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ABSTRACT

Gu, Zhongshu PhD, Purdue University, August 2015. Securing Virtualized System via

Active Protection. Major Professor: Dongyan Xu.

Virtualization is the predominant enabling technology of current cloud infrastructures

and brings unique security benefits. Traditionally, researchers strive to include security

components, such as intrusion detection, malware analysis, and integrity check, into un-

derlying hypervisors. These hypervisor-based security approaches conduct only passive

monitoring on the guest systems, but lack active protection mechanisms, i.e., patching the

system vulnerabilities, eliminating the malicious logic, and shrinking the kernel attack sur-

face, etc.

In order to achieve the security goals that are missing in existing hypervisor-based re-

search efforts, we aim to expand the reach of the hypervisor to support active protection

mechanisms. In this dissertation, we present a hypervisor-based security framework that

consists of three key components, PROCESS-IMPLANTING, DRIP, and FACE-CHANGE to

provide active protection at the level of user processes, kernel drivers, and OS kernels re-

spectively, within guest virtual machines (VM). In particular, PROCESS-IMPLANTING en-

ables on-demand implantation of general-purpose security tools directly from a hypervisor

into a guest VM. The dynamic and stealthy nature of such security tools makes them harder

to be predicted and detected by malicious adversaries. DRIP targets in-VM trojaned kernel

drivers, which carry both benign and malicious logic. We conduct purification on such

trojaned drivers to systematically deactivate the malicious logic and keep the benign logic

intact. FACE-CHANGE minimizes the kernel attack surface within guest VMs at fine time-

granularity. We achieve such kernel minimalism through dynamic switching of multiple

application-specific minimized kernels at runtime.
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From our evaluation results on both security and performance metrics, we demonstrate

that PROCESS-IMPLANTING, DRIP, and FACE-CHANGE, can effectively provide active

protection for the guest VM with minimum negative impact on the guest system execu-

tion. Furthermore, it is practical to deploy our security framework in the real-world cloud

infrastructures considering its reasonable performance overhead.



1

1 INTRODUCTION

1.1 Dissertation Statement

Traditional computing systems are under increasing threats from advanced malware

attacks. Emerging malware against operating systems (OS) exhibits more sophisticated

strategies and behaviors. For example, recently advanced malware is able to actively de-

tect, disable, or bypass security checks embedded in the operating system; kernel-level

rootkits of Advanced Persistent Threats (APT) help hiding the presence of user-level ma-

licious “accomplice” in the victim machines; trojaned kernel drivers can stealthily execute

malicious functionalities under the cover of a benign cloak.

Virtualization has been widely adopted in the cloud computing infrastructures. It im-

proves the utilization of limited hardware resources and facilitates central administrative

tasks for managing guest virtual machines (VM). In addition, virtualization techniques

hold unique advantages from security perspectives. The hypervisor (a.k.a. virtual machine

monitor) provides an intermediate and confined computing environment to isolate the guest

VM execution from underlying hardware. Assuming the guest system is compromised by

some user-level malware or kernel-level rootkits, the trusted hypervisor is still able to en-

close the malicious tampering within the virtual machine and avoid the harm to the host

system.

Traditionally, security researchers retrofit underlying hypervisors to enable intrusion

detection, malware analysis, and enforcement of kernel integrity within guest VMs, but

leaving the guest systems “untouched” — the security tools resident at the hypervisor level

only monitor the guest VM execution passively and trigger the alarm in the event of anoma-

lous execution. But we expect that the hypervisor can achieve more than only passively

monitoring the guest system. For example, if we have identified footprints of some ma-

licious logic, is it possible to actively track its execution and eliminate the influence of
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its malicious behavior? If we find that a guest system has some disclosed vulnerabilities

that may be exploited in the future, is it possible to patch the system automatically to fix

such loopholes? If we discover that a guest OS kernel expose larger-than-minimum ker-

nel functionalities to applications running within a VM, is it possible to shrink this kernel

to minimize its attack surface? These active protection mechanisms are missing in exist-

ing hypervisor-based research efforts. Compared to passive monitoring approaches, active

protection mechanisms pose numerous technical challenges. For passive monitoring tech-

niques, the execution of their hypervisor-based security components could be decoupled

from the guest VM’s execution. But achieving the active protection mechanisms men-

tioned above requires precise system interventions and “surgical” manipulations of the sys-

tem state. We need to guarantee that we could safely and transparently operate on guest

systems without breaking the consistency of their execution state.

1.2 Contributions

My research aims to expand the reach of the hypervisor and introduces active protection

mechanisms into the hypervisor. At the same time, we guarantee that enabling hypervisor-

based active protection components does not incur negative impacts on the execution of

guest VMs.

The contributions of this dissertation can be summarized as follows:

• We present an integrated hypervisor-based security framework that consists of three

key components, PROCESS-IMPLANTING [1], DRIP [2], and FACE-CHANGE [3].

Each component provides active protection to different system layers within the guest

VM.

• PROCESS-IMPLANTING is an active VM introspection technique, which enables on-

demand implantation of a general-purpose program directly from a hypervisor into

a guest VM. The dynamic and stealthy nature of the implanted processes makes

them harder to be predicted and detected by malicious adversaries. We also propose
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various application scenarios of this technique in the areas of both security and cloud

VM management.

• DRIP
1 is the first purification technique to systematically deactivate embedded mali-

cious logic of trojaned kernel drivers. The purified kernel drivers could still preserve

the benign logic and function the same as their original versions.

• FACE-CHANGE is a virtualization-based technique to shrink the kernel attack sur-

face for applications running within the VM. Compared to existing system-wide ker-

nel minimization approaches, FACE-CHANGE takes one step further to facilitate dy-

namic switching of multiple application-specific minimized kernels at runtime, thus

enabling minimization of the kernel attack surface at finer time-granularity.

1.3 Overview of the Active Protection Framework

Figure 1.1.: Three key components of our hypervisor-based active protection framework

1DRIP stands for “DRIver Purifier”
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Figure 1.1 illustrates the architectural overview of our security framework. Each com-

ponent in our framework provides active protection to system entities at different layers

within the guest VM. PROCESS-IMPLANTING (abbreviated as PI in Figure 1.1) manip-

ulates the user process, DRIP targets the kernel drivers loaded in the kernel space, and

FACE-CHANGE operates directly on the OS kernel. Below we give a brief introduction for

each component.

1.3.1 PROCESS-IMPLANTING

The static nature of security tools in the system makes them exposed explicitly to ma-

licious attacks. Adversaries could have enough time to study a system in advance, identify

its vulnerabilities, and choose the right timing to drop their malware. When malware starts

to execute, typically the first and most pivotal task is to deactivate security tools installed

in the system to make itself under the radar.

In order to prevent security tools from becoming obvious targets of malicious attacks,

PROCESS-IMPLANTING intends to make them dynamic and stealthy. Instead of statically

installing security tools in the guest system, PROCESS-IMPLANTING randomly select a

running process (denoted as a victim process) at runtime as camouflage, save its runtime

state, and directly implant our security program (denoted as an implanted process) into

guest VM from the hypervisor to reuse the victim process context. As such, the implanted

process borrow some time slices from the victim process and execute the security logic un-

der the cover of its running context. Furthermore, when the implanted process is scheduled

out at context switch, PROCESS-IMPLANTING temporarily recover the memory mapping

for this victim process to escape malicious memory inspections from other process. When

the implanted security tool finishes its task, PROCESS-IMPLANTING could silently recover

the execution of victim process from the checkpoint with no negative impact on the whole

system.

From the view of an adversary, with PROCESS-IMPLANTING enabled, it becomes ex-

tremely difficult to pinpoint the security tool because: 1) The tool is dynamically implanted
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at runtime and no installation footprints exist in the guest system. 2) The tool runs under the

cover of a randomly-picked normal process without launching any suspicious new process.

1.3.2 DRIP

DRIP is an offline “purifier” targeting trojaned kernel drivers. Through investigation on

the typical trojaned kernel drivers, we gain the observation: within trojaned kernel drivers,

the malicious logic embedded inside them is typically orthogonal to its benign counterpart.

In addition, malicious code need to invoke kernel APIs to perform critical system opera-

tions and access kernel data. Removing those invocations from the malicious code could

neutralize the malicious behavior without affecting the driver’s original functions.

Based on this key observation, we develop a testing-driven approach called DRIP to

perform purification on trojaned kernel drivers. More specifically, we leverage application-

level test suites to cover the benign functionalities of the trojaned kernel drivers. DRIP

systematically derive a set of unneeded (i.e., the superset of malicious) kernel API invo-

cations in the subject kernel driver, while ensuring the correct execution of all test cases.

We could neutralize the hidden malicious logic by removing unnecessary kernel function

invocations.

1.3.3 FACE-CHANGE

Kernel minimization has already been established as an effective approach to reducing

the trusted computing base (TCB) of a system. In practice, even a highly specialized system

usually involves multiple applications. Correspondingly, the minimized kernel for the sys-

tem includes kernel code that is required by all these applications. However, we argue that

such a system-wide minimized kernel is not good enough because it creates a larger-than-

minimum attack surface. We observe that the kernel code required by different applications

varies significantly. To be more specific, our experiments show that two distinct applica-

tions may share as little as 33.6% of their required kernel code, thus system-wide kernel

minimization would over-approximate both applications’ kernel requirements.
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To address the problem, we develop the FACE-CHANGE component to support dynamic

switching of multiple minimized kernels in the same VM, with each kernel customized

for a specific application. We use the term kernel view to refer to the in-memory kernel

code needed by an individual application. FACE-CHANGE presents each application pro-

cess with a different, minimized kernel view, which is prepared individually in advance

by profiling the application’s kernel service needs. At runtime, upon a context switch,

FACE-CHANGE dynamically switches to the kernel view of the process for the next time

slice, achieving kernel minimalism with fine time-granularity. Compared with having only

one system-wide minimized kernel, FACE-CHANGE could prevent more malware attacks

because of the smaller attack surface it creates.

1.4 Dissertation Organization

This dissertation presents an integrated hypervisor-based security framework that con-

sists of three key components: PROCESS-IMPLANTING, DRIP, and FACE-CHANGE. Each

component address different research problems, but with the same research goal to provide

active protection from the hypervisor to the guest VM.

Here we give an outline of this dissertation:

• Chapter 1 explains the unique advantages that can be brought by introducing active

protection mechanism at the hypervisor level and research challenges that need to be

addressed. Then we present the overview of our hypervisor-based active protection

security framework. For each component within this framework, we demonstrate the

research problems it targets and the fundamental principles behind the techniques

respectively.

• Chapter 2 explains in more details about the motivation, design, implementation, and

evaluation of PROCESS-IMPLANTING. We also propose the application scenarios of

PROCESS-IMPLANTING in different areas.
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• Chapter 3 focuses on the offline purification component DRIP. We investigate the

unique properties of trojaned kernel drivers and explain the procedure of DRIP to

deactivate the malicious logic within such drivers.

• Chapter 4 presents our investigations on the limitations of existing system-wide ker-

nel minimization techniques and explains in detail how FACE-CHANGE can shrink

the kernel attack surface further at finer time-granularity for each individual applica-

tion.

• Chapter 5 discusses limitations of our current work and the future work we want to

pursue.

• Chapter 6 describes representative research efforts that are closely related to this

dissertation and compares our work with them.

• Chapter 7 concludes this dissertation.
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2 PROCESS-IMPLANTING: PROCESS IMPLANTATION COMPONENT

2.1 Problem Statement

Security tools installed in the system to detect malware have become evident targets

of cyber-attacks. Malicious adversaries can study the security tools for a long time before

intruding into the system. To evade the detection, typically the first post-intrusion attack

launched by malware is to deactivate security tools, such as the anti-malware engine. In

order to be tamper-resistant to such attacks, existing research efforts leverage virtualization

technology to relocate in-VM security tools to the hypervisor. But viewing from the hyper-

visor, the whole VM is a blackbox, i.e., only byte-level execution information is exposed.

To monitor the execution of the guest system from the hypervisor, we need to reconstruct

the guest VM’s semantic view by using the virtual machine introspection (VMI) technique.

But the semantic gap [4] between the guest VM and hypervisor hinders us from obtaining

a complete semantic-rich view. Furthermore, currently hardware virtualization has become

the mainstream technique adopted in cloud infrastructures. Hardware virtualization is de-

signed to run most native instructions directly on the CPU and expose as few details as

possible to the hypervisor to gain higher performance. This makes the semantic gap prob-

lem more challenging. Previous VMI approaches can only passively detect [5–8] or mon-

itor attacks [9–11], but we expect to provide a general-purpose active protection solution,

for example, to deactivate malicious logic, track anomalous execution, or patch disclosed

vulnerabilities.

In this chapter, we present PROCESS-IMPLANTING, an active introspection component

in our hypervisor-based security framework. The key idea is to implant a process directly

from the hypervisor into the guest VM to bridge the semantic gap. The implanted process

runs under the cover of a running in-VM victim process and could gain in-context execution

environment of the running VM. We also design a series of coordination and protection
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mechanisms supported by the higher-privileged hypervisor to exempt the implanted process

from being tampered by the malware. Furthermore, after the implanted process exits, it

leaves no negative impact on the normal execution of the guest OS and the applications.

The rest of this chapter is organized as follows. Section 2.2 proposes application sce-

narios for the PROCESS-IMPLANTING. Section 2.3 provides the detailed design of this

component and how it satisfies the security requirements. Section 2.4 describes the im-

plementation of our prototype. Section 2.5 evaluates performance and gives some repre-

sentative application cases in the areas of both security and cloud VM management. We

summarize PROCESS-IMPLANTING in Section 2.6.

2.2 Application Scenarios

There are several security implications of our PROCESS-IMPLANTING technique, as

illustrated in the following application scenarios:

2.2.1 Stealthy Tracking

We can leverage PROCESS-IMPLANTING to reveal the evidence of attack provenances

in a stealthy way. For example, tracing is a specialized use of logging to record the ex-

ecution of a program for the purpose of monitoring and debugging. Tools such as ltrace

and strace are widely used to monitor signals and library/system calls issued by a specific

process during runtime. These tools get the in-context semantic-rich tracing information

by executing inside the guest VM. But they are also vulnerable to attacks from malicious

adversaries. If a process running inside the virtual machine presents some suspicious be-

haviors, we can implant the tracing tool into the guest VM and attach it to this process

to gain more detailed evidence of its malicious operations. The result of tracing can be

sent from guest VM to the hypervisor directly through hypercall. The host-based audit-

ing system analyzing the logs sent from the implanted tracer can identify malwares more

accurately.
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2.2.2 System Recovery/Patching

If the system has already been compromised by the malware, PROCESS-IMPLANTING

can be utilized to recover the system to its normal state by removing affected files, quar-

antining suspicious malware executables, and restarting security services that have been

disabled. If any critical security vulnerability of guest VM is disclosed, the cloud provider

should be responsible to patch applications or a kernel of guest VM to enforce security

policies.

2.2.3 Performance Monitoring/Tuning

Performance monitoring of virtual machine is not that intuitive because there is an

extra layer between the guest VM and the hardware. The hypervisor only has the system-

wide performance view. When fine-grained monitoring is needed, performance data can be

collected by using PROCESS-IMPLANTING to inject an agent into the guest VM to collect

the performance data. The cloud administrator can conduct central management of the

implanting procedure to perform large-scale performance analysis.

2.3 System Overview

2.3.1 Security Requirements

For in-box approaches to detecting and neutralizing malware, the anti-malware security

tools are explicitly visible to the attacker. It is not difficult for the malware to identify the

process that belongs to the security tools. After identification, the most common attacking

technique of malware is to deactivate its opponent to prevent it from conducting scanning

and detecting.

In-box security tools typically run at the same privilege level as the malware. Thus

they have no advantage over the malware running within the same system. Even if they

can elevate to root, some malware can achieve the same privilege escalation by exploiting

some system vulnerability.
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The out-of-box approaches address the problem by relocating the security tools out to

the hypervisor to gain a higher-than-root privilege, but unfortunately at the same time they

lose the in-context semantic-rich view as a trade-off and need to rebuild the status of the

guest VM from byte-level information.

If we intend to implant the process back into the guest operating system, we need to

fulfill the security requirements to make sure that this implanted process is protected, hard

to be detected, and tamper-resistant to in-VM attacks. Otherwise, it has no advantage over

the traditional in-box approaches.

Considering the implanted process is still running upon the guest OS, nevertheless it has

some interactions with other components and relies on some services offered by the guest

OS. We do not want to add too many constraints on the coding standard for the implanted

process to make it totally isolated from the environment. The reason is that we want to

reuse existing security tools as implanted process with only minor modifications. Thus we

make a security assumption that the integrity of guest kernel is not in a compromised state

during implanting. The techniques like NICKLE [12] and HookSafe [13] can be leveraged

to maintain the kernel integrity when implanted process is running.

We state the security requirements from four aspects, stealthiness, isolation, robustness,

and completeness.

Stealthiness: The implanted process should be hard to be predicted and detected by

other processes in the guest VM.

Isolation: The implanted process should rely on as few services of guest OS as possible.

Also it should have as few interactions with other process as possible. This can reduce the

level of trustworthiness we demand on the guest OS and applications.

Robustness: The implanted process should not be terminated by other processes in the

guest VM when it is running.

Completeness: When the implanted process finishes running or the hypervisor needs to

call it back, it should exit gracefully without any impact on the stability of the guest VM.
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2.3.2 Design
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Figure 2.1.: Overall design of PROCESS-IMPLANTING framework

The key idea of PROCESS-IMPLANTING is to load the program from the hypervisor

into the guest VM and run it under the camouflage of a running in-VM victim process. The

administrator of the hypervisor can pick implanted process and victim process at runtime.

We allocate memory regions at the hypervisor level separately for different segments of the

implanted process. When the victim process is scheduled, we intercept the process context

switch and trap to the hypervisor. We save current CPU context and replace it with the

initial context of the implanted process, e.g., replace the instruction pointer with the entry

address of the implanted process’ binary and the stack pointer with the starting address

of the stack. Then we modify the page table entries of the victim process to redirect it

to the memory space where the implanted process is loaded. After re-entering the VM to

continue the process context switch, the program counter returns back to the user space and

begins to execute the code of the implanted process. When the implanted process finishes

its task or the hypervisor needs to enforce mandatory restoration for the victim process, we
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recover the victim process by restoring its saved context. Then the victim process could

restart its execution from the checkpoint. From the view of the victim process, it freezes

for a specific time window and some of its time slices are “borrowed” by the implanted

process. Figure 2.1 gives an illustration of the overall design.

The challenges of this approach come from the needs to satisfy the security require-

ments proposed by us. We demonstrate the detailed design choices to fulfill these security

requirements.

Random Selection of Victim Process

The static nature of traditional anti-malware software makes it easy to be targeted. The

attacker can identify its existence by reading the software configuration from the OS. In

order to be more stealthy, the administrator of hypervisor can randomly select the victim

process and restart the implanted process by choosing another victim process at runtime.

Such randomness eliminates the possibility that malware can locate its opponent only by

querying the system.

Single Virtual CPU When Implanted Process is Running

If a guest VM owns multiple virtual CPUs, the implanted process running on one VCPU

could be detected by a process running on another VCPU in parallel. In order to minimize

the chance of being detected as an implanted process, we could disable other VCPUs tem-

porarily when implanted process is running.

Camouflage of Implanted Process

The implanted process reuses the victim process’ kernel-level data structures, e.g., pro-

cess descriptor, page table, and heap, within the guest OS. From the view of the guest OS,

it cannot identify the difference from the normal execution of the victim process. The im-
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planted process just “borrow” a number of time slices from the victim process to run its

own program and restore the victim process’ execution state later.

In addition, implanted process is not backed by any file-based binary in the guest VM. If

the malware tends to perform binary analysis on the executable, it can only find the binary

of the victim process rather than the implanted process.

It can satisfy the security requirements of stealthiness with the camouflage of the victim

process. Forking a new process is not permitted during the execution of the implanted

process as it may leave obvious fingerprints, e.g., one more running process, in the guest

VM. This could violate the stealthiness requirement.

Self-contained Executable of the Implanted Process

When compiling the implanted process executable, we choose to link the library rou-

tines statically to make it self-contained. Although it increases the size of the binary image,

the implanted process does not need to rely on the library functions offered by the guest

system. Otherwise, if the libraries in the guest VM are compromised, the results gener-

ated by the implanted process cannot be fully trusted. Then the assumptions of trust level

have to be expanded. With such self-contained binary image, we only need to make an

assumption that the operating system services used by the implanted process are trusted.

This satisfies the security requirement of isolation.

Invisible Memory Space

We allocate three memory regions (code, data, and stack segment) for the implanted

process. These memory regions are located at the hypervisor level and are beyond the

physical memory range of the guest VM. The guest VM only checks the physical memory

size at its booting time and indexes it into its kernel data structure of memory pages. Adding

more memory to the guest VM during its runtime is similar to hot-plugging memory into a

memory slot. The guest VM has no knowledge of the newly registered memory regions and
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it does not access the memory address beyond its physical memory size. This satisfies the

security requirement of stealthiness because of the transparency of these memory regions.

Timing of Implanting

The timing of implanting is critical to our system in order to satisfy the security re-

quirement of completeness. From the view of guest system, the execution of victim process

freezes when the implantation happens. Remember we choose to implant the process in

the event of context switch and the next scheduled process is the victim process. However,

as a side effect, part of the execution in the kernel space for victim process is lost. The

reason is that when it enters back to the user space, the implanted process substitutes the

victim process to execute. Considering that, we make three design decisions to address this

problem. We first check if this context switch is triggered by the system call from the victim

process. When we restore the victim process after the implanted process exits, we set the

instruction pointer on the kernel stack backwards to restart this system call. Secondly, If

the victim process is waiting for the resources and has already set its state as uninterrupt-

ible, we will enter the virtual machine silently without implanting. Thirdly, if this context

switch is caused by a kernel preemption, we choose not to implant at this time.

Frequent Scene Restoration

We only permit the implanted process to read, write, and execute on its own memory

regions and the other process should not have access to it. Information leakage should be

prevented in the situation that the malware is capable of scanning the page table to detect the

modification. We design a mechanism called Frequent Scene Restoration (FSR), to recover

all the states we modified during implanting when the implanted process is scheduled out.

After the context switch, the victim process is not modified from the guest view. Although it

may incur some performance overhead, it satisfies the security requirement of stealthiness.
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Checkpoint/Restart

Checkpoint/Restart is an optional design for some specific implanted process. As the

user stack of implanted process is allocated independently, we can checkpoint the execu-

tion status by recording the register status. The implanted process can restart from this

checkpoint and continue its execution at a later time when we want to implant it again.

This is also designed to fulfill the security requirement of stealthiness.

Coordination Between the Implanted Process and the Hypervisor

The coordination mechanism between the implanted process and the hypervisor is de-

signed for solving the concrete problem encountered when implanting some specific pro-

cess. For example, the tracing program like ltrace and strace could attach to a running

process and monitor its behavior. If we plan to execute mandatory restoration of victim

process, it could make the process being traced behave incorrectly because the tracer has

not detached from it. A similar problem arises for implanting a multi-threaded program. If

all the child threads spawned by the implanted process are still running when the mandatory

restoration happens, they could run on the address space of victim process after the restora-

tion and this may cause serious errors. We design a coordination mechanism between the

implanted process and the hypervisor to address these problems. A covert channel is cre-

ated by setting a control bit on the argument part of the user stack. It can be read by the

implanted process and written by the hypervisor. The implanted process should check it

periodically. Instead of restoring the victim process immediately, the hypervisor sets this

control bit to notify the implanted process that it could exit. When the implanted process

read this bit, it should clean up, e.g., let all the child threads exit or detach from the process

being traced, and then exit. The exit operation is intercepted by the hypervisor and we will

discuss it in the next paragraph of Graceful Exiting.

The other coordination mechanism is that we modify the source code of existing tools

to let them send the string pointer through hypercalls to the hypervisor instead of printing
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on the console within the guest VM. The hypervisor can read this string by translating the

guest virtual address to the host virtual address.

These coordination mechanisms promise the security requirements for completeness

and stealthiness.

Graceful Exiting

When the implanted process is exiting, the guest OS will free the memory space of

the implanted process we allocated at the hypervisor, and this will lead to a crash since

the physical address of that memory space exceeds the maximum physical memory that

the guest VM could access. This will break our security requirements of stealthiness and

completeness and is undesirable. So instead of letting the process complete its exiting,

we pause the exiting attempt and restore the victim process to maintain stealthiness and

completeness. To perform the interception and restoration, the hypervisor needs to know

exactly when the implanted process is going to exit. Although it is possible to modify the

source code of the implanted program to let it inform the hypervisor actively, that would be

inconvenient and not applicable to closed-source programs. Instead, we choose to set a trap

through debug register for the exiting event of the implanted process, and the hypervisor is

notified as soon as the trap is triggered.

Protection from the Hypervisor

The implanted process is not alone in the guest VM and is backed by the hypervisor.

We can add protection to the implanted process from the hypervisor to satisfy the security

requirement of robustness. Two mechanisms are designed in PROCESS-IMPLANTING to

achieve this goal. First we elevate the privilege level to root by modifying the credential

entry in the process descriptor. This has the same effect of switching user to root in the

guest VM. With root privilege, the user-level malware is not capable to kill it by merely

sending the terminating signal. It is also useful for some application scenarios because
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monitoring or patching operations can only be done with the highest privilege in the guest

VM.

If the malware also possess the same root privilege, it is still able to kill the implanted

process. In order to strengthen its robustness, we design the second mechanism for more

protection. We set the unkillable flag for this process and check its status for every context

switch. The unkillable flag is used only by the init process in Linux to prevent it from being

killed in any situation. We also utilize it to make our implanted process unkillable. If this

bit is cleared by other process, we check it during every context switch to make sure that it

has been set before running the implanted process.

Special Case: Multi-thread Program Implanting

Multi-threading is a widely-used programming paradigm nowadays and PROCESS-

IMPLANTING supports multi-threaded applications to be practical in real-world scenarios.

However, it needs special care for both selecting a multi-thread victim process and implant-

ing a multi-threaded program.

To illustrate this problem, let us first take a close look at the scene of selecting a multi-

thread victim process. When implanting happens, we choose a thread of the victim process

to execute the implanted process. We denote this specific thread as victim thread, and

other threads of the victim process as innocent threads. We modify the address space and

the execution context of the victim thread to provide an execution environment for the

implanted process. Note that such modification to the address space is shared among all

threads of the victim process, but the modification to the execution context is only done to

the victim thread. When those innocent threads begin to execute, inconsistency between

the address space and their execution contexts may lead to a crash. There are two ways to

address this problem, either by freezing all innocent threads, or by restoring the address

space when there is a context switch to a innocent thread. We choose the latter one because

it is more stealthy and easier to implement.
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Algorithm 1 Multi-thread program implanting handling on context switch

1: procedure MULTITHREADIMPLANT(next)

2: if next = victim and next.pid = next.tgid and imp = FALSE then

3: IMPLANT()

4: imp← TRUE

5: maxpid← GET MAXPID IN GROUP(next)

6: vicpid← next.pid

7: else if imp = TRUE then

8: ptype← OTHER

9: ntype← OTHER

10: if prev.tgid = vicpid then

11: if prev.pid = prev.tgid then

12: ptype← VICTIM

13: else if prev.pid ≤ maxpid then

14: ptype← INNOCENT

15: else

16: ptype← IMPNEW

17: if next.tgid = vicpid then

18: if next.pid = next.tgid then

19: ntype← VICTIM

20: else if next.pid ≤ maxpid then

21: ntype← INNOCENT

22: else

23: ntype← IMPNEW

24: if (ptype = VICTIM or ptype = IMPNEW) and (ntype = INNOCENT or ntype = OTHER) then

25: RESTORE SCENE()

26: else if (ptype = INNOCENT or ptype = OTHER) and (ntype = VICTIM or ntype = IMPNEW) then

27: LOAD SCENE()
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Implanting a multi-threaded program makes the scene more complex. The threads cre-

ated by the implanted process require the address space for the implanted process while

innocent threads of the victim process require the original address space of the victim pro-

cess, so we have to switch address space when context switch happens between these two

kinds of threads. However, there is no simple way to differentiate between these two kinds

of threads because they belong to the same thread group. We use a technique here by lever-

aging the fact that if no innocent thread is created after implanting, then any thread created

by the implanted process should have greater pid than any of the innocent threads (assum-

ing the pid is in the same order of process creation time). Note that most programs only

create threads in their main threads, so if we choose the main thread as the victim thread,

the condition of the above fact is naturally fulfilled. In this way we could find the maxi-

mum pid of innocent threads before implanting and use it as a boundary between the two

kinds of threads. Algorithm 1 demonstrates the detailed procedures we develop to handle

multi-threaded program in PROCESS-IMPLANTING. We denote the previous task as prev,

next task as next, type of previous task as ptype, type of next task type as ntype, vic-

tim thread’s pid as vicpid, process implanted flag imp and maximum pid in victim thread

group as maxpid.

2.4 Implementation

Figure 2.2.: Workflow of PROCESS-IMPLANTING

We have implemented a proof-of-concept PROCESS-IMPLANTING component as an

extension of Kernel-based Virtual Machine [14] (KVM) hypervisor leveraging the Intel
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virtualization technology [15]. The host OS is Ubuntu 10.04 32bit (Linux Kernel 2.6.32-23)

distribution and the guest OS is Ubuntu 9.10 32bit (Linux Kernel 2.6.31-14) distribution.

The workflow can be divided into five phases: initialization, camouflage, implanting,

checkpointing, and exit, as illustrated in Figure 2.2. The dotted line for the checkpointing

phase means that it is optional. We explain each phase in detail below:

2.4.1 Initialization Phase

We choose Executable and Linkable Format (ELF) as the file format for the implanted

process image. The binary image is compiled beforehand by statically linking all the li-

brary routines to make it self-contained. A program loader is implemented to load the

code/data/stack segments into the memory allocated at the hypervisor level.

Then we register the memory slots in KVM for these three memory segments and assign

them the guest physical addresses which are beyond the boundary of existing memory size

of the guest VM. These memory segments are transparent to the guest OS as it has no

knowledge that they are “hot-plugged” into the slots during the runtime and the guest VM

only calculates the memory pages at its booting time. Only the implanted process can

access these parts of memory in the following phases.

2.4.2 Camouflage Phase

In the camouflage phase, the victim process name can be determined at runtime. The

name is written in the victim process configuration file, which is read by the hypervisor

periodically. The guest virtual addresses of all exported kernel functions can be read from

the system map of the guest kernel. switch to is the function responsible for process

context switch in the Linux Kernel. After finding its entry address by searching the system

map, we set debug register at this address in the guest kernel. Thus every context switch

causes debug exception and can be captured by the hypervisor.

In our previous design, we considered the setting of a new cr3 register as the symbol of

context switch. This cannot fulfill the security requirements because if the thread scheduled



22

after the implanted process is a kernel thread or a user thread in the same thread group,

it may reuse the previous cr3 and no VM exit happens. If the subsequent thread is a user

thread, it may crash because it would run on a wrong address space. If this thread is a

kernel thread and is malicious, it could scan the page table of the previous thread to dump

the code and data segment of the implanted process.

With VM exits intercepted at every context switch, if the previous thread is implanted

process, we can restore both the page table and the modified entries in process descriptor

before the execution of the next thread. Before implanting, we need to fill the upper part

of the user stack by copying the content from the victim process’ user stack. These are

arguments, environments, and the auxiliary array, which are read by the implanted process

during its loading time.

2.4.3 Implanting Phase

If the context switch happens and victim process is the next thread to be scheduled, VM

traps to the hypervisor. All the user registers for the victim process are stored on the kernel

stack. The steps of implanting are:

(i) Save user registers

(ii) Save the memory region descriptor’s list

(iii) Save the original affected address mapping

(iv) Adjust physical page table of the victim process to point to implant process’ memory

space

(v) Update related entries in the shadow page table

(vi) Adjust the memory region descriptor’s list to adapt to the new address space

(vii) Set user registers with the value of the implanted process
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After completing seven steps above, when the guest VM resumes to guest mode, the victim

process is completely replaced with the implanted process. The procedure of switching to

address space of the implanted process is illustrate in Figure 2.3.
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Figure 2.3.: Address space of implanted process

After implanting for the first time, when the implanted process is scheduled out, we

restore victim process’ physical page table and memory region descriptor list as mentioned

in the design section about FSR. If the implanted process is scheduled again, we load the

implanted process’ physical page table and the memory region descriptor list correspond-

ingly.
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2.4.4 Checkpointing Phase

Checkpointing phase is optional and its main purpose is to raise the bar of stealthiness.

The implanted process can be paused at a specific time by saving its execution state, i.e.,

user registers, the memory region descriptor list, and restore the execution of the victim

process. The implanted process can restart at the checkpoint and continue execution after

the victim process runs for several time slices.

2.4.5 Exit Phase

When the implanted process attempts to exit, we need to restore the victim process. The

hypervisor intercepts the exiting attempt by setting traps on two system calls, sys exit and

sys exit group. All user mode processes in the Linux invoke either of these two system calls

when they exit. We set two debug registers to the entry addresses of these two system calls.

Such that any call or jump to them triggers a VM exit and can be captured by the hypervisor.

When the hypervisor intercepts an exiting event and finds that the exiting process is the

implanted process, it restores the victim process. Note that restoration here is slightly

different from what we do in the checkpointing phase. In the checkpointing phase, the user

mode registers saved in the kernel stack are restored directly when the kernel returns to the

user mode. However, in the exit phase, the user mode EAX register is set to the return value

of the sys exit or sys exit group system call by the kernel. This is unexpected since the call

was invoked by the implanted process but not the victim process, and the user mode EAX

register of the victim process should not be tampered. To solve the problem, we set the

kernel mode EAX register, which is used to store the return value of the system call, to the

same value as the user mode EAX register of the victim process. In this way the user mode

EAX register of the victim process would remain unmodified even if it is set to the return

value of the system call. In addition, because the sys exit or sys exit group function should

not be actually executed, we set the instruction pointer and the stack pointer to the frame of

the function’s caller. From a user’s view, the function returns without executing its code.
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2.5 Evaluation

In this section, we evaluate our PROCESS-IMPLANTING component in three aspects.

First, we show how our system satisfy the security requirements. Then we present some

active introspection application cases. Finally we give the performance measurement re-

sults.

2.5.1 Security Evaluation

Experiment I: Scan the page table of the victim processm

Figure 2.4.: Scan the page table of victim process

To demonstrate that even if the guest kernel is trusted, our mechanism of FSR is still

crucial and necessary to maintain the stealthiness of the implanted process, we imple-

mented a userspace program to simulate the potential attack by scanning the page table of

the victim process repeatedly. Since Linux Kernel 2.6.25, there is a new feature that allows



26

userspace programs to read page tables of other processes by scanning /proc/pid/pagemap.

We assume that the attacker knows the design of PROCESS-IMPLANTING, the details of

our implementation, and even the exact process chosen as the victim process.

The detection follows this observation: if a process is implanted, some of its virtual

addresses are mapped to physical pages exceeding the maximum physical memory allo-

cated for the virtual machine; for normal process, no such mapping exists. This is because

the memory used to store code, data, and stack segments of the implanted process is allo-

cated at the hypervisor level. Its memory address falls out of the border of the guest VM’s

memory. The scanner can claim that a process is implanted if it finds such suspicious page

mappings in the page table of that victim process.

We perform the experiment with FSR disabled and enabled respectively. The compari-

son of the two results is shown in Figure 2.4. When FSR is disabled, before the implanting,

the scanner found the original page mapping of the victim process as shown in the upper

box of the left window. Then, right after the implanting, changes made to the page table

and suspicious page mappings shown in the lower box of the left window are discovered.

On the contrary, when FSR is enabled, the attacker could only find the original page map-

pings of the victim process shown in the right window during the whole experiment. This

is because when the scanning process is running, the implanted process must have been

scheduled out at an earlier time and we have already recovered all the things we modified

during implanting at that time using FSR.

2.5.2 Active Introspection Case Studies

Ltrace is the tool to intercept and record the library/system calls and the signals of a

specific process. It can attach to a process and monitor its behavior during runtime. We

make two experiments to demonstrate using it as the implanted process.
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Experiment II: Implanting ltrace to trace malware

In this experiment, we implant ltrace into the guest VM and leverage it to trace both

the library and system calls of a real-world malware. The results are transferred to the

hypervisor through hypercalls.

The right window in Figure 2.5 presents the malware whose name is i-am-sick. Its main

function is to infect the files under the /tmp directory by copying code into it and execute

the infected file afterwards. With the implanted ltrace, we can attach to the malware at

runtime and monitor the library calls and system calls. The left window in Figure 2.5 is

the terminal of the KVM hypervisor. It receives logs directly from the implanted ltrace.

After inspecting the log in this terminal, the execution path and malicious behavior of this

malware can be easily identified.

Experiment III: Implanting ltrace to trace infected application

In this experiment, we implant ltrace to trace a ls application that is infected by caline.

Caline is an ELF infector using Segment Padding Infection (SPI) technique. It inserts virus

code after the code segment of ELF binary to change its behavior. Through tracing the

infected ls, we can easily identify the deviated execution path by checking the arguments

of library calls. The box in Figure 2.6 presents the suspicious execution results.

System events tracing is one of the most effective techniques of computer forensics

to collect evidence of malware and is also the weak point of VMI techniques, especially

in the era when hardware virtualization technology has been widely deployed. Traditional

methods used in QEMU-based [16] system to intercept system call cannot be used any more

because the system call instructions are not privileged instructions and would not cause

VM exit for hardware virtualization. The common technique now is to set a trap point

at the system call table entry address or set a page fault manually to cause the VM exit.

These methods introduce great performance degradation because VM entry and exit are

heavyweight operations [17]. Plus there is no introspection techniques now can track finer-
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Figure 2.5.: Implanting ltrace to trace malware

grained events, such as library function calls. PROCESS-IMPLANTING could efficiently

bridge this gap.

Experiment IV: Installing kernel module

A loadable kernel module is an object file to extend the capabilities of a running base

kernel. It is a flexible approach to supporting new file system, installing device driver, and
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Figure 2.6.: Trace the library call of infected application

adding new system calls. As we mentioned in the previous sections, in the cloud computing

environment, PROCESS-IMPLANTING is a feasible approach to installing kernel modules

into the guest OS. In this experiment, we compile a kernel module whose name is PI.ko.

Then we implant an agent which has the function to get the module from the hypervisor

through a TCP channel and insert it into the guest OS. Because installing kernel module

requires root privilege, we elevate the privilege level of the implanted process to complete

this task. We have taken a screenshot to demonstrate the result. In Figure 2.7, there are

two terminals named “Before implanting” and “After implanting”. Before implanting, we
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Figure 2.7.: Installing kernel module and adjusting system parameters

use the lsmod command to list all the installed kernel modules, there is no module named

PI printed out in the terminal. After implanting, we run lsmod again and the PI kernel

module has been installed on it. Please look at the first red box in the window of “After

implanting”.
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Experiment V: Reading system information and adjusting system parameter

In order to demonstrate the application scenario for cloud computing to monitor and

adjust the performance of running guest OS, we design this experiment to give some impli-

cation. In this experiment, we implant an agent into the guest VM and execute several test

cases.

• Test case 1: Issue the instruction of cpuid to detect the type of the hypervisor.

• Test case 2: Test the instruction of rdtsc to read the CPU clock rate.

• Test case 3: Write value into drop cache entry in the /proc file system. After writing

this value into the entry, the guest OS drops the page, inode, and dentry cache to free

the memory.

The effects of implanted process can be seen in Figure 2.7. In the blue box, it is the ter-

minal to run the KVM hypervisor on the host. We can see that the information is printed on

the screen through the hypercalls of the implanted process. In the green box of Figure 2.7,

the value for the entry /proc/sys/vm/drop caches is 0. In the red box of the terminal of “Af-

ter implanting”, the value is 5 instead. We can compare the free memory in these terminals.

In the “Before implanting” terminal, the free memory is 443272 KB. In the “After implant-

ing” terminal, the free memory is 660740 KB. Buffers and caches are released through this

method. Reading and adjusting value from /proc cannot be achieved by traditional intro-

spection approach because files in /proc are memory-based and callback function handlers

are only triggered in the event of /proc reading or writing operations.

This capability can greatly simplify the procedures of performance debugging in the

large-scale cloud computing environment. Implanted process can act as an agent to collect

the performance data. Compared with these methods that only rely on statistical inference,

the data directly from the guest system is more intuitive for performance diagnosis.
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2.5.3 Performance Measurements

Our testing platform is Dell Optiplex 755 with Intel R© CoreTM2 Quad Q6600 2.40GHz

CPU and 3GB memory. We allocate 1GB memory to the guest VM. The performance of

implanted process is measured in three scenarios:

Implanting Disabled

In this scenario, all the capabilities of PROCESS-IMPLANTING are disabled. It is used

as the baseline for performance measurement.

Implanting Enabled

The function of PROCESS-IMPLANTING is enabled in this scenario. But we still disable

the feature of FSR which is used to enhance the security by restoring the execution scene

when the implanted process is scheduled out.

Enable Both Implanting and FSR

The FSR is enabled along with implanting in this scenario to measure the performance

overhead that is introduced by this feature.

We implement a program as a micro-benchmark to test the performance. Its main func-

tion is to read and write the entries in the /proc file system, allocate/free memory. This

program runs for 1000 times to get the average running time. Three different kinds of ap-

plications in guest operating system are used as victim processes, gnome-power-manager,

vmstat, and gimp.

Gnome-power-manager is a session daemon to manage the power for the laptop or

desktop. It is a good candidate for the victim process because it is scheduled periodically

to check the status of the battery and the AC power. Vmstat is a command-line tool to

report the virtual memory statistics. It has no interaction with the user. Gimp is an image

manipulation program under Linux. It is an interactive GUI program. Figure 2.8 shows
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Figure 2.8.: Performance comparison of implanted process

the performance results of this micro-benchmark. The y axis is the average time to run

micro-benchmark for one time. If we only enable the implanting without FSR, it introduce

43.4% 55.6% and 15.4% performance overhead separately for these three victim processes

comparing with running the process directly on the guest operating system. With FSR en-

abled, the performance overhead increases by 24.1%, 51.6% ,and 97% comparing with the

system with only implanting enabled. The performance overhead comes from two sources.

The first one is introduced by the VMI. Debug register is set at the entry address of context

switch function of the guest kernel. Virtual machine exits when there is a process sched-

uled to run. The other source of performance overhead is from the FSR. FSR will restore

the execution scenario of victim process to eliminate the possibility for other processes to

detect the occurrence of implanting. The effectiveness of FSR has been demonstrated in the

experiment I. In FSR, the memory region list is restored every time when there is context
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switch. It may introduce more overhead if the victim process itself is more complex. When

the victim process is gimp, we can see from Figure 2.8 that the running time jumps by 97%

after FSR is enabled. It is reasonable because gimp is a more complex software than vmstat

and gnome-power-manager.

We need to point it out that the performance overhead is only at the time of implanting.

PROCESS-IMPLANTING is designed to be modular and decoupled with other functionalities

of KVM hypervisor. The implanting capability can be turn off easily without impacting

other components in the hypervisor. When the implanted process exits, the function of

implanting can be disabled by removing the breakpoints set by the debug registers and the

system can recover to its original performance level.

2.6 Summary

PROCESS-IMPLANTING is a general-purpose active introspection component in our

hypervisor-based security framework. It creates a channel to implant a process from hy-

pervisor into a guest VM and run it under the cover of an existing process. Through the

coordination and protection from the hypervisor, the implanted process can achieve strong

tamper-resistance and stealthiness in the guest VM. We also propose a series of application

scenarios in the areas of both security and cloud VM management, and demonstrate the

feasibility and effectiveness of PROCESS-IMPLANTING in our evaluation.
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3 DRIP: DRIVER PURIFICATION COMPONENT

3.1 Problem Statement

In state-of-the-art design of commodity operating systems, drivers usually take the form

of loadable kernel extensions. Privileged users could load them dynamically to support new

devices or extend functionalities of a base kernel at runtime. They hide the complexity of

interacting with hardware devices and present a neat abstract interface for other kernel

components. To achieve these properties, drivers execute with the same privilege as the

OS kernel, which makes them susceptible targets of malicious attacks. Unlike the kernel,

which is either built by trusted companies or with source code opened to the public, kernel

drivers could be provided by third-party vendors as a binary blob.

Given a binary driver, it is difficult to tell whether malicious logic is embedded inside

it. From customers’ perspectives, it may work correctly with no suspicious symptoms, but

the embedded malicious code [18,19] may have already collected confidential information

and cloaked its fingerprint under the cover of a legitimate driver. Even if we assume that

vendors only perform the functionalities as they claim, there still exist many binary driver

infection techniques [20–25] that could implant malicious logic into benign drivers and

transform them into trojaned drivers. When the trojaned driver is loaded into an operating

system, the hidden malicious code can be loaded simultaneously with the benign code.

Hence the challenge is: how can we identify malicious/undesirable logic in the driver and

eliminate it at binary level without impairing driver’s normal operations?

Existing research efforts to protect device drivers can be divided into two categories,

online monitoring and offline profiling. Online approaches [26–29] were proposed to iso-

late the driver in a protection domain and enforce external runtime checks on its execution.

They either cannot target intentionally malicious drivers or require protection from the un-

derlying hypervisor. All of them add non-trivial performance overhead due to the realtime
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monitoring. Offline approaches [30, 31] are designed to exercise the driver during testing

to find bugs and vulnerabilities, but they are still incapable of distilling benign operations

and eliminating malicious behaviors in the driver.

We develop a security component called DRIP in our active protection framework to

address this problem from a different angle. Based on our observation, we find that ma-

licious/undesirable logic embedded inside many trojaned kernel drivers is orthogonal to

drivers’ normal functionalities and most such logic achieves malicious effects through in-

teracting with the base kernel through kernel API invocations. Removing these interactions

in malicious code will not affect the correct execution of the driver and it can also neu-

tralize the malicious behavior. We leverage test suites for the semantic-level behavior of

applications [32–34] in order to ensure that the driver works correctly when used by those

applications. By testing the different application level behaviors, we simultaneously test

and ensure all of the underlying benign driver functionality that applications use.

We record interactions between a subject driver and the kernel during testing. Then we

try to select and remove a subset of driver-kernel interactions to test whether this removal

operation will violate the correct execution of the test suite. We iterate this testing process

until all unnecessary interactions are removed, and consequently we can generate a purified

driver with malicious/undesirable behaviors removed.

DRIP has following contributions:

• A testing approach for differentiating between benign and malicious logic of a tro-

janed driver. DRIP only requires a high-level test suite to cover and retain core legit-

imate functionalities of the driver.

• A Test-and-Reduce algorithm to incrementally reduce unnecessary kernel-driver in-

teractions and extract a minimal subset to ensure the correct execution of the driver.

• A clustering mechanism to group kernel-driver interactions according to current ex-

ecution context. It provides additional semantic information to speed up the removal

of kernel API invocations in the Test-and-Reduce algorithm.
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The rest of this chapter is organized as follows. Section 3.2 presents the motivation

and overview of the DRIP component. Section 3.3 provides the detailed design of DRIP.

Section 3.4 gives functional studies of some representative cases and evaluates the perfor-

mance. We summarize DRIP in Section 3.5.

3.2 System Overview

3.2.1 Goals and Assumptions

The goal of DRIP is to purify a device driver with malicious/undesirable logic embed-

ded that may jeopardize the base kernel. The newly generated driver should have the benign

functionalities of a vanilla driver with malicious effects eliminated.

Our approach is based on the assumption that the trojaned driver includes the function-

alities of a benign driver. The malicious logic is parasitically attached to the benign logic

within the driver’s binary and executes persistently when the driver is loaded. We do not tar-

get time-bomb malware in which the malicious functions can only be triggered at a specific

time because the malicious logic may not be active during our testing. This problem can

be addressed by using symbolic execution [35] to cover more execution paths. There are

some existing efforts [31, 36, 37] to apply symbolic execution to driver testing and we can

leverage them to complement our work. In addition, we do not target the malicious code

that interacts with kernel through direct memory manipulation. We could consider kernel

memory accesses as part of driver-kernel interactions and plan to include this feature in our

future work.

We assume that a test suite is available that covers the high-level behaviors of a spe-

cific application. As previously mentioned, testing those behaviors also means that the test

suite covers the necessary driver functionality that they depend upon. Because we test the

application level behaviors, our technique ensures that the application continues to behave

correctly with the purified driver. This assumption is reasonable for current software de-

velopment processes, in which developers often create test cases from requirements even
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before implementation as part of the design phase. We can also leverage existing test gen-

eration techniques [35, 37, 38] to automatically synthesize test cases.

3.2.2 Approach Overview

For a particular application and the environment in which it executes, we need to en-

sure that the application continues to behave correctly. This includes correctly executing

any low-level behaviors in the driver that the application relies upon and triggers during

its operation. We can do this by treating the driver like a blackbox, without considering

the specifics of its implementation. For example, we might examine a network interface

controller (NIC) driver. We can cover the functionality of an FTP server through test cases

from curl-loader [34]. If we can ensure the correct execution of curl-loader when using

a purified NIC driver, then we have empirically preserved the functionalities of the driver

needed by curl-loader. In general, covering the tests of an application will also cover and

preserve the low level driver functionality necessary for that application.

Based on our experience of analyzing conventional rootkits, we gain the insight that

the common goals of malicious code in kernel space are to retrieve information from base

kernel and manipulate kernel data to hide footprints of user space malware. It is difficult to

generate a completely self-contained malicious module to achieve all these effects without

invoking kernel APIs. When we face a trojaned kernel driver, the execution of malicious

code is mixed with the execution of benign code at runtime. Benign code of the driver will

also invoke kernel APIs to request services from base kernel. So we need to differentiate

benign kernel API invocations from malicious ones. With the availability of a test suite

covering benign functionalities of the driver, we can iteratively eliminate some of the kernel

API invocations at runtime to test whether it will violate the correct execution of the test

suite. If the removal will not affect the benign behavior, we consider these invocations

unnecessary; therefore, they can be removed from the binary.

Based on this observation, we first take a snapshot of the system and execute the test

suite from a deterministic state. We record all kernel API invocations from the driver to the
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kernel during testing, which can be captured as control flow transitions across the bound-

ary of driver’s loading memory region. Then we try to restore to the snapshot, remove a

subset of these invocations in memory, and re-execute the same test suite to test whether

the removal will affect its correct execution. We chop the removal set of invocations itera-

tively until all the invocations left are critical to the correct execution of the driver. Because

benign functionalities of the driver are covered by the test suite, the removal of kernel API

invocations within benign code will fail the test suite, so we consider them critical and

preserve them. On the other hand, because malicious code embedded is either orthogo-

nal or complementary to core functionalities of its “host” driver, removal of invocations

within malicious code will not violate the correct execution of the test suite, thus they are

considered unnecessary. Finally we can generate a purified driver with all the unnecessary

invocations removed; therefore, the malicious effects from driver are eliminated concomi-

tantly.

3.2.3 Procedure Overview

Figure 3.1 depicts the overall workflow of DRIP to demonstrate how to purify a tro-

janed driver. We divide the whole procedure into three phases, i.e., profiling, testing, and

rewriting, as in Figure 3.1(a). These three phases are transparent to each other. We give

a brief description of the specific functionality of each phase first and will elaborate upon

them in the following section.

Before starting the purifying process, we construct the Testing Environment in Fig-

ure 3.1(b) and prepare the binary file of the trojaned driver. In the profiling phase, we

execute the test suite to trigger the execution of this driver, record kernel API invocations,

and cluster them according to their execution context. The output of this phase is the Profil-

ing Data and it is organized in the structure presented in Figure 3.1(c). In the testing phase,

we select and remove a subset of these kernel API invocations and test their influence on

the correct execution of the test suite. The Testing Data shares the same structure as the

Profiling Data. The only difference is that we mark testing status on every entry in the Test-
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Figure 3.1.: Workflow of DRIP

ing Data. For example, in Figure 3.1(c), shaded entries in Testing Data indicate that they

have been tested. We feed the Intermediate Testing Data back as input to the testing phase.

The testing phase terminates when all the entries in the Testing Data have been tested. In

the last rewriting phase, we summarize the testing result, apply the changes on the trojaned

binary, and generate a purified driver.
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3.3 Detailed Design

In this section, we describe DRIP following the workflow of the driver purification

procedure and discuss the key design DRIP component in detail. First, we describe the

setup of the Testing Environment. Then we demonstrate the profiling, testing, and rewriting

phases respectively to explain the procedure of generating a purified driver. Finally, we

present the technical details of the prototype implementation.

3.3.1 Environment Setup

Before the purification procedure, we set up the Testing Environment, prepare the tro-

janed driver, and design a communication channel to send test results from the test suite to

DRIP.

Testing Environment

As shown in Figure 3.1(b), the Testing Environment consists of a guest VM and its

underlying emulator (we use QEMU [16] in our environment) as the analysis platform. We

integrate our DRIP as a component into the emulator. In the guest VM, we load the trojaned

driver in the kernel space and monitor the code execution within its loading memory region.

We select or synthesize an automated test suite for the target application to cover the benign

behavior of the subject driver and launch it in the user space. In order to ensure that the test

suite executes from a deterministic state, we take a snapshot of the VM at the time right

before the test suite is about to run.

Communication Channel

If we pick up an existing test suite, it would have no knowledge about the underlying

system including DRIP. However DRIP needs to make decisions based on the current

status of the test suite. So we design a communication channel between the test suite and

DRIP. We can leverage special instructions like hypercall or cpuid, to send signals to the
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underlying emulator. The emulator can extract signals when translating these instructions.

We design three signals, TESTON, TESTSUCC, and TESTFAIL, which respectively stand

for the beginning of the test, the end of the test with a successful result, and the end of the

test with a failing result. Then we embed the communication channel in the test suite to

send these signals at their corresponding events.

3.3.2 Profiling Phase

In the profiling phase, we record all kernel API invocations/returns during the execution

of the test suite. Because all recorded invocations in different process contexts are mixed,

we design a technique called Context-Sensitive Clustering to de-interleave invocations into

clusters and label each cluster with FuncEntry tag. After the recording and clustering

of invocations, we organize the runtime information captured into the Profiling Data and

transfer it to the next testing phase.

Tracking of Driver-Kernel Interactions

Because QEMU can translate every instruction in the guest VM, we track the execution

of the driver through monitoring its program counter at the granularity of a basic block.

If the current basic block is within the driver’s memory region and the previous one is

located outside, it means that control flow transits from the kernel into the driver. If the

previous basic block is within the driver’s region and the address of the current one is out

of the driver’s boundary, it indicates that the control flow transits from the driver into the

kernel. Then all control flow transitions passing the driver boundary can be recorded. The

transitions between kernel and driver are either in the form of a call/jump instruction or a

ret instruction.

As mentioned earlier, we prepare a test suite for the subject device driver we want to

test. When the test suite begins to execute, we issue TESTON to notify DRIP of the start of

the test. When the test finishes successfully or terminates due to an assertion failure, it also

notifies our system with the result through TESTSUCC/TESTFAIL respectively. We denote
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it as one Testing Cycle from the beginning of a test to the end. We record all the transitions

that are issued through call/jump instructions from the driver to the kernel in one Testing

Cycle and we treat them as kernel API invocations.

After recording kernel API invocations from the driver to the kernel, we need to capture

the return value of each invocation because it may be used by subsequent instructions. We

record the transitions that are issued through the ret instruction from the kernel to the driver

and we treat them as kernel API returns. The return value is stored in a general register,

e.g., EAX under x86. Some kernel APIs are void functions or the return values are not used

any further. We check the def-use of EAX in subsequent instructions to determine whether

the return value is used or not. If EAX is defined first, it indicates that the return value is

not used and has no effect on later instructions. If EAX is used first, we need to record this

value and map it to the function invocations recorded before.

Due to multitasking in the OS, a kernel driver’s code can be executed concurrently in

different process contexts. Most OSes also enable the features of kernel reentrancy and

kernel preemption, which mean all processes can be interrupted in the kernel mode and

resumed from a previous checkpoint when the interrupt is handled. These properties make

it complicated to create one-to-one mapping from the kernel API return to its invocation.

Fortunately, the starting address of the kernel stack for different processes/threads is differ-

ent and can be used to uniquely identify the process context. We leverage this property to

identify the current context of the driver code being executed. Processes may be interrupted

to handle hardware interruptions and nested interrupts are possible. It conforms to the Last

In First Out (LIFO) order in the same process context. We maintain a call stack for every

active process to record the last function invocation and its expected return address. When

a function returns, we can find the call stack according to the current process context and

map the return value to the last function invocation stored in this call stack and pop it.

We give a simplified example in Figure 3.2. We assume processes 1 and 2 are running

simultaneously in the system and both request the same service of the kernel driver (dotted

red paths 1 and 4 for process 1 and dotted blue paths 2 and 3 for process 2). For the

execution of driver’s code in Process 1’s context, it invokes API 1 (solid red path 6) of the
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Figure 3.2.: Function return value mapping

kernel and is interrupted before returning from API 1. Then it calls API 2 (solid red path

8) in the handler of interrupt 1. Before returning from API 2, the call stack of Process

1 contains both API 1 and API 2. When returning from API 2 (dashed red path 10), the

current process context is Process 1 and it can map the return to API 2 in Process 1’s call

stack and pop API 2 from call stack. For the execution in Process 2’s context, both API 2

and API 3 in two interrupt handlers have returned (dashed blue path 9 and 12) and popped

from the call stack. There is only API 1 in the call stack. When API 1 returns from the

kernel (dashed blue path 13), its current process context is Process 2 and then we can map

the return value to API 1 and pop it from the call stack.
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Figure 3.3.: Context-sensitive clustering

Context-Sensitive Clustering

After recording all kernel API invocations in one Testing Cycle linearly, we find that

invocations in different process contexts may interleave with each other due to multitask-

ing and kernel preemption. In Figure 3.3(a), we present recorded invocations of a trojaned

E1000 NIC driver. It is compromised by the module injection technique [22] and the pay-

load is a DR rootkit. Each entry contains a symbol name (just used for clear demonstration,

symbols of the driver are not needed by DRIP), funcaddr, and apiaddr. Funcaddr is the

function invocation’s call site address in the driver and apiaddr is the API’s entry address
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in the core kernel. Interleaved invocations make it difficult to design an efficient removal

strategy in the following phase because there is no information of connections among in-

vocations.

We design a technique called Context-Sensitive Clustering to de-interleave kernel API

invocations recorded during the profiling phase. It is based on the observation that, for

the trojaned driver, each function in the driver either belongs to the benign logic or to the

malicious logic and we can group kernel API invocations issued under the same function

together. Thus after clustering according to each function address in the driver, interleaved

kernel API invocations belonging to benign/malicious logic are naturally separated and

become easier to process in the next phase.

In Figure 3.3(b), we present the result after applying Context-Sensitive Clustering and

organize the kernel API invocations in reverse chronological order. The entries in red are

function invocations from the DR rootkit and those in blue are from the E1000 NIC driver.

We denote the group clustered as a Context Group and present one specific example in the

red rectangle. This Context Group is headed with hook execve entry addr:0xf81f08b0 and

it contains three function invocations, ptregs execve, strstr and getname. It means during

the execution of function hook execve whose entry address is 0xf81f08b0 in the driver, it

invokes these three kernel APIs. We combine the clustered kernel API invocations with the

return values to generate the Profiling Data and transfer to the testing phase.

3.3.3 Testing Phase

In the testing phase, DRIP eliminates kernel API invocations that do not affect the

correct execution of the test suite, which ensures the preservation of the driver’s benign

functionalities. We obtain the Profiling Data that contains clustered kernel API invocations

from the preceding profiling phase and rename it as Testing Data. Initially, entries in the

Testing Data are not marked with any status.
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Algorithm 2 Test-and-Reduce algorithm in the testing phase

Input: ContextGroupListhead← FirstContextGroup

FuncStack← EmptyStack

CurrContextGroup← NULL

CurrFuncList← NULL

ENTRYFUNC← DISPATCH(signal)

1: procedure DISPATCH(signal) ⊲ Dispatch based on signal

2: if signal = TESTON then

3: PATCHTESTEDFUNCS()

4: PATCHCURRFUNCLIST()

5: else if signal = TESTSUCC then

6: MARKCURRFUNCLIST(UNNEC)

7: LOADSNAPSHOT() ⊲ Load Snapshot of VM

8: else if signal = TESTFAIL then

9: if SIZE(CurrFuncList) = 1 then

10: MARKFUNCLIST(CRITICAL)

11: else

12: RECOVERCURRFUNCLIST()

13: {FuncList 1, FuncList 2} ← SPLITLIST()

14: PUSHSTACK(FuncStack, {FuncList 1, FuncList 2})

15: LOADSNAPSHOT()

16: procedure PATCHTESTEDFUNCS(void)

17: ContextGroupIter← ContextGroupListhead

18: while ContextGroupIter 6= NULL do

19: if ContextGroupIter.status = TESTED or TESTING then

20: for all Func in ContextGroupIter.funclist do

21: if Func.status = UNNEC then

22: REMOVEFUNC(Func) ⊲ Remove the invocation in Memory

23: if ContextGroupIter.status = TESTING then

24: ASSERT(CurrFuncList 6= NULL)

25: return

26: if ContextGroupIter.status = UNTESTED then

27: CurrContextGroup← ContextGroupIter ⊲ Init CurrContextGroup

28: CurrFuncList← ContextGroupIter.funclist ⊲ Init CurrFuncList

29: ContextGroupIter.status← TESTING

30: return

31: ContextGroupIter← ContextGroupIter.next
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Algorithm 2 Test-and-Reduce algorithm in the testing phase (continued)

32: procedure PATCHCURRFUNCLIST(void)

33: for all Func in CurrFuncList do

34: REMOVEFUNC(Func)

35: procedure MARKCURRFUNCLIST(status) ⊲ Mark statuses in the CurrFuncList

36: if status = UNNEC then

37: for all Func in CurrFuncList do

38: Func.status← UNNEC

39: else if status = CRITICAL then

40: ASSERT(SIZE(CurrFuncList)=1)

41: CurrFuncList[0].status← CRITICAL

42: RECOVERCURRFUNCLIST()

43: if ISEMPTY(FuncStack) then

44: CurrContextGroup.status← TESTED

45: CurrFuncList← NULL

46: else

47: CurrFuncList← POPSTACK(FuncStack)

48: procedure RECOVERCURRFUNCLIST(void) ⊲ Recover CurrFuncList

49: for all Func in CurrFuncList do

50: RESTOREFUNC(Func) ⊲ Restore Invocation in Memory

When the Testing Cycle begins, we load the snapshot to execute the test suite from

a deterministic state. Upon receiving TESTON, a subset of kernel API invocations that

have not been marked will be selected and removed from the memory. As aforementioned,

we cluster kernel API invocations in the profiling phase into different Context Groups.

Selection of candidates for removal is based on the clustering. First we select one Context

Group that is marked as UNTESTED and try to remove all function invocations in it. Then

we change its status to TESTING. We maintain a FuncStack to record the current function

invocation list that is being tested. Then we enter the VM to resume executing the test

suite. If it runs to completion successfully, we mark the current kernel API invocations as

UNNEC, which means that they do not violate the correct execution of the test suite and

can be removed before the next Testing Cycle. If the removal causes failure of the test

suite, we utilize a divide and conquer approach to split the Context Group into two equal

subsets and push them into the FuncStack. Then we recover current invocations being

tested in memory and re-launch the next Testing Cycle. If the current set contains only one
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Figure 3.4.: Reverse chronological order

function invocation, which cannot be divided any further, we mark this function invocation

as CRITICAL if test fails. If all kernel API invocations in the same Context Group have

been tested, we mark this context group as TESTED and continue to process the next one.

We iterate this process until all kernel API invocations in the Testing Data are marked. The

detailed algorithm is presented in the Test-and-Reduce Algorithm 2.

Recall that we list every function invocation in the Context Group using reverse chrono-

logical order. The reason is that the result of earlier function invocations will probably im-

pact the later function invocations. But removing the later invocation first will not impact

the earlier ones. In Figure 3.4, we present the function h4x unlink from KBeast, which is

one of the malicious payloads in our evaluation. h4x unlink is used to hijack the sys unlink

system call from Linux. It analyzes the pathname argument and protects its own malicious

files from being deleted. We highlight 3 function invocations in blue, which are kmalloc,

copy from user and kfree, in the function body. If we remove these 3 function invocations

together in one Testing Cycle, it is safe and will not cause problem. But other kernel API

invocations located between these 3 invocations may be marked as CRITICAL.

In this example, o unlink cannot be removed because it is the function pointer to the

original sys unlink. Removing it can make deletion of files ineffective. This critical func-

tion invocation splits the current Context Group and forces removal of these 3 function

invocations to occur in different Testing Cycles. If we do not use reverse chronological

order, we will try to remove kmalloc first and assign kbuf with a fake address. The subse-
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quent function copy from user will write to an unsafe address and kfree will free a memory

block that has never been allocated. This will probably crash the system. Then we will

mistakenly mark kmalloc as CRITICAL, but in fact it is not. If we remove backwards in

the following order: kfree→ copy from user→ kmalloc, all 3 invocations will be safe to

remove. This greatly reduces the risk of mutual influences of function invocations.

In order to accelerate the handling of failing cases, we add two optimization techniques

to handle different failing scenarios:

(i) Test suite halts in the middle: Removal of some function invocations will cause the

test case to freeze without progress. We handle this by setting a timer and the time

interval is estimated by profiling the execution time of previous successful cases. If

the timer expires, we consider this Testing Cycle a failure and proceed to execute the

next one.

(ii) Test suite causes OS crash and rebooting: Removal of a critical function invocation

may cause OS crash and rebooting. In this case we do not have to wait for the timer

to expire. Instead, we add rebooting detection logic by checking whether the paging

bit is set in the control register. We can determine that it is a failing case if the system

is rebooting after we remove certain invocations.

To eliminate kernel API invocations in the driver, we patch them in the driver’s memory.

The method of patching varies according to platforms and file formats. For ELF under

Linux, the destination address of call instructions is unknown before loading. The module

loader resolves symbols of the kernel API in the entries of the relocation section and fixes

up the destination in the code section with the absolute address when loading the kernel

module. For Portable Executable (PE) under Windows, it utilizes the import address table

(IAT) to store the absolute virtual addresses of kernel APIs. The contents are populated

when that driver is loaded into the system. The kernel API invocations in PE drivers use two

calling styles. The first one uses the indirect call generated by the compiler and retrieves its

destination address from IAT. The second one makes a direct call to an indirect jump and

the jump destination is stored in the IAT. If the return value is not used by the subsequent
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instructions or it is a void function, we can simply replace the call or jmp instruction with a

series of nops in memory. If the return value is used later (e.g., as a predicate condition) and

can determine the control flow, replacing the instruction with nops will lead to an undefined

situation.

As we have already recorded the return value of every kernel API invocation in the

profiling phase, we can replace the calling instruction with a mov instruction that fills the

return value in the EAX register. This kind of replacement can be applied to the ELF

driver and the first calling style of PE drivers. For the second calling style of PE drivers,

we replace the indirect jump with ret to return to the original direct call to eliminate this

invocation.

The other issue we need to consider during memory patching is the calling convention

of the kernel API. If the caller is responsible for cleaning up the stack, no additional effort

is needed because push and pop operations are performed in the same function. If the callee

is responsible for cleaning up the stack, the situation becomes more complicated. In this

scenario, arguments are pushed into stack by the caller and the callee unwinds the stack

before returning. We choose to remove the push operations before the function invocation

in the caller to solve this problem. We can record the number of stack bytes that need to

be unwound. This is determined by the 16-bit parameter of the last ret instruction in the

kernel function. We then trace back from the kernel API invocation instruction to search

for push instructions and replace these instructions with nops.

If the patching operation is successful for the current Testing Cycle, which means the

function invocation is tested to be UNNEC, we record all the modified content and the

address of this function invocation for the rewriting phase. After writing new content into

the memory address of a kernel API invocation, we mark this specific basic block as a

candidate for memory invalidation. When the snapshot is reloaded in the next Testing Cycle

and the emulator tries to execute this basic block, we invalidate the cache of this basic block

and force the emulator to perform binary translation on it because the instructions inside it

have been modified and it should execute the newly translated code.
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3.3.4 Rewriting Phase

The last phase of DRIP’s driver purification procedure is to remove kernel API invoca-

tions marked as UNNEC in the binary file. We have already tested and retrieved the list of

unnecessary API invocations and their addresses in the memory from previous phases. The

procedure of patching the binary is similar to patching memory in the testing phase. We

need to map the loading addresses of API invocations to their relative addresses inside the

binary and apply the changes recorded in the testing phase to code sections.

Finishing these steps is not enough for the purified driver to work correctly. Every

relocatable driver has its own relocation table consisting of a list of pointers. These pointers

point to addresses in the binary that need to be fixed up after the driver is loaded into

the system. If we remove the function invocations whose addresses are included in the

relocation table, we also need to remove these relocation entries in the relocation table.

Otherwise the loader of the OS will still fix up the function address and cause memory

corruption. Because holes are not permitted in the relocation table for both ELF and PE,

we swap the value of each removed entry with the value of last entry in the relocation table

to fill the hole and adjust the table size in the header accordingly. For PE files, we also need

to calculate the new checksum value and write it into its PE header, otherwise Windows

will refuse to load the driver with the wrong checksum.

After finishing all these steps, we generate a new relocatable binary as a purified driver

and it can be loaded into the system for execution.

3.3.5 DRIP Prototype

We have implemented a proof-of-concept prototype of DRIP. The prototype is built as a

component of QEMU. As a full system emulator, QEMU dynamically translates the guest

VM’s code at the granularity of basic blocks and executes them on the emulated CPU. Such

a platform enables us to perform binary analysis on the code region of drivers, intercept

dynamic control flow, and patch the memory at runtime to test effects of our kernel API

invocation removal operations. In addition to processor emulation, QEMU also provides a
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set of emulated devices, which provides an alternative to verify the correctness of test cases

through mapping the high-level program to low-level hardware events. For example, we

can simulate keystrokes in emulated hardware and capture the keys in the test suite to test

the keyboard driver.

To prove the generality of DRIP, We have tested the prototype on two guest operating

systems, Ubuntu 10.04 and Windows XP SP21. We believe that it is easy to extend our

current system to support more operating systems of different versions because DRIP does

not rely on the semantics of a guest VM. We support relocatable file formats for both PE

and ELF, which are standard formats for Windows and Linux drivers.

3.4 Evaluation

In this section, we present the evaluation results for the DRIP prototype in two aspects,

effectiveness and performance. The hardware configuration of our testing platform is a Dell

OptiPlex 780 with Intel R© CoreTM 2 Duo CPU E8400 3.00GHz CPU and 4GB memory.

We develop and run the DRIP component on Ubuntu 11.10 (Linux kernel version 3.0.0)

to generate the purified driver. To prove that changes in the underlying infrastructure do

not affect the functionality of purified drivers, we use VMware Workstation 8.0 as the

hypervisor and Windows 7 as the host operating system to perform evaluation on purified

drivers. We allocate 1GB memory for each guest VM. The guest OSes are Ubuntu 10.04

(Linux kernel version 2.6.32) and Windows XP SP2.

3.4.1 Evaluation of Effectiveness

In the effectiveness evaluation, we use trojaned drivers infected by binary driver rewrit-

ing tools as input to DRIP and generate the corresponding purified drivers. Then we scru-

tinize the behavior of the generated driver manually to validate that the malicious behavior

has been eliminated and the functionality of the benign parts of the driver and the kernel are

1We use Ubuntu 10.04 and Windows XP SP2 because the trojaned driver samples we perform evaluation on

do not support newer versions yet.
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not impaired. We present five representative case studies on drivers in different categories

in detail and present other results briefly in Table 3.1.

Case Study I: E1000 NIC Driver with DR Rootkit Implanted under Linux

In phrack issue 61 [20], truff described a driver infection technique to hide the rootkit

and ensure that it will be reloaded after rebooting. The basic idea is to rename the malicious

function evil with init in the section .strtab to trick the system to load it. It only applies

to Linux kernel 2.4.x, so it is no longer valid for the latest Linux kernel because the mod-

ule loading procedure has been changed in new kernel version. From Linux Forum [22],

coolq extended this approach to Linux Kernel 2.6.x by modifying the module init function

entry in the relocation section .rel.gnu.linkonce.this module to guide the system to load

the initialization function in the malicious module. In the latest issue 68 of phrack [21],

styxˆ proposes a similar approach to infecting modules in kernel versions 2.6.x and 3.0.x.

It redirects init module to load function evil instead of original init function. In order to

enable malicious modules to invoke the original init function, it also updates the symbol

binding of init from local to global. The effects of these two approaches are equivalent and

we choose to use the former method to inject DR rootkit into an E1000 NIC driver as our

target.

The DR rootkit leverages a debug register-based hooking engine, which does not require

modification to the system call table, to perform traditional rootkit behavior, like hiding

processes, sockets, and files. To be more specific, it determines the name (in the version

we obtain the name is AAA) of a file it wants to hide. Then it hides the presence of this file

in the file system by modifying the file listing result in the directory. When executing this

file, the rootkit escalates AAA’s privilege to root, hides all the sockets created, hides all the

child processes forked, and prevents other processes from opening files owned by AAA.

The trojaned driver contains both the functionality of a benign E1000 NIC driver and a

malicious kernel rootkit. We pass it to DRIP to deactivate its malicious behavior and retain

the benign NIC driver behavior. We select and synthesize test cases from LTP (Linux Test
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Table 3.1.: Results of effectiveness evaluation against a spectrum of trojaned drivers

Name Infection Type Platform Purified Note

E1000+KBeast Module injection Linux X E1000 driver infected with KBeast as payload

E1000+DR Module injection Linux X Case Study I

E1000+Adore-ng Module injection Linux X E1000 driver infected with Adore-ng 0.56 as payload

E1000+Sebek Module injection Linux X E1000 driver infected with Sebek-3.2.0b as payload

E1000+Redir ERESI Linux X Cast Study II

Kbdevents Embedded Linux X Case Study III

Null+SSDT DaMouse Windows X Null.sys infected by DaMouse

Kbdclass+SSDT DaMouse Windows X Case Study IV

E1000325+SSDT DaMouse Windows X E1000325.sys infected by DaMouse

Beep+Klog Binary Transformaion Windows X Case Study V

E1000325+Klog Binary Transformation Windows X E1000325.sys infected with Klog as payload
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Project) [32], Linux utility programs, and Iperf to cover the benign functionalities of E1000

NIC driver and the reliability of the overall system. We have validated that the purified

driver behaves the same as a benign E1000 NIC driver with the malicious operations from

the DR rootkit eliminated.

Case Study II: E1000 NIC Driver with Kernel Function Redirection under Linux

From case study I, we learn that we can implant malicious code inside the initialization

function to install system call hooks. In fact, when the driver code invokes the kernel

function, we can intercept and redirect any function invocation to a malicious function

first. The malicious function can act as a proxy to invoke the original function and return

the result to the original invocation. This kernel function redirection technique is proposed

in the libkernsh of ERESI [25].

We prepare an interposition kernel module, which contains malicious functions from

the KBeast rootkit and link it with the E1000 NIC driver to generate a trojaned driver. The

relocation table of this new driver contains all the addresses of code/data that need to be

fixed up during loading. We scan this table to find the function invocation we want to

hijack and modify it to detour to the malicious function in the interposition module. The

payload, KBeast, is a new kernel rootkit based on other well-known rootkits and supports

the latest Linux kernel versions. It contains traditional rootkit functionalities, e.g., process

hiding, files hiding, keystroke logging, and local root escalation. Its basic idea is to patch

the system call table of Linux and detour system calls to its fake functions that are crafted

by the attacker. Because system calls are hijacked, KBeast can easily manipulate the inter-

mediate results and return fake results to the user. We select similar test cases as in Case

Study I to build our test suite to ensure the reliability of the system and core benign func-

tionalities of the E1000 NIC driver. After purification, we validate that KBeast’s cloaking

effects on the system have been eliminated and we still preserve the E1000 driver’s original

functionalities.
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Case Study III: Kbdevents under Linux

Kprobes [39] is a lightweight debugging mechanism in the Linux Kernel that allows

developers to intercept kernel routines at runtime to collect debugging information. Kb-

devents [40] is a Linux Kernel module based on Kprobes to intercept keyboard events. It

can be used as a debugging tool to verify the correctness of the keyboard driver. On ev-

ery key pressed, Kbdevents has additional functionality to launch user scripts from kernel

space, e.g., keylogger to dump keystrokes into a file, printscr to take screenshots and type-

writer to imitate typewriter sounds. These supplementary capabilities are not necessary for

debugging purposes. So we can perform purification on Kbdevents to minimize it to con-

tain only the debugging functionality. We build a special test suite to simulate keystrokes

out of VM, i.e., generate keyboard interrupt from QEMU, and capture them in the guest

VM to verify the correctness of Kbdevents’ debugging functionality. After purification,

we find all kernel API invocations related to launching user scripts from the kernel (e.g.,

call usermodehelper {setup,exec}) have been removed from the driver. The purified driver

can still intercept keystrokes to debug the Linux keyboard driver.

Case Study IV: Infected Kbdclass Driver by DaMouse under Windows

DaMouse [23] is a PE driver infection technique under Windows. It implants exist-

ing malicious code into a windows device driver in the system. It utilizes a virus coding

technique called Entry-Point Obscuring (EPO) to patch API invocation inside the device

driver. When this patched API is invoked, it installs a permanent System Service Dispatch

Table (SSDT) hook to redirect the system call to the hook function inside the driver. The

hook function contains malicious code to filter the results and can eventually complete the

procedure by invoking the original system call.

In this case study, we use DaMouse to infect kbdclass.sys, the keyboard class driver in

Windows. DaMouse patches the Kbdclass driver and install the SSDT hook at NtOpen-

Process. Then system calls to NtOpenProcess are redirected to the hook function called

NewNtOpenProcess. The filter code in the hook function determines whether the target
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process is iexplorer.exe, which belongs to the Internet Explorer. If so, the NtOpenProcess

request will be denied. The symptom noticeable to the user is that he/she cannot open a

new web page in the Internet Explorer. For other processes, the malicious code extracts

the NtOpenProcess’ arguments, e.g., pid and name, of calling process and dumps the result

through DbgPrint. We build the test suite for Kbdclass through sending keystrokes from

QEMU into VM, which is similar to Case Study III, and verify them in the test program

within the VM. After purification, we can keep the keyboard driver’s functionality, Internet

Explorer can open new tabs successfully and there is no process information leakage any

more.

Case Study V: Beep Driver Infected with Klog as Payload under Windows

In previous case studies, we have applied DRIP to purify drivers infected by existing bi-

nary infection tools. In this case study, we try to prove the generality of DRIP by purifying

trojaned drivers generated by a binary transformation tool called BISTRO [41]. BISTRO

enables transplanting binary functional module extracted from one binary into another bi-

nary. We extract the malicious functions, i.e., keyboard attaching and keystrokes dumping,

from klog, which is a well-known Windows keyboard sniffer. Then we utilize BISTRO

to implant the extracted functions into the beep driver of Windows. In order to check if

the beep driver works properly, we add some functionality-checking logic in the emulated

pc speaker in QEMU to verify the beep events. After purification, we load the purified

beep driver into the production environment and it works as expected and keyboard can no

longer dump sniffed keystrokes to a file any more.

3.4.2 Performance Evaluation

The time it takes for DRIP to purify a specific driver is highly dependent on the driver’s

code complexity, coverage of test suite, and hardware configuration. We present the com-

plete performance statistics of purification process for each trojaned driver in Table 3.2. It

shows the ratio of “Removed Function Invocations” to “Recorded Function Invocations”,
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Table 3.2.: Performance evaluation results with a spectrum of trojaned drivers

Name Ratio1 Time NTC2

E1000+KBeast 57/69 42min 13s 37

E1000+DR 13/25 21min 23s 40

E1000+Adore-ng 7/23 20min 46s 39

E1000+Sebek 13/34 19min 19s 35

E1000+Redir 37/53 35min 38s 34

Kbdevents 8/12 8min 25s 13

Null+SSDT 5/7 4min 4s 12

Kbdclass+SSDT 13/21 15min 31s 32

E1000325+SSDT 20/24 22min 15s 19

E1000325+Klog 22/28 24min 35s 19

Beep+Klog 24/35 31min 1s 44

1 Ratio here represents the ratio of “Removed Function

Invocations” to “Recorded Function Invocations”.

2 NTC stands for “Number of Testing Cycles”

the purification time, and the number of testing cycles. Our results indicate that DRIP is

suitable for offline driver purification.

We next measure the system performance overhead with the purified driver and com-

pare it with system performance with the trojaned driver. We use SPECINT 2000 under

Windows and UnixBench under Linux to measure the CPU performance. We normalize

the performance results and present them in Figure 3.5. The left bars indicate the normal-

ized performance scores (the higher the better) after loading the original trojaned driver.

The right bars are normalized performance scores after loading the purified driver. In the

experiments with trojaned E1000+KBeast/E1000+Redir, the system crashed when execut-

ing the test case file copy in UnixBench. The reason is that KBeast rootkit cannot survive
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Figure 3.5.: Comparison of CPU performance

the workload of test case file copy in the UnixBench and both trojaned drivers contain the

KBeast’s code. After purification, both drivers support the benchmark successfully be-

cause the KBeast functionality has been eliminated. For the other experiments, the purified

drivers improve benchmark performance by 1% to 45% compared with that under trojaned

drivers. This is intuitive to understand because the purified drivers are without unnecessary

kernel API invocations and thus execute less code than the trojaned drivers.

Besides testing CPU performance, we also utilize Iperf to measure the network through-

put for all cases involving the NIC driver. We compare the TCP throughput of the trojaned

driver with the purified driver and present the result in Figure 3.6. The left bars are band-

widths for trojaned drivers and the right bars are for purified drivers. From the results,

we observe that 4 out of 7 purified drivers maintain the same or slightly better throughput
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Figure 3.6.: Comparison of network throughput

compared with the trojaned drivers. The worst-case overhead observed is only 4% for the

purified E1000+Sebek driver.

Our performance evaluation results demonstrate that purified drivers generated by DRIP

can maintain (almost) the same network performance as under their trojaned versions.

Moreover, the purified drivers lead to better CPU performance with the removal of em-

bedded malicious operations.

3.5 Summary

We develop and evaluate DRIP to eliminate malicious/unnecessary behaviors of a tro-

janed kernel driver and preserve its benign functionalities for a target application. Through

our evaluation, we demonstrate the effectiveness of DRIP to achieve this goal. After load-
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ing a purified driver, we can maintain or even improve the system’s performance compared

with running the same workload under the trojaned driver.
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4 FACE-CHANGE: KERNEL MINIMIZATION COMPONENT

4.1 Problem Statement

Modern operating systems strive to shrink the size of the trusted computing base (TCB)

to ease code verification and minimize trust assumptions. For a general-purpose operating

system like Linux, kernel minimization has already been established as a practical approach

to reducing attack surface. But existing approaches [42–45] have a number of problems:

Coarse-Grained Profiling

In order to eliminate unnecessary code from the kernel, one must identify the kernel

code that is required to support the multiple applications within a system. The conventional

approach is to generate typical workloads and measure all active kernel code in a training

session. Profiling is performed on the whole system and does not distinguish among the

requirements of different applications [42]. This approach is well suited for generating

a customized kernel for a static, special-purpose system (e.g., an appliance or embedded

system). But for a general-purpose operating system supporting a variety of applications,

whole-system profiling unnecessarily enlarges the kernel attack surface of the system.

In practice, we observe that kernel code executed under different application contexts

varies drastically. Our experiments show that two distinct applications may share as little as

33.6% of their executed kernel code — thus system-wide kernel minimization would over-

approximate both applications’ kernel requirements. For example, the kernel functionality

needed by task manager top is to read statistics data from the memory-based proc file sys-

tem and write to the tty device. In sharp contrast, the Apache web server primarily requires

network I/O services from the kernel. If we profile a system running top and Apache si-

multaneously, we will expose the kernel’s networking code to top simply because Apache

is in the same environment. Further, assume top is the target of a malicious attack, the
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compromised top may be implanted with a parasite network server as a backdoor without

violating the minimized kernel’s constraint.

Flexibility to Adapt to Runtime Changes

The output of traditional kernel minimization approaches is a static kernel image cus-

tomized for a specific workload. However, it is nearly impossible to cover all execution

paths within an application’s code to trigger every possible kernel request. Even when

leveraging automatic test case generation techniques [35, 38, 46], profiling may still suf-

fer from the path coverage problem for large programs. Insufficient profiling may lead to

an underestimation of the kernel code required to support some application(s) at runtime.

Further, the required kernel code may change when running a new application that was not

profiled before or when the workload of an existing application suddenly changes. If this

newly requested kernel code is not included in the customized image, the violation may

crash the application or even panic the kernel.

To address these problems of whole-system-based kernel minimization, we have devel-

oped FACE-CHANGE, a component in our hypervisor-based active protection framework

to support dynamic switching among multiple minimized kernels, each for an individual

application. Throughout this chapter, we use the term kernel view to refer to the in-memory

kernel code presented to an individual application. In conventional kernels, all concurrently

running user-level processes share the same kernel view containing the entire kernel code

section, which we refer to as a full kernel view. FACE-CHANGE aims to present each pro-

cess with a different, customized kernel view, which is prepared individually in advance

by profiling the application’s needs. Any unnecessary kernel code is eliminated to mini-

mize the attack surface accessible to this specific application. At runtime, FACE-CHANGE

identifies the current process context and dynamically switches to its customized kernel

view.

To support applications that were not previously profiled, we are able to profile them

in independent (offline) sessions to generate their kernel views. We then load the kernel

view for a new application dynamically without interrupting the system’s execution. This
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removes the burden of re-compiling and/or installing a new customized kernel upon the

addition of a new application.

Furthermore, we include a kernel code recovery mechanism for the event that an ap-

plication tries to reach code outside of the boundary of its kernel view. This may be due

to incomplete profiling (e.g., interrupt handler’s code with no attachment to any process

or some workload not completely exercised) or malicious tampering (e.g., some injected

logic requests new/different kernel features). We are able to recover the missing code and

backtrack its provenance to identify the anomalous execution paths. Such capability can

be leveraged by administrators to analyze the attack patterns of both user-level and kernel-

level malware.

FACE-CHANGE makes the following contributions:

• A quantitative study of per-application kernel requirements in a multi-programming

system.

• A hypervisor-based dynamic kernel view switching technique. FACE-CHANGE is

transparent to the guest VM and requires no patching or recompilation of the guest

OS kernel.

• A kernel code recovery mechanism to recover requested but missing code and back-

track the provenance of such an anomaly/exception.

The rest of this chapter is organized as follows. Section 4.2 presents the motivation,

goals and assumptions of FACE-CHANGE. Section 4.3 provides the detailed design of

FACE-CHANGE. Section 4.4 gives case studies on the effectiveness of FACE-CHANGE on

user/kernel malware attacks and evaluates its performance. We summarize FACE-CHANGE

in Section 4.5.

4.2 System Overview

In this section, we introduce a quantitative method to measure the kernel code require-

ments of a specific application. We then use these measurements to evaluate the similarity
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of kernel code requirements between applications. The result of this quantitative study mo-

tivates the development of FACE-CHANGE. Finally, we present the goals and assumptions

of our design.

4.2.1 Motivation

Each application, including both the base program and any libraries loaded into the user

address space, interacts with the OS through system calls to request services (e.g., manipu-

lating files, spawning threads, IPC, etc.). The set of system calls utilized by an application

varies substantially across different application types and workloads, and intuitively, dif-

ferent system calls will reach different parts of the kernel’s code. Further, different values

passed as parameters to the same system calls may lead to totally different execution paths

within the kernel. For example, because of Linux’s virtual file system (VFS) interface, a

read system call for disk-based files in ext4-fs and memory-based files in procfs will be

dispatched to entirely different portions of the kernel’s code.

To accurately measure a target application’s kernel code requirements, we monitor the

system execution at the basic block level. We briefly describe the profiling tool here and

will present the detailed design in Section 4.3.1. We record any executed basic blocks

which satisfy the following two criteria:

(i) The basic block belongs to the kernel, i.e., its memory address is in kernel space.

(ii) The basic block is executed in the target application’s context.

After merging any adjacent blocks, we get a range list K[app] for a target application (de-

noted by subscript [app]) in the form:

K[app] = {([B1,E1],T1), · · · , ([Bi,Ei],Ti)}

Bi and Ei denote the beginning and end addresses for the i-th in-memory code segment.

Ti indicates the type for this memory segment, where Ti can be either “base kernel” or the
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name of a kernel module. For kernel modules, we record addresses relative to the module’s

base address because a module’s loading addresses may change at runtime.

We introduce three definitions for comparing two distinct application’s kernel code

requirements:

1. K[app1] ∩K[app2]

The intersection of two range lists outputs the overlapping address ranges between

them. The result is still a range list.

2. LEN(K[app])

The LEN of a range list outputs the number of elements in this list.

3. SIZE(K[app]) =
∑

i∈[1,LEN(K[app])]
(Ei − Bi)

The SIZE of a range list outputs the size of kernel code in this range list.

We use Equation (4.1) below to define the similarity index S between K[app1] and

K[app2]:

S =
SIZE(K[app1] ∩K[app2])

MAX(SIZE(K[app1]), SIZE(K[app2]))
(4.1)

A similarity index S indicates the proportion of the overlapping of kernel code required

between two applications. Besides common system call execution paths, the overlapping

kernel code also consists of functionality needed by every application, e.g., process sched-

uler and interrupt handling code. Through the profiling of well-known Linux applications,

we find that similarity indices range from 33.6% for applications that are orthogonal in

type (such as top vs. Firefox) to 86.5% for similar applications (such as Apache vs. vs-

ftpd). Table 4.1 (Section 4.4) shows the similarity indices for all profiled applications.

These measurements support our earlier hypothesis that kernel code execution paths vary

substantially across different application types. This also indicates that application-specific

kernel views can minimize the kernel attack surface far beyond that of system-wide kernel

minimization.
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4.2.2 Goals and Assumptions

We state the goals for our system in four aspects: strictness, robustness, transparency

and flexibility.

Strictness: The kernel view generated for a specific application should only contain the

kernel code that is necessary for the correct execution of this application under a normal

usage scenario. We should eliminate all other excessive code from the kernel view to avoid

enlarging the kernel’s attack surface. If an application reaches kernel code that does not

belong to its kernel view, we should record the access in detail for later analysis.

Robustness: If an application is running under the same workload and same usage

scenario as during profiling, the behavior of this application running with a customized

kernel view should be no different than with a full kernel view. If the application accesses

any kernel code that is not included in the customized kernel view, we should recover the

missing code and record this violation silently without being detected by the application.

Transparency: There is no need to change any code in the applications or operating

system. The hypervisor controls all FACE-CHANGE operations, which remain transparent

to the guest VM.

Flexibility: Administrators can dynamically load, unload, and switch the kernel view

for a specific application at any time. This should neither jeopardize the functionality of

the currently running application nor the system as a whole.

We assume that, when we generate customized kernel views in the profiling phase, the

environment, including both the applications and the kernel, should not be tampered with

by malware.

4.3 Design and Implementation

In this section, we give a detailed description of the overall design of FACE-CHANGE,

highlight the challenges we face and the solutions we propose. Then we discuss the detailed

implementation of our prototype system.
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We divide the whole system into two phases in chronological order: the profiling phase

and the runtime phase. The profiling phase monitors a target program’s execution and,

based on the active kernel code in this process’ context, generates a configuration file de-

scribing the application’s customized kernel view. In the runtime phase, FACE-CHANGE

builds a new customized kernel view based on each application’s configuration file and

forces the process to use this customized kernel view whenever the guest OS schedules it.

Process 1

Kernel

Process 2 Process 3 Process 1 Process 2 Process 3

Profiling Phase Runtime Phase

{user space} {user space}

{kernel space} {kernel space}
[Process 1] 

kernel view

[Process 2] 

kernel view

[Process 3] 

kernel view

[Process 1] 

kernel view

[Process 2] 

kernel view

[Process 3] 

kernel view

Figure 4.1.: Overview of FACE-CHANGE

Figure 4.1 shows a high-level example of these two phases. Assume we want to profile

Process 1 in the profiling phase. When the kernel schedules Process 1 to run, we start

to record all the kernel code executed in its context. When Process 1 is scheduled out,

we pause the recording until the process is re-scheduled. This procedure also applies to

Processes 2 and 3. At last we generate three configuration files for the kernel views of

these three processes respectively. In the runtime phase, we load each customized kernel

view for the corresponding process. For example, Process 1 can only access [Process 1]

kernel view when it is running.
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4.3.1 Profiling Phase

Design of the Profiler

We implemented our profiler as a component of the QEMU [16] 1.6.0 full system em-

ulator. This enables the profiler to track an application’s execution at the granularity of a

basic block. We use VMI techniques to track context switches within the guest OS. When

the guest OS schedules the target application, the profiler records any address ranges of

kernel code executed in this process’ context. For code within a kernel module, we record

addresses relative to the module’s base address. Once the application has been sufficiently

profiled, the profiler exports all recorded kernel code segments to a kernel view configura-

tion file.

Test Suite Selection

For each application to be profiled, the user should choose a test suite to simulate the

expected real-world workload for this application. For instance, when profiling a server

application, the user may deploy it in the real environment to handle requests, or for an

interactive application, one may simulate the I/O operations of a typical user. To give a

specific example, when profiling a mysql server, we set up a RUBiS1 [47] server and used

its own simulated client to generate workloads for the mysql database.

It is difficult to ensure that all code paths through an application are executed during

profiling, thus it is possible that at runtime the application may access some kernel code

missed by the profiling phase. One alternative to a test suite driven profiler is to use sym-

bolic execution to generate high-coverage test cases, but this approach may not scale to

large applications. To address this problem, we employ a kernel code recovery mechanism

in the runtime phase to recover any missing kernel code. We explain this mechanism in

detail in Section 4.3.2.

1RUBiS is an ebay-like auction service that heavily uses mysql.
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Interrupt Context

In modern OS kernels, hardware triggered asynchronous interrupts can happen at any

time, and thus interrupt handler code is not attached to any single process’ context. We

choose to include the interrupt handler’s code in every application’s kernel view to avoid

having to repeatedly recover this code at runtime. Our profiler leverages QEMU to identify

the occurrence of an interrupt. If this interrupt is not a software interrupt (such as a system

call), we can infer that the system has entered interrupt context. At this point, we record

all kernel code addresses accessed in the interrupt’s context for use in all applications’

customized kernel view.

4.3.2 Runtime Phase

We describe the general design of the runtime phase in Algorithm 3 and discuss some

interesting features below in detail.

Kernel View Initialization

When loading a new kernel view configuration, FACE-CHANGE allocates memory

pages for both the base kernel code and any kernel modules’ code and fills them with

undefined instruction (UD2) “0xf 0xb” (UD2 will raise an invalid opcode exception when

executed). FACE-CHANGE then loads the kernel code specified in the kernel view configu-

ration into it’s appropriate locations in the new pages. Recall that during profiling, we track

the kernel control flow at the basic block level. However, rather than loading individual ba-

sic blocks, we slightly relax the condition to load the entire kernel function which contains

the valid basic blocks. The rationales for this relaxation are: (1) The adjacent code within

the same kernel function is more likely to be accessed at runtime. Thus, we can reduce

the frequency of kernel code recovery by loading the whole kernel function. (2) UD2 is

a 2-byte instruction. If an address range in the kernel view configuration starts from an

odd-numbered address, only the first byte of UD2 will be in the kernel view; therefore, the
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Algorithm 3 Kernel View Switching/Kernel Code Recovery

Input: modulelist← kernel module list

context switch addr← Address of context switch function

resume userspace addr← Address of resume userspace function

full kernel view index← Index of full kernel view

1: - - - - - - - - Kernel View Switching - - - - - - - - - -

2: procedure SWITCH BASE KERNEL(index)

3: kernel range← GET KERNEL RANGE()

4: LOAD KERNEL VIEW EPT(kernel range, index)

5: procedure SWITCH KERNEL MODULES(index)

6: for all mod in modulelist do

7: module range← GET MODULE RANGE(mod)

8: LOAD MODULE VIEW EPT(module range, index)

9: procedure SWITCH KERNEL VIEW(index)

10: SWITCH BASE KERNEL(index)

11: SWITCH KERNEL MODULES(index)

12: procedure HANDLE KERNEL VIEW TRAP(vcpu)

13: if vcpu.rip = context switch addr then

14: procinfo← READ PROC INFO(vcpu)

15: index← KERNEL VIEW SELECTOR(procinfo)

16: if index = full kernel view index then

17: CLEAR RESUME USERSPACE TRAP()

18: SWITCH KERNEL VIEW(index)

19: else

20: ENABLE RESUME SPACE TRAP()

21: lastindex← index

22: else if vcpu.rip = resume userspace addr then

23: CLEAR RESUME USERSPACE TRAP()

24: SWITCH KERNEL VIEW(lastindex)

25: - - - - - - - - Kernel Code Recovery - - - - - - - - - -

26: procedure BACK TRACE(rip, rbp)

27: iter rbp← rbp

28: prev rip← rip

29: while IS VALID(prev rip) do

30: DUMP BACKTRACE(prev rip)

31: prev rip← READ PREV RIP(iter rbp)

32: prev rbp← READ PREV RBP(iter rbp)

33: if PREV RIP = “0B 0F” then

34: RECOVER BACKTRACE(prev rip)

35: iter rbp← prev rbp

36: procedure HANDLE INVALID OPCODE(vcpu)

37: BACK TRACE(vcpu.rip, vcpu.rbp)

38: mem page← GET MEMORY PAGE(vcpu.rip)

39: start addr← SEARCH BACKWARDS(vcpu.rip)

40: end addr← SEARCH FORWARDS(vcpu.rip)

41: FETCH FILL CODE(page, start addr, end addr)
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processor may misinterpret the fragmented UD2 as a different instruction. Loading entire

kernel functions avoids this problem because the boundaries of kernel functions are aligned

on powers-of-two2.

To identify function boundaries, we search for a function header signature backwards

and forwards from the basic blocks marked in the kernel view configuration. For exam-

ple, a common function header signature in the x86 Linux kernel is “push ebp; mov ebp,

esp”(binary opcodes “0x55 0x89 0xe5”). There is a possibility that one kernel function may

cross two memory pages and further, one single instruction may split across pages. In this

case, we continue searching from the head of the next page or the tail of the previous page

to locate the complete kernel function.

After all of the kernel view’s code is identified and loaded into the new pages, FACE-

CHANGE redirects any kernel code access made by this application to the customized kernel

view. We implement our FACE-CHANGE runtime component within a KVM hypervisor

(i.e., kvm-kmod-3.6 and qemu-kvm-1.2.0) and leverage Extended Page Tables (EPT) to

manipulate kernel code mappings. When using EPT, the guest VM maintains its own page

table to translate guest virtual addresses to guest physical addresses. The hypervisor then

uses EPT to transparently map the guest physical addresses to host physical addresses.

During guest OS context switches, FACE-CHANGE changes the page table entries in the

EPT to direct any kernel code accesses to the customized kernel view for the application

(instead of the original kernel’s code). This procedure is explained in the Section 4.3.2.

Again, FACE-CHANGE must take care when handling kernel modules’ code in a cus-

tomized kernel view. Recall that kernel modules are dynamically loaded at runtime in the

kernel’s heap, and thus, during the profiling phase, we record these addresses relative to the

module’s base address. Before we load modules’ code into a kernel view, we traverse the

kernel’s module list to identify the loading addresses for any modules marked in the kernel

view configuration. Then we load the valid kernel code in the code pages for the kernel

modules.

2Linux kernel is by default compiled with -O2 that contains optimization flag -falign-functions
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Figure 4.2.: The procedure of dynamic kernel view switching and kernel code recovery

Kernel View Switching

Figure 4.2 illustrates each step of the kernel view switching procedure. In step 1, the

guest OS chooses a process to run and prepares to context switch to the new process. In

step 2, using VMI, we intercept this context switch and determine which customized kernel

view is needed for the new application. In step 3A and 3B, we modify the pointers to the

page directory (level 2 in the EPT) corresponding to the base kernel code and all kernel

modules’ code respectively. Because kernel modules’ code pages are scattered in the kernel

heap, we reuse any entries in the page directory that point to kernel data and only modify

the entries pointing to the modules’ code.

We also develop a set of optimizations to improve performance. Through our experi-

mentation, we find that switching kernel views immediately at context switches may cause
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the application to miss interrupts, and thus jeopardize I/O performance. We choose in-

stead to switch kernel views when the code resumes user space execution after the context

switch. This will still satisfy the strictness goal (minimize the attack surface) and mitigate

the performance degradation caused by missed interrupts. We also check whether the pre-

vious process and the next process use the same kernel view, and if so, we can avoid one

additional kernel view switch.

Kernel Code Recovery

There are two situations where FACE-CHANGE may need to recover missing kernel

code:

(i) An incomplete kernel view generated during profiling: Testing in a controlled run-

time environment without introducing any attacks, we find that the majority of the

benign kernel recoveries are triggered due to missing code for handling interrupts.

For example, KVM provides a para-virtualized clock device to the guest VM. This

KVM specific code cannot be included in the kernel view during the profiling in

QEMU. Thus, at runtime, FACE-CHANGE needs to recover the missing kernel func-

tions shown below in chronological order:

kvm clock get cycles → kvm clock read

→ pvclock clocksource read → native read tsc

In addition, interrupt handling code is not bound to any process and can be triggered

by hardware interrupts at any time. In the profiling phase, we may not observe all

possible interrupts for this application. Before missing code recovery, we inspect the

current call stack to determine whether the current execution is in interrupt context

(through backtracking the current function traces). Thereafter we recover the missing

kernel code to correctly handle those interrupts.
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All other benign kernel code recoveries due to incomplete profiling of the applica-

tion’s execution paths are recorded as a reference for the administrator to ameliorate

the profiling test suite.

(ii) Anomalous execution caused by malicious attacks: User level malware may hijack

a normal process to execute shellcode which requests kernel services that are not in

the customized kernel view. Additionally, kernel level rootkits can detour the ker-

nel’s execution path to their payload’s malicious code, and obviously, this malicious

payload will not be in any application’s kernel view. FACE-CHANGE is designed to

report the suspicious execution traces, but still recover the kernel code in this case. In

order to track the provenance of the attack, we not only record any recovered func-

tions, but also backtrack the anomalous execution’s call stack to find the origin of the

invocation chain for later analysis.

As we mentioned in Section 4.3.2, we fill any kernel code space that is not in the kernel

view with UD2 “0xf 0xb”. When executed, UD2 raises an invalid opcode exception which

causes a trap to the hypervisor. We illustrate this as step 4 invalid opcode trap in Figure 4.2.

After intercepting the trap, we check the faulting address and try to fetch the missing kernel

function from the original kernel code pages (step 5 in Figure 4.2).

During our implementation of the kernel code recovery mechanism, we fixed an inter-

esting cross-view bug in FACE-CHANGE that is worth mentioning here. If no customized

kernel view is enabled for a specific process, it will have a full kernel view. When executing

this process, its kernel execution may be interrupted or the process may voluntarily give up

the CPU. If we enable a customized kernel view for that process at this time and the process

is re-scheduled by the kernel, some functions in the process’ execution stack may not be in

the new kernel view. We give an example of this situation in Figure 4.3. In this case, the

process is re-scheduled while executing pipe poll at address 0xc0211370. The invocation

chain in the stack is as follows:

syscall call → sys poll → do sys poll
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We find that because sys poll and do sys poll are not in the new customized kernel view,

their code regions are filled with UD2 (shown in red). If we recover pipe poll and return

to its caller (do sys poll), the process will execute undefined instructions. For do sys poll

this is not a problem because the return address (0xc021a526) is an even number. Exe-

cution will return to the “0xf 0xb” opcode (UD2), causing an invalid opcode trap, and we

can recover do sys poll as normal. We call this as a lazy recovery. But for sys poll, the

return address (0xc021a759) is an odd number; therefore, the opcode starting at address

0xc021a759 is “0xb 0xf.” This opcode will be misinterpreted by the processor and not

cause a trap. Our solution is, during code recovery, to backtrack the stack and recover any

caller whose return-target opcode starts with “0xb 0xf ” in the new kernel view. We call

this instant recovery. In this example, when we recover the code for pipe poll, we recover

sys poll instantly.

Disable Customized Kernel View

We can load/unload customized kernel views dynamically at runtime to satisfy our flex-

ibility goal. When we disable a kernel view, FACE-CHANGE de-allocates all memory pages

for that kernel view and switches the EPT back to a full kernel view without interrupting

the running application. This enables us to adapt to an altered environment smoothly by

“hot-plugging” kernel views.

|--Backtrace: 0xc021a526 <do_sys_poll+0x136>

   0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb

|--Backtrace: 0xc021a759 <sys_poll+0x59>

   0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf

|--Backtrace: 0xc01033ec <syscall_call+0x7>

   0x89 0x44 0x24 0x18 0xfa 0x8d 0xb6 0x0 0x0 0x0

Recover 0xc0211370 <pipe_poll+0x0> for kernel[top] do_sys_poll:

...

c021a521: e8 4a f4 ff ff       call   0xc0219970 <do_poll>

c021a526: 89 85 8c fc ff ff    mov    %eax,-0x374(%ebp)

sys_poll:

...

c021a754: e8 97 fc ff ff       call   0xc021a3f0 <do_sys_poll>

c021a759: 83 f8 fc             cmp    $0xfffffffc,%eax

syscall_call:

...

c01033e5: ff 14 85 50 81 59 c0     call   *-0x3fa67eb0(,%eax,4)

c01033ec: 89 44 24 18              mov    %eax,0x18(%esp)

'0xf 0xb' can trap => Lazy recovery

'0xb 0xf' cannot trap  => Instant recovery

1

2

Figure 4.3.: Cross-View kernel code recovery
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4.4 Evaluation

In this section, we present the evaluation of FACE-CHANGE in two aspects: security

and performance. For the security evaluation, we first use the similarity index to measure

the similarities of kernel views among applications. Then we demonstrate the effective-

ness of our system to track attack provenance of both user-level malware and kernel-level

rootkits. For the performance evaluation, we measure the overall system performance with

FACE-CHANGE enabled and the I/O performance for an Apache web server with a mini-

mized kernel view. The hardware configuration of our testing platform is a Lenovo Idea-

pad U410 with Intel R© CoreTM i7 3.10GHz and 8GB memory. We run FACE-CHANGE on

Linux Mint 13 x86 64 (Linux kernel version 3.5.0). We test our prototype with a guest VM

using Ubuntu 10.04 (Linux kernel version 2.6.32) i386 LTS release3, further since FACE-

CHANGE requires minimal domain knowledge, it will be convenient to extend our current

system to support more Linux kernel versions with only minor changes to the implementa-

tion. The guest VM’s memory is 2GB and it uses bridged networking.

4.4.1 Security Evaluation

Kernel View Variation among Applications

We use the similarity index defined in Section 4.2 to measure the difference of kernel

views among 12 well-known Linux applications from different categories. For example,

Apache and vsftpd are server applications that handle network requests. Firefox and gvim

are interactive applications that respond to user input. We present the profiling results as

a square matrix in Table 4.1. The main diagonal(ց) of the matrix is marked with gray

cells. Each cell on the main diagonal presents the size of the kernel view for this specific

application (e.g., Vsftpd executes 341KB kernel code in the profiling phase). We com-

pare the kernel code address ranges between every two applications to get the overlapping

size. All entries above the main diagonal represent the overlapping size between two ap-

3We use Ubuntu 10.04 because the kernel rootkit samples we use in the evaluation do not support newer

Linux kernel yet.
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Table 4.1.: Similarity matrix for applications’ kernel views

firefox totem gvim apache vsftpd top tcpdump mysqld bash sshd gzip eog

firefox 443KB 275KB 251KB 302KB 284KB 149KB 218KB 305KB 221KB 316KB 213KB 286KB

totem 62.1% 286KB 239KB 210KB 217KB 140KB 166KB 228KB 196KB 220KB 174KB 257KB

gvim 56.7% 83.6% 262KB 206KB 206KB 142KB 160KB 220KB 190KB 211KB 166KB 247KB

apache 68.2% 62.7% 61.5% 335KB 284KB 141KB 210KB 265KB 203KB 292KB 200KB 215KB

vsftpd 67.9% 63.6% 60.5% 83.5% 341KB 145KB 208KB 272KB 205KB 293KB 206KB 222KB

top 33.6% 49.2% 54.2% 42.2% 42.7% 167KB 135KB 138KB 147KB 153KB 121KB 143KB

tcpdump 49.2% 58.0% 61.1% 62.6% 61.0% 57.6% 234KB 203KB 165KB 216KB 169KB 168KB

mysqld 68.7% 68.1% 65.4% 78.9% 79.8% 41.1% 60.5% 336KB 186KB 260KB 212KB 230KB

bash 50.0% 68.7% 72.6% 60.6% 60.1% 60.8% 68.3% 55.5% 242KB 223KB 158KB 215KB

sshd 71.3% 58.4% 55.9% 77.5% 77.7% 40.5% 57.3% 68.9% 59.0% 378KB 216KB 233KB

gzip 48.1% 60.9% 63.4% 59.6% 60.4% 49.5% 69.0% 63.2% 64.6% 57.1% 245KB 177KB

eog 64.6% 86.5% 83.2% 64.2% 65.2% 48.1% 56.5% 68.7% 72.4% 61.7% 59.7% 297KB
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plications’ kernel views (e.g., tcpdump and Firefox have 218KB overlapping kernel code).

Entries below the main diagonal represent the similarity index calculated using Equation

(4.1) in Section 4.2. The similarity index demonstrates the similarity of kernel attack sur-

face between different applications. For applications of different types, lower percentages

are better as this ensures a distinct minimized kernel in both cases, and for similar applica-

tions high percentages are expected since both require similar kernel services. As Table 4.1

shows, the similarity indices range from 33.6% for dissimilar applications to 86.5% for

applications with common kernel requirements. This proves our intuition that if two appli-

cations are from different categories they have relatively low similarity index and leverage

different parts of the kernel.

Attack Detection and Provenance

Because the kernel attack surface for each individual application is reduced according

to the profiling results, we can reveal malicious attack patterns whenever a process goes

beyond the boundary of its kernel view. Further, we backtrack the requested kernel code to

identify the exact attack provenance.

This result is a step further than traditional system-wide kernel minimization tech-

niques [42–45] because FACE-CHANGE is able to detect anomalous execution based on an

individual application’s kernel view. To demonstrate that FACE-CHANGE can reveal attack

evidences that may go unnoticed under traditional system-wide minimization techniques,

we also create a “union” kernel view (the union of all kernel views from the applications

we have profiled) as the system-wide minimized kernel. System-wide minimization may

fail to detect an attack if the attack utilizes kernel code required by any application in the

system. FACE-CHANGE greatly reduces this “blind spot” because it is able to detect kernel

execution anomalies specific to a single application.

In this chapter, we evaluate the effectiveness of attack detection with 13 user-level mal-

ware (8 of them use online runtime infection and 5 use offline binary infection) and 3
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Table 4.2.: Results of security evaluation against a spectrum of user/kernel malware

Name Infection Method Payload Note

Injectso Online infection UDP server Case study I

Cymothoa v1 Online infection Bind /bin/sh to TCP port and fork shell Recover sys fork and TCP server

Cymothoa v2 Online infection Bind /bin/sh to TCP port and fork shell Recover sys clone and TCP server

Cymothoa v3 Online infection Remote file sniffer Recover sys settimer and signal handler

Cymothoa v4 Online infection Single process backdoor Case study II

Hotpatch Online infection File writing of injecting timestamp Recover injection and file writing procedure

Xlibtrace Online infection Tracking function invocation Recover tty procedures on terminal

Hijacker Online infection Redirection of library function Recover the procedure of hijacking

Infelf v1 Offline infection Remote shell server Recover remote shell socket operations

Infelf v2 Offline infection Register dumping Case study III

Arches Offline infection Register dumping Recover register dumping operations on terminal

Elf-infector Offline infection Register dumping Same as above

ERESI Offline infection UDP server Recover creation of udp server

KBeast Kernel rootkit File/Process hiding, keystroke sniffer Case study IV

Sebek Kernel rootkit Confidential data collection Recover kernel code in sebek module

Adore-ng Kernel rootkit File/Process hiding Recover kernel code in adore-ng module
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kernel-level rootkits. This data is presented in Table 4.2. We highlight four of these attack

case studies in detail.

Case Study I — Injectso

    // create socket

   sock = socket(AF_INET, SOCK_DGRAM, 0);

   ...

   // bind to the specified port

   server.sin_family = AF_INET;

   server.sin_addr.s_addr = htonl(INADDR_ANY);

   server.sin_port = htons(port); 

   err = bind(sock, (struct sockaddr *) &server, sizeof(server));

   ...

   

   // receive data loop

   while (1) {   

       memset(buffer, 0, BUFF_LEN);

       // receive data

       err = recvfrom(sock, buffer, BUFF_LEN, 0, NULL, 0);

       ...     

   }

B. Kernel code recovery logA. UDP server payload code snippet

socket:

bind:

recvfrom:

0xc051c950 <inet_create+0x0> 

0xc04b80c0 <sys_bind+0x0> 

0xc02f8900 <security_socket_bind+0x0> 

0xc0324470 <apparmor_socket_bind+0x0> 

0xc051c6a0 <inet_bind+0x0> 

0xc0522460 <inet_addr_type+0x0> 

0xc04ba450 <lock_sock_nested+0x0> 

0xc05148c0 <udp_v4_get_port+0x0> 

0xc0514680 <udp_lib_get_port+0x0> 

0xc0512890 <udp_lib_lport_inuse+0x0> 

0xc04ba3a0 <release_sock+0x0> 

0xc04b86d0 <sys_recvfrom+0x0> 

0xc04b8560 <sock_recvmsg+0x0> 

0xc02f89a0 <security_socket_recvmsg+0x0>

0xc03243d0 <apparmor_socket_recvmsg+0x0>

0xc04b9be0 <sock_common_recvmsg+0x0>

0xc0514b50 <udp_recvmsg+0x0>

0xc04c1d80 <__skb_recv_datagram+0x0>

0xc0168830 <prepare_to_wait_exclusive+0x0>

Figure 4.4.: The attack pattern of an injectso’s payload

Injectso [48] is a well-known hot-patching tool used to modify the behavior of a run-

ning process by injecting a dynamic shared object into its address space. It detours the cur-

rent instruction pointer to libc dlopen mode and builds a fake stack to invoke the shared

object’s code. The shellcode’s payload is a UDP server, and the target program is top.

Obviously, the kernel view for top does not contain any kernel code needed to run a UDP

server (even if the kernel views of other co-existing applications do), and thus Injectso’s

payload triggered the kernel code recovery mechanism.

From the kernel code recovery log, we can precisely identify the anomalous execution

caused by Injectso in the top process. In Figure 4.4, we present the UDP server payload’s

code and the corresponding kernel code recovery log. The UDP server will create a socket,
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bind to an address/port, and receive data using the C library calls socket, bind and recvfrom

respectively. It is straightforward to identify which library functions correspond to the

recovered kernel code sections (e.g., bind executes a kernel code path from sys bind to

release sock 4 in chronological order).

We test the system again and apply the “union” kernel view, which includes both top

and some network applications (such as Firefox and Apache) to represent a system-wide

minimization technique. These network applications require the same kernel networking

code as the UDP server payload, and thus this case results in no UDP related kernel func-

tions being recovered. Due to the enlarged attack surface of the system-wide minimized

kernel, this attack would achieve its goal with the available kernel code and thus go unde-

tected.

Case Study II — Cymothoa

Cymothoa [49] is a shellcode injection framework that uses different infection methods

and payload types. The parasite executable coexists with the host process stealthily while

the host process continues to work properly. We test all four working parasites introduced

in the article “Single Process Parasite” [50] in Phrack issue 68 and successfully reveal all

four attack behaviors. The parasite uses the sys fork and sys clone system calls to create

a child process/thread to execute its payload. Later variants are more stealthy, utilizing

settimer and signal to schedule the shellcode inside the host process. Here, we give a

detailed description of the most stealthy (variant 4) parasite’s control flow. This variant

creates a backdoor parasite living within another process (bash is the target program in

this case). First the shellcode registers a signal handler for the SIGALRM signal. Then it

opens a nonblocking I/O socket, binds it to a specific port, and sets the SIGALRM timer.

When the SIGALRM signal is handled, the parasite accepts any connection on the socket

and launches a remote shell. The parent then sets the timer again and resumes execution of

the host process.

4Symbols of kernel functions are not necessary for backtracking. We use them here for clear demonstration.
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Again, the kernel code executed by the shellcode’s actions, e.g., setting the signal han-

dler, creating the TCP server, and setting the alarm clock are recorded in the kernel recovery

log. This reveals both the infection method and payload behaviors of the stealthy parasite.

Also, like before, existing kernel minimization techniques may fail to detect this attack en-

tirely because other applications will likely add these kernel regions into the union-based

minimized kernel.

Case Study III — Infelf

In addition to runtime infection malware, we also apply our techniques to detect com-

promised applications. Infelf [51] is an offline binary infection tool that is able to implant

trojan code into an existing binary program. It splits trojan code into multiple instruction

blocks, inserts them into free alignment areas between functions, and concatenates their

execution path with jump instructions. We use this tool to implant a hardware register

printing function into the gvim binary and redirect gvim’s entry function to this shellcode.

During gvim’s startup, FACE-CHANGE recovers numerous TTY kernel functions which are

not included in gvim’s kernel view. Again, in this case, a whole-system kernel minimiza-

tion technique would be unable to detect this attack on a system containing both gvim and

terminal applications that require the kernel’s TTY functions (such as tcpdump or bash).

Case Study IV — KBeast Rootkit

In addition to user-level attacks, our system is also able to detect rootkit attacks at the

kernel level. Because rootkit attacks originate from shellcode in kernel space, the interpre-

tation of kernel recovery logs is different from user-level attacks. Kernel-level attacks aim

to hide their malicious behavior by detouring the kernel’s control flow during execution of

certain kernel routines (e.g., listing kernel modules, network connections, etc.). Again, we

assume that no rootkit is present during the initial profiling phase, and so no rootkit code

can be included in the kernel view configuration files. When FACE-CHANGE allocates a

new kernel view, if a rootkit has already been installed in the runtime system’s kernel, the
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Figure 4.5.: The attack pattern of a KBeast rootkit

rootkit’s code will not be loaded into the new view and will be filled with UD2 by default.

If the application later triggers FACE-CHANGE’S code recovery, the log will allow us to

clearly see where the hijack took place. A more complicated scenario that FACE-CHANGE

can detect is a rootkit which is installed while FACE-CHANGE is enforcing an application’s

kernel view. In this scenario, the rootkit will be detected in the same way as user-level mal-

ware: by the kernel functionality that it requests to perform its malicious functionalities.

Again, this code will be recovered and we can backtrace recovered kernel code to reveal

the anomalous execution.

We use the KBeast [52] rootkit as an example to show this process in detail. KBeast

is a new rootkit that inherits many features from traditional Linux kernel rootkits (e.g.,

file/process/socket/module hiding, keystroke sniffer) and it supports recent kernel versions.

We use the kernel view for the bash program to detect the existence of KBeast. All the

keystrokes typed in bash are processed by the keyboard event handler. KBeast is able to

intercept and read the keystrokes and store this data into a hidden file, and it will hide its

existence by removing itself from the kernel module list. In Figure 4.5, by backtracking the

recovered kernel functions, we find code addresses with an UNKNOWN tag. This indicates

that these memory addresses are not in any identified memory regions. We also find that

KBeast’s code hijacks the entries of some system calls and invokes strnlen to check the
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length of the keystroke buffer, filp open to open the hidden file, and do sync write to write

the keystroke data into this file.

4.4.2 Performance Evaluation

System Performance

Figure 4.6.: Normalized system performance results from UnixBench

We use the UnixBench benchmark suite to measure and evaluate system performance.

Specifically, we take three different measurements:

(i) We run UnixBench without enabling FACE-CHANGE to get a baseline result.
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(ii) We enable FACE-CHANGE, load one kernel view (Apache), and run the benchmark.

This tests whole-system performance overhead after enabling our system.

(iii) Next, we launch the applications5 from Table 4.1 and load their kernel views one at a

time. After each kernel view is loaded, we rerun the benchmark. This measures any

performance influence on the whole system after loading multiple kernel views.

In Figure 4.6, we normalize the performance scores of the UnixBench (higher performance

score indicates better performance) based on the baseline score from step 1. The x axis rep-

resents the number of kernel views we enabled simultaneously. We find that, compared to

the baseline result, enabling our system incurs 5%∼7% performance overhead on the whole

system. Adding multiple kernel views incurs trivial impact on the system performance. We

find that the only performance degradation occurs during the subtest Pipe-based Context

Switching of UnixBench. This is not surprising because FACE-CHANGE triggers additional

traps for each context switch. We could largely minimize the performance overhead with

optimization of the context switch handler’s code.

I/O Performance for Apache

We also evaluate FACE-CHANGE’s influence on application’s I/O performance. Specif-

ically, we use httperf to compare Apache’s performance before and after enabling FACE-

CHANGE. In this test, we increase the request rate from 5 to 60 requests per second (100

connections in total) to test the I/O performance. We present the ratio of the I/O throughput

after enabling FACE-CHANGE to before in Figure 4.7. From Figure 4.7, we find that I/O

throughput will not be affected below the threshold rate of 55 reqs/second but may begin to

degrade afterwards. This indicates that our system has no influence on the network through-

put before the CPU becomes a bottleneck. The reason is that the bursts of network traffic

cause frequent kernel view switching in a short period of time. One solution is to measure

the rate of requests for an expected workload of the server before enabling FACE-CHANGE.

5We exclude gzip here because it is not a long running application (i.e. it is difficult to ensure it executes

during the entire benchmarking measurement).
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Figure 4.7.: I/O performance results for Apache web server

If the rate is below the threshold rate, the application’s I/O throughput should be unaffected

by FACE-CHANGE. If the rate is far over the threshold rate, FACE-CHANGE may require a

more powerful CPU to handle any traffic peaks in the network without slow-down.

4.5 Summary

We make a key observation that the kernel code required by applications of different

types varies tremendously. Thus, generating a single system-wide minimized kernel will

enlarge the attack surface for all applications involved. We develop FACE-CHANGE to

facilitate dynamic kernel view switching among individual applications executed in a VM.

FACE-CHANGE transparently presents a customized kernel view to each application to
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confine its reachability of kernel code and switch this view upon context switches. In the

event that a process breaks its kernel view boundary, FACE-CHANGE is able to recover

the missing kernel code and backtrack this anomaly via analysis of the execution history.

Our evaluation demonstrates the drastic difference in the size of kernel views of multiple

applications, the effectiveness of FACE-CHANGE in revealing the attack patterns of both

user and kernel attacks, and the potential of enabling FACE-CHANGE for production VMs.
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5 FUTURE WORK

In this chapter we discuss the current limitations of our hypervisor-based active protection

security framework and propose the future work we want to explore respectively for each

component.

5.1 PROCESS-IMPLANTING

5.1.1 Stealthiness of Implanted Process

Although PROCESS-IMPLANTING tries to maximize the stealthiness of the implanted

process, some behaviors (especially for these behaviors that do not exist in the victim pro-

cess) of the implanted process may still leave some footprints, e.g., interruption of the

victim process, anomalous system call invoked from the implanted process, inter-process

communication, etc. Malicious adversary may leverage such evidences to infer the exis-

tence of the implanted process. The potential enhancement of stealthiness is to implant a

process without relying on any victim process. We will explore in this direction further in

our future work.

5.2 DRIP

5.2.1 Coverage of Test Suites

A test suite can only ensure the correctness of the tested behaviors within a specific ap-

plication and the environment in which it executes. Correspondingly, by using a test suite,

we only guarantee to preserve the driver functionalities that are covered by this test suite.

This may not cover all benign functionality within a driver, or it may require adding new

test cases in order to preserve behaviors not originally covered by a test suite. For practical
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deployment, we recommend adjusting test suites and generating new purified drivers based

on different deployments of application set. This can also be treated as the specialization

of a driver. If we do not need some of the redundant features, we can use DRIP to minimize

the functionalities of the driver.

5.2.2 False Positives of Removed Kernel API Invocations

We remove function invocations that are not necessary to our test suite, but it does not

mean all these removed invocations are useless. For example, we have found some memory

deallocation invocations have been removed. This may not impact the execution of the test

suite over a short period, but it may cause memory leaks and affect the performance of the

system in the long term. We can add some test cases to prevent these invocations from

being removed. Another simple solution is to add these well-known functions with specific

functionalities into a white list. We can simply skip them when profiling the driver.

5.2.3 Self-contained Malicious Code

Some malicious code can jeopardize the kernel without invoking any kernel APIs. For

example, some kernel rootkits can directly modify the kernel memory to achieve their ma-

licious effects. They can evade DRIP’s purification as we monitor at the granularity of API

invocations. But the functionalities of such self-contained malicious code are limited and

it is hard for them to adapt to new kernel versions. In our future work, we will enhance

DRIP to monitor at finer-grained memory operations in the profiling phase to address this

problem.

5.3 FACE-CHANGE

5.3.1 Crafted Attacks within Minimized Kernel Views

FACE-CHANGE aims to minimize the kernel attack surface for each specific application.

If a malicious attack breaks the boundary of the kernel view generated in the profiling
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phase, we can detect and report the violations. Compared to system-wide minimization

techniques, FACE-CHANGE enforces stricter constraints on kernel code visibility. It is still

possible, however, that the kernel code used by the malicious attack is within the subset

of the application’s kernel view. For example, suppose a web server is compromised and

a parasite command-and-control (C&C) server is installed. If this C&C server only uses

kernel functionalities that are within the kernel view of the host web server, FACE-CHANGE

does not need to recover any missing kernel code and it would be impossible for us to detect

its existence in this case. This problem may require a deeper understanding and finer-

grained profiling of the semantic behaviors of each application. In addition to recording an

application’s kernel usage in the profiling phase, we also need to profile the application’s

behavior, especially its interactions with the kernel. Thereby we can classify the malicious

behavior in the runtime phase if it violates the application’s known behaviors.

5.3.2 DKOM Kernel Rootkit Detection

For DKOM rootkits [53], which only manipulate kernel data, FACE-CHANGE is unable

to identify such attacks because we only monitor anomalies in kernel code execution. In

order to detect this kind of attack, we could integrate some existing works [54, 55] into

FACE-CHANGE to check the kernel’s data integrity. We leave this effort as our future

work.
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6 RELATED WORK

My work are closely related to several research areas listed below. In this chapter, I describe

some representative works from each area and compare our techniques with them.

6.1 Virtual Machine Introspection

Virtual machine introspection has been researched extensively to enhance system se-

curity. Security tools are moved from a guest VM to a hypervisor or another trusted VM.

The semantic gap [4] problem makes such out-of-VM security tools difficult to leverage

the services offered by the guest system. Semantic information needs to be re-created at

the hypervisor level. Virtual machine introspection approaches typically can be classified

into two categories: passive introspection and active introspection.

In the former category, out-of-VM security tools passively monitor the execution of

guest VM to detect anomalous execution. Livewire [5] pioneered the virtual machine in-

trospection methodology to detect malware infections by inspecting the internal states of

guest VMs. XenAccess [7], VMwatcher [6], VMscope [56], Antfarm [8] Ether [57] are

some representative out-of-box efforts to monitor the guest at the hypervisor level.

However, passive introspection approaches only report, but cannot prevent the mali-

cious behavior from happening. In contrast, active introspection approaches intervene

malicious attacks when they are detected. IntroVirt [58] leverages VM introspection to

execute vulnerability-specific predicates in a VM for intrusion reproduction. Lycosid [9]

detects hidden OS processes through cross-view validation. Then it patches the executable

code to influence the runtime of specific processes. Manitou [59] compares instruction-

page hashes with memory-page hashes at runtime. If there is no matching, it considers

that the instruction page has been corrupted and marked it as non-executable. Out-of-VM

active monitoring was proposed in Lares [10] and SIM [11]. Hooks are placed inside the
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guest operating system to intercept the events invoking the security tool. Lares can place

the security tool at another trusted virtual machine and the hooked system events trigger the

virtual machine switch. SIM gains the in-context view by creating a separate guest address

space that is protected by the hypervisor to gain the native speed.

PROCESS-IMPLANTING pushes the boundary of active introspection one step further.

We dynamically implant a general-purpose security process from the hypervisor into the

guest VM. The stealthy nature of the implanted process makes it harder to be identified

by malicious adversaries. Furthermore, we provide additional protection and coordina-

tion from the hypervisor directly to the implanted process to make it exempt from being

tampered and detected.

6.2 Kernel Driver Protection

DRIP is closely related to two categories of kernel driver protection techniques: online

driver isolation and offline driver testing.

Online Driver Isolation

Nooks [26] involves a shadow driver mechanism to conceal driver failures from ap-

plications by monitoring the state of real drivers during normal operation. It inserts itself

when failure occurs, thus improving the reliability of the overall system. SafeDrive [60]

improves kernel extension reliability by adding type-based checking to driver code and

enforcing runtime memory safety. In order to leverage user level programming tools and

reduce kernel level faults introduced by drivers, Microdriver [61] partitions an existing

driver into a kernel level driver handling performance critical tasks and a user level driver

processing low-performance issues. The Nexus [62] operating system moves the device

driver to user space and it leverages device-specific reference monitors to validate that all

the interactions between drivers and devices conform to safety specifications. To protect

untrusted device drivers from compromising a system, SUD [27] leverages recent hardware

support to confine operations of devices and allows unmodified Linux device drivers to run
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in user processes by emulating a Linux kernel environment in user space. These research

efforts are designed to isolate buggy drivers at runtime. Compared with DRIP, they incur

additional performance overhead and cannot target intentionally malicious drivers.

Offline Driver Testing

SDV [30] statically checks source code paths of device drivers to make sure they use

the Windows API correctly. DDT [31] exercises the closed source device drivers to find

bugs by using symbolic execution. These two offline approaches are designed to test buggy

drivers thoroughly but not for removing malicious behaviors from the driver. On the other

hand, both of them can complement DRIP for improving the coverage of test suites.

6.3 Emulation-Based Analysis

DRIP leverage system emulation technique to perform driver purification. Emulation-

based techniques have been widely used in malware profiling and analysis.

K-Tracer [63] dynamically analyzes a rootkit’s malicious behavior by using backward

slicing and chopping techniques. Panorama [64] leverages the system-wide taint tracking

technique to capture the privacy-breaching behavior of malware. HookFinder [65] and

HookMap [66] perform dynamic analysis to identify kernel hooks implanted by rootkits.

PoKeR [67] profiles a kernel rootkit’s behavior by traversing from static objects to locate

dynamic objects and performing address-object mapping. Instead of detecting malware,

DRIP extends the emulation platform to eliminate malicious behaviors from trojaned kernel

drivers.

Virtuoso [68] involves a technique to create introspection-based security tools automat-

ically out of a VM by tracing and combining the execution traces of In-VM programs.

RevNIC [69] is a technique that helps automatically reverse engineer the logic of a net-

work device driver and synthesize a new driver with the same functionality for a different

platform. Rather than combining traces to re-create a new binary, the goal of DRIP is to
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identify malicious logic in existing drivers and perform binary rewriting to eliminate their

malicious effects.

6.4 Kernel Minimization

Earlier research on kernel minimization was not specifically security oriented. The

primary goal of these works was to shrink the kernel’s in-memory size to adapt to the

limited hardware resources of embedded systems. Lee et al. [43] used a call graph approach

to eliminate redundant code from the Linux kernel. Chanet et al. [45] applied link-time

compaction and specialization techniques to reduce the kernel memory. He et al. [44]

reduced the memory footprint by keeping infrequently executed code on disk and loading

it on demand. Recent research has focused on minimizing the OS kernel to reduce the

attack surface exposed to applications. Kurmus et al. [42] proposed a kernel reduction

approach that automatically generates kernel build configurations based on profiling results

of expected workloads.

Compared to existing kernel minimization works, FACE-CHANGE customizes the ker-

nel code visibility for each individual application, thus minimizing the kernel attack surface

at finer time-granularity. In addition, our system is more flexible and can adapt to changes

in the execution environment and support new applications without rebooting the system.

6.5 Sandboxing

Sandboxing is a general security mechanism that provides a secure execution environ-

ment for running untrusted code.

One category of sandboxing works is to constrain the untrusted code’s capabilities via

predefined security policies. Janus [70] is a filtering approach to perform system call in-

terposition based on the predefined policy. Ostia [71] proposed a delegating architecture

to virtualize the system call interface and provides a user level sandbox to control the ac-

cess of resources. Capsicum [72] extends the Unix API to allow an application to perform

self-compartmentalization, i.e., confining itself in a sandbox that only allows essential ca-
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pabilities. Seccomp [73] is a sandboxing mechanism implemented in the Linux kernel to

constrain the system call interface of process. If the process attempts to issue the system

call that is not allowed, it will be terminated by the kernel. SELinux [74] is a security mod-

ule in the Linux kernel that enforces mandatory access-control policies on applications.

Similar to SELinux, AppArmor [75] restricts the capabilities of a program through binding

a security profile. TxBox [76] is based on system transactions to speculatively execute an

untrusted application and recover from harmful effects. Process Firewalls [77] is a kernel-

base protection mechanism to avoid resource access attacks through examining the internal

state of a process and enforcing invariants on each system call.

Another category of sandboxing approaches is to enforce access control through re-

compilation, binary rewriting, and instrumentation: PittSFIeld [78] extends software fault

isolation [79] (SFI) to x86. It checks unsafe memory writes and constrains jump targets

to aligned addresses. XFI [80] leverages control flow integrity toprevent circumvention

and support fine-grained memory access control. Vx32 [81] is a sandbox that confines the

system calls and data accesses of guest plugins without kernel modification. NaCl [82]

leverages SFI to provide a constrained execution environment for the native binary code

of browser-based application. TRuE [83] replaces the standard loader with a security-

hardened loader and leverages SFI to run untrusted code. Program shepherding [84] en-

forces security policies by monitoring control flow transfers during the execution of a pro-

gram.

In the virtualization/emulation environment, a full system is considered to be confined

in a sandbox and the protection is provided at hypervisor level: Secvisor [85] ensures that

only approved code can be executed in kernel mode to protect the kernel against code

injection attacks. NICKLE [12] enforces that only authorized kernel code can be fetched

for execution in kernel space. To guarantee the integrity of kernel hooks, HookSafe [13]

relocates hooks to a page-aligned memory space and regulates accesses to them via page-

level protection. HUKO [29] is a hypervisor-based approach to enforce mandatory access

control policies on untrusted kernel extensions. Gateway [28] isolates kernel drivers in a

different address space from the base kernel and monitors their kernel API invocations.
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FACE-CHANGE can also be considered as a sandboxing approach. The difference from

these previous works is that we sandbox each individual application by constraining its vis-

ibility of kernel code. We also enforce our approach at the hypervisor level to be transparent

to the guest system.
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7 CONCLUSION

Virtualization technology has been widely adopted in the security area to protect guest VMs

from being compromised by cyber-attacks. Existing hypervisor-based security approaches,

which are traditionally used for intrusion detection, malware analysis, and integrity check,

conduct only passive monitoring on the guest systems, but missing the capabilities of per-

forming active protection on the guest VM, such as patching the vulnerabilities, eliminating

the malicious logic, and shrinking the kernel attack surface, etc.

My research aims to expand the reach of the hypervisor to actively protect the guest

VM. In this dissertation, we present a hypervisor-based security framework that consists

of three key components, PROCESS-IMPLANTING, DRIP, and FACE-CHANGE, to provide

active protection at the level of user processes, kernel drivers, and OS kernel respectively,

within the guest VM.

PROCESS-IMPLANTING is an active virtual machine introspection technique, which

enables implantation of a security process directly from the hypervisor into the guest VM.

The dynamic nature of such implanted process make it harder to be pinpointed by malicious

adversaries.

DRIP targets trojaned kernel drivers, i.e., malicious logic is embedded alongside the

benign code. We purify the trojaned drivers by systematically eliminating the malicious

functionality and preserving the benign logic at binary level.

FACE-CHANGE shrinks the kernel attack surface for applications running within the

guest VM. Compared to existing system-wide kernel minimization techniques, we dynam-

ically switch multiple kernel views, each customized for a different application, at runtime

to achieve kernel minimalism at finer time-granularity.

From our evaluation results on both security and performance, we demonstrate that

PROCESS-IMPLANTING, DRIP, and FACE-CHANGE can effectively provide active protec-

tion for guest VMs with minimum negative impact on the guest system execution. Fur-
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thermore, the reasonable performance overhead makes it realistic to be deployed in the

real-world cloud infrastructures.
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