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ABSTRACT

Niu, Ben Ph.D., Purdue University, December 2016. High Efficiency Edge Coupler,
Novel Nonlinear Optical Polymers with Large Kerr-Coefficient and Automatic Layout
Generation in Silicon Photonics. Major Professor: Minghao Qi.

The potential of on-chip photonics is limited by the difficulty in coupling light

from optical fibers to on-chip waveguides. Specifically, 3rd-order nonlinear on-chip

photonics usually requires high optical power. Hence the first major focus of this

research is to design high-efficiency edge couplers. To achieve this goal, loss mecha-

nisms of basic inverse taper couplers are analyzed and experimentally verified. Then

a cantilever-encapsulated inverse taper is demonstrated to further lower coupling loss

compared to basic inverse tapers. Nonetheless, both couplers are designed to cou-

ple with lensed fibers. Hence for flat fibers with larger mode-field-diameter (MFD),

a novel sub-wavelength grating based edge coupler is proposed and experimentally

demonstrated to have 1.9dB/facet loss. Eventually a silicon multi-section taper with

intermediate SU-8 waveguide cladding is proposed for flat fibers with even larger MFD

and experimentally verified. Based on the result several suggestions are proposed for

further improvement.

Since high optical power is necessary for 3rd-order nonlinear applications, silicon

is not the material choice due to its intrinsic two-photon-absorption(TPA). Thus the

second focus of this research is to explore a novel nonlinear optical polymer termed

PolyDDMEBT. Both its linear and nonlinear optical properties are charaterized. The

measurement shows that the material has a real part refractive index of 1.68 and

negligible absorption in 1550nm. Also, the polymer possesses negative thermo-optical

coefficient. In addition, Z-scan measurement shows large Kerr-coefficient and no



xii

presence of TPA in this polymer. As a result, PolyDDMEBT may be useful for

3rd-order optical nonlinear applications.

The third focus of this research is regarding automatic layout generation of on-

chip photonics. This tool developed by the author is proven capable of generating

both simple and complex on-chip photonic layouts. And it is especially efficient in

large numbers of parameter sweepings.
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1. INTRODUCTION TO ON-CHIP PHOTONICS

1.1 Fundamentals of On-chip Photonics

The world of electronics has come a long way. In the beginning was vacuum

tubes, bulky and power hungry. Then solid state transistors greatly reduced the

size and power consumption of various electrical components. Finally since its birth

in the late 1950s, integrated circuits (IC) has squeezed the entire electronic system

onto chip platform. Consequently, microelectronics has grown exponentially in inte-

gration and unit cost has drastically declined, following Moore’s Law [1]. Likewise,

optics/photonics is evolving with the similar trend. For instance, optics in the 1950s

was about light generation from bulky gas laser sources, reflection by mirrors and

focus by lenses. Then with the advent of optical fibers, optical components greatly

reduced in size such as fiber lasers as light sources. Now motivated by the awesome

success of the microelectronics, researchers are pushing to integrated various photonic

components on-chip, including laser, modulator, waveguide, photo-diode etc.

Several material platforms have been utilized for on-chip photonics. For example,

arrayed-waveguide-grating(AWG) has been demonstrated in silica planar lightwave

circuits (PIC) [2–4], where silica waveguides with higher refractive index are buried

among silica cladding with lower index. Although it does provide optical confinement,

the limited index difference causes large device footprint such as large waveguide

bends. For instance, AWGs based on silica platform can be in the range of millimeters

or even more. In order to reduce device size and increase integration, on-chip silicon

photonics (SiPh) [5–7] has emerged as an attractive solution, where high-index silicon

waveguide are buried in low-index silica cladding. Due to the large refractive index

contrast, SiPh enables strong optical mode confinement, thus greatly reducing the

device footprint. For instance, the size of AWGs based on silicon waveguides can
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Fig. 1.1.: . The size comparison between a silica-waveguide-based AWG(left) [4]

versus a silicon-waveguide-based AWG(right) [9]

Fig. 1.2.: . Illustration of optical phase array [10]

be reduced to tens of micrometers [8, 9]. Fig.1.1 shows the size comparison between

silica-based and silicon-based AWGs.

1.2 On-Chip Photonics By Academia, Industry and Governments

A number of academic institutions have devoted a great deal of research into on-

chip photonics. For instance, a MIT group demonstrated on-chip optical phased array

with 4096 optical components [10]. A group at Berkeley has demonstrated nanolasers
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Fig. 1.3.: . Optical photo of a microprocessor communicating directly in light [10]

grown on silicon [11]. Moreover, another group at Cornell has demonstrated one of

the first micro-ring based silicon modulator [12],etc just to name a few.

Beyond academia, many industrial companies have also invested in the field. For

instance, IBM is developing cost efficient packaging method for on-chip photonics [13].

Intel has demonstrated 100G CWDM (Coarse Wavelength-Division Multiplexing) op-

tical transceiver [14]. Others such as Cisco, Huawei, Google and Facebook etc are ac-

tively involved in this field. Besides these well-established industrial giants, a number

of new companies specializing in SiPh have also emerged, including Infinera, Luxtera,

Kotura, Caliopa, Aurrion etc. Due to its importance in national security, various gov-

ernments have shown strong support towards on-chip photonics. Specifically, United

States government has pledged to invest 100 million USD in a public-private partner-

ship termed ”The American Institute for Manufacturing Integrated Photonics (AIM

Photonics)” [15], aiming to become the leading nation in the field. Similarly, Eu-

ropean Union has its own version called ”ICS-STREAMS” project [16], where 50

million USD is promised in the research of silicon photonics. Likewise, China has
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Fig. 1.4.: . Illustration of a silicon photonic chip for quantum photonics [24]

also proposed 37 million USD funding in ”Large-Scale Integrated Photonics Chips”

project.

The academic research universities, industry as well as national labs often collabo-

rate together to attempt major technological breakthroughs. For instance, researchers

from UC Berkeley, MIT, University of Colorado, together with those from IBM and

National Institute for Standards and Technology (NIST) have successfully demon-

strated for the first time a single-chip microprocessor that communicate directly with

light [17], which integrates the microelectronics and SiPh together onto the same

chip. The SiPh part contains numerous grating couplers, micro-ring modulators,

waveguides, photodiodes etc, as show in Fig.1.3.

1.3 Explorations of New Science with On-chip Photonics

On-chip photonics has provided a potent platform for exploring new science and

future technologies. For instance, it has been used to study light-matter interactions

[18, 19], high-Q(quality factor) micro-resonators based optical frequency combs [20–

22], compact platform for quantum photonics [23–25] as well as optical trapping [26],

just to name a few. An illustration of a silicon photonic chip platform for quantum

photonics is shown in Fig.1.4.
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Fig. 1.5.: . Illustration of THG of green light in a silicon slow-light waveguide [29]

1.4 Challenges of Nonlinear On-Chip Photonics

Nonlinear Optics [27] is an important branch of optics and it usually requires high

optical power and large material optical nonlinearity to generate observable nonlinear

signals. Efforts have been made to generate nonlinear optical phenomena using on-

chip platform [28]. For instance, Fig.1.5 shows third-harmonic generation(THG) of

green light in a silicon slow-light waveguide [29]. However, there are two major

challenges with on-chip nonlinear photonics. First, coupling between optical fibers

and on-chip devices usually causes significant insertion loss. Unlike fiber-based EDFA,

on-chip optical signal amplification is quite difficult. Second, most of the usual CMOS-

compatible dielectrics including silicon possesses small 3rd-order nonlinearity, which

further increases the power demand. Therefore, this work focuses on these two areas:

reducing fiber-to-chip coupling loss and explore new material with large 3rd-order

optical nonlinearity.
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2. HIGH EFFICIENCY FIBER-TO-CHIP EDGE

COUPLERS

2.1 Overview of Fiber-to-Chip Coupling

In SiPh, optical fibers are generally used to couple light into and out of on-

chip integrated photonic devices. However, modes supported in optical fibers have

drastically larger mode file diameter(MFD) than those in on-chip waveguides, as

shown in Fig. 2.1. This mismatch causes significant coupling loss between optical

fiber and chip.

Fig. 2.1.: Mode mismatch between optical fiber core and on-chip waveguide

Fig. 2.2.: Illustration of edge coupling and grating coupling [30]
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Fig. 2.3.: Brief historical development of edge couplers

To reduce this undesirable loss, one of the solutions is to introduce fiber-to-chip

couplers. Currently there are two main categories: edge couplers and grating couplers,

shown in Fig.2.2. Each has its own advantages and shortcomings. For example,

edge coupling possesses broadband transmission but suffers from limited alignment

tolerance. Grating coupling enables dense device integration on chip and is more

alignment tolerant. Yet it suffers from limited bandwidth.

Since the high speed applications such as wavelength-division multiplexing (WDM)

require certain bandwidth, industry in general favors edge couplers. In addition, in-

dustry prefers cheap flat optical fibers to relatively expensive lensed fibers used in the

research labs. Hence the ultimate goal is to couple light from flat fibers into and out

of edge couplers with high efficiency.

The brief historical development of edge couplers is shown in Fig.2.3. The first

attempt to achieve high efficiency edge coupling is accomplished by using basic inverse

tapers as the interface between waveguides and optical fibers [31]. The fiber mode

first is coupled to the taper tip mode and then is gradually converted to waveguide

mode. The taper tip supports a larger fundamental mode than silicon waveguide,

hence mitigating the mode mismatch and reducing coupling loss. However, it relies on

coupling with 2.5µm-MFD lensed fibers and suffers large coupling loss of 3.3dB/facet.

Then, an intermediate cladding waveguide is proposed on top of the inverse taper [32].

This additional stage supports a much larger fundamental mode and enables the
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Fig. 2.4.: Illustration of the structure of an inverse taper

fiber mode to be better coupled into the cladding waveguide. Nonetheless, it is still

designed for lensed fibers. Later, a new multi-stage design is proposed [33], which

adds a rib taper on top of the intermediate cladding layer. This design can couple

with flat optical fiber. The added benefit is that the rib taper compresses the flat

fiber mode before feeding it into the lower stage, thus further improving efficiency.

However, its fabrication poses a serious challenge. So far the performance of edge

couplers fabricated with standard CMOS process coupling to flat fibers is not up to

industry demand. Hence there is a need to design a high coupling efficiency edge

coupler for flat fibers.

2.2 Inverse Taper Power Loss Mechanism

In order to increase coupling efficiency, the loss mechanism needs to be understood.

In a typical SOI inverse taper shown in Fig.2.4, several competing factors affect its

power coupling efficiency.

1. A = power coupled to the guided mode of the taper tip

2. B = power coupled to expanded taper along propagation

3. C = mode transition loss (scales down with taper length)

4. D = scattering loss due to roughness (scales up with taper length)
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Fig. 2.5.: Fundamental TE mode profiles of inverse taper tips with different tip

widths

Fig. 2.6.: Fundamental TM mode profiles of inverse taper tips with different tip

widths

Total power coupling = A + B - C - D

2.2.1 Power Coupled to the Guided Mode of the Taper Tip(A)

The power coupled to the guided mode of the taper tip depends on the mode

overlapping between fiber mode and taper tip mode. Fig.2.5 shows the simulated

fundamental TE modes of a taper tip with different widths. The height of the taper

tip is fixed at 220nm, equal to the top silicon layer thickness of usual SOI wafers.

Ideally a good mode-matching requires the coupled mode to be of similar shape,

size and intensity distribution with input fiber mode, which is Gaussian mode with
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a circular cross-section and maximum intensity in the center. As shown in Fig.2.5,

if the taper tip is very narrow, its guided fundamental TE mode is very elliptically-

shaped. Hence mode-matching is poor and the power coupled into the taper is small.

On the other hand, if the taper tip is very wide, its guided fundamental TE mode is

well confined in the center of the taper. Hence its mode size is drastic smaller than

that of input fiber mode and the power coupled into the taper is small. Therefore,

an optimum taper tip width exists to maximize mode matching and power coupling

between the fiber mode and the taper tip mode. In other words, this optimum taper

tip should support a fundamental mode that has the maximum mode-matching with

the input fiber mode. Likewise, TM modes exhibit the same trend, as shown in

Fig.2.6.

2.2.2 Power Coupled to the Expanded Taper(B) and Mode Transition

Loss(C)

Since not all of the input fiber power can be coupled into the taper tip, part of

the input power propagates outside the taper. Some of this power close to the taper

surface may still be coupled into the taper as it expands in width. To study this effect,

beam propagation method(BPM) simulation is performed on inverse tapers with dif-

ference lengths (25µm, 50µm and 100µm) and tip widths (40nm and 200nm). Fig.2.7

shows the power transmission of these six inverse tapers with different geometry.

The conventional wisdom says that in order to reduce mode transition loss, the

taper needs to be long enough. The simulation results show that at 200nm tip width,

longer taper does lead to higher transmission, confirming the conventional wisdom.

However, at 40nm tip width the trend is reversed as shorter taper has higher trans-

mission.

With the same taper tip width and end width (equal to waveguide width), the

shorter the taper, the faster it expands in width. This width expansion is even more

rapid with small tip width and short taper length. The more rapidly-expanding taper
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Fig. 2.7.: Transmission of inverse tapers with same tip width but different lengths

absorbs more power adjacent to the taper sidewall. Thus shorter taper with small tip

width exhibits higher coupling efficiency than longer taper with the same tip width.

On the other hand, with large tip width, the width expansion of the taper is much

more gradual and the difference in the power adjecent to the tape sidewall absorbed

into the taper is negligible.

As taper expands or shrinks in its width, its cross -section changes and its sup-

ported fundamental modes changes as a result. Therefore, when optical beam travels

in the taper, mode conversion takes place. The loss associated with this process is

termed mode transition loss. The longer the taper, the slower its cross-section changes

and the less mode transition loss [34] [35] it has.

Combining the effects of taper width expansion and mode transition loss, shorter

taper with small tip width exhibits higher coupling efficiency than longer taper with
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Fig. 2.8.: Scanning-Electron-Microscopic (SEM) photo showing surface roughness

of an inverse taper

the same small tip width, while longer taper with large tip width exhibits higher

coupling efficiency than shorter taper with the same large tip width.

2.2.3 Scattering loss due to Surface Roughness(D)

The aforementioned analysis does not take into account surface roughness of the

inverse taper. Yet it is inevitable in fabrication, as shown in Fig.2.8. Surface rough-

ness acts like tiny scattering and radiation centers. Optical fields passing through

these centers are scattered or radiated away, causing additional loss. Scattering loss

goes up with increasing level of roughness and the taper length.

2.3 Fabrication of Waveguides, Edge Couplers and U-shaped Grooves

The fabrication process of edge couplers with U-shaped grooves(U-grooves) is

shown in Fig.2.9 and contains several steps:

1. Starting with silicon-on-insulator(SOI) wafer with 220nm top silicon. Cut the

wafer into appropriate-sized sample using diamond pen and clean the sample

surface with piranha solution(hydrogen peroxide:98% sulfuric acid=1:3).
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2. Apply e-beam resist hydrogen silsesquioxane (HSQ) on top and write the pat-

terns of waveguides and edge couplers to the HSQ layer with a dose of 2500µC/cm2.

Then develop HSQ in tetramethylammonium hydroxide (TMAH).

3. Dry etch the top silicon layer using exposed HSQ as a mask with chlorine based

gas to transfer the pattern from HSQ layer to the silicon layer. Then remove

HSQ with diluted hydrogen fluoride(HF) solution.

4. Clad the exposed top silicon layer with 2um thick low-temperature-oxide(LTO

silicon dioxide) at 400C.

5. Anneal the sample at 900C in nitrogen gas for 1 hour.

6. Apply SU-8 e-beam resist on top of the LTO cladding and write the U-groove

patterns to the SU-8 layer with a dose of 5µC/cm2. Then develop SU-8 in SU-8

developer. Deep dry etch 65 to 70µm into the substrate to form U-grooves.

Then remove the remaining SU-8.

2.4 Measurement of Coupling Efficiency of Inverse Taper

2.4.1 The Effect of Ugrooves

Lensed fibers with 2.5µm mode-field-diameter(MFD) are used to measure basic

inverse tapers. Direct coupling between lensed fiber and inverse taper can be challeng-

ing, since the coupling is extremely sensitive to misalignment and fiber tip vibration,

especially in high power measurement. Hence U-grooves are etched on the chip to

assist the coupling. During the actual measurement, lensed fibers sit tightly in the

U-grooves, reducing much of the undesirable tip vibration along with coupling time,

as shown in Fig2.10.

U-grooves are especially important in high power coupling, as shown in Fig2.11.

High power increases the lensed fiber tip vibration, making direct coupling practi-

cally impossible. However, with the help of U-grooves, the measured output power
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Fig. 2.9.: The fabrication process of edge couplers with U-shaped grooves

Fig. 2.10.: Schematic and SEM photo of a U-shaped groove as well as optical photo

of a lense fiber sitting in one during measurement
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Fig. 2.11.: Measured output power as a function of input power with and without

U-shaped grooves

Fig. 2.12.: Measurement setup of inverse tapers

is proportional to the input power. This indicates the coupling loss is constant, in-

dependent of input power. This proves the lensed fibers sitting in the U-grooves are

stable even with high power.

2.4.2 Measurement Setup

The measurement setup is shown in Fig2.12. Two inverse tapers are usually

connected to the two ends of a waveguide. The measured total fiber-to-fiber insertion

loss contains both taper coupling loss and waveguide propagation loss. In order to

separate them, spiral waveguides with the same inverse tapers but different lengths
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Fig. 2.13.: Spiral waveguides with different lengths

Fig. 2.14.: FDTD simulation without surface roughness compared to experimental

results

are measured, as shown in Fig.2.13. This method enables taper coupling loss and

waveguide propagation loss to be extracted separately.

2.4.3 Measurement Result Analysis

FDTD simulation is performed on inverse tapers with tip widths of 140nm and

180nm respectively without surface roughness and the result is plotted in dashed

lines in Fig.2.14. The results show that without surface roughness, at 140nm tip

width, 30µm taper length has the lowest coupling loss. For 180nm tip width though,
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longer taper exhibits less loss. This confirms the aforementioned loss mechanisms of

basic inverse tapers: with small tip width(140nm), the competing factors of A, B and

C result in an optimum taper length(30µm). However, for large tip width(180nm),

longer taper exhibits less loss because process C dominates.

The measurement data of real devices with surface roughness plotted in dots

shows different trend. In both tip widths, the measured loss is significantly higher

that simulation data. Besides,for 180nm tip width, the measurement data also shows

30µm taper length has lowest coupling loss, which is in contrast with the simulation

data. This can also be explained by the aforementioned loss mechanisms of basic

inverse tapers: in reality both A, B, C and D factors play a role with the presence

of surface roughness. Thus in longer taper length surface roughness caused loss goes

up.

2.5 Cantilever-Encapsulated Inverse Taper

The loss analysis on inverse tapers shows that the mode mismatch between fiber

mode and waveguide mode is an important loss factor. One way to mitigate this

loss is to use a cantilever-encapsulated inverse taper (cantilever taper for short). The

cantilever structure in cladding material acts as a low-index waveguide with larger

fundamental mode, thus reducing the mode mismatch. Cantilever taper has been

demonstrated to achieve less than 1dB/facet loss [36]. However, these results are

achieved with with tapered fibers instead of common lensed fibers in labs, as shown

in Fig.2.15.

In Fig.2.16, cantilever taper capable of coupling with 2.5µm-MFD lensed fiber is

fabricated and the measurement result is shown in Fig2.17. With normal lensed fiber,

the cantilever taper has minimum loss of 0.9dB/facet at 1550nm in one polarization

and 1.3dB/facet in the other polarization. Both results are broadband. Hence the

cantilever taper does have higher coupling efficiency than basic inverse taper.
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Fig. 2.15.: Illustration of a cantilever taper coupling with a tapered fiber [36]

Fig. 2.16.: The design and photo of a fabricated cantilever taper

Fig. 2.17.: The measured loss of a cantilever taper
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The advantages of cantilever tapers include using the buried oxide(BOX) and

upper-cladding to form a low-index waveguide so the deposition of additional mate-

rial is not required. Also, it does not add to the process steps used to fabricate basic

inverse tapers with U-grooves since the cantilever can be formed during the etching

of U-grooves by undercutting the cantilever bottom. Nonetheless, it does suffer from

several disadvantages. First, the height of the cantilever is limited by the total thick-

ness of the BOX and upper-cladding and therefore not freely adjustable. Second, the

stress in the cantilever structure may bend it out of horizontal plane, increasing the

difficulty in fiber coupling. Third, the cantilever is susceptible to mechanical vibra-

tion and damage, making it less reliable in repetitive measurement. Fourth, it is still

designed for lensed fibers, not flat fibers with larger MFD.

2.6 Meta-Trident Edge Coupler

2.6.1 Trident Edge Coupler

Another way to increase the fundamental mode size on edge coupler tip is to use a

trident-shaped coupler (trident taper in short) [37]. As shown in Fig.2.18, the trident

taper has a distinct three-branch structure. The outer two branches start from the

coupling edge and gradually increase in width. After certain length, their width stops

increasing and at the same position a third center branch emerges. The outer two

branches maintain their width for certain length but eventually shrink in width and

taper out. Meanwhile, the center branch continues to increase in its width until it

connects to a waveguide, resembling a basic inverse taper. This structure functions

in the following way: on the coupling edge, the two outer taper tips support a larger

fundamental mode, thus reducing mode mismatch with input fiber mode. Fig.2.19

shows the fundamental TE and TM modes of the trident taper with taper tip width of

200nm each. It shows a much larger mode profile than that of single tip in the basic

inverse taper case. As light propagates, the outer two branches increase in width

thus the fundamental mode increases in effective index and shrink in size. More
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Fig. 2.18.: The structure of a trident taper [37].

Fig. 2.19.: The fundamental TE and TM mode of trident taper tip

and more mode is gradually absorbed into the silicon part. When the center branch

emerges, the fundamental mode is further confined into silicon until it evolves into

the strongly confined waveguide fundamental mode. Compared to basic inverse

tapers, the trident structure enjoys several advantages. First, the larger fundamental

mode size at the dual-tip mitigates mode mismatch. Second, it requires the same

fabrication steps with basic inverse taper. Nonetheless, it still suffers from relatively

high loss at 2.3dB/facet.
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Fig. 2.20.: The structure of a Subwavelength Grating Waveguide (SGW) Taper [38]

Fig. 2.21.: The fundamental TE and TM mode of subwavelength grating taper

2.6.2 Subwavelength Grating Waveguide Edge Coupler

The concept behind inverse tapers and trident tapers is to alter the effective

refractive index from fiber/cladding(silica) to waveguide (silicon) gradually. Hence

theoretically the taper tip width should start from zero. Yet in reality due to the

limit of fabrication, the tip width has a lower limit, thus preventing the further

tuning down of the effective index. Recently a new method termed subwavelength

grating waveguide(SGW) coupler is proposed to overcome this hurdle [38]. As shown

in Fig.reffig:EdgCup-Subwavelength-Grating, the SWG structure is composed of a

series of gratings. Initially these gratings have small width. Gradually they expand

in width. At certain length, an additional inverse taper emerges from the center until

the entire structure connects with a waveguide. All these delicate structural changes

are to guarantee gradual modification of effective refractive index. In other words,

SWG tapers are capable of altering effective refractive index of the fundamental mode
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much more gradually than basic inverse tapers, thus reducing coupling loss. Fig.2.21

shows the fundamental TE and TM modes of a 300nm-wide SWG taper tip, which

are much larger than those of the single tip in the basic inverse taper.

SWG tapers also enjoy the benefit of only one lithography step, same with basic

inverse tapers and trident tapers. However, these SWG tapers are still designed to

couple with lensed fibers with 2um MFD or polarization maintaining fibers with 3µm

MFD. Thus, there is still a need to design an edge coupler that does not increase

fabrication steps yet can couple with flat fibers with larger MFD.

2.6.3 Meta-Trident Edge Coupler

A new edge coupler combining the advantages of both trident and SGW couplers

is proposed in this work, termed meta- trident edge coupler. There are two types and

their structures are shown in Fig.2.22. They both have three branches, similar to the

trident taper. However, instead of continuous taper the entire outer two branches

are composed of SWG structures. Additionally, one of them has the beginning of the

center branch also composed of SWG structures. Fig.2.23 shows the fundamental TE

and TM modes of meta-trident taper with taper tip width of 200nm each. Compared

to the results shown in Fig.2.19, the fundamental mode of the meta-trident tapers

are not only large in size but also much closer to a circular shape. Therefore, it

enjoys higher coupling efficiency. Rigorous 3D FDTD simulation is usually required

to simulate the performance of SWG related structures. However, in this case, an

approximation method can be used for faster calculation. SWG with 50% duty cycle

can be equated as a continuous structure with the average index between the low-

index cladding and high-index waveguide. Then the entire structure can be simulated

using less resource- intensive method such as beam-propagation method or eigenmode-

expansion method. Fig.2.24 shows the transmission of meta-trident edge coupler

without center buffer using this approximation method. The one with center buffer

can be simulated in the same way.
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Fig. 2.22.: Illustration of meta-trident edge couplers without and with center SWG

buffer
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Fig. 2.23.: The fundamental TE and TM mode of meta-trident edge coupler

Fig. 2.24.: Simulation of the performance of meta-trident edge coupler
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Fig. 2.25.: SEM photo of fabricated subwavelength grating

Fig. 2.26.: Illustration of a high-numerical-aperture(UHNA4) fiber spliced with

single-mode fibers (SMF)

Meta-trident tapers are fabricated via almost the same process steps with basic

inverse tapers except for the low-temperature-oxide(LTO). Due to the small gap size

in the SWG structure, LTO may not fully fill up the gap, leaving air bubbles inside.

This is highly undesirable as air bubbles can significantly alter the effective refractive

index and degrade meta-trident taper coupling efficiency. Instead, 300nm thick HSQ

is spun onto the surface and the liquid HSQ fully fills the gap. Then the sample is

annealed in high temperature to convert HSQ into silicon dioxide. Afterwards LTO is

deposited to form the upper-cladding. Fig.2.25 is a SEM photo of a fabricated SWG

structure. High-numerical-aperture fiber with 4µm MFD(UHNA4) fibers are used to

couple with meta-trident couplers. They need to be spliced with common single-mode

fiber (SMF28) with 10µm MFD. The sudden change in the core diameter inevitably

causes additional loss in the fiber splicing position, which needs to be measured. To

characterize fiber coupling loss, first measure the output power without any UHNA
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Fig. 2.27.: The actual fiber splicing process

fibers. Then splice the UHNA fiber with two SMF28 on both ends and measure output

power again. The output power reduction is due to the two fiber coupling sections.

Thus the loss of each fiber coupling section can be calculated. Fig.2.27 shows the

actual fiber splicing process and the final result is illustrated in Fig.2.26. U-grooves

can assist coupling with both lensed fibers and flat fibers,as shown in Fig.2.28. For

lensed fibers, there is an optimum distance between fiber tip and waveguide edge. For

flat fibers, the fiber tips should be pressed as close to the waveguide edge as possible

to achieve maximum coupling. However, U-groove does have its own shortcomings.

The width of U-grooves is designed around 135µm. Its large size limits the on-chip

device density. Since flat fibers have larger MFD than lensed fibers, their less spacial

sensitivity may enable power coupling without U-grooves. One solution is instead

of individual U-grooves for each device, one 65nm deep ”step” is etched for all the

devices, as shown in Fig.2.29. This method has been experimentally proven to work

well with flat fibers and increase device density on-chip.
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Fig. 2.28.: Lensed fiber coupling vs flat fiber coupling in U-grooves

Fig. 2.29.: Flat fiber coupling without U-grooves
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Fig. 2.30.: Measurement result of meta-trident edge couplers with and without

center buffers.

The measurement results of both meta-trident edge couplers with and without

center buffers using 4µm-MFD flat fiber is shown in Fig.2.30. The input power is

normalized to 0dBm. At the polarization for maximum transmission, meta-trident

taper with 120nm tip width and buffer shows the highest transmission, higher even

than one with 80nm tip width but without buffer. This clearly demonstrates the

performance advantage of SWG structure: at the same tip width, SWG can support

a larger more circular mode, reducing mode-mismatch. The highest transmission for

0dBm input power is -3.8dBm, translating to 1.9dB/facet loss. Both meta-trident

taper designs show broadband performance. It should be noted that meta-trident

tapers may potentially be designed using different geometrical parameters to couple

with lensed fibers as well.

2.7 Multi-section Inverse Taper with Intermediate cladding

Despite its optimized structures, the meta-trident couplers can still only couple

with 4µm MFD HNA flat fibers. The 2µm thick BOX of SOI wafers dictates that
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any edge couplers based on a single 220nm silicon layer cannot support fundamentals

modes larger than 4µm. Otherwise, the substrate leakage will become an important

loss factor. One solution is to add an intermediate cladding low-index waveguide

on top of silicon taper. Although there has been previous examples of intermediate

cladding, they are either designed for lense fiber [36], or require multi-stages [33],

which is challenging to fabricate.

In this work, SU-8 waveguide is formed on top of silicon taper as intermediate

cladding. SU-8 not only supports high aspect-ratio structures but also is a low-dose e-

beam resist, perfect for exposure of large areas. In this structure, input fiber mode first

couples to the large fundamental mode of SU-8 waveguide. During propagation within

SU-8, as silicon taper expands in width, the fundamental mode increases in effective

refractive index and shrink in size and is gradually converted to silicon waveguide

mode. However, for complete conversion, a basic inverse taper should have a length

of several millimeters. Such a large device footprint would not only be wasteful but

also inevitably increase scattering loss due to surface roughness. Hence the taper

length should be limited.

In order to achieve shorten the taper length without compromising its perfor-

mance, the mode transition is scrutinized. Fig2.31 plots the mode field area of a

simple inverse taper as a function of its taper width. It can be seen that the mode

area does not change linearly with taper width. Instead, most of the mode area

transition takes place in a small window of taper width variation (termed mode tran-

sition window). On the other hand, it barely changes during the rest of taper width

variation. The phenomena is true for both TE and TM polarizations. The reason

for this drastic change in a small window is the effect of mode coupling. Thus the

key to balance between mode transition and taper length is to maintain certain ta-

per length within the mode transition window while squeeze its length outside the

window. Therefore, a novel multi-section inverse taper(SU-8-Si taper for short) is

proposed here and its geometry is shown in Fig.2.32. It has a long section in the mid-

dle corresponding to the mode transition window and two short sections at both ends



30

Fig. 2.31.: The mode field area transition in an inverse taper (courtesy of Min Teng)

Fig. 2.32.: Top and cross-section view of a multi-section edge coupler
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Fig. 2.33.: The TE mode transition in a multi-section edge coupler

corresponding to the regime outside the window. On top of it is a SU-8 low-index

intermediate waveguide structure.

The simulation of TE and TM mode transition in the SU-8-Si taper is shown in

Fig.2.33 and Fig.2.34 respectively. It can be seen that in both polarizations, the input

fiber mode first couples to a relatively large fundamental mode in SU-8 waveguide. As

the beam propagates, gradually the mode shrinks in size and its power is transferred

into silicon taper until eventually it converts into a silicon waveguide fundamental

mode.

Simulation is done on both basic inverse taper cladded with SU-8 waveguide as

well as multi-section taper cladded with SU-8 waveguide. The result is shown in

Fig.2.35. It can be seen that multi-section taper does enjoy higher transmission than

basic inverse taper.
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Fig. 2.34.: The TM mode transition in a multi-section edge coupler
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Fig. 2.35.: Comparison between simple inverse taper cladded with SU-8 waveguide

and multi-section taper cladded with SU-8 waveguide

The fabrication process of SU-8-Si taper is shown in Fig.2.36. It requires two

lithography steps. The first several steps to pattern top silicon layer is the same.

Afterwards, instead of LTO depostion, SU-8 is spun on top, exposed and developed

into SU-8 waveguide. The SU-8 waveguides do not extend all the way to the edge of

the chip. Hence in order to achieve edge coupling, the chip is cleaved on both sides

to cut into SU-8 waveguides. The fabricated SU-8 waveguide is shown in Fig.2.37.

Its cross-section has dimension of roughly 8.5µµm by 8.5µm, supporting 6µm MFD

mode.

This process differs from the previous one for inverse tapers in several aspects.

First, LTO is no longer required since SU-8 cannot survive in deposition temperatures.

Also, due to the large size of the fundamental mode of SU-8 waveguide (6µm MFD),

neither U-grooves nor step etching is necessary. Only an edge cleaving is required to
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Fig. 2.36.: The fabrication steps of silicon edge coupler cladded with SU-8

waveguide

Fig. 2.37.: The SEM photos of SU-8 waveguides
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Fig. 2.38.: Fiber coupling to SU8 waveguide.

expose the coupling edge. Here UHNA fibers with 6µm MFD are used to measure

the coupler, as shown in Fig.2.38. Since each device still contains several millimeters

of SU-8 waveguide and silicon waveguide even after cleaving, their propagation loss

should be excluded from the calculation of coupler loss.

To characterize the propagation loss of SU-8 waveguide, three straight waveguides

with different lengths are fabricated and measured. The result is plotted in Fig.2.39.

It can be seen that the transmission spectra show significant oscillation. The reason

is to be further investigated. From the data the SU-8 waveguide propagation loss can

be estimated as 2-3dB/cm. This value is in line with previously reported result [39].

Since overestimating SU-8 waveguide loss may lead to underestimating coupler loss,

SU-8 waveguide loss is chosen as 2dB/cm. To characterize the propagation loss of

silicon waveguide, the aforementioned spiral waveguides with different lengths are

introduced again. The extracted silicon waveguide loss is 0.52dB/mm.

The measured transmission spectrum of SU-8-Si taper is shown in Fig.2.40. The

laser output power, maximum transmission and other loss mechanisms are listed

in Table2.1. Based on the data the coupler loss can be calculated as: [4.6dBm −

(−3.8dBm)−1.2dB−3.2×(0.52)dB−0.9×2dB]/2 = 1.87dB/facet. The transmission

spectrum also shows large swing but between 1535nm to 1555nm the spectrum is

relatively flat. The coupler also shows small polarization sensitivity due to its almost

square cross-section.
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Fig. 2.39.: Propagation loss of SU-8 waveguides with different lengths

Fig. 2.40.: Measured transmission spectrum of device with silicon taper with SU-8

intermediate cladding
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Table 2.1: Different loss mechanisms in SU-8-Si Coupler

Laser Output 4.6dBm

Max Transmission -3.8dBm

Fiber Splicing Loss 1.2dB

Si Waveguide Loss 0.52dB/mm × 3.2mm

SU8 Waveguide Loss 2dB/cm × 0.9cm

Fig. 2.41.: Damage of SU-8 waveguides by optical fiber
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2.7.1 Future Work on Edge Coupler with Intermediate Cladding

At the moment the result of SU-8-Si taper shows large swing in transmission spec-

trum. In addition, SU-8 is susceptible to damage by fibers during the measurement,

as shown in Fig2.41. These issues need to be addressed in the future. If successful,

the next step is explore the possibility of SU-8 waveguide on multi-branch trident-

shaped tapers. Eventually the goal is to fabricate edge couplers with larger SU-8

cross-section to couple with common SMF with 10µm MFD.

2.8 Other Participated Edge Coupler Work

In addition to the aforementioned edge coupler work, the author also played an

auxiliary role in an edge coupler based on double-tip taper and multimode interfer-

ometer(MMI) proposed by Jing Wang [40]. Fig.2.42 illustrates the structure of this

coupler, which incorporates two-branch, two-stage basic inverse tapers connected to

a MMI on one side and another basic inverse taper connected on the other side.

Fig.2.43 explains its working principle. On the edge, the double-tip supports a large,

round- shaped fundamental mode. As the branches expand in width, the fundamental

shrink in size and increase in its effective index. Eventually it becomes two waveguide

fundamental modes, which can be fed into a MMI and treated as a high-order mode

and converted into the MMI fundamental mode in the output. An output taper may

be needed to convert it into a waveguide fundamental mode.
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Fig. 2.42.: Mode evolution of an edge coupler based on double-tip taper and

MMI [40]

Fig. 2.43.: Mode evolution of an edge coupler based on double-tip taper and

MMI [40]
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3. THIRD-ORDER OPTICAL NONLINEAR POLYMER

WITH LARGE KERR-COEFFICIENT AND NO

TWO-PHOTON-ABSORPTION

3.1 A Brief Introduction to Nonlinear Optics

Optics/Electromagnetics is governed by Maxwell’s Equations:

∇ ·D = ρ (3.1a)

∇ ·B = 0 (3.1b)

∇× E = −∂B

∂t
(3.1c)

∇×H = J +
∂D

∂t
(3.1d)

D = ε0E + P (3.1e)

B = µ0H + M (3.1f)

where D, E, B, H, P, M, ρ, J are termed electric displacement field, electric field,

magnetic flux density, magnetic field, polarization field, magnetization field, charge

density and current density, respectively. ε0 = 8.85 × 10−12 F ·m−1 and µ0 = 4π ×

10−7 H ·m−1 are called vacuum permittivity and vacuum permeability.

With low optical intensity, polarization is approximately linear to the incident

electric field.

P = ε0χ
(1)E (3.2)

where χ(1) is termed linear optical susceptibility.

With high optical intensity, this linear relation 3.2 no longer holds. Instead,

polarization is expressed by a Taylor series.

P = ε0(χ
(1)E + χ(2)E2 + χ(3)E3 + · · · ) (3.3)
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where χ(2) and χ(3) are termed 2nd- and 3rd-order nonlinear optical susceptibility,

respectively.

Suppose an optical field has two frequency components:

E = E1e
jω1t + E2e

jω2t (3.4)

Due to the existence of second order susceptibility, its contribution to the polar-

ization field is:

P(2) = ε0χ
(2)E2 (3.5a)

= ε0χ
(2)(E1e

jω1t + E2e
jω2t)2 (3.5b)

= ε0χ
(2)(E2

1e
j2ω1t + E2

2e
j2ω2t + 2E1E2e

j(ω1+ω2)t) (3.5c)

In Equ.3.5c it can be seen that nonlinear optical effects produce new optical fre-

quencies. The first and third terms represent second-harmonic-generation(SHG) and

sum-frequency generation(SFG), both of which are examples of 2nd order nonlinear

optical phenomena. In the similar way, 3rd order nonlinear optical phenomena such

as third-harmonic-generation(THG) can be derived as in Equ.3.6c.

P(3) = ε0χ
(3)E3 (3.6a)

= ε0χ
(3)(E1e

jω1t + E2e
jω2t)3 (3.6b)

= ε0χ
(3)(E3

1e
j3ω1t + E3

2e
j3ω2t + 3E2

1E2e
j(2ω1+ω2)t + 3E1E

2
2e
j(ω1+2ω2)t) (3.6c)

3.2 Brief Introduction to Four-Wave-Mixing

One of the most important 3rd-order nonlinear effects is four-wave-mixing(FWM)

[41]: In the process, two pump photons interact and both are annihilated. As a result,

an signal photon and an idler photon are generated. If two pump photons have dif-

ferent frequency, the process is called non-degenerated four-wave-mixing. Otherwise

if the two pump photons have the same frequency, it is called degenerated four-

wave-mixing. Applications of FWM include on-chip broad-band optical parametric

gain [42], high-speed wavelength conversion [43], micro-resonator based optical fre-

quecy comb(OFC) [21], etc.
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3.3 Brief Introduction to Conjugated Polymers

2nd-order optical nonlinearity effect requires materials with ordered crystal lattice

without centro-symmetry while 3rd-order optical nonlinearity effect has no special

requirement on molecular structures of materials. Hence, polymers, being amorphous,

intrinsically do not possess χ(2) effect but may exhibit χ(3) effect. Specifically, one type

of polymers called conjugated polymers [44] may possess large optical nonlinearities.

Conjugated polymers are polymers containing at least one carbon backbone chain

of alternating single and double bonds. In this carbon chain, each carbon atom has

one unbonded electron perpendicular to the molecular plane called π-electron. The

π-electron can move along the carbon backbone under electric field from light, making

conjugated polymers potentially optical nonlinear materials.

Both the 2nd and 3rd-order optical nonlinearity of conjugated polymers have

played a role in high speed applications. For instance, despite being amorphous,conjugated

polymers after electric poling may exhibit eletro-optical effect, a 2nd-order nonlin-

earity. Indeed electrically poled polymer has been used in high speed, high data rate

modulators [45] [46]. In addition, 3rd-order nonlinear polymer is also used in high

speed applications using FWM effect [47].

3.4 Platforms to Integrate Polymers On-Chip

There are several ways to integrate polymers on-chip, as shown in Fig.3.1 [28].

1. Thick strip waveguide with fundamental TE mode. The majority of the field

is well confined inside the waveguide. Pro: Low propagation loss as the field is

far away from the waveguide edge. Con: Mostly silicon nonliearity instead of

polymer nonlinearity thus two-photon-absorption (TPA) effect in silicon.

2. Thin strip waveguide with fundamental TM mode. Fundamental TM mode is

intrinsically less confined than fundamental TE mode, with a larger portion

of the field outside the waveguide, especially in thin waveguides. Pro: More
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polymer nonlinearity than TE mode. Con: Larger propagation loss due to a

greater part of the field located close to the waveguide edge and still TPA effect

in silicon.

3. Slot waveguide with slot mode. The majority of the field is concentrated outside

the waveguide between the slot sidewalls. Pro: Field intensity in the slot is much

greater than both TE and TM configurations. Polymer nonlinearity dominates.

Con: Larger propagation loss due to the majority of the field close to waveguide

sidewalls and greater fabrication difficulty than strip waveguide.

4. Photonic crystal Slot waveguide with slot mode at slow speed. Pro: Increased

group index and slowing group velocity in PhC waveguide enhances nonlinear

effects, reducing the required waveguide length. Con: Challenging to design

and fabricate.

Since the goal is to demonstrate nonlinear optical phenomena in polymer and avoid

undesirable TPA effect in silicon and since nonlinear optical effects are mostly observ-

able with high optical power, the slot waveguide configuration is adopted in this work.

The reason is the slot mode interacts mostly with polymer and the slot waveguide

can also be made into micro-resonators.

3.5 Basic Optical Properties of PolyDDMEBT

3.5.1 Molecular Structure of PolyDDMEBT

The specific polymer in this work is termed PolyDDMEBT [48]. Its molecular

structure is shown in Fig.3.2 and its formula is (C45H50N8O4)n. It can be seen that

PolyDDMEBT has alternating single and double bonds, making it conjugated poly-

mer.
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Fig. 3.1.: Four silicon-organic hybrid(SOH) waveguide structures and their electric

field distributions [28]

Fig. 3.2.: The molecular structure of PolyDDMEBT
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Fig. 3.3.: The surface of spun-on PolyDDMEB thin film on silicon

3.5.2 Spin-Coating of PolyDDMEBT

In bulk form PolyDDMEBT exhibits very dark color, indicating absorption of vis-

ible light. It dissolves both in Dichloromethane(CH2Cl2) and Tetrahydrofuran(THF,

C4H8O). 0.05g PolyDDMEBT is dissolved in 1ml THF and the solution shows dark

red color. The solution is spun on silicon substrate at 800rpm to form 550nm thin

film. Also the solution can be spun on glass substrate at 500rpm to form 450nm thin

film. The surface is smooth and free of cracks, as shown in Fig.3.3.

3.5.3 Refractive Index of PolyDDMEBT

The refractive index(both real part n and imaginary part k, N = n − ik) of

PolyDDMEBT is measured via elliposometry and the result from the wavelength

of 700nm to 2500nm is shown in Fig.3.4. Specifically at 1550nm, n = 1.678 and

k = 0.0006.

3.5.4 The Absorbance Spectrum of PolyDDMEBT

The absorbance of PolyDDMEBT is measured using both ellipsometer and spec-

trometer. The results are shown in Fig3.5. The two measurements agree with each
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Fig. 3.4.: The refractive index of PolyDDMEBT

Fig. 3.5.: The absorbance of PolyDDMEBT measured by ellisometer and

spectrometer
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Fig. 3.6.: The temporal stability of PolyDDMEBT

Fig. 3.7.: The Thermal-Optic Nonlinearity of PolyDDMEBT
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other very well. It can be seen that according to both results, PolyDDMEBT has ab-

sorption in the visible spectrum with a strong absorption peak around 500nm. On the

other hand, for wavelength longer than 900nm, PolyDDMEBT has little absorption

and is almost transparent. This explains its dark color.

3.5.5 Temporal Stability of PolyDDMEBT

The temporal stability of a material is crucial to its reliability in practical ap-

plications. The refractive index of PolyDDMEBT is measured in the span of two

months and they show only 0.4% change, as plotted in Fig.3.6. This result proves

PolyDDMEBT to be a chemically stable polymer in the atmosphere.

3.5.6 Thermal-Optic Nonlinearity of PolyDDMEBT

Many materials including silicon exhibit thermal optical nonlinearity. In other

words, their refractive indices alter with temperature. Hence PolyDDMEBT is mea-

sured under different temperatures from 30 ◦C to 100 ◦C by gradually heating up

the substrate and then cooling down with a step of 10 ◦C. The result is shown in

Fig.3.7. The average thermal-optic coefficient from 30 ◦C to 100 ◦C is calculated to

be −1.56×10−4. In comparison, silicon has a thermal-optic coefficient of 1.86×10−4.

It can be seen that the indices of PolyDDMEBT and silicon alter in different direction

with the same temperature change. Thererfore, a mixture form of PolyDDMEBT and

silicon may achieve net zero thermo-optic coefficient, making its effective refractive

index immune to temperature drift.
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3.6 Measurement of Optical Nonlinearity of PolyDDMEBT

3.6.1 High Power Pulsed Laser System

In order to produce measurable nonlinear optical signals, high optical power is

required. In this work, a Spitfire high power pulsed laser system is used. The system

is composed of 4 major components:

1. A diode-pumped seed laser

2. A mode-locking master oscillator

3. A combination of a pulse stretcher,a chirped pulse amplifier and a pulse com-

pressor

4. An optical parametric oscillator(OPO)

The output of this high power pulsed laser system are laser pulses with 0.8-1W power

and 1kHz repetition rate.

3.6.2 Z-Scan Measurement of PolyDDMEBT

Laser Z-scan measurement [49] is a technique to characterize both 3rd-order Kerr-

coefficient (closed aperture) and TPA effect (open aperture), as shown in Fig.3.8.

The typical closed-aperture curve is shown in Fig.3.9, which has a peak-valley shape.

For this measurement, PolyDDMEBT is spun on glass substrate. Fig.3.10 shows the

measurement setup of Z-scan, which is composed of the following:

1. A wavelength separator(WS). The high power laser system generates both the

desired wavelength as well as unwanted ones. a WS is used to purify the laser

beam.

2. After a few reflections, laser beam is focused by a lens and hits the polymer-

on-glass sample. The beam hits the polymer film first then the glass substrate.
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Fig. 3.8.: An illustration of Z-scan measurement setup [49]

Fig. 3.9.: A typical closed aperture Z-scan curve [49]

Fig. 3.10.: The real Z-scan measurement setup in this work
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Fig. 3.11.: Z-scan of glass-only sample

Fig. 3.12.: Z-scan of PolyDDMEBT

At its focal point, the lens creates optical intensity strong enough to generate

observable 3rd-order optical nonlinear signal. The sample is mounted on a

holder that can move back and forth by a computer-controlled step motor.

3. The beam transmitted from the back of the sample is focused by another lens

onto a photo-detector.
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3.6.3 Z-scan Measurement Results

Z-scan experiments are conducted at 925nm and Each measurement incorporates

both open- and closed-aperture. The results of glass sample is shown in Fig.3.11. The

dip in the open-aperture result is a signature of TPA effect and the valley-peak curve

indicates glass has 3rd-order Kerr effect. Fig.3.12 shows the results of PolyDDMEBT.

The open-aperture result shows a peak instead of a dip, indicating PolyDDMEBT

has saturation absorption effect but negligible TPA. The closed-aperture result shows

peak-valley curve, meaning PolyDDMEBT has 3rd-order nonlinearity but its Kerr-

coefficient has the opposite sign of that of glass.

3.6.4 Z-scan Measurement Result Analysis

According to the theory of Z-scan [50],the transmission difference between the

peak and the valley ∆Tp−v shown in Fig.3.9 is related to on-axis phase shift ∆Φ0 as

in Equ.3.7. Equ.3.8 shows that the phase shift ∆Φ0 can be expressed by nonlinear

refractive index change ∆n0 and linear absorption coefficient α and film thickness L.

∆n0 is directly proportional to the Kerr-coefficient n2, as shown in Equ.3.9. Beam

intensity is the ratio between optical power and beam spot size, as shown in Equ.3.10.

∆Tp−v = 0.405∆Φ0 (3.7)

∆Φ0 =
2π

λ
∆n0

1− e−αL

α
(3.8)

∆n0 = n2I (3.9)

I =
P

πr2
(3.10)

From the above equations, the phase shift ∆Φ0 can be directly expressed as:

∆Tp−v = 0.405
2π

λ

P

πr2
1− e−αL

α
n2 (3.11)
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In the experiment, both glass substrate and PolyDDMEBT are measured. There-

fore, Equ.3.11 can be applied to both glass(G) and polymer(P):

∆Tp−vG = 0.405
2π

λ

P

πr2
1− e−αGLG

αG
n2G (3.12)

∆Tp−vP = 0.405
2π

λ

P

πr2
1− e−αPLP

αP
n2P (3.13)

Divide Equ.3.12 by Equ.3.13:

∆Tp−vG
∆Tp−vP

=
n2G

n2P

αP (1− e−αGLG)

αG(1− e−αPLP )
(3.14)

Note that linear absorption coefficient α is related to the imaginary part of the

refractive index k.

α =
4πk

λ
(3.15)

Plug Equ.3.15 into Equ.3.14:

∆Tp−vG
∆Tp−vP

=
n2G

n2P

kP (1− e
−4πkGLG

λ )

kG(1− e
−4πkP LP

λ )
(3.16)

Based on the well-known refractive index information on glass [51],

kG = 9.75× 10−9

. The Kerr-coefficient and 3rd-order optical susceptibility of glass can be found in [27]:

n2G = 3.2× 10−20m2/V

χ
(3)
G = 2.5× 10−22m2/V 2

From the measured dispersion curve of PolyDDMEBT,

kP = 0.0007

at

λ = 925nm
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. The glass substrate thickness is

LG = 500um

and the PolyDDMEBT film thickness is

LP = 450nm

.

With all the parameters, it can be derived that

n2P ≈ −1.2× 10−16m2/W

and

χ
(3)
P ≈ 6× 10−19m2/V 2

This value is about 26 times larger than that of crystal silicon [52] and one order

of magnitude larger than previously reported DDMEBT [47]. Its Kerr-coefficient is

negative because it has opposite sign of that of glass.

3.7 Slot Waveguide and Slot-Micro-Ring Platform

The aforementioned slot waveguide structure is chosen in this work to utilize the

strong field intensity in the slot and avoid TPA in silicon. The slot concept can

also apply to silicon slot-micro-ring structure in order to further increase the optical

power. The brief fabrication process of silicon slot waveguide and slot-micro-ring is

as follows:

1. Spin HSQ on a SOI wafer then E-beam lithography and development.

2. RIE etching Si using HSQ as a mask then remove HSQ.

All-pass slot-micro-rings are fabricated and the result is shown in Fig.3.13. The photo

shows significant surface roughness on the slot sidewall, which degrades the quality

factor of the slot-micro-ring. PolyDDMEBT is spun on top of the slot-micro-ring. Its

transmission is measured and the result is plotted in Fig.3.14. Its quality factor is

calculated to be 103.
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Fig. 3.13.: . SEM photo of a fabricated slot micro-ring coupled to a slot bus

waveguide

Fig. 3.14.: Transmission Spectrum of Slot Ring



56

Fig. 3.15.: Illustration of microresonator-based optical frequency combs [21]

Fig. 3.16.: Illustration of a silicon photonic platform for quantum photonics [53]

3.8 Future Work on the Device Application of PolyDDMEBT

The aforementioned analysis shows that PolyDDMEBT possesses large Kerr-

coefficient and negligible TPA effect, making it promising in FWM applications. One

of them mentioned in the introduction is called micro-resonator based optical fre-

quency combs(OFC), or Kerr combs [21], as shown in Fig.3.15. Silicon is not a good

material for OFC due to its TPA effect. So far, most of the on-chip OFC is achieved

either in silicon nitride or fused silica platform [52]. However, these materials suf-
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fer from small Kerr-coefficient. To compensate this, micro-resonators with ultra high

quality factor must be fabricated to ensure high enough power in the resonator, which

is challenging to process. With much larger Kerr-coefficient, PolyDDMEBT poten-

tially may require micro-resonators with much lower quality factor. The best slot-

micro-ring has quality factor of 104 [54], an order of magnitude higher than the result

in this work so far. Therefore, great effort needs to be made to further reduce the

surface roughness of the slot sidewall and enhance the Q-factor of the slot-micro-ring.

As mentioned in the introduction, a new field called silicon quantum photonics has

emerged as an important FWM application [53]. It relies on coherent photon source

generated by spontaneous FWM. Silicon can be used in this case since it usually does

not require high power. However the process usually requires long silicon waveguide

to produce coherent photons. With larger Kerr-coefficient, PolyDDMEBT may be

able to shrink the device footprint.

Since it has negative thermal-optic coefficient, certain structures based on PolyD-

DMEBT and silicon may potentially achieve close to net zero thermal-optic coefficient,

making it almost immune to undesirable thermal drift.
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4. AUTOMATIC PHOTONIC LAYOUT GENERATION

4.1 A Brief Introduction to Computer Aided Layout Design

In semiconductor research and industry, layout plays an indispensable bridging

role between design and fabrication. Its accuracy is crucial for successful fabrication

results. Computer-aided-design(CAD) tools have been widely applied to ensure the

efficiency and accuracy of layout designs in modern microelectronics. For instance,

Candence supports direct conversion from schematics to layouts. However, CAD tools

are still in the early stage and much less potent in on-chip photonics. Manual drawing

is still prevalent in many cases, which is slow and susceptible to errors. In this work, a

full program-based photonic layout generation tool is developed to generate ”Caltech

Intermediate Format” (CIF) [55], which can be easily converted into other formats

such as ”GDSII format” [56] using free software like Klayout. This layout tool is

proven capable of not only generating layout for basic photonic structures but also

relatively complex devices and circuits.

The fundamental concept of this program is that every on-chip photonic layout

design, regardless of its overall complexity, can be decomposed into basic geometric

building blocks, such as rectangles, trapezoids, polygons, circles, etc, which are in

turn made into functions in the programs. They are then used in structures such as

waveguides, tapers, grating couplers, micro-rings etc. These parts in turn can build up

more complex structures. In the entire hierarchy, every structure is parameterized,

meaning their sizes do not have to be specified until the final layout output. The

following are some of the examples. All the codes are written in C-language.
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4.2 Program Implementation

4.2.1 Rectangles

In CIF format, each rectangle is defined by its center position (both x and y co-

ordinates), length and width. Thus, the code to implement a rectangle is as follows:

void Rect(FILE *fp, double CenX, double CenY, double Len, double Wid)

{/*Rectangle*/

fprintf(fp,"B %d %d %d %d;\n", Round(Len),Round(Wid),Round(CenX),

Round(CenY));

}

Since CIF format only accepts integers in nanometers, thus all of the geometric pa-

rameters should be rounded. An example can be shown in Fig4.1

4.2.2 Polygons and Regular Polygons

Each polygon is defined by all of its indices (both x and y coordinates), as shown

in the following code:

void Polygon(FILE *fp, int NumOfVertices, double *Vertices)

{/*Polygon,coodinates(X and Y) saved in Vertices*/

int ii;

fprintf(fp,"P ");

for(ii=0; ii<2*NumOfVertices; ii++)

{ fprintf(fp,"%d ",Round(Vertices[ii])); }

fprintf(fp,"%d %d;\n", Round(Vertices[0]),Round(Vertices[1]));

}

One special type of polygons are regular polygons. First the vertices of the regular

polygon can be calculated via the following code:

void ReguPolyVertices(double CenX, double CenY, double EdgeLen,

int NumOfEdges, double *Vertices)
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{/*calculate the vertices of a regular polygon*/

int ii;

double AngIncre,Ang,Rad;

AngIncre=2*PI/NumOfEdges;

Rad=EdgeLen/2/sin(PI/NumOfEdges);

for(ii=0; ii<NumOfEdges; ii++) /*Angles in radians!*/

{

Ang=ii*AngIncre;

Vertices[2*ii]=CenX+Rad*cos(Ang);

Vertices[2*ii+1]=CenY+Rad*sin(Ang);

}

}

Then a regular polygon can be drawn using:

void ReguPoly(FILE *fp, double CenX, double CenY, double EdgeLen,

int NumOfEdges, double *Vertices)

{/*Regular Polygon*/ int ii;

ReguPolyVertices(CenX,CenY,EdgeLen,NumOfEdges, Vertices);

fprintf(fp,"P ");

for(ii=0; ii<2*NumOfEdges; ii++)

{ fprintf(fp,"%d ",Round(Vertices[ii])); }

fprintf(fp,"%d %d;\n", Round(Vertices[0]),Round(Vertices[1]));

}

4.2.3 Circle

A curve in CIF is always represented by a polygon. Specifically, a circle can be

represented by a regular polygon with large enough number of sides, as shown in

Fig4.3. Alternatively, CIF allows a circle to be define by its center and radius in the

following way:
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Fig. 4.1.: The layout of rectangles

Fig. 4.2.: The layout of regular polygons with different number of edges (3,5,6,8)

Fig. 4.3.: The layout of circles represented by regular polygons with different

number of edges (15,30,40)

void Circle0(FILE *fp, double CenX, double CenY, double Rad)

{/*Circle including the inside*/

fprintf(fp,"R %d %d %d;\n",

Round(2*Rad),Round(CenX),Round(CenY));

}
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Fig. 4.4.: The layout of circular sectors with different angles

4.2.4 Circular Sector

In many cases, the layout of a circular section is needed such as in grating couplers.

It uses a function called CirVertex to calculate all the vertices of a circle:

void PartCir Rad(FILE *fp, double CenX, double CenY, double Rad,

double Start Ang, double End Ang)

{/*Partial Circle,0<=Ang Start,Ang End<2*PI */

int ii;

double Vertex X[NumOf CirVertex], Vertex Y[NumOf CirVertex];

CirVertex Ang(CenX,CenY,Rad,Start Ang, End Ang,Vertex X,Vertex Y);

fprintf(fp,"P "); /*Polygon Start*/

fprintf(fp,"%d %d ",Round(CenX),Round(CenY));

for(ii=0; ii<NumOf CirVertex; ii++)

{

fprintf(fp,"%d %d ",Round(Vertex X[ii]), Round(Vertex Y[ii]));

}

fprintf(fp,"%d %d;\n", Round(CenX),Round(CenY));

}

The result can be shown in Fig4.4.

4.2.5 Rings and Partial Rings

Similar to circular sectors, the partial rings can be expressed as:

void PartRing(FILE *fp, double CenX, double CenY, double Rad,
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Fig. 4.5.: The layout of partial rings with different angles

Fig. 4.6.: The layout of waveguide bends of different types

Fig. 4.7.: The layout of rings with different radia
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double Wid, double Start Ang, double End Ang)

{/*Partial Ring in general, Ang in Radians!*/

int ii;

double Rad In,Rad Out;

double Vertex In X[NumOf CirVertex], Vertex In Y[NumOf CirVertex],

Vertex Out X[NumOf CirVertex], Vertex Out Y[NumOf CirVertex];

Rad In=Rad-Wid/2;

Rad Out=Rad+Wid/2;

CirVertex Ang(CenX,CenY,Rad Out,Start Ang,End Ang, Vertex Out X,

Vertex Out Y);

CirVertex Ang(CenX,CenY,Rad In,End Ang,Start Ang, Vertex In X,

Vertex In Y);

fprintf(fp,"P "); /*Polygon Start*/

for(ii=0; ii<NumOf CirVertex; ii++)

{ fprintf(fp,"%d %d ",Round(Vertex Out X[ii]), Round(Vertex Out Y[ii]));

}

for(ii=0; ii<NumOf CirVertex; ii++)

{ fprintf(fp,"%d %d ",Round(Vertex In X[ii]),

Round(Vertex In Y[ii]));

} fprintf(fp,"%d %d;\n", Round(Vertex Out X[0]),

Round(Vertex Out Y[0]));

}

From partial ring function,180 and 90 degrees waveguide bends can be realized.

void HalfRing L(FILE *fp, double CenX, double CenY, double Rad,

double Wid)

{/*Left Half Ring*/ double Start Ang,End Ang;

Start Ang=PI/2; End Ang=PI*3/2;
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PartRing Rad(fp,CenX,CenY,Rad,Wid,Start Ang, End Ang);

}

void QuartRing UL(FILE *fp, double CenX, double CenY, double Rad,

double Wid)

{/*UpperLeft Quarter Ring*/ double Start Ang,End Ang;

Start Ang=PI/2; End Ang=PI;

PartRing Rad(fp,CenX,CenY,Rad,Wid,Start Ang, End Ang);

}

void Ring(FILE *fp, double CenX, double CenY, double Rad,

double Wid)

{/*Ring*/

double Start Ang,End Ang;

Start Ang=0; End Ang=PI;

PartRing Rad(fp,CenX,CenY,Rad,Wid,Start Ang, End Ang);

PartRing Rad(fp,CenX,CenY,Rad,Wid,End Ang, Start Ang);

}

4.3 Simple Photonic Devices

With the basic components ready, more complex devices can be assembled to-

gether. The following are some of the examples.

4.3.1 3D Photonic Crystals(PhCs)

PhCs [57–61] are periodic dielectric structures that only allows light of certain

wavelengths to propagate, thus creating a photonic bandgap. One example of is

the so-called Woodpile structure [62–66] constructed by alternating perpendicular

gratings. The program is used to construct woodpile structure shown in Fig4.8 and

the result is published in Ref [67]. Another example is based on alternating layers

of rods and holes [68–70] which has omni-directional full bandgap. This structure
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Fig. 4.8.: The layout and SEM photo of a Woodpile photonic crystal [67]

Fig. 4.9.: The layout and SEM photo of a rods-and-holes PhC

Fig. 4.10.: The program hierarchy for the 3D PhC layouts
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Fig. 4.11.: A layout of large-scale photonic crystal containing 36000×36000 cells of

ellipses

generated by the layout program is shown in Fig.4.9. 3D PhC layouts generally can

be decomposed into individual layers of 2D PhC, which can be created by a loop of

basic unit functions. Their hierarchy in the program can be expressed in Fig.4.10.

A PhC usually contains a great number of unit cells. If each unit is drawn, the

total layout can be hundreds of MB or GB especially if each unit is a polygon, circle or

ring with numerous vertices, causing difficulty in later viewing and editing. In order

to reduce the layout file size, an important feature in CIF format is taken advantage

of. CIF allows the same structure to be replicated in both X and Y directions using a

simple ”T” script instead of specifying the same structures over and over again [55].

For instance, the following program can generate a 36000 × 36000 matrix of ellipses

efficiently within a mere 1.2MB layout file in a minute, despite the fact that each

ellipse has thousands of vertices. In comparison, if each unit is drawn one by one, the

total file size may be in GB and can take up one hour to generate. The layout result

is shown in Fig.4.11.

4.3.2 All-Pass Micro-rings with Grating Couplers

Micro-ring based resonators [71] are important on-chip photonic structure used for

wavelength filtering [72–74], bio-sensoring [75–77], all-optical control of light [78] even
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Fig. 4.12.: The program hierarchy for the all-pass micro-ring with grating coupler

layouts

Fig. 4.13.: The layout and SEM photo of an all-pass micro-ring with Grating

coupler
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Fig. 4.14.: Spiral Ring Layout and Optical Microscopic Photo of a fabricated device

Fig. 4.15.: The program hierarchy for the spiral-shaped micro-ring layouts

all-optical logic [79]. Fig4.13 shows the layout and fabricated device of an all-pass

micro-ring with grating couplers used for bio-sensing created by the program tool.

This structure can be decomposed into micro-ring and grating coupler structures,

both of which can in turn be created by polygon functions. Micro-rings with long

circumference can have large device footprint. In order to reduce its size, a micro-ring

with large circumference can be bent into a spiral shape [80]. Fig.4.14 is an example

of a spiral ring designed by the program as well as its fabrication result.
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Fig. 4.16.: Layout of AWG

Fig. 4.17.: The program hierarchy for the arrayed waveguide grating (AWG) layouts
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4.4 Complex Photonic Devices

4.4.1 Arrayed Waveguide Grating (AWG)

AWG, also know as phasar, are important multiplexing or demultiplexing devices

in Wavelength-division multiplexing (WDM) applications [8, 9, 81–83]. The program

decomposes the structure into input and output waveguides, star-couplers as well

as optical delay lines, as shown in Fig.4.17. The detailed design algorithm is based

on Ref. [81]. The program also enables efficient parameter variations. For example,

by altering the value of only one parameter in the program, the number of optical

delay-lines can be changed automatically, as shown in Fig.4.16.

4.4.2 Micro-Ring-Resonator(MRR)-based Optical Router(OR)

MRR-based ORs are important components for on-chip optical interconnects [84–

88], which take advantage of the fact that MRR functions as narrow-band filter. Thus,

depending on the wavelength and port of the input light, ideally it has only one certain

path and output port. In the layout, micro-racetracks(RT) instead of microrings

are used, enabling a longer coupling region. In practice, a fabricated microring is

unlikely to have exactly the same dimension as designed, causing a resonant shift

from preferred frequency. Thus thermal tuning [89, 90] is necessary to compensate

this shift. Fig.4.19 illustrates the hierarchy of OR implemented in the program.

Fig.4.18 shows the schematic, generated actual layout and fabrication result of an

OR.

4.4.3 Radio-Frequency-Arbitrary-Waveform-Generator (RFAWG)

Modern electronics has reached signal speed in excess of tens of GHz. However,

the intrinsic resistance-capacitance (RC) delay limits the future improvement in sig-

nal rate. Hence photonics has been used to generate microwave RF signals [91, 92],

typically with the help of optical pulse shaping in free space [93, 94]. Then effort
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Fig. 4.18.: The schematic, layout and fabricated device of a MRR-based optical

router
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Fig. 4.19.: The program hierarchy for the arrayed waveguide grating (AWG) layouts

Fig. 4.20.: The program hierarchy for the RFAWG layouts
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Fig. 4.21.: Optical Microscopic photo of RFAWG with Electro-optic Modulator
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has been made to perform RF signals on-chip using silica PLC tecnology [95]. Fi-

nally a silicon photonic chip-based radio frequency arbirary waveguide generation is

demonstrated [96]. However, it is not completely on-chip since optical fibers of several

kilometers are required to perform frequency-to-time-mapping. Fig4.21 shows a com-

pletely on-chip silicon photonic RFAWG designed by the program tool and fabricatd

in a commercial foundry. It contains 8 channels of integrated optical delay-lines. Each

delay-line has different lengths, corresponding to different time delay. Each channel

contains two part of delay-lines, fixed delay-line and tunable delay-line. The former

is implemented by various length of silicon waveguides and The latter is composed

of a number of thermally tuned all-pass microrings [97, 98]. Specifically, one of the

channels incorporates a silicon photonic modulator capable of high speed modulation.

The entire RFAWG device functions as this: A broadband pulse passes a series of

microring resonator called download rings with different resonance frequency. Each

downloaded frequency component then goes through different amplitude and phase

shift. Eventually these modified frequency components are recombined via a series

of upload rings to form a pulse with a new shape. The shape of the output pulse is

determined by the amplitude and phase shift experienced by every frequency com-

ponent respectively. In the same way each ring is equipped with a metal heater for

thermal resonant frequency control. The result is published in Ref. [99] in Nature

Communications.

The hierarchy of RFAWG is shown in Fig.4.20. From the perspective of layout,

the RFAWG poses several challenges. First of all, it contains over 300 microrings.

For example, the delay-line in each channel incorporate 41 microrings, with only

2nm difference in the radius of adjacent microrings. Every ring must have the exact

same gap between bus waveguide and ring, making their center slightly shifted. This

program tool is especially efficient in designing structures with only small variations

since precise position and size control by manual drawing would be very cumbersome.



76

Fig. 4.22.: An all-silicon optical diode [100]

Fig. 4.23.: Silicon photonic devices on flexible substrate [101]

4.5 Other Layout Projects

In addition to the aforementioned work, the layout program also played an im-

portant role in the following projects: all-silicon optical diode [100], silicon photonic

devices on flexible substrate [101], etc, as shown in Fig.4.22 and Fig.4.23. In addition,

the program tool has also been expanded by others to create their own structures.

For instance, 3D PhC-based cavity [102] as show in Fig.4.24.
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Fig. 4.24.: 3D photonic crystal based cavity [102]

Fig. 4.25.: Parameter sweeping using the layout program
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4.6 Advantages of the Layout Program Tool

The goal of this program tool is not just for the developer to use but also for other

users. Several advantages of the tool enables this:

1. Although a complex structure may contain an extensive hierarchy from the

top down to the basic functions, one is only required to interface with the top

function without the need of knowing the underlying hierarchy.

2. The majority of the layouts can be achieved directly by running the program

with little need for manual editing, potentially eliminating many human errors.

3. Regardless of its complexity, a structure always has its position defined by one

absolute point. The position of every other part in this structure is automat-

ically calculated, since the program internally specifies the relative positions

of each component. For instance, in the case of AWG, the center of the left

star-coupler may be used as a input position. Once this point is specified,

the positions of the other star-coupler, input/output waveguides and optical

delay-lines are automatically calculated based on their respective sizes. This

potentially removes the errors of assembling complex structures.

4. In practice the same structure may be fabricated with many sets of geometric

sizes. This is also known as parameter sweep. Since every geometry is defined in

parameters not specific values, it is extremely efficient to do parameter sweep

simply by invoking a loop. A simple example is shown in Fig.4.25, in which

from top to bottom the radius of micro-rings changes and from left to right the

period of grating couplers changes.

5. As shown in previous examples, the basic functions are used in many different

structures. This proves the re-usability of its fundamental components, saving

the time of manually redrawing the same geometries.
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6. The program is open to additions of other structures designed by other users,

provided they use the same underlying basic functions. Hence, it is easy to

expand the program tool.

4.7 Future Improvement on Layout Programs

The layout program has proven itself capable in many different structures and

designs. Nonetheless, although the majority of the layout can be generated automat-

ically, the final layout check is still done manually. Therefore, the program tool can

be further improved in the following ways:

1. Automatic parameter values checking: many parameters have practical limi-

tations on their values. For instance, the number of grating teeth can only

be a positive integer. Or the coupling gap between a micro-ring and its bus

waveguide should be around hundreds of nanometers instead of hundreds of

micrometers. The incorrect values will lead to mistakes in the layout, which

take time to correct manually. Hence, automatic parameter checking should be

implemented in the future.

2. Automatic design rule check(DRC): for instance, the smallest feature in any

layout should be equal or larger than certain minimum value dictated by the

fabrication process. Likewise, the distance between any features should also be

no less than that minimum value. A built-in DRC will speed up the layout

correction.
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5. SUMMARY

To sum up, in this work various types of high-efficiency edge couplers are demon-

strated. First, loss mechanisms of basic inverse taper couplers as well as cantilever-

encapsulated inverse taper couplers are analyzed and experimentally verified. Then

in order to couple efficiently with flat fibers with larger mode-field-diameter(MFD),

a novel sub- wavelength grating based edge coupler is proposed and experimentally

demonstrated to have 1.9dB/facet loss. To couple with flat fibers with even larger

MFD, a silicon multi-section taper cladded with intermediate SU-8 waveguide is pro-

posed and experimentally demostrated. Based on the result several suggestions are

proposed for further improvement.

In order to explore novel materials with larger 3rd-order optical nonlinearity a

novel nonlinear optical polymer termed PolyDDMEBT is experimentally character-

ized, including both its linear and nonlinear optical properties. The result shows

that the material has a real part refractive index of 1.68 and negligible absorption

in 1550nm, as well as negative thermo-optical coefficient. In addition, Z-scan mea-

surement shows large Kerr-coefficient and no presence of TPA in this polymer. The

results suggest that PolyDDMEBT may be potentially useful for 3rd-order optical

nonlinear applications.

Finally a program tool for automatic on-chip photonics layout generation is demon-

strated. This tool is proven capable of generating both simple and complex on-chip

photonic layouts. And it enjoys several advantages over manual drawing in its effi-

ciency in parameter sweeping, re-usability of components, flexibility in addition by

other users etc.
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[80] D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Dens-
more, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring
resonators in silicon as ultra-compact optical comb filters,” Optics Express,
vol. 18, p. 1937, feb 2010.

[81] M. Amersfoort, Phased-array wavelength demultiplexers and their integration
with photodetectors. PhD thesis, Delft University of Technology, 1994.

[82] M. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design
and applications,” IEEE Journal of Selected Topics in Quantum Electronics,
vol. 2, pp. 236–250, jun 1996.

[83] J. F. Bauters, J. R. Adleman, M. J. R. Heck, and J. E. Bowers, “Design and
characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveg-
uides,” Applied Physics A, vol. 116, pp. 427–432, aug 2014.

[84] R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou,
and W. Zhu, “Microring-resonator-based four-port optical router for photonic
networks-on-chip,” Optics Express, vol. 19, p. 18945, sep 2011.

[85] R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and
W. Zhu, “Five-port optical router for photonic networks-on-chip,” Optics Ex-
press, vol. 19, p. 20258, oct 2011.

[86] T. Hu, H. Qiu, P. Yu, C. Qiu, W. Wang, X. Jiang, M. Yang, and J. Yang,
“Wavelength-selective 44 nonblocking silicon optical router for networks-on-
chip,” Optics Letters, vol. 36, p. 4710, dec 2011.



87

[87] A. Bianco, D. Cuda, M. Garrich, G. G. Castillo, R. Gaudino, and P. Giaccone,
“Optical Interconnection Networks Based on Microring Resonators,” Journal
of Optical Communications and Networking, vol. 4, p. 546, jul 2012.

[88] R. Min, R. Ji, Q. Chen, L. Zhang, and L. Yang, “A Universal Method for Con-
structing N-Port Nonblocking Optical Router for Photonic Networks-On-Chip,”
Journal of Lightwave Technology, Vol. 30, Issue 23, pp. 3736-3741, vol. 30,
no. 23, pp. 3736–3741, 2012.

[89] X. Xue, Y. Xuan, C. Wang, P.-H. Wang, Y. Liu, B. Niu, D. E. Leaird, M. Qi,
and A. M. Weiner, “Thermal tuning of Kerr frequency combs in silicon nitride
microring resonators,” Optics Express, vol. 24, p. 687, jan 2016.
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