76% 5.36%

proposed alg. 0.80% 0.90% 2.17% 3.19%
Silicate Wood

M.D.R. F.D.R. M.D.R. F.D.R.
MPP 20.73% 3.79% 1.97% 38.13%

zhao 2014 10.36% 3.58% 1.69% 25.99%
proposed alg. 10.74% 2.44% 5.37% 11.58%

Table 5.3
Segmentation: Type I and Type II errors

NiCrAl Neurons
Type I Type II Type I Type II

Graph cuts 3.46% 1.78% 80.88% 87.43%
zhao 2014 0.68% 0.91% 2.22% 26.82%

proposed alg. 0.67% 0.78% 0.28% 6.11%
Silicate Wood

Type I Type II Type I Type II
Graph cuts 35.43% 1.01% 7.33% 17.44%
zhao 2014 24.60% 1.30% 7.59% 6.33%

proposed alg. 13.96% 0.57% 1.67% 7.04%

Table 5.4
Average processing time per image

NiCrAl Neurons Silicate Wood
zhao 2014 7′37′′ 2′46′′ 17′22′′ 31′42′′

proposed alg. 3′14′′ 1′16′′ 8′01′′ 10′01′′
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in descending order of intensity mean, where l0 has the highest mean and l2 the

lowest. We define f = {l1, l2} and b = {l0, l1, l2}. The ellipse model is adopted and

both axes (a, b) are uniformly sampled between the minimum and maximum values.

The orientation θ is uniformly sampled between [0, 2π]. l is uniformly sample from

f . We set α1 = 1.4, α2 = 1.2. t2(wi, wj) is set as the overlapping penalizer. We

deterministically set β1 = β2 = 1. The two-pass multiple birth and death algorithm

and graph cuts are used for optimization over w and x, respectively. The results are

shown in Figure 5.8.

In the object detection (Table 5.2), our algorithm shows better performance than

the original MPP and zhao 2014 in the false detection rate, while the latter two falsely

detected many fibers as parenchyma cells. The original MPP model missed a vessel

on the upper left which does not quite fit an ellipse shape, while both our algorithm

and zhao 2014 successfully detected it (Figure 5.8(b-d)). Our algorithm performs

worse in the missed detection rate. Most missed objects are the cells around the

vessels, which look more like a rectangle. In the segmentation part (Table 5.3), our

algorithm performs better than the other two models in Type I error, a slightly wore

than zhao 2014 in Type II error.

The experiments are performed on a computer with 10-core Intel Xeon-E5 pro-

cessors. Results show that the processing speed of our algorithm is at least 2 times

faster than zhao 2014. This is because zhao 2014 needs to calculate the segmentation

potential in the calculation of the energy change for adding or deleting an object,

which involves a MAP optimization and is usually time consuming. The computa-

tional cost increases nonlinearly as the size of object increases. As in the case of the

wood example, where the size of vessels is large, zhao 2014 is 3 times slower than our

algorithm. In our algorithm, according to Section 5.2, the calculation of such energy

change is easier and time saving. Average processing time per image is listed in Table

5.4 for both algorithms.
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5.4 Conclusion

In this chapter, we proposed a joint MRF/MPP model for microscopy image anal-

ysis at both pixel and object level. The object field and segmentation are integrated

into one model, where local and global constraints are both used for object detection

and segmentation. The alternating minimization algorithm is adopted as the infer-

ence method. Our model differs from zhao 2014 in (1). our model combines MRF and

MPP as a joint model, while zhao 2014 interprets MRF as a segmentation potential,

which is still embedded in the MPP framework; (2). the relation between the object

field and segmentation is modeled as a prior in our joint model. Experiments show

our method has similar or better accuracy and faster processing speed than zhao

2014.
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