
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

January 2015

BINARY INSTRUMENTATION AND
TRANSFORMATION FOR SOFTWARE
SECURITY APPLICATIONS
Zhui Deng
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Deng, Zhui, "BINARY INSTRUMENTATION AND TRANSFORMATION FOR SOFTWARE SECURITY APPLICATIONS"
(2015). Open Access Dissertations. 1348.
https://docs.lib.purdue.edu/open_access_dissertations/1348

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1348?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1348&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form 30
Updated 1/15/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:

 Head of the Departmental Graduate Program Date

Zhui Deng

BINARY INSTRUMENTATION AND TRANSFORMATION FOR SOFTWARE SECURITY APPLICATIONS

Doctor of Philosophy

Dongyan Xu
Chair

Xiangyu Zhang

Ninghui Li

Sonia Fahmy

Dongyan Xu and Xiangyu Zhang

Sunil Prabhakar 07/24/2015

BINARY INSTRUMENTATION AND TRANSFORMATION

FOR SOFTWARE SECURITY APPLICATIONS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Zhui Deng

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2015

Purdue University

West Lafayette, Indiana

ii

To my wife Yuetling Wong

iii

ACKNOWLEDGMENTS

First of all, I would like to thank my advisors, Professor Dongyan Xu and Professor

Xiangyu Zhang for their guidance and support throughout my PhD study. Professor

Xu taught me to how to do research, guided me to become a mature and responsible

researcher and provided me the freedom and the facilities to do the research I was

interested in. Professor Zhang helped me getting over many di�culties and challenges

with his expertise in the area of binary analysis. He was always available for discussing

ideas and sharing invaluable comments and suggestions. This dissertation would not

have been possible without their support and advice.

I would also like to thank Professor Ninghui Li and Professor Sonia Fahmy for

taking time o↵ from their busy schedule to serve on my advisory committee. Their

insightful feedback and comments helped me to significantly improve this dissertation.

My gratitude also goes to the current and former FRIENDS lab members whom I

have interacted with during my graduate studies: Chao Wu, Fei Peng, Cheng Cheng,

Zhongshu Gu and Cong Xu, to name a few. It has been a pleasure for me to work

with these brilliant colleagues. I really enjoyed our discussion ranging from research

to real life. Also, I want to thank my mentor Mengyao Li during my internship at

Google for his help and advice on my career path.

Finally and most importantly, I would like to thank my wife Yuetling for her

persistent and generous support over the years. She solely took care of our family

while working on her PhD degree at the same time. Also, I must thank my daughter

Iris who has brought me so much happiness ever since she was born. It was her smile

that helped me through the toughest times in my graduate school career.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . viii

1 INTRODUCTION . 1
1.1 Thesis Statement . 4
1.2 Contributions . 4
1.3 Dissertation Organization . 6

2 BISTRO: BINARY COMPONENT EXTRACTION AND EMBEDDING 7
2.1 Introduction . 7
2.2 Overview and Assumptions . 10
2.3 Problems with Existing Techniques 12
2.4 Basic Algorithm for Binary Extraction/Stretching 15
2.5 Handling Indirect Control Transfer 17

2.5.1 Handling Indirect Calls . 18
2.5.2 Handling Indirect Jumps . 22

2.6 Handling Data References . 23
2.7 Evaluation . 24

2.7.1 Performance: E�ciency and Overhead 24
2.7.2 Case Study I: Binary-level Semantic Patching Using BISTRO 27
2.7.3 Case Study II: Malware Stitching Using BISTRO 32
2.7.4 Case Study III: Trojan-ing Kernel Drivers 34

2.8 Limitation . 36
2.9 Related Work . 37
2.10 Summary . 39

3 SPIDER: STEALTHY BINARY INSTRUMENTATION VIA HARDWARE
VIRTUALIZATION . 41
3.1 Introduction . 41
3.2 Related Work . 42
3.3 Overview . 46
3.4 Design . 48

3.4.1 Splitting Code and Data View 48
3.4.2 Handling Breakpoints . 50
3.4.3 Monitoring Virtual-to-Physical Mapping 51

v

Page
3.4.4 Handling Code Modification 55
3.4.5 Data Watchpoint . 56
3.4.6 Handling Timing Side-E↵ect 56

3.5 Implementation . 57
3.6 Evaluation . 59

3.6.1 Transparency . 60
3.6.2 Case Study I: Attack Provenance 61
3.6.3 Case Study II: Stealthy Introspection 64
3.6.4 Performance Overhead . 66

3.7 Summary . 67

4 IRIS: VETTING PRIVATE API ABUSE IN IOS APPLICATIONS . . . 69
4.1 Introduction . 69
4.2 iOS Background . 72

4.2.1 Function Invocations . 72
4.2.2 Private API . 74
4.2.3 iOS Runtime Security . 75
4.2.4 Execution of iOS Application 76

4.3 Porting Valgrind to iOS . 79
4.4 Resolving API Call Targets . 80

4.4.1 Overview . 80
4.4.2 Resource Analysis . 82
4.4.3 Static Analysis . 84
4.4.4 Iterative Dynamic Analysis 89

4.5 Evaluation . 91
4.5.1 Case Study: A Suspicious Advertisement Service Provider . 95

4.6 Limitation . 97
4.7 Related Work . 98
4.8 Summary . 100

5 CONCLUSIONS . 102
5.1 Future Work . 104

LIST OF REFERENCES . 106

VITA . 114

vi

LIST OF TABLES

Table Page

2.1 Performance of Bistro . 26

2.2 Results of binary semantic patching using Bistro 29

2.3 Trojan-ed device drivers . 34

3.1 Transparency of Spider and other debuggers/DBI frameworks 59

4.1 Uses of private APIs detected by iRiS in iOS applications 92

4.2 Private API invocations in a utility application 95

vii

LIST OF FIGURES

Figure Page

1.1 Binary transformation and instrumentation frameworks 5

2.1 Overview of Bistro . 10

2.2 Examples of detour using trampoline 13

2.3 Di�culties of binary component transplanting 14

2.4 Indirect call handling in binary stretching/extraction 17

2.5 Binary stretching with anchors . 19

3.1 Overview of Spider . 46

3.2 Monitoring guest virtual-to-physical mapping 52

3.3 Overhead of using Spider to perform instrumentation for BEEP . . . 63

3.4 Overhead of Spider with regard to the number of breakpoint hits . . . 66

4.1 Di↵erent forms of function invocations in iOS application 72

4.2 Event driven execution of iOS application 76

4.3 Overview of iRiS . 81

viii

ABSTRACT

Deng, Zhui Ph.D., Purdue University, August 2015. Binary Instrumentation and
Transformation for Software Security Applications. Major Professors: Dongyan Xu
and Xiangyu Zhang.

The capabilities of software analysis and manipulation are crucial to counter soft-

ware security threats such as malware and vulnerabilities. Binary instrumentation

and transformation are the essential techniques to enable software analysis and ma-

nipulation. However, existing approaches fail to meet requirements (e.g. flexibility,

transparency) specific in software security applications.

In this dissertation, we design and implement binary instrumentation and trans-

formation systems specifically for software security applications. First, we present

Bistro, a static binary transformation framework that can extract/embed binary

components from/into existing binaries without source code, symbolic or relocation

information. We propose two algorithms to patch both direct and indirect control-

flow transfer instructions when performing static binary transformation. Second, we

present Spider, a dynamic binary instrumentation framework that enables e�cient

instruction-level instrumentation that is transparent to the instrumented binary pro-

gram. In Spider, we propose a novel instrumentation primitive based on hardware

virtualization called invisible breakpoint to replace traditional software breakpoint

for better transparency, and design an algorithm to monitor the virtual-to-physical

address mapping in hardware memory virtualization. Finally, we present iRiS, an

iOS application vetting system for detecting private API uses. We propose a novel

analysis of iOS applications using a combination of static analysis and dynamic bi-

nary instrumentation, and build iRiS on top of a dynamic binary instrumentation

framework ported to iOS by us.

ix

We build the prototypes of the three aforementioned systems and evaluate their

performance against real-world binary programs. Bistro is able to transform large-

scale binary programs such as Adobe Reader, and incurs trivial runtime overhead

(1.9% on average) and small space overhead (11% on average). Spider remains

transparent against all state-of-the-art anti-instrumentation detections, and incurs

reasonable overhead which is similar to hardware breakpoint. We also apply Bistro

and Spider in five scenarios to demonstrate their e↵ectiveness in software security

applications. iRiS successfully identified 149 (7%) malicious applications from 2019

applications that have passed the o�cial application vetting process of iOS. From

these malicious applications, iRiS has found the usage of a total number of 153

di↵erent private APIs including 28 security-critical APIs that access sensitive user

information such as device serial number.

1

1 INTRODUCTION

Software industry has advanced significantly over the last decade. Large companies

are building more and more complicated software to accommodate the ever-growing

needs of software users. At the same time, Internet allows a large number of individual

and small groups of software developers to create and distribute their software. This

trend is further amplified by the booming sale of mobile devices such as smartphones

and tablets in recent years; by the end of 2014, there are more than one million

applications available in each of the two major mobile platforms, iOS and Android.

With the fast growth of both the complexity and the total number of software

products, the security of software users becomes an increasing concern. The wide va-

riety of software distribution channels enable malicious attackers to easily distribute

malicious software or trojan-ed legitimate software with malicious logic embedded.

Even legitimate software might contain vulnerabilities which could be exploited re-

motely by malicious attackers to control and steal information from the victim soft-

ware user. Vulnerabilities are very common in software from individual or small

teams of developers due to programming error and lack of proper tests. Even for

software produced by large companies or organizations, vulnerabilities still exist and

often cause significant impacts due to the large number of users. For example, the

notorious Heartbleed vulnerability in the widely-used OpenSSL cryptographic library

has a↵ected around half a million websites certified by trusted authorities, allowing

attackers to steal servers’ private keys and user passwords.

To defend against the aforementioned attacks, it is necessary to be able to analyze

and manipulate software. For example, software analysis allows users to detect mali-

cious software or identify which component in a trojan-ed software contains malicious

logic. Software manipulation allows users to remove the malicious logic in a trojan-

2

ed software to restore it to its legitimate state, or patch vulnerabilities in legitimate

software to prevent potential attacks.

Software analysis and manipulation are challenging in practice. Although open-

source software is becoming prevalent nowadays, many software products are still

distributed in the form of binary executables. Software developers compiles source

code written in a high-level programming language (e.g. C/C++) to target exe-

cutable in binary form (e.g. x86/ARM instructions) to allow the program being

directly executed on the CPU, which provides much faster execution than an inter-

preter or simulator. However, the high-level program structural information (e.g.

functions, loops, classes, etc.) is stripped or lost during this process. Although it

is possible to let the compiler keep that information in symbol files for the purpose

of debugging, software developers, especially commercial o↵-the-shelf (COTS) soft-

ware vendors usually choose not to disclose the symbol files in order to better protect

their intellectual properties from being reverse-engineered. Therefore, the capabili-

ties of binary program analysis and manipulation without source code and symbolic

information is crucial in analyzing and manipulating practical software.

There are two types of binary program analysis and manipulation approaches:

static and dynamic. Static binary transformation operates on the binary program

itself and produces another stand-alone binary program that can execute on its own.

On the other hand, dynamic binary instrumentation operates on the execution of

the binary program. It usually involves an additional runtime environment to inject

additional code to the instruction sequence executed at runtime. Although there are

many existing binary transformation and instrumentation frameworks in both cate-

gories, they are either not designed specifically for security or have serious limitations

that prevent their e↵ective usage in software security applications.

None of the existing static binary transformation frameworks [1–10] supports bi-

nary component extraction and embedding, which is an important pair of primitives

in a wide range of software security application scenarios. For example, in semantic

patching, software from di↵erent vendors might contain the same third-party library

3

code. Suppose one vendor identifies a vulnerable function in this library and releases

a patch for its software, whereas other vendors have not. With binary component

extraction and embedding, we could extract the patched function in the patched

software as a component and embed it into other vendors’ software to replace the

vulnerable version of the same function. Also, in malware analysis, sometimes the

captured malware samples might be non-executable corpses due to various reasons

(e.g. unsuccessful unpacking). In such case, binary component extraction allows us

to extract executable portion from the corpse to analyze its behavior.

For dynamic binary instrumentation, the transparency of the instrumentation

framework is highly desired in software security scenarios. For example, in mal-

ware analysis, many samples nowadays are equipped with anti-debugging and anti-

instrumentation techniques to counter dynamic analysis. Such samples will cease

their malicious behavior once they detect the dynamic binary instrumentation. Even

in application scenarios which monitor the execution of legitimate programs, such as

high accuracy attack provenance [11], transparent dynamic binary instrumentation

is still necessary as many COTS software products are protected by advanced soft-

ware protectors which checks for the existence of instrumentation to prevent reverse-

engineering. Unfortunately, none of the existing dynamic binary instrumentation

framework [12–29] is transparent to the instrumented binary program.

Binary transformation and instrumentation on mobile platforms have received

increasing attention due to the tremendous popularity gained by Android and iOS, the

two dominating mobile platforms. Although there are a lot of existing work [30–37]

based on binary analysis and manipulation tools for Android, few work has been

done on the iOS platform due to its closed-source nature. Compared with Android,

there is no instruction-level dynamic binary instrumentation framework on iOS at

all, so all existing work [38] are based on pure static analysis. Although only a few

iOS malware samples have been reported in the past several years, recent advanced

attacks [39,40] have shown that it is trivial to bypass Apple’s App Review process and

other approaches based on pure static analysis. Therefore, an important challenge is

4

to build a strong application vetting system based on dynamic binary instrumentation

to guarantee the security of the iOS application users.

1.1 Thesis Statement

This dissertation address three important challenges in binary instrumentation

and transformation for software security applications. More specifically, we focus on

(1) enabling binary component extraction and embedding in static binary transfor-

mation; (2) providing complete transparency in dynamic binary instrumentation and

(3) enabling and applying dynamic binary instrumentation on iOS mobile platform.

This dissertation demonstrates the following statements:

• It is possible to perform static transformation which supports binary component

extraction and embedding on binary program without source code, symbolic or

relocation information.

• It is possible to build a dynamic instrumentation framework which is completely

transparent to the instrumented binary program based on the features in com-

modity CPUs.

• It is possible to build a dynamic binary instrumentation framework on iOS

mobile platform, and an iOS application vetting system based on dynamic bi-

nary instrumentation can substantially increase the e↵ectiveness of application

vetting compared with approaches purely based on static analysis.

1.2 Contributions

Our contributions could be summarized as follows.

• As illustrated in Figure 1.1, we propose a static binary transformation frame-

work called Bistro

1 to extract/embed binary component from/into existing

1
Bistro stands for BInary STRetching Operation.

5

Static Binary
Transformation

Dynamic Binary Instrumentation

SPIDER

iRiS

BISTRO
x86 Binary
Executable

Binary
Components

Transformed
Executable

iOS
Binary

Private API
Uses

Instrumented
Execution

Figure 1.1.: Binary transformation and instrumentation frameworks for software
security applications.

binary programs without source code, symbolic or relocation information. We

propose two algorithms to patch both direct and indirect control-flow instruc-

tions in the target binary program to preserve its functional correctness.

• We propose a dynamic binary instrumentation framework called Spider

2 that

is transparent to the instrumented program. In order to achieve transparency,

we propose a novel instrumentation primitive called invisible breakpoint based

on hardware virtualization to replace software breakpoint in traditional instru-

mentation.

• We have implemented a prototype of Bistro for x86 Win32 PE binaries, and

a prototype of Spider for both Windows and Linux guests on x86. We eval-

uated their e↵ectiveness and e�ciency in many software security applications.

In particular, we use Bistro to patch vulnerabilities, extract executable com-

ponents from malware corpse and stitch malware samples for penetration tests.

2
Spider is the acronym of Stealthy binary Program Instrumentation and Debugging EnviRonment.

6

We use Spider to improve instrumentation in attack provenance and capture

confidential information in digital forensics.

• We have ported Valgrind [18] to enable dynamic binary instrumentation on iOS

mobile platform. Based on the dynamic binary instrumentation framework, we

have designed and implemented an automated iOS application vetting system

called iRiS which uses a combination of static and dynamic analysis. We have

applied iRiS to detect user privacy leakage due to the use of security-critical

private APIs in iOS applications.

1.3 Dissertation Organization

This dissertation consists of four chapters. Following this introductory chapter,

Chapter 2 presents the design and implementation of Bistro, our static binary trans-

formation framework. Chapter 3 presents the design and implementation of Spider,

our dynamic binary instrumentation framework. In Chapter 2 and 3 we also evaluate

the performance of our framework and demonstrate its application in several software

security and malware analysis scenarios. Chapter 4 presents the design and imple-

mentation of iRiS, our binary instrumentation and analysis system on iOS mobile

platform. In Chapter 5 we conclude and present our future work.

7

2 BISTRO: BINARY COMPONENT EXTRACTION AND EMBEDDING

2.1 Introduction

In software security and malware analysis, researchers often need to manipulate

binary code – benign or malicious – without source code or symbolic information. One

pair of complementary binary manipulation primitives is to (1) extract a re-usable

functional component from a binary program and (2) embed a value-added functional

component in an existing binary program. We call the binary manipulation primitives

described above binary component extraction and embedding. These primitives are

useful in a wide range of software security and malware analysis scenarios. In security

hardening of legacy binaries, binary component embedding enables the retrofitting of

legacy or close-source software with a third-party functional component that performs

a value-added security function such as access control policy enforcement. In binary

semantic patching, binary programs from di↵erent vendors may leverage the same

functional component. Suppose one vendor identifies a vulnerability in such a com-

ponent and releases a patched version for its own program; whereas other vendors

are not aware of the vulnerability or have not patched their products. We can apply

binary component extraction to carve out the patched component from a patched

program and replace the vulnerable version of the same component in an un-patched

program using binary component embedding. In malware analysis, binary component

extraction and embedding supports “plug and play” of malicious functions extracted

from malware captured in the wild. One can even “stitch” multiple extracted mal-

ware functions to compose a new piece of malware – a capability that may help enable

strategic defence in cyber warfare.

Enabling binary component extraction and embedding poses significant challenges.

Brute force extraction and insertion of binary functions will most likely fail. Instead,

8

both the extracted component and the target binary program need to be carefully

transformed. For example, instructions in the target binary need to be shifted to

create space for the embedded function; when a function is extracted from its ori-

gin binary, the instructions in it need to be re-positioned and re-packaged; accesses

to global variables need to be re-positioned; function pointers need to be properly

handled; and indirect jumps/calls need to have their target addresses recalculated.

These problems are especially challenging when the binary component or the target

binary program is not relocatable, which is often the case when dealing with legacy

or malware binaries.

Despite advances in binary instrumentation and rewriting, existing techniques

are inadequate to address the binary component extraction and embedding chal-

lenges. Dynamic binary instrumentation tools such as PIN [17], Valgrind [18], Dy-

namoRIO [19] and QEMU [41] perform instrumentation only when a binary program

is executed on their infrastructures. They do not generate an instrumented, stand-

alone version of the binary for production runs. Static binary rewriting tools such

as Diablo [1], Alto [2], Vulcan [3], and Atom [4] can generate instrumented, stand-

alone binaries. However, they require symbolic information or that the binaries be

generated by special compilers.

More lightweight techniques exist that do not require symbolic information or

special compilers [5–10]. Among these techniques, some create trampolines at the

end of the target binary program in which instrumentation is placed and then use

control flow detours to access the trampolines [5–7]. The others duplicate the body

of the target binary program in its virtual memory space and only the replica is

instrumented. The original binary body is retained in its original position to provide

a kind of control flow forwarding mechanism [8–10]. However, none of these techniques

supports extraction of binary component or implanting an extracted component to

another binary. Many of them cause substantial space/performance overhead. To

the best of our knowledge, none of them has been successfully applied to large-scale

9

Windows applications or kernel code. A more detailed comparison is presented in

Section 2.3.

Recently, researchers proposed approaches that focus on identification, extraction

and reuse of components from binaries. Inspector Gadget [42] performs dynamic

slicing to identify and extract components from malware. The extracted component

might have incomplete code path coverage due to the limitation of dynamic analysis.

BCR [43] adopts a combination of static and dynamic approach to extract a function

from a binary. However, it uses labels to represent jump/call targets, thus does

not preserve the semantic of indirect jumps/calls. ROC [44] uses dynamic slicing

to identify reusable functional components in a binary but does not extract them.

None of them supports reusing extracted components to enhance legacy binaries.

Moreover, they could not extract components from non-executable binaries (e.g.,

malware corpse) due to the use of dynamic analysis.

In this chapter, we present Bistro, a systematic approach to binary functional

component extraction and embedding. Bistro automatically performs the follow-

ing: (1) extracting a functional component, with its instructions and data section

entries non-contiguously located in the virtual address space, from an original binary

program and (2) embedding a binary component of any size at any user-specified

location in a target binary program, without requiring symbolic information, reloca-

tion information, or compiler support. For both extraction and embedding, Bistro

preserves the functionalities of the target binary program and the extracted compo-

nent by accurately patching them – using the same approach and technique. Bistro

performs extraction and embedding operations e�ciently and the “stretched” target

binary program after embedding only incurs small time and space overhead.

We have developed a prototype of Bistro as a IDA-Pro [13] plugin. We have

conducted extensive evaluation and case studies using real-world Windows-based ap-

plications (including large-scale software such as Firefox and Adobe Reader), kernel-

level device drivers, and malware. Our evaluation (Section 2.7) indicates Bistro’s

e�ciency and precision in patching the extracted components and target binary pro-

10

Binary
Extractor

Original binary program Q
Component to extract

Binary
StretcherTarget

binary P

Stretched binary
program
P’ = P + c

Component c

To be called
independently

Independent
Component

Figure 2.1.: Overview of Bistro.

grams. Moreover, the stretched target binary program incurs small performance

overhead (1.9% on average) and space overhead (10.9% on average). We have ap-

plied Bistro to the following usage cases: (1) We carve out patched components

from a binary and use them to replace their un-patched versions in other application

binaries, achieving binary semantic patching (Section 2.7.2); (2) We stitch malicious

functions from an un-executable Conficker worm [45] sample and compose a new,

executable malware (Section 2.7.3); and (3) We demonstrate the realistic threat of

trojan-ed device drivers with malicious rootkit functions embedded in benign driver

– using real-world drivers and rootkits (Section 2.7.4).

2.2 Overview and Assumptions

An overview of Bistro is shown in Figure 4.3. Bistro has two key components:

binary extractor and binary stretcher.

• The binary extractor is responsible for extracting a designated functional com-

ponent c from an original binary program Q. c includes both the code and data

of the functional component. The extractor does so by removing the unwanted

code and data from Q and then collapsing the remaining data and code into a

re-usable component c that occupies a contiguous virtual address region. More

importantly, the instructions in c are properly patched for repositioning. We

note that c can either be called as a library function or be embedded directly

in another binary program.

11

• The binary stretcher is responsible for stretching the target binary program P

to make “room” (holes in its address space) to embed a function component.

As shown in Figure 4.3, the stretcher takes the target binary P and the to-be-

embedded component c as input; stretches P , and patches the code in P to

allow the embedding of c. The output of the stretcher is a “stretched” binary

program P 0 = P + c that is ready for execution.

Summary of Enabling Techniques. Both the binary extractor and stretcher are

based on the same binary stretching algorithm (Section 2.4). The overarching idea is

to shift instructions for creating space (by stretcher) or squeezing out unwanted space

(by extractor). The algorithm focuses on patching the control transfer and global data

reference instructions by precisely computing the o↵sets they need to be adjusted.

For instance, if a component with size |c| = n is inserted, all the original instructions

following the insertion point will be shifted by n bytes, and control transfers to any

of the shifted instructions need to be incremented by n.

To address the challenge of handling indirect calls and call back functions invoked

by external libraries, we develop another algorithm (Section 2.5.1) that stretches a

subject binary at the original entries of functions that are potential targets of indirect

calls, creating small holes (usually a few bytes) to hold a long jump instruction to

forward any calls to those functions to their shifted locations. These holes must not

be shifted by any stretching/shrinking operations. They always stay in their original

positions and we thus call them “anchors”. Our algorithm precisely takes into account

these anchors when performing stretching/shrinking. To handle indirect jumps, we

leverage an e�cient perfect hashing scheme to translate jump targets dynamically.

We use these approaches to patch indirect jumps/calls in both the component and

the target binary.

Assumptions. We make the following assumptions (and hence stating the non-goals

of Bistro): (1) The user, not Bistro, will predetermine the semantic appropriate-

ness of embedding functional component c in target program P . Furthermore, he/she

will decide the specific location to insert the component. This can be practically done

12

by performing reverse engineering on P . For example, to harden P with some security

policy enforcement mechanism based on control flow [46], the user can reconstruct

the control flow graph of P , collect its dominance and post-dominance information,

and decide proper locations to insert c. (2) The identification of component c in the

original program Q, including its code and data, is done a priori by the user through

manual or automated techniques, such as Inspector Gadget [42], binary slicing [47],

binary di↵erencing [48], and BCR [43]. While we will present our experience with

functional component identification in our case studies (Section 2.7), the identifica-

tion technique itself is outside the scope of this work. (3) Binaries can be properly

disassembled (e.g., by IDA-Pro) before being passed to Bistro. This assumption

is supported by the large number of real-world, o↵-the-shelf binaries in our experi-

ments. Although we currently do not handle obfuscated or self-modifying binaries,

we note that, in addition to IDA-Pro, other conservative disassembling [10, 49] and

unpacking [50] tools can also be used as the pre-processor of Bistro to handle more

sophisticated binaries.

2.3 Problems with Existing Techniques

Before presenting Bistro, we take an in-depth look at the existing binary rewrit-

ing techniques and explain their limitations for binary component extraction and

implanting. Our discussion only focuses on existing techniques that work on stripped

binaries without debugging symbols or relocation information, which we classify into

two categories: detour-based rewriting and duplication-based rewriting.

Detour-Based Rewriting. Detour-based binary rewriters [5–7] create control flow

detours from the original code to the instrumentation. More specifically, to instrument

an instruction, the rewriter replaces the instruction with a detour to a trampoline,

where the instrumentation code is located. At the end of the instrumentation, the

control flow jumps back to the original code. For example, as shown in Figure 2.2,

suppose we need to count the number of times function Func B gets called. The

13

instrumentation involves replacing the three instructions at the entry of Func B with

a jump instruction, which detours the control flow to the trampoline code Tramp B

placed at the end of the binary. Tramp B will increment the counter, execute the

three instructions that were replaced, and jump back to the instruction right after

the instrumentation point. Detour-based rewriting works well when the number of

instrumentation points is small and the instrumentation code is simple.

(a) before detour

loc_1:
xor eax, eax
loc_2:
xor ebx, ebx
loc_3:
push eax
push ebx
...
Table:
dd offset loc_1
dd offset loc_2
dd offset loc_3

Func_C:
jmp Table [eax *4]

Func_B:
push ebp
mov ebp, esp
sub esp, 60h
push ebx
...

Func_A:
call Func_B
...

Func_B:
jmp Tramp_B
nop
push ebx
...

(b) after detour

Tramp_B:
inc [counter]
push ebp
mov ebp, esp
sub esp, 60h
jmp Func_B + 6

loc_1:
//loc_2, loc_3
pointing to the jmp
jmp Tramp_C
push ebx
...

Tramp_C:
inc [counter]
xor eax, eax
xor ebx, ebx
push eax
jmp loc_1 + 5

Func_A:
call Func_B
...

Func_C:
jmp Table [eax *4]

Figure 2.2.: Examples of detour using trampoline. Arrows show the direction of
control-flow. The dashed line shows ill-formed control-flow.

The main problem with detour-based rewriting is that it requires the instructions

to be replaced at the instrumentation point be relocatable. To understand this prob-

lem, let us look at the case where we try to perform the same instrumentation at loc 1

in function Func C. There is an indirect jump in Func C using a jump table Table,

with potential targets loc 1, loc 2, and loc 3 – such structure is often generated by

the compiler to represent a switch statement. We replace the instructions at loc 1

with the unconditional jump instruction, which will take 5 bytes, and the instructions

being replaced will be relocated to the trampoline code in Tramp C. However, now

loc 2 and loc 3 will point to the middle of the jump instruction, causing ill-formed

control flow. While it seems that one can patch the jump table in this example, the

problem becomes much more di�cult to fix if an overwritten instruction is the com-

puted target of some indirect jump/call, as the target may be stored in some data

14

structure fields or generated dynamically via complex computation. One might also

consider using software breakpoint (a special one-byte instruction) instead of jump

instruction to detour the control flow. However, software breakpoints incur significant

performance overhead.

Duplication-Based Rewriting. Recently, duplication-based binary rewriters [8–

10] are proposed. These techniques make a copy of the original code sections and

then instrument the copy. The instrumented copy is executed in cooperation with

the original code. In particular, to preserve control flow correctness, branch targets

in the instrumented copy need to be patched. To handle indirect calls and jumps,

jump/call targets in the original code sections are replaced with redirection to their

new targets in the instrumented copy. The original data sections are also reused by

the new copy.

The first problem with duplication-based techniques is their excessive space re-

quirement. For the code sections, the space has to be almost doubled. Second, it

is di�cult to precisely determine all the possible targets of each indirect jump/call

before instrumentation [9, 10] (for the sake of inserting redirection). Using a con-

servative analysis may result in large sets of potential targets, leading to runtime

ine�ciency [9].

(a) before rewriting (b) detour-based

A.text

A.data

B.text
jmp eax

B.data

(c) duplication-based

Low
address

High
address

…

A.text

A.data

… jmp eax

trampoline

B’s component

A.text

A.data

B.text

B.data
copy of A.text

… jmp eax Conflict as both
need to be preserved

Figure 2.3.: Di�culties when transplanting a component (marked as shaded) from
binary B into binary A.

Most importantly, neither duplication-based nor detour-based rewriting supports

binary component transplanting – the main application scenario of Bistro. Consider

the example in Figure 2.3. Suppose we wish to extract a component from B and insert

15

it into A. The component is shaded in (a) and contains an indirect jump instruction.

In (b), a detour-based technique is applied and the component is inserted in the

trampoline at the end of A’s body. However, the indirect jump in the component

will not work properly, jumping to some irrelevant location in A instead of to the

correct target as if in B. In (c), a duplication-based techniques is applied. The text

section of A is duplicated and the component is inserted to the replica. However, to

ensure correctness of the indirect jump in A, it is necessary to preserve B’s original

text section at the same location as in B and insert redirection at the original possible

targets of the indirect jump. Unfortunately, the position of B’s text section conflicts

with that of A’s in the virtual address space. Such conflict is highly likely to happen

in practice: by default, common compilers choose to select the same base loading

address when generating executable binaries: 0x400000 for Windows PE binaries and

0x8048000 for Linux ELF binaries. This means that most binaries will overlap from

the very beginning when loaded into memory.

2.4 Basic Algorithm for Binary Extraction/Stretching

In this section, we present the basic algorithm (Algorithm 1) executed by both the

binary extractor and stretcher of Bistro (Section 3.3). For the time being, we assume

(1) there is no indirect control transfer and (2) global data is directly referenced in

an instruction using its address.

The algorithm takes the subject binary and a list of virtual address intervals

called snippets representing (1) the holes to be created in the binary in the case

of stretching or (2) the unwanted instruction/data blocks in the case of shrinking

(extraction). First, for each byte in the binary, the algorithm computes a mapping

between its original index in the binary and its corresponding index after the snippets

are inserted/removed. After that, the algorithm patches address operands in control

transfer and global data reference instructions, and copy each byte to its mapped

location according to the mapping.

16

Practical Challenges. To make Bistro work for real-world large-scale software, we

still need to overcome a number of practical challenges not addressed by Algorithm 1.

• The target of an indirect control transfer instruction (e.g., call eax) is com-

puted during execution and takes di↵erent values depending on the execution

path. Such an instruction cannot be patched by Algorithm 1.

Algorithm 1 Basic binary stretching/shrinking algorithm
Input: P – the subject binary; it has size and base addr fields to represent its size when loaded into memory

and base loading address, respectively.

M – a list of address intervals represent code/data to be inserted/removed, sorted increasingly by
their location; each interval has addr, len and type fields, denoting the location, size and type
respectively. Type “INSERT” means inserting right before addr; “REMOVE” means the block
starting at addr is to be removed.

Output: P 0 – the stretched/shrunk binary.

1: function BasicStretching(P,M)
2: map ComputeMapping(P,M)
3: P 0 PatchTarget(P,map)
4: end function

5: function ComputeMapping(P,M)
6: o↵set 0
7: m M.begin()
8: for i 0 to P.size do

9: if m.addr == P.base addr + i then
10: if m.type == INSERT then

11: o↵set o↵set +m.len
12: else if m.type == REMOV E then

13: o↵set o↵set �m.len
14: i i+m.len
15: end if

16: m M.next()
17: end if

18: map[i] i+ o↵set

19: end for

20: return map
21: end function

22: function PatchTarget(P,map)
23: P 0 {nop, nop, ..., nop}
24: for i 0 to P.size do

25: if map[i] 6= ? then

26: if P [i] is instruction then

27: ins P [i]
28: for each data address operand op in ins do

29: target op.addr � P.base addr
30: o↵ map[target]� target
31: op.addr op.addr + o↵

32: end for

33: if ins is near call/jump then

34: target i+ ins.len+ ins.target
35: o↵ map[target]� target
36: o↵

0 map[i+ ins.len]� (i+ ins.len)
37: ins.target ins.target+ o↵ � o↵

0

38: else if ins is far call/jump then

39: target ins.target� P.base addr
40: o↵ map[target]� target
41: ins.target ins.target+ o↵

42: end if

43: P 0[map[i]] ins
44: else if P [i] is data then

45: P 0[map[i]] P [i]
46: end if

47: end if

48: end for

49: return P 0

50: end function

• Function pointers may be present in data or in an instruction as an immediate

operand. These function pointers might be passed as parameters to external

libraries as callback functions. If a function is relocated due to stretching, the

external library will call back to a wrong address. All these have to be properly

handled to ensure correctness of binary stretching/shrinking.

17

• Accesses to global data may be via data pointers (e.g., mov ebx, ptr data;

mov eax, [ebx+4]). The addresses of data are not known until runtime. These

instructions cannot be patched using Algorithm 1 either.

We will present our solutions to these challenges in the following sections.

2.5 Handling Indirect Control Transfer

Handling indirect jumps and calls is one of the key challenges in the design of

Bistro. The di�culty is that the jump/call target cannot be known statically and

thus is hard to patch. To understand the challenge, consider the example in Figure 2.4.

On the left, there are three objects that are connected via pointers, with two of type

B and one of type A. On the right, part of function foo() is presented. The function

takes two parameters stored in eax and ebx denoting pointer values. These two

pointers may be aliased to each other. If so, ecx at 0x4302B2 gets the value 0x400340

defined at 0x4302A0, and then eventually the call instruction at 0x4302BD acquires

the function pointer 0x444142. However, if the two pointer parameters are not aliased,

the call instruction may get a completely di↵erent target, making statically patching

it di�cult.

.rdata:0x400300 0x444142 //int (*fp)();

.rdata:0x400304 36 //int x;
…
.rdata:0x400324 0 //int y;
.rdata:0x400328 0x400300 //void * p;
…
.rdata:0x400340 1 //int y;
.rdata:0x400344 0x400324 //void * p;
…
.rdata:0x40040A “BAD\0” //char * s

Class A a;

Class B b1

Class B b2

mov [eax], 0x400340
…
mov ecx, [ebx]
mov edx, [ecx+4]
mov eax, [edx+4]
call [eax]

//eax=&b2

//ebx aliased to eax
//edx=400324
//eax=400300
//*(a.fp)()

.text:0x4302A0

.text:0x4302B2

.text:0x4302B6

.text:0x4302BA

.text:0x4302BD

//foo (eax, ebx):

Figure 2.4.: An example showing indirect call handling in binary
stretching/extraction.

A naive solution is to identify and patch any constant value in the binary that

appears to be a jump/call target. But this is not safe as such values may not be

jump/call targets. Notice in the example, there is a null-terminated string “BAD” at

18

address 0x40040A. With the little endian representation in x86, this string has the

same binary value as the function pointer at 0x400300. Without type information,

it is impossible to know whether the value is a string or function pointer. Failure

to identify and patch a function pointer leads to broken control-flow, changing the

semantics of the target binary. Misclassifying a string as a function pointer leads

to undesirable changes to data. While it is plausible to leverage recent advances in

binary type inference to type constants in a binary [51–54], the involvement of aliasing

as in the example makes such analysis very di�cult. In fact, IDA-Pro [13] failed to

recognize the function pointer for this case.

If a binary has a relocation table and it does not perform any address space lay-

out self-management such as through a packer, the relocation table will provide the

positions of all constant values that are jump/call targets for Bistro to patch them,

thus lead to a sound and complete solution to binary stretching/shrinking. However,

relocation table may be absent or contain bogus entries in legacy and malware bina-

ries. Hence, in our work, we do not assume the presence of relocation tables in our

design and evaluation. Next, we describe how to handle indirect calls in Section 2.5.1

and indirect jumps in Section 2.5.2.

2.5.1 Handling Indirect Calls

Indirect calls are very common in modern binaries to leverage the flexibility of

function pointers. We have discussed the di�culty of handling function pointers at

the beginning of Section 2.5. In fact, there is a more challenging situation, in which

a binary may pass its function addresses to external library functions which call back

the provided functions (e.g., a user function cmp() is provided as a parameter to an

external library function qsort()). In this case, if a function entry has changed due

to stretching or shrinking, its invocation sites are outside the body of the binary and

thus beyond our control. It is di�cult to patch call back function pointer parameters

before they are passed on to libraries for two reasons. First, a function pointer might

19

not directly appear as a parameter. It could be a member of a structure passed to

an external library. It may even require several layers of pointer indirection to access

its value. Patching that is challenging. Second, for many external library functions,

we cannot assume the availability of their prototype definitions, it is hence di�cult

to know their parameter types.

To handle indirect calls including call back functions, we propose to stretch the

target binary to make small holes at the entry point of each function that may be an

indirect call target. These holes are called anchors; they should not be moved during

stretching/shrinking. Inside an anchor, we place a jump instruction that jumps to its

mapped new address in the stretched/shrunk binary, which is the new entry of the

function. As such, we do not need to identify or patch any function pointers in the

binary.

Since an anchor must be placed at a fixed address in the stretched binary, it could

coincide with instructions that get shifted to the address. To ensure correctness, we

put a jump right before an anchor to jump over it. We call the jump the prefix of an

anchor.

(b) stretching w/o anchor

//cmp ()
push ebp
…
push 0x400120
call sort
…

…
400120:
400122:
…

400160:

401680:
401685:

40

app.exe

//cmp ()
push ebp
…
push 0x400120
call sort
…

…
400120:
400125:
…

400169:

401689:
40168E:

40+
9

jmp 400125
jmp 400169

anchor

(c) stretching w/ anchor

app.exe

//qsort() msvcrt .dll
…
//eax= 0x400120
call eax
…

AF8614:

…
//cmp ()
push ebp
mov ebp, esp
add esp, …
…

push 0x400120
call sort
…

400120:
400122:
400126:
…

401640:
401645:

(a) original binary

app.exe

//qsort() msvcrt .dll
…
//eax= 0x400120
call eax
…

AF8614:

//qsort() msvcrt .dll
…
//eax= 0x400120
call eax
…

AF8614:

Figure 2.5.: Stretching with anchors. The shaded area in (b) is the 40-byte snippet
inserted.

20

Consider the example in Figure 2.5 (a), in which the call-back function cmp() is

invoked inside qsort(). The entry address of function cmp() in the original binary

is 0x400120. When we stretch without anchors as shown in (b), in function qsort(),

the indirect call to cmp() at 0xAF8614 will incorrectly go to 0x400120 in the shaded

area. When we stretch with anchors as shown in Figure 2.5(c), an anchor containing

the jump instruction will be placed at 0x400120. Any indirect call that goes to the

original entry address of cmp(), 0x400120, will be redirected to the actual function

body at the new entry address. The jump instruction preceding 0x400120 is its prefix.

Anchor-based Algorithm. With the presence of anchors, fixing control flow trans-

fer instructions becomes more challenging than that in Algorithm 1. We hence devise

a new algorithm (Algorithm 2). The idea is to divide the stretching/shrinking oper-

ation into two phases. In phase one, the subject binary program is stretched/shrunk

using Algorithm 1 to create space for the inserted snippets or removed blocks. Then

the stretched/shrunk binary is further stretched to insert anchors using a similar

procedure. Separating the two phases substantially simplifies the interference from

anchors.

Algorithm 2 Anchor-based stretching algorithm.
Input: P – the subject binary; it has size and base addr fields to represent its size when loaded into memory

and base loading address, respectively.
M – a list of code/data snippets to be inserted/removed, sorted increasingly by their location; each
snippet has addr, len and type fields, denoting the location, size and type respectively.
A – a list of anchors to be placed, sorted increasingly by their location; each anchor has addr and
len fields, denoting the location and the content size, respectively.

Output: anchor map – the mapping between the indices after placing snippets and their corresponding indices
after anchors are placed.
prefixlen[a] – the prefix length of an anchor a.

1: function StrechingWithAnchor(P,M,A)
2: map ComputeMapping(P,M)
3: Pt PatchTarget(P,map)
4: anchor map ComputeAcMapping(Pt, A)
5: P 0 PatchTarget(Pt, anchor map)
6: end function

7: function ComputeAcMapping(P,A)
8: o↵set 0
9: ac A.begin()
10: i 0
11: while i < P.size do

12: curaddr P.base addr + i+ o↵set

13: if ac.addr == curaddr then

14: prefix i� SIZEOF(JMP)

15: if P [prefix] is not the start of an instruction
then

16: prefix start of instruction before prefix
17: end if

18: prefixlen[ac] i� prefix
19: i prefix
20: o↵set o↵set + ac.len+ prefixlen[ac]
21: ac A.next()
22: else

23: anchor map[i] i+ o↵set

24: i i+ 1
25: end if

26: end while

27: return anchor map
28: end function

21

Pruning Anchors. Potentially, we can create anchors for all function entries to

guarantee that we will never miss any necessary function call forwarding. However,

this is not e�cient. In fact, we only need to create anchors for the subset of functions

that could be the possible target of some indirect call. Assuming a 32-bit machine,

we construct the subset with the following criterion: Any four-byte data value or

any four-byte immediate operand in an instruction is considered a possible indirect

call target, if it is equal to one of the function entries. We obtain this subset by

sequentially scanning data and code sections. Our pruning heuristic is very e↵ective

in practice. For example, the code section size of gcc in SPEC CPU 2000 benchmark

suite is over 1MB, with over 2000 functions; after pruning, there are only 271 functions

left that need anchors.

Embedding a Component with Anchors. If an extracted component contains

a function that may be invoked by an indirect call in the component, Bistro will

create an anchor in the target binary at exactly the same address of the function

entry in the component’s original binary to allow proper forwarding. If the anchor

conflicts with some existing anchor in the target binary, Bistro will integrate the

two overlapping anchors into an arbitration function and redirect control flow to the

function instead. The function further determines which real target it should forward

the call to. The calls from the target binary and those from the to-be-embedded

component are distinguished by setting a flag. The arbitration function uses the flag

to decide the real forwarding target.

In some rare cases, the space between two function entries might not be enough

to hold the anchors. In such cases, instead of using the jump instruction for redi-

rection, we use a software interrupt instruction, which takes only one byte. When

an indirect call reaches the old function entry, a software exception will be generated

and intercepted by our exception handler, which will redirect the control flow to the

new function entry.

22

2.5.2 Handling Indirect Jumps

Indirect jumps are di↵erent from indirect calls as the jump targets may not be

function entries, but rather anywhere in the binary. If we adopt the anchor approach,

there would be too many anchors needed. One might leverage some heuristics such

as that indirect jumps usually receive their targets from jump tables and thus simply

patch the jump table entries. However, this is unsafe because of the di�culty of

determining jump table boundaries. A jump table may not be distinguishable from

regular data. Hence, we propose a di↵erent approach. Specifically, we insert a code

snippet right before each indirect jump to translate the jump target to its mapped

address in the stretched binary at runtime, as shown in the example below.

jmp eax

�!

mov eax, mapping[eax - old_base]

add eax, new_base

jmp eax

Note that the example is just for illustration. In our implementation, we use per-

fect hashing for address lookup, which will be explained later, and preserve the flag

register during translation. Since a complete byte-to-byte mapping is computed in

Algorithm 1, any indirect jump target could be properly translated and handled by

this method. Observe that additional instructions need to be added to perform trans-

lation. We can easily handle this by stretching the subject binary to accommodate

these instructions.

Branch Target Set Pruning. Although the translation using a complete mapping

guarantees safety, it also introduces significant memory overhead. Each byte in the

original binary requires 4 bytes to represent its mapped address. In fact, we only

need a subset of the mapping: the stretched/shrunk binary will be safe as long as the

mapping contains translation for every possible indirect jump target.

We construct the set with the following criterion: any four-byte data value or any

four-byte immediate operand in an instruction is considered a possible indirect jump

target, if the value falls in the range of some code section. We further prune the set

by removing the values that point to the middle of an existing instruction. Note that

23

the strategy is safe for long/set jumps as their jump targets are acquired at runtime.

This pruning strategy is very e↵ective in practice. For example, the code section size

of Adobe Reader X (AcroRd32.exe) is over 800KB, with over 260K instructions; after

pruning, there are only 3635 possible branch targets left.

Perfect Hash Translator. The remaining challenge is to achieve fast translation.

Note that after pruning, the jump target set becomes a sparse set in the address space.

As a compromise between memory consumption and runtime overhead, we choose to

use perfect hashing for translation. A perfect hash function maps a set of keys to

another set of integer values without any collision. It guarantees O(1) translation

time. We use gperf [55] to generate the perfect hash function for the jump target

set and compile it into a linkable .obj file that can be embedded in the target binary

through Bistro.

A perfect hash function may require more space than the N keys to achieve O(1)

translation time. In practice, we find the size of generated perfect hash functions

acceptable. For example, for the 3635 branch targets of Adobe Reader, the generated

hash function is about 152KB, which is about 11% of the size of the Adobe Reader

binary.

2.6 Handling Data References

Binary extraction/stretching may cause relocation of data entries, so we need

to ensure the correctness of instructions referencing those data. We discuss how to

address this problem from the perspectives of the target binary and the component

to be embedded.

Compared to the component, the target binary is usually more complex and in-

volves a lot of global data references. To handle this problem e�ciently, we group

data in the binary as continuous data blocks. If a data block might be indirectly ac-

cessed, we will make sure the block is not re-located to avoid patching data accesses,

by wrapping the block in an anchor. Note that the number of data access instructions

24

is much larger than the number of indirect jumps/calls. Otherwise, if the data block

is only directly accessed, we allow it to be relocated (by Algorithm 1). We use the

following criterion: if the value of any four-byte data, or any four-byte immediate

operand (in an instruction) that is not directly used as an address falls in the range

of a data block, then this block might be indirectly accessed using data pointers, and

hence should not be re-located.

In contrast, data entries extracted as part of the to-be-embedded component are

most likely to be relocated. For example, if they are sparsely distributed in the

address space, the Bistro extractor (Section 3.3) will collapse them into a contiguous

block, causing relocation. We adopt a method similar to the dynamic jump target

translation scheme to translate data reference addresses. We add a comparison before

translation to avoid translating stack or heap accesses. According to our experience,

only 2% of dynamic memory references need to be translated. We further use o✏ine

static peephole scanning to identify references that surely access stack and avoid

instrumenting them completely.

2.7 Evaluation

We have implemented Bistro for Win32 PE binaries as an IDA-Pro plug-in.

We have addressed a variety of engineering challenges such as virtual space layout

re-arrangement with a large embedded component, patching PE header, import and

export tables, and re-generating relocation table.

2.7.1 Performance: E�ciency and Overhead

We first evaluate the performance of Bistro by stretching real-world Windows-

based applications and SPEC CPU 2000 binaries. Our experiments are done on a

Dell Inspiron 15R laptop with Intel(R) Core(TM) i5-2410M 2.30GHz CPU and 4GB

memory, running Windows 7 SP1. For the SPEC CPU 2000 benchmark suite, we

use the “win32-x86-vc7” config file which includes all integer benchmark binaries and

25

four floating-point benchmark binaries. We compile the benchmark suite using Visual

Studio 2010, with full optimizations. To test Bistro on non-relocatable binaries, we

set “/DYNAMICBASE:NO” switch for the compiler to prevent it from generating

relocatable binaries. The application binaries are readily available and we do not

know about their compilers. Although the binaries of Adobe Reader and Chrome

web browser carry relocation tables, we ignore them for testing our solutions for

non-relocatable binaries.

We measure the following performance metrics: (1) space overhead – for both

binary file and initial memory image – of a stretched binary compared with its original

version, (2) runtime overhead of the stretched binary, and (3) time for Bistro to

stretch the binary. In particular, we are interested in the overhead incurred by Bistro

itself, not by the execution of the embedded components. As such, we embed a

minimal component (a one-byte snippet) into each subject binary in our experiments.

To create a “worst-case” scenario, we insert it at the beginning of each binary so that

every byte in the binary gets shifted, which entails all indirect control transfer targets

in the binary to be redirected. The measured overhead is hence the upper bound of

overhead.

For each SPEC 2000 binary, we run both its original and stretched versions, and

compare their execution time and file/initial image size. We do not measure the

execution time of the Windows applications because they are all interactive. We

experience no perceivable overhead when using their stretched versions.

The results are shown in Table 2.1. From the Indirect Jumps and Indirect Calls

1 columns, we observe that indirect calls are very common in application binaries,

indicating that they might be C++ programs. Further investigation confirms our

speculation, indicating Bistro’s e↵ectiveness for binaries compiled from C++ pro-

grams. Moreover, there are much less indirect jumps than indirect calls, indicating

they are likely to have less impact on runtime overhead. Note that a small number

of indirect jumps does not imply an equally small number of potential indirect jump

1We exclude indirect calls to external library functions through import address table (IAT), as these
external targets are not handled by our redirection mechanisms.

26

T
ab

le
2.
1.
:
P
er
fo
rm

an
ce

re
su
lt
s
of

st
re
tc
h
in
g
W

in
d
ow

s
so
ft
w
ar
e
an

d
S
P
E
C

C
P
U

20
00

b
in
ar
ie
s.

B
in
ar
y

In
st
r.

In
d
ir
ec
t

In
d
ir
ec
t

C
al
l/
Ju

m
p
T
ar
ge
ts
:

D
at
a
B
lo
ck
s:

F
il
e
S
iz
e
(K

B
)

In
it
ia
l
M
em

.
Im

ag
e
S
iz
e
(K

B
)

R
u
n
T
im

e
(s
)

S
tr
et
ch
in
g

C
ou

nt
Ju

m
p
s

C
al
ls

A
n
ch
or
s(
%
)

D
at
a
A
n
ch
or
s(
%
)

O
ri
g:

S
tc
h
’e
d

gr
ow

th
(%

)
O
ri
g:

S
tc
h
’e
d

gr
ow

th
(%

)
O
ri
g:

S
tc
h
’e
d

ov
er
h
ea
d
(%

)
T
im

e
(s
)

S
P
E
C

C
P
U

2
0
0
0
b
en

ch
m
a
rk

s
16
4.
gz
ip

19
82
5

19
10
3

98
:
23

(2
3.
47
%
)

16
3:

1
(0
.6
1%

)
86
.5
:
98
.5

13
.8
7%

42
4:

44
0

3.
77
%

83
.2
:
84
.6

1.
68
%

0.
75
2

17
5.
vp

r
54
59
5

53
10
6

22
9:

31
(1
3.
54
%
)

40
4:

1
(0
.2
5%

)
23
2:

24
8.
5

7.
11
%

24
8:

26
8

8.
06
%

64
.5
:
64
.6

0.
16
%

0.
75
5

17
6.
gc
c

33
70
33

45
6

26
0

38
55
:
27
1

(7
.0
3%

)
25
80
:
14

(0
.5
4%

)
12
64
:
13
93

10
.2
1%

13
48
:
14
80

9.
79
%

33
.3
:
33
.9

1.
8%

1.
42
0

18
1.
m
cf

20
56
6

36
10
3

14
4:

25
(1
7.
36
%
)

10
0:

2
(2
.0
0%

)
76
.5
:
85
.5

11
.7
6%

10
0:

10
8

8%
40
.2
:
40
.4

0.
5%

0.
68
5

18
6.
cr
af
ty

65
37
5

56
13
0

31
2:

29
(9
.2
9%

)
24
7:

1
(0
.4
0%

)
28
3:

29
8.
5

5.
48
%

13
44
:
13
60

1.
19
%

38
.2
:
38
.9

1.
83
%

0.
93
5

19
7.
p
ar
se
r

44
55
4

36
11
2

15
5:

27
(1
7.
42
%
)

46
3:

1
(0
.2
2%

)
16
4:

17
3.
5

5.
79
%

35
2:

36
0

2.
27
%

83
.1
:
83
.5

0.
48
%

0.
75
4

25
2.
eo
n

11
42
49

50
44
1

16
59
:
12
53

(7
5.
53
%
)

14
55
:
1

(0
.0
7%

)
49
9:

57
5

15
.2
3%

59
2:

66
8

12
.8
4%

42
.7
:
44
.7

4.
68
%

0.
95
0

25
3.
p
er
lb
m
k

16
40
93

14
8

21
1

21
66
:
49
9

(2
3.
04
%
)

12
93
:
6

(0
.4
6%

)
62
6:

74
3

18
.6
9%

64
8:

76
4

17
.9
%

63
.3
:
67
.9

7.
27
%

1.
11
8

25
4.
ga
p

12
94
64

35
13
57

81
6:

62
5

(7
6.
59
%
)

11
42
:
1

(0
.0
9%

)
45
2.
5:

49
2

8.
73
%

89
6:

93
6

4.
46
%

35
.4
:
37
.2

5.
08
%

1.
00
1

25
5.
vo
rt
ex

13
20
34

66
14
5

44
6:

71
(1
5.
92
%
)

73
8:

1
(0
.1
4%

)
56
1:

58
5

4.
28
%

58
8:

61
2

4.
08
%

50
.6
:
51
.1

0.
99
%

1.
05
0

25
6.
b
zi
p
2

21
36
0

36
10
1

14
5:

25
(1
7.
24
%
)

15
0:

1
(0
.6
7%

)
87
.5
:
99

13
.1
4%

17
2:

18
4

6.
98
%

73
.4
:
74
.6

1.
63
%

0.
71
4

30
0.
tw

ol
f

64
66
9

41
10
6

19
3:

30
(1
5.
54
%
)

39
1:

2
(0
.5
1%

)
25
3:

26
3

3.
95
%

29
6:

30
4

2.
7%

93
.2
:
93
.6

0.
43
%

0.
80
9

17
7.
m
es
a

14
36
79

21
1

55
2

26
75
:
47
3

(1
7.
68
%
)

94
2:

5
(0
.5
3%

)
54
9.
5:

65
2.
5

18
.7
4%

56
8:

67
2

18
.3
1%

64
.9
:
65
.6

1.
08
%

0.
99
0

17
9.
ar
t

23
35
3

38
10
3

14
9:

26
(1
7.
45
%
)

10
3:

2
(1
.9
4%

)
85
.5
:
94
.5

10
.5
3%

10
4:

11
2

7.
69
%

32
:
32
.3

0.
94
%

0.
69
0

18
3.
eq
u
ak
e

21
82
4

38
10
1

14
6:

27
(1
8.
49
%
)

11
6:

1
(0
.8
6%

)
88
.5
:
97

9.
6%

10
4:

11
2

7.
69
%

26
.1
:
26
.1

0%
0.
72
0

18
8.
am

m
p

61
21
4

39
12
8

22
4:

70
(3
1.
25
%
)

27
9:

1
(0
.3
6%

)
23
5.
5:

24
5.
5

4.
25
%

25
2:

26
4

4.
76
%

88
.7
:
88
.3

1.
92
%

0.
78
0

A
ve
ra
ge

-
-

-
-

(2
4.
80
%
)

-
(0
.6
0%

)
-

10
.0
9%

-
7.
53
%

-
1.
90
%

-
R
ea

l-
w
o
rl
d
W

in
d
ow

s-
b
a
se
d
S
o
ft
w
a
re

p
u
tt
y

10
72
20

57
66
2

94
2:

29
1

(3
0.
89
%
)

93
:
1

(1
.0
8%

)
44
4:

49
6

11
.7
1%

47
2:

52
4

11
.0
2%

-
-

0.
86
5

gv
im

56
16
26

29
4

51
11

38
93
:
10
04

(2
5.
79
%
)

50
81
:
22

(0
.4
3%

)
19
50
.5
:
21
50

10
.2
3%

20
08
:
22
12

10
.1
6%

-
-

2.
12
1

n
ot
ep
ad

+
+

27
24
34

15
9

43
02

48
97
:
26
95

(5
5.
03
%
)

33
94
:
7

(0
.2
1%

)
15
84
:
18
64

17
.6
8%

16
60
:
19
40

16
.8
7%

-
-

1.
48
0

A
d
ob

e
R
ea
d
er

27
37
10

14
6

25
43

36
35
:
21
60

(5
9.
42
%
)

30
37
:
11

(0
.3
6%

)
14
45
.9
:
17
02
.4

17
.7
4%

14
72
:
17
28

17
.3
9%

-
-

1.
55
6

C
h
ro
m
e

23
02
34

82
12
80

18
42
:
93
3

(5
0.
65
%
)

93
0:

6
(0
.6
5%

)
12
11
:
13
38

10
.4
9%

12
40
:
13
68

10
.3
2%

-
-

1.
39
1

A
ve
ra
ge

-
-

-
-

(4
4.
36
%
)

-
(0
.5
5%

)
-

13
.5
7%

-
13
.1
5%

-
-

-

27

targets. In fact, due to the di�culty of identifying jump table boundaries, we conser-

vatively consider any constant in a binary that appears to be an instruction address

as a potential jump target. The large number of potential jump targets and the low

impact on performance justify our design choice of using the slightly more expensive

but more flexible dynamic target translation scheme (Section 2.5.2), compared to the

anchor scheme (Section 2.5.1).

The Call/Jump Targets: Anchors column shows the number of potential indirect

call/jump targets, the number of anchors generated, and their comparison. Observe

that the number of anchors created is small, compared to the size of the potential

set. For binaries from C++ programs, due to the heavy use of virtual methods,

it is not a surprise to see many anchors created. The Data Blocks: Data Anchors

column shows that only less than 1% of all data blocks need to be preserved at their

original locations using anchors. From the File Size columns, we can see Bistro

only increases the file size by 10.1% on average for SPEC programs, and 13.6% for

application binaries. The overhead is dominated by the perfect hash tables. The

Initial Mem. Image Size columns show the initial memory consumption when the

binary is loaded into memory, which increases by only 7.5% on average for SPEC

programs and 13.2% for application programs. Note that Bistro does not cause any

additional memory overhead during execution. The Run Time columns present the

runtime overhead, which is only 1.9% on average. Except eon, perlbmk and gap, all

SPEC binaries have less than 2% overhead. The last column Stretching Time shows

the stretching time of Bistro. The time is consistently short, implying that Bistro

can stretch a binary at runtime when it is loaded.

2.7.2 Case Study I: Binary-level Semantic Patching Using BISTRO

Code reuse is a common practice in software development. One popular approach

is to directly compile and statically link a piece of re-usable code with the target

software – either directly in the executable or in some private library – to make

28

the software self-contained, avoid compatibility problems, and improve performance.

Indeed, developers of many popular programs (e.g., chrome and firefox) reuse code

this way. The consequence is that programs reusing the same code may have the code

placed at di↵erent locations in their address spaces. The reused code may not even

have the same instructions if compiled by di↵erent compilers.

However, code reuse via static linking introduces a security liability: When a

piece of re-usable code contains a vulnerability, all programs that reuse the code will

su↵er from the same vulnerability. If these programs have been shipped in binary

forms, the only way to fix the vulnerability is to release multiple binary patches –

one for each program and by the corresponding vendor. However, not all vendors

react to a vulnerability with equal timeliness and some may not even be aware of the

vulnerability not in their own code. Thus it may be desirable for customers, who do

not have source code access, to patch these programs without vendors’ involvement.

Binary syntactic patching, which directly applies a patch for software A to software

B sharing the same (vulnerable) code, will hardly work, because of the di↵erent

locations of the code and the syntactic di↵erences between the two code copies (due

to di↵erent compilers used or di↵erent call/jump targets inside the copies).

In our first case study, we show that Bistro can enable binary semantic patching.

Assume that software A and B share a function f and the vendor of A has released

a binary patch of f for a vulnerability. Let the patched program and the patched

function be A0 and f 0, respectively. We will use Bistro to extract f 0 from A0 and

embed it to B to replace the vulnerable version. Note that Bistro is critical in

ensuring the extracted f 0 is properly patched and the target binary B is properly

stretched to contain f 0.

We acquire a group of application binaries that leverage the same vulnerable

component using public, vendor-provided information (e.g., which libraries are used

in the software) or by finding similar binary snippets using the binary comparison

tool bindi↵ [48]. Suppose at least one binary in the group, say A, has a patched

29

T
ab

le
2.
2.
:
R
es
u
lt
s
of

b
in
ar
y
se
m
an

ti
c
p
at
ch
in
g
u
si
n
g
B
i
s
t
r
o
.

V
u
ln
er
ab

il
it
y

P
at
ch

E
xt
ra
ct
ed

F
ro
m

V
u
ln
er
ab

le
A
p
p
li
ca
ti
on

P
at
ch
ed

O
ri
gi
n
al

F
il
e

P
at
ch
ed

F
il
e
S
iz
e
(K

B
)

S
em

an
ti
c
P
at
ch

V
en
d
or

P
at
ch

S
iz
e
(K

B
)

w
.
/
w
.o
.
R
el
oc

A
va
il
ab

le
A
va
il
ab

le
C
V
E
-2
01
0-
12
05

li
b
p
n
g
1.
2.
43
!

1.
2.
44

(r
p
n
g2
-w

in
.e
xe
)

F
ir
ef
ox

3.
6.
6
(x
u
l.
d
ll
)

11
74
7.
5

12
37
1.
5
/
13
00
5

6/
25
/2
01
0

7/
20
/2
01
0

C
V
E
-2
01
1-
30
26

li
b
p
n
g
1.
4.
8
!

1.
4.
9
(r
p
n
g2
-w

in
.e
xe
)

Z
on

er
P
h
ot
o
S
tu
d
io

15
(Z
xl
.d
ll
)

82
25
.1

85
02
.1

/
91
81
.6

2/
18
/2
01
2

N
/A

S
A
47
32
2
/

Ir
fa
n
V
ie
w

4.
30
!

4.
32

(F
px

.d
ll
)

X
n
V
ie
w

1.
99
.5

(X
fp
x.
d
ll
)

35
6

36
8
/
40
0

12
/2
0/
20
11

N
/A

C
V
E
-2
01
2-
00
25

L
ea
d
T
oo

ls
17
.5

(l
tk
d
ku

.d
ll
)

13
8.
5

14
3
/
15
1

12
/2
0/
20
11

N
/A

S
A
47
38
8

X
n
V
ie
w

1.
98
.5
!

1.
98
.8

(X
fp
x.
d
ll
)

Ir
fa
n
V
ie
w

4.
35

(F
px

.d
ll
)

43
2

44
8
/
50
8

3/
12
/2
01
2

N
/A

L
ea
d
T
oo

ls
17
.5

(l
tk
d
ku

.d
ll
)

37
2.
5

42
8.
5
/
49
3.
5

3/
12
/2
01
2

N
/A

S
A
48
77
2
/

Ir
fa
n
V
ie
w

4.
33
!

4.
34

(F
px

.d
ll
)

X
n
V
ie
w

1.
99
.5

(X
fp
x.
d
ll
)

35
6

36
8
/
40
0

4/
13
/2
01
2

N
/A

C
V
E
-2
01
2-
02
78

L
ea
d
T
oo

ls
17
.5

(l
tk
d
ku

.d
ll
)

13
8.
5

14
2.
5
/
15
0.
5

4/
13
/2
01
2

N
/A

S
A
49
09
1

X
n
V
ie
w

1.
98
.8
!

1.
99

(X
fp
x.
d
ll
)

L
ea
d
T
oo

ls
17
.5

(l
tk
d
ku

.d
ll
)

37
2.
5

42
8.
5
/
48
8.
5

6/
15
/2
01
2

N
/A

30

version A0. Our goal is to extract a semantic patch out of A0 and transplant it to

patch the other vulnerable binaries {B1, ..., Bn}.

We collect 6 real-world vulnerabilities, with their CVE or Secunia IDs shown in

Column 1 of Table 2.2. For each vulnerability, the vulnerable program(s) that has

been patched by its vendor is shown in Column 2. The file names in braces represent

the files that are patched. Column 3 shows a list of other un-patched programs with

the same vulnerabilities. Column 6 shows the patch release date for the application

in Column 2, i.e. the earliest date we can extract the semantic patch. Column 7

shows the date when the vendors for the software in Column 3 release their patches

(N/A means no vendor patch is available yet). Most of the applications used in this

case study are close-source (except libpng and firefox). Observe that most of the

applications in Column 3 do not have vendor patches so far. For firefox, the new

version (3.6.7) which patched the vulnerability was released – but with a one-month

latency. With Bistro, we can fix all these vulnerable applications as soon as one

vendor releases the corresponding patch.

Failure of Syntactic Patching. We first verify that simple syntactic patching

does not work – that is, using an existing binary di↵erencing tool that generates

and applies patches (e.g., xdelta, bsdi↵, bspatch, etc.) will not properly patch B1...n.

For each vulnerability in Table 2.2, we use bsdi↵ to extract the syntactic di↵erence

between the pair of shared functions (f and f 0) in the versions in Column 2 as a patch,

and use bspatch to apply it to the corresponding vulnerable applications in Column 3.

None of the resultant binaries works. Further inspection shows that syntactic patches

cannot properly fix the call/jump targets that are di↵erent among copies of the same

reused code.

Function Identification. To extract the semantic patch for a specific vulnerability,

we need to identify the functions in A and A0 that are related to the vulnerability. To

illustrate, we denote the set of functions in a binary A by FA. First, we notice that the

related functions must exist in all the vulnerable binaries. We take A and the other

vulnerable binaries {B1, ..., Bn} and use bindi↵ [48] to identify the set of common

31

functions F among them (Equation (2.1) below). However, some functions in F are

not related to the vulnerability (e.g., other pieces of reused code.) To pinpoint the

relevant functions in F , we leverage the observation that they have been patched

in A0. Particularly, we utilize the partial matching feature of bindi↵ to identify the

relevant patched functions as shown in Equation (2.2). The generatedM is a mapping

that maps a function f 2 F to its patched version f 0 2 FA0 . Two functions are said

to be partially matched when they share similar characteristics (e.g., common basic

blocks, similar CFG) but are not exactly the same. By performing partial matching

between F and FA0 , we also exclude patches in A0 that are not related to the target

vulnerability. Note that a vendor may patch a few (unrelated) problems in a single

release.

F = FA \ FB1 \ FB2 ... \ FBn (2.1)

M = BinDi↵ Partial Matching(F, FA0) (2.2)

Patch Transplanting. We have developed a binary semantic patching tool based

on Bistro and bindi↵. The extraction and application of the patch is guided by

mapping function M . For each mapping under M : (f, f 0 2 FA0), we use Bistro to

extract f 0 from A0 as the semantic patch for f . For each vulnerable binary B, we use

bindi↵ to find f . We use Bistro to cut out f and then stretch the resulting binary

to implant f 0 at the same starting address of f . Bistro ensures the correctness

of both f 0 and the patched binary B0 by properly stretching and patching control

transfer instructions and data references. Our patching tool tries to avoid extracting

dependent functions or global data entries of f 0 (i.e., functions being called and global

data accessed by f 0) as much as possible by redirecting them to their counterparts in

the target binary B. Since f 0 is a patched version of f , they likely share the same

dependencies. For example, for each function invocation to function g0 inside f 0, if

bindi↵ is able to identify the matching function g in B, our tool will automatically

redirect the invocation in the extracted patch to g, without extracting g0. To be

32

conservative, g and g0 must be fully matched. Otherwise, g0 will be extracted as part

of the semantic patch.

We evaluate our patching tool on the subjects in Table 2.2. We apply our tool in

two di↵erent ways to stress-test the robustness of Bistro: first, we use the reloca-

tion information when it is present in the binary; second, we do not use relocation

information at all. The patches are not large, each consisting of tens to hundreds

of instructions. However, it is not straightforward to generate them because of the

nature of the vulnerabilities being patched. In both runs, the patching is success-

ful: the patched applications work well and no longer su↵er from the corresponding

vulnerabilities. Columns 4 and 5 show the file size changes.

The first two vulnerabilities are in libpng, which is widely used in various software

to read, write and render PNG images. The two vulnerable applications in Column 3

have libpng statically linked in their private DLLs (xul.dll and Zxl.dll). To patch these

DLLs, we extract the semantic patch from rpng2-win.exe, a sample application in the

libpng package. The remaining four vulnerabilities lie in libfpx, a library to handle

the Flashpix (.fpx) image format. For the four vulnerabilities, only the first one was

patched by the maintainer of libfpx; the other three were patched by individual devel-

opers who use libfpx. However, as shown in the table, individual developers only care

about patching the libfpx code in their own applications. Using our binary semantic

patching tool, users of the un-patched applications can transplant the patches and

eliminate the vulnerabilities without the help of application developers.

2.7.3 Case Study II: Malware Stitching Using BISTRO

In the second case study, we demonstrate how Bistro helps in the study of

cyber attacks and counter-attacks. Specifically, we use Bistro to compose a new,

executable malware by stitching 3 separate functional components extracted from a

non-executable sample of the Conficker worm [45]. It is an unpacked version without

relocation information. Based on the published technical report of Conficker [45] and

33

manual code inspection, we identify the code and data associated with the following

3 components:

• DNS API hijacking. This component prevent DNS query of the web sites in

a blacklist by hijacking the functions Query Main, DNSQuery A, DNSQuery W

and DNSQuery UTF8 in dnsapi.dll. The result is these web sites will not be

accessible using their domain names.

• Code injection. To hijack the functions in dnsapi.dll used by a process (e.g.,

Internet Explorer), the malware must inject itself into the address space of the

process. This component performs the injection. It takes the process identifier

(PID) of the target process and the path of the malware as parameters.

• Process identification. This component gets a process’ PID using its process

name and provide the PID to the code injection component.

The identification process takes us about 60 minutes. After that we use Bistro

to extract the three components from the Conficker sample. We then create a dummy

DLL to serve as the container of these components. Next, we useBistro to embed the

3 components into the empty DLL, right before the DllMain() function. After that,

we add instructions to the DllMain() function to invoke the inserted components.

The invocation code first checks if the current process is the target process. If so, it

will invoke the DNS API hijacking component to hijack the DNS query. If not, it

will call the process identification component to find the PID of the target process,

and then call the DLL injection component to inject itself into the target process for

DNS API hijacking. The whole composition process takes us about 30 minutes.

To verify the functionality of the newly composed malware, we select two applica-

tions as our targets (in two experiment runs): Internet Explorer and FlashFXP (an

FTP client). After being loaded, the malware injects itself into the target processes.

Then, in the target application, we try to access web site avast.com, which is black-

listed by Conficker [45]. Interestingly, the access was not blocked at first (namely,

34

the malware did not succeed). After debugging, we found that it was due to a bug in

Conficker’s original code: the hijacked DNSQuery W() has one unnecessary instruc-

tion which sets a wrong return value. We point out that we would not have spotted the

problem, had we not made these components executable and observed their runtime

behavior. After removing this instruction using Bistro, both IE and FlashFXP are

successfully compromised: they can no longer access avast.com due to a DNS query

error.

2.7.4 Case Study III: Trojan-ing Kernel Drivers

Table 2.3.: Trojan-ed device drivers (two per row).

Original Driver File Name File Size(KB)
w/ proc hider embedded w/ keylogger embedded
File size(KB) Work? File size(KB) Work?

Beep beep.sys 4.1 7.9
p

12.4
p

FAT File System ftdisk.sys 122.1 135.1
p

137.5
p

NT File System ntfs.sys 561.1 595.3
p

598
p

Intel E1000 Network Adapter e1000325.sys 167.1 175.4
p

180.6
p

Logitech C500 Webcam LVPr2Mon.sys 25 31.4
p

33.8
p

In the third case study, we demonstrate the use of Bistro in transplanting ma-

licious modules from existing kernel rootkits to existing kernel-level device drivers.

The trojan-ed kernel drivers will execute the rootkit modules while performing their

original functionalities. The goal of this case study is two-fold: (1) to evaluate the

e↵ectiveness of Bistro for kernel-level binaries, (2) to show the possibility and ease

of composing – instead of implementing from scratch – device drivers with hidden and

possibly malicious logic. Such trojan-ed device drivers are more di�cult to detect and

clean up, compared with traditional rootkits that come as stand-alone kernel modules.

On the flip side, trojan-ed kernel drivers can also be leveraged in defensive missions,

such as honeypot deployment, to achieve better stealthiness in attack monitoring and

containment. For example, malware may try to aggressively detect and disable any

monitoring kernel module (e.g., Sebek). With Bistro, one could transplant stealthy

35

monitoring/logging functions into a general-purpose device driver, making them more

di�cult to detect and disable.

In this case study, the two Windows-based kernel rootkits tested are captured

variants of HookSSDTMDL and Klog which were originally packed in the wild, without

relocation information for the rootkit code. The packers use their own algorithms to

perform rootkit code relocation, and such relocation information is lost after the

rootkits are unpacked. The samples we obtained are the unpacked version. We wish

to extract two modules from the samples (one from each): (1) proc hider for hiding

processes and (2) keylogger for logging keystrokes. To show the generality of device

driver trojan-ing, we transplant these two rootkit modules into 5 di↵erent Windows-

based kernel drivers, resulting in a total of 10 trojan-ed kernel drivers.

First, we use an approach similar to [44, 47] to identify the modules to extract.

We then use Bistro to shrink each of the two kernel rootkits so that only the code

of the two modules and the data they access remain (as snippets). The size of the

extracted snippets is 2.3KB for proc hider and 7KB for keylogger, respectively. The

size of the data in the extracted snippets is 169 bytes and 514 bytes, respectively.

After preparing the snippets, we use Bistro to insert each of them into each of the

following five drivers: beep.sys, ftdisk.sys, ntfs.sys, e1000325.sys and LVPr2Mon.sys.

The OS is Windows XP (SP2)2. Table 2.3 lists the 10 resultant trojan-ed drivers (two

per row). For each of the 10 drivers, we install it and confirm the proper working of

(1) the original driver functionalities and (2) the malicious rootkit module.

When determining where to insert a rootkit module, we choose to insert it right

before a randomly chosen function in the driver. To invoke the rootkit module when

the driver is loaded, we insert a call to the rootkit module in the DriverEntry ()

function of the driver, which is a mandatory function exported by any driver and can

be located in the code section by reading the export table. Interestingly, we are able

to use Bistro to implement a “timebomb”-style invocation of the rootkit module:

Instead of activating the module upon driver loading, we wish to invoke it only under

2We use Windows XP because the real-world rootkits we obtained do not work with newer versions.

36

a certain condition. Specifically, when we trojan the NT file system driver (ntfs.sys)

with the keylogger module, we want to activate the keylogger only when a file with

the word “secret” in its name is opened. This is done by calling a file-name-matching

function before activating the keylogger. We write this function using C, compile it

into a binary snippet, and use Bistro to insert it into ntfs.sys (just like inserting

the rootkit module), particularly, inside NtfsFsdCreate (), a function that is called

every time a file is opened. Here, we leverage IDA-Pro to spot this function, which

is the IRP dispatch routine to handle IRP MJ CREATE IRPs. This can be easily done

by finding the initialization of the IRP dispatch table in DriverEntry (). We verify

that the timebomb-controlled trojan-ed driver works as expected.

We observe that, for a “native” driver developed by the OS vendor (e.g., beep.sys,

ftdisk.sys and ntfs.sys), the installation of the trojan-ed version does raise an alert

to the user, thanks to the built-in integrity check mechanism in the OS. Unfortu-

nately, if the user chooses to ignore the alert, the installation will proceed and the

system will never complain again. For third-party drivers (e.g., e1000325.sys and

LVPr2Mon.sys), the detection of maliciously trojan-ed version is much more di�cult

because these drivers may be widely distributed and frequently updated without a

centralized authority. Even if such an authority exists and performs digital signing

for its drivers, authors of trojan-ed drivers may still evade detection by stealing cer-

tificates from the authority to sign their trojan-ed drivers, as was done in the crafting

of Stuxnet [56]. In our study, the installations of the trojan-ed third-party drivers

did not trigger any warnings.

2.8 Limitation

Bistro cannot work on self-modifying, self-checking or obfuscated binaries. Self-

modifying binaries generate instructions dynamically during runtime, which could

not be statically patched using Bistro. Self-checking binaries use checksum or other

integrity checks to detect changes made to their code by Bistro, thus may refuse to

37

run properly. Obfuscated binaries in many cases cannot be properly disassembled.

For instance, the attacker can craft a conditional jump, with one branch never taken

but pointing to a data entry. A disassembler will have trouble handling such binaries

as it does not know statically that one of the branches cannot be taken. However, we

note that all other static binary rewriting/instrumentation techniques face the same

challenge.

Our anchor and branch target set pruning criteria assume the constants in a binary

represent a superset of all possible indirect control transfer targets. This assumption

should hold for binaries generated by common compilers. One exception is position

independent code (PIC), which obtains addresses at runtime and use them to compute

indirect control transfer targets. All PIC we encountered has the form of making a

call and then obtain the return address from the stack (e.g., call $+5; pop eax), which

is the address of the instruction right after the call. We identify all such instructions

and insert snippets to adjust the addresses to their mapped addresses. Also, special

compilers or hand-written binaries might violate our assumption. For example, in

the instruction sequence mov eax, Target; add eax, 5; jmp eax, the actual target is

Target +5 instead of the constant Target; our pruning heuristic will miss the actual

target. For such binaries, we can choose not to prune the anchor set or the branch

target set, which will consume more memory but guarantee correctness.

2.9 Related Work

The most related work is discussed in Section 2.1 (with details in Section 2.3.) In

this section, we discuss other related work in the general area of binary manipulation.

Static Binary Rewriting. Static binary rewriting is widely applied in many scenar-

ios, such as in-lined reference monitors [57], software fault isolation [46,58–60], binary

instrumentation [1, 2, 4, 6–8], binary obfuscation [61, 62] and retrofitting security in

legacy binaries [9, 63]. Most of these rewriters require the binary to be compiled by

specific compilers, or contains symbolic information.

38

PEBIL [8], REINS [57], STIR [10] and SecondWrite [9] are recently developed

rewriters targeting stripped binaries. However, they all aim at rewriting a single

binary, so they all keep the original code and data sections in place. In contrast,

Bistro supports “transplanting” binary components from one or more binaries to

a target binary, which requires rewriting and combining multiple binaries. Keeping

original code and data sections in place may result in address space conflicts and hence

is not an option for Bistro. Detour-based techniques [5–7] are lightweight and can

work on stripped binaries. However, they cannot patch non-trivial jumps/calls that

are repositioned.

Dynamic Binary Rewriting. Dynamic binary rewriters [17,19,20,41] are generally

more robust as they do not require specific compilers or symbolic information. It is

possible to apply them to conduct binary stretching and transplanting. However, we

choose to use a static approach mainly because of the following two reasons: (1) Dy-

namic binary rewriters usually have much higher run time overhead than static ones.

(2) It is more di�cult to deploy a instrumented binary using dynamic approaches, as

the rewriter itself must be deployed along with the binary.

Binary Component Identification, Extraction and Reuse. Researchers pro-

posed to identify, extract and reuse components from binaries for security scenar-

ios [42–44]. Kolbitsch et al. proposed Inspector Gadget [42], which performs dynamic

slicing on a malware binary to identify and extract the slice pertinent to a specific

malicious functionality, and wrap the slice into a stand-alone binary that could be

reused to execute the malicious functionality. Inspector Gadget is able to extract

component from self-modifying code, which is not supported by Bistro due to the

limitation of static binary manipulation. Using dynamic slicing, Inspector Gadget

also avoids the problem of handling indirect calls/jumps in Bistro as all call/jump

targets are directly known in the slice. However, the slice may not cover all possible

code paths, which could result in incorrect execution when the user provides an in-

put that would lead to a code path which is not included in the slice. Compared to

39

Inspector Gadget, Bistro statically extracts the component from the binary, which

involves handling of indirect calls/jumps but provides better code path coverage.

Caballero et al. proposed BCR [43] to identify and extract a function from a

binary using a combination of static and dynamic analysis. The extracted function,

in the format of disassembly, is wrapped in a C file to be reused. BCR statically

disassembles the designated function starting at its entry point; when encountering

indirect call/jumps, BCR utilizes dynamic execution trace to the find the call/jump

targets. During the extraction, BCR rewrites all calls/jumps to use labels. Using

labels implies that indirect call/jump can only have one target, which may not always

hold in practice. Although BCR specially handles indirect jumps that use jump tables,

there are other forms of multiple-target indirect calls/jumps such as function pointers

and vtables. Compared to BCR, Bistro preserves the original semantic of indirect

calls/jumps when performing the extraction, hence does not su↵er from this problem.

Neither Inspector Gadget nor BCR could extract components from non-executable

binaries (as in Section 2.7.3) because they are based on dynamic analysis. In such

case, Bistro can still perform the extraction statically. Moreover, neither Inspector

Gadget nor BCR supports reusing extracted components to enhance legacy binaries

(as in Section 2.7.2), as they lack the capability of embedding instructions that invoke

the components into the target binary. Bistro is able to handle such a scenario by

performing both binary component extraction and embedding.

Lin et al. proposed ROC [44] which uses dynamic slicing to identify reusable func-

tional components in a binary for attack purposes. However, compared to Bistro,

ROC only reuses the components in the same binary; it does not support extraction

or reusing components in a di↵erent program.

2.10 Summary

In this chapter, we have presented a new pair of binary program manipulation

primitives called BISTRO for extracting and re-packaging a functional component

40

from a binary program; and for embedding a functional component in a target binary

program, respectively. We address the challenges of patching control transfer instruc-

tions and data references to preserve the semantics of both the extracted component

and the stretched binary program, especially indirect calls and jumps. BISTRO incurs

low runtime overhead (1.9% on average) and small space overhead (11% on average).

The extraction and embedding operations are highly e�cient, with less than 1.5s

for most cases. We have applied BISTRO to three security application scenarios,

demonstrating its e�ciency, precision, and versatility.

41

3 SPIDER: STEALTHY BINARY INSTRUMENTATION VIA HARDWARE

VIRTUALIZATION

3.1 Introduction

In a wide range of security scenarios, researchers need to trap the execution of a

binary program, legitimate or malicious, at desired instructions to perform certain

actions. For example, in high accuracy attack provenance, instruction-level trapping

allows recording of events which are more fine-grained than system calls and library

calls. In malware analysis, where malware often includes large number of garbage

instructions to hamper analysis, it allows analysts to skip such instructions and focus

on the instructions that are related to the behavior of malware.

Debuggers [12–14] and dynamic instrumentation tools [17–22] both support e�-

cient instruction-level trapping. As a countermeasure, an increasing percent of mal-

ware is equipped with anti-debugging and anti-instrumentation techniques. Such

techniques are also commonly used in legitimate software for protection purpose [64].

While they do prevent reverse-engineering and software modification, they also ren-

der any security application that relies on instruction-level trapping infeasible at the

same time.

Researchers have proposed to build systems that enable transparent trapping to

solve the problem. However, existing approaches are insu�cient to support trans-

parent, e�cient and flexible instruction-level trapping. In-guest approaches [15, 16]

could be detected by program running in the same privilege level. Emulation based

approaches [25,26] are not transparent enough due to imperfect emulation. Hardware

virtualization based systems [27, 50, 65–67] provide better transparency. However,

none of them supports instruction-level trapping with both flexibility and e�ciency.

Some of them utilize single-stepping which results in prohibitive performance over-

42

head; others could trap only a certain subset of instructions. More detailed discussion

about existing work is presented in Section 4.7.

In this chapter, we present Spider, a stealthy program instrumentation and de-

bugging framework built upon hardware virtualization. We propose a novel primitive

called invisible breakpoint to support transparent, e�cient and flexible trapping of

execution at any desired instruction in a program. Invisible breakpoint is an im-

provement over traditional software breakpoint, with all its side-e↵ects hidden from

the guest. Spider hides the existence of invisible breakpoint in the guest memory

by utilizing the Extended Page Table (EPT) to split the code and data view seen

by the guest, and handles invisible breakpoint at the hypervisor level to avoid any

unexpected in-guest execution. Spider also provides data watchpoint which enables

monitoring memory read/write at any address.

We have developed a prototype of Spider on KVM [68]. We have evaluated the

transparency of Spider using software protectors and programs equipped with state-

of-the-art anti-debugging and anti-instrumentation techniques. The result shows that

Spider successfully maintains transparency against all of them. We have also ap-

plied Spider to the following cases: (1) We improve the applicability and security of

an existing attack provenance system [11] by replacing its underlying in-guest instru-

mentation engine with Spider; (2) We demonstrate a threat that involves stealthy

introspection on protected software to capture sensitive application data. The per-

formance overhead introduced by Spider is less than 6% in our case studies. The

quantitative cost of each trap is around 3200 CPU cycles according to our mea-

surement, which is less than a previous work [15] and comparable with hardware

breakpoint.

3.2 Related Work

In this section, we take an in-depth look at existing program debugging, in-

strumentation and analysis tools and discuss their limitations. We only focus on

43

instruction-level tools as they are most related to Spider. We classify them into four

categories: in-guest, emulation based, hardware virtualization based and hybrid.

In-Guest Approaches. Traditional in-guest debuggers [12–14] use software and

hardware breakpoints to gain control at arbitrary points during the execution of a

program. In x86, software breakpoint is implemented by replacing the target in-

struction with a special 1-byte instruction (int3), which triggers a #BP exception

upon its execution. Hardware breakpoints are implemented as four debug registers

(DR0-DR3). Each of these registers holds a target address; a #DB exception is

triggered upon instruction execution or data access at the target address. Software

breakpoints could be easily detected by code integrity checks as the instruction is

modified. Hardware breakpoints are not transparent either. The reason is that they

are limited resource such that programs could hold and use all hardware breakpoints

exclusively to prevent debuggers from using them.

To solve the transparency issue of traditional breakpoints, researchers proposed

to use page-level mechanism to trap execution of arbitrary instruction [15, 16]. The

page which contains the target instruction is set to non-present, which will cause a

page fault upon execution. In the page fault handler, the page is set to present and

the target instruction is executed in single-step mode. Then the page is set back to

non-present to enable breakpoint again. There are two limitations with this approach.

First, execution of any instruction in the non-present page will cause a page fault, even

if there is no breakpoint set on that instruction. This would result in prohibitively

high performance overhead. Second, although it is not as straightforward as detecting

traditional breakpoints, the modified page table and page fault handler could still be

detected by kernel-level programs.

Dynamic binary instrumentation (DBI) frameworks [17–22] are able to insert in-

strumentation code at arbitrary points during the execution of a program. The mech-

anism of DBI frameworks is to relocate and instrument code blocks dynamically and

handle control flow transitions between basic blocks. Transparency is an important

concern in DBI frameworks. For example, position-independent code makes assump-

44

tion about relative o↵sets between instructions and/or data. DBI frameworks may

break such assumptions when relocating basic blocks, so they must change some in-

structions in the program to create an illusion that every address is the same as in a

native run. However, despite recent e↵orts [23, 24] targeting at improving the trans-

parency of DBI frameworks, they are still insu�cient. A recent work [69] has also

shown that there are a number of ways to detect DBI frameworks. More essentially,

the DBI framework itself, along with the relocated and instrumented basic blocks

must occupy additional memory in the virtual address space. Programs could scan

the virtual address space to detect unsolicited memory consumption and hence the

DBI framework.

Emulation Based Approaches. To get rid of in-guest components that are vis-

ible to guest programs, researchers have proposed to build program analysis and

instrumentation tools [25, 26] using full system emulators such as QEMU [41] and

Bochs [70]. Full system emulators create a virtual environment for the guest so it

feels like running in a dedicated machine. Instruction-level trapping could be easily

implemented as each instruction is emulated. However, attackers have been able to

identify various methods [71–73] to detect emulators by exploiting imperfect emula-

tion of instructions and hardware events (e.g. interrupts and exceptions). Although

imperfection that is already known could be fixed, the problem still exists as long

as there might be unrevealed imperfections. In fact, it has been proved in [50] that

determining whether an emulator achieves perfect emulation is undecidable.

Hardware Virtualization Based Approaches. With recent advances in processor

features, researchers propose to leverage hardware virtualization to construct more

transparent program analysis and instrumentation tools [27, 50, 65–67]. Hardware

virtualization naturally provides better transparency than emulation by executing all

guest instructions natively on processor.

Among existing hardware virtualization based approaches, none of them supports

transparent, e�cient and flexible trapping of arbitrary instructions during execution

of a program. PinOS [27] implements a DBI framework on the Xen [74] hypervisor.

45

As it needs to occupy part of the guest virtual address space, it su↵ers from the

same transparency issue as in-guest DBI frameworks. Ether [50] and MAVMM [65]

use single-stepping for instruction-level trapping, which triggers a transition between

hypervisor and guest upon execution of every guest instruction. Such transition causes

significant performance overhead as it costs hundreds to thousands cycles while an

instruction only costs several to tens cycles on average. The mechanism is not flexible

either as one is forced to single-step through the whole program even if he is only

interested in the states at specific points during execution. Such scenario is often

encountered when analyzing obfuscated programs, which contain lots of garbage code.

Several recent approaches [66,67,75] propose to use x86 processor features to trap

specific events for program analysis. In [66], the authors use branch tracing to record

all the branches taken by the program during its execution. While the performance

is much better than single-stepping, it is still 12 times slower than normal execution.

Also, the tool is only able to record all branches. It cannot trap a specific branch,

which renders detailed analysis at arbitrary given points during execution impossible.

In [67], the authors make use of performance monitoring counters (PMCs) to trap

certain types of instructions (e.g. call, ret and conditional branches). However, there

are still many other types of instructions (e.g. mov) that could not be trapped this

way. Also, the tool does not support trapping instruction at a specific location.

In [75], the authors propose to utilize the System Management Mode (SMM) in x86

to implement a debugging system with maximized transparency. However, when

performing instruction-level debugging, their system introduces more than 900 times

slowdown compared to a native execution, which is only usable for manual debugging

instead of instrumentation in production runs.

Hybrid Approaches. Researchers have also proposed to use hybrid approaches [28,

29] to take advantage of both the transparency granted by hardware virtualization and

the flexibility provided by emulation. In [28], the authors utilize the trace obtained

from a transparent reference system (e.g. Ether) to guide the execution of program

in an emulator. However, as discussed above, it incurs high performance overhead

46

to obtain execution trace using current hardware virtualization based approaches.

V2E [29] takes another approach by emulating only the instructions that can be

perfectly emulated. For other instructions in the program, it records the state changes

caused by these instructions in a hardware virtualization based system, and then

replays the state changes in the emulator. While this method could substantially

reduce performance overhead, how to precisely identify the set of instructions that

can be perfectly emulated remains a problem.

3.3 Overview

Guest Virtual Address-Spaces

Hypervisor

……

……

Program P
……

……

Guest Physical Address-Space Machine Physical Memory

……

……

Guest Virtual-to-Physical
Mapping Monitor

……
int3
mov ebp, esp
sub esp, 16
……

……
push ebp
mov ebp, esp
sub esp, 16
……

Machine
Physical Page 1

Machine
Physical Page 2

……
int3
mov ebp, esp
sub esp, 16
……

……
push ebp
mov ebp, esp
sub esp, 16
……

Virtual Page A
(Data View)

Virtual Page A
(Code View) ……

int3
mov ebp, esp
sub esp, 16
……

……
push ebp
mov ebp, esp
sub esp, 16
……

Physical Page A
(Data View)

Physical Page A
(Code View)

Breakpoint
Manager

……

……

Extended
Page
Table Instruction Fetch

Data Access

Set
BP

User

Address Space ID and
Virtual Address to Set Trap

Physical Address
to Set Trap

Mapping
Changes

User-Provided FunctionsFunction to Call
on Trap

BP Triggered
Call

Split View

Guest
Page
Table

Hypervisor

Code
Modification

Handler
Code

Modification

Sync

Figure 3.1.: Overview of Spider.

The goal of Spider is to provide a program debugging and instrumentation frame-

work with flexibility, e�ciency, transparency and reliability, which we define as fol-

lows:

(R1) Flexibility: Spider should be able to trap the execution of the target program

at any desired instruction and data access at any memory address.

47

(R2) E�ciency: Spider should not introduce high performance overhead on the

target program.

(R3) Transparency: The target program should not be able to detect the existence

of Spider.

(R4) Reliability: The trap should not be bypassed or tampered with by the target

program.

An overview of Spider is shown in Figure 4.3. For simplicity, we only show

the trapping of instruction execution here. The trapping of data access using data

watchpoint (Section 3.4.5) is much simpler and omitted in the figure. To trap the

execution of an instruction, the user provides these inputs to Spider: the program

address space identifier (CR3 register value in x86), the virtual address to set trap and

the function to call on trap. As shown in the figure, Spider is mainly implemented

inside the Hypervisor. The guest virtual-to-physical mapping monitor component

(Section 3.4.3), which captures guest virtual-to-physical mapping changes, translates

the address space identifier and the virtual address into guest physical address and

invokes the breakpoint manager to set the trap. The breakpoint manager sets invisible

breakpoint to trap the execution of the target program.

Invisible breakpoint uses the same triggering mechanism as traditional software

breakpoint to inherit its flexibility (R1) and e�ciency (R2). However, as discussed

in Section 4.7, traditional software breakpoint is not transparent because: (1) The

instructions needs to be modified in order to set breakpoint; (2) The triggering and

handling of the breakpoint involves control-flow which is di↵erent from natural exe-

cution. These side-e↵ects are neutralized in invisible breakpoint to guarantee trans-

parency (R3). Regarding the first side-e↵ect, the breakpoint manager uses EPT to

split the code and data views (Section 3.4.1) of the guest physical page that contains

the breakpoint. In the code view, which is used for instruction fetching (shown as the

grey path in Figure 4.3), the instruction is modified to set breakpoint; in the data

view, which is used for read/write access (shown as the white path in Figure 4.3), the

48

instruction is not modified at all, so the guest sees no change to the instruction. To

neutralize the second side-e↵ect, when a breakpoint is triggered, the breakpoint man-

ager will capture the event, call the corresponding user-provided function and handle

the breakpoint transparently (Section 3.4.2) so that the control-flow in the guest is

the same as a natural execution. The code modification handler (Section 3.4.4) cap-

tures any modification made to the data view and synchronizes with the code view

to guarantee transparency (R3); it also makes sure the breakpoint is not maliciously

overwritten by the guest to guarantee reliability (R4).

3.4 Design

3.4.1 Splitting Code and Data View

Spider neutralizes memory side-e↵ects of traditional software breakpoint by split-

ting the code and the data views of guest pages. Several existing techniques could

have been used here to split the two views; however, they all have some limitations.

For example, one could intercept all read accesses to modified instructions by set-

ting the corresponding pages to not-present, and return original instructions upon

read accesses. However, it would introduce significant performance overhead as ev-

ery instruction fetching or data access in these pages will cause a page fault. A

recent work hvmHarvard [76] tries to implement a Harvard architecture on x86 by

de-synchronizing the instruction TLB (iTLB) and the data TLB (dTLB). More specif-

ically, it tries to maintain two di↵erent virtual-to-physical page mappings in iTLB and

dTLB for the code and data view respectively. To prevent the mapping of the code

view from being loaded into dTLB, the page table is set to map the data view all

the time; the code view is only mapped when an instruction fetching happens, and a

single-step is performed in the guest to load the code view into iTLB. Unfortunately,

such mechanism could not guarantee the de-synchronization of iTLB and dTLB. As

the code view is readable, one could still load the code view into dTLB by executing

49

an instruction that reads from the page that contains it. An attacker could exploit

this limitation to read from the code view and detect the modified instructions.

Spider splits the code and the data views of a guest physical page by mapping

it to two host physical pages with mutually exclusive attributes. We call such guest

physical page with split code and data views a split page. The code view of a split

page is executable but not readable; the data view is readable but not executable.

Both views are set to not writable to handle code modification, which will be dis-

cussed in Section 3.4.4. The mutually exclusive attributes ensure that the guest could

neither read from the code view nor execute instruction from the data view of a split

page. Traditionally, in x86 there is no way to set a page to executable but not read-

able; however, recent processors introduces a feature that allows one to specify such

attribute in EPT entries [77]. Legacy page table still lacks such capability, which is

the reason we split physical pages instead of virtual pages.

Spider performs on-demand transparent switching between the two views of a

split page. For example, let us assume its corresponding EPT entry is currently set

to mapping its code view. When a data access happens in the page, since its current

view—code view is not readable, an EPT violation will occur. Spider will capture

the event and adjust the mapping and the attribute in the EPT entry to switch to the

data view. It will then resume the guest, and the data access can proceed. Switching

from data view to code view works in a similar way.

It seems that Spider needs to switch views frequently when instruction fetching

and data access in a split page are interleaved, which could result in a lot of EPT

violations. However, the problem is greatly mitigated by the separation of iTLB and

dTLB in x86. Given a split page, although the corresponding EPT entry could only

map one of its views at any given time, the mappings of the two views can exist

simultaneously in the iTLB and dTLB, respectively. For example, when Spider

switches the page from the code view to the data view due to a data access, the

mapping in the EPT is set to mapping its data view. After resuming the guest, the

data access will populate the dTLB with the mapping for the data view. However,

50

the mapping for its code view still exists in the iTLB. Further instruction fetching

will not cause any EPT violation until the mapping is evicted from iTLB.

3.4.2 Handling Breakpoints

Spider hides the #BP exceptions generated by invisible breakpoints and invokes

breakpoint handlers at the hypervisor level to neutralize side-e↵ects related to break-

point handling. Spider sets the hypervisor to intercept all #BP exceptions generated

by the guest. How to deal with intercepted #BP exceptions depends on their causes:

those caused by invisible breakpoints should not be seen by the guest, while those

caused by traditional software breakpoints set by the guest should be passed on to

the guest transparently.

The breakpoint manager of Spider maintains a list which stores the guest physi-

cal addresses of all invisible breakpoints and their associated handlers that should be

called when they are triggered. When Spider intercepts a #BP exception, it trans-

lates the guest instruction pointer to guest physical address by looking up the guest

page table, and compares the address against the list to see whether the triggered

breakpoint is an invisible breakpoint or a traditional software breakpoint. If it is a

traditional breakpoint, the #BP exception will be re-injected to the guest to let the

guest handle the breakpoint on its own. Otherwise, if it is an invisible breakpoint,

Spider will call its associated handler to handle the breakpoint event. After that,

Spider will temporarily clear the breakpoint and restore the first byte of instruction

which had been replaced. Then it lets the guest single-step through the instruction.

Unlike previous work [50,65,76] which enables single-stepping by setting the trap

flag in the guest EFLAGS register, Spider uses the monitor trap flag (MTF) which

is a flag specifically designed for single-stepping in hardware virtualization. When

MTF is set, the guest will trigger a VM Exit after executing each instruction. The

reason why we choose not to use trap flag is that it is visible to the guest as a flag in

a guest register. Despite various techniques used in previous work to hide the trap

51

flag, the guest could still see it. For example, if an interrupt is pending right after

the guest resumes execution, the processor will invoke the corresponding interrupt

handler before single-stepping through the instruction. The EFLAGS register is

saved onto the stack, and restored after the interrupt handler returns. The interrupt

handler could check the EFLAGS on the stack to see if the trap flag has been set.

Compared with the trap flag, MTF is transparent because it could not be read by the

guest. However, using MTF also causes one problem. Consider the same scenario of

pending interrupt as above: when using the trap flag, the saving/restoring of the trap

flag implicitly avoids single-stepping through the interrupt handler; but when using

MTF, the processor will single-step through the interrupt handler before reaching the

instruction. Spider solves this problem by “retrying”: if it finds out that the guest

has not executed the instruction after a single-step, it will clear MTF, set the invisible

breakpoint again and resume the guest. The invisible breakpoint will be triggered

again after the interrupt handler returns. This procedure repeats until the instruction

is successfully executed after a single-step, and Spider will then clear MTF, set the

invisible breakpoint again and resume the execution of the guest.

3.4.3 Monitoring Virtual-to-Physical Mapping

The invisible breakpoint provides Spider the ability to trap the execution of

program at arbitrary guest physical address. However, when paging is enabled in

the guest, the processor uses virtual address instead of physical address to reference

memory. As paging is used by almost all modern operating systems, it is more

desirable to have the ability to trap the execution of program at arbitrary guest

virtual address in the program’s address space. We define the breakpoint address

where we want to set a breakpoint using a tuple of the address space identifier and

the guest virtual address. In x86, the physical address of the base of the top-level

paging structure (stored in CR3 register) serves as the address space identifier, so we

write the breakpoint address as BA = (PGB,GV A). If BA is mapped to a guest

52

Page Directory

Page Table 1

PGB

(a) Virtual-to-physical mapping (b) Page table entry is modified (c) Page directory entry is modified

C
D

RO

RO

Read-only paging structure is in grey color and marked with “RO”. Physical page with split code and data view is represented using rectangle
with a dashed line splitting the code (‘C’) and data (‘D’) view. The area in the code view with a cross inside represents the breakpoint. Arrow
means path that is traversed during address translation. Double arrow indicates memory mapping. Dashed arrow or double arrow means
previous path or mapping that is no longer used.

GPA1

31

22
21

12
11

0

GVA

Page Directory

Page Table 1

PGB

RO

RO

31

22
21

12
11

0

GVA

GPA1

C
D

GPA2

Page Directory

PGB

Page Table 2

GPA1

RO

RO

Page Table 1

C
D

GPA3

31

22
21

12
11

0

GVA

Page Directory

N
P

PGB

RO

31

22
21

12
11

0

GVA

(d) Page directory entry not present

Figure 3.2.: Monitoring guest virtual-to-physical mapping.

physical address GPA, we denote it as BA ! GPA. If BA is not mapped to any

guest physical address, we denote it as BA! NIL.

To illustrate, assume the user wants to set a breakpoint at BA1 = (PGB1, GV A1).

If BA1 ! GPA1, then we could just set an invisible breakpoint at GPA1 to solve the

problem. However, it is possible that BA1 ! NIL when we set the breakpoint (e.g.,

the program has not been loaded). Even if BA1 is mapped, the mapping could change

after the breakpoint is set. If the mapping changes to BA1 ! GPA2, since there is

no breakpoint set at GPA2, execution of the instruction at BA1 will not be trapped

as expected. Similarly, when BA1 is no longer mapped to GPA1, the breakpoint

set at GPA1 will cause problem when another address is mapped to GPA1. Such

virtual-to-physical mapping changes could happen for various reasons. For example,

when the guest OS swaps out a virtual page, its corresponding physical page might

be used to map another virtual page; when a write access happens in a copy-on-

write virtual page, the guest OS will map it to another physical page to perform

the writing; kernel-level malware could even modify the guest page table directly

53

to change virtual-to-physical mappings. Hence, Spider must monitor virtual-to-

physical mapping changes to handle such scenarios correctly.

Monitoring every change of virtual-to-physical mapping requires heavy-weight

techniques such as shadow page table. Fortunately, Spider only needs to moni-

tor the change of virtual-to-physical mapping at each breakpoint address. In x86, the

virtual-to-physical mapping is represented using multiple levels of paging structures.

The number of levels depends on the operation mode of the processor, for example,

whether physical address extension (PAE) or long mode is enabled. Without loss

of generality, let us assume that legacy two-level paging structure is being used. As

shown in Figure 3.2(a), given a breakpoint address BA = (PGB,GV A), the proces-

sor traverses along a path from the page directory to the page table to translate it

to a guest physical address. The only way to change the virtual-to-physical map-

ping at BA is to modify the paging-structure entries that is traversed during address

translation, which is shown as the rectangle area in the page directory and the page

table. To capture such modifications, Spider sets these paging structures to read-

only (shown as grey) in the EPT. When there is a write access to a paging structure,

an EPT violation will be triggered and captured by Spider. Spider will record the

current values of paging-structure entries, then temporarily set the paging structure

to writable and let the guest single-step through the instruction that performs the

write access. After the single-stepping, Spider will read the new values of paging-

structure entries and see which ones of them have been modified. After that, Spider

will set the paging structure back to read-only to capture future modifications. The

action that Spider performs to handle the modification depends on the type of the

paging-structure entries that get modified:

Bottom-level paging-structure entries. As shown in Figure 3.2(b), when the

bottom-level paging-structure entry used to translate BA is modified, the mapping

changes from BA ! GPA1 to BA ! GPA2. As a result, Spider first removes the

invisible breakpoint at GPA1. Then Spider compares the content of the page that

contains GPA1 and the page that contains GPA2. If they are exactly the same (which

54

is the case we show in the figure), then it is safe to move the breakpoint to GPA2.

Otherwise, as the code in the page has changed, it is handled in the same way as a

breakpoint that might no longer be valid due to code modification (Section 3.4.4).

It is worth noting that the figure only shows the scenario where the mapping

changes from a present one to another present one. The mapping might also changes

from not-present to present, or oppositely. If the mapping changes from BA! NIL

to BA ! GPA, or from BA ! GPA to BA ! NIL, Spider will create/remove

invisible breakpoint at GPA, respectively.

Non-bottom-level paging-structure entries. Figure 3.2(c) shows the scenario

when a non-bottom-level paging-structure entry used to translate BA is modified.

The virtual-to-physical mapping changes from BA ! GPA1 to BA ! GPA3, so

Spider moves the breakpoint from GPA1 to GPA3. In addition to that, the path

which the processor traverses along to perform address translation is also modified,

so Spider also removes the read-only attribute from the paging structures in the

previous path (Page Table 1) and sets the paging structures in the new path (Page

Table 2) to read-only. For simplicity, we only show the change of one mapping and

one path in Figure 3.2(c). In practice, modification of a non-bottom-level paging-

structure entry may a↵ect multiple paths and mappings, each of which will be handled

by Spider individually.

There is a special case that the path used for address translation is incomplete

because a non-bottom-level paging-structure entry is set to non-present, as shown

in Figure 3.2(d). This could happen when setting a breakpoint at a virtual address

that is not mapped in the guest, or after a non-bottom-level paging-structure entry is

modified. Spider sets the paging structures along the path to read-only, including the

one that has the non-present entry. Later, when the paging-structure entry changes

from non-present to present, the path will extend, and Spider will set the paging

structures on the extended path to read-only. After the path reaches the bottom-level

paging-structure (e.g. as in Figure 3.2(a)), Spider could handle further modifications

using standard approaches as mentioned above.

55

3.4.4 Handling Code Modification

When the guest tries to modify the content of a split page, the write operation

will be performed on its data view. This means that if an instruction is modified, the

change will not be reflected in the code view. This could lead to incorrect execution

of self-modifying programs, and could be utilized by malware to detect the existence

of Spider. To guarantee transparency, Spider must synchronize any change of the

data view to the code view.

As mentioned in Section 3.4.1, Spider sets the data view of a split page to read-

only in EPT to intercept any writing attempt. When the guest tries to write to the

page, an EPT violation will be triggered and captured. Spider records the o↵set of

the data OFF that is going to be written in the page. Spider also records the length

LEN that will be synchronized by matching the instruction’s op-code in a pre-built

table which stores the maximum data length that could be a↵ected by each type of

instruction. Then Spider will temporarily set the data view to writable, and let the

guest single-step through the instruction that performs the write. After that, it will

copy LEN bytes from o↵set OFF in the data view to the same o↵set in the code

view.

It is worth noting that the breakpoints that have been set in the page may or

may not be valid after code modification. For example, if the guest overwrites an

instruction with the same instruction, it indicates the guest is trying to overwrite and

disable the breakpoint set at that instruction; in that case, the breakpoint is still valid

and should be re-set when overwritten. But if the guest overwrites the instruction

with a di↵erent instruction, re-setting breakpoint at the original place blindly may

not make sense. Hence, we allow the user to specify a function which will be invoked

when the page that contains the breakpoint is being modified, in which the user could

perform proper actions to handle the event, such as re-setting the breakpoint at the

same place, or moving it to another location after analyzing the modified code.

56

3.4.5 Data Watchpoint

Spider allows setting a data watchpoint at a specific physical address by adjusting

the EPT entry of the guest physical page that contains the memory address to read-

only (to trap write access) or execute-only (to trap both read/write access). When the

page is accessed, an EPT violation will be triggered and captured by Spider. Spider

will check if a watchpoint has been set on the address that is accessed in the page;

if so, it will call the corresponding user-provided watchpoint handler. After that, it

will temporarily set the EPT entry to writable and resume the guest to single-step

through the instruction that does the memory access. When the guest returns from

single-stepping, Spider adjusts the EPT entry again to trap future accesses. Like

invisible breakpoint, data watchpoint also utilizes the virtual-to-physical mapping

monitoring method (Section 3.4.3) so that it could be used to trap memory access at

any virtual address.

3.4.6 Handling Timing Side-E↵ect

In hardware virtualization, since part of the CPU time is taken by hypervisor and

VMEntry/VMExit, a program costs more time to run than in a native environment.

Attackers could execute the RDTSC instruction to read the Time Stamp Counter

(TSC) which stores the elapsed CPU cycles to detect the discrepancy. To maintain

transparency, Spider needs to hide the CPU cycles cost by hypervisor (Th) and

VMEntry/VMExit (Te) from the guest. Spider measures Th by reading the TSC

right after each VMExit and right before each VMEntry and calculating the di↵erence.

Te is approximated by profiling a loop of RDTSC instruction in guest. Spider sets

the TSC-o↵set field in virtual machine control structure (VMCS) to �(Th + Te) so

the value is subtracted from the TSC seen by the guest [78].

57

3.5 Implementation

We have implemented a prototype of Spider on the KVM 3.5 hypervisor. The

prototype implements the design as described in Section 4.4 in the kernel module

part of KVM (kvm-kmod) to provide the primitive of setting invisible breakpoint at

specified virtual address in a process address space. Based on the primitive, it also

implements a front-end for Spider in the userspace part of KVM (qemu-kvm) to

provide features that make debugging and instrumentation more convenient. It is

worth noting that Spider itself is OS-independent; However, the front-end requires

knowledge of the guest OS to perform VMI [79] for some features. Currently, our

front-end supports both Windows XP SP2 32-bit and Ubuntu Linux 12.04 32-bit

guest. We now discuss the implementation of some features in our front-end.

Kernel Breakpoints. We have to specify an address space when setting an invisible

breakpoint. For kernel breakpoints, we could specify the address space of any process

as the kernel space is mapped in the same way for any process. We hence choose the

address space of a long-lasting process (init in Linux and System in Windows), so

the breakpoint will not be cleared due to process termination.

Monitor Process Creation. In practice, in addition to debugging running pro-

grams, it is also desirable to have the ability to get the control of a program at the

moment when it is just created. For example, when analyzing malware, users often

need to trap the execution at its entry point; if the malware is already running, it

would be too late to set the breakpoint. To support such requirement, our front-end

monitors process creation events. We set invisible breakpoints at related kernel func-

tions to capture a newly created process and match its name against the one specified

by the user. The user could get notified as soon as a process of the target program

is created, and perform corresponding actions such as setting an invisible breakpoint

at the entry point.

58

In Windows, a process is created through the NtCreateProcessEx 1 system call,

which calls the PspCreateProcess kernel function to do the actual work. We set a

breakpoint at the instruction right after the call to PspCreateProcess. When the

breakpoint is triggered, we walk through the active process list at PsActivePro-

cessHead to find out the EPROCESS of the newly created process. The name is

stored in its ImageFileName field.

In Linux, there are two system calls fork and clone that could be used to create

a new process. They both call the same function copy process to do the actual work,

so we set a breakpoint at the instruction right after the call. When the breakpoint

is triggered, the task struct of the newly created task is in the EAX register as the

return value. As clone could also be called to create thread, we need to verify the

newly created task is a process by making sure its address space identifier (stored

in task struct.mm-¿pgd) is di↵erent from the one of the current task. The name is

stored in the task struct.comm field.

Monitor Process Termination. When a process terminates, all invisible break-

points in its address space should be cleared. Our front-end sets invisible breakpoints

at related kernel functions to monitor process termination. When a terminating pro-

cess is captured, we use its address space identifier to check if it is one of our debuggee

targets. If so, we will clear all invisible breakpoints in this target and remove the tar-

get.

In Windows, we set the breakpoint at the entry of the function PspProcessDelete,

which handles cleanup when a process terminates. When the breakpoint is triggered,

we read the first argument of the function from the stack, which is the EPROCESS

structure of the process. The address space identifier is in its Pcb.DirectoryTableBase

field.

In Linux, we set the breakpoint at the entry of the function do exit, which handles

the termination of the current task. However, the task could be a process or thread.

We determine if the task is a process by checking if the task struct.pid field matches

1Another system call NtCreateProcess for process creation is a wrapper of NtCreateProcessEx.

59

the task struct.tgid field. The address space identifier is read from the task struct.mm-

¿pgd field.

The system call execve in Linux requires special handling. Although it does not

create a new process or terminate an existing process, it changes the program running

in the current task. We consider that both process “termination” and “creation” are

involved in this procedure: the current task which runs the previous program is

“terminated”, and one that loads the new program is “created”. As execve calls

do execve to do the actual work, we set a breakpoint right before the function call to

capture the “terminated” current task, and another breakpoint right after the call to

capture the “created” one.

Table 3.1.: Transparency of Spider and other debuggers/DBI frameworks.

Target Spider OllyDbg 1.10 IDA Pro 6.1 DynamoRIO 4.0.1-1 PIN 2.12
Software Protectors (Applied to hostname.exe)

Safengine Shielden 2.1.9.0 Pass Fail Fail Fail Fail
Themida 2.1.2.0 Pass Fail Fail Pass Pass
PECompact 3.02.1 (w/ead loader) Pass Fail Fail Pass Pass
ASProtect 1.5 Pass Fail Fail Pass Pass
RLPack 1.21 Pass Fail Fail Pass Pass
Armadillo 9.60 Pass Fail Fail Fail Pass
tElock 0.98 Pass Fail Fail HBP/SBP Fail Fail

Anti-debugging & Anti-instrumentation POC Samples
eXait Pass Pass Pass Fail Fail
hardware bp.exe Pass Fail HBP Fail Pass Pass
heapflags.exe Pass Fail Fail Pass Pass
instruction counting.exe Pass Fail HBP Fail HBP Fail Fail
ntglobal.exe Pass Fail Fail Pass Pass
peb.exe Pass Fail Fail Pass Pass
rdtsc.exe Pass Fail HBP/SBP Fail HBP/SBP Pass Pass
software bp.exe Pass Fail SBP Fail SBP Pass Pass

3.6 Evaluation

In this section, we present the evaluation of Spider. The experiments are done on

a Thinkpad T510 laptop with Intel Core i7-3720QM 2.6GHz CPU and 8GB RAM.

The host OS is Ubuntu Linux 12.10 64-bit. We use Windows XP SP2 32-bit and

Ubuntu Linux 12.04 32-bit as the guest OS. We allocate 30GB image file as the hard

disk and 1GB memory for the guest VM.

60

3.6.1 Transparency

To evaluate the transparency of Spider, we use two groups of Windows pro-

grams with anti-debugging and anti-instrumentation techniques. For comparison, we

use Spider, two debuggers (OllyDbg and IDA Pro) and two DBI frameworks (Dy-

namoRIO and PIN) to trap the execution of the target programs at certain locations.

In Spider, the trapping is done by setting invisible breakpoints. In the debuggers, we

use software or hardware breakpoints. The DBI frameworks insert instrumentations

at desired instructions for trapping.

The first group of targets consists of 7 software protectors, which are widely used

by both COTS software vendors and malware authors to protect their programs from

being analyzed or modified. We apply these software protectors to a system program

hostname.exe in Window XP SP2. This program reads and displays the host name

of the local system; our goal is to trap the execution of its protected versions to get

the host name string. We reverse-engineer the original program and find out the

address of the host name string is store in the eax register when the program runs

to the address 0x10011C6. This also holds in the protected versions, as this program

does not contain relocation information and could not be relocated by the protectors.

Hence, we set the traps at 0x10011C6 in the protected versions. However, for some of

the protectors, we could not set the trap when the program starts, as the instruction

at 0x10011C6 is encrypted by the protectors and has not been decrypted at that

time. We hence set a data watchpoint at 0x10011C6 to monitor the decryption, and

set the trap once the instruction is decrypted.

We turn on all anti-debugging, anti-instrumentation and anti-VM options of the

protectors when using them. The only exception is when we use Safengine Shielden,

we turn o↵ its anti-VM option. With that option on, we found that the program

protected by Safengine Shielden would cease to function even when we run it in

vanilla KVM without Spider; but it runs correctly in BitVisor, which is another

61

hardware virtualization based hypervisor. We hence conclude that the problem is

due to the implementation of KVM but not Spider.

The second group of targets includes 8 proof-of-concept (POC) samples. Among

these programs, eXait [69] aims at detecting DBI frameworks. We randomly select

10 instructions in it for trapping. The rest 7 samples implement the anti-debugging

techniques commonly used in malware that is not protected by protectors, according

to the statistics in [80]. Since these samples are very small (tens of instructions), we

choose to trap every instruction in them.

The result is shown in Table 3.1. “Pass” indicates the program runs properly

and its execution is successfully trapped at the desired location. “Fail” means the

program fails to run properly in the environment even without any trap. “Fail HBP”

and “Fail SBP” means the program fails to run properly after setting hardware break-

point or software breakpoint. We can see that OllyDbg and IDA Pro fail at every

target except eXait; most targets could detect their existence even when no trap is

set. DynamoRIO and PIN perform better, but are still detected by 5 and 4 tar-

gets, respectively. Compared with them, Spider successfully maintains transparency

against all 15 targets; there are 3 targets that could only be transparently trapped

by Spider.

We also test Spider against techniques of detecting emulators in [71–73], which

we implement as individual POC programs. We run them in Spider and trap every

instruction in these programs as they are very short. As we expected, none of them

is able to detect Spider, as Spider is built upon hardware virtualization.

3.6.2 Case Study I: Attack Provenance

In this case study, we demonstrate the use of Spider to improve the tamper-

resistance of an existing attack provenance system BEEP [11]. Traditional attack

provenance approaches are based on analysis of system event log with per-process

granularity (i.e., each log entry pertains to one process). Such approaches face the

62

problem of dependency explosion when a long running process receives/produces a

lot of inputs/outputs during its lifetime as each output is considered causally related

to all preceding inputs. To solve this problem, BEEP partitions the execution of a

program into individual units, with each unit handling an independent input request

(e.g., one email or one web request) in one event-handling loop iteration. With such

a finer logging granularity, BEEP is able to link each output to the truly related

input(s) hence achieving higher attack provenance accuracy.

To capture the entry and exit of each unit, BEEP needs to instrument the tar-

get binary program at certain locations. BEEP uses a static binary rewriting tool

PEBIL [8] to perform such instrumentation, which has several shortcomings: (1) At-

tackers could patch the instrumented program at runtime to disable BEEP; (2) The

instrumentation needs to modify the code in the program, hence cannot be applied

to programs with self-checking and self-protection mechanisms, which widely exist in

COTS software to prevent malicious software manipulation. To overcome these prob-

lems, we use Spider to replace PEBIL for BEEP’s instrumentation. The reliability of

Spider (Section 3.3) guarantees that the instrumentation could not be circumvented

or disabled. More importantly, Spider performs instrumentation by setting invisible

breakpoints, which are transparent to the target applications.

We evaluate the e↵ectiveness and performance of our approach using 7 Linux2

binary programs. We first identify the instrumentation points for each program using

BEEP. We then set Spider to monitor the creation of processes of these programs.

Once a process of a target program is created, we set invisible breakpoints at the

instrumentation points in its address space. The original instrumentation routines

in BEEP invoke a special system call to log unit-specific events; we modify them to

directly log unit events into a file in the host.

We repeated the case studies in [11] and verified the correctness of attack prove-

nance achieved by our system. We also measure the overhead of our system over the

execution of the programs in vanilla KVM. In vanilla KVM we enable Linux audit

2The prototype of BEEP only supports Linux currently.

63

0.000%

1.000%

2.000%

3.000%

4.000%

5.000%

6.000%

wget yafc proftpd cherokee vim apache firefox

O
ve

rh
ea

d

Figure 3.3.: Overhead of using Spider to perform instrumentation for BEEP.

system but do not perform instrumentation. For wget and yafc, we run them to

download a 1.2MB file from a server 500 times. For apache and cherokee, we use the

weighttp to generate 1 million requests with 100 threads and 100 concurrency. For

proftpd, we use the integration test provided with it. We use the SunSpider bench-

mark for firefox. For vim, we feed it a script to replace the first character of each

line with ‘a’ in 50000 text files. All network programs except firefox are evaluated

in a dedicated LAN to rule out the factor of network delay. The result is shown in

Figure 3.3. The overhead is less than 2% except firefox and vim. The overhead for

firefox is slightly higher because it has more instrumentation points (24) than other

programs (2⇠6), which leads to more breakpoint hits. The overhead for vim is due

to an instrumentation point which gets triggered each time the script processes a

line. Users will experience much less overhead when they use vim interactively as the

instrumentation point is triggered much less frequently.

64

3.6.3 Case Study II: Stealthy Introspection

We now demonstrate the use of Spider to reveal a possible threat to two pop-

ular Windows instant messaging programs, anonymized as IM1 and IM2. The

threat involves the acquisition of confidential application data without user aware-

ness. Such data usually have very short lifetime in memory and are encrypted be-

fore network transmission. Hence they are deemed di�cult/impossible to acquire

through memory scanning or network sni�ng. We also protect the two applications

using the (arguably) strongest protector Safengine Shielden, so that existing debug-

ging/instrumentation techniques cannot be used to analyze them. Now, we show that

even with those protections, confidential data could still be “stolen” by using Spider

to trap the program at the right instruction. The stealthiness and e�ciency of Spi-

der make it possible to perform the attack while the programs are running normally;

none of the existing techniques could achieve the same level of user-transparency and

e�ciency. The realism of the threat is backed by the fact that, an attacker is able

to transparently hijack a running OS into a VM on malicious hypervisor (e.g., using

BluePill [81]). Once that happens, Spider can be used to stealthily set invisible

breakpoints on the target application for confidential data acquisition by the hyper-

visor. In the following description, such breakpoints are set on the functions and

memory locations in bold font.

IM1. We show the possibility of capturing all communication between a sender

and the user. To find the function that handles messages, we search through the

functions exported by the libraries of IM1. We find a function named SaveMsg3

in KernelUtil.dll and set an invisible breakpoint at the entry of that function. As

expected, the function is called every time a message is received; we also find out one

of its parameters is the ID of the sender. However, the message text is not directly

present in the argument list, which implies that it might be part of a data structure

rooted at one of the arguments. We further speculate that a message may need to

3Note that the binary of IM1 does not contain symbolic information. We simply inspect the export
table.

65

be decoded either inside SaveMsg or through some other related function. We find

a function named GetMsgAbstract in the list of exported functions. The name

suggests that it may need to decode a message. We set a breakpoint at its entry and

another one at its return. We observe that the message text is in fact decoded as its

return value. We also find out that at the entry of GetMsgAbstract that the value

of one of its parameters is always the same as one of the parameters of SaveMsg,

which might both point to the same opaque structure that contains the message text.

Therefore, we log all messages at GetMsgAbstract return and associate them to

individual senders by matching the parameters of GetMsgAbstract and SaveMsg.

As such, we are able to identify all messages from individual senders.

IM2. We show the possibility of capturing user login credentials in IM2. We first find

the functions that read the username and password. As a native Win32 application,

we suspect it uses the GetWindowTextW Windows API function to retrieve the

text from the controls in the login dialog. We set a breakpoint at the entry of

that function and log all its invocations. After we rule out unrelated invocations by

checking if the retrieved text matches a login credential, we find out the invocations

at 0x449dbd and 0x437a23 are for retrieving username and password, respectively.

The remaining problem is to find out if the captured login credential is valid. As

an error message will be displayed upon failed login, we set a breakpoint at the

MessageBoxW function. From the call stack we could read the functions on the

path of failed login. We set breakpoints on these functions too. We then do a

successful login to see if it shares the same path. We find that both successful and

failed logins will execute to the function at 0x48591c, and then the path deviates.

Successful login will execute to the branch of 0x485bcd, while failed login leads

to another branch. Therefore, we log the content acquired by GetWindowTextW

when it is invoked at 0x449dbd and 0x437a23, and then we use the call stack path

to prune those belonging to failed logins.

66

We verified that the confidential data (messages or login credentials) is correctly

and completely acquired through stealthy introspection, without any slow-down of

program execution.

3.6.4 Performance Overhead

k = 3217.3

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

Overhead
(CPU Cycles)

Number of Breakpoint Hits

Figure 3.4.: Relation between the overhead of Spider and the number of
breakpoint hits.

We have already presented the empirical overhead of Spider in our case studies

in Section 3.6.2. In this experiment, we further study the overhead of Spider. We

build a micro benchmark program that executes a loop for a given number of times.

In each loop iteration, the program increments a variable 1000 times. The program

executes the RDTSC instruction to read the CPU cycle counter before and after the

loop, and calculate the di↵erence which is the number of CPU cycles cost by the loop.

We compile the program with Visual Studio 2010 in Windows.

We run the program using the parameter from 104 to 106 iterations, with a step

of 104. The program is executed in both vanilla KVM and Spider; In Spider, we

67

set an invisible breakpoint at the first instruction of the loop. We obtain the number

of CPU cycles cost by the loop in vanilla KVM and Spider, and the di↵erence is

the overhead, as shown in Figure 3.4. From the figure, we could see that the over-

head is linear to the number of breakpoint hits. A single invisible breakpoint hit

costs around 3217 CPU cycles. A large part of the overhead is due to the transitions

between host and guest during breakpoint handling. A round-trip transition costs

about 1200 cycles (measured using kvm-unit-test). This is the cost we have to pay

to maximize stealthiness: To prevent any in-guest side e↵ect, the breakpoint handler

must run outside the guest VM, which means the transition is inevitable. Neverthe-

less, the overhead of our invisible breakpoint is still less than the breakpoint in an

existing work [15] and comparable with in-guest hardware breakpoint. Considering

that the cost of VMExit/VMEntry is decreasing over the years [82], the overhead of

our approach is likely to be less in future processors.

We also measure the overhead of other components in Spider, including the

cost of splitting code and data views and monitoring the guest virtual-to-physical

mapping. We exclude the overhead of breakpoint hits by setting “fake” breakpoints,

which use the original instruction as the breakpoint instruction instead of int3. The

target program we use is gzip 1.2.4. We run the program in both vanilla KVM and

Spider to compress a 98.7MB file and measure the execution time. In Spider, we

set a breakpoint at one instruction in each page of the code section to make sure

all code pages are split. The run in vanilla KVM costs 4171ms, while the run in

Spider costs 4192ms. The overhead is less than 1% which confirms that the number

of breakpoint hits is the dominant factor of overhead.

3.7 Summary

In this chapter, we present Spider, a stealthy binary program instrumentation

and debugging framework. Spider uses invisible breakpoint, a novel primitive to trap

execution of program at any desired instruction e�ciently. Our evaluation shows

68

Spider is transparent against various anti-debugging and anti-instrumentation tech-

niques. We have applied Spider in two security application scenarios, demonstrating

its transparency, e�ciency and flexibility.

69

4 IRIS: VETTING PRIVATE API ABUSE IN IOS APPLICATIONS

4.1 Introduction

Mobile devices, especially tablets and smartphones have gained tremendous pop-

ularity in recent years. Apple iOS is one of the dominating mobile platforms on the

market; by the end of January 2015, Apple has sold one billion iOS devices [83]. One

of its major success factors is the large number of third-party iOS applications that

provide a wide variety of functionalities to users. To rapidly grow the iOS ecosystem,

Apple creates the App Store which allows third-party developers to distribute their

own iOS applications. As of September 2014, there are 1.3 million iOS applications

available in the App Store [84].

Allowing third-party applications to run on iOS devices greatly improves the user

experience. However, it also opens up the opportunity for malicious developers to

attack the system and users. To prevent third-party applications from performing

malicious activities, iOS employs a bunch of runtime protection mechanisms such as

Sandboxing, Mandatory Access Control (MAC), Data Execution Prevention (DEP)

and Address Space Layout Randomization (ASLR).

Unfortunately, even under these runtime protections, attack is still feasible through

the use of private APIs. Private APIs are functions in iOS frameworks reserved only

for internal uses in built-in applications. They provide accesses to various device re-

sources (e.g. camera, bluetooth) and sensitive information (e.g. serial number, device

ID), which are often not regulated by runtime mechanism. Although some resources

are guarded by entitlements with MAC in recent version of iOS, there are still many

that can be accessed without mediation.

As a countermeasure to the attack, Apple strictly prohibits any use of private APIs

in third-party applications, according to its iOS developer license agreement [85]. To

70

enforce the policy, every third-party application submitted to App Store has to go

through Apple’s vetting process called App Review before it can be distributed to end

users. Applications that pass App Review are digitally signed by Apple to prevent

further modification. The signature is verified by iOS at runtime to ensure that only

the original applications approved by App Review can run on iOS devices.

App Review has significantly raised the di�culty of distributing malicious appli-

cations to end users. Given the fact that very few malicious applications have been

found on iOS [86], it is generally believed that App Review is quite e↵ective. How-

ever, recent work [39, 40] shows that by constructing the names of private APIs at

runtime, it is possible to invoke private APIs in third-party applications and still be

able to pass the vetting process. While Apple has never publicly disclosed the tech-

nical details of App Review, these attacks clearly indicate the current vetting process

is based on static analysis which is vulnerable to obfuscation. Although Apple com-

plements automatic analysis with manual inspection [87], due to the large number of

application submissions, it could only cover a small portion of all applications.

Besides Apple’s App Review, there are several automated binary analysis sys-

tems [38, 88–90] proposed by security researchers to analyze iOS applications. How-

ever, these approaches also have shortcomings. System based on static analysis [38]

could not resolve API names composed at runtime. Dynamic approaches [88–90]

su↵er from incomplete code coverage, thus would fail to detect uses of private APIs

if malicious application authors place the invocations behind complicated triggering

conditions.

To overcome the limitations of existing application vetting approaches on iOS, we

present iRiS, an automated system that can e↵ectively detect uses of private APIs

in iOS applications. Given a binary iOS application, iRiS uses a combination of

static and dynamic analysis to resolve the names of the functions being called in

the program. iRiS first statically scans all function call sites and tries to resolve the

names of the call targets using constant propagation and backward slicing. For the

remaining call sites whose targets could not be statically determined, iRiS utilizes

71

dynamic binary instrumentation to drive the execution of the application to the call

sites to resolve the call targets at runtime.

We have encountered and solved many challenges of performing binary analysis on

iOS in the design of iRiS. Due to the closed-source nature of iOS, there is no existing

dynamic binary instrumentation framework available on it. As part of our e↵ort, we

have ported Valgrind [18] to iOS and built the dynamic analysis component of iRiS

on top of it. Also, most iOS applications are based on event-driven graphical user

interface (GUI) which exhibits very limited behavior without human interactions.

In iRiS, we propose an automated UI event handler exploration approach by using

dynamic binary instrumentation to monitor the registration of event handlers and

trigger them automatically.

We have used iRiS to analyze 2019 free applications on the App Store. To our

surprise, the result shows that more than one hundred of these applications use private

APIs. In some applications, we even identified the behavior of using private APIs to

retrieve personal information (e.g. the applications installed on the device, the serial

number of the device and its various components such as cameras and battery) and

sending such information to advertisement providers. This clearly shows that the

current application vetting approach used by Apple is insu�cient to guarantee the

security and privacy of iOS device users.

Our contributions are summarized as follows:

• We have ported the popular instrumentation framework Valgrind [18] to iOS.

To the best of our knowledge, this is the first instruction-level dynamic binary

instrumentation framework on iOS.

• We present the design and the prototype implementation of iRiS, an automated

system using a combination of static and dynamic analysis to detect uses of

private API in binary iOS applications.

72

• To show the e↵ectiveness of our approach, we have analyzed more than 2000 iOS

applications. Our result shows that a non-trivial number of iOS applications

use security-critical private APIs to access and steal sensitive user information.

The rest of this chapter is organized as follows. In Section 4.2 we introduce the

background. We demonstrate the practical challenges and our solutions for porting

Valgrind to iOS in Section 4.3. Then we present our approach of resolving API call

targets in Section 4.4. We discuss the limitations of iRiS in Section 4.6 and compare

with related work in Section 4.7. Section 4.8 summarizes this chapter.

4.2 iOS Background

In this section, we introduce background about various aspects of iOS. This would

help the readers to better understand our system described in later sections.

(1) C Function Call:
CGRectMake(0, 0, 100, 100);

(2) Objective-C Method Call:
[myView drawNumber:1];
objc_msgSend(myView,
“drawNumber”, 1);

(3) Superclass Method Call:
[super didMoveToWindow];
struct objc_super super;
super.id = self;
super.class = UIView;
objc_msgSendSuper(&super,
“didMoveToWindow”);

myView Object

Class Metadata

isa
...
...

super
MyView
methods

super
UIView
methods

...
drawNumber

...

...
didMoveToWindow

...

Superclass Metadata

Figure 4.1.: Di↵erent forms of function invocations in iOS application.

4.2.1 Function Invocations

Objective-C is the major programming language used for building iOS applica-

tions. As an extension of the C programming language, Objective-C adds object-

73

oriented features such as object, class and inheritance. In Objective-C, function

invocations can take several di↵erent forms as shown in Figure 4.1. Since Objective-

C is a superset of C, traditional C function can be invoked as shown in case 1. In

addition to that, Objective-C also supports object-oriented method calls as shown in

cases 2 and 3.

The code in the boxes in cases 2 and 3 shows how Objective-C method calls are

actually implemented by sending message to object through one of the objc msgSend

family dynamic dispatch functions. More specifically, a message is composed of a

selector which is the literal name of the method to be invoked, and the arguments to

be passed to the method. In case(2), the drawNumber message is sent to the myView

object. As shown in the path along the arrows, the objc msgSend dispatch function

locates the metadata of the object’s class MyView, finds the implementation (i.e. entry

address) of the drawNumber method and then call it. Similar to other programming

languages that support inheritance, if the corresponding method is not implemented

in the object’s class, the dynamic dispatch function searches through the object’s

superclasses along the class hierarchy.

Case 3 shows the use of super keyword to explicitly call the method in object’s su-

perclass. An objc super structure containing the myView object and the name of its

superclass UIView is constructed and passed to the objc msgSendSuper dispatch func-

tion. The dispatch function follows the dashed path to locate the didMoveToWindow

method in UIView and call it.

The dynamic features of Objective-C grant iOS developers a lot of flexibility

in building their applications. Since selectors are just literal method names which

contain no low-level information such as address, developers could easily construct

selectors at runtime to send arbitrary messages to any object. Also, the mapping

between selectors and method implementations could be modified at runtime. Such

cases pose great challenges to binary analysis of iOS applications.

74

4.2.2 Private API

iOS provides a rich set of frameworks for building user-level applications. These

frameworks are essentially directories that contain dynamic shared libraries and re-

sources. The dynamic shared libraries expose APIs for applications in two forms: (1)

as traditional C functions that are explicitly exported by the shared libraries; (2) as

methods in Objective-C classes that are managed and dispatched by the Objective-C

runtime.

Among all the frameworks, only some of them are public frameworks that are for

uses in third-party iOS applications. The other ones, known as private frameworks,

are reserved for uses in built-in applications and public frameworks only. Similar

to frameworks, APIs are also categorized into public and private ones depending on

whether they can be used in third-party applications. Note that public frameworks

may also contain private APIs as part of their internal implementation.

Private frameworks and APIs provide many powerful functionalities that could

threaten the security of the system if they are available to third-party applications.

For example, the SpringBoardServices framework provides APIs to launch and

terminate applications; the IOKit framework provides APIs to access mach I/O ports

which could be used to obtain various device information. To prevent third-party

developers from using private APIs, only public frameworks and APIs are documented

and exposed by the header files in iOS software development kit (SDK). However,

despite Apple’s e↵ort of concealing the prototypes of private APIs, they can still be

reverse-engineered from the dynamic shared libraries in the frameworks [91].

Once their prototypes are known, calling private API functions follows the same

procedure as calling public API functions. As a countermeasure, Apple requires

every application submitted to the App Store to go through App Review to make

sure the application binary is only linked to public frameworks and imports only

public C APIs. Invocations of private Objective-C APIs are also detected because

the objc selrefs section in the application binary contains all statically-known

75

message selectors. However, such detection is not always e↵ective. To evade the

detection, the attacker can use the dlopen function to load private frameworks and

the dlsym function to locate and call private C API functions. For private Objective-

C APIs, the attacker can construct the message selectors at runtime so they do not

appear in the application binary.

4.2.3 iOS Runtime Security

Similar to other modern operating systems, iOS incorporates standard runtime

protections such as DEP and ASLR. In addition to that, it also implements several

enhanced security mechanisms as described below.

Entitlements. iOS provides fine-grained access control based on the TrustedBSD

MAC framework [92]. Each application can declare a set of entitlements that grant

specific capabilities or security permissions in iOS. The iOS kernel checks for corre-

sponding entitlements whenever an application is trying to access guarded resources.

Most entitlements in iOS are for built-in applications; the only ones available to

third-party applications are for enabling iCloud service and pushing notifications. To

prevent third-party developers from abusing or counterfeiting entitlements, entitle-

ments declared in third-party applications are checked for validity during App Review

and then built in to the code signatures of the application binaries. Entitlements ef-

fectively regulate the use of private APIs: without proper entitlements, even if the

attacker is able to invoke the private API, iOS will refuse the attempt to access the

resource. Unfortunately, there are still many resources that are not protected by

entitlements in iOS.

Prohibiting dynamic code generation. iOS disallows any kind of dynamic code

generation, except for applications with the dynamic-codesigning entitlement. This

entitlement is for the built-in MobileSafari application to implement JIT Javascript

engine and is unavailable to third-party applications. The prohibition of dynamic

code generation in third-party applications has both positive and negative impact

76

on our system: it helps us to better disassemble third-party application binary for

static analysis because there is no dynamically generated or self-modifying code; on

the other hand, it also disables dynamic binary instrumentation frameworks such as

Valgrind due to their needs of translating binary code at runtime. Fortunately, we can

still port Valgrind to jailbroken iOS devices, where the kernel is patched to remove

restrictions on dynamic code generation. Note this does not indicate the applications

we analyze are also free to generate code at runtime; we still prohibit dynamic code

generation in these applications by wrapping and checking the related system calls

(e.g. mprotect) using Valgrind.

UITableView

UIButton

ViewController ObjectUser Interface

UITableView *table

UIButton *button
-(void)onButtonClick:

-(void)tableView:didSelectRowAtIndexPath:
UITableViewDelegate Protocol

-(NSInteger)numberOfSectionsInTableView
UITableViewDatasource Protocol

Delegate

DataSource

Target-Action

Figure 4.2.: Event driven execution of iOS application.

4.2.4 Execution of iOS Application

We use an example in Figure 4.2 to demonstrate the execution of a typical iOS

application. When the application is launched, it initializes a view controller object

to create and manage views. In our example, the view controller object creates a

UITableView object and a UIButton object to interact with the user. To handle user

inputs, it sets delegate and data source for the table view and registers a target-action

77

event handler to the button. These are the two design patterns for implementing event

handlers in iOS, which are described as below.

Target-action. The target-action design pattern is used by all control classes (e.g.

UIButton, UITextField) that are derived from the UIControl base class. Developers

call the addTarget:action:forControlEvents: API to register a pair of target and

action for a specific control event on a UIControl object. The action is the name of

the Objective-C method to be invoked upon triggering the event, and the target is

the object that the method is called on. In our example, the application registers the

onButtonClick: action with the view controller object as the target, for the click

event on the button. When the button is clicked, the onButtonClick: method will

be called on the view controller object.

Delegates and data sources. Delegates are objects that can be assigned to a

view to provide application-specific event handling logic. When an event occurs, the

view sends an Objective-C message to its delegate to invoke the corresponding event

handler. Usually, a delegate must conform to the protocol corresponding to the view

it is assigned to, so that the view knows the required methods are indeed implemented

in the delegate.

In our example, the view controller object itself is assigned to the table view as

a delegate to handle events such as selecting a row in the table. When a row in

the table is selected, the tableView:didSelectRowAtIndexPath: method will be

invoked on the view controller object. The view controller object conforms to the

UITableViewDelegate protocol which declares the event handlers for table view.

Data sources are similar to delegates except they provide application-specific data

instead of logic to views. In our example, the view controller object is also assigned

to the table view as a data source. When iOS renders the table view, it invokes the

numberOfSectionsInTableView method on the view controller object to determine

how many sections are there in the table.

78

Nib Files

Besides creating views directly in the application code, iOS application developers

may also choose to load UI elements stored in Nib (NeXT Interface Builder) files. Nib

files are resource files generated by Apple’s UI design tool called Interface Builder,

which allows developers to design UI views and related non-visual objects (e.g. view

controllers) in a visualized environment. The views and objects are serialized in the

format of object graph and stored in Nib files.

The UIKit framework provides several APIs to load Nib files at runtime. These

Nib-loading APIs are responsible for reconstructing the views, objects and the con-

nections among them to the same state as designed in Interface Builder. It is worth

noting that in each Nib file, there is a special placeholder object called File’s Owner.

The File’s Owner object is provided by the application as an argument to Nib-loading

API, which serves as the link between the application code and the UI elements in

Nib file. It usually contains outlets, which are references to the views and objects in

Nib files. The outlets are connected by the Nib-loading API during the process of

loading Nib Files.

To demonstrate the detail of the loading process, we still use the example in

Figure 4.2, but we assume the views are loaded from a Nib file. We assume the

information of the delegate, data source and the target-action event handler are all

properly stored as connections to the File’s Owner object in the Nib file. We pro-

vide the view controller object as the File’s Owner object. According to Apple’s

documentation [93], the loading process consists of the following steps:

1. The Nib-loading API allocates the view objects and send them initWithCoder:

messages to initialize the views. During the initialization of the table view, its

delegate and data source are set to the File’s Owner object, which is the view

controller.

79

2. It connects the outlets (table and button variable) in the view controller to

the two views by calling the setValue:forKey: method on the view controller.

The values are the view objects and the keys are the name of the outlets.

3. It registers the onButtonClick: method in the view controller object as a

target-action event handler to the button.

4. It sends an awakeFromNib message to the two views to notify them the loading

is complete.

Clearly, the loading process implicitly involves invocations to many APIs, which all

have to be considered in our analysis.

4.3 Porting Valgrind to iOS

In order to build the dynamic analysis component in iRiS, we ported the popular

dynamic binary instrumentation framework Valgrind to iOS. Valgrind already sup-

ports ARM architecture. It also supports OS X, Apple’s desktop operating system

that shares the same kernel as iOS. Therefore, we could reuse the CPU-specific and

OS-specific code. However, we still need to implement the parts that are specific to

the combination of CPU and OS. We also encounter many practical challenges spe-

cific to iOS, some of which are discussed below. We plan to open source the ported

framework to support future work on iOS security.

Calling convention of system call. Valgrind needs to interpose system calls to

perform many crucial operations, such as thread and memory management. Unfor-

tunately, the calling convention of system calls in iOS is not publicly documented.

Our idea here is to infer the calling convention from the execution of the system

call wrapper functions. We build a program that calls system call wrapper functions

with carefully crafted arguments. Then we run the program and use GDB to set

a breakpoint at those functions. Once a breakpoint is hit, we do single step until

reaching a SWI instruction, which is used to perform system call on ARM. It is then

80

straightforward to infer the calling convention by observing which argument value is

stored in which register or stack memory location at that point.

Reading symbols from dyld shared cache. The symbol table maintained by Val-

grind is important for translating addresses to human-readable API names. Normally,

Valgrind reads symbols from shared libraries when they are loaded into the address

space of the application. However, there is no such loading of individual libraries in

iOS. All shared libraries in iOS are combined into a single large file called dyld shared

cache, which is mapped into the application’s address space by the kernel when the

application is loaded. To read the symbols, we invoke the shared region check np

system call to obtain the start address of the shared cache. Since the symbols of all

libraries are too large to fit in the memory available to Valgrind, we read the symbols

of a specific library from the shared cache only when its code is executed the first

time.

Instrumenting GUI applications. In iOS, GUI applications has to be launched

by sending a launch request with the bundle id of the application to SpringBoard.

Clearly, Valgrind has to be launched this way when instrumenting GUI applications.

However, the applications launched by SpringBoard run on behalf of the user mobile,

which does not have the root privilege required by Valgrind. We solve this problem by

setting the owner of the Valgrind executable to root and setting its setuid attribute.

4.4 Resolving API Call Targets

4.4.1 Overview

The goal of iRiS is to identify the targets of all API calls in iOS application

binaries. This cannot be done with pure static analysis due to the dynamic features of

Objective-C. Theoretically, dynamic analysis could resolve all the targets by utilizing

approaches such as symbolic execution [94] or forced execution [95] to explore every

path leading to API call. However, such approaches are infeasible in practice due

to the large size of iOS applications. For example, the Facebook iOS application

81

iOS Packaged
Application (.ipa)

Encrypted
Executable

0 1 1
0 0 1 0 1
0 1 1 0 1
1 0 0 1 0
 1 0 1

Binary
Executable

NIB
Resources Implicit Call Targets

Call Graph

Intra-procedural
CFGs

Resource
Analysis

Decrypt

Static
Analysis

Iterative
Dynamic
Analysis

Resolved
Call Targets

Extract

Merge

Figure 4.3.: Overview of iRiS.

binary has the size of 48MB, containing about 10 million instructions and 1.4 million

branches. Binaries of such scale could not be handled by symbolic execution. Even

forced execution with complexity linear to the number of branches would take several

weeks to explore all the necessary paths in a single application.

To solve this problem, we adopt an approach that combines static and dynamic

analysis in iRiS. Our key observation here is that the vast majority of call targets

in normal iOS application binaries can be resolved using static analysis, which is

fast and scales well with the size of the program. For the very few remaining call

sites whose targets cannot be statically determined, we apply the slower, but more

powerful dynamic analysis to get the targets from the concrete execution states at

the call sites.

An overview of iRiS is shown in Figure 4.3. The input to iRiS is an iOS packaged

application (with an .ipa file extension) downloaded from the App Store, which is

essentially a zip file containing the application executable, resources and other meta-

data. iRiS first extracts the application executable and the Nib resource files from

the package. Since all applications submitted by third-party developers are encrypted

by Apple before they are distributed through the App Store, iRiS needs to decrypt

82

the application executable to the raw binary executable before it can proceed to the

analysis.

The analysis begins with resource analysis of the Nib files. For each Nib file, iRiS

identifies the functions in the application binary that are implicitly invoked when the

Nib file is loaded. In this way, each Nib file is represented as a set of call targets it

implies. In later stages of static and dynamic analysis, upon encountering an API

call that loads a Nib file, iRiS will add the call targets implied by the Nib file to the

API call site.

After analyzing Nib resources, iRiS performs static analysis on the decrypted ap-

plication binary executable. iRiS disassembles the binary using IDA Pro [13] and

scans for all call sites. Similar to PiOS [38], iRiS tries to use backward slicing and

forward constant propagation to resolve the call targets at each call site to gen-

erate an initial call graph. For each function in the binary, iRiS also generates its

intra-procedural control-flow graph (CFG). The initial call graph and intra-procedural

CFGs serve as guidance for the final stage of analysis.

In the final stage, iRiS iteratively resolves the remaining call sites whose targets

could not be statically determined, using dynamic analysis. In each iteration, iRiS

picks a call site with unresolved targets from the call graph, and uses the call graph

and intra-procedural CFGs to explore paths to the call site to obtain the call targets.

The resolved call targets are merged back to the call graph, which helps resolving

more targets in later iterations. After all iterations are finished, the call targets in

the final call graph are checked against iOS SDK headers to reveal uses of private

APIs.

4.4.2 Resource Analysis

Resource analysis aims to identify application functions implicitly invoked in the

process of loading a Nib file. It is infeasible to statically examine a Nib file to obtain

such information since the file format is not publicly known. Our idea here is to load

83

the Nib file artificially using the API in the UIKit framework, and use Valgrind to

monitor the function invocations in this process.

However, there are several challenges to load a Nib file artificially. Creating a

dummy program that blindly calls the Nib-loading API would most likely fail, as

a Nib file is not a self-contained entity that can be loaded in arbitrary context.

For example, the objects stored in a Nib file might be of custom classes defined

in the application binary. The Nib-loading API would fail when it tries to invoke the

initialization methods of these objects, as they do not exist in the dummy program.

Also, since the provided File’s Owner object does not contain the outlets expected in

the Nib file, the Nib-loading API will fail when trying to connect the outlets.

To overcome these challenges, we utilize the application itself to provide the proper

context for loading the Nib files. We run the application with DYLD INSERT LIBRARIES

environment variable to inject a preload shared library containing the Nib-loading

code to its address space. In the preload shared library, we invoke the Nib-loading API

in a function with the constructor attribute so it is executed before any other code

(except global initialization routines) in the application binary. To handle outlets, we

provide a fake File’s Owner object to the Nib-loading API which ignores connections

to undefined outlets by overriding the setValue:forUndefinedKey: method, which

is the fail-safe method when the setValue:forKey: method for connecting outlets

fails. We terminate the application by calling exit right after the Nib file is loaded

so no unrelated code is executed.

Event handler registration functions need to be handled specially. Although the

event handlers are not directly called when they are registered during Nib loading,

we include them as implicit call targets so that they could be explored later in the

iterative dynamic analysis stage. Since we have the concrete execution state, we can

query the Objective-C runtime to get the entry addresses of the event handlers (as the

parameters to the registration functions). A target-action event handler is identified

if the method has the action selector implemented in the class of a target object. For

delegate or data source, we enumerate the methods that are implemented in the class

84

of the delegate or data source object and include the ones listed in the delegate or

data source protocol.

Another case that requires special handling is the function invocation to connect

outlets. The setValue:forKey: method for connecting outlets internally invokes

the setter methods of the File’s Owner object to set its properties. However, since

we artificially load the Nib file by providing a fake File’s Owner object, the expected

type of the real File’s Owner object is unknown and the entry addresses of the setter

methods could not be determined at this time. Therefore, we record the keys that

are being set here so that the setter methods could be resolved when the class of the

File’s Owner object is known at later stages of analysis.

The final step of resource analysis is to prune the implicit call targets that have

been obtained so far. This is because the Nib-loading API calls other functions in

the UIKit framework or other frameworks. Such invocations might target private

APIs, which is normal for internal interactions between iOS frameworks but would

trigger false alarms if included in our result. We exclude the call targets that are not

functions in the application by checking whether they fall in the range of the code

section in the application binary.

4.4.3 Static Analysis

The goal in the static analysis stage is to build the intra-procedural CFGs and

resolve call targets to construct call graphs. We build our static analysis as a plugin of

the popular IDA Pro disassembler. Generating the intra-procedural CFGs is straight-

forward as IDA Pro already performs intra-procedural flow analysis for each function.

However, the ability of IDA Pro to resolve call targets is quite limited. For tradi-

tional C function calls, IDA Pro can only identify direct call targets represented as

constant relative addresses embedded in the instructions; it does not resolve indirect

call targets that are stored in registers. Moreover, IDA Pro does not resolve function

arguments stored in either register or stack variables. They are especially important

85

for analyzing the target of Objective-C method invocations. For example, even if a

call to the objc msgSend message dispatching function is identified, we would not

be able to know the exact Objective-C method being invoked unless we resolve the

message selector and the object class type from the arguments of the function.

To resolve the call targets that cannot be handled by IDA Pro, we build our anal-

ysis based on the approach proposed in PiOS [38] which consists of intra-procedural

backward slicing and forward constant propagation. The basic idea is to use back-

ward slicing to recursively identify a slice of instructions that influence the value of

the register or stack variable related to the call target at the call site. Starting from

the beginning of the slice, statically known constant values are propagated forwardly

according to the semantic of the instructions in the slice to compute the target value.

Our static analysis consists of three passes on the application binary. Compared

with the original approach in PiOS, our approach covers more forms of Objective-C

message dispatching and handles implicit invocations which result in a more precise

and complete call graph. The details of each pass are described as below.

Resolving C Function Calls

In the first pass, we identify all traditional C function calls and resolve their call

targets. On ARM architecture, functions calls are made with BL (branch with link)

and BLX (branch with link and exchange) instructions. We enumerate all these in-

structions in the application binary and check their operands. Constant operands rep-

resenting direct call targets are already identified by IDA Pro. For register operands

that contain indirect call targets, we try to use backward slicing and forward con-

stant propagation to resolve their values. For those unresolved operands, we mark

the corresponding call targets as unknown. A resolved call target is identified as an

external API if the target address is one of the following two cases: (1) the address

of an API in the imported symbols section or (2) the address of a stub function that

is a trampoline for calling an external API.

86

Resolving Objective-C Messages

Calls to Objective-C message dispatching functions (e.g. objc msgSend) are iden-

tified in the first pass. In the second pass, we try to resolve the actual Objective-C

methods invoked in those message dispatching function calls.

For the message dispatching functions that invoke methods in the object’s class,

such as objc msgSend, we use backward slicing and forward constant propagation to

resolve the message selector and the object’s class in the function arguments. Similar

to PiOS, to resolve the object’s class, we propagate not only constants, but also type

information along the slice. Once the message selector and the object’s class are

resolved, we find the corresponding method in the class hierarchy obtained from the

application using the class-dump [96] tool.

Other dispatching functions, such as objc msgSendSuper, are used to explicitly

invoke methods in object’s superclass (Section 4.2.1). The name of the superclass

is provided in an objc super structure, which is pointed to by one of the function

arguments. To identify the superclass, we apply two rounds of slicing and constant

propagation: the first one that resolves the argument pointing to the objc super

structure and the second that resolves the superclass name in the structure. In most

cases, the values could be successfully resolved as these functions are mainly inserted

by the compiler to handle the super keyword in Objective-C source code, where the

superclass is known at compile time.

Any Objective-C method that is not successfully resolved here is marked as un-

known target to be processed later in iterative dynamic analysis.

Resolving Implicit Invocations

We resolved the targets of explicit C function calls and Objective-C method in-

vocations in the previous two passes. In the final pass, we aim to find and resolve

the targets of implicit function invocations, which are categorized and discussed as

below.

87

Grand central dispatch. Grand central dispatch (GCD) is a runtime system to

support concurrent code execution on iOS. It provides APIs (e.g. dispatch async)

for developers to submit functions to dispatch queues for execution. The argument

of a GCD API could be a function pointer or a block object (a wrapper structure

of function pointer). In either case, we apply backward slicing and forward constant

propagation to get the address of the submitted function and add it as a call target.

Objective-C runtime. As we have mentioned in Section 4.2, the implementation

of an Objective-C method can be changed at runtime. Therefore, it is possible for

a malicious application developer to define a placeholder method, and replace its

implementation with a private API function. After that, the developer could invoke

the completely legitimate placeholder method to use the functionality of the private

API. To prevent such attacks, we try to resolve the arguments of all functions in the

Objective-C runtime that are related to retrieving or replacing the implementation

of a method (e.g. class replaceMethod). Although retrieving the implementation

of a private API does not necessarily mean it will be called, we still consider any

such behavior to be a violation due to the complexity of reasoning about method

replacement statically.

Nested message passing. Some Objective-C classes provide methods to send mes-

sages, which resembles the functionality of objc msgSend. For example, NSObject,

the root class of all other Objective-C classes, provides the performSelector family

methods which allow an object to send a message indicated by the argument to it-

self. The message could even be another performSelector which results in nested

message passing. To handle such cases, we resolve the function arguments recursively

until we reach the innermost message, which is added as the actual target.

Event handler registration. Similar to resource analysis, when we identify an

event handler (target-action, delegate or data source) registration, we add the event

handler as a call target so it could be explored later in dynamic analysis.

Nib file loading. When a call to a Nib-loading API is identified, we try to resolve

the name of the loaded Nib file in the function argument. Once we know which

88

Nib file is loaded, we add its corresponding implicit call targets obtained in resource

analysis to the call site of the Nib-loading API. We also resolve the class of the File’s

Owner object provided to the Nib-loading API. In resource analysis, we could not

resolve the setter methods of the File’s Owner object that are invoked to connect

outlets, because the class of the File’s Owner object is unknown at that time. With

the concrete class of the File’s Owner object here, those methods could be resolved

now and added as implicit call targets.

The Nib-loading APIs in the UINib class are handled specially as they consist of

two steps to load a Nib file. First the nibWithNibName:bundle: method is called

to cache the Nib file in memory, and the Nib file is loaded at a later time using

the instantiateWithOwner:options: method. Since it’s infeasible to statically

correlate the calls to these two methods, we leave them to be handled in dynamic

analysis.

Algorithm 3 Call Targets Resolving Algorithm

Input: CS - the set of unresolved call sites in static analysis
CG - the call graph produced by static analysis
CFG - the intra-procedural control-flow graphs produced by static analysis

Output: CG - the updated call graph with edges to newly resolved call targets

1: CSn {call sites covered in the natural run}
2: CSprev {{nil} * sizeof(CS)}
3: repeat

4: change {nil}
5: for i 0 to sizeof(CS) do
6: CSrel[i] {Nodes in paths from CSn to CS[i] in CG}
7: if CSrel[i] \ CSprev[i] 6= ; then
8: targets ForceExecute(CSrel[i], CS[i])
9: change change [InsertTargets(CS[i], targets, CG)
10: CSprev[i] CSrel[i]
11: end if

12: end for

13: until change = ;

89

4.4.4 Iterative Dynamic Analysis

In the final stage of the analysis, iRiS uses dynamic analysis to resolve the call

targets that cannot be determined in the static analysis stage. In dynamic analysis,

as long as a function call is covered in an execution, it is straightforward to get its

target and arguments from the concrete execution state at the call site. However,

the task of reaching a specific call site in a dynamic execution itself is challenging.

Also, we have to solve the problem of exploring the program paths that can a↵ect

the target and arguments of the function call.

We propose an iterative algorithm to find and explore the paths that could reach

the target function call sites, as shown in Algorithm 3. The exploration is based on the

initial call graph and the control-flow graphs of all functions generated by the static

analysis. Initially (line 1), the application binary is directly executed in Valgrind

without user interaction to record all call sites in the call graph that are covered in

the natural run. These call sites serve as our starting points in the following rounds

of exploration. The algorithm then explores the paths and updates the call graph in

each iteration (line 4 to line 12). It terminates when there is no change to the call

graph after an iteration (line 13).

In each iteration, we process each unresolved call site individually (line 6 to line

11). We first use depth-first search to compute the related call sites along the paths

from the call sites covered in the natural run to the unresolved call site in the call graph

(line 6). These related call sites are the ones that we use to guide the natural execution

to the target unresolved call site. If the set of related call sites is di↵erent from the

one in the previous iteration (line 7), the algorithm will explore paths following the

new guidance to identify potential new targets at the call site (line 8).

The ForceExecute function (line 8) to explore paths is based on the path explo-

ration algorithm in X-Force [95]. X-Force forces control-flow at branches to explore

the basic blocks in a program. In our scenario, the call sites are analogous to the

basic blocks. We denote that there is a transition from a call site A to another call

90

site B if the function FB that contains B is one of the call targets at A. The tran-

sitions from one call site to another are analogous to the branches at the end of the

basic blocks. We force those transitions to explore paths along related call sites. The

application runs naturally at the start of each execution of the exploration. Once

the execution reaches any related call site, we start to forcing transitions. Unlike

in X-Force, where the exploration is unbounded, we limit the transitions to related

call sites in our exploration, which ensures that each execution eventually reaches the

desired unresolved call site to get its call targets. For the purpose of demonstration,

let us assume the execution currently reaches the call site A, which calls the function

FB. To force a transition from A to a call site B in FB, we force the control-flow

from the entry of FB to B by forcing branch targets in FB. We compute the basic

blocks in the paths from the entry basic block of FB to the basic block containing B

in the control-flow graph of FB, which we denote as safe basic blocks since execution

reaching any other basic block will not be able to reach B. In the execution starting

from the entry of FB, at each branch, we force the branch target if it does not fall in

the set of the safe basic blocks. In this way, we guarantees the execution will reach

the call site B with as few forced branches as possible.

There are some cases that need to be handled specially during the exploration,

which are discussed as below:

Event handlers. In static analysis, event handlers are added as the call targets of

their registration call sites. However, this is only for the purpose of path exploration

algorithm; the event handler itself is not actually invoked at its registration site.

Directly manipulating the call target at the registration call site to force a call to the

event handler will most likely fail because it does not provide the proper context for

the execution of the event handler. Therefore, the exploration of each event handler

has to be handled based on its type:

• Target-action. A target-action event handler is registered as a pair of action

selector and target object on a UIControl object. To trigger the event handler,

we use dispatch async to dispatch a call to the sendAction:to:forEvent:

91

method on the main dispatching queue of the program. When the call is dis-

patched, the UIControl object sends a message with the action selector to the

target object.

• Delegates and data sources. We construct an NSInvocation to artificially

invoke a specific event handler implemented by a delegate or data source. The

target of the NSInvocation is set to the delegate or data source object, and

the selector is set to the name of the event handler. The first argument is the

UIView object which the delegate or the data source is assigned to. We pass

zero to all other arguments by allocating a zeroed bu↵er on the stack that is as

long as the size of the remaining arguments. The NSInvocation we construct

is then dispatched on the main dispatching queue of the program.

Nib file loading with UINib. As we mentioned in Section 4.4.3, UINib class in-

volves two steps to load a Nib file. We track the call to the nibWithNibName:bundle:

method to record the name of the Nib file cached in the UINib object in the first step.

When the program later calls instantiateWithOwner:options: on a UINib object

to load the cached Nib file, we refer to the recorded information to get the name

of the corresponding Nib file. At this time, we can resolve the calls involved in the

Nib-loading process as both the Nib file name and the owner object are known.

Once the exploration has finished, the revealed call targets at the unresolved call

site will be merged into the current call graph (line 9). Theoretically, the complexity

of exploration of all possible paths is exponential to the number of related call sites.

In practice, we support a number of exploration strategies (e.g. linear and quadratic)

with di↵erent trade-o↵s between completeness and complexity. In our current imple-

mentation, we choose to use the linear complexity exploration strategy.

4.5 Evaluation

We evaluated iRiS on 2019 free applications obtained from one of the largest o�cial

App Stores. These applications are the ones listed as popular apps of the following

92

Table 4.1.: Uses of private APIs detected by iRiS in iOS applications.

Category Framework API Name Functionality #apps

Access
Application
Information

SpringBoardServices

SBSSpringBoardServerPort Initialize port with SpringBoard 3
SBSCopyApplicationDisplayIdentifiers Obtain bundle ids of all running apps 3
SBFrontmostApplicationDisplayIdentifier Obtain bundle id of the front most app 3
SBSCopyLocalizedApplicationNameForDisplayIdentifier Get app name from its bundle id 33

MobileCoreServices

[LSApplicationWorkspace defaultWorkspace] Obtain the default workspace object 2
[LSApplicationWorkspace allApplications] Get all installed apps 1
[LSApplicationWorkspace allInstalledApplications] Get all installed apps 1
[LSApplicationWorkspace applicationIsInstalled:] Check if a specific app is installed 1

Access User’s
Identification
Information

AppleAccount [AADeviceInfo appleIDClientIdentifier] Obtain the Apple ID of the device user 1

AdSupport
[ASIdentifierManager sharedManager] Obtain reference to the AdID manager 25
[ASIdentifierManager advertisingIdentifier] Obtain the device’s AdID 25
[ASIdentifierManager advertisingTrackingEnabled] Check if advertising tracking is enabled 23

IOKit

IOMasterPort Initialize communication with IOKit 21
IOServiceMatching

Find & open specified IOService object
21

IOServiceGetMatchingService 21
IORegistryEntryCreateCFProperty Locate specific property (e.g. S/N) 19
IORegistryEntryCreateCFProperties

Iterate through all properties to
find information (e.g. Battery id,
IMEI)

2
IORegistryGetRootEntry 2
IORegistryEntryGetChildIterator 2
IOIteratorNext 2
IORegistryEntryGetNameInPlane 2
IOObjectRelease Release the IOService object 2

Access User’s
Data/Settings

WebKit
[WebPreferences setJavaScriptEnabled:] Enable/Disable Javascript 1
[WebView mainFrameURL] Get the URL of the current page 3
[WebFrame approximateNodeAtViewportLocation:] Get DOM Node at specified location 1

UIKit
[UIStatusBarServer getStatusBarData] Get precise battery level 1
[UIView createSnapshotWithRect:] Capture the view as an image 1

Anti-debugging libsystem ptrace Prevent GDB attaching 1

categories in iTunes preview [97]: education, entertainment, finance, fitness, lifestyle,

medical, productivity, social and utility. We crawled the iTunes preview website to

retrieve the item ids of these applications. We download the applications through

iTunes and decrypt them on iOS device using the dumpdecrypted [98] tool.

Among the 2019 applications, iRiS identified 149 applications that contain invo-

cations to a total of 153 di↵erent private APIs. Among these private APIs, many of

them are for implementing non-standard user interface features. For example, sev-

eral applications use setOrientation: method in the UIDevice class to force the

orientation of the device display. Although uses of such APIs also violate the iOS

developer license agreement, we will not discuss them in detail here since they are not

directly related to security. The remaining invoked private APIs that are related to

security and user privacy are categorized and shown in Table 4.1, which are discussed

as below.

Accessing Application Information. SpringBoardServices is the framework

that handles application launching, management and termination on iOS. It contains

93

various APIs to query the status of the applications on the device. We found three

applications using these APIs to obtain the bundle identifiers of the currently running

and the front most application(s). After the bundle identifiers are retrieved, they are

translated to application names by calling another private API. We also observed

other 30 applications that call the bundle id translation API. The translation API

returns a NULL pointer for non-existing bundle id, which is used by those applications

to detect whether a specific application exists on the device.

We also found two applications using private APIs in LSApplicationWorkspace

class of the MobileCoreServices framework to obtain the information of all appli-

cations installed on the device. The use of the allApplications API to get the

bundle id list of all installed applications is also mentioned in a recent work [99]. We

speculate that the two applications use these APIs instead of the private APIs in the

SpringBoardServices framework because the latter ones are blocked by Apple since

iOS 8.

Accessing User’s Identification Information. We found one application that

invokes the appleIDClientIdentifier API in the AADeviceInfo class to obtain the

Apple ID of the current user. Also, there are 25 applications using the APIs in the

ASIdentifierManager class to obtain the Advertising Identifier (AdID) of the device.

AdID is an identifier which could be used to uniquely identify an iOS device. It serves

as the replacement of the unique device identifier (UDID) for advertisement serving

organizations after the access to UDID is disabled since iOS 7. As mentioned in

Apple’s documentation [100], AdID should only be accessed by advertisement serving

libraries (e.g. Google AdMobs). However, we found that the crashlytics library,

which is a library for crash reporting, calls these private APIs to access AdID in these

25 applications.

We also found 21 applications using private APIs exported by the IOKit frame-

work to access various hardware information. The IOKit framework is for commu-

nication with low-level hardware on the iOS device. It exports various hardware

components as a tree of IOService objects. We found that 19 of these applications

94

use the IORegistryEntryCreateCFProperty API to read for the serial number of the

device from the IOPlatformSerialNumber property in the tree of IOService objects.

The rest two applications use a set of private APIs in IOKit to iterate through the

tree of IOService objects to find the desired information. We manually inspected

these two applications and found out that they try to obtain the ID of the battery

and the serial numbers of the front and back camera by looking for the properties of

specific names. Further investigation reveals that the serial number of the iOS device

itself is protected by entitlement since iOS 8; however, the identification information

of battery and cameras are still available.

Accessing User’s Data/Settings. We found a mobile browser application using

private APIs in the WebKit framework which allows it to access data of the current

web page and web browsing settings. The WebKit APIs are public on OS X (Apple’s

desktop OS); on iOS, Apple has wrapped the web browsing interface in the UIWebView

class as a black box and make WebKit APIs private to prevent third-party application

from accessing user’s data or change web browsing settings.

We also identified two applications using private APIs in the UIKit framework to

access sensitive user data. One of them tries to obtain the current battery level from

the status bar; according to our investigation, this private API allows the application

to get the precise battery level compared with using the batteryLevel public API

in the UIDevice framework, which only rounds the battery level to the nearest 5%.

The other application calls another private API in the UIView class which allows the

application to capture the displayed content in a view as an image.

Anti-debugging. We found that the Skype application calls the ptrace function

with the PT DENY ATTACH argument to prevent itself from being attached by GDB.

Since ptrace is a private API that is not declared in the header files in iOS SDK,

the application calls dlsym to dynamically retrieve the entry address and then make

a call to the function.

95

Table 4.2.: Private API Invocations in APPS.

Address Private API
0xdeec2 SBSSpringBoardServerPort
0xdef46 SBSCopyApplicationDisplayIdentifiers
0xdf056 SBFrontmostApplicationDisplayIdentifier
0xfcf86 IOServiceMatching
0xfcf8e IOServiceGetMatchingService
0xfd070 IORegistryEntryCreateCFProperty
0xfd0c2 IOObjectRelease
0xfc632 SBSCopyLocalizedApplicationNameForDisplayIdentifier
0xebfaa [LSApplicationWorkspace defaultWorkspace]
0xebfd0 [LSApplicationWorkspace allApplications]

4.5.1 Case Study: A Suspicious Advertisement Service Provider

In this case study, we discuss our experience of identifying a suspicious adver-

tisement service provider from the iOS applications in the App Store. Our finding

started from the analysis of a utility application, anonymized as APPS. The size of

the application binary is 3.21 MB and its disassembly produced by IDA Pro contains

709894 instructions.

We used iRiS to perform thorough analysis on this application. In the static

analysis stage, iRiS identified a total number of 210534 call sites (excluding the ones

in API call stubs), in which 52814 were Objective-C message dispatching calls. iRiS

successfully resolved most of the call targets in the static analysis; there were 21

unresolved call sites left to be examined in the iterative dynamic analysis stage.

Despite the large number of statically resolved call targets, none of them actually

pointed to any private API.

iRiS first performed a natural run of the application in the dynamic analysis

stage. In the natural run, 13 of the 21 unresolved call sites were covered; 8 of them

were targeting private APIs. The private APIs being called are the ones in the

SpringBoardServices framework for accessing application information and the ones

96

in the IOKit framework for accessing the serial number of the device shown in Ta-

ble 4.1. There were also three of them calling the APIs in the AdSupport framework

to get the AdID of the device. However, since our later analysis shows those three

calls are in an advertisement serving library, we do not considered them as private

API calls.

The remaining 8 call sites not covered in the natural run were resolved iteratively

with forced execution. Two of them target private APIs in the MobileCoreService

framework for obtaining the bundle ids of all installed apps; the rest of the call targets

are functions in the application binary. We closely examined the two private API call

sites and found that they shared a very close ancestor on the call graph with the

call sites that call private APIs in the SpringBoardServices frameworks. We then

manually inspected the functions around the region and found out that their least

common ancestor on the control-flow graph is a branch that checks if the iOS version

is less than 8.0. If so, the application calls the APIs in the SpringBoardService

framework to get the information about applications on the device; otherwise, it uses

the APIs in the MobileCoreService framework as the former ones are blocked. Since

our device runs iOS 7.0, such behavior and the additional private APIs would not be

revealed, had we not used iRiS to analyze the application.

The private APIs invoked in APPS and their call sites addresses are listed in

Table 4.2. Since the application collected a lot of user privacy information, we

would like to know where the information was sent to. To answer this question,

we inspected the dynamic execution trace and found that there were a series of

API calls right after the private API calls to post a HTTP request to the domain

http://ios.wall.youmi.net. We then manually reverse engineered the functions

along the path in the application and found out the user privacy information was

encoded in the URL and sent as part of the HTTP request.

We accessed the domain at http://www.youmi.net which is a web site of a Chi-

nese advertisement service provider. They provide advertisement serving library for

iOS application developers to use their service, which we suspect might actually

97

collect the user privacy information. The library is provided as binary and head-

ers without source code. To verify our concern, we downloaded the library, built a

dummy application with it and analyzed the application using iRiS. As we expected,

the application exhibited similar behavior to APPS and sent user information to this

advertisement service provider. It is worth noting that in the advertisement serving

library, the Objective-C class names and method names are all obfuscated to random

meaningless strings, probably to thwart the e↵ort of manual analysis.

The suspicious advertisement service provider claims on their web site that many

popular iOS applications have incorporated their advertisement serving library. In

fact, in the process of analyzing more iOS applications in our pool, we did find other

20 applications that exhibited similar behavior, which indicates they also use the same

library. Compared with individual iOS applications, the existence of such third-party

libraries poses greater threats to user privacy as they can a↵ect much more users by

residing in a large number of applications.

4.6 Limitation

iRiS might report private API calls that do not actually happen in real executions

since the application might be forced to infeasible paths during the exploration. In

such case, we argue that the application should still be considered as suspicious, as

it would be very unlikely that a legitimate application happens to have an infeasible

path that generates a private API call.

iRiS is not able to capture private API calls in control flow generated by external

input. Although dynamic code generation is prohibited in iOS, it is still possible to use

return oriented programming (ROP) to introduce irregular control flow with external

input, as shown in a recent work [40]. Malicious application developers might also

choose to use external input, such as network data to create the message selector for

Objective-C method calls. In such cases, the control flow could not be determined at

the time of application vetting, thus runtime approaches such as control-flow integrity

98

is required to defend against the attack. Nevertheless, we consider our approach to

be orthogonal to runtime defense and the two complement each other.

4.7 Related Work

The work related to iRiS can be classified into three categories: (1) dynamic binary

instrumentation, (2) mobile application analysis and (3) mobile runtime hardening.

Dynamic binary instrumentation. Dynamic binary instrumentation frameworks

such as PIN [17], Valgrind [18], DynamoRIO [19] and QEMU [41] are widely used for

building dynamic analysis systems. All of them work on Android, but none supports

iOS. Even QEMU, the full system emulator, could not run iOS since it does not

emulate the required proprietary hardware of Apple. In iRiS, we ported Valgrind to

iOS to build our dynamic analysis. We envision the availability of dynamic binary

instrumentation on iOS would stimulate more future work on iOS security.

Mobile application analysis. There has been a lot of work in Android application

analysis. Enck et al. [30] proposed TaintDroid to dynamically track privacy leaks in

android applications. Lu et al. [31] presented CHEX which performs static data-flow

analysis to detect component hijacking attacks. Zhang et al. [32] presented VetDroid

to identify permission use behaviors in android applications using dynamic analysis.

Poeplau et al. [33] applied static analysis to detect attempts of loading malicious

code in Android applications. Johnson et al. [34] and Wang et al. [35] proposed to

switch branch outcomes to expose hidden behavior in Android apps. However, due

to the di↵erent nature of the two mobile operating systems, it is infeasible to apply

these techniques on iOS. For example, most of these analysis systems are targeting

the byte code running in Dalvik VM; in iOS, applications are compiled into native

ARM instructions which are directly executed by the CPU. The access control in iOS

is also completely di↵erent from the Android permission system.

Compared with Android, few work has been done in the domain of iOS application

analysis, which is closely related to iRiS. Egele et al. [38] were the first to present PiOS,

99

a system to analyze privacy leaks in iOS application using static analysis. PiOS uses

backward slicing and constant propagation to resolve Objective-C method calls and

performs data-flow analysis to identify potential privacy leaks. In iRiS, we use similar

approaches in the static analysis stage. Compared with PiOS which only handles the

objc msgSend message dispatching function, iRiS covers traditional C function calls,

all types of Objective-C message dispatching functions and other implicit invoked

functions, which result in a more complete call graph. Also, as shown in result of

both PiOS and our work, static analysis itself usually is not enough to resolve all call

targets in the application binary.

Szydlowski et al. [88] discussed the challenges of performing dynamic analysis on

iOS applications. They proposed an approach to identify GUI views in iOS applica-

tions using image recognition. The execution of the application is driven by simulating

the interaction with identified GUI views using a VNC client. Joorabchi et al. [90]

proposed iCrawler to explore the UI states of iOS application by hooking into the

application to inspect and exercise the UI elements. Kurtz et al. [89] proposed DiOS

which utilizes UI Automation to retrieve the GUI hierarchy and interact with GUI el-

ements. All of these three systems adopt the design of driving the execution of an iOS

application by interacting with the GUI elements, which su↵ers from two limitations.

First, it is generally infeasible to infer the interaction required to trigger a specific

event handler. For example, developers might implement touch event handlers which

only recognize and react to specific gestures. Second, even if proper interaction is

made on the UI element, the program might refuse to transit to a new UI state when

certain conditions are not met. For example, social applications usually require the

user to login with his/her account at start. In such cases, the aforementioned systems

would get stuck at the login screen and result in a very low code coverage. Di↵er-

ent to the existing work, iRiS drives the execution of the application by capturing

the registration of event handlers and trigger their execution programmatically, and

applies forced execution so the application can get over various condition checks to

reach the desired instructions.

100

Mobile runtime hardening. In addition to o✏ine mobile application analysis,

there also has been work focusing on hardening the execution environment of mobile

applications at runtime. Davi et al. [101] proposed MoCFI to enforce control-flow

integrity in mobile applications. MoCFI statically rewrites application binaries to

add control-flow integrity. Following to this work, Werthmann et al. [102] proposed

PSiOS which also employs static binary rewriting to add checks that enforce user-

defined security and privacy policies. However, both solutions requires jailbreak of

the iOS device. Recently, Bucicoiu et al. [103] proposed XiOS to prevent use of

private APIs in iOS applications. XiOS statically rewrites application binaries to

instrument the API call stubs and insert a reference monitor that checks for private

API invocations. XiOS relies on the assumption that all calls to external APIs have to

go through the call stubs. However, advanced malicious application developers could

scan the address space with signatures of the target private API functions and obtain

the entry addresses to call the private APIs directly, which breaks such assumption.

iRiS detects uses of private APIs in the application vetting stage to complement these

runtime defenses.

4.8 Summary

In this chapter, we present iRiS, an iOS application vetting system that combines

static and dynamic analysis to detect uses of private APIs. Since iOS applications are

usually large in size, iRiS applies static analysis to resolve the targets of most API

invocations. To handle the remaining API invocations that could not be resolved

statically, we propose a novel iterative dynamic analysis approach based on forced

execution. We port the Valgrind dynamic binary instrumentation framework to iOS

to build the dynamic analysis in iRiS. To drive the execution of the event-driven iOS

applications, we propose an automated approach to trigger the execution of the event

handlers. Our evaluation with over 2000 iOS applications from the o�cial App Store

shows that our technique e↵ectively reveals many uses of private APIs that are not

101

detected by the o�cial vetting process. We found a nontrivial number of applications

accessing and sending out sensitive user data such as installed applications and device

serial number. According to our findings, we believe that an advanced application

vetting system such as iRiS is crucial for ensuring the safety of iOS device users.

102

5 CONCLUSIONS

Malicious software, vulnerabilities and other software security problems have become

an increasing concern in recent years with the fast growth of the software industry.

To guarantee the security of software users, the capabilities of analyzing and manip-

ulating software is crucial. Binary instrumentation and transformation are essential

techniques for software analysis and manipulation as binary executable is one of the

most common form of software distribution. However, existing static and dynamic

approaches all have serious limitations. Flexible static binary transformation is in-

feasible due to the lack of the capability to extract and embed binary components;

malware could easily bypass analysis as dynamic binary instrumentation frameworks

are not transparent to them; dynamic binary instrumentation is not even available

on iOS, one of the two dominant mobile platforms. In this dissertation, we have

presented three systems to improve binary instrumentation and transformation in

software security scenarios.

In chapter 2 we described our static binary transformation framework Bistro

which supports binary component extraction and embedding. Unlike existing detour-

based or duplication-based static binary transformation approaches, Bistro supports

the insertion and removal of any instruction or data at arbitrary locations in the

binary. Bistro patches indirect control transfer instructions and data references with

the help of inserted address translators, thus preserves the correct semantic of both

the embedded component and the target program. We evaluated the performance of

Bistro using the binaries in SPEC CPU 2000 benchmark and real-world software,

which all shows low runtime and space overhead. We demonstrated the e↵ectiveness of

Bistro in three software security applications: (1) we carved the semantic patches

for six vulnerabilities from di↵erent applications, and embedded those patches in

other nine vulnerable applications to fix the same vulnerabilities; (2) we stitched

103

components extracted from a non-executable corpse of the Conficker worm to create

a runnable sample for malware analysis and (3) we embedded functional components

in kernel drivers to create trojan-ed kernel drivers which can be leveraged in defensive

tasks.

In chapter 3 we discussed our dynamic binary instrumentation framework Spi-

der which supports e�cient and transparent trapping of the execution of binary at

arbitrary instructions. Spider places software breakpoints and utilizes the feature

in recent commodity CPUs to hide the breakpoints by splitting the instruction and

data views. We also proposed an e�cient mechanism of monitoring page table to

accommodate updates in mappings between virtual and physical pages, which allows

the user of Spider to set breakpoints at arbitrary virtual address in target binary.

In our evaluation of Spider, we demonstrated that Spider successfully remained

transparent to seven advanced software protectors equipped with state-of-the-art anti-

instrumentation techniques. The performance of the invisible breakpoint placed by

Spider is as good as traditional hardware breakpoint. We also applied Spider in two

software security scenarios: (1) we improved existing attack provenance system by us-

ing Spider to instrument applications protected by advanced software protectors and

(2) we used Spider to reveal a possible threat to two instant messenger applications

protected by software protectors which allows attackers to steal user information.

In chapter 4 we described iRiS, our system for detecting uses of private APIs

in iOS applications using a combination of static analysis and dynamic binary in-

strumentation. We ported the popular dynamic binary instrumentation framework

Valgrind to the iOS mobile platform and built iRiS on top of it. iRiS applies fast

static analysis to resolve most API invocations. The remaining API calls are resolved

by our iterative analysis approach based on forced execution using our dynamic bi-

nary instrumentation framework. Our evaluation of iRiS prototype with over 2000

iOS applications shows that iRiS successfully identified many private API uses that

were not found by Apple’s o�cial application vetting process.

104

5.1 Future Work

While Bistro, Spider and iRiS are e↵ective solutions of binary instrumentation

and transformation for software security applications, they all have limitations which

open up the opportunities for future extensions and improvements.

Bistro currently only supports x86 instructions and Win32 PE format executa-

bles. Extending Bistro to other binary executable formats should be feasible as

it does not rely on any specific feature of Win32 PE binaries. However, extending

Bistro to other instruction sets (e.g. ARM) requires us to throughly enumerate

and handle the control transfer instructions and memory addressing modes. Another

possible extension to Bistro is to enable binary transformation at load time or even

runtime. The address translator snippets inserted by Bistro are able to handle the

address changes caused by transformation; however, the address mapping needs to

be updated each time a transformation happens, which calls for a new data struc-

ture that can be more e�ciently modified rather than perfect hashing to store the

mapping.

As we have discussed in chapter 3, Spider executes all instrumentation functions

in the context of the hypervisor to prevent potential in-guest side e↵ects. Compared

with Spider, in most other dynamic binary instrumentation engines, the instru-

mentation routine is usually executed in the context of the instrumented program

itself. Although such di↵erence does not a↵ect the functionality for passive instru-

mentation, it does make writing an instrumentation tool unnecessarily verbose and

complicated. An extension to Spider to handle this problem would be a dynamic

execution context translator which automatically translates the guest execution con-

text to the context of the hypervisor for the instrumentation routines. In this way,

instrumentation tool authors could write their tools as if they run in the guest, and

even existing instrumentation tools for other frameworks could be ported to Spider

with slight modification.

105

Although we handled the timing side-e↵ect by manipulating the Time Stamp

Counter in Spider, it might still be detected with timing attacks using external time

sources (e.g. NTP servers, wall clocks). Also, performance counters such as number

of retired instructions might reveal the existence of Spider due to the execution

of additional instructions. An attacker might also find the footprint of Spider by

probing the Translation Look-aside Bu↵er (TLB) or various caches. We plan to study

the approaches of countering such side-channel attacks to Spider in the future.

Spider is currently only implemented in x86 architecture. However, our key idea

of splitting the code and data view is not specific to the x86 architecture. We plan

to port Spider to ARM when hardware virtualization support on ARM is mature.

The list of private APIs identified by iRiS might be incomplete since iRiS cannot

a↵ord to explore all paths leading to the API call sites in dynamic analysis. In our

current implementation, we adopt the linear exploration strategy, which does not

reveal private API calls that require a combination of multiple functions to trigger.

A possible future work to alleviate such problem should experiment and evaluate

more complex exploration strategies, such as quadratic search to achieve better path

coverage. One possible optimization to reduce the search space is to apply taint

analysis and only explore the branches whose predicates are tainted by the input.

Another direction for reducing the total time of application vetting is to parallelize

the call targets resolving algorithm so multiple devices could be used to speed up the

analysis of one application.

The current implementation of iRiS does not cover all types of implicit function

invocations in iOS frameworks. For example, the NSTimer class allows developers to

register a callback function which is called when the timer fires. Handling all such

implicit function invocations is an extension to e↵ectively improve the completeness

of iRiS, which requires careful examination of all classes and APIs provided in iOS

frameworks.

LIST OF REFERENCES

106

LIST OF REFERENCES

[1] Bjorn De Sutter, Bruno De Bus, and Koen De Bosschere. Link-Time Binary
Rewriting Techniques for Program Compaction. ACM Transactions on Pro-
gramming Languages and Systems, 27(5):882–945, 2005.

[2] R. Muth, S.K. Debray, S. Watterson, and K. De Bosschere. alto: A Link-
Time Optimizer for the Compaq Alpha. Software: Practice and Experience,
31(1):67–101, 2001.

[3] Amitabh Srivastava, Andrew Edwards, and Hoi Vo. Vulcan: Binary Trans-
formation in a Distributed Environment. Technical Report MSR-TR-2001-50,
Microsoft Research, 2001.

[4] Alan Eustace and Amitabh Srivastava. ATOM: A Flexible Interface for Building
High Performance Program Analysis Tools. In Proceedings of the USENIX 1995
Technical Conference, pages 25–25, 1995.

[5] Bryan Buck and Je↵rey K Hollingsworth. An API for Runtime Code Patching.
International Journal of High Performance Computing Applications, 14(4):317–
329, 2000.

[6] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad,
and B. Chen. Instrumentation and Optimization of Win32/Intel Executables
Using Etch. In Proceedings of the USENIX Windows NT Workshop, volume
1997, pages 1–8, 1997.

[7] G. Hunt and D. Brubacher. Detours: Binary Interception of Win32 Functions.
In Proceedings of the 3rd Conference on USENIX Windows NT Symposium,
volume 3, pages 14–14, 1999.

[8] M.A. Laurenzano, M.M. Tikir, L. Carrington, and A. Snavely. PEBIL: Ef-
ficient Static Binary Instrumentation for Linux. In Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Software,
pages 175–183. IEEE, 2010.

[9] Pádraig O’Sullivan, Kapil Anand, Aparna Kotha, Matthew Smithson, Rajeev
Barua, and Angelos D Keromytis. Retrofitting Security in COTS Software with
Binary Rewriting. In Future Challenges in Security and Privacy for Academia
and Industry, pages 154–172. 2011.

[10] Richard Wartell, Vishwath Mohan, Kevin Hamlen, and Zhiqiang Lin. Binary
Stirring: Self-randomizing Instruction Addresses of Legacy x86 Binary Code.
In Proceedings of the 19th ACM Conference on Computer and Communications
Security, 2012.

107

[11] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High Accuracy Attack
Provenance via Binary-based Execution Partition. In Proceedings of the 20th
Network and Distributed Systems Security Symposium, 2013.

[12] GDB. http://www.gnu.org/software/gdb/.

[13] Hex-Rays. IDA Pro Disassembler. http://www.hex-rays.com/idapro/.

[14] Oleh Yuschuk. Ollydbg. http://www.ollydbg.de/.

[15] Amit Vasudevan and Ramesh Yerraballi. Stealth Breakpoints. In Proceedings
of the 21st Annual Computer Security Applications Conference, pages 383–392,
2005.

[16] Amit Vasudevan. Re-Inforced Stealth Breakpoints. In Proceedings of the 2nd
International Conference on Risks and Security of Internet and Systems, pages
59–66, 2009.

[17] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.J.
Reddi, and K. Hazelwood. Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In ACM SIGPLAN Notices, volume 40, pages
190–200, 2005.

[18] N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dynamic
Binary Instrumentation. volume 42, pages 89–100, 2007.

[19] D. Bruening. E�cient, Transparent, and Comprehensive Runtime Code Ma-
nipulation. PhD thesis, Massachusetts Institute of Technology, 2004.

[20] Kevin Scott, Naveen Kumar, Siva Velusamy, Bruce Childers, Jack W David-
son, and Mary Lou So↵a. Retargetable and Reconfigurable Software Dynamic
Translation. In Proceedings of the International Symposium on Code Gener-
ation and Optimization: Feedback-Directed and Runtime Optimization, pages
36–47, 2003.

[21] Sanjay Bhansali, Wen-Ke Chen, Stuart De Jong, Andrew Edwards, Ron Mur-
ray, Milenko Drinić, Darek Mihočka, and Joe Chau. Framework for Instruction-
Level Tracing and Analysis of Program Executions. In Proceedings of the 2nd
International Conference on Virtual Execution Environments, pages 154–163,
2006.

[22] Peter Feiner, Angela Demke Brown, and Ashvin Goel. Comprehensive Kernel
Instrumentation via Dynamic Binary Translation. In ACM SIGARCH Com-
puter Architecture News, volume 40, pages 135–146, 2012.

[23] Derek Bruening, Qin Zhao, and Saman Amarasinghe. Transparent Dynamic
Instrumentation. In ACM SIGPLAN Notices, volume 47, pages 133–144, 2012.

[24] Amit Vasudevan and Ramesh Yerraballi. Cobra: Fine-Grained Malware Analy-
sis using Stealth Localized-Executions. In Proceedings of the IEEE Symposium
on Security and Privacy, 2006.

[25] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. TTAnalyze: A Tool for
Analyzing Malware. In Proceedings of the 15th Annual EICAR Conference,
2006.

http://www.gnu.org/software/gdb/
http://www.hex-rays.com/idapro/
http://www.ollydbg.de/

108

[26] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Sax-
ena. BitBlaze: A New Approach to Computer Security via Binary Analysis. In
Information Systems Security, pages 1–25. 2008.

[27] Prashanth P Bungale and Chi-Keung Luk. PinOS: A Programmable Frame-
work for Whole-System Dynamic Instrumentation. In Proceedings of the 3rd
International Conference on Virtual Execution Environments, pages 137–147,
2007.

[28] Min Gyung Kang, Heng Yin, Steve Hanna, Stephen McCamant, and Dawn
Song. Emulating Emulation-Resistant Malware. In Proceedings of the 1st ACM
Workshop on Virtual Machine Security, pages 11–22, 2009.

[29] Lok-Kwong Yan, Manjukumar Jayachandra, Mu Zhang, and Heng Yin. V2E:
Combining Hardware Virtualization and Software Emulation for Transparent
and Extensible Malware Analysis. ACM SIGPLAN Notices, 47(7):227–238,
2012.

[30] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol Sheth. TaintDroid: An Information-Flow Track-
ing System for Realtime Privacy Monitoring on Smartphones. In Proceedings of
the 9th USENIX Conference on Operating Systems Design and Implementation,
pages 1–6, 2010.

[31] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: Stat-
ically Vetting Android Apps for Component Hijacking Vulnerabilities. In Pro-
ceedings of the 19th ACM Conference on Computer and Communications Se-
curity, pages 229–240, 2012.

[32] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning,
X Sean Wang, and Binyu Zang. Vetting Undesirable Behaviors in Android Apps
with Permission Use Analysis. In Proceedings of the 20th ACM Conference on
Computer and Communications Security, pages 611–622, 2013.

[33] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. Execute This! Analyzing Unsafe and Malicious Dynamic
Code Loading in Android Applications. In Proceedings of the 21st Annual Net-
work and Distributed System Security Symposium, 2014.

[34] Ryan Johnson and Angelos Stavrou. Forced-Path Execution for Android Ap-
plications on x86 Platforms. In Proceedings of the 7th IEEE International Con-
ference on Software Security and Reliability-Companion, pages 188–197, 2013.

[35] Zhaohui Wang, Ryan Johnson, Rahul Murmuria, and Angelos Stavrou. Ex-
posing Security Risks for Commercial Mobile Devices. In Computer Network
Security, pages 3–21. 2012.

[36] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, You, Get O↵ of My
Market: Detecting Malicious Apps in O�cial and Alternative Android Markets.
In Proceedings of the 19th Annual Network and Distributed System Security
Symposium, pages 5–8, 2012.

109

[37] Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish Bijlani, Roxana Geam-
basu, and Nikhil Sarda. CleanOS: Limiting Mobile Data Exposure with Idle
Eviction. In Proceedings of the 10th USENIX Symposium on Operating Systems
Design and Implementation, volume 12, 2012.

[38] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. PiOS:
Detecting Privacy Leaks in iOS Applications. In Proceedings of the 18th Annual
Network and Distributed System Security Symposium, 2011.

[39] Jin Han, Su Mon Kywe, Qiang Yan, Feng Bao, Robert Deng, Debin Gao,
Yingjiu Li, and Jianying Zhou. Launching Generic Attacks on iOS with Ap-
proved Third-Party Applications. In Proceedings of the 11th International Con-
ference on Applied Cryptography and Network Security, pages 272–289, 2013.

[40] Tielei Wang, Kangjie Lu, Long Lu, Simon Chung, and Wenke Lee. Jekyll on
iOS: When Benign Apps Become Evil. In Proceedings of the 22nd USENIX
Security Symposium, 2013.

[41] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In Proceed-
ings of the USENIX Annual Technical Conference, pages 41–46, 2005.

[42] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector Gadget: Automated
Extraction of Proprietary Gadgets from Malware Binaries. In Proceedings of
the IEEE Symposium on Security and Privacy, pages 29–44, 2010.

[43] J. Caballero, N.M. Johnson, S. Mccamant, and D. Song. Binary Code Extrac-
tion and Interface Identification for Security Applications. In Proceedings of the
17th Annual Network and Distributed System Security Symposium, 2010.

[44] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Reuse-Oriented Camouflaging
Trojan: Vulnerability Detection and Attack Construction. In Proceedings of the
40th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, 2010.

[45] P. Porras, H. Saidi, and V. Yegneswaran. Conficker C analysis. SRI Interna-
tional, 2009.

[46] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-Flow
Integrity Principles, Implementations, and Applications. ACM Transactions on
Information and System Security, 13(1):4, 2009.

[47] N.M. Johnson, J. Caballero, K.Z. Chen, S. McCamant, P. Poosankam, D. Rey-
naud, and D. Song. Di↵erential Slicing: Identifying Causal Execution Di↵er-
ences for Security Applications. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 347–362, 2011.

[48] Halvar Flake. Structural comparison of executable objects. In Proceedings of
the 1st SIG SIDAR Conference on Detection of Intrusions and Malware and
Vulnerability Assessment, 2004.

[49] Susanta Nanda, Wei Li, Lap-Chung Lam, and Tzi-cker Chiueh. BIRD: Binary
Interpretation using Runtime Disassembly. In Proceedings of the International
Symposium on Code Generation and Optimization, pages 358–370, 2006.

110

[50] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: Malware
Analysis via Hardware Virtualization Extensions. In Proceedings of the 15th
ACM Conference on Computer and Communications Security, pages 51–62,
2008.

[51] G. Balakrishnan and T. Reps. Analyzing Memory Accesses in x86 Executables.
In Compiler Construction, pages 2732–2733, 2004.

[52] A. Slowinska, T. Stancescu, and H. Bos. Howard: A Dynamic Excavator for Re-
verse Engineering Data Structures. In Proceedings of the 18th Annual Network
and Distributed System Security Symposium, 2011.

[53] J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled Reverse Engineering
of Types in Binary Programs. In Proceedings of the 18th Annual Network and
Distributed System Security Symposium, 2011.

[54] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic Reverse Engi-
neering of Data Structures from Binary Execution. In Proceedings of the 17th
Annual Network and Distributed System Security Symposium, 2010.

[55] D.C. Schmidt. GPERF: A Perfect Hash Function Generator. More C++ Gems,
pages 461–491, 2000.

[56] N. Falliere, L.O. Murchu, and E. Chien. W32. Stuxnet Dossier. White paper,
Symantec Corp., Security Response, 5, 2011.

[57] Richard Wartell, Vishwath Mohan, Kevin Hamlen, and Zhiqiang Lin. Securing
Untrusted Code via Compiler-Agnostic Binary Rewriting. In Proceedings of the
28th Annual Computer Security Applications Conference, pages 299–308, 2012.

[58] R. Wahbe, S. Lucco, T.E. Anderson, and S.L. Graham. E�cient Software-Based
Fault Isolation. In ACM SIGOPS Operating Systems Review, volume 27, pages
203–216, 1994.

[59] S. McCamant and G. Morrisett. Evaluating SFI for a CISC Architecture. In
Proceedings of the 15th USENIX Security Symposium, page 15, 2006.

[60] Ulfar Erlingsson, Mart́ın Abadi, Michael Vrable, Mihai Budiu, and George C
Necula. XFI: Software Guards for System Address Spaces. In Proceedings of
the 7th Symposium on Operating Systems Design and Implementation, pages
75–88, 2006.

[61] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of Static Analy-
sis for Malware Detection. In Proceedings of the 23th Annual Computer Security
Applications Conference, pages 421–430, 2007.

[62] Igor V Popov, Saumya K Debray, and Gregory R Andrews. Binary Obfuscation
using Signals. In Proceedings of the 16th USENIX Security Symposium, pages
275–290, 2007.

[63] M. Prasad and T. Chiueh. A Binary Rewriting Defense against Stack based
Bu↵er Overflow Attacks. In Proceedings of the USENIX Annual Technical Con-
ference, pages 211–224, 2003.

111

[64] Fanglu Guo, Peter Ferrie, and Tzi-Cker Chiueh. A Study of the Packer Problem
and Its Solutions. In Proceedings of the 11th International Symposium on Recent
Advances in Intrusion Detection, pages 98–115, 2008.

[65] Anh M Nguyen, Nabil Schear, HeeDong Jung, Apeksha Godiyal, Samuel T
King, and Hai D Nguyen. MAVMM: Lightweight and Purpose Built VMM
for Malware Analysis. In Proceedings of the 25th Annual Computer Security
Applications Conference, pages 441–450, 2009.

[66] Carsten Willems, Ralf Hund, Andreas Fobian, Dennis Felsch, Thorsten Holz,
and Amit Vasudevan. Down to the Bare Metal: Using Processor Features
for Binary Analysis. In Proceedings of the 28th Annual Computer Security
Applications Conference, pages 189–198, 2012.

[67] Sebastian Vogl and Claudia Eckert. Using Hardware Performance Events for
Instruction-Level Monitoring on the x86 Architecture. In Proceedings of the
European Workshop on System Security, volume 12, 2012.

[68] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. KVM:
The Linux Virtual Machine Monitor. In Proceedings of the Linux Symposium,
volume 1, pages 225–230, 2007.

[69] F Falcon and N Riva. Dynamic Binary Instrumentation Frameworks: I Know
You’re There Spying on Me. In Reverse Engineering Conference, 2012.

[70] Kevin P Lawton. Bochs: A Portable PC Emulator for Unix/X. Linux Journal,
1996(29es):7, 1996.

[71] Peter Ferrie. Attacks on Virtual Machine Emulators. Symantec Advanced Threat
Research, 2006.

[72] Peter Ferrie. Attacks on More Virtual Machine Emulators. Symantec Technology
Exchange, 2007.

[73] Thomas Ra↵etseder, Christopher Kruegel, and Engin Kirda. Detecting System
Emulators. In Information Security, pages 1–18. 2007.

[74] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art of
Virtualization. ACM SIGOPS Operating Systems Review, 37(5):164–177, 2003.

[75] Fengwei Zhang, Kevin Leach, Angelos Stavrou, Haining Wang, and Kun Sun.
Using Hardware Features for Increased Debugging Transparency. In Proceedings
of the IEEE Symposium on Security and Privacy, 2015.

[76] Michael Grace, Zhi Wang, Deepa Srinivasan, Jinku Li, Xuxian Jiang, Zhenkai
Liang, and Siarhei Liakh. Transparent Protection of Commodity OS Kernels
Using Hardware Virtualization. In Security and Privacy in Communication
Networks, pages 162–180. 2010.

[77] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, vol-
ume 3C.

[78] Zhui Deng, Dongyan Xu, Xiangyu Zhang, and Xuxiang Jiang. IntroLib: E�-
cient and Transparent Library Call Introspection for Malware Forensics. Digital
Investigation, 9:S13–S23, 2012.

112

[79] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection Based
Architecture for Intrusion Detection. In Proceedings of the 10th Network and
Distributed Systems Security Symposium, pages 191–206, 2003.

[80] Rodrigo Rubira Branco, Gabriel Negreira Barbosa, and Pedro Drimel Neto.
Scientific but Not Academical Overview of Malware Anti-Debugging, Anti-
Disassembly and Anti-VM Technologies. In Proceedings of the Black Hat Tech-
nical Security Conference, 2012.

[81] Joanna Rutkowska. Subverting Vista Kernel for Fun and Profit. Black Hat
Briefings, 2006.

[82] Ole Agesen, Jim Mattson, Radu Rugina, and Je↵rey Sheldon. Software Tech-
niques for Avoiding Hardware Virtualization Exits. In Proceedings of the
USENIX Annual Technical Conference, volume 12, pages 35–35, 2011.

[83] BusinessInsider. Apple Has Shipped 1 Billion iOS Devices. http://www.
businessinsider.com/apple-ships-one-billion-ios-devices-2015-1.

[84] Statista. Number of Available Apps in the Apple App Store. http://www.
statista.com/statistics/263795.

[85] Apple. iOS Developer Program License Agreement. https://developer.
apple.com/programs/terms/ios/standard/ios program standard agreement
20140909.pdf.

[86] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David
Wagner. A Survey of Mobile Malware in the Wild. In Proceedings of the 1st
ACM Workshop on Security and Privacy in Smartphones and Mobile Devices,
pages 3–14, 2011.

[87] 9to5mac. Former Apple Employee Discusses the App Store Review Process.
http://9to5mac.com/2012/07/04/former-apple-employee-discusses/.

[88] Martin Szydlowski, Manuel Egele, Christopher Kruegel, and Giovanni Vigna.
Challenges for Dynamic Analysis of iOS Applications. In Open Problems in
Network Security, pages 65–77. 2012.

[89] Andreas Kurtz, Andreas Weinlein, Christoph Settgast, and Felix Freiling. DiOS:
Dynamic Privacy Analysis of iOS Applications. Technical Report CS-2014-
03, Department of Computer Science, Friedrich-Alexander-Universitt Erlangen-
Nrnberg, 2014.

[90] Mona Erfani Joorabchi and Ali Mesbah. Reverse Engineering iOS Mobile Appli-
cations. In Proceedings of the 19th Working Conference on Reverse Engineering,
pages 177–186, 2012.

[91] Nicolas Seriot. iOS Objective-C Runtime Headers. https://github.com/nst/
iOS-Runtime-Headers.

[92] Robert Watson, Wayne Morrison, Chris Vance, and Brian Feldman. The Trust-
edBSD MAC Framework: Extensible Kernel Access Control for FreeBSD 5.0.
In Proceedings of the USENIX Annual Technical Conference, pages 285–296,
2003.

http://www.businessinsider.com/apple-ships-one-billion-ios-devices-2015-1
http://www.businessinsider.com/apple-ships-one-billion-ios-devices-2015-1
http://www.statista.com/statistics/263795
http://www.statista.com/statistics/263795
https://developer.apple.com/programs/terms/ios/standard/ios_program_standard_agreement_20140909.pdf
https://developer.apple.com/programs/terms/ios/standard/ios_program_standard_agreement_20140909.pdf
https://developer.apple.com/programs/terms/ios/standard/ios_program_standard_agreement_20140909.pdf
http://9to5mac.com/2012/07/04/former-apple-employee-discusses/
https://github.com/nst/iOS-Runtime-Headers
https://github.com/nst/iOS-Runtime-Headers

113

[93] Apple. Nib Files. https://developer.apple.com/library/mac/documentation/
Cocoa/Conceptual/LoadingResources/CocoaNibs/CocoaNibs.html.

[94] James C King. Symbolic Execution and Program Testing. Communications of
the ACM, 19(7):385–394, 1976.

[95] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhendong
Su. X-Force: Force-Executing Binary Programs for Security Applications. In
Proceedings of the 23rd USENIX Security Symposium, 2014.

[96] Steve Nygard. Class-Dump. http://stevenygard.com/projects/class-dump/.

[97] Apple. iTunes Preview. https://itunes.apple.com/cn/genre/ios/id36?mt=8.

[98] S. Esser. dumpdecrypted. https://github.com/stefanesser/dumpdecrypted.

[99] Min Zheng, Hui Xue, Yulong Zhang, Tao Wei, and John CS Lui. Enpublic
Apps: Security Threats Using iOS Enterprise and Developer Certificates. In
Proceedings of the 10th ACM Symposium on Information, Computer and Com-
munications Security, pages 463–474, 2015.

[100] Apple. ASIdentifierManager Class Reference. https://developer.apple.com/
library/ios/documentation/AdSupport/Reference/ASIdentifierManager Ref/.

[101] Lucas Davi, Alexandra Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten
Holz, Ralf Hund, Stefan Nürnberger, and Ahmad-Reza Sadeghi. MoCFI: A
Framework to Mitigate Control-Flow Attacks on Smartphones. In Proceedings
of the 19th Network and Distributed Systems Security Symposium, 2012.

[102] Tim Werthmann, Ralf Hund, Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten
Holz. PSiOS: Bring Your Own Privacy & Security to iOS Devices. In Pro-
ceedings of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, pages 13–24, 2013.

[103] Mihai Bucicoiu, Lucas Davi, Razvan Deaconescu, and Ahmad-Reza Sadeghi.
XiOS: Extended Application Sandboxing on iOS. In Proceedings of the 10th
ACM Symposium on Information, Computer and Communications Security,
pages 43–54, 2015.

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/LoadingResources/CocoaNibs/CocoaNibs.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/LoadingResources/CocoaNibs/CocoaNibs.html
http://stevenygard.com/projects/class-dump/
https://itunes.apple.com/cn/genre/ios/id36?mt=8
https://github.com/stefanesser/dumpdecrypted
https://developer.apple.com/library/ios/documentation/AdSupport/Reference/ASIdentifierManager_Ref/
https://developer.apple.com/library/ios/documentation/AdSupport/Reference/ASIdentifierManager_Ref/

VITA

114

VITA

Zhui Deng received his B.E. degree in computer science and technology from

Tsinghua University in 2007 and M.S. degree in computer science and technology

from Tsinghua University in 2010. He then obtained his Ph.D. degree in computer

science from Purdue University in 2015 under the direction of Professor Dongyan Xu

and Professor Xiangyu Zhang. His research interests are in the areas of virtualization,

software security and binary program analysis. He interned with Google Inc. in 2014

during his Ph.D. studies and joined as a full-time software engineer in the fall of

2015.

	Purdue University
	Purdue e-Pubs
	January 2015

	BINARY INSTRUMENTATION AND TRANSFORMATION FOR SOFTWARE SECURITY APPLICATIONS
	Zhui Deng
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Thesis Statement
	Contributions
	Dissertation Organization

	BISTRO: BINARY COMPONENT EXTRACTION AND EMBEDDING
	Introduction
	Overview and Assumptions
	Problems with Existing Techniques
	Basic Algorithm for Binary Extraction/Stretching
	Handling Indirect Control Transfer
	Handling Indirect Calls
	Handling Indirect Jumps

	Handling Data References
	Evaluation
	Performance: Efficiency and Overhead
	Case Study I: Binary-level Semantic Patching Using BISTRO
	Case Study II: Malware Stitching Using BISTRO
	Case Study III: Trojan-ing Kernel Drivers

	Limitation
	Related Work
	Summary

	SPIDER: STEALTHY BINARY INSTRUMENTATION VIA HARDWARE VIRTUALIZATION
	Introduction
	Related Work
	Overview
	Design
	Splitting Code and Data View
	Handling Breakpoints
	Monitoring Virtual-to-Physical Mapping
	Handling Code Modification
	Data Watchpoint
	Handling Timing Side-Effect

	Implementation
	Evaluation
	Transparency
	Case Study I: Attack Provenance
	Case Study II: Stealthy Introspection
	Performance Overhead

	Summary

	IRIS: VETTING PRIVATE API ABUSE IN IOS APPLICATIONS
	Introduction
	iOS Background
	Function Invocations
	Private API
	iOS Runtime Security
	Execution of iOS Application

	Porting Valgrind to iOS
	Resolving API Call Targets
	Overview
	Resource Analysis
	Static Analysis
	Iterative Dynamic Analysis

	Evaluation
	Case Study: A Suspicious Advertisement Service Provider

	Limitation
	Related Work
	Summary

	CONCLUSIONS
	Future Work

	LIST OF REFERENCES
	VITA

