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ABSTRACT

Kaseb, Ahmed S. PhD, Purdue University, December 2016. A Cost-Effective Cloud-
Based System for Analyzing Big Real-Time Visual Data from Thousands of Network
Cameras. Major Professor: Yung-Hsiang Lu.

Thousands of network cameras stream public real-time visual data from different

environments, such as streets, shopping malls, and natural scenes. The big visual

data from these cameras can be useful for many applications, but analyzing this data

presents many challenges, such as (i) retrieving data from heterogeneous cameras (e.g.

different brands and data formats), (ii) providing a software environment for users to

simultaneously analyze the large amounts of data from the cameras, (iii) allocating

and managing significant amounts of computing resources. This dissertation presents

a web-based system designed to address these challenges. The system enables users to

execute analysis programs on the data from more than 120,000 cameras. The system

handles the heterogeneity of the cameras and provides an Application Programming

Interface (API) that requires slight changes to the existing analysis programs reading

data from files. The system includes a resource manager that allocates cloud resources

in order to meet the analysis requirements. Cloud vendors offer different cloud in-

stance types with different capabilities and hourly costs. The manager reduces the

overall cost of the allocated instances while meeting the performance requirements.

The resource manager monitors the allocated instances; it allocates more instances

if needed and deallocates existing instances to reduce the cost if possible. The man-

ager makes decisions based on many factors, such as analysis programs, frame rates,

cameras, and instance types.
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1. INTRODUCTION

Over the past years, millions of network cameras have been deployed around the

world [1] resulting in an unprecedented amount of big real-time visual data. The

cameras stream real-time visual data from a variety of environments, such as streets,

shopping malls, landmarks, and natural scenes. The visual data can be analyzed for

many applications, such as traffic monitoring, surveillance, and weather detection.

From the same data stream, meteorologists may study the formation of storms, city

planners may review traffic management, and emergency responders may consider

evacuation routes. Our team has discovered more than 120,000 public cameras de-

ployed by departments of transportation, universities, companies, individuals, etc.

This tremendous amount of visual data is lost if not analyzed. Hence, there is a need

to analyze this data for a better understanding of the world around us.

Meanwhile, hundreds of image and video analysis programs are developed for a

wide range of applications. How could we use these programs to analyze the visual

data from many cameras? Simultaneously analyzing data streams from thousands

of cameras presents many challenges, such as (i) retrieving data from heterogeneous

cameras, (ii) providing a software environment for users to simultaneously analyze

large amounts of data from the cameras, (iii) allocating and managing significant

amounts of resources (e.g., CPU, memory). This dissertation presents CAM2 (Con-

tinuous Analysis of Many CAMeras) as a system designed to address these challenges.

Chapter 2 overviews the related work. Chapter 3 introduces CAM2 as a system for

large-scale analysis of the visual data from network cameras. Chapter 4, Chapter 5,

and Chapter 6 propose various resource managers that can be used by CAM2.
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1.1 CAM2: System, Website, and API (Chapter 3)

Chapter 3 introduces CAM2 as a system that addresses the following problems: (i)

Given image analysis programs, how can these programs be executed on a very large

scale without adding much burden to the user? A user may develop analysis programs

that can detect weather conditions, analyze traffic, monitor crowd, etc. CAM2 takes

responsibility for executing the analysis programs on the data from thousands of

cameras. (ii) How can these analysis programs be executed on cameras selected by the

user, and at the desired frame rates for the desired durations? CAM2 retrieves data

from the selected cameras and executes the analysis programs based on the specified

parameters. (iii) How can data be retrieved from many heterogeneous cameras, i.e.,

different brands, data formats, frame sizes, etc.? CAM2 simplifies migrating existing

analysis programs by providing a simple Application Programming Interface (API)

that hides the heterogeneity and requires only slight changes to the existing analysis

programs. CAM2 allocates cloud instances to meet the computation and storage

requirements of the analysis.

Chapter 3 also describes how to use the website [2] and the API of CAM2. A user

can upload, execute, and download the results of analysis programs using the website

by following this procedure:

1. View a world map with the geotagged cameras along with their recent snapshots.

2. Select the cameras to analyze using a variety of selection methods, e.g. timezone,

country, state, city.

3. Specify the desired analysis frame rate and duration.

4. Upload the analysis program that uses the API of CAM2. The API is event-

driven: when new frames arrive, the analysis program is invoked. This event-

driven API significantly simplifies the analysis program. The API requires slight

changes to the existing analysis program; only the IO operations are modified.

5. Download the analysis results.
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The experiments in Chapter 3 show that CAM2 is capable of analyzing 2.7 million

images from 1274 cameras over three hours using 15 Amazon Elastic Compute Cloud

(Amazon EC2) [3] instances. That is more than 141 GB of images (at 107 Mbps).

The average frame size of the cameras is 0.44 Mega Pixels (MP). The experiments

use two analysis programs: motion estimation and human detection.

1.2 Cloud Resource Management (Chapter 4)

A major challenge in CAM2 is the ability to allocate and manage significant

amounts of resources (CPU, memory, etc.) to analyze thousands of data streams

simultaneously. Analyzing a single image (assuming 100KB per image) every one

minute from 120,000 cameras means analyzing more than 10 TB of visual data per

day. Using the cloud for this big data analysis is desirable due to the elasticity of

resources. Cloud vendors offer many instance types with different CPU, memory, and

network capabilities. Choosing the right instance type for the analysis can be more

cost-effective than other instance types. The right instance type depends on both the

capabilities of the instance and the requirements of the analysis.

It is a challenging problem to manage cloud resources in order to reduce the cost

of analyzing data streams from thousands of cameras while meeting the performance

requirements. This problem can be divided into two parts: resource allocation and

resource scaling. Regarding resource allocation, the manager decides what types of

cloud instances to use, how many instances to allocate, and which cameras to assign

to which instances. Regarding resource scaling, the manager decides how to handle

resource overutilization or underutilization, and when to scale up or down the number

of running instances. All these decisions are affected by many factors, such as the

analysis programs, the desired frame rates, the frame sizes of the cameras, the visual

content from the cameras, the types and costs of the instances. Chapter 4 proposes

a resource manager that tackles these problems.
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The resource manager allocates cost-effective cloud instances based on evaluat-

ing the resource requirements of analysis programs and assessing the effective cost

of using different cloud instances. The manager continuously monitors the CPU and

memory utilization of the allocated instances to ensure that they are not overutilized

or underutilized. The resource manager automatically scales up or down the number

of running instances by allocating more instances if needed and deallocating existing

instances to reduce the cost if possible. The manager migrates data streams among

instances in order to reduce the overall analysis cost and meet the performance re-

quirements. If the same user executes multiple analysis programs at different times,

the manager can reuse the running instances to reduce the overall analysis cost.

To evaluate the resource manager, the experiments use four analysis programs that

represent different workloads in terms of CPU and memory: image archival, motion

estimation, moving objects detection, and human detection. The experiments show

that different cloud instances are more cost-effective for different analysis programs.

One experiment analyzes data streams from 1026 cameras simultaneously for six hours

using different analysis programs at different frame rates. The experiment analyzes

5.5 million images (260GB data), and costs $12.77. Without using the proposed

resource manager, this experiment costs $14.63. In other words, the proposed resource

manager leads to a 13% reduction in cost.

1.3 Enhanced Resource Management (Chapter 5)

Chapter 5 proposes an enhanced resource manager that improves the first manager

(Chapter 4) in many ways. For example, the enhanced manager: (i) is able to handle

multiple analysis programs at different frame rates, (ii) considers the desired frame

rates and the camera frame sizes while estimating the resource requirements of ana-

lyzing the data stream from each camera, (iii) models the resource allocation problem

as a 2D vector bin packing problem [4] and solves it using a greedy heuristic algo-
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rithm, (iv) avoids conducting test runs on all instances and for different frame rates

by modeling the relationship between the frame rate and the resource requirements.

To evaluate the enhanced resource manager, the experiments evaluate the effect

of many factors (e.g., camera frame sizes and instance types) on the resource man-

agement decisions. The experiments also show that the resource manager is able to

reduce up to 61% of the overall cost. One experiment analyzes more than 97 million

images (3.3 TB of data) from 5,310 cameras simultaneously over 24 hours using 15 in-

stances. The experiments use five analysis programs to represent different workloads:

image archival, motion estimation, moving objects detection, features tracking, and

human detection.

1.4 Management of CPU and GPU Resources (Chapter 6)

Some cloud instances have GPUs and some instances do not (referred to as GPU

instances and non-GPU instances respectively). Using GPUs can accelerate analysis

programs and achieve higher frame rates, but incurs additional cost because GPU

instances are more expensive. This chapter proposes a resource manager that uses the

GPU to achieve frame rates that are not possible using the CPU only. The manager

also considers both GPU and non-GPU instances to reduce the overall cost. To

achieve that, the manager conducts a test run to estimate the resource requirements

of analysis programs if they are executed using the CPU or the GPU. The manager

formulates the resource allocation problem as a multiple-choice vector bin packing

problem and decides what instance types to use, how many instances to allocate,

which camera streams to assign to which instances, and which CPU or GPU to

analyze each stream.

To evaluate the proposed manager, the experiments use two analysis programs for

object detection. Each program uses a convolutional neural network (VGG-16 [5] or

ZF [6]) to detect objects (e.g. persons and cars) in images. The experiments show

that the manager can use the GPU to achieve a speedup of around 13 (or 16) for
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VGG-16 (or ZF). The experiments evaluate the effect of the desired frame rates and

the number of cameras on the resource requirements. The experiments show that each

analysis program has two choices of resource requirements depending on whether it is

executed by the CPU or the GPU. The experiments compare the resource allocation

strategy of the manager with other allocation strategies and show that the manager

can reduce up to 61%.

1.5 Contributions

The main contributions of this dissertation can be summarized as follows:

1. To our knowledge, CAM2 is the first and probably the only system that enables

users to simultaneously analyze real-time image and video streams from thou-

sands of network cameras. CAM2 has a public website and can be used for a

variety of applications.

2. CAM2 provides an API that makes it easy to migrate existing analysis programs

with only slight changes. In particular, only the IO operations are modified.

3. CAM2 provides access to more than 120,000 worldwide distributed cameras

discovered by our team. The system handles the heterogeneity of these cameras.

4. It proposes a cloud resource manager aiming at reducing the cost of analyzing

data streams from network cameras while meeting the performance require-

ments. This is achieved by allocating cost-effective instances, monitoring and

automatically scaling the cloud resources. The experiments show that the re-

source manager can reduce up to 13% cost.

5. It proposes an enhanced resource manager that allocates and scales the cloud

resources based on many factors, including: (i) the resource requirements of

the analysis programs, (ii) the desired frame rates, (iii) the frame sizes of the

cameras, (iv) the types and costs of the cloud instances, (v) and the utilization

of the running instances.
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6. The enhanced resource manager models the resource allocation problem as a 2D

vector bin packing problem [4] and solves it using a greedy heuristic algorithm.

The experiments show that the enhanced manager can reduce up to 61% cost.

7. It proposes a resource manager that uses the GPU to achieve frame rates that

are not possible using the CPU only and considers both GPU and non-GPU

instances to reduce the overall cost. The manager formulates the resource al-

location problem as a multiple-choice vector bin packing problem and solves it

using an existing algorithm. The experiments show that the manager is able to

reduce 61% of the cost compared with other allocation strategies.
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2. RELATED WORK

2.1 Network Cameras: Sources and Analysis

There are many sources for the visual data from network cameras. AMOS (Archive

of Many Outdoor Scenes) [7] is a dataset that contains more than 800 million im-

ages captured from nearly 30,000 cameras since 2006. The dataset can be down-

loaded for offline analysis. Recent visual data from many traffic cameras are publicly

available through the websites of the Departments of Transportation (DOT), such

as New York City DOT (http://nyctmc.org/) and Massachusetts DOT (http:

//www1.eot.state.ma.us/). Some websites (e.g., http://www.webcams.travel/

and http://www.wunderground.com/webcams/) show recent snapshots from thou-

sands of public cameras.

Network cameras have been used by researchers for many applications, such as:

surveillance [8], detecting anomalous activities in crowded scenes [9], studying ve-

hicular traffic and mobility models [10], and improving physics-based illumination

models [11]. Cameras have also been used to study various environmental issues,

such as: detecting weather conditions [12] [13], monitoring vegetation [14], monitor-

ing plant phenology [15], measuring water quality [16], measuring water levels [17],

evaluating the composition of water [18], and monitoring foam formation downstream

of wastewater treatment [19].

Many systems have been built to analyze the visual data from network cameras.

Hong et al. [20] proposed a distributed framework for spatio-temporal analysis ap-

plications on large-scale camera networks. IBM Smart Surveillance System [21] is a

system for large-scale video analytics for surveillance applications. Yu et al. [22] pro-

posed a system for near real-time video stream analysis. They developed a prototype

for video surveillance in a retail store using several cameras. Target Container [23] is

http://nyctmc.org/
http://www1.eot.state.ma.us/
http://www1.eot.state.ma.us/
http://www.webcams.travel/
http://www.wunderground.com/webcams/
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a framework enabling users to track multiple targets in a camera network. CAM2 is

different because it provides the visual data from the cameras, reduces the cost of us-

ing the cloud to analyze the data streams from thousands of cameras simultaneously,

and can be used for a wide range of applications.

2.2 Cloud Resource Management

Many studies have been conducted on managing cloud resources for multimedia

applications, such as image and video analysis. Zhu et al. [24] explained the benefits

of using the cloud for multimedia applications without considering the cost. Several

papers considered applications streaming data out of the cloud [25] [26]. Hossain et

al. [27] considered minimizing the number of allocated instances for cloud-based video

surveillance applications and evaluated their solution by simulation. Vijaykumar et

al. [28] introduced a dynamic resource allocation algorithm to minimize the overall

cost of using the cloud for data streaming applications. Their solution primarily

considered the CPU utilization. In contrast, this dissertation considers streaming

data into the cloud for analysis, reduces the cost of using the cloud, considers both

the CPU and memory resources to perform both image and video analysis, and is

evaluated using Amazon EC2.

GPUs have been used to accelerate general purpose computation, such as image

processing and computer vision [29]. Different studies used GPUs for face detec-

tion [30], motion estimation [31], body tracking [32], etc. This dissertation considers

using GPUs to accelerate and reduce the monetary cost of analyzing the real-time

multimedia content from network cameras using the cloud.

2.3 Amazon Cloud Services

Amazon EC2 [3] provides three related services to the proposed resource managers:

(i) CloudWatch (https://aws.amazon.com/cloudwatch/) for monitoring the CPU

utilization of instances. (ii) Auto Scaling (https://aws.amazon.com/autoscaling/)

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/autoscaling/
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for scaling the number of running instances up or down automatically if they are

overutilized or underutilized. Users can specify a single instance type to be used for

launching new instances. (iii) Elastic Load Balancing (https://aws.amazon.com/

elasticloadbalancing/) for distributing incoming web traffic across instances using

Round-Robin or Least Outstanding Request. The proposed managers are different

because they monitor both the CPU and memory utilization of the instances, launch

instances of different types based on the existing workloads such that the overall

cost is reduced, and balance the load among the instances based on their resource

utilization.

2.4 Our Relevant Work

This dissertation is based on our relevant work: We introduced CAM2 as a system

for analyzing visual data from network cameras [33]. The website and the Application

Programming Interface (API) of CAM2 [34] enable users to submit their analysis

programs. We described the challenges and the potential applications of CAM2 [35]

and developed an Android mobile application that enables users to watch the world

and plan their routes using the cameras in CAM2 [36]. Hacker and Lu [37] presented

CAM2 as an educational tool to teach students big data analytics. Then, we proposed

cloud resource managers reducing the cost of analyzing image and video streams from

network cameras [38] [39] [40] [41]. Table 2.1 compares the resource managers in our

relevant work.

2.5 Bin Packing

In the bin packing problem [42], it is required to pack different-sized objects into

unit-size bins. The objective is to minimize the number of used bins while maintaining

the overall size of the objects in any bin less than one. The bin packing is an NP-hard

problem [43]. Several generalizations of the bin packing problem have been studied:

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
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Table 2.1.: Comparison of our resource management work: Chapter 4 [38], [39],
Chapter 5 [40], and Chapter 6 [41].

Criteria [38] [39] [40] [41]

Cameras

Allocate more resources for higher frame size cameras X X

Evaluate the effect of the camera frame sizes on the re-
source requirements

X

Evaluate the effect of the camera visual content on the
resource requirements

X

Consider the camera locations X

Analysis Programs

Consider GPU execution X

Propose an allocation procedure that can handle multiple
analysis programs at different frame rates

X X

Evaluate the effect of the analysis frame rates on the
resource requirements

X X

Cloud Instances

Consider GPU resources X

Consider memory resources X X X

Use different instance families X X X

Reuse running instances for newly launched analysis X X X

Consider the instance locations X
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1. Variable Sized Bin Packing [44] [45] [46] allows bins to have different sizes. The

objective is to minimize the overall size of the used bins.

2. Vector Bin Packing [47] [48] [49] uses a multidimensional vector (as opposed to

a scalar) for the size of each object or bin. The overall size of the objects in any

bin in any dimension must not exceed one.

3. Vector Bin Packing with Heterogeneous Bins [4] allows bins to have different

sizes and costs. The objective is to minimize the overall cost of the used bins.

This problem is used by the resource manager in Chapter 5 to formulate the

resource allocation problem.

4. Multiple-Choice Vector Bin Packing [50] [51] allows multiple choices for the size

of each object. In other words, each object may have one of several possible

sizes. This problem is used by the resource manager in Chapter 6 to formulate

the resource allocation problem.

Table 2.2.: The classification of the bin packing related work.

1D Multidimensional

Homogeneous Bins [42] [47] [48] [49]

Heterogeneous Bins [44] [45] [46] [52] [50] [4] [40]

2.6 Image and Video Analysis

To evaluate the proposed manager, this dissertation uses existing image and video

analysis techniques for background subtraction [53] [54], feature detection [55], feature

tracking [56], human detection [57], and object detection [5] [6].
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3. CAM2: SYSTEM, WEBSITE, AND API

This chapter is organized as follows: Section 3.1 describes the architecture of CAM2

and the heterogeneity of the existing cameras. Section 3.2 demonstrates the use

of CAM2. Section 3.3 shows how to use the website of CAM2 to execute analysis

programs on a large-scale. Section 3.4 describes how to use the API of CAM2 in

order to migrate existing analysis programs to CAM2.

3.1 Overview of CAM2

CAM2 is a cloud-based system for the analysis of the visual big data from network

cameras. To our knowledge, CAM2 is the first system that enables users to simultane-

ously analyze real-time image and video streams from thousands of network cameras.

Figure 3.1 shows the architecture of CAM2 with the following main components:

1. The website is users’ portal to select cameras and upload analysis programs.

2. The database maintains the information about the cameras, such as brands,

data formats, and frame sizes.

3. The resource manager allocates and manages cloud instances to execute the

analysis programs.

4. The instances retrieve the visual data from the cameras and execute the analysis

programs.

CAM2 provides access to more than 120,000 network cameras. The cameras are

deployed by various organizations, including departments of transportation, univer-

sities, companies, or individuals. The cameras provide unprecedented amount of in-

formation that can help us understand the world better. The ultimate goal of CAM2
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Fig. 3.1.: The architecture of CAM2.

is to bridge the gap between users with their analysis programs and the thousands of

online public cameras. In other words, the goal is to enable the users to execute their

analysis programs on the visual data from the cameras. To achieve that, CAM2 has

three main design goals: flexibility, ease of use, and scalability.

Flexibility: CAM2 achieves flexibility by not assuming any prior knowledge

about the analysis programs. CAM2 can be used for a wide range of image analysis

and computer vision applications, such as traffic monitoring, surveillance, weather

detection, etc.

Ease of use: CAM2 reduces the burden on the users. The users are responsible

for only using the website and uploading the analysis programs. In addition:

1. CAM2 handles the heterogeneity of the cameras, i.e., different brands, data for-

mats, frame sizes, etc.The API provides a uniform way for the analysis programs

to access the images from all the cameras.

2. CAM2 handles the underlying computing infrastructure. CAM2 uses cloud re-

sources to meet the computation and storage requirements of the large-scale

analysis. The users do not need to worry about cloud computing resource man-

agement. Instead, the users can focus only on their analysis programs.
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3. The API of CAM2 requires few changes to the existing analysis programs. In

particular, only the IO operations are changed. This enables the users to migrate

their analysis programs easily. More details about the API are discussed in

Section 3.4.

Scalability: CAM2 has to be scalable in order to analyze the tremendous amount

of data from the thousands on cameras. CAM2 handles scalability by using both

private and public cloud resources. The system allocates and manages Amazon EC2

and Microsoft Azure cloud instances in order to meet the computation and storage

requirements of large-scale analyses. This system is designed such that the cloud

instances communicate directly with the cameras without going through the server

of CAM2. This reduces the latency and enhances the scalability of the system.

The cameras in CAM2 are heterogeneous in many ways:

Types: IP cameras have known public IP addresses and can provide real-time

image or video streams. Non-IP cameras are available only through some websites

that provide recent snapshots periodically.

Brands and Data Formats: Each brand (e.g. Axis, Panasonic) has a different

way of communication and supports different data formats (e.g. image, MJPEG,

H.264). All the cameras can provide individual images. MJPEG is the most widely

supported video format. Some newer cameras support H.264 as well.

Frame Sizes: The cameras provide images and videos in different frame sizes.

One of the most common frame sizes is 640×480. More than 1,500 cameras have

frame sizes above 1 Megapixels.

Frame Rates: Figure 3.2 shows a histogram for the video frame rates of more

than 900 IP cameras providing MJPEG streams. The camera frame rates depends

on the network distance between the instance and the cameras. The frame rates in

the figure are measured using an instance in Oregon.

Visual Content: Figure 3.3 shows the heterogeneity of the visual content from

the cameras in CAM2. The cameras provide a variety of scenes, such as tourist at-

tractions, highways, etc. Hence, the cameras can be used for a variety of applications.
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Fig. 3.2.: The heterogeneity of the frame rates of more than 900 IP cameras in CAM2.

(a) Atrium (b) Tourist Attraction

(c) Highway (d) Coast

Fig. 3.3.: The heterogeneity of the visual content from the cameras in CAM2.
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3.2 CAM2 Demonstration

The primary goal of CAM2 is to enable users to execute a variety of programs

to analyze the data from thousands of cameras. The responsibility of users is to

submit their programs (in Python) that analyze individual frames. Users can select

cameras based on different criteria, such as country, state, city, and timezone. The

system is responsible for executing the submitted analysis program for all the selected

cameras, and providing the aggregated results as well. In order to meet the resource

requirements, the system allocates and manages cloud instances.

In order to demonstrate the capability of CAM2 to perform large-scale analysis,

we conducted an experiment that analyzed 2.7 million images from 1274 cameras

over three hours using one frame every five seconds from each camera. During the

experiment, the system used 15 Amazon cloud instances to analyze 141 GB of images

at 107 Mbps (141× 8× 1024/(3× 60× 60)). The average frame size of the cameras is

0.44 MP (approximately 768×576). The cameras are deployed across North America,

West Europe, and East Asia. The experiment calculates the average amount of motion

in the images from each camera. First, the foreground of each frame is detected

using OpenCV’s implementation of the method proposed by KaewTraKulPong and

Bowden [53]. Then, the percentage of the foreground pixels with respect to the entire

image is calculated. The average percentage of foreground pixels over a period of

time is an indication of the average amount of motion in the images.

Figure 3.4 shows the results of the experiment. Figure 3.4 (a) shows the distri-

bution of the average amount of motion for all the cameras. The horizontal axis

represents the cameras, while the vertical axis represents the average percentage of

foreground pixels. This experiment indicates that 84% cameras had less than 1%

foreground pixels and 2% cameras did not have any detected motion at all over the

period of three hours. Since the motion indicates the existence of new information

from a camera, this experiment demonstrates the ability of CAM2 to analyze the

data from thousands of cameras simultaneously, and identify which cameras deserve
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(a)

(b) (c)

Fig. 3.4.: Results of estimating the average motion in 2.7 million images from 1274
cameras over three hours using one frame every five seconds. (a) Distribution of the
average percentage of foreground pixels for all the cameras. (b) A camera in Mexico
with high motion. (c) A camera in USA with low motion.

further investigation due to high degrees of motion. Figure 3.4 (b) shows a snap-

shot from a high-motion camera that is monitoring traffic, while figure Figure 3.4 (c)

shows a snapshot from a low-motion camera that is looking at a landscape. It should

be noted that panning cameras usually have the most amount of motion due to the

frequent and sudden scene changes.

CAM2 allocates cloud resources in order to meet the analysis requirements. The

system is able to distribute the loads based on the different capabilities of each cloud

instance. In this experiment, CAM2 allocated 15 instances in order to meet the frame

rate requirements. The achieved frame rate was 99% of the desired frame rate (0.2

FPS). Several factors could negatively affect the achieved frame rate: (i) Too few
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cloud instances are allocated and these instances are overloaded. The achieved frame

rates drop noticeably when the CPU or memory utilization of the instances is over

90%. (ii) The cameras are geographically far from the cloud instances. For example,

a cloud instance in USA analyzes the data from a camera in Europe.

3.3 CAM2 Interactive Website

The website of CAM2 is the users’ portal to the system. The users need to learn

about only the website in order to execute their CAM2-compatible analysis programs

on a large-scale. Through the website, the users can browse the cameras, select

the cameras to analyze, set execution parameters (e.g. the analysis frame rate),

upload their analysis programs, start and track the progress of their submissions, and

download the analysis results.

The website of CAM2 presents the cameras through an interactive map that shows

a marker at the location of each camera as shown in Figure 3.5. The number of the

cameras is large, and a marker for each camera would cause the map to load slowly.

Hence, the website groups the camera markers into clusters, each showing the number

of the cameras in the cluster. The website shows a recent snapshot from a camera

when its marker is clicked. CAM2 periodically downloads camera snapshots and stores

them locally in the server in order to reduce the latency of showing camera snapshots.

To execute an analysis program on a set of cameras, a user should upload the

program and select the set of cameras to analyze. The user might need to execute

the same program on different sets of cameras, execute different analysis programs

on the same set of cameras, or execute the same analysis program on the same set of

cameras at different times. To enable this flexibility, CAM2 offers a three-step process

for executing analysis programs as shown in Figure 3.6:

1. Create a configuration by selecting the desired set of cameras to analyze and

setting some execution parameters, e.g. the analysis frame rate.
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Fig. 3.5.: Using the website to browse the cameras through an interactive map and
to select the cameras for analysis.

2. Upload a module which is a file that contains the source code of an analysis

program. Currently, CAM2 supports the modules that are written in Python

and use OpenCV [58].

3. Start a submission, i.e. execute the analysis program in a selected module using

the parameters of a selected configuration.

Fig. 3.6.: CAM2 three-step process for executing analysis programs

In the next three sections, we present this three-step process. We show how this

process enables users to execute analysis programs for a variety of applications. For

more details, the website [2] of CAM2 provides an online documentation and video

tutorials illustrating the details about using the website and the API.
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3.3.1 CAM2 Configuration: Camera Selection and Execution Parameters

To create a configuration, a user should select the set of cameras to analyze and

set some execution parameters, such as the analysis frame rate. Enabling the user to

select a set of cameras for a variety of applications is indeed a challenge. In order to

suit various applications, CAM2 provides 6 ways of selecting cameras:

1. Country, state, or city: The user can select the cameras in a particular

country, state, or city. This is essential if the user wants to analyze the data in

a particular area, e.g. monitoring the traffic in Washington DC or Paris.

2. Timezone: The user can select the cameras in a particular timezone. This is

useful if the uploaded analysis program has restrictions on the visual content

from the cameras. For example, the analysis program might be designed to

analyze outdoor images with high brightness, so the images should be taken

during the daytime.

3. Weather conditions: The user can select the cameras whose cities have par-

ticular weather conditions (rain, wind, etc.). This is useful if the user wishes

to execute a weather-related analysis program. For example, the user wants to

execute a rain detection analysis program on the cameras that are likely to have

rain. CAM2 uses online weather services to retrieve the weather conditions of

different cities.

4. Camera IDs: CAM2 assigns a unique and fixed ID to each camera. If the

user has a priori knowledge of the IDs of some particular cameras, the user can

directly select these cameras using their IDs. The user can know the IDs of the

cameras using the website.

5. Camera map: The user can select individual cameras through the interactive

world map. When the user clicks a camera marker, the website shows a recent

snapshot. If the snapshot is suitable for the user’s analysis purposes, the user

can add the camera to the desired camera set.
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(a) Browsing and selecting the cameras for the
analysis based on their visual content.

(b) Setting the execution parameters of a con-
figuration.

(c) Browsing, editing, and erasing the saved con-
figurations.

(d) Browsing, editing, and erasing the uploaded
modules.

(e) Starting a submission by selecting a module
and a configuration.

(f) Tracking the progress of, downloading the
results of, and terminating the submissions.

Fig. 3.7.: Website Screenshots

6. Visual content: The user can select the cameras based on their visual content.

The website can show a grid of recent snapshots from all the cameras in a

selected country, state, or city. For example, Figure 3.7(a) shows the recent

snapshots from the cameras in Antarctica. Then, the user can select the cameras

that are suitable for the user’s analysis purposes.

The user can select the cameras using multiple methods based on the desired

applications. For example, the user might select the USA cameras that are likely to
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have rain, or the Eastern Time Zone cameras that are likely to have high wind speeds,

etc. This can be beneficial for some computer vision applications, such as weather

detection.

After selecting the cameras, the user should set the execution parameters which

include: (i) the total duration of the analysis, (ii) the analysis frame rate, (iii) the

limit on the number of cameras to analyze, and (iv) the number of past frames that

are kept by CAM2 and provided to the analysis program. This is essential if the

analysis program needs to access old frames while processing new ones. Figure 3.7(b)

shows a configuration that can analyze 100 cameras for 2 hours at 1 frame per sec-

ond. CAM2 executes the uploaded analysis program for the specified duration using

the specified frame rate on the selected cameras. The user might need to execute

different analysis programs using the same configuration (i.e. using the same set of

cameras with the same execution parameters). That is why CAM2 saves the created

configuration so that it can be used later. The user can browse, edit, or erase the

existing configurations as shown in Figure 3.7(c).

3.3.2 CAM2 Module: The Analysis Program

A module is a file that contains the source code of an analysis program. In

Section 3.4, we discuss how to write a CAM2 module in details. A user can write

a module to monitor the traffic, detect the weather conditions, etc. The user might

need to execute the same analysis program on different sets of cameras. For example,

the user might need to monitor the traffic in New York City, and later decide to

monitor the traffic in Paris. That is why CAM2 saves the uploaded module so that

it can be used later. The user can browse, edit, or erase the uploaded modules as

shown in Figure 3.7(d). The website of CAM2 provides a dozen pre-written modules.

These modules have a variety of analysis programs, such as motion detection, moving

objects detection, sunrise/sunset detection, etc. These modules are beneficial for the
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users who wish to try CAM2 or to learn how to use it. These modules are also useful

for non-experts and students to learn about image processing and computer vision.

3.3.3 CAM2 Submission: Executing the Analysis Program

To start a submission, a configuration and a module should be selected as shown

in Figure 3.7(e). Then, CAM2 takes the responsibility of executing the analysis

program in the uploaded module on the cameras and with the parameters specified

by the selected configuration. The module can be a user module or a CAM2 pre-

written module. Figure 3.7(f) shows how the user can track the progress and the

current state of the submission. As shown in Figure 3.8, the submission can be in

one of the following states:

Fig. 3.8.: The life cycle of a CAM2 submission

1. Submitted: When a user stars a submission, it remains in this state until

CAM2 starts allocating resources for the submission. The system starts allo-

cating resources immediately after the submission is started.
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2. Allocating Resources: The submission moves to the Allocating Resources

state when the CAM2 Manager module starts allocating cloud instances for the

submission. Then, the CAM2 Worker module, that is deployed on the cloud

instances, starts executing the analysis program of the submission.

3. Running: When the Worker module starts executing the analysis program

of a submission, the submission moves to the Running state. The submission

remains in this state for the analysis duration specified in the configuration.

The Worker retrieves the images from the selected cameras at the specified

frame rate and invokes the analysis program. The website shows a progress bar

to indicate the progress of a running submission as shown in Figure 3.7(f).

4. Completed: After the analysis program of a submission is executed for the

specified duration, the running submission moves to the Completed state. The

user can download the analysis results, and the website will provide a single

compressed file that contains a directory for the results of each individual cam-

era.

5. Abnormally Terminated: The uploaded module can have two types of er-

rors: (i) errors that prevent the execution of the analysis program, such as

syntax errors, API violations, or errors in the initialization stage of the analysis

program. For this type of errors, CAM2 terminates the running submission and

moves it to the Abnormally Terminated state. (ii) runtime errors that might

occur for only some frames, such as corrupted frames. For both types of errors,

CAM2 includes the stack trace of the errors in the downloaded analysis results

so that the user can fix the errors.

6. Terminated: The user can download the intermediate analysis results of a

running submission. If the user is not satisfied with the analysis results for any

reason, CAM2 allows the user to terminate the running submission. The system

releases the cloud resources so that they can be used by other submissions. In

this case, the submission is moved to the Terminated state.
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3.4 CAM2 Event-Driven API

The API of CAM2 is event-driven, i.e. CAM2 invokes the analysis programs when

new frames arrive. This event-driven design approach significantly simplifies the anal-

ysis programs. They do not need to handle the underlying computing infrastructure

and the heterogeneity of the cameras. Instead, the API of CAM2 provides a uniform

way to analyze the data from all the cameras. Users can migrate their existing anal-

ysis programs to CAM2 easily because the API requires only slight changes to the

existing programs.

The general structure of an existing analysis program can be divided into three

main stages as shown in Figure 3.9(a): initialization, processing, and finalization.

The first stage performs required initializations. The second stage reads, processes,

and saves the results of the individual frames. The third stage releases the resources,

computes and saves the overall results, etc. The operations performed by the analysis

program can be categorized into: (i) IO operations that read the input frames (e.g.

step 2 in Figure 3.9), or save the analysis results (e.g. steps 4 and 6 in Figure 3.9).

(ii) non-IO operations that perform the actual analysis (e.g. steps 1, 3, and 5 in

Figure 3.9). For most of the non-trivial analysis programs, the IO operations are

usually significantly fewer than the non-IO operations.

3.4.1 The Analyzer Class: Event Handlers and IO APIs

The API of CAM2 provides the Analyzer class as the base for any analysis pro-

gram class. The goals of the Analyzer class are to: (i) define how the analysis

program class should be. Users should implement the initialize, on new frame,

and finalize event handlers as shown in Figure 3.9(b). Table 3.1 shows more de-

tails about these event handlers. (ii) provide a uniform way for any analysis program

to read the input and save the results as shown in Table 3.2. The users do not need

to worry about how to get the input frames from the heterogeneous cameras or how

to manage the storage of the results on the cloud.
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Fig. 3.9.: The general structure of: (a) an existing analysis program, and (b) the
corresponding CAM2-compatible event-driven analysis program. The dashed blocks
represent the IO operations (i.e. reading the inputs and saving the results) which
are modified to use the IO APIs of CAM2. The solid blocks represent the non-IO
operations which remain the same.

Event
Handler

Required? Invocation Usage

initialize No At the
beginning

To perform initializations.

on new frame Yes For each new
frame

To read, analyze, and save the re-
sults of the individual frames.

finalize No At the end To release the resources, compute
and save the overall results, etc.

Table 3.1.: The event handlers provided by the Analyzer class. Users should imple-
ment these event handlers in order to migrate existing analysis programs to CAM2.

In order to migrate existing analysis programs to CAM2, users need to modify

only the IO operations (e.g. steps 2, 4, and 6 in Figure 3.9). The IO operations are
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Method Type Usage
get frame Input To provide the most recent camera frames. If

an old frame is needed, there is an optional
parameter to specify the index of the frame.

get frame metadata Input To provide the metadata of the most re-
cent frames. The frame metadata include
the frame sequence number, the frame times-
tamp, and the metadata of the camera which
the frame belongs to. The camera metadata
include the camera ID, the latitude, and the
longitude of the camera location.

save Output To save the results in a variety of formats,
including text, or images.

Table 3.2.: The IO methods provided by the Analyzer class. These methods are used
to perform IO operations.

usually significantly fewer than the non-IO operations (i.e., computation steps 1, 3,

and 5 in Figure 3.9). Hence, CAM2 requires slight changes to the existing analysis

programs. The following procedure should be followed to migrate an existing analysis

program to CAM2:

1. Create a class that inherits from the Analyzer class.

2. Move the initialization, processing, and finalization stages of the analysis pro-

gram to the initialize, on new frame, and finalize event handlers respec-

tively as shown in Figure 3.9(b). Variables that are needed by multiple stages

should be defined as object attributes.

3. Modify the IO operations of the analysis program such that they use the IO

APIs of CAM2 as shown in Table 3.2. For example, use the get frame method

to read a new frame (step 2 in Figure 3.9), and the save method to save the

analysis results (steps 4 and 6 in Figure 3.9).

The next subsection shows more details about how to migrate an existing analysis

program to CAM2.
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3.4.2 Migration Example: Background Subtraction

Figure 3.10(a) shows an existing background subtraction analysis program that

uses OpenCV’s implementation of the method proposed by KaewTraKulPong and

Bowden [53]. The first stage initializes a background subtractor object (step 1). The

processing stage reads the input frame (step 2), subtracts the background (step 3),

and saves the input frame and its foreground mask (step 4). Steps 1 and 3 are non-IO

operations, while steps 2 and 4 are IO operations.

Fig. 3.10.: (a) Existing background subtraction analysis program. (b) The corre-
sponding CAM2-compatible program. The solid blocks represent the non-IO opera-
tions which remain the same. The dashed blocks represent the IO operations which
are modified to use the APIs of CAM2. For example, self.get frame is used in-
stead of video capture.read to read a new frame, and self.save is used instead of
cv2.imwrite to save the results. Note that steps 1-4 map to the corresponding steps
in Figure 3.9.

Figure 3.10(b) shows the corresponding CAM2-compatible program. The event-

driven programming model adopted by CAM2 makes it straightforward to map the

initialization and processing stages to the corresponding event handlers. The non-IO
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operations (the solid blocks) remain the same, while the IO operations (the dashed

blocks) are modified to use the APIs of CAM2. Initializing and releasing the video

capture object are no longer needed because CAM2 manages the communication with

the cameras. Figure 3.11 shows sample background subtraction results for a camera

at Purdue University, USA.

(a) (b)

Fig. 3.11.: The background subtraction results for a camera at Purdue University,
USA. (a) Two sample input frames. (b) The corresponding foreground masks. The
white pixels represent the foreground (the moving objects), while the black pixels
represent the background.

The website of CAM2 provides a dozen pre-written CAM2-compatible analysis

programs for moving objects detection, sunrise/sunset detection, etc. The variety of

the available CAM2-compatible analysis programs emphasizes that the system is flex-

ible and suitable for various applications. The migration example we presented and
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the examples available on the website show that CAM2 requires only slight changes

to the existing analysis programs. Only the IO operations need to be modified to

use the APIs of CAM2. If the users can organize the non-IO operations in well-

defined methods (e.g. the cv2.BackgroundSubtractorMOG method at step 1 and the

apply method at step 3 in Figure 3.10), these methods can be migrated without any

changes.
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4. CLOUD RESOURCE MANAGEMENT

A major challenge in CAM2 is the ability to allocate and manage significant amounts

of resources (CPU, memory, etc.) to analyze thousands of data streams simultane-

ously. It is a challenging problem to manage cloud resources in order to reduce the

cost of analyzing data streams from thousands of cameras while meeting the per-

formance requirements. This chapter proposes a resource manager that tackles this

problem. This chapter is organized as follows: Section 4.1 defines the general cloud

resource management problem. The rest of the chapter presents the first resource

manager proposed by this dissertation. Section 4.2 explains how the manager allo-

cates cloud instances. Section 4.3 shows how the manager monitors and scales the

instances. Section 4.4 evaluates the resource manager.

4.1 Cloud Resource Management Problem

Consider the following example: a group of transportation officials study the

effect of severe weather conditions on the behavior of the drivers in a particular city.

They want to execute two analysis programs at the same time: (i) a vehicle tracking

program on the video streams from 1000 traffic cameras at 10 Frames Per Second

(FPS). This program requires high frame rate so that vehicles can be tracked across

frames. (ii) a weather detection program on the image streams from 100 weather

cameras at one frame per minute. This program does not require high frame rate

because weather conditions do not change much across consecutive frames. The

officials need to execute the analysis programs in real-time so that they can quickly

respond to emergencies. The officials decide to use the cloud since they do not have

enough resources for such large-scale analysis and they need to execute the analysis

only occasionally during severe weather conditions. Their goal is to execute the two
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analysis programs at the respective desired frame rates while reducing the overall cost

of using the cloud. This dissertation investigates how to achieve this goal given that

the two programs have different resource requirements and desired frame rates, the

cameras have different frame sizes and visual content, and the cloud instances have

different types and costs.

It is a challenging problem to manage cloud resources for executing analysis pro-

grams on the real-time data streams from thousands of network cameras simultane-

ously. The goal is to execute the given analysis programs at the desired frame rates

while reducing the overall cost of using the cloud. The problem can be divided into

two parts: resource allocation and resource scaling. As shown in Figure 4.1, the

resource manager makes decisions based on many factors:

1) Resource Requirements: Different analysis programs have different resource

requirements. Some programs are CPU intensive, and some others are memory in-

tensive.

2) Desired Frame Rates: The frame rate of an analysis program can have

different effects on the CPU and memory requirements. Increasing the frame rate

may cause the CPU requirements to increase linearly and the memory requirements

to remain constant. This causes an analysis program to be CPU intensive at high

frame rates, although the same program may be memory intensive at low frame rates.

3) Frame Sizes: Cameras have different frame sizes (e.g., 640×480). Analyzing

streams with higher frame sizes requires more CPU and memory resources.

4) Visual Content: The visual content of a camera may vary over time. For ex-

ample, a camera looking at a street may show more vehicles during the day and fewer

vehicles during the night. Analyzing different content may require different amounts

of resources. For example, tracking moving vehicles in a highly dynamic scene may

require more resources than in a static scene. Hence, the resource requirements of

analyzing the same stream may vary over time.

5) Cloud Instance Types and Costs: Cloud vendors offer dozens of instance

types with different capabilities and hourly costs. For example, Table 4.1 shows
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Resource Allocation
a)  What types of instances should be used?
b)  How many instances should be allocated?
c)  Which cameras should be assigned to which instances?

Resource Scaling
d)  How should resource overutilization or

underutilization be handled?
e)  When should the number of running instances be

scaled up or down?

Resource 
Manager

5) Types and Costs
6) Resource Utilization

3) Frame Sizes
4) Visual Content

Cloud Instances

Cameras

1) Resource Requirements 
2) Desired Frame Rates

Analysis Programs

Fig. 4.1.: The factors (1-6) affecting resource management decisions (a-e). The goal
of the resource manager is to meet the performance requirements while reducing the
overall cost of using the cloud.

different Amazon EC2 [3] instance types. The m3.xlarge and m3.2xlarge instances

are general purpose, i.e., they provide a balance of compute and memory resources.

The c4.xlarge and c4.2xlarge instances are compute optimized with the lowest cost

per number of CPU cores. The r3.xlarge and r3.2xlarge instances are memory

optimized with the lowest cost per GB of memory. The overall cost of using the cloud

can be reduced by carefully selecting the right types of instances for the given analysis

programs.

6) Resource Utilization: The currently running instances can be reused for ex-

ecuting new analysis programs according to the resource utilization of these instances.
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Table 4.1.: The CPU, memory, and hourly price of different Amazon EC2 cloud
instances.

Instance Cores Memory (GB) Hourly Price
m3.xlarge 4 15.0 $0.266
m3.2xlarge 8 30.0 $0.532
c4.xlarge 4 7.5 $0.220
c4.2xlarge 8 15.0 $0.441
r3.xlarge 4 30.5 $0.350
r3.2xlarge 8 61.0 $0.700

Migration of data streams among instances may be necessary to maintain the resource

utilization within acceptable levels (i.e., neither underutilized nor overutilized). Scal-

ing up or down the number of running instances may also be necessary to maintain

the utilization within acceptable levels.
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4.2 Resource Allocation

This section presents a resource manager for executing analysis programs of the

visual data from network cameras. The ultimate goal of our study is to reduce the

overall cost for the scientific community to analyze large amounts of visual data using

cloud. The resource manager allocates cost-effective cloud instances as presented in

this section, and monitors and automatically scales the cloud resources as presented

in Section 4.3.

Cloud vendors offer many cloud instance types with different capabilities in terms

of numbers of cores, memory sizes, network performance, storage capacities, geo-

graphical locations, etc. With these options, the resource manager answers a number

of questions that arise, e.g.

1. How much resources does one analysis program need?

2. How many data streams can one cloud instance analyze?

3. What is the most cost-effective cloud instance to use for a given analysis pro-

gram?

4. How many instances are needed for executing a program that analyzes many

(perhaps thousands) data streams at a desired frame rate?

We assume no prior knowledge about analysis programs so that system that can

be used for a wide range of applications. Programs can be as simple as image (or

video) archiving: downloading the individual images of a data stream without any

analysis. Programs can be much more complex—any Python program. Due to the

flexibility and hence the lack of prior knowledge about the analysis programs, we need

to estimate the resource requirements of different analysis programs experimentally

before determining which cloud instances are more cost-effective.
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4.2.1 Models of Resource Requirements

To answer the first question “How much resources does one analysis program

need?”, we estimate the resource requirements of executing an analysis program at a

given frame rate on a particular cloud instance. We monitor the resource utilization

of the cloud instance while executing the analysis programs using the data from two

different numbers of cameras. Consider the following settings:

• p: an analysis program

• f : a desired frame rate

• i: a type of cloud instance

The CPU utilization per camera (assuming a linear model) is denoted by CPU∗
i,p,f ,

and can be estimated as

CPU∗
i,p,f =

CPUm
i,p,f − CPUn

i,p,f

m− n
, (4.1)

where CPUm
i,p,f and CPUn

i,p,f are the CPU utilization for analyzing the data from

m and n cameras respectively. Similarly, the per camera memory utilization can be

estimated as

Mem∗
i,p,f =

Memm
i,p,f − Memn

i,p,f

m− n
. (4.2)

Equations (4.1) and (4.2) consider a constant frame rate f . The second question is

“How many data streams can one cloud instance analyze?”. To answer this question,

we consider the effect of f . We define a performance metric as the ratio between the

actual analysis frame rate and the desired frame rate. The analysis performance of a

camera c is denoted by ηc, and can be calculated as

ηc =
f c
a

f
, (4.3)
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where f c
a is the actual analysis frame rate of the camera c, and f is the desired frame

rate. The resource manager aims at maintaining the overall analysis performance

above 90% for all data streams analyzed by one instance:

η =
fa
f

=

1
N

N∑
c=1

f c
a

f
≥ 90%, (4.4)

where fa is the average actual frame rate for all the cameras, and N is the total

number of cameras.

Satisfying the performance metric is tightly coupled with the resource utiliza-

tion. Our experiments show that maintaining the CPU utilization under a threshold

CPUH = 90% and the memory utilization under a threshold MemH = 90% generally

leads to meeting the performance requirements. Hence, the maximum number of

streams a cloud instance of type i can analyze is estimated as

Ni,p,f = min(
CPUH

CPU∗
i,p,f

,
MemH

Mem∗
i,p,f

) (4.5)

4.2.2 Costs to Analyze Many Data Streams

The next question is “What is the most cost-effective cloud instance to use for a

given analysis program?” We can compare the cloud instances in terms of how cost-

effective they are while executing different analysis programs. We define the effective

cost ECi,p,f of a cloud instance i as the price of analyzing one million images using a

given analysis program p at a frame rate f . The effective cost can be estimated as

ECi,p,f =
ci × 106

Ni,p,f × f × 3600
, (4.6)

where ci is the hourly cost of an instance type i. Hence, the most cost-effective

cloud instance i∗ is the one which minimizes the effective cost, and is defined as

i∗ = argmin
i

ci
Ni,p,f × f

, (4.7)
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and to answer the last question, the number of needed cloud instances to analyze the

data from N cameras is

⌈
N

Ni∗,p,f

⌉
, and the overall analysis cost would be

⌈
N

Ni∗,p,f

⌉
ci∗ .

4.2.3 Resource Allocation Procedure

The proposed resource manager uses the following procedure to allocate cost-

effective cloud instances for executing a program analyzing the data from many net-

work cameras at a specified frame rate:

Offline Stage: It aims at determining the most cost-effective cloud instance type

for the given analysis. This stage is performed once, and can be used for future

executions of the same analysis.

1. Execute the analysis program at the specified frame rate on cloud instances with

different types using the data from two different numbers of cameras. Estimate

the per camera resource utilization as shown in (4.1) and (4.2).

2. Estimate the maximum number of data streams that each cloud instance type

can analyze as shown in (4.5).

3. Estimate the effective cost of each cloud instance type as shown in (4.6), and

determinte the most cost-effective cloud instance type as shown in (4.7).

Online Stage - Allocation:

1. If the same user already has analysis programs running, reuse the currently

running instances so that the added cost is zero. If the running instances are

unable to handle the additional load, go to step 2.

2. Allocate the appropriate number of cloud instances of the most cost-effective

instance type as shown in (4.7).
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4.3 Monitoring and Scaling Cloud Instances

This section describes the need for continuous resource monitoring and migration

of analysis programs, defines when the analysis programs are migrated and a set of

migration policies, and presents a resource manager that monitors and scales the cloud

resources in order to reduce the overall analysis cost while taking into consideration

the quality of the analysis results.

The resource requirements of an analysis program may change due to many factors,

for example,

• The frame rates from a network camera may change over time due to network

conditions and concurrent access from multiple users.

• The content of the data may affect the execution time and the amount of mem-

ory running an analysis programs. For example, detecting the moving objects

in a highly dynamic scene would consume more resources than a static scene.

This urges the need for continuous monitoring of the resource utilization of the

cloud instances and automatic scaling of the cloud resources (allocating more in-

stances when the analysis programs needs more, and deallocating some instances

when the analysis programs needs fewer.) Migration of analysis programs between

cloud instances is essential in this process, but it negatively affects the quality of

the analysis results for many reasons: (i) When migration is performed, the analysis

programs are interrupted and there will be a time gap in the analysis results. (ii)

If the analysis programs maintain temporal information such as background models,

this information will be lost and have to be rebuilt on the new cloud instances. This

will negatively affect the quality of the results after migration.

The proposed resource manager migrates analysis programs from a cloud instance

i when its resources are overutilized, i.e. when

CPUi > CPUH or Memi > MemH , (4.8)
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where CPUi and Memi are the current CPU and memory utilization of the cloud

instance i, and CPUH and MemH are the high thresholds that set an upper bound

on the permissiable CPU and memory utilization. In addition, the resource manager

considers deallocating a cloud instance when its resources are underutilized, i.e. when

CPUi < CPUL and Memi < MemL, (4.9)

where CPUL and MemL are the low thresholds that set a lower bound on the accept-

able CPU and memory utilization.

The following set of migration policies defines which analysis programs the re-

source manager should migrate from an overutilized cloud instance:

1. Migrate image analysis programs first before migrating video analysis pro-

grams because image analysis programs do not keep temporal information across

frames.

2. Migrate analysis programs with lower frame rate to reduce disruption.

3. Migrate analysis programs that require more resources so that fewer data streams

are needed for migration.

4. Migrate analysis programs that started more recently to prevent disruption of

long-running programs.

As shown in Figure 4.2, the proposed resource manager uses the following pro-

cedure to monitor and scale cloud resources in order to perform image and video

analysis of the big data from network cameras:

1. When a user starts a new analysis program, use the allocation procedure in Sec-

tion 5.3.3.C to estimate and allocate the appropriate number of cloud instances.

2. Continuously monitor the resource utilization of all the cloud instances.

3. If the resources of a cloud instance are overutilized as defined in (4.8), imme-

diately migrate some data streams from the instance. Choose the cameras to
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4) Deallocate the instance.

Instance
utilization
level?

Overutilized

UnderutilizedOK

3) Migrate some data streams.

Can
deallocation

reduce
cost?

5) Migrate all data streams.

No

Yes

2) Monitor the resource utilization 
of the instances.

1) Allocate cloud instances.

Fig. 4.2.: The overall procedure of monitoring and scaling cloud instances.

migrate based on the abovementioned migration policies. Suspend the analysis

of the chosen data streams, and use the allocation procedure to allocate new

resources.

4. If the resources of a cloud instance are underutilized as defined in (4.9) for a

period of time, the instance is a candidate to be deallocated. Use the allocation

procedure to estimate the hourly price of the proposed cloud instances if all the

analysis programs are migrated from the underutilized instance. Deallocate the

instance and migrate its analysis programs if this price is less than the hourly

price of the instance.

There is a tradeoff between the analysis cost and the quality of the analysis results.

To maintain the quality of the analysis results, the proposed resource manager may
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incur higher cost. For example, the resource manager considers deallocating only the

underutilized cloud instances.

4.4 Experiments

In order to evaluate the proposed resource manager, we conduct experiments using

six types of cloud instances and four analysis programs. The cloud instances have

different CPU and memory capabilities, and the analysis programs represent different

workloads in terms of CPU and memory: image archival, motion estimation, moving

objects detection, and human detection.

4.4.1 Experimental Setup

Table 4.1 compares the six Amazon EC2 cloud instance types that are used in the

experiments: two general purpose instances (m3.xlarge and m3.2xlarge), two com-

pute optimized instances (c4.xlarge and c4.2xlarge), and two memory optimized

instances (r3.xlarge and r3.2xlarge). The processor of the compute optimized

instances is Intel Xeon E5-2666 v3 clocked at 2.9 GHz, and it is Intel Xeon E5-2670

v2 clocked at 2.5 GHz for all the other instances.

Table 4.2 shows the analysis programs used in the experiments. All the programs

are implemented using OpenCV [58]. The programs represent different workloads in

terms of CPU and memory requirements as shown later by the experiments. IA, ME,

and MOD are used in the experiments for both image analysis at 0.2 FPS (Frames

Per Second) and video analysis at 10 FPS. HD is used for image analysis only because

it is very compute intensive and can not be executed at high frame rate.

4.4.2 Resource Requirements and Effective Cost

To estimate the number of streams an instance can analyze as well as the resource

requirements of an analysis program, we conduct experiments executing the four
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Table 4.2.: The analysis programs used in the experiments.

Name Abbr. Description Results Per Input Image

Image
Archival

IA Downloads images, without fur-
ther analysis.

The input image

Motion
Estimation

ME Performs background subtrac-
tion [53] and estimates the
amount of motion as the per-
centage of foreground pixels.

The foreground mask,
the input image, and the
amount of motion.

Moving
Objects
Detection

MOD Performs background subtrac-
tion [54], removes the noise us-
ing morphological erosion and
dilation, and finds the contours
of the foreground mask. Each
contour is a moving object.

The output image with the
moving objects, the input
image, and the number of
moving objects.

Human
Detection

HD Detects humans using His-
tograms of Oriented Gradi-
ents [57].

The output image with the
detected humans, the in-
put image, and the num-
ber of humans.

analysis programs in Section 6.3.1 on the six cloud instances in Table 4.1. The

experiments monitor the resource utilization as well as the analysis performance as

defined in (4.4).

Figure 4.3 shows the resource utilization and the analysis performance of executing

different image and video analysis programs using different cloud instances. The figure

shows that while increasing the number of cameras increases the resource utilization,

the analysis performance can gradually decrease after the CPU resources are used up

or suddenly drops after the memory resources are used up. The experiments show

that CPU and memory resources are used up faster than network resources, and the

CPU and memory utilization should be maintained below 90% in order to satisfy the

performance metrics as defined in Section 5.3.3.

Many factors determine whether the CPU or the memory resources will be the

barrier to increase the number of data streams being analyzed: (i) The CPU and

memory capabilities of the cloud instances. For example, the same analysis program

for moving objects counting uses up the CPU resources faster on the m3.2xlarge
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(a)

(b)

(c)

Fig. 4.3.: The resource utilization and the analysis performance, as defined in (4.4):
(a) Moving objects counting at 0.2 FPS using m3.2xlarge. (b) Moving objects count-
ing at 0.2 FPS using c4.xlarge. (c) Motion estimation at 10 FPS using an r3.xlarge

cloud instance. The left vertical axis represents the percentage of the CPU utilization,
the memory utilization, and the analysis performance.
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Fig. 4.4.: The maximum numbers of data streams that can be analyzed at 0.2 FPS
using different analysis programs and different cloud instances.

cloud instance (30GB memory) as shown in Figure 4.3(a), but uses up the mem-

ory resources faster on the c4.xlarge cloud instance (7.5GB memory) as shown in

Figure 4.3(b). (ii) The resource requirements of the analysis programs. Compute

intensive analysis programs such as human detection use up CPU resources faster,

and memory intensive analysis programs such as motion estimation use up memory

resources faster. (iii) The analysis frame rate. The higher the analysis frame rate is,

the higher the CPU requirements of the analysis. Figure 4.3(c) shows that executing

the analysis program for motion estimation at 10 FPS uses up the CPU resources

much faster, and the memory resources are highly underutilized.

These experiments enable us to estimate the maximum numbers of data streams

that can be analyzed using different analysis programs on different cloud instances.

Figure 4.4 shows the maximum number of data streams for image analysis at 0.2 FPS,

and a similar figure can be shown for video analysis. The experiments also enable us

to estimate the per camera CPU and memory utilization as defined in (4.1) and (4.2).

Figure 4.5 shows the per camera CPU and memory utilization for different analysis

programs using the m3.xlarge cloud instance. For image analysis at 0.2 FPS, human

detection is the most compute intensive analysis program, and motion estimation is

the most memory intensive analysis program. Image archival is the least compute

and memory intensive. For video analysis at 10 FPS, CPU resources becomes much

more vital than memory resources.
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(a) (b)

Fig. 4.5.: Per camera CPU and memory utilization for different analysis programs
using the m3.xlarge cloud instance in the cases of: (i) Image analysis at 0.2 FPS.
(ii) Video analysis at 10 FPS.

(a) (b) (c)

(d) (e) (f)

Fig. 4.6.: The effective cost as defined in (4.6) of different cloud instances for executing
different analysis programs: (a-c) at 0.2FPS. (d-f) at 10 FPS. (a, d) Image archival.
(b, e) Motion estimation. (c, f) Moving objects counting.

Figure 4.6 and Figure 4.7 show the effective cost of different cloud instances for

executing different analysis programs. The figures show the following:

1. There is no clear winner. Different cloud instances are more cost-effective than

others for some analysis programs. Choosing the right cloud instance for an
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Fig. 4.7.: The effective cost as defined in (4.6) for executing the human detection
program at 0.2 FPS.

analysis program can save half on the analysis cost. This observation motivates

our research for cost-based resource allocation and management.

2. For image analysis at 0.2 FPS, compute optimized cloud instances (c4.xlarge

and c4.2xlarge) are more cost-effective for moving objects detection and hu-

man detection. Memory optimized cloud instances (r3.xlarge and r3.2xlarge)

are more cost-effective for motion estimation.

3. For video analysis at 10 FPS, compute optimized cloud instances are always

more cost-effective than the other instances. That’s because video analysis con-

sumes CPU resources much more than memory resources as we showed earlier.

4. Although the xlarge instances provide half the CPU and memory resources

of the 2xlarge instances for half the price as shown in Table 4.1, the xlarge

instances are often more cost-effective than the 2xlarge instances. This rec-

ommends using smaller instances instead of larger ones.
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Program Start Time Duration (Hours) Cameras Frame Rate
ME 0:00 4.50 1000 0.2
HD 1:15 4.75 10 0.2
MOD 1:30 4.50 16 10.0

Table 4.3.: The analysis programs of the 6-hour large-scale experiment.

4.4.3 Cloud Resource Allocation and Management

To evaluate the proposed resource manager, we conduct a 6-hour large-scale exper-

iment that uses CAM2 to analyze the data from 1026 cameras using different analysis

programs at different frame rates as shown in Table 4.3. The experiment analyzes 5.5

million images, totalling 260GB data. Figure 4.8 shows sample analysis results.

In this experiment, the resource manager considers a cloud instance overutilized

if the utilization is above 90% and underutilized if the utilization is below 40%, and

targets a 70% utilization when allocating new resources. A cloud instance has to

remain underutilized for 5 minutes before an action is taken by the resource manager.

Figure 4.9 shows the CPU utilization of the cloud instances during experiment. The

figure does not show the memory utilization because it does not affect any resource

management decisions in this experiment. The figure shows the following events:

1. At 0:00, four memory-optimized r3.xlarge instances are allocated to handle

the memory-intensive ME analysis program.

2. At 0:05, one r3.xlarge instance is deallocated after migrating its analysis pro-

grams to the other three running instances as shown by the marker A.

3. At 1:15, two of the currently running instances can handle the additional load

of the second analysis program as shown by the marker B; as a result, the added

analysis cost is zero.

4. At 1:30, four compute-optimized c4.xlarge instances are allocated to handle

the CPU-intensive MOD program.
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(a) (b)

(c) (d)

Fig. 4.8.: Sample results of the experiment shown in Table 4.3: (a, b) Motion estima-
tion for a camera in Czech Republic. (a) A sample input image. (b) The corresponding
foreground mask. The amount of motion in this image is 5%. (c) Moving objects
detection for a camera in the USA. The moving objects are enclosed by green boxes.
The image shows eight moving cars, two groups of moving pedestrians, and two traffic
lights considered moving due to changing from yellow to red. (d) Human detection for
a camera in England. Humans are enclosed by green boxes. The program successfully
detects four humans in the image, and misses one.
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Fig. 4.9.: The CPU utilization of the cloud instances while analyzing the data from
1026 cameras using different analysis programs at different frame rates as shown in
Table 4.3.

5. At 1:35, one c4.xlarge instance is deallocated after migrating its analysis pro-

grams to the other three running c4.xlarge instances as shown by the marker

C.

6. At 3:10, the CPU utilization of some cloud instances drops, which can be due

to unexpected network conditions.

7. At 4:30, the execution of the first analysis program ends, which causes one

r3.xlarge to be deallocated and the other two r3.xlarge instances are under-

utilized.

8. At 4:35, two of the three underutilized instances are deallocated after migrating

their analysis programs to the third instance as shown by the marker D.

9. At 6:00, the execution of all the analysis programs ends.

Based on the lifetime of the cloud instances in Figure 4.9 and their prices, the

experiment costs $12.77. If the proposed resource manager is not used, and the

general-purpose m3.xlarge instances are used for all the analysis programs, this

experiment needs five, one, and five m3.xlarge instances to handle the three analysis

programs respectively. The overall analysis cost is $14.63 in this case. This means

that the resource manager leads to a 13% reduction in the overall analysis cost.
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5. ENHANCED RESOURCE MANAGEMENT

This chapter proposes an enhanced resource manager that improves the first manager

(Chapter 4) in many ways. For example, the enhanced manager: (i) is able to handle

multiple analysis programs at different frame rates, (ii) considers the desired frame

rates and the camera frame sizes while estimating the resource requirements of ana-

lyzing the data stream from each camera, (iii) models the resource allocation problem

as a 2D vector bin packing problem [4] and solves it using a greedy heuristic algo-

rithm, (iv) avoids conducting test runs on all instances and for different frame rates

by modeling the relationship between the frame rate and the resource requirements.

This chapter is organized as follows: Section 6.3.4 shows how the resource manager

estimates the resource requirements of analyzing the data stream from each camera.

This stage is performed once and used for future executions of the same analysis

program. Section 5.2 formulates the resource allocation problem as a vector bin

packing problem. Section 5.3 evaluates the resource manager.

5.1 Estimation of Resource Requirements

In order to support a wide range of analysis programs, the resource manager

assumes no prior knowledge about the programs. Hence, the resource requirements

of the programs are unknown a priori, but can be estimated by conducting a test run.

The manager executes each program at the desired frame rate on the data streams

from multiple cameras and monitors the CPU and memory utilization during the

analysis. This allows the manager to estimate the resource requirements of analyzing

a single data stream. The test run is conducted once and used for future executions

of the same analysis program. In order to eliminate the need to conduct a test run if

users execute the same analysis program at different frame rates, the manager models
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the relation between the frame rate and the CPU (or memory) requirements as a linear

(or constant) relationship. The experiments demonstrate these relationships later.

Camera frame sizes significantly affect resource requirements. Analyzing streams

with higher frame sizes requires more resources. The experiments show that the rela-

tion between camera frame sizes and resource requirements is almost linear. Hence,

the test run is conducted using cameras with the same frame size. The requirements

of the cameras with other frame sizes are estimated linearly based on their frame size.

Cloud instance types have different capabilities and hourly costs. The hourly cost

of an instance type is proportional to its capabilities. For example, an instance type

with 8 cores and 30 GB of memory is twice as expensive as an instance type with

4 cores and 15 GB of memory. Our relevant work [38] [59] [60] shows that smaller

instances (i.e., fewer CPU cores and less memory) are more cost-effective than larger

ones. Based on these observations, the manager prefers smaller instance types.

The manager uses a single instance to estimate the resource requirements of ana-

lyzing the data stream from each camera according to the following procedure:

1. Select a set of cameras with the same frame size to conduct the test run.

2. Execute each given analysis program at the desired frame rate on the data

streams from multiple cameras.

3. Monitor the CPU and memory utilization.

4. Estimate the resource requirements of analyzing the data stream from a single

camera.

5. For cameras with other frame sizes, estimate the resource requirements linearly

based on their frame sizes.

5.2 Resource Allocation Using Vector Bin Packing

We model the resource allocation problem as a 2D vector bin packing problem.

In the 2D vector bin packing problem [4], there are objects and bins. Each object
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has a 2D resource demand. Each bin has a 2D resource constraint and a fixed cost.

The problem is to select bins and pack all the objects into these bins such that the

overall cost of all the bins is minimized without violating the resource constraints.

Similarly, in the resource allocation problem, there are data streams and instances.

Different CPU and memory requirements are needed to analyze each data stream.

Each instance has CPU and memory constraints and a fixed hourly cost. The problem

is to select instances and assign all the data streams to these instances such that the

overall cost of all the instances is minimized without violating the resource constraints.

We use the First Fit by Ordered Deviation (FFOD) heuristic algorithm proposed

by Han et al. [4] to solve the 2D vector bin packing problem. The algorithm uses

opportunity costs to select new bins and assign objects to bins. The output is the

number of required bins, the type of each bin, and the objects assigned to each bin.

This maps to the number of required instances, the type of each instance, and the

cameras assigned to each instance.

The resource manager allocates cloud instances using the following procedure:

1. Map the resource allocation problem to a 2D vector bin packing problem.

2. Use the heuristic algorithm proposed by Han et al . [4] to solve the 2D vector

bin packing problem in order to get the number of required instances, the type

of each instance, and the cameras assigned to each instance.

3. Allocate the required instances of the given types if the running instances are

not sufficient.

5.3 Experiments

This section describes the experiments used to evaluate the proposed resource

manager. Section 6.3.1 explains the setup used in the experiments. Section 5.3.2

evaluates different factors considered by the manager while allocating resources. Sec-
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tion 5.3.3 evaluates the ability of the manager to reduce the cost of the allocated

instances while meeting the performance requirements.

5.3.1 Experimental Setup

Table 5.1 shows the different Amazon EC2 [3] instance types used in the experi-

ments. The m4.xlarge and m4.2xlarge instances are general purpose, i.e., they pro-

vide a balance of compute and memory resources. The c4.xlarge and c4.2xlarge

instances are compute optimized with the lowest cost per number of CPU cores. The

r3.xlarge and r3.2xlarge instances are memory optimized with the lowest cost per

GB of memory. The experiments do not include disk and network resources since we

observe that they are not the bottleneck while analyzing the data from many cameras.

Table 5.1.: The CPU, memory, and hourly cost of the Amazon EC2 instance types
(at Oregon) used in the experiments.

Instance Cores Memory (GB) Hourly Cost
m4.xlarge 4 16.0 $0.239
m4.2xlarge 8 32.0 $0.479
c4.xlarge 4 7.5 $0.209
c4.2xlarge 8 15.0 $0.419
r3.xlarge 4 30.5 $0.333
r3.2xlarge 8 61.0 $0.665

In addition to the four analysis programs in Table 4.2, the experiments use a fifth

program for Feature Tracking (FT). FT detects [55] and tracks [56] image features

with back-tracking for verification, calculates the speed of each feature, and visualizes

the tracks of the features according to their speeds. The outputs of the program

are: the image with the tracks of the moving features, the input image, the number

of features, the number of moving features, and the average speed of the moving

features.
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5.3.2 Evaluation of the Factors Affecting Resource Management Deci-

sions

Many factors affect resource management decisions as shown in Figure 4.1. This

section evaluates the effect of each factor separately.

Resource Requirements of Analysis Programs

Figure 5.1 shows that different analysis programs have different CPU and memory

requirements. Some programs are CPU intensive (e.g., HD), and some are memory

intensive (e.g., ME). The per camera utilization of each program is estimated ac-

cording to the resource utilization while analyzing the data streams from multiple

cameras. The experiment executes the analysis programs at 0.2 FPS for 5 minutes,

and the frame size of all the cameras is 640×480. This experiment demonstrates the

need to conduct a test run for any analysis program in order to estimate its resource

requirements.
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Fig. 5.1.: Per camera CPU and memory utilization for different analysis programs at
0.2 FPS using the m4.xlarge instance.
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Fig. 5.2.: The effect of the desired frame rate on the CPU utilization of an m4.xlarge

instance while analyzing an MJPEG stream from a single camera.

Desired Frame Rates Figure 5.2 shows the relationship between the frame rate

and the CPU utilization. The experiment analyzes an MJPEG stream from a single

camera using different analysis programs and frame rates. The CPU utilization is

averaged over 5 minutes, and the frame size of the camera is 704×480. FT and MOD

do not meet the performance requirement (η > 90%) at frame rates above 9 FPS and

21 FPS respectively, due to their relatively high execution times. This experiment

shows that the CPU utilization increases linearly as the frame rate increases.

Figure 5.3(a) shows that the effect of the frame rate on the memory utilization

is negligible. The experiment analyzes JPEG streams from 100 cameras using differ-

ent analysis programs and frame rates. The memory utilization is averaged over 5

minutes, and the frame size of all the cameras is 640×480. These experiments show

the frame rate significantly affects the CPU utilization but has negligible effect on

the memory utilization. Hence, analysis programs may be CPU intensive at high

frame rates and memory intensive at low frame rates as shown in Figure 5.3(b). For

example, MOD (and ME) are memory intensive at 0.15 FPS (and 0.4 FPS) and CPU

intensive at 0.2 FPS (and 0.45 FPS).
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(a) The effect of the frame rate on the memory utilization is negligible.
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(b) Analysis programs may become CPU intensive or memory inten-
sive based on the frame rate.

Fig. 5.3.: The effect of the desired frame rate on the CPU and memory utilization of
an m4.xlarge instance while analyzing image streams from 100 cameras.

These experiments demonstrate the need to consider the effect of the frame rate on

both the CPU and memory requirements of analysis programs. The proposed resource

manager: (i) models the relation between the frame rate and the CPU requirement as

a linear relationship, (ii) considers the memory requirement of an analysis program

constant for any frame rate, and (iii) models the resource allocation problem as a 2D

bin packing problem to handle both the CPU and memory requirements.
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Camera Frame Sizes Figure 5.4 shows the linear relationship between the camera

frame size and the CPU utilization. The experiment analyzes an MJPEG stream from

a single camera that supports multiple frame sizes. The experiment executes different

analysis programs at 10 FPS. The CPU utilization is averaged over 5 minutes, and

the frame sizes of the camera are 320×240, 640×480, and 800×600. Based on this

experiment, the resource manager models the relation between the camera frame size

and the CPU requirement as a linear relationship. Similarly, we also observe a linear

relationship between the camera frame size and the memory requirement.
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Fig. 5.4.: The effect of the camera frame size on the CPU utilization of an m4.xlarge

instance while executing different analysis programs at 10 FPS. Dashed lines show
the linear approximation of the measures.

Camera Visual Content To evaluate the effect of the visual content on the re-

source requirements of analysis programs, we perform an experiment that uses FT

to detect and track features in an MJPEG stream for 24 hours at 10 FPS. The ex-

periment analyzes 820,000 images. That is more than 25 GB of data from a single

640×480 camera in 24 hours. This experiment uses an m4.xlarge instance and moni-

tors the CPU utilization of the instance as well as the number of features and moving

features in every image.
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(a) The CPU utilization changes dynamically with the visual content, represented by the total
number of tracked features.
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(b) More moving features are detected during the day, especially before the lectures starting times
indicated by the vertical dashed lines.

Fig. 5.5.: Using an m4.xlarge instance to execute FT on an MJPEG stream from a
camera at Purdue University for 24 hours at 10 FPS (820,000 images, 25 GB of data).
The lines in (a) and (b) are smoothed using a moving average filter with a 10-minute
window.

Figure 5.5 shows the results of the experiment. Figure 5.5(a) shows that the

CPU requirements of FT change dynamically with the visual content, represented

by the total number of tracked features. When the number of features increases

(or decreases), FT requires more (or less) CPU resources and the CPU utilization

increases (or decreases). During the night, many features are detected due to the

noise, but FT limits the number of tracked features to 2,500. Figure 5.5(b) shows

that the system is able to maintain the actual frame rate close to the desired frame

rate (10 FPS). The overall actual frame rate is 9.5 FPS (η > 90%). The figure

also shows how the number of moving features changes over time. Figures 5.6 show

sample output results. Based on the dynamic resource requirements shown in this

experiment, the resource manager monitors the allocated instances, allocates more

instances if needed, and deallocates existing instances to reduce the cost if possible.
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(a) At 16:25 when it is crowded (b) At 7:00 with a moving car

(c) At 10:00 during lectures (d) At 10:25 during a lecture break

Fig. 5.6.: Sample output results of executing FT on an MJPEG stream from a camera
at Purdue University for 24 hours at 10 FPS. A circle is a moving feature, and a line
is its track. The feature color indicates its speed, ranging from blue to red (lowest to
highest speeds).

Cloud Instance Types and Costs To measure the cost-effectiveness of differ-

ent instance types, we estimate the cost of analyzing one million images using dif-

ferent analysis programs. Figure 5.7 shows that different instance types are more

cost-effective for different analysis programs. At low frame rates, memory optimized

instances (e.g., r3.xlarge) are more cost-effective than compute optimized instances

(e.g., c4.xlarge) for memory intensive analysis programs (e.g., ME). At high frame

rates, compute optimized instances are more cost-effective for all analysis programs

because the programs become CPU intensive as demonstrated in Section 5.3.2. These
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experiments show that cost can be reduced significantly by carefully selecting instance

types based on the resource requirements of the analysis programs.
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Fig. 5.7.: The cost-effectiveness of different instance types with different analysis
programs and frame rates. Lower is better. HD can not be executed at high frame
rates due to its long executing time. FT is not executed at low frame rates because
features can not be tracked.
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5.3.3 Evaluation of Resource Allocation

The Heuristic Algorithm for Vector Bin Packing

The proposed manager models the resource allocation problem as a vector bin

packing problem and solves it using the heuristic algorithm proposed by Han et al. [4].

Using 550 test problems, the authors demonstrated that the overall average solution

of the heuristic algorithm deviates by about 3% from the optimum (when available)

and by about 5.4% from the lower bound when the optimum is not available.

In order to evaluate our use of the heuristic algorithm for resource allocation, we

compare the results of both the heuristic algorithm and the exact method proposed

by Brandao and Pedroso [51] and provided through VPSolver (Vector Packing Solver,

http://vpsolver.dcc.fc.up.pt/). It is impractical to use VPSolver for large prob-

lems due to long execution times and limitations of the software. Hence, we consider

three relatively simple (few programs and few cameras) scenarios as shown in Ta-

ble 5.2. In each scenario, it is required to execute one or more analysis programs at

different frame rates on the data streams from different numbers of cameras. The

frame sizes of the cameras include 640×480 and 1280×720.

Table 5.3 shows the types and numbers of instances determined by the manager

for each scenario while using both the heuristic algorithm and the exact method.

Using the heuristic algorithm for Scenario A (or B) incurs 4.6% (or 5.3%) more cost

compared to the exact method. For Scenario C, the manager uses three c4.xlarge

instances using either of the two methods and the cost is the same. This demonstrates

that the results of the heuristic algorithm are close to the exact method in terms of

the overall cost.

http://vpsolver.dcc.fc.up.pt/
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Table 5.2.: The scenarios used to evaluate the heuristic algorithm for vector bin
packing.

Scenario Program Frame Rate Cameras

A HD 0.5 100

B
FT 15.0 20

HD 0.5 35

C

ME 0.2 40

MOD 0.2 10

HD 0.2 30

Table 5.3.: The overall cost and the types and numbers of instances determined by
the manager for the scenarios shown in Table 5.2 using two different algorithms for
vector bin packing (heuristic [4] and exact [51]).

Scenario Method
Instances Hourly

c4.xlarge c4.2xlarge Cost

A
Heuristic 23 - $4.81

Exact 18 2 $4.60

B
Heuristic 20 - $4.18

Exact 17 1 $3.97

C
Heuristic 3 - $0.63

Exact 3 - $0.63

The Resource Allocation Strategy

In order to evaluate the resource allocation strategy adopted by the proposed

manager, we compare 5 different strategies as shown in Table 5.4. For a fair com-

parison, all the strategies benefit from the ability of the manager to estimate the

resource requirements of analysis programs and the ability to model the resource al-

location problem as a vector bin packing problem and solve it using the heuristic

algorithm. Strategies 1, 2, 3, and 5 allow instances to be shared between different
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analysis programs. We compare the strategies using three different scenarios that are

more complex (more programs and more cameras) than the scenarios in Table 5.2,

hence can not be solved using VPSolver. With reference to Figure 5.7, the scenarios

represent different types of workloads: a CPU intensive scenario, a memory intensive

scenario, and a scenario that contains both CPU and memory intensive programs.

Table 5.4.: The strategies used to evaluate resource allocation. The enhanced manager
uses ST5.

Abbr. Resource Allocation Strategy

ST1 Always use m4.xlarge instances

ST2 Always use c4.xlarge instances

ST3 Always use r3.xlarge instances

ST4 Use the most cost-effective instance for each program without
sharing instances between programs

ST5 The enhanced manager: Reduce the overall cost of the in-
stances and allow sharing them between programs

Scenario 1, as described in Table 5.5, is CPU intensive. Table 5.6 shows the

types and numbers of instances determined by each resource allocation strategy to

handle this scenario. ST1, ST2, and ST3 use 70 instances because all the m4.xlarge,

c4.xlarge, and r3.xlarge instances have the same CPU resources in terms of num-

ber of cores. ST4 and ST5 use the compute optimized c4.xlarge instances since

they are the most cost-effective instances for this CPU intensive scenario. ST4 uses

81 c4.xlarge instances because it does not allow instances to be shared between

FT and HD. ST5 further reduces the overall cost by allowing instances to be shared

between FT and HD. ST5 incurs the same cost as ST2 because ST2 always uses

compute optimized instances. This scenario demonstrates the ability of the manager

(ST5) to reduce the overall cost by 37% compared with other strategies (i.e., ST3).

Scenario 2, as described in Table 5.7, is memory intensive. Table 5.8 shows the

types and numbers of instances determined by each resource allocation strategy to

handle this scenario. ST2 requires the most number of instances since each c4.xlarge
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Table 5.5.: The details of the CPU intensive Scenario 1.

Program Frame Rate Cameras Frame Sizes

FT 15.00 25 640×480

HD 0.50 250 1280×720, 640×480

Table 5.6.: The types and numbers of instances determined using the allocation
strategies described in Table 5.4 to handle Scenario 1 shown in Table 5.5. All instances
are xlarge. Cost savings are relative to the highest cost.

Instances Hourly Cost

m4.x c4.x r3.x Cost Savings

ST1 70 - - $16.73 28%

ST2 - 70 - $14.63 37%

ST3 - - 70 $23.31 0%

ST4 - 81 - $16.93 27%

ST5 - 70 - $14.63 37%

instance has only 7.5 GB of memory. ST1 requires fewer instances (i.e., 55) since each

m4.xlarge instance has more memory resources (i.e., 16 GB). ST3 requires the fewest

number of instances (i.e., 29) since each r3.xlarge has more memory resources (i.e.,

30.5 GB). ST4 and ST5 use the memory optimized r3.xlarge instances since they

are the most cost-effective instances for this memory intensive scenario. ST4 uses 30

r3.xlarge instances because it does not allow instances to be shared between ME

and MOD. ST5 further reduces the overall cost by allowing instances to be shared

between ME and MOD. ST5 incurs the same cost as ST3 because ST3 always uses

memory optimized instances. This scenario demonstrates the ability of the manager

(ST5) to reduce the overall cost by 60% compared with other strategies (i.e., ST2).

Scenario 3, as described in Table 5.9, contains both CPU and memory intensive

programs. Table 5.10 shows the types and numbers of instances determined by each

resource allocation strategy to handle this scenario. ST1, ST2, and ST3 use 69, 91,
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Table 5.7.: The details of the memory intensive Scenario 2.

Program Frame Rate Cameras Frame Sizes

ME 0.10 5000 640×480

MOD 0.05 3000 1920×1080, 640×480

Table 5.8.: The types and numbers of instances determined using the allocation
strategies described in Table 5.4 to handle Scenario 2 shown in Table 5.7. All instances
are xlarge. Cost savings are relative to the highest cost.

Instances Hourly Cost

m4.x c4.x r3.x Cost Savings

ST1 55 - - $13.15 46%

ST2 - 117 - $24.45 0%

ST3 - - 29 $9.66 60%

ST4 - - 30 $9.99 59%

ST5 - - 29 $9.66 60%

Table 5.9.: The details of Scenario 3.

Program Frame Rate Cameras Frame Sizes

ME 0.20 4000 1280×720, 640×480

MOD 0.20 1000 1280×720, 640×480

FT 10.00 10 640×480

HD 0.20 300 1280×720, 640×480

and 57 instances according to the CPU and memory resources of the respective in-

stances. ST4 and ST5 use the most cost-effective instances for each analysis program:

c4.xlarge for the CPU intensive FT and HD, r3.xlarge for the memory intensive

ME, and m4.xlarge for the more balanced MOD. ST5 uses fewer instances than SR4

by allowing instances to be shared between the programs. This scenario demonstrates
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Table 5.10.: The types and numbers of instances determined using the allocation
strategies described in Table 5.4 to handle Scenario 3 shown in Table 5.9. All instances
are xlarge. Cost savings are relative to the highest cost.

Instances Hourly Cost

m4.x c4.x r3.x Cost Savings

ST1 69 - - $16.49 13%

ST2 - 91 - $19.02 0%

ST3 - - 57 $18.98 0%

ST4 11 30 19 $15.23 20%

ST5 9 30 18 $14.42 24%

the ability of the manager (ST5) to reduce the overall cost by 24% compared with

other strategies (i.e., ST2).

Figure 5.8 compares the overall cost incurred when using each of the 5 strategies

to handle each of the 3 scenarios. The figure shows that different strategies are better

for differnt scenarios in terms of reducing the overall cost. ST2 and ST5 are the best

strategies for the CPU intensive scenario 1. ST3 and ST5 are the best strategies for

the memory intensive scenario 2. However, the strategy of the proposed manager

(ST5) is always the best and it reduces up to 60% of the cost of other strategies.

Large-Scale Experiment

In this section, we conduct the large-scale experiment specified by Scenario 3

(shown in Table 5.9) for 24 hours. The experiment analyzes more than 97 million

images from 5,310 cameras over 24 hours. That is more than 3.3 TB of data. The

experiment uses 15 instances and the overall cost is $188. In this experiment, the

manager considers that cloud vendors impose limits on the types and numbers of

running instances by each user. For example, Amazon limits the number of running

m4.2xlarge instances by each user in a single region to 5. The same applies for

c4.2xlarge and r3.2xlarge instances. In this experiment, we consider using the
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Fig. 5.8.: The overall hourly cost of different scenarios (Table 5.5, Table 5.7, and
Table 5.9) using different resource allocation strategies (Table 5.4). ST5 reduces up
to 60% of the cost of other strategies.

2xlarge instances (as opposed to xlarge) in order to conduct a large-scale experiment

with fewer instances.

Figure 5.9 and Figure 5.10 show the results of the experiment. Figure 5.9(a)

shows the estimated CPU and memory utilization of the allocated instances. The

manager targets a 70% utilization for both the CPU and memory resources in order

to accommodate for the varying resource requirements of the analysis programs. The

figure shows, for example, the estimated utilization of instance 1 is 70% for the CPU

and 40% for the memory. The figure also shows how the instances are shared between

different analysis programs (e.g., ME and MOD in instance 4) so that resources are

efficiently utilized and the overall cost is reduced. CPU intensive programs (i.e., FT

and HD) mostly use compute optimized instances (i.e., c4.2xlarge). ME is memory

intensive so it mostly uses memory optimized instances (i.e., r3.2xlarge). MOD

has a relatively more balanced CPU and memory requirements so it mostly uses

general-purpose instances (i.e., m4.2xlarge).

Figure 5.9(b) shows the actual CPU and memory utilization of instance 3 and

instance 11 over the entire analysis duration. The figure shows that the actual uti-

lization is close to the estimated utilization shown in Figure 5.9(a). The figure also
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shows that the resource utilization varies over time. In this experiment, the man-

ager successfully meets the performance requirements for all the analysis programs:

η = 98% for ME, 94% for MOD, 94% for FT, and 98% for HD. Figure 5.10 shows

sample results.
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(a) The estimated CPU (left bars) and memory (right bars) utilization of each instance: (1-5)
m4.2xlarge, (6-10) c4.2xlarge, and (11-15) r3.2xlarge. The target resource utilization is 70%
to accommodate for the varying resource requirements. Bars may be split if multiple analysis
programs use the same instance. Each program is executed on the data streams from many
cameras.
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(b) The actual CPU and memory utilization of instance 3 and instance 11 from Figure 5.9(a)
over the entire analysis duration. The lines are smoothed using a moving average filter with a
10-minute window.

Fig. 5.9.: Using 15 instances to analyze more than 97 million images (more than
3.3 TB) from 5,310 cameras simultaneously over 24 hours using different analysis
programs and frame rates (Scenario 3 in Table 5.5).
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(a) ME: Foreground mask of a moving car (b) MOD: Two moving objects detected

(c) FT: Tracked features of several cars and
pedestrians

(d) HD: One human detected

Fig. 5.10.: Sample output results of using 15 instances to analyze more than 97 million
images (more than 3.3 TB) from 5,310 cameras simultaneously over 24 hours using
different analysis programs and frame rates (Scenario 3 in Table 6.5). (d) A circle is a
moving feature, and a line is its track. The feature color indicates its speed, ranging
from blue to red (lowest to highest speeds).



72

6. MANAGEMENT OF CPU AND GPU RESOURCES

Some cloud instances have GPUs and some instances do not (referred to as GPU

instances and non-GPU instances respectively). Using GPUs can accelerate analysis

programs and achieve higher frame rates, but incurs additional cost because GPU

instances are more expensive. This chapter proposes a resource manager that uses the

GPU to achieve frame rates that are not possible using the CPU only. The manager

also considers both GPU and non-GPU instances to reduce the overall cost. The

chapter is organized as follows: Section 6.1 explains the existing problems and how

GPUs can help solving these problems. Section 6.2 describes the proposed resource

manager. Section 6.3 evaluates the manager.

6.1 Existing Problems and How GPUs Can Help

The ultimate goal of the resource manager is to reduce the overall cost and

meet the performance requirements. Several problems can prevent the manager from

achieving its goal:

1. Some analysis programs can not achieve their desired frames due to their long

execution times. This problem prevents the manager from meeting the perfor-

mance requirements (η > 90%). For example, Figure 5.2 shows that the CPU

alone is not able to execute FT (or MOD) at 12 FPS (or 24 FPS).

2. Executing analysis programs at high frame rates is computationally intensive

(and sometimes at low frame rates as shown in Figure 5.1). This causes the

CPU to be the bottleneck in the system. For example, Figure 5.9(a) shows

that the CPU resources are fully utilized while the memory resources are highly



73

underutilized for many instances. This prevents the manager from reducing the

overall cost by using less instances.

GPUs have been extensively used to accelerate general-purpose applications. This

is achieved by offloading compute-intensive portions of the code to the GPU, while the

rest of the code is still executed on the CPU. While a CPU has a few powerful cores

optimized for sequential processing, a GPU has thousands of smaller cores designed

for handling thousands of tasks simultaneously. GPU-based applications often achieve

speedups of orders of magnitude compared to CPU-based applications (depending on

the capabilities of the CPUs and GPUs, and the applications). Using GPUs in CAM2

can tackle the two problems mentioned above:

1. GPUs can be used to accelerate analysis programs and achieve high speedups

depending on the GPUs and the programs. This enables the resource manager

to achieve higher frame rates in order to meet the performance requirements.

2. Using GPUs reduces the workload on the CPU. Since the CPU is usually the

bottleneck in the system, fewer instances may be required and the overall cost

may be reduced.

6.2 Resource Allocation Using CPU and GPU Resources

The existence of GPU resources impacts the factors and decisions of resource

allocation shown in Figure 4.1. Section 6.2.1 and Section 6.2.2 discuss these impacts

and show how the new resource manager handles them.

6.2.1 Factors Affecting Resource Allocation Decisions

The proposed resource manager considers the following factors while making al-

location decisions:

1. Resource Requirements: The manager considers the following types of re-

sources: CPU, memory, GPU, and GPU memory. Different analysis programs require



74

Table 6.1.: A hypothetical example for the resource requirements of two analysis
programs (P1 and P2).

Resource P1 P2 P2 using GPU

CPU 5% 50% 10%

Memory 10% 5% 3%

GPU 0% 0% 10%

GPU Memory 0% 0% 7%

different amounts of resources. For example, some programs are memory intensive

(e.g. P1 in Table 6.1) while others are CPU intensive (e.g. P2 in Table 6.1). Moreover,

some programs can be accelerated using the GPU and their resource requirements

change accordingly. For example, executing P2 using the GPU reduces its CPU

requirement from 50% to 10% and increases its GPU requirement from 0% to 10%.

The resource manager is designed to be used for a variety of applications. Hence,

it does not assume any prior knowledge about the analysis programs’ resource re-

quirements. The manager conducts a test run to estimate the resource requirements

of each program by monitoring the utilization of resources. The test run is con-

ducted once and the estimations of the resource requirements can be used for future

executions of the same program.

2. Desired Frame Rates: The frame rate at which an analysis program is

executed significantly affects its resource requirements. Experiments show that the

CPU and GPU requirements of an analysis program increase linearly with its frame

rate. Using this linear relationship, the resource manager can estimate the resource

requirements of an analysis program at different frame rates using a single test run

conducted at a particular frame rate. In addition, the frame rate may affect different

types of resources differently. For example, increasing the frame rate of a program

may increase its CPU requirement, but may have no effect on its memory requirement.
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Table 6.2.: The capabilities and the hourly costs of some Amazon EC2 instance types
with and without GPUs (at Oregon).

Instance Cores Memory (GB) GPUs Cost
c4.2xlarge 8 15 - $0.419
c4.8xlarge 36 60 - $1.675
g2.2xlarge 8 15 1 $0.650
g2.8xlarge 32 60 4 $2.600

This causes some analysis programs to be CPU intensive at high frame rates while

being memory intensive at low frame rates.

3. Frame Sizes: Different cameras provide streams with different frame sizes

(e.g. 640×480 pixels and 1920×1080 pixels). In general, the higher the frame size is,

the higher the resource requirements are. The effect of the frame size on the resource

requirements of an analysis program depends on the time complexity and the space

complexity of the program. Since the resource manager assumes no prior knowledge

about analysis programs, the manager conducts a test run for each unique frame size.

Fortunately, there are only a few common frame sizes among network cameras.

4. Types and Costs of Cloud Instances: Cloud vendors offer many instances

with different capabilities and hourly costs. Table 6.2 shows the capabilities and

hourly costs of some Amazon EC2 instance types with and without GPUs. The

table shows that some instances do not have GPUs (i.e., c2.2xlarge and c2.8xlarge),

the g2.2xlarge instance has a single GPU, and the g2.8xlarge instance has 4 GPUs.

The table also shows that GPU instances (i.e., g2.2xlarge and g2.8xlarge) are more

expensive than non-GPU instances (i.e., c2.2xlarge and c2.8xlarge). The manager

decides the types and number of instances needed to reduce the overall cost while

meeting the desired frame rates.
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6.2.2 Resource Allocation Using Multiple-Choice Vector Bin Packing

To make the resource allocation decisions shown in Figure 4.1, this manager for-

mulates resource allocation as a multiple-choice vector bin packing problem. In this

problem, there are bins and objects. Each bin has a cost and a multidimensional size.

Each object may have one of several possible sizes (multiple choices). The goal is to

pack all the objects into bins such that: (i) One size is selected for each object. (ii)

The overall cost of all the used bins is minimized. (iii) The total size of all the objects

in each bin does not exceed its size in any dimension.

Similarly, in the resource allocation problem, there are instances and camera

streams. Each instance has an hourly cost and a multidimensional vector repre-

senting its resource capabilities (i.e., CPU, memory, GPU, and GPU memory). For

example, the vector [8, 15, 0, 0] represents an instance with 8 CPU cores, 15 GB of

memory, and no GPUs (i.e., c4.2xlarge). The vector [8, 15, 1536, 4] represents an in-

stance with 8 CPU cores, 15 GB of memory, and a single GPU with 1536 cores and 4

GB of memory (i.e., g2.2xlarge). Each camera stream may have one of two possible

resource requirements depending on whether it is executed by the CPU or the GPU.

The resource requirements of P2 in Table 6.2 is represented by the vector [4, 0.75, 0, 0]

or [0.8, 0.45, 153.6, 0.28] if it is executed by the CPU or the GPU respectively. The

goal is to assign all the streams to instances such that: (i) One resource requirement

is selected for each stream. This implies deciding if the stream is analyzed by the

CPU or the GPU. (ii) The overall cost of all the used instances is minimized. (iii)

The total resource requirements of all the streams in each instance do not exceed

the instance’s resource capabilities in each dimension (i.e., CPU, memory, GPU, and

GPU memory). This ensures that all the resources are not overutilized so that the

manager can meet the desired frame rates.

If instances with multiple GPUs (e.g. g2.8xlarge) are available, the dimensions

and the multiple-choices of the problem change accordingly. For example, the vec-

tor [8, 15, 1536, 4, 1536, 4, 1536, 4, 1536, 4] represents an instance with 8 CPU cores,
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15 GB of memory, and 4 GPUs each with 1536 cores and 4 GB of memory (i.e.,

g2.8xlarge). In this case, the vector [8, 15, 0, 0, 0, 0, 0, 0, 0, 0] represents an instance

with 8 CPU cores, 15 GB of memory, and no GPUs (i.e., c4.2xlarge). Each cam-

era stream may have one of 5 possible resource requirements depending on whether

it is executed by the CPU or one of the 4 GPUs. For example, the resource re-

quirements of P2 in Table 6.2 is represented by the vector [4, 0.75, 0, 0, 0, 0, 0, 0, 0, 0],

[0.8, 0.45, 153.6, 0.28, 0, 0, 0, 0, 0, 0], [0.8, 0.45, 0, 0, 153.6, 0.28, 0, 0, 0, 0],

[0.8, 0.45, 0, 0, 0, 0, 153.6, 0.28, 0, 0], or [0.8, 0.45, 0, 0, 0, 0, 0, 0, 153.6, 0.28] if it is exe-

cuted by the CPU, GPU1, GPU2, GPU3, or GPU4 respectively. In general, the

dimension of the problem is 2 + 2×N where N is the maximum number of GPUs in

any instance. That is because there are 2 resource types (i.e., CPU and memory) for

any instance and 2 more resource types (i.e. GPU and GPU memory) for each added

GPU. The number of choices for the resource requirements of each stream is 1 + N

because the stream can be analyzed either by the CPU or by one of the N GPUs.

To solve the multiple-choice vector bin packing, the manager uses the exact

method proposed by Brandao and Pedroso [51] and provided through VPSolver (Vec-

tor Packing Solver, http://vpsolver.dcc.fc.up.pt/). The output of the solver is

the types and numbers of bins required to pack all the objects, which objects are

assigned to each bin, and the selected size of each object. In the resource allocation

problem, this maps to the types and numbers of instances required to analyze all

the camera streams, which streams are assigned to each instance, and the selected

resource requirement of each stream (i.e. which CPU or GPU to analyze the stream).

http://vpsolver.dcc.fc.up.pt/
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6.3 Experiments

Section 6.3.1 explains the experimental setup. Section 6.3.2 evaluates the speedup

that can be achieved using the GPU. Sections 6.3.3, 6.3.4, and 6.3.5 evaluate the effect

of the desired frame rates, analysis programs, and number of cameras on the resources.

Section 6.3.6 evaluates the resource allocation strategy of the proposed manager.

6.3.1 Experimental Setup

The experiments use two analysis programs for object detection. The two pro-

grams use two convolutional neural networks (VGG-16 [5] and ZF [6]) to detect objects

(e.g. persons and cars) in images. The experiments use the Python implementation

of the region proposal network proposed by Ren et al. [61] to reduce the execution

time of VGG-16 and ZF. Figure 6.1 shows sample outputs. All the experiments use

these programs to analyze 640×480 MJPEG streams from network cameras.

(a) VGG-16 (b) ZF

Fig. 6.1.: Sample output results from two network cameras. The objects detected are
persons, cars, buses, and TV monitors.

The experiments use a machine with an 8-core Intel Xeon E5-2623 v3 CPU and

32GB of memory. The machine has an NVIDIA K40 GPU with a 12GB of memory.

When the GPU is not used, the experiments refer to the machine as a non-GPU
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instance and the cost is assumed to be the same as c4.2xlarge as shown in Table 6.2.

When the GPU is used, the experiments refer to the machine as GPU instance and the

cost is assumed to be the same as g2.2xlarge. The resource manager is generic and can

be used with different cloud vendors (e.g. Amazon EC2 and Microsoft Azure) with the

appropriate changes in instance capabilities and hourly costs. The experiments focus

on the CPU and GPU utilization without the memory and GPU memory utilization,

but the resource manager is generic and considers all these resource types.

6.3.2 Speedup Achieved Using GPU

The main goal of the resource manager is to meet the desired frame rates of the

analysis programs. Using the GPU to accelerate the programs allows the manager to

achieve frame rates that are not possible using the CPU only. Figure 6.2 shows the

effect of using the GPU on the maximum achievable frame rates of different analysis

programs. VGG-16 (or ZF) can be executed at 3.61 (or 9.15) FPS using the GPU, but

0.28 (or 0.56) using the CPU only. This experiment shows that the resource manger

can use the GPU to achieve a speedup of around 13 (or 16) for VGG-16 (or ZF).
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Fig. 6.2.: The effect of using the GPU on the maximum achievable frame rates.
Speedup: 13 for VG166 and 16 for ZF.
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6.3.3 Effect of the Desired Frame Rates

Desired frame rates significantly affect the resource requirements of analysis pro-

grams as well as the analysis performance. Figure 6.3 shows this effect by executing

VGG-16 using the GPUa t different frame rates. The figure shows that, at the be-

ginning, the CPU and GPU utilization increase linearly with the frame rate and the

performance is 100%. The performance stars to drop gradually after the CPU re-

sources are used up. Since the resource manager aims at maintaining the analysis

performance above 90%, the manager allocates cloud instances such that no resource

utilization is above 90%.
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Fig. 6.3.: The effect of the desired frame rate on the resource requirements of VGG-16
as well as the analysis performance.

6.3.4 Resource Requirements of Analysis Programs

Table 6.3 shows the CPU and GPU requirements of VGG-16 and ZF if executed

at 0.2 FPS using the CPU only or using the GPU. This shows that for each analysis

program, there are two choices of resource requirements depending on whether it is

executed by the CPU or the GPU. The manager estimates these resource require-

ments at different frame rates based on the test run (e.g. Figure 6.2) conducted at
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a particular frame rate and the linear relationship between the frame rate and the

CPU and GPU utilization shown in Figure 6.3.

Table 6.3.: The CPU and GPU requirements of VGG-16 and ZF if executed at 0.2
FPS using the CPU only or using the GPU.

Program
Using CPU Using GPU

CPU GPU CPU GPU

VGG-16 39.4% - 5.3% 4.6%

ZF 17.8% - 2.2% 1.2%

6.3.5 Effect of the Number of Cameras

The number of camera streams being analyzed using a single instance affects its

resource utilization as well as the analysis performance. Figure 6.4 shows this effect

by using the GPU to execute VGG-16 at 2 FPS on the data streams from multiple

cameras. The figure shows that, at the beginning, the CPU and GPU utilization

increase almost linearly with the number of cameras and the performance is 100%.

The performance stars to drop gradually after the CPU and GPU resources are used

up. Since the resource manager aims at maintaining the analysis performance above

90%, the manager assigns streams to instances such that no resource utilization is

above 90%.

6.3.6 Evaluation of Resource Allocation

To evaluate the resource allocation strategy of the proposed manager, we compare

it with two different strategies as shown in Table 6.4. All the strategies benefit from

the ability of the manager to estimate the resource requirements of different analysis

programs, to formulate the problem as a multiple-choice vector bin packing problem,

and to solve it. For ST1 (or ST2), there is a single choice for the resource requirements

of each analysis program because only non-GPU (or GPU) instances are considered.
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Fig. 6.4.: The effect of the number of camera streams being analyzed (using VGG-16
at 2 FPS) on the resource utilization as well as the analysis performance.

The proposed manager uses ST3 which considers both non-GPU and GPU instances.

In this case, two choices of resource requirements exist for each analysis program

depending on whether it is executed by the CPU or the GPU.

Table 6.4.: The strategies used to evaluate resource allocation. This manager uses
ST3.

Abbr. Resource Allocation Strategy

ST1 The Enhanced Manager (Chapter 5): Always use non-GPU instances

ST2 Always use GPU instances

ST3 This Manager (Chapter 6): Use non-GPU and GPU instances to re-
duce the overall cost of the instances

In order to compare the three resource allocation strategies, we use the three

scenarios described in Table 6.5. The table shows the programs, frame rates, and the

number of camera streams being analyzed in each scenario. Table 6.6 shows the types

and numbers of instances determined by each strategy to handle each scenario:
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Table 6.5.: The scenarios used to compare different resource allocation strategies.

Scenario Program Frame Rate Cameras

1
VGG-16 0.25 1

ZF 0.55 3

2
VGG-16 0.20 1

ZF 0.50 1

3
VGG-16 0.20 2

ZF 8.00 10

Table 6.6.: The types and numbers of instances determined by the different allocation
strategies in Table 6.4 to handle the different scenarios in Table 6.5.

Scen. Strategy
Instances Hourly Cost

non-GPU GPU Cost Savings

1

ST1 4 - $1.676 0%

ST2 - 1 $0.650 61%

ST3 - 1 $0.650 61%

2

ST1 1 - $0.419 36%

ST2 - 1 $0.650 0%

ST3 1 - $0.419 36%

3

ST1 Fail Fail Fail Fail

ST2 - 11 $7.150 0%

ST3 1 10 $6.919 3%

Scenario 1: ST1 uses 4 non-GPU instances to handle the 4 camera streams.

That is because a single non-GPU instance can handle only one stream due to the

high CPU requirement of VGG-16 at 0.25 FPS (or ZF at 0.55 FPS). ST2 uses a single

GPU instance to handle all the 4 streams because the CPU requirement is decreased

significantly while using the GPU. ST3 makes the same decisions as ST2 and either

of them saves 61% of the overall hourly cost compared with ST1.
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Scenario 2: The CPU and GPU requirements of VGG-16 at 0.2 FPS and ZF

at 0.5 FPS are relatively low such that a single instance can handle the two given

camera streams at the same time. ST1 uses a single non-GPU instance while ST2

uses a single GPU instance. ST3 makes the same decisions as ST1 and either of them

saves 36% of the overall hourly cost compared with ST2.

Scenario 3: ST1 fails to execute ZF at 8 FPS since the CPU only can execute

ZF at a maximum of 0.56 FPS as shown in Figure 6.2. ST2 uses 10 GPU instances

to handle the 10 camera streams of ZF and a single GPU instance to handle both the

2 streams of VGG-16. That is because a single GPU instance can handle only one

stream of ZF at 8 FPS due to the high CPU requirement. ST3 considers both GPU

and non-GPU instances to reduce the overall hourly cost so it can replace a GPU

instance with a non-GPU instance. Hence, ST3 saves 3% of the cost compared with

ST2.

These experiments demonstrate that different resource allocation strategies are

best in different scenarios according to several factors, such as analysis programs and

frame rates. The strategy used by the proposed resource manager considers both

GPU and non-GPU instances and always have the lowest cost compared with the

other strategies (e.g. 61% cost savings in Scenario 1).
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7. CONCLUSION

This dissertation introduces CAM2, a web-based system that enables users to analyze

the real-time visual data from thousands of network cameras simultaneously. CAM2

can retrieve data from the heterogeneous cameras and execute analysis programs us-

ing the cloud. The event-driven API simplifies migrating existing analysis programs

to CAM2. This dissertation also proposes cloud resource managers that reduce the

cost for analyzing real-time data streams from thousands of network cameras while

meeting the performance requirements. The managers allocate cloud instances based

on many factors, including the analysis programs, the desired frame rates, the camera

frame sizes, and the types and costs of the instances. The resource managers monitor

the allocated instances; they allocate more instances if needed and deallocate exist-

ing instances to reduce the cost if possible. The experiments show that the resource

managers are able to reduce up to 61% of the overall analysis cost. One experiment

analyzes more than 97 million images (3.3 TB of data) from 5,310 cameras simultane-

ously over 24 hours using 15 instances. Readers interested using CAM2 can register

at https://cam2.ecn.purdue.edu/ and become users.

https://cam2.ecn.purdue.edu/
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