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constructivism a learning philosophy that states that people construct and revise

their understanding of the world through active experience, not
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distance learning a pedagogical approach where educational institutions provide
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ABSTRACT

Vandrevala, Cyrus M. Ph.D., Purdue University, December 2016. The Development
of a Computerized Interactive Teaching Assistant in Physics: The CITA on CHIP
Project. Major Professors: Lynn Bryan and Andrew Hirsch.

One of the many roles of university instructors is to provide help to students

throughout the semester - especially in the form of feedback on homework. Personal-

ized feedback from the instructor might be possible in a small classroom setting, but

becomes unmanageable when class sizes grow to dozens or even hundreds of students.

As a result, universities are turning to computerized homework systems that guide

students through problems and provide focused grades and feedback.

The overarching goal of this project was to design a comprehensive, sca↵olded

set of tutorials for the homework questions in an undergraduate electricity and mag-

netism course for engineering majors and determine how the tutorials a↵ected student

performance. The research group developed CITA (Computerized Interactive Teach-

ing Assistant) using a design-based research approach. This system assessed student

knowledge and provided focused feedback using three structures - Shallow CITA, Im-

mersive CITA, and Postscripts. Throughout the semester, I collected student grade

data as well as student opinions of the CITA system through surveys and focus group

interviews. The analysis of data informed an iterative development process.

This study aimed to answer a few research questions. First, does the use of CITA

tutorials improve student performance in their introductory electricity and magnetism

course? Second, what are students’ views of the CITA program? Finally, what

motivates students to choose CITA over some other external educational resource?

Overall, the first version of CITA showed no gains in student performance in

the summer of 2015. However, versions two and three of CITA showed small but
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statistically significant gains for students that used the system. This is especially

apparent in the spring 2016 semester.

Students who used versions two and three of CITA generally had positive things

to say about the system. Surveys questions based on Likert scales along with open-

response questions and focus group interviews all indicate that students found Shallow

CITA particularly helpful and Immersive CITA helpful under most circumstances.

However, students generally did not find the Postscripts helpful or worthwhile.

Finally, I conducted a step-by-step analysis of the tutorials that were used in the

CITA system in order to track student retention. These results were synthesized

with student responses from focus group interviews to gain an understanding of what

motivates students to use CITA tutorials over other external resources (e.g. Google,

Yahoo Answers, the course textbook, etc.). Since students were able to choose be-

tween CITA and other external resources, they adopted strategies to e�ciently solve

homework problems rather than maximize learning. Students left a CITA tutorial if

they encountered a step which was perceived as tedious. Thus, online tutorials must

be designed to prevent students from prematurely leaving the tutorial system.
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1. INTRODUCTION

1.1 Background

Due to the increased popularity of online classes and the rising enrollment in

foundational, university-level science courses, professors are under constant pressure

to provide large numbers of students with assistance throughout the semester. Weekly

homework assignments, in particular, require instructors to dedicate a large amount of

time and energy to help students with their questions. When direct assistance from

a faculty member is not available, students need a learning tool that guides them

through homework problems. This is especially important in an environment where

non-traditional students with diverse backgrounds must attend class [1–3]. Classroom

communication systems (i.e. classroom response systems) are one type of tool that

have been utilized with great success during lectures [4,5]. However, the expectation

of access to faculty at any time of the day outside of class is unrealistic; such is the

case for the calculus-based, introductory physics class at Purdue University - a course

with an enrollment of over 700 students during the fall semesters.

The Computerized Interactive Teaching Assistant (CITA) was conceived to guide

students through homework problems while teaching the nuanced techniques of physics

problem solving. Traditional computerized homework systems typically provide a

“correct” or “incorrect” response to a given answer with only a general explanation

as to why their logic was wrong. Often, these systems do not provide specific in-

structions on how to proceed from the point at which the student made the mistake.

Instead, there may be a link to a passage in the textbook that outlines a derivation

without any specific context. If this level of assessment is not helpful, the student

may either contact an instructor, consult with a peer (who may be equally confused),

or wait for recitation later in the week. Thus, the learning process is interrupted as
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the student waits for simple guidance. Conversely, an intelligent tutoring system aims

to provide focused feedback to students when it is required [6–8]. The goal of the

CITA project is to design, implement, and analyze an online system that is readily

available to provide focused guidance to help students learn physics concepts and

solve homework problems.

1.2 Overview of Electricity and Optics

The CITA project took place in the undergraduate, calculus-based, introductory

E&M courses at Purdue University: PHYS 24100 and PHYS 24100D. These courses

are developed for sophomore engineering majors, with the exception of the electrical

engineering majors who take PHYS 27200 [9]. Both PHYS 24100 and PHYS 24100D

are titled “Electricity and Optics”; the “D” simply signifies a distance learning (i.e.

online) section of the course in the fall and spring semesters. The content in the on-

campus and online sections is exactly the same, and all of the students use Physics

for Scientists and Engineers by Tipler and Mosca as their textbook [10]. They only

di↵er in the fact that the distance learning sections watch video lectures and attend

online recitations through Cisco WebEx [11], while the regular sections watch live

lectures and attend live recitations on campus.

Engineering students usually take this course in the fall semester (the “on-semester”).

Alternatively, some engineering students choose to take the course in the spring or

summer (the “o↵-semesters”) due to the fact that they are either ahead or behind in

their plan of study. Table 1.1 shows the total enrollment in the campus and online

sections of Electricity and Optics over the last three years. During each of the fall

and spring semesters, just under 10% of the total class is enrolled in PHYS 24100D.

However, a new trend emerged in the spring of 2016 - more students took PHYS

24100 in the summer rather than in the spring due to the rising popularity of the

online class (see Figure 1.2).
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Table 1.1
Enrollment in the campus and online sections of Electricity and Optics
from the spring of 2014 through the summer of 2016.

Semester Online Campus Percent Online

Spring 2014 41 465 8.1%

Summer 2014 153 0 100.0%

Fall 2014 62 725 7.9%

Spring 2015 43 474 8.3%

Summer 2015 187 0 100.0%

Fall 2015 69 728 8.7%

Spring 2016 36 339 9.6%

Summer 2016 222 0 100.0%

Electricity and Optics is generally taken after students complete PHYS 17200 -

Modern Mechanics. The introductory mechanics course is currently taught using the

first semester of the Matter and Interactions curriculum by Ruth Chabay and Bruce

Sherwood [12]. Some of the major topics covered in Electricity and Optics are electric

charge, electromagnetic fields, Maxwell’s equations, geometric optics, and interference

e↵ects. Due to the diverse nature of topics in PHYS 24100 and PHYS 24100D, this

course is a prerequisite for many of the intermediate engineering courses at Purdue

University.

1.3 The CHIP Homework System

PHYS 24100 and PHYS 24100D use an in-house homework system called Com-

puterized Homework in Physics (CHIP). The CHIP system is based on the CPlite

homework system from the University of Illinois at Urbana-Champaign (UIUC). Pur-

due University adopted an early version of CPlite in 1997 and continued to make
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Figure 1.1. Enrollment in Electricity and Optics in the spring and
summer semesters. Rising summer enrollments are reducing the class
sizes in the spring semesters.

improvements to it over the next decade, adding statistical analysis tools, grade

books, and updated homework problems. CHIP serves not only the introductory

physics courses but a few other physics courses at Purdue University [13,14]. Figure

1.3 shows a screen shot of a sample problem on CHIP.

CHIP is a well-established system that has over a decade of in-the-field use. Even

so, at the beginning of the research project, the research group had to decide if it

was better to develop an entirely new homework system or update CHIP to suit our

research purposes. We decided to update the existing CHIP system for a variety of

reasons.
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Figure 1.2. A screen shot of a homework problem on the CHIP home-
work system. Students are required to answer the “top-level” question
correctly for credit (as shown above). However, most questions also
included optional tutorials and follow-up exercises that would guide
students towards the correct answer.

1.3.1 Strengths of CHIP

CHIP has a well-developed database of problems from a variety of textbooks

including: Tippler and Mosca [15]; Giambattista [16]; Halliday, Resnick, and Walker

[17]; and Cutnell [18]. These problems are free to use and modify, as long as the

changes are contained within the CHIP system. Thus, the physics faculty members

at Purdue have ready access to hundreds of potential homework, quiz, and exam

questions. Instructors in the physics department are free to recommend updates to

the system and create new questions. Most importantly, it is possible to undertake

the development of these new questions without interrupting any existing classes.

All of the CHIP servers are maintained on Purdue University’s West Lafayette

campus in the physics building by the university’s support team. CHIP has a dedi-

cated sta↵ of experts that run and maintain the system; this includes technology pro-

fessionals who maintain the stability and security of the system and faculty members

who use it to assign and grade homework. No aspect of CHIP has to be outsourced
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to a third party. One advantage of this is when students ask questions or send error

reports, they are talking directly with a course administrator rather than a secondary

source. Thus, questions and errors can be resolved very e�ciently.

Finally, CHIP includes a grade book that can collect student scores, filter the data

by demographic information, and perform basic statistics between groups of students.

If CHIP is not capable of performing a specific statistical technique, the data can be

formatted and exported to CSV files which can be read into a program like R or

MATLAB. Since CHIP keeps a secure archive of scores from the past, one may easily

compare students within a semester and between semesters.

1.3.2 Weaknesses of CHIP

Although CHIP has a successful history at Purdue University, it is not without

its problems. The CHIP program was created just as the Internet was beginning to

receive mainstream acceptance. Thus, while the graphical user interface (GUI) was

revolutionary at one time, it has begun to show its age. The overall look and layout

of CHIP has not kept up with modern devices. Specifically, buttons and menus do

not render well on small screens like cell phones, tablets, and net books.

CHIP has a lot of underutilized features for analyzing student performance. Al-

though many statistical analysis tools are available on the system, they are rarely

used due to the fact that they are either hard to find or have a steep learning curve

(i.e. Perl programming skills might be required). This means that professors often

perform their analysis in other places, even if the software is right in front of them.

Although CHIP has resources for building tutorials within individual problems,

at the start of this research project only 21% of the assigned homework problems

had any sort of tutorial. These original tutorials, also called “interactive examples”,

were developed by the faculty at UIUC, and were utilized at Purdue University. They

o↵ered help only in a step-by-step fashion. Thus, the homework problems were in

need of an update.
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1.4 The Need for CITA

There was a pressing need for the development of CITA in PHYS 24100 at Pur-

due University. In addition to the weaknesses of CHIP, student comments in CHIP

problem reports and course evaluations supported the need for an interactive tutorial

system.

Many students commented that the homework system did not provide good feed-

back in the cases when their work was correct but contained simple mistakes like

unit errors. Nathan P. commented that his overall experience with CHIP was soured

because of a simple mistake:

With all due respect, I am very displeased with CHIP. It took me 45

minutes to solve one problem because I didn’t round correctly. I know it is

not my place to say this, but I think that online HW submission programs

should be done away with at universities like Purdue. With that being

said, I am going to power through this year in physics! (Nathan P., Fall

2014 Semester)

Although we may disagree with completely doing away with online homework

systems in large universities like Purdue, this problem is very valid; the homework

system did need some way to steer students in a productive direction, especially if

they were only making a simple rounding error. Many other students have commented

on the need for some sort of tool to help them get through the homework in their

course evaluations.

As of the start of this project, some of the homework problems included rudi-

mentary tutorials. These interactive examples made up a small percentage of the

total number of problems. However, they were very popular among students. Every

semester, students commented on how helpful these examples were:
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Thank you for the help section in this problem! It was very well written

and helped me figure out the problem and (hopefully) similar ones in the

future! (Walt R., CHIP Error Report from Fall 2014)

This [tutorial] is really helpful. Understanding how to set up the integrals

has always been a challenge, and this makes it clear how to break it apart

according to the electric fields. (John C., CHIP Error Report from Fall

2014)

I found the IE [interactive examples] extremely helpful, and want these

to continue to be available. It was much more helpful than examples in

the book or just completing the homework, and I think it’d be great for

more complicated problems especially. (Shaun A., CHIP Error Report

from Spring 2015)

However, many of the existing interactive examples were in desperate need of a

revision. This student comments on an existing tutorial in a geometric optics problem:

It was confusing to start by entering theta 5 and working backwards rather

than starting at theta in and working forwards. If the student knows what

theta 5 is already, they probably wouldn’t need to go through the help for

that part. (Nicholas L., CHIP Error Report from Spring 2015)

These examples were representative of the need for a new tutorial system. The

interactive examples that we developed in this project were positively received by

the student body and can be expanded to assist future PHYS 24100 students. “We”

refers to the team of researchers that developed, implemented, and analyzed CITA

in PHYS 24100 / 24100D. The development and implementation of CITA on CHIP

required work on many fronts:
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1. We designed a framework that can be used to build online tutorials with multiple

paths of analysis. This was completed largely due to the e↵ort of Dr. Hisao

Nakanishi.

2. We converted traditional homework problems into interactive examples. Each

of these interactive examples include hints and detailed physics tutorials.

3. We updated some of the outdated web pages on CHIP to make the menus more

accessible on desktop computers, laptops, tablets, and cell phones.

4. We tracked student progress throughout the semester as a function of their use

of CITA. We then used this data to implement continuous improvements from

semester to semester.

5. We aligned the teaching methods used in the classroom with those used on

CITA. This is certainly an area of continuing development.

It is not enough to simply develop a tutorial system without an organized set

of research questions that can guide the development and analysis. These will be

discussed in the next section.

1.5 Research Statement

The National Science Foundation has stated that solving complex, real-world prob-

lems and creating structured experiments are the most important knowledge and skills

that students should develop in their educational careers [19]. However, science, tech-

nology, engineering, and math (STEM) students often do not have these skills and

knowledge when they start their college careers or even after they earn their de-

gree. Thus, universities must provide the opportunities and support to help students

become accomplished problem solvers.

It is not enough just to develop tutorials; a homework system needs to be evaluated

in order to determine how it promotes student learning. I was specifically interested
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in analyzing how the structure of the CITA system a↵ected student problem solving.

Instead of relying on a linear sequence of steps to reach an answer, the CITA system

allows students to traverse di↵erent paths with di↵erent tutorials as they make their

way to the answer. I wanted to examine how this unique type of sca↵olding influenced

the way students solve problems in physics. Thus, the overarching questions for this

research study follow below:

How does the branching structure of the interactive examples in CITA

influence student problem solving abilities?

Do students develop problem solving skills as they use the CITA system? For ex-

ample, are they able to think through derivations and non-trivial multi-step problems

after the sca↵olding is removed? Do students depend on resources like the textbook

to guide their analysis rather than starting from first principles? How does CITA

enhance problem solving skills? Research findings regarding this question will be

addressed in Chapter 4.

What are students perceptions about the CITA system?

How do students like the CITA system, and how does it compare with other

homework systems that exist today? Research findings regarding this question will

be addressed in Chapter 4.

What motivates a student to use CITA rather than another external

source?

Which students are using the CITA system? Are there distinct groups that use the

system more than others? Additionally, are there any specific parts of the tutorials

that cause students to turn to other external resources? Research findings regarding

this question will be covered briefly in Chapter 4 and in more detail in Chapter 5.
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1.6 Organization of the Thesis

Due to the number of papers, posters, and proceedings that have stemmed from

this research project, this thesis will make use of external publications to highlight

major results. Each chapter of the thesis will focus on a specific topic, including a

paper where appropriate. Chapters that incorporate a pre-print or published paper

will have an introductory section that will set up the context for the paper and results.

Finally, the chapters have been organized to tell the narrative of the CITA research

and development project.

Chapter 2: Theoretical Framework and Literature Review

The literature review provides an overview of the learning theory of construc-

tivism and the di↵erences between master and novice problem solvers. I describe how

sca↵olding can help students solve physics problems and review some of the online

homework systems that are in use today.

Chapter 3: Methods

Since many of the chapters include a paper that will be submitted for publication,

the specific details of the methodology are dispersed throughout the thesis. Thus, I

have collected and summarized the details of the methodology in a single chapter so

the reader can easily identify my research methods.

Chapter 4: An Overview of CITA

This chapter provides an analysis of the CITA system. Specifically, I describe the

development process, the theoretical framework, and the analysis techniques. Then,

I provide a full report of how the tutorials influenced student problem solving skills.
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Chapter 5: Node Analysis of the CITA Tutorials

In this chapter, I provide a second analysis of the CITA system through a di↵erent

lens. First, I describe how the individual tutorials were designed and structured.

Then, I present an analysis of how students traversed di↵erent tutorial structures

over di↵erent semesters. Finally, I discuss student strategies and motivations while

using CITA tutorials.

Chapter 6: Summary, Implications, and Future Directions

This final chapter provides a brief overview of the previous chapters and describes

how the results are related. I then outline the major implications of the study and

the potential future directions of development.

Appendices

The appendices contain the supplementary materials that were used in the study

(i.e. surveys, quizzes, etc.). Additionally, I include a research paper that analyzes

cheating between online and campus sections in the BEMA exam.
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2. THEORETICAL FRAMEWORK AND LITERATURE

REVIEW

Education research is the scientific field of study that examines education

and learning processes and the human attributes, interactions, organiza-

tions, and institutions that shape educational outcomes. Scholarship in

the field seeks to describe, understand, and explain how learning takes

place throughout a persons life and how formal and informal contexts of

education a↵ect all forms of learning. Education research embraces the

full spectrum of rigorous methods appropriate to the questions being asked

and also drives the development of new tools and methods. (American

Educational Research Association [20])

2.1 Background

Due to the fact that learning hinges on so many factors, it is not enough to be an

expert in one discipline while ignoring all others. Education researchers need a diverse,

yet complementary, knowledge of many areas: learning theories, teaching strategies,

motivation, psychological testing, and classroom management just to name a few.

Furthermore, these domains are further refined when studying di↵erent populations

- students, teachers, administrators, etc.

In this chapter I present the theoretical basis for the development of the online

homework system and this research study. I first summarize the learning theory of

constructivism and how it relates to this project. Next, I describe how sca↵olding

methods enhance student problem solving skills. Then, I discuss how multimedia

learning has shaped the development of the CITA tutorials. Finally, I describe some
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of the current homework systems on the market and future directions of physics

education research within the context of online homework systems.

2.2 Constructivism

A learning theory (or learning philosophy) describes how people capture, pro-

cess, retain, and interpret information. Many learning theories have been put forth

throughout history. Some are very simple while others include cognitive, emotional,

environmental, and social e↵ects on the learner. Constructivism is an overarching

term for a learning theory (and its many variants) that date back to the 1800s; it has

seen a rise in popularity over the past few decades due to the work of researchers like

vonGlasersfeld [21] and Bandura [22] and will be the starting point for this discussion.

When a student learns something new, he or she has some prior knowledge of or

related to the subject. This knowledge can come from formal study (such as a previous

physics class) or from life experiences (seeing a ball rise into the air and fall back down

to the ground after it has been thrown). Prior knowledge includes both normative

models of how the world works as well as non-normative, pre-existing notions of the

universe. No matter if these assumptions are correct or incorrect, they stem from

the fact that students notice regularities in the world that are confirmed by repeated

experience [21, 22]. A constructivist would posit that learning is an active process

where new information about the world is linked to a learner’s previous models of

how the world works.

That being said, constructivists hold varying perspectives on the mechanisms

through which this linking takes place. Their ideas fall along a spectrum that includes

radical constructivism, cognitive constructivism, and social constructivism. Radical

constructivism, an idea popularlized by Ernst vonGlasersfeld, says that each individ-

ual constructs a “personal reality”. It can be summarized by two major claims [23,24]:

1. Knowledge is not something that is passively received. Instead, it is actively

constructed, generated, and revised by a person over time as he or she fits new
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information about the world to his or her pre-existing notions of how the world

works.

2. This adaptive knowledge is meant to organize the world. An organized world-

view does not necessarily mean a correct worldview.

Thus, radical constructivism rejects the claim that the discovery of an ontological

reality is the end goal of learning. Rather, it claims that the end goal of learning

is organizing the world. Learning is subjective and can be skewed by personal bias,

faulty senses, and previous experiences.

This idea is especially important when teachers plan lessons. A radical construc-

tivist would argue that learning is the process of adjusting models with each new

experience. Due to the fact that students build models rather than passively receive

knowledge, there will be a “radical separation” of results between educational proce-

dures that strive to generate a fundamental understanding of the material and those

that encourage memorization. In order to be an e↵ective teacher, one must not only

teach the material, but infer the thought processes taken by students. This means

that the instructor must be especially interested in the errors made by students, for

those errors are the points at which true learning can begin [25].

Social constructivism stresses that one’s environment is vitally important to learn-

ing. No man is an island; a person uses his or her cultural and social setting in

developing a model of how the world works. This reality combines a personal inter-

pretation of the universe with an interpretation shared by one’s group of contacts.

Social constructivists agree with radical constructivists that a person’s reality is ac-

tively constructed. However, social constructivists would state that without a social

network, there can be no learning. In other words, knowledge is a product of social

interactions.

Social constructivism is rooted in the works of Piaget [26–28], Vygotsky [29, 30],

and Bruner [31–34]. Albert Bandura has also indirectly influenced social construc-

tivism through his work in social-cognitive theory [35–37]. However, many would
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consider him more aligned with the behaviorist learning philosophy than the construc-

tivist philosophy. Nonetheless, Albert Bandura succinctly summarized the philosophy

of social learning in the following quote:

Learning would be exceedingly laborious, not to mention hazardous, if

people had to rely solely on the e↵ects of their own actions to inform them

what to do. Fortunately, most human behavior is learned observationally

through modeling: from observing others one forms an idea of how new

behaviors are performed, and on later occasions this coded information

serves as a guide for action. (Social Learning Theory, p. 22, [38])

Cognitive constructivism also asserts that the acquisition of knowledge is an adap-

tive process that results from active model building by an individual learner. However,

it is not as extreme as radical constructivism in that it posits that there is an inde-

pendent reality that is knowable to the individual. Therefore, learning is the result

of adjusting mental models to more accurately reflect external reality. Unlike social

and radical constructivists, a cognitive constructivist would claim that an objective

reality does exist, and learners can probe it directly.

In this study, I use the learning theory of cognitive constructivism to guide my

development and analysis. The CITA tutorials are designed for individual students

to complete at their own discretion. Although students can certainly discuss the

content of the tutorials with their colleagues, social interaction is not a pre-requisite

for their use. Additionally, the instructors of Electricity and Optics as well as the

research team make the assumption that classical electromagnetism does accurately

describe nature within a specific context. Thus, cognitive constructivism aligns with

the assumptions of the research team.

In the following sections, I will describe how cognitive constructivism is applied

to problem solving in physics.
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2.3 Polya’s Problem Solving Strategy

The modern theory of problem solving is rooted in the work of George Polya [39].

He outlined a deceptively simple strategy for solving a problem:

1. Understand the Problem

2. Devise a Plan

3. Execute the Plan

4. Review the Work

Although this might seem completely trivial, many problem-solvers do not make

it past the first step [40]. I summarize Polya’s descriptions of the four steps below

and then explore them in the context of physics education research.

2.3.1 Understand the Problem

Understanding the problem is more than just knowing the variables that one is

given. One must take the time to fully understand the domain of what is being asked.

For example, suppose a physics student is given a word problem. She will probably

correctly identify what she needs to solve for and what she is given. However, there

are many aspects of the problem that go unanalyzed. Is there enough information to

solve the problem? What assumptions need to be made in order to solve the problem?

Can she restate the problem in a simpler way? What is the required tolerance for

the answer? All of these details are important to obtain a correct solution to the

problem.

2.3.2 Devise a Plan

There are a number of strategies that can be used to solve a given problem. On

one extreme, a student might use the guess-and-check strategy to try to find the
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answer. On the other extreme, a student might work backwards from a known model

to try to identify similarities between what he knows and what he needs to find. Polya

asserts that the student needs to take the time to figure out what the best strategy

to solving the problem might be. More often than not, if the student does not have

a well-defined plan to solve a problem, then he will turn to an external source for a

plan (e.g. textbook, class notes, internet).

2.3.3 Execute the Plan

Executing the plan does not just mean plugging numbers into equations. It is a

process by which a student checks her work to make sure that it is in line with her

understanding of the problem and the plan that she devised. The physics student

needs to carefully comb through the solution, checking her work for mathematical or

conceptual errors. Additionally, the final step to the problem solving process should

be assessing the answer to see if it makes sense within the context of their knowledge

of physics.

2.3.4 Review the Solution

The analysis of a problem does not stop once a solution is found. That solution

needs to be evaluated in the context of the problem. For example, does the solution

make sense? Does it coincide with all of the assumptions made during the analysis?

Are there ways that the solution can be improved in the future? This final step is

just as important as the ones before it.

2.4 Problem Solving in Physics

2.4.1 Novice Problem Solvers

Because of the importance of problem solving in our society, there has been a

great deal of research that investigate how students learn to solve problems in physics.
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Many of these studies make the distinction between “master” and “novice” problem

solvers. A novice problem solver is one who is inexperienced in the art of solving

complicated problems. He or she generally does not execute a systematic method

such as Polya’s method described above, but instead works in a potentially erratic

way [41]. Most students at the start of their undergraduate careers would be classified

as novice problem solvers.

Walsh and her team conducted a phenomenographic study of students problem

solving approaches in introductory physics. She interviewed a series of students in

order to determine their specific approaches to solving physics problems. She then

categorized them into di↵erent approaches including a scientific approach, a plug-

and-chug approach, a memorization approach, or no approach. She confirmed that

the majority of young, undergraduate students do not start o↵ with sophisticated

problem solving skills and approach problems in a non-scientific manner [42].

Redish et al. identified a number of “epistemic games” that students play to work

through problems in physics [43]. For example, they describe how novice problem

solvers often work backwards in order to solve physics problems - skipping the initial

analysis described by Polya and instead fitting equations to known quantities until a

pattern is uncovered.

Sweller’s summary of “means-end” analysis techniques supports other authors

mentioned in this section. “Means-end” techniques describe how students work back-

ward from a final goal by setting sub-goals. This continues until an equation with no

further unknowns is encountered. Sweller found that this method of analysis imposes

a heavy cognitive load on the student and does not help the student build an under-

standing of the problem. He further stated that a curriculum that is heavily focused

on problem solving may not aid a student in schema acquisition (i.e. a knowledge

structure based on fundamental principles) [44].

Overall, researchers have found that novice problem solvers adopt strategies that

identify surface features in problems. For example, they might relate two problems

due to the fact that they have similar diagrams without realizing that the underlying
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concepts that govern the analysis in each problem are very di↵erent. This is very

di↵erent than expert problem solvers.

2.4.2 Expert Problem Solvers

On the other hand, expert problem solvers follow a structured problem solving

strategy. They start by characterizing the qualitative aspects of a problem before

developing a mathematical solution. They are not distracted by similar looking dia-

grams or solutions stated in the book. They start from first principles and work their

way towards an answer [45]. The di↵erence between experts and novices is easily

framed in the context of constructivism; experts have a thorough understanding of

the laws of physics, and thus feel comfortable starting from first principles. Novices

often do not possess robust and accurate models of the laws of physics, so they need

some sort of example by which they can relate the material to something they already

know.

Larkin et al. described how expert problem solvers not only have a deep knowl-

edge of their respective field, but also a sophisticated knowledge of the patterns that

underlie seemingly di↵erent topics within the field. This allows an expert to identify

important points in a problem and relate it to relevant parts of his or her knowledge

base in a fraction of a second. When a person’s knowledge of the field and its under-

lying patterns reaches a certain threshold, others might claim that he or she has an

“intuition” about the field [45].

Chi, Glaser, and Rees conducted a study of how expert and novice physicists orga-

nize di↵erent problems. They found that expert physicists group seemingly di↵erent

problems by their underlying fundamental principles (e.g. conservation of energy).

On the other hand, novices grouped problems by surface features (e.g. the mention

of an inclined plane in two problems) [46]. These di↵erences in grouping problems

are indicative of the di↵erent features that experts and novices identify in their initial

analysis.
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Another study by Chi, Feltovich, and Glaser found that experts represent physics

knowledge in di↵erent ways. Experts conduct a qualitative analysis of a given problem

before working with the appropriate equations. On the other hand, novices often

start working with equations before reaching a solid understanding of the underlying

principles governing the problem [47].

Expert problem solvers approach problems in a very di↵erent way from novices.

They start with fundamental principles and work their way up to a solution. They do

not focus on surface features in problems like similar diagrams or similar vocabulary.

They have a deep knowledge about their field of study as well as an underlying

understanding about the connections between seemingly di↵erent topics.

2.5 Sca↵olding in Physics

Students need to contend with a variety of outside influences in the classroom. For

example, they need to figure out what specifically is important to learn and how to

make sense of new knowledge in the most e�cient way possible. Additionally, STEM

students need to be able to keep up with advances in their field and use contemporary

knowledge to solve complex problems. Ultimately, professors would like their students

to become independent learners who will continue to study on their own with limited

support. Sca↵olding provides an environment where students can systematically build

an understanding of concepts, all the while gaining independence in developing their

problem solving skills [48].

Within the context of education research, sca↵olding refers to a variety of tech-

niques that are used to systematically move a student towards a coherent under-

standing of the material. Teachers provide successive levels of temporary support

that students can use to structure their learning. These levels of support are re-

moved when the student no longer needs them. Some simple examples of sca↵olding

include [49,50]:
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• Using physical objects to simplify abstract concepts (e.g. teaching addition by

counting pennies)

• Planning class work that utilizes hints and prompts from previous assignments

• Organizing group activities between students of di↵erent skill levels so that they

might learn from each other

Physics instructors need to sca↵old both the learning of qualitative concepts as

well as problem solving techniques. Even though quantitative problems are more com-

mon than qualitative problems in introductory physics, cognitive science has shown

that students need a solid background of qualitative knowledge in order to e↵ectively

work with equations [51]. Neto and Valente assert that a meta-cognitively oriented

approach to problem solving promotes “a synergistic interaction between the scientific

concepts and the thinking skills” [52].

Although much of the current research is in agreement with the idea of helping

students build a string background of qualitative knowledge before engaging students

in manipulating specific equations, it is worth noting that results are not always clear

cut. Dukes et al. noticed that a conceptual understanding of physics material did not

improve their students’ abilities to solve a quantitative problem, but working through

a quantitative problem improved scores on conceptual problems [53]. Nonetheless,

CITA will provide a qualitative background before working with any equations.

A qualitative background of physics concepts is not the only method of sca↵olding

physics problem solving. Leonard et al. found that teaching problem solving strate-

gies helped students identify major principles that could be applied to solve specific

problems. It also helped students remember major physics principles even after the

course had ended [54]. Systems like C3PO [55] use this same strategy of teaching

students problem solving strategies in order to enforce physics concepts. This system

will be explained in more detail later in this chapter.

The wording of a homework problem can lend itself to certain styles of solution.

Heller et al. found that groups of students were more likely to use e↵ective problem
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solving strategies when they were given context-rich problems to solve as opposed to

standard textbook problems. The term context-rich refers to a challenging problem

that requires a solid understanding of concepts and a logical problem solving strategy,

rather than a trick or a single equation. These problems are rooted in real-world

situations [56].

Mazur elaborated further by noting that standard end-of-the-chapter problems

can be as ine↵ective as passive lectures in the teaching of physics concepts. Students

often solve these traditional problems by identifying equivalent problems that they

have solved before and applying the same techniques as before. This strategy typically

does not promote learning [57].

Finally, I note that instructors can creatively use problems as a sca↵olding unto

themselves. Van Heuvelen et al. created a novel problem structure by literally turning

physics questions backwards in a game called Physics Jeopardy. A physics problem in

Physics Jeopardy introduces an equation or phrase that describes a physical process.

The student must build a representation of the problem using a few short phrases,

a picture, or followup equations. In other words, the student tried to represent a

physical process in a variety of ways using diagrams, equations, and graphs [58].

Sca↵olding in physics problem solving can be approached in a number of di↵erent

ways. There is no “silver bullet” to sca↵old a lesson. Sca↵olding, at its core, is context

dependent. Immersive CITA adopts a more traditional approach to sca↵olding by first

introducing qualitative concepts and then following them up with any appropriate

equations.

2.6 Multimedia Learning

Earlier in this paper, I discussed the educational philosophy of constructivism and

how it relates to physics education. Then, I discussed the di↵erences between master

and novice students and how sca↵olding can help a student bridge the gap from novice

to master. In this section, I dive into the details of how to actually structure an online
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tutorial system using Mayer’s cognitive theory of multimedia learning as the basis for

my decisions on how to structure each tutorial in the system [59].

2.6.1 Cognitive Theory of Multimedia Learning

The cognitive theory of multimedia learning is rooted in the “multimedia princi-

ple” which states that people learn more from words and pictures than from words

alone. Mayer suggests that each person has two channels which can take in and pro-

cess information simultaneously - an auditory channel and a visual channel. Each

channel has a finite capacity, similar to Sweller’s cognitive load theory [44, 60]. By

utilizing each channel to its fullest capacity, one can reinforce important concepts in

a lesson.

It is important to note that the information that is taken in by each channel is not

processed in isolation. True to the philosophy of constructivism, it is filtered, orga-

nized, combined, and integrated with one’s prior knowledge to produce new models of

the world. Thus, simply adding new words or pictures to a lesson will not necessarily

achieve greater learning gains. The components of the lesson must work in harmony.

Mayer outlines twelve design principles that can be used to create e↵ective multi-

media tutorials. They are described below [61].

2.6.2 Mayer’s Twelve Design Principles

Coherence Principle

The coherence principle states that extraneous words, pictures, and sounds only

serve to distract the learner from the main point of a lesson. This is because each

of information channels discussed above has a limited capacity; they can become

overwhelmed when too many images or words appear at one time. Sanchez and

Wiley take this a step further, noting that extra words and pictures are especially

distracting to novices who are struggling to learn the concepts for the first time [62].
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The CITA system truly takes the coherence principle to heart. As a student

traverses an online tutorial, he or she will focus on a short paragraph (usually three or

four sentences), a diagnostic question, and a simple diagram (if applicable). Students

can scroll up the page to view previous steps in the tutorial, but their attention at

any one given time is on a very focused part of the analysis.

Signaling Principle

The signaling principle states that people learn better when strategic cues high-

light some of the essential concepts during the multimedia lesson. For example, a

video may highlight the circumference of a circle as the narrator describes the re-

lationship between circumference and diameter. This is an active area of physics

education research; many groups are exploring how di↵erent types of cues are inter-

preted by students as they learn new concepts [63–65].

The CITA system makes extensive use of visual cues to guide students through

problems. For example, bold or italic text highlights major vocabulary terms, colored

boxes highlight correct or incorrect answers, and di↵erent shades of gray in the back-

ground indicate how deep into a tutorial a student has gone. However, it should be

noted that these cues are used to simplify the traversal of a potentially complicated

tutorial. They are not necessarily used to teach new concepts.

Redundancy Principle

The redundancy principle states that people learn more from graphics and narra-

tion than from a combination of graphics, narration, and text. There is a common

belief that displaying text on a screen and narrating the words is better than doing

one or the other. However, this is not necessarily true. The combination of text and

narration is redundant; thus, it is best to eliminate any extraneous information in a

multimedia lesson as per the coherence principle. The tutorials do not include any

narration, so I do not have to worry about the redundancy principle here.
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Spatial Contiguity Principle

The spatial contiguity principle states that people learn better when related words

and pictures are presented close to each other rather than far from each other. Clark

and Mayer provide a number of examples where the spatial contiguity principle might

be violated in a multimedia lesson. Below are a few that pertain to online homework

systems and online tutorials [66]:

• Separating text and graphics due to the need to scroll along a web page

• Separating diagnostic questions from their feedback

• Separating the main question with its corresponding tutorial (if information

from the main lesson is used in the tutorial)

• Separating the navigation directions (i.e. click here, press this button) from the

tutorial itself

The spatial contiguity principle was followed in the design of the CITA tutorials.

Related graphics and content were always place close to each other to avoid excess

scrolling - even if it meant that there was a slight amount of duplication of diagrams

or text.

Temporal Contiguity Principle

The temporal contiguity principle is very similar to the spatial contiguity principle,

except for the fact that it describes time-separated content. It states that people learn

better when related graphics and text are presented simultaneously rather than in

succession. This is because the learner needs to simultaneously use their working

memory to store past information and process new information.

The structure of the tutorials adheres to the temporal contiguity principle. All of

the content that is required for a given step of the analysis is presented in the current



27

step of the tutorial. Additionally, if students wish, they can easily recover previous

information about the problem by scrolling upwards to previous steps on the page.

Segmenting Principle

The segmenting principle states that people learn better from a multimedia lesson

that is broken into short segments rather than a single monolithic unit. The pace at

which these short segments are presented must be determined by the student. The

reasoning behind this principle goes back to the dual-channel model of multimedia

learning. If a student has a chance to control the pace of a multimedia lesson, he

or she can take short breaks to digest each segment and avoid cognitive overload.

However, if information is continuously being fed to a student (like in the case of a

video lecture without a pause button), he or she cannot stop to think about what has

just been said, and cognitive overload can occur.

I tried to make sure that students can traverse CITA at their own pace. Each

step in a tutorial consists of a short passage of text, a diagnostic question, and a

diagram if applicable. Students can read the text at their own pace, referring to

external resources without any time pressure. The diagnostic questions divide each

step of the tutorial, forcing the student to slow down and make sure that he or she

fully understands the explanation before moving onward.

Pre-Training Principle

The pre-training principle states that people learn better from a multimedia lesson

when they know the accompanying vocabulary and concepts beforehand. The reason

for this is that the student does not have to spend energy identifying unfamiliar terms

while simultaneously learning how they fit together. Instead, the student can focus

all of his or her e↵ort on the main content of the lesson.

The pre-training for the tutorials comes from the class lectures and assigned read-

ings. Students must attend or watch lectures twice per week to learn about the major
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concepts in electromagnetism. This means I could use general physics jargon in the

tutorials. For example, a student may first learn about electric charge, electric field,

and Gauss’s law from their lectures and readings. Then, they will learn about the

subtleties of how symmetry a↵ects Gauss’s law in the tutorials.

Modality Principle

The modality principle states that people learn more from an animation paired

with a narration rather than an animation paired with on-screen text. In other words,

spoken word is more e↵ective than written word in an animated multimedia lesson.

This is because the learner might not have enough time to identify and process written

words on the screen in addition to the animation.

On first glance, it might seem like I am violating the modality principle in the de-

sign of the tutorials. After all, I exclusively use text rather than narration. However,

it is important to note that the modality principle applies to animations, of which

the tutorials have none. Additionally, recent research has found that the modality

principle might only apply in certain situations [67]. Clark and Mayer elaborate on

some of the situations where the modality principle does not apply in general. All of

these specific situations apply to the system and student body [66]

• The text is long and complex.

• The text contains technical terms or symbols.

• The text is not in the learners native language (foreign students only).

• The material is paced by the learner.

For these reasons, I can safely ignore the modality principle in the development

of CITA.
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Multimedia Principle

The multimedia principle states that people generally learn better from a com-

bination of words and pictures than from words alone. This is because pictures are

processed through the visual channel while words are processed through the auditory

channel (you read the words in your head and “listen” to the internal dialogue). Thus,

it is preferable to have a combination of words and pictures in a multimedia lesson

rather than just one or the other.

Pairing diagrams with explanations is a staple in physics, and the tutorials are no

exception. Almost every tutorial either starts o↵ with an explicitly drawn diagram

or makes the student draw their own diagram which will be used in the analysis.

Furthermore, pictures and plots are used extensively throughout all of the tutorials

to explain abstract points.

Personalization Principle

The personalization principle states that people learn better when the multimedia

lessons are in a conversational style rather than a formal style. A spoken or written

tutorial should address the audience politely and personally rather than convey ev-

erything in a “sterile” way. This means that it is often appropriate to use the first

or second person within a multimedia lesson, even though this is very di↵erent from

the standard third person narrative that is the style of traditional textbooks.

Clark and Mayer greatly expand on this idea in their research. The use of a

conversational style of writing or speaking more closely resembles human-to-human

conversations. Although interacting with a computer is not the same as interacting

with a human, an informal or conversational has repeatedly shown to be more e↵ective

than a formal third person style of writing [66].

All of the written tutorials in the CITA system are written in an informal, conver-

sational style. The author often addresses the reader directly (i.e. what would you

do at this point?) and includes himself in the conversation (i.e. many students in my
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class often do this...). The only place where the text is written in the third person

formal style is the question itself since this is how it would appear on exams.

Voice Principle

The voice principle states that people learn better when the narrator in a mul-

timedia lesson has a friendly human voice rather than a machine-like voice (for an

example of a machine-like voice, you can refer to the dictation program paired with

most operating systems [68–70]). The voice principle can also be extended to foreign

accents - students tend to learn better when the narrator has a familiar accent rather

than a foreign accent. This principle does not apply directly to the system since I do

not have any narration in the tutorials.

Image Principle

The image principle states that people do not necessarily learn more from a mul-

timedia lesson when the speaker’s image is paired with the dialogue. This could be

interpreted as an extension of the coherence principle - the image of the narrator is

extraneous information that the student has to contend with in addition to the lesson

itself. Like the voice principle, the image principle does not apply directly to the

system since I do not have any narration in the tutorials.

2.7 Existing Online Homework Systems

Numerous studies have shown that online homework is just as e↵ective or more

e↵ective than paper-and-pencil assignments [71–73]. There are a number of online

systems that perform various tasks in the classroom. Some are dedicated homework

systems that test student performance and provide feedback. Others pair diagnos-

tic questions with lessons in an attempt to teach as well as test content knowledge.

Course management systems (CMSs) provide a complete tool for educators by pair-
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ing a homework system with classroom management tools (i.e. grade books and

messaging abilities).

The systems are further parameterized by supplemental features. What subject(s)

does the system focus on? Does the system include resources for an external concept

inventory (CI)? How much will the system cost students and schools? Are there

additional resources to create tests and quizzes based on the homework questions?

The list goes on.

In this final section, I describe some of the other online homework systems that

are out in the market today. All of the systems present questions to students and

record their answers. However, many of them di↵er in subtle ways. This is certainly

not an exhaustive list - it merely touches on systems that are either widely in use or

are pursuing interesting paths of research. I describe systems that have unique ways

of approaching online learning.

2.7.1 WebAssign

WebAssign is a well-known name in the field of introductory science education.

According to their website [74]:

WebAssign is a powerful online instructional system designed by educa-

tors to enrich the teaching and learning experience. WebAssign provides

extensive content, instant assessment, and superior support.

This online homework system is well-established and well-tested with a variety of

resources for instructors that include: questions tied to a variety of physics textbooks,

a sophisticated grade book with some filtering capabilities, a small selection of vali-

dated concept inventories, and integration of videos into problems (e.g. students have

to calculate the kinetic energy of a roller coaster from a video). WebAssign’s enor-

mous library of questions contains a variety of types including short answer, multiple

choice, numerical, and check box.
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2.7.2 McGraw Hill Digital Platforms

McGraw Hill released a series of software products called Digital Platforms that

can be used in a variety of subjects including mathematics, science, and foreign

languages [75]. These products provide everything from lecture recording services to

personalized electronic grade books to online homework systems. The two systems

most relevant to online homework as I discuss here are McGraw Hill Connect and

McGraw Hill LearnSmart.

McGraw Hill Connect is an online homework system that o↵ers many of the

same features as WebAssign. A teacher using Connect can create online homework

assignments from a large database of questions and administer them to the class.

Grading and analytics are done in the background, so the instructor does not have to

spend as much time reviewing student’s assignments. McGraw Hill Connect references

media-based e-books when students need help with topics on the homework.

McGraw Hill LearnSmart is an adaptive learning product within McGraw Hill

Connect that collects a wealth of data about students as they answer diagnostic

problems. For example, it tracks their correct responses, the reported confidence in

an answer, and the time spent on a given question. Then, this information is fed into

a proprietary algorithm that adjusts the instruction that a student receives.

2.7.3 Sapling Learning

Sapling Learning is an online homework system that shares many of the same

qualities as WebAssign and McGraw Hill Connect. It too has a sophisticated grade

book to track student progress and a large number of physics problems that instructors

can use in their classes. However, it does not have the huge amount of third-party

textbook support that WebAssign currently has [76].

What Sapling Learning lacks in third party support, it makes up for in personal

service. The company has stated that they are committed to providing educators

with “Tech TA” that can help the instructor plan his or her course [77]:
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We match educators with a Sapling Learning Technology TA a Ph.D. or

masters-level subject expert who provides collaboration, software exper-

tise, and consulting to tailor each course to fit your instructional goals

and student needs.

The Sapling Learning testimonial page indicates that this feature is highly rated

amongst their clients and sets them apart from other companies.

2.7.4 Mastering Physics

Mastering Physics is another online homework system that is similar to WebAssign

and Sapling Learning in its base features. What sets Mastering Physics apart from

other homework systems is the adaptive content [78]. Mastering Physics claims that

since every student learns at a di↵erent rate, their adaptive learning exercises assess

student activity in real-time in order to provide personalized feedback to students.

These Dynamic Study Modules ask students to answer a set of questions as well

as rate how confident they are with their answer. The module repeats itself with

variations of the questions until the student can answer all of them accurately and

correctly. The company recommends that these modules be used both before and

after a homework assignment in order to solidify knowledge of the concepts.

2.7.5 The Expert TA

The Expert TA is an online homework and tutorial system that is not a�liated

with any specific textbook [79]. It contains all of the usual features that one might

expect from an online homework system - a sophisticated assignment management

GUI, detailed grade reports, adjustable grading scales, and a large library of physics

problems that can be incorporated into homework assignments with little e↵ort. How-

ever, The Expert TA has set itself apart from other online homework systems in two

big ways.
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First, the company has spent a lot of time and energy developing their library of

symbolic questions. Most physics homework systems include some symbolic questions

(including CHIP); they are usually quite restrictive or clunky. A student can choose

from a list of symbolic answers or enter an equation with a very specific format (e.g.

the system might interpret 1/x and x

�1 as two di↵erent answers). However, The

Expert TA has designed an Equation Entry Palette that dynamically responds to

student input and makes entering symbolic expressions quite simple. Additionally,

they have built a proprietary mathematics engine that can recognize the similarity of

di↵erent symbolic expressions.

Finally, the company has a well-developed analytics back-end that collects details

about how students and instructors use the system. The Expert TA can use this

information to design focused feedback on often missed questions as well as suggest

potential questions for instructors to use in their classes.

2.7.6 LON-CAPA

LON-CAPA is an acronym that stands for the Learning Online Network with

a Computer Assisted Personalized Approach. It is a free, open-source, homework

system paired with a CMS. Unlike many online systems, the homework system and

CMS were actually born out of two di↵erent projects - LON and CAPA [80]

CAPA is meant to provide students and instructors with homework sets as well

as problems for exams. However, these are not just bare-bones questions. Students

are given instant feedback right through the CAPA GUI that can be used to adjust

their answers. The Lecture Online project was originally intended to serve physics

education content to instructors through the internet. The two systems combined

in 1999 to create LON-CAPA (note how Lecture Online became Learning Online).

They were some of the first systems of their kind.

The biggest strength of LON-CAPA is its database of open content. When instruc-

tors create new materials, they have the option to share that content with the rest
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of the LON-CAPA network. Their work gets pooled into a shared cross-institutional

resource library. Later, when a new instructor wishes to access some open content,

he or she can pick and choose whatever is appropriate for the course. In other words,

LON-CAPA allows instructors to share and retrieve content at various levels of detail

in order to build a custom homework experience for their students.

2.7.7 FlipIt Physics

FlipIt Physics (previously called Smart Physics) is a “complete course solution”

for calculus and algebra based physics classes [81]. Rather than focusing simply

on homework alone, FlipIt Physics attempts to combine pre-lecture, lecture, and

homework into one seamless learning experience. In fact, the name “FlipIt” is a

reference to the “flipped classroom” approach used by this system.

First, students watch a narrated, multimedia pre-lecture that introduces some

of the core physics concepts that will be presented in an upcoming lecture. The

pre-lecture contains a small set of questions that ensures students are following the

narration; it finishes with a formative Bridge Question that summarizes the main ideas

of the material and connects the pre-lecture to the upcoming lecture. Instructors can

use the results of the Bridge Question to pinpoint student misconceptions of the

material and fine-tune the upcoming lecture. This process is similar to Just in Time

Teaching except that the pre-lecture assessment is more directed by the instructor [82].

Afterwards, students practice what they learned in the pre-lecture and lecture

within the homework. FlipIt Physics uses what are called “Interactive Examples” as

sca↵olding in order to teach students physics content and good problem solving skills.

2.7.8 Minds on Physics Learning Modules

Minds On Physics is a collection of 15 learning modules that are structured to

teach students introductory physics topics. The modules consist of 135 assignments

containing over 1300 questions, each designed to encourage reflection and review.
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Recent literature has suggested that reflection of an answer is extremely important

in the learning process [83]. The authors of Minds on Physics have designed the

problems such that superficial answers are “quickly challenged” [84].

Unlike many other homework systems, Minds on Physics does not include any

built-in grade book or score tracking system (as of the time of this writing). Rather,

instructors can use a combination of an instructor code and a student code to retrieve

information about the completion of the assignment. Then, the instructor can enter

this information into an external grade book.

2.7.9 Customizable Computer Coaches for Physics Online

While most online homework systems focus on the physics content of the home-

work problems, the physics education researchers at the University of Minnesota have

gone in a di↵erent direction. Although they would certainly agree that physics content

is important, they stress that the process of thinking through and solving a compli-

cated problem is more valuable than having a superficial knowledge of concepts. Thus,

their physics education research group has developed a set of Customizable Computer

Coaches for Physics Online (C3PO) [55].

As of now, these coaches have only been developed for a handful of physics prob-

lems. They feature a split-screen GUI that displays the problem text, a diagram

when appropriate, the current step of the analysis, and an organized list of previ-

ous steps. Students move through an organized problem-solving framework that is a

slight variation of what was put forth by Polya:

• Focus the Problem

• Describe the Physics

• Plan the Solution

• Execute the Plan

• Evaluate the Answers
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2.7.10 Learning Management Systems

A learning management system is a software suite that can be used to organize

and run a classroom. Generally a learning management system is focused on the

administration of a class rather than the teaching of new materials. However, sys-

tems like Moodle and Blackboard have created resources for instructors to create

small-scale assignments directly through the LMS. These assignments do not o↵er

the sophisticated teaching resources that are discussed above, so they are generally

useful for small diagnostic assignments like pre-class quizzes or reading comprehension

assessments.

Blackboard Learn is a management system developed by Blackboard Inc. It excels

in two main areas: (1) adding an online element to courses that were previously face-

to-face and (2) creating and administrating an online-only course with no face-to-face

meetings. As of now, it is one of the most popular systems available due to an

open architecture, integration with other homework systems, and scalable design.

Blackboard can be installed and maintained on a school’s local servers, or it may be

hosted by Blackboard ASP Solutions [85].

Moodle (Modular Object-Oriented Dynamic Learning Environment) is a free,

open-source learning management system with over 68 million users world-wide [86].

It was designed to help educators create their own online courses with a focus on

interaction and collaboration. Moodle uses a simple drag-and-drop interface along

with specialized text editors to allow educators to build their own web pages. Moodle

classrooms are based on a social constructivist learning philosophy, and thus, provide

the educator tools to build social learning assignments like wikis, surveys, and chat

rooms. Schools can download and host the Moodle software on their own campus, or

they can hire a Moodle partner (e.g. Moodle Rooms [87]).
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2.7.11 Massive Open Online Courses

This final category describes not one system, but a collection of online systems that

teach physics and administer homework. Massive Open Online Courses (MOOCs)

have grown in popularity over the past few years. They are usually characterized

by large class sizes and unlimited participation due to the fact that they are hosted

entirely (or almost entirely) through the Internet [88]. Although MOOCs are first

and foremost geared towards teaching content, they usually are paired with an online

homework/assessment system to validate that learning has actually occured.

Some of the most popular companies that provide MOOCs to students include

Khan Academy [89], Udacity [90], edX [91], Coursera [92], and Academic Earth [93].

Most of these companies are paired with one or more universities so that professors

can create new content. Oftentimes, the professors who want to use this content for

their own, small-scale class might restructure a MOOC as a SPOC - a Small Private

Online Course.

2.8 Future Directions

Sir Tim Berners-Lee proposed the idea for the World Wide Web on March 12,

1989. Google was incorporated on September 4, 1998. Facebook was founded on

February 4, 2004. As hard as it might be to believe, the web as we know it is still a

teenager. Thus, researchers are exploring a vast and unknown area of education.

One of the current directions in online education research is the merging of “big

data” with traditional assessment techniques. Researchers are leveraging student

demographic information along with real-time performance on a homework problem

to provide focused, relevant feedback to the student. As of now, little is known about

what kinds of tutorials aid and detract from learning.

Another direction of research is the merging of social networks with traditional tu-

torials. Many researchers are building social learning platforms in the hopes that the

social constructivist learning philosophy will lead to large gains in student learning.
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For example, students might be broken up into small groups and tasked with reading

a textbook passage as a team. Questions and comments made by one student can be

viewed and expanded upon by many others. Although much research has been done

on learning in groups, we have never seen group learning on such a massive scale.

There are many other open questions in this field. We have barely scratched the

surface on what is truly possible in the realm of online education.
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3. METHODS

3.1 Preface

Chapters 4 and 5 along with Appendix A each contain a methods section since

they are papers that are submitted for publication. However, I have compiled and

summarized the details of the methods of this project in this chapter to parallel a

traditional dissertation format.

First, I give an overview of the research design and the participants involved.

Second, I describe the structure of the CITA system and its schedule of development.

Third, I elaborate on the qualitative and quantitative methods that I used to analyze

the data. Finally, I end with connections between the methods, collection procedures,

and the role of the researchers.

3.2 Research Design

This research project used a mixed methods design. Mixed methods research

involves collecting, analyzing, and integrating both qualitative and quantitative data

in order to gain a better understanding of a research domain than either approach

alone. The mixing of qualitative and quantitative data can be very powerful for a

number of reasons. First, the synthesis of data from di↵erent sources leads to greater

confidence in the validity of the conclusions. Second, the answers to the research

questions merge a number of perspectives, leading to a more complete conclusion

with fewer “gaps” in the analysis. Finally, any pre-existing assumptions from the

researchers are less likely to influence the results due to the fact that the conclusions

must support both qualitative and quantitative data [94].
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My project benefited from a mixed method design because it allowed the research

team to explore the subtleties of how the CITA tutorials influenced student perfor-

mance. Scores on exams and quizzes are certainly useful for determining learning

gains, but they do not yield any information about how students used CITA. The

qualitative aspect of the mixed methods design yielded insight into motivations for

completing homework assignments, problem solving strategies, and the utility of the

CITA tutorials compared with other external resources (e.g. websites, the textbook,

class notes, etc.).

This research project took place between the spring semester of 2015 and the

summer semester of 2016 at Purdue University. It focused on the second semester,

introductory physics courses for students pursuing an engineering degree - PHYS

24100 and PHYS 24100D. The “D” signifies a distance learning (i.e. online) section

of the course. As described in Chapter 1, the students in each of these sections covered

the same content, but it was presented in either an on-campus or online setting.

3.3 Research Participants

Students had the option of following a CITA tutorial in order to learn how to

solve a given homework problem. Alternatively, they could skip over a tutorial paired

with a homework problem completely. Whether a student decided to use the CITA

tutorials or not, he or she was asked to complete a demographics survey and exit

survey that probed their usage of the system. At the end of the semester, students

were given the option to elaborate more on their opinions of the system through

voluntary focus group interviews.

Thus, students were only required to complete the surveys during the semester;

CITA tutorial use and focus group sessions were completely voluntary.
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3.3.1 Previous Skills

Without an understanding of the previous skill levels of the PHYS 24100 students,

I could not make accurate predictions about how the CITA system a↵ected their

performance. Thus, I conducted a study of student’s previous grades in physics

and calculus in order to determine if the online and on-campus sections of PHYS

24100 contained significantly di↵erent populations of students. Students were asked

to complete a demographics survey at the beginning of the semester that asked about

their prior performance in PHYS 17200 and calculus. Students had the option of

answering “I Prefer Not to Disclose” if they wished to keep their information private.

However, even with the option not to report any information, most students provided

answers to all of the questions. The information was categorized by semester, section,

and answer to the question. The populations were compared using chi-squared tests

of significance.

The fall semester is considered the on-semester while spring and summer are

considered the o↵ semesters; this means that students who are on schedule with their

plan of study would take PHYS 24100 during the fall. Thus, my hypothesis was that

the students in the fall semester would report higher physics and calculus grades than

those in the spring or summer semesters. Additionally, I hypothesized that the online

sections of PHYS 24100 would be filled by the students who waited until the last

minute to sign up for classes, and thus, are generally not as successful as their more

motivated colleagues. In other words, self-reported grades in the on-campus sections

would be higher than self-reported grades in the online sections.

My first hypothesis from above was partially correct. PHYS 17200 grades are

generally higher in the fall semester than in the spring or summer. Chi-square tests

show a statistically significant di↵erence between the reported grades. However, cal-

culus grades do not show any statistically significant di↵erence between any of the

semesters. My second hypothesis was incorrect. Both the self-reported PHYS 17200
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grades and self-reported calculus grades were not significantly di↵erent between the

online and on-campus sections of PHYS 24100 within any given semester.

Further inspection of the data showed that about 22% of students in the summer

of 2015 were retaking the class because they received a low grade (D or F) in a

previous semester. The spring and fall semesters were much di↵erent - about 11%

of the students in the spring of 2015 and 5% of the students in the fall of 2015 were

retaking the class due to a low grade.

I also found that the distance learning sections of PHYS 241 attracted a dispro-

portionately large number of female students. Online sections were about 60% male

and 40% female during the fall 2015 and spring 2015 semesters. However, they were

about 55% male and 45% female during the summer of 2015. This is much di↵er-

ent from the on-campus enrollment, which ranged between 75-80% male and 20-25%

female during the spring 2015 and fall 2015 semesters.

Students reported similar ranges of calculus grades within every section and

semester. Additionally, students reported similar range of PHYS 17200 grades in

most cases - the one exception being that PHYS 17200 grades were higher in the

fall 2015 semester when compared with other semesters. I found that the spring and

summer semesters of PHYS 24100 attracted more students who were retaking the

class, and the on-campus and online sections of PHYS 24100 attracted more female

students than male students.

3.4 Design of the CITA System

3.4.1 Structure of the Tutorials

CITA is built on top of the CHIP homework system. CHIP is based on an online

homework system called CPlite which was originally developed by the faculty at the

University of Illinois in Urbana-Champaign. It was adopted by Purdue University

and has been under constant extension and revision [13]. The research group decided
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to expand the CHIP system rather than build a new homework system from scratch

for a variety of reasons (see Chapter 1).

CITA provides a series of successively more detailed tutorials that target students

with a variety of skill levels. The system is divided up into three parts: Shallow CITA,

Immersive CITA, and Postscripts. These parts are not meant to work independently

of each other. Rather, they work together to take a student through Polya’s problem

solving process in a controlled way [39].

An example of Shallow CITA is shown in Figure 3.1. A student is given a home-

work problem that counts for a grade. If the student makes an easily identifiable

mistake on the problem a red box will pop up and o↵er specific feedback on how he

or she should correct the mistake to proceed. Shallow CITA assumes that a student

generally understands the major concepts in the problem and is close to a correct

solution. If the system cannot identify the mistake made by the student, it suggests

that he or she move onto an Immersive CITA tutorial.

Figure 3.1. A screen shot of a homework problem in the CHIP home-
work system demonstrating Shallow CITA feedback. The red box
appears after a student enters an incorrect answer that matches a
common error.

Immersive CITA was built to provide detailed tutorials about the specific concepts

within a given homework problem (see Figure 3.2). In the fall of 2015, we paired step-

by-step tutorials with 109 of the problems on the homework - just under 80% of the

total problem count. Problems that consisted of more than three graded parts were

not given an Immersive CITA tutorial since the multiple parts already hinted at a

path to the solution. Secondly, true or false questions were not given a tutorial due to

the fact that the question had only two potential answers. Finally, problems within a
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homework assignment that repeated similar concepts were given truncated tutorials

that outlined the solution to the problem in a few sentences or referred the student

to a relevant Immersive CITA tutorial in a di↵erent problem.

During the spring semester of 2016, the CITA development team (henceforth

“we”) updated most of the truncated tutorials mentioned above to detailed step-by-

step tutorials. This meant that there was repetition of concepts within the tutorials

within a single homework assignment. However, no tutorials were repeated verbatim.

Additionally, we added a filter to 74 of the Immersive CITA tutorials (slightly over

50%) that asked students to rate their confidence with the problem and decide if they

wanted a detailed, step-by-step tutorial or a faster, general overview of the solution.

The system would then filter the student body into one path or the other. Wherever

possible, we tried to keep the detailed step-by-step tutorials the same between the

fall 2015 and spring 2016 semesters so that we could make consistent comparisons.

Again, about 80% of the homework problems included some form of tutorial in the

spring of 2016.

Figure 3.2. A screen shot of a homework problem in the CHIP home-
work system demonstrating an Immersive CITA tutorial. The tutorial
guides students through the solution of the problem in a step by step
fashion.

We wanted students to work through the solution of a problem rather than just

read a transcript outlining the solution. Thus, each step of an Immersive CITA

tutorial consists of just a few sentences, followed by a question. In this way, the

solution is methodically worked out by the student. Each Immersive CITA tutorial

followed a similar structure based on Polya’s problem solving strategy. First, we spent
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a few steps describing some of the major conceptual ideas contained in the solution.

Next, the tutorial devised and worked through the solution, referring to lecture slides,

class notes, and previous steps of the analysis.

Figure 3.3 shows the final part of CITA: the Postscript. After a student correctly

answers the homework question, the Poscript reviews Polya’s final step in the problem

solving process. We ask students to think about the work that they just completed by

outlining variations of the problem. For example, if a student determined the electric

field at a certain point in space was equal to zero, a Postscript might ask what would

happen if the charge distribution was perturbed from its current location. During

the spring of 2016, each of the postscripts included a “Real World Application” to

outline where the concepts in the problem could be used in the realm of engineering.

Figure 3.3. A screen shot of a homework problem in the CHIP home-
work system demonstrating a Postscript. The purple box at the end
of the problem encourages students to think about their answer.

3.4.2 Schedule of Development

Development of the CITA system began in the spring of 2015. Over the next year

and a half, we used a design-based research method to build, assess, and fine-tune

the tutorials. The schedule of development is shown in Table 3.1.

Version 1 of the system was our first foray into development. We proceeded slowly,

building the structure that would be used in the branching system and ensuring that

the tutorials worked for students. We were able to provide CITA tutorials for approx-

imately 50% of the homework problems (while the remaining problems contained no
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help of any kind). The original “interactive examples” that were developed by UIUC

were given Shallow CITA feedback and are included in the statistic.

Version 2 of the system contained the step-by-step tutorials as described earlier.

This version of the system was designed to serve two purposes. First, it was an

intermediate step between the initial and final system so that we could break the

development into two roughly equal parts. Second, this version allowed us to run

an analysis of a more traditional tutorial system in order to get some baseline data.

During the fall semester of 2015, there was a problem in development, so the online

courses were given Version 1 of the system while the on-campus classes received

Version 2. This anomaly has been taken into account in the analysis.

Version 3 of the system consisted of problems that o↵er the choice between two

di↵erent levels of sca↵olding (as described in the previous sections). This is the final

goal of this particular research project.

3.5 Quantitative Procedures

3.5.1 Statistical Methods

The quantitative analysis made use of linear models, Student’s T-tests, ANOVA

analysis, and chi-squared tests where appropriate. I used the traditional cuto↵ of p =

0.05 for tests of statistical significance along with Cohen’s guidelines for interpreting

e↵ect sizes [95]. In most cases where ANOVA and t-tests were used, the data did

satisfy the necessary assumptions:

1. Independence of Cases

2. Normality of the Data

3. Equality of Variances

In any cases where at least one of the three conditions was not satisfied, I used non-

parametric tests to verify that any statistically significant di↵erences in the means
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Table 3.1
The schedule of development of the CITA system. In the spring
semester of 2015 and prior, the CHIP homework system included 29
“interactive examples” that were originally developed by the faculty
at UIUC (out of 139 homework problems total). These 29 problems
were paired with step-by-step tutorials and made up approximately
21% of the homework problems seen by students.

Semester Section Version

Spring 2014 Campus None

Online None

Summer 2014 Online None

Fall 2014 Campus None

Online None

Spring 2015 Campus None

Online None

Summer 2015 Online 1

Fall 2015 Campus 2

Online 1

Spring 2016 Campus 3

Online 3

Summer 2016 Online 3

was actually true. The most common non-parametric tests that I used were the

Kruskal-Wallis and Welch tests [96].

Measures of e↵ect size included Cramer’s V, eta squared, and R

2 where appropri-

ate [97, 98]. Cramer’s V is a way of calculating the e↵ect size of contingency tables

from a chi-squared calculation. First, one calculates the chi-squared statistic of the

contingency table (�2). Then, Cramer’s V is equal to:
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V =

r
�

2

NM

(3.1)

where N is the sample size and M is the smaller of the number of rows in the table

minus one or the number of columns in the table minus one.

Eta-squared is defined as the proportion of the variance accounted for by each of

the interactions in an ANOVA study. It is defined as [99]:

⌘

2 =
SSeffect

SStotal

(3.2)

where SS stands for the sum of squared errors of the e↵ect of interest (numerator)

and all e↵ects, interactions, and errors (denominator).

Finally, R2 is the goodness-of-fit in a linear regression of two variables. It is a unit-

less fraction between 0.0 and 1.0. A value of 0.0 means that knowing one variable

does not help you predict the other (i.e. there is no linear relationship between the

variables). A value of 1.0 means that all points lie on a straight line (i.e. knowing

one variable lets you predict other perfectly).

3.5.2 Exam Scores

Homework scores predictably increased between spring 2015 (pre-CITA) and spring

2016 (post-CITA). However, this increase does not tell us how students perform when

the sca↵olding is removed. One of the ways that I assessed student learning gains was

through their exams. A few of the exam questions during the fall of 2015 and spring

of 2016 appeared on exams in previous semesters. Thus, I used these questions to

assess di↵erences between students in di↵erent semesters. I also compared students

within a given semester to see how those who extensively used CITA compared to

those who did not.
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3.5.3 Brief Electricity and Magnetism Assessment

The BEMA was developed by Ruth Chabay, Bruce Sherwood, and Fred Reif

in 1997 [100]. Although it was originally designed to measure student retention of

electricity and magnetism concepts three months to five semesters after completing

an introductory electricity and magnetism course, it is now often used to analyze

student learning between the beginning and end of the semester. The BEMA is a

useful tool to assess the understanding of electricity and magnetism concepts that are

covered in a college-level calculus-based introductory physics course.

The BEMA is a multiple choice test consisting of qualitative questions and a few

simple calculations. Lin Ding et al. performed an analysis of the BEMA, show-

ing that it is a reliable assessment tool for introductory electricity and magnetism

courses [101, 102]. Although the CITA system does not focus on teaching a concep-

tual understanding of electromagnetism topics, we still used the BEMA to assess if

there were any changes in this area.

3.5.4 Multi-Step Problem

Chabay and Sherwood demonstrated a technique to analyze how well students can

solve a non-trivial, multi-step problem [103,104]. They gave their students a complex

problem and tracked how far students made it into the analysis before getting stuck.

Then, they plotted the curves for how many students made it to certain points in the

problem before getting stuck.

We administered a non-trivial problem to on-campus students during their recita-

tions and graded their responses with a standardized rubric (see Appendix 4.12).

Students were first given a 20 minute review of the major topics in the problem

by their teaching assistant. Then, the problem was given under test-like conditions

(i.e. no books, no notes, no collaboration with others). Once again, this allowed us

to assess how students fared without the sca↵olding provided by CITA. The control
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group for this analysis was the spring 2015 on-campus students while the experimental

groups were the fall 2015 and spring 2016 on-campus students.

3.5.5 Student Exit Survey

The PHYS 24100 faculty asked students to fill out an online survey at the end of

the semester. It asked about their opinions of the CITA system as well as how they

used it. This survey was required for a recitation quiz grade (as mandated by the

internal review board at Purdue University). However, students had the option to

select “I Prefer Not to Disclose” for each question.

3.5.6 Recording Clicks

As a student worked through the graded problem or an Immersive CITA tutorial,

his or her progress was automatically recorded by the system. I reviewed the click

history of the students in order to see how they traversed the di↵erent structures of

tutorials.

3.6 Qualitative Procedures

3.6.1 Strategy of Inquiry

The qualitative side of this study analyzed student opinions about the CITA

program as well as their general study habits. Qualitative data came from three

main sources: (1) the final question of the exit survey, (2) student comments on the

Piazza help system, and (3) focus group sessions at the end of the semester. After

the second exam (when we started on the AC circuits unit) emailed the students to

ask for volunteers for a one hour focus group session. The sessions took place at the

student’s convenience in the two weeks before their final exam. After each session,

we rewarded participants with a ten dollar gift card.
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The strategy for analyzing the transcripts from the three sources consisted of a

three-cycle coding plan [105]. In the first cycle, each of the transcripts was analyzed

separately using attribute coding and descriptive coding. The purpose of the first

cycle was to identify common responses given by the students to each of the questions

asked in the sessions. The second cycle also treated the transcripts separately; it

consisted of rounds of elaborative coding and pattern coding. The purpose of this

cycle was to group the responses from the first cycle and identify overarching themes

within a specific source. The final cycle of coding pooled all of the sources together.

It consisted of evaluation coding and longitudinal coding to identify how comments

compared between semesters.

3.6.2 Focus Group Sessions

Focus group sessions were ideal for this study. They are flexible since they can be

used for exploratory, explanatory, and evaluative research. Additionally, they create

a large volume of data with a range of viewpoints from all of the participants [106].

In this study, I conducted 11 focus group sessions with four scheduled participants in

each group (six in the fall 2015 semester and five in the spring 2016 semester). Each

one lasted one hour and was audio recorded. The audio recordings were transcribed

for later analysis.

I used purposeful sampling to assign students to di↵erent groups. Patton defines

this strategy as one where the researcher chooses specific participants for the study

in order to gain insight about a specific phenomenon. Cases are selected because

they are “information rich” [107]. When students signed up to volunteer for a focus

group session, I asked them what their overall impression of the homework system

was - “Generally Positive”, “Generally Negative”, or “Neutral”. I then divided the

participants into groups of four based on their reported overall impression of the

system and whether they were in an online or on-campus section. I wanted to match
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similar opinions beforehand so that students were comfortable sharing both positive

and negative opinions.

3.6.3 Analysis Procedures

Once I compiled the transcripts from the focus group sessions, Piazza comments,

and written survey answers, I coded the data to find any underlying patterns. I used

inductive analysis and creative synthesis as the analysis and reporting strategy. This

pair of techniques entails starting from the specific details of an inquiry and slowly

uncovering patterns in the data until a broad theory can be synthesized [107]. It

allowed me to mesh together the opinions of the students in a controlled way.

My qualitative analysis used a three cycle system. First, I coded the transcripts

in order to find specific words and phrases that highlighted student opinions. Next,

I compiled these keywords into categories that described student opinions within a

semester. Finally, I compared student opinions between the semesters.

3.6.4 Roles of the Researchers

A qualitative researcher must acknowledge that his presence in the experiment can

alter the answers given by the participants. Thus, he must take time to determine

how this might skew the data as well as how to minimize this e↵ect [108]. In this

study the principle investigators were Mr. Cyrus Vandrevala, Dr. Lynn Bryan, Dr.

Andrew Hirsch, Dr. Hisao Nakanishi, and Dr. Laura Pyrak-Nolte.

Mr. Cyrus Vandrevala has been a teaching assistant for PHYS 24100 and PHYS

24100D since the fall semester of 2011. He has coordinated the course during summer

sessions and helped develop the online sections, which included editing course videos

and setting up the online Piazza classroom [109]. In order to prevent a conflict

of interest, Cyrus has not taken a teaching assistant position in PHYS 24100 since

the spring of 2015. Instead, he had a part-time assignment answering questions on
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Piazza. This means that students were not be interviewed by any faculty member

who assigned them a grade.

Dr. Hisao Nakanishi is the “father” of CHIP because he is one of its primary devel-

opers. Hisao Nakanishi developed the underlying structure upon which the branching

tutorials were built. Although he was not directly a�liated with Electricity and Op-

tics, he addressed student questions sent through the CHIP help system that pertain

to administration issues. Additionally, he helped review all of the content that was

uploaded to the website.

Dr. Laura Pyrak-Nolte has taught PHYS 24100 and PHYS 24100D since 2005

and coordinated the course since 2011. She is responsible for creating the curriculum,

writing the exams, assigning final grades, and approving all changes to the homework

system. Additionally, she was the professor that was recorded for the lecture videos

shown to the online sections. Since Laura Pyrak-Nolte was the coordinator for PHYS

24100, she did not conduct any of the focus group sessions or interviews with the

students.

Drs. Lynn Bryan and Andrew Hirsch provided the educational theory that sup-

ported this study. Neither of them were directly involved with PHYS 24100 or PHYS

24100D. It should be noted that Andrew Hirsch is one of the main instructors of

PHYS 17200 - the introductory physics class that is a prerequisite for PHYS 24100

and PHYS 24100D. I used many of the techniques that he uses in the analysis of

PHYS 17200 to assess PHYS 24100 students.

3.7 Quantitative and Qualitative Connections

The procedures outlined above were combined so that each set of results helped

shape the next assessment. The research team employed a sequential exploratory

strategy for the development and testing of CITA [110]. We conducted a phase of

qualitative data analysis followed by a phase of quantitative data analysis. The two

types of analysis built on each other and wove a detailed narrative.
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Qualitative data was collected at the end of a semester through Piazza comments,

an exit survey, and focus group transcripts. Then, I performed a small-scale quali-

tative analysis that guided the next step of CITA development as well as refine the

quantitative measures. Next, the team collected new grade data while analyzing the

grade data from the previous semester. These quantitative results were then used to

adjust the qualitative procedures for the next iteration. This procedure was repeated

four times over the course of the study.

3.8 Data Collection Procedures

CHIP leverages Purdue’s security system to protect student records. Every stu-

dent and instructor needs to sign into the system using a unique Purdue user name

and password. The support sta↵ has created a series of roles to determine the per-

missions for CHIP users (student, instructor, or administrator). Thus, there are

electronic barriers preventing students and faculty from accessing data that they do

not have a right to view.

The research group took additional measures to ensure that all of the data from

focus group sessions was protected. We used an external company called Rev.com

[111] to transcribe all of the interviews. The company only received audio data from

the sessions with no sensitive or identifying information included in the recording. All

of the recordings are stored on the Purdue University Research Repository system,

which is protected by the Purdue’s web security.

Finally, the research team only analyzed grade data after a semester had ended.

This was advantageous to the project because the team had a complete data set to

analyze (some students waited until the end of the semester to complete assignments).

This also minimized a potential conflict of interest between the goals of the researchers

and the goals of the students.
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4. OVERVIEW OF THE CITA SYSTEM

4.1 Preface

Included in the paper below are an overview of the CITA system and the results

of a study that examined: (a) who uses CITA; (b) how does the performance from

Electricity and Optics students who use CITA compare to those who do not use CITA;

and (c) what are students views of CITA. This paper is destined for publication, but

at the time of the publication of this thesis, it is in pre-print format. The manuscript

opens with an overview of the CITA system, the theoretical framework, the structure

of the tutorials, and the schedule of development from 2015 to 2016. Then, I present

a comparison of student learning between CITA users and non-CITA users from the

three versions of the CITA system in the summer 2015, fall 2015, and spring 2016

semesters.

In order to get a full picture of the e�cacy of the CITA system, students were

assessed using a variety of methods that focused on di↵erent aspects of their physics

education. First, I conducted a study to determine if certain groups of students

were using the CITA system more than others. Then, I performed an analysis of

performance on a variety of assignments between students who tended to use the

system more versus those who used the system less. This analysis included overall

course grades, exam scores, BEMA scores, and the assessment of a multi-step problem.

I supplemented this study with a qualitative overview of student comments on the

exit survey and focus group feedback.
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4.2 Introduction

Due to the increased enrollment in foundational, university level physics courses,

professors often find it di�cult to provide personal assistance to students throughout

the semester. In particular, weekly homework assignments require teachers to dedi-

cate a large amount of time and energy to answer questions from students. This might

include extra time after classes, weekly o�ce hours, or public study sessions run by

teaching assistants. When direct help from a physics faculty member is not available,

students need a learning tool that guides them through homework problems - es-

pecially in an environment where non-traditional students with diverse backgrounds

attend class [1–3].

Faculty cannot realistically be available to students at any time of the day. Thus,

our research group wished to develop a tutorial system that could provide basic

guidance to students on their homework and support their learning of physics. This

project is called the Computerized Interactive Teaching Assistant (CITA). The CITA

program strives to guide students through their homework and support students in

learning some of the nuanced problem solving techniques in physics.

This paper reports the results of the CITA system thus far. Specifically, the

research group (henceforth referred to as “we”) wishes to answer the following research

questions:

1. Who uses CITA? Do all students use CITA equally as much as their col-

leagues? Or do certain groups of students prefer using CITA over other re-

sources?

2. Does CITA improve student performance in class? Are there significant

di↵erences in performance between students who use CITA and those who do

not? Do all students benefit from the CITA system, regardless of background?

3. What are students views of CITA? Are students satisfied with system? Do

they believe that it is helpful to their learning of physics? How does it compare

to other resources?



59

4.3 Description of the Class

The development of the CITA system took place in the calculus-based, intro-

ductory E&M course at Purdue University. The second semester of introductory

physics is called Electricity and Optics (coded as PHYS 24100 or PHYS 24100D).

This course is targeted toward sophomore engineering majors who are about to start

taking concentration-specific classes. Electrical engineering majors are the one excep-

tion because they take a di↵erent introductory electromagnetism course [9]. Some of

the major topics covered in Electricity and Optics are electric charge, electromagnetic

fields, Maxwell’s equations, geometric optics, and interference e↵ects.

The “D” in PHYS 24100D signifies that a student has signed up for a distance

learning section in the fall or spring semester (i.e. an online section). This code is

not necessary during the summer semesters because the course is exclusively o↵ered

online. The content in the on-campus and online sections of the course is exactly the

same; all students, regardless of section, use Physics for Scientists and Engineers as

the primary textbook [10], take weekly recitation quizzes, complete followup lecture

quizzes, and attend the same exams. They di↵er in the fact that the online sections

watch video lectures and attend online recitations through Cisco WebEx [11] while the

on-campus sections attend lectures and recitations on campus. Additionally, online

courses take their lecture and recitation quizzes online through their online homework

system while on-campus students take their quizzes during their scheduled lectures

and recitations.

Most engineering students take PHYS 24100 in the fall semester (called the “on-

semester”). Alternatively, some engineering students choose to take the course in the

spring or summer (called the “o↵-semesters”) for a variety of reasons: co-op work

schedule, transferred schools, repeating the course, etc. Table 4.1 shows the total

enrollment in the campus and online sections of Electricity and Optics over the last

three years. During each of the fall and spring semesters, just under 10% of the total
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class is enrolled in PHYS 24100D. Summer enrollment has risen steadily since the

online version of the course was created.

Table 4.1
Enrollment in the campus and online sections of Electricity and Op-
tics from spring 2014 through summer 2016. All of the enrollment
numbers ignore dropped students.

Semester Online Campus Percent Online

Spring 2014 41 465 8.1%

Summer 2014 153 0 100.0%

Fall 2014 62 725 7.9%

Spring 2015 43 474 8.3%

Summer 2015 187 0 100.0%

Fall 2015 69 728 8.7%

Spring 2016 36 339 9.6%

Summer 2016 222 0 100.0%

Electricity and Optics is generally taken after students complete PHYS 17200

(introductory mechanics) or if a student has earned AP credit to skip that course.

PHYS 17200 is currently taught using the first semester of the Matter and Interactions

curriculum by Ruth Chabay and Bruce Sherwood [12].

4.4 Literature Review

In order to develop and analyze a successful tutorial system, one must start by

identifying the theoretical basis for how the system will teach. Thus, we started with

our fundamental learning theory and build outwards from there. A learning theory (or

learning philosophy) is a theoretical framework that describes how people capture,

process, retain, and interpret information. The learning theory that informed our
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work is constructivism; this idea has been developed over many years by a number of

researchers [112–114].

Whenever a student learns something new, he or she always has some prior knowl-

edge of the subject. This knowledge can come from their previous schooling (e.g. a

formal science class) or from other life experiences (e.g. piecing together the concept

of acceleration after riding on a roller coaster). A student’s knowledge includes both

normative and non-normative models of how the world works. Constructivism asserts

that learning is an active process by which new information is linked to a learner’s

previous models of how the world works. Learning is not a passive process [21,22,115].

Constructivist theory is framed in several ways; the most common strands of

constructivism are: cognitive constructivism, radical constructivism, and social con-

structivism. We employed a framework based on cognitive constructivism, which

asserts that the acquisition of knowledge is an adaptive process that results from

active model building by an individual learner. Therefore, learning is the result of

adjusting mental models to more accurately reflect external reality.

Constructivism is very applicable in the planning of lessons and design of tuto-

rials. A constructivist would argue that learning is the process of generating and

revising models as a person is subjected to a new experience. Thus, a student in a

physics class is actively building and revising models based on the course material

and their pre-existing models of the world. Thus, instructors should design a learning

experience that helps students generate a fundamental understanding of the material

rather than simply encourage memorization. E↵ective teachers take into considera-

tion their students’ pre-existing knowledge and plan lessons accordingly. They must

be especially interested in the errors made by students because those errors are the

points at which true learning can begin [25].

In a physics class, instructors are interested in more than just building models;

instructors want students to be able to apply those models to solve real-world prob-

lems. The modern theory of problem solving is rooted in the work of George Polya.

He described a deceptively simple strategy for solving a problem. First, one must
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fully understand the problem, including all of the qualitative concepts and assump-

tions that go along with it. Second, one must devise a plan to solve the problem.

Third, one must execute the plan in a controlled way. Finally, one must check the

final answer to ensure that it agrees with the initial understanding of the problem.

Although this seems completely trivial, most problem-solvers do not make it past the

first step [39].

Further research has been done to determine how students solve problems in

physics classes. Many of these studies make a distinction between “master” and

“novice” problem solvers (based on the pioneering work by Adriann DeGroot [116]).

A novice problem solver does not use a structured method to work through a prob-

lem. Instead, he or she works in an erratic way. This might include identifying similar

diagrams, looking through a textbook for the “right equation”, or looking for similar

solutions online [41,42]. Redish et al. identified a number of “epistemic games” that

students play to work through problems in physics [43]. For example, he described

how novice problem solvers often work backwards - skipping the initial analysis de-

scribed by Polya and instead fitting random equations to known quantities.

Conversely, master problem solvers have discipline and a well-defined strategy

while problem solving; they can carefully approach, dissect, solve, and check a prob-

lem. They start from first principles and work their way towards an answer [45].

The di↵erence between expert and novice problem solvers in physics can be framed

in the context of constructivism; experts have a thorough understanding of the laws

of physics and feel comfortable starting from first principles. Novices do not have

a good mental model of the laws of physics, so they need some sort of example by

which they can relate the material to something they already know.

It should be noted that the classifications of master and novice are not prob-

lem specific. Rather, they describe the mindset and thought process used by those

who can break down an arbitrary problem into smaller parts and those that can-

not. Introductory physics students (largely novice problem solvers) tend to solve

problems by memorization and surface features. However, they can grow into ex-
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pert problem solvers by the use of educational sca↵olding. Sca↵olding provides an

environment where students can systematically learn concepts, all the while gaining

independence [48].

The idea of educational sca↵olding is based on the work of Lev Vygotsky. He

proposed that young children can accomplish sophisticated tasks that were normally

outside of their reach with the assistance of an adult. The adult creates a series of

small steps that the child can follow with relative ease. Then, the child can connect

each step to arrive at a final solution. The area between what is known and what is

not known is called the Zone of Proximal Development (ZPD) [30, 117]. In order to

maximize learning, one must keep the child in the ZPD.

Within the context of education research, sca↵olding refers to a variety of tech-

niques that systematically move a student towards a deep understanding of the mate-

rial (as dictated by the constructivist philosophy). Teachers provide successive levels

of temporary support that students can use to structure their learning. These levels of

support are removed when the student no longer needs them. In this research project

the CITA tutorials provided the sca↵olding needed to learn the physics concepts and

problem solving skills. The content of the tutorials came from the course textbook

and notes. Mayer’s design principles of multimedia learning dictated the look and

structure of CITA [59].

4.5 Design of the CITA System

4.5.1 Structure of the Tutorials

The CITA tutorial system is built on top of CHIP (Computerized Homework in

Physics). CHIP is based on an online homework system called CPlite which was

developed at the University of Illinois in Urbana-Champaign (UIUC). It has been

under constant extension and revision since its adoption at Purdue University. The

research group decided to expand the CHIP system rather than build a new system

for a few reasons. First, we could continue to use the existing database of physics
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questions available in CHIP, including the “interactive examples” (i.e. interactive

tutorials) developed by the faculty at UIUC for CPlite. Second, we could build

on the existing CHIP infrastructure of problem presentation, feedback, scoring, and

recording of student inputs. Third, we could easily compare grade records across

semesters, both before and after CITA. Finally, there is a dedicated support sta↵

at the university that has experience handling questions and error reports by the

students.

CITA is designed to be a sequence of successively more detailed tutorials that

target students with a variety of skill levels. Our early qualitative analysis of the

student body indicated that students desire focused help right when they encounter

a problem. Otherwise, they will turn to other sources like Google or Yahoo Answers

(which will detract from the learning process). Thus, the project has two key ideas:

1. Provide students with focused feedback to any incorrect answers.

2. Give students the power to easily find and traverse a tutorial that fits their skill

level.

In order to build this tiered system, we divided up the structure of CITA into

three main parts: Shallow CITA, Immersive CITA, and Postscripts. None of these

parts are meant to work independently of the other. Rather, these three items are

built to work together to take a student through Polya’s problem solving process in

a controlled way.

An example of Shallow CITA is shown in Figure 4.1. A student is given a home-

work problem that must be solved for a grade. If the student makes an easily identifi-

able mistake on the problem (e.g. a unit error, a sign error, a simple conceptual error)

a red box will pop up and o↵er specific feedback on how he or she should correct the

mistake to proceed. Shallow CITA assumes that a student generally understands the

major concepts in the problem and is close to a correct solution. If Shallow CITA

cannot identify the mistake made by the student, it suggests that he or she attempt

an Immersive CITA tutorial and provides a button.
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Figure 4.1. A screen shot of a homework problem in the CHIP home-
work system demonstrating Shallow CITA feedback. The red box
appears after a student enters an incorrect answer that matches a
common error.

Immersive CITA was built to provide detailed tutorials about the specific concepts

and strategies in a given homework problem (see Figure 4.2). During the fall semester

of 2015, we paired step-by-step tutorials with 109 of the problems on the homework

(just under 80% of the total problem count). We decided to omit tutorials from

problems that consisted of more than three graded parts (since the multiple parts

already hinted at a path to the solution) and true/false questions. Additionally,

problems within a homework assignment that repeated similar concepts were given

truncated tutorials that outlined the solution to the problem in a few sentences and/or

referred the student to a relevant Immersive CITA tutorial in a similar problem.

During the spring semester of 2016, we updated most of the truncated tutorials

mentioned above to detailed step-by-step tutorials (even if it meant there was repeti-

tion of tutorials within a single homework assignment). Additionally, we added a filter

to 74 of the Immersive CITA tutorials (slightly over 50%). We asked students to rate

their confidence with the problem and decide if they wanted a detailed, step-by-step

tutorial or a faster, general overview of the solution. Depending on their answer, the

system would filter the student body into one path or the other. Wherever possible,

we tried to keep the detailed step-by-step tutorials the same between the fall 2015 and

spring 2016 semesters so that we could make consistent comparisons. Again, about

80% of the homework problems included some form of tutorial.

As much as possible, we wanted students to work through the solution of the

problem rather than just read a transcript outlining the solution. Thus, each step of
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Figure 4.2. A screen shot of a homework problem in the CHIP home-
work system demonstrating an Immersive CITA tutorial. The tutorial
guides students through the solution of the problem in a step by step
fashion.

an Immersive CITA tutorial consists of just a few sentences, followed by a question.

In this way, the solution is methodically completed by the student. Each Immersive

CITA tutorial followed a similar structure based on Polya’s problem solving strategy.

First, we spent a few steps describing some of the major conceptual ideas contained

in the solution (studies have shown that developing the conceptual ideas of a problem

improve the later quantitative analysis [51,52]). Next, the tutorial devised and worked

through the solution, referring to lecture slides, class notes, and previous steps of the

analysis.

Students could enter and exit an Immersive CITA tutorial at any time. Thus,

the final step of Polya’s problem solving process was separated from Immersive CITA

and placed in what we call the Postscript. This ensured that all students received

appropriate closing comments after a problem was solved such as a review of the

methods used, a description of some common pitfalls in the analysis, or the relation

of the problem to other problems in their homework.

Figure 4.3 shows the Postscript. After a student correctly answers a homework

question, the Poscript reviews Polya’s final step in the problem solving process. We

ask students to think about the work that they just completed by o↵ering simple

variations of the problem. For example, if a student determined the force on a point

charge was equal to zero, a postscript might ask what would happen if the charge

were perturbed from its current location slightly. During the spring of 2016, each of
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the postscripts included a “Real World Application” - an example where the setup,

model, or solution of the problem can be found in the realm of engineering.

Figure 4.3. A screen shot of a homework problem in the CHIP home-
work system demonstrating a Postscript. The purple box at the end
of the problem encourages students to think about their answer.

4.5.2 Schedule of Development

Development of the CITA system began in the spring semester of 2015. Over

the next year and a half, we used a design-based research approach to build, assess,

and fine-tune the tutorials (see Section “Qualitative and Quantitative Connections”).

The schedule of development is shown in Table 4.2.

Version 1 of the system was our first foray into development. During this time,

we proceeded slowly, designing the structure that would be used in the branching

system and ensuring that the tutorials worked for students. We were able to provide

CITA tutorials for approximately 50% of the homework problems (while the remaining

problems contained no help of any kind). The original “interactive examples” that

were developed by UIUC were given Shallow CITA feedback and are included in the

statistic above.

Version 2 of the system contained the step-by-step tutorials as described in the

previous section. This version of the system was designed to serve two purposes.

First, it was an intermediary step between the initial and final system so that we

could break the development into two roughly equal parts. Second, it allowed us to

run an analysis of a more traditional tutorial system in order to get some baseline
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data on how it works. During the fall semester of 2015, there was a problem in

development, so the online courses were given Version 1 of the system while the

on-campus classes received Version 2. This has been taken into account within the

analysis.

Version 3 of the system consists of problems that o↵er the choice between two

di↵erent levels of sca↵olding (as described in the previous sections). This is the final

goal of this particular research project. Of course, future researchers will take the

system in new directions.

Table 4.2
The schedule of development of the CITA system. In the spring
semester of 2015 and prior, the CHIP homework system included 29
“interactive examples” that were originally developed by the faculty
at UIUC (out of 139 homework problems total). These 29 problems
were paired with step-by-step tutorials and made up approximately
21% of the homework problems seen by students.

Semester Section Version

Spring 2014 Campus None

Online None

Summer 2014 Online None

Fall 2014 Campus None

Online None

Spring 2015 Campus None

Online None

Summer 2015 Online 1

Fall 2015 Campus 2

Online 1

Spring 2016 Campus 3

Online 3

Summer 2016 Online 3
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4.6 Methods of Analysis

In this study we employed mixed-methods techniques to determine how the dif-

ferent tutorial structures a↵ect students’ performance in each semester. We outline

our procedures below.

4.6.1 Quantitative Procedures

For the quantitative analysis, we used linear models, ANOVA analysis, and chi-

squared tests where appropriate. The traditional cuto↵ of p = 0.05 was used for

tests of statistical significance along with Cohen’s guidelines for interpreting e↵ect

sizes [95]. Measures of e↵ect size included Cramer’s V, eta squared, and R

2 (where

appropriate) [97, 98].

4.6.2 Quantitative Data Sources

Exam Scores

Due to the inclusion of the tutorials, homework scores predictably increased be-

tween spring 2015 (pre-CITA) and spring 2016 (post-CITA). However, these scores

do not tell us how students perform when the sca↵olding is removed. Thus, we seeded

the midterm and final exams with questions from previous semesters so that we could

determine if the sca↵olding improved student problem solving skills. Our control

groups for the exams were the spring 2014, summer 2014, fall 2014, and spring 2015

semesters. These classes were compared to the summer 2015, fall 2015, spring 2016,

and summer 2016 semesters. Generally, a single control semester was compared to a

single test semester; for a few problems, we could compare three semesters instead of

two.
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Brief Electricity and Magnetism Assessment

The BEMA was developed by Ruth Chabay, Bruce Sherwood, and Fred Reif

in 1997 [100]. Although it was originally designed to measure student retention of

electricity and magnetism concepts three months to five semesters after completing

an introductory electricity and magnetism course, it is now often used to analyze

student learning between the beginning and end of the semester. It is a useful tool to

assess the understanding of electricity and magnetism concepts that are covered in a

college-level calculus-based introductory physics course.

The BEMA is a multiple choice test consisting of qualitative questions and a few

simple calculations. Lin Ding et al. performed an analysis of the BEMA, showing that

it is a reliable assessment tool for introductory electricity and magnetism courses [101,

102]. Thus, we will use the BEMA exam to assess student conceptual understanding

of introductory electromagnetism topics. Our control group for the BEMA is the

spring 2015 semester; this class will be compared to the summer 2015, fall 2015,

spring 2016, and summer 2016 semesters.

Multi-Step Problem

Chabay and Sherwood demonstrated a technique to analyze how well students can

solve a non-trivial, multi-step problem [103,104]. They gave their students a complex

problem and tracked how far students made it into the analysis before getting stuck.

Then, they plotted the curves for how many students made it to certain points in the

problem before getting stuck.

We administered a non-trivial problem to on-campus students during their recita-

tions and graded their responses with a standardized rubric (see Appendix 4.12).

Students were first given a 20 minute review of the major topics in the problem

by their teaching assistant. Then, the problem was given under test-like conditions

(i.e. no books, no notes, no collaboration with others). Once again, this allowed us

to assess how students fared without the sca↵olding provided by CITA. The control
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group for this analysis was the spring 2015 on-campus students while the experimental

groups were the fall 2015 and spring 2016 on-campus students.

Student Exit Survey

Capping o↵ our quantitative analysis was an online survey (based on a Likert

Scale) given to students at the end of the semester. It asked about their opinions of the

CITA system as well as how they used it. This survey was required for a recitation quiz

grade (as mandated by the internal review board at Purdue University). However,

students had the option to select “I Prefer Not to Disclose” for each question. The

purpose of this survey was to learn about how students felt about the CITA system in

terms of e↵ectiveness, workload, and communication. See Appendix 4.13 for a copy

of the student exit survey.

4.6.3 Qualitative Procedures

Strategy of Inquiry

The qualitative part of this study analyzed student opinions about the CITA

program as well as their general study habits. Qualitative data came from three main

sources; first, the final question of the exit survey provided an open space for students

to make comments on the CITA system. Next, we analyzed student comments on the

Piazza help system which is used for online o�ce hours. Finally, we o↵ered students

the opportunity to participate in a focus group session at the end of the semester to

share some of their opinions. After the second exam (when we started on the AC

circuits unit) we sent an email out to students asking for volunteers for a one hour

focus group session. The sessions took place at the student’s convenience in the two

weeks before their final exam. After each session, we rewarded participants with a

ten dollar gift card.
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Our strategy for analyzing the transcripts from the three sources above consisted

of a three-cycle coding plan (Saldana’s reference provides the descriptions for each

type of code listed below [105]). In the first cycle, each of the transcripts was analyzed

separately. It consisted of rounds of attribute coding and descriptive coding in order

to get a sense of the recurring comments made by students. The second cycle also

treated the transcripts separately. It consisted of rounds of elaborative coding and

pattern coding that were used to synthesize the results of the first cycle and identify

the major themes in the transcripts. The final cycle of coding pooled all of the sources

together. It consisted of evaluation coding and longitudinal coding to identify how

comments compared between semesters.

Analysis Procedures

Once the research team compiled the transcripts from the focus group sessions,

Piazza comments, and written survey answers, we carefully parsed the data to find

patterns. We used inductive analysis and creative synthesis as the analysis and re-

porting strategy. Patton describes this strategy as starting from the specific details

of the inquiry, slowly finding patterns in the data until a broad theory can be syn-

thesized [107]. It allowed us to mesh together the opinions of the participants in the

focus groups in a controlled way.

As described in the previous section, our qualitative analysis used a three cycle

system. First, we performed a coding of the transcripts looking for specific key words

and phrases that highlight student opinions. Next, we compiled these keywords into

categories that described student opinions within a semester. Finally, we compared

student opinions between the semesters.

Roles of the Researchers

In qualitative studies a researcher must acknowledge that his or her presence in the

experiment may alter the findings. Thus, researchers must take time beforehand to
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determine how their presence might influence the data as well as how to minimize this

artifact [108]. In this study the principle investigators were Mr. Cyrus Vandrevala,

Dr. Lynn Bryan, Dr. Andrew Hirsch, Dr. Hisao Nakanishi, and Dr. Laura Pyrak-

Nolte.

Mr. Cyrus Vandrevala has been a teaching assistant for PHYS 24100 and PHYS

24100D since the fall semester of 2011. Additionally, he has coordinated the course

during summer sessions and helped develop the online sections. This included editing

course videos and setting up the online Piazza classroom [109]. During the study,

he held a part-time assignment answering questions on Piazza so that students never

came face-to-face with him. Thus, students were not interviewed by any faculty

member who assigned them a grade in the class.

Dr. Hisao Nakanishi is the “father” of CHIP at Purdue University because he

is one of the primary developers of the system. Due to his experience with CHIP,

Hisao Nakanishi developed and implemented the underlying structure upon which the

branching tutorials were built. Although he is not directly a�liated with PHYS 24100

or PHYS 24100D, he addressed student questions sent through the CHIP help system

that pertain to errors in the problems, bugs in the code base, or administration issues.

Additionally, he helped review all of the content that was uploaded to the website

including: homework problems, exams, quizzes, tutorials, surveys, and the BEMA.

Dr. Laura Pyrak-Nolte has taught PHYS 24100 and PHYS 24100D since 2005 and

coordinated the course since fall 2011. As the course coordinator, she is in charge of

creating the curriculum for the class, designing the exams, assigning final grades, and

approving all new changes to the homework system. Additionally, she is the lecturer

that is seen and heard in the online lecture videos shown to the PHYS 24100D class.

Due to the fact that Laura Pyrak-Nolte is the coordinator for the class, she did not

conduct any of the focus group sessions or interviews with the students as this would

put unnecessary pressure on the participants.

Drs. Lynn Bryan and Andrew Hirsch provided much of the educational theory

that supports this study. Neither were directly involved with PHYS 24100 or PHYS
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24100D. It should be noted that Andrew Hirsch is one of the main instructors of

PHYS 17200 - the introductory physics class that is a prerequisite for PHYS 24100

and PHYS 24100D.

4.6.4 Focus Group Sessions

Focus group sessions are ideal for this study for a variety of reasons. First, they

are flexible; they can be used for exploratory, explanatory, and evaluative research.

Focus groups create a large volume of data with a range of viewpoints from all of the

participants. Furthermore, a skilled moderator can ensure that this data has limited

researcher influence. In a one-on-one interview, the interviewer cannot help but insert

some of his or her own views into the discussion due to the questions asked. However,

a focus group can “veer o↵ topic”. Since the members of a group can discuss what

they feel is important, they can illuminate important points that the moderator might

miss [106].

We used purposeful sampling as our design strategy. Patton defines this strategy

as one where the researcher chooses specific participants for the study in order to

gain insight about a specific phenomenon. He describes how cases are selected because

they are “information rich” [107]. When students signed up to volunteer for our focus

group sessions, we asked them what their overall impression of the homework system

was - “Generally Positive”, “Generally Negative”, or “Neutral”. We then divided

the participants into groups of four based on their reported overall impression of the

system and whether they were in an online or on-campus section. We wanted to

match similar opinions beforehand so that students were comfortable sharing their

opinions - whether they were positive or negative.
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4.7 Results

4.7.1 Usage of CITA

Students were not required to use any of the tutorials or answer any of the follow-

up questions in the homework system. Rather, they were given the recommendation

through Shallow CITA to traverse the full tutorial if the system could not recognize

their answer. Thus, we start o↵ with an analysis of who used the system as a function

of demographic information. In each case, we divided the classes into online and on-

campus sections as mentioned above.

Usage by Semester

During each semester, we collected two types of usage data. First, we counted the

actual number of clicks that students made within the homework problems. Second,

we asked students to report their usage of CITA through an exit survey at the end of

the semester (see Appendix 4.13). We wanted to see if student interaction with the

system increased as the system grew in sophistication.

Figure 4.4 shows histograms of the total number of clicks recorded for all homework

problems in each semester by each student. These clicks include attempts at the

graded portion of the problem as well as steps within the Immersive CITA tutorials.

We might expect that as more problems are paired with tutorials, the average number

of clicks recorded in a semester will increase. ANOVA analysis shows that the change

in the mean number of clicks in the on-campus sections is statistically significant with

a small e↵ect size (eta squared) of 0.022. However, the change in the mean number

of clicks in the online sections is not statistically significant.

Surprisingly, the number of clicks in the spring 2016 semester was not appreciably

di↵erent from the fall 2015 semester in the on-campus sections. Additionally, we

must accept the null hypothesis that the change in the mean number of clicks was

not statistically significant in the online sections of Electricity and Optics.
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Figure 4.4. The growth in the number of clicks between the di↵erent
semesters of PHYS 24100. The x-axes give the number of clicks while
the y-axes give the number of students. There were 138 homework
questions given in each semester.

Further analysis of student answers on the exit survey confirms this result. Both

questions one and two of the exit survey showed no statistically significant di↵erence in

mean score between the summer 2015, fall 2015, and spring 2016 semesters. Students

were using the CITA system, but there was little to no growth in the use of the system

between the fall 2015 and spring 2016 semesters.

It should be noted that the average number of clicks between the online and on-

campus sections within a semester is very di↵erent. On-campus students in each

semester tend to use the tutorial system more than their online counterparts with a

medium e↵ect size (eta squared) of 0.057 in the fall of 2015 and 0.045 in the spring

of 2016.

Usage by Gender

A few studies have shown that there is a di↵erence in the way that males and

females use online homework systems and social networks [118–120]. Thus, we studied
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the usage of CITA between the two groups. Table 4.3 shows the p-values for the

ANOVA analysis comparing the di↵erence in the mean number of clicks between

males and females in each semester and each section. None of the sections or semesters

show a statistically significant di↵erence between males and females in recorded the

number of clicks.

Table 4.3
P-values of the ANOVA analysis of the number of clicks between males
and females in di↵erent sections and semesters.

Campus Sections Online Sections

Summer 2015 NA 0.56

Fall 2015 0.06 0.65

Spring 2016 0.80 0.56

Table 4.4 shows the p-values for the chi-squared tests comparing the di↵erence

in the answers by males and females on the first question of the exit survey in each

semester and each section. Again, none of the sections or semesters show a statistically

significant di↵erence between males and females in the number of clicks.

Table 4.4
P-values of the chi-squared analysis of the number of clicks between
males and females in di↵erent sections and semesters.

Campus Sections Online Sections

Summer 2015 NA 0.85

Fall 2015 0.19 0.70

Spring 2016 0.08 0.51

Although a few of the on-campus sections revealed p-values close to the 0.05

cuto↵, we cannot reject the null hypothesis that the male and female populations are
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di↵erent. Unlike the results of the studies from above, our male and female student

populations seem to engage with the CITA system approximately equally.

Usage by Previous Performance

We wanted to see if previous performance in an introductory physics class a↵ected

student’s use of the CITA system. Table 4.5 shows the responses to question one of the

exit survey as a function of previous grade in PHYS 17200 and semester. Chi squared

tests of the data show that there were no statistically significant di↵erences in the

self-reported use of CITA in the summer 2015 and spring 2016 semesters. However,

the fall 2015 semester showed a statistically significant di↵erence in the populations

(when the D grade data was omitted) with p = 0.01 and an e↵ect size (Cramer’s V)

of 0.14.

In general, students who scored an A or a B in PHYS 17200 tended to use the

tutorial more during the fall 2015 semester. We also filtered the student populations

by self-reported previous performance in their introductory calculus class, but found

no statistically significant di↵erences in the grade levels. With the exception of the

fall 2015 break by PHYS 17200 grade levels, students report using the system at the

same level, no matter their skill level in physics and calculus.

Preference for Using CITA

Our qualitative analysis adds depth to the results from above. When asked what

resources they use to complete the homework, we received a wealth of responses

from the participants. Each student adopted a set of tools that helped him or her

finish the homework as quickly and e�ciently as possible. Although every student

is di↵erent, there are some strong patterns in the tools that are used by the class.

Online sources are extremely popular, and the most commonly cited ones are Chegg,

Yahoo! Answers, Hyperphysics, and Google. Some students do attend o�ce hours,

but the vast majority do not, usually due to time constraints. Students also reference
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Table 4.5
Exit survey results of students in PHYS 24100, broken down by
semester and PHYS 17200 grade. The question stated “I used the
interactive walkthroughs to help me with homework problems”.

Summer 2015

Grade Strongly Agree Agree Neutral Disagree Strongly Disagree

A 4 2 2 0 0

B 12 15 8 3 1

C 6 20 9 1 2

D 1 3 1 1 0

Fall 2015

Grade Strongly Agree Agree Neutral Disagree Strongly Disagree

A 56 53 11 7 2

B 89 87 28 10 5

C 38 37 21 16 5

D 0 0 0 0 0

Spring 2016

Grade Strongly Agree Agree Neutral Disagree Strongly Disagree

A 20 16 3 2 1

B 48 28 9 5 2

C 29 19 10 6 5

D 0 0 0 0 0

the textbook quite often. However, they describe using the textbook as a source of

worked examples.

Students certainly mentioned the CITA tutorials in their list of resources. Some

ranked the tutorials very highly, while others only referred to them as a last resort.

In all of these cases, we found that the primary goal of a student in PHYS 24100 is
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to get the best grade on the homework as e�ciently as possible. This means that

any resource that is used must be focused and relevant to the individual student’s

problem at the given point in time. If the resource is not focused, students can easily

find another source on the internet.

4.7.2 Student Improvement

Once we determined who was using the CITA system, we studied how the CITA

tutorials a↵ected students’ understanding of physics and problem solving skills. We

analyzed a variety of items including paired exam questions, the BEMA concept

inventory, and a standardized multi-step problem. The results are shown below.

Overall Course Grades

One of the first steps in our analysis was to see if the CITA tutorials were helping

all students, regardless of their initial study habits or experience. For example, what

if the tutorials were showing artificially high results just because high-performing

students were using them while low-performing students were largely ignoring them?

Early in the semester, we asked students to report their previous experiences in

calculus and physics, as well as provide some demographic information (all students

had the option to answer with “I Prefer Not to Disclose” should they choose). From

this data, we divided the class into groups based on prior physics experience (Figure

4.5) and prior calculus experience (Figure 4.6) and plotted their overall class grade

versus the number of clicks that they took on the CITA system. Due to the fact

that we had very low number statistics in the online sections of PHYS 24100 during

the fall 2015 and spring 2016 semesters, we combined the campus and online data

points into one plot. The data from the summer of 2015 showed no clear trends and

contained very large standard error bars. Thus, it is not included in the results below.

We see that students who used the CITA tutorials tended to have higher scores

than their colleagues who did not. However, the improvement in course grades evened
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out after a certain number of clicks. Students who received an A in PHYS 17200

showed the least improvement from the tutorials, with the graph even taking a small

downturn in the fall of 2015. Overall, the tutorials are a helpful tool for the students,

but they can only supplement instruction.

We also cut the data sets by gender (Figure 4.7), domestic vs. foreign students

(Figure 4.8), and section (Figure 4.9). With very few exceptions, we found that

students in each group showed higher course performance with increased use of the

CITA tutorials. This means that all students, regardless of previous physics experi-

ence, gender, or nationality do see some benefit from using the tutorials. One again,

we see that students derive benefit from the tutorials up to a certain number of clicks.

At that point, the supplementary instruction from the tutorials leads to very small

learning gains.

The data from the fall semester can be fit to a linear model reasonably well.

However, we found that the spring semester did not follow a linear growth, but

instead tapered o↵ after a certain number of clicks.

We then analyzed student performance in the course as a function of reported

use of CITA. Figure 4.10 shows student grades in PHYS 24100 as a function of

reported use of CITA. We see that in this particular case, the range of values between

the di↵erent answers is very large. Thus, reporting that one uses CITA is not as

indicative of performance as actually recording more clicks within the system.

Exam Grades

Although we were not able to administer exactly the same exams to each class

in each semester, we made comparisons in two ways. First, we compared exam

grades within a semester to see the di↵erence in scores between students who used

CITA versus those who did not use CITA as much. Second, we selected a few exam

problems to appear on multiple final exams so that students could be compared across

semesters. These problems covered topics from magnetic induction, AC circuits,
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properties of light, geometric optics, mirrors, and interference e↵ects. Chi squared

tests were used to compare the correct and incorrect scores from a given section

(online and campus) between semesters. Comparisons were done between the CITA

semesters (fall 2015 vs. spring 2016) as well as between pre-CITA and post-CITA

semesters.

Table 4.6 shows the improvement of scores on test specific problems between fall

2015 and spring 2016. In the campus sections, two of the five tested questions showed

improvement with a small e↵ect size. The double slit question showed improvement,

but it was just shy of the p = 0.05 cuto↵ to be considered statistically significant.

The online sections showed no statistically significant growth from fall 2015 to spring

2016.
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Figure 4.5. Overall course grade as a function of number of clicks
within the CITA tutorial system. The students are binned by their
previous grade in PHYS 17200 (i.e. introductory mechanics).
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Figure 4.6. Overall course grade as a function of number of clicks
within the CITA tutorial system. The students are binned by their
previous grade in introductory calculus (i.e. Calculus 1).
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Figure 4.7. Overall course grade in PHYS 24100 as a function of
number of clicks within the CITA tutorial system. The students are
binned by gender.
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Figure 4.8. Overall course grade in PHYS 24100 as a function of
number of clicks within the CITA tutorial system. The students are
binned by domestic and foreign status.
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Figure 4.9. Overall course grade in PHYS 24100 as a function of
number of clicks within the CITA tutorial system. The students are
binned by their section (i.e. online vs. on-campus).
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The comparison of questions between pre-CITA and CITA semesters was not

as conclusive. Although we did see a greater percent of students answer the exam

questions correctly in CITA classes, none of the e↵ects were statistically significant.

This is in part due to small enrollments in the online sections in the fall 2015 and

spring 2016 semesters, as well as the relatively low di�culty of the problems used.

Table 4.7 shows the analysis of the questions between pre-CITA and CITA semesters.
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Finally, we performed an analysis of exam grades within a semester versus student

use of CITA. Figure 4.11 gives the total of the two midterm exams as a function of

number of clicks on CITA. Again, we see that students who recorded more clicks in

CITA generally performed better on the exams than their colleagues who recorded

fewer clicks.

BEMA Concept Inventory

We administered the BEMA concept inventory to students at the beginning of

the semester and after their second exam (i.e. after they had learned about magnetic

induction and were moving onto AC circuits). From the raw score data, we calculated

the gain of each student and compared the gains across the semesters. The gain is

defined as the student’s improvement in score over the total possible improvement for

that student. Since the BEMA contains 31 items and we assigned each item an equal

score, the normalized gain (G) becomes:

G =
post� pre

31� pre

(4.1)

where post and pre correspond to a students’ post-test and pre-test scores. Similar

to previous sections, we compared students’ gains on the BEMA as a function of

their actual use of the system and their reported use of the system. Figure 4.12 plots

students’ gains on the BEMA as a function of the number of clicks that they made

on the system. The fall 2015 semester fits the linear model (p = 1.48e-5), while the

spring 2016 does not fit as well due to the larger variance of the data points (p =

0.203). Although we cannot make any claims about the spring of 2016, we can say

that an increasing number of clicks in the fall 2015 semester generally corresponds to

an increasing gain on the BEMA.

Due to low numbers of students who took both the pre-test and post-test in the

online sections in fall 2015 and spring 2016, we were not able to create reliable plots

of the online sections. However, we can visualize the online sections in the summer
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Figure 4.11. Total exam grade as a function of number of clicks within CITA.
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Figure 4.12. Student gains on the BEMA as a function of reported
CITA use. The students shown in these plots are all in on-campus
sections of PHYS 24100.

of 2015. Figure 4.13 plots the gain as a function of clicks in the summer of 2015.

The plot on the left shows the unfiltered gains of all of the students in the semester.

On first glance, this plot makes it look like the CITA tutorials have utterly failed

students. However, it should be noted that we had a large problem with cheating on

the online BEMA that semester, thus artificially inflating the scores. The plot on the

right filters out pre-test and post-test scores above 15, thus showing a more accurate

view of the class.

Next we compare BEMA gains to students’ reported use of the CITA system.

We performed an ANOVA analysis of the student gains, divided into groups by their

answer to question one on the exit survey. Table 4.8 shows the results of the ANOVA

analysis and Figure 4.14 shows a box plot of normalized gains when students are

divided by their reported use of the CITA system. During the spring of 2016, we found

that there was a statistically significant di↵erence in BEMA gains when students

reported greater use of the CITA system (“Strongly Agree”) as compared to those

that reported little use (“Strongly Disagree”). However, it should be noted that the

range of the “Strongly Agree” group is much larger than the range of the “Strongly
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Figure 4.13. Student gains on the BEMA as a function of reported
CITA use. The plot on the left shows the unfiltered online gains in the
summer of 2015. The plot on the right filters out potential cheaters,
thus giving a more accurate representation of the system.

Disagree” group, suggesting that a many students report using the system a lot, but

their actual use does vary significantly.
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Figure 4.14. Student gains on the BEMA as a function of reported
CITA use in the campus section of spring 2016.

Overall, we are seeing small gains for students in the campus sections of PHYS

24100 that use the CITA system. However, their online colleagues are not showing

the same gains.

Multi-Step Problem

Our final analysis of student gains comes from the multi-step problem that we

administered to the on-campus sections of PHYS 24100 during the spring 2015, fall

2015, and spring 2016 semesters. The breakdown of scores on the multi-step problem

are shown in Table 4.9. Notice that the spring 2016 semester only has a total sample

size of 198. This is because one of the teaching assistants accidentally kept a slide of

equations up during the analysis, so the scores in his section were artificially inflated.

Thus, we eliminated his sections from the analysis.

A chi-squared test of the data above yields a p-value of 0.001 and an e↵ect size

(Cramer’s V) of 0.117. We are seeing distinct improvements in student’s scores from

semester to semester.

Additionally, we checked to see if students using CITA within a semester scored

higher, on average, than students who did not use CITA during the semester. Surpris-
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Table 4.9
Scores on the multi-step problem in each semester when it was ad-
ministered, along with the average score and standard deviation of
the semester.

Score Spring 2015 Fall 2015 Spring 2016

0 42 57 16

1 32 49 17

2 73 94 15

3 126 200 71

4 73 171 53

5 23 47 17

6 2 12 9

Mean 2.628 2.902 2.9471

Standard Deviation 1.386 1.418 1.3595

ingly, there was not a strong linear correlation between the multi-step problem grade

and the number of clicks in the CITA tutorials in any of the semesters. However,

there was a significant di↵erence between student’s reported use of CITA. Table 4.10

shows the results of the chi-squared tests comparing students with di↵erent answers

on question one of the exit survey.

Table 4.10
Scores on the multi-step problem for each semester were divided into
groups by responses on question one of the survey. A chi-squared test
was used to determine if the di↵erence in the distribution of reported
uses was statistically significant.

Semester Chi Squared P-Value Cramer’s V

Fall 2015 45.6616 0.00486 0.14760

Spring 2016 41.6404 0.01415 0.24530
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The spring semester of 2016 shows a large di↵erence in scores between students

who report using the CITA tutorials and those who do not. Those who report using

the tutorials more tend to perform better on the problem.

4.7.3 Student Opinions

The final part of the analysis of the CITA system involves a mixed-method study

of student opinions about the system as well as how they used it during the semesters.

First, we present the statistically significant results of the remaining questions on the

exit survey. Then, we elaborate on the accompanying qualitative analysis of the

comments and focus group sessions.

Exit Survey

Overall, student feedback on the exit survey was mostly positive. With each

passing semester, students tended to use the CITA system more and more (question

one). This was largely due to the fact that the system became more focused and

sophisticated as time went on. Additionally, all of the semesters generally liked the

overall system (question nine). The spring 2016 version of the system was more

positively received than the summer 2015 version, which was more positively received

than the fall 2015 version.

As we might have guessed from the analysis above, students in the on-campus sec-

tion of the fall 2015 semester commented that they used the interactive walkthroughs

more than the online sections. However, there was no statistically significant di↵er-

ence in the reported use of the tutorials in the summer 2015 or spring 2016 semesters.

It is worth noting that this is a seemingly contradictory result when compared with

the results from above. However, this result might be due to students over-estimating

how much they use the system as well as low number statistics in the online sections.

Figure 4.15 gives a follow-up comparison of the maximum number of nodes visited

by a student in a CITA tutorial in the spring 2016 semester. A node is defined as
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a location in a homework problem where students click the “Enter” button; for ex-

ample, this can occur after they submit an answer to the main question, after they

complete a step in the tutorial, or after they read through a passage of text. We see

that online students visit far fewer nodes than their on-campus colleagues.

Figure 4.15. A comparison of the maximum number of nodes taken
by a student within a CITA tutorial on a question-by-question basis.
Each point in the graph represents a single question on the homework,
while the x- and y-axes represent the maximum number of nodes
visited by a student in the online and on-campus sections of PHYS
24100. The blue line in the diagram marks the spot where online and
on-campus sections use the tutorials equally.

Students in PHYS 24100 and 24100D are allowed to work together on the home-

work. We provide Piazza classrooms for students to use should they want to ask

questions but are not able to make our o�ce hours. Overall, when students were

asked if the online tutorial system improved communication with their colleagues,

students were mostly neutral or slightly disagreed. There was an interesting divi-

sion between gender and nationality. Female students generally disagreed more when

asked if communication improved while males were more neutral. However, inter-

national students, on average, answered that the tutorials increased communication

between them and their colleagues.

Generally speaking, students did not use the followup questions that were included

at the end of the problem. Although many students commented that the followup

questions helped them learn the material, they rarely used them afterwards. However,
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foreign students tended to complete the followup questions more than their on-campus

colleagues. Thus, foreign students were far less likely to treat the followup questions

as ”optional” in all three semesters.

Qualitative Results

Our qualitative analysis complements our quantitative results very well. Overall,

students were very happy with the work done on the CITA system. Most of the

comments in the exit survey were positive in the semesters when it was administered

(summer 2015, fall 2015, and spring 2016). In fact, we noticed that students used

their previous online homework experience as a baseline to judge CITA on CHIP.

One student commented that he likes the CITA tutorials better than other online

homework systems that he has used in the past:

The online homework system we used seems to be better than many of

the other systems I have tried throughout my education. Not only is the

error tolerance for answers great, but the homework system tries to help

you through each problem. (Larry E., Summer 2015)

This was not an isolated case. Many students commented that they like the CITA

format of tutorials more than other online systems and found the content generally

helpful. We actually had a number of students comment that they liked CITA on

CHIP better than WebAssign (the system that was used in PHYS 17200):

The interactive walkthroughs are a very useful tool and why I like CHIP

better than WebAssign. (Burt H., Spring 2016)

Furthermore, students constantly encouraged us to create tutorials for questions

that were not covered under the current version of CHIP in their respective semester.

Since a small group of researchers and professors was developing the tutorials, we

could not create 138 new tutorials for 138 problems in every semester due to the time

constraint. Additionally, it was not appropriate to design tutorials for some of the
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conceptual questions (e.g. true/false questions). Thus, we chose the iterative design

process to provide constant improvements to the system as described earlier in the

paper.

Although these may have been pragmatic reasons, this caused some cognitive

dissonance for some. Many students lamented the fact that some of the questions did

not have tutorials in the summer and fall semesters of 2015. We found from focus

group interviews that during these times, students often fell back on online sources

like Google and Yahoo Answers. It appears that if we want to include questions in

the CITA system that do not include any sort of tutorial, we need to take special

precautions to prevent cheating; for example, we might need to include a “primer”

to prepare students for the analysis or change the phrasing of the question in each

semester.

Although the majority of the class liked the CITA system, our tutorials were not

always positively received. Some students felt like the focused feedback was not aimed

at their skill level. This student in the fall 2015 semester commented that certain

tutorials did not go deep enough into the material; these tutorials were updated for

the spring 2016 semester.

I felt very frustrated a lot of the times working with the online homework,

just because, I always felt like there was a lack of feedback that it gave

me. I would always ask help from my peers on doing the homework, but

most of them were struggling just as much as me. (Carl A., Fall 2015)

The sca↵olding that was provided in the fall 2015 semester was not su�cient for

this particular student and many others. Due to the fact that we did not accurately

predict his skill level and sca↵old accordingly, the student did not find our system

particularly helpful.

The number of negative comments about the system seems to decrease from

semester to semester. This leads us to believe that we are becoming more e↵ec-

tive at identifying student errors and filtering responses in order to guide students
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to the correct style of sca↵olding. The spring semester of 2016, with its additional

level of filtering, was particularly e↵ective at judging student skill levels and pro-

viding feedback accordingly in the campus sections. However, the system is by no

means perfect. More work is needed to identify and aid students who either have not

attended lecture or who did not understand the lesson.

Another major strengths of CHIP was its cost. We were actually very surprised

at how many students commented that they liked the system, not only because it

was useful, but also because it did not cost them anything extra. Although it is

unreasonable for a company to provide a service for free, it is important to note that

college students do have a heavy financial burden placed upon them. Many students

feel like it is not worth it to buy a book or a subscription to a system which will be

used for four months and then abandoned.

Students repeatedly provided two suggestions for improving the CITA system.

The first is to improve the overall coherence of the PHYS 24100 course. Even though

we are pulling CITA examples from the notes and textbook, there still seems to be a

huge gap between learning the concepts and applying them in actual problems. One

student below sums this up in his comments on the course as a whole:

Honestly, this course was terribly frustrating, as the majority of the home-

work questions did not line up with material taught in lecture, as the lec-

tures were either entirely conceptual, or the examples were only for one

very specific situation, neither of which was in the homework. (Andres

M., Fall 2015)

Another student is slightly more positive about the situation, but still finds lec-

tures to be rather unhelpful when compared with the textbook and tutorials.

The homework system used in this course was very helpful, especially the

interactive examples. However, lecture just made me very confused and I

rarely learned anything from lecture. I learned the most from reading the
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book and the interactive examples on the homework. (Sean B., Spring

2016)

Many students found that the questions on the homework were much more di�-

cult than the questions on the exam, not necessarily because the solution was more

di�cult, but rather because the homework questions asked for more detailed deriva-

tions while the exam questions asked for more general, conceptual understanding of

the material. This suggests that a concept transfer study might yield very interesting

results in future iterations of the system.

Moreover, as the CITA system became more sophisticated, students demanded

that the remaining components of the course follow suit. Although there were some

steps that we could take to cohere the homework and the other parts of the course (e.g.

cite specific course notes, refer students to specific passages of the textbook, etc.), we

had to be careful not to confuse the teaching of the material with sca↵olding within

a problem. Students were expected to have learned the material before attempting

the homework. Although specific examples are useful to gain a better understanding

of a concept, one must understand both the theory and application.

Finally, in the exit survey and focus group sessions, students often commented

about time constraints. Engineering students have a di�cult course load, and physics

is just one of many courses taken. Many students, particularly in the fall 2015

semester, commented that the interactive walkthroughs were very extensive (posi-

tive), but very time consuming (negative). Some students commented that it was

frustrating to go through a lengthy tutorial, only to find that a simple assumption

made earlier in the problem was the culprit. One of the common suggestions that

students o↵ered to fix this problem was to decrease the length of the tutorial - skip

the “worthless” setup of the problem and get to the relevant equations.

We did not take this approach when trying to tackle the problem of length. In-

stead, in the spring of 2016, we added the filter, asking students where they were in

the solution of the problem. Based on their answer, they would either get a long,
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detailed tutorial or a short, general tutorial. Although the comments about time and

e�ciency did not disappear completely, we did see positive changes:

The interactive homework system was extremely useful in both teaching

the material and helping me finish the homework in a timely and e�cient

manner. (Collin O., Spring 2016)

4.8 Discussion

The results indicate that a variety of students used the CITA tutorials. This

included di↵erent genders, nationalities, and previous skill-levels in physics. Thus,

CITA use was not restricted to any one individual group. We did notice that on-

campus students tended to use the CITA tutorials more than their online counter-

parts. Further analysis is needed to determine why this di↵erence exists between the

sections.

The results also indicate that CITA improves student performance in PHYS 24100

and PHYS 24100D. Students who navigated the CITA tutorials tended to have higher

course grades, exam scores, and multi-step problem scores than similar students who

did so less frequently. These results varied between a small and medium e↵ect size.

However, the improvement was not a simple linear relationship between clicks and

gain; rather, the increase in scores leveled out after a certain number of clicks.

Our study suggests that students are motivated by the desire to e�ciently solve

the homework rather than learn physics problem solving skills. In fact, some students

commented on an often used (but very ine↵ective) learning strategy - complete the

homework as fast as possible and then learn the material when studying for the

exam. Students also comment that online sources like Google and Yahoo Answers

are common resources while they are doing the homework.

We certainly cannot claim to have solved this problem. Students are still mo-

tivated by good grades and completing the assignment. However, we did find that

the focused feedback o↵ered by Shallow CITA, Immersive CITA, and Postscripts im-
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proved student performance on a number of assessments. The first version of CITA

seemed to do very little for students. However, versions two and three did show

statistically significant growth in learning and problem solving.

Prior to the development of the CITA system, we noticed that online students

tended to under-perform their on-campus colleagues (in some cases by almost half

a letter grade). We found that those who used the system improved against those

who did not. However, online sections tended to use the system much less than their

on-campus counterparts - even though they might benefit from the tutorials more.

Figure 4.15 is a particularly vivid illustration of this fact. In the spring semester

of 2016, online students were traversing only half or a third of the number of tutorial

nodes that their on-campus counterparts traversed. This suggests that they either

used the “fast track” more than the on-campus sections or they exited tutorials early.

Either way, work is needed to tailor the tutorials to fit the online classes more e↵ec-

tively. This might involve conducting additional focus group sessions to determine

how students specifically in the online sections use the tutorials.

We found that the followup questions (i.e. the Postscripts) were extremely under-

used in the CITA system. Postscripts outlined the final step of Polya’s problem

solving framework and reviewed the major concepts that were used in the problem.

However, since students were trying to finish the homework assignments as quickly

as possible, the vast majority of the class skipped this final moment of reflection.

Future versions of CITA need to enforce this step of the problem solving process. We

might consider making the Postscript worth some small number of points to encourage

students participation.

It should be noted that the followup questions were answered more often by in-

ternational students than by domestic students, and the international students com-

mented that the tutorials increased communication between them and their class-

mates. We speculate that successful international students may have a stronger aca-

demic work ethic that their domestic counterparts. Thus, they might be more inclined

to complete optional parts of the problem, even though they are not for credit. In
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addition, English may be a second language to many international students; thus,

they are more inclined to read the entire text o↵ered by the tutorials and follow-up

questions to ensure that they understand all of the technical language associated with

the problem.

Finally, we noticed that the actual number of clicks within a CITA tutorial might

not be the best indicator of student learning. Aggregate results over an entire class

never yielded any sort of useful result. Rather, we had to break the class up by some

parameter, be it gender or previous grade, to yield some useful data. Even then, the

actual number of clicks within a tutorial did not always yield a clear relationship.

Sometimes a student’s reported number of clicks was more indicative of success than

their actual usage.

Since our tutorials were voluntary, students had di↵erent ideas of what heavy

and light use meant. In fact, we saw that some students clicked within the system

hundreds of times over a semester while others clicked thousands of times (a full order

of magnitude increase). However, in the case of the multi-step problem, the reported

use of CITA yielded far clearer results than the actual number of clicks. While most

of the time the recorded number of clicks and the reported use of CITA correlate

reasonable well, we recommend that researchers trying to probe optional questions in

a tutorial system collect data on both the actual usage and students’ perception of

their usage.

4.9 Conclusions

We have built a set of interactive tutorials to guide students through their home-

work in PHYS 24100 (the introductory electromagnetism course for engineering stu-

dents at Purdue University). By providing three di↵erent types of sca↵olding - Shal-

low CITA, Immersive CITA, and Postscripts, we are able to filter student input and

provide focused feedback in a more e�cient way than any of the three sca↵oldings

acting alone.
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Overall, the first version of CITA yielded little to no gains in student performance

in the class. This is most likely due to the combination of the rapid pace of the

summer class coupled with the fact that only half of the homework problems had any

tutorial. However, we saw that there are small but consistent gains for students that

use the CITA system in fall 2015 and spring 2016 versus those students that do not.

This is especially true in the spring semester of 2016; certain exam questions showed

improvements from the fall and there is noticeable improvement on a diagnostic multi-

step problem when compared with the spring 2015 and fall 2015 semesters.

Due to the fact that students could choose whether or not to follow a tutorial, we

found that a simple count of the number of clicks could not entirely measure student

engagement. Rather, by combining data about the number of clicks taken by the

student as well as his or her perception about how much he or she used the system,

one could paint a much richer picture about the tutorials.

Work on an online homework system is never truly complete. There are always

improvements that can be made to fit the changing requirements of the administra-

tion, teaching sta↵, and student body. We believe that we have built a solid platform

upon which future iterations of the CITA system can be designed. Thus, there are

many future directions toward which this project can progress:

1. Increase Number Statistics: We have only collected data from one year of

PHYS 24100, and two semesters of CITA version 3. It would be useful to collect

a larger sample of students using CITA version 3 so that we may get a better

understanding of its e�cacy.

2. Implement “Dead End” Style Tutorials: True problem solving is not a

linear, step-by-step process. It would be useful to guide students through mis-

takes and “dead-ends” in the analysis in a controlled way so that they could

learn from their mistakes rather than fear them.

3. Teach Math Strategies: Most of the problems that are addressed in a

calculus-based introductory electromagnetism course can be reduced down to
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simple algebra. However, many students report trouble with the calculus con-

cepts presented in the course. Students’ belief that their deficiency in calculus

is preventing them to solve certain E&M problems may be able to be dispelled

by CITA, which takes them step-by-step in filling the gap between calculus and

simple algebra that is needed to solve the problem.

4. Analyze the Graphical Design of the Tutorials: Wemust contend not only

with the content of a tutorial but its presentation. This is especially true when

tutorials contain multiple branches of analysis. Which style of the graphical

user interface yields the greatest increases in student learning?

5. Bridge the Gap Between Introductory Physics Courses: Electromag-

netism is, at its heart, a field theory. Field theories can be extremely di�cult

for introductory students to grasp due to their abstract nature. By providing a

connection between more familiar concepts (e.g. introductory mechanics) and

new topics (e.g. electromagnetic fields), we may be able to make students more

comfortable with the content of PHYS 24100.
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4.11 Appendices from the Paper

4.12 Multi-Step Problem and Rubric

4.12.1 The Multi-Step Problem

In order to judge the e�cacy of the interactive tutorials in CITA, we needed

to analyze how students work through a non-trivial problem that was not directly
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connected to any of the homework assignments. Thus, we used a multi-step problem

in a similar manner to the analysis done by Bruce Sherwood [103].

The following problem was given to on-campus students in their recitation class

during the week in which they had just learned about power, intensity, and radiation

pressure in lecture. At the beginning of recitation the teaching assistant gave a 20

minute review of these major concepts. Then, he or she had the students complete the

following problem under test-like conditions (i.e. no book, no notes, no collaboration).

A laser beam of power P = 10.0 W and diameter D = 1.00 mm is directed

upward onto one circular face of a perfectly reflecting cylinder. The cylin-

der levitates due to the balance between the upward radiation force and

the downward gravitational force.

If the density of the cylinder is 1.25 g/cm3, and the diameter of the circular

face is 0.50 mm, what is the height H of the cylinder?

There were three main reasons for choosing this particular problem. First, it

is a multiple step problem that combines electromagnetism concepts with free-body

diagrams and density. Thus, it allows us to see if students can pull together di↵erent

concepts (some well known, others just recently learned) and apply them in their

analysis. Second, the problem had to be administered during a recitation that fit

the class schedule. The recitation during which this problem was administered was

conveniently scheduled right after students learned the needed concepts. Finally, it

contained information just on the boundary of their knowledge. We did not expect

any of the students too be completely comfortable with concepts like power, intensity,

and radiation pressure. Rather, we wanted to test if students could reason through a

problem, even if they did not entirely understand the domain of the analysis.
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4.12.2 The Rubric

In order to grade the multi-step problems in a consistent way, we developed a

standardized rubric. The solution was divided up into three di↵erent parts, each

worth up to two points:

1. Setting up the statics problem using Newton’s laws (or conservation of momen-

tum)

2. Calculating the radiation force using the relationships between power, intensity,

and pressure

3. Calculating the height of the cylinder using the definition of density and the

geometry of a cylinder

Additionally, we made a note of any students that did not start o↵ their solution

with a diagram and any students that tried to calculate the time rate of change of

momentum (F = dp/dt) since these were techniques taught to them in their previous

physics class.

The development and testing of the rubric was an iterative process spanning two

weeks. Once a draft of the rubric had been created, it was tested on a sample of

about 30 solutions from the spring 2015 semester. The rubric was then adjusted in

order to calibrate the scores to a mean between three and four. All in all, the team

reviewed about half a dozen iterations of the rubric before deciding on its final form.

The detailed rubric is shown in Table 4.11. All students start with a score of zero.

Then, the grader moves down the rubric row by row, determining to the best of his or

her ability if the student has shown the work required to earn a point. If the grader

determines that the student has shown the required work, he or she will increment

the student’s score by one and move onto the next checkpoint in the next row.

The student must perform a step completely correct in order to receive credit.

For example, if a student writes out the correct formula relating density and mass,

but does not get the calculation correct due to a unit error, he or she will not receive
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credit for “Solve for Mass”. However, carry-over work is given credit. For example,

the simple math error from above means that the student did not correctly “Solve for

Mass”. However, the student might still correctly “Solve for Height” using the mass

that he or she calculated from earlier.

Value Setting Up Statics Problem

0 Completely Incorrect or No Attempt

+1 Identify Gravitational Force on Cylinder (F = mg)

+1 Set Up Statics Problem or Draw Free-Body Diagram

Value Solving for the Radiation Force

0 Completely Incorrect or No Attempt

+1 Solve for Intensity Using Power

+1 Solve for Radiation Force Using Intensity

Value Solving for the Height

0 Completely Incorrect or No Attempt

+1 Solve for Mass Using Density

+1 Solve for Height Using Mass

Table 4.11
Rubric for the analysis of the multi-step problem. In addition to these
six possible points, graders made a note of whether a student drew a
diagram within their solution and whether a student tried to apply
the time rate of change of momentum in the solution (F = dp/dt).

The solutions from each semester were pooled and graded together in order to

minimize any drift in grades or biases from the grader. Additionally, the grading was

spread out over a few weeks in order to prevent fatigue. A second grader reviewed

a small sample of the problems and compared them to the original grader to ensure

consistency. After all of the problems had been graded over all of the semesters, the

team went back and compared the final scores of students with the same answer. If
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there was a grade discrepancy of more than one point, we reviewed the work and

made a case-by-case decision on an appropriate final score.

4.13 End-of-Semester Survey

During the final week of the semester before final exams, students were asked

to fill out a survey about their experience with the CHIP homework system. The

nine questions of the survey asked about four major topics (we used factor analysis to

confirm the groupings of the questions). Questions 1, 2, and 9 probe student’s opinions

of the utility of the CITA tutorials. Questions 3 and 7 probe students opinions about

their workload during the semester. Questions 4 and 8 probe students ideas about

communication with their colleagues during the semester. Finally, questions 5 and 6

probe student’s opinions about the utility of the postscripts and followup questions.

Questions 1 - 8 could be answered on a five point Likert scale (“Strongly Agree”

to “Strongly Disagree”) with the additional option not to disclose any information (“I

Prefer Not to Disclose”). Question 9 asked for student’s overall satisfaction with the

system, so the options instead became “Very Satisfied” to “Very Dissatisfied” plus

the option not to disclose any information. Question 10 allowed students to write out

any comments that they might have on the system.

The full survey along with the instructions is shown below.

We are constantly trying to improve the online homework system and would like

your feedback. Please assess each statement using the drop down menu. Your choices

are “Strongly Agree”, “Agree”, “Neutral”, “Disagree”, and “Strongly Disagree”. If

you would prefer not to answer a question, please mark the choice labeled “I Prefer

Not to Disclose”.

Please be sure to make an entry for each question before clicking the submit

button. Once you submit a choice for a question, your answer cannot be changed for

that question. However, if you submit your choices for only some of the questions,
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you can come back to this survey prior to the deadline and fill out the remainder of

the choices later.

Interactive Walkthroughs (i.e. The Help Buttons)

1. I used the interactive walkthroughs to help me with homework problems.

2. The interactive walkthroughs helped me learn the material.

3. The interactive walkthroughs increased my workload for the semester.

4. The interactive walkthroughs increased communication between me and other

students.

Followup Questions (i.e. The Purple Box Following Each Question)

1. I tried to answer the followup questions on each homework assignment.

2. The followup questions helped me learn the material.

3. The followup questions increased my workload for the semester.

4. The followup questions increased communication between me and other stu-

dents.

General Questions

1. What is your overall satisfaction with the interactive homework system?

2. Do you have any general comments that you would like to share? Would you

be willing to talk to us to provide more details (if so, write down your name

and contact information)?
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5. COMPARISON OF SCAFFOLDINGS

5.1 Preface

In the previous chapter, I provided an in-depth look at the CITA system and how it

influenced student performance in PHYS 24100. I found that the system did improve

student performance in the physics class, with the more sophisticated systems tending

to yield better results. Additionally, I found that there was a generally positive

opinion of the CITA system in all three semesters where the exit survey and focus

group sessions were given. However, we must dive deeper. Why are the fall 2015 and

spring 2016 results better than summer 2015 and before? How do students actually

traverse the individual nodes of a CITA tutorial and learn physics concepts?

This chapter is also a paper destined for publication. Again, at the time of the

publication of this thesis, it was in pre-print format. We conducted an analysis of

the nodes of the CITA system and determined patterns that students exhibited when

using the tutorials.

5.2 Introduction

An instructor’s job does not stop after a class session has ended. Educators

need to provide students with additional assistance outside of class as they work

through homework assignments. Oftentimes, helping individual students requires a

large amount of time and energy - especially in large universities where an intro-

ductory physics class can have an attendance in the hundreds or even thousands.

Thus, many instructors turn to online homework systems to administer assignments,

grade problems, and provide supplementary instruction. The requirements for these

online systems are constantly increasing; these systems are expected to identify stu-
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dent errors, provide useful feedback, and sometimes even guide students through the

analysis.

Over the past two years, the research group (henceforth known as “we”) has

developed a Computerized Interactive Teaching Assistant (CITA) for the calculus-

based, introductory electricity and magnetism (E&M) course for engineering students

at Purdue University. The goal of this system is to guide students through homework

problems while reinforcing problem solving techniques. CITA, like many other tutorial

systems, takes students through a series of manageable steps of analysis in order to

demonstrate a problem solving process. Each tutorial is completely optional - students

can choose to traverse a tutorial if they are having trouble with the problem at hand.

Many studies have been conducted on how di↵erent structures and styles of sca↵olding

a↵ect student performance in physics, both in an online and live environment [121–

126]. These studies demonstrate how di↵erent types of sca↵olding can be e↵ective in

di↵erent contexts.

One of the defining features of the Internet is the easy access to information.

One can navigate between di↵erent sources with a click of a button. Thus, we must

remember that the educational sca↵olding that we design is not used in a vacuum. In-

stead, it competes with other sources for student’s attention. We seek to explain how

students navigate our designed sca↵olds in an online environment where a plethora

of other options are available. Our research questions are:

1. What are the patterns of use of the CITA tutorials? Do students have a pref-

erence for one type of CITA structure over another? If so, why is it preferred?

2. Are there specific points in the CITA tutorials that cause students to turn to

other sources? If so, how can these be avoided?
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5.3 Background

5.3.1 Description of the Class

CITA was developed for the calculus-based, introductory E&M courses at Purdue

University, entitled “Electricity and Optics” and coded as PHYS 24100 and PHYS

24100D. These courses are meant for sophomore engineering majors, with the excep-

tion of electrical engineering majors who take a di↵erent physics course than the rest

of their colleagues [9].

The “D” in PHYS 24100D is used during the fall and spring semesters to signify

a distance learning (i.e. online) section of the course. However, the online and on-

campus sections of Electricity and Optics cover the same material: electric charge,

electromagnetic fields, Maxwell’s equations, geometric optics, and interference e↵ects.

All students use Physics for Scientists and Engineers by Tipler and Mosca as their

main textbook [10]. The sections di↵er only in the fact that the online classes watch

video lectures and attend online recitations through Cisco WebEx [11] while the

regular sections watch live lectures and attend live recitations on campus.

Engineering students usually take PHYS 24100/24100D in the fall semester (also

known as the “on-semester”). Alternatively, engineering students can choose to take

the course in the spring or summer if they are ahead or behind in their schedules

(also known as the “o↵-semesters”). The option of taking Electricity and Optics in

the summer has grown in popularity ever since the online version of the course was

designed. Table 5.1 shows the total enrollment in the campus and online sections of

Electricity and Optics over the last three years. During each of the fall and spring

semesters, just under 10% of the total class is enrolled in PHYS 24100D.

Electricity and Optics is generally taken after students complete PHYS 17200

- Modern Mechanics. The introductory mechanics course is taught using the first

semester of the Matter and Interactions curriculum by Ruth Chabay and Bruce Sher-

wood [12].
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Table 5.1
Enrollment in the campus and online sections of Electricity and Optics
from spring 2014 through summer 2016.

Semester Campus Online Percent Online

Spring 2014 465 41 8.1%

Summer 2014 0 153 100.0%

Fall 2014 725 62 7.9%

Spring 2015 474 43 8.3%

Summer 2015 0 187 100.0%

Fall 2015 728 69 8.7%

Spring 2016 339 36 9.6%

Summer 2016 0 222 100.0%

5.3.2 Sca↵olding and Problem Solving

The learning theory that is the basis for our design and development of CITA is

constructivism. This theory asserts that when a student learns a new concept, he

or she always has some prior knowledge related to the subject. This knowledge can

come from formal study (e.g. taking a science class in high school) or from out-of-

the-classroom experiences (e.g. learning a painful lesson about gravity after falling

to the ground). It includes normative models of how the world works as well as

non-normative models of the universe (e.g. gravity always points “downwards”). No

matter if these assumptions are correct or incorrect, they stem from the fact that

students notice regularities in the world that are confirmed by repeated experience

[21, 22].

Constructivists believe that learning is an active process of building and revising

models, where new information about the world is assimilated and/or accommodated

into previous models about how the world works. Thus, teaching strategies must

facilitate students’ development of a fundamental understanding of the material; sim-
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ple memorization is usually not enough to change one’s models. Within the realm of

physics education, the goal is not only for students to generate normative models of

the universe, but also to apply these models to solve real-world problems.

Most introductory undergraduate students can be classified as “novice” prob-

lem solvers. They do not have a well-defined methodology for approaching a given

problem. Instead, they employ a variety of “epistemic games” to connect seemingly

unrelated concepts [43]. These games might include working backwards from a known

solution without identifying the fundamental laws governing the analysis and identi-

fying similar features between problems in order to look up a solution [41, 42].

Conversely, master problem solvers have a well-defined strategy to solve any given

problem. They start from first principles and work their way towards an answer in

a structured way [45]. They follow the basic steps of defining the problem, devising

a solution, working towards the answer, and checking the output, as described by

Polya [39]. Experts have a thorough understanding of the laws of physics, and thus

feel comfortable starting from first principles. Novices do not necessarily have a

completely accurate model of the universe, so they need learning experiences through

which they can relate new knowledge to existing knowledge. Instructors may provide

instructional sca↵olding to help students develop new models and revise existing

models in the learning process.

Instructional sca↵olding provides a way for students to build an understanding

of concepts that may initially be beyond their skill level [48]. Lev Vygotsky initially

proposed that children can accomplish tasks outside of their current skill level with

the assistance of an adult. The adult creates a structure of small steps that the child

can easily follow. Then, the child connects each step to arrive at the final answer. This

is applicable to both physical tasks (e.g. learning to ride a bicycle) and mental tasks

(e.g. learning about right and wrong through reward and punishment). Vygotsky

called the area between what is known and what is not known the Zone of Proximal

Development (ZPD). Learning takes place in the ZPD - otherwise the task at hand

is either too di�cult or is already known by the child [30, 117].
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Education research has adopted the idea of the ZPD and applied it to students’

learning. Sca↵olding is an umbrella term that refers to any technique that is used

to move a student from their current understanding of the world towards an under-

standing of new material. As referenced in the introduction, sca↵olding comes in a

huge variety of forms and styles. There is no one “correct” sca↵olding for all students

because learning is an inherently individual, social, and subjective process [48]. How-

ever, all sca↵oldings break a complex problem down into manageable pieces in order to

help students traverse the ZPD. Appropriate sca↵olding in physics problem solving,

for example, provides students with a solid conceptual background of the problem

that allows them to relate sophisticated mathematical concepts to observations in

nature [51, 52].

5.3.3 Sca↵olding in CITA

CITA is built upon Purdue’s in-house homework system called CHIP (Com-

puterized Homework in Physics). CHIP is based on the online homework system

called CPlite that was originally developed at the University of Illinois at Urbana-

Champaign (UIUC). CITA is designed to be a sequence of successively more detailed

tutorials that target students with a variety of skill levels. Our early qualitative

analysis of participants in the study indicated that students desire focused help right

when they encounter a problem. Otherwise, they will turn to external sources like

Google or Yahoo! Answers (which will obviously detract from the learning process).

Thus, the tutorial system is based on a pair of key ideas:

1. Provide students with focused feedback to any incorrect answers.

2. Give students the power to easily find and navigate a tutorial that fits their

skill level.

In order to build this sca↵olded system, we divided up the structure of CITA into

three main parts: Shallow CITA, Immersive CITA, and Postscripts. These parts are
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meant to work together in harmony. They take a student through Polya’s problem

solving process in a controlled way.

An example of Shallow CITA is shown in Figure 5.1. A student must solve a

homework problem for a grade. If the student makes an easily identifiable mistake

on the problem (e.g. a unit error, a sign error, a simple conceptual error) a box

will appear and o↵er focused feedback on how he or she can correct the mistake to

proceed. Shallow CITA is used to guide students who are close to a correct answer;

thus, it is assumed that a student generally understands the major concepts within

the problem when Shallow CITA provides feedback. If Shallow CITA cannot identify

the mistake made by the student or if the mistake is rather complicated, it suggests

that the student attempt an Immersive CITA tutorial.

Figure 5.1. A screen shot of a homework problem in the CHIP home-
work system demonstrating Shallow CITA feedback. The red box
appears after a student enters an incorrect answer that matches a
common error.

Immersive CITA provides problem-specific, detailed tutorials (see Figure 5.2).

During the fall of 2015 and spring of 2016, we tested three di↵erent structures of

Immersive CITA.

The first structure was a step-by-step tutorial. Each step of the tutorial contained

a few sentences of explanation followed by a question. Depending on the complexity

of the problem, a tutorial contained between six and thirty steps (i.e. going through

each step of the setup and mathematical analysis in a Gauss’s law problem). Thus,

students were not simply reading a transcript of the answer. Rather, they had to

work towards the solution using the designed educational sca↵olding.
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Figure 5.2. A screen shot of a homework problem in the CHIP home-
work system demonstrating an Immersive CITA tutorial. The tutorial
guides students through the solution of the problem in a step by step
fashion.

The second structure was a truncated step-by-step tutorial. Many of the problems

on the homework repeated similar concepts or similar solutions. Thus, truncated step-

by-step solutions simply outlined the major steps in the problem and/or referenced

other Immersive CITA tutorials within the same homework assignment. Generally

speaking, these tutorials contained between one and three steps, depending on the

complexity of the problem. For example, a truncated step-by-step tutorial for a

geometric optics problem might remind students to apply Snell’s law at certain points

on a prism and refer to a di↵erent Immersive CITA tutorial in the homework.

The final structure was the branching style. In this structure, the first step of the

Immersive CITA tutorial asked students to rate their confidence with the problem and

decide if they wanted a detailed, step-by-step tutorial or a faster, general overview of

the problem. Depending on their answer, the system filtered the student body into

one path or the other. The trade-o↵ here is time and e↵ort; one path is quick to

view, but it does not o↵er all of the little details needed for the full derivation. The

other path was very thorough and would often lead to a point where the answer was

relatively simple to find. However, this path required much more time (sometimes

fifteen minutes or more for some complicated problems).

Students could enter and exit the Immersive CITA tutorial at any time. Thus,

the final step of Polya’s problem solving process was not included in Immersive CITA

because we wanted all students to go through it - whether they needed a tutorial or
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not. Figure 5.3 shows the final part of the CITA program - the Postscript. After

a student correctly answered the homework question, the Poscript reviewed Polya’s

final step in the problem solving process. We asked students to think about the work

that they just completed by o↵ering simple variations of the problem. For example, if

a student solved for the electric field at some point in space and time, the Postscript

might ask what the electric field would be at some later time. During the spring of

2016, each of the postscripts included a “real world application” - an example where

the setup, model, or solution of the problem can be found in the realm of engineering.

Figure 5.3. A screen shot of a homework problem in the CHIP home-
work system demonstrating a Postscript. The purple box at the end
of the problem encourages students to think about their answer.

CITA was developed over the summer 2015, fall 2015, and spring 2016 semesters.

Most of the problems in the homework system were not paired with any sort of tutorial

prior to the summer semester of 2015; therefore, we consider the spring semester of

2015 a baseline semester. The summer 2015 semester consisted of about 50% no

tutorial and 50% detailed step-by-step tutorials. The fall 2015 semester consisted of

40% detailed step-by-step tutorials, 40% truncated step-by-step tutorials, and 20%

no tutorial. The spring 2016 semester consisted of just over 50% branching tutorials,

30% detailed step-by-step tutorials, and 20% no tutorial.

5.4 Research Design

This research project used a mixed methods design. Mixed methods research

involves collecting, analyzing, and integrating both qualitative and quantitative data
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in order to gain a better understanding of a research domain than either approach

alone. The mixing of qualitative and quantitative data can be very powerful for a

number of reasons. First, the synthesis of data from di↵erent sources leads to greater

confidence in the validity of the conclusions. Second, the answers to the research

questions merge a number of perspectives, leading to a more complete conclusion

with fewer “gaps” in the analysis. Finally, any pre-existing assumptions from the

researchers are less likely to influence the results due to the fact that the conclusions

must support both qualitative and quantitative data [94].

The study took place between the spring semester of 2015 and the summer

semester of 2016 at Purdue University. It focused on the second semester, intro-

ductory physics courses for students pursuing an engineering degree - PHYS 24100

and PHYS 24100D. The “D” signifies a distance learning (i.e. online) section of the

course.

5.5 Research Participants

Students had the option of following a CITA tutorial in order to learn how to

solve a given homework problem. Alternatively, they could skip over a tutorial paired

with a homework problem completely. Whether a student decided to use the CITA

tutorials or not, he or she was asked to complete a demographics survey and exit

survey that probed their usage of the system. At the end of the semester, students

were given the option to elaborate more on their opinions of the system through

voluntary focus group interviews.

Thus, students were only required to complete the surveys during the semester;

CITA tutorial use and focus group sessions were completely voluntary.

5.6 Quantitative Methods

As a student works through the graded problem or an Immersive CITA tutorial

in CHIP, his or her progress is automatically recorded by the system. Every time an
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answer is given or a passage of text is read, a student will click an “Enter” button

in order to progress to the next step (or to finish the problem if the graded answer

is correct). The CHIP system automatically records every student click with a time

stamp and details of where it took place. This means that we can review the entire

click history of a student as he or she works through a question in the homework. We

collected the click history for students from the summer of 2015 through the spring

of 2016 and compared how students navigate di↵erent structures of tutorials.

We leveraged a variety of quantitative techniques to uncover patterns in the data.

Initial exploratory analysis included ANOVA and chi-squared tests to compare the

click numbers between problems as well as visualizing the data with network digraphs.

Matlab (version R2016a) was an excellent resource for this because it allowed us to

visualize the data and quickly calculate graph statistics for each problem (see Figure

5.4).

Figure 5.4. Examples of directed graphs generated using Matlab.
Each of the points in the graphs refers to a specific step in an Immer-
sive CITA tutorial or the graded question in the homework. The lines
in the graph are weighted and represent the number of students that
move from step to step in a problem.

After the exploratory quantitative analysis was complete, the results were com-

pared with the qualitative data (described in detail below). Then, final conclusions

were made.
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5.7 Qualitative Methods

Strategy of Inquiry

The qualitative part of this study analyzed student opinions about the CITA

program as well as their general study habits. The data came from three main sources.

At the end of each semester, we asked students to fill out a survey about their use

and satisfaction with the CITA system. The final question of the exit survey was

an open space for students to make comments. Next, we used Piazza [109] over the

semester as a forum to answer student questions. We could analyze the comments

on the Piazza help system and see how they related to the tutorials. Finally, we

o↵ered students the opportunity to participate in focus group sessions at the end of

the semester to share some of their opinions. The exit survey counted as a quiz grade

(however, students had the option of answering “I Prefer Not to Disclose” on any

question). Students were rewarded a ten dollar gift card if they completed a focus

group session. Piazza o↵ered no reward.

We used purposeful sampling as our design strategy for the focus group sessions.

Patton defines purposeful sampling as one where the researcher chooses specific par-

ticipants in order to gain insight about a specific phenomenon. Cases are selected

because they are “information rich” [107]. When students signed up to volunteer for

our focus group sessions, we asked them what their overall impression of the home-

work system was - “Generally Positive”, “Generally Negative”, or “Neutral”. We

then divided the participants into groups based on their reported overall impression

of the system and whether they were in an online or on-campus section. Thus, stu-

dents were hopefully more comfortable sharing their opinions - good or bad - due to

the fact that they were in a homogeneous group.

Our strategy for analyzing the transcripts from the three sources above consisted

of a three-cycle coding plan. Our codes are based on Saldana’s reference [105]. First,

each of the transcripts was analyzed separately using rounds of attribute coding and

descriptive coding in order to get a sense of the recurring comments made by students.
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Then, the transcripts were analyzed separately again using rounds of elaborative

coding and pattern coding in order to synthesize the results of the first cycle and

identify the major themes in the transcripts. The final cycle of coding pooled all of

the sources together in order to determine patterns between semesters; it consisted

of evaluation coding and longitudinal coding.

Roles of the Researchers

Researchers conducting a qualitative study must acknowledge that their presence

can alter the answers given by the participants. Thus, they must take some time

beforehand to determine how they might inadvertently skew the data as well as how

to minimize this artifact [108]. In this study the principle investigators are Mr.

Cyrus Vandrevala, Dr. Lynn Bryan, Dr. Andrew Hirsch, Dr. Hisao Nakanishi, and

Dr. Laura Pyrak-Nolte.

Mr. Cyrus Vandrevala has been a teaching assistant for PHYS 24100 and PHYS

24100D since the fall semester of 2011. Additionally, he has coordinated the course

during summer sessions and helped develop the online sections. Since he led all of

the focus group sessions in the fall of 2015 and spring of 2016, he has not taken a

teaching assistant position from the spring of 2015 onwards. Instead, he has a part-

time assignment answering questions on Piazza because students will never meet him

face-to-face.

Dr. Hisao Nakanishi is the “father” of CHIP at Purdue University. He is one of

the primary developers of the system and has implemented the underlying structure

upon which the branching Immersive CITA tutorials were built. Although he is not

directly a�liated with PHYS 24100 or PHYS 24100D, he addresses student questions

sent through the CHIP help system that pertain to errors in the problems, bugs in

the codebase, or administration issues.

Dr. Laura Pyrak-Nolte has taught or coordinated PHYS 24100 and PHYS 24100D

since 2005. As the course coordinator, she is in charge of creating exams, assigning
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final grades, and approving changes to the homework system. Additionally, she is

the lecturer that is seen and heard in the online lecture videos shown to the PHYS

24100D class.

Drs. Lynn Bryan and Andrew Hirsch provided the educational theory that sup-

ports this study. Neither of them are directly involved with PHYS 24100 or PHYS

24100D, but Andrew Hirsch is one of the main instructors of PHYS 17200 - the

introductory physics class that is a prerequisite for PHYS 24100 and PHYS 24100D.

5.8 Results

5.8.1 Overall Use of Immersive CITA

We first analyzed the use statistics of CITA tutorials. As mentioned above, the

homework system started o↵ with almost no tutorials (most of the problems had

no extra sca↵olding). Then, as time went by, we developed sophisticated structures

that were paired with each problem. As described in the previous sections, di↵erent

semesters used di↵erent structures of sca↵olding.

When a student opens up an Immersive CITA tutorial, he or she does not know

exactly what structure the tutorial will take. Additionally, the homework problems

are the same between semesters. Thus, we would expect approximately the same

fraction of students to enter the Immersive CITA tutorial in each semester for any

given problem. We filtered the homework questions by semester and structure in

order to determine if the fraction of students who enter an Immersive CITA tutorial

changes between semesters. We used ANOVA analysis to compare the problems, and

found no statistically significant di↵erences in the means.

Additionally, we aggregated all of the problems and compared them on a semester-

by-semester basis to see if there were any changes in usage. Table 5.2 gives the

mean fraction of students that enter an Immersive CITA tutorial, averaged over all

problems. ANOVA analysis once again showed no statistically significant di↵erence

in the means.
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Table 5.2
Fraction of students that start an Immersive CITA tutorial, averaged
over the semester and section.

Semester Section Mean Standard Deviation

Summer 2015 Online 0.1387 0.1034

Fall 2015 Campus 0.2345 0.1170

Online 0.1416 0.0900

Spring 2016 Campus 0.25543 0.1196

Online 0.1057 0.0849

Figure 5.5 shows histograms of the on-campus data from Table 5.2. There is a wide

range of values, meaning that some of the tutorials that were paired with problems

were rarely, if ever, accessed while others were accessed by over half the class.

Use of Immersive CITA Tutorials (Fall 2015)
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Use of Immersive CITA Tutorials (Spring 2016)
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Figure 5.5. Histograms showing the use of CITA in the fall 2015
semester (left) and the spring 2016 semester (right). The horizontal
axis shows the fraction of students who used an Immersive CITA
tutorial while the vertical axis displays the number of problems.
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5.8.2 Overall Use of Postscripts

During the focus group interviews, students repeatedly mentioned that they gen-

erally did not complete the postscripts. Specifically, they did not reflect on any of

the scenarios given, and they did not complete any follow-up questions if the problem

contained them. Their main reason for this was time constraints - students were most

interested in quickly finishing the homework. Since the postscripts did not count for

any points, they did not seem worthwhile.

We tested students’ use of the postscripts in order to elaborate on this result. We

collected 27 homework problems that contained follow-up questions in the postscript

in the summer 2015, fall 2015, and spring 2016 semesters. These problems had

identical or nearly identical text and follow-up questions in each of the semesters.

Additionally, each of these problems was paired with a CITA tutorial - linear tutorials

in the summer and fall of 2015, branching tutorials in the spring of 2016. In each

question, we calculated the percent of students who attempted at least one of the

follow-up questions.

Table 5.3
The fraction of students who attempted the first of the follow-up
questions in the postscript, averaged over the 27 test problems.

Semester Section Mean Standard Deviation

Summer 2015 Online 0.0999 0.0539

Fall 2015 Campus 0.1003 0.0600

Online 0.0769 0.0624

Spring 2016 Campus 0.1649 0.0671

Online 0.0867 0.0707

Table 5.3 shows the mean fraction of students who attempted at least the first

follow-up question, divided by semester and section. The overall results mirror what

students said in the focus group sessions - only a small percentage of the class com-
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pleted the follow-up exercises. However, the on-campus section of the spring 2016

semester showed a 60% increase in the use of postscripts, averaged over the sample

problems. ANOVA analysis of the on-campus sections shows a statistically signifi-

cant increase in postscript usage with a p-value of 0.0005 and a large e↵ect size (eta

squared) of 0.2104.

The online students do not show the same growth in the use of the postscript.

ANOVA analysis of the on-campus sections yield a p-value greater than the 0.05

cuto↵. Thus, we must accept the null hypothesis that there is not change in postscript

use between the online classes in di↵erent semesters.

5.8.3 The Truncated Step-by-Step Structure vs. the Detailed Step-by-

Step Structure

All three sources of qualitative data show that students did not like the truncated

step-by-step tutorials. Students commented that this style of sca↵olding was not

very helpful, and they turned to other sources. At best, this structure of tutorial

was only helpful in simple problems that only required one or two steps of analysis.

Students were especially annoyed if they felt like the tutorial was simply guiding

them to a di↵erent resource with no extra content being o↵ered by the help. In one

group discussion where students were talking about simplifying the tutorials and just

referencing the text, one student had this to say:

I don’t know... Like, the system in which you just remove the interactive

tutorial and say, “Refer to the text”. [...] I don’t know, it’s kind of

demeaning in a way if you go to do that. Because it’s like, oh I guess I

just didn’t read the textbook. [In reality,] I didn’t understand the problem.

(John M., Spring 2016)

When asked how this structure could be improved, a few students commented that

it really was not worthwhile, and instead, all of the tutorials should have the detailed

step-by-step structure. Some students commented that the truncated step-by-step
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structure could be more useful if we included a specific equation that related to the

problem. Alternatively, students commented that it would be helpful to see the first

few steps of the analysis (i.e. the start of a worked example) or a list of incorrect

methods of analysis.

Conversely, comments were generally positive about the detailed step-by-step tu-

torials. Many commented that providing a few sentences of background and then

asking a question at each step ensured that they understood the material before

moving on. However, a couple of students commented that certain steps in the prob-

lem were very frustrating. One student elaborated on the check box style, “multiple

answer” of step.

I don’t like where it’s, like, “check which of these are true” when there’s,

like, five answers. It’s, like, okay, I’m kind of in the help for a reason [and]

if I just wouldn’t get them right away, like, if I wouldn’t get them after

two or three attempts I’d just start trying to find what the answer is just

so I can understand it. (Frank S., Fall 2015)

I just found those [check box questions] frustrating personally, because

like, okay, I’m in help for a reason. I’m trying to get help. (Samuel K.,

Fall 2015)

The student above commented that his strategy eventually became guess and

check, just to get past that specific type of question. Quantitative analysis showed

similar results. We found that numerical questions in an Immersive CITA tutorial

were a point where students became frustrated. We will elaborate on some of these

frustrations in the sections below.

Finally, a few students commented that the linear Immersive CITA tutorials could

get very long; this was especially poignant if they had made a small error in the

problem that was not caught by Shallow CITA and then had to go through a long

derivation, only to realize that their mistake was trivial. However, many students were

fine with the length of the tutorials. Going through the steps of the analysis made
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them feel more confident about their answer. These comments were the inspiration

for the development of the branching structures.

5.8.4 The Branching Structure

We designed the branching structure of tutorial to try to give focused feedback to

students who were using Immersive CITA. Overall, the branching structure was well

received. Most students did not mind answering the filter question and proceeded

with the tutorial. Students commented that the detailed branch was much more

useful than the general branch, but some students used the general branch to check

over their work if they felt like they were close to a solution. However, there were a

couple of unexpected issues with the branching structure.

First the phrasing of the question that filtered students in to the two groups

was important. During the development of the system, we tried to use an informal,

second person style of writing (e.g. What can you do at this point? What is the final

form of this expression after you have simplified it?). Thus, the filtering question

asked students what their confidence level in the problem was and which structure of

tutorial they would like to traverse.

One student commented that the personal tone was actually a deterrent for using

the Immersive CITA tutorials at the beginning of the semester. When the tutorial

asked her which path she would like to take, she thought that there was a right and

wrong answer, and that she would be punished in some way for using the help.

When I first saw that first question of, “How well do you know the prob-

lem?” The first thing that popped in my head was like, “Am I going to

be penalized for saying, I have no idea?” (Sarah R., Spring 2016)

However, once she spoke with other students in the class and learned that no

points would be subtracted from her score, she happily used the tutorials thereafter.

Another student commented that the branch that gave a quick overview of the solution

was not useful.



134

I thought that [the branch which gave a quick overview] was kind of point-

less for me. [...] It’s just me but, if I know, I know. [...] I just didn’t

understand why would I, why would you, need this section. (Bill A.,

Spring 2016)

Many students who depended on the tutorials to step them through complicated

problems had a similar opinion. If you are clicking on a help button, why would

you need a short overview of the concepts? A follow-up quantitative analysis of this

question shows some distinct di↵erences between students in di↵erent sections. Figure

5.6 shows the fractions of the total student body that chose the general and detailed

paths for each branching tutorial. The on-campus sections preferred the detailed

paths over the general paths while the online students accessed the di↵erent paths

more equally.

Figure 5.6. A comparison of the choices that students made when
traversing the branching problems. The left graph shows the on-
campus sections while the right graph shows the online sections. The
number of students who traversed a given path in the branching prob-
lem was normalized with respect to the total number of students in
the class.

A few patterns are evident in the graphs. Online students were accessing the

shorter, overview paths much more often than their on-campus colleagues. In fact, the

on-campus students preferred the more detailed paths than the overviews. Addition-

ally, online students accessed the tutorials much less than their on-campus colleagues

(whether they be general or detailed).



135

5.8.5 Student Retention as They Traverse a Tutorial

Students could freely enter and exit the Immersive CITA tutorials whenever they

pleased. Thus, we were interested in finding out how far into a tutorial students

navigated before leaving and attempting the graded homework question. In general,

students reached the end of the truncated step-by-step tutorials because they were

very short (only a few clicks at most). However, the detailed step-by-step tutorials

and the branching tutorials yielded di↵erent results.

Overview Path of Branching Tutorial

Of the students who entered an Immersive CITA tutorial, we tracked how many

of them proceeded to the next step. Then, we plotted the number of students at

each step, normalized to the total number of students in the class. In the case of the

branching structure, we did this individually for both paths. For the majority of the

Immersive CITA tutorials, student retention rates fit a straight line with a negative

slope. However, there is a sharp drop o↵ of students near the end of the tutorial.

For example, Figure 5.7 shows the fraction of students that completed the overview

path of the branching tutorials through the final step (labeled General Path in the

figures).

The data seemed rather disheartening as most problems showed almost no stu-

dents reaching the end. However, we found that many students dropped out of the

tutorial in the second to last step, due in part to the wording of the tutorials which

indicated to students that they were coming to an end. When we repeat the analysis

above with the second to last step of each tutorial, the graph changes significantly

(see Figure 5.8). Students were very likely to work through the solution to almost

the end.

The detailed step-by-step tutorials along with the detailed branch show slightly

di↵erent results.



136

Retention of Students in General Path of Branching Tutorials
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Figure 5.7. Histogram of the fraction of students who work the general
path through to the end. The median is plotted as a blue line.
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Figure 5.8. Histogram of the fraction of students who work the general
path through to at least one step before the end of the tutorial. The
median is plotted as a blue line.

Detailed Step-by-Step Tutorials and Detailed Branch

Our method of analysis for these structures was the same as that of the previous

section - we tracked student clicks as they navigated the tutorials and determined
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how many students move onto the next step. Like the results in the previous section,

we saw a similar pattern for most problems. Most of the tutorials showed the simple

linear relationship between step number and number of students. However, a few of

the problems contained a drastic decrease in retention from step to step. Figure 5.9

shows two examples of how the retention suddenly changed in two such problems.

Figure 5.9. Fraction of students who completed each step in an Im-
mersive CITA tutorial. There is a sudden drop in retention at certain
steps of the tutorial.

Upon seeing these trends, we looked through the tutorials to identify why students

were leaving so suddenly. We found that the steps where retention decreases severely

correspond to specific types of questions - those that require a numerical answer, those

that are a multiple-answer style question, etc. Student engagement in these tutorials

are better fit with a series of step functions rather than a single linear function.

5.9 Discussion

Our research questions covered two major topics: (1) do students have a preference

for one type of CITA structure over another? and (2) are there specific points in the

tutorials that frustrate students and potentially cause them to exit prematurely?

The students in PHYS 24100 reported that the detailed step-by-step and branching

structures were preferred to the truncated step-by-step structure. The truncated

structure did not provide enough support for students to comfortably traverse the
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problem. Additionally, we found that there are specific points in the CITA tutorials

that caused students to leave prematurely.

Problems that were given the truncated step-by-step structure were widely hated

by students. Many students commented that they did not address their specific issues

or that they already understood all of the parts outlined in the tutorial but did not

know how to apply them to the specific problem at hand. In these cases students

turned to other sources like Google or Yahoo! Answers. Not surprisingly, students

prefer tutorials that walk them through a problem in a step-by-step fashion, and thus,

preferred the other structures.

However, a subtle balancing act took place in the linear and branching tutorials

as well. Problems that were generally simple or straightforward did not merit the

use of a tutorial. Thus, generally low numbers of students entered the tutorials on

these problems. However, more di�cult problems did merit at least a cursory glance

at the tutorials. Once students were inside of the tutorial, their retention matched

a downward step function (or a series of downward step functions). At first, large

numbers of students moved through each step of the tutorial, and very few students

left the lesson. At this point in time, the perceived gains from the tutorial outweighed

the loss of time and expenditure of e↵ort.

When a student reached a question that seems tedious (not necessarily di�cult)

another decision had to be made. Is it worth it to continue on through this step of the

analysis or is it better to leave the tutorial and piece together a solution from what

was previously discussed? Some students persevered and went through the tedium.

However, a large number of students left the tutorial at this point. This is the sharp

downward slope of the step function. Many students stated that they prefer to have

tutorials bundled with each specific homework problem rather than having to search

for solutions online.

We found that steps in the CITA tutorials that required numerical answers were

largely responsible for students leaving the tutorial. This was especially true if the

tutorial highlighted an equation before the numerical step - even if the equation
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was not the final formula needed for the problem. This e↵ect can be explained as

expectation violation. Students who use the CITA system expect a highly focused

and e�cient tutorial. However, once a tedious step occurs, the student’s expectation

seems to be violated, and he or she drops out of the problem. We saw no preference

for certain lengths of tutorials. On the one hand, students worked through to the

end of tutorials with upwards of 20 steps. On the other hand, students left a tutorial

early when it had just a few steps, but one seemed tedious.

5.10 Conclusions

Our study of the di↵erent tutorial structures shows that students prefer the de-

tailed step-by-step and branching structures to the truncated step-by-step structure.

They commented that the truncated step-by-step tutorial failed to provide the nec-

essary support needed to complete the problem. From an educator’s standpoint, this

structure did not e↵ectively sca↵old the material and techniques needed to solve the

problem. Conversely, the detailed step-by-step and branching structures provided

enough support for students to complete the analysis.

This preference for the detailed step-by-step and branching structures is deeper

than a simple desire to “just get the answer”. Student use of an online tutorial is

a balancing act between time, e↵ort, and utility. When the perceived di�culty or

tedium of a specific step in a tutorial becomes too great, students switch to a di↵erent

resource. In CITA, this was especially apparent in numerical and check box questions

bundled in the tutorials.

We recommend that researchers who design sca↵olds in online environments be

well versed in the expectations of their students. That way, they can tailor tutorials

to fit the needs of their classes.
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6. SUMMARY, IMPLICATIONS, AND FUTURE

DIRECTIONS

6.1 Summary

In this study, I described how there was a pressing need for a tutorial system

to compliment CHIP - the current homework system used in Electricity and Optics.

This need was caused by a variety of factors including the development of the dis-

tance learning sections of PHYS 24100, rising enrollment in summer, an aging CHIP

homework system, and student feedback from previous semesters.

I created interactive tutorials that were paired with problems in the PHYS 24100

homework. The tutorials were built using three structures that took students through

Polya’s problem solving process: Shallow CITA, Immersive CITA, and Postscripts.

The parts were not meant to be used separately. Shallow CITA provided focused

feedback when students made simple errors on homework problems. If a student

could not solve for the correct answer with Shallow CITA alone, he or she could

use Immersive CITA to review the details of solving the problem. The Postscripts

wrapped up the problem by asking followup questions or outlining similar situations

where the completed analysis would apply.

6.2 Research Questions

How does the branching structure of the interactive examples in CITA

influence student problem solving abilities?

Overall, the first version of CITA (summer 2015) yielded little to no gain in student

performance. This is most likely due to the fact that only half the problems contained

a tutorial as well as the fast pace of the class during the summer. However, versions
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two and three of CITA show small but consistent gains for students that use the

system. Students that used the CITA system had higher course grades than those

who did not. Additionally, on-campus students who used CITA had higher scores

on select exam problems as well as better performance on a diagnostic multi-step

problem than those who did not. Unfortunately, online students did not show the

same gains.

What are students perceptions about the CITA system?

Shallow CITA was very popular with the students in PHYS 24100. They found it

extremely useful for identifying simple mistakes like unit errors and sign errors that

would have otherwise led to frustration with finding a solution. Students suggested

that we expand these tutorials, but also mentioned that they were more detailed than

some of the other homework systems that they had used in the past (like WebAssign).

Students were generally satisfied with Immersive CITA, but not all tutorial struc-

tures were equally popular. Generally speaking, students did not like the “truncated

step-by-step” style of tutorial; even if it outlined the solution to the problem, they

generally found it unhelpful and turned to other online sources for help. Additionally,

the problems with no Immersive CITA tutorial were also disliked because they did

not provide the same feedback as so many of the other questions in the homework.

However, the detailed step-by-step and branching tutorials that I developed were

warmly received.

Students overwhelmingly ignored the Postscripts at the end of each problem.

Many of them responded that they did not consider the Postscripts due to time

constraints (discussed further below). The small number of students that completed

the Postscripts commented that they were helpful in learning the concepts in the

problem.

Overall, the CITA system was positively received by the student body. They

thought it was a good resource for completing the homework problems.
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What motivates a student to use CITA rather than another external

source?

Focus group interviews and click data showed that the CITA tutorials were used

by many of the students in PHYS 24100. Students created a tool belt of resources that

they used to complete the homework as quickly and e�ciently as possible (learning the

material was often secondary). Other resources that were used by students included

their notes, the textbook, Yahoo! Answers, and HyperPhysics.

Students are under immense pressure to complete their coursework to the best

of their abilities. Thus, physics instructors try to provide useful materials to aid

students’ development of understanding abstract concepts. In our case, we designed

a system called CITA to help students through their homework.

Students are constantly assessing the work needed to complete the tutorial along

with the content in the tutorial itself. When the perceived e↵ort for a particular

step in the tutorial exceeds the perceived benefit gained from continuing onwards,

students leave the tutorial and move onto another resource. This switching might

not be possible in a setting where changing resources takes a lot of e↵ort. However,

it is possible online; the Internet o↵ers a variety of resources at the click of a button.

Thus, instructors who are designing tutorial systems must consider the e↵ort needed

to navigate their tutorial system as compared with other external systems used by

students in their class.

6.3 Future Directions

The development of a homework system is not something that is complete in a few

iterations. In this section, I outline several future directions that other researchers

can follow.
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6.3.1 Longitudinal Study of CITA

Although the research group collected data from reasonably large samples of stu-

dents, the fact remains that we have only calculated the e↵ects of the final state of

CITA on the spring 2016 and summer 2016 semesters. A longitudinal study of CITA,

where the system is analyzed over multiple semesters, would probe the results on

a deeper level. It would increase our understanding of how students navigate the

tutorials as well as shed light on where in the tutorials students exit.

This information can be used to design more e↵ective lessons in the future. The

theoretical framework of constructivism dictates that students actively build a model

of how the world works as they traverse a CITA tutorial. Thus, if one identifies parts of

the analysis that students consistently find troublesome, then an educator can expand

on the CITA tutorial at that point. This might include reviewing mathematical

methods, outlining electromagnetism concepts on a deeper level, or relating ideas in

Electricity and Optics back to those in introductory mechanics.

6.3.2 Create Multiple Paths with Di↵erent Tutorials

The majority of the CITA tutorials go through one type of solution per problem.

The latest version of CITA allows students to choose between two paths for their

tutorial, but the content of the tutorial is the same; all that changes is the pace.

Although I tried to choose the most common solution to a problem that exploits

relevant symmetries, there is always more than one way to arrive at the correct

answer.

A researcher could explore whether providing students with di↵erent solution

paths would help them learn the material more e↵ectively. A student could tackle a

problem in his or her own unique way, based on the relevant fundamental laws that

he or she chooses to use. This idea fits the theoretical framework of constructivism

very well; a student would actively build a complete solution to a problem, starting

from fundamental laws that he or she understands. The starting point of a solution
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would not be dictated by a tutorial, but rather by a student’s current model of the

world.

6.3.3 Implement “Dead End” Style Tutorials

During the development of the branching structure within CHIP, the research

group thought about problems that would use a “dead-end” style of tutorial. A stu-

dent would go down a seemingly reasonable path of logic and would eventually reach

a contradiction in the analysis. Then, the tutorial would outline the contradiction,

take the student back to the appropriate point in the tutorial, and continue down a

new path. Although I did create a proof of concept for the dead-end style of tutorial,

I did not implement these widely throughout the system. I did not know how to

e↵ectively tackle a number of problems that would arise, including:

1. How does one handle a student who leaves the tutorial early and misses the

highlight of the contradiction?

2. How does one handle students who are reluctant to go through a dead-end

tutorial due to the larger time commitment?

3. How does one handle students who develop incorrect ideas about fundamental

physics concepts because they do not carefully read through the passages that

separate the true concepts from the false ones?

This structure would allow an educator to design truly interactive tutorials where

students could explore physics concepts, both right and wrong. As stated in Chapter

2, understanding and working through one’s mistakes is when learning takes place.

6.3.4 Conduct a Detailed Graphical User Interface Study

The research group decided early on in the development of CITA on CHIP to

keep the graphical user interface (GUI) the same between semesters. Although the
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menus changed slightly from semester to semester, students saw the same problems

in as close to the same format as possible (save for grammar corrections, updated line

spacing, and refurbished diagrams). This allowed us to make comparisons between

classes with consistent assignments.

However, the physical features of a multimedia system can influence its use [127].

One direction of research might examine how the GUI influences student learning

gains using the CITA system as a platform. Do di↵erent color palettes improve or

detract from learning? Do specific layouts of the problems help students tie together

di↵erent physics concepts? A/B testing has been used to a great extent in this area

in industry, but multivariate methods might also be useful in this field. This type of

study would probe specific implementations of Mayer’s design principles in order to

determine what kind of design is most useful to teach physics.

6.4 Implications of the Research

Even though the Internet has pervaded our lives in a myriad of ways, it is still

a very new technology. Researchers are still learning about the impact that it has

on the way students think, learn, and live. The very nature of the internet, where

information is available at the touch of a button, is unlike anything that we have ever

seen.

This study has shown that online systems may be used to teach physics if the

instructor designs sca↵olded tutorials that walk through the full problem-solving pro-

cess. Some of the structures that might be used in a live setting do not seem to work

as well in the online environment (like the truncated step-by-step tutorials). Other

styles of tutorials work very well because they take advantage of the structure of how

web pages work and constantly build o↵ of feedback of the user (like the branching

style). These results can serve as a guide for educators who design online tutorials in

the future.
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A. CHEATING ON THE BEMA CONCEPT INVENTORY

A.1 Preface

During our analysis of the CITA on CHIP system, we noticed some anomalies

between the BEMA scores in the online and on-campus sections. The online scores

seemed far too high to be reasonable for students at an introductory level. Thus,

we performed a comparison of the BEMA scores between the online and on-campus

sections, taking inspiration from Lin Ding’s earlier analysis of the BEMA [101, 102].

This analysis was published in the paper shown below. By the time this dissertation

is published, our paper on the BEMA will most likely be in pre-print.

A.2 Introduction

Recently, a number of concept inventories have been developed to assess the learn-

ing gains of students in their introductory physics courses. These tests cover a wide

range of topics including classical mechanics [128–130], electromagnetism [131–133],

and optics [134–136] (among many others). The Brief Electricity and Magnetism

Assessment [100] (BEMA) was developed by Chabay, Sherwood, and Reif to mea-

sure student’s qualitative understanding of electricity and magnetism concepts at

the introductory level. The full exam can be found on the Compadre website at

http://www.compadre.org.

Although concept inventories are a useful method of probing student knowledge,

they are not simply tests that can be quickly put together and administered semester

after semester. Lindell and Ding describe how it takes years to determine the validity

and reliability of the results of a given concept inventory [137]. Reliability is a measure

of consistency. If a test is taken several times under similar conditions and the results
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are similar, then the test is considered to be reliable. Validity is a measure of accuracy.

A test is considered valid if it accurately measures what it claims to measure. It is

important to note that reliability and validity are two separate concepts that are

independent of each other [138]. Factors such as age, course structure, geography,

language, delivery of the tests, and wording of questions can influence the validity

and reliability of an assessment.

Online environments have the additional challenge of being unsupervised. Unlike

a classroom setting where a teacher can monitor students to check for cheating, online

students can take exams in a private location. This means that there is an increased

chance of sharing answers, referencing external sources, and using unapproved equip-

ment (e.g. graphing calculators). To make matters worse, if the assessment does not

have a point value, many students may skip it altogether [139]. Thus, the AAPT

has issued a set of guidelines that are recommended for any instructor who wants to

administer a concept inventory online [140].

Much work has been done to validate the BEMA in an on-campus setting by Lin

Ding and his team [101, 102]. However, an analysis of the reliability, validity, and

discriminatory power of the BEMA has not been done for an online setting. Our

research questions are:

1. Is the BEMA a reliable and valid test in an online setting with su�cient dis-

criminatory power between students?

2. If the BEMA is not reliable and/or valid in online settings, how do di↵erent

measures of reliability, validity, and discriminatory power di↵er between the

online and on-campus environments?

There is a pressing need to answer these questions due to the wealth of information

online along with the growing trend of administering assessments online. With this

information, educators can make predictions about who might be a potential risk for

failure or dishonest behavior on the BEMA.
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A.3 Background

A.3.1 Overview of the Classes

Our study took place in the calculus-based, introductory electromagnetism courses

at Purdue University (coded as PHYS 24100 and PHYS 24100D). These courses are

usually taken by sophomore engineering majors as a prerequisite for their later en-

gineering classes (the exception being electrical engineering majors who take PHYS

27200) [9]. Both PHYS 24100 and PHYS 24100D are titled “Electricity and Op-

tics”. The “D” simply signifies an online section of the course in the fall and spring

semesters. During the summer semester, the course is only administered online, so

the separate PHYS 24100D code is not necessary.

The content in the on-campus and online sections of Electricity and Optics is

exactly the same. All of the students use Physics for Scientists and Engineers by

Tipler and Mosca as their textbook [10]. The one-semester course covers chapters 21

through 33, with topics including: electric charge, electric fields, electric potential,

circuits, magnetic fields, magnetic induction, Maxwell’s equations, geometric optics,

and interference e↵ects. The online and on-campus sections only di↵er in the fact that

the online sections watch pre-recorded video lectures and attend online recitations

through Cisco WebEx [11] while the on-campus sections attend live lectures and live

recitations.

A.3.2 Class Demographics

Engineering students usually take this course in the fall semester (the “on-semester”).

Alternatively, some engineering students choose to take the course in the spring or

summer (the “o↵-semesters”) due to the fact that they are either ahead or behind

in their schedules. Table A.1 shows the total enrollment in the campus and online

sections of Electricity and Optics over the last two years. During the fall and spring

semesters, just under 10% of the total class is enrolled in PHYS 24100D.
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Table A.1
Enrollment in the campus and online sections of Electricity and Optics
from spring 2015 through spring 2016. All of the enrollment numbers
ignore dropped students.

Semester Online Campus Percent Online

Spring 2015 43 474 8.3%

Summer 2015 187 0 100.0%

Fall 2015 69 728 8.7%

Spring 2016 36 339 9.6%

Before analyzing any of the BEMA scores, we wanted to compare the physics and

mathematics abilities of the students in each section. All of the students in PHYS

24100 were asked to complete a demographic survey at the beginning of the semester

that asked for information on their previous calculus and physics classes. Each of the

questions on the survey included an option of “I Prefer Not to Disclose”, just in case

a student wanted to keep their information private. However, the vast majority of

the students answered all of the demographics questions (just under 99%).

Two of the questions on the survey asked students about their previous grades in

their introductory mechanics class and their first semester calculus class (if they were

taken at Purdue University). We found that the student bodies had very di↵erent

mean scores between the on-semester (fall 2015) and the o↵-semesters (spring 2015,

summer 2015, and spring 2016). However, the online and on-campus sections within

a single semester had very similar scores in each case. Tables A.2 and A.3 show

the mean mechanics and calculus grades in each of the semesters. Though some of

the mean grades on these tables appear quite distinct at first sight, statistical tests

indicate otherwise.

Chi-squared tests of the data showed no statistically significant di↵erences between

the online and on-campus grade distributions within a semester except for the fall
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Table A.2
Reported mean mechanics grades for students in PHYS 24100. Stu-
dents were asked to report their grade in their previous mechanics
course (with the option of not disclosing this information should they
want to keep it private). The majority of students took PHYS 17200 -
the introductory mechanics course at Purdue University. The options
were “A” (4), “B” (3), “C” (2), and “D” (1).

Semester Mean (Campus) Mean (Online)

Spring 2015 2.726 2.333

Summer 2015 NA 2.531

Fall 2015 3.022 2.795

Spring 2016 2.871 2.556

Table A.3
Reported mean calculus grades for students in PHYS 24100. Students
were asked to report their grade in their most recent calculus course
(with the option of not disclosing this information should they want to
keep it private). Most students had completed the second semester of
introductory calculus and were taking Calculus III concurrently with
PHYS 24100 or 24100D. The options were “A” (4), “B” (3), “C” (2),
and “D” (1).

Semester Mean (Campus) Mean (Online)

Spring 2015 3.091 2.893

Summer 2015 NA 3.055

Fall 2015 3.255 3.065

Spring 2016 3.121 3.136

2015 and spring 2016 calculus comparisons (see Table A.4). However, the e↵ect sizes

(measured by Cramer’s V) for the fall of 2015 and spring of 2016 are 0.139 and 0.193

respectively. We will use the traditional cuto↵ of p = 0.05 for statistical significance

and Cohen’s guidelines for interpreting e↵ect sizes in this paper [95], so we conclude
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that they are relatively small e↵ect sizes. Since the grade distributions were similar

between the online and on-campus sections, we would expect the initial BEMA grade

distributions to be similar as well. However, as we will see, this was definitely not

the case.

Table A.4
The p-values of the chi-squared tests comparing scores in the online
and on-campus sections. We only compare grades of A, B, and C
since the number statistics were very low for D grades. Wherever
there was a statistically significant di↵erence in the distributions, we
saw a small e↵ect size.

Semester Mechanics Calculus

Spring 2015 0.124 0.096

Fall 2015 0.085 0.032

Spring 2016 0.342 0.030

A.3.3 Administration of the BEMA

The BEMA was administered twice during each semester as a pre-test and post-

test. In the spring and fall semesters, the pre-test was given during the first week of

class while the post-test was given around the 12th week (right after the students had

finished the unit on magnetic induction and were moving onto AC circuits). During

the summer, the BEMA pre-test and post-test were administered during the first and

sixth weeks of the semester.

The on-campus sections took the BEMA exam during their scheduled recitation

periods while the online sections took the exam through our in-house online home-

work system called CHIP (Computerized Homework in Physics). In both cases, the

students could see the entire exam at one time and answer the questions in any order

that they wished. As per the suggested guidelines mentioned in the introduction, the

online students were told that they were taking a “diagnostic exam”, and they would
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receive credit for one recitation quiz if they tried their best. Both the online and

on-campus sections were given a time limit of 30 minutes to complete the BEMA.

None of the students were able to see their final scores on the BEMA; instead, they

only saw a recitation quiz credit of 10 points if they attempted the test.

The inspiration for this study came from viewing the histograms of BEMA pre-test

and post-test scores (see Figure A.1). There is a very obvious discrepancy between

students in the on-campus sections (where the distributions of scores look like slightly

skewed normal distributions) and the students in the online sections (where the distri-

butions of scores have a very prominent spike around a perfect score). Interestingly,

the abnormal peak in the online sections does not occur at a score of 31/31; rather,

it occurs at a score of 30/31. The reason for this is explained in Section A.6.2.

A.4 Methods of Analysis

A.4.1 Measures of Reliability and Discrimination

To identify whether online students are experiencing the BEMA di↵erently than

their on-campus counterparts we compare a number psychometric properties of the

test, dis-aggregated by group. Pulling from Lin Ding’s earlier assessment of the

BEMA [101], we primarily focus on classical test theory (CTT) measures. These

measures are based o↵ the performance of all students on the assessment, so notable

di↵erences in the measures between the campus and online sections form the basis for

claims that the two sections are not experiencing the test in an equivalent manner.

The data for this analysis comes from the four semesters of PHYS 24100 and PHYS

24100D described above.

We also compare BEMA scores with exam performance to identify scores that are

outliers. While the online students do take the BEMA online, they are required to

take the exams on campus during the fall and spring semesters. Using the exams as

an baseline measure of students ability levels we compare their overall exam score
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Figure A.1. Distribution of BEMA scores for the online and on-
campus sections of Electricity and Optics. The red bars represent
the pre-test scores while the blue bars represent the post-test scores.
The on-campus sections follow a normal distribution with a slight
skew (as one might expect). However, the online sections have an ab-
normal peak at a score of 30/31. Note that there were no on-campus
sections in the summer of 2015.

with their overall BEMA scores. We then compare similar questions on the BEMA

and the exams to demonstrate further inconsistencies between the groups.
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A.4.2 Roles of the Researchers

In this study the principle investigators are Mr. Cyrus Vandrevala, Mr. Gary

Johns, Dr. Lynn Bryan, Dr. Andrew Hirsch, Dr. Hisao Nakanishi, and Dr. Laura

Pyrak-Nolte. Laura Pyrak-Nolte is the head instructor of PHYS 24100 and 24100D

while Hisao Nakanishi manages the online CHIP homework system (including the

setup of the BEMA in each semester). With their guidance, Cyrus Vandrevala and

Gary Johns prepared the measures of the BEMA data.

Drs. Lynn Bryan and Andrew Hirsch provided the educational theory that sup-

ports this study. Neither of them are directly involved with the day to day a↵airs of

PHYS 24100 or PHYS 24100D. It should be noted that Andrew Hirsch is one of the

main instructors of PHYS 17200 - the introductory physics class that is a prerequisite

for PHYS 24100 and PHYS 24100D.

A.5 Results

A.5.1 Classical Test Theory

Classical test theory (CTT) includes a number of useful measures that can be

calculated for all of the assessment items, including the item di�culty index, the

item discrimination index, and the point-biserial correlation coe�cient. Whole test

measures, such as Ferguson’s Delta and the Kuder-Richardson Reliability Index (KR-

21) provide additional information about a properly applied assessment [141]. We are

looking at how the BEMA fails to work in an online environment.

To compare the the online and on-campus sections we look both at the di↵erences

in an item measure between the two groups at the time of pre- and post-testing as

well as the changes in that measure for of each group between pre- and post-testing.
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Item Di�culty Index

The item di�culty index (P ) in CTT is defined as the number of correct responses

to a single test question (Nc) divided by the total number of students who attempted

the question (Ntot).

P =
Nc

Ntot

(A.1)

This proportion varies from 0 to 1 with ideal values for items dependent on the

purpose of the assessment. A di�culty index of zero means that nobody got the

question correct while a di�culty index of one indicates that every test taker got the

question correct.

Figure A.2 shows the trends in item di�culty for the online and campus sections

between pre- and post-testing. Given that the course content covers most of the

topics on the BEMA, we expect a positive correlation between the pre-test and post-

test scores. The intercepts of linear regression and the clustering of values are the

important distinctions between the two groups.

Figure A.2. Item di�culties for online and on-campus students of
PHYS 24100. Each point refers to a question on the BEMA.

With the exception of a single outlier (which we will discuss later) students in the

online classes see generally higher item di�culties than their campus counterparts.

This means that the on-campus students are experiencing select problems as more

di�cult than their online colleagues.
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Figure A.2 shows a particularly pronounced manifestation of this e↵ect. Not only

are the pre-test item di�culties higher for the online students, but those students also

have extremely high item di�culties in the post-test; post-test scores have a lower

bound of 0.6 in the online sections of spring 2016 (again, ignoring the one outlier).

To further compare the two groups, Figure A.3 shows the trend in item di�culty

between groups for both the pre- and post-tests in the fall 2015 and spring 2016

semesters. If we were sampling truly equivalent populations of students we would

expect similar item di�culties on a single test. However, the item di�culties are

generally higher for the online students especially on the post test. The spring 2015

semester does not clearly separate the two groups.

Figure A.3. Comparison of pre-test and post-test item di�culties for
the online and on-campus sections. The graph on the left shows the
data in the fall 2015 semester while the graph on the right shows the
data from the spring 2016 semester.

When looking at the average item di�culty of all questions on the BEMA, once

again we see that the online sections outperform the campus sections. Table A.5

compares the average item di�culties between the online and campus sections of

PHYS 24100.

Based on the item di�culty measure, we observe that the online students are ex-

periencing the assessment di↵erently than their on-campus counterparts. A majority

of the questions appear to be easier for the online students than their on-campus
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Table A.5
Average item di�culties on the BEMA. The data below is for the
spring 2015 (SP15), summer 2015 (SU15), fall 2015 (FA15), and spring
2016 (SP16) semesters.

Pre-Test Item Di�culties

SP15 SU15 FA15 SP16

Campus 0.364 NA 0.345 0.352

Online 0.424 0.454 0.414 0.394

Post-Test Item Di�culties

SP15 SU15 FA15 SP16

Campus 0.448 NA 0.431 0.394

Online 0.502 0.574 0.711 0.755

counterparts. Additionally, we see that the online group’s behavior is inconsistent

between semesters.

Item Discrimination Index

The item discrimination index (D) measures the discriminatory power of each

item in an assessment. A test item with a high discrimination index implies that

students with greater knowledge of the material will probably answer the question

correctly, while students with less knowledge of the material will probably answer the

question incorrectly. Conversely, a poorly constructed test question with a low item

discrimination index would cause students who understand the material to answer

incorrectly. Ideally, a test contains many questions with large item discrimination

indices so that students with more knowledge of the material are distinguished from

those with less knowledge of the material.

The calculation of the item discrimination index consists of a few steps. First, we

need to split the sample of students into two groups based on their overall BEMA
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score. One group consists of students in the top X percent of the test scores while

the other group consists of students in the bottom X percent of the test scores. The

value of X is determined by the researcher, but values of 50%, 33%, and 25% are

common. Then, number of students who answered a given test item correctly is

counted for each of the groups (NH and NL standing for “high” and “low”). Finally,

the di↵erence of the counts is divided by the number of test takers in each group (N).

In our case, we chose a value of X = 1/3. If we were to pick X = 1/4 like in Lin

Ding’s analysis, the number of data points in each group would have been very small.

The item discrimination index becomes:

D =
NH �NL

N/3
(A.2)

The item discrimination index can range from 1 to +1. Generally speaking, any

questions with an item discrimination index below zero should be discarded and a

minimum item di�culty index of 0.3 is preferred [142]. It should be noted that test

items with an index between 0 and 0.3 are not necessarily bad, but they are places

where revised test questions might be substituted.

Figure A.4 shows the item discrimination indices of each question on the BEMA

for the online and on-campus sections of Electricity and Optics. First and foremost,

it is important to note that the apparent grid-like patterns of the online item dis-

crimination indices are an artifact of lower than ideal number statistics in the online

sections. They should not be interpreted as an underlying pattern for the item dis-

crimination index. However, in all four semesters, we see that the on-campus item

discrimination indices are generally smaller than those in the online sections (with

the exception of one outlying data point in the lower left corner of each graph).

Figure A.5 clearly shows the di↵erence between the BEMA scores in the online

and on-campus sections. Online sections of the class tend to display larger item

discrimination indices than on-campus sections in both the pre-test and the post-

test. This means that students in each of the sections are not experiencing the same

exam.
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Figure A.4. The figure shows the item discrimination indices for the
online and on-campus sections of the spring 2015 through spring 2016
semesters. Each point on the graph represents a question on the
BEMA. In the spring 2015 graph, one of the questions had an index
less than zero, so it does not appear on the graph. It is also impor-
tant to note that the grid-like patterns of the online sections are an
artifact of lower than ideal number statistics. Thus, they should not
be interpreted as an underlying pattern in the data.

Point Biserial Correlation Coe�cient

The point biserial correlation coe�cient (rpbs) measures the correlation between

student’s answers to an individual item on an assessment and their total score of the

assessment. It is given by:

rpbs =
X̄c � X̄i

�X

p
P (1� P ) (A.3)
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Figure A.5. The figure shows the pre-test and post-test item discrim-
ination indices for the spring 2015 through spring 2016 semesters.
Each point on the graph represents a question on the BEMA. In the
spring 2015 graph, one of the questions had an index less than zero, so
it does not appear on the graph. The lines with slope one are plotted
for the sake of comparison.

In the equation above X̄c is the average total score for students who correctly an-

swer a given item, X̄i is the average total score for students who incorrectly answered

the item, �X is the standard deviation of the total score for all students tested, and

P is the proportion of test takers who got the item correct [143].

The value of the point biserial correlation coe�cient ranges between -1 and +1;

a larger positive value indicates that a student’s ability to answer a given item is

predictive of scoring highly on the exam. Overall, the point biserial correlation co-

e�cient gives a measure of how well an item discriminates students with higher and

lower levels of knowledge. Ideally, one would like to see point biserial correlation

coe�cients that are as large as possible, but rpbs > 0.25 is considered acceptable in

many cases [144]

Figure A.6 compares the point biserial correlation coe�cients between the online

and on-campus sections. The graph on the left shows di↵erences between online

and campus students across all of the semesters. Online point biserial correlation

coe�cients for items generally exceed those seen for campus students. This means

that students in the online section have a stronger correlation between their overall

BEMA scores and their score on each question on the BEMA versus their on-campus
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colleagues. The graph on the right shows where the values tend to cluster for online

and on-campus students and is consistent with the average correlations compared

between the groups. Again, the online and on-campus sections are not experiencing

the same test.
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Figure A.6. The figure shows the point biserial correlation coe�cient
for the online and on-campus sections of the fall 2015 semester. The
clustering of the data points shows that students are not experiencing
the same test in the online and on-campus sections of Electricity and
Optics.

Table A.6 gives the point biserial correlation coe�cients in each section and each

semester. Again, there is a distinct di↵erence between how the di↵erent sections

experience the BEMA concept inventory. We also see a huge di↵erence between the

pre-test and post-test coe�cients in the online sections, suggesting that more students

might be referencing external sources in the post-test than in the pre-test.

Ferguson’s Delta

Ferguson’s Delta is a statistic that measures the discriminatory power of an entire

test by analyzing the distribution of total scores over the entire possible range of

scores [145]. It is based on a comparison of the total scores between pairs of students.

If a population of N students completes a given assessment, there are N(N � 1)/2

pairs of students. The number of pairs of equal scores (P) is given by:
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Table A.6
Average point biserial correlation coe�cients for the BEMA pre-test
and post-test in each semester. There is a distinct di↵erence between
the online and on-campus sections of Electricity and Optics.

Pre-Test Average Correlation

Section Spring 2015 Fall 2015 Spring 2016

Campus 0.364 0.345 0.352

Online 0.424 0.414 0.394

Post-Test Average Correlation

Section Spring 2015 Fall 2015 Spring 2016

Campus 0.448 0.431 0.484

Online 0.502 0.711 0.876
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P =
X

i

fi(fi � 1)

2
(A.4)

where fi is the frequency of each score in the sample. If we let K represent the

number of items on the assessment, then the maximum number of unequal pairs

(Pmax) will occur when fi = N/(K + 1). Ferguson’s Delta (�) is defined as the ratio

of the number of unequal pairs of scores divided by Pmax.

� =
N

2 �
P

f

2
i

N

2 �N

2
/(K + 1)

(A.5)

The values for Ferguson’s Delta range from zero to one where zero represents no

well-defined distribution of scores and one represents a rectangular distribution of

scores [146]. In Table A.7 we have calculated Ferguson’s Delta for each section in

each semester.
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Ideally, Ferguson’s Delta should be greater than 0.90 to ensure that a test dis-

criminates students with di↵erent skill levels appropriately [146]. This condition is

met in all of the campus sections; however, the online sections in the fall of 2015 and

spring of 2016 show values smaller than 0.90. This suggests that the discriminatory

power of the BEMA concept inventory is not as high for the online sections.

Kuder-Richardson Reliability Index (KR-21)

The Kuder-Richardson Reliability Index (KR-21) measures the self-consistency of

a test. If a test were administered to two groups of students at two di↵erent times,

we would expect there to be a large correlation between the scores in each group,

assuming that the students have approximately the same skill level and the test was

administered in approximately the same conditions.

The correlation coe�cient between the scores of two separate administrations of a

given test is not necessarily a good way of determining the reliability index for many

reasons. For example, students may remember test questions between examinations

or the test conditions might di↵er significantly. Instead, we can take advantage of the

fact that the BEMA concept inventory tests one specific knowledge domain - electro-

magnetism concepts. We can split this exam up into 31 “sub-tests” and compare how

students perform on 31 parallel assessments. The KR-21 formula for the reliability

index (rtest) is given by [147,148]:

rtest =
K

K � 1

✓
1�

P
P (1� P )

�

2

◆
(A.6)

where K is the number of items on the assessment, P is the item di�culty of each

question, and �

2 is the variance of the total scores on the test.

An acceptable value for rtest depends on the purpose of the instrument. Generally

speaking, if the index is higher than 0.7 it is acceptable for group measurements and

if it is higher than 0.8 it is acceptable for individual measurements [146]. Table A.8

gives the values for the KR-21 index in each semester and section.
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First, we note that the KR-21 index is rather low for our on-campus sections,

indicating that the reliability of the BEMA is not as high as we might like (Ding

et al. reported a KR-21 index of 0.85 in their analysis [101]). However, what is

particularly striking here is the huge di↵erence between the online and on-campus

sections. We are calculating suspiciously high KR-21 indices for the online sections

of PHYS 24100 (greater than 0.90 in all cases). Again, the online and on-campus

sections are not experiencing the BEMA exam in the same way.

A.5.2 External Validity

Data analysis, up to this point, has focused solely on the BEMA scores. Without

an external measure of student ability to compare against we cannot unilaterally

dismiss the possibility that the observed di↵erences in the BEMA scores is due to

di↵erences in physics knowledge. The exams for this course have to be taken on

campus by all students in the fall and spring semesters. During the summer semester,

two midterm exams are administered online while one final exam must be taken on

campus. This gives a standard way to measure student performance, and we can use

performance on the exams to identify discrepancies in students’ performance on the

BEMA.

Importantly we are not claiming any rigorous equivalence between the course

exams and the BEMA. We are instead interested in using the existing correlation

between exam and BEMA performance to identify any anomalous performance ex-

hibited by students.

Figure A.7 shows the total score on the first two exams versus the BEMA pre-test

and post-test scores. The top row of graphs shows scores from the fall 2015 semester

while the bottom row of graphs shows scores from the spring 2016 semester. We used

the first two exams of the semester specifically because they covered the same topics

that were on the BEMA. The final exam covered electromagnetic waves and optics,

so it was omitted in this analysis.
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The average item di�culty on our exams was much higher than the average item

di�culty on the BEMA in each semester because we calibrated each test to have an

average grade between 65 - 70% while it is not uncommon for students to score 50%

or below correct on the BEMA. The graphs show that the vast majority of students

in the on-campus sections (where cheating can be kept to a minimum) scored better

on the exams than on the BEMA. However, many of the online students that were

identified as cheaters due to the outlying data point (see Section A.6.2) are clustered

in a specific region far to the right of the charts.

A.6 Discussion

A.6.1 General Trends

In each of the measurements above, we see that there is a large di↵erence between

the BEMA scores in the online and on-campus sections of PHYS 24100. The online

section seems to outperform the on-campus sections on almost every question of the

BEMA. Thus, we have to conclude that the BEMA is not a valid instrument for

our online sections of PHYS 24100. This is almost certainly due to cheating on the

BEMA (see Section A.6.2 below for details why).

Not everybody in the online sections of PHYS 24100 are cheating on the BEMA.

Thus, the histograms of scores (Figure A.1) are made up of two di↵erent parts. First,

there is a skewed bell curve that represents the students who attempt the BEMA in

an honest way. These scores generally match up with the scores of their on-campus

colleagues. Then, there is a group of outlying data points which correspond to perfect

or near-perfect scores on the BEMA. These are the students that are cheating.

We find that it is simple to isolate those who are suspected of cheating on the

BEMA exam. All of the individual item CTT measures from above are greatly skewed

in the cases where students cheat on the BEMA. Additionally, the whole-test items

are skewed when the online test environment is not as secure as originally thought.
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Figure A.7. A comparison of exam scores compared with the BEMA
pre-test (red) and post-test (blue) scores in the fall 2015 and spring
2016 semesters. The fall 2015 semester is the top row of graphs while
the spring 2016 semester is the bottom row of graphs. The graphs on
the left show the data from the campus sections while the graphs on
the right show the data from the online sections. Each point represents
the total test score of one student on the first two exams (i.e. material
that is covered on the BEMA). Thus, students who took both the
BEMA pre-test and the post-test appear twice in each graph (i.e. one
red data point and one blue data point). The online students who are
identified as cheating are found on the right hand side of the graphs,
corresponding to high BEMA scores but average exam scores.

Thus, the reliability and discrimination of the BEMA decrease significantly in an

environment where many students are cheating.
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We can also verify that students are cheating by conducting a test of the validity

of the BEMA; the process is straightforward. First, administer the BEMA concept

inventory as you would normally. Then, administer a short set of questions that cover

the same topics as the BEMA, but have a lower item di�culty (call this the probe

test). This can easily be done as a subset of a homework assignment or perhaps as

a Clicker question in recitation. If you need to administer questions in an online

environment, do not just pull questions from Google. Instead, reword questions so

that they cannot be easily looked up. We used probe tests of 10-15 questions (i.e.

our exams), but we predict smaller probes would work just as well. Finally, plot the

standardized test question score versus the total BEMA score. Students who have

a high likelihood for cheating will be clustered together in a region corresponding to

high BEMA score, but low test score.

Although these methods might not be convenient for the average teacher in the

average classroom, they are very easy to incorporate into a large, online homework

system. Online homework systems can keep a running tab of the CTT measures

from above, and identify any students who are moving into the realm of potentially

cheating. Additionally, many homework systems like the ExpertTA [79] claim that

they can not only change the numbers within a homework problem, but additionally

reword the questions themselves. Systems like WebAssign [74] have built-in concept

inventories (including the BEMA exam). It is a straightforward matter to find ques-

tions that are similar to the BEMA concept inventory and include them throughout

the homework over the semester. Students that are tagged as high risk for cheating

can be confronted on a case-by-case basis as per the wishes of the instructor.

A.6.2 The Outlier

Throughout the paper we repeatedly mention an outlying data point, and claim

that it merits further discussion. Online sections outperformed the on-campus sec-

tions for almost every question on the BEMA - except for the outlying point. Our
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hypothesis was that this was due to cheating - online students were searching for

BEMA solutions, and thus, outperforming their on-campus colleagues. However, it

is extremely di�cult to prove that high scores are, in fact, due to dishonesty rather

than exceptional skill level.

Early in the project, members of the research group performed a series of Google

searches in an attempt to see how easy it was to cheat on the BEMA; the results were

not encouraging. It was very easy to find solutions to the BEMA and other concept

inventories online. However, there was one serendipitous result that came from this

search.

We found a website that posted the solutions to the BEMA questions near the top

of the Google search results. However, the author of these solutions made one mistake

on the list of answers. Thus, anybody who attempted to cheat from this list of answers

would only get 30/31 questions correct. And to our amazement, the majority of the

students suspected of cheating in our class did not have scores of 31/31. Instead,

they had scores of 30/31 with exactly the same problem wrong between their tests

and the online solutions.

We do not wish to ruin anybody’s reputation by calling out a specific person. Thus,

we provide two ways to access the slides without pointing the blame at anybody in

particular. First, one can perform a Google search of the text of the first question on

the BEMA: “The original magnitude of the force on the +Q charge was F...”. As of

the time we wrote this paper (August 2016), the web page was still available to the

public. Additionally, if any reader would like to receive a PDF copy of the page we

refer to, please contact us privately, and we will send you the page with the author’s

name blanked out.

This outlier is strong evidence that the online students were actually cheating on

the test and not outperforming their on-campus colleagues. We want to stress that

these answers were in no way planted or planned ahead of time. The research group

did not realize that these answers were online when the BEMA was given to the

classes.
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A.7 Conclusions

We have shown that students in the online sections of our introductory electricity

and magnetism class experience the BEMA di↵erently than their on-campus coun-

terparts. Thus, the BEMA is not a valid instrument for our online classes. The

huge di↵erence in the grade distributions between online and on-campus sections can

be explained using a variety of CTT measurements. Normally, it is very di�cult to

determine if a student with a high score is cheating or is simply a skilled problem

solver. However, in this case, we got very lucky; a thorough Google search for BEMA

questions yielded a set of online answers to the BEMA that we believe students were

using. This is because the BEMA scores in our online course from students who were

suspected of cheating were consistently 30/31. It just so happened that the answers

posted online had exactly one error, corresponding to the common mistake by all of

our students.

Using this information, we determined that CTT measurements are skewed in very

specific ways when students cheat on the BEMA. Additionally, a simple comparison of

the BEMA pre-test and post-test results with results from in-class exams can identify

cheating students based solely on a comparison of item di�culties alone. Although

it would be di�cult to implement these strategies in an individual classroom, they

might find use when combined with a suite of other statistical techniques in an online

homework system.
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