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ABSTRACT

Liu, Yue Ph.D., Purdue University, December 2016. Structural Studies on Cell Entry
of Respiratory Enteroviruses. Major Professor: Michael G. Rossmann.

Enteroviruses (EVs) represent a group of non-enveloped, positive strand RNA

viruses with an icosahedral capsid shell of about 300 Å in diameter. A variety of

EVs are notable for human infections, such as polioviruses, rhinoviruses, EV-A71,

and EV-D68. EV-D68 causes childhood respiratory infections worldwide and has also

been associated with neurological diseases. A lack of knowledge on the mechanisms

of EV-D68 infection has hindered the development of antiviral interventions. Specif-

ically, it remains obscure how the virus enters into host cells. Here, cell surface sialic

acid has been identified to be indispensable for EV-D68 to attach onto and infect

host cells. X-ray crystal structures of EV-D68 on its own and in complex with sialic

acid receptor analogues show that binding of the sialic acid receptor to a depression

on the virus outer surface destabilizes the virus. Receptor binding induces a cas-

cade of conformational changes of the virus to eject a fatty-acid like molecule, the

“pocket factor”, that regulates virus stability. Furthermore, exposure of EV-D68 to

an acidic environment triggers virus uncoating whereby the viral genome is released

into host cell cytosol for replication and translation. In comparison with the native

EV-D68 structure, the cryo-electron microscopic (cryo-EM) structure of an uncoating

intermediate formed at late endosomal pH (pH 5.5) shows an expanded capsid where

pores are formed at icosahedral two-fold axes and where segments of polypeptides

are externalized to interact with host membranes. Because of the low stability of

EV-D68, cryo-EM analyses of the virus at neutral pH indicate the involvement of

multiple structural intermediates in the uncoating process. More importantly, a cap-

sid binding compound, pleconaril, effectively inhibits EV-D68 infection by blocking
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virus attachment and uncoating. Pleconaril replaces the pocket factor in occupying

a hydrophobic pocket in viral protein 1. Thus these results illuminate structural

rearrangements of EV-D68 during cell entry and open up an avenue for developing

antiviral treatments of EV-D68 infections.
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1. INTRODUCTION

Part of the text in this chapter is taken from [1–3] and is highlighted by a black,

vertical line in the right margin. Macmillan Publishers Ltd: Nature Communications

[3], copyright 2015. The text from [2] is reprinted with permission from AAAS.

1.1 Enterovirus Infection

The Picornaviridae consist of a variety of non-enveloped, icosahedral viruses with

a single, positive-stranded RNA genome. The family encompasses pathogens that

are notable for many human and animal diseases [4], such as poliovirus (PV) and

foot-and-mouth-disease virus. Out of the 26 genera of Picornaviridae, the genus

Enterovirus (EV) is classified into twelve different species, including EV-A to EV-

J and rhinoviruses (RV)-A to RV-C [5, 6]. EVs that cause human infections have

been primarily found in seven species, EV-A to EV-D as well as RV-A to RV-C [5].

These phylogenetically distinct species are classified according to a number of criteria

concerning sequence information (e.g., amino acid sequence conservation of structural

proteins and some non-structural proteins) and biological characteristics (e.g, receptor

usage) [5]. Historically, EVs that belonged to a single species were typed by variation

of surface antigens as determined using specific anti-sera, which is time-consuming

and depends upon the availability of anti-sera [7–9]. Currently, a widely-adopted

typing approach relies on complete or partial nucleotide sequence of the VP1 (viral

protein 1) gene [10]. EVs are responsible for a wide range of human diseases. These

include respiratory illnesses, hand, foot, and mouth disease (HFMD), myocarditis

and a number of neurological diseases such as encephalitis and poliomyelitis (Table

1.1) [11]. The major transmission modes of EVs are fecal-oral route and respiratory

route (e.g., airborne transmission or droplet transmission) [11].



2

Table 1.1
Selected EVs that infect humans and common diseasesa

Species Number of types Key members Diseases

EV-A 24 EV-A71 HFMD, neurological complications
EV-B 61 Coxsackievirus B3 Myocarditis

Echovirus 7 Aseptic Meningitis
EV-C 23 Poliovirus 1-3 Poliomyelitis
EV-D 5 EV-D68 Respiratory illnesses

EV-D70 Acute hemorrhagic conjunctivitis
RV-A 77 RV-A2 Respiratory illnesses
RV-B 30 RV-B14 Respiratory illnesses
RV-C 55 RV-C15 Respiratory illnesses

a Table content was based on [5, 11,12] and http://www.picornaviridae.com.

1.1.1 Virion structure

Similar to many other picornaviruses, EVs have an outer diameter of approxi-

mately 300 Å [13, 14]. The atomic structures of a rhinovirus (RV-B14) and a po-

liovirus (PV type 1), as determined by X-ray crystallography, were the first ever

three-dimensional (3D) stuctures of animal viruses [13, 14]. The determination of

these virus structures represented a milestone in structural and molecular virology.

Since then, extensive efforts in the past three decades have led to high resolution

structures of native virions for a large number of EVs [15–32]. These viruses include

members of five different species, EV-A to EV-C and RV-A to RV-B. All of these

viruses exhibit pseudo T=3 icosahedral symmetry. The triangulation number T was

proposed by Caspar and Klug to describe the number of structurally similar protein

subunits in each icosahedral asymmetric unit [33]. Specifically, 60 copies of VP1,

VP2, and VP3, each of which has a length of about 250-300 amino acids, form the

capsid shell (Fig. 1.1), whereas 60 copies of VP4, a small polypeptide (about 70

amino acids), reside in the capsid interior [13]. The N-terminal glycine residue of

VP4 is covalently linked to myristic acid (a fatty acid with 14 carbon atoms) [34,35].

The N-termini of VP1, VP2, and VP3 are also located inside the virus and, together
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with VP4, participate in viral RNA binding [16]. Moreover, VP1, VP2 and VP3

all possess an eight-stranded antiparallel -barrel ”jelly roll” fold (Fig. 1.1), which is

an evolutionarily conserved fold shared by the capsid proteins of various plant and

animal viruses [36–39].

Fig. 1.1. The structure of enteroviruses. A. Diagrammatic repre-
sentation of the virus. VP1, VP2 and VP3 are colored blue, green, and
red, respectively. Each pentagonal icosahedral vertex is surrounded
by a surface depression or “canyon” colored black. The epitopes for
neutralizing antibodies for RV-B14 are labelled as NIm-I, NIm-II and
NIm-III, where NIm is neutralizing immunogenic site. B. The VP1
jelly roll is shown as a ribbon diagram. If the β-strands along the
polypeptide are identified sequentially as A to I, then one of the sheets
is composed of the anti-parallel strands BIDG and the other by the
anti-parallel strands CHEF. From [1]. Reprinted with permission from
AAAS.

1.1.2 Genome organization

Enteroviruses contain a positive sense RNA genome of about 7.5 kb [40,41]. One of

the unique features is that a protein, namely VPg (virion protein genome linked, about

22 amino acids long), resides at the 5’ end of the genome [42]. VPg is covalently linked

to the 5’-uridylylate moiety of the RNA through a tyrosine residue and acts as a primer
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for viral RNA synthesis [43]. Furthermore, the 5’ untranslated region (UTR) is highly

structured and contains the internal ribosome entry site (IRES), which is crucial for

internal ribosome binding and efficient translation of viral messenger RNA (mRNA)

[44, 45]. For the 3’ end, like cellular mRNAs, the viral RNA possesses a stretch

of poly (A), known as poly (A) tail. The protein coding region has a single open

reading frame. It is translated into a polyprotein (approximately 2200 amino acids

long) [46] that is initially processed by viral protease to give three precursor proteins,

P1, P2 and P3 [47]. P1 is further cleaved to produce the structural proteins VP0

(the precursor protein of VP4 and VP2), VP3, and VP1 for virus assembly [47,48], as

will be discussed below. P2 and P3 are processed into a number of intermediate and

final products that are functionally critical nonstructural proteins for viral replication

and for virus-host interactions [4, 47]. These protein products include 2Apro, 2B, 2C

(nucleoside triphosphatase), 3A, VPg, 3Cpro, and 3Dpol (Fig. 1.2) (11), where pro and

pol denote protease and polymerase, respectively. The proteins 3AB (the precursor

to 3A and VPg), 2BC (the precursor to 2B and 2C), and 3CDpro (the precursor to

3C and 3D) are also produced. In addition, 2B, 3A, 2BC, and 3AB contribute to

membrane rearrangements, formation of membrane replication complex, and viral

RNA replication [49].

1.1.3 Life cycle

Current knowledge of the infectious cycle of EVs in a host cell is largely based

on studies of polioviruses over the past six decades (reviewed in [52]). As illustrated

by Fig. 1.3, EV infection is initiated by viral attachment onto cell surface via spe-

cific receptor molecules [53, 54]. This step is followed by virus internalization into

host cells primarily via endocytosis. EVs can utilize different endocytic pathways

(e.g., clathrin-mediated endocytosis) for internalization and end up uncoating from

membrane bound organelles (e.g., endosomes) within a host cell [54]. The uncoat-

ing process is facilitated by structural changes of the capsid [53]. Once the viral
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Fig. 1.2. The genome organization of enteroviruses. A viral
protein, VPg, is covalently linked to the genome RNA. The viral RNA
encodes a polyprotein, which is processed by viral proteases to form
precursor proteins P1, P2, and P3. P1 is further processed into capsid
proteins, whereas P2 and P3 are cleaved into non-structural proteins.
The cleavage sites of viral proteases 2A and 3C (or 3CD [50]) are
indicated by yellow and blue triangles. The figure was taken from [51]
with some modifications.

genome is released into the cytoplasm, VPg is removed that allows for the translation

of viral mRNAs. This process leads to the production of a polyprotein that is then

processed by viral proteases into a number of individual viral proteins as mentioned

above. The capsid P1 precursor is cleaved to form a biological protomer (VP0, VP3,

and VP1). Protomers then assemble into capsid protein pentamers [48]. Viral RNA

synthesis takes place inside membranous vesicles, known as membranous replication

complexes [55–57], which are formed with the help of a number of viral non-structural

proteins as mentioned above. The viral polymerase 3Dpro [58, 59] catalyzes the pro-

duction of a full length negative strand RNA that is complementary to viral RNA

in the first step [60], which serves as a template to synthesize new positive sense

RNAs [61]. In the early phase of infection, these positive sense RNAs are translated

into viral proteins [62]. At the late stage of infection, these viral RNA molecules be-

come associated with capsid protein pentamers to assemble into infectious, progeny



6

virions [48]. In this process, VP0 is autocleaved into VP4 and VP2 when the viral

RNA is present [63, 64]. Native empty particles containing uncleaved VP0 have also

been found in infected cells, which might be abortive products during viral assem-

bly [48]. The progeny virions are usually released upon the lysis of host cells [4].

Alternatively, these virions can exit from infected cells in a non-lytic manner [65].

In essence, they are released through secreted vesicles that encapsulates a cluster of

viral particles [65]. The ratio of particle number to plaque forming unit for EVs is

about 100 - 1000 [4], which is high. It indicates that a large portion of virus particles

might not successfully undergo a complete cycle of infection.

1.1.4 Prevention and control

The first EV, poliovirus, was discovered more than a century ago [66]. The mech-

anisms of EV replication have been studied for more than 50 years [67]. The only

vaccines that have been approved are those for PVs and for EV-A71. Vaccines for

PVs, including the inactivated PV vaccine [68] and the oral PV vaccine [69,70], have

been available since 1955 and have played an instrumental role in a significant de-

crease of cases of PV infections. The oral PV vaccine utilizes live attenuated PVs and

is currently the major cause of vaccine associated acquisition of PV infections, which

prevents the global eradication of PVs [71]. Furthermore, two inactivated vaccines

for EV-A71 were recently licensed in China [72, 73]. Nevertheless, a major challenge

of developing vaccines against all EVs is the presence of a diversity of EVs [11]. For

instance, there are more than 160 types of rhinoviruses that exhibit distinct surface

immunogenecity [12]. A very recent breakthrough was the development of an effec-

tive polyvalent inactivated RV vaccine against infections of a range of RVs in animal

models [74]. This vaccine was a cocktail of multiple types of inactivated RVs.

Despite some successful attempts in vaccine developments, there are still no ef-

fective antiviral therapeutics for prevention and treatments of EVs infections. In

principle, it is possible to develop antiviral compounds that are directed against a
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Fig. 1.3. The life cycle of enteroviruses. Enteroviruses attach
onto a host cell via receptor binding, which is followed by virus in-
ternalization into internal membrane organelles such as endocomes.
Then the positive sense viral genome is released into the cytoplasm,
where translation occurs. A polyprotein is produced in the first
step. It is subsequently processed by proteases into structural and
non-structural proteins. Viral RNA synthesis operates via a nega-
tive sense RNA intermediate and takes place in membrane replication
complexes of which the formation is facilitated by non-structural pro-
teins. Progeny virions are then assembled from structural proteins
and newly synthesized viral RNAs. These virions are mainly released
upon lysis of the host cell. The figure was taken from [51] with some
modifications.

conserved target or mechanism shared by a broad spectrum of EVs. In the past, two

major classes of anti-EV reagents entered into at least phase II clinical trials but ended

up not being approved. Pleconaril [75], a capsid binding reagent, was not approved

because of side effects especially in pregnant women ( [76]). An inhibitor of viral 3C
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protease, rupintrivir [77], showed poor oral bio-availability and was not clinically ef-

fective against natural RV infections [78]. In addition, some other virus proteins (e.g.,

2A protease and RNA-dependent RNA polymerase (reviewed in [76]) and host factors

(e.g., oxysterol-binding protein that facilitates viral RNA replication [79]) have been

explored as antiviral targets. Currently, the only anti-EV reagents under clinical de-

velopment are two capsid binding reagents, BTA-798 (against RVs) [80] and V-073

(against PVs) [81].

1.2 Cell Entry of Enteroviruses

1.2.1 General principles of viral entry into cells

Viruses are obligate parasites of host cells in that they rely on the host for repli-

cation of viral genome, production of viral proteins, and assembly of viral particles.

A general task for all viruses is the successful delivery of viral genome to sites where

viral genome replication occurs within a host cell. This is true no matter whether

the viral genome being released is in the form of naked nucleic acids, ribonucleopro-

teins or a subviral core containing nucleic acids inside. Nevertheless, in this process,

there are hurdles that a virus would need to overcome. These are physical barriers

presented by the host cell and energy barrier for changes of the virus structure that

primes viral genome release.

The first physical barrier is the cell plasma membrane. In order to attach onto the

surface of a susceptible cell, viruses have evolved to bind cellular receptors through

specific physical interactions (reviewed in [82]). Recognition of viruses by host cells

is frequently dependent on multivalent virus-receptor binding. There are various

types of cell surface receptors, including carbohydrate molecules, lipids and proteins.

Receptor specificity is largely attributed to long-term host-virus co-evolution [83].

Viral receptors are molecular determinants of the host range [84] and/or tissue tropism

(i.e., preference for specific tissues) of a virus [85]. Additionally, a co-receptor [86,87]

may exist that works with the primary receptor on viral entry in a synergistic manner
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[88,89]. Upon receptor dependent recognition by a host cell, the virus, in many cases,

triggers cell signaling so as to be internalized [90]. Alternatively, receptor binding

leads to structural changes of the virus that facilitate penetration of the plasma

membrane and subsequently genome release into cytosol [91]. In both ways, the virus

circumvents the plasma membrane barrier.

Viruses are often internalized via endocytosis (reviewed in [92]), a process involves

invagination of the plasma membrane and formation of membrane bound compart-

ments called endosomes. In addition to endosomes, viruses can also be taken up

to other internal compartments when hijacking specific endocytic pathways. Then

in the process of endosome maturation, cytoplasmic transportation of endosomes by

motor proteins ensures that the virus bypasses the crowding in cytoplasm [93], which

is another physical barrier of the host cell. This hitchhiking mechanism also allows

the virus to arrive at a destination that is close to the site of viral genome repli-

cation. With the help of endosomal acidification, many viruses can get around the

intervening endosomal membrane and be primed for uncoating [92]. In the case of en-

veloped viruses, fusion occurs between the viral membrane and host endosomal mem-

brane [94]. Non-enveloped viruses, instead, penetrate endosomal membrane by means

of pore formation or membrane rupture using specific viral polypeptides [34, 95–98].

Additionally, many DNA viruses and some RNA viruses need to circumvent another

barrier at the boundary between cytoplasma and nucleus in order to import viral

genome into the nucleus (reviewed in [99]).

When a virus enters a host cell, the virus also needs to cross the energy barriers

that limit structural changes of the virus. Viruses are generally stable being trans-

mitted in between hosts, but becomes unstable during cell entry in order for genome

release. Therefore, host cues, e.g., receptor binding, low pH, proteases, or redox con-

ditions, are critical to trigger conformational changes of the virus [100]. For many

enveloped viruses, an energy barrier lies in the fusion of two membranes that are dis-

tant from each other. The process requires insertion of viral fusion peptides into the

host membrane upon structural rearrangements of viral enveloped proteins [94]. The
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structural changes are usually triggered by low pH [101], receptor binding [102] or pro-

teolysis [103,104]. Non-enveloped viruses can use multiple mechanisms. Host factors

can induce destabilization of the virus [105–108], release of viral components from the

virions [109–113], externalization of specific regions of structural proteins [96,114], or

a series of complicated structural changes [113,115,116].

Therefore, viral entry is dependent on the interplay between the virus and the

host cell. Determination of the role of host factors and structural changes of the virus

in the entry process would open up opportunities for antiviral interventions.

1.2.2 Major approaches to study viral entry

A comprehensive view of the viral entry process often requires a variety of com-

plementary approaches. The following are a few key aspects of studying the entry

process: identification of viral receptors, analysis of virus-receptor binding, dissection

of viral internalization pathways, study of structural changes of the virus necessary

for penetration and uncoating, and kinetics of viral entry.

The first viral receptor, a carbohydrate moiety named sialic acid, was discovered

using an enzymatic approach [117, 118]. Nevertheless, it was not until the 1980s

that the field boomed with the advent of molecular cloning [119] and monoclonal

antibodies [120]. Proteinaceous receptors were identified for a number of impor-

tant animal viruses including human immunodeficiency virus [121–126]. In the post-

genomic era, quantitative proteomics and transcriptomics approaches have become

prevalent. The proteomics method utilizes mass spectrometry coupled with immuno-

precipitation [127] or affinity purification [128]. It is based on specific interactions

between a cellular receptor and the receptor binding components of a virus. The tran-

scriptomics approach relies on comparison of transcription levels in susceptible over

non-susceptible cell lines [129]. Most recently, genome-wide genetic screening tech-

niques have been applied to discover viral receptors that were previously challenging.

These include RNA interference (RNAi) [130], haploid screening [131], and CRISPR
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(clustered regularly interspaced short palindromic repeats) [132]. The general idea is

disruption of the function of individual genes by means of silencing gene expression,

insertional mutagenesis or knock out of genes. All these genetic screening approaches

are followed by functional validation of positive hits. Particularly, haploid screening

showed that intracellular viral receptors that are present in internal compartments of

a host cell can facilitate virus entry [133].

Multiple endocytic pathways for virus uptake have been found, including clathrin

mediated endocytosis, macropinocytosis, caveolar/lipid raft mediated endocytosis,

and some alternative mechanisms [92]. A combination of live cell imaging, genetic

methods, and pharmacological inhibition can be employed. In general, there are sev-

eral critical aspects concerning a specific pathway: virus induced host signaling events,

the route by which viral internalization occurs, intracellular trafficking of cytoplasmic

membranous compartments that carry the virus, and host factors that trigger virus

penetration and uncoating. Multicolor live cell imaging using fluorescence microscopy

is crucial to dissect different steps of viral entry and to track the dynamic process of

each step. Due to its high sensitivity as well as good spatial (better than the diame-

ter of a virion) and temporal resolution (often at the level of seconds), this approach

provides spatiotemporal analysis of fluorescent dye-labeled single virus particles [134].

Furthermore, the other two approaches offer advantages in identification of host fac-

tors and study of molecular mechanisms. Specifically, knockdown of host genes by

genetic methods (e.g., RNAi) has been utilized for discovering novel host factors that

define novel pathways and for clarifying the functional role of a known factor (e.g.,

clathrin, caveolin, or other factors) so as to differentiate between established path-

ways [135]. Pharmacological inhibition takes advantage of chemical compounds that

specifically target individual host factors and can be useful to determine host triggers

of virus penetration and uncoating (e.g., bafilomycin is an inhibitor of endosomal

acidification) [135].

Biochemical and biophysical approaches in vitro are suited to provide a clearer and

often quantitative understanding of specific molecular events, including virus-receptor
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binding, virus penetration, and genome release. Many of these molecular events have

been reconstituted in vitro using purified macromolecules with or without artificial

membrane systems (e.g., liposomes) that mimic native biological membranes [136].

General principles of the interactions of a virus with receptor molecules and of the

conformational changes of viruses associated with viral entry have been illustrated by

structural studies of the entire viral particles or isolated viral components at low reso-

lution (about 30-40 Å) to near atomic resolution (4 Å or better). The major structural

tools were X-ray crystallography, single particle cryo-electron microscopy (cryo-EM),

cryo-electron tomography (cryo-ET), or hybrid methods (e.g., a combination of x-

ray crystallography with cryo-EM [137]). One of the first examples was the crystal

structure of influenza virus hemagglutinin in complex with sialic acid [138]. Studies

using complementary biophysical techniques, such as surface plasmon resonance [139]

and fluorescence correlation spectroscopy [140], have contributed to knowledge on the

kinetics of virus-receptor binding and of genome release. Moreover, the application of

mass spectrometry has been instrumental to study the stoichiometry of virus-receptor

binding as well as compositional and conformational changes of viral particles [141].

Additionally, single molecule techniques have characterized the dynamics of intact

viruses or viral protein structures concerning receptor binding and fusion [142,143].

More recently, an emerging technique, namely cryo correlative light and electron

microscopy (cryo-CLEM), has begun to show new details of the viral entry process

by studying interactions of virus with host cells at close-to-native state [144]. CLEM

combines the spatial resolution of cryo-ET (i.e., at the scale of several nanometers)

with the temporal resolution (i.e., at the scale of seconds) of light microscopy and

achieves spatially precise correlation using markers [145]. Although technical issues

like specimen thickness await further developments, CLEM holds the promise for

visualizing ultrastructural details and dynamics of virus-cell interactions that span

different spatial scales.
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1.2.3 Current knowledge of enterovirus entry into cells

Over the past several decades, structural and functional studies have defined some

of the molecular mechanisms of EV entry into host cells. As will be discussed be-

low, general principles underlying attachment and internalization of multiple EVs

have been established, whereas the penetration and uncoating processes are less well

understood.

Beginning in the 1980s, a diversity of specific cellular receptors have been iden-

tified for EVs (Table 1.2) [124–126, 146–169]. A depression on the virion surface,

the “canyon”, that encircles each five-fold vertex (Fig. 1.1), is frequently the bind-

ing site for EV receptors [28, 108, 170–182]. Many of these receptors belong to the

immunoglobulin (Ig) superfamily (Table 1.2) [183]. This region also has limited acces-

sibility to neutralizing antibodies [13]. In most EV structures, a hydrophobic pocket

in the VP1 jelly roll is located underneath the canyon and accommodates a “pocket

factor (Fig. 1.1), which is a fatty-acid like molecule that contributes to stabilize the

virion [16, 184]. Many EVs interact with the N-terminal Ig-like domain of their cog-

nate Ig-like receptors. This process proceeds via a two-step mechanism [172,185–187],

which involves a competition between the pocket factor and the receptor [188]. In

essence, receptor binding depresses the base of the canyon to squeeze the VP1 pocket,

expelling the pocket factor [188]. Thus, binding of Ig-like receptors destabilizes the

virus that primes the uncoating process. Nevertheless, receptors of some EVs, such

low density lipoprotein receptor of the minor group rhinoviruses, bind to other loca-

tions on the viral surface and do not induce viral uncoating (Table 1.2) [29,189–191].

Depending on the virus and the cell type, EVs are known to be internalized into

host cells via different routes. Multiple types of distinctive endocytic pathways have

been found for EV entry [54]. A large number of rhinoviruses utilize clathrin-mediated

endocytosis and end up uncoating in endosomes [197]. In these cases, endosomal

acidification is an important trigger for virus uncoating, of which the pH threshold

is dependent on the stage of endosomal maturation (e.g., pH about 6.0 for early en-
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dosomes). Many viruses from the species EV-B can follow either caveolae-dependent

endocytosis or macropinocytosis [198]. Low pH is not a trigger for uncoating of these

viruses. There are also known examples of EVs (e.g., EV-A71) that take two different

endocytic pathways when using two separate cellular receptors [199, 200]. In addi-

tion, PV appears to be a special case, because binding of cell surface PV receptor

CD155 to the virus at physiological temperature is sufficient to cause genome release

directly through the plasma membrane or through vesicles near the plasma membrane

shortly after internalization [201]. More importantly, binding of EVs onto host cell

surface induces a series of signaling events that result in viral internalization. This is

because that virus-receptor binding can lead to phosphorylation of the cytoplasmic

region of receptor molecules [202] or cause clustering of receptor molecules into spe-

cific microdomains on the cell surface [203]. In both ways, downstream intracellular

signaling can be activated that involves the participation of kinases, adaptor proteins,

cytoskeletal proteins, and a number of other cellular proteins.

The penetration and uncoating of EVs rely on structural changes of the virus.

Upon induction by host factors, the native virion (with a sedimentation coefficient of

160S) of many EVs is converted into an altered particle or subviral A-particle (135S)

[105–107, 178, 182, 204, 205]. The trigger is often Ig-like receptor molecules and/or

endosomal acidification. Furthermore, A-particles were also known to be formed by

heating native virions in vitro [206–209]. A-particles are featured by expansion of the

capsid shell, externalization of the N-terminal amphipathic region of VP1 (the first

about 25 amino acids [114]), and release of myristoylated VP4, as compared with

native virions [209–213]. A line of in vitro and cell-based evidence indicated that the

A-particle is an intermediate during EV entry.

(1) A-particles were found in the supernatants upon increasing temperature to 37 °C

after attachment of native viruses to cells at 4 °C [214–216];
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(2) Pre-formed A-particles retain the ability to infect host cells despite with dramati-

cally reduced efficiency and, more importantly, A-particles complexed with a non-

neutralizing antibody infect cells in an Fc receptor-dependent manner [217,218];

(3) A-particles were isolated from infected cells at the stage of internalization into

cytoplasmic membranous compartments [114,194,219];

(4) Inhibition of conformational changes necessary for both thermal inactivation and

uncoating correlates with the antiviral activity of capsid binding compounds [220].

Myristoylated VP4 and the N-terminal amphipathic helix of VP1 are critical for

EV penetration through the membrane of intracellular vesicles, which are often endo-

somes. The mechanism of penetration is either pore formation (e.g., RV-A2) [221–223]

or lysis of membrane (e.g., RV-B14) [224]. VP1 N-terminal amphipathic helices,

which are probably externalized through the base of the canyon or two-fold axes on

A-particles [209, 211, 212, 225], might act as anchors for A-particles to directly at-

tach onto target membranes [114, 136, 226, 227]. Thus binding of A-particles to lipid

membranes is independent of receptor molecules. An icosahedral two-fold axis of the

A-particle appears to face the membrane [227]. Myristoylated VP4 molecules have

been proposed to exit through icosahedral two-fold axes [228] or five-fold axes [229]

in the transition of native virions to A-particles. The VP4 molecules are oligomer-

ized and form channels in model membranes, as demonstrated by electrophysiological

experiments and EM analysis [230, 231]. The functional importance of VP4 in virus

penetration and uncoating was further confirmed by the observation that mutation

of VP4 changes its ability to form pores in vitro and to allow RNA release during

infection [232–234].

Enteroviruses uncoat from cytoplasmic membrane compartments such as endo-

somes. A-particles were proposed to release genomic RNA into cytosol, resulting in

the formation of subviral emptied particles (80S) [114, 219]. Furthermore, emptied

particles were found in isolated endosomes derived from infected cells [219]. Much

like A-particles, emptied particles can be produced in vitro by heating and share
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considerable similarity to the cell-derived equivalent in terms of composition and

sedimentation coefficient [206, 229, 235–238]. Structural studies of in vitro produced

emptied particles showed that the capsid shell of these particles is structurally similar

to that of A-particles [31, 238]. They are both expanded relative to native virions.

These observations support the idea that emptied particles is another intermediate

(in addition to A-particles) during cell entry of EVs [53, 114, 219]. In the process of

RNA release, the viral RNA is protected from RNA degrading enzymes by a shield

that is possibly composed of the VP1 N-termini and perhaps VP4 molecules [226].

Using cross-linking reagents that capture the virus when releasing the genomic RNA,

recent studies indicated that viral RNA exits from the virus through two-fold axes

and that the exiting of genomic RNA begins with its 3’-end [239–241]. When RV-A2

was incubated at 56°C, the exiting of viral RNA 3’-end completed in about 3 min,

and release of free viral RNAs into solution occurred about 7 min later. The whole

process of RNA release took only around 20 min [240]. Similarly, viral RNA was first

detected in the cytosol of cells infected by RV-A2 at about 10 min post infection when

using a multiplicity of infection of 15 [242]. Nevertheless, the trigger for RNA release

during EV infection remains unknown. It has been suggested that the disruption

of viral RNA secondary structures is required for RNA release [201] and that inter-

actions of uncoating intermediates with lipid membranes is a prerequisite [226]. In

addition, negatively charged amino acid residues on the inner surface of EV capsids

could expel genomic RNA from the virus via charge-charge repulsion [212]. Taken to-

gether, a wealth of information on EV penetration and uncoating has primarily been

derived from work on PVs and RVs. Nevertheless, it is not clear whether other EVs,

including the circulating EV-A71 and EV-D68, adopt the same molecular mechanism

as what have been established for PVs and RVs.

Delineation of the mechanism of EV entry has aided the design and development

of anti-EV reagents. A series of capsid-binding antiviral compounds (e.g, pleconaril)

have been and are being developed to inhibit infections by a broad spectrum of

EVs [76]. These inhibitors bind to the VP1 pocket of EVs often by replacement
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of the pocket factor [243–246]. The major mechanisms of action are blocking of

virus uncoating [246–249] and, in some cases, inhibition of receptor dependent virus

attachment [249–252]. Capsid binding reagents also impede transient and reversible

externalization of internal polypeptides at physiological temperature, an event named

as virus “breathing” [253–255].

1.3 X-Ray Crystallography and Electron Microscopy

Two breakthrough discoveries in the 1950s ushered in a new era of biology. The

double helical structure of DNA was deduced in 1953 [256]. Only several years later,

the first three-dimensional structures of proteins, myoglobin [257] and hemoglobin

[258], were solved. These pioneering works in structural and molecular biology pro-

vided a structural view of the functions of biological macromolecules and began to

decipher the atomic secret of biological processes. Since then, nearly six decades

of effort have led to the experimental determination of more than 120,000 biologi-

cal macromolecular structures. These structures were made possible by three major

techniques: X-ray crystallography, electron microscopy (EM), and nuclear magnetic

resonance (NMR). NMR has the advantage of studying protein dynamics in solu-

tion but generally proves difficult for structure determination of biomolecules with a

molecular weight of more than 50 kilodaltons (kDa). This section will focus on the

other two approaches, X-ray crystallography and EM.

1.3.1 X-ray crystallography

In 1912, the phenomenon of X-ray diffraction by crystals was discovered by Max

von Laue (reprinted in [259]). The diffraction pattern was subsequently interpreted by

William Lawrence Bragg as being derived from the reflection of incident X-ray waves

by parallel planes within a crystal [260]. This interpretation was expressed as an

equation that became known as Bragg’s law. These and many early crystallographic

studies had dealt with crystals of inorganic compounds such as sodium chloride.
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It was not until 1934 when John Bernal obtained the very first X-ray diffraction

pattern of a crystalline protein (pepsin) [261]. Nevertheless, the application of X-ray

crystallography to structure determination of proteins was challenging. It took more

than 20 years for Max Perutz to solve the structure of hemoglobin [258]. The central

problem was the phase problem. In essence, in an X-ray diffraction experiment, the

phases of diffracted x-ray waves are unknown, whereas the amplitudes of diffracted

X-ray waves are known according to experimentally measured reflection intensities.

The aim of structure determination is to determine the electron density ρ(xyz) at

each point with the coordinates (x, y, z) in the crystallographic unit cell. An electron

density map in real space is the inverse Fourier transform of structure factors in

reciprocal (Fourier) space. Structure factor is a complex number that describes the

amplitude and phase of a diffracted X-ray wave.

ρ(xyz) = (1/V )
∑
h

∑
k

∑
l

|F(hkl)|exp(−2πi(hx+ ky + lz))exp(iα(hkl)) (1.1)

where V represents the unit cell volume. |F(hkl)| and α(hkl) are the amplitude and

phase of the structure factor with miller indices (hkl), respectively. i is the square

root of -1.

One of the first ideas to tackle the phase problem was isomorphous replacement

[262], which was crucial to structure determination of hemoglobin and myoglobin.

This approach requires preparation of heavy atom derivatives, which refer to crystals

of native protein complexed with heavy atoms (e.g., mercury). Heavy atoms are

usually incorporated into protein crystals by means of soaking or cocrystallization

with heavy atom compounds. The assumption is that the native protein crystal

is isomorphous to the heavy atom derivative. It means that the two crystals have

identical unit cell parameters. Depending on the number of heavy atom derivatives

used for phasing, there are two variations: single isomorphous replacement (SIR) that

uses one heavy atom derivative and multiple isomorphous replacement (MIR) that

uses multiple heavy atom derivatives [263].



20

Heavy atoms diffract X-rays better than the light atoms (e.g., carbon) present

in the native protein. Thus the structure factors of heavy atoms, FH(hkl), have

relatively large amplitudes, which contribute to the difference between the structure

factors of native protein and of heavy atom derivative. Assuming that there are

two heavy atom derivatives, heavy atom locations can be determined by calculation

of difference Patterson maps with Fourier coefficients (|FPH1(hkl)| − |FP(hkl)|)2,

(|FPH2(hkl)| − |FP(hkl)|)2, and (|FPH1(hkl)| − |FPH2(hkl)|)2, in which FP(hkl),

FPH1(hkl), and FPH2(hkl) are the structure factors of native protein and two heavy

atom derivatives, respectively [264]. The Patterson function is essentially the inverse

Fourier transform of intensities and is a function of interatomic vectors in real space

[265]. Information of heavy atom locations is used to compute the structure factors

of heavy atoms, FH1(hkl) and FH2(hkl).

Structure factors are usually expressed as vectors in an Argand diagram, where

the x and y axes represent the real and imaginary parts of a complex number, re-

spectively. Thus, FPH(hkl) is the vector sum of FP(hkl) and FH(hkl). The phases

for native protein can be determined geometrically using a Harker construction (Fig.

1.4) [266]. There are two possible phase angles when only one heavy atom derivative

is considered. This uncertainty is often resolved by the use of multiple heavy atom

derivatives or by taking advantage of anomalous signals of heavy atoms (as will be

descried below) [267]. However, there are experimental errors in structure factor am-

plitudes. Additionally, |FH(hkl)| is small in many cases. These factors cause some

ambiguities in determining phases using MIR. Blow and Crick developed a method

where any phase angle has a probability to be the correct solution [268]. In MIR,

an individual probability distribution is calculated for α(hkl) concerning each heavy

atom derivative. The product of individual probabilities gives a joint probability for

every possible phase angle, which is employed to calculate a probability-weighted av-

erage phase or the “best phase”. A “figure of merit” is used as a metric to evaluate

the goodness of phase determination. Nevertheless, the bottleneck of isomorphous
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replacement is preparation of suitable heavy atom derivatives, which is generally dif-

ficult and time-consuming.

Fig. 1.4. A Harker construction for phase determination us-
ing multiple isomorphous replacement. The red and blue circles
intersect at two positions, showing an uncertainty of phase determi-
nation when using single isomorphous replacement.

The anomalous dispersion (scattering) effect of heavy atoms offers another ap-

proach to solve the phase problem [269]. When the energy of incident X-ray beam

reaches a transition energy (often referred to as absorption edge), electrons in an

inner shell (e.g., K shell) of atoms become ejected due to the absorption of photon

energies. This causes alterations of the amplitude and phase of the atomic scattering

factor.

f = f0 + f
′
(λ) + if ”(λ) (1.2)
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where the total atomic scattering factor f is a complex number, and f0 is the normal

atomic scattering factor when the energy of X-ray beam is well below the absorption

edge. f
′

and f ” are components due to anomalous scattering, which are wavelength

(λ) dependent. f
′

is often negative and has the same phase as f0, whereas f ” is out

of phase by 90° relative to f0.

Early work had focused on combining anomalous dispersion with isomorphous

replacement [267, 270–272]. Hendrickson and coworkers developed a practical ap-

proach, namely multiwavelength anomalous dispersion (MAD) [269], that has fueled

structure determination of proteins without prior information about the structure.

MAD is made possible by finely tunable synchrotron radiation. Selenium (Se) is a

commonly used heavy atom, because its absorption edge is located within the range

of usable X-ray wavelengths [273]. Se atoms are introduced into the native protein

by protein expression in the presence of a surrogate of methionine named selenome-

thionine [273]. The aforementioned phase shift of the atomic scattering factor breaks

down the Friedel’s law, where the Friedel pair, F(hkl) and F(hkl), have an identical

amplitude. Heavy atom locations are determined by calculation of an anomalous

difference Patterson map with coefficients (|FPH(hkl)| − |FPH(hkl)|)2 [274]. Thus,

phases for native protein can be determined in a similar way as in isomorphous replace-

ment. Given that the anomalous scattering components are wavelength dependent

(Equation 1.2), data collection in MAD is performed at several selected X-ray wave-

lengths [269]. These include that of the absorption edge and of the peak absorption,

which give the largest magnitudes of f
′
and f ”, respectively, and maximize anomalous

signals for phasing. In most cases, a wavelength being remote from the absorption

edge is also included. Nevertheless, one disadvantage of MAD is the need to pro-

duce selenomethionine substituted proteins in a large amount and suitable crytals of

selenium labeled proteins. A workaround of these problems is to rely on anomalous

signals of sulfur atoms in unlabeled proteins [275].

Another approach, namely molecular replacement (MR), originated from the con-

cept of non-crystallographic symmetry (NCS) [276]. Crystallographic symmetry op-
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erators are applicable to the infinite crystal lattice, whereas NCS operators are only

applicable to a locally defined volume. NCS defines the rotational and translational re-

lationship between structurally similar (or identical) subunits in one crystallographic

asymmetric unit or between structurally similar subunits that are present in different

crystals.

The use of NCS for determination of initial phases is described here. MR takes ad-

vantage of known structures of proteins that have a homologous amino acid sequence

to the target protein for which the structure is unknown. Phases are calculated based

on a properly oriented and positioned search model that is a homologous structure.

Thus, the problem can be divided into two steps, rotation determination and trans-

lation determination. Rossmann and Blow worked out a rotation function that was

expressed as the overlap of a Patterson function with a rotated version of the Patter-

son function [277]. This rotation function R has the form

R = (U/V 3)
∑
h

∑
p

|F(h)|2|F(p)|2Gh,h’ (1.3)

where h (h = (h, k, l)) and p (p = (p, q, r)) are vectors in reciprocal space. F(h) and

F(p) are structure factors with miller indices (hkl) and (pqr), respectively. Here they

can be considered as structure factors of the unknown structure and of the search

model, respectively. h’ describes the position of p after applying a rotation matrix

[C], which is specified by three Euler angles or polar angles. U is the volume of an

integration sphere (by assumption) whose center is at the origin of the unit cell and

whose radius is r. In such case, G is a sinc function with the argument |h + h’|r. A

maximum of R would indicate that the search model is correctly rotated to match

the orientation of the unknown structure. To determine the translation needed to

correctly position the search model (at the determined orientation) in the unit cell,

translation search can be performed to minimize the difference between the observed

structure factors and the calculated structure factors (calculated using the search
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model). For instance, correlation coefficient (CC) is a commonly used indicator of

such difference.

CC =

∑
hkl |(Fo(hkl)|− < |Fo(hkl)| >)(|Fc(hkl)|− < |Fc(hkl)| >)√∑

hkl (|Fo(hkl)|− < |Fo(hkl)| >)2
∑

hkl (|Fc(hkl)|− < |Fc(hkl)| >)2
(1.4)

where Fo(hkl) and Fc(hkl) are the observed and calculated structure factor ampli-

tudes, respectively. There are also several other criteria for translation search (re-

viewed in [278]), e.g., the overlap of the observed Patterson map with the calculated

Patterson map [279].

Averaging of NCS related identical subunits within one crystallographic asym-

metric unit represents a useful method for phase improvement [36, 37, 280, 281] and

for phase extension [13, 14, 282, 283]. For instance, icosahedral viruses have an NCS

redundancy of at least five, where the NCS redundancy refers to the number of iden-

tical subunits in a crystallographic asymmetric unit. This redundancy leads to an

effective decrease of the size of the structure to be determined. The idea is explained

by the application of real space NCS averaging and phase extension to virus structure

determination below [14, 284–290]. The assumption is that initial phases have been

determined at a low resolution using one of the methods mentioned above. First, a

molecular envelop is defined in which the NCS relationship of subunits is valid. The

envelop might be a hollow spherical shell or based on a homologous atomic structure.

Electron densities outside the envelop are set to low, constant value (such as zero), a

procedure known as “solvent flattening” [291]. Electron densities within the envelop

is averaged using the NCS operator. The averaged map is Fourier back transformed

to produce more accurate phases than the original ones. A new map can be calculated

when the observed structure factor amplitudes (appropriately weighted) are combined

with the new phases. Iterative cycles of these procedures improve the phases until no

further improvements are observed. Structure factors computed from the map (after

density modifications) contain phase information at slightly higher resolution than

the resolution limit used for calculating the current map. Such phase information
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can be combined with the observed structure factor amplitudes to calculate a new

map, thus extending the resolution limit. Phases at the current resolution limit are

then improved by multiple cycles of NCS-averaging and solvent flattening. Thus,

phases can be gradually extended in small incremental steps to the resolution limit

that the data allow. Phase extension using large step sizes often results in erroneous

phases [13]. An appropriate step size, as determined based on a similar sinc function

to the G function in the rotation function mentioned above, is about one or two re-

ciprocal space lattice units [292, 293]. In this process, better defined NCS operators

and molecular envelop can be used. Convergence is usually monitored the difference

between observed and calculated structure factors using correlation coefficient as an

indicator.

1.3.2 Electron microscopy

The electron microscope (EM) was invented in the 1930s by Ruska [294] and

initially used to characterize inorganic chemical materials. Unlike these materials,

biological samples, which are made up of light elements like carbon, have intrinsically

low contrast. These samples are hydrated and prone to radiation damage [295].

Sample thickness is also a concern when cells or tissues are used. Beginning in late

1950s, biological samples were negatively stained by electron dense reagents such as

heavy metal salts in order to improve the image contrast [296]. The resultant samples

were also tolerant to radiation damage. Nearly a decade later, DeRosier and Klug

developed a general approach to computationally reconstruct the three dimensional

(3D) structure of an object from two dimensional (2D) EM images that represent

multiple views of the object [297]. The idea was based on the assumption that each

of the 2D EM images is a projection of the 3D density distribution of the object (the

effect of contrast transfer function (CTF) should be taken into account [298].) In

principle, the Fourier transform of a projection is a central slice of the 3D Fourier

transform of the object. Thus, a 3D density map of the object can be reconstructed
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by Fourier synthesis using all available 2D slices, each of which is computed from one

of the experimental images. This approach is particularly powerful when the object

has screw or rotational symmetry, because different views of an asymmetric unit of

the object are present in one experimental 2D image. The development of the 3D

reconstruction method marked the birth of biomolecular structure determination by

EM. However, the method had been applied only to images of negatively stained

particles at the time. Heavy metal stains cause uneven staining and distortions of

the objects present in the sample. Furthermore, the resolution of 3D reconstructions

is limited by the grain size of heavy metal salts and can not go beyond about 20 Å

resolution [299].

In an attempt to preserve samples at close-to-native state, to minimize radiation

damage, and to keep the sample under high vacuum within the microscope, Taylor and

Glaser obtained high resolution (up to 3.4 Å) electron diffraction patterns of frozen,

hydrated 2D crystals (about several protein layers in thickness) of catalase [300]. This

was achieved in 1974 when the field of cryo-EM began. Moreover, a general approach

for producing unstained, hydrated, frozen samples was introduced by Dubochet in

the 1980s [301]. Plunge freezing of a tiny volume (several nanoliters or less) of sample

solution into a suitable cryogen such as liquid ethane resulted in dispersed, single

molecules (or particles) being embedded within a layer of vitreous ice, which is distinct

from hexagonal or cubic ice. This approach is still widely used today for a variety

of samples, including cells, crystals, helical assemblies, and single particles such as

icosahedral viruses and other macromolecular assemblies with or without symmetry.

Imaging of radiation sensitive, unstained biomolecules requires low electron ex-

posures (e.g., about 16-25 e-/A2 for single particles [302]), because the extent of

radiation damage depends on the total electron doses for imaging. For these samples,

one event of elastic electron scattering is often accompanied by about three to four

events of inelastic electron scattering [295]. The former does not change the energy

of the incident electron and contributes to signals present in images. The latter de-

posits energy onto biological samples, causing ionization of the sample and formation
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of radials that disrupt the chemical structures of biomolecules. This leads to a high

amount of noise in experimental images and a low signal-to-noise ratio (SNR). Thus

structure determination often requires averaging of multiple images. Two dimensional

crystals and helical assemblies (also known as one dimensional crystals) were the first

objects of which the structures were determined to 4 Å resolution or better [303–305].

These objects benefit from enhanced SNR by averaging of many repeating units. For

instance, the first structure of a membrane protein, bacteriorodopsin, was determined

by Unwin and Henderson in 1975 [306], whose effort subsequently yielded an atomic

structure of the seven-helix protein [303]. Determination of a 1.9 Å resolution struc-

ture of aquaporin 0 using 2D crystals further showed the power of averaging in EM

structure determination [307].

Icosahedral viruses represented the first samples that consist of single particles to

reach subnanometer (better than 10 Å) resolution in 1997, which made it possible

to assign α-helices in the structure [308, 309]. In comparison to particles with low

symmetry or no symmetry, the large size (at least 260 Å in diameter) and high sym-

metry of icosahedral viruses are favorable to determining the orientations and centers

of experimental projection images. The advantage of averaging multiple icosahedral

asymmetric units reduces the number of particles needed for 3D reconstruction. Only

about a decade later, determination of the first near-atomic resolution virus struc-

tures [310,311] were made possible in part because of improved transmission electron

microscopes. The improvements included mechanically stable column and cryo-stage,

better vacuum, and the introduction of the field emission gun (FEG). In particular,

the FEG produces a much brighter beam with smaller size and better coherence than

what had been conventionally used (e.g., LaB6 crystals).

Nevertheless, it proved challenging to work with single particles that have low

or no symmetry and that are smaller than icosahedral viruses. For instance, the

ribosome structure was limited to about 6 Å resolution [312] before the advent of

direct electron detectors (DED), as will be mentioned below. It was in part because

EM images have low contrast. Unstained biomolecules in a thin (no more than 1000 Å
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thick) layer of vitreous ice are essentially transparent to the electron beam. The thin

specimen scatters electrons weakly and causes a slight phase shift of electron weaves.

Thus such specimen is considered as a weak-phase object [298]. Images are formed

due to the interference of the unscattered and scattered electron waves. In-focus (or

close-to-focus) images generally have low contrast. In practice, image contrast at low

resolution can be enhanced by defocusing the objective lens, which modulates the

CTF of the microscope. However, a full recovery of high resolution signals by CTF

correction is difficult when dealing with highly defocused images [313].

The central problem in single particle cryo-EM is the accurate determination of

the orientation and center of each experimental projection image. The particle orien-

tation is specified by three rotation angles including one in-plane rotation angle and

two out-of-the-plane rotation angles, where the plane refers to the plane where the

projection image lies. The particle center is specified by the position (x and y) of

a point in the plane of the projection image. This is hampered by the low contrast

of experimental images. Crowther and coworkers developed a common line method

mainly for icosahedral viruses in the 1970s [314,315]. A common line is defined as the

line shared by a pair of 2D sections in Fourier space. For a given 2D section, an icosa-

hedral symmetry related 2D section intersects with it along one common line, and

another 2D section generated using the inverse of this symmetry operator intersects

with the original 2D section along another common line. These two common lines

represent a pair of self-common lines. The center of a projection image can be esti-

mated based on the cross correlation between the image and its rotational averaged

derivative or by calculation of the center of mass. The orientation of a projection im-

age is determined by searching for the best orientation in an icosahedral asymmetric

unit that minimizes the sum of phase residuals for all 37 pairs of self-common lines of

the icosahedral particle image. Phase residual is an indicator of the phase difference

between a pair of common lines. 3D reconstruction using projection images with the

determined centers and orientations produces an initial 3D model, from which a few

reference projections are usually generated. The Fourier transform of an experimen-
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tal image and that of a reference projection (or an experimental image for which the

orientation has been determined) give rise to a pair of cross-common lines. There are

60 pairs of cross-common lines when icosahedral symmetry is considered. The sum of

phase residuals for all pairs of cross-common lines is used as a criterion to determine

the orientation (and subsequently the center on the basis of the determined orien-

tation) of an experimental image. Reconstruction of all experimental images with

known orientation and center produces a 3D model that serves as the initial model

for the next iteration. Thus, this iterative process allows for accurate determination

of particle orientations and centers. Recently, a new implementation of the common-

line method in the EMAN program package has achieved simultaneous determination

of all five parameters for orientation and center using a Monte Carlo optimization al-

gorithm [316]. In addition, initial 3D models can be reconstructed using experimental

images to which orientations are randomly assigned. Furthermore, the angular recon-

stitution method [317] developed by van Heel is essentially the real-space equivalent

of the aforementioned common-line approach and has been extended to objects with

other point group symmetries. This method relies on using 2D class averages for

determining particle orientations and centers, because class averages have a much

improved SNR compared to individual experimental images. Experimental particle

images with similar orientations are clustered into a class, and they are averaged to

produce a 2D class average [318].

Projection matching is a model based approach developed by Frank and cowork-

ers [319]. The prerequisite is that an initial 3D model has been built using the afore-

mentioned methods or other approaches that require multiple images of the same area

being recorded at different tilt angles [320]. The initial 3D model is used to generate

a series of reference projections that are sampled at a suitable angular step and that

represent all possible different views. The centers of the experimental images are then

roughly determined in a similar way as what was described above. Each experimental

image is compared to every one of the reference projections. The orientation of the

experimental image is determined by that of the reference projection to which it best
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matches. The initially determined particle centers can also be improved in this way.

Several criteria such as cross correlation can be used as an indicator of the degree of

matching between images. CTF correction of the experimental images needs to be

performed in the process. As in the cross-common line method, iterative cycles of

projection matching and subsequently 3D reconstruction employing the current best

particle orientations and centers can improve the accuracy of orientation and center

determinations. This is in part because a finer angular size used to generate reference

projections can potentially result in a higher resolution 3D reconstruction. There are

several different implementations of the projection matching principle [302]. In these

implementations, the determinations of the two out-of-the-plane rotation angles, of

the in-plane rotation angle, and of particle center are generally treated separately

to reduce the amount of computation. This idea is explained by the Polar Fourier

Transform (PFT) method developed by Baker below [321]. For each of the experi-

mental images and of the reference projections, the image is converted from Cartesian

coordinates (x, y) to polar coordinates (γ, r), where γ and r represent angular coordi-

nate and radial coordinate. The resultant image represents a series of annuli of data

with each having a specific radius. The Fourier transform (along the direction of γ)

of the image presented in polar coordinates, namely the PFT, consists of a series of

one dimensional Fourier transforms, of which each is calculated from an annulus of

data. The two out-of-the-plane rotation angles can be determined based on the cross

correlation between the PFT of an experimental image and the PFT of each of the

reference projections. Given these two rotation angles, the in-plane rotation angle

is determined according to the rotational correlation of the experimental image with

its best matching reference projection as determined in the previous step. Thus, the

knowledge of all three rotation angles can be applied to the refinement of the initially

determined particle centers.

There are three major factors that affect the contrast of cryo-EM images, in-

cluding beam-induced motion, noise during detection, and the CTF of the micro-

scope [322]. Inelastic scattering events result in emission of electrons from the sample
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and a buildup of positive charges on the sample [323]. This causes deflection of elec-

trons which increases the blurriness of EM images [324]. Translation and rotation of

the sample can occur probably due to electrostatic force [324]. The sample movement

is also caused by the mechanical instability of the supporting film (e.g., amorphous

carbon film) [325]. Furthermore, charge coupled device (CCD) cameras convert elec-

trons into photons, which are then transformed into electric charges. Noise can arise

from scattering of electrons or photons, a large spread of electron signals over multi-

ple pixels, and integration of electric charges [326]. These factors limits the detective

quantum efficiency (DQE) of CCD cameras, where DQE reflects the performance of

a detector and shows how much signal present in the original image is preserved after

detection.

Recent advances in direct electron detection technologies have partially resolved

the first two issues mention above [327–329]. DEDs show much reduced read-out

noise via detection of single electron events and have an improved DQE (particularly

at low spatial frequencies) over CCD cameras and photographic films [330]. DEDs

locate single electron events at a precision of one quarter of a pixel. Because of a high

frame rate (e.g., up to 400 frames per second for a K2 Summit DED), these cameras

allow for recording EM data in a movie like mode. Thus computational alignments

of frames lead to motion correction that deblurs experimental images [331,332]. Fur-

thermore, because electron doses can now be fractionated into frames, images are

often recorded using a high electron dose (e.g., up to 130 e-/A2) such that a high

contrast is achieved even at low defocus [333]. These factors result in experimental

images with an enhanced SNR. A direct outcome is that the number of asymmetric

units needed to reach a near atomic resolution reconstruction has now been reduced

from millions to tens of thousands [334]. There have also been advancements of image

processing approaches [335–339] and automated data collection [340]. For instance,

the application of maximum likelihood (ML) approaches [337, 341] has been instru-

mental to deal with noisy cryo-EM images and to classify a heterogeneous particle

population into conformational (or compositional) homogenous subpopulations. Un-
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like the aforementioned approaches where a single, best orientation is assigned to a

particle image based on certain criteria of similarity, the idea of ML approaches is

that a probability is calculated for any possible orientation with regard to each par-

ticle image. Thus ML approaches are advantageous when there is an ambiguity in

assigning particle orientation based on a noisy and low resolution 3D reference. With

these developments, single particle cryo-EM has become a powerful approach to de-

termine near atomic resolution structures of macromolecular assemblies. Concerning

crystallizable and conformational homogeneous samples, there have been a number

of better than 3 Å resolution cryo-EM structures [333, 342–347], of which one was

determined to 1.8 Å resolution [347]. Furthermore, the technique shows advantages

over X-ray crystallography when the following types of samples are concerned. These

include membrane proteins that can hardly be crystallized [348,349], conformational

flexible macromolecular assemblies [350–352], samples that have limited production

yield [353–355], complex assemblies (e.g., many bacteriophages) where symmetry mis-

match is present [356–358], as well as transient and unstable molecular assemblies or

structural intermediates that are difficult to capture [359–361]. Nevertheless, in many

cases, a project takes advantage of a hybrid approach. For example, available X-ray

crystal structures can be fitted into cryo-EM density maps [137,362]. Mass spectrome-

try provides information of the interactions between components in a macromolecular

assembly [363,364], facilitating the interpretation of a cryo-EM density map.

There are new challenges that lay ahead. One of theses challenge is to break

the lower limit of molecular size. The development of phase plate technologies [365]

holds some promise for structure determination of biomolecules that have a molecular

weight of less than about 200 kDa. Phase plates, which are situated at the back focal

plane of the objective lens, cause a phase shift (e.g., 90° in the case of Zernike phase

plates) of the scattered electron waves and alters the CTF to increase image contrast

at low spatial frequencies that allows in-focus or close-to-focus imaging. One of the

latest examples is structure determination of a 260 kDa protein to 4.4 Å resolution

using a Volta phase plate [366, 367]. To overcome the hurdle, further improvements



33

of detectors are also needed to make detection faster and to increase the DQE (at

low spatial frequencies) close to 1. The issue of beam induced motion can be further

mitigated by employing mechanically stable supporting films such as graphene [368]

and/or by neutralization of the positive charges on the specimen [369]. A controllable

way of producing a layer of vitreous ice with a desirable thickness during sample

preparation would be an additional benefit [370].

Another direction is the study of pleomorphic (i.e., variable in size and shape)

molecular assemblies and organelles. These objects often contain membranes and

have a large size (e.g., more than 800-1000 Å in at least one dimension). One promis-

ing technique is cryo-electron tomography (cryo-ET) developed by Baumeister and

coworkers [371]. Projection images that represent multiple different views of a 3D

object are acquired by tilting the sample holder. Thus cryo-ET is distinct from single

particle cryo-EM that relies on randomly oriented single molecules. Without averag-

ing, the current achievable resolution of cryo-ET is perhaps about 40 Å. Furthermore,

the resolution can be improved for certain components by aligning and averaging of

structurally similar 3D subvolumes that are extracted from tomograms. This process

is generally referred to as subtomograpm averaging [372]. One of the most successful

examples is the capsid structure of human immunodeficiency virus determined to near

atomic resolution [373].

The third challenge has to do with thick samples, including large double strand

DNA viruses (e.g., the mimivirus capsid has a diameter of about 5000 Å) [374],

subcellular organelles [375], and cells (at the scale of µm) [376]. In these cases,

dynamic scattering (i.e., electrons scatter for multiple times) is involved, making it

complicated to determine the relationship between the experimental 2D image and

the projection of the 3D object. The electrons also loss energy in this process, leading

to images with a low SNR [377]. The idea of reducing sample thickness has long been

pursued. One of the current techniques is cryo-focused ion beam (cryo-FIB) [378,379],

which produces less artifacts than conventional methods such as sectioning. A high

energy ion (e.g., gallium ion) beam is used to remove materials above and below a
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target region in a cell, resulting in a thin section (e.g., about 2000-5000 Å thick)

for imaging by EM. Gallium ions collide with atoms on the surface of the sample

and remove materials in a layer-by-layer manner. A combination of complementary

techniques including cryo-FIB, phase plates, direct electron detectors, and cryo-ET

have now opened up a new avenue for structural studies of biomolecules in the context

of cells [376,380].

1.4 Scope of the Current Thesis

The current thesis focuses on structural rearrangements of enterovirus D68 (EV-

D68) during cell entry. The major approaches are X-ray crystallography and single

particle cryo-EM. Chapter 2 concerns determination of the X-ray crystal structure

of EV-D68. Chapter 3 describes the discovery of sialic acid as a cellular receptor for

EV-D68 and receptor induced conformational changes of the virus. Chapter 4 details

the cryo-EM analysis of a rhinovirus C that helps establish a workflow of cryo-EM

structure determination of similar viruses. Chapter 5 deals with structural changes of

EV-D68 in the process of virus uncoating and molecular basis of the acid sensitivity of

EV-D68. Chapter 6 describes the discovery of a capsid binding inhibitor against EV-

D68 infections. Taken together, the present thesis defines structural mechanisms of

EV-D68 entry into host cells. It also paves the way for developing antiviral compounds

that interfere with virus entry.
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2. X-RAY CRYSTAL STRUCTURE OF HUMAN

ENTEROVIRUS D68

Part of the data and text in this chapter are taken from [2] (reprinted with permission

from AAAS) and are highlighted by a black, vertical line in the right margin below.

2.1 Chapter Abstract

Enterovirus D68 (EV-D68) is a member of Picornaviridae and is a causative agent

of recent outbreaks in the USA of respiratory illness in children. Here, the crystal

structure of EV-D68 has been determined to 2.0 Å resolution. The hydrophobic drug

binding pocket in viral protein 1 contained density that is consistent with a fatty

acid of about 10 carbon atoms. Many rhinoviruses that cause common cold contain

a similarly short fatty acid like molecule in the VP1 pocket. Thus EV-D68 shares

considerable structural similarity with rhinoviruses.

2.2 Introduction

The enterovirus (EV) genus includes medically-important human pathogens, such

as rhinoviruses (RV), polioviruses (PV) and coxsackieviruses (CV) [5, 6]. Many of

these viruses have been characterized structurally and functionally [13, 14, 16–18, 21,

30,31]. However, the species EV-D remains poorly characterized.

Human enterovirus D68 (EV-D68) was first isolated from children who were hospi-

talized due to respiratory infection in California in 1962 [381]. The virus was identified

sporadically ever since until 2000s [382]. A global upsurge of EV-D68 cases since late

2000s has reminded the world of considerable threats of this human pathogen [383].

Particularly, in the summer and fall of 2014, an outbreak of mild to severe respiratory
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illnesses occurred among thousands of young children in the United States of which

more than 1000 cases was confirmed to be caused by EV-D68 [384]. EV-D68 mainly

causes respiratory diseases among children [385]. There were also some cases of se-

vere respiratory illnesses seen among adults [386]. In addition, this virus has been

associated with occasional neurological diseases [387], including acute flaccid myelitis

(AFM) [388]. To date, there are still no effective vaccines or antiviral treatments

available. This is in part due to a lack of three-dimensional structural information on

EV-D68.

This chapter details X-ray crystal structure determination of the prototype EV-

D68 strain Fermon CA62-1.

2.3 Materials and Methods

2.3.1 Cells and viruses

HeLa cells (H1-HeLa cells, ATCC CRL-1958) were maintained in Minimum Es-

sential Medium (Life Technologies) supplemented with 10% Fetal Bovine Serum

(FBS), L-glutamine, and non-essential amino acids (NEAA). Human rhabdomyosar-

coma (RD) cells (ATCC CCL-136) were maintained with Dulbecco’s Modified Eagle

Medium (DMEM) (Sigma-Aldrich) supplemented with 10% FBS, L-glutamine, and

NEAA. Cells were grown at 37°C with 5% CO2. EV-D68 virus (prototype strain)

was kindly supplied by Dr. M. Steven Oberste at the Centers for Disease Control

and Prevention (United States). EV-D68 stock was propagated in RD cells. Both

the supernatant and infected cells were harvested. After multiple freeze-and-thaw

cycles, the mixture was spun down. The resultant supernatant was stored at -80°C.

The virus titers were determined by a plaque assay using HeLa cells.
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2.3.2 Plaque assays

A series of 10-fold dilution were made for each sample. The resultant sample

with a given dilution was added to confluent HeLa cells in a 6-well plate. After

virus absorption at room temperature for 1h, cells were covered with an overlay of

0.9% agarose in MEM and 5% FBS per well. Plates were allowed to be incubated at

33°C for approximately 5 days. Plaques were visible and counted after neutral red or

crystal violet staining.

2.3.3 Virus production and purification

The prototype strain Fermon CA62-1 of EV-D68 (GenBank: AY426531.1), which

was isolated in 1962 in California [381], was grown in RD cells at 33°C using an

MOI (multiplicity of infection) of approximately 0.01. When an obvious cytopathic

effect was observed 3-4 days post infection, cells and supernatant were harvested at

the same time. The mixture was centrifuged to separate cell debris from the super-

natant. The cell debris were then thawed and frozen multiple times, and homogenized

and centrifuged to remove the pellets. All supernatant was pooled up and pelleted

using a Ti 50.2 rotor (277,937 x g for 2h at 4°C). The pellets were resuspended

and treated sequentially with 0.01 mg/ml DNAse (Sigma-Aldrich), 7.5 mg/ml RNase

(Sigma-Aldrich) and 0.8 mg/ml trypsin (Sigma-Aldrich) to remove impurities. After

centrifugation and removing the pellet, the sample was further applied to a potassium

tartrate gradient (10%-40%, w/v) in 250 mM HEPES, 250 mM NaCl (pH 7.5) using

a SW 41 Ti rotor (221,830 x g for 2h at 4°C). The virus concentration was finally

estimated by measuring the absorption at a wavelength of 260 nm (assuming a mass

extinction coefficient of 7.7 ml/mg/cm because picornaviruses often consist of about

25% (mass percentage) RNA and 75% protein) using UV spectroscopy.
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2.3.4 Crystallization and data collection

Because the yield of EV-D68 production was limited, crystallization conditions

used for the purpose of screening were confined to a few previously reported condi-

tions for crystallizing picornavirues in the literature. Cubic, shiny crystals with a size

of approximately 0.1 mm for each dimension were grown using a hanging drop vapor

diffusion technique within 2-3 days at room temperature from a drop consisting of 0.5

µl of virus (2-3 mg/mL in PBS (phosphate buffered saline): 10 mM phosphate buffer,

2.7 mM KCl, 137 mM NaCl, pH 7.4) and 0.5 µl of reservoir solution (0.1 M sodium

acetate (pH 4.5) with 3.5 M sodium formate) [389]. The pH of the reservoir solu-

tion was about 6.0. When the crystals were looped out, washed twice with reservoir

solution and then re-dissolved in water, the crystals contained viruses as verified by

SDS-PAGE with silver staining. Crystals were soaked in reservoir solution contain-

ing glycerol by gradually increasing the concentration from 0% to 20% (v/v). The

soaking time was approximately 1-2 min. They were then flash frozen in liquid ni-

trogen. Both glycerol and ethylene glycol were found to be effective cryoprotectants.

X-ray diffraction data were collected at 100K using an ADSC Q315 CCD (charge

coupled device) detector at beamline 14-BM-C of the Advanced Photon Source. The

oscillation angle was 0.2 degrees.

2.3.5 Structure determination

Diffraction data were processed using the program HKL2000 [390]. The space

group for native EV-D68 virus crystals was I222. Calculation of the Matthews coef-

ficient suggested the presence of two particles per unit cell. Therefore, the particles

should be sitting on 222 symmetry special position. Determination of which of the

two possible orientations was accomplished with a self-rotation function using the

program GLRF [391]. The correctly oriented and positioned RV-2A model (PDB

accession number 1FPN) without the pocket factor was used for an initial phase

calculation to 8.0 Å resolution. Phases were improved by 10 cycles of 15-fold non-
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crystallographic symmetry (NCS) averaging using the program AVE [392] of the USF

software package based on the convergence of the correlation between observed and

calculated (from the Fourier transform of the averaged map) structure amplitudes.

The mask defining the volume of the NCS was generated by selecting all grid points

within a radius of 5 Å from each atom of the RV-A2 coordinate using the program

MAMA [393]. Phases were then iteratively extended to 2.0 Å resolution using a step

size of 1/c Å-1. Each step was followed by 3 cycles of NCS averaging at the current res-

olution limit. Manual model building was performed using the program Coot [394].

The resultant structure was subjected to atomic position and B factor refinement

with simulated annealing using the program CNS [395]. The quality of the averaged

electron density map was judged by visual inspection. The R factor was also used as

criterion to evaluate the refinement. Water molecules were finally added and checked

with the program Coot [394]. The EV-D68 structure was validated by the criteria of

Molprobity [396] in the program package Phenix [397]. Other calculations were done

using CCP4 [398]. Pentamers were generated using VIPERdb [399]. Figures were

made with Pymol (http://www.pymol.org/) and UCSF Chimera [400].

2.3.6 Cryo-electron microscopy

3.5µl of EV-D68 samples (about 1 mg/ml in PBS) was applied onto Quantifoil

holey carbon grids R 2/2 (200 mesh, EMS). After manual blotting for about 1.5s,

the sample was immediately plunge frozen into ethane which was pre-cooled by liquid

nitrogen. The resultant grid was kept at close to liquid nitrogen temperature using

a Gatan 626 cryo holder. It was then imaged under a Phillips CM200 transmission

electron microscope (TEM) (FEI) with a 1K X 1K CCD camera at a nominal mag-

nification of 38,000x. The microscope was operated at an accelerating voltage of 200

kV.
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2.4 Results and Discussion

2.4.1 Virus growth and purification

The EV-D68 prototype strain Fermon CA62-1 was propagated in human rhab-

domyosarcoma cells at 33°C, which had previously been shown to be the optimal

growth temperature for EV-D68, indicating that EV-D68 behaves much like viruses

from the RV-A and RV-B species that are responsible for common colds [401]. In

the process of virus purification, density gradient centrifugation of a crude EV-D68

sample showed the presence of two major bands. Both bands were characterized by

SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis), UV spec-

troscopy (by analyzing the ratio of absorbance at 260 nm to that at 280 nm), and

electron micrographs of the particles. The lower band corresponded to viral genome

containing native virions, whereas the upper band probably represented native empty

particles that contain uncleaved VP0 (Fig. 2.1).

2.4.2 Structure determination

The native virion was crystallized to yield cubic looking crystals, which had a size

about 0.1 mm in each dimension. After soaking in glycerol, they were flash frozen

in liquid nitrogen before data collection. The data extended to 2.0 Å resolution

(Table 2.1). The crystal symmetry was I222 with two particles per unit cell, implying

that the particles were located on a 222 symmetry position (Fig. 2.2). A rotation

function [391] differentiated between the two orthogonal possible orientations of the

icosahedron (Fig. 2.2). Initial phases were calculated based on the structure of

RV-A2 (27) (PDB accession number 1FPN) after removing the pocket factor. EV-

D68 and RV-A2 share about 45% amino acid sequence identity concerning the P1

capsid region. The phases were then extended in small steps to 2.0 Å resolution

using 15-fold averaging and solvent flattening. A sharp drop of correlation coefficient

beyond the resolution limit (2.0 Å) was observed, indicating that phase extension
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Fig. 2.1. Chracterization of two types of EV-D68 particle.
Cryo-EM images of full (A) and empty (B) particles that were sepa-
rated by gradient centrifugation. Scale bar: 100 nm. C. Crystals of
full particles or native virions. D. SDS-PAGE analysis of the compo-
sition of full and empty particles. The ratio between the VP0/VP1
band and the VP2/VP3 band indicates that empty particles might
have uncleaved VP0.

was successful (Fig. 2.3), where correlation coefficient is the correlation between the

observed structure factor amplitudes and the calculated structure factor amplitudes.

A model of the structure was built using the program Coot [394] and refined with

the program CNS [395]. The final value of Rwork was 27.5%. Rfree is essentially the

same as Rwork in the presence of high non-crystallographic symmetry redundancy

for a randomly selected set of reflections as is the case here (Table 2.1).
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Fig. 2.2. Packing and orientation of particles in crystallo-
graphic unit cells. A. Packing of viral particles (red sphere-like
object) in an orthorhombic unit cell (blue). Self-orientation function
was calculated for the EV-D68 crystallographic data, where 15 Å - 8 Å
resolution data and an integration radius of 150 Å were used. Shown
are plots of self-rotation function peaks as a function of ψ and φ for
the sections κ=180° (two-fold, B), κ=72° (five-fold, C), and κ=120°
(three-fold, D). The contours start from 2.2σ with increments of 2σ.
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Fig. 2.3. Phase extension and representative electron densities
A. A plot of correlation coefficient (CC) as a function of the inverse
of resolution for selected cycles during phase extension. CC is defined
as in Equation 1.4. B. Representative electron densities of NCS av-
eraged 2Fo-Fc map at a contour level of 1.5σ. Fo is the observed
structure factor and Fc is the structure factor determined after back
Fourier transform of the previously NCS averaged map. Panel B was
taken from [2] (http://science.sciencemag.org/content/347/6217/71).
Reprinted with permission from AAAS.

2.4.3 Biological implications

Comparison of the amino acid sequences of EV-D68 with other enteroviruses shows

that VP3 has a short, C-terminal α-helix not present in other enteroviruses (Fig.
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Table 2.1
Data collection and refinement statisticsa

EV-D68

Data collection
Oscillation angle (°) 0.2

No. of crystals (No. of frames) 1 (171)
Space group I222

Cell dimensions

a, b, c (Å) 327.0, 347.8, 357.1
α, β, γ (°) 90.0, 90.0, 90.0

Resolution (Å) 50.0-2.00 (2.07-2.00)b

No. of unique reflections 748623 (55656)
Completeness (%) 55.7 (41.6)

Redundancy 2.1 (2.0)
Rmergec 0.105 (0.754)
I /σ(I ) 8.71 (1.08)

Refinement

Resolution (Å) 50.0-2.00 (2.07-2.00)
No. of reflections 748174 (54156)

R factor 0.275 (0.362)
Correlation coefficient 0.919

No. of atoms
Protein 6282
Ligand 12
Water 204

RMSD bond (Å) 0.006
RMSD angle (°) 1.393

Mean B-factor (Å2) 27.5

Mean B-factor of ligand (Å2) 69.2
Ramachandran plot

Favored (%) 96.5
Allowed (%) 3.4
Outliers (%) 0.1

a From [2]. Reprinted with permission from AAAS
b Values in parentheses represent the highest resolution shell
c Rmerge =

∑
hkl

∑
i |Ii(hkl)− < I(hkl) > |/

∑
hkl

∑
i Ii(hkl)

2.4). The EV-D68 electron density map showed that this helix decorates the north

side of the canyon in the neighboring, 5-fold related, icosahedral asymmetric unit.
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As a result, the canyon is narrower than in other enteroviruses (Fig. 2.4) and might,

therefore, not be large enough to accommodate immunoglobulin-like receptors.

Fig. 2.4. Surface features. A. The canyon of EV-D68 is shallower
and narrower than the canyon of RV-A16. Pentamers are colored
by radial distance (Å) to virus center. B. Structure based sequence
alignments of EVs with known structures. These sequences are of
EV-A71 (species EV-A), CVB3 (species EV-B), PV1 (species EV-C),
EV-D68 (species EV-D), bovine EV (species EV-G), RV-A16 and RV-
A2 (species RV-A), and RV-B14 (species RV-B). The PDB accession
numbers are given above. The secondary structural elements were
based on EV-D68 native structure and the numbering of amino acids
was according to EV-D68 amino acid sequence. This figure was gen-
erated using Espript [402]. Red amino acids on a white background
indicate conservation only in chemical properties. From [2]. Reprinted
with permission from AAAS

The BC and DE loops of VP1 are structurally the most variable among known pi-

cornaviruses. The EV-D68 VP1 has two disordered regions corresponding to residues

80-86 (EV-D68 numbering) in the BC loop and 129-136 in the DE loop, both of

which are near five-fold axes. These regions harbor the neutralizing immunogen sites,

NIm-IA and NIm-IB, on RV-B14, respectively [13]. Thus the flexible immunogenic

regions around the five-fold axes might be an alternative mechanism for evading host

humoral immune responses.

The electron density map of EV-D68 showed density in the VP1 pocket (Fig. 2.5).

The height of this pocket factor density was about 3 standard deviations above the
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mean of the non-crystallographic symmetry averaged map, as compared with about

5 standard deviations of most of the main chain density. As in other enteroviruses

that have a pocket factor, the conformation of the GH loop of VP1, which defines

the interface between the VP1 pocket and the floor of the canyon, is pushed into the

pocket relative to the empty pocket in RV-B14 [13,243] or RV-B3 [20].

Fig. 2.5. The pocket factor. A. One icosahedral asymmetric unit of
the EV-D68 structure, showing the Cα backbone for VP1, VP2, VP3
in blue, green and red, respectively. The pocket factor electron density
outline is shown in grey. B. Enlargement of the pocket factor density
with a fitted putative C10 fatty acid. Shown also are the amino
acids lining the pocket. C. Comparison of the putative pocket factor
structures in six known EV structures. Shown also is the residue I184
in EV-D68 that alters the orientation of the shorter pocket factors in
some of the viruses as compared to others with longer pocket factors
and a smaller residue at the equivalent position of 184. Atoms at
the head of the pocket factors and of the VP1 residue side chains
are colored red (oxygen), dark blue (nitrogen) and yellow (sulfur).
From [2]. Reprinted with permission from AAAS

The length of the pocket factor density in the EV-D68 map corresponded to a

fatty acid with an aliphatic chain of about 10 carbon atoms (Fig. 2.5). Similarly, 12

carbon atom long pocket factors were observed for RV-A16 [17] and RV-A2 [24]. In

contrast, the well-formed pocket factors in PV1 [14,16], CVB3 [18], and EV-A71 [30]

corresponded to longer fatty acids with 18, 16 and 18 carbon atoms, respectively.
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Furthermore, the orientation of the pocket factor tails in EV-D68, RV-A16 and RV-

A2 are slightly different than that of the long pocket factors of EV-A71, PV1 and

CVB3 (Fig. 2.5). The orientation is controlled in part by VP1 residue 184, which

is Leu or Ile for the viruses with small, short pocket factors and Val for viruses with

longer pocket factors. The larger Leu and Ile residues might push the pocket factor

sideways. The similarity between the properties of the pocket factor in EV-D68 and

that in the RVs might partially explain why these viruses are less stable.

These results show that EV-D68 shares considerable structural similarities to the

well-studied rhinoviruses, in particular, members of the species RV-A.
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3. SIALIC ACID DEPENDENT CELL ENTRY OF

HUMAN ENTEROVIRUS D68

Most of the data and text in this chapter are taken from [3] and are highlighted by

a black, vertical line in the right margin below. Macmillan Publishers Ltd: Nature

Communications [3], copyright 2015.

3.1 Chapter Abstract

Human enterovirus D68 (EV-D68) has now emerged as a global public health

threat. Nevertheless, knowledge of the tissue tropism and pathogenesis of EV-D68

has been hindered by a lack of studies on the receptor-mediated EV-D68 entry into

host cells. This chapter shows that cell surface sialic acid is indispensable for EV-

D68 to bind to and infect susceptible cells. Crystal structures of EV-D68 in complex

with sialylated glycan receptor analogues show that they bind into the canyon on the

virus surface. The sialic acid receptor induces a cascade of conformational changes of

the virus to eject a fatty-acid like molecule, which regulates the stability of the virus.

Thus virus binding to a sialic acid receptor and to immunoglobulin-like receptors used

by most other enteroviruses share a conserved mechanism for priming viral uncoating

and facilitating cell entry.

3.2 Introduction

EV-D68 is a causative agent of childhood respiratory infections [385, 401] and

occasionally leads to neurological diseases [387]. Recent outbreaks of EV-D68 indicate

that this virus has now emerged as a global public health threat [383,403]. However,
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the tissue tropism and pathogenesis of EV-D68 is poorly understood. Specifically,

there is a lack of knowledge on the receptor-mediated EV-D68 entry into host cells.

For many EVs, binding of Ig-like receptor molecules to the virus at physiological

temperatures leads to an irreversible conformational switch to an expanded A par-

ticle [105, 106], an intermediate during viral entry. Thus binding of Ig-like receptors

facilitates viral genome release into the cell cytosol for successful replication. Carbo-

hydrate receptors including sialic acid and heparin sulfate have also been identified

as receptors for a number of EVs [159–164, 168, 169]. Nevertheless, it is not known

whether these receptors can also initiate virus uncoating to facilitate virus infection.

EV-D68 belongs to the poorly characterized species EV-D. However it had been

reported that EV-D70, a close relative of EV-D68, utilizes sialic acid as a cellular

receptor [160, 404]. An early report suggested the possible usage of sialic acid as

a receptor by a strain of EV-D68 [405]. Nevertheless, the complete sequence for

its capsid region is currently not available, which limits further studies using this

strain.Furthermore, a glycan array analysis showed that multiple EV-D68 strains can

bind to synthetic glycoproteins with a terminally linked sialic acid [406]. In addition,

sialic acid terminated molecules are widely distributed and abundantly expressed in

the human respiratory tract [407].

3.3 Materials and Methods

3.3.1 Viruses and cells

Human embryonic lung fibroblast (HELF) cells were supplied by M. Steven Ober-

ste at the Centers for Disease Control and Prevention (US). CMAS knockout HAP1

cells were obtained from Haplogen GmbH (Vienna, Austria). RD and HeLa cells were

maintained as described in Chapter 2. HELF cells were maintained in DMEM sup-

plemented with 10% FBS and NEAA. CMAS knockout HAP1 cells, a near-haploid

human cell line that was derived from the human myeloid leukemia cell line KBM7,

were grown in Iscoves Modified Dulbeccos Medium (IMDM, Life Technologies) sup-
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plemented with 10% FBS. Cells were grown at 37°C with 5% CO2 An isolate of

EV-D68 from the 2014 outbreak in the United States, US/MO/14-18947 (GenBank:

AIS73051.1), was also provided by M. Steven Oberste through BEI Resources, Na-

tional Institute of Allergy and Infectious Diseases, National Institute of Health. All

EV-D68 stock was propagated in RD cells and stored at -80°C. Procedures for Virus

growth and purification was the same as that in Chapter 2. Plaque assays were

performed as previously described in Chapter 2.

3.3.2 Crystallization and soaking and data collection

Cubic-looking crystals (about 0.1 mm in each dimension) were grown within 3

days at room temperature using the hanging vapor diffusion technique, as previously

described in Chapter 2. Crystal soaking experiments were performed in a soaking

solution that contains a given concentration of a sialylated trisaccharide in reservoir

solution at room temperature for approximately 8h. The concentration used for 3’-

sialyl-N-acetyl-lactosamine (3’SLN, V-Labs Inc.), 6’-sialyllactose (6’SL, V-Labs Inc.)

and 6’-sialyl-N-acetyl-lactosamine (6’SLN, V-Labs Inc.) were 10 mM, 20 mM and

10 mM, respectively. Crystals were cryo-protected in the aforementioned soaking so-

lution containing glycerol (with gradually increased concentration from 0% to 20%

(v/v)) and then flash-frozen in liquid nitrogen. X-ray diffraction data on single crys-

tals were collected at 100K at beamline 14-BM-C of the Advanced Photon Source.

The detector was an ADSC Q315 CCD. The oscillation angle was 0.2°.

3.3.3 Structure determinations

Procedures for determining all three complex structures were the same, as de-

scribed in Chapter 2. X-ray diffraction data were processed using the program

HKL2000. The space group for all crystals was I222. Calculation of the Matthews co-

efficient indicated that there are two particles present in each unit cell. The particles

must be sitting on 222 symmetry positions. Calculation of a self-rotation function
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differentiated between the two possible 90° related orientations of the particle. The

atomic model of EV-D68 (PDB accession number 4WM8) excluding the pocket fac-

tor and water molecules was employed to calculate initial phases to 8.0 Å resolution.

NCS averaging and phase extension using a step size of 1/a Å-1 were employed to

determine phases up to the resolution limit of the dataset. Roadmaps were generated

using the program RIVEM [408] with the help of Chuan Xiao (University of Texas

at El Paso, US)

3.3.4 Virus infection assays

Each of the three cell lines, HeLa, RD and HELF cells, grown to about 90% con-

fluency in 24-well plates were treated with either 100 mU/ml neuraminidase (NA)

from Clostridium perfringens (Sigma) in DMEM and 1XNEAA (solution A) or solu-

tion A only at 37°C for 1h. Cells were then washed with DMEM once and infected

with the EV-D68 strain Fermon CA62-1. The MOI for HeLa, RD and HELF cells

were 0.3, 0.001 and 0.01, respectively. After absorption at 33°C for 1h, the inoculum

was removed and cells were washed twice with DMEM. Cells were incubated at 33°C

in a medium of DMEM supplemented with 5% FBS and NEAA for 0h, 24h, 48h or

72h post attachment. Samples were collected at each of these time points. These

samples were freeze-thawed multiple times and then subjected to virus titer deter-

mination using plaque assays (as described in Chapter 2). For the EV-D68 strain

US/MO/14-18947, infection experiments on RD cells were performed in the same

way as described above for the Fermon prototype strain. All experiments were done

in at least triplicate.

Experiments concerning virus infection of HAP1 cells were performed by Jim

Baggen and Hendrick Jan Thibaut (Utrecht University, the Netherlands). HAP1 WT

and CMAS-KO cells were seeded in a 96-wells plate at 20000 cells per well. Cells were

treated with NA (from Clostridium perfringens, New England Biolabs) 1:50 diluted in

IMDM for 30 min at 37°C. After NA was removed, EV-D68 (strain Fermon CA62-1)
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was added to the cells at an MOI of 1 and incubated for 1 hour at 37°C. Virus was

removed and NA (or only medium) was added again to the cells. Cells were frozen

immediately (T=0) or 10h after addition of the virus. Virus titers (expressed as

TCID50/ml) were determined by an end-point dilution assay using RD cells at 33°C.

TCID50 (50% Tissue Culture Infectious Dose) is defined as the titer of virus that

results in cytopathic effect in 50% of tissue culture cells that have been inoculated

with virus.

3.3.5 Competition experiments

Cytopathic effect inhibition assays [409] were conducted in the following way. For

each of the three glycans, 6’SL, 6’SLN and 3’SLN, EV-D68 (strain Fermon CA62-1)

diluted in DMEM was incubated with a series of concentrations of glycans ranging

from 0 mM to 4 mM at 33°C for 1h, where 0 mM was designated as the non-treated

virus control. For each given concentration of glycan, a control was performed in

which DMEM was incubated with glycan. The resultant mixture was added into

90% confluent RD cells in each well of a 96-well plate. The MOI was 0.001. After

virus absorption at 33°C for 1h, the inoculum was removed and cells were washed

twice with DMEM. Cells were allowed to be incubated in DMEM supplemented with

5% FBS and NEAA at 33°C for three days, which ensured that almost all cells

became detached in the non-treated virus control. After removal of the medium,

cell viability was assayed using a Quick Cell Proliferation Colorimetric Assay Kit

(BioVision). The optical density for each well was recorded at a wavelength of 450 nm

using a SpectraMax M5 Microplate Reader (Molecular Devices). Percent inhibition

was calculated as (ODcg − ODvg)/(ODc − ODv) × 100, where ODcg and ODvg are

the optical density of the uninfected and infected cell cultures treated with a given

concentration of glycan, respectively. ODc and ODv are the optical density of the

uninfected and infected cells treated with water only but no glycan, respectively. All

experiments were done in triplicate.
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3.3.6 Viral attachment assays

RD cells with approximately 90% confluent in 24-well plates. These were treated

with 100 mU/ml NA in solution A or solution A only at 37 °C for 1h. After washing

with cold DMEM once, each well was treated with 500 µl of DMEM containing

1% bovine serum album (blocking solution) at 4°C for approximately 15 min. The

blocking solution was then removed and purified EV-D68 (strain Fermon CA62-1)

diluted in cold DMEM was added onto cells with an MOI of 10. After incubation at

4°C for 1h, the wells were washed three times with cold DMEM to remove unbound

virus.

Competition assays were performed using purified virus incubated with either

3’SLN or 6’SLN in a series of concentrations ranging from 0-3.2 mM, where 0 mM

represents the virus only control in which virus was incubated with water alone. The

resultant mixture was cooled down on ice and added to about 90% confluent RD cells

in a 24-well plate after each well was blocked with the blocking solution as described

above. The MOI was 10. After incubation at 4 °C for 1h, the wells were washed three

times with cold DMEM to remove unbound virus.

For all virus attachment experiments, the RNA in each well was extracted us-

ing an RNeasy Mini Kit (Qiagen) per manufacturers protocol (RNA extraction was

performed by Ju Sheng). The viral RNA of the bound virus in each sample was quan-

tified using a quantitative real-time RT-PCR protocol. All experiments were done in

triplicate.

3.3.7 Quantitative real-time RT-PCR

Quantitative real-time RT-PCR was performed (together with Ju Sheng) using a

Superscript III Platinum SYBR Green One-step qRT-PCR Kit with ROX (Life Tech-

nologies) on an ABI 7300 real time PCR system. A 25 µl reaction mixture containing

RNA template, SYBR green reaction mix, SuperScript III RT/Platinum Taq Mix,

primers and RNAse-free water was used, where the forward and reverse primers tar-
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geting the EV-D68 5’-untranslated region were EQ-1 (5’-ACATGGTGTGAAGAGT-

CTATTGAGCT-3’) and EQ-2 (5’-CCAAAGTAGTCGGTTCCGC-3’) [410]. The

thermal profile was 50°C for 3min, 95°C for 5min followed by 40 cycles at 95°C for

15s and at 60°C for 30s. Glyceraldehyde-3-phosphate dehydrogenase, a housekeeping

gene, was used as an internal control for normalization purpose. The primers for

GAPDH were 5’-CCCACTCCTCCACCTTTGACG-3’ (forward) and 5’-CACCACC-

CTGTTGCTGTAGCCA-3’ (reverse). The relative levels of EV-D68 RNA in different

samples were determined using a comparative 2−44Ct method [411].

3.4 Results

3.4.1 Identification of sialic acid as a receptor for EV-D68

The possible use of sialic acid as a cellular receptor by EV-D68 was examined

by performing attachment and infectivity assays. Removal of cell surface sialic acid

by neuraminidase (NA) treatment of HeLa cells, human rhabdomyosarcoma (RD)

cells and human lung embryonic fibroblast (HELF) cells was found to significantly

reduced infectivity of the EV-D68 Fermon prototype strain (Fig. 3.1). These results

suggest that sialic acid might be a receptor for EV-D68 in these cell lines. To obtain

further evidence that sialic acid is a functional receptor for EV-D68, human HAP1

cells were used in which the sialic acid activating enzyme cytidine monophosphate N-

acetylneuraminic acid synthase (CMAS) had been knocked out. These cells are devoid

of sialic acids on their surface and had previously been shown to be highly resistant

to influenza A virus infection [412]. It was found that these cells were resistant to

EV-D68 (Fermon strain) infection, further confirming the importance of sialic acid

for EV-D68 infection (Fig. 3.1). Moreover, NA treatment of RD and HELF cells led

to significantly decreased virus attachment (Fig. 3.1).

In view of these results as well as the previous glycan array analysis [407], and

also because N-acetylneuraminic acid (Neu5Ac) is a frequently occurring sialic acid

in humans, the sialylated trisaccharides Neu5Ac2-3Gal1-4GlcNAc (3’SLN), Neu5Ac2-
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6Gal1-4GlcNAc (6’SLN), and Neu5Ac2-6Gal1-4Glc (6’SL) were used as potential re-

ceptor analogues. Preincubation of EV-D68 with these sialylated trisaccharides inhib-

ited viral attachment and prevented killing of RD cells in a concentration-dependent

manner (Fig. 3.1). Therefore, sialic acid has a crucial role in EV-D68 attachment

and infection.

3.4.2 The binding site of sialylated receptor analogues

The crystal structures were determined of EV-D68 when in complex with 3’SLN,

6’SL or 6’SLN. The resolution of these structures ranged from 2.2 to 2.3 Å (Table

3.1). The procedures for the structure determination of these complexes were based

on non-crystallographic symmetry averaging and step-by-step phase extension. All

three receptor analogs were observed to bind near the eastern end of the canyon

(Fig. 3.2). The EV-D68 canyon is unusually shallow and narrow compared to other

picornaviruses that bind Ig-like receptor molecules [2, 183]. In all three structures

the Neu5Ac moiety is well accommodated in a wide crater formed by VP1 and VP3

within the same protomer [13] (Fig. 3.2).

The sialic acid moiety (Neu5Ac) of these ligands is stabilized by a series of in-

teractions provided by the surrounding residues Arg3104, Asp3232, Pro3231, Asn

1275, Pro1274, Arg1270, Asp3091, Arg3095 and Ile3233 (Fig. 3.3) (The EV-D68

amino acid numbering system is based on the Fermon strain amino acid sequence.

Residues in VP1, VP2 and VP3 are defined by adding 1000, 2000 and 3000 to their

sequence number). Thus, like other viral attachment proteins that bind terminal

Neu5Ac [413], EV-D68 makes polar interactions with the carboxylate group and the

acetamido group nitrogen atom of Neu5Ac (Fig. 3.3). The residues that interact with

Neu5Ac in EV-D68 are conserved except for an Arg to Lys change at position 1270

among 51 EV-D68 isolates collected from sources on four continents between 1962 and

2014. These isolates have been classified as belonging to three lineages [383,403,414],

although lineage 1 was the most dominant. It is, therefore, significant that these
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Fig. 3.1. Cell surface sialic acid plays a crucial role in EV-D68
attachment and infection. A-C. Growth curve of EV-D68 in sus-
ceptible cell lines cells. Neuraminidase treatment of susceptible cell
lines inhibits EV-D68 (Fermon) infection. D. HAP1 cells (WT and
CMAS KO) were infected with EV-D68 (Fermon) at an MOI of 1 and
virus titers were determined at 0h (T=0) or 10h post infection. E-F.
Histograms showing virus binding to susceptible cells. P<0.0001 by
Student’s t test. G. Neuraminidase treatment of RD cells inhibits
the infectivity of a current EV-D68 strain (US/MO/14-18947). H.
Preincubation of 6’SL, 6’SLN or 3’SLN with EV-D68 (Fermon) pre-
vents killing of RD cells caused by virus infection. I. Preincubation
of 6’SLN or 3’SLN with EV-D68 (Fermon) inhibits viral attachment
to RD cells. All data are represented as mean±SD. Experiments were
performed at least in triplicate.
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Fig. 3.2. Sialylated receptor analogues bind to the EV-D68
canyon. A. An EV-D68 virus particle in an icosahedral cage (black).
The white triangle represents one icosahedral asymmetric unit. The
surrounding white rectangular outline represents the limits of the fig-
ures shown in B and C. The thick white contour outlines the sum-
mation of five superimposed footprints of Ig-like receptors on the
virus, whereas the thinner white contour represents the consensus
footprint of at least four footprints. The receptors are intercellu-
lar adhension molecule-1 for human rhinovirus 14 [179], human rhi-
novirus 16 [179], and coxsackievirus A21 [28], CD155 for poliovirus
1 [108], and coxsackievirus and adenovirus receptor for coxsackievirus
B3 [182]. Shown also is the footprint of the sialylated trisaccharides
(yellow). The background is a map of the EV-D68 surface residues
colored by polypeptide in A and C or colored by radial distance from
the virus center in B. D. The VP1 GH loop is invariably in the foot-
print of Ig-like receptors used by EVs. Residues in the contact region
are highlighted. Black arrows represent -strands.
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Table 3.1
Data collection and refinement statistics

EV68 – 6’SL EV68 – 6’SLN EV68 – 3’SLN

Data collection

Wavelength (Å) 0.9787 0.9787 0.9787
Oscillation angle (°) 0.2 0.2 0.2

No. of frames 150 170 160
Space group I222 I222 I222

Cell dimensions

a, b, c (Å) 325.6, 347.1, 356.4 325.7, 347.4, 356.5 325.8, 347.2, 356.9
α, β, γ (°) 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0

Resolution (Å) 50-2.32 (2.40-2.32)a 50-2.15 (2.23-2.15) 50-2.15 (2.23-2.15)
Unique reflections 526043 (55652) 803405 (80335) 823936 (84149)
Completeness (%) 61.4 (65.3) 74.6 (75.0) 76.3 (78.3)

Redundancy 1.9 (1.8) 1.8 (1.6) 1.7 (1.6)
Rmergeb 0.175 (0.722) 0.152 (0.865) 0.124 (0.529)
I /σ(I ) 4.16 (1.04) 5.37 (0.89) 6.05 (1.45)

Refinement

Resolution (Å) 50-2.32 (2.40-2.32) 50-2.15 (2.23-2.15) 50-2.15 (2.23-2.15)
No. of reflections 525999 (55490) 802817 (79585) 823388 (84396)

R factor 0.246 (0.333) 0.254 (0.327) 0.244 (0.314)
CCc 0.886 0.922 0.921

No. of atoms 6610 6647 6679
Protein 6296 6303 6317
Ligand 43 46 46
Water 271 298 316

RMSD bond (Å) 0.006 0.006 0.006
RMSD angle (°) 1.378 1.393 1.392

Mean B-factor/Å2 19.3 25.1 20

Ligand B-factor/Å2 51.6 70.6 63.7
Ramachandran plot

Favored (%) 96.1 96.2 95.9
Allowed (%) 3.9 3.7 4.1
Outliers (%) 0 0.1 0

a Values in parentheses represent the highest resolution shell
b Rmerge =

∑
hkl

∑
i |Ii(hkl)− < I(hkl) > |/

∑
hkl

∑
i Ii(hkl)

c Correlation coefficient

residues are also conserved in EV-D70, which is known to bind sialic acid as a cellu-

lar receptor [404]. However, enteroviruses that bind Ig-like molecules in the canyon
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have quite different kinds of residues at the sialic acid binding site of EV-D68 (Table

3.2). In addition, CVA24, which utilizes sialic acid as a receptor [163], also has dif-

ferent kinds of residues at the EV-D68 sialic acid binding site, suggesting that sialic

acid would bind to a different site on CVA24 than on EV-D68. This is consistent

with the fact that Coxsackievirus A24 binds to sialic acid at a site near each five-

fold axis, as shown by a previous study on the structures of CVA24 complexed with

sialic acid or sialylated glycans [32]. Moreover, the infectivity of the EV-D68 strain

(US/MO/14-18947) from the 2014 US outbreak (which has a lysine in position 1270)

was significantly reduced in NA-treated RD cells as compared with non-treated RD

cells (Fig. 3.1), suggesting that sialic acid might be a common receptor for a broad

spectrum of EV-D68 strains.

Fig. 3.3. Binding of sialylated receptor analogues to EV-D68
displaces the pocket factor. A. Superimposition of the amino
acids lining the VP1 hydrophobic pocket in the native structure (light
grey) and the receptor bound complex (green). The pocket factor in
the native structure is colored grey. B. Two protomers of the EV-D68
capsid are represented as Cα backbones with VP1, VP2, and VP3 col-
ored blue, green and red, respectively. The pocket factor (native struc-
ture) and the receptor analogue (receptor bound complex) are colored
grey and cyan, respectively. C. The sialic acid moiety (Neu5Ac) (cyan
carbon atoms) interacts with surrounding amino acids (green carbon
atoms). A water molecule is represented by a red sphere. Dash lines
indicate polar interactions. Oxygen, nitrogen and sulfur atoms in A
and C are colored red, dark blue and yellow, respectively.
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3.4.3 Receptor specificity

Different conformations were observed between the 6’SLN and 3’SLN receptor ana-

logues that might explain why EV-D68 preferentially recognizes sialic acid receptors

with an α-2,6 linkage [406] (Fig. 3.4). These are consistent with the fact that 6’SLN

prevents EV-D68 attachment and inhibits killing of RD cells more efficiently than

does 3’SLN. This suggests that EV-D68 might have a tropism towards the human

upper respiratory tract, where α-2,6 linked sialic acid molecules are more abundant

and the temperature is optimal for EV-D68 growth than in the lower respiratory

tract [401].

The receptor analogues used here are trisacchrides and presumably could be a

component of the glycoconjugate on the authentic receptor that might be a glycopro-

tein or glycolipid. However, a previous glycan array analysis [406] used 3’SLN and

6’SLN covalently linked to bovine serum albumin (BSA) through the GlcNAc moiety.

This analysis found that the Fermon strain has a limited binding affinity for 3’SLN

linked to BSA compared to 6’SLN linked to BSA. In the present study, structures of

EV-D68 complexed with these sialylated glycans showed that 3’SLN adopts a linear

conformation such that it is lying against the eastern rim of the virus canyon (Fig.

3.4). Thus, if 3’SLN linked to BSA were to bind to the same binding site, the virus

would impose a large steric hindrance that would not accommodate the BSA. In con-

trast, 6’SLN (as also 6’SL) adopts a bent conformation such that the GlcNAc moiety,

which is furthest away from the Neu5Ac moiety, is well clear of the virus surface

which, therefore, permits the presence of BSA (Fig. 3.4). Therefore, steric hindrance

might limit the binding of the virus to α-2,3 but not α-2,6 linked sialic acid on the

authentic sialylated receptors.

3.4.4 Sialic acid receptor binding causes the ejection of the pocket factor

The root mean square deviation (r.m.s.d.) between all the equivalent atoms of

the EV-D68 native structure and the EV-D68 bound with any of the three receptor
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Fig. 3.4. Receptor specificity. Receptor analogues 6’SL (A-B),
6’SLN (C-D), and 3’SLN (E-F) are colored using green (carbon), red
(oxygen) and blue (nitrogen). A, C, and E show these compounds
in their NCS averaged difference map densities (3.0σ) all oriented to
place the icosahedral two-fold axis perpendicular to the page. B, D,
and F show their interaction with the virus, oriented to resolve the
projected atoms. Dashed lines indicate polar interactions.
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analogues is about 0.4 Å (Table 3.3). Nearly all main chain atoms that were displaced

by more than four r.m.s.d. were in the loops that form the connecting region between

the sialic acid binding site and the VP1 hydrophobic pocket. The same conforma-

tional changes occurred in each of the three complexes. The conformational changes

included the VP1 GH loop located at the boundary between the VP1 hydrophobic

pocket and the canyon. Similar changes in the VP1 GH loop occur when CD155

binds to poliovirus [108]. In particular, the Cα atom of residue Ile1217 moves 2.2

Å into the pocket (Fig. 3.3). This results in a conformation of the VP1 GH loop

much like that in the RV-B14 structure where no pocket factor is present [13]. Thus

binding of sialylated receptor analogues onto EV-D68 causes a partial collapse of the

pocket, leading to the displacement of the pocket factor (Fig. 3.5). However, in these

sialylated receptor analogue bound structures, the VP4 density is still present and

the particle size is not altered, indicating that sialylated glycan binding of EV-D68 at

room temperature represents an initial event of the viral entry process. In contrast

to the conformational changes that occur when a sialic acid receptor binds into the

canyon, binding of glycan receptors to other binding sites on picornaviruses do not

cause further conformational changes [32,415–417] (Fig. 3.6).

Table 3.3
Root mean square deviationsa between two given structures with or
without a bound receptor analogue

Structure A Structure B Overall 3086-91b 3178-79b 1149-53b 1211-19b

D68-6’SL D68 0.40 1.93 2.28 2.72 1.91
D68-3’SLN D68 0.36 1.78 2.31 2.65 1.81
D68-6’SLN D68 0.35 1.80 2.19 2.24 1.83
D68-6’SL D68-3’SLN 0.10 0.24 0.05 0.21 0.20
D68-6’SL D68-6’SLN 0.11 0.21 0.48 0.48 0.21

D68-3’SLN D68-6’SLN 0.06 0.09 0.33 0.34 0.09
a r.m.s.d. values (Å) were calculated using main chain atoms (N, Cα, C, O).
b Numbered according to the amino acid sequence of the EV-D68 strain Fermon CA 62-1.

The contact region for all three receptor analogues is the VP1 C-terminus, VP3

C-terminus and VP3 CD loop. This site is about 28 Å from the VP1 hydropho-



64

Fig. 3.5. Competition between the sialic acid receptor and
the pocket factor. A. The conformational changes of the virus
when sialylated receptor analogues bind the virus and eject the pocket
factor. Amino acids in the native and in the receptor bound structures
are shown in yellow and cyan, respectively. A water molecule is shown
as a red sphere. Dash lines represent polar interactions. Red arrows
indicate movements of the four loops. B. Enlarged component of
marked region in a shown in a slightly different orientation.

bic pocket in the same protomer and about 30 Å away from the VP1 hydrophobic

pocket in a neighboring protomer (Fig. 3.3). In contrast, all Ig-like molecules interact

directly with the VP1 GH loop in the canyon (Fig. 3.2). Thus, binding of the sia-

lylated receptor analogues displaces the pocket factor through long range structural

rearrangements of the virus. The region connecting the sialic acid receptor bind-

ing site and the VP1 hydrophobic pocket is formed by the VP3 CD loop, the VP3

GH loop, the VP1 EF loop and the VP1 GH loop. These loops undergo the only

significant conformational changes mentioned above (Table 3.3). Thus the signal of

receptor binding must be transmitted to the hydrophobic pocket through the struc-

tural rearrangements of these loops (Fig. 3.5). These conformational changes might

be initiated by charge repulsion between the negatively charged carboxylate group of

Neu5Ac and the main chain carbonyl group of Gln3089. In partial agreement with

this mechanism, two of the five mutations that resulted in the resistance of EV-D70 to
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neuraminidase treatment of HeLa cells occur in the VP1 EF loop and GH loop [418].

Furthermore, the pocket factor was missing and the hydrophobic pocket was collapsed

in A particles of other enteroviruses [212], while three of the four loops mentioned

above undergo dramatic conformational changes during virus expansion to A particle

in the uncoating process [209]. In summary, binding of sialic acid receptor analogues

to EV-D68 ejects the pocket factor and therefore presumably destabilizes the virus

to facilitate viral uncoating.

Fig. 3.6. Comparison of carbohydrate receptor binding sites
on picornaviruses. All known picornaviruscarbohydrate receptor
structures were superimposed. Two adjacent protomers of the EV-
D68 capsid are represented as Cα backbones. The triangle outlines
an icosahedral asymmetric unit of the virus capsid. VP1, VP2, and
VP3 are colored blue, green, and red. Carbohydrate receptors are
shown as sticks. Cyan, Neu5Ac (CVA24 variant, PDB 4Q4X); ma-
genta, 3-sialyllactose (equine rhinitis A virus, PDB 2XBO); yellow,
6’-sialyllactose (EV-D68, PDB 5BNN); dark green, heparan sulfate
(foot-and-mouth disease virus, PDB 1QQP).
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3.5 Discussion

In the present study, a recent clinical isolate of EV-68 (US/MO/14-18947 from

the 2014 US outbreak) was shown to have sialic acid dependency, as is the case for

the prototype Fermon strain and another early strain isolated in the 1970s [405].

Furthermore, RD and HeLa cells were found to be susceptible to infection by both

the Fermon and US/MO/14-18947 strains. In particular, these two strains exhibited

similar growth kinetics when using RD cells (Fig 3.1). Thus the similarities between

these two strains suggest that the results described here might be equally applicable

to at least some of the recent isolates. However, the Fermon strain is likely to have

undergone some changes since its isolation in 1962 due to a lengthy passage history,

which may have changed its receptor binding properties and/or fitness in susceptible

cell lines [419]. Therefore, it is possible that some recent strains may have potentially

altered receptor usage. It is also probable that some recent strains may not replicate

as efficiently as the Fermon strain in cells lines such as RD, HeLa and HELF cells

examined here.

Although EV-D68 mainly causes respiratory infections, some recent isolates were

associated with neurological illness such as acute flaccid myelitis (AFM) [420–425].

These recent clinical isolates are all in the same clade as US/MO/14-18947 isolated

from a patient with respiratory illness but who did not have a neurological disease

[421]. The amino acid sequences of the structural proteins of these isolates share

approximately 99% sequence identity to that of US/MO/14-18947. Furthermore, the

51 strains used for sequence alignment, as mentioned above, include strains that were

associated with neurological diseases. This suggests that these strains might also be

sialic acid dependent, consistent with the fact that most EV-D68 associated AFM

cases had respiratory infections [421].

Complementary to the biochemical and structural data presented here, a recent

report found that host proteins involved in sialic acid biosynthesis, transport, and

conjugation play crucial roles in EV-D68 infection using a haploid genetic screening
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[426]. It was also discovered that three recent strains of EV-D68 did not appear

to depend on cell surface sialic acid for infections [426]. These results suggested

the presence of potential alternative receptors for EV-D68. Ongoing studies have

shown that one of the three strains can use both sialic acid and glycoamineglycans

(particularly heparan sulfate (HS)) as a receptor. The property of binding to HS

has been found to be acquired in the process of virus adaptation to growth in RD

cells (Personal Communications with Jim Baggen). These observations support the

point that sialic acid represents a common receptor for many EV-D68 strains, while

alternative receptors may be utilized by some EV-D68 strains. Nevertheless, sialic

acid is only an essential moiety on the authentic cellular receptor molecules, which

might be sialic acid containing glycoproteins or glycolipids. A glycoprotein, namely

ICAM-5, has recently been identified as a cellular receptor for EV-D68 [427]. Both the

protein component and the sialic acid terminated glycan component of ICAM-5 are

important for ICAM-5 dependent EV-D68 infection. ICAM-5 is specifically expressed

in neurons, which might have some relevance to the pathogenesis of EV-D68.

In summary, the structural and functional analyses showed that sialic acid is a

functional cellular receptor for EV-D68. The prevalence of sialic acid in the human

respiratory tract might allow efficient replication of EV-D68 that leads to human

respiratory infection. Despite chemical and structural differences from the Ig-like re-

ceptors, the sialic acid receptor binds to the virus canyon and causes the expulsion

of the pocket factor, suggesting that the enterovirus canyon is a sensor for recep-

tors. Thus, the canyon transmits signals initiated by receptor binding to release the

pocket factor, regulating the conformational state of EVs from being stable for virus

transmission to being unstable during virus entry.
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4. CRYO ELECTRON MICROSCOPIC ANALYSES OF A

HUMAN RHINOVIRUS C

Most of the data and text in this chapter are taken from [428] and have been high-

lighted by a black, vertical line in the right margin below.

4.1 Chapter Abstract

Isolates of rhinovirus C (RV-C), a recently identified Enterovirus (EV) species,

are the causative agents of severe respiratory infections among children. Moreover,

the RV-C have been linked to 50-85% of hospital-level childhood asthma exacerba-

tions that can lead to significant adult respiratory problems. Nevertheless, there are

currently no effective antiviral treatments or vaccines available. The RV-C have been

refractory to structure determination because they are difficult to propagate in vitro.

This chapter presents the cryo-EM atomic structures of the full virion and native

empty particle (NEP) of RV-C15a. The virus has 60 “fingers, on the virus outer

surface that probably function as dominant immunogens. Since the NEPs also dis-

play these fingers, they may have utility as vaccine candidates. A sequence-conserved

surface depression adjacent to each finger forms a likely binding site for the sialic

acid on its receptor. The RV-C, unlike other EVs, are resistant to capsid-binding

antiviral compounds because the hydrophobic pocket in VP1 is filled with multiple

bulky residues. These results define potential molecular determinants for designing

anti-viral therapeutics and vaccines. This work also provides a common work flow for

cryo-EM structure determination of similar viruses.
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4.2 Introduction

A number of enteroviruses have been structurally characterized by X-ray crystal-

lography [2, 13, 14, 429], establishing the general mechanisms for virus infection and

for the development of effective anti-EV therapeutics. Nevertheless, rhinovirus C

(RV-C), a newly discovered species among the EVs, remains enigmatic.

RV-C viruses (55 types), together with RV-A and RV-B viruses (about 108 types),

are the leading cause of common colds [12]. However, the RV-C might be associated

with more severe respiratory infections among children than any other known rhi-

noviruses [430,431]. In contrast to other RV, the RV-C utilize cadherin related family

member 3 (CDHR3) as a cellular receptor [432]. This childhood asthma susceptibility

gene product is expressed in the human lower respiratory tract [433]. In line with

this etiology, the RV-C cause a significantly higher rate of lower respiratory tract

infections in children than in adults [434] and are directly associated with childhood

asthma exacerbations [431]. Similar to influenza viruses, RV-C infections peak in

winter months [435]. Currently, there are no vaccines or effective antiviral treatments

available.

RV-C isolates have been refractory to structural characterization since their dis-

covery in 2006 [436] because of an inability to infect standard tissue culture (e.g.,

HeLa) [437]. Only modeled structures, based on amino acid sequence comparisons,

have been available to aid biological investigations [437–440]. single-particle cryo-

electron microscopy (cryo-EM) has now emerged as a powerful method for deter-

mining near atomic resolution (better than 4 Å) structures of macromolecular as-

semblies [441]. Cryo-EM requires only limited amount of sample without intensive

purification, offering advantages over X-ray crystallography in structural studies of

samples that are difficult to produce.

This chapter reports atomic cryo-EM structures of the full and native empty par-

ticles (NEP) of the cell-adapted RV-C15a strain. These structures highlight novel

immunogenic surfaces, a probable binding site for the glycosylated CDHR3 receptor
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molecule and the requirements for antiviral compound resistance. The external sur-

face of both types of particles is almost identical. Thus the RV-C NEPs represent

potential vaccine candidates. The present findings also identify targets for designing

anti-RV-C therapeutics.

4.3 Materials and Methods

4.3.1 Growth and purification of RV-C15a

The following experiments were performed by Marchel Hill at the Palmenberg

laboratory (University of Winsconsin - Madison). The seed of RV-C15a was provided

by Yury Bochkov from the same Institute. RV-C15a (adapted) is a virus preparation

derived by serial passage (10x) of recombinant C15 virus (12), in HeLa-E8 cells, a

lentivirus-transduced line expressing the full-length human CDHR3 gene (Tyr529)

linked to a GFP reporter sequence [432]. To produce viruses for structure determi-

nation, HeLa-E8 cells were infected with RV-C15a at 34°C. At 40h post infection

after complete cytopathic effect (CPE) was observed, infected cells (2.4 x 1010) were

supplemented with HEPES (to 50 mM, pH 7.2) and then subject to multiple freeze-

thaw cycles (3x). Clarified supernatants were treated with RNAse A, then concen-

trated by pelleting through 30% sucrose, before resuspension and being assayed for

titer [432, 442]. The procedure gave a sample of RV-C15a at about 1.2 x 1010 PFUe

(by quantitative reverse transcription PCR (qRT-PCR) using HeLa-E8 cells) that

is equivalent to 125 µg RNA-containing, infectious particles, assuming a particle-to-

PFU ratio of 200 PFUe is the PFU-equivalent calculated based on calibrated standard

curves for RV-A16/RV-B14 viruses. .

4.3.2 Characterization of two forms of RV-C15a particles

The following experiments were performed by Kelly Watters from the Palmenberg

laboratory. A sample of RV-C15a, as prepared for structure determination, was sed-
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imented through a 10-40% sucrose gradient (103,600 x g (Beckman SW41 Ti rotor)

for 3h at 4°C). Fractions (1 ml) were collected (from the top) and then probed for

VP2/VP0 content by Western blot analyses using anti-RV-C15-VP2 mouse mono-

clonal antibody, clone No. 517 (kindly provided by MedImmune Inc., Gaithersberg

MD). The fractions were also tested for infectivity according to CPE (38), and for

RNA content by qRT-PCR (8).

4.3.3 Cryo-electron microscopy

Aliquots of 2.8 µL of purified RV-C15a sample were applied onto glow-discharged

holey carbon EM grids (400 mesh, Ted Pella Inc.). Grids were blotted for about

8s at a relative humidity of 80% and then plunge-frozen in liquid ethane cooled

down by liquid nitrogen using a Cryoplunge 3 system (Gatan). Movies of frozen RV-

C15a particles embedded in vitreous ice were collected at liquid nitrogen temperature

using a Titan Krios transmission electron microscope (FEI) operated at 300 kV and

equipped with a Gatan K2 Summit direct electron detector (3838 x 3710 in physical

pixels). All the movies were automatically recorded in super resolution mode using

Leginon [340] at a nominal magnification of 14,000x and with a defocus range of 0.7-

3.5 µm. This resulted in a super resolution pixel size of 1.04 Å/pixel. The dose rate

was approximately 8e-/pixel/s. For each movie, the total electron dose was about

25.7 e-/Å2 that was fractionated into 70 frames with an exposure time of 200 ms per

frame.

4.3.4 Image processing

Cryo-EM data were collected of the RV-15a particles. A total of 2,979 movies were

subjected to whole-frame motion correction using a modified version of MotionCorr

[331] as modified by Wen Jiang (Purdue). This process was integrated into the

Appion data processing pipeline [443]. Aligned frames were subsequently summed to

obtain individual micrographs. Micrographs that had ice contamination or severe drift
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were discarded. The remaining micrographs were used for estimating of the contrast

transfer function (CTF) parameters using CTFFIND3 [444]. For a part of the data set

particles were selected semi-automatically. In this process the program e2boxer.py in

the EMAN2 package [335] picked particles based on several templates (derived from

manually selected particles). The selection was then confirmed by visual inspection,

For the rest of the data set automatic particle selection was accomplished by using

DoG picker [445]. The final number of selected particles was 24,882. Individual

particle images were boxed, extracted and subjected to reference-free 2D classification

into 156 classes using the program Relion [337]. Some of these classes were clearly

composed of full particles, some of empty particles and some were just junk. This

yielded 13,390 full particles and 5,324 empty particles. Particles were re-boxed and re-

extracted from the micrographs using jspr [339,446]. CTF parameters of the particles

from each micrograph were estimated using fitctf2.py [447].

Images of the full particles were divided into two half data subsets. A truly inde-

pendent 3D reconstruction strategy, using the program jspr [339], was applied to each

of the two subsets assuming icosahedral symmetry. For each subset, eightfold binned

particle images (squares of 88 original pixels separated by 1.04 Å were averaged to

represent one pixel with a spacing of 8.32 Å) were used to compute ten initial 3D

reconstructions by assigning random initial angles [316] to each of 150 particle images.

Refinements were performed by searching for the best orientation and particle center

of each particle image relative to the ten current 3D reconstructions. Three of these

structures were selected for further refinement with all the available particle images

in the half subset. After multiple iterations these structures converged to roughly

the same reconstruction. One of these structures was randomly chosen to extend

the refinement with 4-binned, then 2-binned data and finally unbinned data. At this

point, anisotropic magnification distortion remained the major resolution limiting

factor. Ten images of polycrystalline gold particles were taken at a nominal magnifi-

cation of 14,000x in super resolution mode. Fourier transform of these gold particle

images gave powder diffraction like patterns that were used to estimate parameters
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of anisotropic magnification distortion [448]. The estimated degree of distortion and

angle were 2.87% and 31.3°, respectively. These parameters were then employed

to correct anisotropic magnification distortion for individual particle images using

jspr [449]. Subsequent refinement of particle center, orientation, defocus, astigma-

tism, scale and beam tilt using jspr led to the final optimal reconstructions in terms

of resolution. The Fourier shell correlation (FSC) [450, 451] between the half maps

independently calculated from the two subsets was used to monitor convergence. The

FSC can be expressed as

FSC = (
∑
r∈ri

Fo(r)F∗e(r))/

√∑
r∈ri

|Fo(r)|2
∑
r∈ri

|Fe(r)|2 (4.1)

where r is spatial frequency, and Fo(r) and Fe(r) are structure factors of the two half

maps. F∗e(r) is the complex conjugate of Fe(r), and ri represents a shell in Fourier

space. The same procedures were used for determining the 3D structure of the empty

particles. A 2.79 Å resolution map of the full particle was reconstructed using 8,973

particles, and a 3.16 Å resolution map of the empty particle was reconstructed using

3,614 particles. The map resolution was determined based on the FSC between the

two half maps (masked with a soft mask) independently calculated using the two half

data subsets following the 0.143 cut-off criterion [452, 453]. To further validate the

map resolution, phase randomized (beyond 5 Å) data were refined using the same

procedures as were used for the original data that were not phase randomized. A

true FSC curve [454] was calculated using the FSC curve based on the original data

and the FSC curve based on the phase randomized data. The full and empty particle

maps were sharpened [452] using a B factor of -108.6 Å2 and -122.2 Å2, respectively.

The pixel size of the micrographs collected at 14,000x in superresolution mode was

verified in the following way. In essence, a map was calculated the homologous RV-

A16 (or RV-B14) coordinates of the capsid by specifying 2.8 Å resolution. Real space

correlation coefficients were calculated between the resultant RV-A16 map and the

EM map of RV-C15a (full particle) by varying the pixel size of the RV-A16 map
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from 0.94 Å/pixel to 1.14 Å/pixel (with an increment of 0.01 Å/pixel). This was

performed using Chimera [400]. The highest correlation coeffcient was achieved when

the RV-A16 map had a pixel size of 1.04, thus verifying the pixel size of the RV-C15a

electron micrographes.

4.3.5 Model building and refinement

For the full particle structure, a predicted atomic structure of the RV-C15 (13)

(including coordinates for a protomer, VP1-VP4) was manually fitted into a region

of the final EM map that corresponds to one protomer of the capsid using Chimera

[400]. Atomic positions were refined using Phenix [397] in real space. The correlation

coefficient between the final EM map and a map calculated based on the coordinates

was improved in this process. Model statistics including bond lengths, bond angles

and all-atom clash, rotamer statistics, and Ramachandran plot statistics were also

monitored. This was followed by model rebuilding with the program Coot [394]. The

combination of real space refinement in Phenix and model rebuilding in Coot were

repeated multiple times to achieve an optimized fit between the coordinates and the

final EM map. At this point, the coordinates fit well into the densities by visual

inspection.

Next, a mask, which included all grid points within a radius of 5 Å around each

atom, was employed to cut out densities from the final EM map using the CCP4 [398]

program suite. The resultant segment of the final EM map was placed into a pseudo

crystallographic unit cell (P1 space group) and was back transformed into pseudo

structure factors (including both amplitudes and phases). The coordinates were then

subjected to refinement of individual B factors, atom positions and occupancy against

the pseudo structure factors using standard reciprocal space refinement procedures

in Phenix [397]. R factors were monitored during the refinement cycles. Only the

coordinates were refined, whereas the map was kept constant. Subsequently, the

coordinates were refined in real space against the final EM map by applying non-
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crystallographic symmetry (60-fold) constraints using Phenix [397]. Validation of the

final coordinates was based on the criteria of MolProbity [396]. The full particle

atomic model (excluding VP4 and the VP1 N-terminal residues 1101-1160) was used

as a starting atomic model for model building and refinement of the empty particle

structure.

As a further validation of the EM map resolution and of the fitting between the

atomic model and the final EM map, a density map was calculated based on the

atomic model specifying a resolution of 2.79 Å for the full particle structure and 3.16

Å for the empty particle structure. An FSC was computed between the resultant

density map and the final EM map. The resolution determined using 0.5 FSC as

a cut-off was 2.85 Å (full particle) and 3.24 Å (empty particle). Oligomers were

generated using VIPERdb [399]. Figures were made using Chimera [400] and Pymol

(https://www.pymol.org/).

4.4 Results

4.4.1 Production of RV-C15a viruses

Recently, a recombinant RV-C15 virus [437], adapted for tissue culture growth by

serial passage in HeLa-E8 cells [432] (a transduced HeLa cell line expressing CDHR3)

led to new protocols for enhanced virus yields. The derivative, RV-C15a, represents a

cell-adapted, uncloned population. The consensus sequence of this population differs

in the capsid region from that of RV-C15, primarily by a single, high-frequency,

nucleotide polymorphism. The substitution converts residue 1125 from Thr to Lys.

(The numbering convention follows what was described for EV-D68 in Chapter 3.) In

this chapter, an RV-C15a sample, purified only by sucrose cushion sedimentation, was

used for cryo-EM structure analysis. To obtain a minimum of five to six particles per

micrograph, given the high dilution of the sample, data collection was carried out at a

low magnification. Specifically, movies of frozen RV-C15a particles within a thin layer

of vitreous ice were recorded at a nominal magnification of 14,000x using a Gatan
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K2 Summit direct electron detector. However, the trade-off was a low signal-to-noise

ratio and a high anisotropic magnification distortion compared to what would be the

case were high magnifications used for data collection.

4.4.2 Biochemical characterization of two forms of particles

Cryo-EM micrographs of RV-C15a showed the presence of two major forms of par-

ticles. One form lacked density at their centers and another form had density at their

centers (Fig. 4.1). When fractionated on sucrose gradients, these types of particles

separated from each other. One form was full, infectious virions that contained VP1,

VP2, VP3 and VP4 whereas the other form (about 30% of all particles) was native

empty particles (NEP) that had VP1, VP3, and uncleaved VP0, as shown by western

blot analyses using an antibody against VP2 (Fig. 4.1). Unlike the full virions, NEPs

were devoid of viral RNA and had no infectivity to HeLa-E8 cells (Fig. 4.1).

4.4.3 Cryo-EM structure determination

The procedures for cryo-EM structure determination is shown in Fig. 4.2. In

essence, images of full and empty particles were separated by reference-free 2D clas-

sification using the program Relion [337]. A truly independent procedure of 3D re-

construction was employed to avoid overfitting to noise [339, 446]. Essentially, ini-

tial model calculations, low resolution refinements and high resolution refinements

were performed independently for each of the two half-data subsets. Parameters

of anisotropic magnification distortion, a major resolution limiting factor for large

assemblies (e.g., viruses), were estimated using powder diffraction patterns of poly-

crystalline gold particles [448]. The resultant parameters were used in the program

jspr for correcting anisotropic magnification distortion on individual particles [449]

(Fig. 4.3). Refinements of particle center, orientation, defocus, astigmatism, scale,

and beam tilt resulted in icosahedral reconstructions of 8,973 full particles and 3,614

empty particles at 2.8 Å and 3.2 Å resolution, respectively (Table 4.1 and Fig. 4.4).
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Fig. 4.1. Characterizations of two forms of RV-C15a particles.
A. A typical region of a cryo-EM micrograph shows the presence of
full and empty RV-C15a particles. The micrograph was recorded at
a defocus of 3.1 µm. It was four-fold binned and low passed to 15 Å
resolution for better visualization. The scale bar indicates 100 nm.
A sample of RV-C15a was sedimented through a sucrose gradient.
Fractions (1 ml) were collected (from the top) and then probed for
VP2/VP0 content by Western blot analyses (B) using mouse anti-RV-
C15-VP2. These fractions were also tested for infectivity according
to cytopathic effect (C), and for RNA content by qRT-PCR (C)

The resolution of the maps was estimated by calculating the Fourier shell correlation

between the two half maps, using 0.143 as a cut-off [452] (Fig. 4.5).
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Fig. 4.2. Workflow of cryo-EM structure determination in
the current thesis. Heterogeneity analysis refers to classification
of experimental EM images based on similarity at the level of 2D
image or at the level of 3D reconstruction [455]. The assumption is
that all datasets show a certain degree of particle heterogeneity. This
process allows for “virtual” purification of a heterogeneous particle
population to yield homogeneous subpopulations of particles. These
subpopulations are then treated as independent particle sets in the
following image processing procedures. Included in typical high res-
olution refinements are parameters for particle center, particle ori-
entation, astigmatism, defocus, scale, and anisotropic magnification
distortion.

4.4.4 RV-C15a has a spiky structure

The structure of the RV-C15a full particle has 60 dominant spike-like protrusions,

or fingers, on the outer surface of the virion (Fig. 4.6). In contrast, all other EV

structures have smoother, spherical surfaces (Fig. 4.6). Each RV-C15a finger, located

at the juncture between VP1, VP2 and VP3 that form a protomer, is formed by the

VP1 C-terminal residues 1252-1265 as well as residues 2136-2138 and 2160-2165 that
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Fig. 4.3. Anisotropic magnification distortion is a major reso-
lution limiting factor. Resolution of EM reconstructions was esti-
mated using FSC (0.143 as a cut-off) between two independent half-
maps. Shown are FSC curves for reconstructions that were computed
by varying parameters during refinement process. All parameters refer
to a combination of those for for particle orientation, particle center,
defocus, scale, astigmatism, beam tilt, and anisotropic magnification
distortion (or aniso in short). Red: only parameters for particle ori-
entation and center were included; green: all parameters but no aniso
were included; blue and black: all parameters were included, where
aniso was determined computationally by matching projections of a
3D EM reconstruction with experimental particle images (blue) or
experimentally (black) using polycrystalline gold particles.

form part of the VP2 EF loop (Fig. 4.6). The quality of the density for the finger

is not as good as is typical for the rest of the virus, presumably because this density

is on the periphery of the virus. It is noteworthy that residues 2160-2165 are highly

variable among alignments of RV-C sequences [439]. This segment corresponds to the

neutralizing immunogenic site NIm-II on the RV-B14 structure [13, 439]. The VP1

contribution to the finger, residues 1252-1265, is an RV-C-specific insertion. This

region, is also conserved in length but not in sequence among all members of the

RV-C (Fig. 4.7).
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Table 4.1
Data collection and refinement statistics

RV-C15a full RV-C15a empty

Data collection and processing
Microscope Titan Krios Titan Krios

Accelerating voltage (kV) 300 300
Camera Gatan K2 Summit Gatan K2 Summit

Pixel sizea (Å/pixel) 1.04 1.04
Dose rate (e-/pixel/s) 8 8

Total dose (e-/Å2) 25.7 25.7
Particle No. for final reconstruction 8973 3614

Resolutionb (Å) 2.79 3.16

Map sharpening B factor (Å2) -108.6 -122.2
Model Statistics

Correlation coefficient (around atoms)c 0.885 0.88
Number of atoms

Protein 6221 6007
Water 60 0

Avg. B-factor (Å2) 24.1 31.7
r.m.s deviationsd

Bond lengths (Å) 0.01 0.01
Bond angles (°) 0.96 0.944

Ramachadran plotd

Favored (%) 93.4 92
Allowed (%) 6.5 7.6
Outliers (%) 0.1 0.4

a Pixel size in super resolution mode. The physical pixel size is 2.08 Å/pixel
b Resolution was determined by Fourier shell correlation between two half-maps using 0.143 as a
cut-off.
c Real space correlation coefficient (around atoms) between final EM map and a density map
calculated based on the coordinates.
d Based on the criteria of Molprobity

Because of relatively large deletions (21-35 residues) in parts of the VP1 BC, DE

and HI loops, the RV-C15a structure lacks a protruding plateau around each of the

5-fold vertices, a characteristic feature of other EV (Fig. 4.6). Thus the RV-C do not

have the analogous surface mass near the 5-fold vertices to form immunogenic sites

equivalent to NIm-IA (VP1 BC loop) and NIm-IB (VP1 DE loop) on RV-B14 [13].

Instead, the finger regions, as mentioned above, probably function as the dominant
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Fig. 4.4. Typical densities of the full (A-C) and empty (D-F)
particle EM maps.

antigenic sites [439]. As another consequence of these finger regions, the RV-C15a

particles have narrow, non-continuous canyons, much like the surface of EV-D68, a

virus that also causes respiratory illnesses [2, 456]. In each icosahedral asymmetric

unit, the C-proximal, RV-C15a VP1 insertion helps create a wall-like feature block-

ing the eastern end of the canyon (defined with respect to the usual orientation of

picornaviruses used in most figures) (Fig. 4.6).
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Fig. 4.5. The resolution of the empty (A) and full (B) parti-
cle maps is estimated based on FSC. The FSC curves between
two half subset maps calculated using the original images (Gold stan-
dard FSC) and using phase randomized (beyond 5 Å) images (Phase
randomization) are colored red and blue. True FSC curves are col-
ored black. The FSC curves between the final EM map and a density
map computed based on the modeled atomic coordinates were colored
green.
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Fig. 4.6. The spiky structure of RV-C15a. A 10 Å resolution den-
sity map of RV-B14 (PDB 4RHV) (A) and RV-C15a (B) calculated
based on the respective coordinates is colored by radial distance (Å)
to the virus center. A black triangle indicates an icosahedral asym-
metric unit on each of the two viruses. A rectangle (black dash line)
outlines the limit of a close up view of a finger in (C). Residues that
form the finger region, which are fitted into the EM map densities
(grey), are shown as Cα backbones and colored blue (VP1) and green
(VP2).

4.4.5 A sequence conserved depression could bind glycosylated CDHR3

Sialic acid is the glycan moiety recognized by EV-D68 when it interacts with its

cellular receptor [3]. Superposition of EV-D68 structure complexed with sialic acid

(Fig. 4.8) onto the structure of RV-C15a showed that the region near the eastern

end of the RV-C15a canyon has a similar surface electrostatic potential as the sialic

acid binding site on EV-D68 (Fig. 4.8). In the EV-D68, sialic acid can be bound

mainly by the Pro3231 carbonyl group and by the Arg3104 guanidinium group (Fig.

4.8). In RV-C15a, potentially those interactions would be replaced by the structurally

equivalent carbonyl group of Pro3226 and by the side chain amino group of Lys1271,

respectively (Fig. 4.8). Some of the nearby surface residues contributing to this region

are conserved among all RV-C (Fig. 4.7), and it is clear that the overall topography

could readily accommodate a sialic acid ligand. Therefore, this region, close to the



84

Fig. 4.7. Sequence conservation of outer surface amino acid
residues. A surface representation of a pentamer of the RV-C15a
capsid is colored by radial distance (Å) to the virus center (A) or by
conservation of amino acid sequences (B) among 33 types of RV-C
virus. A total of 67 sequences of RV-C viruses for which the complete
sequence of P1 region is available are used in sequence alignment.
Shown in the color key is the occurrence (%) of the most popular
residue at a given alignment position among the 67 sequences. A
surface representation of two protomers (C) is colored by conservation
of amino acid sequences. A black rectangle (dash line) outlines the
limit of a close-up view of the potential sialic acid (yellow) binding
site shown in (D).

base of each finger in the RV-C15a structure, is a likely binding site for a CDHR3

glycan. Consistent with this prediction, mutation of Asn186 a key glycosylation site
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on CDHR3, impairs RV-C15 binding to receptor-expressing cells [432]. Therefore,

glycans must play an important role in RV-C receptor interactions, as they do also

for EV-D68.

Fig. 4.8. A potential binding site for glycans on CDHR3. A.
A triangle indicates an icosahedral asymmetric unit. A red rectangle
(dash line) outlines the limit of the sialic acid binding site. Surface
electrostatic potential of EV-D68 (PDB 5BNO) (B) and RV-C15a
(C) is represented with a scale of -8kT/e (red) to 8kT/e (blue). D-E.
The sialic acid (yellow) interacts with surrounding residues on EV-
D68 (green) and as anticipated on RV-C15a (cyan). Red dash lines
indicate (potential) polar interactions. Oxygen and nitrogen atoms
are colored red and blue, respectively.

4.4.6 The hydrophobic pocket is unsuitable for capsid binding agents

Capsid-binding reagents that replace the pocket factor within VP1 are effective

antiviral therapeutics against many EV [457], but not RV-C [438]. Unlike many



86

EV structures the hydrophobic pocket within the VP1 jelly roll fold, where a pocket

factor is typically bound [2,16,429], is collapsed in RV-C15a (Fig. 4.9). The collapsed

structure is similar to the empty pockets found in purified RV-B14 [13] and RV-

B3 [20]. None of these three structures have sufficient space to accommodate a fatty-

acid pocket factor, because for each, the VP1 GH loop, located at the boundary

between the canyon and the entrance to the VP1 pocket, is in a conformation that

squeezes the pocket. Nevertheless, in RV-B3 and RV-B14, the flexibility of the VP1

GH loop allows enlargement of the pocket that then can bind antiviral reagents. The

RV-B14 pocket is lined with multiple small residues (e.g., Ala, Ser, Val, etc) that can

accommodate such compounds. In contrast, the collapsed RV-C15a VP1 pocket is

filled with bulky, hydrophobic residues (in particular, Trp1080, Phe1096, Met1116,

and Met1180) (Fig. 4.9 and Table 4.2). These amino acids are conserved in almost

all RV-C (14). Additionally, Ile1198 and Tyr1246 partially block the entrance to the

VP1 pocket. Therefore, as has been observed experimentally [438], no RV-C are likely

to be responsive to antiviral therapies based on pocket-binding compounds.

4.4.7 Comparison of the Full and Empty Particle Structures

RV-C15a full and empty particles differed mainly in regions on the inner surfaces

of their capsid shells (Fig. 4.10). In particular, the VP1 N-terminal residues 1017-

1053 are well-ordered in the full particle map, but disordered in the empty particle

map. This is consistent with other EV structures where the VP1 N-terminus is

involved in binding to viral RNA [16] and is externalized prior to ejecting the genome

during infection [114]. Thus the specific configuration of this internal region is RNA-

dependent and is likely to exert strong influence on VP0 cleavage when the RNA is

packaged [63]. In the empty particles, VP0 residues 4024-4050 form a hairpin loop

positioning the VP0 cleavage site in close proximity to His2191 (Fig. 4.10), a crucial

residue in the cleavage mechanism [64]. Nearby VP1 residues 1054-1064 interact with

the VP0 hairpin within the same protomer, presumably helping to set up the pending
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Fig. 4.9. RV-C15a has a collapsed VP1 hydrophobic pocket.
RV-A16 (A) and RV-C15a (B) are colored by polypeptides: VP1
(blue), VP2 (green), and VP3 (red). The volume of the VP1
hydrophobic pocket, calculated using Pymol, is colored gold. C.
Residues lining the VP1 pocket of RV-C15a clash with pleconaril
when superimposing the structures of RV-C15a and RV-B14 com-
plexed with pleconaril. The VP1 GH loop (yellow) of RV-B14 is
shown as Cα backbones, which adopts a conformation that can ac-
commodate pleconaril. Red dash lines indicate a distance of closer
than 2.5 Å between a given atom of a RV-C15 residue (green) and a
given atom of pleconaril (yellow). Oxygen, nitrogen and sulfur atoms
are colored red, dark blue and dark yellow, respectively.

cleavage reaction. However, in the full particle structure, the VP1 N-terminal residues

1027-1053 (disordered in the empty particles) interact with the C-terminus of VP4

within the same protomer and participates in viral RNA binding (Fig. 4.10).

4.5 Discussion

The cryo-EM structure of RV-C15a showed a collapsed hydrophobic pocket in

VP1 that is filled with multiple bulky residues that inhibit the entrance of compounds

which inhibit other EV by binding into the VP1 pocket. This is reminiscent of the

collapsed pockets of non-EV picornaviruses, such as foot-and-mouth disease virus

(genus Aphthovirus) [286] and Mengovirus (genus Cardiovirus) [458]. Those pockets
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Fig. 4.10. The full and empty RV-C15a particle structures
differ in regions at the capsid interior. The VP1 N-terminus and
VP4 undergo structural rearrangements when the empty particle (A)
and full particle (B) structures are compared. Amino acid residues
are shown as Cα backbones. VP4, VP2, and VP1 are colored orange,
green and blue, respectively. In the RV-C15a full particle structure,
His1030, together with a conserved residue Trp2038 shared by many
EV, are involved in forming an RNA binding site [16,18,20].

are similarly occupied by multiple bulky, hydrophobic side chains and are unable to

serve as drug targets.

Inclusion of large hydrophobic residues into the VP1 pocket of RV-Cs and incor-

poration of a fatty-acid like pocket factor into the VP1 pocket of many other EVs

produce similar hydrophobic effects that favor the folding of the VP1 jelly roll β bar-

rel. On one hand large hydrophobic residues (e.g., Phe, Trp, Met) are more effective

than small residues (e.g., Val, Ala) at reducing solvent accessible surface areas in

the pocket. Likewise, a pocket factor with a long hydrophobic tail (more than eight

carbon atoms) plays a crucial role in expelling water out of the VP1 pocket of many

EVs that contain multiple small residues. On the other hand, the presence of large

hydrophobic side chains or a pocket factor in a VP1 pocket keeps the two sheets

(one with strands C, H, E, F and the other with strands B, I, D, G) in a favorable
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distance for forming a barrel and offers hydrophobic interactions that stabilize the

jelly roll fold.

Concerning enteroviruses (e.g., EV-A71 and RV-A2) that have a pocket factor

bound in the VP1 pocket in the native form, a collapsed VP1 pocket is formed

when these viruses are converted into uncoating intermediates, including A(altered)-

particle [212] and emptied particle [31,238]. In this process, the VP1 GH loop changes

its conformation, whereas other residues lining the pocket remain nearly unchanged.

Specifically, the VP1 GH loop moves into and squeezes the pocket, adopting a con-

formation that resembles that in the RV-C15a, RV-B3, and RV-B14 structures. It

is thus probable that the collapsed pocket in RV-C15a, RV-B3 and RV-B14 might

facilitate virus uncoating. These viruses might undergo particle expansion to become

A-particles where pores are formed in the capsid, as was previously described for

other EV [209,212].

The large interior rearrangements characterizing the full and the native empty

particles of RV-C15a, contrast with the conserved external surfaces. Both particle

types have the same diameter, and display the same finger protrusions, truncated

5-fold vertices, and putative glycan binding regions. Presently, it is not clear whether

the observed high proportion (about 30%) of empty particles is a property of all RV-C,

or unique only to RV-C15a. Possibly the RV-C species use these native empty particles

as immunogenic molecular decoys during infections, or they are merely byproducts of

the assembly process [48].

The published atomic models of RV-C [439, 440] predicted the loss of VP1 mass

at the five-fold vertices, relative to the crystal structures of other RV virions. The

more rigorous one of these models [438] also predicted steric impediments in the VP1

pockets as the cause of drug binding failures. However, although the overall r.m.s.d.

between equivalent Cα atoms of this predicted model and the present cryo-EM struc-

ture was about 1.3 Å, none of the bioinformatics-derived information correctly pro-

jected the finger-like features which dominate the particle surface. The relative VP1

insertion contributing to each protrusion is unique to the RV-C.
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The atomic structures of an RV-C virus, as reported here, show novel molec-

ular targets for designing anti-RV-C therapeutics. Furthermore the non-infectious

empty particles may have potential as vaccine candidates. These possibilities have

clinical relevance since many RV-C, including RV-C15, are associated with severe,

hospitalization-category infections in young children [431, 459], especially those with

asthma, and can also lead to significant adult respiratory problems, including chronic

obstructive pulmonary disease.
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5. ACID INDUCED STRUCTURAL CHANGES OF

HUMAN ENTEROVIRUS D68

The data and text in this chapter are part of a manuscript in preparation.

5.1 Chapter Abstract

Enterovirus D68 (EV-D68) mainly causes respiratory infections and is sensitive

to acid, much like rhinoviruses. The molecular basis of the acid sensitivity of EV-

D68 has not been studied. This chapter presents a 2.3 Å resolution cryo-electron

microscopy (cryo-EM) structure of a current strain of EV-D68. The structure shows

that the pocket factors is absent and that the VP1 hydrophobic pocket is partially

collapsed. This structural feature correlates with a low stability of EV-D68 under

acidic conditions, a characteristic that facilitates viral RNA release into host cells for

virus replication. Furthermore, the structure of an uncoating intermediate of EV-D68,

which was formed at late-endosomal pH (pH 5.5), has been determined to about 3.0

Å resolution. Acid treatment of EV-D68 leads to particle expansion and formation of

pores at two-fold axes through which the viral RNA might exit. Finally, as a result

of the low stability of the virus, cryo-EM analyses using a single specimen of EV-D68

at neutral pH show six distinct structural states of the capsid. These states differ

mainly in particle size and in regions at the capsid interior. Thus these results provide

the structural basis for understanding the uncoating process of EV-D68 and related

viruses.
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5.2 Introduction

Human enterovirus D68 (EV-D68) mainly causes respiratory infections [456]. The

optimum growth temperature of EV-D68 is 33°C, which is the temperature of the

human upper respiratory tract [401]. Furthermore, EV-D68 is sensitive to acid. These

are common biological characteristics shared by rhinoviruses (viruses from the species

RV-A , RV-B, and RV-C) but not by viruses from the species EV-A, EV-B and

EV-C [4]. Rhinoviruses primarily infect the human upper respiratory tract and are

transmitted through respiratory route. However, viruses from the species EV-A, EV-

B and EV-C, as exemplified by polioviruses, are transmitted through fecal-oral route

and need to be sufficiently stable to thrive in the acidic environment of the human

gastrointestinal tract [4].

Acid lability (virus instability at pH <6) has been explored as a potential anti-

rhinovirus therapeutic target [460], because acid treatment of rhinoviruses resulted in

partial or nearly complete loss of viral infectivity [461]. In the cases of RV-A2, RV-B3,

and RV-B14, early studies demonstrated that in vitro incubation of the virus at pH

5 led to the production of two different forms of subviral particles that had slower

sedimentation rates than native virions (150S) [106, 461]. The two forms exhibited

characteristics of what were later known as A-particles (135S) and emptied particles

(80S) [204, 205, 219, 229, 238], respectively. In essence, A-particles, which still retain

viral genome, are featured by externalization of VP1 N-terminal residues and by loss

of VP4 [205, 209, 212, 213]. Emptied particles have similar capsid structure but are

void of viral genome [31,205,238]. Crystallographic studies of RV-B14 crystals treated

immediately with acidic buffer showed that the VP1 GH loops, residues around the

five-fold cation sites, and the VP3 N-terminal regions became disordered [462], as

compared to the native virion structure. These acid induced structural changes were

proposed to facilitate release of VP4 [462]. Furthermore, in vitro treatment of RV-A2

at pH 5.6, which is close to the late endosome pH, led to the formation of A-particles

as characterized by X-ray crystallography [205]. This is consistent with the fact
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that endosomal acidification is important for successful cell entry of a number of

RVs [197, 463]. Comparison of the native RV-A2 structure and the 6.0 Å resolution

crystal structure of RV-A2 A-particle showed that the viral RNA loses contacts with

the VP1 N-terminus in A-particles and might form an ordered layer beneath the capsid

shell [205]. These results suggested a mechanism where global structural changes of

the virus are induced by acid. Given the structural similarity of EV-D68 to a number

of rhinoviruses, it is hypothesized that acid triggers EV-D68 uncoating.

This chapter characterizes structural changes of EV-D68 that are associated with

virus uncoating by cryo-EM analyses. The molecular basis of the acid lability of

EV-D68 (as also rhinoviruses) is also discussed.

5.3 Materials and Methods

5.3.1 Viruses and cells

EV-A71 (strain MY104-9-SAR-97, GenBank ABC69262.1) was provided by Jane

Cardosa (Universiti Malaysia Sarawak, Malaysia). In addition to the aforementioned

EV-D68 strain US/MO/14-18947, another isolate of EV-D68 from the 2014 outbreak

in the United States, US/KY/14-18953 (GenBank: AIS73057.1), was provided by M.

Steven Oberste through BEI Resources, National Institute of Allergy and Infectious

Diseases, National Institute of Health. Procedures for maintaining HeLa and RD cells

and for producing virus stocks have been described in earlier chapters.

5.3.2 Virus Growth and Purification

A sample (Prep A) for structure determination of full EV-D68 virion (strain

US/MO/14-18947) to 2.3 Å resolution was prepared as described in Chapter 2 with

slight modifications. After the crude virus sample was sedimented through a potas-

sium tartrate density gradient, a band in the middle of the tube was extracted and

subjected to buffer exchange. The resultant sample was further purified using an
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iodixanol (OptiPrep from Sigma) density gradient (10% - 51% (v/v) in 250 mM

HEPES, 250 mM NaCl, pH 7.5 (buffer A)) at 175274 x g (SW 41 Ti rotor) for 2h at

4°C. Electron micrographs of the final sample verified the presence of more than 95%

full particles. The sample was stored at 4°C.

A virus preparation (Prep B) that contained a heterogeneous population of EV-

D68 particles was used for structural studies at both neutral pH and acidic pH.

Briefly, RD cells were infected with EV-D68 (strain US/MO/14-18947) at an MOI

of about 0.01. Cells and supernantant were harvested at 3 days post infection and

were then separated by centrifugation. Cell pellets were subjected to multiple cycles

of freeze-and-thaw, and were centrifuged to remove cell debris. Polyethylene glycol

8000 (PEG8000) (40% w/v stock solution) and NaCl (powder) were added into the

original supernatants (after infection) to reach a final concentration of 8% PEG8000

and about 500 mM of NaCl. After low speed agitation at 4°C for about 6h, the

mixture was spun down. The resultant white pellets were resuspended in buffer A,

which was combined with the previous supernantant from the step concerning cell

pellets. All supernatant was centrifuged using a Ti 50.2 rotor at 277,937 x g for 2h

at 4°C. The resultant pellets were resuspended in buffer A and treated sequentially

as follows: 1) add 5 mM (final concentration throughout the treatments) MgCl2; 2)

add 10 µg/ml DNAse; 3) add 7.5 mg/ml RNase and leave at room temperature for 30

min; 4) add 0.8 mg/ml trypsin and incubate at 35°C for 10 min; 5) add 15mM EDTA;

6) add stock n-lauryl-Sarcosine (10%, w/v, in buffer A) to reach a final concentration

of 1% (w/v). Pellets were resuspended in buffer A and then purified through an

iodixanol density gradient mentioned above. The sample was stored at 4°C.

5.3.3 Infectivity Assay

Four different viruses were used, including the acid resistant EV-A71, the acid

labile EV-D68 strain Fermon CA62-1, and two EV-D68 isolates (US/MO/14-18947

and US/KY/14-18953) from the 2014 US outbreak. Purified viruses were treated
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with phosphate-citrate buffer (100 mM Na2HPO4 and 50 mM citric acid) at pH 4, 5,

6, or 7.2 at 33°C for about 40 min. The resultant samples were neutralized back to

about 7.2 using phosphate-citrate buffer (400 mM Na2HPO4 and 200 mM citric acid,

pH 7.3) before being assayed for viral titers using a plaque assay (Chapter 2).

5.3.4 Cryo Electron Microscopy

About 2.8 µl of virus sample was applied onto a 400 mesh continuous carbon grid.

Immediately after blotting for about 8s, the grid was vitrified in liquid ethane that

was pre-cooled by liquid nitrogen. Frozen particles within a thin layer of vitreous ice

were imaged with a Gatan K2 Summit direct electron detector using a Titan Krios

TEM (300 kV). All samples for EM data collection were of strain US/MO/14-18947.

The dose rate was kept at approximately 8e-/pixel/s for collecting all data, as will

be described below. For structure determination of native full virions using Prep A,

data (dataset A Native) were collected at a nominal magnification of 22,500x in super

resolution mode with defocus values ranging from 0.3 to 3.0 µm. A total electron dose

of about 36 e-/Å2 was fractionated into 38 frames (200ms/frame). For initial low pH

studies using Prep B, viruses were treated with phosphate-citrate buffer (100 mM

Na2HPO4 and 50 mM citric acid) to reach a final pH of 5.5 (dataset B RT Acid)

or a pH of 7.2 (dataset B RT Neu), followed by incubation at room temperature

for 20 min and subsequently neutralization with 400 mM Na2HPO4 and 200 mM

citric acid (pH 7.8). Data were collected at a nominal magnification of 22,500x in

super resolution mode. The defocus range for datasets B RT Acid (144 micrographs)

and B RT Neu (87 micrographs) were 0.9-4.8 µm and 1.3-3.6 µm, respectively. For

dataset B RT Acid, a total electron dose of about 28 e-/Å2 was fractionated into 30

frames (200ms/frame). For dataset B RT Neu, a total electron dose of about 25 e-/Å2

was fractionated into 27 frames (200ms/frame). For low pH studies using Prep B to

mimic conditions during virus infection, viruses were treated at pH 5.5 similarly to

the aforementioned procedure except that the incubation temperature was at 33°C.
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Data (dataset B 33 Acid) were collected at a nominal magnification of 22,500x with

defocus values ranging from 0.5 to 3.5 µm. A total electron dose of about 38 e-/Å2

was fractionated into 40 frames (200ms/frame). For analyzing the heterogeneous

particle population of Prep B (stored at 4°C) at neutral pH, data (dataset B 4 Neu)

were collected at a nominal magnification of 18,000x in electron counting mode with

defocus values ranging from 1.7 to 5.3 µm. A total electron dose of about 45 e-/Å2

was fractionated into 60 frames (250ms/frame).

5.3.5 Image Processing

Procedures for image processing were similar to what had been described for

RV-C15a (Chapter 4). In essence, concerning all datasets, movie frames were sub-

jected to motion correction using a modified version of MOTIONCORR [331] (Wen

Jiang). The aligned frames were summed up to produce individual micrographs,

which were used to determine parameters of contrast transfer function (CTF) using

CTFFIND3 [444]. For some datasets, virus particles were picked up from the micro-

graphs manually using e2boxer.py in the EMAN2 program package [335]. For some

datasets, particle selection was performed first manually using e2boxer.py and subse-

quently automatically using the program DogPicker [445] based on templates derived

from manually selected particles. Particles were subsequently boxed and extracted

from the micrographs. The process was integrated into the Appion data processing

pipeline [443]. The resultant particle images were subjected to two dimensional (2D)

classification using the program Relion [337]. which identified and removed some low

quality particles and separated images of full particles from those of empty particles.

The following reconstruction procedures were employed for all datasets except

for dataset B 4 Neu using the program jspr [339, 446]. In brief, particle images (8x

binned, with a pixel size of 5.20 Å/pixel) were divided into two halves. As described

in Chapter 4, for each half, a random initial model approach, specifying icosahedral

symmetry, was employed to generate multiple initial three dimensional (3D) models,
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from which a suitable initial model was selected. The best particle orientation and

center of each particle image was searched with respect to projections of the initial

reference model. The reference model for the next iteration was reconstructed from

particle images employing parameters for orientation and center determined in the

current iteration. The refinement procedure was then extended to 4x binned and then

2x binned data. Specifically, for dataset A Neu 2.3, the procedure was extended to

unbinned data. At this point, individual particles images were subjected to correc-

tion of anisotropic magnification distortion using the program jspr, which was done

with experimentally determined distortion parameters [449]. Subsequently, multi-

ple parameters were then included in the refinement process, which were parameters

for particle orientation, particle center, beam tilt, defocus, scale, astigmatism. To

achieve 3D reconstructions with the highest possible resolution, particle images were

re-extracted from micrographs that were generated by averaging aligned frames 3-16.

In this way, frames that underwent large motions and that contained limited high

resolution information due to radiation damage were discarded. Frames 3-16 were

selected using a trial-and-error approach where different combinations were tested,

including frames 3-9, 3-16, 3-23, and 3-30. Fourier shell correlation (FSC) of two

interdependently calculated half-maps (after masked with a soft mask) was used to

estimate the resolution of the final EM maps [452, 453]. The maps were sharpened

using a negative B-factor for better visualization during model building [452].

The following procedures were done for dataset B 4 Neu. After 2D classification

of all particle images in the dataset, the resultant full particle images (4x binned, 6.48

Å/pixel) were used to generate initial three dimensional (3D) models, from which a

suitable initial model was selected. The refinement process was performed using a

projection matching approach as what was described above. After multiple iterative

cycles when the process converged, the resultant 3D model was essentially an average

of all possible structural states present in the collection of full particle images. The

model was low pass filtered to 60 Å resolution and then utilized as a reference model

for 3D classification of full particle images (4x binned) using the program Relion [337],
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where the number of classes was 4 and where icosahedral symmetry was imposed.

Particle images from two of the resultant four classes yielded 3D reconstructions that

were nearly identical to each other by visual inspection. Thus, particle images from

the two classes were combined into one class. The same process was also applied to

images of empty particles. Hence, all particle images in the dataset were classified

into a total of six classes (three for full particles and three for empty particles), which

represented six different structural states. Procedures for cryo-EM structure deter-

minations were the same when using each class of particle images, as were detailed

in the last paragraph.

5.3.6 Model Building and Refinement

Procedures for model building and refinement were essentially the same as what

had been done for the RV-C15a structure (Chapter 4). The same procedures were

employed for all atomic structures presented in this chapter. In brief, the coordinates

of Fermon strain excluding the pocket factor and water molecules (PDB accession

number 4WM8) were used as a starting atomic model. It was manually fit into the

EM map using Chimera [400]. Then multiple cycles of model rebuilding in Coot [394]

followed by real space refinement against the EM map using Phenix [397] yielded

an atomic model that fit well into the map density by visual inspection. A mask

that contained all grid points within a radius of 5 Å around each atom of the atomic

model was used to cut out a map segment from the EM map. The atomic model

was subjected to refinement of atomic coordinates, B factors, and occupancy against

pseudo crystallographic structure factors (defined as in Chapter 4) that were com-

puted from the map segment using Phenix [397]. In this reciprocal space refinement

procedure, R factors were monitored. The resultant atomic model was used for real

space refinement with NCS constraints using Phenix [397]. The final atomic model

was validated based on the criteria of MolProbity [454].
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5.4 Results

5.4.1 The EV-D68 strain MO is acid sensitive

The effect of acid treatment on virus infectivity was tested using a plaque assay.

EV-A71 is acid resistant and retained infectivity at low pH (pH 4-6). In contrast,

the tested EV-D68 strains are acid labile, including the prototype Fermon strain and

two strains (US/MO/14-18947 and US/KY/14-18953) from the 2014 US outbreak.

Hereafter, US/MO/14-18947 and US/KY/14-18953 will be referred as MO and KY,

respectively. Among these strains, strain MO is most sensitive to acid (Fig. 5.1).

Fig. 5.1. The EV-D68 strain MO is acid sensitive. Viruses were
treated using buffer with a series of pH values and then assayed for
viral titers. Shown is a plot of changes of virus infectivity in logarithm
scale as a function of buffer pH.

Cryo-EM analysis of the full virion of EV-D68 strain MO was performed similarly

as what was done for RV-C15a (Chapter 4), except that data collection was at a

nominal magnification of 22500x that gave a better signal-to-noise ratio and a finer

pixel size than in the case of 14000x. Cryo electron micrographs showed that there

were more than 95% of full virions in the sample (hereafter referred to as Prep A),
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which was prepared using two rounds of density gradient centrifugation. The virus

structure (dataset A Native) was determined to about 2.3 Å resolution using 11,344

particles (Fig. 5.2 and Table 5.1). The pocket factor was found to be absent in the

VP1 hydrophobic pocket, which is partially collapsed. This structural feature may

explain the low stability of strain MO under acidic conditions, a characteristic that

probably allows efficient virus uncoating within host cells.

5.4.2 Acid induces EV-D68 uncoating

In consistent with the low stability of strain MO, a virus sample (hereafter re-

ferred to as Prep B) that was not as intensively purified as Prep A yielded a mixture

of full virions and empty particles that co-existed within one fraction of about 0.7

ml. To study acid triggered structural changes of the virus, initial structural anal-

ysis was performed, where Prep B was treated with either a pH 5.5 buffer (dataset

B RT Acid) or a neutral pH buffer (dataset B RT Neu) at room temperature for 20

min. Two-dimensional (2D) classification of particle images in dataset B RT Neu

showed the presence of full and empty particles with a particle number ratio of about

1.9:1 (full:empty) (Fig. 5.3). In contrast, 2D class averages of particle images in

dataset B RT Acid showed the presence of empty particles as well as a particle form

that contained genome but exhibited a thinner capsid shell than native full virions.

The ratio between the new form of particles and empty particles was about 1.7:1 (Fig.

5.3), suggesting that acid triggered the conversion of native full virions to the new par-

ticle form. Icosahedral reconstructions of the new form of particles (3,708 particles)

and empty particles (2,150 particles) in dataset B RT Acid were calculated to about

3.3 Å and 3.8 Å resolution, respectively. The VP1 N-terminal residues 1001-1041

(numbering based on the amino acid sequence of the Fermon strain) and a majority

of VP4 residues are well ordered in the map of native full virion but become disordered

(or missing) in the map of the new particle form. This observation demonstrates that

the particle form represents A(altered)-particle, an uncoating intermediate known for
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Fig. 5.2. The cryo-EM structure of EV-D68 strain MO. A.
A typical portion of an electron micrograph (eight times binned) of
strain MO. The micrograph was collected at a defocus of 1.3 µm.
Scale bar: 100 nm. B. Typical cryo-EM map densities. C. Resolu-
tion estimation based on Fourier shell correlation (FSC) between two
independently calculated half-maps. Different kinds of FSC curves
are labeled as in Fig. 4.3. A fatty acid-like pocket factor is present
in strain Fermon (D), but is absent in strain MO (E). The volume
of the VP1 pocket, calculated using Pymol, is colored gold. F. Com-
parison of Amino acid residues lining the VP1 hydrophobic pocket in
the structures of strain Fermon (grey) and strain MO (green). The
pocket factor is colored black. Concerning strain MO, residue I1217
moves by 1.9 Å (Cα atom, red dash line) into the pocket that would
clash with the pocket factor.
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Table 5.1
Data collection and processing statistics

A Native B 33 Acid A-ptcl B 33 Acid emp

Data collection and processing
Microscope Titan Krios

Accelerating voltage (kV) 300
Camera Gatan K2 Summit

No. of micrographsa 642 950 950

Pixel sizeb (Å/pixel) 0.65 0.65 0.65
Dose rate (e-/pixel/s) 8 8 8

Total dose (e-/Å2) 36 38 38
Frame rate (ms) 200 200 200

Defocus (µm) 0.3-3.0 0.5-3.5 0.5-3.5
No. of ptcls for reconstruction 11344 23151 21132

Resolutionc (Å) 2.33 2.96 3.08

Map sharpening B-factor (Å2) -90.4 -150.8 -141.5
Model Statistics

Correlation coefficientd 0.850 0.845 0.862
No. of atoms

Protein 6264 5398 5149
Water 490 0 0

Avg. B-factor (Å2) 14.1 20.7 27.3
r.m.s deviationse

Bond lengths (Å) 0.009 0.010 0.010
Bond angles (°) 0.998 0.995 0.984

Ramachadran plote

Favored (%) 97.10 94.98 93.48
Allowed (%) 2.90 4.73 6.52
Outliers (%) 0.00 0.30 0.00

a No. of micrograhs where particles were extracted.
b Data collection was in electron couting mode. The physical pixel size is 1.62 Å/pixel.
c Estimated by Fourier shell correlation between two half-maps using 0.143 as a cut-off.
d Real space correlation coefficient (around atoms) between final EM map and a density map
calculated based on the coordinates.
e Based on the criteria of Molprobity

many EVs (19-21). The capsid structure of empty particles is considerably similar

to that of A-particles (with a root mean square deviation (RMSD) of 0.2 Å). The

RMSD values of two given structures were calculated based on equivalent Cα atoms
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throughout the chapter. This indicates that these empty particles are emptied parti-

cles that are formed after native full virions have released the viral genome. Emptied

particles are distinct from VP0 containing native empty particles that have nearly

the same capsid structure as native full virions.

Fig. 5.3. Acid induces structural changes of strain MO. Typical
electron micrographs (four times binned) show EV-D68 MO particles
treated with pH 7.2 buffer (A) and with pH 5.5 buffer (C). Scale bar:
100 nm. The corresponding 2D class averages of particle images are
shown in (B) and (D), respectively. On the far right, the percentage
of particle images that are classified to be full or empty is given.



105

In order to mimic the environment for virus uncoating in host cells, Prep B

was treated with a pH 5.5 (late endosomal pH) buffer at 33°C for 20 min(dataset

B 33 Acid). Similar to the aforementioned observation in the case of room tempera-

ture incubation, A-particles and emptied particles were present in dataset B 33 Acid.

The cryo-EM structures of A-particles (23,151 particles) and emptied particles (21,132

particles) were determined to about 3.0 Å and 3.1 Å resolution, respectively (Table

5.1 and Fig. 5.4). Radial density distribution of spherically averaged EM maps show

that A-particles and emptied particles are similarly expanded by about 8Å in diame-

ter relative to native full virions (Fig. 5.4). Moreover, pores are opened up at two-fold

axes on A-particles (with a pore size of about 8Å x 14Å) and emptied particles (pore

size of about 7Å x 29Å). A VP2 helix (residues 2091-2098) and the equivalent helix

from a two-fold related VP2 molecule move away from each other (Fig. 5.4). These

pores might function as sites where the genomic RNA exits, partially because a sin-

gle strand RNA, assuming no secondary structures, has a size of slightly less than

8Å x 10Å (concerning the adenosine residue that is larger than other residues) by

looking in the direction normal to the planar aromatic ring of the nucleotide base.

More importantly, when native full virions are converted into A-particles, the VP1

N-terminal residues 1042-1051 undergo dramatic conformational changes, causing the

movement of residue 1042 and residue 1051 by about 35 Å (Cα) and 8 Å (Cα), re-

spectively. In native full virions, residues 1042-1051 reside in the virus interior. In

the A-particles, residues 1044-1051 traverse the capsid shell such that residue 1042

lies on the outer surface (Fig. 5.4). These changes cause the externalization of the

VP1 amphiphathic helix (disordered in the A-particle structure) through a pore at

the base of the canyon. The VP1 amphipathic helix was previously predicted as a

segment of about 25 amino acids at the extreme N-terminus [114]. Thus, acid induced

structural changes facilitate EV-D68 uncoating.



106

Fig. 5.4. The structures of EV-D68 uncoating intermediates.
A. Resolution estimation of reconstructions using FSC (0.143 as a cut-
off) between two half-maps. B. Radial density distribution of spher-
ically averaged cryo-EM maps. C. For each one of the full native
and A-particle atomic structures, a half capsid shell is represented as
a slab of about 20 Å. D. The Cα backbone representation of two
protomers is colored blue (VP1), green (VP2), and red (VP3). VP1
residues 42-52 are highlighted in black. E-F. Pores are formed at
two-fold axes in A-particles, as compared with native full virions.
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5.4.3 Multiple structural intermediates are involved in EV-D68 uncoat-

ing

At neutral pH, Prep B is made up of a heterogeneous particle population as

mentioned above. To analyze the sample heterogeneity at neutral pH in detail, 2D

classification and subsequently three-dimensional (3D) classification of particle images

(dataset B 4 Neu) resulted in six different structural states of the virus capsid. These

structures were determined to about 3.5-3.6 Å resolution (Table 5.2). These states

differ mainly in particle size and in internal regions including the VP1 N-terminal

residues 1001-1053 and VP4. The two predominant states are full native virions (ac-

counting for about 50% of all particles) and emptied particles (about 21%) (Fig. 5.5).

This observation suggests that a portion of native full virions might have undergone

uncoating to produce emptied particles during virus purification. Consistent with

this prediction, two uncoating intermediates have also been identified from the whole

particle population. One intermediate is A-particles (about 10%), whereas the other

one represents a previously undescribed structural state (about 5%), which is termed

“expanded 1 particle” (E1 particle) here. The VP1 N-terminal residues 1001-1053

and VP4 residues 4030-4057 are ordered in E1 particles, as is the case for full native

virions (Fig. 5.5). Nevertheless, the E1 particle is expanded by about 8 Å in diameter

relative to the native full virion as indicated by calculation of radial density distri-

bution. The RMSD between the two structures when aligning icosahedral symmetry

axes is about 4.0 Å. There are pores formed at two-fold axes on E1 particles. The

size of the pores is about 6 Å in one direction and about 9-23 Å in the orthogo-

nal direction. This uncertainty of pore size is due to an ambiguity in building some

amino acid side chains into the EM map at about 3.6 Å resolution. It is probable

that virus uncoating is initiated by particle expansion of full native virions to form

E1 particles. Subsequent loss of the VP4 molecules and externalization of the VP1

N-termini through pores on the E1 particles result in A-particles. The genomic RNA
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is ultimately released to yield emptied particles. These results show that multiple

structural intermediates are involved in EV-D68 uncoating (Fig. 5.5).

In addition, two other structural states, each of which accounts for about 7% of all

particles, were found to have similar capsid structures to the full native virion (Fig.

5.6). The RMSD between the full virion and each of the two states is slightly less

than 1.0 Å when aligning icosahedral symmetry axes. The two states either lack inner

densities or show rod-like densities in the particle. They might be abortive products

during virus assembly. Nevertheless, further studies are needed to unravel the true

identity of these states.

5.5 Discussion

In the present work, acid treatment was found to diminish or abolish EV-D68

infectivity (Fig. 5.1). This is primarily because A-particles, which are formed under

acidic conditions, have limited infectivity according to a previous report [217]. The

absent of VP4 in A-particles probably prevents pore formation on host cell membranes

[234]. Additionally, externalization of the membrane associated region of VP1 N-

terminal residues might impair receptor binding of A-particles. These factors would

render A-particles poorly infectious.

Differences of amino acid sequences in the P1 capsid region might explain why

the two current strains, MO and KY, are more sensitive to acid than the Fermon

strain. Strains MO and KY possess six more charged residues (Lys, Arg, Glu, and

Asp) on the virus surface than the Fermon strain. More importantly, the two current

strains have a His at position 2098, whereas the Fermon strain has a Tyr. There

is also a conserved His at position 2099 shared by enteroviruses. Histidine can act

as a pH sensor whose pKa is about 6. In particular, residue 2098 is located on the

aforementioned helix (residue 2091-2098) that is in close proximity to the icosahe-

dral two-fold axis and that contributes to the opening of pores at two-fold axes in

EV-D68 uncoating intermediates. At low pH conditions (pH≤6), histidine residues
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Fig. 5.5. EV-D68 uncoating entails multiple structural inter-
mediates. A-D. A cut-way view of each of four different structural
states of the EV-D68 (strain MO) capsid by looking down an icosa-
hedral two-fold axis from particle exterior to particle interior. A red
triangle indicates an icosahedral asymmetric unit. RMSD values are
calculated based on equivalent Cα atoms using the native full virion
structure as a reference and by aligning icosahedral symmetry axes.
The percentage of particles images that are classified into a given state
is shown in parentheses.
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Fig. 5.6. Multiple structural states are present at neutral pH.
A-B. Two additional structural states represent probable abortive
products during virus assembly. Details for making the figure and for
labeling are the same as those in Fig. 5.5.

near two fold axes become protonated and might facilitate acid induced structural

changes of the virus. A similar mechanism was previously proposed for an animal

picornavirus, foot-and-mouth-disease virus (FMDV). The repulsive electrostatic in-

teractions at the pentamer-pentamer interface caused by protonated histidine residues

were suggested to trigger the dissociation of FMDV pentamers upon endosomal acid-

ification [286,464]. Furthermore, 25 out of 297 EV-D68 strains for which the (nearly)

complete genome sequence is available (as of October 2016) have a Tyr at position

2098 and were isolated in between 1962 and 2013. This indicates that current EV-D68

strains have evolved to acquire a His at position 2098, which might confer a high acid

sensitivity of the virus and the efficiency of virus uncoating.

Amino acid sequence alignments of multiple enteroviruses showed that EV-A71,

CVB3, PV, RV-A16, RV-A2, RV-B14, and EV-D68 (Fermon) contain a Tyr/Phe at

the equivalent position to position 2098 in EV-D68 [2]. Thus, alternative mechanisms
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might exist that account for the acid lability of rhinoviruses and early EV-D68 strains

that have a Tyr at position 2098. For instance, previous electrostatic calculations of

viral stability postulated a mechanism where a β-sheet at the pentamer-pentamer

interface regulates the accessibility of buried histidine residues to acid [465]. The

β-sheet appears to be unstable in rhinoviruses but is stable in polioviruses at low pH

conditions.

Sialic acid receptor and endosomal acidification probably assist EV-D68 entry into

host cells in a synergistic manner. Sialic acid receptor binding to the Fermon strain

caused ejection of the pocket factor that destabilizes the virus. The infectivity of the

Fermon strain was slighted impaired at pH 5-6, suggesting that endosomal acidifica-

tion alone would not be sufficient to result in uncoating of the strain. This observation

raises the possibility that sialic acid receptor binding increases the pH threshold for

triggering virus uncoating. Nevertheless, the synergistic action of receptor and low

pH depends on virus strains. Concerning strain MO (as probably also strain KY),

because of the absence of a pocket factor in the native structure and of the low stabil-

ity under acidic conditions, sialic acid receptor binding might not contribute to virus

destabilization or to prime virus uncoating.

In summary, cryo-EM studies of the acid sensitive EV-D68 have shown the in-

volvement of multiple structural intermediates in virus uncoating. The identification

of expanded 1 particles, a previously unknown intermediate, suggests the conforma-

tional fluctuation of enterovirus capsids.
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6. INHIBITION OF HUMAN ENTEROVIRUS D68

Part of the data and text in this chapter are taken from [2, 3] and are highlighted

by a black, vertical line in the right margin below. Macmillan Publishers Ltd: Na-

ture Communications [3], copyright 2015. Text and data from [2] are reprinted with

permission from AAAS.

6.1 Chapter abstract

Effective antiviral treatments are currently not available to combat respiratory

diseases and rare neurological diseases associated with EV-D68. Structural similarity

between EV-D68 and rhinoviruses opens up the possibility of re-purposing known

rhinovirus inhibitors for inhibiting EV-D68 infections. Here, pleconaril, a compound

that had been specifically developed for rhinoviruses, has been found to be a nanomo-

lar inhibitor against the prototype strain and two circulating strains of EV-D68. The

crystal structure of EV-D68 in complex with pleconaril showed that it replaces the

pocket factor in binding the VP1 pocket. Furthermore, pleconaril inhibits EV-D68

attachment onto host cells and prevents virus uncoating. These results suggest that

pleconaril represents a candidate antiviral approach for treatments of EV-D68 infec-

tions.

6.2 Introduction

Over the last several decades, the hydrophobic pocket of VP1 has been explored as

target for a variety of small hydrophobic molecules that are known as capsid-binding

inhibitors of enterovirus (EV) infection. They stabilize the virus [188] by filling the

pocket with a well-fitting hydrophobic molecule, thereby inhibiting uncoating of the
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virus and the release of the genome into the infected cell. These compounds also

prevent attachment to cells by altering the surface features of the canyon floor where

the virus attaches to a cellular receptor [183, 188]. In addition, it was also shown

that capsid-binding compounds impedes virus breathing, which refers to reversible

conformational changes of the virus [253,254].

In most enteroviruses that have been investigated these capsid binding antiviral

compounds displace the pocket factor (e,g. PVs and many rhinoviruses (RVs)). RV-

B14 [13,243] and RV-B3 [20] do not contain a pocket factor, and they have a collapsed

VP1 pocket. Either neither RV-B14 nor RV-B3 bind a pocket factor in vivo or it was

lost during the purification procedure. Much effort was made between 1985 and 2000

to design a compound that fits into the VP1 pocket and would inhibit the maximum

number of rhinoviruses [457]. The final optimal structure was pleconaril which not

only had good efficacy but was also stable enough to maintain good bioavailability in

clinical tests [466]. For instance, oral pleconaril treatment was effective in reducing

the duration of common colds among adults in phase III clinical trials [466]. However,

pleconaril was not licensed primarily because it put women using birth control drugs

at risk of conception.

Currently, there are two capsid binding anti-EV compounds that are in clinical

trials. Pocapavir (or V-073) [81] is now being developed specifically for polioviruses,

aiming for usage in the post-eradication era [467]. Vapendavir (or BTA-798) [80]

has passed several phase II clinical trials with asthmatic patients. It is in develop-

ment for treatment of human rhinovirus infections and rhinovirus induced asthma

exacerbations that can result in chronic obstructive pulmonary disease.

This chapter describes the discovery of pleconaril as an effective capsid binding

inhibitor against EV-D68. Structural and functional analysis also unraveled the mech-

anism of action of pleconaril. Pleconaril interferes with EV-D68 entry into host cells

by inhibiting virus attachment and uncoating.
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6.3 Materials and Methods

6.3.1 Co-crystallization and data collection

Highly purified EV-D68 virions (2-3 mg/ml in PBS) were incubated with 0.2

mg/ml (in PBS) pleconaril at room temperature for 6h. 0.6 µl of the resultant

solution were then mixed with 0.6 µl of the reservoir solution (0.1 M sodium acetate

(pH 4.5) with 3.5 M sodium formate) for crystallization using the hanging drop vapor

diffusion technique. Thick plate-like or cubic, shiny crystals were obtained in 2-3 days

at room temperature. Crystals were cryo-protected in the same cryo-solution (as in

Chapter 2) except that 0.2 mg/ml pleconaril was added. Data collection on single

crystals was performed in the same way as mentioned for native EV-D68 crystals

(Chapter 2).

6.3.2 Structure determination

The crystals for the EV-D68-pleconaril complex were isomorphous with the native

EV-D68 crystals (Chapter 2). Initial phases were calculated using the native EV-D68

structure (without the pocket factor or water) for reflections to 8.0 Å resolution.

Phase extensions were performed using a step size of 1/a Å
−1

until 2.3 Å resolution

had been reached similar to the phase determination of the native EV-D68 crystals.

6.3.3 In silico docking

In silico docking was performed by Woong-Hee Shin in the Kihara laboratory

(Purdue). Pleconaril, pirodavir and BTA-188 were docked into EV-D68 using AutoDo-

ck4 [468]. The three-dimensional coordinates of pirodavir and BTA-188 were obtained

from the PubChem database [469]. The binding pocket in EV-D68 was defined as

a cube-shaped box that ranged 22.5 °C in each direction from the geometrical cen-

ter of the pleconaril molecule as observed in the crystal structure. Each compound

was treated as being fully flexible (all single bonds that are not in a ring structure
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or between two double bonds were allowed to rotate) while the surrounding protein

structure of the virus was kept rigid. The Lamarckian Genetic Algorithm [470] was

used for conformational searches of the compound. The parameters that described

the conformation of the compound and its orientation and position in the search box

were set to random values to initiate each run. These were then optimized to mini-

mize the calculated binding energy. One thousand runs were made. The resultant one

thousand structures were then clustered around the final structures with the lowest

calculated binding energy. In each cluster, all structures have an r.m.s.d. value of

less than 2.0 Å relative to the lowest energy structure in this cluster. The structure

with the lowest calculated binding energy from the largest cluster was finally selected

as the most likely structure.

6.3.4 Viral attachment assay

To test the effect of pleconaril on EV-D68 attachment, purified virus (the proto-

type strain) was incubated with pleconaril in a series of concentrations ranging from 0

14 µM at 33°C for 1h, where 0 µM represents the virus only control in which the virus

was incubated with only DMSO. The resultant mixture was cooled down on ice and

added to 90% confluent HELF cells in a 24-well plate right after blocking each well

with the blocking solution as mentioned above. The MOI was 20. After incubation at

4°C for 1h, the wells were washed three times with cold DMEM to remove unbound

virus. Similar results were obtained when the virus was incubated with pleconaril at

4°C overnight. Total RNA in each well was extracted using an RNeasy Mini Kit (Qia-

gen) per manufacturers protocol (RNA extraction was performed by Ju Sheng). The

viral RNA of the bound virus in each sample was quantified a quantitative real-time

RT-PCR assay (together with Ju Sheng). All experiments were done in triplicate.
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6.3.5 Thermal stability assay

Thermal stability assays were performed similarly as previously described [471,

472] with some modifications. This was done together with Ju Sheng. Briefly, 1.5

µg of EV-D68 virus were incubated with pleconaril (with a final concentration of

10 µg/mL or 50 µg/ml) at 33°C for 1h. The control virus was treated the same

way except that no pleconaril was added. 1% DMSO (v/v) was used consistently.

Sybr green II dye (Life Technologies) was added to reach a concentration of 6X and

RNAseOUT (Life Technologies) at a concentration of 1U/µl. For each sample, a

50 µl reaction was set up and the fluorescence intensity was recorded in triplicate

at 1°C intervals between 31°C and 95°C using a real time PCR system (Applied

Biosystems 7300). After heating to a given temperature and holding for 20s, the

sample temperature was then lowered to 30°C and held for 2 min. This ensured that

the fluorescence was recorded at a constant temperature. The fluorescence intensity

was plotted as a function of temperature and the data were fitted with a sigmoidal

curve.

6.3.6 Plaque reduction assay

Three EV-D68 strains were used for plaque reduction assays, including the pro-

totype strain and two strains (US/MO/14-18947 and US/KY/14-18953) from the

2014 outbreaks in the United States. Experiments were performed together with Ju

Sheng. The virus was incubated with a specific inhibitory compound that had been

dissolved in DMSO at 33°C for 1h. For each of the three compounds (pleconaril,

pirodavir, and BTA-188), a series of concentrations were assayed in at least tripli-

cate. For vehicle control, the same amount of DMSO was added without using a test

compound. Confluent HeLa cells in 6-well plates were infected with approximately

150 PFU (plaque-forming unit) EV-D68 with compounds or DMSO per well. An

overlay containing 0.8% agarose was added to each well. After 4 days of incubation

at 33°C, the plaques were counted in each well. The percent inhibition was calculated
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by (Ncontrol −Ninhibitor)× 100/Ncontrol, where Ncontrol and Ninhibitor are plaque counts

for the control and inhibitor wells, respectively.

6.4 Results

6.4.1 Pleconaril inhibits EV-D86 infection

The structural similarity of EV-D68 and many RVs suggested that the EV-D68

VP1 pocket might be targeted by known capsid-binding inhibitors against RVs. The

anti-EV-D68 activity of two capsid binding compounds, pirodavir and BTA-188 (Fig.

6.1), that had significant anti-rhinovirus activity were compared with pleconaril us-

ing plaque reduction assays in HeLa cells (Fig. 6.2). The half maximal effective

concentration, EC50, value of these two compounds were found to be comparable

to previous results using cytopathic effect inhibition assays against EV-D68 [473].

However, pleconaril was found to be more potent against EV-D68 than pirodavir and

BTA-188 (Fig. 6.2). The inhibitory effect of pleconaril is similar against EV-D68,

RV-A16 and RV-B14 but better than against EV-A71. It is, therefore, noteworthy

that pleconaril was an effective inhibitor in extensive clinical tests for treatment of

common colds [466,474] .

6.4.2 Pleconaril interferes with virus entry

Furthermore, pleconaril was found to interfere with virus attachment and uncoat-

ing during cell entry of EV-D68. As described in Chapter 3, the structures of EV-D68

complexed with sialylated trisaccharides suggest that the receptor molecule and the

pocket factor compete to bind the virion in the initial step of EV-D68 entry into

host cells. Pleconaril inhibits sialic acid dependent viral attachment to HELF cells

(Fig. 6.2) because the bound pleconaril blocks the conformational change of the virus

that favors sialic acid binding. In addition, fluorescence-based thermal stability as-

says indicated that when EV-D68 was incubated with either 10 µg/ml or 50 µg/ml
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Fig. 6.1. Chemical structures of pleconaril [75] , BTA-188 [475],
and pirodavir [476].

pleconaril, 4°C higher temperatures were required to release the RNA genome than

when no pleconaril was present (Fig. 6.2). Thus, pleconaril stabilizes EV-D68 capsids

and prevents the virus from uncoating during viral entry.

6.4.3 Structure of EV-D68 in complex with pleconaril

The structure of EV-D68 was also determined to 2.3 Å resolution when co-

crystalized with pleconaril (Table 6.1). The crystallographic procedure was the same

as for the native structure determination. The R factor was 0.243 (Table 6.1). The

electron density of the ligand inside the hydrophobic pocket was of the same height

but much longer than that of the pocket factor in the native EV-D68 structure (Fig.

6.3) and could be easily fitted with the structure of pleconaril (Fig. 6.3). This demon-

strated that the native pocket factor was replaced by pleconaril. However, the density

of the ligand and of the pocket factor are slightly lower than that of the polypeptide

main chain. In part this is to be expected because the ligand or fatty acid pocket

factor are composed primarily of only carbon atoms as opposed to the heavier combi-

nation of carbon, nitrogen plus oxygen atoms of the main chain. In part the slightly
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Fig. 6.2. Pleconaril is effective against EV-D68. A. List of EC50
values. B. Plot of % plaque reduction of pleconaril as a function of
the log of its concentration. Error bars indicate SD. C. Preincubation
of EV-D68 (prototype) with pleconaril inhibits viral attachment onto
non-treated HELF cells. Data are represented as mean±SD. Exper-
iments were done in triplicate. D. Release of EV-D68 genome upon
increase in temperature as monitored by Sybr green II. The experi-
ments were done in triplicate. For each data point, the ratio between
mean fluorescence intensity and standard deviation is at least 7.6.
Shown are curves fitted with a sigmoidal function for the native virus
and for the virus after incubation with pleconaril. Panels A, B, and
part of panel C from [2]. Reprinted with permission from AAAS.

lower density of the ligand might be due to some variations of conformation within

the VP1 binding pocket.

Part of the VP1 GH loop (residues 212-215) that forms the entrance to the VP1

pocket had become less ordered. The Cα atom of residue 211 had moved 1.2 Å
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Table 6.1
Data collection and refinement statisticsa

EV-D68 with pleconaril

Data collection
Oscillation angle (°) 0.2

No. of crystals (No. of frames) 2 (232)
Space group I222

Cell dimensions
a, b, c () 323.2, 346.1, 355.5
α, β, γ (°) 90.0, 90.0, 90.0

Resolution () 50.0-2.32 (2.40-2.32)b

No. of unique reflections 399300 (26345)
Completeness (%) 47.2 (31.3)

Redundancy 1.6(1.2)
Rmergec 0.077 (0.185)
I /σ(I ) 6.98 (2.35)

Refinement
Resolution () 50.0-2.32 (2.40-2.32)

No. of reflections 399130 (26181)
R factor 0.235 (0.345)

Correlation coefficient 0.876
No. of atoms

Protein 6260
Ligand 27
Water 121

RMSD bond (Å) 0.006
RMSD angle (°) 1.388

Mean B-factor (Å2) 17.3

Mean B-factor of ligand (Å2) 62.5
Ramachandran plot

Favored (%) 94.5
Allowed (%) 5.5
Outliers (%) 0

a From [2]. Reprinted with permission from AAAS
b Values in parentheses represent the highest resolution shell
c Rmerge =

∑
hkl

∑
i |Ii(hkl)− < I(hkl) > |/

∑
hkl

∑
i Ii(hkl)

towards the inside of the pocket relative to that of the native structure, possibly

blocking the entrance to the pocket once pleconaril had entered (Fig. 6.3). Thus the
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Fig. 6.3. Structure of pleconaril bound into the VP1 pocket of
EV-D68. A. Pocket factor density (grey) compared to the pleconaril
density (magenta). B. Pleconaril (green) fitted to density in the struc-
ture of the complex. C. Conformational change of the VP1 GH loop
as a consequence of the presence of pleconaril. The native and com-
plex structures are shown in marine blue and baby blue, respectively.
Oxygen, nitrogen, sulfur and fluorine atoms are shown in red, dark
blue, yellow and light green, respectively. From [2]. Reprinted with
permission from AAAS.

dynamics of GH loop might be an important consideration for future structure-based

design of EV-D68 capsid-binding inhibitors.

A comparison of the EV-D68-pleconaril, RV-B14-pleconaril and RV-A16-pleconaril

structures showed a similar binding mode for pleconaril in the VP1 pocket of these

three viruses (Fig. 6.4). This may explain why pleconaril is similarly effective against

these three enteroviruses. To investigate why pleconaril is more effective against

EV-D68 than pirodavir or BTA-188, in silico docking was performed. The pres-

ence of trifluoromethyl substituted oxadiazole moiety in pleconaril, rather than a

more hydrophilic group in either pirodavir (ethyl carboxylate group) or BTA-188

(O-ethyloxime group) at structurally equivalent positions, likely contributes to more

favorable interactions of pleconaril with the hydrophobic residues deep inside the VP1

pocket of EV-D68.
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Fig. 6.4. Comparison of (A) RV-A16 complexed with pleconaril
(PDB accession number: 1NCR), (B) RV-B14 complexed with ple-
conaril (PDB accession number: 1NCQ) and (C) EV-D68 complexed
with pleconaril. Pleconaril and the protein structure are shown in
green and cyan, respectively. Oxygen, nitrogen, sulfur and fluorine
atoms are colored red, dark blue, yellow and light green, respectively.
Residues in the three structures are all numbered according to EV-D68
numbering. Residues shown are those within 4 Å to any pleconaril
atom in the corresponding structure. From [2]. Reprinted with per-
mission from AAAS.

More importantly, in addition to the prototype Fermon strain, pleconaril also

inhibited two strains from the 2014 outbreak in the United States. The EC50 values

for strains US/KY/14-18953 and US/MO/14-18947 were about 760 nM and 110 nM,

respectively (Fig. 6.2). US/KY/14-18953, a phylogenetically minor strain in the 2014

outbreak, has the the same set of pleconaril interacting residues as the Fermon strain

strain. US/MO/14-18947, a phylogenetically predominant strain in the outbreak,

possesses two substitutions, M182I (VP1) and V24A (VP3), relative to the Fermon

strain.

6.5 Discussion
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The structure of EV-D68 has considerable similarities to the well-studied RVs for

which pleconaril was specifically designed. This chapter shows that pleconaril replaces

the pocket factor and is a potent inhibitor of EV-D68 strains. The size and location

of the pocket factor lodged in the VP1 pocket is similar to that found in other RVs

and different to the pocket factors found in poliovirus 1 and EV-A71. This correlates

with the observation that pleconaril is far more active when the natural pocket factor

is short as in the RVs and in EV-D68.

Pleconaril was found to be an effective inhibitor against not only the proto-

type strain (isolated in 1962) but also two circulating strains (isolated in 2014).

Furthermore, sequence alignment of 188 EV-D68 strains found between 1962 and

2013 indicates that residues in VP1 which interact with pleconaril, as identified from

the complex structure, are completely conserved with one exception. Additionally,

the activity of pleconaril to US/MO/14-18947 was not impaired by the presence of

two amino acid substitutions in the hydrophobic pocket. These results indicate that

pleconaril might be able to inhibit a broad spectrum of EV-D68 strains. In accor-

dance with this prediction, pleconaril recently proved to be effective against a range

of EV-D68 clinical isolates that were classified into three different clades [477] .

Consistent with the activity of pleconaril using a plaque assay in HeLa cells pre-

sented here, several other recent work reported overall similar results when using

cytophatic effect inhibition assays in HeLa cells [477–479]. Furthermore, the clini-

cal efficacy of pleconaril in treatment of common colds was shown to correlate with

the susceptibility (to pleconaril) of viruses that infect human subjects. The greatest

activity of pleconaril was observed in subjects infected with viruses that showed an

EC50 of less than 0.38 µg/ml (or better than about 1 µM) [474]. Thus, it is proba-

ble that pleconaril, a nanomolar inhibitor of EV-D68, would be clinically effective in

treatment of EV-D68 infections.

Nevertheless, some uncertainties have also been raised over the clinical efficacy of

pleconaril against EV-D68. One recent report found that the activity of pleconaril

against circulating strains depends on the cell lines used for inhibition assays [478].
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This observation makes it more complicated to predict clinical efficacy according to

cell-based inhibition data. Moreover, EV-D68 variants resistant to pleconaril were

readily selected in the laboratory. The variants shared one common substitution

(V1069A) that was proposed to weaken the interactions of pleconaril with the virus

[477]. Therefore, resistance of EV-D68 to pleconaril is another factor that would

possibly impair the clinical efficacy.
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7. SUMMARY

Enterovirus (EV) is an important genus of Picornaviridae, a family of non enveloped,

icosahedral viruses with a positive-strand RNA genome. The genus includes a number

of human pathogens, such as polioviruses, enterovirus A71 and many respiratory

viruses, including human enterovirus D68 (EV-D68) and isolates of a newly discovered

species rhinovirus C (RV-C). Specifically, EV-D68 was the causative agent of an

outbreak of respiratory infections among young children in the United States (US)

in 2014. It also occasionally causes neurological diseases. Nevertheless, there are

currently no effective antiviral treatments or vaccines available.

The crystal structures have been determined of the prototype strain of EV-D68 by

itself and in complex with a capsid-binding inhibitor, pleconaril, which was developed

as an anti-rhinovirus inhibitor. Antiviral compound screening shows that pleconaril is

an effective inhibitor against the prototype strain and circulating strains of EV-D68.

Structural analysis further demonstrates that pleconaril binds to EV-D68 capsids and

replaces the pocket factor, a fatty acid-like molecule that stabilizes the virus in its

native state. Thus binding of pleconaril enhances the stability of EV-D68 virions,

preventing the virus from releasing its genome. These results suggest that pleconaril

is a possible drug candidate to alleviate EV-D68 outbreaks.

Receptor dependent cell entry of EV-D68 has been studied through structural and

functional analyses. Attachment, infectivity, and inhibition assays show that sialic

acid on the cell surface is indispensable for EV-D68 to attach onto and infect host

cells. To analyze the interactions of EV-D68 with sialic acid, the crystal structures of

the virus have been solved when complexed with three sialylated trisaccharides that

are receptor analogues. Binding of sialic acid receptor analogues to a depression, the

canyon, on the virus surface causes a cascade of structural rearrangements of EV-
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D68 to eject the pocket factor. Thus the sialic acid receptor destabilizes the virus

and facilitates cell entry.

Isolates of RV-C are closely linked to childhood asthma exacerbations that can

lead to significant adult respiratory problems. The RV-C are difficult to be prop-

agated in vitro, representing a challenge for structure determination. Using cryo-

electron microscopy (cryo-EM), the atomic structure of a cell adapted rhinovirus C

has been determined. The RV-C structure highlights novel immunogenic surfaces, a

potential binding site for glycans on the RV-C receptor and antiviral drug resistance

properties. Thus structural analysis of an RV-C defines molecular determinants for

designing effective antiviral therapeutics and vaccines. More importantly, this study

has established a workflow for structure determination of related viruses by cryo-EM.

To characterize structural changes of EV-D68 during virus uncoating, cryo-EM

studies were performed using an EV-D68 strain, namely strain MO, from the 2014

US outbreak. A 2.3 Å resolution cryo-EM structure of the virus shows the absence of

a pocket factor in the hydrophobic pocket in viral protein 1. This structural feature is

consistent with an instability of strain MO under acidic conditions. Acid treatment of

strain MO leads to the formation of an uncoating intermediate, A(altered)-particles.

Pores are opened up at icosahedral two-fold axes in A-particles, which probably allows

for the exiting of viral RNA. Furthermore, cryo-EM structures of six conformational

states of the viral capsid have been determined using a single sample of strain MO

at neutral pH. These states exhibit differences concerning particle size and internal

regions of the capsid. Thus, the process of EV-D68 uncoating might proceed via the

involvement of multiple structural intermediates.

In summary, these studies have advanced the knowledge of receptor-mediated EV-

D68 entry into host cells and EV-D68 uncoating. The structures presented in this

thesis will facilitate the design and development of antiviral therapeutics and vaccines

for respiratory enteroviruses including EV-D68 and the RV-C.
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[45] S. K. Jang, H. G. Kräusslich, M. J. Nicklin, G. M. Duke, A. C. Palmenberg, and
E. Wimmer, “A segment of the 5’ nontranslated region of encephalomyocarditis
virus RNA directs internal entry of ribosomes during in vitro translation.,”
Journal of virology, vol. 62, pp. 2636–43, aug 1988.

[46] D. F. Summers and J. V. Maizel, “Evidence for large precursor proteins in
poliovirus synthesis.,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 59, pp. 966–71, mar 1968.

[47] A. C. Palmenberg, “Proteolytic Processing of Picornaviral Polyprotein,” Annual
Review of Microbiology, vol. 44, pp. 603–623, oct 1990.

[48] P. Jiang, Y. Liu, H.-C. Ma, A. V. Paul, and E. Wimmer, “Picornavirus mor-
phogenesis.,” Microbiology and Molecular Biology Reviews, vol. 78, pp. 418–37,
sep 2014.

[49] D. Egger, R. Gosert, and K. Bienz, “Role of cellular structures in viral RNA
replication,” in Molecular biology of picornaviruses (E. Wimmer and B. Selmer,
eds.), pp. 247–253, Washington, D.C.: ASM Press, 2002.



132

[50] M. F. Ypma-Wong, P. G. Dewalt, V. H. Johnson, J. G. Lamb, and B. L. Semler,
“Protein 3CD is the major poliovirus proteinase responsible for cleavage of the
P1 capsid precursor.,” Virology, vol. 166, pp. 265–70, sep 1988.

[51] L. van der Linden, K. C. Wolthers, and F. J. M. van Kuppeveld, “Replication
and Inhibitors of Enteroviruses and Parechoviruses.,” Viruses, vol. 7, pp. 4529–
62, aug 2015.
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[120] G. Köhler and C. Milstein, “Continuous cultures of fused cells secreting anti-
body of predefined specificity.,” Nature, vol. 256, pp. 495–7, aug 1975.

[121] J. D. Fingeroth, J. J. Weis, T. F. Tedder, J. L. Strominger, P. A. Biro, and
D. T. Fearon, “Epstein-Barr virus receptor of human B lymphocytes is the C3d
receptor CR2.,” Proceedings of the National Academy of Sciences of the United
States of America, vol. 81, pp. 4510–4, jul 1984.

[122] A. G. Dalgleish, P. C. Beverley, P. R. Clapham, D. H. Crawford, M. F. Greaves,
and R. A. Weiss, “The CD4 (T4) antigen is an essential component of the
receptor for the AIDS retrovirus.,” Nature, vol. 312, no. 5996, pp. 763–7.

[123] D. Klatzmann, E. Champagne, S. Chamaret, J. Gruest, D. Guetard,
T. Hercend, J. C. Gluckman, and L. Montagnier, “T-lymphocyte T4 molecule
behaves as the receptor for human retrovirus LAV.,” Nature, vol. 312, no. 5996,
pp. 767–8.

[124] J. M. Greve, G. Davis, A. M. Meyer, C. P. Forte, S. C. Yost, C. W. Marlor,
M. E. Kamarck, and A. McClelland, “The major human rhinovirus receptor is
ICAM-1.,” Cell, vol. 56, pp. 839–47, mar 1989.

[125] D. E. Staunton, V. J. Merluzzi, R. Rothlein, R. Barton, S. D. Marlin, and T. A.
Springer, “A cell adhesion molecule, ICAM-1, is the major surface receptor for
rhinoviruses.,” Cell, vol. 56, pp. 849–53, mar 1989.

[126] C. L. Mendelsohn, E. Wimmer, and V. R. Racaniello, “Cellular receptor for
poliovirus: molecular cloning, nucleotide sequence, and expression of a new
member of the immunoglobulin superfamily.,” Cell, vol. 56, pp. 855–65, mar
1989.



138

[127] W. Li, M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong, M. A. Berne, M. So-
masundaran, J. L. Sullivan, K. Luzuriaga, T. C. Greenough, H. Choe, and
M. Farzan, “Angiotensin-converting enzyme 2 is a functional receptor for the
SARS coronavirus.,” Nature, vol. 426, pp. 450–4, nov 2003.

[128] H. Yan, G. Zhong, G. Xu, W. He, Z. Jing, Z. Gao, Y. Huang, Y. Qi, B. Peng,
H. Wang, L. Fu, M. Song, P. Chen, W. Gao, B. Ren, Y. Sun, T. Cai, X. Feng,
J. Sui, and W. Li, “Sodium taurocholate cotransporting polypeptide is a func-
tional receptor for human hepatitis B and D virus.,” eLife, vol. 1, p. e00049,
nov 2012.

[129] M. D. Mühlebach, M. Mateo, P. L. Sinn, S. Prüfer, K. M. Uhlig, V. H. J.
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A. INTERACTIONS OF ENTEROVIRUS A71 WITH

HUMAN SCAVENGER RECEPTOR B2

Part of the text in this chapter is taken verbatim from [1] and is highlighted by a

black, vertical line in the right margin below.

A.1 Introduction

Enterovirus A71 (EV-A71) was first isolated from patients with neurological dis-

eases in California in 1969 [480]. It is one of the major causative agents of hand, foot

and mouth disease (HFMD) in infants and young children. It is also notable for se-

vere neurological complications, such as acute flaccid paralysis, aseptic meningitis and

encephalitis [481]. It also occasionally leads to fatal cases [481]. Recently, frequent

outbreaks have been reported particularly in Asia-Pacific region, raising significant

public health concerns [481]. Although there is no antiviral intervention available,

two vaccines using heat-inactivated whole virions have been approved for prevention

of EV-A71 infections among children in China [72,73].

Over the last few years, a number of cellular receptors and attachment factors

have been identified for EV-A71, including hSCARB2 (human scavenger receptor

B2), PSGL-1 (P-selectin glycoprotein ligand 1), heparan sulfate, sialylated glycans,

annexin II, vimentin, and nucleolin [164–166, 168, 169, 482–484]. These cell surface

molecules were shown to be indispensable for or only enhance EV71 infection in cell

culture. Specifically, hSCARB2 is a functional receptor for a broad range of EV-A71

strains [485]. It is expressed in a variety of human tissues, including neurons in the

central nervous system [486]. In addition, EV-A71 can not use mouse SCARB2 as a

receptor [165]. Thus, SCARB2 is a host factor that impacts the host range, tissue

tropism, and pathogenesis of EV-A71. More importantly, hSCARB2 plays crucial
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roles in virus attachment onto host cell surface, internalization through clathrin-

dependent endocytosis, and virus uncoating [193, 194, 199, 485]. In contrast, other

receptors or attachment factors have not been shown to induce EV-A71 uncoating

[194].

hSCARB2 is a glycoprotein also known as lysosomal integral membrane protein II,

which is an abundant protein in lysosomes [487]. It normally functions as a trafficking

receptor of beta-glucocerebrosidase, an important enzyme for glycolipid metabolism.

hSCARB2 is a type-III transmembrane protein with both termini spanning across

the membrane. It contains a large ectodomain (about 400 amino acids) when being

present on the plasma membrane (or a large lumenal domain when residing on the

lysosome membrane). The crystal structure of the hSCARB2 ectodomain showed a

twisted beta barrel core with an internal tunnel traversing the whole length of the

molecule [192, 487, 488]. Thus, hSCARB2 is structurally different from many known

EV receptors that possess repeated Ig-like domains [183]. Nevertheless, similar to

the interactions of Ig-like receptors with respective EVs, hSCARB2 was suggested to

bind into the canyon region of EV-A71, despite that the EV-A71 canyon is shallower

than many other EVs [30, 31]. Moreover, hSCARB2 triggers EV-A71 uncoating at

low-pH conditions [192–194].

Mutagenesis studies showed that residues 144-151 of a three-helix bundle at the

head region of hSCARB2 are directly involved in EV71 binding according to two

independent studies [193,489]. Nevertheless, there is some uncertainty whether there

are also other residues involved in virus attachment. It is also not known how glycans

on hSCARB2 contribute to virus-receptor binding. Moreover, the three-helix bundle

undergoes a pH-dependent conformational change and possibly regulates the accessi-

bility of the entrance to the aforementioned internal tunnel, which was proposed to

function as a lipid-transfer tunnel [192]. However, it remains obscure how such struc-

tural changes influence hSCARB2 induced EV-A71 uncoating at acidic conditions.

This chapter describes current progress towards a structural study of EV-A71 in

complex with hSCARB2. A major challenge of this study is that aggregates were
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formed when purified EV-A71 were incubated with purified hSCARB2. This was

shown by two former members of the Rossmann laboratory, Dr. Pavel Plevka and

Dr. Steffanie Becker. Therefore, the major focuses of this chapter are analyzing the

interactions of purified EV-A71 with recombinant hSCARB2 proteins and forming a

virus-receptor complex in vitro that is suitable for cryo-EM structure determination.

A.2 Materials and Methods

A.2.1 Cells and viruses

SF9 cells (Spodoptera frugiperda) were kindly provided by Jue Chen (Rockefeller

University, US). These cells were maintained in Sf-900 III serum free medium (Gibco)

and incubated in a shaker at 27°C with a speed of 125 rpm. Human embryonic kid-

ney (HEK) 293T cells (ATCC CRL-11268) were maintained in DMEM supplemented

with 10% FBS and NEAA. These cells were grown at 37°C with 5% CO2. Stock

recommbinant baculoviruses for hSCARB2-Fc-His expression and for His-hSCARB2

expression were supplied by Ian Jones (University of Reading, UK) and by Sergio

Grinstein (University of Toronto, Canada), receptively. To amplify recombinant bac-

uloviruses for one more passage from the stock virus, SF9 cells (at 1.5-2.0 million

cells/ml) were inoculated with stock virus. At about 3 days post infection, super-

natants were harvested after spinning down the culture and stored at 4°C.

A.2.2 Virus growth and purification

Growth and purification of EV-A71 was performed using a similar protocol de-

scribed for EV-D68 in Chapter 2. The only modification was that EV-A71 (strain

MY104-9-SAR-97) infect RD cells at 37°C rather than at 33°C.
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A.2.3 Cloning

To produce the construct hSCARB2-His-Monomer, the ectodomain of hSCARB2

(residues 28-431) was cloned from the template pCAGGS-hSCARB2-F into the pHLsec

vector [490]. pCAGGS-hSCARB2-F is a construct that encodes full length hSCARB2

with a C-terminal FLAG-tag. It was kindly supplied by Satoshi Koike (Tokyo

Metropolitan Institute of Medical Science, Japan). The pHLsec vector was kindly

provided by Yuguang Zhao (Oxford University, UK). Briefly, the cloning procedure

included the following steps. DNA that encodes the ectodomain of hSCARB2 was

obtained by PCR using the plasmid pCAGGS-hSCARB2-F as a template. The

two primers were 5’-ATACCGGTGTCTTCCAGAAGGCTGTAG-3’(forward) and 5’-

ATAGGTACCAGTGTTAATCATAGACTTC-3’(reverse). The DNA fragment and

pHLsec vector were independently digested using restriction enzymes AgeI and KpnI.

The resultant insert and linearized vector were ligated. The ligation product was then

transformed into NovaBlue Singles competent cells (Novagen). Single colonies were

picked up, and cell culture was scaled up for plasmid extraction. The plasmid was

used for sequencing which confirmed the correctness of inserted sequences.

A.2.4 Protein expression and purification

For expression of hSCARB2-Fc-His or His-hSCARB2, SF9 cells (at 2.5-3.0 million

cells/ml) were inoculated with their respective recombinant baculoviruses. At about 3

days post infection, cell viability dropped down from more than 98% (before infection)

to about 50%. Supernantants were harvested after spinning down the culture. About

80 ml of 10X buffer A was added to 1000 ml of supernatant. 1X buffer A refers to

50 mM HEPES, 500 mM NaCl, 1 mM imidazole (pH 7.5), where HEPES is short for

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid. The adjusted supernatant was

then incubated with about 5 ml of Ni-NTA (nickel-nitrilotriacetic acid) agarose beads

(Qiagen) in a shaker at 80 rpm and 4°C, where the beads had been pre-equilibrated

with 1X buffer A. Beads were collected into a gravity flow column and washed with
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1X buffer A and then 20 mM imidazole in 1X buffer A. The proteins were eluted with

400 mM imidazole in 1X buffer A. After concentration, the proteins were loaded onto

a size exclusion chromatographic column, Hiload 16/600 Superdex 200 pg or Superdex

200 10/300 GL (GE Health), for further purification. The resultant fractions were

analyzed by SDS-PAGE.

hSCARB2-His-Monomer was expressed using a transient mammalian cell expres-

sion system. Protein expression level was first monitored for a small scale test by

western blot analysis, which allowed for optimization of the protein production yield.

The primary and secondary antibodies were Mouse Anti-6X His (Genescript) and

Goat Anti-Mouse antibody conjugated with an infrared fluorescent dye (hereafter,

the secondary antibody is named as GαM800) that has an emission peak at close

to 800 nm (LI-COR), respectively. Fluorescent intensities were recorded using an

Odyssey imaging system. For large scale expression, about 60% confluent 293T cells

were transfected with the plasmid DNA that was pre-complexed with the transfection

reagent PEI (polyethylenimine). For each 150mm dish, about 15µg plasmid was used,

and the ratio of plasmid to PEI was about 1:5. Supernatants were harvested at about

4 days post transfection. Purification procedures were similar to those for the two re-

combinant hSCARB2 forms mentioned above. Essentially, immobilized nickel affinity

chromatography and size exclusion chromatography were employed. The yield was

about 10-15 mg purified proteins per 500 ml culture.

For expression of hSCARB2-F, 297T cells were similarly transfected with the plas-

mid DNA using PEI as the transfection reagent. At about 48h post transfection, all

cells became detached. Proteins were purified per protocol offered by Satoshi Koike.

Briefly, after the culture was spun down, cell pellets were lysed in NTE buffer (20 mM

Tris, 120 mM NaCl, 1 mM EDTA, pH 8.0) with 1% (v/v) Triton X-100 (Sigma), where

Tris stands for tris(hydroxymethyl)aminomethane and EDTA stands for ethylenedi-

aminetetraacetic acid. The resultant mixture was spun down, and the supernatant

was used for immunoaffinity chromatography. Essentially, the supernatant was in-

cubated Anti-FLAG M1 beads (Sigma) in the presence of calcium cations (10 mM).
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After centrifugation and subsequently washing the beads, the proteins were eluted

from the beads using FLAG peptides (Sigma) in NTE buffer with 0.05% (v/v) NP-

40 (Sigma). NP-40 interferes with the UV absorbance of protein at the wavelength

of 280 nm. Thus protein concentration was assayed using Coomassie brilliant blue

R-250 dye that detects the presence of proteins and using BSA as a reference protein.

A.2.5 Enzyme-linked immunosorbent assay

Purified EV-A71 virions (with concentrations ranging from 0-9 µg/ml) in PBS

were coated onto a NUNC MaxiSorp 96-well plate (NUNC Inc.) at 4°C for overnight.

After washing with PBS and then blocking with blocking solution (2% (w/v) BSA in

PBS), wells were incubated at 4°C] for 1h with His-hSCARB2, PSGL-1-Fc, hSCARB2-

Fc-His, or hSCARB2-His-Monomer, all of which had a concentration of 20 µg/ml

and were in PBS with 1% (w/v) BSA. PSGL-1-Fc, a recombinant PSGL-1, had been

shown to bind EV-A71 and was kindly provided by Ian Jones. Then the plate was

washed with PBS for multiple times. The bound receptors were detected by the

primary antibody Mouse Anti-6X His (at a dilution of 1:750) and then by the sec-

ondary antibody Goat Anti-Mouse conjugated with alkaline phosphatase (Promega)

(at a dilution of 1:6000). After washing out unbound secondary antibodies, the activ-

ity of bound secondary antibodies were assayed using the substrate para-nitrophenyl

phosphate in 1M ethanolamine and 0.5 mM MgCl2 (pH 9.8). The absorbance of

the product para-nitrophenol in each well was recorded at a wavelength of 405 nm

using a SpectraMax M5 Microplate Reader (Molecular Devices). Experiments were

performed in triplicates. Non-specific binding of either the primary antibody or the

secondary antibody to coated virions was also assessed by including a series of nega-

tive controls. Coating of different concentrations of virions onto the plate was verified

by using Mouse Anti-EV-A71-VP1 (2 µg/mL, antibodies-online Inc.).
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A.2.6 Electron microscopy of negatively stained particles

Purified EV-A71 virions were incubated with or without hSCARB2-Fc-His (molar

ratio of receptor to virus was around 120:1) under in 20 mM citrate-phosphate buffer

with 150 mM NaCl (pH 4.5) at 4°C for 1h, subsequently at 37°C for 1.5h and soni-

cation (using an ultrasonic bath) for 3 min. For EM sample preparation, about 2.5

µl of sample was applied onto a thin layer of continuous carbon film supported by an

EM grid and incubated for about 2 min at room temperature. Excessive sample was

washed away with a large drop (about 8 µl) of 2% (w/v) uranyl acetate (pH about

4.5), followed by blotting. The grid was air dried and subsequently examined with

a Phillips CM200 microscope (FEI) operated at an accelerating voltage of 200 kV.

Electron micrographs were recorded at a nominal magnification of 38,000x using a

1K x 1K CCD camera.

A.3 Results and Discussion

Initial screening using electron microscopy of negatively stained particles was per-

formed with three forms of recombinant hSCARB2. These were hSCARB2-F (full

length hSCARB2 residues 1-478 with a C-terminal FLAG-tag), hSCARB2-Fc-His

(hSCARB2 ectodomain residues 30-434 with a C-terminal human IgG1 Fc-tag fol-

lowed by a 6X His-tag), and His-SCARB2 (hSCARB2 ectodomain residues 35-430

with an N-terminal 6 X His-tag). Electron micrographs showed that hSCARB2-

Fc-His induced EV-A71 uncoating under an acidic condition (pH 4.5) (Fig. A.1).

This observation suggested that hSCARB2-Fc-His is capable of binding EV-A71.

hSCARB2-Fc-His was predicted to be a dimeric protein based on gel filtration profile

(Fig. A.1). Nevertheless, His-hSCARB2 was not able cause aggregation of EV-A71.

Cryo-EM analysis of EV-A71 after incubation with His-hSCARB2 at 4°C for 2 min

showed no significant densities of bound His-hSCARB2 on the virus surface in the

reconstruction. These results suggested that His-hSCARB2 failed to bind EV-A71.

Furthermore, the production of hSCARB2-F, a membrane protein, had a low yield.
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Preliminary test with different kinds of detergents, including NP-40 and Tween-20,

indicated that they either impaired virus-receptor interactions or deteriorated the

contrast of cryo-EM images.

The dimeric hSCARB2-Fc-His proteins probably cross link EV-A71 particles, re-

sulting in the observed aggregation of the virus. Additionally, glycans on hSCARB2-

Fc-His (derived from insect cells) might not be favorable for virus-receptor bind-

ing [192,489]. Thus, a new construct, hSCARB2-His-Monomer, was designed, which

included the SCARB2 ectodomain (residues 28-431) and a C-terminal 6 x His-tag.

The protein was expressed in mammalian cells and purified to yield monomeric

hSCARB2, as was predicted based on gel filtration profile (Fig. A.2). ELISA anal-

ysis showed that hSCARB2-His-Monomer (as also PSGL-1-Fc) can bind to EV-A71,

whereas binding of hSCARB2-Fc-His with EV-A71 appeared to be fairly weak (Fig.

A.2). In contrast, His-hSCARB2 can not bind EV-A71, which is consistent with

the aforementioned cryo-EM analysis. Thus, hSCARB2-His-Monomer is a candidate

recombinant receptor that may alleviate the aggregation problem.

An early study reported that EV-A71 viruses tend to form aggregates [480]. Re-

ceptor triggered confromational change of the virus is probably also a reason that

explains hSCARB2 induced EV-A71 aggregation. Furthermore, the usual molar ra-

tio of hSCARB2 to EV-A71 in solution is more than 60:1. It is also probable that

excessive receptor is a factor that accounts for aggregation. Thus, there exist a

few potential approaches to work around the aggregation issue. Addition of sodium

deoxycholate, a reagent known for clearing EV-A71 aggregation [480], might be help-

ful. Alternatively, inclusion of capsid binding inhibitors (e.g., pirodavir [476]), may

prevent unnecessary conformational changes but still maintain virus-receptor inter-

actions. Another potential method is to take advantage of the recently developed

antibody-based affinity grid [491, 492]. The idea is to fix individual EV71 virions

with EV-A71 antibodies prior to complexing the virus with recombinant hSCARB2.

Finally, hSCARB2 might be incorporated into artificial membrane systems such as



176

Fig. A.1. hSCARB2-Fc induces EV-A71 uncoating at low pH.
A. Size exclusion chromatographic profile of hSCARB2-Fc-His using
a Superdex 200 column shows an estimated dimeric form of the pro-
tein. B. SDS-PAGE analysis of hSCARB2-Fc-His. Fractions of the
left peak (at 11.7 ml) on the gel filtration profile was pooled up and
concentrated to yield the final protein (lane 4 from the left). Lanes 2-3
represent samples before gel filtration. C-D. Electron micrographs of
negative stained EV-A71 particles. C. EV-A71 alone was incubated
under pH 4.5 at 4°C for 1 h and then at 37°C for 1.5 h. D. EV-A71
and hSCARB2-Fc-His were incubated under pH 4.5 at 4°C for 1 h
and then at 37 °C for 1.5 h. Scale bar: 200 nm.
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Fig. A.2. A mammalian cell derived monomeric hSCARB2
binds EV-A71. A. Gel filtration profile of hSCARB2-His-Monomer
shows a predicted monomeric form of the protein. B. SDS-PAGE
analysis of hSCARB2-His-Monomer. The far right lane represents a
sample that was pooled up from the fractions of the peak (at 13.9
ml) shown in A. Other lanes correspond to fractions collected from
a previous run of gel filtration. C. Binding of SCARB2 to EV71
was analyzed by ELISA. Wells were coated with different concen-
trations of purified virus, followed by addition of hSCARB2. The
bound hSCARB2 was detected by using mouse anti-6X Histag and
subsequently anti-mouse conjugated with alkaline phosphatase. Ex-
periments were done in triplicates. Data are shown as mean±SD.
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liposomes [136] and nanodiscs [213]. This approach would bring the virus-receptor

molar ratio from at least 60:1 down to a ratio as low as 1:1.
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