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ABSTRACT

Chen Ming PhD, Purdue University, December 2016. Content-based Image Under-
standing with Applications to A↵ective Computing and Person Recognition in Natural
Settings. Major Professor: Jan P. Allebach.

Understanding the visual content of images is one of the most important topics

in computer vision. Many researchers have tried to teach the machine to see and

perceive like human. In this dissertation, we develop several new approaches for image

understanding with applications to a↵ective computing, and person detection and

recognition. Our proposed method applied to fashion photo analysis can understand

the aesthetic quality of photos. Further, a bilinear model that takes into account the

relative confidence of region proposals and the mutual relationship between multiple

labels is developed to boost multi-label classification. It is evaluated both on object

recognition and aesthetic attributes learning. We also develop a person detection

and recognition system in natural settings that can robustly handle various pose,

viewpoints, and lighting conditions. The system is then put into several real scenarios

that has di↵erent amount of labelled data. Our algorithm that utilizes unlabelled data

reduces the e↵ort needed for data annotation while achieving similar results as with

labelled data.
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1. INTRODUCTION

The volume of visual data being generated is growing exponentially. With that large

amount of data, being able to understand their visual content would be of great value.

However, image content understanding is intrinsically a challenging problem for two

reasons. First, visual data is very rich and ambiguous, thus making it very hard to find

a good image representation. Second, some tasks are rather subjective and are even

hard for human to reach a consensus. The goal of this dissertation is to investigate

and develop algorithms towards extracting better visual features and understanding

the content of images with emphasis on a↵ective computing and person recognition.

In Chapter 2, we investigate a sub-problem of a↵ective computing: aesthetic qual-

ity evaluation for fashion photos. We design global features, generic features and

features that consider the location of the salient object to form the image represen-

tation. A dataset that contains 500 images from an online fashion shopping website

is constructed. We conduct psychophysical experiments to collect ground truth aes-

thetic quality evaluation from human subjects. Then, a model is learned to predict

the aesthetic quality.

In Chapter 3, we first introduce a general method called Confidence Ordered

Proposals (COP) that can boost the performance of multi-label object classification

and then apply it to aesthetic attributes learning. Di↵erent from single-label image

classification, images with multiple labels usually have a large variety and interaction

among the di↵erent objects or concepts in the images. So we propose to make use

of multiple region proposals and learn a model that combines the raw classification

result of each proposal. This method takes into account both the relative confidence

of region proposals and the mutual relationship between multiple labels. Later, this

approach is applied to classify images into di↵erent aesthetic categories, which is a

more intuitive way to describe the aesthetic quality than simply giving a score as in
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Chapter 2. This is formulated as a multi-label classification problem and we apply

COP to it .

In Chapter 4, we investigate another sub-problem of a↵ective computing: image

emotion classification. This is similar to aesthetic quality in the sense that both of

them require very subjective evaluation. We utilize the recent development in deep

convolutional neural network(CNN) to learn rich features for emotion classification.

A multi-scale pooling method using CNN features is proposed to improve the previous

best results.

In Chapter 5, we introduce a pipeline for person detection and recognition in

natural settings and test it in several use case with di↵erent amount of labeled data.

Instead of doing face detection or human body detection, which have been widely

explored before, we propose to use head region instead that can not only been reliably

detected. We also utilize large scale external datasets to train a Faster R-CNN for

head detection and another deep CNN that does head recognition. Experimental

results show that our person detection and recognition system achieves promising

performance for a challenging TV series dataset. With the semi-supervised learning

approach, we can achieve comparable or even better results compared to using the

fully labelled dataset with minimum only e↵ort of annotation

Lastly,in Chapter 6, we conclude the dissertation and summarize our contribu-

tions.
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2. AESTHETIC QUALITY EVALUATION FOR FASHION

PHOTOS

2.1 Introduction

Rating images based on their aesthetic quality is a popular topic in computer vision

and image understanding in recent years. It has not only attracted the attention of the

research community, but has potential to be used in many real applications, especially

in those online communities where a large number of photos are being posted and

shared.

A particular type of on-line community in which aesthetic of photos is important is

that which focuses on fashion items. Since aesthetic appearance is a critical element

determining the attractiveness of such items to potential buyers, providing high-

quality photos of the items is essential. However, these items are often photographed

by the owners of the items. These individuals are generally amateur photographers

with no knowledge of the basics of good photography; and the equipment that they

use to capture their images are often mobile cameras, for which special care is needed

to capture high-quality images. All the above potentials for creating an enjoyable

online community highly depend upon the ability to di↵erentiate high-quality photos

from low-quality photos, or more specifically, to autonomously assign an aesthetic

score to the photos. However, aesthetic inference is not an easy task. There is no

technical definition for aesthetic quality, so we can not use a simple expression to

describe that.

In this chapter, we use a machine learning-based approach to investigate the prob-

lem of aesthetic quality evaluation for photos of fashion products. In Fig. 2.1, we

show the pipeline of our system. Following some basic guidelines that professional

photographers use, we design a set of features to represent the images. We then con-
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duct psychophysical experiments to collect ground truth evaluation of the aesthetic

quality specifically for photos of fashion products. The rest of this chapter is orga-

nized as follows. In Sec. 2.2, we review some of the prior work. In Sec. 2.3, the

features are introduced. In Sec. 2.4, the ground truth data collection procedure is

described. The results are shown in Sec. 2.5, followed by our conclusions in Sec. 2.6.

Low Level Features: 
Sharpness 
Colorfulness 
Lightness 
Contrast 
 

Salient Object Detection: 
Salient region area 
Salient region number  
Subject to background difference 
 

Metadata: Categories of items 
 
 

Feature Extraction 

Conduct psychophysical 
experiments : 
Ask women participants to rate 
photos from Poshmark website on 
scale from 1-10 

Ground Truth Score 
Training/ Testing photos 

Learning/ Prediction 
Support Vector Regression 

Color Harmony 
Hue Count 
Modified Rule of Thirds 
GIST 

Fig. 2.1. Pipeline of the aesthetic quality evaluation system
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2.2 Related Work

There are many previous works on learning the aesthetic quality of photos. Some

work follow guidelines from professional photographers and designed features that

are relevant to what photographers think good-looking photos should have. Datta

et al. [1] is one of the first teams of researchers that formulated a computational

approach for aesthetic inference. They used a total of 56 global features to train a

support vector machine to classify photos into ‘High quality’ and ‘Low quality’. Ke et

al. [2] also designed features based on guidelines for photographers to mimic human

aesthetic perception. They did a more in-depth investigation in understanding how

high-level semantic features help aesthetic quality evaluation. Luo et al. [3] and Wong

et al. [4] incorporated a salient region detection method, derived a number of high-

level semantic features based on the subject and background division, and trained

a system to predict the aesthetic scores of photos. By incorporating object-level

information, they showed that the performance of aesthetic evaluation can be further

improved.

Marchesotti et al. [5] departed from using features that are specific to aesthetic

inference, and used generic image descriptors such as SIFT, GIST, and bag-of-visual

words instead for feature extraction. They showed that although the features that are

used are not specifically designed for aesthetic quality evaluation, they achieve very

good results. The author also released a large-scale public dataset, AVA, that contains

images taken by photographers and rated online for a photographic competition.

AVA had since become the benchmark dataset for many works on aesthetic quality

evaluation.

These works made no assumptions on the types of photos and achieved reasonable

result for general photos. Later works such as Li et al. [6] and Xue et al. [7] focused

on images with faces and added features related to face detection to improve the

prediction accuracy. Luo et al. [8] divided photos into seven categories based on their

content and designed di↵erent predictors for di↵erent types of photos. With prior
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knowledge of the content in the photos, di↵erent classifiers are trained accordingly to

boost the performance.

2.3 Feature Extraction

It has been shown in previous research that designing relevant features is the

key issue for aesthetic inference. In this chapter, we incorporate global and generic

features, compositional rules, salient object detection, and metadata together to form

the feature vector. The name of each feature below is followed by a reference number

Fn, where n is an integer. These reference numbers are used in Table 2.2 at the end

of the chapter.

2.3.1 Global Features

• Sharpness (F1). The sharpness of an image is an important measure of how

well the photo is taken. For photos of a fashion product that is intended to be

sold, whether the textures and details are captured clearly is extremely vital.

As most photos for this particular application are taken by mobile phones,

they are prone to blurriness due to movement and limited capability of the

camera. So measuring the sharpness of an image can be a discriminative feature

for aesthetic quality. Calculating a sharpness metric has been coined as the

reciprocal of computing the blurriness in Reference [9]. However, this method

relies on estimating the blurring kernel, which is computationally expensive.

So we use Narvekar et al.’s no-reference sharpness metric [10] to measure the

sharpness of a photo.

• Lightness (F1). Under-exposure and over-exposure are two common issues

for photos of low aesthetic quality. In order to measure the overall lighting

condition of the image, the image is first converted to CIELAB color space.
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Then the average value of the image in the L⇤ channel is taken as the lightness

score, given as

ql =
1

|I|
X

x,y

L⇤(x, y), (2.1)

where |I| is the size of the image and L⇤(x, y) is the L⇤ value at each pixel.

CIELAB is a perceptually uniform color space and the L⇤ channel approximately

matches the human perception of lightness. This makes it ideal for the lightness

metric for images.

• Contrast (F1). High-quality photos usually have higher global contrast than

those of low-quality. We use a method similar to that described in Reference [8]

to measure the contrast of an image as follows. The image is converted into

CIELAB color space; and the histogram of L⇤ is computed. Then, we take the

span of the histogram that contains the central 98% of the image pixels as the

contrast score.

• Colorfulness (F1). Viewers usually prefer photos that are colorful. Here, we

used the method proposed in Reference [11] to measure the overall colorfulness

of an image. They first define an opponent color space as

rg = R�G, (2.2)

yb =
1

2
(R +G)� B, (2.3)

and calculate the first and second order statistics in that color space. Then, they

set up a psychophysical experiment, and ask people to rate images according to

colorfulness. Finally, a metric qco is fit to the ground truth data. qco is given as

qco = �rgyb + 0.3 · µrgyb, (2.4)

where �rgyb =
q

�2
rg + �2

yb, and µrgyb =
q
µ2
rg + µ2

yb. The metric has obtained a

correlation of over 90% with the experimental data.
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2.3.2 Salient Object Extraction

The clarity of the subject is one of the most important factors that distinguishes

high-quality photos from low-quality photos. Professional photographers try hard to

focus on the subject, so that it attracts the visual attention of the viewer. For a fashion

product that is supposed to be sold, whether it stands out from the background is

especially important. Taking the subject into consideration has been proposed before

to help perform aesthetic inference in References [3, 4] . Luo et al. [3] assumed that

the subject region is clear, while the background is blurred. They extract the subject

region by detecting blurriness, and then subtract it from the image. This assumption

can only be applied to photos taken by professional cameras, where the depth of field

can be very small. For photos taken by mobile phones, as in our case, this is no

longer true. Wong et al. [4] assumed that the salient region of the image contains the

subject. They compute the saliency map using Itti et al.’s [12] visual saliency model,

and use it as a seed for segmentation. The segments that correspond to high value in

the saliency map are used as the salient object. However, Wong et al.’s method tends

to result in a lot of small salient regions that are spread all over the image. This

is because Itti et al.’s visual saliency model is designed to detect the location of the

significant stimuli, and does not take into consideration any high-level information

related to the object.

We follow Wong et al.’s approach and incorporate the saliency map with the

segmentation result to form a salient object mask. The saliency map SM for the

image I is computed using the method described in Reference [13] , where the image

is represented as a low-rank matrix plus sparse noise. The background is modeled as

a low-rank matrix, as it contains redundant information, while the salient region is

modeled as sparse noise, as it is quite di↵erent from the background region.

We then perform over-segmentation using the mean-shift algorithm [14], and de-

termine whether the segment belongs to the salient object O or the background B.
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If the mean saliency value for a segment Si exceeds a predefined threshold, then that

segment is considered to be part of the salient object and vice versa.

O = {(x, y)|(x, y) 2 Si, avg(Si) > ↵ · avg(SM)}, (2.5)

B = {(x, y)|(x, y) 2 Si, avg(Si) <= ↵ · avg(SM)}, (2.6)

Empirically, ↵ is chosen to be 1.5. Figure 2.2 shows an example image with its saliency

map, segmentation result, and salient object mask.

Using the salient object mask, the following features are defined.

• Subject-Background Di↵erence (F2). The subject-to-background di↵er-

ence indicates whether the subject stands out from the background. The image

is converted to HSV color space; and for each channel, the squared di↵erence

between the mean value of the subject and the mean value of the background

is calculated as

qsbd,i =

0

@ 1

|O|
X

(x,y)2O

Ii(x, y)�
1

|B|
X

(x,y)2B

Ii(x, y)

1

A
2

, (2.7)

where Ii denotes a specific channel i of the HSV color space i.e. Hue, Saturation,

or Value.

• Number of Salient Regions (F2). The number of salient regions is calculated

as the number of distinct connected components in the salient object mask. It

is a measure of how complicated the image is. Usually, a simple subject is

depicted in a high-quality photo, while there may be multiple subjects that are

distractive to the viewers in a low-quality photo.

• Aggregate Size of All Salient Regions (F2). The aggregate size of all

salient regions is calculated as the total number of pixels that belong to the

salient object. For a well-taken photo, the area that the salient object occupies

should be neither too large nor too small.
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(a) Original image

(b) Saliency map

(c) Segmentation result

(d) Salient object mask

Fig. 2.2. Illustration of steps for generating salient object mask.
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2.3.3 Compositional Rules

• Color Harmony (F3). Harmonic colors are sets of colors that are aesthetically

pleasing in terms of visual perception. Cohen et al. [15] applied the Matsuda

color harmony model [16] for color image enhancement. Luo et al. [8] incorpo-

rated color harmony into their aesthetic quality predictor, and achieved very

reliable result. In this work, a harmonic template fitting method [15] is used to

measure the color harmony of a photo.

• Modified Rule of Thirds (F3). Placing the subject at a location such that

the image looks visually balanced is always a requirement for good photos. A

widely adopted principle for that is the rule of thirds. This rule suggests that

if we divide the image into nine identical cells by two equally spaced horizontal

lines and two equally spaced vertical lines, we should place the center of the

main subject at one of the four intersections of two lines. However, most photos

of fashion products tend to have the subject horizontally centered in the image,

which violates the rule of thirds. So we propose a modified rule of thirds.

Instead of dividing the image horizontally into three parts, we divide it into

two parts. Then the normalized minimum distance between the centroid of the

salient region and each of the two intersections of the dividing lines is calculated

as

qrot = min
i=1,2

s✓
xc � xi

l

◆2

+

✓
yc � yi

w

◆2

. (2.8)

Here rot denotes “rule of thirds”, and (xc, yc) and (xi, yi) denote the coordinates

of the centroid of the salient object and the two intersections, respectively. The

parameters l and w denote the length and width of the image, respectively.
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2.3.4 Generic Features

• GIST Descriptor (F4). The GIST descriptor was originally used for scene

categorization [17]. A 128-dimensional feature vector that describes the global

structure of a scene is estimated using spectral information and coarse localiza-

tion. In practice, principal components analysis is applied to the feature vector;

and only the first five components are used.

2.3.5 Product-Type-Based Group ID

Utilizing metadata is an e↵ective way to gain prior knowledge of the characteristics

of photos, thus improving the prediction accuracy. At the website from which we drew

our images, there are 13 types of products that are being sold, i.e. dresses and skirts,

sweaters, tops, outwear, jackets and blazers, denim, pants, boots, shoes, accessories,

jewelry, handbags, and clutches and wallets. We divide these 13 categories into 5

groups based on the visual similarity of their typical images as shown in Table 2.1.

Figure 2.3 shows typical images from each group.

Table 2.1.
Five major groups of fashion merchandise sold at a fashion website

Group 1 dresses and skirts, sweaters, tops, outwear, jackets and blazers

Group 2 denim, pants

Group 3 boots, shoes

Group 4 accessories, jewelry

Group 5 clutches and wallets, handbags

2.4 Data Collection

To train and test the aesthetic score predictor, a database of a large number

of manually rated photos is necessary. References [1] and [3] used the photos from
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(a) Group 1

(b) Group 2 (c) Group 3

(d) Group 4 (e) Group 5

Fig. 2.3. Typical photos of each of the five groups defined in Table 2.1
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online photo sharing websites such as Photo.net and flickr.com, which are already

rated by the online community, while in Reference [18] the researchers conducted

experiments themselves to collect ground truth aesthetic scores. Although most of

the recent research was conducted using photos from the online community, there

are two drawbacks to this approach. First, most photos on Photo.net and flickr.com

are posted by enthusiast photographers, which means the overall photo quality is

biased. Second, most photos on those websites focus on a general set of topics, such

as landscapes, portraits, and artistic ideas. Since di↵erent types of photos may have

di↵erent characteristics, an aesthetic score predictor trained on photos of landscapes

may not work well for photos of fashion products. For the above reasons, we decide

to construct a database of manually rated photos, specifically for photos of fashion

products.

We downloaded over two thousand photos from a fashion website and carefully

selected 500 of them as training and testing samples. Each of the product-type-based

groups defined in Table 2.1 has approximately the same number of photos to ensure

that there is little bias between each group. The ground truth aesthetic scores of

the 500 images were obtained through psychophysical experiments conducted with

18 human subjects. All the human subjects were women who regularly buy fashion

products online. The experiment took an hour for each participant, during which time

each participant was asked to rate 150 images with a Matlab graphical user interface

(GUI). At the beginning of the experiment, we collect some basic information of the

subjects to get an idea of their shopping and photo taking behaviors by asking the

following six simple questions:

• Have you ever purchased any fashion products online?

• Do you purchase second-hand clothes?

• How much do you spend on clothing every month?

• What is your favorite website for clothing merchandise?
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• How many photos do you take on average per month?

• What do you usually take photos of?

The questions are displayed in the startup page of the Matlab GUI. Figure 2.4

shows the startup page of the experiment. Each subject is asked to rate the photos

on a 1 to 10-point scale, where 1 denotes worst quality and 10 denotes best quality.

In Fig. 2.5, we show the screenshot of the experiment. Each photo was rated by at

least 5 subjects. For each photo, the average value among all subjects who rated that

photo is used as the ground truth aesthetic score. In Fig. 2.6, we show the histogram

of the average scores. It can been seen that the ground truth aesthetic score is close

to a Gaussian distribution, where most photos are rated as medium aesthetic quality

fewer photos are rated as either very high or very low quality. A plot of the standard

deviation for photos of di↵erent average score is shown in Fig. 2.7. From the data,

we find that people tend to reach a consensus for photos at the two extremes, while

having di↵erent opinions for those in the middle.

Fig. 2.4. Startup page of the GUI for the data collection experiment
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Fig. 2.5. Screenshot of the experiment GUI
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Fig. 2.6. Histogram of the average scores
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Fig. 2.7. Variance of the scores versus the average scores

2.5 Predicting Aesthetic Quality

We model and evaluate aesthetic quality evaluation in two tasks, as a classification

problem (Sec. 2.5.1), and as a regression problem (Sec. 2.5.2).

2.5.1 Classification

We set up the classification problem similar to some previous work ??, where

one tries to discriminate between images of high aesthetic quality and low aesthetic

quality. For classification, we define the binary labels

yi =

8
><

>:

1 if rank(qi) in the top �

�1 if rank(qi) in the bottom �
(2.9)

where qi is the average aesthetic scores from the experiment. The classification prob-

lem is parameterized by the variable �. As we change the value of �, the di�culties
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of the classification problem changes. When � = 0.5, we use all the data available

for training and testing. In this case, the classification problem becomes more di�-

cult, as positive and negative iamges are more ambiguous. The classification problem

becomes easier as � gets smaller, but in this case we have access to less data.

We learn the model for aesthetic quality to predict yi from the image representa-

tion xi using an l2-regularized with a hinge-loss radial-basis-function (RBF) support

vector machine (SVM) classifier. The loss function to be minimized is:

minimize
w

nX

i=1

max
�
1� yiw

T�(xi), 0
�
+

�

2
||w||2, (2.10)

where � is the regularization paramter, and �(xi) is the radial basis kernal. The label

of the sample is give by the folowing equation:

yi = sgn(wT�(xi)) (2.11)

In Fig. 2.8, we show the average accuracy using di↵erent feature sets with respect

to di↵erent value of �. A five-fold cross-validation is run ten times and the average

accuracy is calculated over each cross-validation. The baseline accuracy is 50% as

the positive set and negative set have the same number of samples. We compare

the results of di↵erent feature sets: global features, salient object related features,

compositional rules, and generic features respectively. We also test the result of the

combined features, where we train a separate classifier for each feature set and the

average decision values are used as the final confidence scores. We can see that for all

methods, the average accuracy is decreasing as � increases. From this, we can infer

that the features that we extracted are indeed correlated with aesthetic quality as

it shows that easier classification problems leads to higher accuracy. However, when

� = 0.05, the accuracy is relatively lower. This is probably due to the fact that when

� is close to zero, the number of samples are very small, which leads to unstable

performance. This can also been seen from the large variance of average accuracy at

� = 0.05.
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Fig. 2.8. Average accuracy for di↵erent feature sets

2.5.2 Regression

We also tried to formulate aesthetic quality evaluation as a regression problem,

where we try predict the aesthetic score of a given image. We trained a support

vector regression model using the 500 photos that we collected. 5-fold cross validation

is carried out to train the model parameters, and to ensure reliability. To evaluate

the performance of the predictor, we calculate the pearson correlation coe�cient ⇢

between the ground truth score and the predicted score.

We have tested the system using 4 sets of features. The correlation coe�cient

values ⇢ are shown in Table 2.2 with their corresponding set of features. As we

increase the number of features, the correlation coe�cient decreases. The performance

is significantly improved when salient object detection is added to the feature set. This

is consistent with our expectation, since the human subjects put a lot of attention

on the subject, i.e. the product being sold, when they rated the images. Finally, the

product-type-based feature is considered; and an individual predictor is trained for



20

each of the groups. With the Group ID incorporated in the system, the performance

is further improved. The correlation coe�cients for each group, using all the features

are shown in Table 2.3. Some examples of high and low quality photos as well as

their ground truth and predicted aesthetic scores are shown in Fig. 2.9.

Table 2.2.
Correlation coe�cients for aesthetic score prediction (scale from 1 to
10) for all groups of photos, using di↵erent subsets of the features

Global Fea-

tures (F1)

Salient Ob-

ject Detection

(F2)

Compositional

Rules (F3)

GIST (F4) All combined

⇢ 0.52 0.59 0.45 0.55 0.62

Table 2.3.
Correlation coe�cients for aesthetic score prediction for each group
of photos, using all features

Group 1 Group 2 Group 3 Group 4 Group 5 Without Group ID

⇢ 0.59 0.62 0.61 0.63 0.58 0.62

2.6 Conclusion

In this chapter, we have developed a system that can predict the aesthetic quality

for photos of fashion products. Global and generic features, salient object detection,

compositional rules, and metadata together are used as the feature vector to represent

the images. We have also constructed a database of manually rated photos specifically

for photos of fashion products. The testing results show that we can achieve good

prediction accuracy using the designed feature sets. We would expect that if a larger

amount of ground truth data is collected and more features are added, the prediction

accuracy could be further improved.
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(a) Y=8.6, Ŷ=7.9 (b) Y=9, Ŷ=9.6 (c) Y=1.5, Ŷ=3.2

(d) Y=4.1, Ŷ=2.6

Fig. 2.9. Ground truth (Y ) and predicted (Ŷ ) aesthetic scores for
some example photos.
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3. CONFIDENCE ORDERED PROPOSALS: A GENERAL

METHOD FOR MULTI-LABEL CLASSIFICATION WITH

APPLICATIONS IN AESTHETIC ATTRIBUTES

LEARNING

3.1 Introduction

Large-scale object classification has received significant attention in the past few

years. With the help of the large amount of training data such as ImageNet [19]

and the recent progress of deep convolutional neural network, the state-of-the-art

performance of object classification have been improved by a large margin [20–23].

Single-label [19] and multi-label [24] object classification are two sub-problems of

object classification. Most existing systems treat single-label object classification the

same way as multi-label object classification. They take the whole image as input

and output a vector that contains the score of every object class. However, there are

two reasons why this approach might not work well for multi-label object classifica-

tion. First, for multi-label images, the objects in the images are located at di↵erent

positions with a large variety of poses and orientations. Second, multiple objects

in the same image can occlude each other, thus generating di↵erent appearances of

the objects among images. Some examples of single-label and multi-label images are

shown in Fig. 3.1.

Seeing the drawback of using whole images as input, object proposal-based meth-

ods are introduced [25] to solve multi-label object classification. This approach starts

with generating a number of proposals where the objects are likely to occur. Then for

each proposal, a vector that contains the scores of all the labels is assigned. In this

way, the problem of multi-label classification is divided into several single-label clas-

sification problems, which supposably do not su↵er from the drawbacks mentioned
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Single-label images from ImageNet

Multi-label images from Pascal VOC

Motorbike 
& person

Dog & 
person

Fig. 3.1. Examples of single-label images from ImageNet and multi-
label images from VOC

above. Finally, a decision of prediction is made based on the scores of the proposals.

The common way of combining the scores is max-pooling, which takes the maximum

score of the proposals as the representative and evaluate the performance based on

that.

The idea of proposal-based object classification is closely related to Multiple In-

stance Learning (MIL), which was a generalization of supervised learning first intro-

duce in [26] in the context of drug activity prediction. For each sample, also called

bag, the labels are associated with a set of instances instead of individual instances.

MIL has been applied to many visual recognition tasks including image classifica-

tion [27, 28] and image retrieval [29–31]. In MIL, a basic assumption is that a bag

is positive if at least one of the instance is positive. A standard MIL algorithm [32]

learns a classifier and use the maximum classification score of all the instances to

determine whether the bag is positive or not. The previously introduced proposal-

based multi-label object classification can also be considered as MIL. The proposals

correspond to the instances and the image that contains all the proposals is the bag.
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Recent research in MIL has suggested that max-pooling does not always give the

best result. Hu et al. [29] formulate image ranking as MIL and compared using the

maximum score of the instances, average scores of the instances, and softmax scores of

the instances. They found that taking the softmax scores of the instances outperforms

other methods as it can weight more important regions heavier.

Similar to [29], we argue that simply applying max-pooling to the scores of the

proposals is not enough to produce the best result. The validity of max-pooling is

based on a very strong assumption that both the proposal extraction method and

the classifier that assigns scores to the proposals are very reliable. When perform-

ing max-pooling, only one out of the many proposals gets to a↵ect the final result,

which means the relationship across proposals and their relative importance are not

explored. Also, using a single proposal ignores the global context. When several ob-

ject classes share similar parts, the proposals corresponding to those parts can fire up

easily and disregard other parts of the object that are more discriminative. All the

above factors also easily lead to miss-classification using max-pooling. Furthermore,

the confidence scores are computed on a per class basis, ignoring the correlation and

exclusion among object classes.

In this chapter, we propose a method called Confidence-Ordered Proposals (COP)

to utilize the ensemble of proposals while alleviating the vulnerability of max-pooling.

We aim to learn a bilinear classifier that jointly considers the cross-proposal relation-

ship and cross-label correlation and exclusion. We start by extracting a set of object

proposals from the image and feed them into a CNN to generate a preliminary con-

fidence score matrix that contains the C-dimensional score of all the proposals from

one image. Then the score matrix is re-arranged according to their order and used as

features to train a bilinear classifier for each class. The constraints of the optimiza-

tion problem are set based on two criteria: high scoring proposals are emphasized

with higher weights; classes whose scores are close to the class corresponding to the

current bilinear classifier being trained are given lower weight. We will show that the
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bilinear classifier trained on COP is very e↵ective and produce improved results on

the benchmark datasets VOC 2007 and VOC 2012.

Having proved the e↵ectiveness of COP, we apply it to aesthetic attributes learning

and show that the classification accuracy is indeed improved with the help of COP.

The rest of the chapter is organized as follows. In Sec. 5.2, we discuss some related

work in object classification. In Sec. 4.3, we describe the details of our proposed

Confidence-Ordered Proposals method. The experimental results are presented in

Sec. 5.7. The application of the proposed approach to another problem aesthetics

attributes learning is presented in Sec. 3.5. Finally, we draw a conclusion in Sec. 5.8.

3.2 Related Work

Before the rise of deep learning, traditional framework for object classification

follows the popular feature extraction, feature coding, and feature pooling pipeline.

In the first step, hand-crafted features such as Scale Invariant Feature Transform

(SIFT) [33], Histogram of Oriented Gradients (HOG) [34] and Local Binary Patterns

(LBP) [35] are extracted either around the interest points or densely over the entire

image. Then the features are encoded using vector quantization (VQ), locally con-

strained linear coding (LLC) [36], or the Improved Fisher Vector (IFV) [37]. Finally,

feature pooling based on hierarchical matching [38,39] is performed on these encoded

features to form the image representation. With the pooled features, a Support Vec-

tor Machine (SVM) is trained for the classification. Later work think beyond the

traditional pipeline and explore the context information [39–42]. This has proved to

be very e↵ective and improved the previous results.

Deep convolutional neural network based systems have shown its promising per-

formance on various visual recognition tasks in recent years. Ranzato et al. [43]

applied CNN to handwritten digit recognition. Motivated by the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) [19], a lot of work specifically focused

on tackling the large-scale object classification. [20–22,44,45] are some of these work
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that have shown many insightful ideas in designing the network and achieved great

results on ImageNet.

The large amount of data of ImageNet is one of the key factors to CNN’s success on

object classification. As CNN is usually very large and has many parameters, it makes

it very hard to train an e↵ective network for small-scale datasets. Razavian et al. [46]

proposed a CNN features + SVM pipeline that alleviates the lack of training data for

a variety of visual recognition tasks. They showed that the CNN activations of images

extracted directly from a pre-trained network can be used as o↵-the-shelf features for

classification. These features are then fed into an SVM for either scene classification,

image retrieval, and object classification. Later, [23, 45, 47–50] demonstrated that

CNN models that are pre-trained on large datasets such as ImageNet can be fine-

tuned with the target datasets that do not have enough training images. This makes

it feasible to access a specific CNN for every dataset and task.

Most recently, Oquab et al. [48], Girshick et al. [49] andWei et al. [25] presented ob-

ject proposal-based methods for multi-label object classification and detection. This

approach has proved to be more e↵ective for multi-label object classification than

using full image for classification as it can better target the multiple objects that are

located around the entire image. All methods above use the score of a single proposal

when making the final classification prediction. Unlike previous methods, we take

advantage of the ensemble proposals and explore the relative importance to improve

the classification performance.

Bilinear classifiers are proposed to capture the dependence of data on multiple fac-

tors. This is particularly useful for visual data that is better represented as a matrix.

Tenenbaum et al. [51] separate style from content, such as handwriting words across

letters and faces or objects in di↵erent viewing consitions using a bilinear model.

Pirsiavash et al. [52] applied bilinear SVM to model the spatiotemporal relationship

in video sequences and showed state-of-the-art results in people detection and action

classification. Tan et al. [53] used sparse low rank bilinear logistic regression to detect

face liveness from a single image. In this chapter, the confidence scores of the pro-
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posals of every class is formed as a matrix and used as the image representation. We

formulate the confidence of proposals and their object class correlation and exclusion

in a bilinear model to improve the preliminary classification score.

3.3 Multi-label Image classification with Confidence-ordered Proposals

In this section, we introduce the architecture of our proposed method, Confidence-

Ordered Proposals (COP), and how to apply it to multi-label object classification. We

first apply a proposal extraction method Edge Box [54] that is both computationally

e�cient and accurate to generate a number of object proposals for each image. Then

we feed the proposals into a CNN to generate the preliminary classification scores.

The CNN can be any model that outputs a classification score for each label on the

target dataset. After that, the scores of the proposals of each image is re-arranged

and a bilinear model using COP as features is learned for each class, aiming to

account for the cross-proposal and cross-label relationship. With the COP model,

the classification scores are refined to produce improved results.

3.3.1 Proposal Extraction

The first step of the pipeline is to generate a number of object proposals. For

better e�ciency and accuracy of the overall system, we require the proposal extraction

method to be both computationally e�cient and have high object detection recall

rate. Many methods [54–59]have emerged for object proposal extraction in recent

years. Objectness based methods [55–57] rank proposals by learning a classifier and

assigning an objectness score to each proposal. Among these methods, Cheng et

al. [57] proposed a simple yet powerful feature called binarized normed gradients

(BING) that achieve very high speed. However, BING only generates very loosely

fitting proposals and does not perform very well at high Intersection over Union (IoU).

Another paradigm of proposal extraction methods is based on superpixel merging

[58,59]. Selective Search [58] computes hierarchical segmentations based on superpixel
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and place bounding boxes around the segments. Because of its high recall rate,

Selective Search was used in the top detection system [49]. However, since it needs

to generate superpixels, the computational time is low.

Zitnick et al. [54] proposed Edge Box which is an object proposal extraction

method based on edges. Edge Box ranks the proposals by measuring the number

of edges that exist in the box minus those that are members of contours that overlap

the box’s boundary. Their experimental results show that Edge Box generates object

proposals at comparable speed with BING while having recall rate as high as Selective

Search. Due to its computational e�ciency and high accuracy, we decide to use Edge

Box to extract object proposals.

3.3.2 Model Formulation

Our proposed method Confidence-Ordered Proposals aims to learn a bilinear clas-

sifier that jointly accounts for the cross-proposal and cross-label relationship for every

object class. Each proposal is assigned a preliminary confidence score using an object

classification method first. Then the relative importance of high scoring proposals

and the correlation and exclusion between labels are explored when we re-arrange the

preliminary scores. In principle, any method that outputs a confidence score for a

proposal can be used. Here, our work is based on CNN, of which the output of the

last fully-connected layer are the confidence scores.

For each image, K proposals are extracted and their preliminary confidence scores

are computed using the CNN. Let’s define a matrix P 2 RK⇥C for a particular image,

whereK denotes the number of proposals extracted from the image and C denotes the

number of classes. The ith row denoted by Pi,: is the confidence scores of a particular

proposal for all object classes. The jth column denoted by P:,j is the confidence score

for all the proposals of a particular class.

One bilinear classifier needs to be trained for each object class, C classifiers in

total. Consider a particular object class l for now. Given an image and its cor-
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responding score matrix P that contains the scores of the proposals, we form the

re-arranged score matrix M following the procedures below:

1. For every column j of P , it is sorted separately in descending order and assigned

to the jth column of a temporary matrix M 0 such that

M 0
1,j � M 0

2,j � . . . � M 0
K,j

2. Let M = M 0. Swap the first column of M , M:,1 with the lth column of M , M:,l.

Then sort each row of M independently.

Then we learn a bilinear model according to the following cost functions and con-

straints using the re-arranged matrix M as features:

minimize
x1,x2,b

nX

i=1

max
�
1� yi(x

T
1M

ix2 + b), 0
�

subject to x1,1 � x1,2 � . . . � x1,K � 0, and

x2,2  . . .  x2,C  0,

(3.1)

where x1, x2 and b are the bilinear model parameters for the current class we are

training for, M i is the re-arranged score matrix, and yi is the class label that denotes

whether the image belongs to the current class.

Since the columns of the matrix M denote the sorted scores of all the proposals,

x1 aims to model the relationship across proposals. By enforcing positive values and

descending order on the weight, a larger weight is assigned to the proposals with a

higher score. This is based on the assumption that proposals with higher scores are

more likely to contain the object, thus, are of more importance. Similarly, since the

rows of the matrix M denote the re-ranked scores among classes, x2 aims to model

the relationship across di↵erent classes. Recall that except for the elements in the

first column of M , which is re-arranged so that it corresponds to the current class

we are training for, all the other rows are sorted in descending order. By enforcing

negative values and ascending order on x2, a more negative weight is assigned to the

classes with higher scores other than the current class, so that the more confusing
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classes are penalized. In this way, the classifier increases its ability to discriminate

among other classes.

For the optimization problem, we try to solve for the cross-proposal weight x1,

the cross-label weight x2, and the bias term b that yield the minimum summation

of hinge loss. Notice that the constraints are linear, but the loss function is not

convex with respect to x1 and x2. The non-convexity makes the problem hard to

solve. However, if we fix one of the variables and solve for the other variable and the

bias term b, the problem becomes a linear programming. In practice, we fix x2 and

solve for x1 and b first. Then, we take the optimal x2 from the previous step and

solve for x1 and b. Here, we refer to the procedure of optimizing x1, x2 and b once as

one iteration. Usually, it takes five iterations for the variables to converge. With the

optimal parameter x1, x2, and b, the bilinear classifier is defined as

f�(M) = xT
1Mx2 + b, (3.2)

where the model parameter is denoted by � = {x1, x2, b}. For the rest of the C object

classes, we follow the same procedure and learn a bilinear classifier.

3.3.3 Hard Sample Mining

In the previous subsection, we introduce the formulation of confidence-ordered

proposals and how to learn the parameters in general. However, for large-scale visual

recognition problem such as object classification, the number of training samples are

in the order of 10,000. As a result, the number of constraints and number of variables

of the linear programming problem are also very huge, which can lead to inaccurate

solutions or can even be impractical to optimize using standard linear programming

solvers. In order for the bilinear model to be feasible on larger datasets, we adopt a

hard samples mining approach that was used in [60].

Hard sample mining is motivated by the bootstrapping idea, where an initial

subset of samples are used to train a model, and then the samples that are miss-

classified or very close to the decision boundary are collected to update the model.
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For an optimization problem that uses hinge loss as in our case, only the samples

that are near the decision boundary a↵ect the total loss. Samples that are far away

from the decision boundary yields zero loss, thus having no a↵ect on the classifier.

As a result, we only need to consider those samples that are within a margin, namely

the hard samples, and discard samples that are outside the margin, namely the easy

samples, during the training phase. By solving a sequence of training problems using

a small number of hard samples, we reduce the complexity of the linear programming

in each training iteration. Since our motivation of applying hard sample mining is to

reduce the total number of samples, we also perform hard positive mining in addition

to hard negative mining. We modify the algorithm in [60] and perform hard sample

mining for the positive samples until the number of positive sampels is less than a

pre-set threshold. This e↵ectively The detailed procedure of hard sample mining is

described below:

As in [60], we define hard and easy samples of a training set D relative to the

model parameter � as follows,

H(�, D) = {hM, yi 2 D|yf�(M) < 1}. (3.3)

E(�, D) = {hM, yi 2 D|yf�(M) > 1}. (3.4)

H(�, D) represents both positive and negative samples in D that are miss-classified

or inside the margin of the classifier defined by �, while E(�, D) represents both

positive and negative samples in D that are correctly classified or outside the margin.

We start with an initial cache of samples C1 ✓ D. The cache contains at most

NP positive samples and NN negative samples. The rest of the data, which is a pool

of samples not being used for training, is denoted by S1 = D \ C1. The hard mining

algorithms iteratively solve Eq. 3.1 and updates the cache as follows:

1. Train a model �t using the samples in the current cache Ct. The parameters of

the bilinear classifier �t = {x1, x2, b} are solved iteratively until convergence as

described in Sec. 3.3.2.
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2. If H(�t, D) ✓ Ct, all the hard samples are from the current cache Ct and there

are no hard samples in St. In this case, we can not update the cache anymore

and should stop and return the current classifier �t.

3. For positive samples, if there are fewer samples than a pre-set threshold Nmin,

do nothing. Otherwise, for both positive and negative samples, remove the easy

samples from the current cache.

4. Add hard samples from the pool, H(�t, St), to the cache Ct+1 for the next

round of training. After adding hard samples, the number of positive samples

and negative samples in Ct+1 should not exceed NP and NN respectively.

5. Go back to step 1.

3.4 Experimental Results

In this section, we show the image classification results achieved by our proposed

method and compare it with several state-of-the-art approaches.

3.4.1 Datasets and Configurations

We evaluate our proposed approach on the well-known public datasets, PASCAL

Visual Object Classes Challenge (VOC) [24], which are widely used as the benchmark

to assess algorithms for object classification and provide a standardized evaluation

platform. These datasets are very challenging as it contains objects that vary signifi-

cantly in size, position, orientation and pose among images. In this chapter, PASCAL

VOC 2007 and VOC 2012 are used for the experiments. These two datasets consist

of 9,963 and 22,531 images respectively. Both of the datasets are divided into three

subsets, “train”, “val” and “test”, i.e. 25% for training, 25% for validation and 50%

for testing. In our experiments, we combine the “train” and “val” subset as training

images, referred to as “trainval” and take the “test” set as testing images (train-

val/test: 5,011/4,952 for VOC 2007 and trainval/test: 11,540/10,991 for VOC 2012).
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To measure the performance of our approach, Average Precision (AP) for each class is

employed as the evaluation metric, complying with the standard protocol of PASCAL

VOC.

Our CNN implementation is based on the open source library Ca↵e toolbox [61].

In all the experiments, we used one Nvidia GTX Titan GPU with 6GB memory for

CNN training and testing. Network-in-Network developed by Lin et al. [21] is used

as the default network pre-trained on ImageNet. When fine-tuning the pre-trained

network, the

3.4.2 Proposal-based Multi-label Object Classification

In [25] and [48], proposal-based multi-label object classification are investigated.

The general procedure is to extract a number of object proposals first. The proposals

are then fed into a shared CNN from which each proposal is assigned a confidence score

for each object class. After that, max-pooling is performed across all the proposals

for each image to get the final confidence score for every label.

In this work, we first fine-tune the Network In Network (NIN) [21] pre-trained on

ImageNet with our target dataset, i.e. VOC 2007 and VOC 2012. Then we extract

500 object proposals from each image. For the proposal extraction method, we apply

Edge Box [54] because of its computational e�ciency and high accuracy. We use

the default configuration of ↵ = 0.65 and � = 0.75 as described in the chapter. In

order to capture context information, we enlarge the proposal by extending the short

side in both directions such that the short side is as long as the long side of the

original proposal. Each proposal is fed into the fine-tuned CNN and the preliminary

classification scores from the last fully-connected layer are computed. During the

training phase, we take the preliminary scores and train the COP models for each

class. During the testing phase, we apply the COP models to the preliminary scores

of the proposals and calculate the refined confidence score.
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Comparison with max-pooling

Table 3.1 and Tab. 3.2 show the detailed comparison between simply applying

max-pooling and applying COP to the preliminary scores of the proposals on VOC

2007 and VOC 2012. The results reported here is based on the NIN ImageNet model

fined tuned with the target datasets. We extracted 500 object proposals using Edge

Box as it gives the best result. Our choice of the number of proposals is justified in

Sec. 3.4.2. From the experimental results, we can see that by replacing max-pooling

with COP, the performance has been boosted. The mAP is improved by 3.5% on VOC

2007 and 2.3% on VOC 2012. On both datasets, COP outperforms max-pooling for

every object class.

Optimal number of proposals

One of the drawbacks of proposal-based object classification is its complexity. It

requires CNN feature extraction for a large number of object proposals. In order

to take full advantage of proposal-based method, while not introducing too much

computational burden, we evaluate the performance of COP using di↵erent number

of proposals and compare them with max-pooling in Fig. 3.4.2. We can see that,

for both max-pooling and COP, the performance increases as the number of proposal

increases up to a certain point and then start to decrease. For max-pooling, mAP

starts to drop at 300 proposals, while for COP it starts to drop at 500 proposals. As

reported in [54], it requires 800 proposals to achieve 75% recall rate at Intersection of

Union (IoU) threshold of 0.7 on VOC 2007 using Edge Box. So we can expect that the

best performance is achieved with a relatively large number of proposals. We decide

to use 500 proposals in all the remaining experiments as it achieves the optimal result.

Once mAP reaches the highest point, it starts to decrease. This can be explained

by the fact that as the number of proposal gets very large, many noisy proposals

are generated. These noisy proposals do not contain the object but could have a

high confidence score by accident. Since max-pooling simply takes the maximum
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Fig. 3.2. Comparison of mAP versus di↵erent number of proposals
between COP and max-pooling on VOC 2007

confidence score among all proposals, it is more vulnerable to noisy proposals. The

mAP using max-pooling at 1000 proposals is 1% lower than the maximum mAP. Our

method, on the other hand, takes advantage of all the proposals and learn a weight

to adjust their relative importance. The mAP using COP at 1000 proposals is only

0.3% lower than the maximum mAP. The lower drop at 1000 proposals shows that

COP is more robust to noisy proposals.
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3.4.3 Combining COP with HCP

As stated in the previous subsection, COP can boost the performance of proposal-

based object classification. To see the limit of COP, we apply COP to the best

proposal-based object classification method Hypotheses-CNN-Pooling (HCP) [25].

We follow the same procedure described in [25] to generate the preliminary classifi-

cation score of every proposal.

The training phase of HCP starts with fine-tuning a pre-trained ImageNet model

with the target dataset. In this step,a C-dimensional classification score, where C

is the number of classes of the target dataset, is generated. This step is referred

to as image fine-tuning (IFT) as whole images are used for fine-tuning. Then 500

object proposals (referred to as hypotheses in [25]) are extracted. Instead of using

BING [57] for proposal extraction, we use Edge Box [54]. The proposals are clustered

into ten clusters based on the normalized cut algorithm [62] and only the highest

scoring proposals from the each of the ten clusters are selected as the representative

and used for the training stage. The ten representative proposals are then used for

another round of fine-tuning called hypotheses fine-tuning (HFT). The output of the

HFT model is also a C-dimensional vector that represents the classification scores

of every class of the target dataset. The hypotheses fine-tuned model is more data-

specific to the hypotheses and is shown to perform better than the image fine-tuned

model in [25].

We then apply this HFT model to generate a preliminary classification score for

each proposal. The output of the last fully-connected layer of the HFT model are

rearranged as described in Sec. 4.3 and used for the training and testing of our COP

model. The images that have the highest and lowest five scores are shown in Fig. 3.3

and Fig. 3.4. In the next section, we will show the detailed classification result of

COP-HCP and compare it with the state-of-the-art.
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Fig. 3.3. The images from the first ten classes that have the highest
(green) and lowest scores (red)
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Fig. 3.4. The images from the second ten classes that have the highest
(green) and lowest scores (red)
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3.4.4 Comparison with State-of-the-art Performance

Image classification on VOC 2007. In Tab. 3.3, we compare the experimental

results between several existing solutions with our proposed method on VOC 2007.

The results in the upper part [36,37,40,41,63] of Tab. 3.3 are based on hand-crafted

features and are trained without any extra data. The results in the middle part

[25, 44–46, 64] are based on CNN, which all utilize additional training images from

ImageNet during the pre-training process. In the lower part of the table, we show

the results of HCP boosted with COP. We tested our approach with HCP based on

di↵erent pre-trained ImageNet models, e.g. NIN [21], NIN2000 (NIN trained with an

additional 1000 ImageNet classes), and VGG [45].

From the experimental results, we can see that methods that are based on CNN

and trained with extra data consistently perform better than methods based on hand-

crafted features. The method introduced by Razavian et al. [46] simply applies the

features extracted by a CNN pre-trained on ImageNet and trained a linear SVM

for classification. Since it directly use a pre-trained CNN and do not fine-tune the

network, it is considered as the baseline of CNN-based method. The mAP achieved

by the baseline method is 73.9%, which improves the best methods that are based on

hand-crafted feature by 2.6%.

The current state-of-the-art result is reported by Wei et al. in [25] (HCP-VGG).

They make use of the publicly available 16-layer VGG model [45] as their pre-trained

model and applied their Hypotheses-CNN-Pooling pipeline using 500 object propos-

als for testing. As can been seen from the table, if we apply Confidence-Ordered

Proposals on top of HCP-VGG (COP-HCP-VGG), we surpass the current state-of-

the-art by 1.9% and achieve mAP of 92.0%. COP-HCP-VGG outperforms other

methods, including previous methods and variants of our methods in 15 out of 20

object classes. Significant improvement is achieved on some of the poorly performing

class, i.e. “chair”, “table”, and “sofa” compared with previous methods.
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In the lower part of the table, we report the COP-HCP performance based on

di↵erent pre-trained models. We should note that with a better model, mAP can be

improved by up to 2.6%.

Image classification on VOC 2012. In Tab. 3.4, we compare the experimental

results between several existing solutions with our proposed method on VOC 2012.

Among all existing methods shown in Tab. 3.4, only NUS [65] is based on hand-

crafted features. The other methods shown in the middle part [25, 45, 48, 64, 66] are

all based on CNN that use ImageNet as extra data when pre-training the model. The

results that we report are given by building COP on top of HCP. As with VOC 2007,

we test our approach with HCP based on di↵erent pre-trained models, e.g. NIN,

NIN2000, and VGG.

Our best result is achieved by COP-HCP-VGG, which builds COP on top of HCP

pre-trained on VGG. It surpasses the current state-of-the-art classification result of

90.1% reported in [25] by 1%. Among all 20 object classes, our method outperforms

others in 15 of them. We can also see from Tab. 3.4 that the mAP on VOC 2012

is boosted from 87.9% to 91.1% as we replace NIN with VGG, implying that with a

better pre-trained model, the classification results can be further improved.

3.5 Aesthetic Attributes Learning

In Chapter 2, we investigate the problem of aesthetic quality evaluation. We

showed that our approach is able to di↵erentiate among high-quality and low-quality

images. Despite the promising result, when looking at the prediction result, one may

always argue that he/she does not like the image aesthetically. This is natural as

aesthetic quality is a very subjective measure. Motivated by this drawback, we try

to learn a mid-level features that describe the aesthetic attributes of images. The

attributes are well defined such that a person can answer a yes/no question to tell

whether the image has this attribute or not. The following list shows some example

attributes that describe the aesthetic quality of images.
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• high depth-of-field, low depth-of-field, over-exposure, under-exposure, vibrant

color, good lighting, rule-of-thirds, big contrast, out-of-focus, blurry, sharp,

good composition, nice perspective

The problem of assigning aesthetic attribues to an image can be formulated as

a multi-label image classification problem, as one image may have several di↵erent

characteristics. The most common way for multi-label classification is to train a

separate binary classifier for each class and evaluate the performance on for each

class. We argue that high-level concept such as aesthetic quality may be determined

by a combination of information throughout the entire image, rather than a single

patch in the image. So we propose to extract features from local patches throughout

the whole image. Then it is very natural to apply COP to the problem of attributes

learning.

3.5.1 Image Representation

For aesthetic attributes, some attributes such ‘blurry’, ‘high depth-of-field’ are

encoded in the edge distribution, while other attributes such as ‘vibrant color’ and

‘over exposure’ are embedded in the color information. So we need to consider both

structure and color of images when designing the image representation. As in [37], we

propose to use SIFT for structural feature and color statistics for color feature. The

image descriptors are densely computed for every patch followed by spatial pooling

using Fisher Vector.

3.5.2 Applying COP to Aesthetic Attributes Learning

Before training a COP model, we need a base classifier that gives a preliminary

classification result. We use SIFT + FV combined with colors statistics + FV [5] as

the image representation. Both SIFT and color statistics are extracted from the entire

image. We then train a binary linear SVM for every attribute using the combined

features.
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In the next step, instead of generating a set of region proposals as in the original

COP. We simply extract overlapping windows throughout the entire image. This is

because the aesthetic attributes are not necessarily related to object proposals as in

the case of object classification, but are rather likely to be encoded in the information

throughout the entire image.

3.5.3 Dataset

The dataset we use for aesthetic attributes learning is called AVA [67]. It contains

mostly artistic photos taken by photography enthusiasts. Following Marchesotti et

al. [68], we pick the top five beautiful attributes and top five ugly attributes that are

learned from the comments on the photos. The 10 attributes for classification are

then:

• Beautiful attributes: nice colors, beautiful scene, nice perspective, big con-

grats, so cute

• Ugly attributes: too small, distracting background, snap shot, snap shot, bad

focus

3.5.4 Experimental Results

For the base classifier, we train a binary SVM for each aesthetic attribute using

SIFT + FV combined with color statistics. Dense SIFT and color statistics are

computed for local patches of size 32⇥32 regularly every 8 pixels. To apply confidence

ordered proposal to this problem, we predict the preliminary score for all 10 attributes

for all 64⇥ 64 windows that overlap by 16 pixels through the entire image.

In Table 3.5, we show the Area under Curve (AUC) for both the base classifier

and the enhaced classifier with COP. It can be seen that COP is able to learn the

relative confidence of di↵erent regions and the mutual relationship between di↵erent
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aesthetic attribute classes. As is the case for object classification, applying COP helps

improve over the preliminary classification results for whole images.

3.6 Conclusion

In this chapter, we introduced a general method to improve the performance of

proposal-based multi-label object classification. The raw confidence score of each

proposal is rearranged to emphasis the relative importance of proposals with higher

scores. By learning the cross-proposal and cross-label relationship from the confidence-

ordered proposals, . This method can be applied to any proposal-based object clas-

sification framework. From the experimental results on the two benchmark datasets

VOC 2007 and VOC 2012, we proved that our proposed method consistently out-

performs existing proposal-based method that simply uses max-pooling. By utiliz-

ing the best proposal-based multi-label object classification framework Hypothesis-

CNN-Pooling, our method achieves the state-of-the-art classification results on both

datasets. We also gave a very brief introduction of out current project, where we

try to learn a set of aesthetic attributes for a more objective way of aesthetic quality

evaluation.
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Table 3.5.
AUC for the base classifier and COP refined classifier for the 10 aesthetic attributes

nice

colors

beautiful

scene

nice

perspective

big

congrats

so

cute

Base

classifier
0.63 0.62 0.59 0.58 0.58

COP 0.65 0.63 0.59 0.61 0.60

too

small

distracting

background

snap

shot

very

dark

bad

focus

Base

classifier
0.59 0.59 0.58 0.56 0.57

COP 0.60 0.59 0.60 0.59 0.58
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4. LEARNING DEEP FEATURES FOR IMAGE

EMOTION CLASSIFICATION

4.1 Introduction

In recent years, with the help of modern social media, millions of images are posted

online everyday. People use these images to share life events and express emotions.

Having the huge image collections, it is tempting to ask: what can we learn from the

images? More specifically, we need to infer both the explicit topic, objects, and the

implicit topic, emotions, that are presented in the images. Meaningful solutions to

the above problems can help to better understand the people and provide customized

services for each individual.

To answer the first question, it involves solving object recognition tasks such as

object classification, object detection, and object segmentation, which all have objec-

tive criteria and are straightforward to answer by human being. In fact, algorithms

in these fields are already very mature now. The best object classification system

so far can achieve comparable performance to human being on a benchmark dataset

ImageNet [19].

The second question has not drawn much attention yet, while it can actually be

harder than object recognition in the sense that it is defined in a more subjective

and abstract level. Image emotion understanding aims to classify or retrieve images

based on the pre-defined emotion category. Figure 4.1 shows example images of four

categories from a public dataset ArtPhoto. For human being, it is probably not too

complicated to classify the images into di↵erent emotion categories from the content

and style of the images. However, there is no straightforward way to describe the

emotions conveyed by the images for machine.
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In this chapter, we explore a computational approach to recognize images of di↵er-

ent emotions by applying some of the latest advancements in deep learning. The rest

of this chapter is organized as follows. We describe our deep learning-based image

emotion classification approach in Sec. 4.3. In Sec. 4.4, the dataset for evaluation

and experimental results are shown. Finally, we draw a conclusion in Sec. 5.8.

4.2 Related Work

A lot of the early work in emotion understanding focused on designing hand-

crafted features based on psychology and art theory. Joshi et al. [69] suggested that

emotions are highly related to aesthetics, and using features for aesthetic analysis such

as compositions, emphasis, and depth of field can help emotion prediction. In [69–73],

low-level features such as color and texture, and high level attributes such as human

face are extracted for image emotion understanding. Zhao et al. [74] explored the use

of principles-of-art based features and showed improved result. The disadvantage of

hand-crafted features is that they are designed based on observations and common

sense. It is very likely that there are some other factors we are not aware of that

are also important. Zhao et al. [75] applied generic image descriptors such as GIST

and Histogram of Oriented Gradients (HOG) combined with hand-crafted features

finding that they are more robust than hand-crafted features and can generalize well

to emotion based image retrieval.

Despite the success of hand-crafted features and generic image descriptors, recent

development in convolutional neural network (CNN) has demonstrated great success

of automatically learned features. The best object classification system on ImageNet

[19], a benchmark dataset with millions of images of 1000 object classes, is based on

CNN. Razavian [46] showed that the features directly extracted from a CNN trained

on ImageNet can produce superior results compared to some state-of-the-art systems

on a variety of visual recognition tasks such as scene recognition and image retrieval.

Karayev et al. [76] also applied CNN features to recognize image style without any
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Amusement Anger

Excitement Sadness

Fig. 4.1. Example of sample images of four emotion categories from ArtPhoto.

knowledge of the data and task and achieved results that are comparable to human

performance.

All the above examples show that CNN can be used as an o↵-the-shelf tool for

feature extraction. Motivated by the great potential, we explore a deep learning-

based approach for image emotion classification. Instead of designing the features

manually as in previous approaches, we use a CNN that automatically learn the

image representations through multiple convolutional and fully-connected layers. We

extract o↵-the-shelf CNN features from a pre-trained network [20] to perform image

emotion classification. We also show that with fine-tuning and local patch feature

pooling using Fisher Vector, we can make the features data-specific and task-specific.

The pooled features are then applied to classify image emotions.

4.3 The proposed approach

In this section, we introduce two CNN-based methods for image emotion clas-

sification. One method directly uses CNN features from a pre-trained network for

classification. The other method aggregates both global and local information by

extracting CNN features of the whole image and local patches on multiple scale level.
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4.3.1 O↵-the-shelf CNN features

As shown in [46], the image features extracted directly from a CNN that was

pre-trained on a large dataset such as ImageNet can be used as a powerful image

descriptor for visual recognition in general. We take the ImageNet model trained

by [20] (AlexNet) without any fine-tuning. Then we extract features from the last

fully-connected layer (referred to as fc7 in [20]) using the open-source deep learning

library Ca↵e [61]. The network takes an RGB image of any size, resizes it to 256⇥256,

and outputs a 4096-dimensional feature. The feature vector is L2 normalized before

training for the classifier. For each emotion category, we train a one-vs-all linear

SVM of the form in Equation 5.2, where yi is the label and xi is the 4096-dimensional

feature.

min
w,b

1

2
||w||2 + C

X

i

max
�
1� yi(w

Txi + b), 0
�

(4.1)

Using o↵-the-shelf CNN features is an easy way for image emotion classification as

it doesn’t require any knowledge of the task. However, as the original network was

trained for single object classification, it is likely to response higher on object type

of images. A discussion of the type of images that this method tend to classify as

positive samples are presented in Sec. 4.4.4.

4.3.2 CNN features with multi-scale pooling

The previous method uses features that was originally learned for object classifi-

cation. A normal way to improve on that is to fine-tune the network. We start with

the parameters of AlexNet and re-train the network to fit the target dataset. More

details of fine-tuning can be found in [46].

Intuitively, we expect that emotions of images are implied from both the global

geometric structure and the summary of fine-grained local details over the entire

image. So simply applying CNN on the entire image is very likely to miss some

discriminating information. In order to account for the fine-grained details, we extract
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features for local patches at multiple scales similar to [50]. First, every image is resized

to 256⇥256. We extract the 4096-dimensional features from the resized image using

the fine-tuned CNN on four scales, i.e. 256⇥256, 128⇥128, 64⇥64, and 32⇥32. Each

patch is cropped at a step size of 32 pixels over the entire image. The first level has a

4096-dimensional feature corresponding to the full image, while the others have one

4096-dimensional feature for each patch. These patches are supposed to contain more

fine-grained local details than the full image.

Except for the first level, which contains only the full image, we need to aggregate

the 4096-dimensional features of all the patches to form a single representation. Here,

we compute the Improved Fisher Vector (IFV) [37] at each level. A Gaussian Mixture

Model (GMM) of K mixtures is first estimated. The first and second order di↵erences

between the features and the mean of the Gaussian mixtures are accumulated for each

dimension of the feature. IFV has proven to be more powerful than the feature pooling

method used in [50] Vectors of Locally Aggregated Descriptors (VLAD) as VLAD only

encodes first order di↵erences. The fisher vector has a very high dimensionality of

2K ⇥ 4096. We perform Principal Component Analysis (PCA) on the fisher vector

and reduce the dimensionality to 4096. Now we have a 4096-dimensional vector for

each scale. Concatenating them together gives us the final image representation for

classification. Figure 4.2 is an illustration of the multi-scale pooling scheme.

Fig. 4.2. Illustration of the multi-scale pooling scheme
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4.4 Experimental Results

4.4.1 Dataset

ArtPhoto. We performed experiments on ArtPhoto [71], a public dataset for

image emotion classification. This dataset consists of 806 images downloaded from

an art sharing website. Each image is categorized into one of the eight emotion

classes: Anger, Disgust, Fear, Sadness, Amusement, Awe, Contentment, and Excite-

ment. The distribution of the emotion classes of this dataset is shown in Tab. 4.1. We

separated the dataset into training and testing images using 5-fold cross validation as

described in [71]. The number of images for each class are approximately the same

across all 5-folds.

FlickrEmotion. The size of ArtPhoto is relatively small compared to other datasets

that has seen the success of deep learning. So we created a new dataset called Flick-

rEmotion by ourselves. This dataset contains 11,575 images downloaded from Flickr.

The images are acquired by searching the eight emotion classes in ArtPhoto. The

number of images for each class is shown in Tab. 4.1. For each class, the images are

divided into two halves for training and testing. In total, there are 5,786 training

images and 5,789 images, respectively.

Table 4.1.
The numbers of images per emotion class for ArtPhoto and FlickrEmotion.

Dataset Amusement Anger Awe Contentment Disgust Excitement Fear Sadness Total

ArtPhoto 101 77 102 70 70 105 115 166 806

FlickrEmotion 1,429 1,452 1,470 1,490 1,425 1,393 1,462 1,454 11,575

4.4.2 Evaluation Metric

As in [71], we use average true positive rate to evaluate the e↵ectiveness of our

proposed approach. This makes it easy for us to compare with state-of-the-art result.
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For each class, the true positive rate is averaged over the positive and negative sam-

ples. This procedure is independent of the number of positive and negative samples.

4.4.3 Baseline Method

Shallow Features + SVM. We define a baseline method for the comparison

of emotion classification. The features are referred to as shallow features as opposed

to the features extracted from the deep convolutional neural network. We compute

color histogram, GIST and SIFT as in [5, 77]. Suggested by Joshi [69], we also used

aesthetic related features [73, 78, 79]. The features are normalized before training a

linear SVM with the same procedure as that in Sec. 4.3.1.

4.4.4 Image Emotion Classification

For the experiments, we follow the procedures described in Sec. 4.3. Due to the

di↵erence in data size, we applied slightly di↵erent parameters for the two datasets.

As ArtPhoto is a very small dataset, when fine-tuning the CNN, it requires a smaller

learning rate than FlickrEmotion. The number of GMM mixtures is set to 64 for

ArtPhoto and 256 for FlickrEmotion. When performing PCA before computing the

Fisher Vector, the dimensionality of the 4096-dimensional features is first reduced to

400. For the classifier, the best SVM parameters C for all experiments are determined

by 5-fold cross validation on the training set.

Figure 4.3 compares the performance of our baseline method, two proposed meth-

ods, and the state-of-the-start result produced by Zhao et al. [74] on ArtPhoto. We

can see that, CNN-based methods performed better than previous approach based

on hand-crafted and generic features for every emotion category. After fine-tuning

and applying multi-scale feature pooling, a consistent gain of 1% is achieved over

o↵-the-shelf-CNN features. The improvement from o↵-the-shelf CNN to multi-scale

CNN is not very significant. This is probably due to the fact that when the data
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is far from enough as it is for ArtPhoto, a deep network provides too much degree

of freedom. Fine-tuning a CNN can easily over fit the training set even with a low

learning rate and regularization techniques.

Fig. 4.3. Performance of our proposed methods on ArtPhoto for each
image emotion class compared with Zhao [74]

The comparison between the baseline method with our proposed methods on the

larger dataset FlickrEmotion is shown in Fig. 4.4. Since the baseline method achieved

comparable result to Zhao’s method on ArtPhoto, we consider it as a good indicator

of how well the proposed methods compare with previous work. From the chart, we

can see that CNN-based methods outperform previous approach. Multi-scale CNN

surpasses over o↵-the-shelf CNN by around 5%. In this case, we see that a large

dataset really helps to improve the fine-tuned model used in multi-scale CNN.

In Fig. 4.5, we show the top two images classified as positive samples using

o↵-the-shelf CNN features on FlickrEmotion. The results are generally accurate and

match our expectation. Interestingly, we notice that a large portion of the top samples

contain people. On one hand, many photos in the database indeed contain people and

other objects. On the other hand, as mentioned in Sec. 4.3.1, the pre-trained model

that we adopt are originally used for object classification, which means it is sensitive

to object type of features that characterize the emotion categories, e.g. human with

widely opened mouth characterizes anger, a specific type of insects looks disgusting
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by nature. This is also consistent with our assumption that taking the full image as

input tend to capture global geometric layout such as shape and structures.

Fig. 4.4. Comparison between the baseline method and our proposed
methods on FlickrEmotion

Fig. 4.5. Top two images for each class using o↵-the-shelf CNN features

To demonstrate the e↵ect that features from local patches has on the types of

images recognized, we show the top two images classified as positive samples using

multi-scale CNN features. As can be seen in Fig. 4.6, more scene type of images are

returned. The results from multi-CNN Image emotions are more aligned with our
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definition of emotions. This suggests that abstract concepts such as emotions is the

joint e↵ect of concrete attributes such as objects and scenes.

Fig. 4.6. Top two images for each class using multi-scale CNN features

4.5 Conclusion

In this chapter, we addressed the issue of image emotion analysis using a deep

learning-based approach. Two methods for image emotion classification were ex-

plored. The first method used o↵-the-shelf CNN features on full image to capture

global features. The second method extracted features locally followed by feature

pooling using the Fisher Vector. Experiments were conducted to compare our ap-

proach with the state-of-the-art. It was shown that our approach outperforms existing

methods that are based on hand-crafted features and generic features.

Considering the popularity of social network nowadays, a possible direction for

future work is to consider image emotions in the context of social media, where textual

information and the interaction between people can be taken into consideration.
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5. PERSON DETECTION AND RECOGNITION IN

NATURAL SETTINGS

5.1 Introduction

Person detection and recognition is one of the fundamental problems in image

understanding. Knowing the location and identity of persons in the image leads to a

lot of everyday applications. On social network and online media, detecting persons

and tagging the identity has become a convenient way to share memories and organize

the photos. In shopping mall and other public area, detecting and recognizing persons

from surveillance cameras is an essential approach to automate applications in public

safety. In a home/o�ce environment, knowing the presence of persons can help energy

harvesting, customized services, and anomaly detection.

However, detecting and recognizing persons in natural settings is a challenging

task. Due to the unconstrained environment and the long time span, people can have

di↵erent pose, wear di↵erent clothes, and undergo various lighting conditions and

occlusions.

In this chapter, we investigate person detection and recognition as a whole sys-

tem for home/o�ce environment in a less constrained setting, where images contain

person that have di↵erent pose, viewpoints from multiple days. We propose the use

of head region instead of face or full body for person detection. We show that we

can both reliably detect the person and extract powerful features that are mostly

invariant to time and help with the recognition stage. To verify our person detec-

tion and recognition system, we collect ground truth annotation of head bounding

boxes and identities for a TV series Modern Family. With the collected dataset, we

investigate several use case of person detection and recognition system in home/o�ce

environment: person recognition with fully labeled data, unsupervised person clus-
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tering, interactive person recognition with minimum annotation, and semi-supervised

interactive person recognition. We propose algorithms to handle di↵erent scenarios

and show the e↵ectiveness of the overall system.

5.2 Related Work

Person detection and recognition, have been studied for a long time. In the bulk

of previous work, person detection and recognition have been mostly treated as two

separate problems, each of which has seen great progress in recent years.

Person detection is a vague term as it does not specify what body part is detected.

In a lot of previous research, person detection is phrased as face detection or full

body detection. Viola-Jones [80] is the textbook face detector that uses Haar feature-

based cascade classifiers. This face detector is very fast, but only gives moderate

detection performance. Later generic object detector based on the Deformable Parts

Model (DPM) [60] has been proved to be e↵ective for both face detection and body

detection [81]. DPM models the the object by the appearance and deformation. Here,

the appearance for the whole object and each part is represented by the Histogram

of Oriented Gradient (HOG) [34]. The deformation calculates the deviation of parts

from its ideal location relative the root. The training process will optimize the cost

defined by appearance response subtracting the deformation cost at di↵erent location

and scales. Recent progress in deep learning based approaches such as R-CNN [49],

Fast R-CNN [82], and Faster R-CNN [83] have improved the performance of human

body detection and face detection by a large margin. While it is required that frontal

face, or at least a large portion of the frontal face is visible for face detection, body

detection is more robust to di↵erent pose and viewpoints.

Similar to person detection, the main e↵ort towards person recognition is on face

recognition. This research field has seen great progress in the last few decades from the

ones using had-crafted features [84], to more deep learning based system such as [85].

Schro↵ et al. [86] use large scale proprietary data to train a network with triplet
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loss. Parkih et al. [87] also use triplet loss to learn an embedding of face features.

These existing work mostly focus on frontal face images with little occlusion. All the

above-mentioned face recognition systems more or less require face alignment as a

preprocessing step.

Person detection and recognition have also been framed in the context of naming

characters in TV series. The majority of this branch of work use multiple cues to

recognize the persons. In [88] visual information from face and clothing appearance

and textual information from the subtitles are aligned to help recognizing characters.

Tapaswi et al. [89] models each episode as a Markov Random Field, integrating face

and clothing appearance, speaker recognition and contextual constraints in a proba-

bilistic model. In [89], face descriptors and multiple instance learning is applied and

it is demonstrated that only using subtitles can give good results.

A closely related research area to person recognition is person re-identification [90].

In this setting, the same person is captured by cameras at di↵erent location and

di↵erent time of the day. The task is to identify the person captured by one camera

given a set of images captured by other cameras. It is expected that people across

di↵erent time of the day and di↵erent location wear the same clothes. Before the rise of

deep learning, existing work focus on metric learning [91] and mid-level representation

learning [92, 93]. Most recent work [94] have been trying to learn similarity metric

through deep network using pairs of images captured from di↵erent cameras.

Recently, a dataset Person in Photo Albums (PIPA) [95] is released to help with

the research in person recognition in a less constrained environment. Unlike previous

research on face detection and face recognition. This work investigated the case where

the frontal face is not necessarily visible. The PIPA dataset that they published

contains images from every day life from thousands of persons. The author proposed

an approach based on combining face recognition model and classifiers for several

poselets and reported 83% accuracy for person recognition. Achieving such a high

accuracy on a what seems to be a very sceptical. A follow up paper by Oh et al. [96]

investigate the flaws in the experiment protocol and found that images from the same



62

day where people could be wearing the same clothes or even having nearly identical

poses are split across the training and testing set, which explains the overly high

performance. They propose to split the training and testing set according to albums

or time of the day so that person recognition can be evaluated in a more realistic

manner.

The datasets for face detection, face recognition, person re-identification and per-

son recognition in general are di↵erent. The visible body parts, image quality, cloth-

ing type, and pose are all di↵erent depending on the specific tasks. A more detailed

review of all the di↵erences will be given in 5.5.1.

5.3 Person detection

A person detector is a system that generates a rectangular bounding box sur-

rounding a person whenever a person occurs in the image. It can be applied simply

for knowing the location of the person, or for presence detection where we would like

to know how many persons there are in the scene. In our scenario, person detection

serves as the front-end of a person recognition pipeline. In order for the following

recognition engine to perform well, the detector needs to generate as many tight

bounding boxes as possible, while avoiding false detections. A good detector can be

crucial for the overall performance of the detection and recognition system.

There are two main criteria when developing the person detector. The first cri-

terion is that the body part should be reliably detected in home/o�ce environment.

The second criterion is that the detected body part should be e↵ective for the latter

recognition stage, which means it should focus on the core features of a person and

be invariant to time, pose, and lighting conditions. Intuitively, human being recog-

nize people largely from the facial feature. But in many real case scenarios such as

smart home/o�ce applications, the frontal face is not necessarily available and only

the side view or even the back view is visible. Face detection will certainly miss

a large number of persons. An alternative body part to face for person detection
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is human body. For most benchmark body detection datasets [24, 97], the training

data contains images of a large variety of body pose, which makes body detection

robust in home/o�ce environment. However, since people can change their clothing

in home/o�ce environment from time to time, extracting features from the full body

may capture too much information that are not invariant to time. This can lead to

severe overfitting and very pool generalization performance.

5.3.1 Head Detection using Faster R-CNN

Since neither face detection nor human body detection satisfies the two criteria for

our application, a di↵erent body part is needed for robust detection and recognition.

We propose the use of a less widely explored body part: head for detection and the

following recognition task. By definition, head can be either frontal view, side view

or even back view. In addition, most part of the head region remains unchanged from

day to day as in the case of face. It also captures some contextual information like

hairstyle, hair color that can help recognizing di↵erent people.

To train the head detector, we apply a state-of-the-art object detection framework

Faster R-CNN [83]. Unlike previous detection framework such as R-CNN [49] and

Fast R-CNN [82] that are composed of three separate stages, i.e. proposal extraction,

proposal classification, and bounding box regression, Faster R-CNN is an end-to-

end deep convolutional neural network that combines all three stages into a single

network. The network takes image as input and predict the class of region proposals.

Unlike region proposals in R-CNN and Fast R-CNN that are generated by traditional

methods such as Selective Search [58] and EdgeBox [54], the region proposals in

Faster R-CNN are generated by a branch out sub-network called Region Proposal

Network (RPN). This sub-network shares the first few convolutional layers of the

main detection network as described in Fast R-CNN that mostly look at edge and

blob-like low-level features and can thus save a lot of computation. During training, it

jointly minimizes the classification loss of the region proposals generated by RPN and
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Table 5.1.
Statistics of PIPA dataset

Split All Train Val Test Leftover

Photos 37,107 17,000 5,684 7,868 6,555

Albums 1,438 579 342 357 160

Instances 63,188 29,223 9,642 12,886 11,437

Identities 2,356 1,409 366 581 -

Avg/identity 26.82 20.74 26.34 22.18 -

Min/identity 5 10 5 10 -

Max/identity 2,928 99 99 99 -

the distance between the region proposals with the ground truth bounding box. We

refer readers to the original Faster R-CNN paper [83] for a more detailed description

of the algorithm.

The dataset we use to train the head detector is Person in Photo Albums (PIPA)

[95]. All the images are crawled from Flickr and are annotated with head bounding

boxes. Here we use the ground truth head bounding box annotation to train the head

detector.

Table 5.2 shows the training time, test time, and mean average precision (mAP)

of the head detector using two di↵erent pre-trained network on PIPA. We can see

that with a better pre-trained network, i.e. VGG16, the detection improves by 2.1%

over ZF net.

Table 5.2.
Training and testing results of head detection

ZF VGG16

Training time (hr) 10 22

Test time (ms) 59 198

mAP (%) 67.6 69.7
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In Fig. 5.1, we show some head detection results with the model pre-trained on

VGG16. It can be seen that the head detector is able to draw a tight bounding box

around the head for frontal view, side view, and back view. The head detector can

also handle di↵erent lighting conditions.

Fig. 5.1. Head detection results with the model pre-trained on VGG16
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5.4 Person Feature Representation

As proposed in Sec. 5.3, we detect head instead of face or body for the person

detection task. Features in the head region will then be extracted as the person

representation and fed into the recognition system. Recent progress in deep learning

[20–22, 44, 45] has shown that, the features learned from the deep network can be

easily transferred to other applications that are di↵erent from the original tasks. This

means that for person recognition, without the need to collect a large-scale person

recognition datasets in home/o�ce environment, we can fully utilize available public

datasets. Training on these external datasets can help learn a powerful head features

that can discriminate between di↵erent identities even in home/o�ce environment

that the model has never seen.

5.4.1 Data Cleaning

The dataset we use for training robust head features is called MS-Celeb [98]. This

dataset contains images of around 100,000 identities, each containing images ranging

from tens to several hundred. The public version of the dataset is essentially raw

images crawled from the internet by search queries without any data clean up. The

noisiness of the dataset is twofold. On the one hand, unlike other datasets such as

CASIA-WebFace [99] and MegaFace [100] that are mostly clean frontal face images,

MS-Celeb contains more side views and extreme pose images that adds to the variety

of training images. On the other hand, as shown in Fig. 5.2(a) some of the identities

are too noisy that they contain images from a number of di↵erent people, other

identities are confused with fictional characters and are overwhelmed with images

that are not real human as shown in Fig. 5.2(b).

In order to not confuse the learning process, we need to filter out the noisy portion

of the dataset and only train on identities that are relatively cleaner. We use a

proprietary method developed at HP Labs to select the clean identities and perform

head detection using the previously trained detector.
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(a) Identities that contain multiple person (b) Identities that are not real human

Fig. 5.2. Sample images from the MS-Celeb dataset.

5.4.2 Training Robust Head Features

Now that the detected head regions for the chosen 10,000 identities are available,

we can start training the head model. We adopt the AlexNet architecture proposed

in [20]. AlexNet contains five convolution layers and three fully connected layers.

Each convolution layer is followed by a max-pooling layer and ReLu layer. The first

two fully-connected layers (fc6 and fc7) are of dimension 4096. Both fc6 and fc7

are followed by a dropout layer where each neuron is randomly disabled at a fixed

probability in each iteration. The last fully-connected layer along with its following

softmax layer has dimension of 10, 000 which is the same as the number of identities.

For the cost function, we use the cross-entropy loss, which has the form:

L(ŷ, y) = �
KX

k=1

yk log ŷk = � log ŷy=1, (5.1)

where the first equation is the definition of cross-entropy, and the second equality

simplifies the expression because the true distribution in classification settings are

usually assumed to have probability of 0 on the wrong elements, and probability of 1

on the single correct element, whose integer index is denoted as y = 1.

The dataset is divided into a training set which contains 80% of the images and a

testing set which contains 20% of the images. During training, the images are scaled
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to 256⇥ 256 and randomly cropped to 227⇥ 227, which is the input dimension of the

network structure. At test time, we use one scale testing by keeping the input size

to 227 ⇥ 227 as opposed to the multi-scale testing scheme where the predictions of

several randomly cropped 227⇥ 227 images from the 256⇥ 256 image are averaged.

We run stochastic gradient descent with momentum for the optimization process.

Four Titan X GPUs are used to train the model. On each GPU, the batch size is

32, making the e↵ective batch size 128. The base learning rate is set to 0.01 and is

multiplied by 0.1 every 300,000 iterations, which corresponds to around 200 epochs.

Momentum is set to 0.9. Dropout ratio is fixed at 0.5.

Figure 5.3 shows the training loss and testing accuracy with respect to the number

of iterations. After a slow start, the test accuracy gradually converges at 66%. It

further increases starting at 300,000 when the learning rate is decreased to 0.001

and reaches a maximum of 87.4%. It took about 30 hours to converge to the final

accuracy.

Fig. 5.3. Training loss and test accuracy with respect to the number
of iterations for head model training
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We should note that both training the head model and extracting features do not

require any alignment as is in the case for most face recognition systems.

5.5 Dataset for Person Detection and Recognition System

5.5.1 Public Dataset for Person Detection and Recognition

To validate our person detection and recognition pipeline, we need a dataset that

contain images similar to our home/o�ce settings. In the research community of

person detection and recognition, most of the e↵ort has been on face detection and

recognition. AFW [101] and FDDB [102] are two datasets for face detection. LFW

[103] was one of the most popular benchmark dataset for face identification. Most

recently, CASIA-WebFace [99], and MegaFace [100] are made open to the public

where millions of images from hundreds of thousands of identities are available for

training face recognition models. Figure 5.4 shows some sample images from those

public face datasets. However, as the name implies, face datasets mostly contain

images of frontal faces, which is a much more constrained setting than our use case

where there is a large variety in head pose.

Another research area related to person recognition is person re-identification.

An illustration of person re-identification is shown in Fig. 5.5. The same person is

captured by di↵erent surveillance cameras at di↵erent time of the day and the task is

to retrieve the same person from the gallery set captured by one camera given a query

image captured by another camera. There are also a few public datasets for person

re-identification. The images in earlier datasets such as VIPeR [104] and CUHK01

[91] are captured by two cameras and each person has exactly one image from each

camera. Recent large scale datasets such as CUHK02 [91] and CUHK03 [93] have

images captured with more than two cameras. Person re-identification originates from

video surveillance applications where all the persons are of very low resolution. Since

the face are barely seen clearly, most approaches utilize the clothing information to

recognize persons. While the clothing of a person remains unchanged across cameras
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in a person re-identification task, this assumption is not necessarily valid for smart

home/o�ce applications as we want to recognize persons on di↵erent days. The

persons are expected to wear totally di↵erent clothes and the visual appearance of

the clothing can vary a lot.

Fig. 5.4. Sample images from LFW dataset

5.5.2 Collecting Annotation for TV Series

Since there is not a public dataset that quite matches our use case, it motivates

us to collect our own dataset. We purchased a popular sitcom Modern Family and

label the person bounding boxes and identities for the first three of the 25-minute

episodes of Series 1. The reason for choosing this TV series is that the setting is

highly similar to our use case in home/o�ce applications. Modern Family contains

mostly scenes in a home environment where the characters are doing what people

would do in everyday life: cooking, talking with each other, playing and so forth.

The characters are not necessarily looking towards the camera, which means there is
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(a) Images from VIPeR dataset. The upper row shows images from

one camera and the lower row shows images from the second camera

(b) Images from CUHK01

dataset

Fig. 5.5. Sample images from person re-identification dataset.

a large variety of head pose. Since there are multiple episodes, the clothing of the

characters and the lighting conditions change from time to time.

There are ten main characters and a number of other people in the TV show.

Figure 5.6 shows a group photo of all the main characters in Modern Family. The main

characters are of di↵erent gender, ages and hairstyle. For all but the main characters,

they are treated the same as a joint class of “unknown” person. As discussed in

Sec. 5.3, we suggest that head is the most e↵ective region for person detection in

an unconstrained setting. It is not only more to di↵erent clothing invariant than

human body but also more robust to di↵erent pose and lighting conditions than face

detection. Following the hypothesis, for Episode 1, Episode 2, and Episode 3, we

annotated the head bounding box and the corresponding identity.
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Fig. 5.6. A group photo of the ten main characters

To e�ciently annotate large amount of videos, we used an open source annotation

tool called Vatic [105]. In Fig. 5.7, the annotation interface of Vatic is shown. The

videos are divided into 10-second segments and the annotators work on one segment

each time. The annotators are instructed to draw a bounding box around the head

of a person, be it frontal view, side view, or back view, and associate it with that

person’s identity as long as at least half of the head is visible. Thanks to the tracking

functionality integrated in Vatic, the annotator only needs to manually annotate some

user-defined key frames in the video segment. The frames between consecutive key

frames can be interpolated by the tool itself. When the annotation is finished, the tool

samples one frame out of every 15 frames as the final output, which avoids keeping

too many frames that are highly redundant.

After outputting the annotation results, we apply a simple blurry image detection

algorithm based on overall edge intensity to the annotated bounding box. Blurry

frames as shown in Fig. 5.8 are mostly due to camera and person movement. Remov-

ing these frames can help reduce ambiguity when training the recognition system.

In addition to the four labeled episodes, we also run the VGG16 head detector

trained in Sec. 5.3.1 on three more episodes to create a set of unlabeled frames. This
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Fig. 5.7. The annotation interface of Vatic
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Fig. 5.8. Blurry image that needs to be removed

Table 5.3.
Summary of annotated data statistics

Unknown Alex Cameron Claire Gloria Haley Jay Luke Manny Mitch Phil

Episode 1 316 150 351 365 455 156 503 112 199 400 432

Episode 2 50 18 244 232 196 56 174 18 29 299 239

Episode 3 483 0 456 121 163 0 342 74 168 362 496

will be used for experiments on semi-supervised learning. Table 5.3 shows a summary

of the number of annotated frames for all characters.

5.6 Person Detection and Recognition in Several Real-life Scenarios

In Sec. 5.3 and Sec. 5.4, we introduce a head detector that can reliably detect the

head region of a person and a CNN model that extract features over the head. In this

section, we consider several real-life scenarios of a person detection and recognition

system. These scenarios are mainly di↵erent in the amount of labeled data that is

available.
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5.6.1 Person Recognition with Fully Labelled Data

In a standard supervised classification setting, there is a training set that are fully

labelled. The goal is to train a classifier that fits the training set as good as possible

without possibly overfitting the data. The testing set is then used to evaluate the

classifier. For our first real-life scenario, we consider the case where the system is

given a set of labelled images from di↵erent identities. The task is to classify the

images in the testing set.

For the training set, we assume that both the bounding box and the identities

are available. The classifier is trained on fully labelld data. For the testing set, we

consider both cases where the bounding box is available or not. When the bounding

box is available, we simply extract the features using the head model and test it with

the classifier. When the bounding box is not available, we run our head detector

and compute the Intersection over Union (IoU) between the detected head with the

ground truth head to find out the ground truth identity. If the highest matching IoU

is below a threshold, which we set to 0.4 experimentally, the detection is considered

as a false alarm. Otherwise, the identity corresponding to the highest matching IoU

is assigned to the detected head.

The classifiers we use are Support Vector Machine (SVM) and Nearest Neighbor

(NN). For SVM, we simply use the linear kernel and the following cost function:

min
w,b

1

2
||w||2 + C

X

i

max
�
1� yi(w

Txi + b), 0
�
, (5.2)

where xi is the 4096-dimensional head features and yi is the ground truth label. For

NN, euclidean distance is used as the distance metric.

5.6.2 Unsupervised Person Clustering

Fully labelled data is not really a realistic scenario as it requires a lot of human

e↵ort to annotate. For the second scenario, we consider the case where neither the

bounding box nor the identities are available. This is a very common situation in
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which no human interaction is engaged in the system. In this case, we perform

unsupervised clustering algorithms to group images that are similar in the feature

space. Ideally, images of the same person should be clustered together regardless of

the pose, viewpoints, and lighting conditions.

Since neither the bounding box nor the identity is available, we need to detect the

heads first. Again, we run the head detector trained before and find out the ground

truth label associated with it.

The clustering algorithm we use is agglomerative hierarchical clustering with eu-

clidean distance. All the images are initialized to be separate clusters. The nearest

two clusters are then iteratively merged to form a new cluster. We use the ward link-

age criterion that minimizes the variance of the clusters when merging the nearest

two clusters. There are several variants on when to stop the merging process. One

approach set a threshold on the linkage criterion and stops it when the distance be-

tween the nearest two clusters is below the threshold. Another approach pre-defined

the number of clusters we want to keep and stops it when the desired number of

clusters is reached.

5.6.3 Interactive Person Recognition with Minimum Annotation

Supervised learning with labelled data can help train a classifier that di↵erentiates

between di↵erent persons but requires large amount of annotation, while unsupervised

clustering group images from the same person together but does not predict the actual

identities. It is tempting to combine the two approaches take advantage from both

sides. For this scenario, we consider the case where only a set of unlabelled data

is available and we want to predict the actual identities that requires the minimum

amount of annotation.

First, the set of unlabelled images are clustered using the clustering algorithm

described in Sec. 5.6.2. Then a human annotator is asked to assign one identity to

each of the clusters that he/she thinks is homogeneous enough. Using the assigned
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labels, we train a classifier as in Sec. 5.6.1 and can thus predict the actual identities on

the test data. We should note that there could be some images that are mislabelled.

We will show that this is acceptable and does not require picking out those outliers

in the clusters, which could take a lot of time.

Our approach is related to active learning in the sense that the system can inter-

actively query the users with a small number of clusters for labelling. In this way,

instead of labelling thousands of images one by one, only a few clusters need to be

labelled.

In our current implementation, the interaction between the system and the anno-

tator is hypothetical. Instead of having real human that annotates the clusters, we

mimic the behaviour of a human when determining the homogeneity of the clusters.

This is achieved by first finding the dominant identity of the clusters. If the percent-

age of the dominant class in a particular cluster is above a threshold, we assume that

the human annotator will treat it as homogeneous enough and will label the entire

cluster with the dominant identity.

Although we have not conducted experiments with real human annotator, we

expect that the process will work in a similar manner. We plan to conduct such

experiments as our future work.

5.6.4 Semi-supervised Interactive Person Recognition

In Sec. 5.6.3, we introduce an interactive person recognition system that only

requires labelling a small number of homogeneous clusters, rather than labelling in-

dividual samples as in the supervised learning setting. This can save us a lot of e↵ort

annotating the data.

Another way to easily get large amount of labelled data without manually anno-

tating individual samples is to make use of extra unlabelled data. The majority of

data out there is unorganized, unstructured, and unlabelled. It would be a great ben-

efit if we can make use of this large amount of unlabelled data. In this scenario, we
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build a semi-supervised learning framework that utilizes a large amount of unlabelled

data on top of the previously developed interactive person recognition system.

Using the method described in Sec. 5.6.3, we first perform clustering on an un-

labelled dataset, and then assign the labels to the clusters that are considered ho-

mogeneous to form a training set. Similarly, the interaction between the system and

the annotator is simply hypothetical. With the coarsely labelled training dataset, a

preliminary support vector machine is trained to classify images into di↵erent identi-

ties. Next, we apply this preliminary classifier on the extra unlabelled dataset. Only

the samples that have decision margin above a threshold are considered confident

samples and added to the training set. In practice, the threshold of the margin is

set to 1, as this indicates samples with a higher margin does not contribute to the

cost function when optimizing SVM. Using the original training set together with

the confidently labelled samples from the unlabelled dataset, we train a new classifier

that is supposed to be better than the preliminary classifier. We should note that,

the preliminary classifier needs to give some kind of measure of how confident the

prediction is that can easily be interpreted. This is why we only consider SVM for

the preliminary classifier. For the new classifier, either nearest neighbor or SVM can

be used.

5.7 Experiments

5.7.1 Experiment Settings

We evaluate the performance of our person detection and recognition system on

the Modern Family dataset that is introduced in Sec. 5.5.2. All the real-life scenarios

in 5.6 are evaluated. For the clustering task evaluation, Episode 1 and Episode 2.

For all other scenarios, Episode 2 is used as the testing set so that there is a fair

comparison among di↵erent scenarios. We choose to keep images from the same

episodes in the same train/test subset as this will prevent images that are highly

similar in the scene to appear across the training and testing set, which may lead to
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Table 5.4.
The accuracy for the dataset with or without ground truth (GT)
bounding box (bbox) with NN and SVM

NN SVM

Tested with GT bbox 86.43% 87.90%

Tested with detected bbox 86.13% 88.06%

Tested with detected bbox,

evaluated among detected bbox
85.85% 87.7%

trivial solution as described in [96] for the PIPA dataset. For classifier training, we

do not explicitly tune any parameters. The models are directly applied to the test

set.

5.7.2 Results

Person Recognition with Fully Labelled Data

We first evaluate the performance of person recognition with fully labelled data.

As described in Sec. 5.6, both cases where ground truth bounding box is available

and not available for the testing set are considered. For person detection, our detector

achieves precision of 85.7% and recall of 99.67%. The classification accuracy is shown

in Table 5.4. We can see that since the recall is very high, there are only a few heads

that are missing, which makes the accuracy with detected bounding box almost as

high as accuracy with ground truth bounding box. Regarding the two classifiers,

nearest neighbor is only around 1.5% lower than SVM, which means the head features

are pretty discriminative.

We also show the two confusion matrices for the two classifiers with detected

bounding box to give a little more ideas how each individual class performs. It can

be seen that the confusion matrix is mostly diagonal. For both NN and SVM, the

unknown class performs the worst. More specifically, unknown class for SVM is worse
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Table 5.5.
Homogeneity score with respect to di↵erent number of clusters

30 40 50 60

Homogeneity score 0.73 0.76 0.78 0.79

than unknown class for nearest neighbor. This is probably due to the fact that the

unknown class is actually a mixture of di↵erent persons and is not very homogeneous.

A linear SVM can easily be confused when finding the separation hyperplane for such

noisy data.

Unsupervised Person Clustering

For the unsupervised clustering task, we evaluate the algorithm on Episode 1 and

Episode 3 together. The result will be used as the preliminary clustering result for

the experiment in Sec. 5.7.2. To evaluate the clustering algorithm itself, the ground

truth bounding box is used. We then compute the homogenity score of the clusters.

In Table 5.5, we show the homogeneity score with respect to di↵erent number of

clusters. As expected, the homogeneity is a↵ected by the number of clusters. The

more clusters there is, the more homogeneous the cluster is.

When ground truth bounding box is not available, our head detector achieves a

precision of 81.51% and recall of 96.97% on this subset of data. In Fig. 5.7.2, we

show some sample clusters of this subset. We can see that the same person under

di↵erent pose, viewpoints, and lighting conditions are grouped together, which shows

that the feature and clustering algorithm is very e↵ective.

Interactive Person Recognition with Minimum Annotation

In this section, we show the result for the interactive person recognition system.

Again, Episode 1 and Episode 3 is used as unlabelled data that will be labelled by a
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hypothetical human annotator. Episode 2 is used as the test set. It is shown in Sec.

5.7.2 that the quality of the cluster is a↵ected by the number of clusters. This can also

a↵ect the performance in the interactive recognition scenario. Basically, generating

more homogeneous clusters while keeping the number of clusters for annotation down

is a tradeo↵. This tradeo↵ requires experimenting and understanding the human

annotators’ tiredness, which is beyond the scope of this dissertation. In this section,

we simply fix the number of clusters to 40 for all the experiments. After clustering,

all the clusters that have at least 80% of dominant class percentage are assign the

identities of the dominant class.

We consider several conditions where the training set bounding box and testing set

bounding box could be available or not. Table 5.6 shows the experimental results for

the interactive person recognition under di↵erent conditions using SVM and nearest

neighbor respectively.

When both training and testing bounding box are available, the accuracy is almost

the same as that achieved in 5.4. In this setting, 32 out of 40 clusters are considered

homogeneous and annotated. With only 32 clusters labelled, the system achieves

almost the same performance when thousands of individual images are labelled.

When the training bounding box is not available, 29 out of the 40 clusters that

contains 4, 136 heads are kept as homogeneous. Suprisingly, the accuracy is 88.7%

which is even higher than the one with fully labelled data. This may be because that

as the non-homogeneous clusters are discarded, some of the confusing images are a

no longer used for training.

The case when training bounding box is available and testing bounding box is not

available is ommitted as it is of very little practical use.

In the last setting, which is the most realistic case, both training and testing

bounding box are not available. Since the recall on the test set is 99.87%, the per-

formance is almost the same as compared to the case where testing bounding box is

available.
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Table 5.6.
Accuracy for the interactive recognition system under di↵erent con-
ditions using nearest neighbor and SVM

NN Training bbox No training bbox

Testing bbox 84.5% 85.0%

No testing bbox - 84.8%

SVM Training bbox No training bbox

Testing bbox 87.8% 88.7%

No testing bbox - 88.8%
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Table 5.7.
Summary of extra unlabelled data statistics after preliminary prediction

Unknown Alex Cameron Claire Gloria Haley Jay Luke Manny Mitch Phil

Episode 4-6 1 106 570 683 693 138 716 0 261 1020 1202

In Fig. 5.11(a) and Fig. 5.11(b), we show the confusion matrix for the interactive

person recognition system when both training and testing bounding box are not

available. There are some columns that are completely blank due to the fact that

those classes do not dominate any cluster or do not have a high enough dominant

percentage.

Semi-supervised Interactive Person Recognition

In this section, we show the result for the semi-supervised interactive person recog-

nition system. Again, Episode 1 and Episode 3 is used as unlabelled data that will

be labelled by a hypothetical human annotator. Episode 2 is used as the test set. We

use another three episodes: Episode 4, Episode 5, Episode 6 as extra unlabelled data

that is to be labelled by the preliminary SVM. The total number of frames in the

extra unlabelled data is 7656. Table 5.7 shows the statistics of the extra unlabelled

data statistics after the preliminary prediction using SVM. We should note that one

of the classes does not have any predicted samples. This is because that class does not

dominate any cluster or its proportion in the cluster does not exceed the threshold in

the interactive recognition stage as shown in Sec. 5.7.2.

For simplicity, we only consider the most realistic case where the ground truth

bounding box is neither available for training nor testing. All the bounding boxes

are generated by the head detector. Table 5.8 shows the accuracy in this scenario

using nearest neighbor and SVM. We can see that the performance for both classifiers

are improved. Nearest neighbor improves from 84.8% to 86.6%. SVM improves from
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Table 5.8.
Accuracy for the semi-supervised interactive recognition system using
nearest neighbor and SVM: No ground truth bounding box is used for
both training and testing.

NN SVM

Accuracy 86.6% 89.3%

88.8% to 89.3%. This proves that using extra unlabelled data can indeed help improve

the recognition performance.

In Fig. 5.12(a) and Fig. 5.12(b), we show the confusion matrix for the semi-

supervised interactive person recognition system when both training and testing

bounding box are not available. As in Sec. 5.7.2, there are some columns that

are completely blank due to the fact that those classes do not dominate any cluster

or do not have a high enough dominant percentage.

5.8 Conclusion

In this chapter, we present a person detection and recognition system that can

work in a barely constrained encironment. We propose to use head region instead

of face or body as the key body part for person detection and recognition. A head

detector based on the Faster R-CNN framework is trained and can handle various

pose, viewpoints, and lighting conditions. To extract rich features around the head

region, we train a deep CNN model for head recognition utilizing large scale external

datasets. The detection and recognition pipeline is evaluated on a challenging TV

series dataset and proves to be be e↵ective in a simple supervised learning scenario.

We further investigate several other scenarios where the amount of labeled data and

the e↵ort to label data is very limited. The results show that we can achieve very

good results by using unlabelled data with minimum e↵ort of annotation.
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(a) NN using detected bounding box

(b) SVM using detected bounding box

Fig. 5.9. Confusion matrix for person recognition with labelled data.
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(a)

(b)

Fig. 5.10. Images from two of the 40 clusters
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(a) NN using detected bounding box

(b) SVM using detected bounding box

Fig. 5.11. Confusion matrix for the interactive person recognition system.
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(a) NN using detected bounding box

(b) SVM using detected bounding box

Fig. 5.12. Confusion matrix for the semi-supervised interactive person
recognition system.
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6. CONCLUSION

In this dissertation, we investigated several high-level image analysis tasks and pro-

pose algorithms towards better understanding the image content.

In Chapter 2, we developed a system that can predict the aesthetic quality for

photos of fashion products. We utilized global and generic features, salient object

detection, compositional rules, and metadata together for aesthetic quality prediction.

A database of manually rated photos specifically for photos of fashion products are

constructed. In this chapter, we formulated aesthetic quality prediction as both

classification and regression. The testing results showed that we can achieve good

prediction accuracy using the designed feature sets.

In Chapter 3, we introduced Confidence Ordered Proposal (COP), a general

method to improve the performance of region proposal-based multi-label object clas-

sification and later apply it to aesthetic attributes learning. The raw confidence score

of each proposal is re-arranged to emphasis the relative importance of proposals with

higher scores. This method can be applied to any proposal-based object classifica-

tion framework. From the experimental results on the two benchmark datasets VOC

2007 and VOC 2012, we proved that our proposed method consistently outperforms

existing proposal-based method that simply uses max-pooling. By utilizing the best

proposal-based multi-label object classification framework Hypothesis-CNN-Pooling,

our method achieves the state-of-the-art classification results on both datasets. Later,

we briefly introduced our on-going research project of aesthetic attributes learning.

We formulate aesthetic attributes learning as a multi-label classification problem.

Generic features are used to train a set of classifiers for each aesthetic attributes.

Then COP is used to refine the attributes classification result. The attributes that

we learn can further serve as a mid-level image representation, which provide a more

objective way of aesthetic quality evaluation.
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In Chapter 4, we investigated another sub-problem of a↵ective computing: image

emotion classification. This is similar to aesthetic quality in the sense that both of

them require very subjective evaluation. We utilize the recent development in deep

convolutional neural network(CNN) to learn rich features for emotion classification.

A multi-scale pooling method using CNN features is proposed to improve the previous

best results.

In Chapter 5, we introduced a person detection and recognition that can work in

an unconstrained environment. We propose to detect head region and train a head

recognition model that does not require any alignment step as opposed to traditional

approach based on face recognition. We further consider more realistic scenarios

where the amount of labelled data and e↵ort to label data is very limited. Through

our semi-supervised learning-based method, we can achieve comparable or even higher

results with the minimum amount of annotation.

To summarise, the major contribution of this work is listed below

• Aesthetic quality inference for fashion photos

– propose novel features tailored for fashion aesthetics

– construct a fashion photos dataset that are manually labelled with aes-

thetic ratings

• Confidence ordered proposals and applications in aesthetic attributes learning

– propose a general method to boost multi-label classification performance

– outperform previously existing methods on a benchmark dataset

• Image emotion classification

– propose a multi-scale pooling method for CNN features

• Person detection and recognition in natural settings

– perform head recognition training without the need for alignment
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– collect a dataset of TV series that can be used to study person detection

and recognition in natural settings

– extensively study person detection and recogniton in several realistic sce-

narios

– propose an interactive person recognition approach that requires minimum

amount of annotation

– propose a semi-supervised interactive person recognition approach that re-

quires minimum amount of annotation and can further improve the recog-

nition performance with extra unlabelled data
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[89] M. Tapaswi, M. Bäuml, and R. Stiefelhagen, “knock! knock! who is it? prob-
abilistic person identification in tv-series,” in 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition. IEEE, 2012, pp. 2658–2665.

[90] B. Prosser, W.-S. Zheng, S. Gong, T. Xiang, and Q. Mary, “Person re-
identification by support vector ranking,” in Proceedings of the British Machine
Vision Conference. BMVA Press, 2010, pp. 21.1–21.11.

[91] W. Li, R. Zhao, and X. Wang, “Human reidentification with transferred metric
learning,” in 2012 Asian Conference on Computer Vision. Springer, 2012, pp.
31–44.

[92] R. Zhao, W. Ouyang, and X. Wang, “Person re-identification by salience match-
ing,” in 2013 IEEE International Conference on Computer Vision. IEEE, 2013,
pp. 2528–2535.

[93] W. Li, R. Zhao, T. Xiao, and X. Wang, “Deepreid: Deep filter pairing neural
network for person re-identification,” in 2014 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2014, pp. 152–159.

[94] D. Yi, Z. Lei, and S. Z. Li, “Deep metric learning for practical person re-
identification,” arXiv preprint arXiv:1407.4979, 2014.

[95] N. Zhang, M. Paluri, Y. Taigman, R. Fergus, and L. Bourdev, “Beyond frontal
faces: Improving person recognition using multiple cues,” in 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition. IEEE, 2015, pp. 4804–4813.



99

[96] S. Joon Oh, R. Benenson, M. Fritz, and B. Schiele, “Person recognition in per-
sonal photo collections,” in 2015 IEEE International Conference on Computer
Vision. IEEE, 2015, pp. 3862–3870.

[97] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A bench-
mark,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2009, pp. 304–311.

[98] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “Ms-celeb-1m: A dataset and
benchmark for large-scale face recognition,” in 2016 European Conference on
Computer Vision. Springer, 2016, pp. 87–102.

[99] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from scratch,”
arXiv preprint arXiv:1411.7923, 2014.

[100] D. Miller, E. Brossard, S. Seitz, and I. Kemelmacher-Shlizerman, “Megaface: A
million faces for recognition at scale,” arXiv preprint arXiv:1505.02108, 2015.

[101] X. Zhu and D. Ramanan, “Face detection, pose estimation, and landmark local-
ization in the wild,” in 2012 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2012, pp. 2879–2886.

[102] V. Jain and E. G. Learned-Miller, “Fddb: A benchmark for face detection in
unconstrained settings,” UMass Amherst Technical Report, 2010.

[103] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the
wild: A database for studying face recognition in unconstrained environments,”
University of Massachusetts, Amherst, Tech. Rep. 07-49, 2007.

[104] D. Gray and H. Tao, “Viewpoint invariant pedestrian recognition with an en-
semble of localized features,” in 2008 European Conference on Computer Vision.
Springer, 2008, pp. 262–275.

[105] C. Vondrick, D. Patterson, and D. Ramanan, “E�ciently scaling up crowd-
sourced video annotation,” International Journal of Computer Vision, vol. 101,
no. 1, pp. 184–204, 2013.



VITA



100

VITA

Ming Chen received his B.Eng degree in Electrical and Computer Engineering

from the Hong Kong University of Science and Technology, Hong Kong, May 2011.

He is currently pursuing his Ph.D. degree in Electrical and Computer Engineering

at Purdue University. His current research interest includes digital image processing,

multimedia analysis, computer vision, and machine learning.


	Purdue University
	Purdue e-Pubs
	January 2016

	Content-based Image Understanding with Applications to Affective Computing and Person Recognition in Natural Settings
	Ming Chen
	Recommended Citation


	tmp.1541002327.pdf.XL7fM

