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1.1 French Flag Model and morphogen mediated pattern formation: a) In the
French Flag Model, regions colored in blue, white and red along the hor-
izontal axis with equal width can be made analogous to a homogeneous
field of cells. A signaling gradient, such as the morphogen gradient, is
interpreted by a field of homogeneous cells in order to acquire each cell’s
positional value. Depending on the intensity of signal (as demonstrated
by threshold p, q) different sets of genes turn on, and the different colors in
French Flag Model resembles the manifestation of a threshold-based gene
expression. b) Morphogens are secreted from a source and then undergoes
a long range transport away from the source, creating a sharp concentra-
tion gradient between the source and sink. This concentration gradient
of morphogen provides the positional information to each of the receiving
cells and the positional information is interpreted by responding to pre-
defined threshold conditions of morphogen concentration. For example,
cells exposed to more than a threshold p would become blue, whereas cells
that are exposed to morphogen concentration between thresholds p and q
would be white. Such a threshold-based readout of morphogen signaling
by a homogenous field of cells to differentiate into patterns is analogous
to the colored patterns of a French flag model as demonstrated in part a. 7

1.2 BMP signaling pathway: BMP initially interacts with Type I receptors
and forms a dimer-receptor complex. The initial dimer-receptor complex
subsequently recruits additional receptors on the cellular surface resulting
in a tetrameric receptor association, the process is known as the receptor
oligomerization. BMP dimer signals through the heterotetrameric recep-
tor complex consisting of two type I (Alk3/6, Alk2/8 ) and two type II
receptors. The tetrameric complex subsequently activates the intracel-
lular phosphorylation of Smad. Phosphorylated Smad (pSmad) forms a
trimeric complex with coSmad and translocate into the nucleus through
nucleo-cytoplasmic shuttling to initiate dose-dependent gene expression. 10
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1.3 Different types of scale-invariance of morphogen signaling: the upper and
lower panels represent absolute and normalized morphogen signaling re-
spectively. a) No scaling: the normalized morphogen distributions don’t
overlap at any position. b) Partial scaling: when morphogen distribution
is normalized against the corresponding system size, there are overlaps
among the normalized distribution. c) Morphogen distributions for differ-
ent system sizes overlap perfectly when normalized against their respective
system length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 a) BMPs are secreted as dimers, and the three different BMP dimers are
shown in red, yellow and red-yellow. Each of the dimers can recruit any
of the available type I and type II receptors. By participating in sub-
sequent receptor recruitment steps, a dimer forms a number of putative
signaling complex consisting of two distinct type I receptors and two type
II receptors. The three different types of receptors that are available for
binding are the type I receptor (Alk3/6), another variant of type I re-
ceptor (Alk2/8), and type II receptors. However, the affinity of different
interactions varies between different dimer-receptor combinations. b) Each
dimer competes to bind with a free receptor. If a dimer reaches a prox-
imity equivalent to or less than the encounter radius, s, it binds with the
receptor and forms the initial dimer-receptor complex. c) Once the ini-
tial ligand-receptor complex (BR) is formed, its movement is restricted on
the cell surface and all the subsequent binding happens between species
restricted on the cell surface and the family of the membrane receptors. 28

2.2 Biochemical interactions between dimers and receptors: All the possible
reactions between a dimer (B) and its cognate receptors are shown here.
For example, dimer (B) initially interacts with any of the three receptors
R3, R8, and RII , and, upon initial binding, the dimer-receptor complex
continues accumulating more receptors to finally give rise to a tetrameric
receptor association. Evidently, the tetrameric association cannot have
more than two copies of any specific receptors that is, only BR3R3RIIRII ,
BR3R8RIIRII , and BR8R8RIIRII complexes are possible in system. All
these reactions are bidirectional and follow mass-action kinetics. In a
BMP signaling pathway, the three dimers BMP7, BMP2 and BMP2/7
heterodimers are all theoretically able to participate in these interactions
and form tetrameric complexes. However, certain interaction edges of the
network might be insignificant for different dimers because of a very low
binding affinity for the corresponding interaction, and is shown later. . 29
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2.3 Putative signaling complexes in a dimer-receptor system: through a series
of receptor interactions, each dimer (BMP2, BMP7 and BMP2/7) forms
three tetrameric receptor associations in a competitive dimer-receptor en-
vironment. The relative strength of all the formed complexes depends on
the affinity of corresponding binding events. For instance, affinity-based
assessment reveals that BMP2 binds with Alk 3/6 with a high affinity and
therefore, the complex BMP2 − Alk3/6 − Alk3/6 − TypeII : TypeII is
likely to form in larger quantities than other tetrameric complexes. The
stipulated signaling complex, as seen in the D/V patterning of the ze-
brafish, is displayed inside a grey circle, and the arrow directs the concen-
tration hierarchy of all the complexes. . . . . . . . . . . . . . . . . . . 33

2.4 Effective edges of oligomerization network based on dimer-receptor inter-
action affinity: Based on dimer-receptor binding affinity receptor recruit-
ment to specific dimer types varies. For instance, BMP7 dimers and BMP2
dimers have largely varying affinity for the Alk 2/8 receptor. To be more
precise, the BMP2 receptor binds very poorly with Alk 2/8 and, hence, the
effective edges of BMP dimer receptor interactions reduce from a complete
network as seen in Fig.2.2 to a simpler network of 12 bidirectional inter-
actions, demonstrated here using the green edges. Similarly, after affinity
assessment, the effective edges of BMP2/7 and receptor interactions are
reduced to a sub-network formed by connecting green and blue edges.
Since BMP7 interacts with all the receptors through considerable affinity,
BMP7-only interactions comprise all the edges (red + blue + green). . 36

2.5 Schematic representation of the two sub-volume concept: When BMP
reaches a smaller volume it interacts with the transmembrane receptor
and, subsequently, the ligand-bound receptor initiates the oligomerization
steps. Oligomerization generates the required tetrameric receptor associ-
ation to initiate downstream signaling. . . . . . . . . . . . . . . . . . . 46

2.6 Insights into receptor oligomerization: a) All free dimers reside in a 3D ex-
tracellular volume. Free dimers initially interact with receptors that have
the highest affinity for dimer binding, as shown by the blue arrows. Upon
formation of the dimer-receptor complex, all subsequent receptor recruit-
ments, defined as secondary receptor recruitments (shown by black arrow),
happen on the cell surface with a comparatively lower affinity than that
of the initial binding. b) During initial binding, the receptor experiences
dimers in a 3D volume, whereas during secondary binding it experiences
all the dimer-receptor complexes, or free dimers in a 2D domain. This
reduction in dimensionality increases the effective concentration (as the
amount of Dimer = N is fixed) of dimers, as observed by all those low
affinity receptors and is demonstrated here schematically. . . . . . . . . 50
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2.7 Heterodimer dominance is not assured with a simple kinetics explanation:
Dimer-receptor network screening by varying all the parameters reveals
that heterodimer dominance is unobtainable with any combination of pa-
rameter values. Both X and Y axis are represented in a log-scale. a)
The occurrence of heterodimer dominance is manifested here: any colored
circle on the Alk2/8−TypeII plane demonstrates that heterodimer dom-
inance is obtained for a specific combination of parameters. As seen in the
plots, colored circles are used to vary the level of Alk3/6 (R3) receptors. b)
Dimer concentration varies over two orders of magnitude while fixing the
surface enhancement factor to γ = 50 to obtain heterodimer dominance,
but the colored circles are not visible on the Alk2/8 − TypeII plane. c)
Here, the dimer level is fixed at 0.3 nM, while the surface enhancement
factor γ is varied over two orders of magnitude. Similar to previous screen-
ing outcomes, heterodimer dominance is unobtainable, as evident from the
absence of colored-circle on the Alk2/8− TypeII. . . . . . . . . . . . 56

2.8 Global screening of parameter space: a) Signaling enrichment is evident
when the KD between Alk 2/8 and B27 is within range 0.833 to 1.8 nM,
and the range is true for all the CFs we have considered. This is shown
in the left-most panel optimized screening gives a total of 10 optimal/sub-
optimal parameter sets, and the corresponding low and high signaling
strength is plotted along the Y-axis. For all optimal/sub-optimal points
KD for Alk2/8 and B27, interactions are between 0.833 to 1.2 nM and
this is shown in the right panel. b) Similarly to part a, except that the
lowest range for KD was set to be 3.333 nM. An optimized condition for
signaling enrichment requires KD to range from 3 to 3.3 nM. c) The lowest
KD allowed for this global screening is 6.666 nM, and the screening reveals
that optimal and sub-optimal points have a clear bias towards the lowest
KD allowed in the global screening process for the system. In all cases, the
boost up factor (γ) is significantly greater than 1, which means that the
boost up of secondary receptor recruitment on the cell surface is necessary
to produce sufficient signaling. . . . . . . . . . . . . . . . . . . . . . . . 60

2.9 Heterodimer dominance for tight Alk2/8 binding: BMP2/7 − Acvr1 −
BmpR1 − TypeII − TypeII dominance over BmpR1 homodimer forma-
tion could occur in systems with excess Acvr1 and a higher binding affin-
ity between Acvr1 and BMP2/7. The lines on the plot demonstrate the
specific requirements for the highest possible dissociation constant before
the signaling system favors formation of BMP2/7 − Acvr1 − BmpR1 −
TypeII − TypeII at a ligand concentration of 0.3 nM. . . . . . . . . . 61
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2.10 Affinity based putative signaling complexes concentration: a) Based on the
concentration magnitude, tetrameric complexes are arranged in descend-
ing order. As BMP2 dimer interacts with the Alk3/6 (BMPR1) receptor
with the highest affinity (lowest KD), BMP2−Alk3−Alk3− TypeII −
TypeII complex is expected to be produced more than any other possible
tetrameric complex. As BMP2 binds very poorly with the Alk2/8(Acvr1)
receptor family, the complex BMP2−Alk8−Alk8−TypeII −TypeII is
expected to be the least produced complex at the given wild-type dimer-
receptor strength. Heterodimer (BMP27) bound heterotetrameric receptor
association is highlighted by a grey background and it resides at the fourth
position in the affinity based hierarchy of putative signaling complexes. b)
Affinity based BMP complex assembly for a BMP2/7 system, where the
concentration of BMP2 and BMP7 were taken as zero. Because aBMP2/7
heterodimer possesses a higher affinity for the Alk 3/6 (BMPR1) recep-
tors, the tetrameric complex consisting of two copies of BMPR1 is more
prevalent than a heteromeric association (Acvr1-BMPR1) in the system. 65

2.11 Affinity based hierarchy of tetrameric complexes for different dimer con-
centrations: Based on the magnitude of concentration, tetrameric com-
plexes are arranged in descending order. Because a BMP2 dimer in-
teracts with the Alk3/6 receptor with the highest affinity (lowest KD),
BMP2 − Alk3 − Alk3 − TypeII − TypeII is expected to be produced
more than any other possible tetrameric complex. As BMP2 binds very
poorly with the Alk2/8 receptor family, the complex BMP2 − Alk8 −
Alk8 − TypeII − TypeII is expected to be the least produced complex
at the given Wild-type dimer-receptor strength. Heterodimer (BMP2/7)
bound heterotetrameric receptor association is highlighted with a grey
background, and it resides at the fourth position of the list. . . . . . . 66

2.12 Tetrameric complexes in the presence of an elevated Acvrl level: Dis-
tribution of tetrameric complexes is shown here as a function of ligand
concentration in the system with an elevated Acvr1 level. As seen here,
the level of BmpR1 receptor complexes exceeds the level of BMP2/7 −
Acvr1−BmpR1−TypeII−TypeII throughout the useful range of ligand.
A similar trend is depicted for two different type II receptor strengths (10
and 20 nM in parts A and B respectively). . . . . . . . . . . . . . . . . 67
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2.13 The definition of dynamic range in BMP signaling: For equal dimer strength
(B2 = B7 = B27) the signaling data is captured by varying input levels
of dimers over several orders of magnitudes. Dynamic ranges of mor-
phogens are defined between the minimum to maximum signaling, given
that the signal level gradually increases as input morphogen increases.
The dynamic range calculation for multiple distributions requires drawing
straight line at the largest value of all the minimum signaling levels seen in
each distribution. This line intersects other signaling distributions, iden-
tifying the lower end of the corresponding dynamic range, and is shown
by drawing a cyan line from the minimum point of the signaling obtained
for for KD = 10nM . This line intersects the signaling distribution for
KD = 250 and KD = 512 respectively, and provides the lower ends of the
dynamic range of morphogen signaling for both KDs. . . . . . . . . . . 70

2.14 The BMP heterodimer is a better sensor than a homodimer in a morphogen
activity. (A-D). BMP2 = BMP7 = BMP2/7 = 0.3 nM; (A-C) Type II =
10 nM; (D) Acvr1 = 10 nM. (A) BMP2/7-heteromeric receptor complex
formation (y- axis) exhibits low sensitivity to Acvr1 levels (x-axis), but (B)
high sensitivity to increasing BmpR1 levels (x-axis). (C and D) Levels of
BMP2/7-BmpR1- BmpR1 signaling complexes (y-axis) versus increasing
levels of BmpR1 for different levels of Acvr1 (C) or Type II (D) receptors.
(E-G) The dynamic ligand range is greater for (E) BMP2/7-BmpR1-Acvr1
than for (F) BMP2- BmpR1- BmpR1 complex formation at a wide range
of receptor concentrations. (G) Shows the average dynamic range from
E and F for heterodimer versus homodimer complexes over the range of
Acvr1 (red line), or the BmpR1 (black line) receptors used in the model. 71

2.15 A comparison of the upper and lower ends of the dynamic range. The
upper and lower ends of the dynamic range of both BMP2/7 − Alk3 −
Alk8−TypeII−TypeII and BMP2−Alk3−Alk3−TypeII−TypeII are
tracked for a gradual increase in Alk 2/8 variation. The common trend,
as observed here, is that regardless of receptor type, the upper end of
the dynamic range of a B27-bound heterotetrameric receptor complex is
always greater than a BMP2-bound homomeric receptor association. This
leads into a comparatively larger BMP activity. When considered in an
extracellular volume for stipulated BMP activity, the larger BMP activity
results in a less noisy dynamics as opposed to the noisy trend of the low
copy number BMP signaling demonstrated in [26]. a.) BmpR1 is varied
while keeping the concentration of Type II fixed at 10 nM, b.) BmpR1 is
fixed at 10nM and TypeII varied from 20 nM to 40 nM. In all these plots,
red and green lines are used for BMP2/7−Alk3−Alk8−TypeII−TypeII
and BMP2− Alk3− Alk3− TypeII − TypeII respectively. . . . . . . 73
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3.1 Network cases for Type II recruitment analysis in context of Drosophila
melanogaster development: Case I) Recruitment of Type II is overlooked
here and it imitates the simplified model used in previous studies. In this
type of network, BMP:Type I complex (BR1) acts as the sole signaling
complex. Case II) Upon the forma- tion of a BMP: Type I complex,
subsequent recruitment of Type II receptor is considered here. However,
a direct interaction between BMP and Type II receptors doesnt happen
in the network. Here, a tripartite complex BMP:Type I:Type II (BR1R2)
activates the downstream pathways. Case III) Similar to Case II, but with
the exception that a direct interaction between BMP and Type II receptor
is allowed to form a BMP:Type II complex (BR1). The kinetic equations
are equivalent to the SBP system investigated in [26]. . . . . . . . . . . 80

3.2 A comparison of coefficient of variation Λ for three network cases: a) The
coefficient variation of BR1 (calculated from Case I Figure 3)and BR1R2

complexes (calculated from Case II Fig.3.1) is compared. The variability
of the system seems to be invariant in the presence of Type II. b) The
concentration dependency of Λ as a function of R2. c) Same as plot ”a”,
however, direct interaction of BMP and Type II is allowed as in Case III,
Fig 3.1. It’s clear that the stochasticity of the system does not change
over the range of tested values. d) Summary of BR1R2 formation and its
impact on signaling noise. . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3 a) In Gillespies method, a larger ‘End Time’ (ET) is required (which
translates into a higher processing cost and time) to ensure the accuracy
of outcome. Three different ET: 280 hrs, 2800 hrs, 28000 hrs are shown.
b) The effect of kinetics associated with BR1 interacting with R2. The
steps of interactions are clearly shown in Case II of Fig.3.1 . . . . . . . 89
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4.1 Morphogen gradient and scaling of patterns: a) The Morphogen gradient
acts as a patterning signal, and creates patterns among a homogenous
field of cells in a concentration dependent manner. Cells sense the extra-
cellular morphogen gradient through transmembrane receptors and discern
according to morphogen thresholds (p, q). Therefore, cells between 0 to x
length that sense a morphogen level greater than p become a specific cell
type, whereas cells that sense a morphogen gradient between p and q as-
sume a different cell fate. b) Scaling of patterns: For different system sizes
(l1, l2, l3), if the spatial position is normalized by their respective lengths,
normalized distribution is superimposed perfectly a similar concept is ex-
plained (lower panel) using the French Flag Model. . . . . . . . . . . . 94
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4.2 Two Component system (TCS) for scaling: In the cellular environment,
free morphogen movement is often hindered by the presence of interacting
molecules (cyan). Besides cognate receptor binding, a morphogen (ma-
genta) also interacts with numerous other extracellular binding proteins
(cyan), defined as modulators. These extracellular interactions can change
the biophysical profile of the morphogen and thus, diffusivity and other
kinetics may no longer be constant in the cellular environment. b,c,d)
Based on the location of the modulator source, the proposed TCS is sub-
divided into three main subclasses i) modulator flux source at x = 0, ii)
modulator flux source at X = L, and iii) spatially non- uniform produc-
tion of morphogen. In all these TCS versions, the morphogen flux source
is always located at x = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 A comparison of different positive regulation methods: Here, Dm0 is varied
in different rows, and DM0 is varied in columns. For example, in Row1:
Dm0 = [0.01] and DM0 = [0.01 0.1 1]. In most cases, the concentration
profile obtained by different numerical approaches matches almost per-
fectly with comsol data. But, in a few cases, the concentration profile
has significant differences as seen in the modulator data for Dm0 = 0.01
and DM0 = 0.1, 1. For the morphogen data, dissimilarity is visible for
Dm0 = 0.1, 1 and DM0 = 0.01. . . . . . . . . . . . . . . . . . . . . . . . 117

4.4 A comparison of different negative regulation methods: For negative regu-
lation of biophysical properties (diffusion, reaction), simulated data looks
similar in most cases except where the concentration value varies near the
origin. As seen here, if concentration is high near the origin, but close to
zero at other spatial locations, dissimilarities arise in different numerical
approaches. However, if the species concentration falls gradually, mor-
phogen and modulator distribution look identical. Here, Dm0 is varied
in different rows and DM0 is varied in columns. For example, in Row1:
Dm0 = [0.01] and DM0 = [0.01 0.1 1]. . . . . . . . . . . . . . . . . . . . 118

4.5 The quantification of absolute and root means square error for different
mesh size: Both errors are high when mesh resolution is coarse, which is
expected due to the discretization effect. As the number of mesh points
(N) increase, the error reduces drastically and, finally, reaches a value
that remains steady even at larger mesh point increases. Expanded chain
(EC) and divergence (DIV) forms demonstrate similar mesh size vs error
plots. However, close comparison of red and green lines reveals that for
a number of mesh sizes (smaller mesh size),the expanded chain rule (red)
demonstrates better accuracy than the divergence (green line) form of TCS
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4.6 Data generation and post-processing in TCS: All the steps to generate
concentration data for the morphogens and modulators, and subsequent
steps to differentiate between favorable networks and unfavorable networks
are shown here. The unperturbed and perturbed lengths of the system
were considered at 300µm and 600µm respectively, and for morphogen
flux this is 0.01 and 0.02 respectively. The favorable networks were further
considered as the input data sets for parsimonious screening. . . . . . . 125

4.7 Screening for parsimonious regulatory motifs: Parameters related to trans-
port, reaction, and production regulation were used to generate a new pa-
rameter grid for parsimonious screening. In this new grid, parameters in
blue remain the same for all the combinations considered. Each param-
eter grid differs only with the values of regulatory parameters associated
with diffusion, reaction, and production modulation. After simulating the
system using CVODE, it is filtered again with scale-invariance (SIV) / ro-
bustness (RBST) criteria. Finally, the successful candidate network with
minimal edges (edge 3 as shown here) is finally chosen. . . . . . . . . . 126

4.8 A Venn Diagram for screening statistics of TCS with modulator source
at X = 0. Only a small portion of the total parameter vectors generate
biologically acceptable morphogen distributions for both the perturbed
and unperturbed cases. a) Screening statistics for robustness shows that
only 351 data sets out of 11.9 million possible cases satisfy the robustness
(RBST) criteria as designed. As seen from the Venn Diagram, 24 sets
fail to reach steady state within the first 6 hours of the dynamics. It is
worthwhile to note that simulation failures due to CVODE convergence
issues were very low. b) Similar to part a, however, the data shown here is
designed for scale-invariance (SIV) screening. Compared to the robustness
screening data, SIV data has a lower number of successful parameter sets
that satisfy the SIV performance objective. However, SIV screening shows
more biologically acceptable distributions than the RBST case. Both the
RBST and SIV analysis are conducted on 3 points (ξ = 0.2, ξ = 0.4,
ξ = 0.6,) along the spatial domain. . . . . . . . . . . . . . . . . . . . . 128
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4.9 A Venn Diagram for screening statistics of TCS with modulator source
at X = L. The simulation had a limited number of CVODE failures.
For SIV analysis, the data was generated for two different length scales:
L = 300µm and L = 600µm. a) Screening statistics for robustness data
shows that only 82 data sets satisfy the robustness (RBST) criteria. Most
of the successful cases dont reach steady state within the first 6 hours. b)
Similar to part a, however the data shown here is for SIV screening. As
seen here, a number of cases demonstrate SIV, but none reach steady state
within the first 6 hours. Here, RBST and SIV analysis are conducted on
a 3 points (ξ = 0.2, ξ = 0.4, ξ = 0.6,) criteria along the spatial domain. 129
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X = 0. Diffusion, reaction, and production of morphogen and modulator
can be regulated positively, negatively, or there may be no regulation
as well. This generates a total of 729 theoretically possible regulatory
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their corresponding morphogen and modulator distribution. For all plots,
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the unperturbed system is in red, and circular markers and unbroken lines
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L = 300µm for this analysis. . . . . . . . . . . . . . . . . . . . . . . . . 130
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4.12 Regulatory motifs for successful SIV cases for modulator source at X = 0:
Figure details and colors codes are similar to Fig.4.10. For SIV, L =
300µm was used for the unperturbed system, whereas for the perturbed
system, the system length was doubled (2L). . . . . . . . . . . . . . . . 132



xx

Figure Page

4.13 Regulatory motifs for successful SIV cases for modulator source at X = L:
D,R,P represents the diffusion, reaction and production of each species.
a) Each green circle denotes the occurrence of a specific motif. As we
clearly see here, several motifs appear with an equal number of occur-
rences, whereas others have few appearances. Out of 75 regulatory motifs
we only considered motifs that have more than 2% appearance. b) Reg-
ulatory motifs appearing at least 64 (2%) times have been plotted here
together with morphogen and modulator concentrations. Concentration
plots are all drawn in log scale, and corresponding regulatory motifs are
shown on top of each concentration plot. Positive, negative, and no regula-
tion of biophysical properties are represented using arrow-head, flat head,
and no-line respectively. The Y- axis at the left is for morphogen concen-
tration and modulator concentration is plotted in the left Y-axis with a
range of [101 10−5]nM. In most of the motifs, modulator concentration is
primarily restricted near the source at X = L. Moreover, in all these plots,
modulator concentration and the active domain for modulation decrease
as the system length is increased from L to 2L. . . . . . . . . . . . . . 133
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4.17 Sample distribution of robustness analysis for TCS model 3: In this model,
modulators are secreted from a spatially distributed source and the rate of
secretion is regulatedby morphogen spatially. In all the plots, morphogen
distributions are presented as continuous lines, whereas the broken lines
were used to denote modulator concentrations. The color code was used to
differentiate between perturbed (black) and unperturbed (red) cases. a)
A high concentration of modulators near the source of morphogen could
cause a robust morphogen distribution. b, c) Non-uniform distribution
of modulators was able to form a robust morphogen signaling despite the
presence of flux variation of morphogen. . . . . . . . . . . . . . . . . . 140

4.18 Sample distribution of scale-invariance analysis for TCS model 3: In gen-
eral, this model didn’t work well for scale-invariance, despite the fact that
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(ER) mechanisms proposed previously [10]. We obtained a very few cases
that satisfy scale-invariance, and a few sample distributions are shown
here. In all the plots, morphogen distributions are presented as continuous
lines, whereas the broken lines were used to denote modulator concentra-
tions. The color code was used to differentiate between perturbed (black)
and unperturbed (red) cases. a) Scale-invariance was achieved for non-
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process: In this reduced version, after initial binding all the subsequent
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B.1 Affinity based hierarchy of putative complexes: Two different implemen-
tations are considered here- i) dimers are system parameter, and ii) dimers
are treated as system variable. When dimers are system variable, a con-
stant production rate is constant for each dimers. Similar to the initial
implementation, we consider equal production rate of all the dimers. That
is, production rate φB2, φB7, and φB27 are equal in these simulations. a)
Dimers are treated as system parameters, b) Dimers are treated as system
variable. As we see here, concentration of putative signaling complexes
follow a descending order set by the affinities of dimer-receptor interac-
tions. For instance, the most prevalent complex in both implementation is
Bmp2−BmpR1−BmpR1− TypeII − TypeII. The stipulated signaling
complex Bmp2/7−BmpR1−Acvr1− TypeII − TypeII is placed at the
fourth most prevalent complex in both the implementation. . . . . . . . 178

B.2 Hierarchy of tetrameric complexes formation considering dimers as the
system variable: In this implementation, all the dimers have equal pro-
duction rate. This is similar to Fig.B.2, but here the hierarchy of putative
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D.1 EC data for the first-order positive regulation of diffusion coefficient : In-
trinsic diffusion coefficients are Dm0 = 1µm2s−1 and DM0 = 0.1µm2s−1

for morphogen and modulator respectively. In graph a) and b), Line plots
are for the concentration distribution, where the red line is for the exact
initial profile supplied to the system. As seen from the graphs, both the
different approaches (EC and DIV) generate similar outcomes that do not
deviate from the initial area. This implies that the discretization of the
domain satisfy the conservation of mass criteria. Analytical solution as
devised earlier showed that the steady state profile should be constant,
which is reproduced by simulation as well. Second order regulation also
achieves a steady state data that is uniform over the spatial domain, how-
ever, the data is not shown here. We also tried equal intrinsic diffusion
coefficient (Dm0 = DM0 = 1µm2s−1) to see if the steady-state is quali-
tatively similar to the analytically obtained traits, and the mass of the
system is conserved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
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D.2 EC data for the first-order negative regulation of diffusion coefficient :
Intrinsic diffusion coefficients are Dm0 = 1µm2s−1 and DM0 = 0.1µm2s−1

for morphogen and modulator respectively. Same as Fig.1, but shown
here for negative regulation. As seen from the area comparison between
initial and steady-state profile, modulator distribution also satisfies the
mass-conservation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
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D.5 Comparison of CVODE data with COMSOL: Intrinsic diffusion coeffi-
cients are Dm0 = 1µm2s−1 and DM0 = 0.1µm2s−1 for morphogen and
modulator respectively. Steady-state profile of concentration obtained by
three approaches are compared. Here, the COMSOL data is treated as
the reference to compare the performance of EC and DIV approaches. a)
Comparison for morphogen data, b) Comparison for modulator data. The
bar plots show the area under the concentration curve as demonstrated
by the different approaches. As we see, EC and DIV both match with
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ABSTRACT

Karim, Md. Shahriar Ph.D., Purdue University, December 2016. Quantitative
Modeling of Scaling of Patterns and receptor signaling in morphogenesis. Major
Professor: David M. Umulis.

Organs and tissue development often experience perturbations, but developmental

processes seem to replicate a common body template to maintain appropriate propor-

tions and positions. The key signaling factors that guide a number of those processes

are known as morphogens. Developing cells sense their respective positional informa-

tion from a graded morphogen profile, and differentiate into patterns. Remarkably,

patterns are highly robust and reproducible among species, and the underlying mech-

anisms associated with such high degrees of precision are still enigmatic. In addition,

details of the signal, such as the Bone Morphogenetic Protein (BMP) signal, that

transmit patterning information to a group of homogenous cells to differentiate is

not well understood. Determining how developmental processes ensure robust pat-

terning in the presence of perturbations maintain structural precision by scaling, and

what regulatory mechanisms act to ensure robust and reproducible patterning are two

longstanding questions that need unraveling. Moreover, determining the mechanisms

by which BMP homodimers dominate signaling in developing zebrafish embryos and

other contexts is a key factor in understanding developmental regulation for a classic

morphogen patterning.

To answer these questions, this work has developed a set of mathematical mod-

els to evaluate and interrogate potential signaling networks and regulatory motifs.

These models identify scaling mechanisms, test hypotheses on heterodimer domi-

nance during signal transduction, and show how patterning systems function. For

the scaling problem, this research proposes a Two Component System (TCS) mech-
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anism, where a morphogen (m) and a modulator (M) interact reciprocally to alter

the transport and reaction properties of each other spatially. An exhaustive para-

metric and network motif screen is conducted for several TCS variants under the

reaction-diffusion-advection paradigm with spatially varying coefficients. Our anal-

ysis revealed a number of candidate networks and minimal regulatory motifs that

achieve the precision needed for a developing species to ensure perfect development.

Computational models of patterning signals, namely the Bone Morphogenetic Protein

(BMP) mediated signal, were developed to analyze the receptor oligomerization that

forms heterotetrameric receptor associations in BMP signaling. The oligomerization

model disproves previous kinetic based hypotheses of heterodimer dominance, and

identify other theoretical conditions to acquire it. Finally, the model predicts that

heterodimer dominance provides a larger dynamic range and a higher concentration of

morphogen activity, making it a robust sensor responding wide ranges of morphogen

concentrations fundamental to a morphogen gradient system. Moreover, stochastic

analysis of oligomerization steps reveal that recruitment of type II receptors during

the receptor oligomerization by itself does not tend to lower noise in receptor sig-

naling, an outcome that can be applied later in developing a complete probabilistic

model of receptor oligomerization events.

The computational arrangements and frameworks developed in this research have

wider applications– for instance, illustration of a large-scale screen of a reaction-

diffusion-advection systems with spatially varying coefficients is a novel strategy to

perform a large-scale screen of such system and could have wider applications in other

areas. Additionally, our mathematical framework on the dynamics of a tetrameric

complex formation and oligomerization steps could be applicable to other signaling

pathways that require trimeric/tetrameric complex formation on the cell surface to

elicit signaling.
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1. INTRODUCTION

From cells to species to populations, patterns happen at all stages of biological ex-

istence. The exact details of patterning mechanisms in various systems may differ;

however, they often follow a common structure to generate patterns. This structure

includes i) a signal that conveys patterning information, ii) mechanisms and extra-

cellular machinery to detect and to transmit this signal downstream, and finally, iii)

a downstream signaling network that interprets information transmitted by the sig-

nal. Although there are numerous biological signals and pathways actively involved

in species development, this body of work primarily focuses on morphogen [1–7] me-

diated signaling and pattern formation, and considers mechanistic models to identify

mechanisms that aid in scaling and discovering the exact details of the underlying

signaling complex that transmit patterning information.

To ensure perfect and precise species development, signaling must happen at the

right time and right place during the early stages of development. Despite the pres-

ence of perturbations, developmental processes are highly robust and reproducible,

and demonstrate shape and size adaptation in order to maintain proportionate devel-

opment of every species’ constitutive organs and tissues [8–12]. For instance, embryo

size and shape frequently vary substantially both within and between species, but the

adult develops with a perfectly proportioned and positioned organs and tissues [12,13].

The property by which species resolves such perturbations during development is

known as scaling [9]. Failure to achieve scaling, and signaling precision during de-

velopment, may lead to numerous lethal consequences, such as birth defects and

developmental disorders [14, 15]. As an example, digit formation in vertebrates may

be defective if the underlying morphogen signals, Fibroblast Growth Factor (FGF)

and Sonic hedgehog (Shh), are not tightly controlled [16–18] in the presence of sys-

tem size variation and environmental perturbations. Also, branching morphogenesis
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within species requires remarkable precision and reproducibility, and morphogens play

an important role in branching networks, such as in lung development [18–20] and

limb formation in mammals [19,21].

While transmitting patterning information to an underlying field of cells, mor-

phogens interact with a large number of extracellular factors [6, 7, 22] that refine

signal distributions and regulate the phenotypic response of the system. Despite

the availability of molecular data on numerous developmental processes, very little

is known about the underlying mechanisms needed to achieve the required precision

during species development. Therefore, longstanding questions- how developmental

processes within species maintain such precision and finding out which regulatory

mechanisms act individually, or in concert, to obtain scaling of patterns at different

stages of development - continues to be of great interest to the scientific community.

Specifically, in this research, we are primarily interested in the patterns that take place

during the early stages of embryonic development, and the patterning signal that is

mediated by the Bone Morphogenetic Proteins (BMPs). BMPs act as morphogens

that pattern the dorsal-ventral (D/V) axis during the embryonic development both

in vertebrates and invertebrates.

Biochemical and cell-based signaling data suggests that BMP signaling is likely to

be regulated by low concentration (nano and sub-nanomolar) BMP activity. For ex-

ample, Decapentaplegic (Dpp) signaling in Drosophila S2 cell line begins to saturate

signaling at low concentration ranges between 0.1 nM to 1 nM [23]. In addition, not

only the binding between BMP and its family of receptors are tight, BMP-receptor

interactions are comparatively slow in many species [24, 25]. The combined effects

of tight binding, low concentration, and slow kinetics create a long-duration stochas-

tic deviation from the mean level of BMP signaling [26]. However, BMP-mediated

processes appear to be carefully controlled and resilient in vivo, suggesting that the

pathway evolved to either tolerate or mitigate stochastic fluctuations associated with

receptor-ligand bindings. The impact of noise in BMP-mediated signaling has often

been overlooked elsewhere [22, 27, 28], and it is unclear if noise is mitigated through
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receptor oligomerization steps. Thus, to identify mechanisms of noise suppression in

BMP signaling, we need further investigation on receptor recruitment events, and one

of the interesting questions would be to see if recruitment of type II receptors during

receptor oligomerization by itself tends to lower noise in receptor signaling.

Moreover, in multiple contexts, it has been seen that BMP heterodimers demon-

strate stronger signaling activity than BMP homodimers [6, 29–34]. Why the BMP

heterodimers signal more strongly than BMP homodimers or as the sole signaling

ligand in BMP signaling, it is still unknown, and further attention is needed to un-

ravel what drives the heterodimer dominant mechanism. Further complicating the

matter, the structure of obligate dimer-bound Type I receptor (Alk 2/8) is not de-

termined yet, and thus, the affinity of a heterodimer and Alk2/8 binding can not be

confirmed [6]. Therefore, based on the existing data and our current understanding

of dimer-receptor interactions, no obvious conclusion can be drawn on the potential

reasons of heterodimer dominance in BMP signaling, and to circumvent the lack of

molecular data, we develop computational models of dimer-receptor interactions to

identify mechanisms of heterodimer dominance in BMP signaling.

Computational models have been extensively used to analyze BMP signaling and

the roles of BMP-regulators on BMP dynamics for decades [2,7,22,27,29,35–37]. Mod-

els on BMP signaling are primarily used to test the mechanisms behind BMP signal

regulation and to identify testable hypotheses that can explain robustness, scaling,

and the dynamics of BMP signaling. Our current explanations of the mechanisms of

heterodimer dominance are insufficient, and the question lacks experimental evidence

and adequate molecular data. To investigate the mechanisms of heterodimer domi-

nance in BMP signaling, in this research, we rely on computational models and de-

velop dimer-receptor interaction networks to understand all the receptor oligomeriza-

tion steps. Later, we used the models to identify mechanisms that favor heterodimer

dominance in BMP signaling. We also actively collaborated with the laboratory of

Dr. Mary Mullins at the University of Pennsylvania to experimentally validate our

proposed hypotheses.



4

In general, this research adopted both deterministic and stochastic approaches

to develop physiologically relevant computational models, and used the models to

analyze patterning systems related to embryonic development. The models were are

used to test and verified different hypotheses, to propose new hypotheses on the

heterodimer dominance in BMP signaling. A reaction-diffusion (RD) paradigm was

used to develop computational models for scaling problem, and later the model was

used to identify the mechanisms of signaling precision in the presence of perturbations.

Computational models developed in this work to analyze various biological systems

have wider applications, and could be used beyond the scope of the biological systems

considered in this research.

1.1 Morphogens in pattern formation

Morphogens are a group of molecules that are secreted from a localized source,

and upon secretion they undergo long range transport away from the source, creating

a concentration gradient between a source and a sink [1–5] region. An extracel-

lular gradient of morphogen provides positional information to a field of cells and

differentiates them into distinct cell patterns. Cells in the field sense their respec-

tive positional information by responding to a predefined threshold of morphogen

concentration [1, 5, 38] and assume cell fates in a concentration specific manner (a

schematic diagram on how morphogen signaling works in context of development is

demonstrated in Fig.1.1).

More than half a century ago, in 1952, Alan Turing [4] introduced the concept

of morphogens, proposing that a chemical substance can generate patterns required

during morphogenesis through a reaction-diffusion mechanism. Specifically, Turing

proposed that if two chemical species, termed as activator and long-range inhibitor,

interacting with each other and diffuse in a system with dissimilar diffusion coeffi-

cients, repetitive patterns as observed in many species in nature are generated. Later,

Lewis Wolpert used the classical French Flag Model [39] to explain the concept of
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morphogen and its role in conveying cell position information during species devel-

opment (demonstrated schematically in Fig. 1.1). The way a morphogen functions

is shown in Fig.1.1 upon secretion from a localized source, the morphogen forms a

sharp gradient over a region. Subsequently, when a homogenous field of cells is ex-

posed to the already formed morphogen gradient, cells interpret the graded profile

of morphogen to differentiate into patterns in a concentration specific (demonstrated

here in Fig. 1.1 arbitrary thresholds p, q) manner. That is, a local concentration

of morphogens transmit positional information and induce cells to attain specific cell

fates when a cell reads out the morphogen gradient using its extracellular machinery.

In the classical morphogen patterning view [39–41], cells respond to an extracellu-

lar morphogen gradient and interpret their respective positional cues to differentiate

into distinct cell types based on the signals they receive [4,5]. For instance, Bone Mor-

phogenetic Proteins (BMPs) act as a morphogen to regulate the pattern formation

of the dorsal-ventral axis of both vertebrate and invertebrate development [6,29,42].

When exposed to a gradient of morphogen such as BMPs, cells sense the extracellular

level of morphogen through a family of transmembrane receptors and activate path-

ways downstream of morphogen activity. This signaling, mediated by morphogens,

translates extracellular positional information to an organismal phenotype through

dose dependent gene expressions [42], and is commonly seen throughout the animal

kingdom.

A large number of molecules have already been identified as morphogens. For

instance, Decapentaplegic(Dpp) in Drosophila wing imaginal disc development [43],

Bicoid activity in A/P axis patterning of Drosophila [44], Activin in Xenopus embryo

[45, 46], Retinoic Acid [47, 48] and Sonic hedgehog (Shh) in limb development in

vertebrates, Wingless (Wnt) in wing imaginal disc, etc. [49, 50] act as morphogens

during development. Thus, studying morphogen signaling and morphogen mediated

patterning is crucial as it directly affects numerous lethal diseases. In fact, aberrant

morphogen signaling can often lead to developmental disorders [14]. However, the

primary focus in this work is on the Bone Morphogenetic Proteins (BMPs) that
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direct dorsal-ventral pattern formation both in vertebrates and invertebrates during

development.

Bone Morphogenetic Proteins (BMPs) act as morphogens both in vertebrates and

invertebrates, and actively participate in dorsal-ventral (D/V) patterning during the

early stages of embryonic development. BMP-mediated patterning of cells generally

follows a common set of regulatory steps during development: i) secretion of BMPs

from a localized source, ii) creation of a spatially non-uniform distribution away

from a BMP source by diffusion, and iii) biochemical interactions with receptors and

other extracellular factors [2, 13, 27, 51–54] to transmit the extracellular information

downstream. The family of receptors for BMPs is structurally similar [55], but they

exhibit varied affinities for different versions of BMP ligands [55].

1.2 Morphogen dispersal mechanisms in pattern formation

How morphogens generate a concentration gradient upon secretion from a lo-

calized source is still debatable and is not fully understood [56, 57]. Several ap-

proaches to explain mechanisms of morphogen dispersals have been proposed, i.e.,

the transport of morphogens happens because of diffusion, or a cell-based transporta-

tion of morphogens forms the required concentration gradient. In diffusion-based

models [3, 4, 35, 39], extracellular movement of morphogens occurs because of diffu-

sive transport. On the basis of the presence of hindrance to diffusive transports,

diffusion based models are subdivided into a number of categories [56, 58] - such as,

free diffusion (diffusion-decay) models, hindered diffusion (reaction-diffusion), facili-

tated diffusion, etc. In reaction-diffusion models [1,3,39,40], morphogens transiently

bind with other extracellular particles while transporting away by diffusion, or face

hindrances because of the tortuous paths that they traverse. The binding molecules

for morphogens could be membrane receptors, or other molecules that can regulate

morphogen signaling extracellularly, and a few examples of those regulators would

be HSPG, Dally, Dally-like, SBPs (reviewed in [7, 59]). Also, in hindered diffusion,
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Fig. 1.1. French Flag Model and morphogen mediated pattern formation:
a) In the French Flag Model, regions colored in blue, white and red along
the horizontal axis with equal width can be made analogous to a homoge-
neous field of cells. A signaling gradient, such as the morphogen gradient,
is interpreted by a field of homogeneous cells in order to acquire each cell’s
positional value. Depending on the intensity of signal (as demonstrated
by threshold p, q) different sets of genes turn on, and the different colors in
French Flag Model resembles the manifestation of a threshold-based gene
expression. b) Morphogens are secreted from a source and then undergoes
a long range transport away from the source, creating a sharp concentra-
tion gradient between the source and sink. This concentration gradient
of morphogen provides the positional information to each of the receiving
cells and the positional information is interpreted by responding to pre-
defined threshold conditions of morphogen concentration. For example,
cells exposed to more than a threshold p would become blue, whereas cells
that are exposed to morphogen concentration between thresholds p and q
would be white. Such a threshold-based readout of morphogen signaling
by a homogenous field of cells to differentiate into patterns is analogous
to the colored patterns of a French flag model as demonstrated in part a.
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the diffusivity of morphogens doesnt remain constant, since morphogens bind with

receptors they leave less numbers of free morphogens to diffuse at any given time,

whereas in models that consider free diffusion, the diffusivity of morphogens remain

unchanged over the course of time.

In cell-based mechanisms of morphogen dispersal, morphogens bind to the cell

surface, and are endocytosed inside the cell. Subsequently, morphogens residing inside

the cell are released again to the cell surface by exocytosis. Gradient formation by a

series of endocytosis and exocytosis is known as the transcytosis model of morphogen

dispersal [60,61]. In transcytosis, the diffusivity of morphogens is treated as negligible,

and gradient formation solely depends on the rounds of uptake and the release of

morphogens only. There are other mechanisms proposed to explain the formation

of morphogen gradients that include cytoneme-mediated gradient formation, bucket

brigade models [62]. For example, in cytoneme based models, structures similar to

filopodia emanate from cells and create a contact to the source of morphogens in

order to mediate the transport of morphogens.

However, quantitative analysis of morphogen data posits diffusion-based mor-

phogen dispersal as a more viable transport model for gradient formation [3, 35].

Interestingly, new experimental evidence further corroborates the plausibility of a

diffusion-based explanation of gradient formation. For example, gradient formation

in morphogens such as Nodal/Lefty, Fibroblast Growth Factor (FGF), and Decapen-

taplegic (Dpp) are largely formed by diffusion-based transport. Because of its wide

applicability, this research primarily focuses on diffusion-based morphogen dispersal

to analyze the scaling of patterns, and used a similar concept to explain the surface

dynamics of BMP dimers in the oligomerization process.

1.3 BMP signaling and the dorsal-ventral pattern formation

Bone Morphogenetic Protein (BMP), a TGF- super family ligand, is a secreted

group of molecules that directs a numerous developmental processes, including cell
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fate determination, and cell differentiation [7]. BMPs are secreted as dimers (homod-

imers or het- erodimers), where each dimer is comprised of two covalently-linked BMP

monomers [63]. For instance, in Drosophila two copies of the BMP monomers Gbb

and Scw form a heterodimer, which patterns the wing imaginal disc [29], whereas in

wing vein formation, Dpp and Gbb form heterodimers [64, 65]. In zebrafish devel-

opment, BMP2 and BMP7 monomers form a covalently-linked BMP2/7 heterodimer

that exclusively initiates signaling and specifies distinct cells fates [6, 66].

A BMP dimer forms a complex with a heterotetrameric receptor association of

two non-redundant type I receptor kinases and two type II receptor kinases [6]. Upon

binding to a/the BMP ligand, type II receptors phosphorylate and thereby acti-

vate type I receptors. Once the type I receptor kinase is activated, it activates

the recruited Smads within the intracellular domain. Subsequently, two copies of

receptor-activated Smads (R-Smad) together with a common-mediator Smad (CoS-

mad) translocate to the nucleus through neucleo-cytoplasmic shuttling [67]. Inside the

nucleus, the trimeric complexes participate in the nucleoprotein complexes along with

other factors and execute the BMP-induced activation of different target genes [7].

Drosophila homologues of BMP ligands include Decapentaplegic (Dpp), Screw(Scw)

and Glass Bottom Boat (Gbb). Thickveins (Tkv) and Saxophone (Sax) work as the

two type I receptors and Punt is a type II receptor through which Dpp can transmit

the signaling. More specifically, Dpp and Scw pattern the dorsal region and create

the amnioserosa and dorsal ectoderm [43,68] in Drosophila development. Experimen-

tal evidence reveals that Dpp mutant embryos become ventralized as development

progresses, and, for a Scw mutant, the embryo becomes partially ventralized. For

instance, from null mutation experiment it is further seen that absence of Dpp causes

ventral fate of the ectoderm [69]. In Drosophila, though, Dpp is initially produced

uniformly, its activity becomes concentrated primarily in the dorsal region as time

proceeds (less than an hour). Such a sharp gradient of Dpp compared to the initial

uniform density illustrates that the gradient is not formed through simple and nor-

mal diffusion. Rather, the sharp gradient is the result of Dpp’s interaction with other
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factors that regulate reactions through receptors [7]. For instance, a BMP signal that

patterns the dorsal ectoderm into different functional tissues transforms from provid-

ing ubiquitous levels of signaling to a highly concentrated active domain of signaling

due to the regulatory role of secreted factors. Some of these factors may include Short

gastrulation (Sog) [70], Tolloid, and Twisted gastrulation (Tsg) [71].

BMP signaling also patterns the D/V axis in vertebrates during the early stages

of embryonic development. For instance, BMP patterns the D/V axis in zebrafish [6].

Unlike Drosophila, a BMP signal in zebrafish patterns the ventral region, and it is low

in the dorsal region [6]. This is evident from the mutant experiments, where mutations

in BMP signaling resulted in dorsalized phenotypes [72]. In xenopus, similar to

zebrafish, BMP signaling patterns the ventral fates. Experimentally, it has been

shown that the occurrence of dorsal fate in zebrafish and xenopus requires a repression

of BMP signaling [72–75]. The role of a BMP graded profile in D/V patterning both

in zebrafish and xenopus has been further validated through the gain-of-function

experiments (in xenopus), and the lateral cell fate specification of neural crests in

zebrafish mutants [76,77].

BMPs generally function as covalently-linked homodimers or heterodimers. The

dimers arise intracellularly when two copies of a similar type BMP monomer are

covalently linked, homodimers form, whereas the heterodimers of BMPs form by

covalently-linking a pair of monomers of different BMP types. There are two ho-

modimers, and one heterodimer is found in BMP signaling namely, BMP2 homod-

imers (B2), BMP7 homodimers (B7) and BMP2/7 heterodimers (B27). Among

all the dimers, BMP heterodimers are widely observed as the signaling ligands. In

Drosophila, Decapentaplegic(Dpp)-Screw (Scw) and Dpp-Gbb heterodimers actively

participate in dorsal-ventral patterning, wing disc patterning, and in the wing vein

formation. In zebrafish, dorsal-ventral patterning is exclusively mediated by BMP

heterodimer BMP2/7, and is verified by the loss of signaling in the BMP2b or BMP7

mutant embryos.
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Two distinct type I BMP receptors (Alk 3/6, Alk 2/8 respectively) are required

non-redundantly in a complex with two type II receptors in order to initiate BMP

signaling during dorsal-ventral patterning both in zebrafish and Drosophila. This has

been verified in zebrafish using co-immunoprecipitation experiments. In BMP signal-

ing, the affinity between BMP heterodimers and Alk2/8 has not been confirmed, since

the structure of ligand-bound Alk2/8 has not yet been determined [11]. Therefore,

based on existing data and our current understanding of dimer-receptor interactions,

no obvious conclusion can be drawn on the potential reasons for heterodimer-bound

heteromeric receptor complex dominated signaling, and further studies to identify the

details of BMP signaling mechanisms and new insights are necessary.

Previous studies show [55, 78] that BMP2 homodimers exhibit higher affinity for

type I receptors, as does BMP7 homodimers with Type II receptors [79–81]. Upon

binding to Alk3/6, B2 dimer then recruits type II receptors [55, 78]. The BMP7 ho-

modimer (B7) possesses different binding affinities: it exhibits higher affinity for type

II receptors and recruits type I with a lower affinity than what a BMP2 homodimer

does. It is found that B7 binds a type I Alk2/8 receptor with a very low affinity bind-

ing [55,80,82], whereas BMP2 homodimer does not have any demonstrable affinity for

Alk2/8. However, as we do not know the structure of a BMP2/7 heterodimer-bound

Alk2/8 yet, the affinity of B27 and Alk2/8 can not be measured precisely. Therefore,

how the stipulated signaling complex, that is, the heterodimer-bound quadripartite

heteromeric receptor association of two distinct type I receptors (Alk3/6 and Alk2/8)

and two type II receptors, is favored cannot be explained with the existing level of

molecular data and knowledge [6].

1.4 Scaling of patterns in species

Scaling is the property by which a patterning system retains its proportionate

structure and positioning despite the presence of numerous perturbations. Patterning

processes may depend differently on system size, hence the underlying mechanisms



13

a) b) c)

𝑥 𝑥𝑥

𝑥/𝐿 𝑥/𝐿 𝑥/𝐿
m

o
rp

h
o

g
e

n
m

o
rp

h
o

g
e

n

m
o

rp
h

o
g
e

n
m

o
rp

h
o

g
e

n

m
o

rp
h

o
g
e

n
m

o
rp

h
o

g
e

n
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distribution is normalized against the corresponding system size, there are
overlaps among the normalized distribution. c) Morphogen distributions
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respective system length.
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that help achieve scaling in different patterning systems may vary widely. For in-

stance, when the scaling of pattern formation in species is independent of system size

and depends on an intrinsic scale of underlying mechanisms, repetitive skin patterns

in fish and animals emerge [83–85], which may extend as the system size increases.

Scaling mechanisms seen in these species can be related to Turing mechanisms, ini-

tially proposed by Alan Turing in 1952 [4].

Contrary to this, pattern formation in many organisms and tissues often depends

on system size. Patterns scale with a change in system length, and appear as scaled

versions of a common template. This means that developmental processes can adjust

the intrinsic scale of patterns to a variation in system size, a phenomenon defined as

scale-invariance. Scale- invariance is observed in morphogen signaling to repetitive

patterns that appear frequently in certain fish and animals. For instance, distribution

of bicoid in A/P axis patterning scales for different embryo size in Drosophila [44], and

skin patterns demonstrate scale-invariance among various fishes [83] (also, reviewed

in [9]). Not all systems achieve perfect scaling, and hence, the notion of partial

scaling is used to differentiate the degree of scaling achieved by a system. This can

be explained schematically as shown in Fig.1.3, where we consider an exponentially

distributed morphogen signaling to explain three different scenarios of scaling.

As seen in Fig.1.3, if the system-size change is not compensated during develop-

ment, the absolute scale of morphogen signaling distribution does not scale and is

clearly evident when normalized against its respective system length (Fig.1.3a). If

more morphogen is added to the system, the developing system may achieve some

scaling, which is subject to partial scaling as shown in Fig.1.3b. Precisely, some posi-

tions of the system dont scale perfectly [44,86]. Finally, when a developing system can

target the biophysical properties of morphogen signaling, such as the transport rate,

the decay rate and the production rate of morphogen and morphogen distribution

can achieve perfect scaling as seen from the superimposed normalized distribution.

Moreover, patterning formation by morphogens is a dynamic process as observed in
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numerous systems [27, 60, 87], hence the scale invariance of morphogen patterning is

needed in both a dynamic and steady state [88] for perfect species development.

In vivo evidence of scaling in species development was observed initially in the

classical experiment conducted by Hans Spemann as early as 1903 [89]. In an experi-

ment done on amphibian embryos, Spemann found that when bisected into dorsal and

ventral halves, the dorsal half of the embryo developed normally, and grew in propor-

tion during subsequent developmental processes giving rise to a smaller, yet healthy

tadpole. This indicated the intrinsic ability of developmental process to withstand

extreme forms of perturbations, since the dorsal half of the embryo was able to adjust

its developmental cues and signals for regular development. Later on, it was shown

in Drosophila that, if the embryo is treated under nutrient-deficient conditions, the

developmental process can mitigate the perturbations resulting in an appropriately

scaled version of a healthy adult [56,90]. That is, while the mechanisms that achieve

scaling can largely vary among species, and are unknown, in order to achieve scal-

ing information related to perturbations must be accommodated in the underlying

biophysical mechanisms of signal generation and transduction so that developmental

processes can compensate for the intrinsic scale of the active signaling domain. Thus,

the ability of a species to scale has been a fact during development, but much of the

mechanisms that facilitate such scaling are unknown, and have yet to be determined.

1.5 Biological systems that demonstrate scaling of patterns

According to experimental data, fruit flies have developed proportionately scaled

wing and eye pigmentation in starving conditions [90]. Although lack of nutrients

affects embryo size, developmental processes can adjust size difference effectively.

More specific evidence of scaling in Drosophila can be seen during the formation of

wing veins, where Decapentaplegic (Dpp) acts as a morphogen and directs pattern

formation in the longitudinal veins along the A-P axis. Recent experimental data

shows that the Dpp active domain, which also controls the growth of the wing imaginal
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disc and its concentration, scales as the disc size changes during wing development

[91, 92], and is evident by the fact that signaling profiles appear size-independent

when they are normalized by the peak intensity of the signal.

Size adjustment in Bicoid (Bcd) signaling is another example of scaling that is ob-

served in Drosophila A/P patterning. In Drosophila, Bcd acts as a morphogen, and

the Bicoid signaling turns on a family of gap genes (hunchback, Kruppel, knirps etc.)

in a concentration-specific manner [44, 93]. Evidence of Bicoid scaling has also been

seen experimentally within and between various Drosophila species. But the exact

mechanisms of intra-species and inter-species Bicoid scaling vary in details [44,94] and

are reviewed in [86]. For example, previous research considered nuclear density as a

possible mechanism to obtain Bcd scaling between species [7,12,44]. However, in vivo

measurements showed that the Bcd gradient remains spatially and temporally invari-

ant during cycles 10-14 of nuclear division, whereas the number of nuclei increases

by approximately 16-fold [44, 95, 96]. This conflicts with the idea that Bcd scaling

may be mediated by an embryonic environment, possibly by altering some biophysical

properties, such as the transport and reaction rates of Bcd. However, the relation

between nuclear density and the signaling shape is demonstrated in another context.

That is, in dpERK signaling, signaling distribution is guided by the number of nuclei

added after each nuclear division cycle [97]. That is, there is a strong correlation

between nuclear density and the shape of the signaling distribution, which is further

demonstrated using mutant embryos as was done by Coopey et al. However, it also

indicates that as the development of species progresses the signaling distribution is

tuned accordingly.

Another view of Bcd scaling suggests that it may be achieved through input flux

optimization. In other words, as the embryo grows in size input flux increases in

order to establish a signaling threshold at the same normalized position. Although

this is not perfect scaling, it is adequate in defining the correct boundary between two

distinct cell types [9]. Alternative mechanisms of Bcd scaling consider the lifetime of

Bcd molecules, since evolution modifies the lifetime of Bcd molecules in each species.
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This may lead to a broader range of Bcd distribution in larger systems because of

a larger Bcd lifetime, whereas in smaller systems Bcd lifetime is small and causes

shorter distribution. However, evidence shows that Bcd lifetime is not a species-

specific intrinsic property [98].

Evidence of scaling of patterns is observed during xenopus development as well

[11, 37, 99, 100]. Besides the classic experiment of Spemann and Mangold associated

with the Siamese twin formation, experimentally it is shown that patterns in xenopus

demonstrate size adaptation in the presence of embryo size variation [101]. As ob-

served, when embryos are reduced by removing the ventral cells during pre-gastrula

stage, normal proportions are observed in embryos that are about 60% shorter than

normal embryos. Moreover, the stage when perturbations occur during development

also control the degree of regulation that can be achieved. For instance, while a bi-

sected xenopus embryo from blastula stage is able to adjust size variation perfectly

and generate identical twins, perturbations up to the 8-cell stage may or may not

produce healthy adults [102, 103]. Together, this data shows that scaling of patterns

is common, and is seen at all stages of biological organization.

1.6 Mathematical modeling in morphogen signaling

Research related to pattern formation and in this area is mostly based on molecu-

lar level data for multiple developmental processes obtained via in vivo experiments.

Many findings for morphogen pattern formation rely on observing changes in phe-

notypic responses to disturbances in specific networks, either by overexpressing or

underexpressing specific morphogens and/or regulators of the morphogens. This has

been accomplished through the injection of specific morpholinos and the generation

of mutants with a knockdown of genes of interest [6, 29].

Although this grants insights into how morphogen signaling is altered, or regu-

lated, as a result of genetic modification of a species, at times the observed phe-

nomenons are puzzling. For instance, the Bicoid (Bcd) gradient in Anterior-Posterior
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(A/P) axis patterning of Drosophila directs the formation of four gap domains with

remarkable reproducibility and precision despite the realm of stochastic fluctuations

in morphogen activity, and the underlying mechanisms for such remarkable precision

require further investigation and analysis [44]. Moreover, as the dynamics of the

process often change because of numerous factors (like temperature change, pH vari-

ation, lack of nutrients), and it is difficult to determine the kinetics of physiological

processes, experimental data may not be always sufficient.

To aid in our understanding on how a biological system such as the BMP signaling

pathway functions, to ensure remarkable reproducibility, and to test numerous hy-

potheses relevant to signaling and biological pattern formation, mechanistic models

have been proven extremely useful [12,51,104–109]. Quantitative models are capable

of equipping us with predictive power, which can subsequently be applied to model-

based experiment design techniques [110–114] to design desired experiments.

The ever increasing use of mathematical modeling in the analysis of biological sys-

tems has facilitated our understanding in many ways; computational models are now

used for a wide variety of reasons ranging from testing hypotheses, generating new

hypotheses, designing new experiments, etc. by considering the interactions of compo-

nents within and between cells. [4,5,8,12,24,27,29,40,51,83,100,104,109,113–123]. For

instance, species development involves the interactions of signaling pathways, pattern

formations, cell growth, and cell-to-cell interactions, and computational models have

been extensively used to analyze numerous processes. One such model is the gradient-

based model, which has been used for decades to analyze spatial pattern formation

in many species, such as Drosophila, zebrafish, xenopus etc. Moreover, mathematical

models are used to devise new hypotheses and mechanisms for understanding prob-

lems that have puzzled researchers for decades. For instance, computational models

have played an instrumental role in analyzing how different developmental processes

scale in the presence of perturbations. [10,11,86,106].

In many patterning systems, the spatial distribution of extracellular morphogen

[3,5,35] directs the activation of downstream signaling, or the binding of morphogens



19

to DNA regions, to initiate a dose-dependent gene expression. That is, a pre-pattern

of morphogen plays a crucial role in the spatial pattern formation during species

development. In a patterning system, morphogens are the secreted group of molecules

produced from a tiny region of a tissue. Upon secretion, morphogens transport away

from the source creating a gradient that instructs cell-positional information in a

concentration-dependent manner. The transport of morphogen from the source region

may happen by diffusion, or by other alternative mechanisms (already discussed in

Section 1.2) [56]. In this research, we assumed that the transport of morphogen occurs

by diffusion and, therefore, the morphogen distribution was modeled using the widely

studied and used reaction-diffusion (RD) model.

1.6.1 Reaction-Diffusion (RD) models

The transport process of extracellular molecules often depends on the time and

length scale of the underlying system. In an arbitrary volume, concentration m(x, t)

of a chemical species at any given time (t) and space (x) can be formulated as:

rate of change of m(x, t) = −flux of the species m+ net production (1.1)

Using divergence theorem as used in [118], we obtain:

∂m

∂t
= −∇.mFlux +R(m) (1.2)

where, mFlux is the net flux of species m and R(m) is the net production of species

m within the arbitrary volume considered.

If the morphogen transport happens as a result of a diffusion process, the flux

term mFlux can be represented as using Fick’s Law [124]. According to Fick’s law,

flux of species m is directly proportional to the concentration gradient of m, and is

stated as:

mFlux = −Dm∇m (1.3)

Where Dm, is the diffusion coefficient of species m. By plugging in Eq.1.3 to Eq.1.2:

∂m

∂t
= Dm∇2m+R(m) (1.4)
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Here Dm is assumed as constant and positive.The Eq. 1.4 represents a generic

reaction-diffusion model with constant diffusion coefficient. For a 1-dimensional dif-

fusion, Eq.1.4 is written as:

∂m

∂t
= Dm

∂2m

∂x2
+R(m) (1.5)

However, diffusion coefficient of chemical species m ( Dm) can be a spatially varying

property, and the Eq. 1.4 for 1-D diffusion is stated as follows:

∂m

∂t
=

∂

∂x

(
Dm

∂m

∂x

)
+R(m) (1.6)

Eq.1.4, and Eq.1.6, both are derived for a single species 1-D diffusion case.

Reaction-diffusion system can be generalized for an interacting systems of multiple

species in a given volume. For a system of multiple species with constant diffusion

coefficient, Eq.1.4 generalizes to:

∂m

∂t
= Dm∇2m +R(m) (1.7)

where m represents a vector of species concentration, m = [m1,m2,m3 . . . ,mn]T and

R(m) = [R1(m), R2(m), R3(m), . . . , Rn(m)]. In this set up, Dm is n × n matrix,

and when we discard cross-diffusion between species Dm simplifies to a diagonal

matrix with all the off-diagonal elements to be zero. For instance, in a system of two

interacting species Dm becomes:

Dm =

D11 D12

D21 D22


When cross-diffusion is zero (D12 = D21 = 0), for a two species system Dm transforms

to a diagonal matrix:

Dm =

D11 0

0 D22
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If we consider a two species system (m and M) with spatially varying diffusion co-

efficients Dm and DM respectively, for 1-D diffusion the system can be represented

as:

∂m

∂t
=

∂

∂x

(
Dm

∂m

∂x

)
+R(m,M)

∂M

∂t
=

∂

∂x

(
DM

∂M

∂x

)
+R(m,M) (1.8)

The model is accompanied by necessary boundary condition (B.C) and initial con-

dition (I.C), and depending on the systems behavior we can consider non-zero/zero

flux boundary condition or fixed boundary conditions [118,125]. In this dissertation,

we primarily used reaction-diffusion model of two interacting species, and considered

all parameters such as the diffusion coefficient, net production etc., to be spatially

dependent on species concentration. Mostly, analytical solutions of reaction-diffusion

models are intractable, and therefore, RD models are often numerically approxi-

mated using different schemes such as, Finite Difference Method [126], Finite Element

Method [127,128], Finite Volume Method [129] etc.

1.7 Objectives

In this dissertation, we address morphogen-mediated signaling and pattern for-

mation as observed in different stages of species development. Specifically, this work

involves a rigorous interrogation of scaling problems in biological patterns using com-

putational approaches, and it emphasizes signal transductions of underlying pattern-

ing signals (e.g BMP signaling) to identify the mechanisms of heterodimer dominance

in BMP signaling. This thesis extensively addresses the question: What mechanisms

confer scaling of patterns during development? A number of models for scaling mech-

anisms have been previously proposed, but they were limited in scope [9], and did

not consider physiologically relevant alternative mechanisms. To address the scaling

problem in biological pattern formation, a theoretical framework namely, the Two

Component System (TCS) model, is proposed and extensively analyzed.
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The newly proposed TCS model encompasses the previously proposed models of

scale- invariance, and includes a wide number of alternative scenarios. Unlike pre-

vious models, the proposed TCS considers the spatial dependence of all biophysical

coefficients, which poses an immense computational challenge in terms of accuracy

and computational costs. To circumvent the computational challenges, this work inte-

grates a reduced-storage solver CVODE [130] with supercomputer clusters to numeri-

cally approximate the Partial Differen-tial Equations (PDEs) of TCS. The simulation

strategy used here can be applied beyond biological systems where reaction-diffusion

paradigms with spatially varying coefficients are considered.

Besides questioning the manner in which scaling of patterns is achieved, this dis-

sertation also focuses on identifying the mechanisms of heterodimer dominance in

Bone Morphogenetic Protein (BMP) signaling that actively participates in the D/V

patterning of different species. To determine how BMP heterodimers win over BMP

homodimers in a competitive environment, we developed a mathematical model of

receptor oligomerization commonly seen during tetrameric/trimeric complex forma-

tion in various signaling pathways. The model was used to test our hypothesis, and

to identify the conditions that favored heterdimer dominance in BMP signaling. The

oligomerization model developed here can also be applied beyond the scope of BMP

signaling and be used to develop models for surface-associated tetrameric complex

formation often seen in other signaling pathways. This dissertation also considers

stochastic analysis of ligand-receptor recruitment in BMP signaling to assess the im-

pact of oligomerization steps on the noise profile, which can be further applied to

reduce model structure while implementing the stochastic realization of the complete

oligomerization process.

The remainder of this thesis is organized as follows: Chapter 2 presents modeling

of cell-surface interactions of Bone Morphogenetic Protein (BMP) signaling. This

chapter also includes mathematical analysis of BMP surface dynamics, mutant mod-

eling in BMP signaling, and it tests different hypotheses using the oligomerization

model developed in this work. In chapter 3, a stochastic analysis is conducted to
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identify whether the oligomerization steps of type II recruitment can affect the noise

characteristic in BMP signaling. This chapter demonstrates a previously developed

(during my masters research) algorithm of steady-state probability approximation

and includes some benchmarks. Chapter 4 is comprised of the scaling problem and,

in this chapter, we attempted to identify all the possible minimal network motifs that

achieve scaling by satisfying a number of performance objectives. Reaction-diffusion

systems with spatially varying parameters have been numerically approximated for

millions of networks. This chapter also expands on other possible versions of TCS

and the identification of minimal regulatory motifs. We also provide a description

of ongoing research in scaling, and projects in the final phases of analysis involving

the scaling problem. Finally, this thesis concludes the work performed and considers

some of the proposed future extensions in Chapter 5.

1.8 Significance

Not only do the members of TGF- superfamily ligand regulate different develop-

mental processes in Drosophila, zebrafish, mouse, xenopus etc., they are known to

control cellular processes in humans as well. Cells in human tissues communicate

among themselves via signaling mediated by members of the TGF- superfamily of

ligands. A disruption of this signaling can lead to lethal consequences, like causing

human cancer [131]. For example, Bone Morphogenetic Protein (BMP), a member

of TGF- superfamily ligand, significantly contributes to human development [132].

Previous studies have also shown that BMP mediated signals have a critical role in

heart, cartilage, and neural development within complex species such as humans [133].

Further work indicates that BMPs have the ability to inhibit the growth of prostate

cancer as well [132] and, for that reason, may be useful in a therapeutic sense.

Deregulation of BMP signaling during development in many species may result

in severe developmental disorders and other lethal consequences. The loss of TGF-β

signaling is known to destabilize the homeostasis [134], and misregulation of TGF-
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β signaling can cause tumor development in humans [135] etc. Moreover, TGF-β

acts as a tumor-suppressor and tumor-promoter simultaneously, a biphasic role that

is also seen during crossvein development in Drosophila; where cellular responses

are regulated by Crossveinless-2(Cv-2) in a biphasic manner [7]: low levels of Cv-2

increase BMP signaling while high levels decrease it. Thus, information on how the

signaling mediated by the members (BMPs) of the TGF-β superfamily works and

maintains high fidelity during development in model organisms such as Drosophila

and zebrafish will enhance our understanding on how BMPs work in humans. This

will increase our current knowledge on BMP signaling pathways and, eventually, be

useful in drug discovery and development.

Moreover, the numerical approaches adopted here to approximate the nonlin-

ear reaction-diffusion system with spatially varying parameters are pertinent for

other morphogen systems, such as the coordination of FGF and Shh in limb forma-

tion [106, 136], retinoic acid, etc. Also, the dimer-receptor ODE model is applicable

to all other systems that require multimerization events at the cellular surface, and

One such system would be the epidermal growth factor (EGF) system [137]. The

dimer-receptor model is further applicable to computational models that attempt to

integrate extracellular regulation of BMP signaling and intracellular events. More

precisely, the dimer-receptor model can be used as an interface between the phos-

phorylation events of intracellular transcription factors (Smad) and the extracellular

activation of receptor families in a BMP mediated patterning system.
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2. CHAPTER: ANALYSIS OF DIMER-RECEPTOR

INTERACTIONS AND RECEPTOR OLIGOMERIZATION

IN BONE MORPHOGENETIC PROTEIN SIGNALING

Bone Morphogenetic Proteins (BMPs) pattern the dorso-ventral axes of both ver-

tebrates and invertebrates. Previous work demonstrates that under physiological

conditions, BMP heterodimers signal through a receptor complex consisting of two

distinct type I receptors and two type II receptors. Intriguingly, homodimers of the

BMP ligands are much less effective at initiating signaling and are unable to compen-

sate for a loss of heterodimers. Ascertaining why heterodimer signals are dominant is

an important biophysical problem. To determine the control of heterodimer signal-

ing, we developed a quantitative model of dimer-receptor interactions. We used the

quantitative model to test different hypotheses regarding receptor binding kinetics,

surface reactions, and mutant cases of embryos. The model contains all of the dif-

ferent BMP dimers, namely BMP2 homodimers, BMP7 homodimers, and BMP2/7

heterodimers.

Our simulation predicts how the factors compete in a well-mixed environment.

We discovered, by using the mathematical model, that the kinetics of ligand-receptor

interactions cannot favor heterodimer dominance. While the computational model

based on published kinetic data and equimolar dimer levels doesnt favor a kinetic

based hypothesis, it was used to identify a number of scenarios that favor heterodimer

dominance. Firstly, a kinetic driven explanation of heterodimer dominance is possible

when binding occurs between hetorodimers and a specific class of Type I receptor (Alk

2/8) with a considerably higher affinity. However, available experimental evidence

[138] does not support the hypothesis that heterodimer dominance requires tight

binding between a heterodimer and its cognate Type I receptor Alk2/8. Secondly, if

homodimers are blocked in vivo by BMP antagonists, leaving only BMP2/7 to bind
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receptors and making Alk2/8 levels 9 times higher than Alk 3/6 receptors, the model

favors formation of the BMP2/7Alk2/8Alk3/6TypeII−TypeII complex over a wide

range of ligand concentrations.

A third scenario of heterodimer-heteromeric receptor dominance occurs if com-

plexes with two BmpR1 receptors signal poorly. In this case the next most abundant

complex in the majority of simulations is BMP2/7-Acvr1l-BmpR1-(Type II)2, and the

last two hypotheses are tested experimentally by our collaborators. To summarize,

the computational model was used to demonstrate that in BMP signaling system, the

BMP2/7 heterodimer brings two distinct classes of type I receptors together to create

a robust sensor capable of responding to a wide range of morphogen concentrations;

a fundamental concept necessary for morphogen mediated signaling.

This chapter includes the outcomes of a collaborative project on BMP signaling

in zebrafish. It primarily considers computational analysis of the oligomerization of

the initial receptor-ligand complex, a process that is seen among a wide variety of

signaling pathways. The computational model and its variants were used to test pre-

viously proposed hypotheses, and further used to explore other potential mechanisms

of heterodimer dominance. Part of the material presented here is adopted directly

from a paper that is already submitted for publication and is currently under re-

view. The paper is titled: ”BMP Heterodimers Signal via Distinct Type I Receptor

Class Functions”, James A. Dutko, Md. Shahriar Karim, Shawn C. Little, David M.

Umulis, and Mary C. Mullins (submitted). Additional completed unpublished data

and computational analyses are included in this chapter.

Our work in this chapter extend the previously proposed hypothesis on the het-

erodimer dominance [6, 29]. In a canonical BMP-signaling pathway, a BMP het-

erodimer bound heteromeric receptor association consisting of two type I (Alk3/6,

Alk2/8) and two type II receptors, initiates signaling. In this collaborative work, the

computational analysis considered all possible biochemical reactions between dimer-

receptors, and, using mass-action kinetics, it considered a local Ordinary Differential

Equation (ODE) model to test different hypotheses. The surface dynamics of the
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initial dimer-receptor interactions and subsequent receptor oligomerization were an-

alyzed mathematically, and can be further extended to other systems. The model

was tested and validated against a number of mutant conditions for BMP signaling

to explain some of the experimental data generated by James A. Dutko, and Mary

C. Mullins Over-expression and mutant cases of dimers and receptors are also im-

plemented using com- putational models to assess the impact of those that initiate

signaling.

To highlight the focus of the computational analysis, experiments done in this col-

laborative project to test our proposed hypotheses are mostly excluded. The math-

ematical analysis of surface dynamics using Partial Differentiation Equations (PDE)

is shown in details, and part of the local ODE model of receptor oligomerization is

taken from supplementary information within the submitted paper of Dutko et al.

Finally, the chapter is organized as follows: First, the importance of studying BMP

signaling is described. Second, we analyze current models of dimer-receptor interac-

tions, specifically discussing kinetics and new insights into receptor oligomerization.

Then, we introduce the ordinary differential equations (ODE) model of BMP recep-

tor interactions. Finally, this chapter concludes with an analysis of the mathematical

model.

2.1 Background

Bone morphogenetic proteins (BMPs) are signaling proteins that participate in a

wide range of cellular processes in both vertebrate and invertebrate systems [6,29,139].

Zebrafish, a vertebrate model organism, secrets BMP2 and BMP7 which have genet-

ically equivalent yet non-redundant roles [66], and pattern the dorsal-ventral (D/V)

axis during the early stages of embryonic development [6, 66]. In a canonical BMP

pathway, secreted dimeric BMP-ligands (homodimers and heterodimers) interact with

a family of receptor tyrosine kinases (RTK), and, presumably, form a quadripartite

signaling complex consisting of two non-redundant type I and two type II kinase
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Fig. 2.1. a) BMPs are secreted as dimers, and the three different BMP
dimers are shown in red, yellow and red-yellow. Each of the dimers can
recruit any of the available type I and type II receptors. By participating
in subsequent receptor recruitment steps, a dimer forms a number of puta-
tive signaling complex consisting of two distinct type I receptors and two
type II receptors. The three different types of receptors that are available
for binding are the type I receptor (Alk3/6), another variant of type I
receptor (Alk2/8), and type II receptors. However, the affinity of differ-
ent interactions varies between different dimer-receptor combinations. b)
Each dimer competes to bind with a free receptor. If a dimer reaches a
proximity equivalent to or less than the encounter radius, s, it binds with
the receptor and forms the initial dimer-receptor complex. c) Once the
initial ligand-receptor complex (BR) is formed, its movement is restricted
on the cell surface and all the subsequent binding happens between species
restricted on the cell surface and the family of the membrane receptors.
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Fig. 2.2. Biochemical interactions between dimers and receptors: All
the possible reactions between a dimer (B) and its cognate receptors are
shown here. For example, dimer (B) initially interacts with any of the
three receptors R3, R8, and RII , and, upon initial binding, the dimer-
receptor complex continues accumulating more receptors to finally give
rise to a tetrameric receptor association. Evidently, the tetrameric asso-
ciation cannot have more than two copies of any specific receptors that
is, only BR3R3RIIRII , BR3R8RIIRII , and BR8R8RIIRII complexes are
possible in system. All these reactions are bidirectional and follow mass-
action kinetics. In a BMP signaling pathway, the three dimers BMP7,
BMP2 and BMP2/7 heterodimers are all theoretically able to participate
in these interactions and form tetrameric complexes. However, certain in-
teraction edges of the network might be insignificant for different dimers
because of a very low binding affinity for the corresponding interaction,
and is shown later.
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receptors [6, 29]. This is shown in Fig.2.1a, where the three dimers BMP7, BMP2,

and BMP27 interact with a group of RTKs to form putative signaling complexes.

These complexes play a crucial role in initiating the intracellular signaling cascade

by instigating phosphorylation of BMP-responsive Smad proteins [7, 29, 67]. Finally,

the phosphorylated Smad (pSmad) forms complexes with co-Smad and accumulates

in the nucleus to regulate gene expression [67].

Much is known about the identity of BMP-signaling complexes that initiate Smad

phosphorylation in both vertebrates and invertebrates [6,29]. For example, patterning

in vertebrates, such as zebrafish, requires two classes of non-redundant type I receptors

(Alk 3/6 and Alk 2/8) with two copies of type II receptors in order to elicit signaling [6,

29]. In Drosophila, BMP homologues, Decapentaplegic (Dpp) and Screw (Scw), signal

through two type I receptors (Saxophone and Thickvein) and two type II receptors

(Punt), thereby forming a hetero-tetrameric receptor association and transmitting

patterning information [29]. However, the true identity of the BMP signaling complex

in Drosophila melanogaster embryo is still debatable [29,140].

In numerous contexts BMP heterodimers consistently demonstrate stronger bio-

logical activity than BMP homodimers. For instance, in D/V patterning of Drosophila,

bone regeneration, axon guidance, and stem cell differentiation BMP heterodimers

are more effective in initiating signaling [6,29–32,34]. It is demonstrated mathemati-

cally that heterodimers are more robust to changes in gene dosage within the context

of BMP signaling [29]. In zebrafish patterning, the signal is exclusively mediated

by heterodimers [6]. From mutant experiments we found that the loss of BMP2b or

BMP7a is sufficient to induce a complete loss of BMP signaling in the embryo [6]. Ad-

ditionally, knockdown experiments for the two distinct type I receptors (Alk 3/6 and

Alk2/8) show that signaling requires both receptors, and that the receptors demon-

strate a non-redundant role in BMP signaling [6].

Though previous studies [6, 29, 140] provide key information on the identity of

signaling complexes that transmit signaling information downstream, many questions

remain, including how a specific combination of receptor association is favored over
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other dimer- receptor complexes. A previously proposed hypothesis [6] supports an

affinity-based explanation on the dominance of heterodimer-bound heterotetrameric

receptor association, but this has not been tested yet as the exact affinity of BMP2/7

heterodimer and Alk2/8 receptor binding is still unknown, and has not been possible

to measure [6].

To investigate why BMP heterodimers prevail over BMP homodimers, we devel-

oped a new physiologically relevant mathematical model that includes initial receptor

binding and subsequent receptor oligomerization. Using the computational model,

we identified a number of mechanisms that explain heterodimer dominance, a few of

which we tested experimentally. Our research revealed that outcomes of the computa-

tional models complied with experimentally observed phenomenon in BMP signaling.

The computational model also identified theoretically plausible mechanisms. In this

research, our efforts revealed works reveal mechanisms that could explain the in-

creased activity of BMP heterodimers, which has implications for nearly all BMP

signaling in other developmental contexts and disease conditions. This will likely

increase our understanding on how BMP signaling works in complex species, such as

humans, and it could be useful for drug development and BMP therapies.

Furthermore, the mathematical model of receptor oligomerization developed here

could have potential applications in other signaling pathways. Dimer-receptor bind-

ings events occur at two levels, namely initial dimer-receptor binding and receptor

recruitment by an already formed dimer-receptor complex. In this analysis, we re-

visited surface dynamics to mathematically show how a dimensionality reduction of

a ligands movement from three to two dimensions which resulted because of initial

ligand-receptor binding, affects the dynamics of subsequent receptor binding events.

Our analysis eventually connects the binding events and the effective density of lig-

ands encountered by a receptor. Together with an ODE model of all possible bio-

chemical interactions shown in Fig.2.2, the computational analysis conducted in this

work can be applied to other signaling pathways, where subsequent binding events
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generate trimeric/tetrameric complexes in order to activate membrane receptors or

downstream pathways [137].

2.2 Mathematical model of dimer-receptor interactions

In a canonical BMP signaling pathway, secreted dimeric BMP-ligands (homod-

imers and heterodimers) interact with a family of Receptor Tyrosine Kinases (RTKs)

and presumably form a quadripartite signaling complex consisting of two non-redundant

type I and two type II kinase receptors [6, 29, 117]. Dimer-receptor complexes play a

pivotal role in initiating the intracellular signaling cascade by instigating phosphory-

lation of BMP-responsive intracellular transcription factors [7, 29, 67]. Subsequently,

the Phosphorylated Smad (pSmad) forms complexes with co-Smad, and finally accu-

mulates in the nucleus to regulate dose- dependent gene expression [67].In BMP sig-

naling, there are three dimers (BMP2 homodimers, BMP7 homodimers and BMP2/7

heterodimers) that interact with a family of type I and type II receptors and, inter-

estingly, dimers have dissimilar affinities for similar type receptors. Thus, a careful

consideration of dimer-receptor binding affinity is required for the computational

model.

Measured molecular data revealed that biochemical properties among the dimers

vary significantly. More precisely, BMP homodimers have high, low, and very low

affinities for the BMP receptor family [24,33,55,79,81,82,141–146]. As reported, un-

like a homodimer, a BMP heterodimer contains dissimilar binding domains for similar

type receptors [6]. The binding domains of a BMP heterodimer comes from each of

the constituent monomers, which cause qualitative dissimilarities between binding

domains that bind to similar types of receptors. For instance, in the BMP2/7 het-

erodimer, binding affinities for the recruitment of two type I receptors must be differ-

ent, since the affinities of heterodimer and receptor binding are primarily determined

by the constituent BMP2 and BMP7 monomers [6, 25,33].
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Fig. 2.3. Putative signaling complexes in a dimer-receptor system:
through a series of receptor interactions, each dimer (BMP2, BMP7 and
BMP2/7) forms three tetrameric receptor associations in a competitive
dimer-receptor environment. The relative strength of all the formed com-
plexes depends on the affinity of corresponding binding events. For in-
stance, affinity-based assessment reveals that BMP2 binds with Alk 3/6
with a high affinity and therefore, the complex BMP2−Alk3/6−Alk3/6−
TypeII : TypeII is likely to form in larger quantities than other tetrameric
complexes. The stipulated signaling complex, as seen in the D/V pattern-
ing of the zebrafish, is displayed inside a grey circle, and the arrow directs
the concentration hierarchy of all the complexes.
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Additionally, current published data demonstrates that not all dimers interact

and form complexes with all the receptors. For this reason, there is a critical need

to further clarify the kinetic description of receptor oligomerization process and to

define the necessary requirements that ensure a physiologically relevant demonstration

of BMP signaling.

2.2.1 Kinetics of dimer-receptor interactions

Considering all the theoretically possible interactions between the three dimers

and their cognate receptor families, we devised the biochemical network shown in

Fig.2.2 which demonstrates the steps of receptor oligomerization through a series

of bidirectional biochemical interactions. A complete dimer-receptor system is com-

prised of 90 bidirectional interactions and 51 species. However, a careful review of all

the affinities reveals that a number of dimer- receptor interactions happen with very

low binding affinity, which are further elaborated on in later sections.

The kinetics of receptor recruitment depend largely on the type of interacting

dimers. Experimentally measured kinetic data shows that the BMP2 homodimer

binds Alk 3/6 with high affinity [6,80] with a dissociation constant of KD =
koff
kon
≈

0.2 to 0.9 nM [80], whereas whereas it binds poorly to the type II receptor with a

comparatively large KD range from 50 to 100 nM [24,80]. However, the BMP2 dimer

does not interact with the other type I receptor, Alk 2/8 [unpublished data], and

a very low affinity (1024nM [80, 82, 147]) of Alk 2/8 and BMP2 binding ensures an

almost complete lack of interaction during the oligomerization steps. Therefore, a

BMP2 dimer is less likely to form any complex that includes Alk 2/8 in it to form

a heterotetrameric receptor association. The effective set of interactions (which were

identified by considering the binding affinities) between a BMP2 homodimer and the

receptor family include a total of 12 bidirectional interactions as shown by the green

edges in Fig. 2.4. In contrast to the selective binding of the BMP2 homodimer, the

BMP7 homodimer is known to bind with all the receptors in a system. While both
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BMP2 and BMP7 homodimers bind strongly with Alk 3/6 receptors, only the BMP7

homodimer is known to bind to the other class of Type I receptor Alk 2/8. The

binding happens, however, with a considerably low affinity KD > 500nM [80]. As

BMP7 homodimer binds with both Alk 3/6 and Alk 2/8 receptors, all the possible

interactions and species can be obtained by juxtaposing the green, red, and blue edges

as shown in Fig.2.4.

BMP homodimers are known to have identical binding domains for type I recep-

tors, but the type I binding domains of BMP2/7 are dissimilar and possess different

affinities for the type I receptor class [6]. The recruitment of Alk3/6 to the BMP2/7

heterodimer follows the kinetics of BMP2 homodimers, i.e., high binding affinity, be-

cause one of the type I binding sites of BMP2/7 heterodimer has a similarity of 96%

to the high affinity binding site of BMP2 homodimer. This domain binds to the Alk

3/6 receptor [6]. However, since the structural resemblance of a ligand-bound second

type I binding site is still unknown [6], it is not possible to determine affinity and

other biochemical information about the binding event that occurs at the second type

I binding site of the BMP2/7 heterodimer. Hence, we considered the binding kinet-

ics between the BMP2/7 heterodimers and Alk 2/8 receptors from a physiologically

relevant KD range, and further observations on the dimer-receptor binding kinetics

are as listed below:

1. Interactions with Alk2/8 (also, represented as R8): The kinetics of BMP2/7

binding to Alk2/8 has not been determined. It is possible that BMP2/7 het-

erodimers bind to Alk2/8 with higher binding affinity than the BMP7 homod-

imers (KD > 500 nM, which is very low) and Alk2/8 binding affinity. Thus,

in this research, we considered a KD within the range of 1 to 1000 nM which

included both a very tight and weak binding between Alk 2/8 and BMP2/7

heterodimer.

2. As there is no existing evidence of Alk 2/8 and B2 binding, we consider a very

high KD (> 1024 nM), so that the possibility of B2 bound heterotetrameric
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Fig. 2.4. Effective edges of oligomerization network based on dimer-
receptor interaction affinity: Based on dimer-receptor binding affinity re-
ceptor recruitment to specific dimer types varies. For instance, BMP7
dimers and BMP2 dimers have largely varying affinity for the Alk 2/8
receptor. To be more precise, the BMP2 receptor binds very poorly with
Alk 2/8 and, hence, the effective edges of BMP dimer receptor interactions
reduce from a complete network as seen in Fig.2.2 to a simpler network
of 12 bidirectional interactions, demonstrated here using the green edges.
Similarly, after affinity assessment, the effective edges of BMP2/7 and
receptor interactions are reduced to a sub-network formed by connecting
green and blue edges. Since BMP7 interacts with all the receptors through
considerable affinity, BMP7-only interactions comprise all the edges (red
+ blue + green).
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complex is small in the system. Moreover, because the KD is high (> 1024

nM), the chances of a B2 bound Alk 2/8 complex decrease when the dimers

compete to bind with free receptors in a well-mixed system.

3. The second recruitment of Alk3/6 to the BMP2/7 heterodimer follows the ki-

netics of BMP7 homodimers, i.e., lower affinity binding, because the second

type I binding site on the BMP2/7 heterodimer has similarities to that of a

BMP7 homodimer binding site [6, 33,80,142] for a type I receptor.

4. Based on the affinity of the binding of different dimers and receptors, in descend-

ing order, the strength (in nM) among all the tetrameric complexes formed by

the three dimers (B2, B7, B27). The list of complexes is shown in Fig.2.3.

The interactions between BMP2/7 heterodimer and receptors are shown in Fig.2.2.

Although the dimers are subject to all theoretically possible interactions as shown

here, in a competitive environment their respective affinities for specific receptor type

decides the occurrence of a specific interaction. If the affinity for a binding event is

very low, it is more likely that a complex formed via the binding event of low affinity

will not be accumulated in a considerable amount. The complete kinetic details for

the system are listed in Table 2.1.

2.2.2 New insights of the dynamics of receptor oligomerization

In BMP signaling, the oligomerization steps between receptor subunits begin

(shown in Fig.2.3) after the initial binding between a BMP dimer and any of the

receptors. Eventually, this dimer-receptor complex assembles three more receptors

to finally form a quadripartite receptor association consisting of two type I receptors

(Alk 3/6, Alk 2/8) and two type II receptors as shown in Fig.2.2a. Initially, dimers

move freely in the extracellular region (a 3D volume) and the receptors are restricted

on the cell membrane (a 2D plane). When a dimer and a receptor come within the
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minimum distance required for binding to occur, interaction takes place and produces

a dimer-receptor complex. This initial event can be represented as follows [107]:

r1 : B +Ri
kon−−→ BRi, r2 : BRi

koff−−→ B +Ri (2.1)

where, kon and koff are the receptor association and dissociation rate constants re-

spectively.

The kinetic details of the chemical reactions shown in 2.1 are well-known, and the

binding event is treated as a two-step process [107] : i) the transport of B molecules

to bring them within the encounter radius (s, as shown in Fig.2.1) and ii) the intrinsic

chemical reaction step once B is already within the encounter radius [107]. In a BMP

signaling system (where BMP acts as a morphogen), BMP transport occurs mainly

due to molecular diffusion [3], and the transport rate constant is denoted as kdiff ,

where diff≡diffusion. If the chemical reaction step is characterized by the intrinsic

association rate constant kr, the effective reaction rate constant kon for BRi formation

in Eq.2.1 can be written as [107]:

kon =
kdiffkr
kdiff + kr

(2.2)

Eq.2.1 depicts a scenario where a freely moving dimer in a 3D volume interacts

with receptors located on a 2D membrane surface, and produces a dimer-receptor

complex (BRi). However, if the dimer-receptor complex recruits more receptor copies

to the initially formed receptor-ligand complex (BRi), and the interaction events are

restricted on a 2D surface, a dimensionality reduction from a 3D volume to a 2D

surface affects effective ligand concentration during the receptor recruitment events

[8, 107]. Thus, we need further assessment of surface dynamics associated with the

oligomerization steps in order to quantify the impact of the dimensionality reduction

that happens because of initial ligand-receptor binding.

To analyze the oligomerization steps, interactions are divided into two main sub-

classes: i) initial receptor binding, and ii) secondary receptor binding. Once a dimer

(B) binds to a membrane receptor (Ri), the diffusion of the dimer-receptor complex
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(BRi) reduces considerably. Hence, we hypothesize that the subsequent membrane

receptor recruitment, defined as the secondary receptor recruitment, becomes trans-

port limited [107].

However, since the diffusivity of Ri is negligibly low because of its attachment

to the cell membrane, D mainly represents the diffusivity of morphogen (B) only.

For a diffusion limited receptor recruitment [107], the rate constant is significantly

faster than the rate constant of initial receptor binding. To accommodate this in our

model, we introduced a surface enhancement factor, denoted as γ, and multiply all

the forward reaction rate constants (kon) for each oligomerization step that causes

secondary receptor recruitment. This is summarized here using sample interactions

between a BMP2/7 (alias, B27) heterodimer and Alk 3/6 receptors (R3), and is shown

as below:

Initial receptor binding :

r271 : B27 +R3
k271−−→ B27R3 r271r : B27R3

k27−1−−−→ B27 +R3

Secondary receptor binding :

r274 : B27R3 +R3
k271γ−−−→ B27R3R3

r274r : B27R3R3
k27−4−−−→ B27R3 +R3

Measured kinetic details as reported in research show L.H.S. data of Eq.2.2, where

kdiff and kr contributions are generally lumped together. The transport rate constant,

kdiff , is approximated as kdiff = 4πDs with an encounter radius s (Fig.2.1b)

that lies in the range of 1 − 10 nm [107].Estimated receptor length is necessary to

approximate the surface enhancement factor (γ). As reported, the Alk receptor family

has an extracellular length in the range of 23 aa to 110 aa (aa: amino acid). For an

average amino acid length equivalent to 1 nm, the encounter radius (s) for a receptor

would be about 100 nm. For the typical range of morphogen diffusion constants



40

D∼ [0.1 100]µm2s−1 [27] [107], contribution of diffusion to the effective kinetic rate

constant keff ≡ kon can be calculated as follows:

kdiff = 4πDs

≡ 4π × 10× 10−12 × 100× 10−9(
molecule

m3
)
−1

s−1

= 4000π × 10−12 × 10−9molecule

m3

−1

s−1 ×N

= 15.128 nM−1s−1 (2.3)

where N = 6.022 × 1023 is Avogadro’s number. Using the measured effective rate

constant kon between BMP2 and Alk 3/6 is 0.0005 nM−1 s−1 and for a kdiff =

1.5128 nM−1s−1, we obtain kr ≈ kon = 0.0005 nM−1 s−1, which is equivalent to

the measured kon of the interaction.

In contrast, upon formation, when BRi subsequently recruits more receptors dur-

ing the oligomerization steps, binding events occur between two membrane-associated

species, and the kinetics of interactions of membrane-associated species follow diffusion-

limited kinetics [107]. In a diffusion-limited scenario, kdiff is approximated as kdiff =

2πD
ln(b/s)

, where b is the one-half mean distance between the membrane molecules, s is the

encounter radius and D is the total diffusivity of B and Ri [8,107]. The typical value

of diffusion-limited bindings between two membrane associated species lie within a

range 6× 104M−1s−1 to 2× 106M−1s−1. Thus, the interactions happen significantly

faster than the initial interaction where the dimer moves freely in a solution, and we

attempted to analytically derive a factor, namely the surface enhancement factor (γ),

to account for the faster interactions that took place during the bindings between

membrane-associated species.

2.2.3 Membrane-associated dimer-receptor interactions: homogeniza-

tion of receptor density

To analyze the dynamics of tertiary complex formation, we consider a simplistic

model of the receptor oligomerization steps as shown in Fig.2.5. In the model, a
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Table 2.1
Kinetic data for dimer-receptor interaction in receptor oligomerization

Ri Unit
BMP2 BMP7 BMP2-7

Ref.
Value KD value KD Value KD

1stR3

kon : nM−1s−1 0.0005
0.8

0.00014
56.4

0.0005
0.8 [24,80]

koff : s−1 0.0004 0.0079 0.0004

2ndR3

kon : nM−1s−1 0.0005
0.8

0.00014
56.4

0.00014
56.4 [80]

koff : s−1 0.0004 0.0079 0.0079

1stR8

kon : nM−1s−1 0.0000011694
1024

0:000002338
500

not known
- [80]

koff : s−1 0.001197 0.0079 0.001197

2ndR3

kon : nM−1s−1 0.0000011694
1024

0:000002338
500

0.0000011694
1024 [80]

koff : s−1 0.001197 0.0079 0.001197

1stRII

kon : nM−1s−1 0.0015
46.6

0.0014
6.42

0.0014
6.42 [82]

koff : s−1 0.07 0.009 0.009

2ndRII

kon : nM−1s−1 0.0015
46.6

0.0014
6.42

0.0015
46.6 [82]

koff : s−1 0.07 0.009 0.07
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freely moving dimer B initially interacts with receptor R and, upon formation, the

BR complex attaches to a secondary receptor S to produce the trimeric/tetrameric

complex. Binding events to form tertiary complex are as follows:

r1 : B +R
kon−−→ BR, r2 : BR

koff−−→ B +R

r3 : BR + S
k+−→ BRS, r4 : BRS

k−−→ BR + S

Rtot = R +BR +BRS, RST = S +BRS (2.4)

The Units of all the components of Eq.2.4 are defined as:

[Mole/L3] : B

[Mole/L2] : BR,BRS,RT , RST (2.5)

BMP dynamics, assumed to be in a cubic volume along X, Y , and Z direction with

dimension Lx, Ly, Lz, can be described by the 2nd order partial differential equation

as follows:

∂B

∂t
= DB

(
∂2B

∂X2
+
∂2B

∂Y 2
+
∂2B

∂Z2

)
− kδB (2.6)

Defining a set of dimensionless variables ξx = X
Lx
, ξy = Y

Ly
, ξz = Z

Lz
and τ = t

T
, and

considering kδ = 0 to simplify, we obtain ∂x = Lx∂ξx, ∂y = Ly∂ξy, ∂z = Lz∂ξz,

∂t = T∂τ , b = B
B0

, we obtain:

∂(B0b)

∂(τT )
= DB

(
∂2(B0b)

Lx
2∂ξx

2 +
∂2(B0b)

Ly
2∂ξy

2 +
∂2(B0b)

Lz
2∂ξz

2

)
⇒ ∂b

T∂τ
= DB

(
∂2b

Lx
2∂ξx

2 +
∂2b

Ly
2∂ξy

2 +
∂2b

Lz
2∂ξz

2

)
⇒ ∂b

∂τ
= DB × T

(
∂2b

Lx
2∂ξx

2 +
∂2b

Ly
2∂ξy

2 +
∂2b

Lz
2∂ξz

2

)
⇒ ∂b

∂τ
= DB × T ×

1

Lx
2

(
∂2b

∂ξx
2 +

Lx
2∂2b

Ly
2∂ξy

2 +
Lx

2∂2b

Lz
2∂ξz

2

)
(2.7)

At Z = 0, the BMP dimer binds with receptor R, and hence the boundary condition

can be devised as follows:

−DB
∂B

∂Z

∣∣∣∣
Z=0

= −kon.B.R + koff .BR
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By defining two more dimensionless quantities r = R
RT

and br = BR
RT

, we obtain:

−DB
∂B0b

Lz∂ξz

∣∣∣∣
ξz=0

= −kon.B0.b.r.RT + koff .br.RT

−DB
∂B0b

Lz∂ξz

∣∣∣∣
ξz=0

= B0.RT

(
− kon.b.r + koff .br.

1

B0

)
∂b

∂ξz

∣∣∣∣
ξz=0

= −RT .Lz
DB

(
− kon.b.r + koff .br.

1

B0

)
In all other boundaries, we have no flux boundary conditions as stated below:

∂B

∂ξx

∣∣∣∣
ξx=0

= 0

∂B

∂ξx

∣∣∣∣
ξx=1

= 0

∂B

∂ξy

∣∣∣∣
ξy=0

= 0

∂B

∂ξx

∣∣∣∣
ξy=1

= 0

∂B

∂ξz

∣∣∣∣
ξz=0

= 0 (2.8)

The transport of BMP (B) in the extracellular surface happens considerably faster

than other processes(such as the initial binding between ligand and receptor) and

thus, the concentration of BMP can be averaged out along Z-direction as:

1∫
0

∂b

∂τ
dξz =

1∫
0

DB × T ×
1

Lx
2

(
∂2b

∂ξx
2 +

Lx
2∂2b

Ly
2∂ξy

2 +
Lx

2∂2b

Lz
2∂ξz

2

)
dξz

⇒ ∂b

∂τ
=

1∫
0

DB × T ×
1

Lx
2

(
∂2b

∂ξx
2 +

Lx
2∂2b

Ly
2∂ξy

2 +
Lx

2∂2b

Lz
2∂ξz

2

)
dξz

⇒ ∂b

∂τ
=
DB × T
Lx

2

(
∂2b

∂ξx
2 +

Lx
2∂2b

Ly
2∂ξy

2

)
+
DB × T
Lx

2

1∫
0

(
Lx

2∂2b

Lz
2∂ξz

2

)
dξz (2.9)
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This simplifies to:

∂b

∂τ
=

DB × T
Lx

2

(
∂2b

∂ξx
2 +

Lx
2∂2b

Ly
2∂ξy

2

)
+
DB × T
Lz

2

1∫
0

(
∂2b

∂ξz
2

)
dξz

=
DB × T
Lx

2

(
∂2b

∂ξx
2 +

Lx
2∂2b

Ly
2∂ξy

2

)
+
DB × T
Lz

2

1∫
0

(
∂

∂ξz

(
∂b

∂ξz

))
dξz

=
DB × T
Lx

2

(
∂2b

∂ξx
2 +

Lx
2∂2b

Ly
2∂ξy

2

)
+
DB × T
Lz

2

[
∂b

∂ξz

]1

0

=
DB × T
Lx

2

(
∂2b

∂ξx
2 +

Lx
2∂2b

Ly
2∂ξy

2

)
+DBT

1

Lz
2

(
∂b

∂ξz

)∣∣∣∣
ξz=1

−DBT
1

Lz
2

(
∂b

∂ξz

)∣∣∣∣
ξz=0

At ξz = 1, the term ∂b
∂ξz

is zero. Thus, we finally obtain:

−DB × T ×
1

Lz
2

(
∂b

∂ξz

)∣∣∣∣
ξz=0

= −DB × T ×
1

Lz
2 .

(
− RT .Lz

DB

)(
− kon.b.r + koff .br.

1

B0

)
=

(
RT × T
Lz

)(
− kon.b.r + koff .br.

1

B0

)
(2.10)

So, the equation for BMP becomes:

∂b

∂τ
= DB.T

(
∂2b

Lx
2∂ξx

2 +
∂2b

Ly
2∂ξy

2

)
+

(
RT .T

Lz

)(
− kon.b.r + koff .br.

1

B0

)
(2.11)

The term RT
Lz

in Eq.2.11 demonstrates that receptor density is homogenized over Lz

length and the effective unit of receptor density becomes Mole Length−3 during the

initial dimer-receptor binding. Therefore, when a ligand is initially interacting with

a free receptor it experiences a receptor density RT with units different than the RT

unit for recruitment of subsequent receptors by ligand-bound complex (BRi). So, it

is imperative that these two different receptor densities are treated separately.

However, Eq.2.11 does not reveal much about receptor oligimerization step dy-

namics, and we dont obtain any information on the surface enhancement factor (γ) as

defined before. To obtain more information on the surface dynamics, an alternative

view of oligomerization dynamics by subdividing the extracellular binding domain is

considered further.
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2.2.4 Two sub-volume concept of receptor oligomerization dynamics

Let’s consider a rectangular geometry Ω in the extracellular region, with Lx, Ly,

and Lz as the dimensions along its x, y and z directions as shown in Fig.2.5. Along

the z-direction, the extracellular space Ω is subdivided into two sub-volumes: i) a

larger volume of height Lz − lz and ii) a smaller volume adjacent to cell-membrane

with height lz, as shown schematically in Fig.2.5.

Species in subvolume (Ah2):

[Mole/L3] : BR,BRS (2.12)

Species in subvolume (ALz):

[Mole/L3] : B (2.13)

BMP dimer B moves freely in the solution. When a dimer B comes within the

smaller sub-volume of height lz, initial binding takes place to form a BR complex.

The 3-dimensional transport of a free dimer B within Ω can be represented as:

∂B

∂t
= DB

(
∂2B

∂X2
+
∂2B

∂Y 2
+
∂2B

∂Z2

)
(2.14)

We define a set of dimensionless variable:

B

B0

= b,
R

RT

= r,
BR

RT

= br,
BRS

RST

, ξx =
X

Lx
, ξy =

Y

Ly
, ξz =

Y

Ly

ξz =
Z

Lz
, τ =

t

T
(2.15)

Using the set of dimensionless variable, we can rewrite:

∂b

∂τ
= DB × T

(
∂2b

Lx
2∂ξx

2 +
∂2b

Ly
2∂ξy

2 +
∂2b

Lz
2∂ξz

2

)
(2.16)

If the transport of a morphogen happens significantly faster than other processes

within Ω, we can average the distribution of the morphogen over the whole extracel-

lular domain, which is shown in the previous section. Furthermore, any BMP within
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𝑙𝑧

𝐿𝑧

𝐿𝑥

𝐿𝑦

Oligomerization

Dimer

Type I

Type I

Type II

Fig. 2.5. Schematic representation of the two sub-volume concept: When
BMP reaches a smaller volume it interacts with the transmembrane recep-
tor and, subsequently, the ligand-bound receptor initiates the oligomer-
ization steps. Oligomerization generates the required tetrameric receptor
association to initiate downstream signaling.
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lz interacts with a receptor and hence, at lz BMPs are captured through initial re-

ceptor binding events. Considering that dimer B is captured at lz (or within lz), and

using the dimensionless variables, we rewrite Eq. 2.16 as follows:

∂b

∂τ
= DB × T

(
∂2b

Lx
2∂ξx

2 +
∂2b

Ly
2∂ξy

2 +
∂2b

Lz
2∂ξz

2

)
−

(
kon · b · r ·RT − koff · br ·

RT

C0

)
(1−H(z − lz))

∂b

∂τ
=

DBT

Lx
2

(
∂2b

∂ξx
2 +

Lx
2∂2b

Ly
2∂ξy

2 +
Lx

2∂2b

Lz
2∂ξz

2

)
−

(
kon · b · r ·RT − koff · br ·

RT

C0

)
(1−H(z − lz)) (2.17)

where, H(n) is the Heaviside function and behaves as stated below:

H(n) =

1 if n > 0

0 if n < 0

As BMP is captured at, or within, lz height only, no binding occurs within height

(lz Lz] and the term (1 − H(z − lz)) becomes zero when z > lz. Transport of BMP

across the gap (between lz and Lz) is faster than other processes, which averages out

the originally defined binding density (within lz) over the Lz height. This redefines

the receptor density to ensure the conservation conditions of the binding site density,

and is readjusted as follows:

RT =
NT

Alz
(2.18)

RT
lz
Lz

=
NT

A× lz
× lz
Lz

⇒ RT
lz
Lz

=
NT

A× Lz
(2.19)
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Also, the Heaviside function is eliminated and we finally obtain:

∂b

∂τ
= DB × T

(
∂2b

Lx
2∂ξx

2 +
∂2b

Ly
2∂ξy

2 +
∂2b

Lz
2∂ξz

2

)
−

(
kon · b · r ·RT ·

lz
Lz
− koff · br ·

RT

C0

· lz
Lz

)
= DB × T

(
∂2b

Lx
2∂ξx

2 +
∂2b

Lx
2∂ξy

2 +
∂2b

Lx
2∂ξz

2

)
−

(
kon · b · r ·

RT

Lz
lz

− koff · br ·
RT

Lz
lz

· C0

)
(2.20)

Therefore, in Eq.2.20, receptor density RT is scaled down (from RT to RT
lz
Lz

) by a

factor equal to the ratio between the heights of the two sub-volumes. After the initial

complex (BRi) is formed, BRi and other ligand-bound receptor species do not diffuse

enough. Thus, we neglect the terms that account for diffusion, and represent changes

in species concentration over time as a set of Ordinary Differential Equations (ODEs).

The set of ODEs for receptor oligomerization steps are as follows:

d[BR]

dt
= kon[B][R] + k−[BRS]− koff [BR]− k+[BR][S]

d[BRS]

dt
= k+[BR][S]− k−[BRS] (2.21)

where, free R and S are from a single free receptor pool, and are considered to be the

same type of receptor. However, we used different naming in order to differentiate

between the initial (R) and secondary receptor (S) recruitment. When R and S are

considered similar type of receptors, the conservation condition shown in Eq. 2.4

readjusted as RT = R + S + BR + 2BRS. Here, in Eq. 2.21, k+ and k− are the

formation and decoupling rate constant for surface interactions. They are equal to

kon and koff respectively, but their notations are made different.

Lets assume that the total number of BRS complexes formed on the surface is

denoted as NBRS. Then, Eq.2.21 becomes:

dNBRS

dt
= A · lz

(
k+[BR][S]− k−[BRS]

)
(2.22)
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We consider receptor density Rlz
T = NT

A.lz
within the small sub-volume of height lz,

where A is the surface area. The total number of receptors is equivalent to NT =

Rlz
TA.lz.

The transport of BMP is significantly faster than other processes during initial

dimer-receptor binding and, hence, BMP distribution is averaged out over the sub-

volume of height Lz. Because of this, receptor density needs to be adjusted to ensure

that the total number of receptors is conserved. The readjusted binding density is:

RLZ
T =

NT

A.Lz
(2.23)

When all the equations are homogenized over same volume of height Lz, we finally

obtain the following from Eq.2.22:

dNBRS/A · LZ
dt

=
A · lz
A · LZ

(
k+[BR][S]− k−[BRS]

)
(2.24)

Species BR, BRS, R, and S are all defined in the small subvolume, and when ho-

mozenized over the larger volume of height Lz, it should be adjusted in the reaction

terms as well.

Let’s consider Rlz
T and RLz

T as the receptor densities in smaller and larger volume

respectively. As the total receptor number (NT ) is conserved, we obtain:

RT = Rlz
T =

NT

A.lz

⇒ RT ·
lz
Lz

=
NT

A.lz
· lz
Lz

=
NT

A.Lz

⇒ RT ·
lz
Lz

= RLz
T

⇒ RT = RLz
T ·

Lz
lz
≡ RT (2.25)

Similarly, for BRS, S, BR we obtain:

BR = BR · Lz
lz

BRS = BRS · Lz
lz

S = S · Lz
lz

(2.26)
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High affinity receptor

Low affinity receptor

Dimer

𝐿𝑧

𝑙𝑧

Initial binding

Secondary binding

𝐿𝑧

𝑙𝑧

a) b)

Total Dimer = N

Total Dimer = N

Fig. 2.6. Insights into receptor oligomerization: a) All free dimers reside
in a 3D extracellular volume. Free dimers initially interact with receptors
that have the highest affinity for dimer binding, as shown by the blue
arrows. Upon formation of the dimer-receptor complex, all subsequent
receptor recruitments, defined as secondary receptor recruitments (shown
by black arrow), happen on the cell surface with a comparatively lower
affinity than that of the initial binding. b) During initial binding, the
receptor experiences dimers in a 3D volume, whereas during secondary
binding it experiences all the dimer-receptor complexes, or free dimers
in a 2D domain. This reduction in dimensionality increases the effective
concentration (as the amount of Dimer = N is fixed) of dimers, as observed
by all those low affinity receptors and is demonstrated here schematically.

By replacing these species in the reaction terms of Eq.2.22, the secondary receptor

recruitment homogenized over the volume of height Lz as follows:

dBRS
dt

=
A · lz
A · Lz

(
k+ ·

Lz
lz
· Lz
lz

[BRS][S]− k−[BRS] · Lz
lz

)
⇒ dBRS

dt
=

(
k+ ·

Lz
lz

[BRS][S]− k−[BRS]

)
(2.27)

The height of the smaller sub-volume can be correlated with the height of the extra-

cellular domain of TGF − β receptor, and may be useful to approximate the boost

up factor (γ) for all subsequent receptor recruitments.

To summarize, after the formation of the initial dimer-receptor complex (BRi),

all the subsequent forward interactions between ligand-bound complexes (BRi) and
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receptors (S) on the surface happen at a rate that is γ times faster than the rate of

initial dimer-receptor binding. The value of γ can be approximated by the ratio of

the height of two sub-volumes (which is Lz/lz), and an appropriate estimate of the

surface enhancement factor γ would be within 10 to 100. Alternatively, the impact

of the reduction of dimensionality from a 3D to 2D reaction could be demonstrated

as shown in Fig. 2.6, where the effective dimer concentration, as observed by the free

receptors, increases significantly once the dimer is initially trapped on the cellular

surface. To account for the change in this effective concentration, complex formation

occurs faster during the oligomerization steps.

2.2.5 Enrichment Criteria: constraints for signaling enrichment

To decide if the complete dimer-receptor system, as demonstrated in Fig.2.2, en-

riches under a specific physiological set up, we propose an enrichment criteria consid-

ering only 7 of the tetrameric receptor associations (shown in Fig.2.3) of the system.

We assume in our analysis that all of the intermediate states (nodes other than the

tetrameric receptor association), as shown in Fig.2.2, cannot activate signals, but

that they instead either assist in dimer movement or may block dimers to assem-

ble the tetrameric receptor association required for signaling. To compare between

homodimer and heterodimer activity, a signaling strength ratio between the total con-

centration of B27R3R8RIIRII and the concentration of all other tetrameric complexes

formed by B2 and B7 homodimers is considered, and is evaluated as follows:

P = B27R3R8RIIRII

L = B2R3R3RIIRII +B2R3R8RIIRII +B2R8R8RIIRII

+ B7R3R3RIIRII +B7R3R8RIIRII +B7R3R8RIIRII

⇒ Signaling Strength(α) =
P

L

When the signaling strength ratio (α) is greater than 1 (α > 1) the system enriches.

In another screening set up, an additional constraint (χ) is added to ensure that a
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threshold level of B27R3R8RIIRII is generated in the system. In either case, if the

system fails to satisfy the enrichment criteria, it is flagged as a non-enriched system,

whereas for any satisfied case, it is marked with a circle on the R8 −RII plane. The

screening is conducted considering two different enrichment criteria– i) both α and χ

are used to differentiate between enriched and non-enriched regions (data not shown),

and ii) no threshold on the signaling strength requirement, that is, only with α.

2.2.6 Ordinary Differential Equation (ODE) model of receptor oligomer-

ization

All the possible interactions are depicted in Fig.2.1, where each network edge

demonstrates a bi-directional interaction between dimers and their cognate receptors.

All of the forward interactions between dimer or dimer-bound receptors with free

receptors follow a second order reaction rate constant. Receptor decoupling from

any bound-state is treated as a first order reaction. We use mass-action kinetics to

formulate the Ordinary Differential Equation (ODE) model.

The formulation presented in this work (Appendix A) for the receptor oligomeriza-

tion process could be followed in other multimerization systems either by extending,

or by truncating, the interactions steps. For example, if the multimerization requires

fewer than the four receptor units as seen in the dimer-receptor model, interactions

that generate tetrameric (and trimeric) receptor association could be omitted based

on the final form of the com- plex in the system. For a multimerization system that

requires the assembly of more than four receptors or membrane-bound molecules,

extra binding event steps between tetrameric complexes and the membrane-attached

species should be added. A Sample ODE model for BMP2 homodimer part is shown

in Appendix A.

The complete ODE model of all the dimers contains 51 differential equations

and more than 100 kinetic parameters. The dimer-receptor oligomerization model

is remarkably supported by published kinetic data on receptor binding [82], leaving
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only unknowns that include: i) the concentrations of BMP2, BMP7, BMP27, ii) the

concentrations of Alk3/6, Alk 2/8, and Type II receptor, iii) the kinetics between

BMP27 and Alk 2/8, and iv) the surface enhancement factor (gamma). We created

a parameter space consisting of all these unknowns and conducted a screening over

the parameter space to identify combinations that enrich the system and demonstrate

heterodimer dominance.

2.2.7 Global parameter screen

To identify conditions that maximize the level of heterodimer signaling, we de-

signed a global parameter screen that considers an uncertain parameter space and a

set of cost functions (aimed at increasing the production of B27−Alk3/6−Alk2/8−

TypeII −TypeII complex). More precisely, the design chose the n best points found

from a parameter screen over an uncertain parameter space. The space was formed

by the surface enhancement factor γ, the KD of Alk2/8 and BMP2/7 interactions,

and the concentration of all dimers and receptors. Each time a parameter vector is

selected, the design starts a gradient search from each. The computational setup for

the screening was done using the codes developed in [113,114]. The customized setup

details for the oligormerization ODE model is elaborated below.

Let us consider all the complexes formed in the system as c, and the parameters

considered to perform the global screening as θ, where θ ∈ Ω . These are the set

of parameters that are unknown and only a physiologically possible range of each

parameter is known. With a given initial condition c = c0, the non-linear ODE model

of dimer-receptor interaction can be represented as:

d c

d t
= f(c, θ); c(t = 0) = c0 = 0

y(c, θ, t) = g(c) (2.28)

where, f is a deterministic smooth function of c, and c ∈ Rnc . To ease the compu-

tational cost, the dynamics of Eq.2.28 is approximated using the sparse grid toolbox

for Matlab as described in [148]. The sparse grid offers a computationally efficient
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and accurate way to approximate the dynamics concerning the uncertain parameter

space (Ω). With sparse grid interpolant, the corresponding model output of the ODE

system can be approximated as:

ỹ(θ, t) = Ld,q(t)× y(θ, Ts) (2.29)

where Ts represents time points where model outputs are approximated, and Ld,q

is the LaGrange polynomial with degree d. Subscript q represents the exact degree

being used to build the polynomial (0 < q < d).

Upon initial screening using a sparse-grid, the chosen subset (Ωs) of uncertain

parameter space (Ω) is subsequently used to optimize the desired cost function. We

designed a total of 5 objective functions that are minimized using a gradient search

strategy, and the cost functions (CF, which is a function of species concentration in

the system) are formulated as below:

1. CF1: f(c) = Low signaling
Productive Signaling

2. CF2: f(c) = 1
Productive Signaling

3. CF3: f(c) =

N∑
i=1,i 6=chs

ci

Productive Signaling

4. CF4: f(c) = |((min(R3, R8, RII)− Productive Signaling)|

An alternative definition of a high-signaling complex is devised depending on the

outcomes demonstrated in Isaacs et.al, where a single type I and two type II receptors

can also elicit signals when bound with a heterodimer. This alternative definition is

considered here to see if outcomes obtained with CF1 to CF4 matches with CF5 or

not.

In Isaacs et al., it is reported that B2 interacts with type I (bmpr1a) and type II

(ActRIIb) with a KD equivalent to 1.31 and 38.47 nM, whereas the B6 homodimer

interacts with the same receptors with aKD equivalent to 62.46 (bmpr1a) and 6.68nM.

Binding kinetics for the BMP 2/6 heterodimer are 1.02 nM for bmpr1a and 6.52 nM
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for ActRIIb, and experimental evidence demonstrated that the binding affinities for

heterodimer BMP2/6 were dominated by the higher affinity binding of homodimers.

This implies that the binding affinity of the B26 heterodimer and bmpr1a is primarily

contributed by the high affinity binding of the B2 homodimer and bmpr1a, whereas

the binding affinity of B2/6 and ActRIIb occurs mainly by the affinity of the B6

homodimer and ActRIIb binding.

2.3 Results and Discussion

2.3.1 Simple kinetic explanation is insufficient to demonstrate heterodimer

dominance

Earlier studies reported the dominance of heterodimers over homodimers in the

pattern- ing of Dorsal-Ventral (D/V) axis of Zebrafish [6]. It was shown through

experimentation that a hetero-tetrameric receptor association consisting of two non-

redundant type I receptors (Alk3/6, Alk2/8) and two type II receptors, bound by

a heterodimer, is capable of eliciting signaling [6]. To explore the possibility that

heterodimers prevails because they bind to the receptor complex with the lowest

overall KD, we developed a mathematical model of all the possible ligand-receptor

interactions. The model is largely supported by the published kinetic data of dimer-

receptor interactions, and was later used to conduct a parameter screen of the network

by considering receptors and dimers as parameters. Each parameter was varied over

at least two orders of magnitude and is summarized in the table below:

Published kinetic data suggests that BMP2 doesnt bind to Alk 2/8 at all because

of an exceedingly high KD between a BMP2 dimer and Alk 2/8 receptor. Hence, a

BMP2/7 dimer is able to recruit an Alk 2/8 receptor only because of the presence of a

BMP7 monomer in it. The kinetics of Alk 2/8 recruitment by a BMP2/7 heterodimer

is considered equivalent to the kinetics between Alk 2/8 and the BMP7 homodimer.

Initially, we used KD = 512 nM for Alk 2/8 and BMP7 interaction interaction to

keep it above or equal to 500 nM as mentioned earlier in [80], and we used the same
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Fig. 2.7. Heterodimer dominance is not assured with a simple kinetics
explanation: Dimer-receptor network screening by varying all the pa-
rameters reveals that heterodimer dominance is unobtainable with any
combination of parameter values. Both X and Y axis are represented in
a log-scale. a) The occurrence of heterodimer dominance is manifested
here: any colored circle on the Alk2/8− TypeII plane demonstrates that
heterodimer dominance is obtained for a specific combination of param-
eters. As seen in the plots, colored circles are used to vary the level
of Alk3/6 (R3) receptors. b) Dimer concentration varies over two or-
ders of magnitude while fixing the surface enhancement factor to γ = 50
to obtain heterodimer dominance, but the colored circles are not visible
on the Alk2/8 − TypeII plane. c) Here, the dimer level is fixed at 0.3
nM, while the surface enhancement factor γ is varied over two orders of
magnitude. Similar to previous screening outcomes, heterodimer domi-
nance is unobtainable, as evident from the absence of colored-circle on
the Alk2/8− TypeII.
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Table 2.2
Dimer-receptor levels used in the network screen

Parameter Name Values Grid Points Comment

Bmp 3× [10−2to100] nM 4 Bmp2 = Bmp7 = Bmp27

Alk3/6 [10 to 150] nM 15 uniformly distributed

Alk2/8 [10 to 500] nM 50 uniformly distributed

TypeII [10 to 500] 50 uniformly distributed

γ [10 100 1000] 3 logarithmic

Total grid points: ' 450000

value for the KD between BMP2/7 and R8 interactions (KDB27−R8). The signaling

strength (α) remained less than 1 for any combination of receptor-dimer concentra-

tions we considered out of about 450,000 possible cases. This was demonstrated by

the absence of the colored circles (the variation of Alk 3/6 is shown using different col-

ors as demonstrated in part a) on the Type II-Alk2/8 plane, and, also, the outcomes

remain unchanged when the dimer strength was increased by orders of magnitude

as evident from Fig.2.7c. Even with enhanced 2nd order reactions, as implemented

using the surface enhancement factor (γ = 1) the signaling strength remained below

1, suggesting that the heterodimer complex contributed less compared to all other

signaling complexes formed by homodimers.
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2.3.2 A tight binding between heterodimers and Alk2/8 receptors can

theoretically achieve heterodimer dominance

From the screening, it is evident that the natural hypothesis on heterodimer dom-

inance based on a simple kinetic explanation does not favor heterodimer dominance

(no colored regions appear on the plot shown in Fig.2.7). To obtain heterodimer

dominance, we hypothesized that binding between Alk 2/8 and BMP2/7 binding

may occur with considerably higher affinity than that of Alk 2/8 and BMP7, a pos-

sibility outlined in a previous study as well [6]. To test this hypothesis with the local

ODE model of oligomerization dynamics, we varied the KD between a B27 dimer and

an R8 receptor between 1 to 1000 nM.

In a well-mixed system, where BMP2/7 is free to bind to a pool of free receptors,

the affinity of different receptor binding becomes important. In B27 and receptor

binding, the two type I binding domains may recruit two Alk 3/6, Alk 3/6, where

the 1st Alk 3/6 binds according to BMP2 kinetics (KD = 0.8 nM) and the 2nd Alk

3/6 Alk 3/6 follows the BMP7 kinetics (KD = 46.6) nM. When the KD of Alk 2/8 of

Alk 2/8 recruitment is reduced from 1000 nM to 10 nM in the system, the chances of

BMP2/7 and Alk 2/8 interaction at the 2nd type I domain increases, due to a lower

KDB27−R8 = 10 than the KD = 46.6 nM of the 2nd Alk 3/6 recruitment. As a result,

while keeping the level of Alk 3/6 fixed at 10 nM and type II at a very high value, an

increase in the level of Alk 2/8 results in a considerable rise in concentration of the

productive signaling complex B27R3R8RIIRII , and the system elicits signaling (data

not shown). Also, our simulation reveals that surface enhancement results in more

tetrameric complexes. With these preliminary observations, we designed a global

screen of parameter space coupled with a gradient search approach and identified the

kinetic conditions that maximize heterodimer signaling in the system.

To identify conditions that maximize heterodimer-dimer signaling, we varied a

number of parameters and optimized several cost functions each at a time to see

the constraint needed on the KD of Alk2/8 and the BMP2/7 dimer to maximize the
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production of the stipulated signaling complex (B27-Alk3/6-Alk2/8-TypeII-TypeII).

In this screening, concentrations of Alk 3/6, Alk2/8, and Type II receptors are 10 nM,

10 nM and 20 nM respectively, and remain unchanged in all other setups of global

screening conducted in this study.

The KD between the Alk 2/8 and B7 interaction is reported to be > 500nM,

and and as the KD range for B27 and Alk 2/8 interaction is uncertain, we treated

it as a parameter for the screening. To obtain a different KD, we defined an upper

and lower range for the forward reaction rate constant only. Furthermore, we hy-

pothesized that after the initial binding event takes place on the cellular surface, the

subsequent binding events happen at a faster rate due to the dimensionality reduction

of the interaction domain. This factor γ is treated as another parameter, where the

lowest value 1 manifests that the surface enhancement of kinetics during subsequent

recruitment of receptors is not considered. The reverse reaction rate constant for Alk

2/8 and B27 interactions is taken as 0.000997 s−1, and is kept unchanged for different

KD’s used in the screening. KD between Alk 2/8 and B7 interaction is reported to

be > 500nM. As the KD range for B27 and Alk 2/8 interaction is uncertain, we treat

it as a parameter for the screening. To obtain different KD, we define a upper and

lower range for the forward reaction rate constant only– that’s the lower and higher

KD is obtained by tuning the kon[nM−1s−1].

Initial analysis shows that with the published kinetic data so far it is not possible

to achieve heterodimer dominance as proposed. Our previous screen created a coarse

grid consisting of all dimer-receptor concentrations as parameters and the binding

kinetics of BMP2/7 and Alk2/8 heterodimer dominance was screened considering

an enrichment criteria, and if the criteria was satisfied, we believed that the system

demonstrated heterodimer dominance. While this screen was sufficient to determine

if the published kinetic data was sufficient to explain heterodimer dominance, it did

not identify mechanisms that, in theory, can ensure heterodimer dominance.

From the global screening of parameter space it is found that to maximize the

production of the stipulated signaling complexB27R3R8RIIRII recruitment of Alk2/8
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Fig. 2.8. Global screening of parameter space: a) Signaling enrichment is
evident when the KD between Alk 2/8 and B27 is within range 0.833 to 1.8
nM, and the range is true for all the CFs we have considered. This is shown
in the left-most panel optimized screening gives a total of 10 optimal/sub-
optimal parameter sets, and the corresponding low and high signaling
strength is plotted along the Y-axis. For all optimal/sub-optimal points
KD for Alk2/8 and B27, interactions are between 0.833 to 1.2 nM and
this is shown in the right panel. b) Similarly to part a, except that the
lowest range for KD was set to be 3.333 nM. An optimized condition for
signaling enrichment requires KD to range from 3 to 3.3 nM. c) The lowest
KD allowed for this global screening is 6.666 nM, and the screening reveals
that optimal and sub-optimal points have a clear bias towards the lowest
KD allowed in the global screening process for the system. In all cases, the
boost up factor (γ) is significantly greater than 1, which means that the
boost up of secondary receptor recruitment on the cell surface is necessary
to produce sufficient signaling.
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Fig. 2.9. Heterodimer dominance for tight Alk2/8 binding: BMP2/7 −
Acvr1−BmpR1−TypeII−TypeII dominance over BmpR1 homodimer
formation could occur in systems with excess Acvr1 and a higher binding
affinity between Acvr1 and BMP2/7. The lines on the plot demonstrate
the specific requirements for the highest possible dissociation constant be-
fore the signaling system favors formation of BMP2/7−Acvr1−BmpR1−
TypeII − TypeII at a ligand concentration of 0.3 nM.
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Table 2.3
Parameters for the global screen

Parameter Lower Range Upper Range Unit Comments

KD B27-Alk2/8 0.833 833.3 nM
koff
kon

kon B27-Alk2/8 0.0000011964 0.0011964 nM−1s−1 forward rate const.

koff B27-Alk2/8 0.000997 0.000997 s−1 Same upper and l.

Boost up factor 1 100 - 1 ≡ no boost up

by a BMP2/7 heterodimer must occur with a considerably higher affinity than BMP7

and Alk2/8. As seen in Fig.2.8, the minimum range of KD between Alk2/8 and

BMP2/7 dimer was gradually increased from 0.8 nM to 6.6 nM and, in all cases,

signaling production was maximized for the lowest KD allowed during the screening.

These facts, that published kinetic data fails to explain, and the global parameter

screen reveal a low KD requirement to maximize the signaling. The dimer-receptor

model is later used to evaluate whether the BMP2/7 heterodimer prevails over the

homodimers for low overall KD interactions, where BMP2/7 heterodimers bind with

Alk2/8 under a KD that is considerably lower than the KD between Alk 2/8 (such

as, Acvr1) and BMP7 homodimers. From a screen of surface enhancement factor

(γ = [1 200]) and KD of Alk 2/8 binding, it is found that for an equimolar dimer

level (BMP2/7 = BMP2 = BMP7 = 0.3 nM), and equal strength of each receptor

(BmpR1 = Acvr1 = Type II = 10 nM), signaling enrichment can be achieved if the

binding between BMP2/7 and Acvr1 is very tight. This means that a corresponding

KD should be very low, and is evident from Fig.2.9A (red line).

However, the requirement of tight binding is gradually relaxed as the level of Alk

2/8 (Acvr1) increases. Its worthwhile to note that not all the values of the sur-
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face enhancement factor can produce heterodimer dominance, which could be caused

by a quicker receptor saturation attained at the higher values of γ. Similar analy-

sis conducted with an elevated level of Type II (= 20 nM) revealed the same, and

is shown in Fig.2.9B. While heterodimer dominance is theoretically possible if the

binding affinity between BMP2/7 and Alk2/8 is higher than both BMP7 and BMP2

homodimers, current measurements of kinetic data dont support a higher affinity

between the BMP2/6 heterodimer and Acvr1 [138] and the computational model of

dimer-receptor is further used to identify scenarios that favor heterodimer dominance

in BMP signaling.

2.3.3 The hierarchy of tetrameric complex strength depends on the bind-

ing affinity

The three dimers (BMP2, BMP7, BMP2/7) produce a total of nine tetrameric

complexes, known as the putative signaling complexes (shown in Fig.2.3), where

the strength of all complexes is determined by their respective affinities for BMP

receptors. As seen in zebrafish gastrula, this study considers an equimolar strength

of all dimers. Steady-state concentrations of tetrameric complexes are collected for

a wide range (0.0001 to 10 nM) of of dimer concentrations while keeping all other

parameters fixed at a given level, and is repeated for different receptor strengths.

Published kinetic data informs that BMP2 homodimers have a significantly higher

affinity for the Alk 3/6 receptor (BmpR1 in Fig.2.10) compared to other dimers.

Thus, because BMP2 binding is stronger with Alk 3/6, in a competitive environ-

ment a BMP2 dimer recruits more BmpR1, resulting in a larger production of the

BMP2−BmpR1−BmpR1−TypeII−TypeII complex, which is more prevalent than

other complexes in the system. Similarly, as BMP2/7 inherits one of the BmpR1 bind-

ing sites from a BMP2 monomer, the concentration of BMP2/7−BmpR1−BmpR1−

TypeII−TypeII is expected to be higher than complex BMP7−BmpR1−BmpR1−

TypeII−TypeII formed by the BMP7 homodimer. That is, an affinity based hierar-
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chy is maintained among all the putative signaling complexes, and is evident from the

simulated data as shown in Fig.2.10a,b. Between the BMP2/7−BmpR1−Acvr1−

TypeII −TypeII and BMP7−BmpR1−Acvr1−TypeII −TypeII complexes, the

affinity based hierarchy suggests a larger production of the BMP2/7 complex because

of the presence of a high affinity binding site for BmpR1, as contributed in a BMP2/7

heterodimer by a BMP2 monomer. More Precisely, the relative strengths of puta-

tive signaling complexes with two BmpR1 in a BMP2/7 or BMP7 bound tetrameric

complexes are 26% and 17% respectively. Simulated data, as observed here, is in

agreement with the affinity-based hierarchy of tetrameric complex formation.

The simulation suggests that a few complexes do not form in considerable amounts

because of the weak binding affinity between the dimers and the receptors family. For

instance, since the affinity between dimers and Acvr1(Alk2/8) is very low for BMP2

homodimers, and low for BMP2/7 and BMP7 homodimers, complexes that include

two copies of Acvr1(Alks2/8) are less likely to form, and is evident from the simulated

data (approximately, 0% strength) as well.

To further analyze the affinity based hierarchy of tetrameric complex formation,

a larger screen is performed, where dimer strength is varied over multiple orders of

magnitude, imitating a low dimer level to overexpressed dimers. Receptor strengths

were varied as well, and the initial concentration of Alk3/6, Alk2/8, and TypeII were

chosen as 10 nM, 10 nM, and 10 nM respectively. Our simulated data showed that

the common trend of the affinity based hierarchy of tetrameric complex is preserved

for a wide range of dimer concentrations, and is summarized in Fig.2.11. Further

simulation reveals that the affinity based hierarchy of putative signaling complexes

(shown in Fig.2.11) is preserved when all the dimers are modeled as the system

variables (Relevant equations and the sample plots of the affinity based hierarchy are

available in APPENDIX B).
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b)

a)

Fig. 2.10. Affinity based putative signaling complexes concentration: a)
Based on the concentration magnitude, tetrameric complexes are arranged
in descending order. As BMP2 dimer interacts with the Alk3/6 (BMPR1)
receptor with the highest affinity (lowest KD), BMP2 − Alk3 − Alk3 −
TypeII − TypeII complex is expected to be produced more than any
other possible tetrameric complex. As BMP2 binds very poorly with the
Alk2/8(Acvr1) receptor family, the complex BMP2 − Alk8 − Alk8 −
TypeII − TypeII is expected to be the least produced complex at the
given wild-type dimer-receptor strength. Heterodimer (BMP27) bound
heterotetrameric receptor association is highlighted by a grey background
and it resides at the fourth position in the affinity based hierarchy of
putative signaling complexes. b) Affinity based BMP complex assembly
for a BMP2/7 system, where the concentration of BMP2 and BMP7 were
taken as zero. Because a BMP2/7 heterodimer possesses a higher affinity
for the Alk 3/6 (BMPR1) receptors, the tetrameric complex consisting of
two copies of BMPR1 is more prevalent than a heteromeric association
(Acvr1-BMPR1) in the system.
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a) b) c) 

Fig. 2.11. Affinity based hierarchy of tetrameric complexes for differ-
ent dimer concentrations: Based on the magnitude of concentration,
tetrameric complexes are arranged in descending order. Because a BMP2
dimer interacts with the Alk3/6 receptor with the highest affinity (low-
est KD), BMP2 − Alk3 − Alk3 − TypeII − TypeII is expected to
be produced more than any other possible tetrameric complex. As
BMP2 binds very poorly with the Alk2/8 receptor family, the complex
BMP2 − Alk8 − Alk8 − TypeII − TypeII is expected to be the least
produced complex at the given Wild-type dimer-receptor strength. Het-
erodimer (BMP2/7) bound heterotetrameric receptor association is high-
lighted with a grey background, and it resides at the fourth position of
the list.
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Fig. 2.12. Tetrameric complexes in the presence of an elevated Acvrl
level: Distribution of tetrameric complexes is shown here as a function
of ligand concentration in the system with an elevated Acvr1 level. As
seen here, the level of BmpR1 receptor complexes exceeds the level of
BMP2/7 − Acvr1 − BmpR1 − TypeII − TypeII throughout the useful
range of ligand. A similar trend is depicted for two different type II
receptor strengths (10 and 20 nM in parts A and B respectively).

2.3.4 If homodimers are quelled by BMP antagonists, an elevated level

of Alk2/8 as compared to Alk3/6 can initiate signaling

In the affinity based hierarchy of tetrameric complex formation, for equimolar

dimer strength and equal amount of Alk 2/8 and Alk 3/6 receptors, stipulated signal-

ing complex with two non-redundant copies of type I receptors (BMP2/7−BmpR1−

Acvr1 − TypeII − TypeII) fails to become the most prevalent complex. Instead,

complexes that contain two copies of Alk 3/6 fill the top few positions of the affinity

based hierarchy, and is reported in Fig.2.10 and Fig.2.11, for a given set of receptor

strengths. However, as the molecular data on the precise quantification of recep-

tor level is unavailable, we investigated whether or not the elevated level of receptor

strength could explain heterodimer dominance.
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Simulated data demonstrated that the typical predominant complex in the system

contains two BmpR1 receptors: BMP2−BmpR1−BmpR1− TypeII2 (subscript 2

denotes two copies of TypeII), followed by BMP2/7−BmpR1−BmpR1−TypeII2,

and thenBMP7−BmpR1−BmpR1−TypeII2 as shown in Fig.2.10. The fourth most-

prevalent complex BMP2/7−BmpR1−BmpR1−TypeII2 is the stipulated signaling

complex. Even if the level of Alk 2/8 is a few times higher than the Alk 3/6 level in the

system, the concentration of the stipulated signaling complex BMP2/7−BmpR1−

Acvr1−TypeII2 fails to exceed the concentration of complexes with two copies of Alk

3/6 receptors and Type II receptors. For instance, the BMP2−BmpR1−BmpR1−

TypeII2 complex maintains an overall high concentration when the level of Alk 2/8

(Acvr1) is 9 times higher than Alk 3/6 (BmpR1), and is shown in Fig.2.12.

As the elevated Acvr1 failed to explain heterodimer dominance, we considered the

role of BMP antagonists further and investigated whether or not the preferential block

of homodimer signals can initiate signaling enrichment both at elevated and normal

receptor strengths. Zebrafish embryos express three extracellular BMP antagonists

that participate in competitive interactions with BMPs and inhibit BMP signaling.

The three antagonists are Chordin (Chd), Noggin1, and Follistatin-like 1b [149]. It is

reported that the antagonists have variable affinity for different dimers. For instance,

Noggin suppresses BMP homodimer signaling stronger than it does for heterodimers

[150]. In vertebrates, Chordin binds similarly to homodimers and heterodimers [151].

However, Drosophila ortholog of Chordin, namely the Sog, demonstrates differential

binding affinity for homodimers and heterodimers [29].

To test the hypothesis that BMP antagonists preferentially block BMP homod-

imers, allowing heterodimers to signal, we used the computational model to imitate a

mutant scenario, where zebrafish embryos lack all of the BMP antagonists. That is,

the computational model is a BMP2/7-only system and considers interactions between

BMP2/7 and receptors only. It was found that when homodimers are preferentially

blocked by the BMP antagonists, and the Alk2/8 (Acvr1) level is a couple of times

higher than Alk 3/6 (BmpR1), stipulated signaling complex BMP2/7 − BmpR1 −



69

Acvr1 − TypeII2 is favored over the complex with two BmpR1 and two type II re-

ceptors. Also, signaling through BMP2/7 − BmpR1 − Acvr1 − TypeII2 is able to

respond to a wide range of dimer concentration– a requirement that is necessary for

a morphogen mediated patterning system.

2.3.5 BMP heterodimers maximize the dynamic range of signaling

[The following material is partly adopted from the manuscript (Dutko et al.) we

have submitted for publishing.]

To further investigate the parameters of BMP2/7 heteromeric receptor signal-

ing, we tested the potential contribution of each of the receptor levels. In model

simulations, elevated levels of Acvr1 (Alk2/8) have little impact on BMP2/7 het-

eromeric receptor signaling, or lead to an initial increase in signaling, depending on

the initial levels of Acvr1 and BmpR1 (Fig. 2.14A). For BmpR1 (Alk 3/6), how-

ever, an increase in BmpR1 rapidly attenuates signaling complex formation (Fig.

2.14B). In heterodimer-heteromeric receptor signaling, increasing BmpR1 levels lead

to BMP2/7 − (BmpR1)2 (subscript 2 means complexes that have two copies of

BmpR1) complexes forming for small to moderate increases before Type II becomes

limiting (Fig. 2.14C-D). If BMP2/7 signaled appreciably through BmpR1 homomeric

complexes, signaling would increase in small to moderate increases in BmpR1. The

overexpression of Acvr1 and BmpR1 is tested in vivo as well, and it is found that

overexpressing Acvr1l had no effect on the functional signaling assay, whereas even

mild increases in BmpR1 caused a loss of signaling.

We investigated whether heterodimer-heteromeric receptor signaling confers a per-

formance advantage over homodimer-homomeric receptor signaling for a wide range

of ligand concentrations expected in morphogen patterning systems. To function

as optimal sensors for a morphogen, the receptors must mitigate noise and respond

to a ligand gradient that sets multiple thresholds over space. We found that BMP2-

BmpR1 homomeric complexes form over a BMP2 concentration range of 0.0006 nM up
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Dynamic range

Dynamic range

Fig. 2.13. The definition of dynamic range in BMP signaling: For equal
dimer strength (B2 = B7 = B27) the signaling data is captured by varying
input levels of dimers over several orders of magnitudes. Dynamic ranges
of morphogens are defined between the minimum to maximum signaling,
given that the signal level gradually increases as input morphogen in-
creases. The dynamic range calculation for multiple distributions requires
drawing straight line at the largest value of all the minimum signaling
levels seen in each distribution. This line intersects other signaling dis-
tributions, identifying the lower end of the corresponding dynamic range,
and is shown by drawing a cyan line from the minimum point of the sig-
naling obtained for for KD = 10nM . This line intersects the signaling
distribution for KD = 250 and KD = 512 respectively, and provides the
lower ends of the dynamic range of morphogen signaling for both KDs.
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Fig. 2.14. The BMP heterodimer is a better sensor than a homodimer in a
morphogen activity. (A-D). BMP2 = BMP7 = BMP2/7 = 0.3 nM; (A-C)
Type II = 10 nM; (D) Acvr1 = 10 nM. (A) BMP2/7-heteromeric receptor
complex formation (y- axis) exhibits low sensitivity to Acvr1 levels (x-
axis), but (B) high sensitivity to increasing BmpR1 levels (x-axis). (C
and D) Levels of BMP2/7-BmpR1- BmpR1 signaling complexes (y-axis)
versus increasing levels of BmpR1 for different levels of Acvr1 (C) or
Type II (D) receptors. (E-G) The dynamic ligand range is greater for (E)
BMP2/7-BmpR1-Acvr1 than for (F) BMP2- BmpR1- BmpR1 complex
formation at a wide range of receptor concentrations. (G) Shows the
average dynamic range from E and F for heterodimer versus homodimer
complexes over the range of Acvr1 (red line), or the BmpR1 (black line)
receptors used in the model.
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to 0.08 nM, where BMP2 saturates receptors in the model. In the model, heterodimer-

heteromeric receptor complexes form over a 2.5 times higher BMP2/7 concentration

range overall, from 0.003 nM up to 1 nM (Fig.2.15a).

When we consider any combination of receptor levels in the model (2.15a-b), the

heterodimer system routinely exhibits better performance (Fig. 2.14E, G) than the

BMP2 homodimer system (Fig. 2.14F, G), from a 40% to a 1000% increase in dynamic

range (A definition of which is elaborated in Fig. 2.13). In addition to a greater range

of ligand responsiveness, these data also show how a heterodimer ligand overcomes a

common problem with a tight binding ligand-receptor complex such as BMP2 binding

to BmpR1. Tight binding saturates receptors at low ligand concentrations [7, 62],

such that the cells in a BMP gradient are saturated at 0.08 nM BMP2, limiting the

formation of a spatial activity gradient that directs differential gene expression over

space [3, 62]. Indeed, at the lower end of the BMP2 concentration range less than

0.001 nM free ligands approach one molecule or less per cell, which is unrealistically

low (estimated for the extracellular volume around a 10 micron diameter cell).

Moreover, the upper and lower ends of the dynamic range are also tracked for a

gradual increase of Acvr1 concentration, and the outcomes are presented in Fig. 2.15.

The lower end of the dynamic range of BMP2−BmpR1−BmpR1−TypeII−TypeII

complex is always smaller than the dynamic range of theBMP2/7−Acvr1−BmpR1−

TypeII−TypeII lower end, suggesting a low number of signaling molecule regardless

of the receptor strength considered. Also, the higher end of the dynamic range is

smaller than the dynamic range of BMP2/7. This is indicative of more noisy dynamics

due to a of a low number activity of signaling molecules [26,152,153].

To summarize, our in silico analysis revealed that the heteromeric complex, BMP2/7−

Acvr1−BMPR1−TypeII −TypeII is the fourth-most prevalent but signals exclu-

sively, whereas BmpR1 homomeric complexes BMP2−BmpR1−BmpR1−TypeII−

TypeII, BMP2/7−BmpR1−BmpR1−TypeII−TypeII, and BMP7−BmpR1−

BmpR1 − TypeII − TypeII are more prevalent, but dont signal. Moreover, by re-

quiring both BmpR1 and Acvr1, the heterodimer (BMP2/7) offers the best of both
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Fig. 2.15. A comparison of the upper and lower ends of the dynamic range.
The upper and lower ends of the dynamic range of both BMP2/7−Alk3−
Alk8−TypeII−TypeII and BMP2−Alk3−Alk3−TypeII−TypeII are
tracked for a gradual increase in Alk 2/8 variation. The common trend,
as observed here, is that regardless of receptor type, the upper end of
the dynamic range of a B27-bound heterotetrameric receptor complex is
always greater than a BMP2-bound homomeric receptor association. This
leads into a comparatively larger BMP activity. When considered in an
extracellular volume for stipulated BMP activity, the larger BMP activity
results in a less noisy dynamics as opposed to the noisy trend of the low
copy number BMP signaling demonstrated in [26]. a.) BmpR1 is varied
while keeping the concentration of Type II fixed at 10 nM, b.) BmpR1 is
fixed at 10nM and TypeII varied from 20 nM to 40 nM. In all these plots,
red and green lines are used for BMP2/7−Alk3−Alk8−TypeII−TypeII
and BMP2− Alk3− Alk3− TypeII − TypeII respectively.
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ligand types. It can be recruited rapidly by its interaction with BmpR1 (Alk 3/6),

but it also allows a greater dynamic range by binding to the lower affinity Acvr1 (Alk

2/8) before signaling.

2.3.6 Concluding remarks

In this study, we developed a new mathematical model of the receptor oligomer-

ization process of membrane receptors in BMP signaling. The model disproves the

kinetic based explanation, and showed that a simple kinetic based explanation is

insufficient to explain the dominance of a BMP heteromeric complex. While the

model disproves a kinetically-driven hypothesis, it indicates the possibility of other

mechanisms of limited homodimer signaling. The model also proposed and tested

alternative hypotheses for heterodimer dominance for the in-silico formation of BMP

signaling complexes. Together with experimental measurements, the computational

results identified mechanisms of BMP heterodimer dominance in the dorsoventral axis

of the zebrafish embryo. Our model is consistent with the ligand and BMP antago-

nists pattern, and it incorporates the intrinsic binding affinity of BMP ligands with

receptors, their levels, and the catalytic activity of the receptors to achieve a high

range of signaling to pattern multiple cells types.

BMPs are important growth factors that control various developmental processes

both in invertebrates and vertebrates, including humans. Evidences show that dis-

ruption of BMP signaling can cause developmental disorders and other diseases. Also,

BMPs are very important bio-pharmaceuticals used for the treatment of skeletal con-

ditions and in tissue engineering applications. Studies conducted within this field

reveal details of BMP signaling mechanisms, which can be used to develop new bio-

pharmaceuticals and treatments of BMP related dis- orders and diseases. Further-

more, the computational model developed for dimer-receptor interactions and subse-

quent oligomerization can be used in other systems where signaling requires multi-
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merization of membrane receptors, such as the multimerization during the activation

of the epidermal growth factor (EGF) receptor [137].



76

3. CHAPTER: ANALYSIS OF STOCHASTIC RECEPTOR

OLIGOMERIZATION IN BMP SIGNALING

A large portion of the content presented in this chapter was published in the BMC

Genomics journal [154]:

S Karim, GT Buzzard, DM Umulis. Efficient calculation of steady state proba-

bility distribution for stochastic biochemical reaction network. BMC Genomics 2012

13(Suppl 6):S10

Many biological networks exhibit stochasticity due to a combinatorial effect of

low molecular concentrations and slow system dynamics. One important biologi-

cal context where stochastic events likely have a large impact is the Bone Morpho-

genetic Protein (BMP) signaling pathway. BMPs make up the largest subfamily of the

Transforming Growth Factor-β superfamily and are involved in numerous processes

including growth, differentiation and diseases [7]. Due to their potency at driving

development, they are also of great value for stem-cell differentiations in cell culture.

BMPs activate near maximal signaling at 1nM concentration, have very slow binding

kinetics and require oligomerization between multiple receptor subunits [7]. These

properties naturally lead to conditions for significant and long-duration stochastic

fluctuations in cellular signaling. Interestingly, variability of BMP signaling appears

to be very low in vivo, while it is very high in stem cell culture studies [155]. What

is the underlying causes for the difference between in vivo and in vitro signaling, and

how do various receptor oligomerization steps alter the signal and noise? To address

these important questions, we require stochastic models of receptor oligomerization

to test different hypotheses.

In this chapter, a local stochastic model of dimer-receptor interactions was devel-

oped to investigate the impact of oligomerization steps on the noise regulation in the

system. This work also performs a screen of the network for a number of unknown
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kinetics by utilizing a steady state probability approximation approach developed

earlier as part of our previous research [26,156]. In addition to the stochastic realiza-

tion of oligomerization steps, this research also performs the bench-marking of steady

state approximation method used in this analysis.

Our analysis revealed that no significant change in stochastic variability is ob-

served with the inclusion of Type II receptors recruitment steps. This result supports

a previous assumption made in [26] where the recruitment of Type II receptor was

excluded to simplify the modeling steps while characterizing the noise profile of a

SBP regulated BMP signaling system.

The rest of this chapter is arranged as follows. First, the importance of studying

the stochastic model is described. Second, we provide the details of the stochas-

tic model development and define the alternative ways of dimer-receptor interaction

models. Then, we explain the network screen and data generation. Finally, this

chapter concludes with results and discussion.

3.1 Background

During embryonic development, positional information is transduced by mor-

phogens to underlying cells that respond to the concentration gradient of morphogen

and eventually differentiate into distinct cell types [5]. For example, Decapentaplegic

Dpp, a drosophila homologue of BMP2/4, forms a spatial profile to pattern dorsal

tissues in Drosophila development [5]. In a canonical BMP signaling pathway, dimeric

ligands bind to receptors and form a heterotetrameric complex that consists of two

type I and two type II receptors [6, 29, 117]. The heterotetrameric receptor complex

then phosphorylates the intracellular signal transducer Smad and the phosphorylated

Smad forms a complex with a co-Smad [7,29,67]. Subsequently, the Smad/Co-Smad

complex accumulates in the nucleus and regulates gene expressions in a concentration

dependent manner [22,67].
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BMPs activate near maximal signaling at 1nM concentration [29], have very slow

binding kinetics and require oligomerization between multiple receptor subunits [7,26].

These properties naturally lead to conditions for significant and long-duration stochas-

tic fluctuations in cellular signaling. Interestingly, variability of BMP signaling ap-

pears to be very low in vivo, while it is very high in stem cell culture studies [155].

Understanding the differences between in vivo and in vitro signaling, and to determine

how various steps in the receptor oligomerization process might alter the signal and

noise, requires developing a stochastic model of the underlying oligomerization pro-

cess. However, oligomerization steps generate a large number of intermediate states,

and the number of states increases further if the interactions between BMP dimers

and other antagonists, inhibitors and SBPs are considered [6, 7, 157].

Stochastic regulation can either negatively impact the robustness of the system

[26, 109] or, constructively contribute to the phenotypic variation [152, 158, 159] in

a species. In stochastic reaction networks, the state of a species traverses different

trajectories in a probabilistic manner and the distributions of states can be difficult

to predict. As more biological data is available, stochastic modeling is becoming

increasingly popular to estimate properties in networks where the time evolution of

the system is unpredictable and dependent on unavoidable randomness inherent to the

system. The complete solution can be calculated from a Chemical Master Equation

(CME) [160–162], that is based on a Markovian approach that captures the inherent

randomness of biochemical systems.

Stochastic simulation of biochemical systems has been in place for decades [161,

163–166], but the use of Monte-carlo simulation of Markovian process is often hindered

because of the computational costs associated with the tracking of trajectories of all

the active species active in the system. Thus, simplifying a biochemical system by

reducing interacting species while keeping the stochastic profile unchanged, would also

benefit in developing more elaborate network including species of additional interest.
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3.2 Model of oligomerization steps in BMP signaling

In the patterning models of BMP signaling pathways, it is often argued that a

simplification strategy that omits the recruitment step of a Type II receptor bound

to a BMP:Type I receptor complex doesn’t affect the outcomes. [22,26,36,54]. While

this approach is valid in the deterministic sense, it is not clear how this reduction

impacts our estimates for noise in the system. In the BMP signaling pathway, secreted

dimeric BMP-ligands (homodimer and heterodimer) interact with Receptor Tyrosine

Kinases (RTKs), and presumably, form a quadripartite signaling complex consisting

of two non-redundant type I and two type II kinase receptors [6, 29,117].

In the signaling network shown in Figure 3, recruitment of Type II (= R1) re-

ceptors can happen in two different ways: 1) BMP binds with Type I (=R1) first

and subsequently, recruits Type II receptors to form a tripartite complex BMP:Type

I: Type II (BR1R2), and 2) BMP directly interacts with Type I and Type II sepa-

rately, and an intermediate state forms a tripartite BMP:Type I: Type II complex. In

both situations, BMP:Type I:Type II complex (BR1R2) is the sole signaling complex

responsible for the activation of downstream pathways.

All possible biochemical interactions that represent the ligand binding with Type

I receptors and further recruitment of Type II receptors are:

r1 : B +R1
k1−→ BR1r2 : BR1

k−1−−→ B +R1r3 : B +R2
k2−→ BR2

r4 : BR2
k−2−−→ B +R2r5 : BR1 +R2

k3−→ BR1R2r6 : BR1R2
k−3−−→ BR1 +R2

r7 : BR2 +R1
k4−→ BR1R2r8 : BR1R2

k−4−−→ BR2 +R1

The chemical interaction of Case II can easily be obtained from the interactions

(r1 to r8) of Case III (Figure 3) by equaling the kinetic rate constants k±2 and k±4

of Case III to zero. For the kinetics, we relied on the published data [7]. The rate at

which a Type II receptor is recruited upon formation of a BMP:Type I complex (BR1)

is comparatively faster than the rate of BMPs and Type I receptors interactions [22].

However, exact values of the rates of formulation of (BR1R2) complex are not readily

available, and hence, parameters were screened over the physiological ranges with
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Fig. 3.1. Network cases for Type II recruitment analysis in context of
Drosophila melanogaster development: Case I) Recruitment of Type II
is overlooked here and it imitates the simplified model used in previous
studies. In this type of network, BMP:Type I complex (BR1) acts as the
sole signaling complex. Case II) Upon the forma- tion of a BMP: Type I
complex, subsequent recruitment of Type II receptor is considered here.
However, a direct interaction between BMP and Type II receptors doesnt
happen in the network. Here, a tripartite complex BMP:Type I:Type II
(BR1R2) activates the downstream pathways. Case III) Similar to Case
II, but with the exception that a direct interaction between BMP and
Type II receptor is allowed to form a BMP:Type II complex (BR1). The
kinetic equations are equivalent to the SBP system investigated in [26].
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values between [10−1 to 101] nM−1s−1 for the forward rates and [10−3 to 100] s−1

for the reverse reaction rates.

3.3 Stochastic Model Development

The Chemical Master Equation (CME) describes the dynamics of the probability

distribution of a species of chemical reactions. Specifically, the CME captures the

rate of change of probability that a system will be in state X at time t for all the

species of the system. Solution of the CME is practically intractable due to the curse

of dimensionality, as the state-space of the system becomes enormously large with

increases in the species number and concentrations (number of states nN , for N →

species, n → copies of each species). Moreover, the system often involves interac-

tions between different time-scales (slow and fast reactions, frequent and infrequent

transitions between states) [167], which add further complexity. Instead, numerical

approaches are commonly used [163, 165, 168] to realize the CME of the stochastic

system.

The Chemical Master Equation (CME), which is a set of first order differen-

tial (ODE) equations, demonstrates loss and gain of probabilities of discrete states

of a system [162] and is often applicable to represent the stochasticity of the sys-

tem. Consider a well-stirred system at thermal equilibrium of N different species

{S1, S2, . . . , SN} with {X1, X2, . . . , XN} molecules respectively, participating in a to-

tal of M biochemical reactions Rµ, where µ = 1, 2, . . .M . The state of such a

system is represented by the copy number (Xn) molecules of each species (Sn) at

any given time t and is represented as X = [X1(t), X2(t), . . . , XN(t)]. Unless a

non-zero initial state is assigned, the default initial species concentrations are always

zero (Xn(t = 0) = 0 , where 1 ≤ n ≤ N).

Two additional other quantities are required to construct the system: 1) a state-

change vector νµ and 2) propensity functions [160, 163, 168, 169] for the reactions

Rµ, µ = {1, 2, . . . ,M}. The state-change vector νµ for reactions Rµ is defined as
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νµ = [ν1µ, ν2µ, . . . , νNµ]T , where νnµ represents the change in concentration of

species Sn, caused by the occurrence of Rµ reaction of the underlying biochemical

system. These equations fully define the system and the time evolution of the prob-

ability function P (X, t) can be obtained by the solution of the Chemical Master

Equation(CME) [160,163,169]:

∂P (X, t)

∂t
=

M∑
µ=1

(
aµ(X− νµ)P (X− νµ, t)−

aµ(X)P (X, t)

)[
(X + νµ) ∈ Ω

] (3.1)

Here, [(X + νµ) ∈ Ω] is 1 if X + νµ ∈ Ω and 0 otherwise. The CME representing the

rate of change of probability P (X, t) in an infinitely large state-space X ∈ Ω is given

by taking Ω to be the non-truncated space: Ω = NN , N = {0, 1, 2 . . .}

In Eq.3.1, aµ represents the propensity function to account for transition from a

given state X to any other state, and νµ indicates the stoichiometry of the reaction µ

that results in such a transition. The exact analytical solution of Eq.3.1 is intractable

for a large number of species [170], and instead, numerical approximation is used.

Approximation of CME can be achieved via Gillespie’s SSA [161,163], and a number

of alternative algorithms have also been proposed to speed up the approximation of

CME [164].

3.3.1 Steady state probability approximation

In the analysis of stochastic biochemical networks, steady state probability distri-

butions for each species in the system are determined to measure variability about the

deterministic steady state. The deviation around the solution contributes to stochas-

tic noise that can be quantified by measuring the coefficient of variation Λ = σ
µ

(the

ratio between the standard deviation σ and the mean level of species concentration

µ) obtained by solving the CME [161].
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Frequently, Monte-Carlo based simulation approaches [161,165] are used to solve

stochastic problems. But, there are drawbacks to this approach for networks in which

the dynamics of the systems’ different intermediate states are unknown and contin-

uation of several parameters is necessary to explore the systems’ dependency. These

networks necessitate screen of parameter values and the Monte-Carlo based approach

doesn’t prove to be efficient, as it generally takes longer time to numerically sim-

ulate the process and satisfy the imposed conditions. Moreover, simulation times

increase with increases in the total number of molecules, species and the number of

interactions between species.

In order to ameliorate computational cost and complexity, we apply a method

developed in our previous research [26, 156] to approximate the steady state proba-

bility distribution by 1) reducing the system’s state-space to a finite dimension using

truncated state-space method [171] and 2) subsequently, translating an eigenvalue

problem associated with a CME to a system of linear equations. We illustrate that

the eigenvector (for an eigenvalue = 0) that represents the steady state probability

distribution can be solved algebraically by approximating it as a system of linear

equations.

Eq.3.1 is a linear system of differential equations and may be rewritten as follows:

dP

d t
= LP (3.2)

where P is the probability distribution P (X, t) for a vector X = [X1, X2, . . . , XN ] and

L is the time independent connection operator. For the steady state (SS) distribution,

Pss, we have

i)Pss
X ≥ 0; ∀X ∈ Ω ii)

∑
X∈Ω

Pss(X) = 1

and iii) LPss = 0, (3.3)
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We assume that the deterministic steady state (SS) is unique. The non-truncated

state-space Ω can be replaced with a truncated state-space Ω̂ [171,172] to approximate

the probability distribution P (X, t). We define the truncated space as:

Ω̂ = {X : αi ≤ Xi ≤ βi , ∀ i} (3.4)

where αi and βi are extendable left and right boundaries of the truncated state-space,

and is similar to that in [119], in which it is shown that the approximation based on

the truncated space converges to the true steady state distribution as the limits of

the truncated state-space converge to the limits of the original space.

The truncated state-space representation implies that given some ε > 0, for a

sufficiently large βi > 0 and sufficiently small αi ≥ 0, the steady state probability

distribution Pss(X) is approximated to within ε:∑
X∈Ω̂

Pss(X) = 1− ε

For an optimal SS probability approximation, ε should be made as small as pos-

sible. In the truncated state-space, Eq.3.3,(iii) is represented as-

L̂P̂ss = 0 (3.5)

where L̂ is a matrix of propensities in Ω̂. To get the entries in L̂ we use Eq.3.1

modified so that P (X, t) = 0 if X 6∈ Ω̂ and aµ(X) = 0 if X + νµ 6∈ Ω̂. In the

truncated state-space Ω̂, Eq.3.5 is an eigenvalue problem for eigenvalue λ = 0 and

the eigenvector P̂SS can be obtained algebraically, or with an iterative algorithm for

a large, sparse matrix L̂. Instead of finding the eigenvector, which can be an ill-

conditioned problem when there are nonzero eigenvalues close to 0, we translate the

problem to a well-conditioned system of linear equations as follows:

We first evaluate the deterministic steady state (Y0) of the system, and then

select state X0 of the discrete system closest to this deterministic steady state, where

X0 = round(Y0). Taking P̂ss to be the solution of Eq. 5 and using the fact that

the deterministic steady state solution is unique, we observe that P̂ss(X0) is among
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the largest entries of P̂ss. The states in Ω̂ are labeled as 1, 2, . . . , K with state X0

denoted by j. Then,

P̂ss

P̂ j
ss

= [P̂ 1
ss . . . P̂

j
ss . . . P̂

K
ss ]T/P̂ j

ss

= [q̂1, . . . , q̂j−1, 1, q̂j+1 . . . q̂K ]T (3.6)

where q̂k =
P̂ k
ss

P̂ j
ss

, k = 1 . . . K, q̂j = 1. With q̂ = [q̂1, . . . , 1, . . . q̂K ] Eq.3.5 now

becomes L̂q̂ = 0. Let L̂k be the kth column of L̂. Expanding L̂q̂ by column and

rearranging gives the following well-conditioned problem:

K∑
k=1,k 6=j

L̂kq̂k = −L̂j or,

L̂′q̂′ = −L̂j (3.7)

In Eq.3.7, L̂′ is the matrix L̂ with column j removed and q̂′ is q̂ with entry q̂j re-

moved. The error criterion for the system is checked for the calculation of P̂ss until a

satisfactory value is obtained (see algorithm 1 for further details).

A generalized algorithm for simulation according to the steady state approxima-

tion as outlined Methods section is given in Algorithm 1.

3.4 Benchmarking of Direct SS probability approximation method

Carrying out large-scale stochastic simulations can be time consuming, but cal-

culation of the approximate solution via a truncated state-space can greatly improve

the speed. In order to show the performance improvement in terms of computational

cost and time of direct SS approximation in the analysis of stochastic biochemical

networks, we benchmarked the method against Gillespie’s stochastic simulation algo-

rithm (SSA) method [161] for numerical calculations of stochastic biochemical net-

works. In the benchmarking, the processing time taken by each method was calculated

based on the steps in the blue box as mentioned in the flow chart diagram (Figure 5).
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Algorithm 1 Evaluate steady state (SS) distribution: L̂P̂ss = 0

Require: Unique deterministic SS solution X0

1. Reaction Networks with N Reaction R1, . . . , RN

2. Choose: ε, γ0, γ

3. Solve: ODE for steady state(SS) = Y0 and find discrete state X0 closest to Y0,

where X0 = round(Y0).

4. Initiate αi, βi; where αi = (X0)i − γ0, βi = (X0)i + γ0

5. Determine: Truncated state-space Ω̂ as shown in 3.4 and L̂ as described after

Eq.3.5

6. Determine: Column j of L̂ corresponding to X0

7. Form L̂′ and L̂j as in Eq.3.7.

8. Solve: L̂′q̂′ = −L̂j
9. Find P̂ss =

[q̂1,...,q̂j−1,1,q̂j+1...q̂K ]T

η
, where q̂′ = [q̂1, . . . , q̂j−1, q̂j+1, . . . q̂K ]T and

η > 0 and η = 1 +
K∑

l=1,l 6=j

q̂l is chosen so that
∑
X∈Ω̂

P̂ss(X) = 1

10. Verify:

if
∑

X∈Ω̂,Xi = δi

P̂ss(X) ≥ ε , for δi = αi, or δi = βi then

αi ← αi − γ

βi ← βi + γ

Return to 5

end if
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Table 3.1
Benchmarking between Gillespie’s SSA and Direct SS approximation for
a target BR1R2 = 20

Method End Time (ET) in Gillespie’s SSA(hrs) Processing Time (sec) Λ

Direct SS approximation Not Applicable 0.4 -0.6 0.1707

Gillespie’s SSA

28000 90-95 0.1705

2800 8-10 0.1878

1390 4-5 0.2254

The sample problem was calculated for both methods on the same hardware and soft-

ware configuration: Processor: Intel(R) Xeon (R) CPU E5405, 2.00 GHz (quad-core),

RAM: 16 GB, SBTOOLBOX2 [173] and Matlab R2010a with SiMBiology 3.0. The

processing time and computed Λ values for a target BR1R2 = 20 for Case II, Figure

3, is provided in Table 2 to show the accuracy and time gain that can be obtained if

the proposed direct SS distribution approximation method is used. Gillespie’s SSA

takes longer to generate an output that contains enough information to calculate the

distribution as compared to the time taken by Direct SS approximation method. The

problem becomes severe when continuation of multiple parameters are necessary to

explore the system’s parameter dependency as done previously in [26].

In Table 3.1, the term ‘End time (ET) in Gillespie’s SSA’ corresponds to the

amount of time the system dynamics were allowed to evolve. The accuracy of the

Gillespie’s SSA approach depends on the ‘End time in Gillespie’s SSA’(directly con-

tributes to the processing time) set in the model simulation, and is shown clearly

in Fig.3.3a and Table 3.1. Very low propensities require long simulation times in

Gillespie’s SSA due to the infrequency of events. Accuracy of Gillespie’s method for

the sample example increases as the ’End time in Gillespie’s SSA’ is increased. This

large simulation time in turn directly impacts the processing time, resulting in a large

computational cost to achieve the desired accuracy (Table 3.1).
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Fig. 3.2. A comparison of coefficient of variation Λ for three network cases:
a) The coefficient variation of BR1 (calculated from Case I Figure 3)and
BR1R2 complexes (calculated from Case II Fig.3.1) is compared. The
variability of the system seems to be invariant in the presence of Type II.
b) The concentration dependency of Λ as a function of R2. c) Same as
plot ”a”, however, direct interaction of BMP and Type II is allowed as in
Case III, Fig 3.1. It’s clear that the stochasticity of the system does not
change over the range of tested values. d) Summary of BR1R2 formation
and its impact on signaling noise.
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Fig. 3.3. a) In Gillespies method, a larger ‘End Time’ (ET) is required
(which translates into a higher processing cost and time) to ensure the
accuracy of outcome. Three different ET: 280 hrs, 2800 hrs, 28000 hrs
are shown. b) The effect of kinetics associated with BR1 interacting with
R2. The steps of interactions are clearly shown in Case II of Fig.3.1

3.5 Results and discussion

To simulate the networks as shown in Fig.3.1 for the calculation of the coefficient

of variation Λ, we applied the truncated state-space approximation. During the sim-

ulation, a target of 1 to 30 signaling complexes (BR1 for Case I and BR1R2 for Case

II, Case III) in the extracellular region is considered so a direct comparison can be

made for the coefficient of variation (Λ = σ
µ
) between BR1 and BR1R2.

The coefficient of variation (Λ) for BR1R2 remains very close to the coefficient

of variation of BR1 as shown in Fig.3.2a. Proximity in the coefficient of variation

between BR1 and BR1R2 as shown in Fig.3.2a demonstrates that the stochastic

variability of the system is not affected by the recruitment of the Type II receptor. It

is also found that increasing the concentration of R2 brings the coefficient of variation

of BR1R2 into very close agreement with the coefficient of variation of BR1 Fig.3.2ab.

A similar outcome is obtained from the simulation of Case III of the Figure 3 and
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the result is shown in Fig.3.2c. Finally, all the outcomes are summarized in Fig.3.2d,

where it is shown that regardless of the different cases as shown in Figure 3 the

coefficient of variation (Λ) of BR1R2 is approximately equal to that of BR1.

Additionally, it is also found from the simulated results that the rate at which

the BMP:Type I recruits Type II receptor (Case II in Fig.3.1) also decides the effect

of Type II recruitment process on the stochastic variability of the system. With a

comparatively slower rate, the coefficient of variation tends to oscillate as observed in

Fig.3.3b. When the recruitment rate is slower than the formation rate of BMP:Type I

complex, free Type II receptors fail to get frequent access to BMPs via the BMP:Type

I:Type II tripartite complex, and can cause heconcentration of BMP:Type I:Type II

complex to oscillate more than the case with a comparatively faster dynamics. Thus,

mitigating noise is not a natural output of receptor oligomerization and transduction.

3.6 Concluding remarks

In this study, we investigated the binding of Type II receptor in BMP signaling.

The results suggest that the recruitment of a type II receptor in BMP signaling doesn’t

affect the stochasticity of the system over the range of concentration and parameters

investigated. Moreover, we also have shown that the larger receptor strength and

rate at which Type II receptor is recruited also decides the impact on noise. In this

work, we also have done a benchmarking of a steady-state probability approximation

method that can be used in stochastic analysis of other biochemical system.

The outcomes of this research may be useful in developing stochastic models for

receptor oligomerization steps, and in reducing interacting species without affecting

the stochastic profile of the system. This eventually will contribute to reducing model

and simulation complexity during the stochastic analysis of extracellular regulation

of BMP signaling system.
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4. CHAPTER: SCALING MOTIFS IN

MORPHOGEN-MEDIATED PATTERNING

Developmental processes in species require intricate and highly reproducible mecha-

nisms of pattern formation, so the cell fate is assigned at the right time and location.

This implies the existence of a developmental blueprint that developing species ap-

ply to generate appropriately positioned and proportioned patterns and structures.

Through experiments, it is found that developmental processes resolve both inter-

species and intra-species size-differences and other forms of perturbations. The in-

trinsic ability of a species to ensure such proportionate development of its constitutive

organs and tissues is known as scaling [9, 86, 106, 174]. However, mechanisms behind

the scaling of patterns are still elusive, and further theoretical and experimental stud-

ies should be devoted to reveal them.

This work proposed a simple theoretical model, namely the Two Component Sys-

tem (TCS), consisting of a tightly correlated morphogen (m) and a modulator (M).

In TCS, The morphogen and the modulator spatially alter each others biophysical

properties. Different network motifs involving m and M were considered, and they

include positive, negative, and no-regulation cases for the production, diffusion, and

degradation of morphogen-modulator dynamics. Later, using the model we identified

a number of network motifs that can achieve the required degree of preciseness and

resilience for flawless organs and tissue development.

Spatial dependence of all coefficients (such as, diffusivity, production rates, reac-

tion rates) in the proposed TCS posed an enormous computational challenge, as we

aimed to screen millions of network motifs to test a number of performance objectives

designed for the scaling of patterns. The numerical screening required a fast, accu-

rate, and efficient solver to screen over the millions of networks within a stipulated

time. To achieve these goals, this work uses a multi-step method as implemented in
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CVODE [175]. The method is based on the Backward Differentiation Formula, and

implements a matrix-free [176] method that does not require storage of the Jacobian

from the underlying linear system during every iteration step. Also, the solver option

with the Krylov subspace method [177] was used to ameliorate the computational

cost. To speed up data generation, numerical simulation of TCS using CVODE is

coupled with super-computing clusters. In this study, the serial implementation of

CVODE is used. The simulation setup and strategy used in this research could have

potential usages in other models that frequently require an interrogation of system

behavior under the reaction-diffusion and/or advection-diffusion-reaction paradigm.

This chapter is organized as follows. First, we analyze scaling definitions, and

then we provide several previous models and mechanisms proposed to explain the

scaling of patterns. Second, we propose the TCS model with all its variants and

provide a mathematical representation of all versions of the TCS models. Third,

regulatory equations for all biophysical properties are provided along with the range

of parameters defined for numerical screening. The rationale of the specific forms

of regulatory equations is presented using a simple ligand-receptor model. Then,

we introduce the simulation details used to generate trustworthy data for further

analysis. Finally, this chapter concludes with an analysis of the data generated and

proposes a set of viable network motifs to explain the scaling mechanisms in various

species.

4.1 Background

An astounding fact of species development that has fascinated the scientific com-

munity over many centuries is its remarkable reproducibility and preciseness. Despite

the presence of numerous forms of perturbations (e.g. size-differences, varying nu-

trient, temperature etc.), developmental processes seem to replicate a common body

template, where the proportions and positions of organs and tissues are perfectly

maintained [8]. For instance, embryo size often varies substantially both within and
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Fig. 4.1. Morphogen gradient and scaling of patterns: a) The Morphogen
gradient acts as a patterning signal, and creates patterns among a homoge-
nous field of cells in a concentration dependent manner. Cells sense the
extracellular morphogen gradient through transmembrane receptors and
discern according to morphogen thresholds (p, q). Therefore, cells be-
tween 0 to x length that sense a morphogen level greater than p become a
specific cell type, whereas cells that sense a morphogen gradient between
p and q assume a different cell fate. b) Scaling of patterns: For different
system sizes (l1, l2, l3), if the spatial position is normalized by their respec-
tive lengths, normalized distribution is superimposed perfectly a similar
concept is explained (lower panel) using the French Flag Model.

between species among closely related dipterans, but the adult organisms maintain

a perfect proportion of organs and tissues during development [12, 13]. Thus, devel-

opmental processes resolve both inter-species and intra-species size-differences and

other forms of perturbations [9, 86, 106,174].

The concept of scaling can be explained schematically by a non-biological model,

namely the French flag model shown in Fig.4.1. According to the model, cells instruct

their neigh- boring cells to adopt a specific cell fate in the presence of a signaling field.

Cells located in the left-most region act as sources for a secreted group of molecules,

such as morphogens, that transport away from the source creating a signaling gradient

over a field of cells Fig.4.1b(left panel). Different regions are patterned in blue,
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white, and red according to concentration dependent thresholds. In a perfectly scaled

scenario, the blue, white, and red sections (in a species, this is similar to a specific

field of cells) of different sizes will be superimposed when normalized against their

respective flag length (li). However, in vivo morphogen signaling demonstrates scaling

with a certain degree of precision [44], rather than a perfectly scaled scenario. rather

than a perfectly scaled scenario. A developing system may also be subject to partial

scaling when some positions of the system havent scaled perfectly [86,174,178].

The ways in which scaling is achieved within species is a fundamental biological

problem that has not been answered with an adequate understanding of the under-

lying processes. A number of scaling mechanisms have been suggested so far based

on mathematical analyses [9,84,86,174,179,180]. For instance, in a reaction-diffusion

system, the regulation of morphogen diffusion by a molecule secreted from all un-

derlying cells can scale [106]. Another mechanism, namely the expansion-repression

mechanism, suggests that scaling is achievable when the characteristic length of mor-

phogen distribution is expanded by a diffusible molecule, and morphogens respond

by repressing the production of that molecule [174]. Evidence of these mechanisms

is found in the wing imaginal disc of Drosophila, where the Dpp gradient, a Bone

Morphogenetic Protein (BMP), is expanded due to the activity of Pent (a regulator

of BMP signaling), and the Dpp gradient suppresses Pent expression, completing the

expansion-repression motif [10].

In addition, flux optimization provides scaling by adjusting morphogen peak

level [9]. All these mechanisms are primarily based on the modulation of one, or more,

biophysical quantities of morphogen by the presence of a spatially distributed modu-

lator. In many cases the identity of regulator molecules in morphogen signaling is still

unknown. Moreover, the modification of binding density is another proposed mecha-

nism that ensures adjusting morphogen distribution in response to size variation [88].

The ratio based scaling mechanism proposed that if two morphogens emanate from

opposing ends of the system, they achieve scaling via the signaling strength ratio
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along the domain [179, 180]. Alternative mechanisms of scaling consider the binding

site density of morphogens and other geometric factors.

To identify the mechanisms of scaling, we proposed a reaction-diffusion based

model, the Two Component System (TCS), consisting of a morphogen (m) and mod-

ulators (M), where a morphogen and a modulator interact to spatially alter the bio-

physical properties of each other. The proposed regulatory machinery is used to iden-

tify a number of parsimonious network motifs that are resilient against perturbations.

Our simulation reveals that if a morphogen, a gradient based signal inducer active

in a large number of species during different developmental stages, and a modulator

mutually regulate their respective biophysical properties, scaling of patterns occurs

in response to different perturbations, such as, system length variation, input-flux

variation of morphogen.

4.1.1 Extracellular Regulation of Morphogen Signaling

Numerous developmental processes directly rely on the local concentration of a

secreted group of molecules known as morphogens. A morphogen, upon secretion,

transports away from its spatially localized source, creating a spatially non-unform

gradient between the source and sink regions [1–5]. For instance, Bone Morpho-

genetic Proteins (BMPs) act as morphogens in context of the D/V patterning of both

vertebrates and invertebrates. BMPs transduce extracellular information to activate

downstream signaling pathways by binding to their cognate receptors. Experimental

evidence shows that morphogens not only interact with their cognate receptors, but

are also known to interact with a number of other extracellular factors [7, 22, 181]

that can modulate morphogen distribution and affect the activation of downstream

pathways. The secreted regulators of BMPs do not act as BMP inhibitors such as

Sog, Chordin, Noggin, and Follistatin [149,150]. Instead, they demonstrate a context-

dependent auxiliary function in BMP signaling that can promote or inhibit signaling.

A number of BMP regulators have been identified (approximately 20 or more), and
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it is reported that the regulators possess cell autonomous effects on BMP signaling.

Amongst the regulators, a large portion is attributed with the ability of limiting or

promoting BMP signaling [7].

In general, examples of modulators may include activators, inhibitors, and other

proteins that interact extracellularly with morphogens and regulate concentration,

length, and time-scale of morphogen distribution as well. For instance, in Drosophila

melanogaster, Decapentaplegic (Dpp) is a morphogen that actively participates in

anterior-posterior (A/P) cell fate determination within the wing imaginal disc [92,

182]. In the early embryo, Dpp levels are highest near the dorsal midline with lower

expressions in the lateral domain. However, it has also been shown that during

earlier stages, transcription of Dpp is uniform throughout the entire dorsal domain.

This suggests that additional secreted extracellular factors are involved in shaping

Dpp distribution, which may include inhibitor short-Gastrulation (Sog), Twisted-

Gastrulation (Tsg), and metalloprotease Tolloid (Tld) [9,29,71], as well as many other

factors [6,42]. Another extracellular factor that regulates Dpp signaling in Drosophila

is Dally [181, 183], a heperan sulfate proteoglycans (HSPGs) [184]. Experimentally,

Dally is shown to act as a modulator of Dpp by disrupting both receptor-mediated

uptake and degradation of Dpp-receptor complex [181,183,185].

Moreover, dorsal-ventral (DV) patterning in xenopus also involves a number of

potential candidates that can act as modulators for morphogen signaling. In Xenopus,

BMP4/7 expression is ventrally high with a positive feedback loop in place to maintain

a high level of BMP signaling in the ventral region, whereas BMP2 and antidorsalizing

morphogenetic protein (ADMP) levels are repressed ventrally and they maintain high

signaling at the dorsal region [186].Chordin (Chd), an inhibitor, is responsible for

inhibiting BMP4/7 in the dorsal region to create a low expression level of BMP4/7,

whereas BMP2 and ADMP are highly expressed in the dorsal regions. As a result, the

opposing gradients of BMPs and Chordin are active during pattern formation. Due

to this interplay between varying BMP ligands and ADMP, and because the total

BMP signaling is defined as the sum of all BMP activities in the D/V patterning
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of xenopus, the loss of all four BMP ligands involved in DV patterning is needed to

cause dorsalization [187]. While in Drosophila, the depletion of a single BMP ligand

is sufficient to ventralize the embryo.

In xenopus D/V pattenring, ADMP exhibits a dual role of both morphogen and

expander- it expands the BMP signal to the ventral region and is eventually repressed

by the BMP signal. This results in closing the feedback loop of expander-repression

mechanisms [10,174]. D/V patterning in Xenopus can thus be considered an example

of a TCS system composed of morphogen and modulator.

4.1.2 Scaling in reaction-diffusion model of morphogen signaling

The notion of scaling of morphogen mediated pattern formation can be explained

by considering a simple model of morphogen dispersal, where the dispersal of mor-

phogens happens through a diffusion-decay mechanism. As stated mathematically,

upon secretion from a source located at X = 0, morphogen transports away from the

source by a diffusion-decay mechanism. With necessary initial (I.C) and boundary

conditions (B.C), the morphogen dispersal model is represented as follows:

∂m

∂t
= Dm0

∂2m

∂x2
− km[m]

B.C : −Dm0
∂m

∂x

∣∣∣∣
x=0

= j,
∂m

∂x

∣∣∣∣
x=L

= 0

I.C : m(x, t = 0) = 0 (4.1)

Units of Dm0, km is (length)2 time−1 and time−1 respectively. The dimensionless

form of Eq.4.1 is obtained by defining two dimensionless variable τ = t
T

and ξ = x
L

,

and the dimensionless form is as follows:

1

T

∂m

∂τ
=

Dm0

L2

∂2m

∂ξ2
− km[m]

B.C :
∂m

∂ξ

∣∣∣∣
ξ=0

= − jL

Dm0

,
∂m

∂ξ

∣∣∣∣
ξ=1

= 0

I.C : m(ξ, τ = 0) = 0 (4.2)
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Rearrangement of Eq.4.2 gives us three dimensionless quantities, all of which should

be length or flux-independent in order to achieve scaling. The dimensionless terms

are: 1
Tkm

, Dm0

kmL2 , and jL
Dm0

.

By defining J = jL
Dm0

and λ2 = kmL2

Dm0
, and considering steady state analysis of

morphogen dispersal system we obtain the Sturm-Liouville form of equation with a

generalized solution as given below:

mss(x) = A× e(λx) +B × e(−λx) (4.3)

Here, A and B are integral constants and can be calculated using the two boundary

conditions (B.C)– A = Be−2λ and B = −J
λ((e−2λ)−1)

. By plugging in the values of A

and B, we obtain:

m(ξ) =
J

λ

[
e(λ(2−ξ)) + e(λξ)

e2λ − 1

]
(4.4)

where, A = Be−2λ = −J
λ((e−2λ)−1)

e−2λ and for a large λ, A → 0 and the steady-state

profile of morphogen becomes:

m(ξ) =
J

λ
B × e(−λξ)

m(ξ) =
j√

kmDm0

B × e
−

(√
kmL2

Dm
ξ

)
(4.5)

The system scales if the morphogen distribution m in Eq.4.5 becomes independent of

system length L (scale-invariance) and production (robustness) of morphogen j.

Morphogen spreading is controlled by the rate of diffusion (Dm0) and the rate

(km) at which morphogen degrades while spreading. That is, the decay length of

(ψ) morphogen distribution is directly dependent on the diffusion and degradation

dynamics of morphogen, and morphogen distribution must adjust its decay length to

accommodate the system size variation (shown in supplemental information). The

decay length (ψ) of morphogen can be defined as:

ψ =

√
Dm0

km
(4.6)
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Inspection of Eq.4.6 demonstrates that to achieve scaling when system length L in-

creases, morphogen must diffuse faster, or either the degradation of morphogen hap-

pens at a slower rate, or both the degradation and diffusion of morphogen must change

together to ensure scaling. This suggests the notion of modulation of biophysical prop-

erties of morphogens, and indicates the potential existence of modulators capable of

altering transport and reaction dynamics of morphogen to achieve scaling.

For a perfect scaling, the ratio (ψ
L

) should remain constant along the process.

Furthermore, we can define two more quantities: diffusion time (τD) and reaction

time (τR) (preferably the slowest one). The diffusion time τD demonstrates the time

on average taken by a molecule to diffuse through distance L, shortly known as the

transport time scale as well.

τD =
L2

Dm0

(4.7)

τR =
1

km
(4.8)

We define another dimensionless parameter (χ) to measure the scaling of morphogen

distribution, which is as follows:

χ =
Dm0

kmL2
(4.9)

Our performance objectives could be correlating these quantities with systems that

scale and exhibit robustness, given that morphogens and modulators regulate each

others biophysical properties.

4.1.3 Modulation of biophysical properties: transport modulation

Regulation of biophysical properties is at the center of the TCS model. It also

identifies the form of the modulation equation between morphogen and modulator.

A simple model of morphogen and regulator binding (similar models can be formed

using interactions between BMP and SBP [26], or inhibitors [7,86] etc.) is considered

here to study the form of regulatory equations that can arise because of the mutual
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regulation between morphogens and modulators. In the model, a diffusing morphogen

(m) interacts with a signaling regulator (R) and forms a complex, denoted as mR.

Mathematically, the model can described as:

∂[m]

∂t
= Dm0

∂2[m]

∂x2
− k1[m][R] + k−1[mR]

∂[mR]

∂t
= DmR0

∂2[mR]

∂x2
+ k1[m][R]− k−1[mR]− kend[mR]

RT = R +mR (4.10)

Where k1, k−1 are the association and dissociation rate constants respectively, and

the last term, RT , is the conservation condition. If morphogen diffuses significantly

faster than regulator (R), that is Dm0 >> DmR0, the model can represent a simple

ligand-receptor interactions, and simplifies further to:

∂[m]

∂t
= Dm0

∂2[m]

∂x2
− k1[m][R] + k−1[mR]

∂[mR]

∂t
= k1[m][R]− k−1[mR]− kend[mR]

RT = R + [mR] (4.11)

If binding reactions of between morphogen (m) and regulator (R) occur very fast, the

term ∂mR
∂t

= 0 is a good approximation of morphogen complex ([mR]) dynamics. So,

we obtain:

∂[mR]

∂t
= 0

⇒ k1[m][R]− k−1[mR]− kend[mR] = 0

⇒ k1[m][R]− [mR] (k−1 + kend) = 0

⇒ k1[m](RT − [mR])− [mR] (k−1 + kend) = 0

⇒ k1[m](RT − [mR]) = [mR] (k−1 + kend)

⇒ [mR] =
[m][RT ]

m+ k−1+kend
k1

(4.12)

The term k−1+kend
k1

is the dissociation constant KD, which is considerably larger than

[m]. At the cellular surface KD = k−1+kend
k1

>> [m], which implies that binding
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sites available for the morphogen are significantly large enough to keep it away from

saturation. Thus, the Eq. 4.12 can be simplified as:

[mR] =
[m]RT

KD

(4.13)

By adding ∂[m]
∂t

and ∂[mR]
∂t

from Eq. 4.11:

∂[m]

∂t
+
∂[mR]

∂t
= Dm0

∂2[m]

∂x2
− kend[mR]

⇒ ∂[m]

∂t
+
∂[mR]

∂t
= Dm0

∂2[m]

∂x2
− kend

[m]RT

KD

⇒ ∂[m]

∂t

(
1 +

RT

KD

)
= Dm0

∂2[m]

∂x2
− kend

[m]RT

KD

⇒ ∂[m]

∂t
=

Dm0(
1 + RT

KD

) ∂2[m]

∂x2
− kend(

1 + RT
KD

) [m]RT

KD

(4.14)

A careful observation of Eq.4.14 shows that the diffusion coefficient (Dm0) and the

rate of removal (kend) of morphogen are both scaled by a term of the form (1 + αR),

which is rearranged as (1 + αR)ν and is used in the TCS model for the regulation

of biophysical properties. By varying the value of ν, we obtained positive, negative,

and no regulation of transport properties. Similar forms of equations are used for

reaction rate modulation, and all the exact regulatory equations of TCS model are

listed later.

In summary, to identify the mechanisms for scaling and preciseness in patterning,

we consider regulation of all biophysical properties of morphogen dynamics: the mod-

ification of transport properties, the production or the influx of morphogen and mod-

ulators, and the reaction rates of extracellular morphogen and modulator dynamics.

We hypothesize that regulations of transport, production, and reaction properties,

either separately or in combination, can explain a number of the performance ob-

jectives, such as scale-invariance, robustness, etc. Depending on the location of the

modulator source, TCS models are subdivided into three main categories– i) modu-

lator source is at X = 0, ii) modulator source is at X = L, iii) spatially distributed

modulator source. All these model variations are elaborated in subsequent sections.
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Fig. 4.2. Two Component system (TCS) for scaling: In the cellular
environment, free morphogen movement is often hindered by the pres-
ence of interacting molecules (cyan). Besides cognate receptor binding,
a morphogen (magenta) also interacts with numerous other extracellular
binding proteins (cyan), defined as modulators. These extracellular in-
teractions can change the biophysical profile of the morphogen and thus,
diffusivity and other kinetics may no longer be constant in the cellular
environment. b,c,d) Based on the location of the modulator source, the
proposed TCS is subdivided into three main subclasses i) modulator flux
source at x = 0, ii) modulator flux source at X = L, and iii) spatially
non- uniform production of morphogen. In all these TCS versions, the
morphogen flux source is always located at x = 0.
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4.2 Two Component System Model (TCS) and its variants

As stated earlier, based on the location of the modulator source, we consider

three different model variants of TCS, and the details of the source location of both

morphogen and modulator are: i) Both the morphogen and modulator sources are

co-located at X = 0, ii) The morphogen and modulator sources are in opposite

directions, that is, the morphogen source is at X = 0 and modulator source is at

X = L, and iii) The modulator source is spatially distributed and the production is

regulated spatially by the morphogen, and the morphogen source is located at X = 0.

The exact equations of all the TCS variants are as follows:

4.2.1 Modulator source is at X = 0

∂m

∂t
=

∂

∂x

(
Dm(M)

∂m

∂x

)
+Km(M,m) (4.15)

−Dm(M)
∂m

∂x

∣∣∣∣
x=0

= jm(M),
∂m

∂x

∣∣∣∣
x=L

= 0 (4.16)

∂M

∂t
=

∂

∂x

(
DM(m)

∂M

∂x

)
+KM(M,m) (4.17)

−DM(m)
∂M

∂x

∣∣∣∣
x=0

= jM(m),
∂M

∂x

∣∣∣∣
x=L

= 0 (4.18)

where, Km(M,m) and KM(M,m) depend both on the spatial concentration of mor-

phogen and modulator, and account for the removal of morphogen and modulator

form the cell surface. The exact equations of Km(M,m) and KM(M,m) are as fol-

lows:

Km(M,m) = −kδm(ζm + βmM)ν
R
m [m]

KM(M,m) = −kδM(ζM + βMm)ν
R
M [M ]

Here, kδ is the rate of removal (s−1) of a species from the system, and the removal

could be a form of the decay of species, or annihilation by the presence of other species.
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The modulation of transport properties, which is the diffusivity of morphogen and

modulator, is considered as:

Dm(M) = Dm0(1 + αmM)ν
D
m (4.19)

Using Eq.4.19, we obtain the PDE equation below:

∂m

∂t
=

∂

∂x

(
Dm(M)

∂m

∂x

)
+Km(M,m)

= Dm(M)
∂

∂x

(
∂m

∂x

)
+
∂m

∂x

∂

∂x
(Dm(M)) +Km(M,m)

= Dm(M)
∂2m

∂x2
+
∂m

∂x

∂

∂x

(
Dm0(1 + αmM)ν

D
m

)
+Km(M,m)

= Dm(M)
∂2m

∂x2
+
∂m

∂x

(
Dm0ν

D
m(1 + αmM)ν

D
m−1
) ∂

∂x
(1 + αmM) +Km(M,m)

= Dm(M)
∂2m

∂x2
+
∂m

∂x

(
Dm0ν

D
mαm(1 + αmM)ν

D
m−1
) ∂M
∂x

+Km(M,m)

= Dm(M)
∂2m

∂x2
+
(
νDmαmDm0(1 + αmM)ν

D
m−1
) ∂m
∂x

∂M

∂x
+Km(M,m) (4.20)

Eq.4.20 is known as the non-divergence form of TCS, and it is obtained by expanding

the chain rule of the derivative. The modulation of the influx rate of morphogen is

considered as:

jm(M) = jm0
(γmK

n
H + (1− γm)Mn)

Kn
H +Mn

(4.21)

In the parameter space, α, γ and β, used in different regulatory equations, are

treated as different parameters for m and M . We obtain a total of 6 parameters for

the modulation of the biophysical properties of morphogen and modulators, and the

combination gives a total of 729 candidate network topologies consisting of different

types of modulations of biophysical properties. If only the regulation of transport

and reaction properties of morphogen and modulators are considered, we obtain a

total of 81 regulatory motifs, and the PDEs for all the 81 motifs are demonstrated in

APPENDIX C.
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By defining the dimensionless variable ξ = x
L

, where L is the length of the field of

cells, or simply the embryo length, we obtain:

ξ =
x

L

⇒ ∂x = L∂ξ

⇒ ∂x2 = L2∂ξ2

Using the dimensionless quantity ξ, we obtain the dimensionless form of Eq.4.20 is as

given below:

∂m

∂t
= Dm(M)

1

L2

∂2m

∂ξ2
+
(
νDmαmDm0(1 + αmM)ν

D
m−1
) ∂m
∂ξ

∂M

∂ξ
+Km(M,m)

The dimensionless forms of the boundary conditions are as follows:

−Dm(M)
1

L

∂m

∂ξ

∣∣∣∣
ξ=0

= jm(M),
∂m

∂ξ

∣∣∣∣
ξ=1

= 0

Since the biophysical properties of modulators are regulated spatially by the mor-

phogen, we obtain a similar set of equations for modulators:

∂M
∂t

= DM(m) 1
L2

∂2M
∂ξ2

+
(
νDMαMDM0(1 + αMm)ν

D
M−1

)
1
L2

∂m
∂ξ

∂M
∂ξ

+KM(M,m)

B.C : −DM(m) 1
L
∂M
∂ξ

∣∣∣∣
ξ=0

= jM(m), ∂M
∂ξ

∣∣∣∣
ξ=1

= 0 (4.22)

where α, β, γ and ν are modulating parameters and can be tuned to specify the

intensity and the types of regulation.

Initially, we consider linear modulation of reaction rates and transport properties

with ν = [−1 0 1]. Different types of modulation along with the parameters to

achieve that are summarized below: positive, negative, and no regulation cases of

input flux can easily be obtained by choosing the appropriate value of hill coefficient

n and γm in Eq. 4.21. For example,

• Positive Regulation: n > 0 and γm = 0

• Negative Regulation: n > 0 and γm = 1

• No Regulation: n = 0 and γm ≥ 0
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Table 4.1
Regulatory parameters and their units and ranges

Parameter Name Ranges Units

νDm νDm ∈ [−1 0 1] -

νRm νDm ∈ [−1 0 1] -

αm αm ∈ (0,∞] 1/Concentration

ζm ζm =


1 if νRm = 0

1 if νRm = −1

0 if νRm = 1

-

βm βm ∈ (0,∞] 1/Concentration

γm γm ∈ [ 0 1] -

νDM νDm ∈ [−1 0 1] -

νRM νDm ∈ [−1 0 1] -

αM αM ∈ (0,∞] 1/Concentration

ζM ζM =


1 if νRM = 0

1 if νRM = −1

0 if νRM = 1

-

βM βm ∈ (0,∞] 1/Concentration

γM γM ∈ [ 0 1] -

4.2.2 Modulator source is at X = L

While all the regulation types and equations of transport, reaction, and flux modu-

lations are similar to the previous model, the difference introduced here is the location

of the modulator source. More precisely, the modulator source is located at X = L,
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Table 4.2
Regulation: positive, negative and no-regulation

νDm νRm αm ζm βm Dm0(1 + αmM)ν
D
m −kδm[m](ζm + βmM)ν

R
m Reg.

+1 +1 > 0 0 >0 Dm0(1 + αmM) −kδm(βmM)[m] +νe

−1 −1 > 0 1 >0 Dm0(1 + αmM)−1 −kδm(1 + βmM)−1[m] Negative

0 0 ≥ 0 1 − Dm0 −kδm[m] No

νDM νRM αM ζm βM DM0(1 + αMm)ν
D
M −kδM [M ](ζM + βMm)ν

R
M Regulation

+1 +1 > 0 0 > 0 DM0(1 + αMm) −kδM(βMm)[M ] Positive

−1 −1 > 0 1 > 0 DM0(1 + αMm)−1 −kδM(1 + βMm)−1[M ] Negative

0 0 ≥ 0 1 − DM0 −kδM [M ] No

whereas the location of the morphogen source is kept unchanged at X = 0 as seen in

the previous model.

∂m

∂t
=

∂

∂x

(
Dm(M)

∂m

∂x

)
+Km(M,m) (4.23)

−Dm(M)
∂m

∂x

∣∣∣∣
x=0

= jm(M),
∂m

∂x

∣∣∣∣
x=L

= 0 (4.24)

∂M

∂t
=

∂

∂x

(
DM(m)

∂M

∂x

)
+KM(M,m) (4.25)

∂M

∂x

∣∣∣∣
x=0

= 0, DM(m)
∂M

∂x

∣∣∣∣
x=L

= jM(m), (4.26)

4.2.3 Modulator source is spatially distributed, and dependent on mor-

phogen concentration

In this category of the TCS model, we consider both a reflected boundary for

the modulators, and a spatially distributed source of modulators. The Production of

modulators from the source in any position along the spatial domain is modulated by
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the level of morphogen present at that location. We consider the positive, negative,

and no-regulation cases for the production of modulators:

∂m

∂t
=

∂

∂x

(
Dm(M)

∂m

∂x

)
+Km(M,m) (4.27)

−Dm(M)
∂m

∂x

∣∣∣∣
x=0

= jm(M),
∂m

∂x

∣∣∣∣
x=L

= 0 (4.28)

∂M

∂t
=

∂

∂x

(
DM(m)

∂M

∂x

)
+KM(M,m) + φM(m(x)) (4.29)

∂M

∂x

∣∣∣∣
x=0

= 0,
∂M

∂x

∣∣∣∣
x=L

= 0, (4.30)

where φM(m(X)) is the source term of the modulator, and depends on the concentra-

tion of morphogen present in that location. Regulation of production is implemented

as follows:

φM(m(X)) = φM0
(γmK

n
H + (1− γm)mn)

Kn
H +mn

(4.31)

4.3 Methods

4.3.1 Numerical Challenges

The numerical approximation of TCS involves a number of challenges to resolve.

First, stiffness becomes a major challenge that potentially arises through spatial mod-

ulation of the time scale, and widely varying eigenvalues of the Jacobian Matrix. Sec-

ondly, the amount of data to be generated, and the time required to generate that

data, are major issues that need to be taken care of. Another major challenge is

the accuracy of the numerically approximated value. Further explanation of all these

challenges are provided below.

Stiffness

The stiffness of Ordinary Differential Equation (ODE) System is not precisely de-

fined. Instead, a number of different observations have been proposed to differentiate
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between a stiff and non-stiff system. Even a stable and well-posed system may behave

stiff when the system is approximated using a discrete approach [188]. From a compu-

tational point of view, in [189], stiffness is defined as ”Stiff equations are problems for

which explicit methods don’t work”. Mathematically, the aforesaid definition doesnt

identify any standard notion of stiffness for the system. In another effort [190], the

non-normality of the coefficient matrix is attributed to the stiffness of the system.

However, there are systems where the coefficient matrix is symmetric and, hence,

falls under the notion of normality of matrix [188]. A few of the observations that

are widely used to differentiate stiff and non-tiff systems are as follows:

1. A system could be stiff because of the presence of widely varying time-scales in

the system.

2. A stiff system should have no unstable component (that is, all eigenvalues have

negative real parts), and one of the stable components should be largely stable

(meaning, a very large negative real part). Also, the solution will vary slowly

with respect to the most negative real part of eigenvalues [191].

3. The stiffness of the system can be quantified using the stiffness ratio (S), where

S is defined as the ratio between the magnitude of largest and smallest negative

real part of eigenvalues.

In a TCS simulation, both the varying time-scales and separation of eigenvalues

can be used to quantify the stiffness, as the spatial regulation results in widely varying

time-scales and system dynamics of TCS.

Time constraints on data generation

TCS considers screening millions of networks for each of the of performance objec-

tives, and in this research we considered scale-invariance and robustness as our objec-

tives of interest. Scale-invariance requires at least two length scales to be considered,

and the robustness analysis requires two different production rates of morphogens to
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be considered and studied. The parameter grid we used consists of about 15 million

parameter vectors, where each vector contains a total of 18 different parameters. So,

for each TCS model type there are about 50 million simulations needed, and sim-

ulations for all the three versions of TCS model sum up to about 200 millions of

realizations of the model. Furthermore, as we also considered other parameter space

by fixing the morphogen removal rate to a fixed value and expand on other regulator

parameters, we obtain another parameter space of about 13 million points.

This requires enormous computational resources which can be very costly due to

licensing issues, and also because of simulation failures often encountered due to the

solvers limitation in treating a highly stiff system.

4.3.2 Discretization of TCS

Divergence form

In the divergence or conservative form of PDE systems, the derivative of spatially

varying parameters does not appear in the equation [115]. In accordance with this

definition, the divergence form of TCS could be written for morphogen dynamics as

follows:

∂m

∂t
=

∂

∂x

(
Dm(M)

∂m

∂x

)
+Km(M,m) (4.32)

As seen here, the coefficient Dm(M) is spatially varying and its derivative doesnt

appear in Eq.4.32. This form of PDE is also termed as the conservative-law form of
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the system. In the divergence form, central differencing scheme [125] is applied as

follows:

∂m

∂t
=

∂

∂x

(
Dm(M)

∂m

∂x

)
+Km(M,m)

=
1

∆x

[(
Dm(M)

∂m

∂x

)
i+1/2

−
(
Dm(M)

∂m

∂x

)
i−1/2

]
+Km(Mi,mi)

=
1

∆x

[(
Dm(M)i+1/2

)
(
∂m

∂x
)i+1/2 −

(
Dm(M)i−1/2

)
(
∂m

∂x
)i−1/2

]
+Km(Mi,mi)

=
1

∆x

[(
Dm(M)i+1/2

) 1

∆x
(mi+1 −m1)−

(
Dm(M)i−1/2

) 1

∆x
(mi −mi−1)

]
+Km(Mi,mi)

=
1

∆x2

[(
Dm(M)i+1/2

)
(mi+1 −m1)−

(
Dm(M)i−1/2

)
(mi −mi−1)

]
+Km(Mi,mi)

where D(M)i+1/2 and D(M)i−1/2 are the diffusion coefficients approximated at the

mid point of (i + 1, i) and the midpoint of (i, i − 1), respectively, according to the

formula given below:

D(M)i+1/2 =
D(Mi+1) +D(Mi)

2

D(M)i−1/2 =
D(Mi) +D(Mi−1)

2

At the left boundary (ξ = 0, meshpoint 1), influx of morphogen is discretized as

follows:

−Dm(M)
∂m

∂x

∣∣∣∣
x=0

= jm(M)

⇒ ∂m

∂x
= −L jn(M)

Dm(M)

⇒ 1

2∆ξ
(mi+1 −mi−1) = −L jn(M)

Dm(M)

Non-divergence form

In the non-divergence form, the chain rule is applied to expand the derivative as

shown in Eq. 4.20. More precisely, derivative is applied on the spatially dependent
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parameters [115]. The PDEs obtained using non-divergence method are again dis-

cretized with standard central difference scheme along X direction on a mesh of N

grid points, and the resulting discretized PDE for morphogen becomes:

∂m

∂t
= Dm(M)

1

L2

∂2m

∂ξ2
+
(
ναDm0(1 + αM)ν−1

) 1

L2

∂m

∂ξ

∂M

∂ξ
+Km(M,m) (4.33)

After discretization of Eq. 4.33 using central difference scheme, we obtain:

fi =
∂mi

∂t
=
Dm(Mi)

L2

(
mi+1 − 2mi +mi−1

(∆ξ)2

)
+

(
ναDm0(1 + αMi)

ν−1

L2

)(
mi+1 −mi−1

2∆ξ

)(
Mi+1 −Mi−1

2∆ξ

)
+ Km(Mi,mi) (4.34)

where 0 ≤ i ≤ N , ∆ξ = 1
N

. Boundary conditions are imposed at i = 0 and i = N−1.

At left boundary (i = 0), Eq.4.34 becomes:

f0 =
Dm(M0)

L2

(
m1 − 2m0 +m−1

(∆ξ)2

)
+

(
ναDm0(1 + αM0)ν−1

L2

)(
m1 −m−1

2∆ξ

)(
M1 −M−1

2∆ξ

)
+ Km(M0,m0) (4.35)

where m−1 is the fictitious node, and needs to be replaced by nodes within the grid.

To remove the fictitious node, boundary conditions is used, and by discretizing the

boundary conditions at the left boundary ξ = 0, we obtain:

−Dm(M0)
1

L

(
m1 −m−1

2∆ξ

)
= jm(M0)

⇒ m−1 = m1 + 2∆ξL
jm(M0)

Dm(M0)
(4.36)

By plugging in the value of fictitious node m−1, final form of f0 comes out as:

f0 =
Dm(M0)

(∆ξ)2L2
(2m1 − 2m0) +

2

L(∆ξ)
jm(M)

+ ναDm0(1 + αM0)ν−1 jm(M0)

Dm(M0)

jM(m0)

DM(m0)

+ Km(M0,m0) (4.37)
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At the other boundary at ξ = 1, the equation becomes:

fN =
Dm(MN)

(∆ξ)2L2
(2mN−1 − 2mN) +Km(MN ,mN) (4.38)

Similarly, we can obtain the discretized version of modulator equation by applying

central difference scheme [125] as elaborated here in Eq.4.34 for morphogen.

Since the exact analytical solution of TCS is intractable because of nonlinear

coupling between species, we rely primarily on the numerical method. To numerically

approximate TCS, we used CVODE [175], a solver for the initial value ODEproblem

available under the SUNDIAL package [192]. CVODE is suitable for both stiff and

non-stiff problems of the explicit form
dm

dt
= f(t,m).

4.3.3 TCS implementation using CVODE

CVODE [175] is a multistep and variable order solver, which has a wide range of

formulas available for different types of problems. For example for non-stiff formula,

CVODE includes the Adams-Moultan method, whereas for stiff problems, CVODE

provides the Backward Differentiation Formula (BDF). In addition, CVODE also

provides different orders for each of its solver methods. The CVODE package is

written in C language, and a comprehensive overview of CVODE is available in [192].

The PDE form of TCS is discretized using the Finite Difference Scheme (FDM),

which translates the problem from a boundary value elliptical PDE system to an

initial value problem of Ordinary Differential Equations (ODEs) of the form:

m
′
(ξ(t)) = f(t,m(ξ(t))),m(ξ(t0)) = m0 (4.39)

where ξ represents the spatial position of the domain.

m
′
(t) = f(t,m(t)),m(t0) = m0 (4.40)

A general form of the one-step method of Eq.4.40 is as follows:

mi+1 −mi

∆t
= Z(f, ti,mi,mi+1,∆t)

mi+1 = mi + ∆tZ(f, ti,mi,mi+1,∆t)



115

where ∆t = ti+1 − ti. Any numerical method that involves the update terms on

the left side and the function evaluation on the right is treated as implicit, and to

numerically solve such an implicit method, Newton’s method [193] is often applied to

determine the value at mi+1. The Backward Differentiation Formula [194] is further

elaborated in subsequent section of this chapter.

Backward Differentiation Formula

The Backward Differentiation Formula (BDF) is an implicit, multistep solver, and

is one of the most frequently used numerical approaches to approximate the solution

of stiff ODEs [195]. In BDF, the evaluation of Z depends on both mi and previous

values such as mi−1; a nonlinear equation is solved to determine mi+1. The BDF

formula of order p has a general form [125,130,175,195]:

mn =

p∑
i=1

αn,imn−i + hβn,0mn
′

=

p∑
i=1

αn,imn−i + hβn,0f(tn,mn), mn
′
= f(tn, yn) (4.41)

where α and β are the coefficients, and they solely depend on the order q of BDF

method. Here, h is the stepsize and h = tn − tn−1, and mn = m(tn) is the solution.

Depending on how the stepsize h is chosen, BDF methods are subdivided into

different categories: i) fixed-step BDF, ii) variable-step BDF, iii) fixed-leading coeffi-

cient (FLC) BDF. In CVODE [130], the fixed-leading coefficient (FLC) form of BDF

is implemented. In this approach, coefficients α and β are no longer dependent only

on the order p of BDF method. Instead, they rely on the stepsize h as well. The

FLC form of BDF considers both fixed-step and variable-step version of BDF while

evaluating the coefficients α, β. It introduces the fixed-step value of βn,0 ≡ β0 as

follows:

β0 =
1∑p

j=1 j
−1
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FLC also requires an additional term, and the Eq.4.41 for FLC form becomes:

mn =

p∑
i=1

αn,imn−i + hβ0mn
′
+ hβn,1mn−1

′

=

p∑
i=1

αn,imn−i + hβn,0f(tn,mn), mn
′
= f(tn, yn) (4.42)

The FLC form BDF as shown in Eq. 4.42 is more stable than the fixed-step BDF,

and it is more efficient than variable-step BDF due its ability to reuse the Newton

iteration matrix [125, 130, 175]. The FLC version of BDF is at the core of CVODE

solver, making CVODE a very stable solver for stiff-system analysis [130,175,192].

4.3.4 Comparison of the different mumerical approximation methods

The accuracy of CVODE TCS implementation is compared with COMSOL data.

Here, two versions of CVODE code are used–i) Expanded chain-rule (EC), or the

non-divergence form, and ii) The Divergence (DIV) form of TCS implementation.

For comparison, three different regulation types are considered: i) Positive regulation

of reaction and diffusion properties, ii) Negative regulation of reaction and diffusion

properties, iii) No regulation.

To simplify further, only the diffusivity of morphogens and modulators are differ-

ent during the comparison, whereas the other regulatory parameters are similar. The

intrinsic diffusion coefficient of morphogen and modulator (Dmo, DM0 respectively) is

varied as 0.01, 0.1, 1 µm2s−1. So, a total of 9 different combinations simulated using

CVODE is compared against COMSOL Multiphysics implementation of TCS.

For the positive regulation of diffusivity, both the divergence form and the non-

divergence form are in good agreement in terms of accuracy. However, in a few cases,

the divergence form exhibits better proximity towards COMSOL data. For the neg-

ative regulation, it is found that the species distribution looks similar except near

the origin, where the CVODE-based approach fails to attain the value obtained using

COMSOL. This scenario is found mainly in cases where the distribution experiences

an abrupt decay in regions right next to the morphogen source and all the concentra-
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Fig. 4.3. A comparison of different positive regulation methods: Here, Dm0

is varied in different rows, and DM0 is varied in columns. For example,
in Row1: Dm0 = [0.01] and DM0 = [0.01 0.1 1]. In most cases, the
concentration profile obtained by different numerical approaches matches
almost perfectly with comsol data. But, in a few cases, the concentration
profile has significant differences as seen in the modulator data for Dm0 =
0.01 and DM0 = 0.1, 1. For the morphogen data, dissimilarity is visible
for Dm0 = 0.1, 1 and DM0 = 0.01.
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Fig. 4.4. A comparison of different negative regulation methods: For neg-
ative regulation of biophysical properties (diffusion, reaction), simulated
data looks similar in most cases except where the concentration value
varies near the origin. As seen here, if concentration is high near the
origin, but close to zero at other spatial locations, dissimilarities arise in
different numerical approaches. However, if the species concentration falls
gradually, morphogen and modulator distribution look identical. Here,
Dm0 is varied in different rows and DM0 is varied in columns. For exam-
ple, in Row1: Dm0 = [0.01] and DM0 = [0.01 0.1 1].
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tion is concentrated near the source. One possible reason for this dissimilarity could

be the number of mesh points (500) used in this comparison. Later, we used a mesh

size of 10,000 points and found that the CVODE implementation reaches 1300 nM

near the origin (X = 0), which still falls behind the 2000 nM achieved by COMSOL

(data not shown). From the patterning point of view, any concentration that is con-

centrated near the origin is not biologically relevant for the patterning system and has

been filtered out during post-processing. For other distributions, such as the last row

of Fig.4.4, the CVODE methods are in agreement with COMSOL implementation.

One of the challenges that the screening of TCS imposes is the time required to

screen all possible parameter sets. For the screening strategy to be efficient, it should

be able to produce accurate outcomes while reducing the cost of implementation. To

optimize between accuracy and simulation time, we screened different mesh sizes and

observed how the Root Mean-Square Error (RMSE) relates with a different mesh

size. It is worthwhile to note that discretization size directly decides the number of

ODEs to be solved at every iteration, a requirement that often burdens the solver

speed [192]. It is found from analysis that a mesh size of 300 intervals would be a

good number to better approximate the TCS while reducing computational time, and

the details are elaborated later and is shown in Fig.4.5

Mesh variation and error comparison

To identify an efficient and accurate approach for TCS implementation, the mesh

size is varied to measure the accuracy and the time needed to simulate the system.

Accuracy measures consider two different forms of errors i) the absolute error, and ii)

the Root Means- Square Error(RMSE).

The absolute error is the absolute difference of the reference and sample data, and

only the maximum difference is considered to quantify the error:

EABS = max
mi∈M,i∈1...N

|mi −ms
i |



120

Table 4.3
Simulation Time and Failures for mesh size 301

Regulation Grid Pts
Time

SIV Failures RBST Failures

L1 L2 φ1 φ2

EC D EC D EC D EC D EC D

POS 1000 22m47s 26m27s 0 4 0 0 0 4 2 5

NEG 1000 4m14s 3m54s 0 0 13 (NaN) 0 0 0 0 0

NO 1000 2m48s 3m10s 0 0 0 0 0 0 0 0

where mi is the simulated value at spatial point i,and ms
i is the reference value at

ith spatial point. Out of all the values, only the absolute value of the maximum

difference is considered. As mentioned earlier, TCS implementation by COMSOL

Multiphysics is used as the reference to calculate the maximum absolute error of the

CVODE implementation of TCS.

The Root mean square error definition is as follows:

ERMSE =

√√√√ 1

N

N∑
i=1

(mi −ms
i )

where, N is the total number of mesh points, and is varied over a wide range.

Specifically, to compare the accuracy and computational cost, N is varied from 51 to

1001 mesh points.

We consider only positive regulation cases of transport and reaction properties

of the morphogen and modulator to evaluate the relation between the errors and

mesh size variation. A total of nine different combinations of intrinsic diffusivity of

morphogen (Dm0) and modulator (DM0) ) is used to generate the simulated data. In

Fig.4.5, the intrinsic diffusion coefficients of the morphogen and modulator are taken

as 0.1 and 0.01 µm2

s
respectively. All other regulatory parameters were equal for the

morphogen and modulator in Fig.4.5.
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Fig. 4.5. The quantification of absolute and root means square error for
different mesh size: Both errors are high when mesh resolution is coarse,
which is expected due to the discretization effect. As the number of mesh
points (N) increase, the error reduces drastically and, finally, reaches a
value that remains steady even at larger mesh point increases. Expanded
chain (EC) and divergence (DIV) forms demonstrate similar mesh size vs
error plots. However, close comparison of red and green lines reveals that
for a number of mesh sizes (smaller mesh size),the expanded chain rule
(red) demonstrates better accuracy than the divergence (green line) form
of TCS implementation
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Comparisons of the accuracy and errors using different approaches (EC and DIV)

show that they perform almost equally well. It is shown by comparing both the

absolute error and root mean square error against the different mesh size that the DIV

and EC forms of implementation demonstrate similar trends of their respective error

curves. However, the approaches differ in simulation time and simulation failures.

For instance, the EC version performs better when the entire regulation is positive,

whereas the DIV version works better for negative regulation (mesh 301 case). The

EC form of implementation experiences more simulation failures for mesh size 301. As

discovered after a number of trials, the DIV version generates fewer failures for a given

simulation setup than the EC implementation. Furthermore, if the two approaches

are compared against the time taken to simulate 1000 grid points, it becomes evident

that the EC version requires less time than the DIV version. A detailed comparison

between the performance of EC and DIV is added in APPENDIX D.

To select the TCS implementation approach between EC and DIV, we assigned

more importance to the number of simulations failures. Because the DIV version

tends to generate fewer failures, we prefer to use it to reduce simulation failures.

Therefore, we chose the DIV version in our research to generate data for the analysis

of different versions of TCS.

4.4 Data analysis

4.4.1 Criteria for steady state

A multiple point based definition of steady state is considered to differentiate be-

tween steady state and transient values along the spatial domain. The steady state

concentration of morphogens and modulators is collected after TCS has been simu-

lated long enough. From trial data, it was found that the maximum TSS equivalent

to 380 hours is a good approximation for obtaining steady state data. In order to

investigate whether the system dynamics reach steady state within the first few hours

of simulation, we selected spatial positions ξ = 0, 0.2, 0.4, 0.6, 0.8, 1, which were later
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used to check if steady state could be reached within the first 10 hrs of TSS in all

those spatial locations. Specifically, the data collected at around 10 hours (mT10) and

compared with the last time point (380 hrs) data (mT380) to see if the data mT10 is

within the 5% tolerance of mT380 data.

Such a multiple-point based steady state definition is used in the expansion-

repression model of scale invariance [174]. In this work, spatial positions to evaluate

steady state at 10hrs are subdivided into two groups: i) boundary points, and ii) in-

ternal points. For steady state within the first 10 hours, at least one point from each

group, or any point among the internal points, should reach 95% of the steady state

concentration, a threshold we set considering the timing of embryonic development

both in vertebrates and invertebrates. In vertebrates, such as Zebrafish and Xenopus,

gastrulation begins at about 4.5 hpf and 10 hpf, and the limit of 10 hrs here is chosen

considering these developmental time windows.

4.4.2 Physiologically relevant morphogen distribution

Not all morphogen distributions appear appropriate, and the pools of inappropri-

ate Morphogen distributions are separated by assigning several screening criteria on

the normalized morphogen distribution. Normalization of morphogen distribution is

done using the reference case (Lref = 300µm for scale-invariance). Distributions of

morphogen for the perturbed case (for scale-invariance, length is changed, and for

robustness, flux is changed) is normalized considering the maximum morphogen con-

centration of the reference case. Normalized distribution is later used to investigate

whether the network motif is able to achieve a specific performance objective.

A number of criteria are used to identify the appropriate morphogen distribution:

1. Normalized concentration at the midpoint (ξ = 0.5) should be ≥ 10% of the

maximum normalized morphogen concentration of the respective system. This

removes cases where the morphogen distribution falls sharply near the mor-

phogen source.
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2. In general, morphogen concentration should be greater than 50 pM any con-

centration less than that is treated as insignificant strength, or the noise of the

system.

3. For a morphogen distribution to be appropriate, it is imperative that the strength

of the morphogen be gradually reduced as it moves away from source. To apply

this, the normalized mξ=1 value is constrained as mξ=1 < mξ=0.5, and, also, it is

ensured that mξ=1 < 0.25mξ=1. This criterion also ensures the removal of uni-

form morphogen distributions, as well as the cases with high morphogen levels

near the sink region.

4. The system should be at steady state as per the definition considered for the

system.

The data generation steps and post-processing of the TCS model analysis is sum-

marized in Fig.4.6. Data generation was done using CVODE [130, 192], whereas the

post-processing is done using Matlab R14 and statistical software package R [196].

After the initial screening, we obtain a set of networks that can satisfy the scale

invariance or robustness criteria as defined. A new parameter grid is generated by

changing the non-zero values values of regulatory parameters to zeros a change that

represents the removal of an edge from the original regulatory motif as demonstrated

in Fig.4.7.

4.5 Results and Discussion

Not all simulated data is biologically relevant, since morphogen distribution may

be concentrated near the source, or the concentration may appear ubiquitous and

doesnt ensure an adequate difference among neighboring regions. Such distributions

are inappropriate for a gradient based mechanism [174]. To differentiate between

good and bad data, we designed a set of criteria and examined each of the candidate

distributions to test their biological relevance. Our analysis found that regardless of
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Fig. 4.6. Data generation and post-processing in TCS: All the steps to
generate concentration data for the morphogens and modulators, and sub-
sequent steps to differentiate between favorable networks and unfavorable
networks are shown here. The unperturbed and perturbed lengths of the
system were considered at 300µm and 600µm respectively, and for mor-
phogen flux this is 0.01 and 0.02 respectively. The favorable networks
were further considered as the input data sets for parsimonious screening.
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Fig. 4.7. Screening for parsimonious regulatory motifs: Parameters related
to transport, reaction, and production regulation were used to generate a
new parameter grid for parsimonious screening. In this new grid, param-
eters in blue remain the same for all the combinations considered. Each
parameter grid differs only with the values of regulatory parameters asso-
ciated with diffusion, reaction, and production modulation. After simu-
lating the system using CVODE, it is filtered again with scale-invariance
(SIV) / robustness (RBST) criteria. Finally, the successful candidate net-
work with minimal edges (edge 3 as shown here) is finally chosen.
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Table 4.4
Successful network motifs for different versions of TCS model: In this
table, we captured the statistics of TCS model 1 and TCS model 2.

TCS
Scale-invariance Robustness

≤ Tss > Tss Total ≤ Tss > Tss Total

Modulator source at X = L 0 2037 2037 2 80 82

Modulator source at X = 0 73 21 94 327 14 351

Table 4.5
Successful network motifs for two versions of TCS model: In this table,
we capture the statistics of the two model versions of TCS we consider–
i) Modulator source is at X = 0, ii) Modulator source is at X = L

TCS
Scale-invariance Robustness

≤ Tss > Tss Total ≤ Tss > Tss Total

X = L 0 2037 2037 2 80 82

X = 0 73 21 94 327 24 351

the TCS model variants, only a small pool of of data (about 2%) pass the filter test

designed to identify biologically acceptable distributions. A similarly low percentage

of biologically acceptable distribution was observed in previous screenings conducted

for scale-invariance [174].

4.5.1 Comparison of screening statistics between model 1 and model 2

Analysis shows that when modulator source is at X = L, TCS works well to

satisfy the SIV criteria. This is evident from the comparison of Fig.4.8 and Fig.4.9.

As seen from the screening statistics shown in Table 4.5 out of 11.9 million possible

network motifs screened, model 1 (Modulator source at X = 0) achieved robustness

for about 351 parameter sets, whereas only 82 sets are acceptable for model 2 of
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9454617 521008 26973673 219454617 521008 21739454617 521008 26973673 21
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Scale-invariance

11872555

Fig. 4.8. A Venn Diagram for screening statistics of TCS with modula-
tor source at X = 0. Only a small portion of the total parameter vectors
generate biologically acceptable morphogen distributions for both the per-
turbed and unperturbed cases. a) Screening statistics for robustness shows
that only 351 data sets out of 11.9 million possible cases satisfy the ro-
bustness (RBST) criteria as designed. As seen from the Venn Diagram, 24
sets fail to reach steady state within the first 6 hours of the dynamics. It
is worthwhile to note that simulation failures due to CVODE convergence
issues were very low. b) Similar to part a, however, the data shown here
is designed for scale-invariance (SIV) screening. Compared to the robust-
ness screening data, SIV data has a lower number of successful parameter
sets that satisfy the SIV performance objective. However, SIV screen-
ing shows more biologically acceptable distributions than the RBST case.
Both the RBST and SIV analysis are conducted on 3 points (ξ = 0.2,
ξ = 0.4, ξ = 0.6,) along the spatial domain.
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Fig. 4.9. A Venn Diagram for screening statistics of TCS with modulator
source at X = L. The simulation had a limited number of CVODE
failures. For SIV analysis, the data was generated for two different length
scales: L = 300µm and L = 600µm. a) Screening statistics for robustness
data shows that only 82 data sets satisfy the robustness (RBST) criteria.
Most of the successful cases dont reach steady state within the first 6
hours. b) Similar to part a, however the data shown here is for SIV
screening. As seen here, a number of cases demonstrate SIV, but none
reach steady state within the first 6 hours. Here, RBST and SIV analysis
are conducted on a 3 points (ξ = 0.2, ξ = 0.4, ξ = 0.6,) criteria along the
spatial domain.
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Fig. 4.10. Regulatory motifs for successful RBST cases with modulator
source at X = 0. Diffusion, reaction, and production of morphogen and
modulator can be regulated positively, negatively, or there may be no
regulation as well. This generates a total of 729 theoretically possible
regulatory motifs for each TCS variant. a) Histogram analysis of successful
cases that reach steady state within first 6 hrs show that most motifs fail
to satisfy SIV criteria. As seen from the frequency of occurrence data, a
few of the acceptable motifs appear more frequently than others. b) The
most frequently occurring motifs that achieve SIV are shown here with
their corresponding morphogen and modulator distribution. For all plots,
logarithmic concentrations of morphogens and modulators are plotted in
the left and right sides of the Y-axis respectively. The distribution for the
unperturbed system is in red, and circular markers and unbroken lines
are used for morphogen and modulators respectively. System length was
L = 300µm for this analysis.
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c)a) b)

Fig. 4.11. Parameter distribution for scaling robustness when the mod-
ulator and morphogen sources are both at the left boundary (X = 0):
Each morphogen and modulator regulatory parameter is compared here,
and it is found that in most cases, the system requires positive morphogen
regulation removal (part b, 1 stands for positive regulation). This phe-
nomenon is later observed for scale-invariance cases of TCS when the
modulator source is at X = L. Modulator production rate is primarily
suppressed by morphogen among all the successful cases.
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Fig. 4.12. Regulatory motifs for successful SIV cases for modulator source
at X = 0: Figure details and colors codes are similar to Fig.4.10. For
SIV, L = 300µm was used for the unperturbed system, whereas for the
perturbed system, the system length was doubled (2L).
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Fig. 4.13. Regulatory motifs for successful SIV cases for modulator source
at X = L: D,R,P represents the diffusion, reaction and production of each
species. a) Each green circle denotes the occurrence of a specific motif.
As we clearly see here, several motifs appear with an equal number of
occurrences, whereas others have few appearances. Out of 75 regulatory
motifs we only considered motifs that have more than 2% appearance.
b) Regulatory motifs appearing at least 64 (2%) times have been plotted
here together with morphogen and modulator concentrations. Concentra-
tion plots are all drawn in log scale, and corresponding regulatory motifs
are shown on top of each concentration plot. Positive, negative, and no
regulation of biophysical properties are represented using arrow-head, flat
head, and no-line respectively. The Y- axis at the left is for morphogen
concentration and modulator concentration is plotted in the left Y-axis
with a range of [101 10−5]nM. In most of the motifs, modulator concen-
tration is primarily restricted near the source at X = L. Moreover, in all
these plots, modulator concentration and the active domain for modula-
tion decrease as the system length is increased from L to 2L.
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Fig. 4.14. Network motifs that scale when the modulator source is at
X = L: This is a continuation Fig.4.13. Each motif is presented with its
frequency of occurrence in the list of all successful cases.
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Fig. 4.15. Regulatory motifs for successful RBST cases for modulator
sources at X = L. Color codes are similar to the codes in Fig.4.13. How-
ever, in the RBST analysis flux φ is the unperturbed case and 2φ is the
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Fig. 4.16. Parsimonious analysis of motifs for morphogen source at X = L.
Parsimonious screening generates 16 regulatory motifs from the 75 motifs
we previously obtained. Details of the parsimonious screening are outlined
in Fig. 4.7. There are 3 regulatory motifs that are most frequent out of
all 2037 successful cases. Here, flat-head means a negative regulation,
no-edge refers to no regulation, and an arrow-head demonstrates positive
regulation.
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TCS implementation. However, we considered two more data sets with 9.3 and 13.6

million parameters respectively, and it was found in both cases that model 1 does not

perform better than model 2 in mitigating the fluctuation of morphogen production.

This is evident from Table 4.6 and Table 4.7 where it is seen that successful cases

for robustness in TCS model 1 is less than that of TCS 2. However, among all the

models, TCS model 3 works best to achieve robustness, and is evident from the fact

that the number of successful cases in TCS model 3 is significantly higher than the

other two versions of TCS.

For scale-invariance, however, we find a totally different outcome– the TCS version

2 model (modulator is located at X = L) works considerably well in satisfying the

scale-invariance criteria than the other TCS version (modulator source is at X = 0).

As the table data shows, only 94 network motifs satisfy the SIV criteria we defined,

whereas about 2037 network motifs are acceptable for TCS model version 2. In

another simulation of 9.3 million parameter vectors, the ability of model 2 to perform

well in achieving scale-invariance is reiterated, and is seen from Table 4.6. However, in

the third data set that contains 13.6 million parameter vectors, TCS model 2 does not

perform well for scale-invariance when screened using a three point criteria. However,

in the third parameter space the intrinsic decay rate constant of both morphogen and

modulator were not varied over a wider range as compared to the other two data

sets, and hence, a number of physiologically relevant values of the intrinsic decay

coefficient may have been omitted in the third data set.

In the screen, we did not obtain many cases where the steady state is achieved

within the first ten hours (or, 6 hours as used in one parameter space) of the dynamics,

and this is captured in the column titled as SS10. For instance, TCS model 1 and TCS

model 2 do not have many successful cases both for robustness and scale-invariance

that reach steady state within first 10 hours, as evident from Table 4.5. The three

data sets we considered here vary in regards to the intrinsic value of kinetic rate

constant, and a few other regulatory parameters that affect the dynamics also differ

within these data sets. So, steady state statistics within SS10 may vary. However, in
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general, TCS not reaching steady state within the first 10 hours does not affect our

conclusion much, since a faster dynamic that reaches steady state within 10 hours is

obtainable by increasing the parameter values.

Furthermore, our screening of the two parameter spaces with a size of 9.3 and 13.6

million parameter vectors reveals that TCS model 3 is by far the best model to achieve

robustness. In TCS model 3, the modulators produce from a spatially distributed

source, and the source of morphogen is located at X = 0. Besides all the possible

topologies of mutual regulation between morphogen and modulator, TCS model 3

also implements the previously proposed expander-repressor [10] mechanism. As seen

from Table 4.6 and 4.6, we obtained a large number of cases that satisfied robustness,

and among all the successful cases, a large portion achieved steady state value within

the stipulated first 10 hours (SS10) of dynamics. However, Model 3 performs poorly

for scale-invariance objectives, as evident from the screened data. This is unexpected,

as TCS model 3 also includes previously established expansion-repressor mechanisms

known for achieving scale-invariance [10, 11, 37], and it is elaborated further in later

sections.

The different regulation types for all biophysical properties generates a total of

729 possible network motifs and our simulated data demonstrates that most of the

motifs failed to satisfy the robustness defined by the criteria. A few sample motifs,

along with their corresponding frequency, is shown in Fig. 4.10B. As observed here, if

the production and transport rate of the modulator is negatively regulated, positive

regulation of the clearance rate of modulators, together with a positive regulation

of either the production or diffusivity of modulators, ensures robust signaling. This

is seen from Fig. 4.10B, and in other example networks with lower frequencies of

appearance (data not shown). Out of 327 successful motifs, about 107 motifs fall

among these classes of networks, and all are examples of active modulation where

morphogen and modulators are directly linked to each other. Interestingly, among

the acceptable network motifs with higher frequencies, the production of modulators
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is always negatively regulated by morphogens. So, near the source where morphogen

signaling is high, modulator production is downregulated.

As seen in Fig. 4.10B, the clearance of morphogens is upregulated by the mod-

ulators, and this ensures rapid removal of morphogens from the surface once the

production of morphogen is doubled in the system. In response to such modulation

on morphogen activity, morphogens negatively regulate modulator production, and

also, morphogens either slows down the transport of modulators, or the clearance

of modulator is slowed down. Once the transports are slowed down, the modulator

travels slow and maintains stronger presence near the source region of morphogens,

which eventually counter the increased level of morphogens in perturbed case (intrin-

sic value of morphogen flux becomes 2φ) by positively regulating the clearance rate of

morphogen. For the negative regulation of modulator clearance, the TCS model may

work differently. That is, the diffusivity of modulators remains unchanged, but as

their rate of clearance is slowed down, more modulators are available on the surface

at any given time to counter the larger production of morphogens (in perturbed case,

flux becomes 2φ) by enhancing the clearance of morphogens form the surface.

Furthermore, we conducted a histogram analysis to see if morphogens or modu-

lators have any bias towards a specific regulation type for any of their biophysical

properties. To our surprise, we observed bias among specific regulation types. More

specifically, it was found that among all the network motifs that satisfy the robust-

ness criteria negatively regulated clearance of morphogen is the most prevalent, and

is clearly seen from Fig. 4.11b. For modulators, the negative regulation of production

rate is significantly prevalent as evident from Fig.4.11c. The regulation of diffusivity

of both morphogens and modulators incorporates all types of modulations as evident

from Fig. 4.11a.
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4.5.2 Network motifs that achieve scale-invariance in TCS model 2

In the first few network motifs, as shown in Fig.4.13, the transport and reaction

properties of modulators are all regulated negatively (specifically, Fig.4.13 b,c,d,e,f),

and any combination of morphogen biophysical property regulation could achieve

scale-invariance. For example, given that the transport and reaction properties of

modulators are negatively regulated, a positive regulation of transport and reaction

properties can achieve scale-invariance, and is evident in Fig.4.13. Also, we observe a

very high frequency appearance of such regulatory motifs. This means that when the

system length is increased, the removal rate of modulators from the cellular surface

and the diffusivity of modulators should be slowed down. Because the diffusivity

of morphogen is slowed down, modulators diffuse slowly once it is secreted from its

source at X = L. As a result, upon secretion morphogens encounter fewer of modu-

lators near its source region, and positive regulation by the low modulators increases

the diffusivity of morphogens, allowing morphogens to travel a longer distance. As

the modulator increases the clearance rate of morphogens, more morphogens may

be cleared out near the morphogen source regions, imitating an enhanced clearance

of morphogen near the source. This can potentially contribute to stabilizing the

morphogen gradient near the source region, and may be stabilizing the morphogen

amplitude to achieve scaling near the source region.

A more simplified motif involves negative regulation of the removal rate of mod-

ulators and positive regulation of the removal rate of morphogens. As the removal

rate of the modulator is slowed down, it is expected that more modulators will be on

the surface to positively upregulate the clearance of morphogens. That is, to achieve

scale-invariance, higher numbers of modulators are expected on the cellular surface

for a faster clearance of morphogens from the surface. More candidate network motifs

require different strategies to scale the length variation, and a few of those cases are

listed in Fig. 4.14. For instance, in a number of candidate cases, both diffusivity and

the clearance of morphogens should happen faster because of the modulation and,
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a b c

Fig. 4.17. Sample distribution of robustness analysis for TCS model 3:
In this model, modulators are secreted from a spatially distributed source
and the rate of secretion is regulatedby morphogen spatially. In all the
plots, morphogen distributions are presented as continuous lines, whereas
the broken lines were used to denote modulator concentrations. The color
code was used to differentiate between perturbed (black) and unperturbed
(red) cases. a) A high concentration of modulators near the source of mor-
phogen could cause a robust morphogen distribution. b, c) Non-uniform
distribution of modulators was able to form a robust morphogen signaling
despite the presence of flux variation of morphogen.
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Fig. 4.18. Sample distribution of scale-invariance analysis for TCS model
3: In general, this model didn’t work well for scale-invariance, despite the
fact that this model included network motifs that represent an explansion-
repression (ER) mechanisms proposed previously [10]. We obtained a very
few cases that satisfy scale-invariance, and a few sample distributions are
shown here. In all the plots, morphogen distributions are presented as
continuous lines, whereas the broken lines were used to denote modu-
lator concentrations. The color code was used to differentiate between
perturbed (black) and unperturbed (red) cases. a) Scale-invariance was
achieved for non-uniformly distributed modulator concentration, which is
very interesting as the previous research suggested an uniform distribu-
tion of modulators to demonstrate scale-invariance. b. scale-invariance is
achieved within the first 30% of the system length for non-uniform mod-
ulator distribution.
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in response, if a modulator’s clearance is positively or negatively regulated, the sys-

tem exhibits demonstrate scale invariance. These types of motifs are seen in Fig.4.14

a,b,c. In another motif, it is suggested that if modulators can positively upregulate

both the transport and reaction properties of morphogens and morphogen signaling

downregulates the production of modulators, TCS can adjust the decay length of

morphogen to accommodate length variation. In order to identify if these candidate

motifs have a minimal number of edges, we conducted a parsimonious screen, and the

details are elaborated on later.

4.5.3 The TCS Model with a spatially distributed source fails to demon-

strate 3-point scale-invariance

In the third TCS model, modulators of morphogen signaling are spatially dis-

tributed. As explained earlier, this version of TCS works remarkably well to achieve

robustness. A few sample sets of concentration plots, as shown in Fig. 4.17, reveal

that two concentrations of morphogens obtained for two different intrinsic produc-

tion rate of morphogens superimpose well. This is achieved even though theres a

qualitative difference in the shape of modulator distribution in those three sample

cases. However, TCS model 3 fails to satisfy the scale-invariance criteria, despite

the fact that it imitates the previously proposed expander-repressor (ER) mecha-

nism [10, 11, 174] in its implementation. Sample concentration-plots, as obtained by

using a two point scale-invariance criteria, are shown in Fig. 4.18. As seen here, signal-

ing distribution perfectly scales in the presence of system size perturbations in regions

near the source of morphogen. More precisely, scale-invariance is demonstrated only

in 30% of the system length, and regions away from the source of morphogen fail to

satisfy the scale-invariance criteria.

A close comparison of the proposed TCS and previous ER mechanism reveals that

the ER mechanism considered a quadratic decay of morphogen, where the intrinsic

decay constant for the quadratic degradation of morphogen was regulated by the
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modulators. In one of the previous works [197] showed that if morphogen degrades

faster near the source of morphogen, and a slow degradation happens regions away

from the source, morphogen distribution becomes robust against perturbation. This

self-enhanced degradation of morphogen is later modeled as a non-linear degradation

of morphogen, and is extensively used in ER mechanism [10] to study the ability of

ER mechanisms to demonstrate scale-invariance. In the TCS, we didnt consider any

quadratic decay of morphogen, which may be a potential reason that the TCS model

3 didnt demonstrate scale-invariance considerably. Thus, an immediate next step to

our TCS model would be to incorporate the quadratic decay of morphogens to see

whether the TCS model 3 demonstrates scale-invariance as well.

However, robustness and scale-invariance both are achieved for non-uniform dis-

tribution of modulators using the TCS model, whereas in previous research only

uniformly distributed spatial modulators topologies demonstrated scale-invaraince.

Thus, screening of alternative topologies using TCS model 3 reveals a set of potential

network motifs that are able to demonstrate scaling of morphogen signaling for a

non-uniformly distributed modulator activity.

4.5.4 Parsimonous motif reveal a set of candidate regulatory motifs with

minimal edges

A number of regulatory motifs appear to generate almost identical distribution

and signaling. Its likely that the motifs with minimal edges serve as the core for

all those motifs that generate characteristically similar signaling. For instance, in

Fig.4.13, each pair (b,d), (e,f), (g,h) has similar distribution of morphogens, and the

corresponding regulatory motifs also have a common set of edges. In Fig.Fig.4.13 g,h,

there is a minimal core network between the two regulatory motifs, which involves

the negative regulation of the modular reaction property and a positive regulation on

the morphogen reaction property. The existence of such networks could be ensured if
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Table 4.6
Scale-invariance and Robustness using a 3-point criteria: We considered
three spatial points here to different between acceptable and unacceptable
cases. The two data sets considered here have 9.3 and 13.6 millions points
respectively.

Mod Pts. ξ SIV SS10 SIV ∩ SS10 RBST SS10 RBST ∩ SS10

X = 0
9.3 0.25, 0.4, 0.6 184 1146888 0 2948 1331167 0

13.6 0.25, 0.4, 0.6 137 3082868 0 5511 3329181 13

X = L
9.3 0.25, 0.4, 0.6 480 1438152 0 3113 1629601 0

13.6 0.25, 0.4, 0.6(5) 12 (36) 2837213 0 6558 3111367 1009

X=[0 L]
9.3 0.25, 0.4, 0.6 0 955591 0 24089 1186499 2452

13.6 0.25, 0.4, 0.6 0 2424229 0 60204 2941194 2567

one of the edges from regulatory motifs, shown in Fig.4.7 g is removed and the newly

formed network retains the scale-invariance property.

Parsimonious screening, as outlined in Fig.4.7, shows that such core minimal mo-

tifs exist that involve only the connectivity equivalent of Fig.4.13h. Specifically, 21%

out of 2037 motifs show this core element, as shown in Fig.4.16. There are other

minimal network motifs where the diffusion and reaction properties of modulators

are positively regulated for morphogens and negatively regulated for modulators, and

is shown in Fig.4.16d. Moreover, parsimonious screening reveals that both active

and passive modulations are able to achieve scale-invariance. Passive modulation is

shown in Fig.4.16i, which is about 7% of all the acceptable regulatory motifs. All

these acceptable cases took longer than 6 hours to reach steady state, and hence,

may be more pertinent for dynamic scale-invariance as explained in [9]. However,

an increase in parameter values may help achieve steady state within the stipulated

time. Moreover, motifs that require more time to reach steady state may be more

pertinent for dynamic scale-invariance as explained in [9].
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Table 4.7
Scale-invariance and Robustness analysis for two point criteria: ξ = 0.25, 5

Mod Pts. ξ SIV SS10 SIV ∩ SS10 RBST SS10 RBST ∩ SS10

X = 0
9.3 0.25, 0.5 266 1146888 0 3366 1331167 0

13.6 0.25, 0.5 176 3082868 0 5707 3329181 13

X = L
9.3 0.25, 0.5(4) 1026 (7460) 1438152 0(0) 3977 1629601 0

13.6 0.25, 0.5(4) 36 (3344) 2837213 0(0) 6558 3111367 1057

X=[0, L]
9.3 0.25, 0.5 0, 2 [0.1, 0.3] 955591 0 27927 1186499 2696

13.6 0.25, 0.5 0, 9 [0.2, 0.3] 2424229 0 60651 2941194 2780



146

4.6 Concluding remarks

In this chapter, we proposed a morphogen and a modulator based system; namely,

the Two Component System (TCS), to explain the scaling of patterns in develop-

mental process. The model developed here included all the possible regulatory motifs

between the biophysical properties of a morphogen and modulator. More precisely,

we developed three different cases of TCS models (TCS model 1, TCS model 2, TCS

model 3), and in each case, there were 729 different regulatory motifs between different

biophysical properties. The previously developed ER mechanism [10] was a special

case under the TCS model 3 that we considered. Here, we attempted to screen all the

possible regulatory relations between morphogens and modulators, a large parameter

space ranging several order magnitudes of the system parameters, and these were

successfully implemented by adapting a strategy that combined the reduced storage

solver CVODE and the supercomputing clusters at Purdue University.

Our analysis revealed that scaling of patterns can be explained using the TCS

paradigm, and a number of motifs were identified through numerical screens that

indicated the role of both active and passive modulation of morphogen activity. In

this research, we considered two different forms of perturbations while analyzing

the scaling of patternsscaling in the presence of system length variation (known as

scale-invariance) and scaling in response to perturbations in morphogen production

(known as robustness). We found that TCS models achieved scaling in both scenarios;

however the performance of TCS was model specific. Our simulation demonstrated

that TCS with spatially distributed modulators works better than the other two

versions of TCS models in achieving robustness. One of the interesting outcomes of

this research was the scaling of patterns for a non-uniform distribution of modulators

as obtained from the screening of TCS model 3. This is important in identifying the

candidate modulator, as previous ER mechanisms demonstrated scaling only in the

presence of a uniformly distributed modulators role in the regulation of morphogen

activity.
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Further comparison between the two TCS models with sources of modulators

in different boundaries (i.e. TCS model 1 and TCS model 2) showed that when

morphogen and modulator sources were located at the opposite ends (this formed

TCS model 2) of spatial domain, TCS demonstrated better performance for scale-

invariance. For robustness, TCS model 1 performed well compared to TCS model

2. Out of all the successful scenarios that demonstrated scaling of patterns for TCS

model 1 and TCS model 2, we conducted a parsimonious screening to identify the

regulatory motifs with minimal connectivity.

Moreover, as all the biophysical properties such as diffusivity, reaction rates and

production of both morphogen and modulators are varying spatially, TCS becomes

computationally challenging. Further complicating the matter, hundreds of millions

of parameter vectors were considered to screen over a few order of magnitudes of

the system parameters. This research implemented a strategy by coupling a reduced

storage solver, namely, the COVDE and supercomputing clusters to generate data

within a few days. In order to obtain trustworthy data, COMSOL Multiphysics

was used to compare against our different versions of CVODE implementations, and

several error comparisons were done to optimize the simulation time and discretization

points of spatial domain as well. Approaches used in this research to implement a

reaction-diffusion system may be used in all other systems that require an exhaustive

screening of parameter space with topological variety.

Finally, the candidate minimal motifs, so far obtained, may help identifying the in

vivo candidate molecules that can act as modulators. Our current work on TCS mod-

els considers performing sensitivity analysis of the most-frequent regulatory motifs,

and the inclusion of quadratic decay in morphogen dynamics.
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5. FUTURE WORK

While our analysis of scaling of patterns and the signal transduction of patterning

process, provides new insights on morphogen mediated patterning and signaling, there

are a number of important questions that can be addressed further. These are the

works that we reason to be the immediate next steps to continue what we achieved in

this thesis. For instance, one possible extension of our work on heterodimer dominance

would be to conduct a global sensitivity analysis to evaluate any correlation between

system parameters and the phenotypic outcomes of the system. Our work on scaling

can be extended further, and a few of the immediate extensions of TCS are also

enumerated in this chapter.
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Fig. 5.1. A proposed network for stochastic analysis of the receptor
oligomerization process: In this reduced version, after initial binding all
the subsequent recruitments of Type II are omitted. However, initial in-
teractions between a dimer and Type II receptor are considered and the
resulting receptor complex further recruits an Alk3/6 or Alk2/8 receptor.
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5.1 Analysis of dimer-receptor signaling and receptor oligomerization

Numerous extracellular steps, including receptor oligomerization and interactions

with secreted regulators, are required by morphogens to initiate signaling [6, 9, 24,

26, 29, 198]. To determine if receptor oligomerization and other regulatory steps by

regulators work together to mitigate stochastic noise, further investigation and new

discoveries are needed. We assume this as an immediate next step, and aim to

extend our current research to identify the mechanisms behind the preciseness in BMP

signaling by developing a stochastic model of the dimer-receptor network considered

in this work.

5.1.1 Identify the role of BMP-antagonists on the dynamic range of mor-

phogen activity

Besides their cognate receptors, BMP dimers are also known to interact with a

wide variety of extracellular factors [6, 7, 26]. For instance, in the D/V patterning of

xenopus, BMP homodimers and heterodimers bind with Chordin (Chd) with almost

equal affinity [151]. However, molecular data also revealed that BMP homodimers

and BMP heterodimers bind differently with BMP-antagonists [199]. For instance,

BMP heterodimers (Dpp-Scw) in Drosophila demonstrate higher affinity for BMP

homodimers [199], and our future aims our future aims might also incorporate the

role of BMP-antagonists, such as Sog, and the role of metalloprotease Tolloid (Tld),

to investigate if the dynamic range of morphogen activity, as evaluated in this thesis,

is regulated by the role of BMP antagonists.
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5.1.2 Develop a complete stochastic model of the receptor oligomeriza-

tion process to discover whether heterodimer dominance provides

a more robust signaling

Developmental processes are highly robust despite the presence of numerous forms

of stochastic fluctuations. For instance, molecular data shows that both transcription

and translation are inherently noisy, but developmental processes generate precise

patterns that are remarkably robust and reproducible. Thus, species development

mitigates noise at different levels to give rise to precise patterns out of a noisy en-

vironment, and the mechanisms behind noise suppression are still elusive. In BMP

signaling pathways, BMP heterodimers outperform homodimers in eliciting signal-

ing. However, whether or not signaling through heterodimer dominance provides a

less noisy pattern is not known, and an interesting immediate next step of our re-

search on receptor complex oligomerization would be to conduct a stochastic analysis

of the signaling events.

One of the possible extensions of our current research on dimer-receptor inter-

actions and heterodimer dominance would be to develop a stochastic model of the

receptor oligomerization process. The model could be used to analyze whether het-

erodimer provides more robust signaling by initiating a less noisy signal from the

oligomerization steps. Also, the kinetics advantage of heterodimers over homodimers

could be investigated as well. To overcome the numerical challenge to quantify the

noise using the coefficient of variation as a parameter, this work can be accomplished

using a previously developed method for steady-state probability approximation [156].

5.1.3 Investigate whether dissimilar affinities of homodimer-heterodimer

towards BMP antagonists are advantageous for heterodimer domi-

nance in BMP signaling

Molecular data reveals that dimers have different affinities for some BMP antag-

onists [29, 149–151], and as previously stated, we believe an immediate next step for
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our dimer-receptor network would be to incorporate BMP antagonists to the model.

However, the inclusion of antagonists to the existing model will increase the number of

interacting species significantly, causing tremendous computational costs on propen-

sity updates during numerical approximation of the chemical master equations. To

circumvent this problem, by referring to our outcomes on the stochastic analysis of

the type II receptor recruitment process, we propose that the number of interactions

between dimers, receptors, and antagonists could be further simplified.

The complete set of interactions between a dimer and its receptor family involve

17 intermediate states and 30 second-order reactions (shown earlier in Chapter 2),

and, for all dimers, the system consists of 51 species. If antagonists are incorporated

in this model, the number of species will increase significantly, making the stochastic

simulation computationally intractable due to the large number of propensity updates

[164,165,168]. Since it is known that recruitment of type II receptors doesnt change

the stochastic profile of the system significantly, the dimer-receptor network could be

simplified further as shown in Fig.5.1, and so the total number of species could be

reduced from a system of 51 species to 24 species.

Besides the issue of determining whether heterodimer dominance can reach an

advantage by mitigating the noise of the system, the developed stochastic model can

further be used to determine the impact of other signaling factors, such as the role of

SBPs [6, 7, 26,198] as studied previously.

5.1.4 Extension of TCS to identify mechanisms of scaling in response to

environmental perturbations

Not only can the variation in intrinsic factors affect pattern scaling, extrinsic fac-

tors are also capable of altering the biophysical properties of a system. So, to ensure

robustness and reproducibility of biological patterns, developing system and process

must accommodate for environmental changes, which can impinge the intrinsic bio-

chemical process significantly. For example, developmental processes may experience
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detrimental consequences because of the loss of vitamins or amino acids during the

early stages of development [200, 201]. Therefore, exposure to adequate nutrition or

energy is important to ensure a proper growth for the species. Nutrition variation

for the embryo can cause a coordinated modification of the production of signaling

factors. Hence, we intend to identify if the proposed TCS can resolve systematic

reduction of input flux due to nutrition variation, ensuring a robust and reproducible

pattern.

5.1.5 Determine whether the TCS model can explain scaling in the pres-

ence of temperature variation

Temperature variation is known to affect biochemical processes. For example, the

synthesis rate of a class of protein, known as heat-shock protein, in Drosophila in-

creases significantly with an increase in temperature. Therefore, there is biophysical

evidence of the dependence of developmental processes on temperature, which can

affect the biochemical processes that occur in the cellular environment. The temper-

ature dependence of the kinetic rate constant (k) is demonstrated using Arrheniuss

equation, and is given as below:

k(T ) = A× e−
E1
RT (5.1)

where, Ea is the activation energy required for the reaction to occur, T is temperature

in Kelvin and R is the universal gas constant.

5.1.6 Determine whether TCS can buffer out noise to achieve signaling

refinement

Cellular and subcellular processes generally take place in very small spatial scales

and the movements of participant molecules are random. Hence, a deterministic anal-

ysis of interactions between species may not hold for low concentration biochemical

activity. Instead, a stochastic approach in the form of Brownian dynamics [202] seems
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to be more appropriate. The randomness in the spatio-temporal distribution of sig-

nals is increased further due to a combined effect of tight ligand-receptor binding

and the slow kinetics of the processes [26]. Moreover, a deterministic approach often

fails to capture the exact qualitative behaviors of a noisy biochemical system [170].

For instance, deterministic approaches fail to produce the random switch between

states in gene regulatory networks [203] and demonstrate different qualitative system

behaviors. Therefore, considering the variability and stochastic fluctuations involved

in BMP-mediated signaling systems, a modeling paradigm shift from deterministic to

stochastic, becomes evident based on our study

A previous study [26] used a series of local stochastic models to identify the

mechanisms behind robust BMP-signaling, but didnt consider the spatio-temporal

correlations between species. We believe TCS is the model to study in order to

identify the mechanisms that suppress noise to confer the fidelity of spatial patterning

in species development.



LIST OF REFERENCES



154

LIST OF REFERENCES

[1] J. Gurdon, P. Bourillot, et al., “Morphogen gradient interpretation,” NATURE-
LONDON-, pp. 797–803, 2001.

[2] G. Reeves, C. Muratov, T. Sch?pbach, and S. Shvartsman, “Quantitative mod-
els of developmental pattern formation,” Dev. Cell, vol. 11, pp. 289–300, Sep
2006.

[3] A. Lander, Q. Nie, and F. Wan, “Do morphogen gradients arise by diffusion?,”
Developmental Cell, vol. 2, no. 6, pp. 785–796, 2002.

[4] A. Turing, “The chemical basis of morphogenesis,” Philosophical Transactions
of the Royal Society of London. Series B, Biological Sciences, vol. 237, no. 641,
pp. 37–72, 1952.

[5] L. Wolpert, Princiles of Development. UK: Oxford University Press, 2006.

[6] S. Little and M. Mullins, “BMP heterodimers assemble hetero-type I receptor
complexes that pattern the DV axis,” Nature cell biology, vol. 11, no. 5, p. 637,
2009.

[7] D. Umulis, M. O’Connor, and S. Blair, “The extracellular regulation of bone
morphogenetic protein signaling,” Development, vol. 136, no. 22, p. 3715, 2009.

[8] D. Umulis, O. Shimmi, M. O’Connor, and H. Othmer, “Organism-scale model-
ing of early drosophila patterning via bone morphogenetic proteins,” Develop-
mental cell, vol. 18, no. 2, pp. 260–274, 2010.

[9] D. M. Umulis and H. G. Othmer, “Scale invariance of morphogen-mediated
patterning by flux optimization,” in Biomedical Engineering and Informatics
(BMEI), 2012 5th International Conference on, pp. 1030–1034, IEEE, 2012.

[10] D. Ben-Zvi, G. Pyrowolakis, N. Barkai, and B.-Z. Shilo, “Expansion-repression
mechanism for scaling the dpp activation gradient in drosophila wing imaginal
discs,” Current biology, vol. 21, no. 16, pp. 1391–1396, 2011.

[11] D. Ben-Zvi, A. Fainsod, B.-Z. Shilo, and N. Barkai, “Scaling of dorsal-ventral
patterning in the xenopus laevis embryo,” BioEssays, vol. 36, no. 2, pp. 151–
156, 2014.

[12] T. Gregor, W. Bialek, R. R. de Ruyter van Steveninck, D. W. Tank, and E. F.
Wieschaus, “Diffusion and scaling during early embryonic pattern formation,”
Proc Natl Acad Sci U S A, vol. 102, pp. 18403–18407, Dec 2005.

[13] D. Umulis, M. O’Connor, and H. Othmer, “Robustness of embryonic spatial
patterning in Drosophila melanogaster,” Curr. Top. Dev. Biol., vol. 81, pp. 65–
111, 2008.



155

[14] J. E. Ming, E. Roessler, and M. Muenke, “Human developmental disorders and
the sonic hedgehog pathway,” Molecular medicine today, vol. 4, no. 8, pp. 343–
349, 1998.

[15] K. A. Waite and C. Eng, “From developmental disorder to heritable cancer: it’s
all in the bmp/tgf-β family,” Nature Reviews Genetics, vol. 4, no. 10, pp. 763–
773, 2003.

[16] B. D. Harfe, P. J. Scherz, S. Nissim, H. Tian, A. P. McMahon, and C. J.
Tabin, “Evidence for an expansion-based temporal shh gradient in specifying
vertebrate digit identities,” Cell, vol. 118, no. 4, pp. 517–528, 2004.

[17] M. Towers, L. Wolpert, and C. Tickle, “Gradients of signalling in the developing
limb,” Current opinion in cell biology, vol. 24, no. 2, pp. 181–187, 2012.

[18] H. Min, D. M. Danilenko, S. A. Scully, B. Bolon, B. D. Ring, J. E. Tarpley,
M. DeRose, and W. S. Simonet, “Fgf-10 is required for both limb and lung de-
velopment and exhibits striking functional similarity to drosophila branchless,”
Genes & development, vol. 12, no. 20, pp. 3156–3161, 1998.

[19] K. Sekine, H. Ohuchi, M. Fujiwara, M. Yamasaki, T. Yoshizawa, T. Sato,
N. Yagishita, D. Matsui, Y. Koga, N. Itoh, et al., “Fgf10 is essential for limb
and lung formation,” Nature genetics, vol. 21, no. 1, pp. 138–141, 1999.

[20] C. V. Pepicelli, P. M. Lewis, and A. P. McMahon, “Sonic hedgehog regulates
branching morphogenesis in the mammalian lung,” Current biology, vol. 8,
no. 19, pp. 1083–1086, 1998.

[21] A. Badugu, C. Kraemer, P. Germann, D. Menshykau, and D. Iber, “Digit pat-
terning during limb development as a result of the bmp-receptor interaction,”
Scientific reports, vol. 2, 2012.

[22] M. Serpe, D. Umulis, A. Ralston, J. Chen, D. Olson, A. Avanesov, H. Othmer,
M. O’Connor, and S. Blair, “The BMP-binding protein Crossveinless 2 is a
short-range, concentration-dependent, biphasic modulator of BMP signaling in
Drosophila,” Developmental cell, vol. 14, no. 6, pp. 940–953, 2008.

[23] O. Shimmi and M. B. O’Connor, “Physical properties of Tld, Sog, Tsg and
Dpp protein interactions are predicted to help create a sharp boundary in Bmp
signals during dorsoventral patterning of the Drosophila embryo,” Development,
vol. 130, no. 19, pp. 4673–82, 2003.

[24] T. Kirsch, J. Nickel, and W. Sebald, “Bmp-2 antagonists emerge from alter-
ations in the low-affinity binding epitope for receptor bmpr-ii,” The EMBO
journal, vol. 19, no. 13, pp. 3314–3324, 2000.

[25] W. Sebald, J. Nickel, J. Zhang, T. Mueller, et al., “Molecular recognition in
bone morphogenetic protein (bmp)/receptor interaction.,” Biological chemistry,
vol. 385, no. 8, p. 697, 2004.

[26] M. Karim, G. Buzzard, and D. Umulis, “Secreted, receptor-associated bone
morphogenetic protein regulators reduce stochastic noise intrinsic to many ex-
tracellular morphogen distributions,” Journal of The Royal Society Interface,
2011.



156

[27] D. Umulis, M. Serpe, M. O?Connor, and H. Othmer, “Robust, bistable pattern-
ing of the dorsal surface of the Drosophila embryo,” Proceedings of the National
Academy of Sciences, vol. 103, no. 31, p. 11613, 2006.

[28] D. R. Eldar, A., D. Weiss, H. Ashe, B. Shilo, and N. Barkai, “Robustness of
the BMP morphogen gradient in Drosophila embryonic patterning,” Nature,
vol. 419, no. 6904, pp. 304–308, 2002.

[29] O. Shimmi, D. Umulis, H. Othmer, and M. O?Connor, “Facilitated trans-
port of a dpp/scw heterodimer by sog/tsg leads to robust patterning of the¡
i¿ drosophila¡/i¿ blastoderm embryo,” Cell, vol. 120, no. 6, pp. 873–886, 2005.

[30] S. J. Butler and J. Dodd, “A role for bmp heterodimers in roof plate-mediated
repulsion of commissural axons,” Neuron, vol. 38, no. 3, pp. 389–401, 2003.

[31] E. Valera, M. J. Isaacs, Y. Kawakami, J. C. I. Belmonte, and S. Choe, “Bmp-
2/6 heterodimer is more effective than bmp-2 or bmp-6 homodimers as inductor
of differentiation of human embryonic stem cells,” PLoS One, vol. 5, no. 6,
p. e11167, 2010.

[32] T. Morimoto, T. Kaito, Y. Matsuo, T. Sugiura, M. Kashii, T. Makino,
M. Iwasaki, and H. Yoshikawa, “The bone morphogenetic protein-2/7 het-
erodimer is a stronger inducer of bone regeneration than the individual ho-
modimers in a rat spinal fusion model,” The Spine Journal, vol. 15, no. 6,
pp. 1379–1390, 2015.

[33] M. Isaacs, Y. Kawakami, G. Allendorph, B. Yoon, J. Belmonte, and S. Choe,
“Bone morphogenetic protein-2 and-6 heterodimer illustrates the nature of
ligand-receptor assembly,” Molecular Endocrinology, vol. 24, no. 7, pp. 1469–
1477, 2010.

[34] J. Buijs, G. Van Der Horst, C. Van Den Hoogen, H. Cheung, B. De Rooij,
J. Kroon, M. Petersen, P. Van Overveld, R. Pelger, and G. Van Der Pluijm,
“The bmp2/7 heterodimer inhibits the human breast cancer stem cell subpop-
ulation and bone metastases formation,” Oncogene, vol. 31, no. 17, pp. 2164–
2174, 2012.

[35] A. D. Lander, “Morpheus unbound: reimagining the morphogen gradient,” Cell,
vol. 128, no. 2, pp. 245–256, 2007.

[36] C. M. Mizutani, Q. Nie, F. Y. Wan, Y. T. Zhang, P. Vilmos, R. Sousa-Neves,
E. Bier, J. L. Marsh, and A. D. Lander, “Formation of the BMP activity gra-
dient in the Drosophila embryo,” Dev. Cell, vol. 8, no. 6, pp. 915–24, 2005.

[37] D. Ben-Zvi, B.-Z. Shilo, A. Fainsod, and N. Barkai, “Scaling of the bmp activa-
tion gradient in xenopus embryos,” Nature, vol. 453, no. 7199, pp. 1205–1211,
2008.

[38] E. L. Ferguson and K. V. Anderson, “Decapentaplegic acts as a morphogen to
organize dorsal-ventral pattern in the drosophila embryo,” Cell, vol. 71, no. 3,
pp. 451–461, 1992.

[39] L. Wolpert, “Positional information and the spatial pattern of cellular differen-
tiation,” J Theor Biol, vol. 25, pp. 1–47, Oct 1969.



157

[40] F. Crick, “Diffusion in embryogenesis,” 1970.

[41] D. Nellen, R. Burke, G. Struhl, and K. Basler, “Direct and long-range action
of a dpp morphogen gradient,” Cell, vol. 85, no. 3, pp. 357–368, 1996.

[42] M. B. O’Connor, D. M. Umulis, H. G. Othmer, and S. S. Blair, “Shaping BMP
morphogen gradients in the Drosophila embryo and pupal wing,” Development,
vol. 133, pp. 183–93, 2006.

[43] E. L. Ferguson and K. V. Anderson, “Decapentaplegic acts as a morphogen to
organize dorsal-ventral pattern in the Drosophila embryo,” Cell, vol. 71, no. 3,
pp. 451–61, 1992.

[44] T. Gregor, E. F. Wieschaus, A. P. McGregor, W. Bialek, and D. W. Tank, “Sta-
bility and nuclear dynamics of the bicoid morphogen gradient,” Cell, vol. 130,
pp. 141–152, Jul 2007.

[45] G. Thomsen, T. Woolf, M. Whitman, S. Sokol, J. Vaughan, W. Vale, and
D. Melton, “Activins are expressed early in xenopus embryogenesis and can
induce axial mesoderm and anterior structures,” Cell, vol. 63, no. 3, pp. 485–
493, 1990.

[46] N. McDowell and J. Gurdon, “Activin as a morphogen in xenopus mesoderm
induction,” in Seminars in cell & developmental biology, vol. 10, pp. 311–317,
Elsevier, 1999.

[47] V. Giguere, E. S. Ong, P. Segui, and R. M. Evans, “Identification of a receptor
for the morphogen retinoic acid,” Nature, vol. 330, no. 6149, pp. 624–629, 1987.

[48] G. Drossopoulou, K. Lewis, J. Sanz-Ezquerro, N. Nikbakht, A. McMahon,
C. Hofmann, and C. Tickle, “A model for anteroposterior patterning of the
vertebrate limb based on sequential long-and short-range shh signalling and
bmp signalling,” Development, vol. 127, no. 7, pp. 1337–1348, 2000.

[49] M. Zecca, K. Basler, and G. Struhl, “Direct and long-range action of a wingless
morphogen gradient,” Cell, vol. 87, no. 5, pp. 833–844, 1996.

[50] C. Neumann and S. Cohen, “Problems and paradigms: morphogens and pattern
formation,” Bioessays, vol. 19, no. 8, pp. 721–729, 1997.

[51] A. Lander, Q. Nie, and F. Y. M. Wan, “Do morphogen gradients arise by
diffusion?,” Dev. Cell, vol. 2, pp. 785–96, 2002.

[52] M. Coppey, A. Berezhkovskii, Y. Kim, A. Boettiger, and S. Shvartsman, “Mod-
eling the bicoid gradient: diffusion and reversible nuclear trapping of a stable
protein,” Dev. Biol., vol. 312, pp. 623–630, Dec 2007.

[53] M. Coppey, A. Boettiger, A. Berezhkovskii, and S. Shvartsman, “Nuclear trap-
ping shapes the terminal gradient in the Drosophila embryo,” Curr. Biol.,
vol. 18, pp. 915–919, Jun 2008.

[54] D. Ben-Zvi, B. Shilo, A. Fainsod, and N. Barkai, “Scaling of the BMP activation
gradient in Xenopus embryos,” Nature, vol. 453, pp. 1205–1211, Jun 2008.



158

[55] J. Greenwald, J. Grope, P. Gray, E. Wiater, W. Kwiatkowski, W. Vale, and
S. Choe, “The BMP7/ActRii extracellular domain comples provides new in-
sights into the cooperative nature of receptor assembly,” Mol. Cell, vol. 11,
pp. 605–617, 2003.

[56] S. Restrepo, J. J. Zartman, and K. Basler, “Coordination of patterning and
growth by the morphogen dpp,” Current Biology, vol. 24, no. 6, pp. R245–
R255, 2014.

[57] P. Müller, K. W. Rogers, R. Y. Shuizi, M. Brand, and A. F. Schier, “Morphogen
transport,” Development, vol. 140, no. 8, pp. 1621–1638, 2013.

[58] E. Bier and E. M. De Robertis, “Bmp gradients: A paradigm for morphogen-
mediated developmental patterning,” Science, vol. 348, no. 6242, p. aaa5838,
2015.

[59] S. C. Little and M. C. Mullins, “Extracellular modulation of bmp activity in
patterning the dorsoventral axis,” Birth Defects Research Part C: Embryo To-
day: Reviews, vol. 78, no. 3, pp. 224–242, 2006.

[60] A. Kicheva, P. Pantazis, T. Bollenbach, Y. Kalaidzidis, T. Bittig, F. Julicher,
and M. Gonzalez-Gaitan, “Kinetics of morphogen gradient formation,” Science,
vol. 315, pp. 521–525, Jan 2007.

[61] K. Kruse, P. Pantazis, T. Bollenbach, F. Julicher, and M. Gonzalez-Gaitan,
“Dpp gradient formation by dynamin-dependent endocytosis: receptor traffick-
ing and the diffusion model,” Development, vol. 131, pp. 4843–4856, Oct 2004.

[62] M. Kerszberg and L. Wolpert, “Mechanisms for positional signalling by mor-
phogen transport: a theoretical study,” Journal of theoretical biology, vol. 191,
no. 1, pp. 103–114, 1998.

[63] J. A. Dutko and M. C. Mullins, “Snapshot: Bmp signaling in development,”
Cell, vol. 145, no. 4, pp. 636–636, 2011.

[64] E. Bangi and K. Wharton, “Dual function of the Drosophila Alk1/Alk2 or-
tholog Saxophone shapes the Bmp activity gradient in the wing imaginal disc,”
Development, vol. 133, pp. 3295–3303, Sep 2006.

[65] S. Matsuda and O. Shimmi, “Directional transport and active retention of
dpp/bmp create wing vein patterns in drosophila,” Developmental biology,
vol. 366, no. 2, pp. 153–162, 2012.

[66] B. Schmid, M. Furthauer, S. A. Connors, J. Trout, B. Thisse, C. Thisse, and
M. C. Mullins, “Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl
in dorsoventral pattern formation,” Development, vol. 127, no. 5, pp. 957–967,
2000.

[67] B. Schmierer, A. Tournier, P. Bates, and C. Hill, “Mathematical modeling
identifies Smad nucleocytoplasmic shuttling as a dynamic signal-interpreting
system,” Proceedings of the National Academy of Sciences, vol. 105, no. 18,
p. 6608, 2008.

[68] H. L. Ashe, M. Mannervik, and M. Levine, “Dpp signaling thresholds in the dor-
sal ectoderm of the drosophila embryo,” Development, vol. 127, no. 15, pp. 3305–
12, 2000.



159

[69] K. Arora and C. Nusslein-Volhard, “Altered mitotic domains reveal fate map
changes in Drosophila embryos mutant for zygotic dorsoventral patterning
genes,” Development, vol. 114, pp. 1003–1024, Apr 1992.

[70] V. Francois, M. Solloway, J. W. O’Neill, J. Emery, and E. Bier, “Dorsal-ventral
patterning of the drosophila embryo depends on a putative negative growth
factor encoded by the short gastrulation gene,” Genes Dev, vol. 8, no. 21,
pp. 2602–16, 1994.

[71] S. C. Little and M. C. Mullins, “Twisted gastrulation promotes bmp signaling
in zebrafish dorsal-ventral axial patterning,” Development, vol. 131, no. 23,
pp. 5825–5835, 2004.

[72] M. C. Mullins, M. Hammerschmidt, D. A. Kane, J. Odenthal, M. Brand,
F. Van Eeden, M. Furutani-Seiki, M. Granato, P. Haffter, C.-P. Heisenberg,
et al., “Genes establishing dorsoventral pattern formation in the zebrafish em-
bryo: the ventral specifying genes,” Development, vol. 123, no. 1, pp. 81–93,
1996.

[73] A. von Bubnoff and K. W. Cho, “Intracellular bmp signaling regulation in verte-
brates: pathway or network?,” Developmental biology, vol. 239, no. 1, pp. 1–14,
2001.

[74] Y. Sasai, B. Lu, H. Steinbeisser, and E. M. De Robertis, “Regulation of neural
induction by the chd and bmp-4 antagonistic patterning signals in xenopus,”
Nature, vol. 376, no. 6538, pp. 333–336, 1995.

[75] A. Suzuki, R. S. Thies, N. Yamaji, J. J. Song, J. M. Wozney, K. Murakami,
and N. Ueno, “A truncated bone morphogenetic protein receptor affects dorsal-
ventral patterning in the early xenopus embryo,” Proceedings of the National
Academy of Sciences, vol. 91, no. 22, pp. 10255–10259, 1994.

[76] M. Nguyen, S. Park, G. Marques, and K. Arora, “Interpretation of a BMP
activity gradient in Drosophila embryos depends on synergistic signaling by
two type I receptors, SAX and TKV,” Cell, vol. 95, no. 4, pp. 495–506, 1998.

[77] L. Marchant, C. Linker, P. Ruiz, N. Guerrero, and R. Mayor, “The inductive
properties of mesoderm suggest that the neural crest cells are specified by a
bmp gradient,” Developmental biology, vol. 198, no. 2, pp. 319–329, 1998.

[78] P. Knaus and W. Sebald, “Cooperativity of binding epitopes and receptor chains
in the bmp/tgfß superfamily,” Biological chemistry, vol. 382, no. 8, pp. 1189–
1195, 2005.

[79] S. Keller, J. Nickel, J. L. Zhang, W. Sebald, and T. D. Mueller, “Molecular
recognition of BMP-2 and BMP receptor IA,” Nat. Struct. Biol., vol. 11, no. 5,
pp. 481–88, 2004.

[80] K. Heinecke, A. Seher, W. Schmitz, T. Mueller, W. Sebald, and J. Nickel,
“Receptor oligomerization and beyond: a case study in bone morphogenetic
proteins,” BMC biology, vol. 7, no. 1, p. 59, 2009.



160

[81] A. Kotzsch, J. Nickel, A. Seher, K. Heinecke, L. van Geersdaele, T. Herrmann,
W. Sebald, and T. D. Mueller, “Structure analysis of bone morphogenetic
protein-2 type i receptor complexes reveals a mechanism of receptor inactiva-
tion in juvenile polyposis syndrome,” Journal of Biological Chemistry, vol. 283,
no. 9, pp. 5876–5887, 2008.

[82] S. Saremba, J. Nickel, A. Seher, A. Kotzsch, W. Sebald, and T. Mueller,
“Type I receptor binding of bone morphogenetic protein 6 is dependent on
N-glycosylation of the ligand,” FEBS journal, vol. 275, no. 1, pp. 172–183,
2008.

[83] S. Kondo, “How animals get their skin patterns: fish pigment pattern as a live
turing wave,” in Systems Biology, pp. 37–46, Springer, 2009.

[84] S. Ishihara and K. Kaneko, “Turing pattern with proportion preservation,”
Journal of theoretical biology, vol. 238, no. 3, pp. 683–693, 2006.

[85] P. Ball and N. R. Borley, The self-made tapestry: pattern formation in nature,
vol. 198. Oxford University Press Oxford, 1999.

[86] D. M. Umulis and H. G. Othmer, “Mechanisms of scaling in pattern formation,”
Development, vol. 140, no. 24, pp. 4830–4843, 2013.

[87] S. Bergmann, O. Sandler, H. Sberro, S. Shnider, E. Schejter, B. Z. Shilo, and
N. Barkai, “Pre-steady-state decoding of the Bicoid morphogen gradient,” PLoS
Biol., vol. 5, p. e46, Feb 2007.

[88] D. Umulis, “Analysis of dynamic morphogen scale-invariance,” J. Roy. Soc.
Interface, vol. Accepted, p. TBD, 2009.

[89] H. Spemann and H. Mangold, “Induction of embryonic primordia by implan-
tation of organizers from a different species. 1923.,” International Journal of
Developmental Biology, vol. 45, no. 1, pp. 13–38, 2003.

[90] G. Beadle, E. L. Tatum, and C. Clancy, “Food level in relation to rate of
development and eye pigmentation in drosophila melanogaster,” The Biological
Bulletin, vol. 75, no. 3, pp. 447–462, 1938.

[91] O. Wartlick, P. Mumcu, A. Kicheva, T. Bittig, C. Seum, F. Jülicher, and
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A. THE COMPLETE ODE MODEL FOR

DIMER-RECEPTOR INTERACTIONS

A.1 Chemical reactions

As previously explained, we consider that no more than two same type of receptors

can occupy positions in a tetrameric receptor association. So, tetrameric complexes

with three same type of receptors, for example, BMP : Alk3 : Alk3 : Alk3 or

BMP : RII : RII : RII, are not acceptable. Moreover, we also consider BMP :

RII : Alk8 = BMP : Alk8 : RII, and such assumption is applied for all the

trimeric and tetrameric complexes.
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BMP2 + Alk3
k2 1−⇀↽−
k2 1r

BMP2 : Alk3 (A.1)

BMP2 + Alk8
k2 2−⇀↽−
k2 2r

BMP2 : Alk8 (A.2)

BMP2 + RII
k2 3−⇀↽−
k2 3r

BMP2 : RII (A.3)

BMP2 : Alk3 + Alk3
k2 4−⇀↽−
k2 4r

BMP2 : Alk3 : Alk3 (A.4)

BMP2 : Alk3 + Alk8
k2 5−⇀↽−
k2 5r

BMP2 : Alk3 : Alk8 (A.5)

BMP2 : Alk3 + RII
k2 6−⇀↽−
k2 6r

BMP2 : Alk3 : RII (A.6)

BMP2 : Alk8 + Alk3
k2 7−⇀↽−
k2 7r

BMP2 : Alk3 : Alk8 (A.7)

BMP2 : Alk8 + Alk8
k2 8−⇀↽−
k2 8r

BMP2 : Alk8 : Alk8 (A.8)

BMP2 : Alk8 + RII
k2 9−⇀↽−
k2 9r

BMP2 : Alk8 : RII (A.9)

BMP2 : RII + Alk3
k2 10−⇀↽−
k2 10r

BMP2 : Alk3 : RII (A.10)

BMP2 : RII + Alk8
k2 11−⇀↽−
k2 11r

BMP2 : Alk8 : RII (A.11)

BMP2 : RII + RII
k2 12−⇀↽−
k2 12r

BMP2 : RII : RII (A.12)

BMP2 : Alk8 : Alk8 + RII
k2 13−⇀↽−
k2 13r

BMP2 : Alk8 : Alk8 : RII (A.13)

BMP2 : RII : RII + Alk3
k2 14−⇀↽−
k2 14r

BMP2 : Alk3 : RII : RII (A.14)

BMP2 : RII : RII + Alk8
k2 15−⇀↽−
k2 15r

BMP2 : Alk8 : RII : RII (A.15)

BMP2 : Alk3 : Alk3 + RII
k2 16−⇀↽−
k2 16r

BMP2 : Alk3 : Alk3 : RII (A.16)

BMP2 : Alk3 : Alk8 + RII
k2 17−⇀↽−
k2 17r

BMP2 : Alk3 : Alk8 : RII (A.17)
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BMP2 : Alk3 : RII + Alk3
k2 18−⇀↽−
k2 18r

BMP2 : Alk3 : Alk3 : RII (A.18)

BMP2 : Alk3 : RII + Alk8
k2 19−⇀↽−
k2 19r

BMP2 : Alk3 : Alk8 : RII (A.19)

BMP2 : Alk3 : RII + RII
k2 20−⇀↽−
k2 20r

BMP2 : Alk3 : RII : RII (A.20)

BMP2 : Alk8 : RII + Alk3
k2 21−⇀↽−
k2 21r

BMP2 : Alk3 : Alk8 : RII (A.21)

BMP2 : Alk8 : RII + Alk8
k2 22−⇀↽−
k2 22r

BMP2 : Alk8 : Alk8 : RII (A.22)

BMP2 : Alk8 : RII + RII
k2 23−⇀↽−
k2 23r

BMP2 : Alk8 : RII : RII (A.23)

BMP2 : Alk3 : Alk3 : RII + RII
k2 24−⇀↽−
k2 24r

BMP2 : Alk3 : Alk3 : RII : RII (A.24)

BMP2 : Alk3 : Alk8 : RII + RII
k2 25−⇀↽−
k2 25r

BMP2 : Alk3 : Alk8 : RII : RII (A.25)

BMP2 : Alk3 : RII : RII + Alk3
k2 26−⇀↽−
k2 26r

BMP2 : Alk3 : Alk3 : RII : RII (A.26)

BMP2 : Alk3 : RII : RII + Alk8
k2 27−⇀↽−
k2 27r

BMP2 : Alk3 : Alk8 : RII : RII (A.27)

BMP2 : Alk8 : Alk8 : RII + RII
k2 28−⇀↽−
k2 28r

BMP2 : Alk8 : Alk8 : RII : RII (A.28)

BMP2 : Alk8 : RII : RII + Alk3
k2 29−⇀↽−
k2 29r

BMP2 : Alk3 : Alk8 : RII : RII (A.29)

BMP2 : Alk8 : RII : RII + Alk8
k2 30−⇀↽−
k2 30r

BMP2 : Alk8 : Alk8 : RII : RII (A.30)

Equations from A.1-A.30 are similar for other dimers, and can be obtained by replac-

ing BMP2 with corresponding dimer.

A.2 ODE formulations

We show the ODE formulations for BMP2 homodimers only. The complete model

can easily be devised by adding similar set of reactions for the other two dimers. In

the below formulation, two copies of RII are represented as TypeII1 and TypeII2.
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r2 1 ≡ k2 1 ∗BMP2 ∗ Alk3− k2 1r ∗BMP2 : Alk3

r2 2 ≡ k2 2 ∗BMP2 ∗ Alk8− k2 2r ∗BMP2 : Alk8

r2 3 ≡ k2 3 ∗BMP2 ∗ TypeII 1− k2 3r ∗BMP2 : TypeII1

r2 4 ≡ k2 4 ∗BMP2 : Alk3 ∗ Alk3− k2 4r ∗BMP2 : Alk3 : Alk3

r2 5 ≡ k2 5 ∗BMP2 : Alk3 ∗ Alk8− k2 5r ∗BMP2 : Alk3 : Alk8

r2 6 ≡ k2 6 ∗BMP2 : Alk3 ∗ TypeII1 − k2 6r ∗BMP2 : Alk3 : TypeII1

r2 7 ≡ k2 7 ∗BMP2 : Alk8 ∗ Alk3− k2 7r ∗BMP2 : Alk3 : Alk8

r2 8 ≡ k2 8 ∗BMP2 : Alk8 ∗ Alk8− k2 8r ∗BMP2 : Alk8 : Alk8

r2 9 ≡ k2 9 ∗BMP2 : Alk8 ∗ TypeII1 − k2 9r ∗BMP2 : Alk8 : TypeII1

r2 10 ≡ k2 10 ∗BMP2 : TypeII1 ∗ Alk3− k2 10r ∗BMP2 : Alk3 : TypeII1

r2 11 ≡ k2 11 ∗BMP2 : TypeII1 ∗ Alk8− k2 11r ∗BMP2 : Alk8 : TypeII1

r2 12 ≡ k2 12 ∗BMP2 : TypeII1 ∗ TypeII2 − k2 12r ∗BMP2 : TypeII1 : TypeII2

r2 13 ≡ k2 13 ∗BMP2 : Alk8 : Alk8 ∗ TypeII1

−k2 13r ∗BMP2 : Alk8 : TypeII1

r2 14 ≡ k2 14 ∗BMP2 : TypeII1 : TypeII2 ∗ Alk3

−k2 14r ∗BMP2 : TypeII1 : TypeII2 : Alk3

r2 15 ≡ k2 15 ∗BMP2 : TypeII1 : TypeII2 ∗ Alk8

−k2 15r ∗BMP2 : TypeII1 : TypeII2 : Alk8

r2 16 ≡ k2 16 ∗BMP2 : Alk3 : Alk3 ∗ TypeII1

−k2 16r ∗BMP2 : Alk3 : Alk3 : TypeII1
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r2 17 ≡ k2 17 ∗BMP2 : Alk3 : Alk8 ∗ TypeII1

−k2 17r ∗BMP2 : Alk3 : Alk8 : TypeII1

r2 18 ≡ k2 18 ∗BMP2 : Alk3 : TypeII1 ∗ Alk3

−k2 18r ∗BMP2 : Alk3 : Alk3 : TypeII1

r2 19 ≡ k2 19 ∗BMP2 : Alk3 : TypeII1 ∗ Alk8

−k2 19r ∗BMP2 : Alk3 : Alk8 : TypeII1

r2 20 ≡ k2 20 ∗BMP2 : Alk3 : TypeII1 ∗ TypeII2

−k2 20r ∗BMP2 : Alk3 : TypeII1 : TypeII2

r2 21 ≡ k2 21 ∗BMP2 : Alk8 : TypeII1 ∗ Alk3

−k2 21r ∗BMP2 : Alk3 : Alk8 : TypeII1

r2 22 ≡ k2 22 ∗BMP2 : Alk8 : TypeII1 ∗ Alk8

−k2 22r ∗BMP2 : Alk8 : Alk8 : TypeII1

r2 23 ≡ k2 23 ∗BMP2 : Alk8 : TypeII1 ∗ TypeII2

−k2 23r ∗BMP2 : Alk8 : TypeII1 : TypeII2

r2 24 ≡ k2 24 ∗BMP2 : Alk8 : TypeII1 ∗ TypeII2

−k2 24r ∗BMP2 : Alk8 : TypeII1 : TypeII2

r2 25 ≡ k2 25 ∗BMP2 : Alk3 : Alk8 : TypeII1 ∗ TypeII2



174

−k2 25r ∗BMP2 : Alk3 : Alk8 : TypeII1 : TypeII2

r2 26 ≡ k2 26 ∗BMP2 : Alk3 : TypeII1 : TypeII2 ∗ Alk8

−k2 26r ∗BMP2 : Alk3 : Alk8 : TypeII1 : TypeII2

r2 27 ≡ k2 27 ∗BMP2 : Alk3 : TypeII1 : TypeII2 ∗ Alk8

−k2 27r ∗BMP2 : Alk3 : Alk8 : TypeII1 : TypeII2

r2 28 ≡ k2 28 ∗BMP2 : Alk8 : Alk8 : TypeII1 ∗ TypeII2

−k2 28r ∗BMP2 : Alk8 : Alk8 : TypeII1 : TypeII2

r2 29 ≡ k2 29 ∗BMP2 : Alk8 : TypeII1 : TypeII2 ∗ Alk3

−k2 29r ∗BMP2 : Alk3 : Alk8 : TypeII1 : TypeII2

r2 30 ≡ k2 30 ∗BMP2 : Alk8 : TypeII1 : TypeII2 ∗ Alk8

−k2 30r ∗BMP2 : Alk8 : Alk8 : TypeII2 : TypeII2
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Using the mass-action kinetic equation, the set of ODE are as follows:

d(BMP2:Alk3)
d t

= r2 1− r2 4− r2 5− r2 6− δeBMP2 : Alk3

d(BMP2:Alk8)
d t

= r2 2− r2 7− r2 8− r2 9− δeBMP2 : Alk8

d(BMP2:TypeII)
d t

= r2 3− r2 10− r2 11− r2 12− δeBMP2 : TypeII

d(BMP2:Alk3:Alk3)
d t

= r2 4− r2 16− δeBMP2 : Alk3 : Alk3

d(BMP2:Alk3:Alk8)
d t

= r2 5 + r2 7− r2 17− δeBMP2 : Alk3 : Alk8

d(BMP2:Alk3:TypeII)
d t

= r2 6 + r2 10− r2 18− r2 19− r2 20

−δeBMP2 : Alk3 : TypeII

d(BMP2:Alk8:Alk8)
d t

= r2 8− r2 13− δeBMP2 : Alk8 : Alk8

d(BMP2:Alk8:TypeII)
d t

= r2 9 + r2 11− r2 21− r2 22− r2 23

−δeBMP2 : Alk8 : TypeII

d(BMP2:TypeII:TypeII)
d t

= r2 12− r2 14− r2 15

−δeBMP2 : TypeII : TypeII

d(BMP2:Alk8:Alk8:TypeII)
d t

= r2 13 + r2 22− r2 28− δeBMP2 : Alk8 : Alk8 : TypeII

d(BMP2:Alk3:TypeII:TypeII)
d t

= r2 14 + r2 20− r2 26− r2 27

−δeBMP2 : Alk3 : TypeII : TypeII

d(BMP2:Alk8:TypeII:TypeII)
d t

= r2 15 + r2 23− r2 29− r2 30

−δeBMP2 : Alk8 : TypeII : TypeII
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d(BMP2:Alk3:Alk3:TypeII)
d t

= r2 16 + r2 18− r2 24

−δeBMP2 : Alk3 : Alk3 : TypeII

d(BMP2:Alk3:Alk8:TypeII)
d t

= r2 17 + r2 21 + r2 19

−r2 25− δeBMP2 : Alk3 : Alk8 : TypeII

d(BMP2:Alk3:Alk3:TypeII:TypeII)
d t

= r2 24 + r2 26− δeBMP2 : Alk3 : Alk3 : TypeII

d(BMP2:Alk3:Alk8:TypeII:TypeII)
d t

= r2 25 + r2 27 + r2 29

−δeBMP2 : Alk3 : Alk8 : TypeII

d(BMP2:Alk3:Alk8:TypeII:TypeII)
d t

= r2 28 + r2 30− δeBMP2 : Alk8 : Alk8 : TypeII

where δe is the first order degradation rate of any species with unit s−1. A complete

dimer-receptor systems has three dimers, where each dimer, in theory, can participate

in all the possible biochemical interaction as shown in Fig.2.2. Therefore, the com-

plete ODE model of the oligomerization process includes a total of 90 bi-directional

interactions, and a total of 51 ODEs are used to represent the transient dynamics of

the system.
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B. DIMER-RECEPTOR INTERACTIONS NETWORK

WITH DIMER AS A VARIABLE

In the original dimer-receptor network, we treated all the dimers as system pa-

rameters and therefore, a constant concentration of dimer was made available each

time a dimer-receptor interaction occurred in the system. In order to see whether

treating dimer as a system variable the affinity based hierarchy of putative complex

formation was preserved, we changed our previous implementation. In the new im-

plementation, unlike the previous model where dimers were treated as parameters,

the new model treated dimers as separate species in the Ordinary Differential Equa-

tion (ODE) model of dimer-receptor interactions. Because of this modification, the

complete dimer-receptor system comprised of 93 bidirectional interactions and a total

of 54 ODEs. Conversion of the dimer from a system parameter to a system variable

is done as follows:

B.1 Equation for dimer

Let’s assume that each dimer (B) is produced at a rate φB, and interacts with

all the receptors according to second order mass-action kinetics. Then, a generic

equation for any dimer in the system would be as follows:

dB

dt
= φB − k1[B][R3]− k2[B][R8]− k3[B][RII ]

+ k−1[B : R3]− k2[B : R8]− k3[B : RII ]− δB[B] (B.1)

where, k1, k2, k3 and k−1, k−2, k−3 are the forward and reverse reaction rate constant

with units nM−1s−1 and s−1, for recruitment and decoupling ofAlk3/6, Alk2/8, T ypeII
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a) b)

Fig. B.1. Affinity based hierarchy of putative complexes: Two different
implementations are considered here- i) dimers are system parameter, and
ii) dimers are treated as system variable. When dimers are system variable,
a constant production rate is constant for each dimers. Similar to the initial
implementation, we consider equal production rate of all the dimers. That
is, production rate φB2, φB7, and φB27 are equal in these simulations. a)
Dimers are treated as system parameters, b) Dimers are treated as system
variable. As we see here, concentration of putative signaling complexes
follow a descending order set by the affinities of dimer-receptor interactions.
For instance, the most prevalent complex in both implementation isBmp2−
BmpR1− BmpR1− TypeII − TypeII. The stipulated signaling complex
Bmp2/7−BmpR1−Acvr1−TypeII−TypeII is placed at the fourth most
prevalent complex in both the implementation.

receptors respectively. In the complete dimer-receptor model, equal decay rate for all

the dimers is considered.

B.2 Hierarchy of putative complexes
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a) b)

Fig. B.2. Hierarchy of tetrameric complexes formation considering dimers
as the system variable: In this implementation, all the dimers have equal
production rate. This is similar to Fig.B.2, but here the hierarchy of puta-
tive signaling complexes are captured for a reduced γ (surface enhancement
factor) value. Also, the receptor strengths are increased in this plot. As
seen from the simulated data, the affinity based hierarchy as observed pre-
viously, is preserved.
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C. REGULATORY MOTIFS AND CORRESPONDING

SYSTEM OF PDES

For the regulation of diffusion coefficient and reaction rate of both morphogen and

modulator, we considered positive, negative, no regulation cases that generate a total

of 81 different combinations. In this section, we listed out all the possible regulatory

motifs and corresponding PDE equations associated with the TCS model. In all

the motifs, flat-head edge is for negative regulation, arrow-head edge is for positive

regulation, and no edge represents no regulation. Here, m and M denote morphogen

and modulator respectively.
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Motifs
Equations

Morphogen Modulator

m

M

D

D

R

R

∂m
∂t

= Dm0(1 + αmM)−1 ∂2m
∂x2

+
(
(−1)αmDm0(1 + αmM)−2

)
∂m
∂x

∂M
∂x

− kδm(γRm + βRmM)−1[m]

∂M
∂t

= DM0(1 + αMm)−1 ∂2M
∂x2

+
(
(−1)αMDM0(1 + αMm)−2

)
∂m
∂x

∂M
∂x

− kδM (γRM + βRMm)−1[M ]

m

M

D

D

R

R

∂m
∂t

= Dm0(1 + αmM)−1 ∂2m
∂x2

+
(
(−1)αmDm0(1 + αmM)−2

)
∂m
∂x

∂M
∂x

− kδm[m]

∂M
∂t

= DM0(1 + αMm)−1 ∂2M
∂x2

+
(
(−1)αMDM0(1 + αMm)−2

)
∂m
∂x

∂M
∂x

− kδM (γRM + βRMm)−1[M ]

m

M

D

D

R

R

∂m
∂t

= Dm0(1 + αmM)−1 ∂2m
∂x2

+
(
(−1)αmDm0(1 + αmM)−2

)
∂m
∂x

∂M
∂x

− kδm(γRm + βRmM)[m]

∂M
∂t

= DM0(1 + αMm)−1 ∂2M
∂x2

+
(
(−1)αMDM0(1 + αMm)−2

)
∂m
∂x

∂M
∂x

− kδM (γRM + βRMm)−1[M ]

m

M

D

D

R

R

∂m
∂t

= Dm0
∂2m
∂x2

+ 0

− kδm(γRm + βRmM)−1[m]

∂M
∂t

= DM0(1 + αMm)−1 ∂2M
∂x2

+
(
(−1)αMDM0(1 + αMm)−2

)
∂m
∂x

∂M
∂x

− kδM (γRM + βRMm)−1[M ]

m

M

D

D

R

R

∂m
∂t

= Dm0
∂2m
∂x2

+ 0

− kδm[m]

∂M
∂t

= DM0(1 + αMm)−1 ∂2M
∂x2

+
(
(−1)αMDM0(1 + αMm)−2

)
∂m
∂x

∂M
∂x

− kδM (γRM + βRMm)−1[M ]

m

M

D

D

R

R

∂m
∂t

= Dm0
∂2m
∂x2

+ 0

− kδm(γRm + βmM)[m]

∂M
∂t

= DM0(1 + αMm)−1 ∂2M
∂x2

+
(
(−1)αMDM0(1 + αMm)−2

)
∂m
∂x

∂M
∂x

− kδM (γRM + βRMm)−1[M ]

m

M

D

D

R

R

∂m
∂t

= Dm0(1 + αmM) ∂
2m
∂x2

+ (αmDm0) ∂m
∂x

∂M
∂x

− kδm(γRm + βRmM)−1[m]

∂M
∂t

= DM0(1 + αMm)−1 ∂2M
∂x2

+
(
(−1)αMDM0(1 + αMm)−2

)
∂m
∂x

∂M
∂x

− kδM (γRM + βRMm)−1[M ]

m

M

D

D

R

R

∂m
∂t

= Dm0(1 + αmM) ∂
2m
∂x2

+ (αmDm0) ∂m
∂x

∂M
∂x

− kδm[m]

∂M
∂t

= DM0(1 + αMm)−1 ∂2M
∂x2

+
(
(−1)αMDM0(1 + αMm)−2

)
∂m
∂x

∂M
∂x

− kδM (γRM + βRMm)−1[M ]

m

M

D

D

R

R

∂m
∂t

= Dm0(1 + αmM) ∂
2m
∂x2

+ (αmDm0) ∂m
∂x

∂M
∂x

− kδm(γRm + βRmM)[m]

∂M
∂t

= DM0(1 + αMm)−1 ∂2M
∂x2

+
(
(−1)αMDM0(1 + αMm)−2

)
∂m
∂x

∂M
∂x

− kδM (γRM + βRMm)−1[M ]
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m

M

D

D

R

R

∂m
∂t

= Dm0(1 + αmM)−1 ∂2m
∂x2

+
(
(−1)αmDm0(1 + αmM)−2

)
∂m
∂x

∂M
∂x

− kδm(γRm + βRmM)−1[m]

∂M
∂t

= DM0(1 + αMm)−1 ∂2M
∂x2

+
(
(−1)αMDM0(1 + αMm)−2

)
∂m
∂x

∂M
∂x

− kδM [M ]

m

M

D

D

R

R

∂m
∂t
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D. EVALUATION OF NUMERICAL APPROACHES:

CONSERVATION OF MASS AND CONVERGENCE

STATISTICS OF CVODE IMPLMENTATION OF THE

TCS MODEL

D.1 Conservation of Mass

To find a numerical approximation approach that is able to generate trustwor-

thy data for TCS, we compare the performances of both divergence (i.e., DV) and

non-divergence (EC), considering an example of mass-conservation. We investigate

whether the conservation of mass rule is satisfied by our adopted discretization pro-

cess, and to do so, we took a simplistic model of morphogen and modulator transport.

In this example, we consider two diffusive particles, m and M , with reflected bound-

ary conditions [125, 193] for each at the left (X = 0) and right (X = L) boundaries.

Here, the diffusivity of species m at any location is directly dependent on species M

at that location, and vice-versa. In fact, this model is a simplified version of the TCS

model we propose. The model equations are as follows:

D.1.1 Model 1: Source of morphogen and modulator at x = 0

Morphogen :
∂m

∂t
=

∂

∂x

(
Dm(M)

∂m

∂x

)
(D.1)

B.C : −Dm(M)
∂m

∂x

∣∣∣∣
x=0

= 0,
∂m

∂x

∣∣∣∣
x=L

= 0 (D.2)

I.C : m(t = 0, x) = e−θx (D.3)
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Modulator :
∂M

∂t
=

∂

∂x

(
DM(m)

∂M

∂x

)
(D.4)

B.C : −DM(m)
∂M

∂x

∣∣∣∣
x=0

= 0,
∂M

∂x

∣∣∣∣
x=L

= 0 (D.5)

I.C : M(t = 0, x) = e−θx (D.6)

As the transport properties are spatially dependent on the modulator concentration

at any given point, the equation for moodulation of transport properties is considered

as:

Dm(M) = Dm0(1 + αM)ν (D.7)

The system is non-dimensionalized by defining ξ = x
L

, where L is the system

length. Both the I.C and B.C are non-dimenstionalized as well. For example, initial

condition m(t = 0, x) = e−θx is non-dimensionalized as m(t = 0, ξ) = e−θ
x
L

We consider two approaches to implement the above system– i) chain-rule of

derivative is applied to expand Eq.D.8 and Eq.D.9, ii) Divergence form (chain-rule of

the derivative is not applied). These two approaches are compared with data obtained

through COMSOL implementation in order differentiate any possible differences in

the performances of the two aforesaid approaches.

D.1.2 Steady-state analysis

For the steady state analysis, the term ∂m
∂t

is set to zero and the model becomes:

Morphogen : 0 =
∂

∂x

(
Dm(M)

∂m

∂x

)
B.C : −Dm(M)

∂m

∂x

∣∣∣∣
x=0

= 0,
∂m

∂x

∣∣∣∣
x=L

= 0

I.C : m(t = 0, x) = e−θx (D.8)

Modulator : 0 =
∂

∂x

(
DM(m)

∂M

∂x

)
B.C : −DM(m)

∂M

∂x

∣∣∣∣
x=0

= 0,
∂M

∂x

∣∣∣∣
x=L

= 0

I.C : M(t = 0, x) = e−θx (D.9)
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By integrating once and then using the boundary condition we obtain:

∂

∂x

(
Dm(M)

∂m

∂x

)
= 0 (D.10)

⇒
(
Dm(M)

∂m

∂x

)
= 0 (D.11)

⇒ ∂m

∂x
= 0 (D.12)

⇒ m = constant (D.13)

The steady-state distribution of morphogen or modulatior is constant, which

means an uniform level of morphogen throughout the space. We also consider an

approximate time-scale calculation for the steady state analysis. The time-scale is

L2

Dm(M)
, where L is the system length and Dm(M) = Dm0(1 +αmM)ν

D
m . For example,

if the intrinsic diffusion coefficient is Dm0 = 0.01µm2s−1, system length(L = 300µm)

without modulation the time-scale of the dynamics is about 2500 hrs. So, to test

the conservation of mass maximum time to reach steady-state should be significantly

large.

To show how similar the steady-state distribution as obtained from different nu-

merical approaches, we compare the morphogen and modulator distribution with

analytical results and COMSOL Multiphysics data. Also, mass conservation for each

species is verified by calculating the area under the initial and steady-state concen-

tration profile.
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a) b)

Fig. D.1. EC data for the first-order positive regulation of diffusion co-
efficient : Intrinsic diffusion coefficients are Dm0 = 1µm2s−1 and DM0 =
0.1µm2s−1 for morphogen and modulator respectively. In graph a) and b),
Line plots are for the concentration distribution, where the red line is for the
exact initial profile supplied to the system. As seen from the graphs, both
the different approaches (EC and DIV) generate similar outcomes that do
not deviate from the initial area. This implies that the discretization of the
domain satisfy the conservation of mass criteria. Analytical solution as de-
vised earlier showed that the steady state profile should be constant, which
is reproduced by simulation as well. Second order regulation also achieves
a steady state data that is uniform over the spatial domain, however, the
data is not shown here. We also tried equal intrinsic diffusion coefficient
(Dm0 = DM0 = 1µm2s−1) to see if the steady-state is qualitatively similar
to the analytically obtained traits, and the mass of the system is conserved.

a) b)

Fig. D.2. EC data for the first-order negative regulation of diffusion co-
efficient : Intrinsic diffusion coefficients are Dm0 = 1µm2s−1 and DM0 =
0.1µm2s−1 for morphogen and modulator respectively. Same as Fig.1, but
shown here for negative regulation. As seen from the area comparison be-
tween initial and steady-state profile, modulator distribution also satisfies
the mass-conservation.



194

a) b)

Fig. D.3. DIV data for the first-order positive regulation of diffusion co-
efficient: Intrinsic diffusion coefficients are Dm0 = 1µm2s−1 and DM0 =
0.1µm2s−1 for morphogen and modulator respectively.

a) b)

Fig. D.4. DIV data for the first-order negative regulation of diffusion co-
efficient: Intrinsic diffusion coefficients are Dm0 = 1µm2s−1 and DM0 =
0.1µm2s−1 for morphogen and modulator respectively.

a) b)

Fig. D.5. Comparison of CVODE data with COMSOL: Intrinsic diffusion
coefficients are Dm0 = 1µm2s−1 and DM0 = 0.1µm2s−1 for morphogen and
modulator respectively. Steady-state profile of concentration obtained by
three approaches are compared. Here, the COMSOL data is treated as
the reference to compare the performance of EC and DIV approaches. a)
Comparison for morphogen data, b) Comparison for modulator data. The
bar plots show the area under the concentration curve as demonstrated
by the different approaches. As we see, EC and DIV both match with
COMSOL data perfectly.
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a) b)

Fig. D.6. Comparison of CVODE data with COMSOL: Initial profile of
morphogen and modulator is changed from m(t = 0, ξ) = M(t = 0, ξ) =

e−600 ξ
L to m(t = 0, ξ) = M(t = 0, ξ) = 5e−600 ξ

L . Intrinsic diffusion coef-
ficients are Dm0 = 1µm2s−1 and DM0 = 0.1µm2s−1 for morphogen and
modulator respectively. Steady-state distribution is 5 times the steady-
state data obtained for previous initial condition. Qualitative behavior of
this simulation is similar to Fig. D.6.

D.2 Different initial profile: m(t = 0, ξ) = M(t = 0, ξ) = 5e−600 ξ
L

In all these simulations, initial profile is m(t = 0, ξ) = M(t = 0, ξ) = e−600 ξ
L ,

which is changed by a factor of 5 in subsequent simulation. Because the initial profile

remains qualitatively same, the area of the distribution will be 5 times the previous

area. So, if the steady state uniform distribution is 0.4343, in the new simulation the

uniform distribution will be at 5∗0.4343. We would like to see if all the approaches can

attain the steady-state uniform distribution with amplitude equivalent to 5 ∗ 0.4343.

It is clear from Fig.D.6 that for the new initial condition, the EC and DIV imple-

mentation demonstrate conservation of mass. Also, the steady state profile in both

implementations match with analytically obtained distribution of morphogen and

modulator. In all these simulations, spatial domain was discretized into 301 mesh

points.
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Table D.1
For an initial parameter space, simulation time and failures for both EC
and DIV implementation of TCS

Regulation Grid Pts
Time

SIV Failures RBST Failures

L1 L2 φ1 φ2

EC D EC D EC D EC D EC D

POS 2000 20m 28m 0 0 0 0 0 0 0 0

NO 2000 25.2m 29.3m 0 0 0 0 0 0 0 0

NEG 2000 25.5m 26m 0 0 0 1 0 0 0 9

D.2.1 Accuracy: DIV vs. EC approach

In order to compare EC and DIV approaches of TCS implementation, we consider

a system length L = 600µm, and choose negative regulation of biophysical properties.

Outcomes reveal that when morphogen and modulator are mostly confined near the

source of their production, DIV implementation of TCS approximates the reference

concentration (COMSOL Multiphysics data is treated as ) near the origin more ac-

curately (comparison between green line and cyan circles) than it does by the EC

form of implementation. However, if the species concentration is distributed over the

spatial domain both approaches perform well when compared against the COMSOL

Multiphysics data.

D.3 Comparison of simulation statistics:expanded chain-rule vs. diver-

gence form of TCS implementation

For an initial comparison (as shown in Table D.1) we consider 2000 grid points

for each of the regulation type– i) Positive regulation of diffusion and reaction, ii)

No regulation of reaction and diffusion, iii) Negative regulation of reaction and diffu-

sion. While all regulatory parameters associated with reaction and difussion are kept
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Fig. D.7. Comparison of modulator concentration for negative regulation:
The two CVODE approaches (EC and DIV) are compared for a system
length L = 600, and the COMSOL data is treated as the reference to
perform the comparison. When Dm0 and DM0 are low, distribution of the
modulator concentration is primarily concentrated near the source, and
CVODE implementations fail to match the concentration obtained through
COMSOL perfectly at the source. When compared between DIV and EC,
it’s found that DIV performs better than EC version near the source of
modulator. In this concentration comparison, data represented in red are
obtained from COMSOL Multiphysics implementation of TCS, and this set
of data is treated as the standard to compare EC and DIV.
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Fig. D.8. Comparison of morphogen for Negative Regulation, L = 600:
Similar to previous Fig. D.7, but morphogen data is compared in this plot.

Table D.2
For alternative parameter space: simulation time taken by EC and DIV,
and the statistics of simulation failures for mesh size 501

Regulation Grid Pts
Time

SIV Failures RBST Failures

L1 L2 φ1 φ2

EC D EC D EC D EC D EC D

POS 1000 78m 82m12s 6 6 0 0 6 6 53 48

NEG 1000 7m43s 7m21s 0 0 0 0 0 0 0 0

NO 1000 4m49s 6m3s 0 0 0 0 0 0 0 0
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Table D.3
For alternative parameter space: simulation time taken by EC and DIV,
and the statistics of simulation failures for mesh size 301

Regulation Grid Pts
Time

SIV Failures RBST Failures

L1 L2 φ1 φ2

EC D EC D EC D EC D EC D

POS 1000 22m47s 26m27s 0 4 0 0 0 4 2 5

NEG 1000 4m14s 3m54s 0 0 13 (NaN) 0 0 0 0 0

NO 1000 2m48s 3m10s 0 0 0 0 0 0 0 0
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unchanged, other parameters are varied to obtain the grid points. Both expanded

chain-rule and divergence form are used to simulate the system for two performance

objectives namely, scale-invariance (SIV) and robustness (RBST).

In another comparison between EC and DIV approaches for a different parameter

space, we consider 1000 grid points for each of the regulation type i) Positive regula-

tion of diffusion coefficient and reaction rate, ii) No regulation, iii) Negative regulation

of diffusion coefficient and reaction rate. While all regulatory parameters associated

with reaction and diffusion are kept unchanged, other parameters are varied to obtain

the new grid points. Both expanded chain-rule (EC) and divergence (DIV) forms are

used to simulate the system for two performance objectives, namely, scale-invariance

(SIV) and robustness (RBST). The simulation statistics, for two different mesh size

(301 and 501), are shown in Table. D.3 and Table D.2 respectively.

Comparison of accuracy and simulation time of different approaches (EC and

DIV) reveal that they perform almost similarly when accuracy is compared. It is

shown by comparing both absolute error and root mean square error against different

mesh size that the DIV and EC forms of implementation of TCS demonstrate similar

trend. However, the approaches differ in simulation time and simulation failures. For

example, EC performs better when all the regulations are positive, whereas DIV works

better for negative regulations (mesh 301 case). The EC form of implementation

experiences more simulation failures for mesh size 301. Hence, we intend to reduce

the mesh size from 501 to a lower value without compromising the accuracy. As found

after a number of trials, DIV generates fewer failures than EC. Furthermore, if the two

approaches are compared against the time taken to simulate about 1000 grid points

it is seen that EC requires less time than DIV (Table D.2 and Table D.3). Because

DIV tends to generate fewer failures, and we would prefer to obtain more instances of

successful data, DIV is chosen to generate data for the analysis of different versions

of TCS.
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