
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

January 2015

SYNTHESIS, CHARACTERIZATION, AND
KINETIC EVALUATION OF PLANAR AND
SUPPORTED HETEROGENEOUS
CATALYSTS
Michael D. Detwiler
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Detwiler, Michael D., "SYNTHESIS, CHARACTERIZATION, AND KINETIC EVALUATION OF PLANAR AND SUPPORTED
HETEROGENEOUS CATALYSTS" (2015). Open Access Dissertations. 1349.
https://docs.lib.purdue.edu/open_access_dissertations/1349

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1349&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1349&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1349&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1349&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1349?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1349&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate School Form 30
Updated 1/15/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By  

Entitled

For the degree of 

Is approved by the final examining committee: 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation 
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), 
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of 
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s): 

Approved by:
Head of the Departmental Graduate Program Date

Michael D. Detwiler

SYNTHESIS, CHARACTERIZATION, AND KINETIC EVALUATION OF PLANAR AND SUPPORTED
HETEROGENEOUS CATALYSTS.

Doctor of Philosophy

Fabio Ribeiro
Chair

Jeffrey Greeley
 Co-chair 

W. Nicholas Delgass
Co-chair

Dmitry Zemlyanov

Fabio Ribeiro

John A. Morgan 5/1/2015



SYNTHESIS, CHARACTERIZATION, AND KINETIC EVALUATION OF

PLANAR AND SUPPORTED HETEROGENEOUS CATALYSTS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Michael D. Detwiler

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2015

Purdue University

West Lafayette, Indiana



ii

For my family.



iii

ACKNOWLEDGMENTS

The successes in my Ph. D. would not have been possible without the support and

guidance of others. I have very sincere gratitude for all of the efforts of my advisors,

Profs. Fabio Ribeiro and Nick Delgass. Both have instilled in me a sense of scientific

rigor and curiosity that have enabled me to contribute to solving scientific problems.

I am certainly not the only person to recognize their talents: because of their decades

of hard work and achievement, never during my Ph. D. did I have to worry about

funding for research.

I was very fortunate to collaborate with a large number of extremely compe-

tent researchers. From Dmitry Zemlyanov and Anna Nartova I learned the art and

science of developing and performing UHV experiments and meticulously analyzing

the results. Jeffrey Greeley and his students, especially Xiang-Kui Gu and Paulami

Majumdar, helped me better understand my experimental results with theory, and

helped me to learn how to communicate effectively with theorists. Ron Reifenberger

was an excellent voice of reason in our meetings, often bringing back conversations

to planet earth. Expert technical guidance from Yury Zvinevich and David Taylor

saved me a number of times.

I was also very lucky to have great peers along the way in the surface science

subgroup. Amir, thank you for being at Purdue and tacking many of the same

challenges as me. I could not have asked for a better coworker and friend. Lukas, I

wish you could have stayed in the United States longer, but I understand the allure

of skiing in your backyard. To Cory and Ian, the future of UHV group looks bright,

best of luck, and thank you for your help, especially at the end.



iv

What I will miss most about my time at Purdue are my friends. I have been very

lucky to live with some great people at Purdue: Steve Smith, Vince Kispersky, Shane

Bates, Greg Honda, Erik Sheets, Kevin Brew, Matt Louvier, and Jamie Harris. I

will always remember other members of the catalysis group and am grateful for your

excellent technical discussions and friendship: John Degenstein, Paul Dietrich, Sara

Yohe, Yanran Cui, Harsh Choudhari, Dhairya Mehta, Fred Sollberger, Atish Parekh,

and others. Plenty of other folks not mentioned anywhere above also allowed me to

maintain a positive mental state during graduate school, and I am honored to be

your friend–but there are too many to list here. I must give gig thank-you’s to Deb

Bowman and Katie Field for keeping things running smoothly in the background,

and a huge thank you to Linda for keeping my office clean. I also could not have

completed my Ph. D. without the support and love of my family and friends back

home.

Finally, I must acknowledge my funding source: This material is based upon

work supported as part of the Institute for Atom-efficient Chemical Transformations

(IACT), an Energy Frontier Research Center funded by the U. S. Department of

Energy, Office of Science, Office of Basic Energy Sciences. The U. S. Department of

Energy is the reason that I am financially solvent after 5 years of graduate school

(and two lucrative summer internships before that!), so a huge thanks to them and,

by extension, American taxpayers.



v

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Reactions of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Formic Acid Decomposition . . . . . . . . . . . . . . . . . . 5
1.1.2 Aqueous Phase Reforming . . . . . . . . . . . . . . . . . . . 7

1.2 Atomic Layer Deposition for Catalyst Synthesis . . . . . . . . . . . 7
1.2.1 Introduction to Atomic Layer Deposition . . . . . . . . . . . 7
1.2.2 Atomic Layer Deposition in Catalysis . . . . . . . . . . . . . 8

2 KINETICS OF GAS PHASE FORMIC ACID DECOMPOSITION ON PLAT-
INUM SINGLE CRYSTAL AND POLYCRYSTALLINE SURFACES . . 11
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Kinetics of Formic Acid Decomposition on Platinum . . . . 12
2.2.2 Mechanistic Insights into Formic Acid Decomposition on Plat-

inum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Pt Single Crystal and Foil Samples . . . . . . . . . . . . . . 17
2.3.2 Kinetic Experiments and Data Analysis . . . . . . . . . . . . 17
2.3.3 Kinetic Experiments . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Ex situ Characterization . . . . . . . . . . . . . . . . . . . . 19

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Analysis of Gas Phase IR Spectra . . . . . . . . . . . . . . . 20
2.4.2 System Validation . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Rate Stabilization . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.4 Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.5 Characterization with XPS . . . . . . . . . . . . . . . . . . . 30

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



vi

Page

3 PALLADIUM AND COPPER NANOPARTICLE FORMATION ON TITA-
NIA (110) BY THERMAL DECOMPOSITION OF PALLADIUM(II) AND
COPPER(II) HEXAFLUOROACETYLACETONATE . . . . . . . . . . 41
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 X-ray Photoelectron Spectroscopy for Pd(hfac)2/TiO2 System 45
3.4.2 STM for Pd(hfac)2/TiO2 System . . . . . . . . . . . . . . . 55
3.4.3 STM for Cu(hfac)2/TiO2 System and Bimetallic Cu-Pd System 60

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 THE SURFACE CHEMISTRY OF TRIMETHYLALUMINIUM ON PD(111)
AND PT(111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 X-ray Photoelectron Spectroscopy . . . . . . . . . . . . . . . 72
4.4.2 High Resolution Electron Energy Loss Spectroscopy . . . . . 79
4.4.3 Scanning Tunneling Microscopy . . . . . . . . . . . . . . . . 86
4.4.4 DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5.1 Pd(111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5.2 Pt(111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.3 TMA Adsorption on Metal Surfaces . . . . . . . . . . . . . . 100

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.7 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 REACTION OF TRIMETHYLALUMINUM WITH WATER ON PT(111)
AND PD(111) FROM 10-5 TO 10-1 MILLIBAR . . . . . . . . . . . . . . 105
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3 Experimental and Theoretical Methods . . . . . . . . . . . . . . . . 107

5.3.1 Synchrotron-Based in Situ XPS Experiments . . . . . . . . . 108
5.3.2 Ultra-High Vacuum XPS Experiments . . . . . . . . . . . . 109
5.3.3 Analysis of XPS Data . . . . . . . . . . . . . . . . . . . . . 110
5.3.4 Density Functional Theory Calculations . . . . . . . . . . . 111

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.1 X-ray Photoelectron Spectroscopy . . . . . . . . . . . . . . . 112



vii

Page
5.4.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . 132

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 TRIMETHYLALUMINUM AND OXYGEN ATOMIC LAYER DEPOSI-
TION ON HYDROXYL-FREE CU(111) . . . . . . . . . . . . . . . . . . 139
6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.4 Computational methods . . . . . . . . . . . . . . . . . . . . . . . . 144
6.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.5.1 Interaction of TMA and H2O on Cu Foil . . . . . . . . . . . 145
6.5.2 Interaction of TMA with Clean Cu(111) . . . . . . . . . . . 147
6.5.3 Preparation of Cu2O/Cu(111) . . . . . . . . . . . . . . . . . 148
6.5.4 First TMA Half-Cycle . . . . . . . . . . . . . . . . . . . . . 150
6.5.5 First O2 half-cycle . . . . . . . . . . . . . . . . . . . . . . . 156
6.5.6 Second ALD Cycle . . . . . . . . . . . . . . . . . . . . . . . 158
6.5.7 Subsequent ALD half cycles and film growth behavior . . . . 160

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7 CHARACTERIZATION AND THEORY OF RE FILMS ON PT(111) GROWN
BY UHV-CVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.3 Experimental Materials and Methods . . . . . . . . . . . . . . . . . 168
7.4 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.5.1 Deposition of Re using UHV-CVD . . . . . . . . . . . . . . 171
7.5.2 Rhenium Oxide Formation . . . . . . . . . . . . . . . . . . . 173
7.5.3 Pt Skin Surface with Subsurface Pt-Re Alloy . . . . . . . . . 177
7.5.4 DFT Calculations . . . . . . . . . . . . . . . . . . . . . . . . 183

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8 XPS CHARACTERIZATION OF PT-MO/MWCNT BIMETALLIC CATA-
LYSTS FOR HIGH PRESSURE VAPOR PHASE HYDRODEOXYGENA-
TION OF LIGNIN-DERIVED MODEL COMPOUNDS . . . . . . . . . . 193
8.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.3.1 Comparison of Pt-Mo Catalyst to Pt and Mo Catalysts . . . 198
8.3.2 Pt:Mo Bimetallic Catalyst Series . . . . . . . . . . . . . . . 200



viii

Page
8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.4.1 Monometallic Platinum Particles and Alloying of Platinum and
Molybdenum . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.4.2 Molybdenum Oxide and Carbide Phases . . . . . . . . . . . 208
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

9 SUMMARY AND RECOMMENDATIONS . . . . . . . . . . . . . . . . . 212

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

APPENDICES

A XPS Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
A.1 Non-attenuating Overlayer at Fractional Monolayer Coverage . . . . 236
A.2 Thickness of a Uniform Overlayer . . . . . . . . . . . . . . . . . . . 237
A.3 In situ Carbon Coverage Calculation . . . . . . . . . . . . . . . . . 237

B Formic Acid Decomposition Mechanisms . . . . . . . . . . . . . . . . . . 239
B.1 Single Site Formate Decomposition Mechanism . . . . . . . . . . . . 239
B.2 Dual Site Formate Decomposition Mechanism . . . . . . . . . . . . 241

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242



ix

LIST OF TABLES

Table Page

2.1 Observed FTIR peaks, references, and vibrational mode assignments for
batch reactor charged with 1 Torr HCOOH, 800 Torr total pressure (bal-
ance N2) and held at room temperature. *Assignments without references
are unanimous for that mode in the Reference(s) column. . . . . . . . . 37

2.2 Uncorrected AES peak intensity ratios from spectra corresponding to the
labeled points in Figure 2.3. . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Kinetic parameters for formic acid decomposition at standard reaction
conditions (5 Torr HCOOH, 15 Torr H2, 15 Torr CO, 800 Torr total,
balance N2, T = 493 K). *The TOR on Pt foil assumes an atomic surface
density of 1.5× 1015 atoms cm-2. . . . . . . . . . . . . . . . . . . . . . 39

2.4 Kinetic parameters for formic acid decomposition with low initial CO con-
centrations. Standard conditions were 5 Torr HCOOH, 2-15 Torr H2, 2
Torr CO, 800 Torr total (balance N2), T = 463 K. * Error is the standard
error of the slope for a single order experiment. . . . . . . . . . . . . . 40

3.1 Binding energies of characteristic XPS features observed after Pd(hfac)2

adsorption at room temperature and subsequent thermal decomposition. 48

3.2 Coverage of hfac species as a function of adsorption temperature, calcu-
lated based on Pd 3d, C 1s, and F 1s regions. C 1s and F 1s columns use
only hfac components from XPS fitting for the calculation. . . . . . . . 50

3.3 Coverage of carbon-containing species as a function of adsorption temper-
ature. HC’s = residual hydrocarbons. . . . . . . . . . . . . . . . . . . . 51

4.1 Main characteristic vibrations of hydrocarbon species on metal surfaces.
a t: terminal,b x = 1, 2, or 3. . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Major HREELS peaks observed from the Pt(111) surface following 6 L
TMA exposure at 300 K and subsequent annealing at 373 and 473 K in
UHV. Abbreviations: w, weak; s, strong; sh, shoulder; br, broad. NA: not
assigned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



x

Table Page

4.3 Major HREELS peaks observed from Pd(111) following 6 L TMA exposure
at 300 K and subsequent annealing to 373 and 473 K in UHV. Abbrevia-
tions: vw, very weak; w, weak; s, strong; sh, shoulder; br, broad; NA, not
assigned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Observed Al 2p and Al 2s component binding energies and envelope area
% for Pt(111) samples after TMA exposure and water exposure at 400°C. 116

5.2 Observed C 1s component binding energies and envelope area % for Pt(111)
samples after TMA exposure and water exposure at 400°C. . . . . . . . 117

5.3 Observed Al 2p and Al 2s component binding energies envelope area %
for Pd(111) samples after TMA exposure and water exposure at 400°C. 131

5.4 Observed C 1s component binding energies and envelope area % for Pd(111)
samples after TMA exposure and water exposure at 400°C. . . . . . . . 132

7.1 Summary of dosing experiments. * = not controlled. . . . . . . . . . . 189

7.2 Summary of vibration frequencies for O and CO adsorbed on Pt(111) and
Re(0001). * = This work, DFT calculation. . . . . . . . . . . . . . . . 190

7.3 DFT calculation results. Oxygen adsorption energies are referenced to a
gas phase oxygen molecule. . . . . . . . . . . . . . . . . . . . . . . . . 191

7.4 Comparison of O adsorption energies with d-band center. . . . . . . . . 191

7.5 DFT calculated vibrational frequencies for adsorbed oxygen. . . . . . . 192

7.6 DFT calculated vibrational frequencies for oxygen in rhenium oxide on
Pt(111). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.1 XPS Binding Energies and Component Area Percents for Pt, Mo and Pt-
Mo Catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.2 XPS spectra fwhm values for the Mo 3d region for the Pt-Mo/MWCNT
series, 5%Pt/MWCNT, and 2.46%Mo/MWCNT catalysts. . . . . . . . 196

8.3 XPS fwhm values for the Pt 4f region for the Pt-Mo series, 5%Pt, and
2.46%Mo MWCNT-supported catalysts. . . . . . . . . . . . . . . . . . 196

8.4 XPS lineshapes for the Mo 3d region for the Pt-Mo bimetallic series, 5%Pt,
and 2.46%Mo MWCNT-supported catalysts. . . . . . . . . . . . . . . . 197

8.5 XPS lineshapes for the Pt 4f region for the Pt-Mo bimetallic series, 5%Pt,
and 2.46%Mo MWCNT-supported catalysts. . . . . . . . . . . . . . . . 197



xi

LIST OF FIGURES

Figure Page

1.1 Chemical reaction network for the upgrading of biomass-derived carbo-
hydrates to liquid fuels. This network is the focus of the Institute for
Atom Efficient Chemical Transformations, a United States Department of
Energy Frontier Research Center. . . . . . . . . . . . . . . . . . . . . . 3

2.1 FTIR spectra of reactor charged with 1 Torr HCOOH, 800 Torr total
pressure (balance N2) at start of reaction on Pt(100) and after 52 min. at
473 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Carbon (red circle), oxygen (blue triangle), and copper (green square)
contaminant coverages from XPS plotted against reaction number for a
series of consecutive reactions on Pt(111). Plotted on the right y-axis is
the CO2 TOR (black square). Reaction conditions were 5 Torr HCOOH,
15 Torr H2, 15 Torr CO, 800 Torr total (balance N2), T = 493 K. . . . 24

2.3 CO2 TOR for a series of consecutive batch reactions on Pt(100). The
sample was cleaned by Ar+ sputtering and annealing at 1073 K at the
point labeled (b). Reaction conditions were 5 Torr HCOOH, 15 Torr H2,
15 Torr CO, 800 Torr total (balance N2), T = 503 K. . . . . . . . . . . 26

2.4 Plot of CO2 concentration versus time for a typical batch reaction. . . 27

2.5 (a) Arrhenius plots for formic acid decomposition on Pt(111). Conditions:
5 Torr HCOOH, 15 Torr H2, 15 Torr CO, 800 Torr total (balance N2). (b)
HCOOH, CO, and H2 reaction order plots on Pt(111) at T = 493 K. . 27

2.6 (a) Arrhenius plots for formic acid decomposition on Pt(100). Conditions:
5 Torr HCOOH, 15 Torr H2, 15 Torr CO, 800 Torr total (balance N2). (b)
HCOOH, CO, and H2 reaction order plots on Pt(100) at T = 493 K . . 28



xii

Figure Page

2.7 Apparent activation energies and CO reaction orders collected on Pt(111)
and Pt(100) for low initial CO concentrations. (a) Arrhenius plots for
formic acid decomposition on Pt(111). Conditions: 5 Torr HCOOH, 2
Torr H2, 2 Torr CO, 800 Torr total (balance N2). (b) Arrhenius plots for
formic acid decomposition on Pt(100). Conditions: 5 Torr HCOOH, 2-15
Torr H2, 2 Torr CO, 800 Torr total (balance N2). (c) CO Orders collected
on both Pt(111) and Pt(100). Conditions were 5 Torr HCOOH, 2 Torr
H2, 800 Torr total, T = 463 K unless otherwise noted. . . . . . . . . . 29

3.1 The F 1s, O 1s, Pd 3d and C 1s photoemission spectra obtained after
exposure of the TiO2(110) surface to Pd(hfac)2 up to saturation at 300 K.
Ball and stick schematic of Pd(hfac)2 molecule is shown inside F 1s region
(Pd atom: blue, O atoms: red, C atoms: white, F atoms: lime, H atoms:
cyan). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 The F 1s, Pd 3d and C 1s XPS spectra obtained following TiO2(110)
exposed to Pd(hfac)2 at 300 K and heated at 375, 525, 575, 775, and 875
K. The spectra were collected at the specified temperature. . . . . . . . 52

3.3 Changes in area percentage of TiO2 and TiOx components upon heating
for clean TiO2(110), Pd(hfac)2 exposure at 300 K, and during annealing
to 875 K. The shaded area shows the fractions of TiO2 and TiOx for the
clean TiO2(110) single crystal before Pd(hfac)2 exposure. . . . . . . . . 53

3.4 Pd growth curve showing the coverage of the Pd in ML versus number of
deposition cycles. Each cycle consists of adsorption of Pd(hfac)2 at 300 K
followed by annealing in UHV to 875 K. . . . . . . . . . . . . . . . . . 55

3.5 STM images of the TiO2(110) surface. A: Clean TiO2(110) following sput-
tering and annealing cycles (V = +2.0 V, I = 70 pA). Inset: Atomic scale
image after Fourier transform showing the unreconstructed (1 × 1) unit
cell. B: TiO2 following dosing of Pd(hfac)2 for 60 min. at room temper-
ature (V = +1.75 V, I = 0.1 nA). Inset: Small scale image after Fourier
transform showing structured (2× 1) overlayer of adsorbates. The bright
spots are assigned to Pd(hfac)ads group. C: Model for Pd(hfac)2 adsorbed
on TiO2(110): The Pd(hfac)2 dissociates. The resulting hfac (hfac: black
spheres) binds to two five-fold coordinated Ti atoms (gray spheres) in a
bi-dentate fashion and the Pd(hfac) (Pd(hfac): yellow spheres) adsorbs
between two bridging oxygen (oxygen: white spheres). The adsorption
geometry matches the experimental value reported in image B inset. D:
Following annealing of the as-deposited sample to 875 K for 20 min. (V =
+0.5 V, I = 2.0 nA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



xiii

Figure Page

3.6 Pd(hfac)2 molecule adsorbed on the TiO2(110) surface at room tempera-
ture. Pd(hfac)2 dissociates into an hfac ligand, which bonds across neigh-
boring 5-fold coordinated Ti sites (grey atoms), and a Pd(hfac), which
bonds across bridging O atoms (red atoms) on the surface. Adsorbed
Pd(hfac) is responsible for the (2× 1) structure observed after Pd(hfac)2

adsorption at room temperature. Adjacent Pd(hfac) and hfac groups are
not shown for clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 50 nm × 50 nm image of the TiO2(110) surface following saturation dosing
of Cu(hfac)2 at room temperature. It = 80 pA, V = 1.75 V. . . . . . . 60

3.8 200 nm × 200 nm image of the TiO2(110) surface following saturation
dosing of Cu(hfac)2 at room temperature and subsequent annealing at
500°C. It = 50 pA, V = 2.50 V. . . . . . . . . . . . . . . . . . . . . . . 61

3.9 Images of the TiO2(110) surface following saturation dosing of Cu(hfac)2 at
room temperature, subsequent annealing at 500°C, and saturation dosing
of Pd(hfac)2 at room temperature. (a) It = 30 pA, V = 2.80 V, 100 nm
× 100 nm. (b) It = 50 pA, V = 2.50 V, 100 nm × 100 nm. . . . . . . . 62

3.10 STM images of the TiO2(110) after dosing Cu(hfac)2, annealing to 500C,
dosing Pd(hfac)2, and annealing to 500C. It = 80 pA, V = 2.50 V, 200 nm
× 200 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.11 Schematic of the reaction of Pd(hfac)2 with a TiO2(110) surface. . . . . 64

4.1 Aluminum coverage on Pd(111) and Pt(111) surfaces versus TMA expo-
sure at 473 K. The dashed lines are to guide the eye. . . . . . . . . . . 73

4.2 C 1s, Al 2p, and Pd 3d XPS regions for various TMA exposures at 473 K
on Pd(111). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 C 1s, Al 2s, and Pt 4f XPS regions for various TMA exposures at 473 K
on Pt(111). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 XPS core-level regions of (a) Al 2s from Pt(111) and (b) Al 2p from
Pd(111) following exposure to 2000 L TMA at 473 K. . . . . . . . . . . 76

4.5 Pd 3d and Pt 4f core-level regions obtained from clean Pd(111) (left) and
Pt(111) (right) surfaces (bottom spectra) and following exposure to 2000
L TMA at 473 K (top spectra). . . . . . . . . . . . . . . . . . . . . . . 77



xiv

Figure Page

4.6 Aluminum coverage on Pd(111) (left panel) and Pt(111) (right panel) as
a function of time at 623 K in UHV. The points within the shaded regions
were obtained following 4 × 104 L O2 exposure at 623 K. The initial Al
adlayers were prepared by exposing Pd(111) and Pt(111) to 3 L and 10 L
of TMA, respectively, at 473 K. The XPS data were obtained at 623 K.
The dashed lines serve to guide the eye. . . . . . . . . . . . . . . . . . 78

4.7 Carbon to aluminum coverage ratio plotted against TMA exposure on
Pt(111) and Pd(111) surfaces at 473 K. Coverages were calculated using
XPS data. Inset: Carbon coverage as a function of TMA exposure for
exposures up to 100 L. The dashed lines are to guide the eye. . . . . . 80

4.8 Al and C coverages after exposure of (a) Pd(111) and (b) Pt(111) surfaces
to 2.5 L TMA at room temperature and annealing up to 623 K. . . . . 83

4.9 HREELS spectra obtained from (a) Pd(111) and (b) Pt(111) following 6
L TMA exposure at 300 K and subsequent annealing at 373 and 473 K in
UHV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.10 HREELS spectrum for room temperature saturation CO adsorption on
clean Pd(111). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.11 STM images of (a) clean Pd(111) (It = 0.5 nA, Ut = 0.5 V) and (b) Pt(111)
(It = 0.3 nA, Ut = 0.5 V) surfaces. Step heights across the profiles are
0.23 nm and 0.24 nm, respectively, for Pd(111) and Pt(111). . . . . . . 88

4.12 (a) STM images of Pd-Al fractal islands on the Pd(111) surface exposed to
2.5 L TMA at 293 K. Imaging conditions: 200 nm × 200 nm, It = 0.5 nA,
Ut= 0.5 V. (b) Histogram of pixel height on the terraces. (c) Logarithmic
plot of the perimeter (P ) vs. area (S) relationship of Pd-Al islands. . . 89

4.13 STM images of Pd-Al islands after annealing at 423, 523 and 623 K for 15
min. The Pd-Al islands were obtained by exposing Pd(111) to 2.5 L TMA
at 293 K. Imaging conditions: 200 nm × 200 nm, It= 0.5 nA, Ut = 0.5 V. 90

4.14 (a) Room temperature STM images of 2D Pd-Al islands after annealing
the Pd(111) surface to 423, 523, and 623 K for 15 min. Height histogram
of pixels in STM images on flat terraces are shown below each image.
(b) Plots of the perimeter (P ) vs. area (S) at each temperature used for
calculating the dp value. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.15 STM images (200 nm × 200 nm, insets: 50 nm × 50 nm) obtained after
exposing the Pt(111) surface to 2.5 L of TMA at 300 K and subsequent
annealing of the sample at 423 K, 523 K and 623 K for 15 min. The
tunneling current was 0.3–0.7 nA; the bias was +0.5–+0.8 V. . . . . . . 92



xv

Figure Page

4.16 (a) Particle height distributions observed at 300 K and after annealing at
the indicated temperatures. (b) Average particle height versus tempera-
ture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.17 Potential energy surfaces of MA dissociation on clean and CH3/CCH3

covered (111) terraces and (211) steps for Pd and Pt. Insets are the initial
and final states. The blue, pink, black, and white spheres represent Pd,
Al, C, and H atoms, respectively. . . . . . . . . . . . . . . . . . . . . . 94

4.18 Potential energy of vacancy formation on palladium and platinum surfaces.
Dashed yellow line is the position of step and the white circle is the vacancy
formed. The blue and green spheres represent Pd/Pt atoms and Pd/Pt
adatoms, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.19 Schematic of TMA adsorption and dissociation on the Pd(111) surface. 97

4.20 Schematic of TMA adsorption and dissociation on the Pt(111) surface. 99

5.1 Al 2p/Pt 4f regions. (a) UHV-XPS. From bottom to top: Pt(111) after
repeated cleaning cycles, following dosing of TMA at 100°C, and after
exposure to water at 400°C. (b) In situ XPS. From bottom to top: Pt(111)
single crystal after cleaning cycles, following dosing of TMA between 100–
200°C, and after exposure to water at 25°C and subsequently in steps to
400°C. Fitted components are shown as dashed lines and represent metallic
Pt (dark grey), metallic Al or MMA (red), Al2O3 (green), and partially
hydroxylated/oxyhydroxide aluminum (blue). The open circles are raw
data points, and the light grey line is the sum of the deconvoluted peaks. 113

5.2 C 1s regions for (a) UHV-XPS and (b) in situ XPS on Pt(111). From
bottom to top: Pt(111) after cleaning cycles, after dosing of TMA (at
100°C for UHV-XPS and between 100–200°C for in situ XPS), and after
exposure to water at 400°C. The fitted components are shown as red and
blue dashed lines (assignments discussed in text). Open circles are raw
data points, and the light grey line is the sum of the deconvoluted peaks. 114

5.3 Al 2s regions for (a) UHV-XPS and (b) in situ XPS (bottom) on Pt(111).
From bottom to top: Pt(111) after dosing of TMA (at 100°C for the UHV
experiment and between 100–200°C for the in situ experiment) and after
water exposure at 400°C. Fitted components are shown as dashed lines
and represent metallic Al or MMA (red), Al2O3 (green), and partially
hydroxylated/oxyhydroxide aluminum (blue). The open circles are raw
data points, and the light grey line is the sum of the deconvoluted peaks. 115



xvi

Figure Page

5.4 (a) O 1s regions for UHV-XPS on Pt(111). From bottom to top: After
water exposure at 100°C following TMA exposure and subsequently in
steps to 400°C. (b) O 1s regions for in situ XPS on Pt(111). From bottom
to top: Pt(111) after exposure to water at 25°C following dosing of TMA
and subsequently in steps to 400°C. Dashed lines are fitted components
and represent O2

- bound to Al (red) and OH- bound to Al (blue). Open
circles are raw data and the grey line is the sum of deconvoluted peaks. 121

5.5 (a) Al 2p and (b) Al 2s regions following calcination of 10 cycles of TMA-
H2O ALD on Pd(111) at 600°C in 5× 10−6 mbar O2. . . . . . . . . . . 122

5.6 Pd 3d regions for (a) UHV-XPS and (b) in situ XPS on Pd(111). From
bottom to top: Pd(111) after cleaning, following dosing of TMA (at 100°C
for UHV-XPS and between 100–200°C for in situ XPS), and after wa-
ter exposure at 400°C. Fitted components are dashed lines and represent
metallic Pd (dark grey) and Pd-Al alloy phase(s) (red). Open circles are
raw data, and the grey line is the sum of the deconvoluted peaks. . . . 125

5.7 C 1s regions for (a) UHV-XPS and (b) in situ XPS on Pd(111). From
bottom to top: Pd(111) after repeated cleaning cycles, following dosing of
TMA (at 100°C for the UHV experiment and between 100-200°C for the in
situ experiment), and after exposure to water at 400°C. Fitted components
originating from carbon-containing components are shown as red and blue
dashed lines (assignments discussed in text). Also present is a Pd 3d ghost
peak (light grey). The open circles are raw data points, and the light grey
line is the sum of the deconvoluted peaks. . . . . . . . . . . . . . . . . 127

5.8 (a) Al 2p regions for UHV-XPS experiment on Pd(111). From bottom
to top: Pd(111) following dosing of TMA at 100°C, and after exposure to
water at 400°C. (b) Al 2p high resolution core level regions for in situ XPS
experiment on Pd(111). From bottom to top: Pt(111) single crystal after
repeated cleaning cycles, following dosing of TMA between 100–200°C,
and after exposure to water at 25°C and subsequently in steps to 400°C.
Fitted components are shown as dashed lines and represent metallic Al
or MMA (red), Al2O3 (green), and partially hydroxylated/oxyhydroxide
aluminum (blue). The open circles are raw data points, and the light grey
line is the sum of the deconvoluted peaks. . . . . . . . . . . . . . . . . 128



xvii

Figure Page

5.9 Al 2s core level regions for (a) UHV-XPS and (b) in situ XPS (bottom)
on Pd(111). From bottom to top: Pd(111) following dosing of TMA (at
100°C for the UHV experiment and between 100–200°C for the in situ
experiment), and after exposure to water at 400°C. Fitted components are
shown as dashed lines and represent metallic Al or MMA (red), Al2O3

(green), and partially hydroxylated/oxyhydroxide aluminum (blue). The
open circles are raw data points, and the light grey line is the sum of the
deconvoluted peaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.10 C 1s core level region for in situ XPS on Pd(111) during exposure to
0.1 mbar water at 400°C. Fitted components originating from carbon-
containing components are shown as orange (adsorbed carboxyl), dark
green (adsorbed CO), and red (assignment discussed in text) dashed lines.
The open circles are raw data points, and the light grey line is the sum of
the deconvoluted peaks. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.11 Free energy vs. reaction coordinate for TMA decomposition on Pt(111)
and Pd(111). Entropies are calculated at a temperature of 150°C at stan-
dard pressures of 1 bar. . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1 The optimized Cu2O/Cu(111) structure. The orange, green, and red
spheres present Cu in Cu(111) lattice, Cu in Cu2O layer and O atoms,
respectively. Adlayer atoms are not drawn to scale for visibility. . . . . 145

6.2 Cu 3p/Al 2p core-level regions obtained from TMA-H2O ALD cycles on
Cu foil by in situ XPS. (a) 2nd TMA half cycle, (b) 2nd H2O half cycle, (c)
3rd TMA half cycle, (d) 3rd H2O half-cycle. TMA was exposed for 2000 L
at ca. 373–473 K for all TMA half-cycles, and H2O was dosed in situ at
473 K at 0.1 mbar for all H2O half-cycles. . . . . . . . . . . . . . . . . 146

6.3 Free energy diagrams of TMA dissociation on Cu(111) and Cu2O/Cu(111).
Insets are the optimized most stable structures of adsorbed TMA, dimethy-
laluminum (DMA), methylaluminum (MA), Al, and CH3, respectively.
Orange, green, pink, black, red, and white spheres represent Cu of Cu(111),
Cu of Cu2O, Al, C, O, and H atoms, respectively. . . . . . . . . . . . . 147

6.4 Cu 2p3/2 core-level region obtained from (a) Cu2O/Cu(111) (4500 L O2

at 623 K), (b) 1st TMA half-cycle, (c) 1st O2 half-cycle, (d) 2nd TMA
half-cycle, (e) 2nd O2 half-cycle. Inset: close of up high-BE shoulder. . 149

6.5 HREELS spectrum of Cu2O/Cu(111) surface prepared by exposure of
Cu(111) to 4500 L O2 at 623 K. . . . . . . . . . . . . . . . . . . . . . . 150



xviii

Figure Page

6.6 O 1s, Cu 3s/Al 2s, and C 1s XPS core-level regions obtained from (a)
Cu2O/Cu(111) (4500 L O2 at 623 K), (b) 1st TMA half-cycle, (c) 1st

O2 half-cycle, (d) 2nd TMA half-cycle, (e) 2nd O2 half-cycle, (f) after 4
complete ALD cycles. TMA was exposed for 2000 L at 473 K for all
TMA half-cycles, and O2 was exposed for 4500 L O2 at 623 K for all O2

half-cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.7 STM images of (a) clean Cu(111) and (b-e) Cu(111) exposed to 4500 L O2

at 623 K. The seven rings of the Cu2O with the “44”-structure [214] are
numbered inside image (e). Bias voltages were −0.5 V for all images, and
tunneling currents were 0.5 nA (images a, b) and 1.0 nA (images c–e). 152

6.8 (a) HREELS spectra obtained after (a) 1st TMA half-cycle, (b) 1st O2

half-cycle, (c) 2nd TMA half-cycle (d) 2nd O2 half-cycle. (b) Area ratio
between ν1 and ν3 peaks (Altet/Aloct) for each TMA and O2 half-cycle.
TMA was exposed for 2000 L at 473 K for all TMA half-cycles, and O2

was exposed for 4500 L O2 at 623 K for all O2 half-cycles. . . . . . . . 153

6.9 Alumina Al:O atomic percentage ratio versus ALD cycle number. TMA
was exposed for 2000 L at 473 K for all TMA half-cycles, and O2 was
exposed for 4500 L O2 at 623 K for all O2 half-cycles. Atomic percentages
were calculated using Cu 3p (black square), Cu 3s (red circle), and Cu 2p1/2

(blue triangle) peaks. In all cases the Al 2s peak and Al-O component of
the O 1s peak were used for atomic percentage calculations. . . . . . . 154

6.10 STM images of the Cu2O/Cu(111) surface exposed to 2000 L TMA at 473
K (a) 200 nm × 200 nm and (b) 100 nm × 100 nm. The tunneling current
was 1.0 nA; the bias voltage was -0.75 V. . . . . . . . . . . . . . . . . . 155

6.11 STM images after first O2 half-cycle (4500 L O2 at 623 K) (a) 200 nm ×
200 nm and (b) 50 nm × 50 nm (c) 25 nm × 25 nm. (d) Line profile along
the solid white line indicated in image (c). It = 1.0 nA, Ut = −0.75 V. 157

6.12 STM images (a) 200 nm × 200 nm and (b) 50 nm × 50 nm obtained after
the second TMA half-cycle (2000 L TMA at 473 K). (c) The zoomed-in
region of the highlighted section in image (b) and the line profile along
the solid line indicated in the image. The tunneling current was 0.5 nA;
the bias voltage was −0.9 V. . . . . . . . . . . . . . . . . . . . . . . . . 159

6.13 (a) Alumina thickness versus ALD cycle for various co-reactant dosing
conditions. Dosing conditions were O2, 623 K (Black squares, calculated
using Al 2s; red circles, calculated using O 1s), O2, 473 K (red triangles,
calculated using Al 2s), and H2O, 623 K (green stars, calculated using Al
2s). (b) Carbon atomic % for various co-reactant dosing conditions. . . 161



xix

Figure Page

6.14 BEs of O 1s (red outlines) and Al 2s (solid black) peaks after each half-
cycle of TMA or O2. Squares were data points taken after TMA half cycles,
and circles were data points taken after O2 half cycles. 7 cycles total were
performed. The starting surface was the Cu2O/Cu(111) surface. . . . . 162

7.1 Re 4f and O 1s core level regions. Bottom spectra: after dosing Re2(CO)10

on Pt(111) at ca. 5 × 10−6 mbar, Tsample = 573 K, Tprecursor = 353 K.
Middle: after heating at 673 K in 1 × 10−6 mbar O2 for 20 min. Top:
after subsequent stepwise heating to 973 K. Open circles: raw data after
background subtraction, grey line: peak envelope. In Re 4f region, blue
line: Re0 component, red line: RexOy component. In the O 1s region, blue
dashed line: Oads component, red dashed line: COads component. . . . 172

7.2 STM image of as-dosed surface (Dosing 4 in Table 7.1). 100 nm × 100
nm, It = 0.3 nA, Ut = 600 mV. From XPS, ΘRe = 0.4 ML, ΘC = 4.5 ML. 174

7.3 HREELS spectra of superficial oxide surface and subsequent annealing in
UHV at specified temperature for 5 min. Superficial oxide surface was
prepared by exposing Re/Pt(111) to 1× 10−6 mbar O2 for 20 min. at 673
K (a) and for 10 min. at 723 K (b) followed by cooling in O2 to 373 K and
343 K, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.4 Re 4f7/2 BE plotted as a function of Re coverage calculated from the
XPS data. Filled shapes (green and blue triangles, black squares, and
red circles) are from this work, with each shape representing a different
experimental series. Open black squares are coverages calculated from
linear interpolations of Re concentrations taken from Reference [241]. . 178

7.5 STM image of Pt-Re surface after annealing to 973 K. 100 nm × 100 nm, It

= 0.3 nA, Ut = 1000 mV. From XPS, calculated ΘRe = 0.3 ML. Features
are elongated in the direction of the white arrow due to drift. . . . . . 180

7.6 HREELS spectra obtained from the Re-Pt surface alloy exposed to 1×10−6

mbar O2 at 373 K for 5 min (a), and at 723 K for 10 min. (b) In both
experiments, the sample was cooled in O2 to 273 K. Following O2 dosing,
each sample was heated in UHV at 373 K for 5 min. . . . . . . . . . . 181

7.7 HREELS spectra obtained Pt(111) exposed to 1 × 10−6 mbar O2 at 673
K followed by annealing at 373 K and 473 K in UHV for 5 min. . . . . 182

7.8 Close packed surface structures used in DFT calculations: (a) Monometal-
lic Pt(111) (b) Re film on Pt (c):(f) Re sub layer of coverage (c) 0.25 (d)
0.5 (e) 0.75 and (f) 1.0 ML. Blue spheres = Re, Grey spheres = Pt. . . 184



xx

Figure Page

7.9 Rhenium oxide structures on Pt(111) (a) ReO film (b) ReO2 film (c) single
ReO islands, and (d) single ReO2 islands. Grey spheres = Pt, blue spheres
= Re, red spheres = O. . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.1 (a) Pt 4f region for 1) 5%Pt-Mo and 2) 5%Pt MWCNT-supported cata-
lysts (Pt0, solid blue; Pt fit components, solid black; data, red dots) and
(b) the Mo 3d region for 1) the 5%Pt-Mo and 2) 2.46%Mo MWCNT-
supported catalysts (Mo6+, magenta dash/dot/dot; Mo4+, blue dash/dot;
Mo carbide-like species, green dash; Mo0, solid red; all Mo fit components,
solid black; data, red dots). . . . . . . . . . . . . . . . . . . . . . . . . 199

8.2 Pt 4f region for (1) 2%Pt-Mo(1:5), (2) 2.5%Pt-Mo(1:2), (3) 5%Pt-Mo(1:1),
(4) 5%Pt-Mo(1:0.5), (5) 5%Pt-Mo(1:0.05), and (6) 5%Pt MWCNT-supported
catalysts (Pt0, solid blue; Pt fit components, solid black; data, red dots) 201

8.3 Mo 3d region for (1) 2%Pt-Mo(1:5), (2) 2.5%Pt-Mo(1:2), (3) 5%Pt-Mo(1:1),
(4) 5%Pt-Mo(1:0.5), (5) 5%Pt-Mo(1:0.05), and (6) 2.46%Mo MWCNT-
supported catalysts (Mo6+, magenta dash/dot/dot; Mo4+, blue dash/dot;
Mo carbide-like species, green dash; Mo0, solid red; all Mo fit components,
solid black; data, red dots). . . . . . . . . . . . . . . . . . . . . . . . . 202

8.4 % area of Mo 3d peak envelope as determined by XPS for Mo oxidation
states as a function of increasing Mo loading: Mo0 (black squares), Mo
carbide-like species (red circles), Mo4+ (blue triangles), Mo6+ (green X).
Infinity on the x-axis represents the 2.46%Mo/MWCNT catalyst . . . . 204

8.5 Mo:Pt ratio as a function of increasing Mo loading for the peak envelopes
determined from XPS (black X) and the nominal catalyst synthesis loading
(blue diamond). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.6 The difference in the XPS Pt 4f7/2 and Mo03d5/2 BE as a function Pt:Mo
ratio (right axis, blue circles), difference in XPS Pt 4f7/2 BE of the Pt-
Mo/MWCNT catalysts relative to the 5%Pt/MWCNT catalyst as a func-
tion of Pt:Mo ratio (left axis, red squares), and difference in XAS Pt E0

of the Pt-Mo/MWCNT catalysts relative to the 5%Pt/MWCNT catalyst
as a function of Pt:Mo ratio (left axis, green triangles). . . . . . . . . . 206

8.7 Average calculated Mo oxidation state versus increasing Mo loading for
the Pt/MWCNT, Pt-Mo/MWNCT series, and Mo/MWCNT catalysts.
Molybdenum in carbide-like species as 2+ is shown as red squares; molyb-
denum in carbide-like species as Mo0 is shown as blue diamonds. Infinity
on the x-axis represents the 2.46%Mo/MWCNT catalyst. . . . . . . . . 209



xxi

ABSTRACT

Detwiler, Michael D. PhD, Purdue University, August 2015. Synthesis, Character-
ization, and Kinetic Evaluation of Planar and Supported Heterogeneous Catalysts.
Major Professors: Fabio H. Ribeiro and W. Nicholas Delgass.

An integrated approach for biomass upgrading to fuels requires catalyst synthesis,

characterization, and kinetic evaluation. The work was divided in three areas, 1–

preparation and characterization of model catalysts containing metal oxide overcoats

and metal nanoparticles synthesized by atomic layer deposition (ALD), a gas-phase

material deposition technique, 2–the study of structure sensitivity for formic acid

decomposition on planar Pt catalysts, and 3–characterization of bimetallic Pt-M (M

= Re, Mo) catalysts using surface sensitive techniques and theory.

In the first project, metal oxide overcoats, which have been found to prevent metal

nanoparticle deactivation via sintering and coking in biomass upgrading reactions,

were prepared by ALD. In this work, model alumina-overcoated catalysts were syn-

thesized by exposing Pd(111), Pt(111), and Cu(111) surfaces to trimethylaluminum

at ca. 10-6 mbar and a co-reactant (H2O or O2) at ca. 10-6 or 0.1 mbar. Nominal Al

coverages differed on each surface after saturation trimethylaluminum exposure (≥

500 L) at 200°C in the order Pd(111) (1.4 ML) > Pt(111) (1.0 ML) > Cu(111) (no Al),

and Al alloyed only with Pd(111). Trimethylaluminum adsorbed on Cu2O-covered

Cu(111), consuming adsorbed oxygen. Overlayer morphologies and adsorbed carbon

species were found to be different on each surface, indicating that the interaction of

trimethylaluminum with transition metal surfaces is substrate-dependent. Details of

each reaction mechanism are discussed. Atomic layer deposition was also used for the

synthesis of metallic nanoparticles. Dissociative adsorption sites for M(II) (M = Pd
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or Cu) hexafluoroacetylacetonates (hfac) on rutile TiO2(110) to form adsorbed (hfac)

and M(hfac) were determined, and annealing this surface resulted in the formation

of M nanoparticles.

In the second project, formic acid decomposition kinetics were evaluated on planar

Pt catalysts. Hydrogen is necessary for oxygen removal from biomass, and formic

acid, a byproduct of biomass upgrading, catalytically decomposes to produce H2 and

CO2 or H2O and CO. Batch reactor kinetics were found to be structure-insensitive

on Pt(111), (100), and a polycrystalline foil under standard reaction conditions (1%

HCOOH, 1.875% H2, 1.875% CO, PTotal = 800 Torr, 220°C), within measurement

precision. Approximate CO2 formation turnover rates were 2.6 ± 0.6, 3.7 ± 1.0, and

3 ± 2 s-1 at 220°C on Pt(111), (100), and Pt foil, respectively, while CO selectivity

remained < 1% for conversions < 10%.

Finally, bimetallic Pt-M (M = Re, Mo) catalysts were characterized in the third

project. Exposing Re/Pt(111) surfaces synthesized by ultra-high vacuum chemical

vapor deposition to oxygen formed ReOx (0.5 < x < 1). Oxygen desorbed above 973

K, and a Pt skin formed over Re, which bound O and CO more weakly than either

monometallic surface. Adsorbate frequencies were calculated by density functional

theory and compared to experiment, which confirmed that rhenium oxide clusters

were present on the O-exposed, Pt skin surface. Theoretical calculations showed that

the binding energy trends observed by XPS and HREELS experiments can be ex-

plained on the basis of d-band centers of Pt-Re systems. Pt-Mo catalysts supported

on multiwall carbon nanotubes were also characterized by x-ray photoelectron spec-

troscopy which revealed the presence of PtxMo (2 < x < 3) alloy, Mo carbide-like,

Mo4+, and Mo6+ phases, confirming x-ray absorption results. Catalysts with more Mo

relative to Pt contained fewer Pt monometallic and more PtxMo bimetallic nanopar-

ticles, and at the highest Mo loadings Mo oxide and carbide-like phases dominated,

indicating that Mo phase distribution is a function of Mo loading.
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1. INTRODUCTION

Due to long-term supply uncertainties and concern about greenhouse gas emis-

sions, the search for renewable, sustainable sources of energy has taken center stage in

multiple research areas. [1] This is true especially for the transportation sector, which

relies almost completely on petroleum. [2] Some technologies that show promise as

alternatives to petroleum are electric vehicles, hydrogen fuel cell vehicles, and liquid

fuels derived from biomass. None of the above technologies are mature. Electric

vehicles suffer from battery cost and performance issues and will necessitate the de-

velopment of infrastructure related to vehicle charging. Hydrogen fuel cells require

advances in hydrogen storage technology and the related refueling infrastructure. [3]

If electricity or hydrogen for these technologies are produced from conventional fossil

fuels, these alternatives will continue contributing to the atmospheric concentration

of CO2.

One promising renewable fuel source is biomass, and, as a result, a variety of dif-

ferent pathways for upgrading biomass feedstocks to liquid fuels and other high value

chemicals have been under development. [4] Common forms of lignocellulosic biomass

have 75-80% of the energy density of gasoline a per-carbon basis. [5] Biomass is al-

ready used for production of gasoline blending agents. The largest scale production

of biomass-derived fuel in the United States currently is ethanol from corn, however,

this process relies heavily on government subsidies and uses a food crop for fuel, which

has ignited ethical debate. [6]

Using less expensive lignocellulose feedstocks for biomass conversion to liquid fuel

is “viewed as the end-goal feedstock.” [3] A multitude of conversion technologies are

being studied for upgrading these feedstocks including gasification, pyrolysis followed
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by hydrodeoxygenation, biological methods, and liquefaction. [5] One proposed re-

action network that relies heavily on aqueous phase catalytic reforming to to carry

out these chemical transformations focuses on upgrading the simple biomass-derived

sugars xylose and glucose to fuels in the Diesel, gasoline, or jet fuel range. It is

outlined in Figure 1.1. In short, this reaction network relies on a variety of chemi-

cal processes to upgrade biomass-derived C5 and C6 sugars to furfural and levulinic

acid (LA), respectively. Through subsequent upgrading steps involving reduction,

these two products are further upgraded to γ-valerolactone, a platform molecule for

production of fuels in the gasoline, Diesel, or jet fuel range. [7] The entire reaction

network relies heavily on H2 input for both reduction of furfural and LA as well as

for C-C coupling of mono-functional oxygenates. As a result, H2 generation was also

included in this pathway.

Many of the reactions in the reaction network, including those used for H2 genera-

tion (formic acid decomposition and aqueous phase reforming) occur on heterogeneous

catalysts. Heterogeneous catalysts are materials that alter the kinetics of a chemi-

cal reaction. They exist in a phase other than that of the reactants. By altering

reaction kinetics, catalysts can increase the yield of valuable products per unit time

and decrease the amounts of undesirable byproducts over the same time frame. The

global catalyst market, of which heterogeneous catalysts make up the largest portion,

is approximately $15 billion per year. [8] Many heterogeneous catalysts take the form

of dispersed metal nanoparticles on an oxide support. Heterogeneous catalysts are

often preferred to homogeneous catalysts (where the catalyst is the same phase as

the reactants) for several reasons. First, expensive separation of the catalyst from

products and unreacted reactants is not necessary. Second, heterogeneous catalysts

can be recovered and recycled (or when their production cost is low as in the case of

zeolites, disposed of safely). From a reaction engineering standpoint, heterogeneous

catalysts are better for most continuous processes. Heterogeneous reactions also do

not necessitate the use of a solvent.



3

Figure 1.1. Chemical reaction network for the upgrading of biomass-
derived carbohydrates to liquid fuels. This network is the focus of
the Institute for Atom Efficient Chemical Transformations, a United
States Department of Energy Frontier Research Center.

However, heterogeneous catalysts are difficult to develop and use. Catalyst sta-

bility (the ability of the catalyst to maintain the maximum reaction rate and desired

product selectivity over time) may deteriorate during reactions under harsh condi-

tions, including many biomass upgrading reactions in the above reaction network. It

is often difficult to identify the active site(s) (the part of a catalyst that does the

work) for a reaction, as heterogeneous catalysts are usually non-uniform. Exten-

sive pore structures of supported heterogeneous catalysts often present difficulties in

understanding catalyst structure, the reaction mechanism, and measurement of reac-

tion kinetics due to diffusion or heat transfer issues. All of the above challenges are
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present for biomass upgrading reactions, as the reactions are often performed at high

temperature in aqueous phase on multifunctional catalysts.

Model catalysts, used to approximate real catalytic systems, are simpler versions

of catalysts used industrially. Often, solid model catalysts have simplified geometries

and contain only some components of a real catalyst, e. g., the metal(s), support,

etc. These simplified systems may take the form of metal nanoparticles supported on

nonporous supports such as multi-walled carbon nanotubes (MWCNTs), or, simpler

still, the effect of the active metal may be modeled by a flat single crystal. Single

crystals are models of just one face of a metal nanoparticle, which has a variety of

exposed surface faces. Unsupported systems like metal single crystals also eliminate

the effect of the catalyst support.

These systems allow one to study adsorption/desorption processes, changes in the

catalyst structure as a result of adsorption or other treatments, and the interactions

of adsorbates, often in an ultra-high vacuum (UHV) environment. UHV is necessary

to study these simple systems for several reasons. Defined as a vacuum of pressure

< 1× 10−9 Torr or less, UHV enables the use of various spectroscopic techniques like

electron spectroscopies. The level of contamination is also easier to control in UHV.

More complex forms of model catalysts exist. A metal-on-oxide system may be

approximated by the deposition of one or more metals on an oxide single crystal

surface. An inverse catalyst may be synthesized by the deposition of an oxide on a

metal surface, which can provide additional information about the role of the support

in a reaction. An excellent discussion of modeling supported catalysts is given in

Reference [9].

For complicated reactions on complicated catalyst systems such as those shown

in Figure 1.1, studying reactions on model catalysts can increase understanding of

the reaction mechanism and kinetics. This can, in turn, result in better design of

real catalysts. Fundamental information gained from such studies not only aids in

development of new catalysts for biomass reactions, but also provides information on
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several fundamental catalytic processes including hydrogenation/dehydrogenation, C-

C and C-O bond cleavage, etc. These reactions have wide ranging impact.

1.1 Reactions of Interest

Work in this dissertation involves two reactions in the network shown in Figure 1.1:

formic acid decomposition and aqueous phase reforming. Both generate hydrogen for

subsequent upgrading steps.

1.1.1 Formic Acid Decomposition

A common byproduct of many biomass upgrading reactions is formic acid. As it

relates specifically to the reaction network shown in Figure 1.1, formic acid is pro-

duced from the conversion of C5 and C6 sugars to furfural and levulinic acid (LA); it

comprises as much as 20% of the reaction products by weight. [7,10] In subsequent re-

action steps, LA is hydrogenated to produce γ-valerolactone, a platform chemical for

further upgrading to fuels. The requirement for external hydrogen may be partially

alleviated by the decomposition of formic acid. [11, 12] Formic acid decomposes cat-

alytically to form hydrogen and carbon dioxide. It may also dehydrate, forming water

and carbon monoxide. On Pt, for example, the catalytic decomposition of formic acid

produces nearly CO-free H2. [13, 14] If this decomposition step is performed in situ,

the need for a LA purification step is also eliminated. Formic acid also holds potential

as a hydrogen carrier for direct formic acid fuel cells. [15]

As mentioned above, knowledge gained from studying reactions of simple molecules

on metal surfaces has broad impact. In addition to its potential for hydrogen pro-

duction and storage, formic acid has long been used as a probe of catalytic activity

on various surfaces. [16,17] It is the simplest carboxylic acid, and can act as a model

compound for deoxygenation of larger carboxylic acids. Historically, formic acid de-

composition on transition metals was used to develop one of the early volcano plots of

reaction rate versus a descriptor, in this case, the heat of formation of the bulk metal
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formate. [17] In this plot, metals to the left of the peak (with lower ∆Hf ) exhibit re-

action rates lower than those measured on metals at the peak because the adsorption

of formic acid is rate-limiting. Metals to the right of the peak (with higher ∆Hf )

are slower than the peak rates because the formation or desorption of products is

slow. Metals at the top of the volcano have an optimum balance between dissociating

reactants and forming products, which was first discussed by Sabatier. [18] This, and

similar volcano plots, have been used for the development of bimetallic catalysts for

several decades in which two metals are combined to make one catalyst in an attempt

to use less expensive metals and maximize catalyst rate and selectivity. [19]

Due to the increasing costs of common catalytic metals like Pt, improvements in

experimental techniques, and the ability to study complex catalytic reactions from

first principles using computers, some are revisiting the results of Sachtler’s classic

study, [20,21] and extending the ideas to new catalytic systems. Formic acid decom-

position, then, is being revisited by studies using modern kinetic and spectroscopic

techniques and first principles calculations in order to understand the fundamentals

of this reaction. Recently, microkinetic models based on density functional theory

calculations predict catalyst TORs, selectivities, and reaction mechanisms without

the need for experiments. [22, 23] These results are used along with scaling relation-

ships involving energetic descriptors to predict optimum catalyst configurations. Due

to limited computational power, these studies often employ single crystal model cata-

lysts. Ideally, kinetic experiments on single crystal surfaces should be used to validate

these models. In addition to varying the active metal, changing the exposed single

crystal face can predict which structures have the highest rate for a particular re-

action. Shape-selective synthesis with an emphasis on controlling the geometry of

exposed planes is an emerging area in catalyst synthesis. [24, 25] Chapter 2 of this

dissertation focuses on the kinetic measurement of formic acid decomposition on Pt

single crystals and polycrystalline foils.
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1.1.2 Aqueous Phase Reforming

The catalytic reforming of oxygenated hydrocarbons in liquid water, referred to

as aqueous phase reforming (APR), relies on C-C bond scission of C2-C6 oxygenated

hydrocarbons and the water-gas shift reaction to produce low-CO streams of H2.

[26–28] APR saves energy by eliminating the vaporization of the hydrocarbon and

water, and can be done in a single catalytic step at about 500 K. C-O bond cleavage is

an undesired competing pathway which forms light alkanes, unsuitable for use in liquid

fuels. Bimetallic Pt-metal catalysts have been shown to improve the H2 generation

rates of APR and alter the product selectivity. [29,30] The search for bimetallic Pt-M

(M = transition metal) catalysts that maximize C-C bond scission and H2 generation

rate while simultaneously minimizing unwanted side reactions is ongoing. Chapter 7

of this dissertation outlines the novel synthesis of a model Re/Pt(111) system and

its behavior toward probe molecules, and Chapter 8 details the characterization of a

Pt-Mo/MWCNT bimetallic catalyst used for APR and hydrodeoxygenation reactions.

1.2 Atomic Layer Deposition for Catalyst Synthesis

Given the ongoing efforts to develop new catalysts for biomass upgrading reactions,

focus has turned to how to synthesize these new catalysts. One gas phase technique

under investigation for catalyst synthesis is atomic layer deposition (ALD).

1.2.1 Introduction to Atomic Layer Deposition

Atomic layer deposition is a special type of chemical vapor deposition (CVD) pro-

cess that relies on self-limiting reactions of gas phase precursors with a solid surface.

Due to its self-limiting nature, ALD gives superior control over film thickness and

excellent conformity, even on irregular geometries. The simplest type of ALD, AB-

type, relies on two coreactants: coreactant A, a precursor containing the metal of

interest, and coreactant B, which replenishes the functional group necessary for the

next ALD cycle. Reactants are dosed sequentially, and the ALD reactor is purged
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with an inert or vacuum between cycles. Precursor exposure times are on the order

of seconds. ALD is typically performed in flow reactors with reactant dosing pres-

sures of < 10 Torr. The technique is used for deposition of a wide range of materials

including metal oxides, nitrides, etc; for a complete list, refer to the detailed review

by Puurunen. [31]

ALD was developed by two groups independently: the Finnish group led by Sun-

tola applied for the first ALD patent in 1974, and Profs. Aleskovskii and Koltsov

in the Soviet Union used an ALD technique to deposit metal oxides in the early

1960s. [32] For more information about the history and development of ALD, refer

to References [31] and [33] and references therein. The primary application of ALD

has historically been and continues to be microelectronic fabrication. Recently, the

semiconducting gate oxide material in metal oxide semiconductor field effect tran-

sistors have been synthesized by ALD, which have enabled continued scaling down

of device size. [34]. Emerging areas of interest include corrosion prevention [35] and

heterogeneous catalyst synthesis, discussed below.

1.2.2 Atomic Layer Deposition in Catalysis

The catalysis community at large has long focused on improving the stability of

heterogeneous catalysts, and tuning catalytic function by better controlling catalyst

structure during synthesis. Both of these challenges are relevant for biomass upgrad-

ing reactions: many upgrading reactions proceed under harsh aqueous phase environ-

ments at high temperatures, and fine-tuning catalyst behavior for multiple functions

or selectively for one function are appealing, given the complexity of biomass-derived

molecules.

For improved catalyst stability, much work has been done on protecting metal

nanoparticles from deactivation by sintering and coking using porous ALD-deposited

metal-oxide overcoats (see, for instance, References [36–38]). This porous overlayer

allows reactants to reach and react with metal nanoparticles on the surface, but pre-
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vents sintering of nanoparticles by preventing their diffusion. For some reactions

the overcoat has been found to prevent coking, or carbonaceous buildup, by pref-

erentially blocking the most active catalytic sites and/or modifying ensemble size.

Superior stability with overcoated catalysts has been demonstrated specifically for

biomass conversion reactions. [39]

Gaining better control of the catalyst structure and thus its performance is also

an area to which ALD can contribute. Multi-functional catalysts, for instance, of-

ten contain more than one active metal. For bimetallic systems, current methods

of catalyst synthesis such as successive or co-impregnation form mixtures of particle

types. Electroless deposition offers more control than other aqueous-phase prepa-

ration techniques, however, suffers from a submonolayer coverage limitation and is

unable to easily form well-mixed alloy nanoparticles. [40] ALD offers better control

than aqueous phase techniques for a variety of bimetallic systems for synthesis of

both core-shell and well-mixed alloy nanoparticles. Through careful choice of ALD

co-reactants, processing conditions, and initial functional group coverage (which con-

trols ALD nucleation sites), several ALD cycles can be performed to make dispersed

monometallic nanoparticles, then the metal precursor can be changed to grow shells on

these nanoparticles, avoiding deposition on the support. Alternatively, the metal ALD

precursor can be varied cycle to cycle to form well-mixed alloy nanoparticles. [41,42]

Understanding how ALD precursors interact with metal and oxide surfaces is one

of the top technical challenges of ALD catalyst synthesis currently. As the number

of ALD cycles used for catalyst synthesis is often low (< 10), the substrate itself can

be thought of as one of the ALD reactants. Learning about ALD surface chemistry

in an ALD flow reactor is difficult, as the pressure (few mTorr to 10 Torr) and pre-

cursor exposure times (few seconds) limits the number of applicable surface sensitive

techniques. Knowledge of the substrate-precursor interaction can be gained by using

surface sensitive characterization techniques in UHV. Zaera has advocated for the use

of UHV experiments to learn more about the surface chemistry of ALD. [43]
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Several chapters of this dissertation are devoted to the use of surface sensitive

experiments in UHV and in situ environments to learn more about the interaction

of ALD reactants with different surfaces. Chapters 4 and 5 detail the interactions of

TMA and water with Pd(111) and Pd(111). Chapter 6 looks at the interaction of

TMA with Cu(111) and Cu2O/Cu(111). Chapter 3 details work on using Pd and Cu

ALD precursors followed by annealing to form Pd and Cu nanoparticles on TiO2(110).
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2. KINETICS OF GAS PHASE FORMIC ACID DECOMPOSITION ON

PLATINUM SINGLE CRYSTAL AND POLYCRYSTALLINE SURFACES

2.1 Abstract

Formic acid dehydrogenation turnover rates (TORs) were measured on Pt(111),

Pt(100), and polycrystalline Pt foil surfaces at 800 Torr between 413–513 K in a batch

reactor connected to an ultra-high vacuum (UHV) system. The TORs, apparent acti-

vation energies, and reaction orders are not sensitive to the structure of the Pt surface,

within the precision of the measurements. CO introduced into the batch reactor de-

pressed the formic acid dehydrogenation TOR and increased the reactions apparent

activation energies on Pt(111) and Pt(100), consistent with behavior predicted by the

Temkin equation. Two reaction mechanisms were explored which explain the formic

acid decomposition mechanism on Pt, both of which include dissociative formic acid

adsorption, rate limiting formate decomposition, and quasi-equilibrated hydrogen re-

combination and CO adsorption. No evidence was found that catalytic supports used

in previous studies altered the reaction kinetics or mechanism.

2.2 Introduction

Conversion of biomass to liquid fuels and valuable chemicals requires a large hy-

drogen input. Formic acid, produced as a byproduct of many of these upgrading

reactions, can catalytically decompose to produce H2 and CO2 or H2O and CO. On

Pt, reported dehydrogenation selectivity is near 100%. [13,14] In this study, the kinet-

ics of formic acid dehydrogenation on Pt(111), Pt(100), and a Pt foil were measured at

a total pressure of 800 Torr with formic acid concentration of approximately 1% and
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temperatures between 413–513 K. TORs did not vary on the surfaces tested within

the precision of the measurements. In this work, results obtained here are compared

to other formic acid decomposition studies on Pt in the literature and discuss simple

reaction mechanisms for formic acid dehydrogenation.

2.2.1 Kinetics of Formic Acid Decomposition on Platinum

Several kinetic studies have been carried out for formic acid decomposition on

various Pt catalysts; a review follows. A discussion of extrapolated TORs from these

works is given in the discussion section in which they are compared to those measured

in this study.

Ojeda and Iglesia reported an activation energy of 72 ± 4 kJ mol-1 for Pt/Al2O3

in the temperature range 343–383 K. [13] They found that the reaction is zero order

with respect to formic acid above formic acid partial pressures of 15 Torr (about

2%) at 353 K; and below 15 Torr the reaction is fractional positive order. They

found the dehydrogenation selectivity is near 100%, forming < 10 ppm CO. They

observed decreasing HCOOH dehydrogenation TORs on Pt/Al2O3 as Pt particle size

increased, as observed by TEM. Solymosi et al. [14] studied formic acid decomposition

on Pt/C. On 2% Pt/Norit the measured apparent activation energy was 70.7± 3 kJ

mol-1 between 380–425 K. Decomposition was zero order with respect to formic acid

at formic acid concentrations of 5–6%. Selectivity to hydrogenation was between

98–99%.

Chun et al. [44] measured rates on Pt4-cluster/SiO2 and conventional Pt/SiO2

catalysts. They measured an apparent activation energy of 69 kJ mol-1 on the Pt4-

cluster catalyst at 100% dehydrogenation selectivity in the temperature range 273–288

K (the freezing point of formic acid is 281.6 K). On the conventional Pt/SiO2 catalyst,

decomposition proceeded through both pathways, with measured activation energies

of 41 kJ mol-1 for dehydrogenation and 73 kJ mol-1 for dehydration between 363–443

K. Activation energies on the Pt4 cluster catalyst for deuterium labeled formic acid
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compounds were measured to be 54, 49, and 24 kJ mol-1 for HCOOD, DCOOH, and

DCOOD, respectively. Block and Vogl measured an activation energy of 66 kJ mol-1

on a Pt catalyst. [45] A transition from fractional positive formic acid order to a zero

order regime was also observed.

2.2.2 Mechanistic Insights into Formic Acid Decomposition on Platinum

Insights into the decomposition mechanisms of formic acid on Pt have been gained

through studies on technical catalysts, single crystals studied in UHV, and first prin-

ciples calculations. These works are reviewed here.

For technical catalysts work, on Pt/Al2O3, Ojeda and Iglesia observed a normal

kinetic isotope effect with DCOOH and DCOOD, but not HCOOD; that is, rH/rD > 1

for DCOOH and DCOOD, but was close to unity for HCOOD. [13] This suggests that

formate C-H (or C-D) bond activation is rate determining.

Many studies have been performed on Pt single crystals in UHV. Avery stud-

ied formic acid on clean Pt(111) with combined TP and HREELS experiments. [46]

Formic acid adsorbs as a multilayer at 130 K with coverage of 3-5 Monolayers (ML).

At 170 K, the multilayers desorb, leaving behind bidentate bridging formates, ob-

served by HREELS. The only products from decomposition on clean Pt(111) were

H2 (Tp = 370 K) and CO2 (Tp = 260 K). CO was observed in the TP experiment,

but was attributed to the back or sides of the crystal or the Pt support, as no CO

was observed on the crystal surface in HREELS. The existence of bridging formates

on Pt(111) following desorption of multilayer formic acid was confirmed by Columbia

and coworkers. [47] Columbia and Thiel also studied formic acid decomposition on

clean Pt(111). [48] For formic acid exposures at 100 K of less than 0.3 L, only CO2 (Tp

= 260 K) and H2 (Tp = 350-400 K) were observed. From HREELS, the formic acid

multilayers that adsorbed at 130 K had a molecular orientation parallel to the crystal

surface. At 150 K, the loss assigned to out of plane OH bending of the molecular acid

was attenuated, and new losses appeared which were attributed to the bridging for-
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mate. By 170 K the molecular acid losses disappeared completely. Abbas and Madix

also studied formic acid decomposition on Pt(111). [49] After saturation dosing of

DCOOH at 195 K and heating, they observed H2, HD, and D2 (Tp = 321, 309, and

313 K, respectively), CO2 (Tp = 265, 361, and 426 K; main peak is 265 K), H2O and

D2O (265 and 295 K), and CO (473 and 531 K). CO and water species were attributed

to defect sites (discussed below). No adsorbed C or O was observed by AES after

heating to 600 K. The bidentate bridging formates observed in the above studies that

incorporated HREELS formed a
(√

3×
√

3
)
R30° LEED pattern on Pt(111) between

170–260 K after exposure to formic acid at 100 K, as observed by Jensen. [50]

Hofmann et al. [51] observed bridging formates in HREELS on Pt(110)-(1 × 2)

after adsorption at 155 K. DCOOH was adsorbed on Pt(110) at 200 K. [52] Products

observed were D2O (260 K), H2O, CO2 (260 K), H2, D2, and CO. No reaction products

were observed from formic acid decomposition on Pt(100)-hex. [53] Following 0.3

mPa·s exposure at 100 K, only multilayer and monolayer desorption were observed at

155 and 200 K, respectively. No evidence of CO, CO2, or H2 evolution was observed

up to 700 K. The hex reconstruction was still observed by LEED following the TP

experiment.

Several UHV studies probed the effect of coadsorbates on the formic acid decom-

position mechanism. Avery also studied formic acid with coadsorbed atomic oxygen

on Pt(111). [46] In addition to H2 and CO2 at the same Tp as observed on clean

Pt(111), H2O (Tp = 180 K) was also generated. Avery also identified formates on

Pt(111)-Oads. [54] HREELS features were the same for pre-adsorbed O surfaces as

they were for the clean surface, but more intense, indicating 6 to 7 times more ad-

sorption on the O-predosed surface. Similarly, Columbia et al. observed CO2, H2O,

and CO2 desorption from Pt(111)-Oads, and found that higher formic acid exposures

were required in order to generate H2 in the presence of Oads compared to clean

Pt(111). [55]

Following their work on the clean Pt(111) surface, Abbas and Madix studied

formic acid decomposition on (2× 2) and (
√

3×
√

3)R30° structured overlayers of S
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on Pt(111). [49] On both surfaces, the only products after dosing DCOOH at 200 K

and heating to 600 K were CO2 and the hydrogenic species H2, D2, and HD, whereas

CO and water containing species were also observed from the clean Pt(111) surface.

This was attributed to preferential S adsorption on defect sites.

Columbia and Thiel studied formic acid decomposition on CO-dosed Pt(111). [48]

Adsorbed CO was found to inhibit the ability of Pt(111) to decompose the formate

intermediate, as H2 and CO2 yields decreased as CO adsorption increased, and des-

orption of molecular acid increased. H2 and CO2 yields did not track each other as a

function of CO coverage, however, so the presence of CO likely introduces a new de-

composition pathway. HREELS indicated a broad low frequency feature at high CO

coverages, indicative of a carbonaceous residue which may be liked to this alternate

pathway.

On Pt(100), which was unreactive as clean Pt(100)-hex, Kizhakevariam and Stuve

studied co-adsorption of 18O. [53] 18O was adsorbed at 500 K, and the sample was

cooled to 100 K for HCOOH adsorption. Reaction-limited CO2, H2O, and H2
18O

desorbed at Tp = 310 K. All CO2 desorbed as mass 44 (no 18O-containing CO2

species), implying that the O-C-O linkage was unbroken. No CO or H2 was observed.

18O was left in excess on the surface following desorption of reaction products and

desorbed as 18O2 at approximately 750 K.

First principles calculations have also been used to probe this reaction. Gao et

al. [56] studied the gas phase decomposition on clean and H2O covered Pt(111). They

found that, in agreement with the UHV literature, the reaction pathway involving

decomposition of a bridging formate intermediate and hydrogen recombination is the

most likely reaction pathway. Coadsorbed water does not alter the pathway but pro-

motes O-H and C-H bond scission. Yoo et al. [22] determined reaction energetics on a

variety of flat and stepped single crystal transition metal surfaces using DFT. These

parameters were used to develop a microkinetic model, and calculated turnover rates

were plotted as functions of CO and OH adsorption energies to form a 3-dimensional
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volcano plot. They predicted a HCOOH decomposition TOR of approximately 10 s-1

on Pt(111) at 400 K and P = 1 bar with near 100% selectivity to H2.

The objectives of this project were to determine structure sensitivity of formic

acid decomposition reaction on low-index Pt single crystals. This required a kinetic

study of formic acid decomposition on low-index Pt single crystals. The kinetic study

included measurement of CO2 turnover rates (TOR), determination of activation en-

ergies, reaction orders for reactants and products, and rate constants under a variety

of conditions. Briefly, it was found that formic acid decomposition TOR is not sen-

sitive to the structure of the catalyst for Pt(111), Pt(100), and a polycrystalline foil

sample.

2.3 Methods and Materials

Kinetic experiments were performed in a 1.4 L gas phase stainless steel batch re-

actor connected to a UHV chamber via a welded metal bellows transfer arm allowing

for sample transfer between the two chambers without air exposure. This apparatus

has been described previously. [57, 58] The batch reactor was pumped with a tur-

bomolecular pump in order to reach pressures < 1 × 10−6 Torr for sample transfer

to the UHV chamber. The UHV chamber was equipped with an ion gun (PHI 04-

161) and resistive heating for sample preparation, and a PHI 15-255G double pass

cylindrical mirror electron energy analyzer equipped with an electron gun for X-ray

photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), and low

energy electron diffraction (LEED) (OCI Vacuum Microengineering BDL800IR-ISH-

FIX) for sample characterization before and after reaction. The UHV chamber was

also equipped with a UTI-100C quadrupole mass spectrometer. The base pressure of

the UHV chamber was ca. 5× 10−10 Torr.



17

2.3.1 Pt Single Crystal and Foil Samples

Pt(100) and Pt(111) single crystals (Princeton Scientific) with orientation accu-

racy < 0.1° were mounted to the sample holder via spot welded stainless steel pins

on each side of the crystal. Current was passed directly through the pins for resistive

heating. A Eurotherm 2408 temperature controller controlled the temperature. Crys-

tal temperature was measured by a K-type thermocouple spot welded to either the

side of the single crystal or the back of the foil. Each sample was remounted and the

thermocouple leads re-welded several times during a campaign of kinetic experiments.

Samples were prepared before each series of experiments by repeated cycles of Ar+

sputtering (5× 10−5 Torr Ar, 1–2 keV electrons), O2 treatment (1× 10−6 to 2× 10−5

Torr, 773–1073 K), and annealing in vacuum at 1073 K. Samples were checked for

contaminants by AES or XPS after cleaning to confirm that no contaminants other

than C or O were present on the sample surface. C and O contaminants from residual

formic acid vapor were unavoidable. A detailed discussion is given in the results

section. Single crystal samples were checked by LEED to ensure that the expected

surface construction was present. Hexagonal (111)-(1 × 1) and square (100)-(1 × 1)

diffraction patterns were observed on the Pt(111) and (100) crystals after the standard

cleaning procedure, respectively. For Pt(100), as noted above, residual contamination

lifted the hex reconstruction. [59]

2.3.2 Kinetic Experiments and Data Analysis

Reaction gases and formic acid vapor were introduced to the batch reactor one

at a time via stop valves on the gas manifold. The manifold was pumped by a

scroll pump after dosing each gas. An MKS Baratron pressure transducer with ± 0.1

Torr accuracy was used to monitor the amount of gas introduced to the reactor.

Formic acid (Thermo Scientific, 99+%) and water (Millipore, 18.2 MΩ resistivity)

were introduced from the vapor space in sealed glass containers containing 1-2 mL

of the liquid. Each liquid was degassed before reaction by several cycles of freeze-
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pump-thaw. Other gases used were CO (Research purity, Matheson, 99.998%), H2

(Praxair, UHP, 99.999%), and N2 (Research grade, Airgas, 99.9997%). Gas dosing

order was typically formic acid, water (if dosed), H2, CO, and balance N2 for a total

pressure of 800 Torr. For some runs CO was dosed before H2, but this did not have

a measurable impact on the CO2 TOR. After dosing, gases were circulated in two

loops by two bellows pumps (Metal Bellows, MB-21). One circulation loop included

a Nicolet Nexus 670 Fourier transform infrared (FTIR) spectrometer with gas cell

for analysis. Gases were permitted to mix for approximately 5 minutes before data

collection began to ensure a well-mixed system.

2.3.3 Kinetic Experiments

CO2 turnover rates (TORs) were calculated by measuring the CO2 evolution mon-

itored by the gas phase asymmetric stretching mode IR peak at 2349 cm-1. A data

point from 25 averaged spectra was collected approximately every 10 s using Omnic

version 7.2a data acquisition software. CO2 concentration was related to absorbance

using a calibration curve prepared by measuring the CO2 absorbance peak area for

several dilutions of a 500 ± 2% ppm CO2 in N2 gas mixture. Batch reactor walls

were kept at room temperature during all experiments. The change in bulk reac-

tion gas temperature due to heating of the sample was negligible, as the formic acid

dimer to monomer ratio remained constant during reaction. This was possible be-

cause the recirculation flow kept the volume of heated gas near the sample small and

the heat added to the gas by the sample was lost through the walls of the reactor and

recirculation system.

CO2 TORs were calculated by numerically differentiating batch reactor data and

were normalized to the calculated geometric Pt atom density of the front face of

each single crystal: 1.5 × 1015 and 1.3 × 1015 Pt atoms cm-2 for Pt(111) and (100),

respectively. Pt atom density on the Pt foil surface was assumed to be 1.5×1015 cm-2.

The backsides of each sample were assumed to be inactive because they were neither
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polished nor sputter cleaned. Reported TORs were collected following cleaning of the

sample and then after at least one run of half an hour or more. The TOR usually

drops considerably after this first run then remains roughly constant for subsequent

runs. A detailed discussion is given in the results section.

Activation energy and reaction order runs were performed multiple times on dif-

ferent days in the stable kinetic regime. For activation energy measurements, tem-

perature was varied over the relevant temperature range dwelling at each point for 2

to 5 minutes. Temperatures were varied randomly, and at least the final point was

collected at the same temperature as the first point in order to account for cata-

lyst deactivation and hysteresis. Because reactions were run in batch mode, gases

were recharged for each point for an order collection experiment. Concentrations for

reaction order experiments were varied randomly and the first point was always re-

peated at the end of the series to account for catalyst deactivation and hysteresis.

Formic acid reaction orders are plotted against the natural log of the effective formic

acid monomer concentration which takes into account the presence of dimer in the

gas phase. The partial pressures of the formic acid monomer, Pm, and dimer, Pd,

fractions are expressed in Equation 2.1:

K =
P 2
m

Pd
= 1010.755− 3090

T (2.1)

where K is the equilibrium constant in Torr and T is the temperature in Kelvin.

[60,61] Equation 2.1 was used to calculate the partial pressures of monomer and dimer

present in the gas phase.

2.3.4 Ex situ Characterization

AES spectra were collected using 3 keV incident electrons in differential mode

using a PHI lock-in amplifier. XPS spectra were collected using a non-monochromated

Mg source (hν = 1253.6 eV) with constant pass energy = 50 eV. The binding energy

scale was calibrated using Au 4f7/2 and Cu 2p3/2 peaks at 83.8 eV and 932.4 eV,
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respectively, taken from a sputter cleaned sample containing Au and Cu foils. The

fwhm of the Au 4f7/2 line was 1.36 eV. Spectra were analyzed using CasaXPS version

2.3.16 PR 1.6 (Casa Software Ltd.). To calculate coverage from XPS results, Fadleys

approach was followed, [62] which assumes a non-attenuating adlayer at fractional

coverage. Details are given in Appendix A.

2.4 Results

2.4.1 Analysis of Gas Phase IR Spectra

Figure 2.1 shows FTIR spectra before and after 52 minutes of reaction on Pt(100)

at 473 K. The only observed product of formic acid decomposition is CO2 as seen

by the increase in absorbance of the asymmetric CO2 stretching peak at 2349 cm-1.

Quantification of CO and H2O, products of dehydration, was not successful. CO

could not be quantified in any kinetic experiments for which CO was co-fed. For

experiments where CO was not co-fed, no intensity change was observed in the C=O

stretching region at 2143 cm-1. The limit of detection for CO was about 0.5 ppm.

For all experiments, dehydrogenation selectivity was > 99%. Asymmetric stretching

features of water between 1400–1700 cm-1 were present in background spectra barely

above the noise level due to impurity of the formic acid (99+% pure), these were

not quantified, and did not change during reaction. A typical FTIR spectrum of

the contents of the gas cell before and after reaction are given in Figure 2.1 and IR

assignments are given in Table 2.1.

2.4.2 System Validation

To ensure that measured rates resulted from formic acid decomposition on the

Pt surface, two blank experiments were performed. In the first blank experiment the

CO2 TOR was measured on a piece of 316 stainless steel (SS) foil spot welded between

the two heating leads. The areal rate at 493 K on the 316 SS blank was approximately

5× 10−10 moles CO2 cm-2 s-1, while the measured areal rates on Pt(111) and Pt(100)
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(a) 0 min. (b) 52 min.

Figure 2.1. FTIR spectra of reactor charged with 1 Torr HCOOH,
800 Torr total pressure (balance N2) at start of reaction on Pt(100)
and after 52 min. at 473 K.

under the same conditions were greater than 6× 10−9 and 8× 10−9 moles CO2 cm-2

s-1, respectively. The areal rate of 5×10−10 moles CO2 cm-2 s-1 represents a maximum

rate on surfaces other than the active Pt for a reaction with catalyst present, as the

blank is replaced with the actual catalyst, so only decomposition on the SS heating

pins would lead to an error in the rate measurement on SS surfaces.

In the second validation experiment the background activity of the batch reactor

was measured with a Pt catalyst present. With Pt(111) loaded, the reactor was

charged with gases used under standard conditions except for formic acid (15 Torr

H2, 15 Torr CO, 800 Torr total, balance N2). At 493 K, the measured CO2 formation

TOR on Pt(111) was approximately 0.05 molecules CO2 (Pt atom)-1 s-1. Under the

same conditions with 5 Torr formic acid present, the average TOR on Pt(111) was

2.6± 0.6 (Pt atom)-1 s-1.

The rate reported throughout this work is the rate of formation of CO2. Direct

calibration and measurement of CO2 peak area instead of using formic acid peaks

(both monomer and dimer contributions) is a more straightforward route for calcula-
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tion of the decomposition TOR. The formic acid decomposition TOR was measured

for comparison to the CO2 TOR for an experiment with 1 Torr initial pressure of

formic acid (PH2 = 15 Torr, Total Pressure 800 Torr, balance N2). The CO2 TOR

calculated for this run at 473 K was 1.80 molecules CO2 (Pt atom)-1 s-1. The de-

composition TOR of formic acid was measured to be 1.77 molecules formic acid (Pt

atom)-1 s-1, calculated by the decrease in the ν(C-O) peaks for monomer and dimer

at 1106 and 1218 cm-1, respectively, where concentrations of monomer and dimer

were calculated using Equation 2.1, indicating that generation of CO2 can be fully

attributed to formic acid decomposition. Additionally, the dehydrogenation rate of

the formic acid monomer and one half the rate of the dimer for this experiment were

both equal to ca. 0.6 s-1 (resulting in the total overall rate of 1.8 s-1 reported above

by adding 2 times the dimer TOR to the monomer TOR), indicating that formic

acid dimers readily decomposed forming two monomers near or on the hot catalytic

surface.

Internal heat and mass transfer limitations were not present, as the single crystals

and Pt foil were non-porous. Based on the data shown below in Figure 2.5 and data

gathered previously on this system, it is unlikely that external heat and mass transfer

limitations are affecting the rate. Smeltz et al. [58] measured a TOR of 0.34 ± 0.02

s-1 for NO oxidation on Pt(111) using the same reactor system at 573 K, and verified

that the rate of mass transfer to the surface was at least one order of magnitude

higher than the rate of reaction using reaction gas mixtures of < 100 ppm for NO

and NO2. Not only are the gas concentrations in this study much higher (with the

exception of CO2), but similar TORs were observed at 413 K under the conditions

used in Figure 2.5b on Pt(100)(red line, TOR = 0.37 s-1). In the same activation

energy run, TORs as high as 3.45 s-1 were measured, and all points fell on the same

line.

The variability in TOR due to thermocouple mounting position on the Pt single

crystals was found to be much less than the day-to-day variability in measured TOR,

as the TOR at standard conditions and other kinetic parameters (activation energy,
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reaction orders) were collected several times over the course of several months during

which time the sample was remounted many times.

2.4.3 Rate Stabilization

Supported catalysts in flow reactors are typically subjected to long stabilization

periods under reaction conditions before kinetic measurements begin. This is not

possible for batch reactors. Therefore, the TOR was permitted to stabilize during

several consecutive runs before collecting TORs reported for kinetic parameters. For

kinetic experiments on low surface area metal single crystals, the factor most affecting

TOR variability is likely contamination of the surface by species left after reaction

from either the decomposition mechanism itself or transport of external contaminants

in the reaction chamber to the crystal surface. These external contaminants may arise

from chamber or sample holder contamination, contamination of the reaction gases,

or diffusion of contaminants from the bulk of the single crystal to the surface.

Contamination was monitored before and after experiments using XPS and/or

AES. Prior to reaction, C and O were already present on the Pt surfaces. Transfer to

the reactor introduced both C and O on the surface of the single crystal. Due to poor

control of C and O contamination before a reaction, TORs collected on a completely

C- and O-free surface (according to AES) were not reproducible. C and O coverages

increased on all catalysts after the first 30 minutes of reaction following cleaning, and

then remained constant for subsequent reactions. From XPS, stabilized coverages

of C and O ranged between 1–3 ML and 0.4–0.6 ML, respectively, on Pt(111) and

Pt(100) surfaces. Typical C and O coverages during several consecutive reactions are

plotted in Figure 2.2.

Other contaminants detected after some reactions were Cu and S. Cu is most likely

associated with migration of Cu from the sides of the single crystal from spot welding

with Cu electrodes, as the amount of Cu present after several runs qualitatively

tracked with the number of times a single crystal had been spot welded to the sample
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Figure 2.2. Carbon (red circle), oxygen (blue triangle), and copper
(green square) contaminant coverages from XPS plotted against reac-
tion number for a series of consecutive reactions on Pt(111). Plotted
on the right y-axis is the CO2 TOR (black square). Reaction condi-
tions were 5 Torr HCOOH, 15 Torr H2, 15 Torr CO, 800 Torr total
(balance N2), T = 493 K.

holder. Above the limit of detection for both AES and XPS, Cu does not affect the

TOR more than the run-to-run variability. From XPS, Cu coverage did not exceed

0.2 ML. However, it should be noted that if the Cu were affecting the rate, it might

not need to migrate to the front side of the crystal. In fact, trace Cu was detected on

the stainless steel blank sample, which may explain at least some of the background

activity of this sample.

S contamination was sometimes observed by AES, but was detected by XPS only

once after a reaction with contaminated water. From the high resolution XPS region

scan following this reactions, the S coverage was approximately 0.2 ML. From this

core level scan, the limit of detection was calculated to be approximately 0.07 ML

using standard procedures in the CasaXPS software. S coverage estimation for small
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amounts of sulfur is difficult from AES alone due to overlap of Pt NNN and S LMM

peaks at a kinetic energy of ca. 150 eV, so from this calibration method typical S

contamination coverages were estimated to be ≤ 0.07 ML.

In general, the TOR qualitatively tracks most closely to the coverages of carbon

and oxygen. For runs occurring within the first 30 minutes of cleaning, the rate is

usually higher than subsequent runs for which carbon and oxygen coverages have

stabilized. The rate decreases by about 2 times between the first run and subsequent

runs when the rate has stabilized. This type of deactivation is not unprecedented

in this system. [58] Uncorrected peak-to-peak intensity ratios from AES support this

assertion. In Figure 2.3, TORs are plotted for several consecutive batch reactions on

Pt(100), and AES peak intensity ratios for the labeled points are given in Table 2.2.

Qualitatively, the rate does not track with S or Cu for the points labeled, as the

difference in S152/Pt168 and Cu920/Pt168 intensity ratios are large before and a few

runs after cleaning, yet the rate is nearly the same.

Within a run, the initial rate is stable as evidenced by a plot of CO2 concentration

versus time, shown in Figure 2.4. Numerically differentiating the data and converting

to a TOR yields a slope standard error that is approximately 3 orders of magnitude

smaller than the TOR, a typical slope standard error for a plot of CO2 concentration

versus time within a run. This error, usually on the order of 0.005 s-1, is negligible

compared to the day-to-day and run-to-run variability in TOR (±0.6 and ±1.0 s-1 for

Pt(111) and Pt(100), respectively). Conversion of formic acid was kept below 10%,

usually between 1-5%, for each run to ensure that the change in concentration of each

gas phase species is much smaller than that species total concentration.

2.4.4 Kinetics

Turnover rates (TORs) for Pt(111) and Pt(100) are normalized to the calculated

number of Pt atoms on ideal Pt(111)-(1×1) and (100)-(1×1) surfaces, equal to 1.5×

1015 and 1.3× 1015 atoms cm-2, respectively. Normalized TORs, apparent activation
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Figure 2.3. CO2 TOR for a series of consecutive batch reactions on
Pt(100). The sample was cleaned by Ar+ sputtering and annealing
at 1073 K at the point labeled (b). Reaction conditions were 5 Torr
HCOOH, 15 Torr H2, 15 Torr CO, 800 Torr total (balance N2), T =
503 K.

energies, and reaction orders for experiments carried out at standard conditions (5

Torr FA, 15 Torr H2, 15 Torr CO, 800 Torr total, balance N2, T = 493 K) are

summarized in Table 2.3. The error in TOR on all catalysts was large on a day-

to-day basis: average TORs for Pt(111) and Pt(100) were 2.6 ± 0.6 and 3.7 ± 1.0

molecules CO2 (Pt atom)-1 s-1, respectively. The areal rate on Pt foil was measured

to be (7.5 ± 5.0) × 10−9 moles CO2 cm-2 s-1, compared to (6.4 ± 1.5) × 10−9 and

(8.1± 2.2)× 10−9 for Pt(111) and (100), respectively.

Average apparent activation energies, Eapp, at standard conditions were 86± 11,

102 ± 14, and 94 ± 12 kJ mol-1 for Pt(100), (111), and foil, respectively, where the

error is one standard deviation of Eapp values calculated between runs. Runs used to
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Figure 2.4. Plot of CO2 concentration versus time for a typical batch reaction.

(a) Arrhenius Plots (b) Reaction Orders

Figure 2.5. (a) Arrhenius plots for formic acid decomposition on
Pt(111). Conditions: 5 Torr HCOOH, 15 Torr H2, 15 Torr CO, 800
Torr total (balance N2). (b) HCOOH, CO, and H2 reaction order
plots on Pt(111) at T = 493 K.
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(a) Arrhenius Plots (b) Reaction Orders

Figure 2.6. (a) Arrhenius plots for formic acid decomposition on
Pt(100). Conditions: 5 Torr HCOOH, 15 Torr H2, 15 Torr CO, 800
Torr total (balance N2). (b) HCOOH, CO, and H2 reaction order
plots on Pt(100) at T = 493 K

calculate the average values of Eapp at standard conditions are shown in Figures 2.5

and 2.6 for Pt(111) and Pt(100), respectively.

The average formic acid reaction orders were 0.35±0.10, 0.43±0.03, and 0.35±0.15

for Pt(100), Pt(111), and Pt foil, respectively. These orders are reported with respect

to the effective formic acid monomer concentration, which is calculated by addition

of the monomer concentration predicted by Equation 2.1 to two times the dimer

concentration predicted by Equation 2.1. Errors reported for reaction orders represent

one standard deviation between runs. Measured CO orders were −0.35±0.03, −0.40±

0.03, and −0.43±0.05 on the same surfaces, and H2 was approximately zero order on

all surfaces. H2O was found to be zero order on Pt(100) and Pt(111), and CO2 was

zero order on Pt(100) using initial CO2 concentrations less than 200 ppm. Typical

reaction order plots for HCOOH, CO, and H2 on Pt(111) and Pt(100) are given in

Figures 2.5 and 2.6, respectively.

Experiments to measure kinetics were also performed on Pt(111) and Pt(100)

using lower initial CO partial pressures (standard pressure of 2 Torr). Kinetic pa-
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(a) Arrhenius Plots, Pt(111) (b) Arrhenius Plots, Pt(100)

(c) Reaction Orders, Pt(111) and (100)

Figure 2.7. Apparent activation energies and CO reaction orders col-
lected on Pt(111) and Pt(100) for low initial CO concentrations. (a)
Arrhenius plots for formic acid decomposition on Pt(111). Condi-
tions: 5 Torr HCOOH, 2 Torr H2, 2 Torr CO, 800 Torr total (balance
N2). (b) Arrhenius plots for formic acid decomposition on Pt(100).
Conditions: 5 Torr HCOOH, 2-15 Torr H2, 2 Torr CO, 800 Torr total
(balance N2). (c) CO Orders collected on both Pt(111) and Pt(100).
Conditions were 5 Torr HCOOH, 2 Torr H2, 800 Torr total, T = 463
K unless otherwise noted.
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rameters at these reaction conditions are summarized in Table 2.4. Average apparent

activation energies on Pt(111) and Pt(100) at these conditions, plotted in Figure 2.7,

were 67 ± 11 and 65 ± 7 kJ mol-1, respectively. Under these conditions, the CO

reaction order was approximately 0, as shown in Figure 2.7.

2.4.5 Characterization with XPS

UHV-XPS was used in an attempt to identify surface species left after a reaction

and to check the oxidation state of the Pt substrate. The spectra showed that only

C and O species were left after a reaction, in addition to the Cu and S contaminants

described above. The Pt 4f7/2 line had a BE of 70.9 eV before and after reaction,

assigned to metallic Pt, [68] indicating that the Pt oxidation state was unchanged

during reaction. In the C 1s region, it was not possible to differentiate C from formic

acid contamination in the background and C left from the reaction. On all surfaces,

a peak at about 284.3 eV was observed before and after reaction, assigned to isolated

C, chain carbon, or graphitic carbon, which have been reported to produce C 1s

BEs of 283.8, 284.1, and 284.8 eV, respectively. [69] After some runs, another peak at

around 286 eV was observed, but it was unclear if this peak, assigned to CO-containing

species, was left from a true reaction intermediate or re-adsorption of residual gases

during transfer of the single crystal. Other than observing accumulation of C and O

during the first reaction after cleaning, ex situ XPS did not provide additional clues

regarding the formic acid decomposition pathway.

2.5 Discussion

Measured apparent activation energies for HCOOH:CO concentration ratios < 1

(CO partial pressure = 15 Torr) on the Pt surfaces tested range from 86 ± 11 kJ

mol-1 for Pt(100) to 102±14 kJ mol-1 on Pt(111), with Pt foil having an intermediate

activation energy of 94±12 kJ mol-1 under the standard conditions used in this study.

In all cases, these activation energies are higher than those reported in the literature
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for other kinetic studies on Pt-containing catalysts for formic acid decomposition.

Reported values range between 41–72 kJ mol-1. [13,14,44,45] However, when the initial

CO partial pressure was decreased to 2 Torr from 15 Torr, the measured apparent

activation energies on Pt(111) and Pt(100) dropped to 67± 11 and 65± 7 kJ mol-1,

respectively, which fall within the range of reported literature values. Furthermore,

fractional positive formic acid order values measured in this study are in agreement

with a fractional positive order reported for formic acid partial pressures of less than

ca. 15 Torr on Pt/Al2O3. [13]

Direct comparison of TORs measured in this study to those published for sup-

ported Pt catalysts is not possible due to differences in reaction conditions. Never-

theless, some comparisons can be made. Ojeda et al.

citeOjeda:2009 found that for Pt/Al2O3, the TOR decreases with increasing particle

size. The turnover rate at their largest particle size, 8 nm, is approximately 1.2×10−2

molecules HCOOH decomposed per surface metal atom per second at 353 K (30 Torr

HCOOH). Extrapolating to 463 K using their measured Eapp of 72 kJ mol-1 measured

over the range 343–383 K yields a TOR of 4.1 s-1. Extrapolating the TOR measured

by Solymosi at 423 K on Pt/C to 463 K yields a TOR of 2.1 s-1 using their reported

Eapp of 70.7 kJ mol-1, measured in the range 380–425 K in ca. 38–46 Torr formic

acid. For comparison, the average TORs on Pt(111) and Pt(100) for 2 Torr initial

CO partial pressure in 800 Torr total pressure at 463 K are 2.3±0.8 and 2.4±1.0 s-1,

respectively, but these TORs were collected in the fractional formic acid order regime

whereas the studies above measured kinetics in the zero order regime. Extrapolation

to the zero-order regime was not performed.

The goal of this work is not to present a comprehensive review of possible mech-

anistic routes for formic acid decomposition on Pt. Nevertheless, simple mechanisms

were examined to determine the consistency of our data and that in the literature

with reasonable assumptions regarding the kinetics of the reaction. Elementary steps

include dissociative adsorption of formic acid as formate (HCOO · S; S = site) and

a hydrogen atom (H · S), as observed in UHV experiments on Pt(111) [46, 48] and
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Pt(110), [51] formate dissociation to gaseous CO2 and another bound hydrogen atom,

and finally hydrogen recombination. The literature supports this mechanism by show-

ing that C-H cleavage of the formate hydrogen is kinetically relevant and hydrogen

recombination is semi-equilibrated on Pt/Al2O3. [13] A CO adsorption-desorption

step was also added. The elementary steps for a single-site formate dissociation step

are shown in Equations 2.2–2.5.

HCOOH + 2 · S
K1

� HCOO · S +H · S (2.2)

HCOO · S k2→ CO2 +H · S (2.3)

2H · S
K3

� H2 + 2S (2.4)

CO + S
K4

� CO · S (2.5)

This mechanism yields the rate equation found in Equation 2.6, where L is the

total number of sites, and its derivation can be found in Appendix B.

r =
LK1k2K

1/2
3 [HCOOH]

[H2]1/2
(

1 +
K1K

1/2
3 [HCOOH]

[H2]1/2
+ [H2]1/2

K
1/2
3

+K4[CO]

) (2.6)

This mechanism explains the various reaction order regimes. First, the fractional

to zero-order regime transition for formic acid is satisfied, as this mechanism predicts

that the formic acid order, nHCOOH , is a function of formate coverage (nHCOOH =

1−θHCOO), assuming that higher formate coverages are present at higher formic acid

gas phase concentrations. Second, it requires CO order, nCO, to be negative and that

θCO = |nCO|. Finally, the H2 order (nH2) must be fractional negative. While the

hydrogen coverage was not conclusively observed in our experiments, it was found to

be close to zero, with the slope of the hydrogen order plots being generally negative

but with large standard errors (error = approximately ± 100–200% of the slope).
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Given that the greatest possible value of nH2 is −0.2 at θH2 = 0, we cannot rule out

a fractional negative H2 order from our experiments. Based on the measured formic

acid and CO orders, this mechanism predicts steady state coverages of the two species

equal to 0.6 and 0.4 ML, respectively.

A similar mechanism includes an extra site in the second elementary step for

formate dissociation, with all other steps the same:

HCOO · S + S
k2→ CO2 +H · S + S (2.7)

This mechanism yields the rate equation given in Equation 2.8 where z is the

coordination number. Its derivation can be found in Appendix B.

r =
zLK1k2K

1/2
3 [HCOOH]

[H2]1/2
(

1 +
K1K

1/2
3 [HCOOH]

[H2]1/2
+ [H2]1/2

K
1/2
3

+K4[CO]

)2 (2.8)

This mechanism also explains the phenomena described above for the single site

decomposition mechanism including nH2 = −0.2 at θH2 = 0. Predicted θHCOO and

θCO are 0.3 and 0.2 ML, respectively. Since the total coverage of surface adsorbates

≥ 0.5 ML in this case, and this range is much less than for the single site mechanism,

for which θTotal = 1 (assuming θH2 = 0), the dual site mechanism seems more likely,

since the dehydrogenation TOR did not become zero-order in formic acid as the formic

acid concentration was increased.

CO was the only possible reaction product observed to affect the rate of reac-

tion and kinetic parameters. The drop in apparent activation energy with lower CO

concentrations was observed alongside an increase in the CO order from fractional

negative to zero. This behavior is explained at least qualitatively by the Temkin equa-

tion, [70] which relates the apparent and real activation energies to surface species re-

action orders and heats of adsorption in cases where adsorption equilibrium is reached

quickly relative to the rate of surface reaction:
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Eapp = Ea −
∑
i

niqi (2.9)

In Equation 2.9, Eapp and Ea are the apparent and real activation energies, ni is

the reaction order with respect to species i, and qi is the heat of adsorption of species

i. The heat of adsorption of CO on Pt(111) with θCO = 0.4 ML, the calculated

CO coverage for HCOOH:CO < 1, is approximately 113 kJ mol-1. [71] In this case,

the Temkin equation predicts a real activation energy of about 57 kJ mol-1 given

the measured apparent value of 102 kJ mol-1 and CO order of -0.4. This is within

the error of the measured Eapp in the FA:CO > 1 regime of 67 ± 11 kJ mol-1. On

Pt(100)-(1 × 1), using a similar approach and assuming a heat of adsorption of 140

kJ mol-1 (measured at 0.5 ML), [72] the Temkin equation predicts a real activation

energy of 37 kJ mol-1, lower than the measured value of 65±7 kJ mol-1. In both cases,

the calculated activation energy in the fractional negative CO order regime is lower

than the measured value in the zero-order CO regime, but this may be the result

of the other species present on each surface, which could lower the CO adsorption

energy. While the change in nHCOOH from the measured 0.4 here to zero order should

also produce a change in apparent activation energy as stated above, the measured

value is close to those reported in literature for the zero-order regime. There is

no simple, reversible formic acid adsorption step in our proposed mechanisms (i. e.

HCOOH + S � HCOOH · S). If, instead, the enthalpy of reaction of the first

elementary step is used in place of the heat of adsorption of formic acid on Pt(111),

calculated to be −38.8 kJ mol-1 for a formate coverage of 0.375 ML and H coverage

of 0 ML, [73] then the change in apparent activation energy between the two regimes

is expected to be 15.5 kJ mol-1 or less, within the error of experiment.

Comparison of the kinetic parameters measured on metal single crystals to those

measured on highly dispersed nanoparticles on porous supports is critical, as differ-

ences in the parameters may reveal the effect of the catalyst support, or the effect of

small metal particle size. For the case of a catalyst support effect, the reaction may

proceed directly on the support or at the interface between the support and active
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metal. In this study, measured apparent activation energies and reaction orders for

runs with low initial CO concentrations are in good agreement with literature val-

ues from studies on supported catalysts where CO was not co-fed, supporting the

conclusion that the previous supports used with Pt for formic acid decomposition

(Al2O3, [13] C (Norit) [14]) did not substantially alter the reaction mechanism. In

the case of small metal nanoparticles, under-coordinated corner or perimeter atoms

on nanoparticles could be responsible for the majority of catalytic activity. [74] Ojeda

et al. demonstrated that smaller Pt nanoparticles have a higher TOR than larger

nanoparticles. [13] Abbas and Madix, on the other hand, have previously attributed

defect sites on Pt(111) to dehydration activity using temperature programmed ex-

periments. [49] Given that selectivity toward dehydrogenation is > 98% [13, 14] (>

99% in this work for when CO was not co-fed), consistency with the work of Ab-

bas and Madix would suggest that the smaller Pt nanoparticles used by Ojeda et al.

demonstrate superior TORs due to intrinsic electronic effects of smaller nanoparti-

cles, not necessarily because of their most under-coordinated sites (corners, edges).

The most under-coordinated sites are likely blocked by CO, either co-fed or produced

in the reaction at defect sites but slow to desorb, since CO adsorbs more strongly

on under-coordinated Pt atoms. [75] At high CO concentrations, CO can block more

terrace sites, resulting in the reduction of the dehydrogenation TOR, but at low CO

concentrations the effect is negligible, hence the near-zero CO order at CO partial

pressures of 2 Torr. In this work, defect sites are also likely to be covered by other

contaminants discussed above.

2.6 Conclusions

Formic acid dehydrogenation is not sensitive to the structure of Pt single crystal

or foil catalysts tested within the precision of the measurements based on the TORs

on Pt(111), Pt(100), and Pt foil at the reaction conditions used. Apparent activation

energies for formic acid dehydrogenation measured on Pt(111) and Pt(100) in an
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initial CO partial pressure of 2 Torr at 800 Torr total pressure around 493 K are in

agreement with those obtained from the literature on other Pt catalysts. CO, when

included at partial pressures > 2 Torr in the initial reaction gas mixture, was shown

to decrease the formic acid TOR on all surfaces, behavior explained qualitatively

by the Temkin equation. The results suggest that supports used previously for Pt

catalysts (Al2O3, [13] C (Norit) [14]) do not affect the reaction mechanism, and that

under-coordinated sites, which strongly bind CO, could be poisoned by CO.
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Table 2.1.
Observed FTIR peaks, references, and vibrational mode assignments
for batch reactor charged with 1 Torr HCOOH, 800 Torr total pressure
(balance N2) and held at room temperature. *Assignments without
references are unanimous for that mode in the Reference(s) column.

Frequency / cm-1 Reference(s) Assignment*

HCOOH

1033 1033, [63] 1033.4 [64] δ(CH)

1106 1103.8, [65] 1105, [63] 1105.4 [64] ν(C-O), [63,65] COH-CO def. [64]

1393 1380.6, [65] 1387, [63] 1387.0 [64] δ(CH), [63,64] δ(H-C=O) [65]

1774 1776.6, [65] 1770, [63] 1776.2 [64] ν(C=O)

2945 2942.0, [65] 2943, [63] 2943.8 [64] ν(CH)

3568 3568.9, [65] 3570, [63] 3570.0 [64] ν(OH)

(HCOOH)2

925 917 [66] δ(OH)

1218 1214.0, [65] 1218 [66] ν(C-O)

1308 1283 [66] n.a.

1363 1365 [66] δ(CH)

1918 1923 [66] n.a.

2200 2222 [66] n.a.

2416 2427, [66] 2415 [67] ν(C=O)+ δ(OCO) or 2ν(C-O) [67]

2570 2582, [66] 2570 [67] δ(OH) + ν(C-O) [67]

2613 2623, [66] 2610 [67] δ(OH) + ν(C-O) [67]

2723 2735, [66] 2722 [67] 2δ(OH) [67]

2813 2815, [66] 2810 [67] ν(C=O)+ ν(C-O) [67]

2875 2856 [67] ν(C=O)+ ν(C-O)

2887 2886 [66] n/a

3015 3028, [66] 2990 [67] ν(C=O)+ δ(OH) [67]

3055 3040 [67] ν(C=O)+ δ(OH)

3104 3110 [66,67] ν(C=O)+ δ(OH), [67] ν(OH) [66]

3136 3150 [66] n.a.

3389 3385, [66] 3362 [67] ν(C=O)+ ν(C=O) [67]
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Table 2.2.
Uncorrected AES peak intensity ratios from spectra corresponding to
the labeled points in Figure 2.3.

Point C272/Pt168 O510/Pt168 S152/Pt168 Cu920/Pt168

a 2.3 0.6 3.5 0.4

b 0.1 0.1 0.0 0.0

c 2.1 0.5 1.3 0.1
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3. PALLADIUM AND COPPER NANOPARTICLE FORMATION ON TITANIA

(110) BY THERMAL DECOMPOSITION OF PALLADIUM(II) AND

COPPER(II) HEXAFLUOROACETYLACETONATE

3.1 Abstract

Palladium nanoparticles were synthesized by thermal decomposition of palla-

dium(II) hexafluoroacetylacetonate (Pd(hfac)2), an atomic layer deposition (ALD)

precursor, on a TiO2(110) surface. According to X-ray photoelectron spectroscopy

(XPS), Pd(hfac)2 adsorbs on TiO2(110) dissociatively yielding Pd(hfac)ads, hfacads,

and adsorbed fragments of the hfac ligand at 300 K. A (2× 1) surface overlayer was

observed by scanning tunneling microscopy (STM), indicating that hfac adsorbs in a

bidentate bridging fashion across two Ti 5-fold atoms and Pd(hfac) adsorbs between

two bridging oxygen atoms on the surface. Annealing of the Pd(hfac)ads and hfacads

species at 525 K decomposed the adsorbed hfac ligands, leaving PdO-like species

and/or Pd atoms or clusters. Above 575 K, the XPS Pd 3d peaks shift toward lower

binding energies and Pd nanoparticles are observed by STM. These observations point

to the sintering of Pd atoms and clusters to Pd nanoparticles. The average height of

the Pd nanoparticles was 1.2±0.6 nm at 575 K and increased to 1.7±0.5 nm following

annealing at 875 K. The Pd coverage was estimated from XPS and STM data to be

0.05 and 0.03 monolayers (ML), respectively, after the first adsorption/decomposition

cycle. The amount of palladium deposited on the TiO2(110) surface increased linearly

with the number of adsorption/decomposition cycles with a growth rate of 0.05 ML

or 0.6 Å per cycle. We suggest that the removal of the hfac ligand and fragments

eliminates the nucleation inhibition of Pd nanoparticles previously observed for the

Pd(hfac)2 precursor on TiO2.
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3.2 Introduction

Palladium is used for numerous catalytic applications including carbon-carbon

coupling, [76] hydrocarbon hydrogenation and dehydrogenation, [77, 78] hydrocar-

bon oxidation and combustion, [79, 80] and the purification of automotive exhaust

gases. [81] Recently, atomic layer deposition (ALD) has emerged as a technique

promising greater control for synthesis of nanometer and subnanometer transition

metal particles including Pd on oxide supports for heterogeneous catalysis. [36,82–87]

Primarily used to grow thin films, ALD is based on self-limiting surface reactions in

which a surface is alternately exposed to different precursors separated by purging in-

ert gas or vacuum, providing atomically controlled growth. [88] Nanoparticles can be

grown on oxide supports during early stages of ALD processes for heterogeneous catal-

ysis applications. Palladium nanoparticles synthesized by ALD using palladium(II)

hexafluoroacetylacetonate Pd(hfac)2 as a Pd precursor demonstrated higher selectiv-

ity toward desired products and particle stability compared to traditionally prepared

catalysts in reactions such as methanol decomposition, [84] ethanol and isopropyl

alcohol oxidation, [87] and oxidative dehydrogenation of alkanes. [36]

Formation of nanoparticles from (hfac)-based organometallic precursors has exhib-

ited a nucleation delay and requires a high number of ALD cycles (> 100 cycles) that

limits its large scale application. Different characterization techniques have been used

to isolate the surface intermediates and identify the surface active sites during the ini-

tial precursor exposure. Fourier transform infrared (FTIR) measurements suggested

that Pd(hfac)2 decomposes to Pd(hfac)ads and Al(hfac)ads upon adsorption on Al2O3

and the resulting nucleation delay period was assigned to possible surface poisoning

with Al(hfac)ads species. [83, 89, 90] Using gas-phase infrared spectroscopy, Weber et

al. [91] suggested that H2 and O2 plasmas are required to remove the hfac ligands

and other carbon moieties left from Pd(hfac)2 adsorption on Al2O3. Adsorbed hfac

ligands were also suggested to block adsorption sites on TiO2 for Pt particle formation

using Pt(hfac)2 as the precursor. [92]
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In addition to surface intermediates, the substrate chemistry can also change

the growth behavior of the (hfac)-based precursors. Pd nucleation is faster on ZnO

than Al2O3 at the same conditions. 100 ALD Pd cycles on ZnO yields Pd islands

with 10 to 20 nm domains. However, 200 cycles were required to form islands con-

sisting of 10 nm domains on Al2O3. [84] X-ray photoelectron spectroscopy (XPS)

studies of Cu(hfac)2 adsorption on Pt(111) showed chemical differences compared to

the Cu(hfac)2 on copper and TiO2 systems. The hfac group formed on copper and

TiO2 surfaces remained intact until 373 and 473 K, respectively, whereas hfac species

formed on Pt(111) showed significant decomposition by 300 K. [93, 94] Moreover,

surface contamination existing prior to deposition has been shown to influence the

decomposition pathway and the final structure of nanoparticles. X-ray absorption

spectroscopy (XAS) showed, for example, that residual chlorine on the TiO2 sur-

face can participate in the decomposition pathway of Pd(hfac)2. In the presence of

chlorine, Pd(hfac)2 decomposed to form Pd(hfac)Cl2,ads and Ti(hfac)ads species. [95]

All of these studies demonstrate that the initial substrate-Pd(hfac)2 interaction

and existing surface species play a major role in tailoring the final properties of the

nanoparticles and the Pd growth behavior. As recently highlighted by Zaera, [43]

fundamental surface science studies can serve as a tool to understand the interme-

diates involved in the deposition mechanism, and for elucidating how the overall

precursor-substrate interaction process takes place during the initial exposure of the

precursor.

In this chapter, Pd(hfac)2 was used for synthesis of Pd nanoparticles on the

TiO2(110) surface. The evolution of the organometallic precursor was monitored

by surface sensitive characterization techniques including X-ray photoelectron spec-

troscopy (XPS) and scanning tunneling microscopy (STM) to better understand the

adsorption and thermal decomposition pathways of Pd(hfac)2 on TiO2(110), as well

as to track the formation of Pd nanoparticles (NPs).
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3.3 Experimental Methods

3.3.1 Instruments

Experiments were performed in two separate UHV systems. An Omicron Sur-

face Analysis Cluster at Birck Nanotechnology Center (BNC), Purdue University,

consisting of an ultrahigh vacuum (UHV) preparation chamber and µ-metal analysis

chamber with base pressures of 1×10−9 and 5×10−11 mbar, respectively, was used for

XPS analysis. The preparation chamber was equipped with a mass spectrometer, an

Ar+ sputtering gun, resistive sample heating, and a leak valve for dosing ALD precur-

sors. The analysis chamber was equipped with XPS, low energy electron diffraction

(LEED), high resolution electron energy loss spectroscopy (HREELS), and resistive

sample heating. The second experimental apparatus at the Center for Nanoscale

Materials (CNM), Argonne National Laboratory, was an Omicron VT SPM system

equipped with a variable temperature STM/AFM (Omicron VT-SPM XA), a prepara-

tion chamber for dosing ALD precursors through a leak valve, an Ar+ sputtering gun,

and resistive sample heating. The base pressure in the STM and preparation cham-

bers was ≤ 5 × 10−11 mbar. STM images were obtained using etched W tips. STM

images were analyzed using WSxM software. [96] Pymol software (version 1.5.0.4)

was used for molecular visualization.

TiO2(110) single crystals of 9 mm diameter and 1 mm thickness (Princeton Sci-

entific Corp.) were used. In both systems, the sample cleaning procedure consisted

of repeated cycles of Ar+ sputtering and vacuum annealing at 925 K. For the XPS

study, sample temperature was measured by a K-type thermocouple spot-welded to

the stainless steel back plate, and crystal cleanliness was monitored by XPS and

LEED. The appearance of the fresh crystal changed from transparent to light blue

following several cleaning cycles, the signature of a slightly reduced crystal. [97]

TiO2(110) crystals were exposed to Pd(II) hexafluoroacetylacetonate (Pd(hfac)2)

(Aldrich, 99.9%) in the preparation chambers of both systems. Pd(hfac)2 powder was

loaded into a miniature 50 mL Swagelok stainless steel cylinder and was pumped by

a turbo pump several times before each dosing. All gas lines were regularly heated



45

overnight at 423 K. For the XPS experiment, dosing was performed through a leak

valve for 10 min. at a pressure of ca. 5 × 10−7 mbar for an exposure of 225 L to

ensure saturation. Higher exposures of Pd(hfac)2 did not change surface Pd coverage.

Dosing pressure was determined during a test experiment, and the ion gauge was kept

off during Pd(hfac)2 exposure to avoid electron-induced decomposition of Pd(hfac)2.

For the STM experiment, the maximum achievable Pd(hfac)2 base pressure was much

lower (ca. 4 × 10−9 mbar) due to system geometry differences; however, the sample

sat approximately 2 in. away from a dosing capillary aimed at the sample. Pd(hfac)2

was dosed at approximately this pressure for 60 min. to ensure saturation.

XPS data were acquired using a nonmonochromatic Mg Kα X-ray source (hν =

1253.6 eV) at 150 W. High resolution spectra were recorded at a constant pass energy

of 20 eV. The resolution, defined as the full-width at half-maximum (fwhm) of the

Ti 2p3/2 peak, was approximately 1.1 eV. Unfortunately, no energy scale correction

was foreseen by the analyzer manufacturer (analyzer, Omicron EAC 125; controller,

Omicron EAC 2000), and therefore it was possible only to set the Au 4f7/2 peak at

84.0 eV by changing the spectrometer work function. Slight sample charging was

corrected by fixing the Ti 2p3/2 peak at 459.3 eV.

XPS data were analyzed with CasaXPS (version 2313Dev64) software. Curve fit-

ting was done assuming a Gaussian/Lorentzian line shape (30% Lorentzian, CasaXPS

function: SGL(30)) for symmetric peaks and an asymmetric Lorentzian shape (CasaXPS

function: LF(1,1.5,25,70)) for asymmetric peaks. Coverages were calculated from

XPS data using the procedures outlined in Appendix A.

3.4 Results

3.4.1 X-ray Photoelectron Spectroscopy for Pd(hfac)2/TiO2 System

Figure 3.1 shows XPS spectra of the F 1s, O 1s, Pd 3d, and C 1s core-levels

obtained after saturation exposure of the TiO2(110) surface to Pd(hfac)2 at 300 K.

The structure of the Pd(hfac)2 molecule is shown inside the F 1s region in Figure 3.1.
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The main component of the F 1s peak is at 688.3 eV and represents a CF3 functional

group in hfac ligand. The minor F 1s peak detected at 684.9 eV is assigned to Ti-

F. [98] The O 1s spectrum was fitted with two components at 530.6 and 532.1 eV.

The former peak is a feature of TiO2, and the latter represents oxygen atoms in the

hfac ligand. Supporting this assignment, heating the sample to 575 K causes hfac

ligands to decompose (discussed below), and the peak at 532.1 eV is absent. This

same peak was observed following adsorption of Cu(hfac)2 on the TiO2 surface. [94]

Palladium is represented by a single broad Pd 3d5/2 peak (fwhm = 1.6 eV) at 336.9

eV. The observed binding energy (BE) is slightly higher than 336.6 eV, which is

the reference value for PdO (see, for instance, Reference [99] and references therein).

Intact Pd(hfac)2 adsorbed in multilayers on a copper substrate is characterized by a

Pd 3d5/2 peak at 339.1 eV. [100] Therefore, the component at 336.9 eV was assigned

to a palladium atom in a Pd(hfac)ads species. This assignment is further confirmed

by XPS quantification and STM images (discussed later).

Analysis of the C 1s region revealed contributions from several species (Figure 3.1).

The first is an hfac species, which is characterized by three components, each repre-

senting a distinct chemical state of the carbon atoms in hfac (see Figure 3.1). These

components at 285.2, 287.5, and 292.4 eV were assigned to carbon atoms in C-H, C-O,

and CF3 , respectively. Our assignments are based on Hantsche, [101] and these values

are in good agreement with those observed for Cu(hfac)2 and Pd(hfac)2. [100,102–105]

Characteristic BEs are summarized in Table 3.1.

To identify fragments from hfac cracking, the area ratio between the CF3, C-O,

and C-H components was constrained to 2:2:1 during curve fitting based on the stoi-

chiometry of the hfac group (Figure 3.1). As shown in Figure 3.1, the hfac components

alone were not enough for a proper fitting of the C 1s region; therefore, other com-

ponents were added. The highest BE peak at approximately 297.5 eV was an O 1s

ghost peak excited by Al Kα radiation (a dual Mg/Al X-ray gun was used). Inclusion

of the O 1s ghost peak in the curve fitting was crucial to ensure correct background

subtraction and spectrum deconvolution. The ratio between the O 1s and ghost peak
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Figure 3.1. The F 1s, O 1s, Pd 3d and C 1s photoemission spectra
obtained after exposure of the TiO2(110) surface to Pd(hfac)2 up to
saturation at 300 K. Ball and stick schematic of Pd(hfac)2 molecule
is shown inside F 1s region (Pd atom: blue, O atoms: red, C atoms:
white, F atoms: lime, H atoms: cyan).

areas was always constant, confirming this assignment. The O 1s ghost peak area

was excluded from carbon quantification. The four other components represent de-
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Table 3.1.
Binding energies of characteristic XPS features observed after
Pd(hfac)2 adsorption at room temperature and subsequent thermal
decomposition.

Binding Energy / eV

Species C 1s F 1s Pd 3d5/2 O 1s Ti 2p3/2

Pd(hfac)ads

285.2 (C-H),

287.5 (C=O),

292.4 (CF3)

688.3 336.9 532.1

TiO2 530.6 459.3

O 1s Ghost

(from Al Kα)
297.5

Fragments of Pd(hfac)2

CF3 292.5 688.3

CF2, HO-C=O 289.2

CF, CO 286.4

C-H, C-C 284.5

TiFx 684.9

PdOx and Pd

NPs
336.2-335.5

composition fragments of the hfac group: residual carbon (carbon bonded to carbon

and/or hydrogen only) is assigned to the peak at 284.5 eV, the component at 286.4

eV is a feature corresponding to C-F and/or C-O species (carbon bonded to oxygen

or fluorine), CF2 and carboxyl groups are characterized by the peak at 289.2 eV, and

the peak at 292.5 eV is due to CF3 species. Partial dissociation of the hfac species

likely occurs during adsorption. Caution was taken to avoid radiation damage by
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minimizing exposure to the X-ray flux. Characteristic Pd(hfac)2 core levels (F 1s, C

1s, Pd 3d) were collected first followed by Ti 2p and O 1s. Radiation-induced de-

composition of the precursor was only observed during prolonged exposure to X-rays

by the appearance of the F 1s peak at 684.9 eV, which was a signature of precursor

decomposition.

The coverage of adsorbed species was calculated using Equation A.7 in Appendix A.

The F 1s, Pd 3d, and C 1s peaks represented the adlayer, and the Ti 2p peaks repre-

sented the substrate. At room temperature (Figure 3.1), the adlayer was assumed to

consist of Pd(hfac)ads and hfacads species along with fragments of the hfac ligand. To

calculate the coverage of Pd(hfac)ads+hfacads , corresponding contributions of these

characteristic components were taken from the F 1s, C 1s, and O 1s peaks (hfac

components only), which were obtained using the curve fittings shown in Figure 3.1.

For Pd, the entire Pd 3d region was used for coverage calculations. The coverages of

Pd(hfac)ads+hfacads based on the F 1s, Pd 3d, and C 1s regions were equal to 0.10,

0.10, and 0.08 ML at 300 K, respectively (Table 3.2). The coverages were normalized

to the stoichiometric ratio of Pd:C:F in the Pd(hfac)2 molecule (1:10:12). The other

quantification parameters, for instance, the ratio between the CF3 carbon component

of C 1s and the CF3 fluorine component of F 1s, matched the stoichiometry as well.

The equal value between the normalized coverages (ca. 0.1 ML) for the Pd, C, and F

showed that the surface species kept the original stoichiometry of the molecule and

can consist of Pd(hfac)2 or Pd(hfac)ads+hfacads. However, the Pd 3d5/2 XPS peak

at 336.9 eV eliminates the presence of the Pd(hfac)2 molecule and allows us to con-

clude that following Pd(hfac)2 exposure at 300 K, the TiO2(110) surface is covered

by the Pd(hfac)ads+hfacads species at a coverage of approximately 0.1 ML. Cracked

fragments of hfac such as C-H, C-C, CF, CO, CF2, carboxyl groups, and CF3 species

were also present on the surface.

The effect of temperature on Pd(hfac)2 adsorption was investigated by exposing

the TiO2(110) surface to Pd(hfac)2 at 300, 375, and 450 K. For higher adsorption

temperatures, the extent of fragmentation of the hfacads and Pd(hfac)ads species in-
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Table 3.2.
Coverage of hfac species as a function of adsorption temperature, cal-
culated based on Pd 3d, C 1s, and F 1s regions. C 1s and F 1s columns
use only hfac components from XPS fitting for the calculation.

Coverage / ML

Adsorption Temp. / K Pd 3d C 1s F 1s

300 0.10 0.08 0.10

375 0.11 0.09 0.08

450 0.12 0.09 0.10

creased. At 300 K, the symmetric F 1s peak at 688.3 eV represents the CF3 functional

group in the hfac ligand. With increasing adsorption temperature, a peak at 684.9 eV

grows, which is the signature of the TiF bond (spectra not shown). [98] The maximum

concentration of TiF occurred at 450 K due to the thermal decomposition of the hfac

ligand. At 300 K, a single chemical state of palladium as Pd(hfac)ads was observed

at 336.8 eV, but a new Pd 3d5/2 peak at 336.2 eV appeared following adsorption at

375 and 450 K (not shown). The appearance of this peak could be due to Pd(hfac)ads

decomposition and the appearance of a PdOx (x < 1) species and/or Pd clusters.

The coverage of the hfac-containing species was calculated using Equation A.7 in Ap-

pendix A based on the Pd 3d, C 1s, and F 1s peaks, and the results are summarized

in Tables 3.2 and 3.3.

The observed trend in these calculations demonstrated that the hfac coverage does

not change with adsorption temperature, the extent of hfac cracking increased, and

the amount of palladium increases. The conclusion is that, at elevated adsorption

temperatures, some products of Pd(hfac)2 decomposition desorb, leaving palladium

atoms on the surface. This assumption is supported by the observation of the Pd

3d5/2 peak at 336.2 eV assigned to a PdOx species and/or Pd clusters.
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Table 3.3.
Coverage of carbon-containing species as a function of adsorption tem-
perature. HC’s = residual hydrocarbons.

Coverage / ML

Adsorption Temp. / K
C-F +

C-O
HC’s

CF2 +

HO-

C=O

CF3 hfac

300 0.28 0.54 0.16 0.37 0.09

375 0.23 0.65 0.15 0.39 0.09

450 0.33 0.78 0.16 0.38 0.09

Thermal decomposition of the adlayer prepared by exposure of TiO2(110) to

Pd(hfac)2 at 300 K was studied by heating in a stepwise manner from 300 to 875

K under UHV. Relevant XPS spectra are shown in Figure 3.2.

Following heating at 575 K, the CF3 species represented by the F 1s peak at

688.3 eV was replaced by the TiF species, represented by the F 1s peak at 684.9

eV. The TiF species decomposed completely following heating at 875 K. In the Pd

3d region, heating to 375 K resulted in the appearance of a Pd 3d5/2 peak at 336.2

eV, which was assigned to a PdOx (x < 2) species and/or Pd clusters and/or atoms.

The intensity of the Pd(hfac)ads components decreased reaching a plateau at 525 K,

indicating decomposition of the Pd(hfac)ads species (Figure 3.2). At 775 K, the Pd

3d5/2 peak was at 335.8 eV. This BE is too low to be assigned to a PdOx species; [99]

therefore, we assume that the PdOx species decomposed. However, this BE is too

high for bulk metallic Pd, which is characterized by a Pd 3d5/2 peak at 335.0 eV. [99]

Thus, we conclude that this shift to a higher binding energy is caused by the size effect

in Pd metal nanoparticles, which give shifts to a higher BE because of incomplete

final state relaxation. [106] With increasing temperature, the Pd 3d5/2 peak at 335.8



52

Figure 3.2. The F 1s, Pd 3d and C 1s XPS spectra obtained fol-
lowing TiO2(110) exposed to Pd(hfac)2 at 300 K and heated at 375,
525, 575, 775, and 875 K. The spectra were collected at the specified
temperature.

eV shifted toward a lower BE and reached 335.6 eV following annealing at 875 K. The

BE shift toward lower binding energies observed between 775 and 875 K is assigned

to a sintering effect that partially removes the final state relaxation limitation.

Thermal decomposition of adsorbed hfac-containing species and the transforma-

tion of its dissociation fragments were traced by monitoring the coverages of different

carbon species during annealing (Figure 3.2). The Pd(hfac)ads species fully decom-

poses at 525 K, in agreement with the conclusion reached based on the evolution

of the Pd 3d spectra (Figure 3.2). CF3 fragments associated with the decomposi-

tion of the hfac ligand follow the same trend and, therefore, have thermal stability

similar to Pd(hfac)ads. The CF2, carboxyl, and CF species are likely intermediates

of Pd(hfac)ads and hfacads decomposition. CF2 and CF species might form through

decomposition of CF3 by transfer of fluorine atoms to TiO2(110). Above 575 K,

the carbon species related to hfac groups vanish, and only a single asymmetric peak

related to graphitic carbon or other carbon species formed by decomposition of the

organic moieties could be detected. The carbon remaining following annealing at 875
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Figure 3.3. Changes in area percentage of TiO2 and TiOx components
upon heating for clean TiO2(110), Pd(hfac)2 exposure at 300 K, and
during annealing to 875 K. The shaded area shows the fractions of
TiO2 and TiOx for the clean TiO2(110) single crystal before Pd(hfac)2

exposure.

K is likely graphitic. Potassium, a bulk crystal contaminant, diffuses from the bulk

to the surface during annealing at 875 K.

Detailed XPS analysis of surface chemical states also revealed possible adsorption

sites for Pd(hfac)ads and hfacads. The clean TiO2(110) surface was characterized by

the Ti 2p3/2 peak at 459.3 eV, which is a feature of stoichiometric TiO2. An additional

Ti 2p3/2 peak at 457.5 eV assigned to reduced titania, TiOx (x < 2), was also observed

(spectra not shown).
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The evolution of the TiOx and TiO2 components is shown in Figure 3.3. The

TiOx component disappears following Pd(hfac)2 adsorption. However, the TiOx peaks

reappeared upon heating to 525 K, the same temperature at which the Pd(hfac)ads

and hfacads species decomposed. This suggests that the reduced titania centers are

involved in Pd(hfac)2 adsorption and/or dissociation. The oxygen atoms of the hfac

ligand might interact with the reduced TiOx centers providing oxygen needed for

a fully oxidized surface. Following decomposition of the hfacads ligands at 575 K

in UHV, the TiOx area percentage increases to ca. 6.5% before returning to the

original value of ca. 2% following heating at 875 K (Figure 3.3). The increase of the

TiOx contribution at 575 K might be due to the reaction of the surface oxygen from

stoichiometric TiO2 with carbon fragments from the hfac ligands. Heating to 875 K

results in the diffusion of the oxygen vacancies to the bulk and return of the surface

to its initial state.

The number of Pd(hfac)2 adsorption and decomposition cycles on the TiO2(110)

surface determines the amount of the deposited Pd. Palladium coverages and palla-

dium layer thicknesses are shown in Figure 3.4 for four consecutive cycles of Pd(hfac)2

adsorption at 300 K followed by heating to 875 K in UHV. XPS spectra for consec-

utive cycles are similar to those for the first deposition cycle. In addition to the Pd

coverage, the thicknesses are presented for comparison with the value of growth per

cycle (GPC) for Pd(hfac)2 ALD measured by quartz crystal microbalance (QCM),

which assumes formation of a uniform overlayer after each cycle. Similarly, we have

used a uniform Pd overlayer XPS quantification model. The details of the thickness

calculations are provided in the Supporting Information. Growth is linear, with a

GPC of 0.6 Å (Figure 3.4). Therefore, the amount of deposited palladium can be

controlled by the number of adsorption and decomposition cycles. The linear growth

of Pd indicates that the remaining graphite-like carbon does not block adsorption

sites for Pd(hfac)2.
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Figure 3.4. Pd growth curve showing the coverage of the Pd in ML
versus number of deposition cycles. Each cycle consists of adsorption
of Pd(hfac)2 at 300 K followed by annealing in UHV to 875 K.

3.4.2 STM for Pd(hfac)2/TiO2 System

To complement the XPS results with topography data, an STM investigation

was performed. A typical 100 × 100 nm STM image of the clean TiO2(110) surface

following the preparation procedure, described in the Experimental Methods section,

is shown in Figure 3.5 A. Irregularly shaped terraces are present, as are defect sites

that show up as bright spots and added rows. The spots might be oxygen vacancies

or other defect types, and the added rows act as precursors for the TiO2(110)-(1× 2)

surface reconstruction. [107] The measured step height was approximately 3.2 ± 0.2

Å, in agreement with the expected value of 3.24 Å for rutile TiO2(110). Alternating
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bright and dark rows running along the [001] direction are visible. The spacing

between bright rows and between dark rows in the [11̄0] direction is approximately

6.5 Å. Within bright rows, the spacing between features was approximately 3 Å.

An atomic resolution image after Fourier transform filtering is shown in the inset in

Figure 3.5 A with the dimensions labeled. These dimensions correspond to a bulk

terminated TiO2(110)-(1 × 1) surface, where the bright features are attributed to

surface 5-fold Ti atoms and the dark features to bridging oxygen atoms. [107]

A 100× 100 nm image following saturation dosing of Pd(hfac)2 at RT is shown in

Figure 3.5 B. This surface is characterized by bright clusters with similar approximate

size and density as the defect sites on the clean TiO2, and bright, discontinuous rows

running along the [001] direction with inter-row spacing of approximately 6.5 Å.

Though the discontinuities could not be resolved in all images, a Fourier transform

of an area containing discrete features revealed their spacing along a row in the [001]

direction to be approximately 6 Å (inset, Figure 3.5 B). The dimensions of these dark

and bright spots correspond to a structured (2× 1) overlayer, which can be assigned

to bidentate bridging hfac ligands bonding through both oxygen atoms to two 5-fold

Ti atoms, and Pd(hfac)ads with Pd bonding to two surface bridging oxygen atoms

shown schematically in the ball model in Figure 3.6. The contrast in the STM images

allows to identify the adsorption species and adsorption sites: Pd(hfac), if bound

between two bridging oxygen atoms, would protrude further from the surface than an

hfac ligand bound to two 5-fold coordinated Ti atoms, and would therefore appear

brighter on the basis of topography. Based solely on topography, then, the adsorbed

hfac ligands would appear as the dark spots also in a (2×1) arrangement. The contrast

may also be explained by electronic arguments. For example, the appearance of dark

and bright areas was reported in the STM images of the Si(111)-(7×7) surface exposed

to Cu(hfac)2. [108] On the basis of the bias dependence, dark areas were assigned to

hfac ligands and the bright regions to Cu atoms when empty electronic states of the

sample were tested at positive bias voltage. The STM images shown in Figure 3.5 were

obtained at positive biases. Therefore, hfac ligands might appear as the dark rows.
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Figure 3.5. STM images of the TiO2(110) surface. A: Clean TiO2(110)
following sputtering and annealing cycles (V = +2.0 V, I = 70 pA).
Inset: Atomic scale image after Fourier transform showing the unre-
constructed (1 × 1) unit cell. B: TiO2 following dosing of Pd(hfac)2

for 60 min. at room temperature (V = +1.75 V, I = 0.1 nA). Inset:
Small scale image after Fourier transform showing structured (2× 1)
overlayer of adsorbates. The bright spots are assigned to Pd(hfac)ads

group. C: Model for Pd(hfac)2 adsorbed on TiO2(110): The Pd(hfac)2

dissociates. The resulting hfac (hfac: black spheres) binds to two five-
fold coordinated Ti atoms (gray spheres) in a bi-dentate fashion and
the Pd(hfac) (Pd(hfac): yellow spheres) adsorbs between two bridging
oxygen (oxygen: white spheres). The adsorption geometry matches
the experimental value reported in image B inset. D: Following an-
nealing of the as-deposited sample to 875 K for 20 min. (V = +0.5 V,
I = 2.0 nA).

The Pd(hfac)ads species is expected to have a higher density of states above the Fermi

level than those for the hfacads group, leading to the Pd(hfac)ads species appearing as
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Figure 3.6. Pd(hfac)2 molecule adsorbed on the TiO2(110) surface at
room temperature. Pd(hfac)2 dissociates into an hfac ligand, which
bonds across neighboring 5-fold coordinated Ti sites (grey atoms),
and a Pd(hfac), which bonds across bridging O atoms (red atoms) on
the surface. Adsorbed Pd(hfac) is responsible for the (2×1) structure
observed after Pd(hfac)2 adsorption at room temperature. Adjacent
Pd(hfac) and hfac groups are not shown for clarity.

the bright spots (Figure 3.5 B). Unfortunately, the Pd(hfac)ads+(hfac)ads adlayer was

not stable under the LEED electron beam, and therefore the LEED patterns were

not collected.

The proposed model for dissociative Pd(hfac)2 adsorption on TiO2(110) is in agree-

ment with an observed (2× 1) overlayer following dosing of Cu(hfac)2 on TiO2(110).

[94,109] The authors of those studies noted that the distance of the two oxygen atoms
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in the hfac ligand of Cu(hfac)2 is 2.79 Å, close to the distance of 2.96 Å between two

5-fold surface Ti atoms on TiO2(110), which makes that site suitable for adsorption

of hfac. This is close to the value of 2.77 Å between two O atoms in an hfac ligand

in Pd(hfac)2. [110]

Following annealing at 575 K, nanoparticles appeared with an average height of

1.2± 0.6 nm (not shown), where the error is one standard deviation from the average

value. Uncertainty in the height distribution arises from the difficulty in determining

which features are Pd nanoparticles, which are agglomerations of ligand fragments,

and which are original defects in the TiO2 surface. The best quality images were

obtained at lower bias and higher tunneling current (V = +0.8 V, I = 1.0 nA) than

for the previous experiment, indicating that surface conductivity had increased. This

might be due to the formation of Pd nanoparticles.

Annealing at 875 K resulted in the agglomeration of the nanoparticles, and the

unreconstructed TiO2(110)-(1×1) surface reappeared, as shown in Figure 3.5 D. These

results agree with the XPS data, which demonstrated the complete decomposition of

the hfacads species at 575 K and Pd nanoparticle sintering at 875 K. The average

height of the nanoparticles was 1.7 ± 0.5 nm at 875 K. Even after annealing to 875

K, the particle size is within the range where a size-dependent BE shift could be

observed. Therefore, the +0.6 eV shift of the Pd 3d5/2 peak from the peak position

for the bulk palladium (335.0 eV) could be assigned to a particle size effect. No

preferential nucleation of the Pd NPs was observed at step edges. The coverage of

Pd particles was estimated from the STM data to be 0.03 ML at 875 K. This value

is in good agreement with the 0.05 ML calculated using the XPS data. It must be

noted that the apparent lateral dimension of these nanoparticles depends on the STM

tip shape and, therefore, is not used. The coverage estimation from STM assumes a

hemispherical nanoparticle shape in which the radius is approximately equal to the

height.
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Figure 3.7. 50 nm × 50 nm image of the TiO2(110) surface following
saturation dosing of Cu(hfac)2 at room temperature. It = 80 pA, V
= 1.75 V.

3.4.3 STM for Cu(hfac)2/TiO2 System and Bimetallic Cu-Pd System

Deposition of Cu(hfac)2 on TiO2(110) was also studied by STM. Images taken

after room temperature adsorption are qualitatively similar to those observed after

Pd(hfac)2 adsorption. The adsorption mechanism appears to be the same as for

Pd(hfac)2 on TiO2(110), which is consistent with previous literature reports for the

Cu(hfac)2/TiO2(110) system. [94,109]. The structured (2×1) overlayer is present, as

well as bright clusters on top of the overlayer. An image of the as-dosed TiO2(110)

surface is shown in Figure 3.7.
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Figure 3.8. 200 nm× 200 nm image of the TiO2(110) surface following
saturation dosing of Cu(hfac)2 at room temperature and subsequent
annealing at 500°C. It = 50 pA, V = 2.50 V.

Annealing this surface to 500°C resulted in the formation of Cu nanoparticles with

average height of 2.7± 0.5 nm. This surface is shown in Figure 3.8.

Following the formation of Cu nanoparticles, the surface was exposed to a sat-

uration dose of Pd(hfac)2 at room temperature in order to study the interaction of

the Pd precursor with Cu. Pairs of nanoparticles were observed on this surface (Fig-

ure 3.9). Though more work must be done to determine the composition of these

nanoparticles, nanoparticle pairs were not observed following annealing the surface

exposed to only Cu(hfac)2 at 500°C. These features may be related to the redox trans-
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(a) (b)

Figure 3.9. Images of the TiO2(110) surface following saturation dos-
ing of Cu(hfac)2 at room temperature, subsequent annealing at 500°C,
and saturation dosing of Pd(hfac)2 at room temperature. (a) It = 30
pA, V = 2.80 V, 100 nm × 100 nm. (b) It = 50 pA, V = 2.50 V, 100
nm × 100 nm.

metalation reaction that has been observed between Pd(hfac)2 and Cu0, forming Pd0

and Cu(hfac)2. [100,105]

Annealing the sample to 500°C after dosing Pd(hfac)2 resulted in new nanoparti-

cles with an average height of 1.32±0.51 nm, in addition to the existing nanoparticles

with average height of 2.7± 0.5 nm, which was unchanged (Figure 3.10).

XPS of this surface was inconclusive with regards to the presence of monometallic

or bimetallic nanoparticles. More work must be done to determine the identities of

these nanoparticles.

3.5 Discussion

On the basis of the experimental data, the mechanism shown in Figure 3.11 is

proposed for the interaction of Pd(hfac)2 with TiO2(110). The cleaning procedure

of TiO2(110) causes thermal desorption of surface oxygen leaving behind a partially
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Figure 3.10. STM images of the TiO2(110) after dosing Cu(hfac)2,
annealing to 500C, dosing Pd(hfac)2, and annealing to 500C. It = 80
pA, V = 2.50 V, 200 nm × 200 nm.

reduced surface with TiOx species. [107] Upon adsorption at 300–450 K, the Pd(hfac)2

precursor dissociates to (hfac)ads and Pd(hfac)ads species. Further decomposition of

the (hfac)ads and Pd(hfac)ads species occurs at 375 and 450 K. The (hfac)ads and

Pd(hfac)ads species form a (2× 1) surface overlayer. The hfac fragment adsorbs in a

bidentate bridging fashion across two Ti 5-fold atoms and Pd(hfac) adsorbs between

two bridging oxygen atoms (Figure 3.6). Following Pd(hfac)2 adsorption, the TiOx

species disappeared, showing that hfacads and its cracked fragments reoxidize the

surface (Figure 3.3). This implies that in a parallel path with the adsorption on Ti
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Figure 3.11. Schematic of the reaction of Pd(hfac)2 with a TiO2(110) surface.

5-fold atoms, the hfacads species can adsorb on the TiOx defects and compensate for

the lack of oxygen.

Cracked fragments of the hfac ligand were observed at all adsorption temperatures.

The degree of hfac decomposition increases with increasing adsorption temperature.

Heating the adsorbed layer resulted in decomposition of the Pd(hfac)ads and(hfac)ads

species, which dissociated at approximately 525 K, leaving cracked hfac fragments

and Pd0 clusters (Figure 3.11). The CF3 species underwent decomposition through

sequential loss of fluorine atoms, which then bond to titanium. TiF species were

observed on the surface up to 775 K. No fluorine-containing species were detected at

875 K. Carbon atoms segregate to graphitic-like (CC) structures at 575 K. The rest

of the carbon-containing species partially desorb: the carbon level decreases upon

heating until 675 K and then remains unchanged upon further annealing to 875 K.

Once the hfac groups thermally decomposed at 525 K, reduced titania appeared on

the surface. At 875 K, the level of reduced titania returned to the original level of

the clean TiO2(110) surface due to diffusion of surface oxygen vacancies to the bulk

(Figure 3.3).

Following annealing at 775 K, the Pd coverage decreased to 0.07 ML, indicating

sintering of the Pd nanoparticles, which is accompanied by the Pd 3d5/2 peak shift-

ing toward a lower BE. This BE shift is attributed to the formation of larger Pd
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nanoparticles. It could also be attributed to the encapsulation of Pd nanoparticles by

TiOx species; however, for Pd particle encapsulation to take place, the TiO2 support

must first be reduced. [111] Here, the TiOx component decreases continuously upon

annealing to 875 K, which indicates absence of encapsulation in our system.

Because hfacads and its cracked fragments can block Pd(hfac)2 adsorption, their

removal is critical for the next deposition cycles. As shown in Figure 3.4, on the

surface free of hfac ligands and decomposition fragments, the amount of palladium

linearly increases with the number of deposition cycles. The key factor for linear

growth was thermal decomposition and removal of the hfac ligands at 875 K prior to

each cycle of the Pd(hfac)2 adsorption. On the other hand, for a real Pd(hfac)2 ALD

process, the number of typical ALD cycles required to reach steady-state Pd ALD

growth was reported to be between 20 to 100 ALD cycles. [83] QCM measurements

for Pd(hfac)2 and formalin ALD on TiO2 showed 0.22 Å growth per cycle. [90] This is

about 1/3 of the value of 0.6 Å per cycle calculated from our XPS data. The residual

fluorine- and carbon-containing contaminations might cause surface poisoning during

the first few cycles (see for instance Elam et al. [83]). The contaminations could be

a reason for the lower growth per cycle. Surface blocking by hfacads and its fragment

moieties was assumed to be responsible for Pd nucleation delay on the Al2O3 and

TiO2 surfaces. [83, 89,90]

Following annealing at 875 K, Pd nanoparticles with an average height of 1.7±0.5

nm were obtained. Assuming a hemispherical shape of the particle, the average

diameter at the base of the particle is 3.4± 1.0 nm. The Pd coverage was estimated

to be 0.1 ML after Pd(hfac)2 exposure, and 0.03–0.05 ML after annealing at 875 K,

respectively.

3.6 Conclusions

Pd(hfac)2 adsorption is a self-limiting reaction on the TiO2(110) surface yielding

Pd(hfac)ads and/or hfacads species and partial hfac fragmentation at room tempera-
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ture. The removal of the hfac ligand and its fragments through thermal decomposition

eliminates the initial growth delay period and results in linear growth of Pd on the

TiO2(110) surface. The Pd amount linearly increases with the number of adsorp-

tion/dissociation cycles with an average growth per deposition cycle of about 0.05

ML (0.6 Å).
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4. THE SURFACE CHEMISTRY OF TRIMETHYLALUMINIUM ON PD(111)

AND PT(111)

4.1 Abstract

The behavior of trimethylaluminium (TMA) was investigated on the surfaces of

Pt(111) and Pd(111) single crystals. TMA was found to dissociatively adsorb on both

surfaces between 300–473 K. Surfaces species observed by HREELS or XPS after

TMA adsorption at 300 K included Al-(CH3)x (x = 1, 2, or 3) and CHx,ads (x = 1, 2,

or 3) on Pt(111), and ethylidyne (CCH3), CHx,ads (x = 1, 2, or 3), and metallic Al on

Pd(111). DFT calculations predicted methylaluminum (MA, Al-CH3) to be the most

kinetically favorable TMA decomposition product on (111) terraces of both surfaces,

however, strong HREELS signatures for Al-(CH3)x were detected only on Pt(111).

DFT calculations also showed that further dissociation of MA to metallic aluminum

and methyl groups to be more kinetically favorable on step sites of both metals. In

our proposed reaction mechanism, MA migrates to and dissociates at Pd(111) steps

at 300 K forming adsorbed methyl groups and metallic Al. Some methyl groups

dehydrogenate and recombine forming ethylidyne. Metallic Al or ejected Pd atoms

from steps diffuse across Pd(111) terraces until coalescing into irregularly shaped

islands on terraces or steps, as observed by STM. Upon heating above 300 K, the Pd-

Al alloy diffuses into the Pd bulk. On Pt(111), a higher coverage of carbon-containing

species following TMA adsorption at 300 K prevented MA diffusion and dissociation

at steps, as evidenced by isolated clusters of MA in STM images. Heating above 300 K

resulted in MA dissociation, but no Pt-Al alloy formation was observed. We conclude

that the differing abilities of Pd and Pt to hydrogenate carbonaceous species plays a

key role in MA dissociation and alloy formation, and, therefore, the adsorption and
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dissociation chemistry of TMA depends on properties of the metal substrate surface

and determines thin film morphology and composition.

4.2 Introduction

Palladium and platinum are widely used for heterogeneous catalytic reactions,

including carbon-carbon coupling, [112] hydrocarbon oxidation, [79] water-gas shift,

[113] and environmental pollution control. [81,114,115] Pd and Pt are also the cata-

lysts of choice for hydrogen sensors and fuel cell devices. [116–118] One of the prob-

lems for catalytic application of these metals is deactivation due to particle insta-

bility (sintering) and carbon deposition (coking). Recently, over-coating Pd and Pt

nanoparticles with thin alumina layers synthesized by atomic layer deposition (ALD)

using trimethylaluminium (TMA) and water as precursors has been shown to pre-

vent catalyst deactivation. [36,38,85,86,119,120] ALD is a variation of chemical vapor

deposition (CVD) based on self-limiting reactions between gaseous precursors and a

solid substrate typically covered with functional groups. [121] TMA is one of the

most widely used ALD organometallic precursors, and the TMA-water ALD system

is one of the most studied (see for instance reference [31] and references therein).

Our goal was to study the interaction of TMA with bare transition metal surfaces.

There were several attempts in the past to study the TMA reaction pathway on

Pd and Pt surfaces. Density functional theory (DFT) predicted that TMA can cat-

alytically dissociate on bare Pd(111) and Pt(111) surfaces, [85, 122] and adsorbed

methylaluminum (MA, Al-CH3,ads) and metallic aluminum were found to be the

most thermodynamically favorable TMA decomposition products. TMA adsorption

and alumina overlayer growth mechanisms on Pd and Pt have been studied using

quadrupole mass spectrometry (QMS) [36, 83, 85, 123] and quartz crystal microbal-

ance (QCM). [36,41,123] On Pd, TMA was hypothesized to form a discontinuous film

rather than a continuous overlayer. CO adsorption was observed even after 8 cycles of

TMA-water ALD. Lu et al. [85] proposed that on Pd(111) CH3,ads species block TMA
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adsorption and can result in non-uniform alumina coverage on Pd. Decomposition

of TMA was also suggested to occur preferentially on under-coordinated sites such

as steps. [86] Decomposition products block these sites from decomposing additional

TMA molecules.

Studying the interaction between an ALD precursor and a substrate by probing

surface intermediates during ALD processes is challenging since ALD is typically

performed in a flow reactor at millibar pressures with precursor exposure times of a

few seconds. Specifically, understanding the chemistry of adsorbed carbon-containing

species, which are unavoidable in TMA ALD due to the attached methyl groups, [85]

is difficult using only characterization techniques integrated into a conventional ALD

reactor. For ultra-thin (< 10 nm) alumina coatings on heterogeneous catalysts, [124]

the catalytic substrate itself becomes one of the ALD reactants, and understanding

the substrate’s role in determining the ALD film chemistry is impossible without using

surface sensitive techniques. As highlighted by Zaera, [43] surface characterization

techniques in well-controlled environments can improve understanding ALD surface

chemistry.

In this publication, we investigate the interaction of TMA with Pd(111) and

Pt(111) surfaces using density functional theory (DFT) and surface sensitive charac-

terization techniques, specifically, X-ray photoelectron spectroscopy (XPS), scanning

tunneling microscopy (STM), and high resolution electron energy loss spectroscopy

(HREELS). This study highlights different hydrocarbon chemistries of Pd and Pt sur-

faces, which result in different surface morphologies and adlayer compositions during

the first TMA ALD half cycle.

4.3 Experimental Methods

Experiments were performed at the Birck Nanotechnology Center (BNC) in an

Omicron Surface Analysis Cluster consisting of ultra-high vacuum (UHV) preparation

and µ-metal analysis chambers with base pressures of 1 × 10−9 mbar and 5 × 10−11
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mbar, respectively. The preparation chamber was equipped with a residual gas an-

alyzer, Ar+ sputtering gun, STM tip conditioner, internal bake out system (stab-in

quartz IR lamps), and a system of leak valves connected to two separate ALD precur-

sor manifolds. Water and TMA were introduced to the chamber through separate leak

valves. The analysis chamber was equipped with XPS, low energy electron diffrac-

tion (LEED), HREELS, and STM. The sample could be heated resistively in both

chambers. Sample temperature was measured by a K-type thermocouple attached to

the sample holder.

STM images were obtained using an Omicron ambient temperature UHV STM/AFM

in constant current (topographic) mode. Electrochemically etched W tips were used

after conditioning by electron bombardment in UHV. STM images were analyzed us-

ing WSxM v3.1 software, [96] and were used to determine the fractal dimension (dp)

based on perimeters and areas of observed islands. The dp value, which depends on

the chosen yardstick length (i.e. size of a pixel), was used to measure perimeter of the

fractal islands (P). The yardstick length (δ), which is obtained by dividing total area

scanned by the number of pixels in each image, was 0.15 nm. We have considered

only islands with an area greater than 200δ2 in our analysis. [125]

HREELS spectra were acquired using an ELS5000 instrument (LK Technologies)

in the specular direction with primary beam energy of 5.0 eV. The full width at

half maximum (fwhm) of the elastic peak was usually 2.8 meV ( 23 cm-1), and the

intensity of the elastic peak was above 105 cps. All HREELS spectra presented in

the paper have been normalized to the elastic peak intensity.

XPS data were acquired using non-monochromatic Mg Kα X-ray radiation (hν =

1253.6 eV) with X-ray gun power of 150 W. High resolution spectra were recorded at

constant pass energy of 20 eV. The resolution, measured as the FWHMs of the Pd

3d5/2 and Pt 4f7/2 peaks, was approximately 1.2 eV. Unfortunately, no energy scale

correction was foreseen by the analyzer manufacturer (the electron energy analyzer

- Omicron EAC 125 and the analyzer controller - Omicron EAC 2000); therefore, it
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was possible only to set the Au 4f7/2 peak to 84.0 eV. Photoelectrons were collected

at a photoemission angle of 45° with respect to the surface normal.

XPS data were analyzed with CasaXPS (version 2313Dev64) software. Metallic

components of Pt 4f, Pd 3d, Al 2s, Al 2p, and graphitic/carbidic C 1s components,

were fitted using an asymmetric Gaussian/Lorentzian line shape with the tail damp-

ening (CasaXPS Line shape=LF(1,1.8,30,90)). Nonmetallic species of C 1s, Al 2s,

and Al 2p were fit with symmetric Gaussian/Lorentzian line shapes (CasaXPS Line

shape=GL(10) or SGL(10)). Spin-orbit splitting doublets in the Pt 4f (4f7/2 and

4f5/2), Pd 3d (3d5/2 and 3d3/2), and Al 2p (2p3/2 and 2p1/2) spectra were subject

to spacing constraints of 3.33, 5.26, and 0.43 eV, respectively. [68] Area ratios for

spin-orbit coupling doublets were kept constrained to the expected multiplicity ra-

tios, and FWHMs of these spin-orbit coupling doublets were constrained to be equal.

To quantify the XPS result, we followed Fadley’s approach [62] which assumes a non-

attenuating adlayer at fractional coverage. Coverage (Θ) was measured in monolayers

(ML), which is the ratio between the number of adsorbed species and the number of

surface atoms (Pt or Pd) on (111) plane. Coverage was calculated using Equation A.7

in Appendix A.

Pd(111) and Pt(111) single crystals with 9.0 mm diameter and 1.0 mm thickness

(MaTecK) with orientation accuracy of < 0.5° were used. The single crystals were

cleaned by repeated cycles of Ar+ sputtering and annealing in vacuum at 1000 K and

in oxygen at 623 K. Cleanliness was monitored by XPS, LEED, STM, and HREELS.

The single crystals were exposed to TMA (Aldrich, 97%) in the preparation cham-

ber via a leak valve. Prior to dosing TMA, several cycles of freeze-pump-thaw were

performed for purification. Dosing lines were heated overnight at 423 K, and the lines

were filled with TMA and pumped several times before dosing. In order to passivate

the chamber walls for each experiment, the preparation chamber without the sample

was exposed to TMA just before dosing to a single crystal. Exposures are reported in

Langmuir (L, 1 L = 1×10−6 Torr·s), and were calculated from uncorrected ion gauge

measurements. The ionization gauge was left on during TMA dosing, but this did
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not affect the state of the deposited material as verified by HREELS and XPS. Re-

ported exposure values are estimates because TMA decomposition on chamber walls

likely depends on the history of gas exposures, and this might cause errors in reported

exposure values especially at low TMA exposures.

DFT calculations were performed by Vienna ab initio simulation package (VASP)

[126] using project augmented wave (PAW) [127] potential and PW91 exchange-

correlation functional. [126] A plane wave cutoff of 400 eV was used. The optimized

lattice constants of bulk Pd and Pt are 3.956 and 3.985 Å, respectively. Four-layer

slabs were used to model (111) and (211) surfaces with (2× 2) and (1× 3) unit cells,

respectively. To prevent the artificial interaction between the repeated slabs along

z-direction, 12 Å of vacuum was introduced with correction of the dipole moment. A

(4×4×1) k-point mesh was used to sample the Brillouin zone. The bottom two layers

were fixed, and the remaining atoms and adsorbates were relaxed until the residual

forces were less than 0.02 eV/Å. Transition states and reaction barriers were searched

by the climbing-image nudged elastic band (CI-NEB) method. [128]

4.4 Results

4.4.1 X-ray Photoelectron Spectroscopy

Figure 4.1 shows nominal Al coverages following exposure of Pd(111) and Pt(111)

surfaces to TMA at 473 K. Al coverages were calculated from XPS data using the

non-attenuating adlayer model given in Equation A.7 in Appendix A. XPS Al 2s, Al

2p, C 1s, Pd 3d, and Pt 4f core-level regions are shown in Figures 4.2 and 4.3. Al

coverage increased with exposure on both surfaces until reaching saturation at about

500 L, demonstrating that TMA acts as an ALD precursor on Pd(111) and Pt(111)

under high vacuum conditions. Saturation coverages of aluminum (Θsat) were 1.40

and 0.96 ML on Pd(111) and Pt(111) surfaces, respectively. The nominal Al coverage

of > 1 ML on Pd(111) is a result of Pd-Al alloy formation, discussed below. It should
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Figure 4.1. Aluminum coverage on Pd(111) and Pt(111) surfaces ver-
sus TMA exposure at 473 K. The dashed lines are to guide the eye.

also be noted that the model used to calculate coverages from the XPS data assumes

a non-attenuating overlayer, which tends to overestimate coverage.

Figure 4.4 shows typical Al 2s and Al 2p core-level regions obtained from Pt(111)

and Pd(111) surfaces exposed to 2000 L TMA at 473 K, and Figure 4.5 shows Pd

3d and Pt 4f core level regions obtained from Pd(111) and Pt(111) surfaces before

and after TMA exposure at the same conditions. The Al 2p peak overlaps with Pt

4f; therefore, the Al 2s peak was used for analysis for experiments with Pt(111). On

Pt(111), the Al 2s peak was fitted with one component at 118.1 eV, and on Pd(111),

the Al 2p region was fitted with one pair of spin orbital components, Al 2p3/2 and

Al 2p1/2, and the centroid of Al 2p peak was located at 72.9 eV. These BEs are close

to reported values for metallic Al of 118.0 eV [129] and 73.0 ± 0.1 eV [130] for Al

2s and Al 2p, respectively. As reported previously for both surfaces, [85, 122] TMA
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(a) C 1s (b) Al 2p

(c) Pd 3d

Figure 4.2. C 1s, Al 2p, and Pd 3d XPS regions for various TMA
exposures at 473 K on Pd(111).

was predicted to dissociate to Al-(CH3)x species (x = 0, 1, 2), which might have BEs

close to those for metallic Al. On the clean surfaces, the Pd 3d5/2 and Pt 4f7/2 peaks

were located at 335.2 and 71.0 eV, respectively, which are characteristic positions for

metallic Pd and Pt, respectively (see for instance references [68, 99] and references
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(a) C 1s (b) Al 2s

(c) Pt 4f

Figure 4.3. C 1s, Al 2s, and Pt 4f XPS regions for various TMA
exposures at 473 K on Pt(111).

therein). Following TMA exposure, the centroid of the Pd 3d5/2 peak shifted to 336.1

eV (Figure 4.5). The curve-fitting analysis yielded two Pd 3d5/2 components at 335.2

and 336.2 eV, comprising 36% and 64% of the total Pd 3d peak area, respectively.
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The Pt 4f7/2 peak shifted to 71.2 eV and slightly broadened after TMA adsorption,

but was still fitted with one peak (Figure 4.5).

(a) Al 2s on Pt(111) (b) Al 2p on Pd(111)

Figure 4.4. XPS core-level regions of (a) Al 2s from Pt(111) and (b)
Al 2p from Pd(111) following exposure to 2000 L TMA at 473 K.

The changes in the Pt 4f and Pd 3d core-level regions upon TMA adsorption are

consistent with reported BE shifts from several phenomena. First, Pd or Pt might

alloy with Al. BE shifts of +0.8 to +2.1 eV for Pd 3d and +0.9 to +1.2 eV for Pt

4f have been reported for Pd-Al [131–134] and Pt-Al [135–137] alloys, respectively.

Second, adsorbed Al or Al-(CH3)x species could cause a BE shift. For example,

Pt 4f core-levels have been reported to shift by +1.3 eV upon adsorption of CO

on Pt(111). [138] Third, C could diffuse into the Pd bulk, forming a PdCx phase.

Teschner et al. [139] and Gabasch et al. [80] have assigned Pd 3d peaks at 335.7 and

335.34 eV, respectively, to a PdCx phase. In order to determine the origin of the

above BE shifts, Al adlayers prepared at 473 K by exposure of Pd(111) and Pt(111)

to 3 L and 10 L TMA, respectively, were heated at 623 K in UHV. The results are

shown in Figure 4.6. On Pd(111), Al coverage gradually decreased with time from

approximately 0.2 ML to 0.1 ML while the BE of the Al 2p peak remained at 72.9

eV. After exposure of the annealed surface to 4 × 104 L oxygen at 623 K, the Al
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(a) Pd 3d on Pd(111) (b) Pt 4f on Pt(111)

Figure 4.5. Pd 3d and Pt 4f core-level regions obtained from clean
Pd(111) (left) and Pt(111) (right) surfaces (bottom spectra) and fol-
lowing exposure to 2000 L TMA at 473 K (top spectra).

coverage jumped beyond the initial value to approximately 0.25 ML (the blue shaded

regions in Figure 4.6). The Al 2p peak shifted to 74.1 eV, a characteristic position for

Al2O3. [140] This behavior is consistent with Al dissolution into the Pd bulk during

heating, then segregation to the surface during O2 exposure. On Pt(111), Al coverage

did not change during annealing at 623 K in UHV as shown in Figure 4.6, which

proved that Al did not diffuse into the Pt bulk, and that Al did not evaporate. The

Al 2s peak at 118.1 eV did not shift upon heating in UHV. In addition, subsequent

O2 exposure did not change the Al coverage, as shown in the shaded blue region

of Figure 4.6. The Al 2s peak broadened and shifted to 118.5 eV, and a shoulder

appeared on the higher binding energy side at 118.9 eV.

Based on this analysis, we assigned the Pd 3d5/2 peaks at 335.2 and 336.2 eV

to metallic Pd and a Pd-Al alloy, respectively. Assuming that all Al from XPS

quantification of the Al 2p or Al 2s regions is alloyed with Pd, the average Pd-Al alloy

composition is Pd1.4Al1.0, and the calculated thickness of the alloy was estimated to

be 1.2 nm. The corresponding Al 2p peak shift for a +2.1 eV shift in the Pd 3d

peak was reported to be approximately +0.1 eV relative to metallic Al, [141] hence,



78

(a) Pd(111) (b) Pt(111)

Figure 4.6. Aluminum coverage on Pd(111) (left panel) and Pt(111)
(right panel) as a function of time at 623 K in UHV. The points within
the shaded regions were obtained following 4× 104 L O2 exposure at
623 K. The initial Al adlayers were prepared by exposing Pd(111) and
Pt(111) to 3 L and 10 L of TMA, respectively, at 473 K. The XPS
data were obtained at 623 K. The dashed lines serve to guide the eye.

a corresponding Al 2p peak shift for the Pd-Al alloy here was not observed. In the

case of Pt(111), the shift of +0.2 eV and slight broadening of the Pt 4f7/2 peak was

assigned to the influence of the surface adsorbates. We observed a +0.2 eV BE shift of

the Pt 4f7/2 peak after exposing Pt(111) to TMA using surface-sensitive synchrotron-

based XPS, confirming the surface nature of the phenomenon. [122] For a lab XPS,

the EAL of a Pt 4f photoelectron excited by Mg Kα X-ray radiation is approximately

10.5 Å, meaning that bulk layers dominate the signal and that surface changes would

result in only a slight peak shift and broadening. Therefore, we conclude that no

Pt-Al alloy formed, consistent with our synchrotron-based XPS results. [122]

Plotted in Figure 4.7 are carbon to aluminum ratios versus TMA exposure at 473

K on Pd(111) and Pt(111). C:Al was about 2.5 on Pt(111) and 1.3 on Pd(111) at

saturation TMA exposures (> 500 L). As shown in the inset of Figure 4.7, the carbon

coverage increased rapidly on Pt(111) at TMA exposures < 50 L. The initial C:Al

ratio of 6.5 on the Pt(111) surface at 10 L exposure was higher than the expected
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value of 3:1 based on TMA stoichiometry. This error might have been introduced

by using the Al 2s peak for quantification which had a low relative sensitivity factor

and, as a result, a poor signal-to-noise ratio. Additionally, despite our best efforts

to avoid TMA decomposition during exposure (see the Experimental section), TMA

molecules might decompose on the walls of the chamber, and this could result in

a C:Al ratio > 3. TMA and hydrocarbon fragments could adsorb on the surface

simultaneously. The decreasing C:Al ratio with increasing TMA exposure suggests

that TMA replaced hydrocarbons on the surface until reaching an equilibrium C:Al

ratio of 2.5.

The behavior of carbon on Pd(111) was different: carbon coverage at low TMA

exposures was negligible, but aluminum coverage increased with TMA exposure (Fig-

ure 4.7). This demonstrated that Pd(111) can hydrogenate hydrocarbon species orig-

inating from TMA dissociation. At higher Al coverage the Pd(111) surface lost its

ability to remove carbon. The C:Al ratio was 1.3 at the saturation Al coverage of 1.4

ML.

4.4.2 High Resolution Electron Energy Loss Spectroscopy

Since a single C 1s peak was observed at ca. 284.3 eV, identification of carbona-

ceous species following exposure of Pd(111) and Pt(111) to TMA based on XPS alone

was not possible. Therefore, TMA adsorption on Pd(111) and Pt(111) was studied

using HREELS. Figure 4.9 shows HREELS spectra obtained from the Pt(111) sur-

face exposed to 6 L TMA at 300 K and then annealed at 373 and 473 K in UHV.

Table 4.1 summarizes the literature data for TMA and other relevant hydrocarbon

species adsorbed on metal surfaces. Table 4.2 lists the assignments of main HREELS

peaks observed in each experiment.

HREELS data confirmed dissociative adsorption of TMA on Pt(111) at 300 K.

The peak at 2950 cm-1 was assigned to asymmetric stretching of CH3, νas(CH3);

2906 cm-1 to symmetric stretching of CH3, νs(CH3); 1460 cm-1 to asymmetric de-
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Figure 4.7. Carbon to aluminum coverage ratio plotted against TMA
exposure on Pt(111) and Pd(111) surfaces at 473 K. Coverages were
calculated using XPS data. Inset: Carbon coverage as a function of
TMA exposure for exposures up to 100 L. The dashed lines are to
guide the eye.

formation of CH3, δas(CH3); 1176 cm-1 to symmetric deformation of CH3, δs(CH3);

750 cm-1 to rocking of CH3, ρ(CH3); and 540 cm-1 to deformation of Al-(CH3)x,

δ(Al-CH3)x. These spectroscopic signatures unambiguously pointed to the presence

of Al-(CH3)x,ads (x = 1, 2, or 3) species. The resolution of HREELS was not suffi-

cient to discriminate between Al-CH3, Al-(CH3)2, and Al-(CH3)3. The peak at 1210

cm-1 was assigned to a symmetric deformation of CH3 adsorbed on Pt(111), δs(CH3).

Stretching vibrations of CH3,ads species on Pt(111) were expected around 2950 cm-1

but likely overlapped with Al-(CH3)x stretching bands. The deformation (δ(CH))

and rocking (ρ(CH2)) vibrations of CHads and CH2,ads, respectively, would be located
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around 700-860 cm-1, however, the region below 1000 cm-1 is crowded with peaks, so

these species may be present. In summary, TMA adsorption on Pt(111) at 300 K led

to the formation of adsorbed species including Al-(CH3)x (x = 1, 2, or 3), and CHx,ads

(x = 1, 2, or 3).

Heating this adlayer at 373 K resulted in changes to the HREELS spectrum. All

vibrations associated with Al-(CH3)x,ads species decreased in intensity, but the de-

formation band at 1210 cm-1 of the CH3,ads/Pt(111) species did not change. A new

peak was observed at 1380 cm-1 and was assigned to the in-plane bending mode of

methylene, CH2,ads. A peak at 3030 cm-1, the stretching mode of CH2,ads, appeared

after heating at 373 K. Methylene has been observed during the thermal decompo-

sition of TMA and trimethylindium (TMIn) on the GaAs(100) surface. [142, 143] In

our case, methylene might form through decomposition of Al-(CH3)x,ads followed by

migration of methyl groups to Pt(111) and subsequent dehydrogenation. Further de-

hydrogenation of CH2,ads to CHads was not confirmed because the region around 700

cm-1 is filled with unresolved features which hindered detection of the δ(CH) peak.

Additionally, the stretching frequency of CHads may overlap with stretching bands of

CH3,ads around 2950 cm-1.

No C-H loss peaks were detected following heating at 473 K, indicating complete

dehydrogenation of hydrocarbons. XPS data showed the presence of carbon after an-

nealing to 623 K (Figure 4.8). Based on literature data, [144, 145] remaining carbon

could be in the form of atoms and/or clusters. No straightforward assignment was

made for low frequency features below 1000 cm-1. A weak peak centered at approxi-

mately 1980 cm-1 was assigned to COads originating from residual CO in the vacuum

system.

Figure 4.9 displays HREELS spectra obtained after exposure of the Pd(111) sur-

face to 6 L TMA at 300 K and following annealing at 373 and 473 K in UHV. Table 4.3

shows the assignments of the main HREELS peaks observed after TMA adsorption on

Pd(111) and heating in UHV. The HREELS peaks at 1012 (ν(C-C)), 1090 (ρ(CH3)),

1328 (δs(CH3)), 1400 (δas(CH3)), 2890 (νs(CH3)), and 2964 (νas(CH3)) cm-1 were
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Table 4.1.
Main characteristic vibrations of hydrocarbon species on metal sur-
faces. a t: terminal,b x = 1, 2, or 3.

Mode Al-(CH3)x
b M-CH3 M=CH2 M≡CH Ethylidyne

νas(CH3)
2940-2950

[142,146–149]

2890-

2928 [150–153]

νs(CH3)
2900-

2907 [146–148]

2955-

3044 [154–156]

2890-

2928 [150–153]

νas(CH2)
2900-2925

[142,143,157]

νs(CH2) 2850 [157]

ν(CH)
2950-

2975 [144,158]

δas(CH3)
1430-1450

[142,159,160]

1420-

1435 [154,156]

1400-

1420 [150,153]

δs(CH3)

1196-

1217 [146,147,

149,159,160]

1180-

1285 [154–156]

1329-1350

[150–153,161]

δ(CH2) 1340 [142,143]

ν(C-C)
900-1180

[144,151–153]

ρ(CH3)
650-

742 [142,146]

882-

1040 [154–156]
923 [162]

ρ(CH2)
860-

865 [142,143]

δ(CH)
770-805

[144,158,162]

δ(Al-

CH3
t)a

567 [146]

ν(M-C) 495-520 [156] 371 [151]
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(a) Pd(111) (b) Pt(111)

Figure 4.8. Al and C coverages after exposure of (a) Pd(111) and (b)
Pt(111) surfaces to 2.5 L TMA at room temperature and annealing
up to 623 K.

characteristic peaks of ethylidyne (≡CCH3,ads). The peak at 1210 cm-1, also observed

on Pt(111), was assigned to symmetric deformation of CH3 adsorbed on Pd(111),

δs(CH3). The high frequency region shows a broad, unresolved feature centered at

2940 cm-1 which comprises stretching vibrations of all C-H containing species. The

individual stretching vibration of CH3 was not resolved. The presence of CH2,ads was

supported by a weak unresolved shoulder at 3035 cm-1. The HREELS region below

1000 cm-1 is crowded, and the presence of δ(CH) at about 700 cm-1 was not confirmed.

Additionally, a weak peak at 1167 cm-1 was detected, which is a symmetric defor-

mation δas(CH3) of Al-(CH3)x. Ethylidyne signatures overlapped with other peaks;

however, judging from the peak intensities, the amount of the Al-(CH3)x species on

Pd(111) was much lower than on Pt(111).

A broad peak centered at about 1780 cm-1 was assigned to COads which originated

from residual CO. The presence of COads indicates that the surface had adsorption

sites for CO after adsorption/decomposition of 6 L TMA. This was not the case for

Pt(111). Also, the CO stretching frequency shifted toward lower energy compared to

CO adsorption on a clean Pd(111) surface, where the CO stretching band was at 1928
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(a) Pd(111)

(b) Pt(111)

Figure 4.9. HREELS spectra obtained from (a) Pd(111) and (b)
Pt(111) following 6 L TMA exposure at 300 K and subsequent an-
nealing at 373 and 473 K in UHV.
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Figure 4.10. HREELS spectrum for room temperature saturation CO
adsorption on clean Pd(111).

cm-1 for saturation CO coverage at 300 K. This HREELS spectrum is provided in

Figure 4.10. The surface hydrocarbon groups may decrease the C-O bonding strength

and elongate the CO bond length through the back-donation of metal electrons to

2π* orbital of CO. [163] This would result in a shift of CO stretching toward lower

frequencies. However, detailed discussion of CO adsorption is beyond the scope of

this dissertation.

Heating at 373 K resulted in the disappearance of all ethylidyne peaks. Peaks

at 2890 and 2964 cm-1, assigned to νs(CH3) and νas(CH3) of ethylidyne, were not

observed. Ethylidyne is reported to be stable up to 300 K on the Pd(111) surface.
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[150, 151, 164] No HREELS peaks of the Al-(CH3)x species were detected following

heating at 373 K, whereas the symmetric deformation of CH3 adsorbed on Pd(111)

at 1210 cm-1 did not change in intensity. The weak peak at 2906 cm-1 might be a

feature of νas(CH2) for CH2,ads or CHads; however, δ(CH) at ca. 700 cm-1 was not

resolved.

No energy loss peaks were observed above 1000 cm-1 after heating at 473 K.

Based on the XPS data, carbon coverage was ca. 0.1 ML at this temperature (see

Figure 4.8). The HREELS region below 1000 cm-1 was similar to the spectrum from

TMA/Pt(111) at 473 K. No straightforward assignments were possible.

To summarize, HREELS data showed that TMA adsorption on Pt(111) and

Pd(111) resulted in different compositions of the adsorbed layers. Al-(CH3)x species

dominated on Pt(111). Adsorbed CHx species (x=1, 2, 3) were detected on both

Pt(111) and Pd(111). Ethylidyne was only observed on Pd(111). The appearance of

ethylidyne proves that Pd(111) can recombine hydrocarbon fragments. Some frac-

tion of the remaining C1 species dehydrogenates completely to atomic carbon, and

hydrogen produced is consumed for hydrogenation of other C1 species. CH3 sym-

metric bending modes for bridging CH3 were not observed in HREELS data at ca.

1255 cm-1 on either metal at any temperature for spectra collected in the specular

direction. [165] Given the instability of the intact TMA monomer on Pd and Pt(111)

reported previously, [122] presence of the TMA dimer on either surface is unlikely.

4.4.3 Scanning Tunneling Microscopy

Morphology of the Pd(111) and Pt(111) surfaces was studied by STM after ex-

posure to 2.5 L TMA at 293 K and after subsequent annealing to 423, 523, and

623 K in UHV. Low TMA exposure was chosen for this presentation because higher

TMA exposures (> 20 L) resulted in a roughened surface, which impaired STM. STM

images of clean Pt(111) and Pd(111) surfaces (shown in Figure 4.11) demonstrated

atomically flat terraces separated by monatomic steps with heights of 2.4 and 2.3 Å,
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respectively. Following exposure of Pd(111) to 2.5 L TMA at 293 K, two additional

distinct features were observed: (i) fractal islands that look like Norwegian fjords

covering steps that appear to grow out of a step onto the lower plane, and (ii) fractal

islands covering terraces. (Figure 4.12a). Terraces and monatomic steps were still

distinguishable. The average height of the terrace fractal islands was 2.0 ± 0.3 Å,

measured as the bimodal peak histogram of terrace pixel heights (Figure 4.12b). The

bimodal distribution confirms the uniform height and flatness of the islands. The

fractal features on monatomic steps had a height of 2.0 ± 0.3 Å, the same as the

steps. Therefore, the fractal islands and terraces likely had the same composition.

According to the XPS and HREELS data, TMA dissociated on Pd(111) to aluminum

and hydrocarbon species. The positive Pd 3d BE shift was evidence of Pd-Al alloy

formation. We conclude that the fractal islands are composed of a Pd-Al alloy. As

reported by Batabyal et al., [166] the shape of the two dimensional fractal islands

can be quantified in terms of fractal dimension, dp, obtained from the relationship

between perimeter, P , and area, S, as lnP = dp
2

lnS. The fractal dimension was

dp = 1.68± 0.01 after adsorption of 2.5 L TMA on Pd(111) at 293 K (Figure 4.12c).

Figure 4.13 shows STM images obtained after exposure of Pd(111) to 2.5 L TMA

at 293 K and sequential annealing at 423, 523 and 623 K in UHV. The perimeter

fractal dimensions and the height distribution histograms were obtained in the same

manner as in Figure 4.12 for each temperature; plots are provided in Figure 4.14.

Heating at 423 K decreased the fractal dimension to 1.35 ± 0.03. Further heating

at 523 K did not alter the dp value (approximately 1.38 ± 0.02). After annealing at

623 K, dp decreased to 1.2 ± 0.04. Island height remained constant (ca. 2 Å) after

annealing at 300, 423 and 623 K (Figure 4.14). Small pinholes on the surface of

Pd-Al islands were noticeable after annealing at 623 K as highlighted by black arrows

in Figure 4.13. These pinholes may have formed from the diffusion of Al atoms into

the palladium bulk, a hypothesis consistent with the XPS data which show that the

aluminum coverage decreased upon annealing (shown in Figures 4.6 and 4.8).
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(a) Pd(111)

(b) Pt(111)

Figure 4.11. STM images of (a) clean Pd(111) (It = 0.5 nA, Ut = 0.5
V) and (b) Pt(111) (It = 0.3 nA, Ut = 0.5 V) surfaces. Step heights
across the profiles are 0.23 nm and 0.24 nm, respectively, for Pd(111)
and Pt(111).

Figure 4.15 shows STM images of Pt(111) following 2.5 L TMA exposure at 300

K and consecutive annealing to 423, 523 and 623 K. Unlike for Pd(111), no fractal

shaped features were detected on the Pt(111) surface. Bright, elongated spots with
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Figure 4.12. (a) STM images of Pd-Al fractal islands on the Pd(111)
surface exposed to 2.5 L TMA at 293 K. Imaging conditions: 200 nm
× 200 nm, It = 0.5 nA, Ut= 0.5 V. (b) Histogram of pixel height on
the terraces. (c) Logarithmic plot of the perimeter (P ) vs. area (S)
relationship of Pd-Al islands.

apparent height of 2.2± 0.4 Å were homogeneously distributed on the surface. Based

on HREELS data, these bright features were assigned to Al-(CH3)x species.

After annealing at 423 K in UHV, bright spots appeared, which can be readily seen

in the inset of Figure 4.15. The height distribution had one maximum at about 2.3

Å and a broad tail up to 5 Å (Figure 4.16). According to XPS and HREELS data, at

this temperature Al-(CH3)x species can dissociate to CHx,ads and aluminum. Likely,

these aluminum and/or carbon atoms agglomerated into clusters, which appear in

STM images as features of mixed height. Further annealing to 523 K and 623 K

narrowed the height distributions of these features to 1.8 ± 0.4 Å and 1.6 ± 0.6 Å,

respectively. At these temperatures only aluminum and carbon were observed by
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Figure 4.13. STM images of Pd-Al islands after annealing at 423, 523
and 623 K for 15 min. The Pd-Al islands were obtained by exposing
Pd(111) to 2.5 L TMA at 293 K. Imaging conditions: 200 nm × 200
nm, It= 0.5 nA, Ut = 0.5 V.

XPS. This narrowing of the height distribution and shifting to shorter heights likely

corresponds to the flattening of aluminum and/or carbon clusters, consistent with

the observation that hydrocarbons on Pt(111) form carbon particles and eventually

flat graphite sheets upon heating (see for instance Ref. [167]).

4.4.4 DFT

DFT modeling was performed to better understand the mechanism of TMA in-

teraction with Pd(111) and Pt(111) surfaces. Previous calculations showed that MA

is the most favorable TMA decomposition product kinetically and thermodynami-

cally on both Pd(111) and Pt(111); therefore, MA was expected to be the domi-

nant species. [85, 122] Potential energy surfaces for further dissociation of MA on

clean Pt(111) and Pd(111) terraces, and clean and CH3/CCH3 covered Pd(211) and

Pt(211) surfaces are shown in Figure 4.17. The calculated barriers for hollow-site

MA dissociation to Al and CH3 are 1.68 and 1.72 eV on clean Pd(111) and Pt(111),

respectively.
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(a)

(b)

Figure 4.14. (a) Room temperature STM images of 2D Pd-Al islands
after annealing the Pd(111) surface to 423, 523, and 623 K for 15 min.
Height histogram of pixels in STM images on flat terraces are shown
below each image. (b) Plots of the perimeter (P ) vs. area (S) at each
temperature used for calculating the dp value.

The ability of defect sites, such as step edges, to dissociate MA was also investi-

gated. On clean Pd(211), the calculated barrier is 0.52 eV for the dissociation of the

four-fold-site MA to four-fold-site Al and top-site CH3 at a step, which is lower by
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Figure 4.15. STM images (200 nm × 200 nm, insets: 50 nm × 50
nm) obtained after exposing the Pt(111) surface to 2.5 L of TMA at
300 K and subsequent annealing of the sample at 423 K, 523 K and
623 K for 15 min. The tunneling current was 0.3–0.7 nA; the bias was
+0.5–+0.8 V.

1.16 eV than the corresponding value on Pd(111) terraces. This lower barrier results

from stronger interaction between the abstracted CH3 and Pd in the transition state

(TS) on Pd(211) than on Pd(111). This conclusion is further supported by the shorter
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(a)

(b)

Figure 4.16. (a) Particle height distributions observed at 300 K and
after annealing at the indicated temperatures. (b) Average particle
height versus temperature.
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Figure 4.17. Potential energy surfaces of MA dissociation on clean
and CH3/CCH3 covered (111) terraces and (211) steps for Pd and Pt.
Insets are the initial and final states. The blue, pink, black, and white
spheres represent Pd, Al, C, and H atoms, respectively.

bond distance of 2.10 Å for C-Pd on Pd(211) compared to 2.16 Å on Pd(111) in its

TS. Both of these results point to the conclusion that steps facilitate MA dissocia-

tion. Carbon species adsorbed on a Pd step at moderate coverages have only a small

influence on MA dissociation. This is because the steric repulsion between existing

carbon species and the abstracted CH3 is relatively small on the unoccupied stepped

surface. When the step was covered by 1/3 ML CH3 or CCH3, the calculated barriers

were 0.59 and 0.66 eV, respectively, which are at most 0.14 eV higher compared to

the same values on the clean surface.

Figure 4.17 also shows results for MA dissociation on clean Pt(211) and on the

same surface covered with 1/3 ML CH3 or CCH3. Although ethylidyne was detected

experimentally only on Pd, its impact on MA dissociation on Pt(211) was investigated

for comparison. The calculated barrier is 0.54 eV on clean Pt(211), and the barriers

are 0.63 and 0.69 eV on Pt(211) covered with CH3 and CCH3, respectively, which are

close to the values for clean Pt(211) surface.
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Figure 4.18. Potential energy of vacancy formation on palladium and
platinum surfaces. Dashed yellow line is the position of step and
the white circle is the vacancy formed. The blue and green spheres
represent Pd/Pt atoms and Pd/Pt adatoms, respectively.

The above calculations indicate that the MA dissociation is kinetically more fa-

vorable on clean and hydrocarbon covered (up to 1/3 ML CH3 or CCH3) Pt and Pd

steps than on terraces of either metal.

Alloy formation was modeled as a two-step process: first, a surface metal vacancy

is formed, followed by an Al atom filling the vacancy. Figure 4.18 shows that removing

an atom from the (111) terrace to form an adatom and a vacancy has barriers of 2.31

and 2.44 eV for Pd and Pt, respectively. However, this process is easier on stepped

surfaces. On Pd(211), the calculated barrier is 1.16 eV, lower than on Pd(111) due

to the lower coordination number of a Pd atom on a stepped surface. Moreover,

the four-fold site Al adatom resulting from MA dissociation can diffuse to a step Pd

vacancy with an energy barrier of only 0.02 eV. Therefore, Pd-Al alloying can occur

with relatively favorable energetics, at the relatively high temperatures used in our

experiments, at the step. Similarly, the calculated barrier of 1.62 eV for Pt vacancy

formation on Pt(211) is lower by 0.82 eV than on Pt(111), but higher by 0.46 eV than
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on Pd(211). Therefore, vacancy formation on steps is more energetically favorable on

Pd than on Pt.

4.5 Discussion

Chemical and morphological differences in the resulting surfaces were observed

following adsorption of TMA on clean Pd(111) and Pt(111). Proposed reaction mech-

anisms for each surface are discussed below.

4.5.1 Pd(111)

The TMA adsorption and dissociation mechanism on Pd(111) is presented in

Figure 4.19. At 300 K, TMA adsorbs on (111) terraces dissociatively resulting in

adsorbed methylaluminum, as predicted by DFT calculations, and methyl groups

(Figure 4.19b). CH3,ads was unambiguously identified by HREELS, however, the

feature associated with Al-(CH3)x at 1167 cm-1 was very weak, and XPS revealed

the formation of a Pd-Al alloy, suggesting that Al was completely demethylated.

Given that the DFT-calculated dissociation barrier of MA on Pd steps is lower than

on Pd(111) terraces by 1.16 eV (Figure 4.17), we conclude that most MA diffuses

to steps and dissociates immediately upon adsorption, hence, MA was not detected

experimentally as a major product (Figure 4.19b). Rejected CH3,ads groups form

ethylidyne (CCH3,ads) and dehydrogenate to other CHx,ads species (Figure 4.19f).

These co-adsorbed hydrocarbons do not significantly increase the barrier for MA

dissociation on steps relative to dissociation on clean steps. Furthermore, the major

product ethylidyne is mobile at room temperature, [167] so it should not hinder MA

surface diffusion.

Al atoms from MA dissociation on Pd steps either accumulate on the step via an

exchange mechanism (Figure 4.18) resulting in a surface Pd-Al alloy along steps (Fig-

ure 4.19c) or diffuse across the surface until meeting another palladium or aluminum

atom, creating a nucleus for a fractal island as observed in STM images (Figure 4.12).
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Figure 4.19. Schematic of TMA adsorption and dissociation on the Pd(111) surface.

Pd atoms displaced via the exchange mechanism also travel across the surface un-

til agglomerating, forming irregularly shaped islands (Figure 4.19f). If the traveling

atom (Pd or Al) collides with a step, then the Pd-Al alloy grows from the step. Newly

created sites along the boundaries of fractal features serve as new dissociation sites

for MA. The fractal dimension of 1.7 measured from STM images corresponds to a

two-dimensional diffusion-limited-aggregation (DLA) growth mechanism [168,169] in

which atoms diffuse randomly on a two dimensional lattice and attach irreversibly

to perimeters of growing aggregates forming irregular, branched fractal islands. The

extended DLA mechanism allows atoms to relax locally after hitting an island by
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finding an energetically favorable site. Long-range diffusion along the island bound-

ary is inhibited, and this results in the formation of highly fractal structures. This

mechanism reasonably explains the fractal islands on terraces and fjord-like growths

on the steps (Figure 4.12). Heating lifts the diffusion limitation along island bound-

aries, and the fractal islands compact. For a compact, two-dimensional object dp = 1.

The decrease of dp with increasing temperature (Figure 4.13) signifies the diffusion

of under-coordinated Pd and Al atoms along island boundaries, forming islands with

a more compact shape at 623 K. A similar transition from fractal to compact island

shape by annealing was observed for the Ag/Pt(111) system. [170] At room tempera-

ture, the Pd-Al alloy concentrates on the surface. Upon heating, aluminum dissolves

in the palladium bulk. As a result, the surface concentration of aluminum decreases.

The pinholes detected by STM are evidence of aluminum diffusion in the bulk. The

main cause of stopping TMA adsorption and dissociation, either the accumulating

carbonaceous species or the Pd-Al alloy, is unclear.

The fate of carbonaceous species on Pd deserves separate discussion. Adsorbed hy-

drogen atoms and ethylidyne were produced from dehydrogenation of CH3,ads species.

Hydrogen hydrogenates carbonaceous species, resulting in product desorption (Fig-

ure 4.19g). This is consistent with very low carbon coverage that was observed dur-

ing the early stages of TMA adsorption at 300 and 473 K (Figure 4.7) and litera-

ture reports of CH4 (methane) and C2H6 (ethane) desorption during exposure of Pd

nanoparticles to TMA. [123, 150, 171] Another route for carbon disappearance could

be dissolution of carbon in palladium bulk (Figure 4.19h). [80,139]

4.5.2 Pt(111)

Figure 4.20 shows the TMA adsorption and dissociation mechanisms on Pt(111).

At 300 K, TMA dissociates to MA on Pt(111) terraces, as predicted by DFT. HREELS

confirmed the presence of Al-(CH3)x species. Further dissociation of MA on Pt step

sties was predicted to be approximately as kinetically favorable as on Pd step sites
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Figure 4.20. Schematic of TMA adsorption and dissociation on the Pt(111) surface.

(Figure 4.17), however MA dissociation at room temperature was not observed ex-

perimentally on Pt(111). We conclude that MA dissociation on Pd(111) proceeds

due to the relatively low coverage of the carbonaceous species, enabling MA diffusion

to steps. Carbon coverage on Pt(111) is high relative to Pd(111) (Figure 4.7), and

we speculate that the absence of MA dissociation on Pt(111) is due to blockage of

step sites and/or hindrance of MA diffusion across the surface toward the step. The

diffusion limitation may explain the appearance of the isolated MA species on Pt(111)

which were not observed on Pd(111). Indeed, carbon coverage was about 0.7 ML on

Pt(111) after 2.5 L TMA exposure at 300 K, compared to 0.18 ML on the Pd(111)

surface at the same dosing conditions (Figure 4.8). DFT calculations showed that

the energy barrier for the formation of a platinum atom vacancy on Pt(211) is 0.46

eV higher than on Pd(211) (Figure 4.18). Therefore, it is less likely that a Pt atom

would be released from a step site to form a nucleus for a fractal island.

Heating at 373 K resulted in MA dissociation, and most methyl ligands transferred

from Al to the Pt(111) surface. The overall carbon coverage was relatively high

and did not change on Pt(111) during annealing to 623 K (Figure 4.8). HREELS

data showed that surface methyl groups dehydrogenated, forming methylene and

methine groups at 375 K (Figure 4.20c). All carbonaceous species lost hydrogen at

473 K (Figure 4.20d). Hydrogen atoms recombined and desorbed. Carbon likely

formed graphite-like patches and clusters (Figure 4.20d). No Pt-Al alloy formation
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was detected after MA decomposition, perhaps due to the presence of graphite-like

carbon. The higher barrier for vacancy formation at steps on Pt(111) is another

factor that might prevent Pt-Al alloy formation.

4.5.3 TMA Adsorption on Metal Surfaces

Hydrogenation, dehydrogenation, and removal of carbonaceous species are key

factors determining TMA chemistry on Pt(111) and Pd(111). Saturation aluminum

coverage is higher after TMA adsorption on Pd(111) than on Pt(111). Conversely,

the carbon to aluminum ratio is two times higher on Pt(111), blocking the Pt(111)

surface. At low TMA exposures (< 50 L) at 473 K, the Pd(111) surface is very

efficient at hydrogenating and removing carbonaceous species. At the same condi-

tions, the Pt(111) surface is covered with carbonaceous species which block adsorp-

tion/dissociation sites for TMA. The self-cleaning properties of the Pd(111) surface

result in a nominal aluminum coverage that is higher than on Pt(111).

During an ideal ALD process, an organometallic precursor anchors to the surface

through a ligand exchange reaction with surface functional groups. The amount of

an organometallic precursor adsorbed on the surface is controlled by the amount of

functional groups present. As demonstrated above, no functional groups were needed

for TMA to react with Pt(111) and Pd(111) substrates, which are catalytically ac-

tive. In general, the catalytic ability of a substrate determines adsorption chemistry

of ALD precursors. Zhou et al. [165] found that TMA adsorbs as a monomer at

110 K on Ru(001). Upon heating, the monomer decomposes to dimethylaluminum

(DMA) between 175-260 K. Above 420 K, H2 and Al(CH3)2H are evolved and DMA

decomposes further to MA. On Ni(111), Al nucleates starting around 300 K, [172]

and hydrogen and methane are gaseous products. Both Ru and Ni are able to hydro-

genate/dehydrogenate TMA to some extent. The type of ALD precursor also plays a

role. On Pt(111), Wenger et al. [173] found that for adsorption of dimethylmercury

between 200-300 K, methylmercury was formed which persisted until 350 K. At 400
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K, Hg-CH3 dissociated and ethylidyne was observed, however, as we have shown,

ethylidyne was not formed from TMA adsorption on Pt(111). Perhaps the second

metal introduced by ALD also plays a role in hydrogenation or C-C chemistry. The

catalytic abilities of the metals present, then, determine much of the surface chem-

istry during the first ALD half cycle, which likely impacts the quality of the interfacial

ALD film. Carbon-containing ligands can be removed from surfaces such as Pt(111)

and Pd(111), given the right choice of ALD processing conditions. [122]

4.6 Conclusion

The interaction of TMA with Pt(111) and Pd(111) surfaces was studied. Aluminum-

containing species were observed. On Pd(111) at 300 K, TMA dissociates to Al,

ethylidyne, and CHx,ads (x=1, 2, or 3) groups. DFT predicted that TMA dissociates

on (111) terraces to form MA, and MA subsequently dissociates to aluminum and

methyl groups on steps. Al atoms formed at a step or Pd atoms ejected from a step

after exchanging with Al travel across the surface until encountering another Al or

Pd atom, creating a nucleus for Pd-Al island formation. These irregularly shaped

islands also act as steps for MA dissociation. Upon heating, fractal islands become

more compact and aluminum diffuses into the palladium bulk. On Pt(111), TMA

dissociates to MA. Unlike on Pd(111), Pt(111) is unable to efficiently hydrogenate

and remove carbon species, which leads to higher carbon coverage at the same dosing

conditions. Carbon atoms and clusters hinder surface diffusion of MA molecules and

block MA dissociation sites at steps, resulting in more uniform coverage of Pt(111)

by MA molecules. In contrast to Pd(111), Al does not alloy with the Pt(111) surface.

On both surfaces, significant coverage of aluminum was achieved without any pre-

adsorbed functional groups. Differences in the interaction of TMA with each surface

arise due to the different hydrogenation and dehydrogenation properties of the Pt and

Pd. In general, precursor-substrate interaction greatly affects morphology and chem-
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ical composition of the adlayer, ultimately affecting the chemistry and morphology of

an ultra-thin ALD film.
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Table 4.2.
Major HREELS peaks observed from the Pt(111) surface following 6
L TMA exposure at 300 K and subsequent annealing at 373 and 473
K in UHV. Abbreviations: w, weak; s, strong; sh, shoulder; br, broad.
NA: not assigned.

Energy Loss / cm-1 Vibrational Mode Assignment

TMA Adsorption at 300 K

2950s νas(CH3) Al-(CH3)x/M-CH3

2906sh νs(CH3) Al-(CH3)x

1460br δas(CH3) Al-(CH3)x

1210s δs(CH3) M-CH3

1176s δs(CH3) Al-(CH3)x

750sh ρ(CH3) Al-(CH3)x

540s δ(Al-CH3) Al-(CH3)x

Annealing in UHV at 373 K

3030s ν(CH2) M-CH2

2950s νas(CH3) Al-(CH3)x/M-CH3

2906sh νs(CH3/CH2) Al-(CH3)x/M-CH3

1980w ν(C-O) COads

1460br δas(CH3) Al-(CH3)x

1380w δ(CH2) M-CH2

1210s δs(CH3) M-CH3

1176s δs(CH3) Al-(CH3)x

815sh ρ(CH3) M-CH3

808sh δ(CH) M-CH

750sh ρ(CH3) Al-(CH3)x

Annealing in UHV at 473 K

1980w ν(C-O) COads

660s NA

550sh NA
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Table 4.3.
Major HREELS peaks observed from Pd(111) following 6 L TMA
exposure at 300 K and subsequent annealing to 373 and 473 K in
UHV. Abbreviations: vw, very weak; w, weak; s, strong; sh, shoulder;
br, broad; NA, not assigned.

Energy Loss / cm-1 Vibrational Mode Assignment

TMA Adsorption at 300 K

2964br νs(CH3) M-CH3/M≡CCH3

2890sh νas(CH3) M≡CCH3

1780br ν(C-O) COads

1140br δas(CH3) M≡CCH3

1328s δs(CH3) M≡CCH3

1210s δs(CH3) M-CH3

1167vw δs(CH3) Al-(CH3)x

1090w ρ(CH3) M≡CCH3

1012br ν(C-C) M≡CCH3

Annealing in UHV at 373 K

3015br νas(CH3) M-CH3

2906w νas(CH3) M-CH2/M-CH

1428vw δas(CH3) M-CH3

1210s δs(CH3) M-CH3

Annealing in UHV at 473 K

890s NA

636br NA

545sh NA
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5. REACTION OF TRIMETHYLALUMINUM WITH WATER ON PT(111) AND

PD(111) FROM 10-5 TO 10-1 MILLIBAR

5.1 Abstract

The reaction between adsorbed trimethylaluminum (TMA) and water was stud-

ied on Pt(111) and Pd(111) surfaces. Upon exposure to TMA at approximately 10−5

mbar, C and Al species appeared on both surfaces, as observed by X-ray photoelec-

tron spectroscopy (XPS). On both surfaces, the adsorbed Al oxidation state observed

by XPS was closest to metallic. Density functional theory (DFT) calculations suggest

that decomposition to methyl aluminum (Al-CH3; “MMA”) or atomic Al is thermo-

dynamically favorable. The formation of a Pd-Al alloy was observed on Pd(111), but

Pt-Al alloy formation was not observed on Pt(111). Following TMA adsorption, each

surface was exposed to water vapor at 400°C either at a pressure of 7 × 10−6 mbar

(UHV-XPS) or at 0.1 mbar (in situ XPS). The substrate and water dosing condi-

tions determined the ability of each surface to remove residual carbon on Pt(111),

carbon from the TMA precursor was removed from Pt(111) during 0.1 mbar water

exposure at 400°C, whereas carbon was not removed after the 7 × 10−6 mbar water

exposure. On Pd(111), however, carbon-containing fragments of TMA were removed

at both water pressures. X-ray photoelectron spectroscopy also revealed another ef-

fect of water dosing conditions: the as-deposited Al was only fully oxidized to Al2O3

during water exposure at 0.1 mbar, whereas mixed hydroxide-containing and metallic

Al species persisted after exposure to water at 7× 10−6 mbar on both surfaces.
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5.2 Introduction

Atomic layer deposition (ALD) is a self-limiting technique for deposition of mate-

rial onto solid substrates by sequential dosing cycles of gaseous precursors. [31, 174–

176] ALD has been used for manufacturing of thin film electroluminescent flat-panel

displays since the technology was developed in the 1970s. [174,177] With growing de-

mand for scaling down of microelectronic devices, ALD became a suitable technique

for producing very thin, conformal films with thickness and film composition control

at the atomic level. Recently, commercial ALD techniques have been developed for

deposition of different high-k dielectric gate oxides, which form an insulating layer

between the gate and channel in metal-oxide-semiconductor field-effect transistors

(MOSFETs), minimizing leakage current. [34]

Applications of ALD have spread beyond microelectronics. Both oxides and

metallic nanoparticles have been synthesized by ALD for heterogeneous catalysts.

[36,41,84,178–180]. ALD Al2O3 overcoats grown on supported Pd and Cu nanoparti-

cles by the trimethylaluminum (TMA) and water ALD system protect these nanopar-

ticles from coking and sintering during methanol decomposition and oxidative dehy-

drogenation of ethane while preserving their catalytic activity. [36–38]

Fundamental mechanistic understanding of the first ALD cycle is crucial for both

microelectronics and catalysis. To this end, our motivation for this study is two-

fold: first, to understand the interaction of ALD precursors with transition metal

surfaces during the first ALD cycle, and second, to develop knowledge that might

ultimately be used to synthesize an inverse model catalyst on which oxide clusters

are supported on the surface of a metal single crystal for use in future catalytic studies.

Inverse catalysts allow for investigation of the influence of the metal-oxide interface

on reaction kinetics, which is hypothesized to be the active site for several catalytic

reactions. [181]

ALD is typically done at millibar pressure in flow reactors on the industrial and

laboratory scale. [121] This pressure limits the number of applicable in situ sur-

face characterization techniques which yield chemical information and are able to
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follow the initial growth steps. Though the TMA-water ALD system has been stud-

ied in-depth under realistic ALD conditions [148,182–184] and in ultra-high vacuum

(UHV) [148] conditions on various substrates, few in situ techniques have been used

for characterization of Al2O3 films grown by this method. Studying the TMA-water

deposition mechanism using surface sensitive characterization techniques carried out

in UHV (< 10−9 mbar), in turn, will result in better understanding of this process,

and such studies are an important focus of the present work. However, because the

results of experiments performed in UHV can differ substantially from experiments

performed at higher pressures, as has been hypothesized for the TMA-water ALD sys-

tem, [174,185,186] we have also complemented traditional UHV X-ray Photoelectron

Spectroscopy (UHV-XPS) with synchrotron-based in situ X-ray photoelectron spec-

troscopy in 0.1 mbar H2O, along with density functional theory modeling, in order

to better understand the first cycle of the TMA-water ALD system on Pt(111) and

Pd(111). UHV-XPS operates in vacuum at pressures < 10−7 mbar, while in situ XPS

can be operated at mbar pressures. The combination of the two techniques allows

us both to obtain fundamental information about TMA and water deposition under

UHV conditions and to follow the reaction of water with deposited TMA in situ un-

der realistic ALD conditions. Below, we report on observed differences between the

pressure regimes on both Pt(111) and Pd(111) substrates.

5.3 Experimental and Theoretical Methods

Samples used were Pt(111) and Pd(111) single crystals with orientation accuracy

< 0.1°. (MaTecK GmbH and Princeton Scientific, respectively). Two experimental

XPS apparatuses were used: the first uses synchrotron radiation and is capable of

operating at pressures up to 1 mbar, and the second is a standard laboratory XPS

operated in UHV (< 10−9 mbar). The primary difference between the experiments

carried out in each apparatus was the water pressure during the second half of the

ALD cycle. In both experiments, the single crystals were prepared via multiple cycles
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of Ar+ sputtering, annealing in 0.1 mbar O2 at 650°C, and annealing in vacuum at

650°C. Sample cleanliness was checked with XPS.

5.3.1 Synchrotron-Based in Situ XPS Experiments

In situ XPS measurements were performed at the ISISS (Innovative Station for In

Situ Spectroscopy) beamline at the BESSY II synchrotron in Berlin, Germany. The

experimental apparatus consisted of a load lock and in situ cell connected to the XPS

spectrometer via differential pumping stages. The experimental apparatus has been

described in the literature extensively. [187] Samples were heated in the in situ cell

via a near-infrared semiconductor laser (λ = 808 nm) from the rear. Temperature

was measured by a K-type (chromel-alumel) thermocouple spot welded to the sides

of the crystals.

TMA (Strem Chemicals, Inc., 98%) contained in a stainless steel Swagelok mini-

cylinder was dosed to the samples in the load lock through a leak valve following

several cycles of purification by freeze-pump-thaw. Dosing lines were purged by sev-

eral cycles of TMA dosing followed by pumping prior to dosing to the samples. In

order to avoid deposition of aluminum on the X-ray entrance window, TMA was

dosed in a separate chamber while the samples were hot. Sample temperature was

not controlled in this chamber, and the estimated TMA adsorption temperature was

100–200°C. For each sample, TMA was dosed at 2 × 10−5 mbar at a total exposure

exceeding saturation (saturation exposure was determined to be 500-1000 L, mea-

sured by UHV-XPS). Samples were then transferred between the deposition chamber

and the in situ cell by means of a transfer arm without exposure to air. The sample

was exposed to deionized water vapor in the in situ cell at 0.1 mbar over the tem-

perature range of 25°C to 400°C. The water was degassed and purified by multiple

freeze-pump-thaw cycles.

Photoemission spectra were collected before and after TMA adsorption, and dur-

ing water dosing in the in situ cell over the temperature range 25°C to 400°C. Photon
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energies were chosen so that the kinetic energy of ejected photoelectrons remained

constant at approximately 120 eV for different core-level photoemission peaks in order

to extract information from the same depth. The low kinetic energy of the photoelec-

trons also provides an analysis depth of 0.9 nm, less than the analysis depth for the

UHV-XPS experiments described below. Photoelectrons were collected in the normal

direction to the surface at constant pass energy of 10 eV. Binding energies were refer-

enced to the Fermi edge, which was measured each time the monochromator moved

to a new position (whenever the incident photon energy was changed). Photoemis-

sion peak intensities were corrected for the photon flux at a given photon energy.

Since the BESSY II synchrotron operates in the top-off mode (constant ring current),

no correction for the ring current was required. Since all photoemission peaks were

collected approximately at the equal kinetic energy (120 eV) of photoelectrons, the

attenuation through the gas phase was the same for all core levels and thus cancels

out in coverage calculations.

5.3.2 Ultra-High Vacuum XPS Experiments

An Omicron Surface Analysis Cluster consisting of a UHV preparation chamber

and µ-metal XPS chamber with base pressures of 1× 10−9 mbar and 5× 10−11 mbar,

respectively, was used for the UHV ALD studies. The preparation chamber was

equipped with a mass spectrometer, an Ar+ sputtering gun, a gas manifold system,

and resistive sample heating. The XPS chamber was equipped with UHV-XPS, Low

Energy Electron Diffraction (LEED), High Resolution Electron Energy Loss Spec-

troscopy (HREELS), Scanning Tunneling Microscopy (STM), and resistive sample

heating.

Exposures to ALD precursors were performed in the preparation chamber. TMA

(97%, Sigma Aldrich) was contained in a stainless steel mini cylinder and dosed to the

preparation chamber via a leak valve. Prior to dosing TMA, several cycles of freeze-

pump-thaw were performed for purification. Dosing lines were heated overnight at
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150°C, and the lines were filled with TMA and pumped several times before dosing.

TMA was dosed at 7 × 10−6 mbar at a sample temperature of 100°C for a total

exposure of 2000 L. After dosing TMA, the sample was transferred to the analysis

chamber for XPS analysis, during which time the empty preparation chamber was

exposed to approximately 2000 L of water (“Birck Nanograde Water”, as SEMI E1.2

with the Total Organic Carbon (TOC) reduced from 1 ppb to .25 ppb) in order to

passivate residual TMA on chamber walls. Upon transferring the sample back to the

preparation chamber, water was dosed under the same conditions as TMA through

another leak valve. During TMA and water dosing, ionization gauges were left on for

pressure measurement. It was verified by XPS that these gauges did not affect the

state of the deposited material.

XPS data were acquired using a non-monochromatic Mg Kα X-ray source (hν =

1253.6 eV) at 150 W. High resolution regions were recorded at the constant pass

energy of 20 eV. The resolution of the instrument, which was measured as the

full-width at half-maximum (fwhm) of the Pd 3d5/2 and Pt 4f7/2 peaks of clean

Pd(111)/Pt(111) crystals, was approximately 1.2 eV. The energy scale calibration

was carried out by setting the Au 4f7/2 peak to 84.0 eV. Photoelectrons were col-

lected at a 45°photoemission angle with respect to the surface normal.

5.3.3 Analysis of XPS Data

All spectra were analyzed using the CasaXPS software program, version 2.3.16Pre-

rel 1.4 (Casa Software Ltd.). A Shirley or linear background was subtracted from

each region. Metallic Pt, Pd, and Al components, along with graphitic/carbidic C

components, were fit using an asymmetric Gaussian/Lorentzian line shape with tail

dampening (CasaXPS Lineshape = LF(1,1.8,30,90)). Nonmetallic species of C and

Al (Al2O3 and Al oxyhydroxide) were fit with symmetric Gaussian/Lorentzian line

shapes (CasaXPS Line shape = GL(x) or SGL(x), x = 10 to 30). Doublets arising

from spin-orbit coupling in the Pt 4f (4f7/2 and 4f5/2), Pd 3d (3d5/2 and 3d3/2), and
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Al 2p (2p3/2 and 2p1/2) regions were subject to spacing constraints of 3.33, 5.26, and

0.43 eV, respectively. [68] Area ratios for doublets arising from spin-orbit coupling

were constrained, and fwhms of these spin-orbit coupling doublets were constrained

to be equal. Synthetic component curve fittings were propagated through all spectra

in a series for consistency which sometimes resulted in curve fitting artefacts, e. g.,

the appearance of a small Pd-Al alloy component in the Pd 3d core level region for

clean Pd(111).

High-resolution core-level Pt 4f/Al 2p, Al 2s, Pd 3d, and C 1s regions are shown

in Figures 5.1–5.9. For the Pt 4f/Al 2p, Al 2s, and Pd 3d core-level regions, arbitrary

intensity data on the y-axes have been plotted against binding energies such that the

maximum peak intensities for each treatment are approximately the same. For the C

1s core-level regions, raw intensities are shown so that qualitative changes in carbon

amount can be seen. For quantitative information, the reader should refer to reported

adlayer coverage calculations, which were calculated assuming a non-attenuating over-

layer on a semi-infinite substrate at fractional monolayer (ML) coverage. [62] Al2O3

and Pd-Al alloy overlayer thicknesses were calculated assuming a semi-infinite sub-

strate of uniform thickness. Electron attenuation lengths (EAL) were calculated using

NIST SRD 82 software. [188] Derivation of calculations are provided in Appendix A.

5.3.4 Density Functional Theory Calculations

DFT calculations were performed with the Vienna Ab-initio Simulation Package

(VASP) [189, 190] using the project augmented wave method (PAW) [127] and the

PW91 exchange-correlation functional. [126] A plane wave cutoff of 400 eV was used.

The optimized lattice constants of bulk Pt and Pd were found to be 3.99 and 3.96 Å,

respectively. The Pt(111) and Pd(111) surfaces were modeled by a (3×3) slab model

with four layers, including nine atoms in each layer. To prevent artificial interaction

between the repeated slabs along the z-direction, a 12 Å vacuum was introduced with

correction of the dipole moment. A (4×4×1) Monkhorst-Pack k-point mesh [191] was
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used to sample the Brillouin zone. During the optimization, the bottom two layers

of metal atoms were fixed, while the remaining atoms and adsorbates were relaxed

until the residual forces were less than 0.02 eV Å-1.

5.4 Results

5.4.1 X-ray Photoelectron Spectroscopy

The reaction of TMA with Pt(111) and Pd(111) surfaces, and the subsequent

reaction of water with the adsorbates, was studied using XPS. For UHV-XPS ex-

periments, XP spectra were collected at < 10−10 mbar following water exposure at

7× 10−6 mbar pressure. In situ XP spectra were collected in 0.1 mbar water. In the

first part of this section, the results observed on Pt(111) are discussed; the second

part focuses on Pd(111).

High-resolution core-level Al 2p/Pt 4f, C 1s, and Al 2s core level regions shown

in Figures 5.1 through 5.3 were collected following TMA adsorption on Pt(111) and

subsequent heating in water. In both XPS experiments, only platinum was detected

after cleaning. The Pt 4f7/2 peak of the clean Pt(111) crystal was fitted with a single

asymmetric peak at 71.0 eV for the UHV-XPS spectrum (Figure 5.1), and fitted

to 70.8 eV for the in situ XPS spectrum, which was referenced to the Fermi edge

(Figure 5.1). These BE values are characteristic of metallic Pt. [68] The lower BE

value for metallic Pt in the in situ experiment is likely due to the surface core-level

shift for Pt 4f. [192]

Following dosing of TMA, carbon and aluminum appeared on the surface, as

shown in the Al 2p, C 1s, and Al 2s regions (Figures 5.1–5.3). For the UHV exper-

iment, despite the presence of aluminum on the Pt(111) surface following dosing of

TMA, the Al 2p region makes no measurable contribution to the overall Pt 4f/Al

2p peak envelope, as shown in Figure 5.1. Unlike in the UHV experiment, the Al

2p contribution to the Pt 4f/Al 2p peak envelope was observed in the in situ XPS

experiments, as shown in Figure 5.1. This effect was due to the increased surface
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(a) UHV (b) In situ

Figure 5.1. Al 2p/Pt 4f regions. (a) UHV-XPS. From bottom to top:
Pt(111) after repeated cleaning cycles, following dosing of TMA at
100°C, and after exposure to water at 400°C. (b) In situ XPS. From
bottom to top: Pt(111) single crystal after cleaning cycles, follow-
ing dosing of TMA between 100–200°C, and after exposure to wa-
ter at 25°C and subsequently in steps to 400°C. Fitted components
are shown as dashed lines and represent metallic Pt (dark grey),
metallic Al or MMA (red), Al2O3 (green), and partially hydroxy-
lated/oxyhydroxide aluminum (blue). The open circles are raw data
points, and the light grey line is the sum of the deconvoluted peaks.

sensitivity related to the low kinetic energy of the ejected photoelectrons, and the in-

creasing relative sensitivity factor (RSF) of Al 2p with decreasing photon energy. [193]

In the UHV-XPS experiment, Mg Kα radiation was used (hν = 1253.6 eV). Electron

attenuation lengths (EAL) of ejected electrons were estimated by NIST Standard

Reference Database 82, [188] which uses IMFP data from Tanuma et al. [194] The
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(a) UHV (b) In situ

Figure 5.2. C 1s regions for (a) UHV-XPS and (b) in situ XPS on
Pt(111). From bottom to top: Pt(111) after cleaning cycles, after
dosing of TMA (at 100°C for UHV-XPS and between 100–200°C for
in situ XPS), and after exposure to water at 400°C. The fitted compo-
nents are shown as red and blue dashed lines (assignments discussed
in text). Open circles are raw data points, and the light grey line is
the sum of the deconvoluted peaks.

kinetic energy of a Pt 4f photoelectron is approximately 1183 eV, and the EAL is

approximately 1.1 nm. Because the 95% information depth is approximately equal

to 3 times the EAL, [195] the information depth is approximately 3.3 nm. Therefore,

the Pt substrate was the majority contributor to the Pt 4f/Al 2p photoemission peak.

In the in situ XPS experiments, the kinetic energy of the photoelectrons was kept

at approximately 120 eV, resulting in a Pt 4f photoelectron EAL of approximately

0.3 nm. Therefore, the information depth is estimated as 0.9 nm. Consequently, the

chemical states of aluminum could be followed with the Al 2p peak by in situ XPS,

whereas the Al 2s peak was used for UHV-XPS.

In order to determine the surface composition and the chemical states of plat-

inum, aluminum, and carbon after each treatment, curve fitting was performed on

the Pt 4f/Al 2p, Al 2s, and C 1s peaks. The component assignment and the peak posi-
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(a) UHV (b) In situ

Figure 5.3. Al 2s regions for (a) UHV-XPS and (b) in situ XPS
(bottom) on Pt(111). From bottom to top: Pt(111) after dosing of
TMA (at 100°C for the UHV experiment and between 100–200°C for
the in situ experiment) and after water exposure at 400°C. Fitted
components are shown as dashed lines and represent metallic Al or
MMA (red), Al2O3 (green), and partially hydroxylated/oxyhydroxide
aluminum (blue). The open circles are raw data points, and the light
grey line is the sum of the deconvoluted peaks.

tions are listed in Tables 5.1 and 5.2. For deconvolution of the overlapping Pt 4f/Al 2p

regions, the Pt 4f7/2 and 4f5/2 peaks were fit first subject to the constraints described

in the experimental section, and then the remainder of the region was fit with peaks

associated with aluminum (Figure 5.1).

In the UHV-XPS experiment, 83% of the Al 2s peak (Figure 5.3) was curve-fit

with a component assigned to metallic Al or MMA species at 118.0 eV following

TMA deposition. The reference for Al metal is 118 eV. [68] Two minority species,



116

Table 5.1.
Observed Al 2p and Al 2s component binding energies and envelope
area % for Pt(111) samples after TMA exposure and water exposure
at 400°C.

UHV-XPS in situ XPS

Al 2s Al 2p3/2 Al 2s

Component BE / eV % area BE / eV % area BE / eV % area

TMA Exposure

Al0/MMA 118.0 83 73.0 63 118.1 47

Al2O3 118.8 7 74.0 20 119.1 34

AlxOy(OH)z 119.9 10 74.9 17 120.0 19

Water Exposure, 400°C

Al0/MMA 117.9 14 - 0 118.1 (< 1)

Al2O3 118.7 58 74.0 100 119.0 100

AlxOy(OH)z 119.9 28 - 0 - 0

assigned to alumina and/or a partially hydroxylated Al species (AlxOy(OH)z), appear

at 118.8 and 119.9 eV. A detailed discussion of this assignment is given below. In the

in situ XPS experiment, after dosing TMA, three aluminum-containing species could

be detected in both the Al 2p and Al 2s regions. In the Al 2p region (Figure 5.1), the

component at 73.0 eV was assigned to metallic or methylated Al and the components

at 74.0 eV and 74.9 eV were assigned to oxidized and/or hydroxylated Al species.

Similarly, 3 peaks in the Al 2s region were assigned to metallic Al or MMA (118.0

eV) and partially oxidized and/or hydroxylated Al species (119.1 and 120.0 eV). The

oxidized and hydroxylated aluminum states that appeared in the in situ experiment

following TMA dosing are likely due to residual water from the walls of the in situ cell,

which began reacting with the deposited TMA. The presence of these species in the

Al 2s spectrum after dosing TMA in the UHV-XPS experiment is due to the presence
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Table 5.2.
Observed C 1s component binding energies and envelope area % for
Pt(111) samples after TMA exposure and water exposure at 400°C.

UHV-XPS in situ XPS

Component BE / eV % area BE / eV % area

TMA Exposure

1 283.8 100 284.0 90

2 - 0 284.8 0

Water Exposure, 400°C

1 284.0 100 284.0 100

2 - 0 - 0

of residual water or fitting artefacts. Al coverage was estimated for both experiments

from XPS data assuming all Al was deposited as Al metal. Al coverage was estimated

to be 0.8 ML and 0.5 ML for the in situ XPS and UHV-XPS experiments, respectively.

The C 1s core-level regions from the UHV- and in situ XPS experiments were fit

differently following TMA dosing (Figure 5.2). For the UHV-XPS experiment, the

BE of the majority species after TMA dosing was 283.8 eV. This peak likely includes

contributions from carbon in several different environments. The BE value is close

to reference binding energies for adsorbed methylidyne (CH) (283.61 eV) [196] and

isolated C (283.8 eV). [69] DFT suggests the presence of monomethyl aluminum, but

this could not be confirmed by XPS due to the lack of an appropriate reference.

For the in situ XPS experiment, the C 1s envelope was fit with two peaks at

284.0 (majority species) and 284.8 eV. The peak at 284.0 eV could be isolated C

(283.8 eV) [69] or chain carbon (284.1 eV), [69] and the peak at 284.8 could be

graphitic carbon (284.6 eV). [69] See Table 5.2 for a summary of C 1s component

binding energies and component area percentages. The carbon coverage following
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TMA adsorption was estimated from XPS data. For the in situ XPS experiment, C

coverage was 1.7 ML. In the UHV-XPS experiment, the C coverage was 1.2 ML.

Water was dosed at 25°C and subsequently up to 400°C after analyzing the inter-

action of TMA with the bare surfaces. In 0.1 mbar of water at room temperature,

changes were visible in the Al 2p spectrum of the in situ experiment. First, the Al

2p3/2 peak assigned to Al0 or MMA at 73.0 eV decreases in intensity relative to the

other peaks in the spectrum, resulting in a clear change to the resulting peak envelope

at around 73 eV. Second, the higher binding energy peak assigned to AlxOy(OH)z at

74.9 eV increases in intensity relative to the other peaks. As the temperature of the

single crystal is increased to 400°C in 0.1 mbar water, the peak at 74.9 eV shrinks.

By 400°C, only the peak at 74.0 eV remains. In the Al 2s region, only the peak at

119.0 eV remains at 400°C (Figure 5.3). This is different from the observed Al 2s

region in the UHV-XPS experiment, which consisted of all three Al species following

water dosing at 400°C: metallic or methylated Al at 117.9 eV, Al2O3 at 118.7 eV, and

AlxOy(OH)z at 119.9 eV (Figure 5.3).

From data presented in Figures 5.1 and 5.3, the state of deposited Al changes

following water dosing, as evidenced by the growth of two higher BE Al 2p peaks.

There is also a clear transition from the highest BE peak at 74.9 eV to the intermediate

BE peak at 74.0 eV as the temperature is increased during water dosing for the in

situ experiment. Interpretation of these spectral changes requires a careful review of

the literature pertaining to XPS studies of different oxide- and hydroxide-containing

aluminum species.

The first observed change, the disappearance of the peak resulting from adsorption

of TMA at 73.0 eV, can be explained by the hydroxylation and/or oxidation of metallic

aluminum or MMA following demethylation. As stated above, literature references of

metallic Al place the Al 2p BE at 72.5-73.0 eV (Reference [68] and references therein),

72.77 and 73.18 eV (2p3/2 and 2p1/2 lines, respectively), [197] 72.5 eV (2p3/2), [198]

73.22 eV (2p3/2 from clean NiAl(110)), [199] and 73.0 ± 0.1 (2p). [200] As discussed

below, this peak includes contributions from both MMA and Al0 given the DFT
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results (discussed below). We have included the MMA contribution in the metallic

peak rather than the other two high BE species because methyl (CH3) is generally

considered to be a weak electron-donating functional group. Upon exposure to water,

the peak assigned to Al0/MMA nearly disappears, and the peaks at higher BEs

grow. This indicates that Al is hydroxylated or oxidized, as hydroxylated/oxidized

aluminum species are characterized by Al 2p BEs greater than those of metallic

aluminum. [140,197–200]

The second observed change is the shift from the higher to the lower BE hydrox-

ylated/oxidized peak during heating in water between 25°C and 400°C. We attribute

this shift to the dehydroxylation and subsequent oxidation of Al at temperatures

approaching 400°C in water. Reaching this conclusion by only considering the shift

of the Al 2p peak alone was not successful, as a range of BEs for various hydrox-

ylated and oxidized Al-containing species have been presented in literature with no

clear consensus. Kloprogge et al. [201] investigated the Al 2p region of various bulk

Al-containing mineral powders with XPS. Following outgassing in vacuum, they re-

ported BEs of 74.1, 74.4, 73.9, and 74.3 eV for corundum (Al2O3, α-alumina), gibb-

site (Al(OH)3), Boehmite (AlO(OH)), and Pseudoboehmite (AlO(OH)), respectively.

They observed two peaks in the case of Bayerite (Al(OH)3): one at 74.3 eV and a

smaller peak at 75.0 eV. Following formation of an Al2O3 film through dehydration

of Al(OH)3 in vacuum, Nylund et al. [200] observed a single Al 2p peak at 75.8 eV

which included contributions from both species. Alexander et al. [197] observed a

shift of less than 1 eV to higher BE in the Al 2p peak centroid following heating of

an AlO(OH) sample to 300°C in vacuum. Lindsay et al. [202] measured Al 2p BEs of

76.3± 0.1, 74.8± 0.1, 75.7± 0.1, 74.9± 0.1, and 74.7± 0.2, for α-Al2O3, α-AlO(OH),

β-AlO(OH), α-Al(OH)3, and β-Al(OH)3, respectively. The above references do not

present a clear trend for aluminum oxides versus hydroxides, i. e., that oxide bound

to aluminum results in a higher or lower Al 2p BE consistently versus hydroxide

bound to aluminum. It should be noted that all of the above studies are for bulk
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aluminum oxide/hydroxide containing powders, and not for thin films of these species

on transition metal substrates.

Several of the above authors also investigated the O 1s region during their ex-

periments. Kloprogge et al. [201] fit the O 1s peaks of their bulk samples with 3

components: a low BE component between 530.5 and 530.8 eV assigned to aluminum

oxide, a component between 531.8 and 532.2 eV, assigned to the oxygen in hydroxide,

and a high BE component between 532.9 - 533.5 eV assigned to H2O. For all phases,

the H2O peak was the smallest contributor to the overall peak envelope. The Al(OH)3

phases were fit using only the OH and H2O peaks. The AlO(OH) species were fit

with all 3 peaks, and the area ratio of the oxide to OH peaks were nearly 1 to 1.

α-Alumina was also fit with all 3 peaks, but the oxide peak dominated the spectrum.

Alexander et al. [197] fit the O 1s peak for AlO(OH) with two main oxygen peaks

at 530.95 and 532.35 eV, assigned to oxide and OH respectively. These peaks were

constrained to be equal in area for 1:1 Al-O-Al to Al-O-H stoichiometry. Following

annealing of the sample to 300°C, the separations between each O 1s peak and the

Al 2p oxide peak were held constant, and the stoichiometry of the sample changed

to 86% O, 13% OH, 1% H2O. Nylund et al. [200] used a similar fitting strategy for

Al2O3 and Al(OH)3, using a higher BE peak for OH- and a lower BE peak for O2
-.

Our O 1s data on Pt(111) are consistent with the above 3 references that indicate

the loss of hydroxyl species during heating. Following water treatment of as-dosed

TMA at room temperature for the in situ experiment, the O 1s spectrum was fit

with 2 peaks at 531.2 eV and 532.6 eV, assigned to O2
- and OH- respectively. The

peaks comprised 37% and 63% of the total O 1s peak area, respectively. These O 1s

core level regions are shown in Figure 5.4. As the temperature was increased during

water treatment, the O2
- peak increased in relative intensity while the OH- component

decreased in intensity. At 400°C, the OH- peak comprised only 5% of the total peak

area. A third peak for O in H2O was not used, as no spectral features necessitated

its use. A similar trend was observed in the UHV-XPS experiment where the higher
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(a) UHV (b) In situ

Figure 5.4. (a) O 1s regions for UHV-XPS on Pt(111). From bottom
to top: After water exposure at 100°C following TMA exposure and
subsequently in steps to 400°C. (b) O 1s regions for in situ XPS on
Pt(111). From bottom to top: Pt(111) after exposure to water at
25°C following dosing of TMA and subsequently in steps to 400°C.
Dashed lines are fitted components and represent O2

- bound to Al
(red) and OH- bound to Al (blue). Open circles are raw data and the
grey line is the sum of deconvoluted peaks.

BE O 1s peak assigned to OH- decreased as the sample temperature during water

exposure was increased (shown in Figure 5.4).

Another piece of evidence suggesting that the higher BE Al 2p and O 1s compo-

nents should be assigned to hydroxyl-containing species was a calcination experiment

performed on Pd(111) using UHV-XPS. In this experiment 15 cycles of TMA-H2O

ALD were carried out (each cycle consists of TMA: 500 L at 7 × 10−6 mbar, 200°C;

H2O: 2000 L at 6.6 × 10−6 mbar, 200°C), followed by calcination in O2 at 5 × 10−6
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(a) Al 2p (b) Al 2s

Figure 5.5. (a) Al 2p and (b) Al 2s regions following calcination of 10
cycles of TMA-H2O ALD on Pd(111) at 600°C in 5× 10−6 mbar O2.

mbar at 600°C. Following calcination, Al 2p and Al 2s BEs were 74.0 and 119.0 eV,

respectively (core level regions shown in Figure 5.5). Therefore, we attribute the shift

from high to low BE peaks in the Al 2p/2s and O 1s regions to the dehydroxlation

of the aluminum-containing film.

Another possible explanation for the shift to the lower BE oxide peak from

the higher BE hydroxide peak is the transition from amorphous alumina to crys-

talline/semicrystalline alumina, but we have ruled that out on the basis that litera-

ture predicts such a change results in higher rather than lower BE. Several studies

involving high resolution XPS have investigated various aluminum oxide/hydroxide

phases and stoichiometries on surfaces. Mulligan et al. [199] studied aluminum oxide

films formed on NiAl(110) following oxidation using synchrotron radiation XPS. Oxy-

gen adsorption at 300 K resulted in 3 new states on a metallic surface: chemisorbed

oxygen at 74.26–74.53 eV, tetrahedral amorphous-like alumina at 75.93, and octahe-

dral Al3+ at 76.81 eV (only observed at exposures greater than 51 L). After 1200 L

exposure of oxygen at 300 K, the resulting layer contains 90% tetrahedral aluminum.
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The authors attribute this to amorphous alumina, which is the only bulk phase com-

posed of mainly tetrahedral alumina. Absolute and relative amounts of octahedral

aluminum increase after annealing at 573 and 1073 K. The authors attribute this to

migration of subsurface Al to the oxidized layer. This increase in octahedral alu-

minum results in an increase in the highest BE peak at 76.81 eV. The layer formed at

1073 K is γ-alumina-like based on the relative amounts of octahedral and tetrahedral

aluminum. The authors base their assignments on the works of Bianconi et al. [203]

and McConville et al. [198] who used high resolution XPS to study the Al 2p core

level. Bianconi et al. [203] combined Al 2p XPS with X-ray absorption near-edge

spectroscopy (XANES) data and observed metallic Al at 73.0 eV, shifts of 1.4 eV for

chemisorbed O and 2.8 and 3.3 eV for oxide states. The chemisorbed state at +1.4

eV was observed at room temperature along with the metallic state. The oxide state

at +2.8 eV was observed after annealing to 200°C, and the state at +3.3 eV was ob-

served after annealing to 400°C. McConville et al. [198] observed shifts of +0.49±0.02

(chemisorbed state 1), +0.97 ± 0.03 (chemisorbed state 2), 1.46 (chemisorbed state

3), and 2.5–2.7 eV (oxide state). The shift to higher BE for more ordered alumina

overlayers was confirmed also by Kovács et al. [204] who assigned Al 2p peaks at 74.2

and 74.9 eV to amorphous Al2O3 and γ- or α-alumina, respectively. All of the above

references show a shift to higher binding energy for more crystalline alumina, but we

observed a shift to lower BE while heating in water. Therefore, this binding energy

shift is likely not caused by the transition from tetrahedral to octahedral Al2O3.

Thicknesses of the resultant Al2O3 films were estimated following exposure to

water at 400°C. Details of this calculation are given in Appendix A. For the UHV-

and in situ XPS experiments, films were estimated to be 3 Åand 9 Å, respectively.

Note that this thickness calculation assumes that all Al was present as Al2O3 in both

experiments. The lower thickness calculated for the UHV-XPS experiment was likely

due to the lower initial Al coverage in the UHV-XPS experiment.

In the UHV experiment, the C 1s peak shifted to 284.0 eV after dosing water at

400°C. This is indicative of further dehydrogenation, leaving isolated (283.8 eV) [69]
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or chain (284.1 eV) [69] carbon. The coverage of carbon remained unchanged at

approximately 1.3 ML after dosing 2000 L water at 7× 10−6 mbar at 400°C. The 0.1

ML increase over the TMA-dosed surface is well within the error of the instrument.

Carbon was also not removed following 16000 L H2O exposure at the same water

pressure at 400°C. The inability of water in the pressure range of 10−5 mbar to remove

carbon is in contrast to the in situ XPS experiment, in which water was dosed at 0.1

mbar at 400°C. In this experiment, C coverage decreased from 1.7 ML to < 0.1 ML

after dosing water at 400°C. As shown in Figure 5.2, the higher BE peak disappears

after exposure to water at 400°C; the lower BE peak is still located at 284.0 eV, but

was greatly decreased in intensity. C 1s XPS results are summarized in Table 5.2.

In both XPS experiments, only metallic palladium was detected by XPS after

cleaning (Figure 5.6). The Pd0 peak from the in situ experiment was located at 334.9

eV and the Pd0 peak for the UHV experiment was located at 335.1 eV, the reference

energy for metallic Pd. [68] The lower Pd 3d BE for the in situ experiment is likely

due to the surface core-level shift for Pd(111), [205] similar to the observation for

the Pt(111) system above. Contribution of the Pd-Al alloy peak (discussed in the

experimental section) in the clean Pd 3d spectrum is due to fitting artefacts.

Upon dosing TMA, an additional peak in the Pd 3d region was observed in each

experiment: For the in situ XPS experiment, the Pd 3d5/2 peak was fit with two

components: the first at 335.2 eV corresponds to palladium metal and the second

at 335.8 eV was assigned to a surface Pd-Al alloy. A similar result was observed

in the UHV-XPS experiment with the two components located at 335.2 and 336.0

eV, respectively. The ratio between the metallic Pd and Pd-Al alloy components

was used to estimate the alloy thickness (see Appendix A for calculation details).

Alloy thicknesses were calculated to be 5 Å and 6 Å for the in situ XPS and UHV-

XPS experiments, respectively. Assuming that all Al assigned to Al metal or MMA

is alloyed with Pd following TMA dosing, quantified XPS data estimate the average

Pd-Al alloy composition to be Pd2Al (UHV-XPS) or Pd4Al (in situ XPS). The higher

BE Pd 3d peak that appears after dosing TMA could also be assigned to a PdCx phase
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(a) UHV (b) In situ

Figure 5.6. Pd 3d regions for (a) UHV-XPS and (b) in situ XPS
on Pd(111). From bottom to top: Pd(111) after cleaning, following
dosing of TMA (at 100°C for UHV-XPS and between 100–200°C for in
situ XPS), and after water exposure at 400°C. Fitted components are
dashed lines and represent metallic Pd (dark grey) and Pd-Al alloy
phase(s) (red). Open circles are raw data, and the grey line is the
sum of the deconvoluted peaks.

resulting from carbon incorporation into Pd(111). Teschner et al. [139] and Gabasch

et al. [80] observed the formation of this phase during pentyne hydrogenation and

ethylene oxidation, respectively. Teschner et al. assigned Pd 3d5/2 and C 1s peaks to

this phase located at 335.7 eV and 283.4 eV, respectively. Gabasch et al. observed

peaks associated with the Pd 3d5/2 and C 1s components at 335.34 eV and 284.5 eV,

respectively. While contribution to the higher BE Pd 3d peak from a PdCx phase
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was not disproved, a corresponding C 1s peak consistent with either of the above

references was not observed for the in situ experiment.

After dosing TMA, carbon (Figure 5.7) and aluminum (Figures 5.8–5.9) also ap-

pear on the surface. For the UHV-XPS experiment, the Al 2p envelope is composed

primarily of a peak at 72.7 eV, assigned to either metallic Al or MMA. For the in

situ XPS experiment, the majority of Al was deposited as Al metal or MMA at 72.7

eV, but some of the oxide (74.1 eV) species is present. As in the case of Pt(111), the

oxidation was likely due to the reaction of oxygen-containing molecules from the walls

of the in situ cell with the as-deposited TMA. The Al 2s results after dosing TMA

mirror the Al 2p results (see Table 5.3). The coverage of total Al as Al metal was

calculated for Pd(111) in the same manner as for Pt(111); nominal coverages were 0.5

ML and 0.9 ML for the in situ and UHV-XPS experiments, respectively. However,

one should not think of coverage in a typical fractional monolayer fashion for Al on

Pd(111) due to the formation of the Pd-Al alloy.

The C 1s region in the UHV-XPS experiment was fit with 2 peaks at 283.3 and

284.3 eV. For the in situ XPS experiment, only one asymmetric peak was needed to fit

the envelope at 284.1 eV. The peaks at 284.1-284.2 eV are assigned to dehydrogenated

species such as CH, isolated C, or “chain” C (see discussion in Pt(111) section). The

low BE peak at 283.3 eV could be assigned to a PdCx phase, in agreement with the

value of 283.4 eV observed by Teschner et al. [139] DFT predicted the presence of

MMA, but due to the lack of an appropriate binding energy reference this could not

be confirmed by XPS.

C coverage for the in situ XPS experiment was approximately 0.5 ML, whereas

coverage was 1.1 ML for the UHV-XPS experiment. The differences in the C 1s region

could be due to the uncertainty of the TMA adsorption temperatures in the in situ

XPS experiment, which might be higher than those in UHV-XPS experiment (see

Experimental Section).

The relative amount of Al deposited as metallic Al or MMA decreased after dosing

water at room temperature in the in situ experiment, and the higher binding energy Al
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(a) UHV (b) In situ

Figure 5.7. C 1s regions for (a) UHV-XPS and (b) in situ XPS on
Pd(111). From bottom to top: Pd(111) after repeated cleaning cycles,
following dosing of TMA (at 100°C for the UHV experiment and be-
tween 100-200°C for the in situ experiment), and after exposure to wa-
ter at 400°C. Fitted components originating from carbon-containing
components are shown as red and blue dashed lines (assignments dis-
cussed in text). Also present is a Pd 3d ghost peak (light grey). The
open circles are raw data points, and the light grey line is the sum of
the deconvoluted peaks.

2p peak at 74.8 eV appeared and is assigned to AlxOy(OH)z. As shown in Figure 5.8,

as the temperature was increased during water dosing, the higher BE oxide/hydroxide

peak decreased in intensity, as did the peak assigned to metallic aluminum or MMA,

while the other oxide/hydroxide peak at 74.1 eV increased in relative intensity. At

400°C, 91% of the Al was present as Al2O3 on Pd(111) for the in situ XPS experiment.

However, both the aluminum oxide and hydroxide/oxyhydroxide phases were present

after dosing water at 400°C in the UHV-XPS experiment (66% of Al 2p peak area

assigned to Al2O3). Component percentages of total envelope areas are listed in

Table 5.3 as a percentage of total envelope area. Upon dosing water at 400°C, the

Pd-Al alloy component nearly disappeared. Calculated thicknesses were < 1 Å (this
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(a) UHV (b) In situ

Figure 5.8. (a) Al 2p regions for UHV-XPS experiment on Pd(111).
From bottom to top: Pd(111) following dosing of TMA at 100°C, and
after exposure to water at 400°C. (b) Al 2p high resolution core level
regions for in situ XPS experiment on Pd(111). From bottom to top:
Pt(111) single crystal after repeated cleaning cycles, following dosing
of TMA between 100–200°C, and after exposure to water at 25°C
and subsequently in steps to 400°C. Fitted components are shown as
dashed lines and represent metallic Al or MMA (red), Al2O3 (green),
and partially hydroxylated/oxyhydroxide aluminum (blue). The open
circles are raw data points, and the light grey line is the sum of the
deconvoluted peaks.

small thickness value was likely due to an XPS curve-fitting artifact since the apparent

alloy thickness from fitting artefacts for the clean surface was similar).

Overall carbon coverage decreases from 1.1 to < 0.1 ML after dosing water on the

UHV prepared sample at 400°C, and from 0.5 to 0.2 ML on the in situ sample after

dosing water at 400°C compared to after dosing TMA. The decrease in C 1s intensity
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(a) UHV (b) In situ

Figure 5.9. Al 2s core level regions for (a) UHV-XPS and (b) in situ
XPS (bottom) on Pd(111). From bottom to top: Pd(111) follow-
ing dosing of TMA (at 100°C for the UHV experiment and between
100–200°C for the in situ experiment), and after exposure to water
at 400°C. Fitted components are shown as dashed lines and represent
metallic Al or MMA (red), Al2O3 (green), and partially hydroxy-
lated/oxyhydroxide aluminum (blue). The open circles are raw data
points, and the light grey line is the sum of the deconvoluted peaks.

for both experiments can be seen in Figure 5.7. For the UHV-XPS experiment, only

the peak at 284.2 eV remains after dosing water at 400°C. The peak at 284.2 eV in the

in situ XPS experiment decreases in intensity, and two small peaks appear at 285.9

and 289.8 eV (cannot be seen in Figure 5.7 because they are too small). These peaks

are assigned to adsorbed CO [206] and carboxyl species, [69] respectively. A scaled

version of this core level region showing the CO and carboxyl species contribution
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Figure 5.10. C 1s core level region for in situ XPS on Pd(111) during
exposure to 0.1 mbar water at 400°C. Fitted components originating
from carbon-containing components are shown as orange (adsorbed
carboxyl), dark green (adsorbed CO), and red (assignment discussed
in text) dashed lines. The open circles are raw data points, and the
light grey line is the sum of the deconvoluted peaks.

to the overall peak envelope are shown in Figure 5.10. C 1s BEs and percentages of

total area are summarized in Table 5.4.

Thicknesses of the resultant Al2O3 films were estimated following exposure to

water at 400°C. Details of this calculation are given in the SI. For the in situ XPS

experiment, the Al2O3 film thickness was estimated to be 5 Å, and for the UHV

experiment, 7 Å. Note that this thickness calculation assumes that all Al is present

as Al2O3 in both experiments.
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Table 5.4.
Observed C 1s component binding energies and envelope area % for
Pd(111) samples after TMA exposure and water exposure at 400°C.

UHV-XPS in situ XPS

Component BE / eV % area BE / eV % area

TMA Exposure

1 283.3 30 - 0

2 284.3 53 284.1 100

Water Exposure, 400°C

1 - 0 - 0

2 284.2 100 284.2 81

5.4.2 Density Functional Theory

The mechanism of TMA dissociation is analyzed with DFT calculations on Pt(111)

and Pd(111) surfaces, as shown in Figure 5.11. All energies are referenced to gas phase

TMA and the clean metal slabs, and it is assumed that dissociated methyl groups

spontaneously form methane gas with preadsorbed hydrogen atoms that are initially

far removed from the adsorbing TMA. The entropy loss (T∆S) associated with TMA

adsorption, 0.74 eV, is assumed to be equal to the translational entropy of gaseous

TMA at 150°C, and the corresponding entropy gain for desorbing methane is cal-

culated to be 0.66 eV. The entropy change of purely surface reactions, in turn, is

assumed to be zero. TMA decomposition on both surfaces is highly exothermic al-

though the process is slightly more exothermic on Pt(111) than on Pd(111). Both

TMA and dimethyl aluminum (DMA) are most favorably adsorbed in a partially

dissociated configuration at the considered coverage of 1/9 ML. Nondissociated con-

figurations (not shown) are much less stable and can only be identified, in select

circumstances, with a very careful choice of force optimizer, suggesting that barriers

to break Al-C bonds in TMA and DMA are very small. The lowest energy points
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Figure 5.11. Free energy vs. reaction coordinate for TMA decompo-
sition on Pt(111) and Pd(111). Entropies are calculated at a temper-
ature of 150°C at standard pressures of 1 bar.

in the free energy diagram correspond to monomethyl aluminum (Al-CH3, “MMA”),

while atomic aluminum is slightly less stable on both metals. The results suggest that

the XPS signatures at 118.1 eV likely correspond to a mixture of adsorbed MMA

and Al, with MMA formation being modestly favored on terraces and Al formation

being perhaps more favorable at defect sites. [85]

5.5 Discussion

After dosing TMA at 10-5 mbar, formation of a surface Pd-Al alloy phase was

observed, as evidenced by the appearance of a higher BE peak in the Pd 3d core
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level. A similar phenomenon was not observed in the Pt 4f core level. It should be

noted that the Pd-Al alloy formed during TMA exposure between 100-200°C (shown

in Figure 5.6). TMA adsorption on Pd(111) even at room temperature resulted in

the surface Pd-Al alloy (data not shown). Previous XPS studies of Pd-Al alloys have

observed BE shifts of the Pd 3d5/2 peak between +0.8 to +2.1 eV relative to the Pd0

peak. [131,132,132,134] Shifts observed in the current study are in the range of +0.6

to +0.8 eV relative to the Pd0 peak. The Pt 4f7/2 peak undergoes a shift of +0.3 eV

in the in situ XPS study and +0.1 eV in the UHV study, however, this is unlikely

due to the formation of a surface Pt-Al alloy. The fwhms of the Pt0 4f peaks decrease

from 0.96 to 0.91 eV and from 1.23 to 1.19 eV after deposition of TMA for the in

situ and UHV experiments, respectively, whereas the formation of an alloy associated

with a slightly higher binding energy would likely cause a broadening of Pt 4f region

due to the new type of Pt chemical environment. Wilson et al. [135] observed an

alloy shift of 1.4 eV for the Pt-Al alloy Pt 4f7/2 component relative to the metal

following deconvolution of the Pt 4f region. The alloy formation was accompanied by

a broadening of the overall envelope. However, any contribution of the Al 2p signal

in this deconvolution was not included. Finally, this small shift cold be due to the

influence of adsorbates. Adsorbed CO was found to shift the Pt 4f peak by +1.3 eV

in synchrotron radiation XPS experiments. [138] The extent, then, to which Al alloys

with Pt in this study was not detectable by XPS.

Dosing water at 400°C to the Pd(111) surface removes the Pd-Al alloy phase,

restoring all Pd to the metallic state. Johańek et al. [133] observed the formation of

aluminum oxide following exposure of a Pd-Al alloy to CO, indicating that CO par-

tially dissociated on the alloy surface, and the oxygen reacted with Al. Furthermore,

they observed an increase in the relative surface concentration of Al following CO

dosing, indicating that dissociated O was reacting with subsurface Al to form alu-

minum oxide on the surface. This behavior is similar to that observed in this study,

where the formation of an oxidized aluminum overlayer occurs simultaneously with

the removal of the Pd-Al alloy phase.
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By following the first cycle of TMA-water ALD with XPS, the fate of the carbon

species can be elucidated. Carbon was observed by XPS on both Pd(111) and Pt(111)

surfaces following TMA deposition. The C:Al coverage ratios were approximately 1:1

and 2:1 on Pd(111) and Pt(111) surfaces, respectively. Two components of the C

1s peak were observed on Pd(111) in the UHV experiment and on Pt(111) in the in

situ experiment. While DFT calculations showed that the most stable Al-containing

decomposition product on both surfaces was MMA, differences in the C 1s regions

between the two experiments indicate that the resulting carbon overlayer is dependent

on both substrate and TMA dosing temperature, which was likely higher for the in

situ experiment (see Experimental section). Peaks in the XPS C 1s deconvolutions

likely represent several carbon species in different environments. The presence of the

Pd-Al alloy phase indicates that at least some TMA molecules lose all attached methyl

ligands in order for Al to alloy with Pd. Lu et al. [85] followed desorption of products

during dosing of TMA and water on Pd nanoparticles in situ with quadrupole mass

spectrometry used in an ALD reactor. They observed the evolution of methane (97.9

mol %) and ethane (2.1 mol %) after dosing TMA on the Pd nanoparticles. They

attribute the ability of Pd to form ethane to a high coverage of CH3 groups on the Pd,

which can combine to form ethane (see Reference [85] and references therein). In order

to form methane, TMA methyl groups must be hydrogenated by other methyl groups,

which dehydrogenate to form CHx species (x < 3) on the surface. CH3 adsorbed on

Pt(111) is known to exhibit similar chemistry, where methane is produced along

with dehydrogenated C1 species, and at high CH3 coverages adsorbed methyl groups

can combine to form ethylidyne. [145] However, the lack of evidence for Pt-Al alloy

formation on Pt(111) might indicate a lower probability for all methyl ligands to

desorb from an Al atom on that surface.

Another observed difference in the behavior of Pt(111) and Pd(111) with TMA and

water related to the carbon chemistry is the ease with which carbon can be removed

from both surfaces. Dosing 0.1 mbar water at 400°C results in the removal of carbon

from both Pd(111) and Pt(111), whereas at 7× 10−6 mbar water, carbon disappears
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only from Pd(111), and the carbon coverage remains constant on Pt(111). Carbon

removal, then, appears to be substrate dependent. To increase our understanding

of the carbon removal mechanism, Pt(111) and Pd(111) surfaces were annealed in

UHV following TMA adsorption at 100°C (spectra not shown). On Pd(111), metallic

aluminum was present at 400°C and carbon was fully removed. On Pt(111), heating

in UHV at 400°C did not result in carbon removal. Therefore, though water plays a

role in carbon removal as evidenced by the appearance of oxygenated C compounds

in the C 1s spectrum of the in situ experiment for Pd(111) in Figure 5.10 and the

removal of carbon from Pt(111) in 0.1 mbar water vapor, the substrate effects the

carbon chemistry. The driving force behind the different carbon removal behavior at

7 × 10−6 mbar and 0.1 mbar water pressure on Pt(111) could be a thermodynamic

limitation, where water coverage is negligible at a background pressure of 7 × 10−6

mbar, or it could be a kinetic limitation related to the slow oxidation of carbon with

water. The observed effect could also be a combination of thermodynamic and kinetic

limitations. The formation of a Pd-Al alloy on Pd(111) suggests that all methyl groups

from Al atoms alloyed with Pd must be rejected to the Pd surface, which can then

react even in the absence of water. For Pt, an alloy was not observed, suggesting that

complete removal of methyl groups from Al on Pt(111) is more difficult than from Al

on Pd(111). At 10−5 mbar, water cannot react with these methyl groups attached

to Al on Pt(111). The carbon chemistry on Pt and Pd is not straightforward and

shows dependence on the metal substrate; therefore this chemistry will be the focus

of a future publication. [207]

A final interesting phenomenon is aluminum oxidation by H2O. In the case of

Pd(111), the Al-Pd alloy is reversed and all Pd was reverted to the monometallic

phase. Water caused Al to oxidize to Al3+ on both surfaces following dosing at 0.1

mbar and 400°C, but Al is only partially hydroxylated on both surfaces following

water dosing at 7× 10−6 mbar and 400°C. In addition to the inability of water vapor

at 7 × 10−6 mbar to remove adsorbed carbon on Pt(111), Al was not completely

oxidized to Al2O3 after dosing water at the same pressure. The state of adsorbates on
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the surface, then, affects the reaction pathway of TMA with oxidized or hydroxylated

aluminum in subsequent ALD cycles: TMA can react through ligand exchange with

two hydroxyl groups, or dissociatively with aluminum oxide Al-O pairs (see Reference

[31] and references therein).

5.6 Conclusions

The findings of this investigation of the reaction between TMA and water on

Pt(111) and Pd(111) are summarized as follows:

Surface Pd-Al alloy. After dosing TMA between 100–200°C to Pd(111), a Pd-Al

surface alloy forms. No alloy of Pt and Al was observed under the same conditions.

Carbon removal. Carbon was removed from both Pt(111) and Pd(111) in 0.1 mbar

H2O at 400°C. At 7× 10−6 mbar H2O and 400°C, carbon was removed from Pd(111),

whereas the carbon coverage does not change on Pt(111).

Aluminum oxidation. In 0.1 mbar H2O at 400°C, aluminum was oxidized to Al2O3

on both surfaces. On the other hand, at 7× 10−6 mbar H2O and 400°C, the majority

species was Al2O3, but other Al oxidized and hydroxylated species were present.

On both surfaces, DFT calculations suggested that rapid TMA decomposition to

methyl aluminum (MMA) or atomic Al is thermodynamically favorable, which agrees

with the experimental observations. However, Pd(111) and Pt(111) act differently

during TMA adsorption and then during the reaction with H2O. Therefore, future

studies are required to understand this difference, specifically regarding the differences

in carbon chemistry on each surface. Many mechanistic details of the interactions of

the precursors with Pd(111) and Pt(111) were not ascertained during this study, and

will be the subject of future work. However, two observations, the formation of the

Pd-Al alloy and the difference in carbon chemistries between Pt(111) and Pd(111),

highlight the chemical sensitivity of the first ALD cycle. The results of this study

should also cause caution for those planning to study ALD reactions in UHV.
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Therefore, we conclude that the results obtained from studying ALD systems in

UHV may not be fully applicable to other industrial or laboratory studies performed

in the millibar pressure range. However, UHV experiments can screen substrates for

specific properties, such as the ability to desorb carbon-containing ligands. UHV

experiments can also be useful for determining dosing parameters for ALD precursors

for experiments carried out at facilities with in situ capabilities, where user time may

be limited.

The findings presented here demonstrate that the effect the metal substrate must

be considered when choosing process conditions for ALD applications, especially for

those involving a low number of ALD cycles. In order to minimize carbon incorpora-

tion into the ALD film, the temperature of water dosing must be sufficient to remove

carbon. These conditions must be carefully chosen depending on the substrate, es-

pecially for ultra-thin films. Furthermore, since the water dosing temperature deter-

mines the extent to which Al is oxidized, this could impact mass gain per ALD cycle

and affect the film quality.
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6. TRIMETHYLALUMINUM AND OXYGEN ATOMIC LAYER DEPOSITION

ON HYDROXYL-FREE CU(111)

6.1 Abstract

Atomic layer deposition (ALD) of alumina using trimethylaluminium (TMA) has

technological importance in microelectronics. This process has demonstrated a high

potential in applications of protective coatings on Cu surfaces for control of diffusion

of Cu in Cu2S films in photovoltaic devices and sintering of Cu nanoparticles in liquid

phase, catalytic hydrogenation reactions. With this motivation in mind, the reaction

between TMA and oxygen was investigated on Cu(111) and Cu2O/Cu(111) surfaces.

TMA did not adsorb on the Cu(111) surface, a result consistent with density func-

tional theory (DFT) calculations predicting that TMA adsorption and decomposition

are thermodynamically unfavorable on pure Cu(111). On the other hand, TMA read-

ily adsorbed on the Cu2O/Cu(111) surface at 473 K resulting in the reduction of some

surface Cu+ to metallic copper (Cu0) and the formation of a copper aluminate, most

likely CuAlO2. The reaction is limited by the amount of the surface oxygen. Af-

ter the first TMA half-cycle on Cu2O/Cu(111), two-dimensional (2D) islands of the

aluminate were observed on the surface by scanning tunneling microscopy (STM).

According to DFT calculations, TMA decomposed completely on Cu2O/Cu(111).

High-resolution electron energy loss spectroscopy (HREELS) was used to distinguish

between tetrahedrally (Altet) and octahedrally coordinated (Aloct) Al3+ in surface

adlayers. TMA half-cycles produced an aluminum oxide film which contained more

octahedral coordinated Al3+ (Altet/Aloct HREELS peak area ratio ≈ 0.3) than was

observed after O2 half-cycles (Altet/Aloct HREELS peak area ratio ≈ 0.5). After the

first ALD cycle, TMA reacted with both Cu2O and aluminum oxide surfaces in the
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absence of hydroxyl groups until film closure by the 4th ALD cycle. Then, TMA

continued to react with surface Al-O, forming stoichiometric Al2O3. O2 half-cycles at

623 K were more effective for carbon removal than O2 half cycles at 473 K or water

half cycles at 623 K.

6.2 Introduction

Copper is widely used for a variety of applications including water heat exchang-

ers, [35] interconnect and gate electrodes for microelectronics, [208,209] and heteroge-

neous catalysts for reactions including low temperature water-gas shift (WGS) [210]

and methanol steam reforming. [39,211] However, the use of copper in these applica-

tions is limited by corrosion in oxidative environments, [35,212] diffusion into adjacent

layers in microelectronics, [208, 213] and particle sintering and leaching in Cu-based

catalysts. [39] Recently, atomic layer deposition (ALD) of alumina using trimethy-

laluminium (TMA) has been introduced to form protective coatings on Cu surfaces

which prevent corrosion in oxidative environments, [35, 212] diffusion of Cu in Cu2S

films in photovoltaic (PV) devices, [213] and sintering of Cu-based nanoparticles in

liquid phase hydrogenation reactions. [39,124]

ALD is a variation of chemical vapor deposition (CVD) based on self-limiting

reactions of gaseous precursors with a solid surface. [121] ALD is performed in a cyclic

manner. For binary ALD reactions, each ALD cycle consists of two half-cycles during

which the surface is consecutively exposed to a precursor and a co-reactant. Between

each cycle, the reaction chamber is purged with an inert gas or vacuum. TMA is the

most widely used ALD precursor for growth of aluminum oxide films, and water is the

most common co-reactant (see, for instance, reference [31] and references therein).

Though the interaction of TMA with adsorbed hydroxyl functional groups on Al

has been studied in depth, [31] the reaction of TMA with air-exposed copper surfaces

complicates this ideal ALD picture due to the formation of a surface oxide at room

temperature. [214] Furthermore, this oxide persists and rearranges to form the ordered
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44-structure on Cu(111), [214] a structured Cu2O overlayer with unit cell size 44 times

larger than the Cu(111) unit cell, at 473-623 K, a temperature range encompassing

processing temperatures for TMA-H2O ALD with a maximum growth rate. [215] This

and other adsorbed oxygen reconstructions persist on the surface until at least 773 K.

Hydroxyl formation via water dissociation on copper surfaces is difficult. On Cu(111),

thermally induced water dissociation was not observed in UHV. [216] No adsorbed

hydroxyl species formed following exposure of clean Cu(111) to 1 Torr of water up

to 333 K, however, a pre-oxidized Cu surface readily forms hydroxyls during water

exposure at the same conditions. [217] In UHV, exposure of a pre-oxidized Cu(111)

surface to 200 L H2O at 1× 10−6 Torr at 473 K resulted in a surface with both oxide

(Cu2O) patches and patches with hydroxyls. [123]

TMA-H2O ALD performed on oxidized Cu surfaces results in low growth per cycle

during the first several cycles. An in situ copper-plated quartz crystal microbalance

(QCM) was used by Abdulagatov et al. [35] to study the ALD alumina growth on

copper oxide. They observed a nucleation delay at 450 K using TMA and water. The

nucleation delay was caused by blockage of the copper oxide surface by carbonaceous

species and/or lack of initial hydroxyl groups, however, the cause was not determined

due to the lack of chemical information. Lu et al. [123] demonstrated that alumina

grows preferentially on step edges of a partially hydroxylated oxidized Cu(111) surface

for TMA-H2O ALD. They speculate from STM images that TMA reacts with OH-

but not copper oxide.

The goal of this work was to better understand the reactivity of TMA with copper

oxide surfaces. More broadly, we sought to study the reactivity of TMA with copper

oxide and alumina in the absence of a source of hydroxyl groups and to examine the

resulting surface chemistry and morphology. The reaction of TMA with alumina has

received some attention in the literature, [182, 215, 218] however, here we used O2

as the ALD co-reactant rather than H2O to isolate the interaction with the oxide.

In order to obtain direct chemical information and elucidate the reaction pathways

of TMA with copper oxide and alumina, we coupled surface-sensitive techniques in-
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cluding X-ray photoelectron spectroscopy (XPS) and high-resolution electron energy

loss spectroscopy (HREELS) with scanning tunneling microscopy (STM) and density

functional theory (DFT) modeling. We found that TMA reacts with oxygen in both

alumina and copper oxide.

6.3 Experimental Methods

Experiments were performed in an Omicron Surface Analysis Cluster at the Birck

Nanotechnology Center (BNC) at Purdue University and at the ISISS beamline at the

BESSY II synchrotron in Berlin, Germany. The Omicron Surface Analysis Cluster

consists of an ultra-high vacuum (UHV) preparation chamber and a µ-metal analysis

chamber with base pressures of 1× 10−9 mbar and 5× 10−11 mbar, respectively. The

preparation chamber was equipped with a residual gas analyzer, an Ar+ sputtering

gun, resistive sample heating, and ALD precursor manifolds for precursor dosing,

which are connected to the system via leak valves. The analysis chamber was equipped

with XPS, HREELS, STM, low energy electron diffraction (LEED), and resistive

sample heating. The sample temperature was measured by a K-type thermocouple

attached to the sample holder.

STM images were obtained at room temperature in constant current (topographic)

mode with electrochemically etched W tips. Etched W tips were conditioned in UHV

by electron bombardment. STM images were analyzed using WSxM software. [96]

STM height measurement was calibrated by setting the step height of a monatomic

step on clean Cu(111) equal to the calculated or observed step height on clean Cu(111)

(0.208 nm).

HREELS spectra were acquired using an ELS5000 instrument (LK Technologies)

in the specular direction with a primary beam energy of 5 eV. The resolution, mea-

sured as the full width at half maximum (FWHM) of the elastic peak, was < 3 meV

(< 24 cm-1). All HREELS spectra have been normalized to the elastic peak intensity.



143

XPS data were acquired using a non-monochromatic Mg Kα X-ray source (hν

= 1253.6 eV) with gun power of 150 W. High resolution spectra were recorded at a

constant pass energy of 20 eV. The resolution, measured as the FWHM of the Cu 2p3/2

peak, was approximately 1.2 eV. Photoelectrons were collected at a photoemission

angle of 45° with respect to the surface normal.

The experimental apparatus at BESSY II has been described in detail previously.

[187] It contained a load lock and in situ cell connected to the XPS spectrometer via

differential pumping stages. The experimental procedures for sample preparation,

TMA dosing, and data collection have been described in detail. [122]

XPS data were analyzed with CasaXPS (version 2313Dev64) software. Cu 3s

peaks were fitted using an asymmetric Gaussian/Lorentzian line shape with tail damp-

ening (CasaXPS Line shape=LF(1.2,1.3,15,60)). Nonmetallic species of oxygen (O 1s)

and aluminum (Al 2s) were fitted with symmetric Gaussian/Lorentzian line shapes

(CasaXPS Line shape=GL(30)). The two most intense core level Al peaks, Al 2p

and Al 2s, overlap with the Cu 3p and Cu 3s peaks, respectively, associated with the

Cu(111) substrate. However, Al 2s formed a distinct shoulder on the Cu 3s peak,

whereas the Al 2p peak was fully masked by the Cu 3p peak and could not be decon-

voluted even after several ALD deposition cycles. Therefore, the Cu 3s/Al 2s region

was chosen for quantitative and qualitative analysis of the Al overlayer.

To calculate coverage from XPS data, we followed Fadleys approach, [62] which

assumes a non-attenuating adlayer at fractional coverage. Details of this calcula-

tion are given in Appendix A. Overlayer thicknesses were also calculated using the

approach outlined in Appendix A.

A Cu(111) single crystal disk with 10.0 mm diameter, 1.0 mm thickness (Princeton

Scientific Corp.), and crystallographic orientation accuracy < 0.5° was used. The

copper single crystal was routinely cleaned by repeated cycles of Ar+ sputtering and

vacuum annealing at 1000 K. During the initial cleaning cycles, the crystals were

treated in 5 × 10−6 mbar of O2 at 623–673 K for 20 minutes to remove adventitious

carbon. Crystal cleanliness was monitored by XPS, STM, and LEED.
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The Cu(111) crystal was exposed to TMA (Aldrich, 97%) in the preparation

chamber via a leak valve at reported exposure values and temperatures. Prior to dos-

ing TMA, several cycles of freeze-pump-thaw were performed for purification. Dosing

lines were heated overnight at 423 K, and the lines were filled with TMA and pumped

several times before dosing. Exposure values are reported in Langmuir (1 Langmuir

= 1 L = 1 × 10−6 Torr·s). During TMA dosing, ionization gauges were left on for

pressure measurement. Similar cycles of freeze-pump-thaw were performed on water

(Birck Nanograde Water, as SEMI E1.2 with the total organic carbon (TOC) reduced

from 1 ppb to 0.25 ppb). The water mini-cylinder was kept at room temperature dur-

ing the dosing. A separate dosing line and leak valve were used for water to avoid

cross contamination and accidental exposure of TMA to water in the dosing manifold.

6.4 Computational methods

DFT calculations were performed by Vienna ab initio simulation package (VASP)

[189] using projected augmented wave (PAW) [127] potential and PW91 exchange-

correlation functional. [126] The plane wave cutoff of 400 eV was used. To model

Cu(111), A three-layer slab model with (3 × 3) unit cell was used. The long-range

ordered Cu2O layer grown on Cu(111) has a well-defined structure in the literature.

[214, 219,220] The Cu2O layer on Cu(111) consists of Cu-O rings with an isolated O

located inside the ring. The appearance of this structure is further confirmed by our

STM images. To model this structure, a ring including 12 Cu and 13 O atoms on

two-layer Cu(111) with (5× 5) unit cell was used (Figure 6.1). The (4× 4× 1) and

(2 × 2 × 1) k-point meshes were used to sample the Brillouin zone for Cu(111) and

Cu2O, respectively. The bottom-layer Cu atoms were fixed and the remained atoms

and adsorbates were relaxed until the residual forces less than 0.02 eV/Å. To prevent

the artificial interaction between the repeated slabs along z-direction, 12 Å vacuum

was introduced with correction of the dipole moment.
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Figure 6.1. The optimized Cu2O/Cu(111) structure. The orange,
green, and red spheres present Cu in Cu(111) lattice, Cu in Cu2O
layer and O atoms, respectively. Adlayer atoms are not drawn to
scale for visibility.

6.5 Results and Discussion

6.5.1 Interaction of TMA and H2O on Cu Foil

The interaction of TMA with H2O on Cu foil was studied using synchrotron-

based XPS. It was found that the Al 2p BE shifted from ca. 75.1 eV after dosing

TMA to 74.7 eV after dosing water at 473 K (Figure 6.2). It was unclear if this shift

was due to the restructuring of an aluminum oxide film, such as the transition of

Al3+ from octahedral to tetrahedral coordinated sites, or the dehydroxylation of an

oxyhydroxide film (a detailed discussion is given in Chapter 5 of this dissertation).

This was a major motivation for studying TMA-O2 ALD in the absence of hydroxyl

groups.
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Figure 6.2. Cu 3p/Al 2p core-level regions obtained from TMA-H2O
ALD cycles on Cu foil by in situ XPS. (a) 2nd TMA half cycle, (b) 2nd

H2O half cycle, (c) 3rd TMA half cycle, (d) 3rd H2O half-cycle. TMA
was exposed for 2000 L at ca. 373–473 K for all TMA half-cycles, and
H2O was dosed in situ at 473 K at 0.1 mbar for all H2O half-cycles.
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Figure 6.3. Free energy diagrams of TMA dissociation on Cu(111)
and Cu2O/Cu(111). Insets are the optimized most stable structures of
adsorbed TMA, dimethylaluminum (DMA), methylaluminum (MA),
Al, and CH3, respectively. Orange, green, pink, black, red, and white
spheres represent Cu of Cu(111), Cu of Cu2O, Al, C, O, and H atoms,
respectively.

6.5.2 Interaction of TMA with Clean Cu(111)

The interaction of TMA with the clean Cu(111) surface was investigated after

TMA exposure by XPS and HREELS. The Cu 2p3/2 and Cu 3s peaks obtained from

clean, oxygen-free Cu(111) were located at 932.8 and 122.3 eV, respectively, both

within 0.1 eV of literature-reported values for metallic Cu. [68] Figure 6.6 shows the

Cu 3s/Al 2s XPS region obtained from the clean Cu(111) surface and following 2000

L TMA exposure at 473 K. The range of BEs where a contribution from the Al 2s

core level would be expected is marked by a red bar and is shown in the inset. After

TMA adsorption on Cu(111) no aluminum was observed by XPS or HREELS. This

is in agreement with the findings of Lu et al. for clean Cu(111). [123]

DFT calculations are also consistent with the lack of TMA adsorption on clean

Cu(111). Figure 6.3 shows the free energy diagram for dissociative TMA adsorption
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on Cu(111) at 473 K. The energy loss from the entropy of the gas-phase TMA (g) at

473 K was 0.84 eV and the binding energy of TMA adsorbed on Cu(111) was -0.28

eV. Therefore, the difference between the free energy level of TMA (g) and TMA*

was +0.56 eV. This means that the TMA adsorption on Cu(111) is endothermic.

Moreover, TMA dissociation on clean Cu(111) was also found to be endothermic: the

calculated energies for dissociative reactions of TMA to dimethylaluminum (DMA),

DMA to methylaluminum (MA), and MA to Al and CH3 were 0.17, 0.45, and 1.35

eV, respectively.

6.5.3 Preparation of Cu2O/Cu(111)

Oxygen was adsorbed on Cu(111) by exposing the Cu(111) surface to 4500 L O2 at

623 K. O 1s, Al 2s, and C 1s XPS core-level regions obtained from the Cu2O/Cu(111)

surface are shown in Figure 6.6, and STM images are presented in Figure 6.7. The

O 1s peak was fitted with one component at 529.8 eV, which was assigned to oxygen

in the Cu2O layer (assignment made by STM below). Reported Cu2O BEs range

from 529.9 to 531.0 eV (see Reference [221] and references therein). A slight high

BE shoulder at ca. 936.0 eV was observed in the Cu 2p3/2 core-level region following

oxygen exposure indicating that some CuO was likely also present (data shown in

Figure 6.4). The Cu 3s / Al 2s region was unaffected by the first O2 exposure.

Neither XPS nor HREELS of this surface revealed any hydroxyl species (HREELS

spectrum shown in supplementary information Figure 6.5).

Figure 6.7a shows STM images of clean Cu(111), and Figure 6.7b-e show Cu(111)

following oxygen exposure. The step edges of the clean Cu(111) surface are smooth

with step height of 0.21 nm. After oxygen exposure at 623 K, a saw-tooth pattern

is observed on the steps (Figure 6.7b), and a well-ordered oxide structure is observed

on terraces (Figure 6.7c-e). After annealing Oads/Cu(111) surfaces at 473–623 K,

Matsumoto et al. [214] observed the well-ordered “44”-structure, which consists of 7

hexagonal O-Cu-O rings in a unit cell 44 times larger than the (1 × 1) unit cell of
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Figure 6.4. Cu 2p3/2 core-level region obtained from (a)
Cu2O/Cu(111) (4500 L O2 at 623 K), (b) 1st TMA half-cycle, (c)
1st O2 half-cycle, (d) 2nd TMA half-cycle, (e) 2nd O2 half-cycle. In-
set: close of up high-BE shoulder.

Cu(111). This superficial oxide has stoichiometry Cu2O. A scheme of the 7 rings is

shown overlaying our STM image in Figure 6.7e.

The assignment to Cu2O is based on the STM images showing the “44” structure

and lack of pronounced XPS shake-up in the Cu 2p region. We cannot rule out the

presence of small amounts of Cu2+ given the surface sensitivity of our instrument.
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Figure 6.5. HREELS spectrum of Cu2O/Cu(111) surface prepared by
exposure of Cu(111) to 4500 L O2 at 623 K.

After O2 half cycles, we do see slight broadening of the Cu 2p peak high BE side

(shown in Figure 6.4), which might be indicative of the formation of some Cu2+. Cu+

and Cu0 are difficult to separate from the Cu 2p core-level as their range of reported

binding energies overlap. [68]

6.5.4 First TMA Half-Cycle

Figure 6.8 shows the HREELS spectrum obtained after Cu2O/Cu(111) was ex-

posed to 2000 L TMA at 473 K. Major peaks were detected at 608, 747 and 882
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(a) O 1s (b) Cu 3s/Al 2s (c) C 1s

Figure 6.6. O 1s, Cu 3s/Al 2s, and C 1s XPS core-level regions ob-
tained from (a) Cu2O/Cu(111) (4500 L O2 at 623 K), (b) 1st TMA
half-cycle, (c) 1st O2 half-cycle, (d) 2nd TMA half-cycle, (e) 2nd O2

half-cycle, (f) after 4 complete ALD cycles. TMA was exposed for
2000 L at 473 K for all TMA half-cycles, and O2 was exposed for
4500 L O2 at 623 K for all O2 half-cycles.

cm-1, and weaker peaks were detected at ca. 1480, 1645, and 1750 cm-1. The peak

at 608 cm-1 (ν1) was assigned to the group of stretching vibrations between tetra-

hedrally coordinated Al3+ cations (Altet) and their four nearest O2
- neighbors, the

peak at 880 cm-1 (ν3) was due to the group of stretching vibrations between octahe-

drally coordinated Al3+ cations (Aloct) and their six nearest O2
- neighbors (ν3), and

the peaks at 1480 and 1750 cm-1 correspond to ν1 + ν3 and 2ν3 multiple loss events,

respectively. [222,223]

The ratio of the peak areas of tetrahedral to octahedral alumina, Altet/Aloct,

(Figure 6.8) was 0.27. The peak at 740-770 cm-1 (ν2) (and the multiple loss event

peak ν2 +ν3 at 1645 cm-1) was not assigned. Other weak peaks that appeared at 1215

and 2920 cm-1 likely were δs(CH3) and νs(CH3)/νas(CH3) signatures, respectively, of
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Figure 6.7. STM images of (a) clean Cu(111) and (b-e) Cu(111)
exposed to 4500 L O2 at 623 K. The seven rings of the Cu2O with the
“44”-structure [214] are numbered inside image (e). Bias voltages were
−0.5 V for all images, and tunneling currents were 0.5 nA (images a,
b) and 1.0 nA (images c–e).

methyl groups attached to the copper surface. [224, 225] We did not observe a loss

peak at ca. 400 cm-1 that has been assigned previously to vertical Al-O vibrations

between in-phase alumina layers on different metal surfaces. [222] This supports the

assignment of monolayer growth during the first cycle. As shown in Figure 6.7, the

ratio of ν1 to ν3 (tetrahedral to octahedral) peak areas was 0.27.
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(a)

(b)

Figure 6.8. (a) HREELS spectra obtained after (a) 1st TMA half-
cycle, (b) 1st O2 half-cycle, (c) 2nd TMA half-cycle (d) 2nd O2 half-
cycle. (b) Area ratio between ν1 and ν3 peaks (Altet/Aloct) for each
TMA and O2 half-cycle. TMA was exposed for 2000 L at 473 K for
all TMA half-cycles, and O2 was exposed for 4500 L O2 at 623 K for
all O2 half-cycles.

After dosing TMA to the Cu2O/Cu(111) surface, the XPS O 1s peak shifted from

529.7 eV to 532.1 eV (Figure 6.6) and the shoulder of Cu 2p3/2 at 936.0 eV dis-

appeared, revealing that oxygen adsorbed on Cu was incorporated into the adlayer

structure. Similarly, surface oxides have been reduced on GaAs and Ge(100) sub-

strates during TMA exposure. [226, 227] The Al 2s contribution to the Al 2s/Cu 3s
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Figure 6.9. Alumina Al:O atomic percentage ratio versus ALD cy-
cle number. TMA was exposed for 2000 L at 473 K for all TMA
half-cycles, and O2 was exposed for 4500 L O2 at 623 K for all O2

half-cycles. Atomic percentages were calculated using Cu 3p (black
square), Cu 3s (red circle), and Cu 2p1/2 (blue triangle) peaks. In all
cases the Al 2s peak and Al-O component of the O 1s peak were used
for atomic percentage calculations.

peak envelope was observed at ca. 119.5 eV (Figure 6.6b). The O 1s (Al-O contri-

bution) and Al 2s peak areas were used to calculate O and Al atomic percentages.

The resulting Al:O atomic percentage ratios are plotted for each O2 half cycle in

Figure 6.9. For the first TMA half-cycle, the Al:O ratio was approximately 0.46. Sto-

ichiometric Al2O3 would yield an Al:O ratio of 0.66. This Al:O ratio of approximately

0.5 suggests the presence of a copper aluminate, for example CuAlO2.

STM images of the TMA-exposed surface (Figure 6.10) reveal two-dimensional

(2D) islands on the surface with an average height of approximately 0.19 nm. No long

range order of the copper surface oxide was observed. The bimodal peak distribution

in the height histogram confirmed that the islands are flat with uniform height on
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Figure 6.10. STM images of the Cu2O/Cu(111) surface exposed to
2000 L TMA at 473 K (a) 200 nm × 200 nm and (b) 100 nm × 100
nm. The tunneling current was 1.0 nA; the bias voltage was -0.75 V.

Cu(111). Some vacancies (shown by black arrows in Figure 6.10b) were also observed

on the copper surface.

TMA adsorption and dissociation on the Cu2O/Cu(111) surface was found to be

exothermic (Figure 6.3). TMA tends to adsorb at the top position on O in the Cu-O

ring via an Al atom with a binding energy of -0.93 eV, which is stronger by 0.65 eV

compared to adsorption on clean Cu(111). The free energy for TMA dissociation to

DMA is -1.91 eV, and the formed DMA is bound to the bridge site of two adjacent

O atoms in the Cu-O ring. DMA dissociation to MA is exothermic by -1.36 eV, and

the Al atom of MA is coordinates with three O atoms including the isolated O inside

the ring. The final step considered, MA dissociation to Al and CH3, is exothermic

by -0.09 eV, and the formed an Al atom is bound to three O atoms. This is the

precursor for alumina. The exothermicity of dissociative TMA adsorption on the

Cu2O/Cu(111) surface is the result of high binding energies of the intermediates on

this surface. Compared with clean Cu(111), the binding energies of DMA, MA, Al,

and CH3 are stronger on Cu2O/Cu(111) by 2.19, 3.45, 4.35, and 0.54 eV, respectively.

In conclusion, DFT calculations predicted no TMA adsorption on Cu(111) but TMA

adsorption and dissociation on Cu2O/Cu(111), consistent with experimental data.
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Both experiments and first principles calculations demonstrate that TMA is ca-

pable of reacting with a copper oxide surface in the absence of hydroxyl species. The

reaction of TMA with the Cu2O/Cu(111) layer is limited by the initial amount of

oxygen present in the Cu2O lattice. TMA consumes oxygen from the surface oxide

and reduces Cu+ to the metallic state, as evidenced by no long range order following

the TMA half cycle in STM on bare patches and the shift in the O 1s XPS peak.

Once the substrate is reduced to Cu0, the surface is inactive for further TMA adsorp-

tion and decomposition. As evidenced by the partial monolayer film growth, oxygen

must migrate across the surface, forming islands of the overlayer. Based on the Al:O

ratio of 0.46, these islands are most likely CuAlO2. The island height of 0.19 nm is

close to the reported Cu-O and Al-O bond lengths of 1.861 and 1.912 Å, respectively,

in crystalline CuAlO2. [228] During TMA adsorption on Cu2O/Cu(111), HREELS

showed that TMA decomposed on Cu2O/Cu(111), and DFT predicted that methyl

ligands were transferred from Al center to the copper surface (Figure 6.3). C coverage

was approximately 1.0 ML.

6.5.5 First O2 half-cycle

Following TMA exposure to the Cu2O/Cu(111) surface, O2 was exposed to the

resulting surface for 4500 L at 623 K. The HREELS spectrum obtained from this

surface is shown in Figure 6.8b. Compared to the first TMA half-cycle, the intensity

of the peak at 608 cm-1 related to Altet increased, and the Altet/Aloct intensity ratio

was equal to 0.51 (Figure 6.8). The δs(CH3) and νs(CH3)/νas(CH3) vibrations of the

CH3,ads groups on Cu(111) disappeared, but a weak C 1s peak was detected by XPS

(Figure 6.6). The fact that there was more octahedral Al3+ present after the TMA

cycle than after the O2 half cycle could be due to the formation of CuAlO2 after the

TMA half cycle, in which Al3+ cations are octahedrally coordinated. [228]

Curve-fitting of the O 1s peak showed two components: the component at 529.9

eV represents Cu2O (19% of the total O 1s area) and the second component at 530.8
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Figure 6.11. STM images after first O2 half-cycle (4500 L O2 at 623
K) (a) 200 nm × 200 nm and (b) 50 nm × 50 nm (c) 25 nm × 25
nm. (d) Line profile along the solid white line indicated in image (c).
It = 1.0 nA, Ut = −0.75 V.

eV is from oxygen in the copper aluminate (81% of the total O 1s area) (Figure 6.6).

For thin film alumina on transition metals, an O 1s BE of 531.2 eV has been reported

previously for thin film alumina on Pt(111). [122] The slight Cu 2p3/2 peak shoulder

reappeared at ca. 936.0 eV, consistent with the formation of some CuO (see Fig-

ure 6.4). Cu2O was also formed as evidenced by long range order observed in STM

images (Figure 6.11c). The Al 2s peak is distinguishable from the shoulder of Cu 3s

at 118.7 eV (Figure 6.6). This Al 2s peak shifted by -0.8 to 118.7 eV following O2

exposure. Lower Al 2p binding energies for aluminum oxides have been attributed to

the presence of Al3+ coordinated tetrahedrally [198, 199, 203, 204] (see discussion in

Chapter 5). In this case, the Al 2p and Cu 3p peaks overlap, but the Al 2s and Al 2p

peaks should exhibit a similar chemical shift in XPS. Here, the shift to lower BE is

consistent with the formation of alumina with an increased Altet/Aloct ratio following

the O2 half-cycle. A hydroxide-containing species can cause a similar shift of the O

1s and Al 2p (Al 2s) peaks, [140,197,201] however, no O-H stretching vibrations were

detected by HREELS after TMA or O2 half-cycles at ca. 3300 cm-1. The Al:O ratio

after the 1st O2 half cycle was approximately 0.53, nearly unchanged from after the

first TMA cycle. The resulting Al:O atomic percentage ratios after each O2 half cycle

are plotted in Figure 6.9.
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Figure 6.11 shows STM images of the copper surface after the first O2 half-cycle.

As evidenced by the well-ordered Cu2O structure that can be seen in atomic-resolution

images (Figure 6.11b and c), O2 exposure re-oxidizes the copper surface. Two other

features are observed: Aluminum oxide islands that appeared after the first TMA half-

cycle with an average height of 0.17 nm (marked by black arrow in Figure 6.11a),

and dark spots appeared on the Cu terrace. Obtaining STM images over regions with

a high density of aluminum oxide islands was problematic due to the low density of

states for achieving a stable tunneling current and therefore was avoided. Dark spots

with a triangular shape are marked inside yellow lines in Figure 6.11b. As shown

by Matsumoto et al., [214] oxygen is capable of abstracting Cu from terraces and

leaves behind triangular holes with the three-fold symmetry. Some of these pits are

decorated with bright features (apparent height of ca. 1.5 nm, Figure 6.11c and d).

These features could be Cu adatoms from the oxide structure that became mobile

and diffused across the surface until reaching a low-coordination site such as a hole

on the surface. The holes detected by STM are likely “mines” delivering copper to

the surface, as has been observed for Ag in the Cu/Ag(111) system. [229]

6.5.6 Second ALD Cycle

Figure 6.12 shows STM images obtained after the second TMA half-cycle. Numer-

ous holes were seen on terraces and islands. Terraces were covered with islands having

sharp boundaries and a ridge-like structure (marked by a rectangle in Figure 6.12b

and c). These morphological changes reflected the transition from monolayer alumina

islands after the first TMA half-cycle (Figure 6.10) to multilayer islands, as the ridge

structure is likely the second alumina layer or methyl groups. The ridges have an

apparent height of about 0.17 nm (Figure 6.12b), close to the average height for the

alumina islands (0.19 nm) after the first TMA half-cycle observed in Figure 6.10.

Similar to the first TMA half-cycle, TMA consumed oxygen from the Cu2O struc-

ture and reduced Cu oxide to Cu0 as evident from the disappearance of long range
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Figure 6.12. STM images (a) 200 nm × 200 nm and (b) 50 nm × 50
nm obtained after the second TMA half-cycle (2000 L TMA at 473
K). (c) The zoomed-in region of the highlighted section in image (b)
and the line profile along the solid line indicated in the image. The
tunneling current was 0.5 nA; the bias voltage was −0.9 V.

ordered structures of Cu2O in STM images. Unlike the first TMA half cycle, growth

is not limited to the copper oxide surface as existing alumina islands can serve as

the oxygen source. TMA reduces the aluminum oxide layer wherever the two are in

direct contact.

After the second O2 half-cycle, the Al 2s and O 1s peaks were shifted towards

lower BEs at 118.9 and 531.0 eV, respectively (Figure 6.6). As discussed above, these

peaks are characteristic of the alumina structure with the Altet/Aloct HREELS peak

area ratio of about 0.5 (Figure 6.8 inset). The Cu2O contribution in the O 1s peak was

one quarter the size (5% of the O 1s area) of the corresponding value observed after

the first O2 half-cycle, which reflected the decrease in the copper surface available

for oxygen adsorption. Most carbon was removed after the second O2 half-cycle

(Figure 6.6), consistent with HREELS (Figure 6.8).
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6.5.7 Subsequent ALD half cycles and film growth behavior

7 ALD cycles (14 half-cycles of O2 and TMA) were performed on the Cu2O/Cu(111)

surface (Figure 6.13). Each TMA half-cycle consisted of 2000 L TMA at 473 K and

each O2 half-cycle consisted of 4500 L O2 at 623 K. Alumina thicknesses calculated

from the Al 2s and O 1s peaks are plotted in Figure 6.13. Roughly linear alumina

growth is observed during the first 7 ALD cycles. The calculated thickness gain per

cycle using the Al 2s and O 1s peaks, respectively, were 3.4 and 2.8 Å. From STM

images, we conclude that Al deposition occurred on the surface with Cu2O available

and then the process proceeded on porous alumina once all Cu was covered. At

the oxygen conditions used (623 K, 4500 L, 5× 10−6 mbar), the carbon atomic per-

centage (calculated using the C 1s and Cu 3s regions) was equal to or less than 2%

for all ALD cycles. DFT calculations demonstrated that O2 dissociates on Cu(111)

to atomic oxygen. [230] This reactive atomic oxygen reacts with carbon clusters or

methyl groups.

Figure 6.14 plots O 1s and Al 2s BEs after each TMA and O2 half-cycle. The

common behavior of the O 1s and Al 2s peaks was the shift to higher BE after TMA

half-cycles and the shift to lower BE after O2 half-cycles. Based on the HREELS

data from the first two cycles, these changes were concluded to be from the transition

between the octahedral and tetrahedral coordination of aluminum cations. The Aloct

contribution increased during TMA half-cycles, and the Altet contribution increased

during O2 half cycles.

Figure 6.13 also shows alumina thicknesses and carbon atomic percentages after

each ALD cycle for a variety of co-reactant dosing conditions. In all cases, the first

TMA half-cycle was performed over Cu(111) exposed to O2 for 4500 L at 623 K to

form Cu2O. For TMA-O2 ALD when the O2 half-cycle was done at 473 K rather

than 623 K, oxygen was not as effective in carbon removal as at 623 K. The carbon

atomic percentage increased after each ALD cycle. After four ALD cycles at 473

K, carbon coverage was about 10 times higher than for the O2 half-cycle at 623 K.

Alumina growth observed for the O2 half-cycles at 473 K was much slower at these
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(a) (b)

Figure 6.13. (a) Alumina thickness versus ALD cycle for various co-
reactant dosing conditions. Dosing conditions were O2, 623 K (Black
squares, calculated using Al 2s; red circles, calculated using O 1s), O2,
473 K (red triangles, calculated using Al 2s), and H2O, 623 K (green
stars, calculated using Al 2s). (b) Carbon atomic % for various co-
reactant dosing conditions.

conditions, with a measured thickness of ca. 5 Å after 4 ALD cycles, compared to ca.

15 Å after 4 cycles with O2 dosing performed at 623 K. This slower growth is likely

due to poisoning of the surface with carbon species.

To evaluate the effectiveness of the second reactant in carbon removal and alumina

growth, O2 was replaced with water dosed at 623 K as shown in Figure 6.13. The

water half-cycles were also ineffective for carbon removal. After four ALD cycles the

carbon atomic percentage was 30%. After one H2O ALD cycle at 473 K, the alumina

thickness was about 3 Å, and the thickness did not increase for subsequent cycles. It

must be noted that carbon removal behavior at the dosing pressures of O2 and H2O

used in this study (approximately 10−6 mbar) may not be representative of the same

ALD process carried out in a typical ALD reactor at pressures of a few millibar. [122]

For ideal alumina ALD using H2O as the co-reactant, methyl ligands from TMA

are partially exchanged with surface hydroxyl groups and the precursor becomes an-

chored to the surface during the first TMA half-cycle. The detection of the CH4 group
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Figure 6.14. BEs of O 1s (red outlines) and Al 2s (solid black) peaks
after each half-cycle of TMA or O2. Squares were data points taken
after TMA half cycles, and circles were data points taken after O2

half cycles. 7 cycles total were performed. The starting surface was
the Cu2O/Cu(111) surface.

by in situ quadrupole mass spectrometry (QMS) is used to confirm this mechanism.

Ideally, the co-reactant provides the missing element (oxygen), removes the carbon

groups via hydrogen transfer to CH3, and functionalizes the surface for the upcoming

TMA half-cycle. However, as demonstrated, this ideal picture is not always fulfilled,

as TMA fully decomposes and forms an aluminate by losing all its methyl ligands

upon deposition on a hydroxide-free Cu2O surface at 473 K. TMA decomposition

leaves behind carbon atoms and clusters, and methyl groups attached to the copper

surface. Once the copper surface is completely covered, TMA continues to react with

hydroxide-free alumina.

Others have studied the reaction of TMA with oxide-terminated alumina. Dillon

et al. [182] observed the appearance of IR features assigned to CH3 stretching follow-

ing a saturation exposure of TMA to a porous alumina membrane previously annealed

to 1000 K. These IR features had an integrated absorbance equal to 72% of the same
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features following exposure of an alumina surface with a saturation amount of hy-

droxyl. These CH3 stretching features attenuated upon annealing between 300 to 860

K. [182] Puurunen et al. [218] found that TMA reacted between 353 to 573 K with

alumina pretreated between 473–1073 K. TMA decomposed above 600 K. Assum-

ing that all TMA reacts with hydroxyl groups, releases methane, and forms OAlMe

species, the amount of carbon observed on the alumina with the highest pretreat-

ment temperatures was higher than expected based on this assumption, suggesting

that TMA adsorbs dissociatively on coordinatively unsaturated Al. They found that

the amount of methyl groups present on alumina pretreated at 1073 K was 15% less

than on alumina treated at 473 K. Elliott et al. [215] showed with first principles

calculations that TMA will chemisorb on both bare alumina and hydroxylated sur-

faces, that hydroxyl coverage does not affect site density, and that adsorbed TMA

dissociates to form AlMe2, AlMe, and Me on both surfaces. However, the hydrogen

in OH- reacts with methyl groups and CH4 is evolved, so the ALD rate, which is

affected by steric hindrance of CH3 groups, is greater on hydroxylated surfaces.

Oxygen exposure temperature plays an important role in carbon removal and

alumina growth behavior. Incorporation of impurities including carbon is a major

concern in oxide dielectrics where an ultra-thin film (< 10 nm) is deposited by ALD. A

carbon-free oxide film is required to achieve high-quality microelectronic devices. [231]

As shown in Figure 6.9, the Al:O ratio is about 0.5 for the first 3-4 ALD cycles

before increasing and stabilizing at about 0.66. This transition in stoichiometry cor-

responds to film closure. As shown in the O 1s region in Figure 6.6, the Cu-O peak

from the Cu2O surface oxide is not present after 4 ALD cycles. In the first several

ALD cycles, the Al:O stoichiometry of 1:2 is due to the presence of CuAlO2. There is

more octahedral alumina after the early TMA cycles, since Al occupies the octahedral

sites in CuAlO2. [228] The presence of copper in the first few cycles forces Al into

octahedral positions. As the film closes and Cu is covered, the stoichiometry shifts to

that of alumina, Al2O3. Alumina interacts with Cu at the interface. Though there
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is no HREELS data for cycles beyond the second cycle, amorphous alumina is likely

formed by ALD at these conditions.

6.6 Conclusion

TMA does not react with or adsorb on metallic Cu(111), but TMA adsorption and

decomposition to Al is thermodynamically favorable on Cu2O. During the first half

cycle, TMA reacts with O adsorbed on Cu(111), depositing Al in the form of single

layered aluminate islands. This reduces surface copper not bound to the aluminate

to the metallic state, which does not interact with TMA. Therefore, the amount of

adsorbed O limits the growth of Al during the first half cycle.

From XPS and HREELS, TMA half cycles favor production of octahedrally co-

ordinated alumina, while O2 half cycles at higher temperature favor tetrahedrally

coordinated alumina. During the first 3 cycles while Cu is still exposed, XPS can

differentiate between O in Cu2O and CuAlO2, and TMA interacts with both Cu2O

and the aluminate. TMA continues to interact with the aluminate/alumina once Cu

is completely covered.

The choice of processing conditions in high vacuum determines the extent of car-

bon incorporation in the ALD film. Dosing TMA at 473 K and O2 at 673 K results in

a film with less carbon than when H2O is used instead of O2 at the same temperature,

and for O2 at 473 K. These alternative processing conditions result in increasing C

deposition with each ALD cycle and little or no Al adsorption after about the 3rd

ALD cycle. It was demonstrated that TMA readily reacts with oxide surfaces even

in the absence of co-adsorbed hydroxyls. For ALD applications on an air-exposed Cu

surfaces, large domains of oxides might still exist. This is of importance to thin film

applications like microelectronics and catalysis where a small number of ALD cycles

is desirable.
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7. CHARACTERIZATION AND THEORY OF RE FILMS ON PT(111) GROWN

BY UHV-CVD

7.1 Abstract

Changes in surface chemistry and morphology of Re/Pt(111) surfaces synthesized

by ultra-high vacuum chemical vapor deposition (UHV-CVD) of Re on Pt(111) were

studied by a combination of experiment and density functional theory (DFT) model-

ing. A Re oxide formed following exposure of the as-deposited Re to 1× 10−6 mbar

oxygen at 600–673 K. Subsequent annealing at 973 K resulted in oxygen desorption

and a decrease in Re coverage, as calculated by XPS and as observed by STM. This

observation was explained by DFT calculations which showed that a clean Pt sur-

face slab with subsurface Re is thermodynamically more favorable than Pt(111) with

Re on the surface. DFT calculations also predicted weaker O and CO binding on

this surface compared to both monometallic Pt and Re, and HREELS and tempera-

ture desorption measurements suggested that O binds weakly to the Pt skin surface,

with oxygen on the Pt skin desorbing from this surface following annealing at 373 K.

Trends in adsorption energies were consistent with DFT calculated d-band centers of

surface atoms for model Pt-Re structures. Comparison of HREELS data and STM

images with DFT calculated vibrational frequencies have been used to understand

the structure of rhenium oxide on Pt(111).

7.2 Introduction

Pt-Re catalysts have been used for hydrocarbon reforming since their invention

in the 1960s. [232] Recently, Pt-Re and other Pt-containing bimetallic catalysts have
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been used for aqueous phase reforming (APR) of model polyol compounds. [233–239]

Investigators have discovered many benefits of using bimetallic over monometallic

catalyst systems, specifically Pt-Re. Improved turnover rates for glycerol conversion

to syngas for Pt-Re/C catalysts were reported by Simonetti et al., [239] and Kunkes

et al. [238] discovered that the addition of Re to a Pt/C catalyst promoted the

overall rates of glycerol APR and the water-gas shift reactions by weakening CO

binding to the surface. They also found that Re prevents sintering of Pt nanoparticles.

Daniel et al. [237] similarly found that the addition of Re to Pt increased glycerol

hydrogenolysis rates and leads to measured selectivity toward 1,3-propanediol as high

as 34%. Multiple groups have found that the addition of Re to Pt catalysts promotes

the reduction of Pt. [236,237]

Understanding the nature of the active sites responsible for improvements in

APR reaction rates and selectivities on Pt-Re bimetallic catalysts remains a chal-

lenge given the complexity of this bimetallic system. Surface sensitive studies in

controlled ultra-high vacuum (UHV) environments have been used to better un-

derstand the interaction between Pt and Re using model systems on single crys-

tal and foil surfaces. [240–249] Bimetallic systems have been prepared on flat sam-

ples by evaporation of Pt on Re(0001), [243, 245, 246] by evaporation of Pt on Re

foil, [242,250,251] by evaporation of Re on Pt foil, [248] and by evaporation of Re on

Pt(111) [240, 241, 244–247, 249] and Pt(100). [244] The resulting surfaces have been

subjected to a variety of treatments including heating, oxidation, and exposure to

small probe molecules. Of special interest to many of these studies are the properties

of Re films on Pt and alloyed Pt-Re systems, formed by annealing a surface contain-

ing Re and Pt to temperatures ≥ 900 K. [240–242, 244, 248, 249] In one study, CO

was found to bind more weakly to this alloy surface than monometallic Pt or Re,

and O interaction with this surface was not detected by XPS. [240] Similarly, Duke

et al. [249] found that Pt-Re alloy surfaces on Pt(111) produced more CO2 from CO

oxidation than monometallic Pt(111) and that the alloy surface was more resistant
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to oxidation. The unique properties of Pt-Re alloy surfaces have been attributed to

electronic effects associated with this bimetallic system. [241]

In this study, bimetallic Pt-Re surfaces were synthesized by UHV chemical vapor

deposition (UHV-CVD) of Re onto Pt(111) and followed chemical and morphological

changes to the surfaces after annealing and oxidative treatments using surface sen-

sitive experiments. DFT modeling aided interpretation of the experimental results.

Briefly, we found that as-deposited Re formed an oxide upon exposure to 1 × 10−6

mbar O2 at temperatures ≥ 673 K. Oxygen desorbed at about 1000 K. This anneal-

ing resulted in Re diffusion into the Pt subsurface and increased alloying with Pt,

resulting in a surface with a Pt skin. O bound more weakly to this surface than to

monometallic Pt(111). We found that O and CO binding energies on Pt-skin surfaces

were much weaker than on a monometallic Pt or a Re film. This type of adsorp-

tion behavior, predicted in the past based on relative metal-metal bond strengths

for bimetallic systems, [252] can also be explained on the basis of calculated d-band

centers of Pt-Re systems. This work shows the power of coupling surface sensitive

characterization experiments with DFT modeling, which together can predict ther-

modynamics of adsorption processes and surface structures for the complicated Pt-Re

bimetallic system.

7.3 Experimental Materials and Methods

Experiments were performed in an Omicron Surface Analysis Cluster at the Birck

Nanotechnology Center, Purdue University. This system has been described in detail

elsewhere [22]. Briefly, it consists of a preparation chamber and µ-metal analysis

chamber with base pressures of 1 × 10−9 and 5 × 10−11 mbar, respectively. The

preparation chamber contains an Ar+ sputter gun, resistive sample heating, and leak

valves connected to gas dosing manifolds for precursor and gas dosing. The analy-

sis chamber is equipped with instrumentation for X-ray photoelectron spectroscopy
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(XPS), scanning tunneling microscopy (STM), high resolution electron energy loss

(HREELS), and low energy electron diffraction (LEED).

A Pt(111) single crystal (MaTecK) with 9.0 mm diameter, 1.0 mm thickness,

and orientation accuracy < 0.5° was used. Repeated cycles of Ar+ sputtering and

annealing at 1000 K were used to clean the crystal, as monitored by XPS, LEED,

HREELS, and STM. Re was deposited on Pt(111) by UHV-CVD using Re2(CO)10

as the precursor (98%, Strem Chemicals Inc.). Re2(CO)10 was pumped through the

dosing manifold for several minutes prior to sample dosing in the preparation chamber

through a leak valve at a pressure of approximately 5×10−6 mbar. To have sufficient

and stable pressure during precursor exposure, a mini-cylinder with Re2(CO)10 was

heated in a hot water bath. Crystal temperatures, controlled by resistive heating,

precursor temperatures, controlled by a hot water bath, and exposure times are re-

ported in Table 7.1. For annealing treatments in oxygen, the crystal was cooled in

oxygen following heating. Oxygen was pumped from the system once the crystal was

cooled for transfer from the preparation to the analysis chamber, which took approx-

imately 5 minutes. At this time, the pressures of each chamber were close to the base

pressures reported above.

HREELS data were acquired with an ELS5000 (LK Technologies). Electrons were

collected in the specular direction with primary beam energies of 5 or 7 eV. The fwhm

of the elastic peak was roughly 2.8 meV (23 cm-1) and the peak had intensity above

105 cps. All HREELS spectra have been normalized to the elastic peak intensity.

XPS data were collected using non-monochromatic Mg Kα X-rays (1253.6 eV) at

a X-ray gun power of 150 W. High-resolution core level spectra were obtained at a

constant pass energy of 20 eV with an energy spacing of 0.05 eV. XPS resolution,

expressed as the fwhm of the Pt 4f7/2 peak, was approximately 1.2 eV. Electrons

were collected at a 45° photoemission angle with respect to the surface normal. No

energy scale correction was foreseen by the analyzer manufacturer (the electron energy

analyzer - Omicron EAC 125 and the analyzer controller - Omicron EAC 2000);
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therefore, it was possible only to set the Au 4f7/2 peak at 84.0 eV by changing the

spectrometer work function.

XPS data were analyzed using CasaXPS (version 2313Dev64) software. Metal-

lic Re 4f and Pt 4f components were fit with an asymmetric line-shape with both

Gaussian (10%) and Lorentzian (90%) components and tail dampening (CasaXPS

Line-shape = LF(1, x, y, 90); x = 2 for Pt 4f and x = 1.5 for Re 4f; y = 50 for Pt

4f and y = 10 for Re 4f.) The superficial Re oxide and O 1s peaks were fit using a

symmetric line-shape with both Gaussian (70%) and Lorentzian (30%) components

(CasaXPS Line-shape = GL(30)). Spin orbit doublets for the Pt 4f and Re 4f re-

gions were subject to spacing constraints of 3.33 and 2.43 eV, respectively. Areas of

spin orbit doublets were also constrained to their expected ratios. Coverages for Re,

C, and O reported in this work have been calculated using Fadleys approach, [62]

which assumes fractional coverage of a non-attenuating overlayer on a semi-infinite

substrate. Coverage is in expressed monolayers (ML), and is the ratio of the number

of adsorbed species per surface Pt atom on Pt(111). This model is described in detail

in Appendix A.

STM images were collected with an Omicron ambient temperature UHV STM/AFM

in constant current mode. W tips were made via electrochemical etching followed by

electron bombardment in UHV. Images were analyzed using WSxM software. [96]

LEED patterns were acquired using an Omicron rear-view LEED optics with pri-

mary electron energies between 63-261 eV.

7.4 Computational Details

DFT calculations were performed using plane wave-based VASP (Vienna Ab ini-

tio Simulation Package) code. Exchange correlation energies were described using

GGA-PW91 treatment. Ionic cores were represented using the PAW (Projector Aug-

mented Wave) method. The as-deposited Re on Pt was modeled using a Re film of

1 ML coverage on the Pt(111) surface. We also looked at subsurface Re at different
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coverages to model the Pt-Re structure after annealing. (111) surfaces were modeled

using 2× 2 unit cells with 5 layers, with the bottom two layers fixed at bulk atomic

distances. The vacuum layer between the slabs was fixed at 13–14 Å. The surface

Brillouin zone was sampled using Monkhorst scheme with a 4 × 4 × 1 k point grid.

The energy cutoff was fixed at 400 eV. Self-consistent electronic iteration steps were

converged to 1.0 × 10−4 and ionic forces were converged to 0.02 eVÅ-1. Gas phase

calculations were performed in 13× 14× 15 Å unit cells. Methfessel Paxton smearing

of 0.1 eV for surface slabs and Gaussian smearing of 0.01 eV for gas phase molecules

was applied in the calculations. The binding energy of atomic oxygen was referenced

to gas phase molecular oxygen. The DFT calculated lattice constant for Pt was 3.99

Å. This is close to the experimentally reported value of 3.92 Å. [253]

7.5 Results and Discussion

The experimental results that follow three stages of the preparation and charac-

terization of the Re-Pt bimetallic system on Pt(111): (1) preparation via UHV-CVD,

(2) oxygen exposure for carbon removal and Re oxidation, and (3) subsequent anneal-

ing to increase Pt-Re alloying. The use of theory for interpretation of these results

follows.

7.5.1 Deposition of Re using UHV-CVD

The as-synthesized Re/Pt(111) surface was characterized by XPS and STM. Re2(CO)10

was dosed on clean Pt(111) surfaces, as well as on Pt(111) surfaces with residual sub-

surface Re (calculated ΘRe < 0.1 ML) several times. CVD has been used previously

for deposition of Re onto a variety of substrates, [254–257] but not for deposition of

Re onto Pt in UHV for surface sensitive studies.

The Re coverage calculated from XPS data varied between 0.4 and 1.0 ML using

a variety of dosing conditions. The Pt(111) sample temperature varied between 393

and 573 K, and precursor temperatures varied between 313 and 363 K. Immediately
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(a) Re 4f (b) O 1s

Figure 7.1. Re 4f and O 1s core level regions. Bottom spectra: after
dosing Re2(CO)10 on Pt(111) at ca. 5× 10−6 mbar, Tsample = 573 K,
Tprecursor = 353 K. Middle: after heating at 673 K in 1 × 10−6 mbar
O2 for 20 min. Top: after subsequent stepwise heating to 973 K.
Open circles: raw data after background subtraction, grey line: peak
envelope. In Re 4f region, blue line: Re0 component, red line: RexOy

component. In the O 1s region, blue dashed line: Oads component,
red dashed line: COads component.

after all precursor exposures carbon contamination with coverage ranging between 1.9

to 5.3 ML was detected. ΘO < 0.1 ML in all cases, however, indicating that adsorbed

carbon was not in the form of CO. Dosing conditions and XPS results for the four

separate experiments are summarized in Table 7.1.

The Re 4f7/2 binding energy (BE) varied between 40.5 and 40.8 eV on the as-dosed

surface. A typical Re 4f7/2 region after dosing Re2(CO)10 is shown in Figure 7.1. The

measured Re 4f7/2 BEs are 0.2-0.5 eV higher than the bulk metallic reference BE of

40.3 eV. [68] This range of BEs is similar to that observed by Ramstad et al. [241] for

sub-monolayer coverages of Re islands deposited on Pt(111) by evaporation. They fit

the Re 4f region with two components: one at 40.6 eV, assigned to Re surrounded by
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Re in a Re 2D island, and another at 40.8 eV assigned to Re on the edge of an island.

Duke et al. observed a Re 4f7/2 BE of 40.9 eV following evaporation of 2.9 ML of Re

onto Pt(111). [249]

The as-dosed surface was imaged with STM. An image of this surface is shown

in Figure 7.2. Imaging of this surface was difficult because it was very rough, and

the tip was most likely dragging carbon. Bright features cover the majority of the

surface and are assigned to Re or C clusters. The presence of carbon likely affects

the morphology of the as-deposited Re. This carbon might be responsible for the

3D particle growth observed in STM by blocking adsorption sites on Pt. The carbon

might also poison the surface, limiting the amount of Re deposited by this technique.

7.5.2 Rhenium Oxide Formation

Oxygen treatments were used to remove carbon from the as-deposited surface.

Oxygen was dosed at 1 × 10−6 mbar for a total of 20 minutes while a sample with

ΘRe = 0.8 ML was held at 673 K. The resulting Re 4f and O 1s core level regions

are shown in Figure 7.1. Following this treatment, 87% of the Re 4f envelope was fit

with a Re 4f7/2 component at 41.3 eV assigned to a rhenium surface oxide, RexOy.

The reminder of the 4f7/2 region was fit with the metallic/alloy Re component at

40.7 eV. Following the oxygen treatment, the Re coverage decreased from 0.8 to 0.6

ML, carbon coverage decreased from 3.4 to 0.1 ML, and oxygen appeared on the

surface with coverage of 0.4 ML. The O 1s region was fitted with two components: a

dominant feature at 530.6 eV and a weak feature at 532.2 eV assigned to O adsorbed

on Re and CO adsorbed on Pt, respectively. Literature reports have assigned peaks

at about 530.0 eV to O on both Pt and Re, and peaks around 532 eV to CO on both

Pt and Re. The justification for our assignment is discussed below in the presentation

of HREELS results. From XPS, the coverage ratio of the oxygen (from the total area

of O 1s) to oxidized Re (from the area of RexOy component) was 0.7. In a separate

experiment, when Pt(111) with ΘRe = 1.0 ML was exposed to O2 at 1×10−6 mbar at
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Figure 7.2. STM image of as-dosed surface (Dosing 4 in Table 7.1).
100 nm × 100 nm, It = 0.3 nA, Ut = 600 mV. From XPS, ΘRe = 0.4
ML, ΘC = 4.5 ML.

598 K, the oxygen/oxidized rhenium ratio was 0.9. The oxidized Re 4f7/2 component,

RexOy, was still located at 41.3 eV.

Based on comparison to literature, the Re 4f7/2 component attributed to RexOy

likely did not arise from a rhenium oxide with bulk stoichiometry. Tysoe et al. [248]

measured the Re 4f7/2 BEs of various Re oxides prepared by evaporating approx-

imately 10 ML of Re on a Pt ribbon and then oxidizing these surfaces in 1 atm

of oxygen at various temperatures. They reported Re 4f7/2 BEs of 42.5, 44.9, and

46.7 eV for ReO2, ReO3, and Re2O7, respectively. Binding energies of 41.3 to 41.4

eV have been attributed previously to a superficial rhenium oxide with stoichiometry
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ReO. [249,258–261] The Re 4f7/2 peaks with similar BEs were assigned by other groups

to ReOx, 0.5 ≤ x ≤ 1 [35], (BE = 41.2 eV) and to superficial oxide stoichiometries of

ReO1/3 (BE = 41.1 eV) and ReO2/3 (BE = 41.5 eV). [240] Based on these BE assign-

ments and the ReOx stoichiometry of 0.7 ≤ x ≤ 0.9 calculated using XPS data, the

superficial Re oxide stoichiometry was between ReO1/2 and ReO in our experiments.

We also note that adsorption of oxygen on other Pt-bimetallic systems has resulted

in surface segregation of the second metal, as has been observed for Pt-Ni [262, 263]

and Pt-Co. [262] Given the trend in O binding energies calculated below (see DFT

section), this seems likely for Pt with Re in the subsurface, given the observed cor-

relation of surface segregation of 3d metals with O binding energies. [262] While we

cannot eliminate the possibility of this happening with Re, we did not see any direct

evidence to suggest Re is segregating on the surface. The drop in Re coverage during

the first oxidation treatment supports the lack of Re surface segregation.

The superficial oxide surface was also investigated by HREELS (Figure 7.3). In

one experiment (Figure 7.3, left panel), the Re/Pt(111) surface was treated in 1×10−6

mbar oxygen at 673 K and cooled to 373 K in oxygen until being transferred to the

analysis chamber under UHV conditions. Initial coverage of Re on this surface was

0.6 ML. HREELS revealed a feature at 670 cm-1 which was assigned to a Re-O loss

in the rhenium superficial oxide. A summary of HREELS literature with assignments

for adsorbed CO, O, and C is given in Table 7.2. Ducros et al. [264] observed an Re-O

vibration at 580 cm-1 after oxygen adsorption on Re(0001),and Asscher et al. [265]

observed a band at 585 ± 20 cm-1 assigned to the Re-O bond on Re(0001) for co-

adsorbed CO and O. The frequency of the vibration here is higher than references for

O adsorbed on various Re surfaces in the literature. This is likely caused by clusters

of ReOx on Pt(111), which are predicted to have higher frequencies than O adsorbed

on monometallic Re (see DFT calculations below). The identity of the weak loss

peak at ca. 970 likely also results from O adsorbed on Re single atoms or very small

clusters, as per the DFT section below. The assignment of the broad, weak loss peak

at approximately 1100 cm-1 is unclear, but similar frequencies have been reported for
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(a) (b)

Figure 7.3. HREELS spectra of superficial oxide surface and subse-
quent annealing in UHV at specified temperature for 5 min. Superfi-
cial oxide surface was prepared by exposing Re/Pt(111) to 1 × 10−6

mbar O2 for 20 min. at 673 K (a) and for 10 min. at 723 K (b) followed
by cooling in O2 to 373 K and 343 K, respectively.

graphitic or carbidic carbon on Pt(111). [48] This surface was subsequently annealed

to 973 K in 100 K steps for 5 min. at each temperature. The Re-O peak attenuated

at each temperature, and all vibrations involving O disappeared by 973 K.
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In a second similar experiment (Figure 7.3, right panel), the Re/Pt(111) surface

was treated in 1× 10−6 mbar oxygen at 723 K and cooled to 343 K in oxygen before

being transferred to the analysis chamber under UHV conditions. Initial coverage

of Re on this surface was 0.9 ML. HREELS again showed a loss peak at about 670

cm-1, again assigned to O adsorbed on Re clusters, and a peak at 970 cm-1 due to O

adsorbed on Re single atoms or very small clusters. Linear CO stretching was present

at 2080 cm-1 as a result of CO adsorption on Pt from vacuum residual gas at 343 K.

No loss peak at 1100 cm-1 was detected confirming that at 723 K, graphitic and/or

carbidic carbon can be efficiently removed. Following O2 exposure, the surface was

annealed to 1023 K in 100 K steps. The Re-O peak at 970 cm-1 attenuated with

increasing temperature, and this oxygen vibration disappeared between 923-1023 K.

The oxygen atoms coordinated single Re atom/small cluster characterized by the loss

peak at 970 cm-1 showed slightly lower thermal stability and this species was present

until heated above 723 K. No Pt-O vibrations at ca. 490 cm-1 were detected.

7.5.3 Pt Skin Surface with Subsurface Pt-Re Alloy

Annealing the superficial Re oxide surfaces to 973 K or greater resulted in a

decrease in the Re coverage calculated from XPS data regardless of sample history

or initial Re coverage (see plot of Re 4f BE versus coverage in Figure 7.4). For

the experiments above, the sample with initial ΘRe = 0.8 ML had a drop in Re

coverage to 0.6 ML following annealing to 973 K. The Re coverage for Re/Pt(111) with

initial ΘRe = 0.9 ML dropped to 0.6 ML after annealing to 1023 K. In fact, through

the course of characterizing Re films in this paper, calculated Re coverage dropped

continuously as the result of annealing and oxidative treatments. The amount by

which Re coverage dropped was not easy to correlate with the specific annealing or

oxidative procedure. However, the Re 4f7/2 BE increased linearly with the decrease

in Re coverage as plotted in Figure 3 for all treatments. The Re 4f7/2 BE as a

function of Re concentration has been reported previously, and these Re coverages
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Figure 7.4. Re 4f7/2 BE plotted as a function of Re coverage calcu-
lated from the XPS data. Filled shapes (green and blue triangles,
black squares, and red circles) are from this work, with each shape
representing a different experimental series. Open black squares are
coverages calculated from linear interpolations of Re concentrations
taken from Reference [241].

interpolated from concentration values in reference [241] are also plotted in Figure 7.4

for comparison.

The drop in Re coverage, which is calculated using a non-attenuating fractional

overlayer model (see Experimental Materials and Methods section), could be due to

two factors: 1) evaporation of Re, or 2) diffusion of Re into the Pt bulk. Though we

could not eliminate the possibility of Re evaporation, it is unlikely occurring under

the experimental conditions used here. Tysoe et al. [248] observed depletion of surface

Re on a Pt foil following oxidation in 700 Torr O2 at 625 K. They attributed this loss

of Re to the formation of the volatile Re2O7 species. Following this treatment, some

Re2O7 remained on the surface, which was detected by XPS. However, we observed

no evidence of the formation of Re2O7 from XPS, and our oxygen pressure was 8
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orders of magnitude lower. Oxygen also desorbs from Re(0001) as ReO2 or ReO3

above 1700 K, [270] but temperatures used in the present study did not exceed 1100

K. Likely, diffusion of Re into the Pt bulk resulted in the attenuation of the Re 4f

XPS signal by platinum and increasing of the Re 4f BE was indicative of Re alloying

with Pt. [241,244]

An STM image taken of the Pt-skin surface is shown in Figure 7.5. The amount

of bright features on the surface in these images is much less than on the as-dosed

surface shown in Figure 7.2. Some surface features are one atomic Pt or Re step

high and others are approximately two atomic steps high. Though measuring the

exact lateral dimensions of the features was not possible due to thermal drift, the

image revealed that the bright features, likely Re that has not diffused into the Pt

subsurface, are of two sizes: small clusters and much larger agglomerates.

The Re-Pt surface alloy interacted with oxygen very differently than the as-dosed

Re surface. Figure 7.6 shows the HREELS spectra obtained following O2 dosing

and subsequent annealing to 373 K in UHV for 5 min for two similar Re-Pt surface

alloys, which were prepared by the oxidative treatment of Re2(CO)10 exposed Pt(111)

followed annealing to 973 K or higher in UHV. For all experiments, the Re-Pt surface

alloy was exposed to 1 × 10−6 mbar O2 while heating the sample to temperatures

between 373-723 K and while cooling to 273 K. Regardless of dosing conditions, all

HREELS spectra following O2 dosing revealed energy loss features at approximately

460–465 cm-1 and 2080–2085 cm-1, were assigned to the Pt-CO and C-O stretching

vibrations of CO adsorbed in the on-top configuration on Pt(111). Literature values

for these assignments are given in Table 7.2. This CO originated from vacuum residual

gas and, judging from the ν(C-O) intensity and frequency, the CO coverage was very

similar in these experiments and did not exceed 0.05 ML. Only the Pt-O vibration

appeared at 455 cm-1 when a clean Pt(111) surface (no rhenium) was exposed to O2

under similar conditions (Figure 7.7); no C-O stretching vibration was detected. This

led to the conclusion that the feature at 465 cm-1 observed after O2 exposure to the

Re-Pt surface alloy (Figure 7.6) contained the contribution of the Pt-O vibration.
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Figure 7.5. STM image of Pt-Re surface after annealing to 973 K.
100 nm × 100 nm, It = 0.3 nA, Ut = 1000 mV. From XPS, calculated
ΘRe = 0.3 ML. Features are elongated in the direction of the white
arrow due to drift.

Indeed, in a control experiment, when the Pt(111) surface was exposed to CO up to

saturation, the ratio between the intensities of ν(C-O) and ν(Pt-CO) was 1.6. For

the Re-Pt surface alloy (Figure 7.6), the ratio between the intensities of the peak at

approximately 465 cm-1 and ν(C-O) at 2085 cm-1 was 1.1 and 0.5 for O2 adsorption

temperature of 373 and 723 K, respectively. This trend was confirmed in the other

experiments and it demonstrated that the amount of oxygen adsorbed on the platinum

surface increased with O2 adsorption temperature. On the other hand, estimating

from the relative intensity of ν(Pt-O), the oxygen coverage was more than 5 times
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(a)

(b)

Figure 7.6. HREELS spectra obtained from the Re-Pt surface alloy
exposed to 1 × 10−6 mbar O2 at 373 K for 5 min (a), and at 723 K
for 10 min. (b) In both experiments, the sample was cooled in O2 to
273 K. Following O2 dosing, each sample was heated in UHV at 373
K for 5 min.

less following O2 adsorption on the Re-Pt surface alloy at 723 K (maximum amount

of Oads) compared to Pt(111). It is clear that HREELS is an inferior technique
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Figure 7.7. HREELS spectra obtained Pt(111) exposed to 1 × 10−6

mbar O2 at 673 K followed by annealing at 373 K and 473 K in UHV
for 5 min.

for quantification of adsorbates compared to temperature programmed desorption

(TPD). Unfortunately, the STM sample holder is not compatible with TPD, and

TPD was not done. In conclusion, very little O adsorbed on the Re-Pt surface alloy

during O2 exposure or CO reacted very quickly with adsorbed oxygen during transfer

to the HREELS stage and data acquisition (total time was approx. 1 hour). This is in

agreement with the XPS study by Alnot et al. [243] which showed that CO partially

reacted with adsorbed O on a Pt-Re alloy surface.

Several other vibrations not discussed above appeared on alloy surfaces and were

difficult to assign. It is interesting that after annealing of the Re-Pt alloy surfaces

at 373 K in UHV, all vibrations assigned to COads, ν(C-O) at 2085 cm-1 and ν(Pt-

CO) at 465 cm-1, and to Oads/Pt(111), Pt-O at 460 cm-1, disappeared completely

(Figure 7.6), while the other vibrations were still detectable. The DFT calculation

helped to understand the nature of these vibrations. The peaks between 630–990 cm-1

could be due to Re-O stretching vibrations for varying Re coverages and Re cluster

sizes (see DFT section below). The assignment of low frequency features at 275 and
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365 cm-1 and high frequency feature at 1190 cm-1 are unclear, but may be related to

vibrational modes of oxygen atoms coordinated with platinum and rhenium atoms. It

should be noted that the Re 4f peaks were unaffected by O adsorption on the Re-Pt

surface alloys.

Once again, we would like to underline that Oads thermal stability changed on

the Re-Pt surface alloys compared with Pt(111) and Re monometallic surfaces. On

Pt(111), oxygen desorbs between 600–1100 K (see reference [271] and references

therein). O desorbs from Re(0001) [272] and from polycrystalline Re [273] at about

1700 K. In our case, ReOx/Pt(111) decomposed between 923 and 973 K as shown

by HREELS (Figure 7.3). However, it is not very fair to compare the decomposi-

tion/desorption temperatures obtained in TPD and HREELS experiments. In our

case, cooling in UHV was slow and Oads could react on a warm surface with residual

gases, resulting in an apparent lowering of the desorption temperature. In a control

experiment, O desorbed from the clean Pt(111) surface at 473 K as shown in Fig-

ure 7.7. This desorption temperature is lower than those reported in the literature

(reference [271] and references therein) due to reaction with residual gas, however,

this temperature is higher than what was observed on the Re-Pt surface alloy where

Oads desorbed at 373 K. This confirmed that Oads was destabilized by the presence of

rhenium.

7.5.4 DFT Calculations

O binding energies were computed on different surfaces as shown in Figure 7.8.

The as-dosed Re on Pt(111) was modeled using a pseudomorphic film of Re on Pt(111)

(Figure 7.8b). Segregation of Re into the bulk of Pt was modeled by assuming a Re

sublayer in Pt with different coverages of Re (Figures 7.8c to 7.8f). The structure

shown in Figure 7.8f, with a full monolayer of Re in the subsurface, was found to be

more stable than that in Figure 7.8b by 3.39 eV per unit cell. This result indicates

that Re strongly prefers to segregate into the Pt substrate. This is in agreement with
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Figure 7.8. Close packed surface structures used in DFT calculations:
(a) Monometallic Pt(111) (b) Re film on Pt (c):(f) Re sub layer of
coverage (c) 0.25 (d) 0.5 (e) 0.75 and (f) 1.0 ML. Blue spheres = Re,
Grey spheres = Pt.

other theoretical results where Pt segregation was found to be favorable in Pt-Re

bimetallic systems. [274,275]

The results of the calculations of O adsorption on these structures have been sum-

marized in Table 7.3. The Re-film-on-Pt binds O more strongly than does monometal-

lic Pt. However, the structures with Re present in the subsurface are found to bind

O much more weakly than monometallic Pt. Increased Re coverage in the subsurface

increases the degree of weakening. The DFT calculated trend in O adsorption energy

is consistent with experimental measurements where as-dosed Re on Pt was found

to bind O more strongly than pure Pt, but Pt-Re alloys formed after annealing and

desorption of oxygen bound O more weakly than pure Pt. These results indicate that

one possible reason for the alloy weakly adsorbing oxygen may be due to segregation

of Pt to the top layer with concomitant Re segregation into the bulk of Pt. Structures

having sub surface Re also adsorb CO more weakly than monometallic Pt.

Since the lattice constant of all the structures in the calculations were kept con-

stant at the optimum lattice constant of monometallic Pt, the change in O binding

energy in the different structures can be attributed to electronic effects. To under-

stand the effect of electronic structure on the adsorption energies, we calculated the
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d-band centers of the surface atoms of the structures shown in Figure 7.8. The results

are shown in Table 7.4. We find that the presence of subsurface Re in Pt (structures c

through f) lowers the d-band center of surface Pt atoms, resulting in weaker binding

of O as compared to monometallic Pt (structure a). The structure with a Re film on

Pt (structure b), however, has a much higher d-band center than pure Pt and adsorbs

O very strongly.

DFT-calculated vibrational frequencies for adsorbed O and CO on monometallic

Pt, Re film on Pt, and the Re sublayer in Pt with a monolayer of Re coverage are

shown in Table 7.5. The calculated frequencies agree with literature values reported

in Table 7.2. The trend in the M-adsorbate frequency is consistent with the trend

in binding energies of the adsorbates. This is not surprising as an increased stretch-

ing frequency could be associated with stronger binding. Quite different from these

results, however, HREELS performed on the superficial rhenium oxide was seen to

exhibit peaks at much higher frequencies of 670 cm-1 and 970 cm-1, which are assigned

to Re-O bonds of rhenium oxide. The exact structure of the oxide surface is difficult

to ascertain, however, and in order to gain some insight into the effect of oxide struc-

ture into the stretching frequency of oxygen, we performed DFT calculations on some

model oxide structures, as shown in Figure 7.9. The stretching frequencies of oxygen

in these structures are reported in Table 7.6. The stretching frequencies of oxygen in

the oxide are, in general, higher than that of an oxygen adsorbed on Re, as reported

in Table 7.5. For a uniform rhenium oxide film on Pt(111), the frequency is 570 cm-1

for ReO and 563 cm-1 for ReO2. However, the frequency is much higher if the oxide

is present in the form of a cluster, even if it has same oxidation state as an oxide film.

The calculated stretching frequency for a single ReO cluster is 982 cm-1 while for

ReO2 it is 909 cm-1. These trends indicate that the superficial oxide experimentally

observed, with a peak at 670 cm-1, is possibly a cluster bigger than the single Re

atom clusters considered in the calculations, but it is not quite a uniform oxide film.

The HREELS peaks observed at 970 cm-1, however, can be due to the presence of
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Figure 7.9. Rhenium oxide structures on Pt(111) (a) ReO film (b)
ReO2 film (c) single ReO islands, and (d) single ReO2 islands. Grey
spheres = Pt, blue spheres = Re, red spheres = O.

additional Re-O clusters on the Pt surface. This analysis is consistent with the STM

image shown in Figure 7.5, which reveals a distribution of Re cluster sizes.

The lack of evidence of oxygen adsorption on the Pt-Re alloy surface, predicted

to contain a Pt skin by DFT, as observed by experiment and confirmed by DFT cal-

culations, is in agreement with observations in Reference [240], where dosing O2 on

a Re/Pt(111) surface following annealing did not result in formation of a superficial

oxide as detected by XPS. Pt-Re alloy systems are also known to bond CO more

weakly than either monometallic Pt or Re. [238,240] Furthermore, CO oxidation ac-

tivity is enhanced on Pt-Re alloy surfaces, resulting in more CO2 produced compared

to monometallic Pt(111). [249] Therefore, even if O did adsorb on the Pt-skin surface,

it may have reacted with residual CO in the vacuum chamber at room temperature

during the 5 minute transfer to the HREELS stage. Further, Pt skin formation is

consistent with experiments which show Re coverage dropping following annealing.

The results for O/CO binding are consistent with our HREELS data, showing no

evidence of O or CO binding on Re sites on the annealed surface. Our analysis of the

d-band centers further shows that the lower adsorption energies on Pt skin surfaces

can be correlated to a decrease in the d-band center of the surface Pt atoms. Finally,
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vibrational frequency calculations were found to be consistent with both literature

and experimental observations and indicate that the superficial rhenium oxide on

the Pt(111) surface could be present in the form of rhenium oxide islands on Pt, in

agreement with STM images.

7.6 Conclusions

Studying changes to the Re/Pt(111) system using surface sensitive experiments

in UHV and DFT modeling provided detailed information on the morphology of this

system and how it interacts with adsorbates.

• UHV-CVD is able to deposit sub-monolayer amounts of Re on Pt(111) using

Re2(CO)10 as a precursor.

• The as-deposited Re film readily forms a superficial oxide in 1 × 10−6 mbar

oxygen at temperatures greater than 573 K. The stoichiometry of this surface

oxide is between ReO0.5 and ReO. ReOx/Pt(111) decomposes at approximately

973 K.

• Annealing the superficial oxide surface to 973 K in UHV results in the decrease

of the calculated surface coverage of Re from XPS. Subsequent annealing treat-

ments reduce the Re coverage further and increase the Re 4f BE relative to the

as-dosed surface, indicating greater alloying of Re with Pt.

• STM indicates that the Re surface coverage decreases during these conditions.

• The annealed Pt-Re alloy surface likely forms at least a partial Pt skin. Oxygen

adsorption on Re sites is hindered, and oxygen binding to Pt sites is weaker

compared to Pt(111). CO from vacuum residual gas can adsorb the Pt-Re

surface alloy exposed to O2, which does not happen on Oads/Pt(111).

• DFT predicts that a Pt substrate with a monolayer of subsurface Re is more

stable than one with a monolayer of Re on top of Pt.
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• DFT predicted O/CO binding on Pt skin surfaces are much weaker than that

on monometallic Pt or on a monolayer of Re deposited on Pt.

• The trends in binding energy can be explained on the basis of d-band centers

of Pt-Re systems. The DFT calculated trend in vibrational frequencies for

adsorbed oxygen is consistent with binding energies. Vibrational frequency

calculations for rhenium oxide indicate the oxide could be present in the form

of islands on the Pt, some of which might be ReO clusters.
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Table 7.2.
Summary of vibration frequencies for O and CO adsorbed on Pt(111)
and Re(0001). * = This work, DFT calculation.

Vibrational Mode Frequency / cm-1

Catalyst Re(0001) Pt(111)

ν(M-CO) (on top)

415, [264]

405± 15, [265]

428 [266]

470, [267] 466*

ν(C=O) (on top)

1990-2050, [264]

2010± 15, [265]

2054 [266]

2100, [267] 2059*

ν(M-CO) (bridge) 380 [267]

ν(C=O) (bridge) 1850 [267]

ν(M-O)
560-585, [264]

550, [265] 540, [266]

490, [268] 480, [269]

466*

ν(M-O) (oxide) 760 [268]

ν(M-C)
495, [264] 709

(hcp) [266]
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Table 7.3.
DFT calculation results. Oxygen adsorption energies are referenced
to a gas phase oxygen molecule.

O Adsorption CO Adsorption

Structure
Adsorption

Site

Adsorption

Energy

Adsorption

Site

Adsorption

Energy

A FCC -1.28 FCC -1.72

B HCP -3.73 Top -2.15

C FCC -1.07 FCC -1.57

D FCC -0.99 Top -1.51

E FCC -0.90 Top -1.48

F FCC -0.89 Top -1.51

Table 7.4.
Comparison of O adsorption energies with d-band center.

Structure O Adsorption Energy / eV d-band Center / eV

A -1.28 -1.94

B -3.73 -1.18

C -1.07 -2.12

D -0.99 -2.34

E -0.90 -2.56

F -0.89 -2.67
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Table 7.5.
DFT calculated vibrational frequencies for adsorbed oxygen.

Structure ν(M-O) / cm-1 ν(M-CO) / cm-1 ν(C-O) / cm-1

A 436 466 2059

B 486 460 1983

F 425 431 2040

Table 7.6.
DFT calculated vibrational frequencies for oxygen in rhenium oxide on Pt(111).

Structure ν(Re-O) / cm-1

A 570

B 563 (Upper O) ; 493 (Lower O)

C 982

D 909
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8. XPS CHARACTERIZATION OF PT-MO/MWCNT BIMETALLIC

CATALYSTS FOR HIGH PRESSURE VAPOR PHASE

HYDRODEOXYGENATION OF LIGNIN-DERIVED MODEL COMPOUNDS

8.1 Abstract

A series of Pt-Mo bimetallic catalysts have been synthesized, characterized, and

tested for their ability to remove oxygen from lignin model compounds. Lignin com-

prises up to 40% of the total energy content of biomass, [276] and is a promising

feedstock for the production of renewable fuels and chemicals. This chapter focuses

on the XPS characterization of these Pt-Mo bimetallic catalysts, which were able

to completely deoxygenate several lignin-derived model compounds in yields greater

than 98% in the vapor phase. XPS characterization as it relates to the other char-

acterization techniques is discussed, and an overall picture of catalyst structure is

presented. For information on catalyst performance and details on the other charac-

terization methods, refer to reference [277].

8.2 Experimental Methods

X-ray Photoelectron Spectroscopy (XPS) measurements were performed using a

Kratos Axis Ultra DLD with monochromatic Al Kα radiation (hν =1486.6 eV) at

constant pass energies of 20 eV for high resolution region scans and 160 eV for survey

scans. Spectra were collected with an anode power of 75 W. Fresh catalysts were

loaded into a stainless-steel sample holder capable of holding 5 different samples.

Prior to analysis, samples were reduced under 35 sccm H2 and 50 sccm Ar flow

at atmospheric pressure for 2 hours at 450°C. Samples were reduced in a standard
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Kratos catalytic cell connected to the XPS chamber via a transfer arm so that reduced

samples could be transferred between the two chambers without air exposure.

The binding energy scale was calibrated to the Au 4f7/2, Cu 2p3/2, and Ag 3d5/2

signals at 84.0, 932.7, and 368.3 eV, respectively, using a sputter-cleaned sample

consisting of each type of foil. All spectra were analyzed using the CasaXPS software

program, version 2.3.16 PR 1.6 (Casa Software Ltd.). Binding energies were charge

corrected to the graphitic C 1s component associated with the MWCNT support at

284.6 eV. A linear or Shirley type background was subtracted from each region before

curve fitting and quantification. Metallic Mo 3d species (Mo0, molybdenum carbide-

like phase) and the Pt 4f region were fit with an asymmetric Gaussian-Lorentzian

peak with tail dampening (CasaXPS Lineshape = LF) and non-metallic molybdenum

species (Mo4+, Mo6+) were fit with symmetric Gaussian-Lorentzian peaks (CasaXPS

Lineshape = GL). Positions, fwhms, lineshapes, and lineshape parameters for the Mo

3d and Pt 4f region deconvolutions are listed in Tables 8.1 through 8.5.

Doublets arising from spin orbit coupling in the Pt 4f (4f7/2 and 4f5/2) and Mo

3d (3d5/2 and 3d3/2) regions were subject to spacing constraints of 3.33 eV and 3.13

eV, respectively [25]. The Pt 4f5/2 peak area was set to 0.75 times the area of the Pt

4f7/2 peak, and the Mo 3d3/2 area was constrained to 0.67 times the area of the Mo

3d5/2 peak. fwhms of all spin orbit coupling doublets in the Pt 4f and Mo 3d regions

were constrained to be equal with the exception of the Mo 3d5/2 and Mo 3d3/2 lines

assigned to Mo metal as alloy or isolated nanoparticles. This exception was made

based on a reference Mo foil for which the Mo 3d3/2 peak was wider than the Mo

3d5/2 peak.

Quantification of relative region areas was performed following background sub-

traction, yielding atomic % values for each element present assuming a homogeneously

mixed sample. Each area was divided by the spectrometer transmission function, rel-

evant Scofield relative sensitivity factor, and electron inelastic mean free path.
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Table 8.2.
XPS spectra fwhm values for the Mo 3d region for the Pt-
Mo/MWCNT series, 5%Pt/MWCNT, and 2.46%Mo/MWCNT cat-
alysts.

Mo0 Mo carbide-like Mo4+ Mo6+

Catalyst 3d5/2 3d3/2 3d5/2 3d3/2 3d5/2 3d3/2 3d5/2 3d3/2

5% Pt-Mo(1:0.05) n/a n/a n/a n/a n/a n/a n/a n/a

5% Pt-Mo(1:0.5) 0.800 1.033 0.925 0.925 2.321 2.321 2.313 2.313

5% Pt-Mo(1:1) 0.766 0.872 1.095 1.095 2.208 2.208 2.208 2.208

5% Pt-Mo(1:2) 0.667 0.815 1.208 1.208 2.175 2.175 2.283 2.283

5% Pt-Mo(1:5) 0.692 0.824 1.205 1.205 2.582 2.582 2.573 2.573

2.46% Mo 0.619 0.619 1.333 1.333 1.768 1.768 2.947 2.947

Table 8.3.
XPS fwhm values for the Pt 4f region for the Pt-Mo series, 5%Pt, and
2.46%Mo MWCNT-supported catalysts.

Catalyst 4f7/2 4f5/2

5% Pt-Mo(1:0.05) 1.249 1.249

5% Pt-Mo(1:0.5) 1.180 1.180

5% Pt-Mo(1:1) 1.174 1.174

5% Pt-Mo(1:2) 1.117 1.117

5% Pt-Mo(1:5) 1.116 1.116

5% Pt 1.024 1.024

8.3 Results

This section is presented in two parts: in the first, the base case 5% Pt-Mo/MWCNT

(Pt:Mo = 1:1) catalyst is compared with monometallic Pt and Mo catalysts, and the
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Table 8.4.
XPS lineshapes for the Mo 3d region for the Pt-Mo bimetallic series,
5%Pt, and 2.46%Mo MWCNT-supported catalysts.

Catalyst Mo0 Mo carbide-like Mo4+ Mo6+

5% Pt-Mo(1:0.05) n/a n/a n/a n/a

5% Pt-Mo(1:0.5) LF(1,2.5,50,90) LF(1,2.5,50,90) GL(60) GL(60)

5% Pt-Mo(1:1) LF(1,2.5,50,90) LF(1,2.5,50,90) GL(80) GL(80)

5% Pt-Mo(1:2) LF(1,2.5,50,90) LF(1,2.5,50,90) GL(60) GL(60)

5% Pt-Mo(1:5) LF(1,2.5,50,90) LF(1,2.5,50,90) GL(60) GL(60)

2.46% Mo LF(1,2.5,50,90) LF(1,2.5,50,90) GL(80) GL(0)

Table 8.5.
XPS lineshapes for the Pt 4f region for the Pt-Mo bimetallic series,
5%Pt, and 2.46%Mo MWCNT-supported catalysts.

Catalyst Pt 4f

5% Pt-Mo(1:0.05) LF(1,3,80,90)

5% Pt-Mo(1:0.5) LF(1,2.3,70,90)

5% Pt-Mo(1:1) LF(1,2,50,90)

5% Pt-Mo(1:2) LF(1,2,50,90)

5% Pt-Mo(1:5) LF(1,2,50,90)

5% Pt LF(1,2.5,50,30)

justification for peak assignments and deconvolutions are presented. In the second

section, the deconvolutions are applied to a series of Pt-Mo bimetallic catalysts of

varying Mo:Pt ratios.
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8.3.1 Comparison of Pt-Mo Catalyst to Pt and Mo Catalysts

X-ray Photoelectron Spectroscopy (XPS) measurements were conducted to de-

termine catalyst chemical information and to quantify overall atomic ratios on the

fresh, reduced catalysts. The Pt 4f7/2 regions on the 5%Pt/MWCNT and 5%Pt-

Mo/MWCNT catalysts were fit in each case with a single asymmetric peak at bind-

ing energies (BE) of 71.4 and 71.8 eV, respectively. The Pt 4f7/2 peak on the

5%Pt/MWCNT monometallic catalyst was assigned to metallic Pt; a BE value of

71.2 eV has been reported for metallic Pt. [68] The shift to higher BE on the bimetal-

lic catalyst relative to the monometallic catalyst indicated the presence of PtxMoy

alloy phase(s) based on previous XPS studies on Pt-Mo systems; [233, 278–280] the

corresponding alloy Mo 3d5/2 line at 228.3 eV is discussed below. The Pt 4f regions

for the 5%Pt/MWCNT and 5%Pt-Mo/MWCNT catalysts are shown in Figure 8.1a.

The Mo 3d envelope for the bimetallic 5%Pt-Mo/MWCNT catalyst was fit with

four species: Mo0 (26% of total envelope area), a molybdenum carbide-like species

(38%), Mo4+ (18%), and Mo6+ (18%), as shown in Figure 8.1B. The 3d5/2 peak of

the Mo0 species appeared at a BE of 228.3 eV. This peak was assigned primarily to a

PtxMoy alloy phase(s) based on the Pt 4f chemical shift to higher BE for the 5%Pt-

Mo/MWCNT bimetallic catalyst relative to the 2.46%Mo/MWCNT monometallic

catalyst, and the difference in BE between the Mo 3d and Pt 4f peaks, which is indica-

tive of a Pt-rich Pt-Mo alloy. [279] Speculation on the possible alloy composition(s)

is presented in the discussion section. This peak also incorporates some reduced

monometallic Mo0, but this is likely a minority species given its reduced contribution

to the overall Mo 3d peak envelope in the monometallic 2.46%Mo/MWCNT catalyst

relative to the 5%Pt-Mo/MWCNT bimetallic catalyst (5% and 26%, respectively).

The Mo 3d5/2 component at 229.0 eV was assigned to a molybdenum carbide-

like species. Barthos et al. [280] observed the appearance of a shoulder at 228.9 eV

after treatment of MoO3/MWCNT in H2 between 400°C and 500°C. This shoulder

dominated the XP spectrum, shifted to 227.8 eV after H2 treatment at 700°C, and

was attributed to molybdenum carbide. The H2 reduction temperature of 450°C and



199

(a) Pt 4f (b) Mo 3d

Figure 8.1. (a) Pt 4f region for 1) 5%Pt-Mo and 2) 5%Pt MWCNT-
supported catalysts (Pt0, solid blue; Pt fit components, solid black;
data, red dots) and (b) the Mo 3d region for 1) the 5%Pt-Mo
and 2) 2.46%Mo MWCNT-supported catalysts (Mo6+, magenta
dash/dot/dot; Mo4+, blue dash/dot; Mo carbide-like species, green
dash; Mo0, solid red; all Mo fit components, solid black; data, red
dots).

observation of a Mo 3d5/2 peak at 229.0 eV in the present work are in agreement

with the intermediate state observed by Barthos et al. [280], suggesting that the

carbide formed was not stoichiometric Mo2C. This assignment was supported by

the Mo-Mo bond distance of 2.88 Å from XAS reported above, which fell between

that reported for a metallic foil (2.76 Å) and a stoichiometric Mo2C (2.96-2.97 Å)

[281]. Determination of the stoichiometry of this carbide-like species by XPS was not

successful due domination of the C 1s region by the MWCNT support signal.
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The balance of the Mo 3d peak envelope was composed of Mo4+ as MoO2 (3d5/2 BE

= 230.6 eV) and Mo6+ as MoO3 (3d3/2 BE = 232.6 eV). Numerous references report

binding energies for these Mo species with reported Mo4+ 3d5/2 BEs ranging between

229.1–231.0 eV [282–287] and reported Mo6+ 3d5/2 BEs ranging between 232.3 - 232.8

eV [282–285, 287]. No internal Mo oxide standards were used to determine XPS

binding energies on the MWCNT supports, therefore the assignments of Mo4+ and

Mo6+ (the most stable oxidation states of Mo) may include some Mo in defect states

like Mo5+.

The monometallic 2.46%Mo/MWCNT catalyst Mo 3d region was fit with the

same four Mo species. The region was composed of Mo0 (228.2 eV, 5% of total region

area), a carbide-like species (229.0 eV, 43%), Mo4+ (230.0 eV, 26%), and Mo6+ (232.5

eV, 26%).

Platinum and molybdenum binding energies and percentages of each Mo compo-

nent relative to the total Mo 3d region areas for the Mo:Pt = 1:1 5%Pt/MWCNT,

5%Pt-Mo/MWCNT, and 2.46%Mo/MWCNT catalysts are given in Table 8.1. Fwhm

fitting values are given in Tables 8.2 and 8.3. Detailed region scans of the C 1s and O

1s regions were also performed for all catalysts and the as-received MWCNT support.

Quantification yielding the Pt:Mo atomic ratio was performed via integration of

the XPS total Pt and Mo regions. For the fresh nominal 5% Pt-Mo/MWCNT catalyst

(Pt:Mo = 1:1), the Pt:Mo ratio calculated by this method was 1 : 1.22± 0.06.

8.3.2 Pt:Mo Bimetallic Catalyst Series

Catalyst chemical information from deconvolution of the Mo 3d and Pt 4f regions

and overall quantification of Mo:Pt atomic ratios for bimetallic catalysts of varying

Mo:Pt ratios was also obtained by XPS. Binding energies and percentages of each Mo

component relative to the total Mo 3d region areas for the Pt-Mo catalysts are given

in Table 8.1. The deconvolution of the Mo 3d region on the nominal Mo:Pt 0.05:1

catalyst was omitted due to the poor signal-to-noise ratio as a result of the low Mo
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Figure 8.2. Pt 4f region for (1) 2%Pt-Mo(1:5), (2) 2.5%Pt-Mo(1:2),
(3) 5%Pt-Mo(1:1), (4) 5%Pt-Mo(1:0.5), (5) 5%Pt-Mo(1:0.05), and (6)
5%Pt MWCNT-supported catalysts (Pt0, solid blue; Pt fit compo-
nents, solid black; data, red dots)

loading. Binding energies for the Pt 4f region for each Pt-containing catalyst are also

given in Table 8.1. Region scans (Pt 4f, Mo 3d) for the Pt-Mo catalyst series are

shown in Figures 8.2 and 8.3, and fwhm values and other XPS fitting information are

given in Tables 8.1 through 8.5.

The Pt 4f7/2 BEs for the bimetallic catalysts were higher than for the monometallic

Pt catalyst in all cases, as seen in Table 8.1 and Figure 8.2. As the Mo loading
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Figure 8.3. Mo 3d region for (1) 2%Pt-Mo(1:5), (2) 2.5%Pt-Mo(1:2),
(3) 5%Pt-Mo(1:1), (4) 5%Pt-Mo(1:0.5), (5) 5%Pt-Mo(1:0.05),
and (6) 2.46%Mo MWCNT-supported catalysts (Mo6+, magenta
dash/dot/dot; Mo4+, blue dash/dot; Mo carbide-like species, green
dash; Mo0, solid red; all Mo fit components, solid black; data, red
dots).

increased, the Pt BE increased by ca. 0.3 eV for the Mo:Pt = 0.5:1 sample and then

increased and stabilized at ca. 71.8 eV for the 3 higher Mo loading samples (Mo:Pt

= 1:1, 2:1, and 5:1). As described above, this shift was attributed to the existence of

a PtxMoy alloy phase(s).
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The Mo 3d envelopes were fit with 4 species: Mo0 (as a PtxMoy alloy phase(s) or

isolated Mo monometallic nanoparticles), a molybdenum carbide-like phase, Mo4+ as

MoO2, and Mo6+ as MoO3. Justification for these assignments is given above. As

reported in Table 8.1, binding energies for each species changed across the series of

catalysts. The BE ranges for Mo6+ (232.3 to 232.6 eV), Mo4+ (230.0 to 230.6 eV),

and the carbide species (228.8 to 229.0 eV) did not follow any trend, and the changes

in BE from one catalyst to another were likely due to slight differences the chemical

environments of these species perhaps arising from differences in preparation, or due

to artifacts of the XPS curve fitting. The BE for the Mo0 peak associated with a

Pt-Mo alloy changed from 228.3 to 228.2 eV with increasing Mo loading relative to

Pt loading.

The percentage of each Mo component in the Mo 3d region as a function of

increasing Mo loading relative to Pt is shown in Figure 8.4. The clearest observed

trend for the change in % of total Mo 3d envelope with increasing Mo loading was that

the fraction of Mo0 decreased from 29% to 5%, while the carbide-like species increased

from 28% up to 43% for the nominal Mo:Pt = 2:1 catalyst, and then remained about

constant. The Mo6+ and Mo4+ species contribution to the overall envelope ranged

across the series from 15% to 25%, but did not follow an apparent trend.

Overall Mo 3d and Pt 4f region quantification yielded an Mo:Pt ratio for each

catalyst. In Figure 8.5, the nominal Mo:Pt ratios are compared to Mo:Pt ratios

calculated by XPS.

8.4 Discussion

A brief summary of the discussion presented in reference [277] follows, with a focus

on the results obtained by XPS.
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Figure 8.4. % area of Mo 3d peak envelope as determined by XPS
for Mo oxidation states as a function of increasing Mo loading: Mo0

(black squares), Mo carbide-like species (red circles), Mo4+ (blue
triangles), Mo6+ (green X). Infinity on the x-axis represents the
2.46%Mo/MWCNT catalyst

8.4.1 Monometallic Platinum Particles and Alloying of Platinum and Molybdenum

Although both monometallic Pt and PtxMoy nanoparticles were observed on the

fresh, reduced catalysts by STEM, the XPS Pt 4f region was fit using only one species,

as no spectral features existed to justify fitting the Pt 4f region with more than one

species. However, the FWHMs for the Pt 4f lines of the bimetallic catalysts are larger

than for the monometallic Pt catalyst, indicating a broader range of Pt chemistries for

the bimetallic catalyst, explaining this discrepancy between STEM and XPS results.
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Figure 8.5. Mo:Pt ratio as a function of increasing Mo loading for
the peak envelopes determined from XPS (black X) and the nominal
catalyst synthesis loading (blue diamond).

Alloying of Pt with Mo was supported by XPS due to the shift of the Pt 4f peaks

to higher binding energy and the decrease in normalized intensity of the Mo0 peak

for the pure Mo catalyst. STEM and EXAFS results support the assertion that the

extent of alloying increased with additional Mo loading. The Pt 4f7/2 XPS peak BE

increased with increasing Mo loading up to the Mo:Pt=1:1 bimetallic catalyst, then

remained about constant around 71.8 eV. The change in the Pt 4f7/2 BE for the Pt-

Mo catalysts relative to the monometallic 5%Pt/MWCNT catalyst BE of 71.4 eV is

shown in Figure 8.6. This BE shift was due to increased alloying of the Pt with Mo as
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Figure 8.6. The difference in the XPS Pt 4f7/2 and Mo03d5/2 BE
as a function Pt:Mo ratio (right axis, blue circles), difference in
XPS Pt 4f7/2 BE of the Pt-Mo/MWCNT catalysts relative to the
5%Pt/MWCNT catalyst as a function of Pt:Mo ratio (left axis, red
squares), and difference in XAS Pt E0 of the Pt-Mo/MWCNT cata-
lysts relative to the 5%Pt/MWCNT catalyst as a function of Pt:Mo
ratio (left axis, green triangles).

the Mo loading increased. A similar trend was observed with XAS, and the difference

in the XAS Pt E0 of the Pt-Mo/MWCNT catalysts relative to the 5%Pt/MWCNT

catalyst E0 of 11.5640 keV is also shown in Figure 8.6. The increasing shift seen

with XAS tracks with the shift observed by XPS for Mo loadings up to the Mo:Pt

= 1:1 catalyst. On the higher Mo-loaded catalysts (Mo:Pt=2:1 and Mo:Pt=5:1), a

shift was observed with XAS whereas the shift measured with XPS stabilized for
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these higher Mo loading catalysts. The shift in Pt 4f BE from XPS implies that the

alloy composition reaches saturation, but the edge shift in XAS implies that alloying

does not reach a saturation composition, even at the highest Mo loading (Mo:Pt =

5:1). This is likely because the signal from the Mo-rich alloy in the higher Mo loading

catalysts is attenuated by other Mo phases. XAS, which is a bulk averaging technique,

is not affected, whereas XPS is a surface averaging technique. Support for this idea

comes from STEM and the XPS quantification: more large patches attributed to

MoOx or MoxC phases were visible in STEM, and only for the Mo:Pt=5:1 catalyst

is the XPS-calculated Mo:Pt ratio is below the nominal value (nominal is 5:1, XPS

calculates 4.3:1 Mo:Pt, see Figure 8.5). Therefore, the alloy composition does not

reach saturation, and continues to become Mo rich as Mo loading is increased across

the whole series.

Determination of the average PtxMoy alloy stoichiometry from XPS was attempted,

but was complicated by the appearance of both mono- and bimetallic Pt-containing

nanoparticles in STEM images, indicating that the total Pt 4f region area represented

both of these phases. Furthermore, the existence of monometallic Mo0 phase could

not be eliminated by XPS. However, the assigned Mo0 XPS peak almost disappeared

on the monometallic 2.46%Mo/MWCNT catalyst. This supports the assignment of

the Mo0 observed on the bimetallic catalysts to Mo0 present in a Pt-Mo alloy, agreeing

with the Pt XPS BE shift suggesting alloying and the observation of alloy particles

via STEM/EELS. Additionally, alloy nanoparticles dispersed on MWCNTs may have

different electronic properties than bulk alloys. Despite these issues, comparison of

the XPS alloy results for the 5%Pt-Mo/MWCNT catalyst to literature values is pre-

sented below. For these comparisons, the differences in binding energies between the

Pt 4f7/2 and Mo03d5/2 (BE = 228.2 eV) lines was used to avoid complications arising

from differences in charge correction or binding energy reference.

The difference in Pt 4f7/2 and Mo0 3d5/2 BEs can be calculated from Table 8.1.

Grgur et al. [278] reported a +0.3 eV shift to 71.4 eV of the Pt 4f7/2 line on a bulk

Pt77Mo23 alloy relative to the metallic Pt BE. This was accompanied by a -0.5 eV shift
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in the Mo 3d alloy line to 227.3 eV compared to a metallic sample. The difference in

BE between these two lines was 155.9 eV, about 0.6 eV smaller than the difference

between the two peaks for the bimetallic catalyst in this work. Neophytides et al. [279]

varied the Pt:Mo atomic ratio of Pt-Mo alloys over the range 0 to 80 atomic % Pt

and found that the Pt 4f7/2 BE ranged from 70.9 eV at low Mo loadings to 71.5 eV at

higher loadings, and the Mo 3d5/2 BE ranged from 227.4 eV for pure Mo metal to 228.2

eV for lower Mo loadings. Interpolation of this data implies that the average alloy

composition of the bimetallic catalysts in this study was roughly between a Pt2Mo and

Pt3Mo alloy, and as Mo loading increases, the alloy composition approaches Pt2Mo.

Interpolation of the binding energy difference in Neophytides et al. [279] is the same

approached used by Dietrich et al. [233] for a Pt-Mo alloy catalyst supported on

Norit activated carbon, and the authors reported binding energy difference matched

exactly with that reported for a Pt3Mo alloy. EXAFS coordination numbers presented

in reference [277] also suggest the presence of a Pt-rich alloy.

8.4.2 Molybdenum Oxide and Carbide Phases

The phase consisting of monometallic Mo observed via STEM showed well-distributed

patches that appeared to wet the MWCNT surface. STEM line-scans also showed

that the molybdenum patches were located in regions surrounding or underneath

monometallic Pt or bimetallic Pt-Mo particles. Based on the XPS results, these

Mo only patches were attributed to molybdenum carbide-like and molybdenum oxide

phases.

Assignment of a molybdenum carbide-like phase was made based the observed

Mo-Mo bond distance of 2.87 Å from XAS and deconvolution of a Mo 3d5/2 peak

at 229.0 eV in the XPS spectrum. The molybdenum carbide BE of 229.0 eV from

XPS would suggest the carbide was not a stoichiometric Mo2C, but an intermediate

carbide-like state that could potentially be: a MoxC phase, an oxycarbide phase, or a

thin Mo2C phase with a passivating oxide layer on the surface. This assignment was
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Figure 8.7. Average calculated Mo oxidation state versus increas-
ing Mo loading for the Pt/MWCNT, Pt-Mo/MWNCT series, and
Mo/MWCNT catalysts. Molybdenum in carbide-like species as 2+ is
shown as red squares; molybdenum in carbide-like species as Mo0

is shown as blue diamonds. Infinity on the x-axis represents the
2.46%Mo/MWCNT catalyst.

consistent with the fit bond distance of 2.87 Å from the EXAFS, which was consistent

with an intermediate carbide-like phase as opposed to a fully formed stoichiometric

Mo2C phase (R = 2.97 Å). [281,288]

The presence of a molybdenum oxide was also consistent with the EXAFS results,

which showed Mo-O coordination representative of an oxide phase. The amount

of molybdenum oxide and molybdenum carbide-like phases relative to the total Mo
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amount increased on the higher loading Mo catalysts. The STEM images visually

show Mo patches with increasing area and frequency on the higher Mo loading sam-

ples. The Mo-Mo (Mo carbide) and Mo-O (Mo oxide) CNs from EXAFS increased

with Mo loading, as the amount of molybdenum carbide and molybdenum oxide

phases increased. XPS analysis trends for the change in % of the total Mo 3d enve-

lope with increasing Mo loading showed a higher fraction of molybdenum carbide-like

species (up to nominal Mo:Pt=2:1, after which it remained constant) and a lower frac-

tion of alloyed Mo0 (Figure 8.4). This supports the earlier discussion where as more

Mo was loaded, some alloyed with Pt, and the additional Mo formed more molybde-

num oxide and molybdenum carbide-like phases. The average Mo oxidation state was

calculated for each catalyst based on the XPS Mo 3d region. Since the average formal

charge of the molybdenum carbide-like state was unknown, the average Mo state was

calculated assuming the formal charge was either 0 or 2+. In all cases, and for either

formal charge, the average oxidation state for all catalysts was between 0 and 4+, in

agreement the average oxidation states predicted by XAS. Average oxidation states

are plotted in Figure 8.7.

8.5 Summary

Combined analysis of all the catalyst characterization techniques showed changes

in the structures and phases present on the Pt-Mo catalysts as the Mo loading in-

creased. The catalysts can be grouped into three categories of structure. The first

category was a Pt-rich structure as seen on the Pt monometallic catalyst and the

lowest Mo loading Mo-Pt = 1:0.05 catalyst. In general, as the Mo loading increased,

the amount of monometallic Pt particles decreased as more Pt-Mo bimetallic particles

were formed, relative to the total number of metal nanoparticles on each sample. The

alloy particles were estimated to be between Pt2Mo and Pt3Mo in stoichiometry at

the lowest Mo loadings, and approached Pt2Mo at the higher Mo loadings.
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The additional Mo at higher Mo catalyst loadings resulted in formation of more

of the molybdenum oxide and molybdenum carbide-like phases. The second catalyst

category, as seen on the intermediate Mo loading catalysts (Mo:Pt = 0.5:1, 1:1, and

2:1), contained a mix of Pt particles, Pt-Mo particles, molybdenum carbide-like, and

molybdenum oxide phases. The third category, as seen on the highest Mo loading

Mo:Pt = 5:1 catalyst, was dominated by the molybdenum carbide and molybdenum

oxide phases.
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9. SUMMARY AND RECOMMENDATIONS

The goal of this section is primarily to offer recommendations for future work, since

each dissertation chapter already has a conclusion section. To briefly summarize the

ALD alumina work, the idea that ALD is a neat, layer-by-layer synthesis method for

alumina on different transition metal surfaces should be discarded. As shown by work

in this dissertation, the identity of the substrate ultimately decides the chemistry and

morphology of alumina films for the first few ALD cycles. The notion that initial co-

reactant functional groups are absolutely necessary (in this case, -OH on Pd and Pt)

should also be thrown out. Real ALD processes are much more complicated and, as is

the case on transition metal surfaces, the substrate itself should be thought of as one

of the precursors, as its catalytic ability determines film structure. I sincerely hope

that the use of ALD to synthesize model catalyst systems continues in the Purdue

catalysis center, especially as many of our labs approach state-of-the-art technology.

Coupled with theoretical contributions from Prof. Jeff Greeley’s research group and

others, this type of research has the potential to be very powerful.

The missing piece of this dissertation, and perhaps ultimate goal of this research, is

to couple the ALD-synthesized model systems with ambient pressure batch reactions,

as was performed here on bare Pt catalysts for formic acid decomposition, which was

shown to be a structure insensitive reaction. To complete a project of this scale in

the duration of a Ph. D. is daunting, as kinetic measurements on monometallic single

crystal systems are difficult as is. In this author’s opinion, the best way forward is

to first build upon the work done during the past several years by myself and the

others that are acknowledged in this thesis by focusing on improving our ability to

understand the interaction of molecules with surfaces in UHV before making the leap
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to ambient pressure. Immediately, I recommend that attention is focused on the Omi-

cron cluster in the Surface Analysis Laboratory in Birck. The installation of a cooling

system in the analytic chamber, new STM electronics, and an evaporation source are

underway. The next technique which would add the most capability would be a fast

mass spectrometer capable of measuring multiple masses simultaneously for temper-

ature programmed experiments. Given our ability to synthesize alloys and metal

oxides with ALD and soon evaporation, the combination of available techniques to

probe the resulting surfaces will be very powerful. Though the specific system studied

depends of course on the funding situation, we have found that ALD specifically is

great for depositing sub-monolayer amounts of a material, which is often difficult by

evaporation. This is an area that could differentiate our lab from the rest. Work is

already underway on Pd-Zn alloys synthesized using diethyl zinc as a Zn source on

Pd(111).
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A. XPS MODELS

Differential photoelectron peak intensity as a function of photoemission angle,

dN(θ), from a bounded, uniform density material can be written as:

dN(θ) = I × ρ× dσ

dΩ
× Ω(Ekin, x, y, z)×D × exp

(
−z

Λ(Ekin)× cos θ

)
dxdydz (A.1)

where I is the X-ray flux, constant in most spectrometer systems at constant hν; Ω is

the acceptance solid angle of the electron analyzer which is a function of photoelectron

kinetic energy, Ekin, and the position; D is the instrument detection efficiency, which

is the probability that an escaped electron encompassed by the acceptance solid angle

will yield a single count; ρ is the number of atoms or molecules per unit volume, dσ
dΩ

is

the differential cross section for the photoemission peak, which can be calculated from

Scofield cross sections [289] and the Reilman asymmetry parameter, [193] Λ is the

electron attenuation length calculated using NIST SRD-82; [188] and θ is the electron

takeoff angle relative to the surface normal. The exponential term is the probability

for no-loss escape from the specimen where z
cos θ

is the path length.

Integrating over x and y and from the surface to a depth of thickness t,∫
dN(θ) =

∫ ∞
−∞

∫ ∞
−∞

∫ t

0

I × ρ× dσ

dΩ
× Ω(Ekin, x, y, z)×D

× exp

(
−z

Λ(Ekin)× cos θ

)
dxdydz

(A.2)

Solving for N(θ),

N(θ) = I × Ω(Ekin)× A(Ekin)×D(Ekin)× ρ× dσ

dΩ
× Λ(Ekin)× cos θ

×
(

1− exp

(
−t

Λe(Es)× cos θ

)) (A.3)

where A is the effective sample area.
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A.1 Non-attenuating Overlayer at Fractional Monolayer Coverage

This derivation follows Fadley’s approach. [62] Substrate peak intensity for a semi-

infinite substrate, represented by subscript s, is calculated by taking the limit of

Equation A.3 as t tends to infinity:

Ns(θ) = Is × Ωs(Es)× As(Es)×Ds × ρs ×
dσs
dΩ
× Λsubst

e (Es)× cos θ (A.4)

Peak intensity from the overlayer, represented by subscript l, is given by:

Nl(θ) = Il × Ωl(El)× Al(El)×Dl × sl ×
dσl
dΩ

(A.5)

where sl is the average surface density of atoms in the overlayer. The ratio of

overlayer to substrate peak intensity is:

Nl(θ)

Ns(θ)
=

Il × Ωl(El)× Al(El)×Dl × sl × dσl
dΩ

Is × Ωs(Es)× As(Es)×Ds × ss
ds
× dσs

dΩ
× Λsubst

e (Es)× cos θ
(A.6)

where ρs = ss
ds

, and ds is the average separation of layers of density ss in the

substrate. Solving for sl
ss

yields the coverage, Θ:

Θ =
sl
ss

=
Nl(θ)× Is × Ωs(Es)× As(Es)×Ds × dσs

dΩ
× Λsubst

e (Es)× cos θ

Ns(θ)× Il × Ωl(El)× Al(El)×Dl × dσl
dΩ
× ds

(A.7)

For XPS done with a typical laboratory source, Is = Il and Ds = Dl for constant

pass energies. Assuming that Ω and A are equal for the overlayer and substrate,

Equation A.7 simplifies to:

sl
ss

=
Nl(θ)× Ωs(Es)× As(Es)× dσs

dΩ
× Λsubst

e (Es)× cos θ

Ns(θ)× Ωl(El)× Al(El)× dσl
dΩ
× ds

(A.8)

For XPS done at the BESSY II synchrotron, where hν is usually adjusted so

that Ekin is constant, Es = El, Ds = Dl for constant pass energies, and θ = 0 deg.

Assuming that Ω and A are equal for the overlayer and substrate, Equation A.7

simplifies to:
sl
ss

=
Nl(θ)× Is × dσs

dΩ
× Λsubst

e (Es)

Ns(θ)× Il × dσl
dΩ
× ds

(A.9)
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A.2 Thickness of a Uniform Overlayer

Peak intensity from an overlayer Nl(θ) follows from integrating Equation A.6 over

z from 0 to t:

Nl(θ) = Il × Ωl(El)× Al(El)×Dl × ρl ×
dσl
dΩ
× Λl(El)× cos θ

×
(

1− exp

(
−t

Λl(El)× cos θ

)) (A.10)

where Λl(El) is the electron attenuation length of an electron originating from the

overlayer with kinetic energy El. For the substrate, Equation A.6 is integrated over

z from t to ∞, yielding:

Ns(θ) = Is × ρ×
dσs
dΩ
× Λe(Es)× cos θ ×

(
1− exp

(
−t

Λe(Es)× cos θ

))
(A.11)

where Λl(Es) is the electron attenuation length of an electron originating from the

substrate with kinetic energy Es passing through the overlayer. The intensity ratio

for the overlayer to the substrate signal takes the form of the following equation,

assuming constant pass energy (Ds = Dl) and that Ω and A are constant for the

overlayer and substrate:

Nl(θ)

Ns(θ)
=

Il × ρl × dσl
dΩ
× Λl(El)× cos θ

Is × ρs × dσs
dΩ
× Λs(Es)× cos θ

×

(
1− exp

(
−t

Λl(El)×cos θ

))
exp

(
−t

Λl(Es)×cos θ

) (A.12)

For in situ XPS experiments performed at the BESSY II synchrotron, El = Es,

so Λl(Es) ≈ Λl(El). Also, cos θ = 1. In this case, thickness can be explicitly solved:

t = Λl(El)× ln

(
Nl(θ)× Is × ρs × dσs

dΩ
× Λs(Es)

Ns(θ)× Il × ρl × dσl
dΩ
× Λl(El)

+ 1

)
(A.13)

A.3 In situ Carbon Coverage Calculation

Due to adsorption of X-rays by the in situ cell window, quantification of the C 1s

signal was not successful following the above procedures for experiments performed at

BESSY II. Instead, this coverage was estimated by dosing CO in saturation (assumed
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to be 0.5 ML on Pt(111) [71]), and using atomic concentration ratios as outlined below

to calculate carbon coverages on Pt(111) and Pd(111).

Carbon coverage on surface i, Θi was estimated by comparison of atomic concen-

tration C
Pt

ratios between CO saturated Pt(111) and the surface C
Pt

ratio for surface

i on Pt(111):
C

PtCO,sat′d
=

0.5ML

Θi

(A.14)

Θi = 0.5ML×
C
Pt i

C
Pt CO,sat′d

(A.15)
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B. FORMIC ACID DECOMPOSITION MECHANISMS

B.1 Single Site Formate Decomposition Mechanism

The overall rate of the reaction, assuming that formate decomposition (Equation 2.3

in the main text) is the rate determining step, is written as:

r = k2[HCOO · S] (B.1)

Assuming quasi-equilibrium for the other elementary steps, equations can be writ-

ten for each step. For formic acid adsorption (Equation 2.2):

K1[HCOOH][S]2 = [HCOO · S][H · S] (B.2)

For hydrogen recombination (Equation 2.4):

K3[H · S]2 = [H2][S]2 (B.3)

Finally, for CO adsorption (Equation 2.5 in the main text):

K4[CO][S] = [CO · S] (B.4)

Substituting Equation B.3 into Equation B.2 and solving for [HCOO · S] yields

the following:

[HCOO · S] =
K1K

1/2
3 [HCOOH][S]

[H2]1/2
(B.5)

Solving Equation B.3 for [H · S] yields:

[H · S] =
[H2]1/2[S]

K
1/2
3

(B.6)

And solving Equation B.4 for [CO · S] yields:

[CO · S] = K4[CO][S] (B.7)
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A site balance can now be written where L is the total number of sites.

L = [S] + [HCOO · S] + [H · S] + [CO · S]

= [S] +
K1K

1/2
3 [HCOOH][S]

[H2]1/2
+

[H2]1/2[S]

K
1/2
3

+K4[CO][S]

= [S]

(
1 +

K1K
1/2
3 [HCOOH]

[H2]1/2
+

[H2]1/2

K
1/2
3

+K4[CO]

) (B.8)

Solving the site balance for [S] and combining Equations B.1, B.5, and B.8 yields

the rate expression.

r =
LK1k2K

1/2
3 [HCOOH]

[H2]1/2
(

1 +
K1K

1/2
3 [HCOOH]

[H2]1/2
+ [H2]1/2

K
1/2
3

+K4[CO]

) (B.9)

The reaction order with respect to formic acid, nHCOOH , is determined by taking

the log derivative of the log formic acid concentration:

nHCOOH =
∂ln r

∂ln[HCOOH]

= [HCOOH]
∂ln r

∂[HCOOH]

=
K1K

1/2
3 [HCOOH]

[H2]1/2
(

1 +
K1K

1/2
3 [HCOOH]

[H2]1/2
+ [H2]1/2

K
1/2
3

+K4[CO]

)
(B.10)

Dividing both sides of Equation B.5 by L yields the formate coverage, θHCOO:

θHCOO =
[HCOO · S]

L
=
K1K

1/2
3 [HCOOH][S]

[H2]1/2L
(B.11)

Combining Equation B.11 with the site balance (Equation B.8) allows for the

formic acid reaction order to be expressed as a function of formic acid coverage as

follows:

nHCOOH = 1− θHCOO (B.12)

Similar expressions can be derived for the hydrogen and CO orders using the same

approach:

nH2 = −1

2
+
θHCOO

2
− θH2

2
(B.13)
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nCO = −θCO (B.14)

The measured nHCOOH = 0.4 and nCO = −0.4 yield formate and CO coverages

equal to 0.6 and 0.4 ML, respectively. For θH2 = 0, nH2 = −0.2.

B.2 Dual Site Formate Decomposition Mechanism

A rate equation and reaction orders in terms of adsorbate coverages can be calcu-

lated similarly for a dual site formate decomposition mechanism. In this mechanism,

Equation 2.3 in the main text is replaced by Equation 2.7 in the main text, with all

other steps remaining the same. The derived rate expression is as follows:

r =
zk2[HCOO · S][S]

L
(B.15)

where z is the coordination number. The rate expression as well as reaction orders

expressed in terms of coverages, expressed in terms of gas phase concentrations, are

obtained in the same manner as for the single site mechanism above.

r =
zLK1k2K

1/2
3 [HCOOH]

[H2]1/2
(

1 +
K1K

1/2
3 [HCOOH]

[H2]1/2
+ [H2]1/2

K
1/2
3

+K4[CO]

)2 (B.16)

nHCOOH = 1− 2θHCOO (B.17)

nH2 = −1

2
+ θHCOO − θH2 (B.18)

nCO = −2θCO (B.19)

The measured nHCOOH = 0.4 and nCO = −0.4 yield formate and CO coverages

equal to 0.3 and 0.2 ML, respectively. As above, for θH2 = 0, nH2 = −0.2.
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