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ABSTRACT

Choi, Heejun Ph.D., Purdue University, August 2015. On several efficient algorithms
for some partial differential equations. Major Professor: Jie Shen.

This thesis focuses on the development and the analysis of high-order method for

Partial Differential Equations (PDEs), the Magneto-HydroDynamics (MHD) equa-

tion, the Cahn-Hilliard phase-field equation and the Allen-Cahn phase-field equation

and Ordinary Differential Equations (ODEs).

For the fluid related equations, we focus on the stability and the error estimates.

We suggest four unconditionally stable discretizations of the MHD equation and per-

form the error analysis. As an application, we develop an adaptive scheme and carry

out numerical experiments to see the effectiveness. We carry out the error analysis of

the convex-splitting scheme and the stabilized scheme of the Cahn-Hilliard equation.

We develop the spectral method for complex geometries which is based on the

fictitious domain method. For the ODEs, we develop a second-order defect correction

method. The main tool for the defect correction is the Schur decomposition and the

scheme is A-stable.
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1. INTRODUCTION

1.1 Overview of thesis

A Partial Differential Equation (PDE) is an equation which consists of partial

derivatives of an unknown function. It has been used widely to describe various

phenomenon. The behavior of a heated metal is governed by the heat equation. The

motion of viscous fluid substance is described by the Navier-Stokes Equation (NSE)

. Also there are many important PDEs, the wave equation, the Korteweg-de Vries

equation, the Allen-Cahn equation, describing other physical systems. The solution

of a PDE helps us to have better understanding of the nature. Hence finding the

solution of a PDE is very important. The analytic solution of a PDE gives us the

precise information of the nature. However, obtaining the analytic solution of a PDE

is not possible most of the time. Hence we use numerical methods to obtain an

approximate solution of a PDE. In this thesis, we develop and analyze numerical

methods which is stable and highly accurate.

The theory of a stable discretization of a PDE began in a paper of Courant,

Friedrichs, and Lewy [1]. It was pointed out that a consistent discretization of a PDE

is not enough for the convergence. In [2], the authors showed that for a consistent

finite difference discretization the stability implies the convergence. Hence develop-

ing a stable discretization is essential to obtain an accurate numerical solution. In

Chapter 2 and Chapter 3, we focus on developing and analyzing stable discretizations

of the fluid related PDEs which are based on the projection methods.

In Chapter 2, we introduce four unconditionally stable numerical discretizations

of the Magneto-HydroDynamics (MHD) equation. We also provide an adaptive time-

stepping strategy so that small time steps are needed only for the accuracy. The



2

MHD equation describes the motion of conducting fluid under the magnetic field.

The example includes Plasmas, liquid metals and salt water.

The NSE is a part of the MHD and there has been much research to apply the

projection method which is an efficient algorithm to solve NSE [3–5]. We improve

existing numerical discretizations of the MHD equation in two ways. One is a ro-

tational pressure-correction form and the other is an adaptive time-stepping. It is

known that the projection method suffers from the numerical layer, decreasing the

accuracy for the pressure [6]. Hence we apply the rotational correction form to avoid

the numerical boundary layer. We also suggest the an adaptive time-stepping strat-

egy. By the strategy, we can choose the size of time steps small when the solution

changes quickly and small when solution changes slowly. The numerical experiment

shows this strategy is efficient in terms of number of time steps.

In Chapter 3, we perform the error analysis of the stabilized scheme and the

convex-splitting scheme of the Cahn-Hilliard phase-field model and the Allen-Cahn

phase-field model. The Cahn-Hilliard phase-field model and the Allen-Cahn phase-

field mode describe the flow with two constitutive components. The stabilized scheme

and the convex-splitting for the Cahn-Hilliard phase-field equation were developed

in [7] and [8]. Two schemes mimic the energy dissipation law of the PDE, hence they

are unconditionally energy stable. In Chapter 3, we presents detailed error analysis

of two schemes for the Cahn-Hilliard phase-field equation. The error analysis of the

Allen-Cahn phase-field equation can be carried out by using essentially the same

arguments.

In Chapter 4 and Chapter 5, we focus on developing high-order schemes for PDEs

and Ordinary Differential Equations (ODEs). In Chapter 4 we develop spectral meth-

ods for complex geometries. There are many numerical methods to solve the PDEs,

finite element, finite difference, spectral element, spectral method. The finite element

method subdivide the domain and approximate the solution using locally supported

functions. Hence finite element method would be a good choice when the domain is

complex. But the matrix system due to the finite element is huge and the convergence
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rate is an algebraic function of the number of unknowns. The spectral method ap-

proximate the solution using global function and accuracy shows exponential decay.

Hence spectral method is a good choice when the solution is smooth. However, the

disadvantage of the spectral method is that its domain needs to be simple (rectangle,

disk. ...).

In Chapter 4, we introduce two algorithms for the Helmholtz equation which

show spectral accuracy which are based on spectral method and fictitious domain

method. One method uses the weak formulation on the extended domain and imposes

boundary condition as a constraint. We can avoid the derivative discontinuity by

imposing no boundary condition on the extended domain. The other method is based

on the splitting of original equation into two equations which was introduced in [9].

In [9], the author uses Fourier spectral method to solve the extended problem which

requires periodic extension of a function. The algorithm that we suggest is based on

non-periodic and smooth extension. Hence the Gibbs phenomenon can be avoided.

For both algorithms we assumed that smooth extension of a function is available and

obtaining a smooth extension would be a further research topic.

In Chapter 5 we presents a numerical scheme to solve an ODE to obtain a high

order of accuracy. The theories to obtain highly accurate numerical solution of the

ODEs have been researched extensively [10–13]. There are mainly two strategies to

obtain a high order of accuracy. One strategy is to construct a numerical scheme with

a high order of consistency error. The examples of these are the Runge-Kutta type

or the multi-step methods. The other direction to obtain a high order of accuracy is

to solve a low order scheme repeatedly. It is called a defect correction type scheme.

The defect correction type method was extensively studied in seventies [13]. In

[12], the authors improved the defect correction method and the new method is called

a Spectral Deffered Correction (SDC) method. SDC improved the classical defect

correction method in two ways. The authors in [12] discretized the interval using

Gauss points, rather than equidistance points. Hence the Runge’s phenomenon could

be avoided. The authors also changed the differential equation into a Picard form
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so that the numerical integration could be applied rather than differentiation. As a

result, SDC obtains larger stability region than the classical defect correction.

In Chapter 5, we suggest a different type of corrector. Our new scheme improves

the SDC in two ways. One is the order of accuracy and the other is the A-stability.

The order of accuracy of the SDC improves by one at each correction. However, we

obtain two orders at each correction. The stability region of the SDC does not cover

left-half plane. But our scheme is the same as the collocation method if the underlying

problem is a linear, constant-coefficient problem. Hence the scheme is A-stable which

enables us to take larger time steps. However the scheme is complicated than the

SDC and it is not easy to program.

1.2 Notations

We consider a finite time interval [0, T ] and a domain Ω ⊂ Rd (d = 2, 3) which is

connected, bounded and open with a sufficiently smooth boundary ∂Ω such that the

following Sobolev inequalities hold:

‖g‖2
L4(Ω) ≤ C(2,Ω)‖g‖L2(Ω)‖g‖H1(Ω), d = 2,

‖g‖2
L3(Ω) ≤ C(3,Ω)‖g‖L2(Ω)‖g‖H1(Ω), d = 3.

(1.1)

Let δt be the time-step size. For a sequence of functions ϕ0, ϕ1, . . . , ϕN in some

Hilbert space E, we denote the sequence by ϕδt and define the following discrete

norms for ϕδt:

‖ϕδt‖l2(E) =

(
δt

N∑
n=0

‖ϕn‖2
E

)
, ‖ϕδt‖l∞(E) = max

0≤n≤N
(‖ϕ‖E) . (1.2)

Let ‖ · ‖k denote the usual norm in Hk(Ω). In particular, ‖ · ‖ and (, ) denote

L2(Ω) norm and the associated inner product, respectively.

Denote

X = H1
0 (Ω)d, M = L2

0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q = 0

}
, (1.3)
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and introduce the following spaces of incompressible vector fields:

H =
{
v ∈ L2(Ω)d : ∇ · v = 0; v · n|∂Ω = 0

}
,

V =
{
v ∈ H1(Ω)d : ∇ · v = 0; v|∂Ω = 0

}
,

(1.4)

where n is the outward normal vector of ∂Ω and the following holds (cf. for instance

[14]):

L2(Ω)d = H ⊕∇(H1(Ω)). (1.5)

Define PH as the L2-orthogonal projector in H, i.e.,

(u− PHu, v) = 0, ∀u ∈ L2(Ω)d, v ∈ H, (1.6)

and PH is stable in H1, i.e., ‖PH(u)‖H1 ≤ c‖u‖H1 [14].

In the following, we define the inverse Stokes operator S : H−1(Ω)d → V . For all

v ∈ H−1(Ω)d, (S(v), r) ∈ V × L2
0(Ω) is the solution to the following problem:{

(∇S(v),∇w)− (r,∇ · w) = 〈v, w〉, ∀w ∈ H1
0 (Ω)d, (1.7)

(q,∇ · S(v)) = 0, ∀q ∈ L2
0(Ω), (1.8)

where 〈·, ·〉 denote the paring between H−1(Ω)d and H1
0 (Ω)d. It is well-known that

the following H2 regularity results hold [14]:

‖S(v)‖2 + ‖∇r‖ ≤ c‖v‖, ∀v ∈ L2(Ω)d. (1.9)
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2. AN EFFICIENT NUMERICAL SCHEME FOR

MAGNETO-HYDRODYNAMIC FLOWS

We study in this chapter a numerical approximation of the magneto-hydrodynamics

of a viscous incompressible fluid. We construct an unconditionally stable, semi-

discretized scheme which requires solving, at each time step, a coupled, linear, positive-

definite system for the velocity and magnetic fields, and a Poisson equation for the

pressure.

2.1 Introduction

The Magneto-HydroDynamics (MHD) of incompressible, viscous, resistive, con-

ducting fluid describes the motion of fluid under the magnetic field. Examples are

plasmas, liquid metal or salt water. MHD is governed by following MHD equation:

ut + (u · ∇)u− ν∆u+∇p− α(∇× b)× b = f, in Ω, (2.1a)

bt − η∆b+∇× (b× u) = 0, in Ω, (2.1b)

div u = 0, in Ω, (2.1c)

div b = 0, in Ω, (2.1d)

u|∂Ω = 0, (2.1e)

n · b|∂Ω = 0, n× (∇× b)|∂Ω = 0, (2.1f)

with the given initial data

u(·, 0) = u0(·), b(·, 0) = b0, p(·, 0) = p0. (2.2)

Ω is an open and bounded domain in Rd, (d = 2, 3), n is unit outward normal of

∂Ω, the unknowns are the fluid velocity field u, magnetic field b and pressure p, ν, α
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and η are respectively; the viscosity, magnetic diffusivity and α = 1/(4πµρ), where µ

is magnetic permeability and ρ is fluid density. The fluid is governed by the Navier

Stokes equation (NSE) and the magnetic field is governed by the Maxwell equation.

Interaction between the fluid and magnetic field is expressed by the Lorentz force.

Since NSE is a part of the MHD equation, the currently existing efficient numerical

scheme for NSE would be a very good building block for developing a numerical

scheme for the MHD equation.

The projection method is an efficient numerical scheme to solve a time-dependent

NSE. After the development of the projection method [15,16], there has been extensive

research to improve the projection method. [17] contains an inclusive review of the

projection method. One of the difficulties in developing a numerical scheme for NSE is

caused by the coupling of fluid velocity and pressure. Because of this coupling, spatial

discretization for fluid velocity and pressure need to be carefully chosen so that they

satisfy the inf-sup condition. The projection method decouples fluid velocity and

pressure using Helmholtz decomposition and it makes the projection method very

attractive for the discretization of NSE. Hence there has been much research studies

applying the projection method for the discretization of the MHD equation.

A time semi-discrete scheme based on a consistent splitting scheme [18] was de-

veloped in [3]. In [3], the authors proved local-time well posedness. In [4], the au-

thor developed three fully discrete finite element discretizations. One scheme features

fluid velocity, magnetic field and pressure all coupled and unconditionally stable. The

other two schemes are fluid velocity and magnetic field decoupled and conditionally

stable. In [5], the authors developed three unconditionally stable algorithms. One

is a second-order method based on pressure-correction and Crank-Nicholson. The

other two schemes are fully decoupled, first-order schemes based on perturbation of

the fluid velocity or magnetic field.

In this chapter, we introduce four unconditionally time semi-discrete stable schemes

based on the projection method. Two schemes are based on the pressure-correction

scheme and two schemes are based on the rotational pressure-correction scheme. For
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the first-order pressure-correction scheme, we carry out rigorous error analysis. We

improve previously existing methods in two ways: rotational pressure-correction form

and the adaptive time-stepping. It is well known that the pressure-correction projec-

tion method suffers from a numerical boundary layer, decreasing accuracy for pres-

sure [6]. The rotational pressure-correction for NSE improves pressure approximation,

and the rotational pressure-correction form for the MHD equation, also it improves

pressure estimation. The main advantage of an unconditionally stable scheme is that

the size of time step does not need to be maintained small when solution changes

slowly. Based on the unconditionally stable scheme, we develop an adaptive time-

stepping scheme.

This chapter is organized as follows: we introduce a few mathematical prelimi-

naries in Section 2.2. In Section 2.3, we introduce an first-order scheme and provide

stability and error analysis. In Section 2.4, we introduce high-order numerical schemes

and rotational form. Since we have developed a time semi-discrete scheme, we develop

spatial discretization in Section 2.5 based on Legendre-Galerkin method. The advan-

tage of the unconditional scheme is that the time step needs to be maintained small

only for accuracy. Therefore larger time-stepping can be chosen to reduce the cost if

the solution does not change fast. Hence, we develop an adaptive time-stepping strat-

egy in Section 2.6 based on the numerical scheme introduced in Section 2.3. In Section

2.7, we perform numerical tests to verify the order of accuracy and performance of

the adaptive scheme. Conclusion are drawn in 2.8.

2.2 Preliminary

In this section, we summarize the basic mathematical properties of the MHD

equation described in [19] for completeness.
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2.2.1 Function spaces and weak formulation

To describe properties of the MHD equation, we first define a few functional spaces.

We denote L(Ω) = (L(Ω))d, Hs(Ω) = (Hs(Ω))d for s ∈ N and H1
0(Ω) = (H1

0 (Ω))d.

d = 2, 3 cases will be considered in this chapter. ‖ · ‖k denotes the usual Hk(Ω) norm

and we define ‖ · ‖ = ‖ · ‖0. Let T > 0 and X be a Banach space with the norm ‖ · ‖X .

Then Lp(0, T ;X) is all measurable functions u : [0, T ]→ X with

‖u‖Lp(0,T ;X) = (

∫ T

0

‖u‖pXdt)
1/p <∞, (2.3)

for 1 ≤ p <∞, and

‖u‖L∞(0,T ;X) = esssup0≤t≤T‖u‖X <∞. (2.4)

The following spaces are needed to define the weak formulation of MHD equation:

V1 = {v ∈ (C∞c (Ω)d,∇ · v = 0},

V1 = {v ∈ H1
0(Ω),∇ · v = 0},

D(A) = V1 ∩H2,

H1 = {v ∈ L2(Ω),∇ · v = 0 and v · n|∂Ω = 0},

V2 = {C ∈ (C∞(Ω̄))d,∇ · C = 0 and C · n|∂Ω = 0},

V2 = {C ∈ H1(Ω),∇ · C = 0 and C · n|∂Ω = 0},

H2 = H1,

V = V1 × V2,

H = H1 ×H2,

V ′1 , the dual space of V1.

(2.5)

The following trilinear form on L1(Ω) ×W 1,1(Ω) × L1(Ω) is useful to define the

weak formulation of the MHD equation:

t(u, v, w) =
d∑

i,j=1

∫
Ω

uiDivjwjdx. (2.6)
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Then it is known in [20] that

t(u, v, w) ≤


c‖u‖1‖v‖1‖w‖1

c‖u‖1‖v‖2‖w‖ (2.7)

c‖u‖‖v‖2‖w‖1

for d = 2 or 3. And we have similar inequalities for curl:

((∇× u)× v, w) ≤


c‖u‖1‖v‖1‖w‖1

c‖u‖1‖v‖2‖w‖ (2.8)

c‖u‖2‖v‖‖w‖1

Let u and b be smooth solution of (2.1a) - (2.1f). Using the identity,

(∇× b)× b = (b · ∇)b− 1

2
∇(b · b),

∇× (b× u) = b(∇ · u)− u(∇ · b) + (u · ∇)b− (b · ∇)u

= (u · ∇)b− (b · ∇)u,

∆b = ∇(∇ · b)−∇×∇× b,

(2.9)

(2.1a) and (2.1b) can be written as follows:

ut + (u · ∇)u− ν∆u+∇p+ α(1
2
∇(b · b)− (b · ∇)b) = f, (2.10)

bt + η∇×∇× b+ (u · ∇)b− (b · ∇)u = 0. (2.11)

If we take the inner product (2.10) with v ∈ V1, we have

d

dt
(u, v) + ν(∇u,∇v) + t(u, u, v)− αt(b, b, v) = (f, v). (2.12)

Accordingly, if we take the inner product (2.11) with c ∈ V2, we have

d

dt
(b, c) + η(∇× b,∇× c) + t(u, b, c)− t(b, u, c) = 0. (2.13)

From (2.12) and (2.13), we can define the following weak formulation of the MHD

equation:

Problem (Weak)
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For Ω ⊂ Rd, for d = 2 or 3, for f in L2(0, T ;V ′1) and (u0, b0) ∈ H, to find

u ∈ L2(0, T ;V1) and b ∈ L2(0, T ;V2) satisfying

d
dt

(u, v) + d
dt

(b, c) + ν(∇u,∇v) + η(∇× b,∇× c) + t(u, u, v)− αt(b, b, v)

+t(u, b, c)− t(b, u, c) = (f, v), for all (v, c) ∈ V, (2.14)

u(0, ·) = u0(·) and b(0, ·) = b0(·). (2.15)

If f ∈ L2(0, T ;H), (u0, b0) ∈ V , we call the solution of Problem (Weak) a strong

solution, if it satisfies (u, b) ∈ L2(0, T ;D(A)) ∩ L∞(0, T ;V )).

2.2.2 Existence, uniqueness and regularity result

We have the following existence and uniqueness result:

Theorem 2.2.1 For f ∈ L2(0, T ;V ′1), (u0, b0) ∈ H,

Problem (Weak) has a solution Φ = (u, b) ∈ L2(0, T ;V ) ∩ L∞(0, T ;H).

Furthermore, if d = 2, Φ is unique and

Φ′ ∈ L2(0, T ;V ′) and Φ ∈ C([0, T ];H). (2.16)

If d = 3, there is, at most, one solution of Problem (Weak) satisfying

Φ ∈ L4(0, T ;V ). (2.17)

Theorem 2.2.2 For f ∈ L∞(0, T ;H), (u0, b0) ∈ V,

if d = 2, the solution φ satisfies

Φ ∈ L2(0, T ;D(A)) ∩ L∞(0, T ;V ). (2.18)

If d = 3, there exists T∗ > 0,(depending on Ω, f, (u0, b0)) and, on [0, T∗], there exists

a unique solution Φ of Problem (Weak) with

Φ ∈ L2(0, T∗;D(A)) ∩ L∞(0, T∗;V ). (2.19)

We have the following regularity for the time derivative:
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Theorem 2.2.3 Let Φ0 ∈ H and f be functions satisfying

f (j) ∈ L∞(0, T ;H1) for j = 0, . . . , j0, (2.20)

where 0 < T ≤ ∞ and j0 ∈ N. If d = 2, the solution Φ of Problem (Weak) satisfies,

for every α0 > 0,

Φ(j) ∈ L∞(α0, T ;D(A)) for j = 0, . . . , j0 − 1,

Φ(j0) ∈ L∞(α0, T ;V ).
(2.21)

If d = 3, if the strong solution Φ of Problem (Weak) is such that

Φ ∈ L∞(0, T ;V ), (2.22)

then Φ satisfies (2.21).

Now we are about to describe the regularity of the spatial variable for a special

case. For the rest of this subsection, we assume f is independent of t and belongs

to H1. Let S(t) be the semi-group associated with the strong solution of Problem

(Weak), i.e. for Φ0 ∈ V and t > 0, S(t)Φ0 = Φ(t) ∈ V where Φ ∈ C([0, t];V ) is the

solution of Problem (Weak).

Definition 2.2.1 A funcional invariant set for Problem (Weak) is a set X ⊂ V

which satisfies the following properties:

1. For every Φ0 ∈ X, Problem (Weak) as a strong solution in [0,∞).

2. S(t)X = X, for all t > 0.

3. X possesses an open neighborhood ω( in V or H), and for every u0 ∈ ω, S(t)u0

tends to X, in V or H, as t→∞.

Note that if Φ is a stationary solution, {Φ} is a functional invariant set. Then we

have following regularity result.

Theorem 2.2.4 For d = 2 or 3, if f ∈ (C∞(Ω̄))d ∩H1. Then any functional invari-

ant set for Problem (Weak) is contained in (C∞(Ω̄))2d.
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2.2.3 Energy dissipation

The MHD equation has many conservations laws (i.e. mass, momentum, angular

momentum, energy). In this subsection, we describe the conservation law of energy.

This is important, especially when we develop the semi-discrete scheme of the MHD

equation. When there is no volume force f in (2.1a), we can derive the energy law as

follows. If we take the inner product u with (2.1a) and αb with (2.1b), we obtain

1

2

d

dt
‖u‖2 + ν(∇u,∇u)− α((∇× b)× b, u) = 0, (2.23)

and
α

2

d

dt
‖b‖2 + αη(∇b,∇b) + α(∇× (b× u), b) = 0. (2.24)

Taking the sum of (2.23) and (2.24), we have the following energy dissipation:

1

2

d

dt
‖u‖2 +

α

2

d

dt
‖b‖2 ≤ −ν‖∇u‖2 − αη‖∇b‖2. (2.25)

We will develop first- and second-order time-stepping that mimics the property (2.25)

in subsequent sections.

2.3 Stability and error estimates for a first-order scheme

In this section, we introduce an unconditionally stable first-order scheme for (2.1a)

- (2.1f) based on the pressure-correction method and perform stability and error

analysis.

The scheme consists of two steps. Given (un, bn,∇pn), we find (ũn+1, bn+1) solving

(2.26) and (2.27) together. And we obtain (un+1,∇pn+1) solving (2.28) where

ũn+1 − un

δt
+ (un · ∇)ũn+1 − ν∆ũn+1 +∇pn − α(∇× bn+1)× bn = 0, (2.26)

bn+1 − bn

δt
− η∆bn+1 +∇× (bn × ũn+1) = 0, (2.27)

ũn+1|∂Ω = 0,

bn+1 · n|∂Ω = 0, n× (∇× bn+1)|∂Ω = 0;



15

and 
un+1 − ũn+1

δt
+∇(pn+1 − pn) = 0, (2.28)

un+1 · n|∂Ω = 0, divun+1 = 0.

In Section 2.5, we will discuss how to obtain a solution of (2.26)-(2.28) with

Legendre-Galerkin spatial discretization.

2.3.1 Stability

For the stability analysis, we can define the following discrete energy:

E(u, b, p, δt) = ‖u‖2 + α‖b‖2 + δt2‖∇p‖2. (2.29)

We can obtain the following discrete energy law using E.

Theorem 2.3.1 The scheme (2.26)-(2.28) is unconditionally energy stable in the

sense that:

E(un+1, bn+1, pn+1, δt) ≤ E(un, bn, pn, δt) n ≥ 0. (2.30)

Proof Taking the inner product (2.26) with 2δtũn+1 implies

‖ũn+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2 + 2νδt‖∇ũn+1‖2

+ 2δt(∇pn, ũn+1)− 2δtα((∇× bn+1)× bn, ũn+1) = 0,
(2.31)

where we used the fact ((u · ∇)v, v) = 0 if ∇ · u = u · n|∂Ω = 0 and v ∈ H1
0 (Ω)d.

Taking the inner product (2.27) with 2δtαbn+1 implies

α‖bn+1‖2−α‖bn‖2 +α‖bn+1−bn‖2 +2δtαη‖∇bn+1‖2 +2δtα(∇×(bn× ũn+1), bn+1) = 0.

(2.32)

Equation (2.28) can be written as follows:

1

δt
un+1 +∇pn+1 =

1

δt
ũn+1 +∇pn.
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Taking the inner product to itself we have

(
1

δt
un+1 +∇pn+1,

1

δt
un+1 +∇pn+1) = (

1

δt
ũn+1 +∇pn, 1

δt
ũn+1 +∇pn),

1

δt2
‖un+1‖2 + ‖∇pn+1‖2 =

1

δt2
‖ũn+1‖2 + ‖∇pn‖2 + 2

1

δt
(∇pn, ũn+1).

Hence

2δt(∇pn, ũn+1) = ‖un+1‖2 − ‖ũn+1‖2 + δt2(‖∇pn+1‖2 − ‖∇pn‖2). (2.33)

Using integration by parts on the curl, we have the following:

(∇× (bn × ũn+1), bn+1) = ((bn × ũn+1),∇× bn+1) = ((∇× bn+1)× bn, ũn+1). (2.34)

Taking the sum of (2.31) and (2.32) and using (2.33), (2.34), we have,

‖un+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2 + 2δtν‖∇ũn+1‖2 + δt2(‖∇pn+1‖2 − ‖∇pn‖2)

+ α‖bn+1‖2 − α‖bn‖2 + α‖bn+1 − bn‖2 + 2δtαη‖∇bn+1‖2 = 0,

(2.35)

which implies the desired result.

2.3.2 Error estimates

With the assumption of smoothness of the exact solution, we can prove following

error estimates:

Theorem 2.3.2 If the exact solutions (u, b, p) are smooth, when δt ≤ τ0 for some

τ0 > 0, solution of the scheme (2.26)-(2.28) (un, bn, pn) (0 ≤ n ≤ T
δt

) satisfies the

following error estimates:

‖eu,δt‖l∞(L2(Ω)d) + ‖eb,δt‖l∞(L2(Ω)d)

+ ‖ẽu,δt‖l2(H1(Ω)d) + ‖eb,δt‖l2(H1(Ω)d) + ‖qδt‖l2(L2(Ω)d) . δt,

‖ẽu,δt‖l∞(H1(Ω)d) + ‖eb,δt‖l∞(H1(Ω)d) + ‖qδt‖l∞(L2(Ω)d) . δt1/2.

(2.36)
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The proof consists of three steps. In Lemma 1, we prove error estimates for fluid veloc-

ity and magnetic field. In Lemma 2, we prove error estimates for the time derivative

of fluid velocity. And we prove the error estimate for pressure which completes the

proof.

We first define the truncation error Rn
u (n = 0, 1, . . . , N − 1) for the velocity field

(2.1a) and Rn
b for the magnetic field (2.1b) as follows:

Rn+1
u =

u(tn+1)− u(tn)

δt
+(u(tn)·∇)u(tn+1)−ν∆u(tn+1)+∇p(tn)−α(∇×b(tn+1))×b(tn),

(2.37)

Rn+1
b =

b(tn+1)− b(tn)

δt
− η∆b(tn+1) +∇× (b(tn)× u(tn+1)). (2.38)

We also define

Rn+1
p =

u(tn+1)− u(tn)

δt
+∇(p(tn+1)− p(tn)). (2.39)

It is clear that we have

‖Ru,δt‖l∞(H1(Ω)) + ‖Rb,δt‖l∞(H1(Ω)) + ‖Rp,δt‖l∞(L2(Ω)) ≤ cRδt, (2.40)

where cR > 0 is independent of δt.

Subtracting (2.26), (2.27), (2.28) from (2.37), (2.38), (2.39), respectively, we get

the following error equations for n ≥ 0:

ẽn+1
u − enu
δt

+ ((u(tn) · ∇)u(tn+1)− (un · ∇)ũn+1)− ν∆ẽn+1
u

+∇qn − α(∇× b(tn+1))× enb − α(∇× en+1
b )× bn = Rn+1

u , (2.41)

en+1
b − enb
δt

− η∆en+1
b +∇× (enb × u(tn+1)) +∇× (bn × ẽn+1

u ) = Rn+1
b , (2.42)

en+1
u − ẽn+1

u

δt
+∇qn+1 −∇qn = Rn+1

p , (2.43)

where

ẽnu = u(tn)− ũn,

enu = u(tn)− un,

enb = b(tn)− bn,

qn = p(tn)− pn.

(2.44)
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Lemma 1 Under the assumptions of Theorem 2.3.2, when δt ≤ τ0 for some τ0 > 0,

the solution of the scheme (2.26)-(2.28) (un, bn, pn) (0 ≤ n ≤ T
δt

) satisfies the following

error estimate:

‖eu,δt‖l∞(L2(Ω)d) + ‖eb,δt‖l∞(L2(Ω)d) + ‖ẽu,δt‖l2(H1(Ω)d) + ‖eb,δt‖l2(H1(Ω)d) . δt,

‖ẽu,δt‖l∞(H1(Ω)d) + ‖eb,δt‖l∞(H1(Ω)d) . δt1/2.
(2.45)

Proof Taking an inner product (2.41) with 2δtẽn+1
u , we obtain

‖ẽn+1
u ‖2 − ‖enu‖2 + ‖ẽn+1

u − enu‖2 + 2δt((u(tn) · ∇)u(tn+1)− (un · ∇)ũn+1, ẽn+1
u )

+ 2δtν‖∇ẽn+1
u ‖2 + 2δt(∇qn, ẽn+1

u )− 2δtα((∇× b(tn+1))× enb , ẽn+1
u )

− 2δtα((∇× en+1
b )× bn, ẽn+1

u ) = 2δt(Rn+1
u , ẽn+1

u ).

(2.46)

The convection term can be rewritten as follows:

((u(tn) · ∇)u(tn+1)− (un · ∇)ũn+1, ẽn+1
u )

= ((u(tn) · ∇)ẽn+1
u + (enu · ∇)ũn+1, ẽn+1

u )

= ((u(tn) · ∇)ẽn+1
u − (enu · ∇)ẽn+1

u (2.47)

+ (enu · ∇)u(tn+1), ẽn+1
u ) = ((enu · ∇)u(tn+1), ẽn+1

u ),

where we used the fact that ((u · ∇)v, v) = 0 for u ∈ V and v ∈ H1
0 (Ω)d. It follows

that the term containing pressure has the following expression:

2δt(∇qn, ẽn+1
u ) = 2δt(∇qn, en+1

u + δt(∇qn+1 −∇qn)− δtRn+1
p )

= δt2(‖∇qn+1‖2 − ‖∇qn‖2 − ‖∇qn+1 −∇qn‖2)− 2δt2(∇qn, Rn+1
p ),

(2.48)

and

‖ 1

δt
en+1
u +∇qn+1 −∇qn‖2 = ‖Rn+1

p +
1

δt
ẽn+1
u ‖2.

‖∇qn+1 −∇qn‖2 =
1

δt2
(‖ẽn+1

u ‖2 − ‖en+1
u ‖2) + ‖Rn+1

p ‖2 +
2

δt
(Rn+1

p , ẽn+1
u ),
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where we used the fact that en+1
u ∈ H. Hence we have

2δt(∇qn, ẽn+1
u ) = ‖en+1

u ‖2 − ‖ẽn+1
u ‖2 + δt2(‖∇qn+1‖2 − ‖∇qn‖2)

− δt2‖Rn+1
p ‖2 − 2δt(Rn+1

p , ẽn+1
u )− 2δt2(∇qn, Rn+1

p ). (2.49)

Taking an inner product (2.42) with 2αδten+1
b we obtain

α(‖en+1
b ‖2 − ‖enb ‖2 + ‖en+1

b − enb ‖2) + 2αδtη‖∇en+1
b ‖2 (2.50)

+ 2αδt(∇× (enb × u(tn+1)), en+1
b ) + 2αδt(∇× (bn × ẽn+1

u ), en+1
b ) = 2αδt(Rn+1

b , en+1
b )

Using the integration by parts, we obtain

2αδt(∇×(bn× ẽn+1
u ), en+1

b ) = 2αδt((bn× ẽn+1
u ,∇×en+1

b ) = 2δtα((∇×en+1
b )×bn, ẽn+1

u ).

(2.51)

Taking the sum of (2.46) and (2.50) and using (2.51), (2.49) and (2.47), we obtain

‖en+1
u ‖2 − ‖enu‖2 + ‖ẽn+1

u − enu‖2 + 2δtν‖∇ẽn+1
u ‖2

+ α(‖en+1
b ‖2 − ‖enb ‖2 + ‖en+1

b − enb ‖2) + 2αδtη‖∇en+1
b ‖2

+ δt2(‖∇qn+1‖2 − ‖∇qn‖2)− δt2‖Rn+1
p ‖2 − 2δt(Rn+1

p , ẽn+1
u )− 2δt2(∇qn, Rn+1

p )

+ 2δt((enu · ∇)u(tn+1), ẽn+1
u )− 2δtα((∇× b(tn+1))× enb , ẽn+1

u )

+ 2αδt(∇× (enb × u(tn+1)), en+1
b ) = 2δt(Rn+1

u , ẽn+1
u ) + 2αδt(Rn+1

b , en+1
b ).

(2.52)

Each inner product term can be bounded as follows:

|2δtα((∇× b(tn+1))× enb , ẽn+1
u )| ≤ cδt‖(∇× b(tn+1))× enb ‖‖ẽn+1

u ‖

≤ cδt‖enb ‖‖ẽn+1
u ‖

≤ cδt‖enb ‖‖∇ẽn+1
u ‖

≤ cδt‖enb ‖2 +
ν

8
δt‖∇ẽn+1

u ‖2,

(2.53)

|2αδt(∇× (enb × u(tn+1)), en+1
b )| = |2αδt(enb × u(tn+1),∇× en+1

b )|

≤ cδt‖enb × u(tn+1)‖‖∇ × en+1
b ‖

≤ cδt‖enb ‖‖∇en+1
b ‖

≤ cδt‖enb ‖2 + δt
αη

8
‖∇en+1

b ‖2,

(2.54)
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δt2‖Rn+1
p ‖2 ≤ δt4, (2.55)

|2δt(Rn+1
p , ẽn+1

u )| ≤ 2δt‖Rn+1
p ‖‖ẽn+1

u ‖

≤ cδt3 + δt
ν

8
‖∇ẽn+1

u ‖2,
(2.56)

|2k((enu · ∇)u(tn+1), ẽn+1
u )| ≤ 2δt‖(enu · ∇)u(tn+1)‖‖ẽn+1

u ‖

≤ cδt‖enu‖‖ẽn+1
u ‖

≤ cδt‖enu‖2 + δt
ν

8
‖∇ẽn+1

u ‖2,

(2.57)

2δt(Rn+1
b , en+1

b ) ≤ 2δt‖Rn+1
b ‖‖en+1

b ‖

≤ cδt3 + δtη
α

8
‖∇en+1

b ‖2,
(2.58)

|2δt2(∇qn, Rn+1
p )| = 2δt2‖∇qn‖‖Rn+1

p ‖

≤ cδt3‖∇qn‖2 + cδt3.
(2.59)

Using (2.53), (2.54), (2.56), (2.57), (2.58) and (2.59), (2.60) becomes

‖en+1
u ‖2 − ‖enu‖2 + ‖ẽn+1

u − enu‖2 + δtν‖∇ẽn+1
u ‖2

+ α(‖en+1
b ‖2 − ‖enb ‖2 + ‖en+1

b − enb ‖2) + αδtη‖∇en+1
b ‖2 + δt2(‖∇qn+1‖2 − ‖∇qn‖2)

≤ c(δt4 + δt3) + cδt(‖enu‖2 + ‖enb ‖2 + δt2‖∇qn‖2).

(2.60)

Taking the sum of (2.60) for n = 0, · · · , N , we obtain

‖eN+1
u ‖2 + α‖eN+1

b ‖2 + δt2‖∇qN+1‖2+

N∑
n=0

(‖ẽn+1
u − enu‖2 + δtν‖∇ẽn+1

u ‖2 + αδtη‖∇en+1
b ‖2 + α‖en+1

b − enb ‖2)

≤ c(δt3 + δt2) + cδt

N∑
n=0

(‖enu‖2 + ‖enb ‖2 + δt2‖∇qn‖2).

(2.61)

Using discrete Gronwall’s inequality, we obtain the desired result.

Lemma 2 Under the assumptions of Theorem 2.3.2, when δt ≤ τ0 for some τ0 > 0,

solution of the scheme (2.26)-(2.28) (un, bn, pn) (0 ≤ n ≤ T
δt

) satisfies the following

error estimate,

‖δtenu‖ . δt2. (2.62)
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for all n = 1, · · · , [T/δt].

Proof We work on the equations for the time increment δte
n
u, δte

n
b . Denote

εnu = δte
n
u, ε̃nu = δtẽ

n
u, εnb = δte

n
b , ψn = δtq

n, n ≥ 1. (2.63)

Applying δt operator to the equation (2.41), (2.42), (2.43) for n ≥ 1 and using the

following identity

δt(a
nbn) = (δta

n)bn + an−1δtb
n (2.64)

= an(δtb
n) + (δta

n)bn−1, (2.65)

we have 

ε̃n+1
u − εnu
δt

− ν∆ε̃n+1
u +∇ψn = δtR

n+1
u −Rn+1

u,u + αRn+1
b,b , (2.66)

εn+1
b − εnb
δt

− η∆εn+1
b = δtR

n+1
b −Rn+1

u,b , (2.67)

εn+1
u − ε̃n+1

u

δt
+∇(ψn+1 − ψn) = δtR

n+1
p , (2.68)

where

Rn+1
u,u =δt((u(tn) · ∇)u(tn+1)− (un · ∇)ũn+1)

=δt((e
n
u · ∇)u(tn+1) + (un · ∇)ẽn+1

u )

=enu · ∇δtu(tn+1) + εnu · ∇u(tn) + un · ∇ε̃n+1
u + δtu

n · ∇ẽnu,

Rn+1
b,b =δt((∇× b(tn+1))× b(tn)− (∇× bn+1)× bn)

=δt((∇× b(tn+1))× enb + (∇× en+1
b )× bn)

=(∇× δb(tn+1))× enb + (∇× b(tn))× εnb + (∇× εn+1
b )× bn + (∇× enb )× δbn,

Rn+1
u,b =δt(∇× (b(tn)× u(tn+1))−∇× (bn × ũn+1))

=δt(∇× (enb × u(tn+1)) +∇× (bn × ẽn+1
u ))

=∇× (εnb × u(tn+1)) +∇× (en−1
b × δu(tn+1))

+∇× (bn × ε̃n+1
u ) +∇× (δbn × ẽnu).
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To find out the estimation of ε1u and ε1b , we let n = 0 in (2.41) and (2.42) and we

obtain 

ẽ1
u

δt
+ (u(t0) · ∇)ẽ1

u − ν∆ẽ1
u − α(∇× e1

b)× b(t0) = R1
u, (2.69)

e1
b

δt
− η∆e1

b +∇× (b(t0)× ẽ1
u) = R1

b , (2.70)

1

δt
(e1
u − ẽ1

u) +∇q1 = R1
p. (2.71)

Taking the inner product (2.69) with δtẽ1
u and (2.70) with αδte1

b and adding them

together, we have

‖ẽ1
u‖2 + νδt‖∇ẽ1

u‖2 + α‖e1
b‖2 + αηδt‖∇e1

b‖2 − αδt((∇× e1
b)× b(t0), ẽ1

u)

+ αδt((∇× (b(t0)× ẽ1
u), e

1
b) = δt(R1

u, ẽ
1
u) + αδt(R1

b , e
1
b).

(2.72)

Using integration by parts on curl, we have

(∇× (b(t0)× ẽ1
u), e

1
b) = (b(t0)× ẽ1

u,∇× e1
b) = ((∇× e1

b)× b(t0), ẽ1
u). (2.73)

Using (2.73), (2.72) becomes

‖ẽ1
u‖2 + νδt‖∇ẽ1

u‖2 + α‖e1
b‖2 + αηδt‖∇e1

b‖2 = δt(R1
u, ẽ

1
u) + αδt(R1

b , e
1
b). (2.74)

RHS of (2.74) can be bounded as follows:

δt(R1
u, ẽ

1
u) + αδt(R1

b , e
1
b) ≤ δt‖R1

u‖‖ẽ1
u‖+ αδt‖R1

b‖‖e1
b‖

≤ cδt2‖R1
u‖2 +

1

2
‖ẽ1

u‖2 + cδt2‖R1
b‖2 +

α

2
‖e1

b‖2.
(2.75)

From (2.74) and (2.75), we obtain

‖ẽ1
u‖2 + ‖e1

b‖2 + δt‖∇ẽ1
u‖2 ≤ cδt4. (2.76)

Using PH(ẽ1
u) = e1

u to (2.76), we have

‖e1
u‖2 + ‖ẽ1

u‖2 + ‖e1
b‖2 + δt‖∇ẽ1

u‖2 ≤ cδt4. (2.77)



23

From (2.71) we have

‖∇q1‖ = ‖R1
p +

e1
u − ẽ1

u

δt
‖

≤ ‖R1
p‖+

1

δt
(‖e1

u‖+ ‖ẽ1
u‖)

≤ cδt.

(2.78)

Using (2.78) to (2.77), we obtain

‖ẽ1
u‖2 + ‖e1

b‖2 + δt2‖∇q1‖2 ≤ cδt4. (2.79)

This proves the lemma for n = 1 case. We can prove the lemma for n ≥ 2 by taking

the inner product of (2.66) with 2δtε̃n+1
u and (2.67) with 2αδtε̃n+1

b , the sum of which

is

‖ε̃n+1
u ‖2 − ‖εnu‖2 + ‖ε̃n+1

u − εnu‖2 + 2δt‖∇ε̃n+1‖2 + 2δt(∇ψn, ε̃n+1
u )

+ α‖εn+1
b ‖2 − α‖εnb ‖2 + α‖εn+1

b − εnb ‖2 + 2αηδt‖∇εn+1
b ‖2

= 2δt(δtR
n+1
u , ε̃n+1

u )− 2δt(Rn+1
u,u , ε̃

n+1
u ) + 2αδt(Rn+1

b,b , ε̃
n+1
u )− 2αδt(Rn+1

u,b , ε
n+1
b ).

(2.80)

Each term of RHS can be bounded as follows. Using the inequality (2.7) and Poincare

inequality and Lemma 1, we obtain

|2δt(Rn+1
u,u , ε̃

n+1
u )|

= ‖2δt(δtun · ∇ẽnu + enu · ∇δtu(tn+1) + εnu · ∇u(tn), ε̃n+1
u )‖

≤ cδt(‖δtun‖1‖∇ẽnu‖‖ε̃n+1
u ‖1 + ‖enu‖‖∇δtu(tn+1)‖L∞‖ε̃n+1

u ‖+ ‖εnu‖‖∇u(tn)‖2‖ε̃n+1
u ‖1)

≤ cδt((δt+ ‖ε̃nu‖1)‖∇ẽnu‖‖ε̃n+1
u ‖1 + δt2‖∇ε̃n+1

u ‖+ ‖εnu‖‖ε̃n+1
u ‖1)

≤ cδt(δt‖∇ẽnu‖‖∇ε̃n+1
u ‖+ δt1/2‖∇ε̃nu‖‖∇ε̃n+1

u ‖+ δt2‖∇ε̃n+1
u ‖+ ‖εnu‖‖ε̃n+2

u ‖1)

≤ cδt3/2‖∇ẽnu‖δt1/2‖∇ε̃n+1
u ‖+ δt3/2‖∇ε̃nu‖‖∇ε̃n+1

u ‖+ cδt5/2δt1/2‖∇ε̃n+1
u ‖

+ cδt‖εnu‖‖∇ε̃n+1
u ‖

≤ cδt5 + cδt3‖∇ẽnu‖2 +
ν

16
δt‖∇ε̃n+1

u ‖2 +
ν

16
δt‖∇ε̃nu‖2 + cδt‖εnu‖2,

(2.81)
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where we also used the fact that enu = PH(ẽnu) and the projection PH is stable in H1.

Using the similar argument as (2.73), we have

(Rn+1
u,b , ε

n+1
b ) =( εnb × u(tn+1),∇× εn+1

b ) + ((∇× εn+1
b )× en−1

b , δu(tn+1))

+ ((∇× εn+1
b )× bn, ε̃n+1

u ) + ((∇× εn+1
b )× δbn, ẽnu).

(2.82)

Using (2.82), the sum of the third and fourth terms of RHS of (2.80) is as follows:

2αδt((Rn+1
b,b , ε̃

n+1
u )− 2αδt(Rn+1

u,b , ε
n+1
b )

=2αδt(((∇× δb(tn+1))× enb , ε̃n+1
u ) + ((∇× b(tn))× εnb , ε̃n+1

u )

+ (∇× enb )× δbn, ε̃n+1
u )− (εnb × u(tn+1),∇× εn+1

b )

− ((∇× εn+1
b )× en−1

b , δu(tn+1))

− ((∇× εn+1
b )× δbn, ẽnu)).

(2.83)

Each term of (2.83) can be bounded as follows:

|δt((∇× δb(tn+1))× enb , ε̃n+1
u )| ≤ cδt|((∇× δb(tn+1))× enb , ε̃n+1

u )|

≤ cδt‖∇ × δb(tn+1)‖L∞‖enb ‖‖ε̃n+1
u ‖

≤ cδt3‖∇ε̃n+1
u ‖

≤ η

16
δt‖∇ε̃n+1

u ‖2 + cδt5,

(2.84)

|δt((∇× b(tn))× εnb , ε̃n+1
u )| ≤ cδt‖∇ × b(tn)‖L∞‖εnb ‖‖ε̃n+1

u ‖

≤ cδt‖εnb ‖2 +
ν

16
δt‖∇ε̃n+1

u ‖2,
(2.85)

|δt((∇× enb )× δbn, ε̃n+1
u )|

≤ cδt|((∇× enb )× εnb , ε̃n+1
u )|+ cδt|((∇× enb )× δb(tn), ε̃n+1

u )|

≤ cδt‖∇enb ‖‖∇εnb ‖‖∇ε̃n+1
u ‖+ cδt‖∇enb ‖‖δb(tn)‖L∞‖ε̃n+1

u ‖

≤ cδt‖∇enb ‖‖∇εnb ‖‖∇ε̃n+1
u ‖+ cδt2‖∇enb ‖‖∇ε̃n+1

u ‖

≤ cδt3/2‖∇εnb ‖‖∇ε̃n+1
u ‖+ cδt3‖∇enb ‖2 + c

ν

16
δt‖∇ε̃n+1

u ‖2

≤ ηα

16
δt‖∇εnb ‖2 +

ν

16
δt‖∇ε̃n+1

u ‖2 + cδt3‖∇enb ‖2 +
ν

16
δt‖∇ẽn+1

u ‖2,

(2.86)
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|δt(εnb × u(tn+1),∇× εn+1
b )| ≤ c‖εnb ‖‖u(tn+1)‖L∞‖∇ × εn+1

b ‖

≤ cδt‖εnb ‖‖∇εn+1
b ‖

≤ cδt‖εnb ‖2 +
ηα

16
δt‖∇εn+1

b ‖2,

(2.87)

|δt((∇× εn+1
b )× en−1

b , δu(tn+1))| ≤ δt‖∇εn+1
b ‖‖en−1

b ‖‖δu(tn+1)‖L∞

≤ δt3‖∇εn+1
b ‖

≤ ηα

16
δt‖∇εn+1

b ‖2 + cδt5,

(2.88)

|δt((∇× εn+1
b )× δbn, ẽnu)|

≤ cδt|((∇× εn+1
b )× εnb , ẽnu|+ cδt|((∇× εn+1

b )× δb(tn), ẽnu)|

≤ cδt‖∇εn+1
b ‖‖∇εnb ‖‖∇ẽnu‖+ cδt‖∇εn+1

b ‖‖∇δb(tn)‖‖∇ẽnu‖

≤ cδt3/2‖∇εn+1
b ‖‖∇εnb ‖+ cδt2‖∇εn+1

b ‖‖∇ẽnu‖

≤ ηα

16
δt‖∇εn+1

b ‖2 +
ηα

16
δt‖∇εnb ‖2 +

ηα

16
δt‖∇εn+1

b ‖2 + cδt3‖∇ẽnu‖2.

It remains to control 2δt(∇ψn, ε̃n+1
u ) on LHS of (2.80), and we have the following

result analogous to Lemma 1:

2δt(∇ψn, ε̃n+1
u ) =δt2(‖∇ψn+1‖2 − ‖∇ψn‖2) + (‖εn+1

u ‖2 − ‖ε̃n+1
u ‖2)

+ 2δt2(δtR
n+1
p ,∇ψn)− δt(δtRn+1

p , ε̃n+1
u ),

(2.89)

where the last two terms can be easily bounded by the Cauchy inequality.

Using the above inequalities and (2.89), (2.80) becomes

‖εn+1
u ‖2 − ‖εnu‖2 + ‖ε̃n+1

u − εnu‖2 + νδt‖∇ε̃n+1
u ‖+ δt2(‖∇ψn+1‖2 − ‖∇ψn‖2)

+ α(‖εn+1
b ‖2 − ‖εnb ‖2 + ‖εn+1

b − εnb ‖2 + ηδt‖∇εn+1
b ‖2)

≤ cδt5 + cδt3‖∇ẽnu‖2 + cδt3‖∇enb ‖2 + cδt‖εnu‖2 + cδt‖εnb ‖2 + cδt3‖∇ψn‖2.

(2.90)
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Taking a sum of (2.90) for n = 1, . . . ,m, we have the following inequality:

‖εm+1
u ‖2 + α‖εm+1

b ‖2 + δt2‖∇ψm+1‖2 +
m∑
k=1

(‖ε̃k+1
u − εku‖2 + α‖εk+1

b − εkb‖2)

+ δt
m∑
k=1

(‖∇ε̃k+1
u ‖2 + αη‖εk+1

b ‖
2)

≤ cδt4 + cδt

m∑
k=1

(‖εku‖2 + ‖εkb‖2 + δt2‖∇ψk‖2) + ‖ε1u‖2 + α‖ε1b‖2 + δt2‖∇ψ1‖2

≤ cδt4 + cδt

m∑
k=1

(‖εku‖2 + ‖εkb‖2 + δt2‖∇ψk‖2).

(2.91)

Applying Grownwall’s inequality to (2.91) , we obtain the desired result.

Proof [Proof of Theorem 2.3.2] Adding (2.41) and (2.43), we get

−ν∆ẽn+1
u +∇qn+1 = hn+1,

∇ · ẽn+1 = gn+1, ẽn+1
u |∂Ω = 0,

(2.92)

where

hn+1 =h̃n+1 − en+1
u − enu
δt

,

h̃n+1 =Rn
u +Rn

p − ((u(tn) · ∇)u(tn+1)− (un · ∇)ũn+1) + α(∇× b(tn+1))× enb

+ α(∇× en+1
b )× bn,

gn+1 =δt∆(pn+1 − pn).

(2.93)

Using the similar arguments in Lemma 1, we find

‖gn+1‖ = ‖∇ · ẽn+1
u ‖ ≤ ‖∇ẽn+1

u ‖ . δt1/2, ‖h̃n+1‖−1 . δt1/2. (2.94)

Therefore, we have

‖hn+1‖−1 ≤ ‖h̃n+1‖−1 + ‖e
n+1
u − enu
δt

‖−1 (2.95)

and it follows that

‖hδt‖l2(H−1(Ω))d . ‖h̃δt‖l2(H−1(Ω)d) +
1

δt
‖(δteu)δt‖l2(L2(Ω)d) . δt. (2.96)
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Applying the standard stability results for inhomogeneous Stokes system [20] to

(2.92), it turns out

‖ẽn+1
u ‖1 + ‖qn+1‖ . ‖hn+1‖−1 + ‖gn+1‖, (2.97)

and we obtain

‖qδt‖l2(L2(Ω)) . δt. (2.98)

The proof is complete.

2.4 Other schemes with improved accuracy

It is known that the pressure-correction scheme suffers from a numerical boundary

layer and that rotational form could reduce the effect of the boundary layer for NSE. In

this section we develop a rotational pressure-correction scheme for the MHD equation

and perform a stability analysis. We also introduce a second-order numerical scheme

which is based on pressure-correction and rotational pressure-correction scheme.

2.4.1 First-order rotational scheme and stability

The following is the rotational pressure-correction discretization of the MHD equa-

tion. Given (un, bn,∇pn), we find (ũn+1, bn+1) by solving (2.99) and (2.100) together.

And we obtain (un+1,∇pn+1) solving (2.101) where

ũn+1 − un

δt
+ (un · ∇)ũn+1 − ν∆ũn+1 +∇pn − α(∇× bn+1)× bn = 0, (2.99)

bn+1 − bn

δt
− η∆bn+1 +∇× (bn × ũn+1) = 0, (2.100)

ũn+1|∂Ω = 0,

bn+1 · n|∂Ω = 0, n× (∇× bn+1)|∂Ω = 0,

and 
un+1 − ũn+1

δt
+∇(pn+1 − pn + ν∇ · ũn+1) = 0, (2.101)

un+1 · n|∂Ω = 0, divun+1 = 0.

The scheme (2.99) - (2.101) is stable in the following sense.
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Theorem 2.4.1 The scheme (2.99)-(2.101) is unconditionally energy stable in the

following sense:

‖un+1‖2 + α‖bn+1‖2 + δt2‖∇ψn+1‖2 +
δt

ν
‖qn+1‖2

≤ ‖un‖2 + α‖bn‖2 + δt2‖∇ψn‖2 +
δt

ν
‖qn‖2, n ≥ 0,

(2.102)

where {
qn+1 = qn − ν∇ · ũn+1, (2.103)

pn+1 = ψn+1 + qn+1,

for n ≥ 0 and q0 = 0 and ψ0 = p0.

Proof Using {ψn} and {qn}, we can rewrite (2.101) as the following two steps:
un+1 − ũn+1

δt
+∇(ψn+1 − ψn) = 0, (2.104)

un+1 · n|∂Ω = 0, divun+1 = 0,

and {
qn+1 = qn − ν∇ · ũn+1, (2.105)

pn+1 = ψn+1 + qn+1.

We can check that (2.104) and (2.105) are equivalent to (2.101) because

pn+1 − pn + ν∇ · ũn+1 = pn+1 − pn − (qn+1 − qn) = ψn+1 − ψn. (2.106)

Hence we are going to prove the stability of the scheme (2.99), (2.100), (2.104) and

(2.105) with the initial condition u0, b0, p0 and q0 = 0, ψ0 = p0. Taking the inner

product of (2.99) with 2δtũn+1 and (2.100) with 2αδtbn+1 and adding them together,

we obtain

‖ũn+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2 + 2δtν‖∇ũn+1‖2 + 2δt(∇(ψn + qn), ũn+1)

+ α‖bn+1‖2 − α‖bn‖2 + α‖bn+1 − bn‖2 + 2δtαη‖∇bn+1‖2 = 0,
(2.107)

where curl terms are canceled as in Theorem 2.3.1. Taking the inner product (2.101)

with 2δtun+1, we obtain

‖un+1‖2 − ‖ũn+1‖2 + ‖un+1 − ũn+1‖2 = 0. (2.108)
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We can do the estimation of pressure as follows:

2δt(∇ψn +∇qn, ũn+1)

=2δt(∇ψn, ũn+1) + 2δt(∇qn, ũn+1)

=2δt(∇ψn, un+1 + δt(∇ψn+1 −∇ψn))− 2δt(qn,∇ · ũn+1)

=δt2(‖∇ψn+1‖2 − ‖∇ψn‖2 − ‖∇ψn+1 −∇ψn‖2) +
2δt

ν
(qn, qn+1 − qn)

=δt2(‖∇ψn+1‖2 − ‖∇ψn‖2 − 1

δt2
‖un+1 − ũn+1‖2)

+
δt

ν
(‖qn+1‖2 − ‖qn‖2 − ‖qn+1 − qn‖2)

=δt2(‖∇ψn+1‖2 − ‖∇ψn‖2)− ‖un+1 − ũn+1‖2

+
δt

ν
(‖qn+1‖2 − ‖qn‖2 − ν2‖∇ · ũn+1‖2).

(2.109)

We can add (2.107) and (2.108) and substitute (2.109). Then, using the identity

‖∇u‖2 = ‖∇ × u‖2 + ‖∇ · u‖2, we obtain

‖un+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2 + 2δtν‖∇ × ũn+1‖2 + νδt‖∇ · ũn+1‖2

+ δt2(‖∇ψn+1‖2 − ‖∇ψn‖2) +
δt

ν
(‖qn+1‖2 − ‖qn‖2)

+ α‖bn+1‖2 − α‖bn‖2 + α‖bn+1 − bn‖2 + 2δtαη‖∇bn+1‖2 = 0,

(2.110)

which implies the desired result.

2.4.2 Second-order standard scheme

We consider the following second-order scheme for solving the system (2.1a)-(2.1f).

First we find (u1, b1,∇p1) using (2.26)-(2.28). For n ≥ 1 we do the following.: given

(un, un−1, bn, bn−1,∇pn), find (ũn+1, bn+1).

3ũn+1 − 4un + un−1

2δt
+ ((2un − un−1) · ∇)ũn+1 − ν∆ũn+1

+∇pn − α(∇× bn+1)× (2bn − bn−1) = 0, (2.111)

3bn+1 − 4bn + bn−1

2δt
− η∆bn+1 +∇× ((2bn − bn−1)× ũn+1) = 0, (2.112)

ũn+1|∂Ω = 0, (2.113)

bn+1 · n|∂Ω = 0, n× (∇× bn+1)|∂Ω = 0. (2.114)
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After (ũn+1, bn+1) is obtained, we update the pressure and velocity field via Helmholtz

decomposition.

Given (ũn+1,∇pn), find (un+1,∇pn+1) by solving
3un+1 − 3ũn+1

2δt
+∇(pn+1 − pn) = 0, (2.115)

un+1 · n|∂Ω = 0,∇ · un+1 = 0.

Then we can prove the following theorem.

Theorem 2.4.2 The scheme (2.111)-(2.115) is unconditionally energy stable in the

following sense: for any δt there is c > 0 such that

‖un‖2 + α‖bn‖2 ≤ c(‖u0‖2 + ‖b0‖2 + ‖∇p0‖2), for n ≥ 1. (2.116)

Proof Taking the inner product of (2.111) with 4δtũn+1, we derive

(3ũn+1 − 4un + un−1, 2ũn+1) + 4δtν‖∇ũn+1‖2 + 4δt(∇pn, ũn+1)

− 4αδt((∇× bn+1)× (2bn − bn−1), ũn+1) = 0,
(2.117)

where we used the fact ((u · ∇)v, v) = 0 for u ∈ H and v ∈ H1(Ω)d.

Taking the inner product of (2.112) with 4δtαbn+1, we derive

α(3bn+1−4bn+bn−1, 2bn+1)+4ηαδt‖∇bn+1‖2+4αδt(∇×((2bn−bn−1)×ũn+1), bn+1) = 0.

(2.118)

Using integration by parts, we obtain

(∇× ((2bn − bn−1)× ũn+1), bn+1) = ((2bn − bn−1)× ũn+1,∇× bn+1)

= ((∇× bn+1)× (2bn − bn−1), ũn+1).
(2.119)

Taking the sum of (2.117) and (2.118) and using (2.119), we obtain

(3ũn+1 − 4un + un−1, 2ũn+1) + α(3bn+1 − 4bn + bn−1, 2bn+1)

+ 4δtν‖∇ũn+1‖2 + 4ηαδt‖∇bn+1‖2 + 4δt(∇pn, ũn+1) = 0.

(2.120)
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Let

I1 = (3ũn+1 − 4un + un−1, 2ũn+1),

I2 = α(3bn+1 − 4bn + bn−1, 2bn+1),

I3 = 4δt(∇pn, ũn+1).

(2.121)

I1 =(3ũn+1 − 4un + un−1, 2ũn+1)

=(3un+1 − 4un + un−1, 2ũn+1)− (3un+1 − 3ũn+1, 2ũn+1)

=(3un+1 − 4un + un−1, 2un+1)− (3un+1 − 4un + un−1, 2(un+1 − ũn+1))

− (3un+1 − 3ũn+1, 2ũn+1)

=I11 − I12 − I13.

(2.122)

We can simplify I11, I12, I13, I2 as follows:

I11 = (3un+1 − 4un + un−1, 2un+1)

= (un+1 − 2un + un−1, 2un+1) + (2un+1 − 2un, 2un+1)

= ‖un+1‖2 − ‖2un − un−1‖2 + ‖δ2
t u

n+1‖2 + ‖2un+1 − un‖2 − ‖un‖2,

(2.123)

where we used two identities

(a− b, 2a) = |a|2 − |b|2 + |a− b|2,

(2a− 2b, 2a) = |2a− b|2 − |b|2.

I12 = (3un+1 − 4un + un−1, 2(un+1 − ũn+1))

= −(3un+1 − 4un + un−1,
4δt

3
∇(pn+1 − pn) = 0.

(2.124)

I13 = (3un+1 − 3ũn+1, 2ũn+1)

= 3(‖un+1‖2 − ‖ũn+1‖2 − ‖un+1 − ũn+1‖2).
(2.125)

I2 = α(3bn+1 − 4bn + bn−1, 2bn+1)

= α((bn+1 − 2bn + bn−1, 2bn+1) + (2bn+1 − 2bn, 2bn+1))

= α(‖bn+1‖2 − ‖2bn − bn−1‖2 + ‖δ2
t b
n+1‖2 + ‖2bn+1 − bn‖2 − ‖bn‖2).

(2.126)
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From the equation (2.115), we have

3un+1 + 2δt∇pn+1 = 3ũn+1 + 2δt∇pn. (2.127)

By taking the inner product to itself, we derive

9‖un+1‖2 + 4δt2‖∇pn+1‖2 = 9‖ũn+1‖2 + 12δt(ũn+1,∇pn) + 4δt2‖∇pn‖2

3‖un+1‖2 +
4

3
δt2‖∇pn+1‖2 = 3‖ũn+1‖2 + 4δt(ũn+1,∇pn) +

4δt2

3
‖∇pn‖2.

(2.128)

Hence

I3 = 4δt(ũn+1,∇pn)

= 3‖un+1‖ − 3‖ũn+1‖+
4

3
δt2(‖∇pn+1‖2 − ‖∇pn‖2).

(2.129)

By combining (2.122), (2.123), (2.124), (2.125), (2.126) and (2.129), we can rewrite

(2.120) as follows:

‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2 + 4δtν‖∇ũn+1‖2

+ 4αηδt‖∇bn+1‖2 + ‖δ2
t u

n+1‖2 + 3‖un+1 − ũn+1‖2

+ α(‖bn+1‖2 − ‖bn‖2 + ‖2bn+1 − bn‖2 − ‖2bn − bn−1‖2 + ‖δ2
t b
n‖2)

+
4

3
δt2(‖∇pn+1‖2 − ‖∇pn‖2) = 0, for n ≥ 1.

(2.130)

Taking the sum of (2.130) from n = 1, . . . , N for N ≥ 1, we obtain

‖uN+1‖2 − ‖u1‖2 + ‖2uN+1 − uN‖2 − ‖2u1 − u0‖2

+
N∑
n=1

(4δtν‖∇ũn+1‖2 + 4αηδt‖bn+1‖2 + ‖δ2
t u

n+1‖2 + 3‖un+1 − ũn+1‖2 + ‖δ2
t b
n‖2)

+ α(‖bN+1‖2 − ‖b1‖2 + ‖2bN+1 − bN‖2 − ‖2b1 − b0‖2)

+
4

3
δt2(‖∇pN+1‖2 − ‖∇p1‖2) = 0.

(2.131)

(2.131) can be bounded as follows:

‖uN+1‖2 + α‖bN+1‖2

≤ ‖u1‖2 + ‖2u1 − u0‖2 + α‖b1‖2 + α‖2b1 − b0‖2 +
4

3
δt2‖∇p1‖2.

(2.132)

n = 1 case of the conclusion can be drawn from n = 1 case of (2.35). By applying

(2.35) for n = 0 to (2.132), we can derive the rest of the conclusion.
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2.4.3 Second-order rotational scheme

We consider the following second-order rotational form for solving the system

(2.1a)-(2.1f). First we find (u1, b1,∇p1) using (2.99)-(2.101). For n ≥ 1, we do the

following. Given (un, un−1, bn, bn−1,∇pn), find (ũn+1, bn+1) by solving

3ũn+1 − 4un + un−1

2δt
+ ((2un − un−1) · ∇)ũn+1 − ν∆ũn+1

+∇pn − α(∇× bn+1)× (2bn − bn−1) = 0, (2.133)

3bn+1 − 4bn + bn−1

2δt
− η∆bn+1 +∇× ((2bn − bn−1)× ũn+1) = 0, (2.134)

ũn+1|∂Ω = 0, (2.135)

bn+1 · n|∂Ω = 0, n× (∇× bn+1)|∂Ω = 0. (2.136)

After (ũn+1, bn+1) is obtained, we update the pressure and velocity field via the

Helmholtz decomposition.

Given (ũn+1, bn+1), find (un+1,∇pn+1) by solving
3un+1 − 3ũn+1

2δt
+∇(pn+1 − pn + ν∇ · ũn+1) = 0, (2.137)

un+1 · n|∂Ω = 0,∇ · un+1 = 0.

We can prove the similar stability result.

Theorem 2.4.3 The scheme (2.133)-(2.137) is unconditionally energy stable in the

following sense: for any δt there is c > 0 such that

‖un‖2 + α‖bn‖2 ≤ c(‖u0‖2 + ‖b0‖2 + ‖∇p0‖2), for n ≥ 1. (2.138)

2.5 Legendre-Galerkin method for the MHD equation

In this section we develop the Legendre-Galerkin method for Ω = (−1, 1)2 to solve

(2.26) - (2.28). The second-order scheme and rotational pressure-correction scheme

can be solved similarly. To describe the Galerkin method, we need to define a few

spaces.

PN = PN ⊗ PN ,
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where PN is the polynomial of the degree equal or less than N and

XN = {u ∈ (PN)2 : u|∂Ω = 0},

YN = {b ∈ (PN)2 : n · b|∂Ω = 0 and n× (∇× b)|∂Ω = 0},

ZN = {p ∈ (PN−2) :

∫
Ω

pdx = 0}.

Solving the scheme (2.26) - (2.27) consists of two steps.

• First step

The Galerkin formulation for solving (2.26) and (2.27) consists of finding ũn+1 ∈ XN

and bn+1 ∈ YN which statisfy

(
1

δt
ũn+1, v) + ((un · ∇)ũn+1, v)− ν(∆ũn+1, v)− α((∇× bn+1)× bn, v) = (INf, v),

(2.139)

(
α

δt
bn+1, w)− αη(∆bn+1, w) + α(∇× (bn × ũn+1), w) = 0,

(2.140)

for all v ∈ XN and w ∈ YN where (·, ·) denotes the L2 inner product on Ω.

• Second step

Given ∇pn and ũn+1, find ∇pn+1 which satisfies

(∇pn+1,∇q) = (∇pn +
1

δt
ũn+1,∇q) (2.141)

for all q ∈ ZN.

We can consider the following operator:

A =

 1
δt

(·) + (un · ∇)(·)− ν∆(·) −α((∇× ·)× bn

α(∇× (bn × ·) α
δt

(·)− αη∆(·)

 . (2.142)

Then

((
u

b
),A(

u

b
)) =

1

δt
‖u‖2 + ν‖∇u‖2 +

α

δt
‖b‖2 + αη‖∇b‖2 ≥ 0, (2.143)
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and (2.143) is zero if and only if both u and v are equal to zero. Hence the system is

positive-definite, and it can be solved efficiently using the iterative solver BiCGSTAB.

A proper preconditioner is essential for the implementation of an iterative method.

We use the following decoupled equation as a preconditioner:

P =

 1
δt

(·)− ν∆(·) 0

0 α
δt

(·)− αη∆(·).

 . (2.144)

In the following subsection, we describe how to solve the preconditioner (2.159) effi-

ciently.

2.5.1 Discretization of preconditioner

To solve the preconditioner P , we need to solve the following two equations:
1

δt
u− ν∆u = f,

u|∂Ω = 0,

(2.145)

and 
α

δt
b− αη∆b = f,

n · b|∂Ω = 0 and n× (∇× b)|∂Ω = 0.

(2.146)

Equation (2.145) can be solved efficiently by the Legendre-Galerkin method intro-

duced in [21]. In this section we discuss how to solve (2.146).

The first boundary condition n · b|∂Ω = 0 can be written as follows:

b1(±1, y) = 0 and b2(x,±1) = 0, (2.147)

for x, y ∈ [−1, 1]. Note that

n× (∇× b) = n× (0, 0, ∂xb2 − ∂yb1). (2.148)

If x = ±1 (i.e n = (±1, 0)), we have

∂xb2(±1, y)− ∂yb1(±1, y) = 0.
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b1(±1, y) = 0 implies ∂yb1(±1, y) = 0. Hence we have ∂xb2(±1, y) = 0. Similarly

we have ∂yb1(x,±1) = 0. Hence the boundary condition for b1 and b2 is completely

decoupled. For b1 we have

b1(±1, y) = 0, ∂yb1(x,±1) = 0, (2.149)

and for b2 we have

b2(x,±1) = 0, ∂xb1(±1, y) = 0. (2.150)

We can now solve for b1 and b2 separately. Since the boundary conditions for b1 and

b2 are essentially the same, we only discuss how to solve for b1.

We define the proper test and trial space for the Galerkin method.

XN = {u ∈ PN|u satisfies the condition (2.149)}, (2.151)

and its corresponding Galerkin formulation is:

find b ∈ XN such that

α

δt
(b, v) + ηα(∇b,∇v) = (INf, v) (2.152)

for all v ∈ XN .

Constructing a proper basis is essential for the efficient implementation of the

Galerkin method. In this case we can develop an efficient basis.

Define φ̃i(x) = Li(x) − Li+2(x) where Li(x)’s the ith Legendre polynomials and

let

φi(x) =
1√

(φ̃′i, φ̃
′
i)
φ̃i(x).

Then φi(±1) = 0 for i ≥ 0 and (φ′i, φ
′
j) = δij. Similarly we can define a set of basis

which satisfies the homogeneous Neumann boundary condition as follows. Define

ψ̃i(x) = Li(x)− i(i+1)
(i+2)(i+3)

Li+2(x).

ψi(x) =
1√

(ψ̃′, ψ̃′)
ψ̃(x).
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Then ψ′i(±1) = 0 for all i ≥ 0 and (ψ′i, ψ
′
j) = δij. Then

XN = span{φi(x)ψj(y)|0 ≤ i, j ≤ N − 2}.

We can write the solution of (2.152) as

bN =
N−2∑
i=0

N−2∑
j=0

bijφi(x)ψj(y), (2.153)

Then (2.152) has the following matrix representation:

α

δt
MxBM

T
y + ηα(BMT

y +MxB) = F, (2.154)

where

(Mx)ij = (φj(x), φi(x)),

(My)ij = (ψj(y), ψi(y)),

Bij = bij,

Fij = (INf, φi(x)ψj(y)),

(2.155)

for all 0 ≤ i, j ≤ N − 2. Since the equation (2.152) is separable, the discretized

equation (2.154) can be solved efficiently using the diagonalization.

Since Mx and My are symmetric, they are diagonalized by orthonormal matrices.

Say

MxEx = ExΛx,

MyEy = EyΛy.

Let B = (Ex)
−1BEy

−T . Then (2.154) can be simplified as follows:

α

δt
MxExBE

T
yM

T
y + ηα(ExBE

T
yM

T
y +MxExBE

T
y ) = F,

α

δt
ExΛxBE

T
yM

T
y + ηα(ExBΛT

yE
T
y + ExΛxBE

T
y ) = F.

We can multiply Ex
−1 from left and E−Ty from the right. Then we have

α

δt
ΛxBΛT

y + ηα(BΛT
y + ΛxB) = G (2.156)
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where G = E−1
x FE−Ty . Then

Bij =
1

ηΛxiiΛyjj + ηα(Λxii + Λyjj)
Gij,

and we can find the coefficient matrix B as

B = ExBE
T
y .

2.6 Adaptive Implementation

In this section, we develop an adaptive time-stepping strategy for the MHD equa-

tion based on the first-order pressure-correction scheme. In [22], the authors de-

veloped an adaptive time-stepping of the phase field crystal model, and we apply

it to the MHD equation. In previous sections, we developed unconditionally stable

schemes. The main advantage of an unconditionally stable scheme is that step size

need not remain small. Hence we can take the time step as large as is necessary. It

is obvious that too large time step would degrade accuracy of the computed solution

if the solution changes rapidly. Hence it would be a natural strategy that we take

a small time step if motion changes fast and take a large time step if the solutions

changes slowly. Based on the above discussion, we can take the following strategy:

• predetermine : δtmin, δtmax, γ.

The nth step size δtn can be determined as follows:

δtn =

δtmin, if n = 1,

max{δtmin, δtmax/
√

1 + γE(un,bn)−E(un−1,bn−1)
δtn−1

}, otherwise,

(2.157)

where γ > 0 is a parameter chosen by experience and E(u, b) = ‖u‖2 + α‖b‖2.

The indicator of whether or not the solution changes rapidly or slowly is the

discrete derivative of discrete energy. If the solution does not change(i.e.un = un−1

and bn = bn−1), δtmax will be chosen. If difference of energy is large, δtmin will be

chosen as a time step. In the following section, we verify the performance of the

adaptive time-stepping strategy.
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2.7 Numerical Results

In this section, we perform two types of numerical experiments. In the first sub-

section, we test two second-order schemes with known exact solution. In the following

subsection, we test efficiency of adaptive time-stepping with an arbitrary initial con-

dition.

2.7.1 Analytic test solution

In this experiment, we check the order of accuracy of the solution of the scheme

(2.111) - (2.115) and (2.133)-(2.137) with the exact solution,

u = (sin(t)sin(2πy)sin(πx)2,−sin(t)sin(2πx)sin(πy)2),

b = (sin(t)sin(πx)cos(πy),−sin(t)sin(πy)cos(πx)),

p = sin(t)exp(x+ y),

with coefficients ν = α = η = 1. The Legendre-Galerkin method developed in

the previous section was applied for the spatial discretization. Forty-one points in

each direction were used so that spatial error is negligible compared to the time

discretization error. The tolerance for BiCGSTAB is 10−10.

In Fig. 2.1, we plot error as a function of δt for second-order standard form. In

Fig. 2.2, we plot error as a function of δt for second-order rotational form. Because

the iterative solver BiCGSTAB was used, the number of iterations is very important.

Hence we observe the iteration numbers of BiCGSTAB as a function of time with

fixed δt for the case of standard form in Fig. 2.3.

For the NSE case, rotational form outperforms standard form in that it gives a

better approximation of pressure. In [6], it is reported that standard and rotational

form are second-second order in the L2-norm. The improved pressure for rotational

form accelerates the convergence of fluid velocity in H1-norm. We observe the same
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Figure 2.1. Errors of second-order standard form at T = 1

effect for the MHD equation in Fig. 2.1 and Fig. 2.2. The order for the pressure is

first in standard form and 3/2 in the case of rotational form. As a result, we obtain

higher order for H1-norm of fluid velocity. And fluid velocity for L2-norm is the same

for both schemes. Both schemes show second order for the magnetic field. One reason

for this is that the equation for the magnetic field does not contain pressure term and

we do not observe an advantage for rotational form over standard form.

In Fig. 2.3, the iteration numbers for various δt are plotted. It is observed that

the number of iterations has a period π. Let

A =

 1
δt

(·) + ((2un − un−1) · ∇)(·)− ν∆(·) −α((∇× ·)× (2bn − bn−1)

α(∇× ((2bn − bn−1)× ·) α
δt

(·)− αη∆(·)


(2.158)
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Figure 2.2. Errors of second-order rotational form at T = 1
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and

P =

 1
δt

(·)− ν∆(·) 0

0 α
δt

(·)− αη∆(·)

 . (2.159)

Then the system we need to solve is

P−1A(
ũn+1

bn+1
) = P−1(

f

g
) (2.160)

for some f and g. We can decompose P−1A into two parts:

P−1A =

 I 0

0 I

+ P−1

 ((2un − un−1) · ∇)(·) −α((∇× ·)× (2bn − bn−1)

α(∇× ((2bn − bn−1)× ·) 0

 .

(2.161)

By the choice of our exact solution, ‖2un − un−1‖ and ‖2bn − bn−1‖ are maximum

around t = k+ π
2

and minimum around t = kπ for k = 0, 1, · · · . Hence we can expect

that the second term of (2.161) becomes large for t = k + π
2

and small t = kπ for

k = 0, 1, · · · and P−1 are independent of un and bn. Since it is known that when a

preconditioned system is close to identity, iterative method converges fast; therefore

behavior like Fig. 2.3 can be explained.

2.7.2 Adaptive implementation

In this section, we implement the adaptive time-stepping scheme introduced in

Section 2.6 with an arbitrary initial condition. Parameters are set up as follows:

ν = .01, η = 1, α = 10 with initial condition u1 = u2 = b1 = b2 = 1 and px = py = 0.

We use sixty-one points in each direction using the Legendre-Galerkin method so

that spatial error is negligible compared to the time discretization error.. Here ν is

selected as a small value because the solution converges to a stationary condition too

quickly for a larger ν.
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t=0.1 t=1 t=2 t=10

dt=0.1 0.002*104 0.011*104 0.015*104 0.035*104

Adaptive 0.02*104 0.14*104 0.15*104 0.16*104

dt=0.001 0.02 *104 0.15*104 0.25*104 1.05*104

Table 2.1.
Approximate numbers of BiCGSTAB iteration

For the adaptive time-stepping, we choose γ = 100, δtmin = .001, δtmax = 0.1

as parameters. We compare this result to the constant time step cases δt = 0.1 and

δt = 0.001.

First we check the accuracy of the adaptive time-stepping. We can plot u1 along

x = y. In the first column of Fig. 2.4, the adaptive time-stepping solution and the

δt = 0.001 solution are plotted together. They look almost identical. In the second

column of Fig. 2.4, the δt = 0.001 solution , the adaptive time-stepping solution and

the δt = 0.1 solution are plotted together. We can observe δt = 0.01 is too large

to capture the dynamics. Hence we can conclude that the adaptive time-stepping

solution is accurate and δt = .01 is too large to capture the dynamics. This also

can be explained by the decay of energy. Fig. 2.6 shows that δt = 0.1 is too large

compare to δt = 0.001. The next part we need to consider is whether the adaptive

time-stepping strategy is efficient or not.

The efficiency of adaptive time-stepping scheme can be measured in terms of the

number of time steps. It can be observed in Table 2.1. The size of the time step as

time passes can be found in Fig. 2.7. Until t = 1, small time steps are maintained,

but after t = 2, large time steps are maintained. The first graph of Fig.2.6 explains

this phenomenon. Until t = 1, a rapid decay of energy is observed; after t = 1, no

change in energy is observed.
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2.8 Concluding remarks

In this chapter, we developed four unconditionally stable projection type dis-

cretizations for the MHD equation. We proved the unconditional stability of first-

and second-order incremental projection method, first- and second-order rotational

projection method. And in Section 2.3.2, we performed a rigorous error analysis

for the first-order projection method. At each time step, we need to solve a linear,

positive-definite system for the velocity and magnetic field, and a Poisson equation

for the pressure. Hence the iterative solver like BICGSTAB would improve the per-

formance of numerical simulation. The Legendre-Galerkin method was analyzed for

the 2d rectangular domain case.
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3. ERROR ESTIMATES FOR TIME DISCRETIZATIONS

OF CAHN-HILLIARD AND ALLEN-CAHN

PHASE-FIELD MODELS FOR TWO-PHASE

INCOMPRESSIBLE FLOWS

In this chapter we carry out rigorous error analysis for some energy stable time dis-

cretization schemes developed in [23] for a Cahn-Hilliard phase-field model and in [24]

for an Allen-Cahn phase-field model.

3.1 Introduction

Phase-field approach for multi-phase incompressible flows has attracted much at-

tention in recent years (cf. [25–31] and the references therein). For two-phase incom-

pressible flows, the phase-field models consist of either a Navier-Stokes-Cahn-Hilliard

(NSCH) system or a Navier-Stokes-Allen-Cahn (NSAC) system. These are coupled

nonlinear systems which are difficult to deal with numerically. Thus, designing effi-

cient and accurate numerical methods for solving these coupled equations has been a

great challenge to the scientific computing community.

While various convergence results and error estimates are available for the Navier-

Stokes equations [14, 32, 33], there are only a few convergence results available for

phase-field models of multi-phase flows. In [34], Feng proved the convergence of

discrete finite element solutions for a Cahn-Hilliard phase-field model with matching

density, and in [35] the authors established similar convergence results for an Allen-

Cahn phase-field model with matching density. Most recently, Grün [36] proved

convergent results for a scheme for the Cahn-Hilliard phase-field model with variable

densities. However, the schemes considered in these papers are fully coupled with the
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pressure. From a computational point of view, it is more efficient to use a projection

type method [33] to decouple the pressure from the velocity and phase function. In

[23,24], some simple energy stable schemes are constructed, where the phase equations

are discretized by the stabilized scheme [37,38] or the convex splitting scheme [8,39]

and the Navier-Stokes (NS) equations are discretized by a projection scheme [33].

These schemes lead to, at each time step, a weakly coupled elliptic equations for the

phase function and velocity, and a pressure Poisson equation for the pressure. Hence,

they are very efficient and easy to implement.

Though various error estimates are available for projection type methods for

Navier-Stokes equations [33] and for Cahn-Hilliard/Allen-Cahn equations [37,40–42],

it is highly non trivial to deal with systems which couple Navier-Stokes and Cahn-

Hilliard/Allen-Cahn, since the splitting error in the projection step affects the whole

system. The major difficulties arise from the velocity splitting step to deal with the

incompressible constraint and from the coupling between the phase function and the

velocity. To the best of our knowledge, error estimates for such schemes in semi-

discrete-in-time or fully-discrete form is not yet available. Thus, the main purpose of

this chapter is to provide a rigorous error analysis for these schemes in semi-discrete

(in time) form. Note error analyses for semi-discrete (in time) schemes present spe-

cial challenges since the often useful device of using discrete inverse inequalities with

CFL-like conditions to control nonlinear terms is not available. On the other hand,

the error analysis presented in this paper will provide some essential tools and pro-

cedures that can be used for error analysis of full discretized schemes for phase-field

models.

This chapter is organized as follows. In Section 3.2, we describe the stabilized

numerical scheme and the convex splitting scheme for the Cahn-Hilliard phase-field

model. Section 3.3 is devoted to the error analysis, where we prove the error estimates

for phase functions, velocity field and pressure. In Section 3.4, we extend the results

to the Allen-Cahn phase-field model.
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3.2 Cahn-Hilliard Phase-field model and its time discretization schemes

For the sake of simplicity, we shall only consider the two-phase flows with matching

density, since one can expect that similar results hold for the case of non-matching

densities but the actual proof will be much more tedious. The Cahn-Hilliard phase-

field model for a two-phase incompressible flow with matching density reads (cf. for

instance [24,29]),

φt + u · ∇φ− γ∆w = 0, in Ω ⊂ Rd, (3.1)

w = −∆φ+ f(φ), in Ω ⊂ Rd, (3.2)

ρ0(ut + (u · ∇)u)− µ0∆u+∇p− λw∇φ = 0, in Ω ⊂ Rd, (3.3)

∇ · u = 0, in Ω ⊂ Rd, (3.4)

u|∂Ω = 0,
∂φ

∂n
|∂Ω = 0,

∂w

∂n
|∂Ω = 0, (3.5)

with given initial data u(0) = u0, φ(0) = φ0. Here, φ is the phase function where

φ ≈ ±1 corresponds to two different fluids, w is the chemical potential, u is the

velocity field and p is the pressure. ρ0 is the density of the fluids and we assume

that the two fluids have the same density here; γ is the relaxation constant; λ is the

mixing energy density, f(φ) = F ′(φ) where F (φ) = (1−φ2)2

4ε2
, and the parameter ε > 0

represents the interfacial thickness.

It is easy to show that the above system satisfies the following energy law (cf. for

instance [24,29]):

d

dt

∫
Ω

(
ρ0

2
|u|2 +

λ

2
|∇φ|2 + λF (φ))dx = −

∫
Ω

(µ0|∇u|2 + λγ|∇w|2)dx. (3.6)

We shall consider two time discretization schemes for (3.1)-(3.5), which were shown

to be energy stable. The first one is the stabilized scheme introduced in [24]:
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Given (un, φn, wn, pn), find (ũn+1, φn+1, wn+1) such that

φn+1 − φn

δt
+ (ũn+1 · ∇)φn − γ∆wn+1 = 0, (3.7)

wn+1 − S

ε2
(φn+1 − φn) = −∆φn+1 + f(φn), (3.8)

ρ0(
ũn+1 − un

δt
+ (un · ∇)ũn+1)− µ0∆ũn+1 +∇pn − λwn+1∇φn = 0, (3.9)

∂φn+1

∂n
|∂Ω = 0,

∂wn+1

∂n
|∂Ω = 0, ũn+1|∂Ω = 0. (3.10)

Given (ũn+1, pn), find (un+1, pn+1) such that
ρ0
un+1 − ũn+1

δt
+∇(pn+1 − pn) = 0,

∇ · un+1 = 0, n · un+1|∂Ω = 0.

(3.11)

In the above, S is a stabilizing constant to be specified. Since we are interested

in the values of phase variable φ in the range of [−1, 1], it is a common practice to

replace F (φ) by

F (φ) =


1
ε2

(φ− 1)2, φ > 1,

1
4ε2

(φ2 − 1)2, φ ∈ [−1, 1],

1
ε2

(φ+ 1)2, φ < −1,

(3.12)

so that we have

max
φ∈R
|f ′(φ)| ≤ 2

ε2
. (3.13)

The following stability result is proved in [24] (Thm. 3.1):

Theorem 1 Let S ≥ 1/2. Then, the scheme (3.7)-(3.11) with F (φ) given by (3.12)

is unconditionally stable, and satisfies the following energy law:[
ρ0

2
‖un+1‖2 +

λ

2
‖∇φn+1‖2 + λ(F (φn+1), 1)

]
+
δt2

2ρ0

‖∇pn+1‖2

+
ρ0

2
‖ũn+1 − un‖2 + µ0δt‖∇ũn+1‖2 + λγδt‖∇wn+1‖2

≤
[
ρ0

2
‖un‖2 +

λ

2
‖∇φn‖2 + λ(F (φn), 1)

]
+
δt2

2ρ0

‖∇pn‖2, n ≥ 0.

(3.14)
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The second-scheme we consider is based on convex splitting [8, 39]. We assume

that the nonlinear potential in the phase equation can be split-up as follows:

F (·) = Fc(·)− Fe(·), with Fc and Fe being convex functions. (3.15)

We set f(·) = F ′(·), fc(·) = F ′c(·), fe(·) = F ′e(·). In the case of a double well potential

F (φ) = 1
4ε2

(φ2 − 1)2, one can choose, for instance,

Fc(φ) =
1

4ε2
(φ4 + 1), Fe(φ) =

1

2ε2
φ2,

so that we have

fc(φ) =
1

ε2
φ3, fe(φ) =

1

ε2
φ. (3.16)

Then, we consider the following convex splitting scheme:

Given (un, φn, wn, pn), find (ũn+1, φn+1, wn+1) from

φn+1 − φn

δt
+ (ũn+1 · ∇)φn − γ∆wn+1 = 0, (3.17)

wn+1 = −∆φn+1 + fc(φ
n+1)− fe(φn), (3.18)

ρ0(
ũn+1 − un

δt
+ (un · ∇)ũn+1)− µ0∆ũn+1 +∇pn − λwn+1∇φn = 0, (3.19)

∂φn+1

∂n
|∂Ω = 0,

∂wn+1

∂n
|∂Ω = 0, ũn+1|∂Ω = 0. (3.20)

Given (ũn+1, pn), find (un+1, pn+1) from
ρ0(

un+1 − ũn+1

δt
) +∇(pn+1 − pn) = 0,

∇ · un+1 = 0, n · un+1|∂Ω = 0.

(3.21)

By using essentially the same procedure as in the proof of Theorem 3.1 in [24], we

can prove the following:

Theorem 2 The scheme (3.17)-(3.21) is unconditionally stable, and satisfies the fol-

lowing energy law:[
ρ0

2
‖un+1‖2 +

λ

2
‖∇φn+1‖2 + λ(F (φn+1), 1)

]
+
δt2

2ρ0

‖∇pn+1‖2

+µ0δt‖∇ũn+1‖2 + λγδt‖∇wn+1‖2 +
ρ0

2
‖ũn+1 − un‖2

≤
[
ρ0

2
‖un‖2 +

λ

2
‖∇φn‖2 + λ(F (φn), 1)

]
+
δt2

2ρ0

‖∇pn‖2, n ≥ 0.

(3.22)
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3.3 Error estimates

Let (un, pn, φn, wn, ũn) be the numerical solution obtained from the scheme (3.7)-

(3.11) or (3.17)-(3.21), and (u(tn), p(tn), w(tn), φ(tn)) be the exact solution, we define

the error functions for n = 0, 1, 2, . . . , N as

ẽnu = u(tn)− ũn, enu = u(tn)− un, enw = w(tn)− wn,

enφ = φ(tn)− φn, qn = p(tn)− pn,
(3.23)

and denote by ẽu,δt, ew,δt, eu,δt, eφ,δt, qδt the corresponding sequence of error functions.

Assumption A: We assume that the exact solutions (u, φ, w, p) are sufficiently

smooth. More precisely

φ ∈ L∞(0, T ;H3(Ω)) ∩W 1,∞(0, T ;H2(Ω)) ∩W 2,∞(0, T ;H1(Ω)) ∩W 3,∞(0, T ;L2(Ω)),

u ∈ W 1,∞(0, T ;H2(Ω)d) ∩W 2,∞(0, T ;H1(Ω)d) ∩W 3,∞(0, T ;L2(Ω)d),

w ∈ L∞(0, T ;H2(Ω)) ∩W 1,∞(0, T ;L2(Ω)), p ∈ W 2,∞(0, T ;H1(Ω)).

Our main results are stated in the following theorem.

Theorem 3 Under Assumption A, we have the following error estimates for the

schemes (3.7)-(3.11) and (3.17)-(3.21):

‖eφ,δt‖l∞(H1(Ω)) + ‖eu,δt‖l∞(L2(Ω)d) + ‖ẽu,δt‖l∞(L2(Ω)d) . δt,

‖ew,δt‖l2(H1(Ω)) + ‖eu,δt‖l2(H1(Ω)d) + ‖ẽu,δt‖l2(H1(Ω)d)‖+ ‖qδt‖l2(L2(Ω)) . δt,

‖ew,δt‖l∞(H1(Ω)) + ‖eu,δt‖l∞(H1(Ω)d) + ‖ẽu,δt‖l∞(H1(Ω)d) + ‖qδt‖l∞(L2(Ω)) . δt1/2.

The proof of the above theorem will be carried out in several steps. We first prove

some first-order estimates for the phase function, chemical potential and velocity

which will imply a sub-optimal half-order estimate for the pressure. Then, we shall

prove some estimates for their time derivatives. Finally, we shall derive a first-order

error estimate for the pressure.

3.3.1 First-order error estimates for (φ,w, u)

As the first step in the proof of Theorem 3, we shall establish the following:
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Lemma 1 Under the assumption A, there exists some τ0 > 0 such that when δt ≤ τ0

the solution (un, pn, φn, wn) (0 ≤ n ≤ T
δt

) of scheme (3.7)-(3.11) or (3.17)-(3.21)

satisfies the following error estimates

‖eφ,δt‖l∞(H1(Ω)) + ‖eu,δt‖l2(H1(Ω)d) + ‖ẽu,δt‖l2(H1(Ω)d) + ‖ew,δt‖l2(H1(Ω)) . δt,

‖ew,δt‖l∞(H1(Ω)) + ‖eu,δt‖l∞(H1(Ω)d) + ‖ew,δt‖l∞(H1(Ω)) + ‖ẽu,δt‖l∞(H1(Ω)d) . δt1/2,

‖eu,δt‖l∞(L2(Ω)d) + ‖ẽu,δt‖l∞(L2(Ω)d) . δt, ‖∇qn‖L2(Ω)d . 1.

(3.24)

Proof We notice that in the stabilized scheme (3.7)-(3.11), the nonlinear function f

is assumed to be Lipschitz ( cf. (3.13)), while f does not have to be Lipschitz (3.16)

in the convex splitting scheme (3.17)-(3.21). Thus, the proof of Lemma 1 for the

two schemes will be different. In particular, the results for convex splitting scheme

(3.17)-(3.21) rely heavily on the structure of the nonlinear potential (3.16). We will

prove Lemma 1 for these two schemes separately.

Proof of Lemma 1 for the stabilized scheme (3.7)-(3.11) To analyze the er-

ror for stabilized scheme (3.7)-(3.11), we define the local truncation error Rn
φ (n =

0, 1, . . . , N − 1) for the phase equation (3.1):

Rn+1
φ =

1

δt
(φ(tn+1)− φ(tn)) + u(tn+1) · ∇φ(tn)− γ∆w(tn+1), (3.25)

the truncation error Rn+1
w (n = 0, 1, . . . , N − 1) for the chemical potential equation

(3.2):

Rn+1
w = w(tn+1)− S

ε2
(φ(tn+1)− φ(tn)) + ∆φ(tn+1)− f(φ(tn)), (3.26)

the truncation error Rn+1
u (n = 0, 1, . . . , N − 1) for the momentum equation (3.3):

Rn+1
u =ρ0

(
u(tn+1)− u(tn)

δt
+ u(tn) · ∇u(tn+1)

)
− µ0∆u(tn+1) +∇p(tn)− λw(tn+1)∇φ(tn),

(3.27)

and the local truncation error Rn+1
p (n = 0, 1, . . . , N − 1) for the pressure correction

(3.11):

Rn+1
p = ρ0

u(tn+1)− u(tn+1)

δt
+∇(p(tn+1)− p(tn)) = ∇(p(tn+1)− p(tn)). (3.28)
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With a standard procedure, it is easy to establish the following estimates for the

truncation errors, provided that the exact solutions are sufficiently smooth.

Lemma 2 Under Assumption A, the truncation errors satisfy

‖Ru,δt‖l∞(L2(Ω)d) + ‖Rφ,δt‖l∞(H1(Ω)) + ‖Rw,δt‖l∞(H1(Ω)) + ‖Rp,δt‖l∞(L2(Ω)) ≤ cδt, (3.29)

where c is independent of δt.

Next, we derive the equations governing the error growth. Define

˙̃en+1
u =

(
u(tn+1)− u(tn)

δt
+ u(tn) · ∇u(tn+1)

)
−
(
ũn+1 − un

δt
+ un · ∇ũn+1

)
=
ẽn+1
u − enu
δt

+ un · ∇ẽn+1
u + enu · ∇u(tn+1), (3.30)

Gn =f(φ(tn))− f(φn), n ≥ 0. (3.31)

Subtracting (3.25), (3.26), (3.27) and (3.28) from (3.7), (3.8), (3.9) and (3.11), re-

spectively, we get the following error equations for n ≥ 0:

en+1
φ − enφ
δt

+ (u(tn+1) · ∇φ(tn)− ũn+1 · ∇φn)− γ∆en+1
w = Rn+1

φ , (3.32)

en+1
w − S

ε2
(en+1
φ − enφ) + ∆en+1

φ −Gn = Rn+1
w , (3.33)

ρ0
˙̃en+1
u − µ0∆ẽn+1

u +∇qn − λ(w(tn+1)∇φ(tn)− wn+1∇φn) = Rn+1
u , (3.34)

ρ0
en+1
u − ẽn+1

u

δt
+∇(qn+1 − qn) = Rn+1

p , (3.35)

with the boundary conditions

ẽn+1
u |∂Ω = 0, ∂ne

n+1
φ |∂Ω = 0, ∂ne

n+1
w |∂Ω = 0. (3.36)

We first derive the following properties for the nonlinear term Gn:

Lemma 3 Under Assumption A, for 0 ≤ n ≤ [T/δt]− 1, we have

‖Gn‖ . ‖enφ‖, (3.37)

‖∇Gn‖ . ‖enφ‖+ ‖∇enφ‖. (3.38)
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Proof We rewrite Gn as

Gn = enφ

∫ 1

0

f ′(sφ(tn) + (1− s)φn) ds, (3.39)

which implies (3.37). Taking gradient of (3.39), we arrive at

∇Gn =f ′(φ(tn))∇φ(tn)− f ′(φn)∇φn

=(f ′(φ(tn))− f ′(φn))∇φ(tn) + f ′(φn)∇enφ.

Since f ′ is bounded and Lipschitz, under the assumption on the exact solution we

have

‖∇Gn‖ . ‖enφ‖‖φ(tn)‖H3 + ‖∇enφ‖.

Combining all the results above, we obtain (3.38).

Taking inner product of (3.32) with λδten+1
φ and λδten+1

w , we obtain

λ

2
(‖en+1

φ ‖2 − ‖enφ‖2 + ‖en+1
φ − enφ‖2) + λδt(u(tn+1) · ∇φ(tn)− ũn+1 · ∇φn, en+1

φ )

+ λγδt(∇en+1
φ ,∇en+1

w ) = λδt(Rn+1
φ , en+1

φ ), (3.40)

and

λ(en+1
φ − enφ, en+1

w ) + λγδt‖∇en+1
w ‖2

+ λδt(u(tn+1) · ∇φ(tn)− ũn+1 · ∇φn, en+1
w ) = λδt(Rn+1

φ , en+1
w ). (3.41)

Taking inner product of (3.33) with λγδten+1
w and −λ(en+1

φ − enφ), respectively, we

have

λγδt‖en+1
w ‖2 − Sλγ

ε2
δt(en+1

φ − enφ, en+1
w )− λγδt(∇en+1

φ ,∇en+1
w )

= λγδt(Gn, en+1
w ) + λγδt(Rn+1

w , en+1
w ),

(3.42)

and

−λ(en+1
φ − enφ, en+1

w ) +
Sλ

ε2
‖en+1

φ − enφ‖2 +
λ

2
(‖∇en+1

φ ‖2 − ‖∇enφ‖2 + ‖∇en+1
φ −∇enφ‖2)

= −λ(Gn, en+1
φ − enφ)− λ(Rn+1

w , en+1
φ − enφ). (3.43)
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Taking inner product of (3.34) with δtẽn+1
u , we get

ρ0

2
(‖ẽn+1

u ‖2 − ‖enu‖2 + ‖ẽn+1
u − enu‖2) + δt(enu · ∇u(tn+1), ẽn+1

u ) + µ0δt‖∇ẽn+1
u ‖2

+ δt(∇qn, ẽn+1
u )− λδt(w(tn+1)∇φ(tn)− wn+1∇φn, ẽn+1

u ) = δt(Rn+1
u , ẽn+1

u ).

(3.44)

In addition, we know

λδt(u(tn+1) · ∇φ(tn)−ũn+1 · ∇φn, en+1
φ ) = λδt(u(tn+1) · ∇enφ + ẽn+1

u · ∇φn, en+1
φ )

= λδt(u(tn+1) · ∇enφ, en+1
φ ) + λδt(ẽn+1

u · ∇φn, en+1
φ ),

(3.45)

and

λδt(u(tn+1) · ∇φ(tn)− ũn+1 · ∇φn, en+1
w )− λδt(w(tn+1)∇φ(tn)− wn+1∇φn, ẽn+1

u )

=λδt(u(tn+1) · ∇enφ + ẽn+1
u · ∇φn, en+1

w )− λδt(w(tn+1)∇enφ + en+1
w ∇φn, ẽn+1

u )

=λδt(u(tn+1) · ∇enφ − ẽn+1
u · ∇enφ, en+1

w ) + λδt(ẽn+1
u · ∇φ(tn), en+1

w )

− λδt(w(tn+1) · ∇enφ − en+1
w ∇enφ, ẽn+1

u )− λδt(en+1
w ∇φ(tn), ẽn+1

u ) (3.46)

=λδt(u(tn+1) · ∇enφ, en+1
w )− λδt(w(tn+1) · ∇enφ, ẽn+1

u ).

Combining (3.40)–(3.44) and using (3.45) and (3.46), we obtain

λ

2
(‖en+1

φ ‖2 − ‖enφ‖2 + ‖en+1
φ − enφ‖2) +

ρ0

2
(‖ẽn+1

u ‖2 − ‖enu‖2 + ‖ẽn+1
u − enu‖2)

+
λ

2
(‖∇en+1

φ ‖2 − ‖∇enφ‖2 + ‖∇en+1
φ −∇enφ‖2) +

Sλ

ε2
‖en+1

φ − enφ‖2

+ µ0δt‖∇ẽn+1
u ‖2 + λγδt‖en+1

w ‖2 + λγδt‖∇en+1
w ‖2 + δt(∇qn, ẽn+1

u )

+ δt(enu · ∇u(tn+1), ẽn+1
u ) + λδt(u(tn+1) · ∇enφ, en+1

φ ) + λδt(ẽn+1
u · ∇φn, en+1

φ ) (3.47)

+ λδt(u(tn+1) · ∇enφ, en+1
w )− λδt(w(tn+1) · ∇enφ, ẽn+1

u )

=
Sλγ

ε2
δt(en+1

φ − enφ, en+1
w ) + λδt(Rn+1

φ , en+1
φ ) + λδt(Rn+1

φ , en+1
w ) + λγδt(Gn, en+1

w )

+ λγδt(Rn+1
w , en+1

w )− λ(Gn, en+1
φ − enφ)− λ(Rn+1

w , en+1
φ − enφ) + δt(Rn+1

u , ẽn+1
u ).

We now control each term in (3.47) as follows.
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(i) Firstly, it is easy to check that∣∣λδt(Rn+1
φ , en+1

φ )
∣∣ ≤ c(δt3 + δt‖en+1

φ ‖2),∣∣λδt(Rn+1
φ , en+1

w )
∣∣ ≤ λδt‖Rn+1

φ ‖‖en+1
w ‖ ≤ cδt3 +

λγ

8
δt‖en+1

w ‖2,∣∣δt(Rn+1
u , ẽn+1

u )
∣∣ ≤ δt‖Rn+1

u ‖‖ẽn+1
u ‖ ≤ cδt3 +

µ0

8
δt‖∇ẽn+1

u ‖2,∣∣λγδt(Rn+1
w , en+1

w )
∣∣ ≤ λγδt‖Rn+1

w ‖‖en+1
w ‖ ≤ cδt3 +

λγ

8
δt‖en+1

w ‖2,

(3.48)

and∣∣λδt(u(tn+1) · ∇enφ, en+1
w )

∣∣ ≤ cδt‖∇enφ‖‖en+1
w ‖ ≤ cδt‖∇enφ‖2 +

λγ

8
δt‖en+1

w ‖2,∣∣λδt(w(tn+1) · ∇enφ, ẽn+1
u )

∣∣ ≤ cδt‖∇enφ‖‖ẽn+1
u ‖ ≤ cδt‖∇enφ‖2 +

µ0

8
δt‖∇ẽn+1

u ‖2,∣∣λδt(u(tn+1) · ∇enφ, en+1
φ )

∣∣ ≤ cδt‖∇enφ‖‖en+1
φ ‖ ≤ cδt‖∇enφ‖2 + cδt‖en+1

φ ‖2,∣∣∣∣Sλγε2
δt(en+1

φ − enφ, en+1
w )

∣∣∣∣ ≤ Sλ

ε2
δt‖en+1

φ − enφ‖‖en+1
w ‖

≤ cδt‖en+1
φ − enφ‖2 +

λγ

8
δt‖en+1

w ‖2.

(3.49)

(ii) Next , we deal with terms involving Gn. In view of (3.37)-(3.38), we obtain

∣∣λδt(Gn, en+1
w )

∣∣ ≤ λδt‖Gn‖‖en+1
w ‖ ≤ cδt‖enφ‖2 +

λγ

8
δt‖en+1

w ‖2. (3.50)

Using (3.32) , (3.37)-(3.38) and Theorem 1, we get

∣∣λγ(Gn, en+1
φ − enφ)

∣∣ =

∣∣∣∣∣λγδt(Gn,
en+1
φ − enφ
δt

)

∣∣∣∣∣
=λγδt

∣∣(Gn,−u(tn+1) · ∇enφ − ẽn+1
u · ∇φn + γ∆en+1

w +Rn+1
φ )

∣∣
≤λγδt

(
c(‖Gn‖2 + ‖∇enφ‖2) +

∣∣(Gn, ẽn+1
u · ∇φn)

∣∣
+ c‖∇Gn‖2 +

1

8
‖∇en+1

w ‖2 + ‖Gn‖2 +
1

4
‖Rn+1

φ ‖2
)

≤λγδt
(
c‖Gn‖2 + c‖∇Gn‖2 + c‖∇enφ‖2 +

∣∣(Gn, ẽn+1
u · ∇φn)

∣∣
+

1

8
‖∇en+1

w ‖2 + cδt2
)
.

(3.51)
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Noticing that ẽn+1
u |∂Ω = 0, so H1 norm of ẽn+1

u is equivalent to ‖∇ẽn+1
u ‖, there holds

∣∣(Gn, ẽn+1
u · ∇φn)

∣∣ ≤
‖G

n‖L4(Ω)‖∇φn‖L2(Ω)d‖ẽn+1
u ‖L4(Ω)d , d = 2,

‖Gn‖L3(Ω)‖∇φn‖L2(Ω)d‖ẽn+1
u ‖L6(Ω)d , d = 3,

≤

c2c(2,Ω)‖Gn‖1/2‖Gn‖1/2

H1(Ω)‖ẽ
n+1
u ‖1/2‖∇ẽn+1

u ‖1/2, d = 2,

c2c(3,Ω)‖Gn‖1/2‖Gn‖1/2

H1(Ω)‖∇ẽ
n+1
u ‖, d = 3,

≤c2cΩ

(
‖Gn‖2 + ‖∇Gn‖2

)
+

µ0

8λγ
‖∇ẽn+1

u ‖2
L2(Ω)d

≤c
(
‖∇enφ‖2 + ‖enφ‖2

)
+

µ0

8λγ
‖∇ẽn+1

u ‖2,

(3.52)

which implies∣∣λγ(Gn, en+1
φ − enφ)

∣∣ ≤ cδt3 + cδt
(
‖enφ‖2 + ‖∇enφ‖2

)
+
λγ

8
δt‖∇en+1

w ‖2 +
µ0

8
δt‖∇ẽn+1

u ‖2.

(3.53)

Following (3.51) and (3.52) and using Lemma 2, we estimate∣∣λγ(Rn+1
w , en+1

φ − enφ)
∣∣

≤λγδt
(
c‖Rn+1

w ‖2
H1(Ω) + c‖∇enφ‖2 + |(Rn+1

w , ẽn+1
u · ∇φn)|+ 1

8
‖∇en+1

w ‖2 + ‖Rn+1
φ ‖2

)
≤δt

(
c‖enφ‖2 + c‖∇enφ‖2 + cδt2

)
+
λγ

8
δt‖∇en+1

w ‖2 +
µ0

8
δt‖∇ẽn+1

u ‖2.

(3.54)

Again, similar to (3.52), we have

∣∣λδt(ẽn+1
u · ∇φn, en+1

φ )
∣∣ ≤ cδt(‖en+1

φ ‖2 + ‖∇en+1
φ ‖2) +

µ0

8
δt‖∇ẽn+1

u ‖2. (3.55)

(iii) It remains to estimate the term involving pressure. Using (3.35), en+1
u ·n|∂Ω =

0 and div en+1
u = 0, we get(

∇qn, ẽn+1
u

)
=

(
∇qn, δt

ρ0

(∇qn+1 −∇qn)− δt

ρ0

Rn+1
p + en+1

u

)
=
δt

2ρ0

(
‖∇qn+1‖2 − ‖∇qn‖2 − ‖∇qn+1 −∇qn‖2

)
− δt

ρ0

(∇qn, Rn+1
p ),

(3.56)
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and ∥∥∥∥ρ0
en+1
u

δt
+
(
∇qn+1 −∇qn

)∥∥∥∥2

=

∥∥∥∥Rn+1
p + ρ0

ẽn+1
u

δt

∥∥∥∥2

, (3.57)

which implies

‖∇qn+1 −∇qn‖2 =
ρ2

0

δt2
(‖ẽn+1

u ‖2 − ‖en+1
u ‖2) + ‖Rn+1

p ‖2 +
2ρ0

δt
(Rn+1

p , ẽn+1
u ). (3.58)

Hence, from (3.56) and (3.58), we find

(
∇qn, ẽn+1

u

)
=
δt

2ρ0

(
‖∇qn+1‖2 − ‖∇qn‖2

)
+

ρ0

2δt

(
‖en+1

u ‖2 − ‖ẽn+1
u ‖2

)
− δt

2ρ0

‖Rn+1
p ‖2 − (Rn+1

p , ẽn+1
u )− δt

ρ0

(∇qn, Rn+1
p ),

(3.59)

where

δt

ρ0

∣∣(∇qn, Rn+1
p )

∣∣ ≤ c(δt2‖∇qn‖2 + δt2),∣∣(Rn+1
p , ẽn+1

u )
∣∣ ≤ cδt‖ẽn+1

u ‖ ≤ cδt2 +
µ0

8
‖∇ẽn+1

u ‖2.

(3.60)

Lastly, denote

In =
λ

2
‖enφ‖2 +

λ

2
‖∇enφ‖2 +

ρ0

2
‖enu‖2 +

δt2

2ρ0

‖∇qn‖2 + (
λ

2
+
Sλ

ε2
)‖enφ − en−1

φ ‖2,

Sn =
n+1∑
k=1

[
λ

2
‖∇ek+1

φ −∇ekφ‖2 +
ρ0

2
‖ẽk+1

u − eku‖2 +
µ0

4
δt‖∇ẽku‖2

+
3λγ

4
δt‖∇ek+1

w ‖2 +
3λγ

8
δt‖ek+1

w ‖2

]
, n ≥ 1,

(3.61)

with S0 = 0 and e−1
φ = 0. Summing (3.47) together for time steps 1 to n and

combining the results above, i.e.(3.48),(3.49),(3.50),(3.53),(3.54) and (3.60), we derive

that for 1 ≤ n ≤ [T/δt]− 1,

In+1 + Sn+1 ≤ cδt3(n+ 1) + cδt

n+1∑
k=0

Ik ≤ cTδt2 + cδt

n+1∑
k=0

Ik. (3.62)

Since the constants appearing in the above inequalities are independent of δt, we

derive from Gronwall’s inequality that there exists some constant c such that

In+1 + Sn+1 ≤ cδt2, 1 ≤ n ≤ [T/δt]− 1. (3.63)
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Thus (3.24) holds.

Finally, the estimates for ‖eu,δt‖H1 can be derived from the inequality ‖PHv‖1 .

‖v‖1 (cf. [14]) and the fact that en+1
u = PH ẽ

n+1
u .

Next, we consider the convex splitting scheme.

Proof of Lemma 1 for the convex splitting scheme (3.17)-(3.21).

We define the truncation error Rn
φ (n = 0, 1, . . . , N − 1) for the phase equation

(3.1):

Rn+1
φ =

1

δt
(φ(tn+1)− φ(tn)) + u(tn+1) · ∇φ(tn)− γ∆w(tn+1), (3.64)

the truncation error Rn+1
w (n = 0, 1, . . . , N − 1) for the chemical potential equation

(3.2):

Rn+1
w = w(tn+1) + ∆φ(tn+1)− fc(φ(tn+1)) + fe(φ(tn)), (3.65)

the truncation error Rn+1
u (n = 0, 1, . . . , N − 1) for the momentum equation (3.3):

Rn+1
u =ρ0

(
u(tn+1)− u(tn)

δt
+ u(tn) · ∇u(tn+1)

)
− µ0∆u(tn+1) +∇p(tn)− λw(tn+1)∇φ(tn), (3.66)

and the truncation error Rn+1
p (n = 0, 1, . . . , N −1) for the pressure correction (3.21):

Rn+1
p = ρ0

u(tn+1)− u(tn+1)

δt
+∇(p(tn+1)− p(tn)) = ∇(p(tn+1)− p(tn)). (3.67)

Under Assumption A, we have

‖Ru,δt‖l∞(H1(Ω)d) + ‖Rφ,δt‖l∞(H1(Ω)) + ‖Rw,δt‖l∞(H1(Ω)) + ‖Rp,δt‖l∞(L2(Ω)) . δt. (3.68)

Denote

˙̃en+1
u =

ẽn+1
u − enu
δt

+ un · ∇ẽn+1
u + enu · ∇u(tn+1), (3.69)

Gn+1
c =fc(φ(tn+1))− fc(φn+1), Gn

e = fe(φ(tn))− fe(φn) n ≥ 0. (3.70)

Given the special form of fc and fe, we have

Gn
e =

1

ε2
enφ, Gn+1

c =
1

ε2

[
3(φ(tn+1))2en+1

φ − 3φ(tn+1)(en+1
φ )2 + (en+1

φ )3
]
. (3.71)
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Subtracting (3.64), (3.65), (3.66) and (3.67) from (3.17), (3.18), (3.19) and (3.21),

respectively, we get the following error equations for n ≥ 0,

en+1
φ − enφ
δt

+ (u(tn+1) · ∇φ(tn)− ũn+1 · ∇φn)− γ∆en+1
w = Rn+1

φ , (3.72)

en+1
w + ∆en+1

φ −Gn+1
c +Gn

e = Rn+1
w , (3.73)

ρ0
˙̃en+1
u − µ0∆ẽn+1

u +∇qn − λ(w(tn+1)∇φ(tn)− wn+1∇φn) = Rn+1
u , (3.74)

ρ0
en+1
u − ẽn+1

u

δt
+∇(qn+1 − qn) = Rn+1

p , (3.75)

with the boundary conditions

ẽn+1
u |∂Ω = 0, ∂ne

n+1
φ |∂Ω = 0, ∂ne

n+1
w |∂Ω = 0. (3.76)

We first establish the following results:

Lemma 4 For n ≤ T
δt
− 1, we have

‖Gn+1
c ‖ ≤ c‖en+1

φ ‖H1 , ‖Gn
e‖ ≤

1

ε2
‖enφ‖, ‖∇Gn

e‖ ≤
1

ε2
‖∇enφ‖; (3.77)

and

‖en+1
φ ‖H2 ≤ c(‖en+1

w ‖L2 + ‖en+1
φ ‖H1 + ‖enφ‖L2 + δt), (3.78)

where c depends on the initial data, T and Ω.

Proof The part for Gn
e is trivial since it is linear in enφ. For Gn+1

c , we use (3.71) and

Theorem 2 to deduce that

‖Gn+1
c ‖ ≤c(‖en+1

φ ‖‖φ(tn+1)‖L∞ + ‖en+1
φ ‖2

L4‖φ(tn+1)‖L∞ + ‖en+1
φ ‖3

L6)

≤c(‖en+1
φ ‖‖φ(tn+1)‖L∞ + ‖en+1

φ ‖2
H1‖φ(tn+1)‖L∞ + ‖en+1

φ ‖3
H1)

≤c‖en+1
φ ‖H1 ,

where we have used the a priori bound ‖φn‖H1 . 1 (n ≤ T
δt
− 1) implied by the

stability result Theorem 2.

Using the H2 regularity results for elliptic equations, we conclude from (3.73) that

‖en+1
φ ‖H2 ≤ c(‖en+1

φ ‖L2 + ‖∆en+1
φ ‖L2),
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and the claim follows immediately once we notice that

‖en+1
w −Gn+1

c +Gn
e −Rn+1

w ‖L2 ≤‖en+1
w ‖L2 + ‖Gn+1

c ‖L2 + ‖Gn
e‖L2 + ‖Rn+1

w ‖L2

≤c(δt+ ‖en+1
w ‖L2 + ‖en+1

φ ‖H1 + ‖enφ‖L2).

As in the proof of the stabilized scheme (3.7)-(3.11), it is not difficult to obtain

λ

2
(‖en+1

φ ‖2 − ‖enφ‖2 + ‖en+1
φ − enφ‖2) +

ρ0

2
(‖ẽn+1

u ‖2 − ‖enu‖2 + ‖ẽn+1
u − enu‖2)

+
λ

2
(‖∇en+1

φ ‖2 − ‖∇enφ‖2 + ‖∇en+1
φ −∇enφ‖2)

+ µ0δt‖∇ẽn+1
u ‖2 + λγδt‖en+1

w ‖2 + λγδt‖∇en+1
w ‖2 + δt(∇qn, ẽn+1

u )

+ δt(enu · ∇u(tn+1), ẽn+1
u ) + λδt(u(tn+1) · ∇enφ, en+1

φ ) + λδt(ẽn+1
u · ∇φn, en+1

φ ) (3.79)

+ λδt(u(tn+1) · ∇enφ, en+1
w )− λδt(w(tn+1) · ∇enφ, ẽn+1

u )

=λδt(Rn+1
φ , en+1

φ ) + λδt(Rn+1
φ , en+1

w ) + λγδt(Gn+1
c −Gn

e , e
n+1
w ) + λγδt(Rn+1

w , en+1
w )

− λ(Gn
c −Gn

e , e
n+1
φ − enφ)− λ(Rn+1

w , en+1
φ − enφ) + δt(Rn+1

u , ẽn+1
u ).

All the terms in the above can be controlled easily by following the arguments for

stabilized scheme (3.7)-(3.11) except the two terms involving Gn+1
c −Gn

e .

(i) Using Lemma 4, we have for any α > 0,

λγδt(Gn+1
c −Gn

e , e
n+1
w ) ≤cδt(‖Gn

e‖+ ‖Gn+1
c ‖)‖en+1

w ‖

≤cδt(‖enφ‖+ ‖en+1
φ ‖H1)‖en+1

w ‖

≤cαδt(‖enφ‖2 + ‖en+1
φ ‖2 + ‖∇en+1

φ ‖2) + αλγδt‖en+1
w ‖2. (3.80)

(ii) Next,

− λ(Gn+1
c −Gn

e , e
n+1
φ − enφ)

=− λ

4ε2
(‖en+1

φ ‖4
L4 − ‖enφ‖4

L4 + ‖(en+1
φ )2 − (enφ)2‖2 + 2‖en+1

φ (en+1
φ − enφ)‖2)

− λ

ε2
‖en+1

φ − enφ‖2 − λ

ε2
(3(φ(tn+1))2en+1

φ − 3φ(tn+1)(en+1
φ )2 − en+1

φ , en+1
φ − enφ),

(3.81)
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where we have made use of the identity

a3(a− b) =
1

2
a2(a2 − b2 + |a− b|2) =

1

4
(a4 − b4 + |a2 − b2|2 + 2a2|a− b|2).

To bound the last term of the RHS in (3.81), we denote

G̃n+1 = − λ
ε2

(3(φ(tn+1))2en+1
φ − 3φ(tn+1)(en+1

φ )2 − en+1
φ ). (3.82)

Similar to Lemma 4, we can get

‖G̃n+1‖ ≤ c‖en+1
φ ‖H1 . (3.83)

Taking gradient of G̃n+1, we obtain

∇G̃n+1 =− λ

ε2

[
(3(φ(tn+1))2 − 1)∇en+1

φ + 6φ(tn+1)en+1
φ ∇φ(tn+1)

− 3(en+1
φ )2∇φ(tn+1)− 6φ(tn+1)en+1

φ ∇en+1
φ

]
.

Noticing H2(Ω) ⊂ L∞(Ω) in d = 2, 3 dimensions, and recalling the a-priori bound of

‖∇en+1
φ ‖L2 implied by Theorem 2, we deduce that

‖en+1
φ ∇en+1

φ ‖L2 ≤‖en+1
φ ‖L∞‖∇en+1

φ ‖L2 ≤ c‖en+1
φ ‖H2 . (3.84)

In view of Lemma 4, we have

‖∇G̃n+1‖ ≤c
[
(‖φ(tn+1)‖2

L∞ + 1)‖∇en+1
φ ‖L2 + ‖φ(tn+1)‖L∞‖∇φ(tn+1)‖L3‖en+1

φ ‖L6

+ ‖∇φ(tn+1)‖L6‖en+1
φ ‖2

L6 + ‖φ(tn+1)‖L∞‖en+1
φ ∇en+1

φ ‖L2

]
≤c
[
(‖φ(tn+1)‖2

H2 + 1)‖∇en+1
φ ‖L2 + ‖φ(tn+1)‖2

H2‖en+1
φ ‖H1

+ ‖φ(tn+1)‖H2‖en+1
φ ‖2

H1 + ‖φ(tn+1)‖H2‖en+1
φ ∇en+1

φ ‖L2

]
≤c(‖en+1

w ‖L2 + ‖en+1
φ ‖H1 + ‖enφ‖L2 + δt).
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Taking inner product of (3.17) with G̃n, in view of (3.83) and (3.84) and the fact that

ẽn+1
u ∈ H1

0 (Ω)d, we get(
G̃n+1, en+1

φ − enφ
)

=δt
(
G̃n+1,−u(tn+1) · ∇enφ − ẽn+1

u · ∇φn + γ∆en+1
w +Rn+1

φ

)
≤δt‖G̃n+1‖(‖Rn+1

φ ‖+ ‖u(tn+1)‖L∞‖∇enφ‖) + γ‖∇en+1
w ‖‖∇G̃n+1‖

+ δt‖∇φn‖‖ẽn+1
u ‖H1‖G̃n+1‖H1 (3.85)

≤cδt(δt2 + ‖enφ‖2 + ‖en+1
φ ‖2

H1) + ε1µ0‖∇ẽn+1
u ‖2 + ε2λγ‖en+1

w ‖2 + ε3λγ‖∇en+1
w ‖2,

for arbitrary ε1, ε2, ε3 > 0 and c depends on the initial data, domain Ω, time T and

ε1, ε2, ε3.

(iii) Following the proof of Lemma 1 for the stabilized scheme (3.7)-(3.10), we can

bound the other terms as

λδt(Rn+1
φ , en+1

φ ) + λδt(Rn+1
φ , en+1

w ) + λγδt(Rn+1
w , en+1

w )− λ(Rn+1
w , en+1

φ − enφ)

+ δt(Rn+1
u , ẽn+1

u )− δt(enu · ∇u(tn+1), ẽn+1
u )− λδt(u(tn+1) · ∇enφ, en+1

φ )

− λδt(ẽn+1
u · ∇φn, en+1

φ )− λδt(u(tn+1) · ∇enφ, en+1
w ) + λδt(w(tn+1) · ∇enφ, ẽn+1

u ) (3.86)

≤ cδt

(
δt2 + ‖enu‖2 +

∑
m=n,n+1

(‖emφ ‖2 + ‖∇emφ ‖2)

)
+
µ0δt

4
‖∇ẽn+1

u ‖2 +
λγδt

4
‖en+1

w ‖2,

and

−δt
(
∇qn, ẽn+1

u

)
≤− δt2

2ρ0

(
‖∇qn+1‖2 − ‖∇qn‖2

)
− ρ0

2

(
‖en+1

u ‖2 − ‖ẽn+1
u ‖2

)
+ cδt(δt2 + δt2‖∇qn‖2) +

µ0δt

4
‖∇ẽn+1

u ‖2. (3.87)
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Choosing α = 1/8 in (3.80) and ε1 = ε2 = ε3 = 1/8 in (3.85), combining (3.86) and

(3.87), we have

λ

2
(‖en+1

φ ‖2 − ‖enφ‖2 + ‖en+1
φ − enφ‖2) +

ρ0

2
(‖en+1

u ‖2 − ‖enu‖2 + ‖ẽn+1
u − enu‖2)

+
λ

2
(‖∇en+1

φ ‖2 − ‖∇enφ‖2 + ‖∇en+1
φ −∇enφ‖2) +

5µ0δt

8
‖∇ẽn+1

u ‖2

+
λγδt

2
‖en+1

w ‖2 +
7λγδt

8
‖∇en+1

w ‖2 +
λ

4ε2
(‖en+1

φ ‖4
L4 − ‖enφ‖4

L4 + ‖(en+1
φ )2 − (enφ)2‖2)

+
λ

2ε2
‖en+1

φ (en+1
φ − enφ)‖2 +

λ

ε2
‖en+1

φ − enφ‖2

≤ cδt

(
δt2 + δt2‖∇qn‖2 + ‖enu‖2 +

∑
m=n,n+1

(‖emφ ‖2 + ‖∇emφ ‖2)

)
. (3.88)

Then the desired results can be derived from the Gronwall inequality and the initial

error ‖e0
φ‖2

1 + ‖e0
u‖2 + δt2‖∇p0‖2 . δt2. The proof of Lemma 1 is now complete.

Remark 3.3.1 Under the same assumption in Theorem 3, (3.63) and (3.88) imply

the following estimates for both the stabilized scheme (3.7)-(3.11) and the convex

splitting scheme (3.17)-(3.21): for 0 ≤ k ≤ N = [T/δt]− 1, we have

‖ẽk+1
u,δt − e

k
u,δt‖L2(Ω)d . δt, δt

N∑
k=0

‖ẽk+1
u, − eku‖2

L2(Ω)d . δt3. (3.89)

In addition, we can estimate the H2 norm of the phase function errors.

Lemma 5 Under the assumption of Theorem 3, for both stabilized scheme (3.7)-

(3.11) and convex splitting scheme (3.17)-(3.21), we have

‖en+1
φ ‖2 . δt1/2, n ≤ [T/δt]− 1. (3.90)

Proof We shall only prove the case for stabilized scheme (3.7)-(3.11), the proof for

convex splitting scheme (3.17)-(3.21) is similar.

Applying H2 theory to equation (3.33), we have

‖en+1
φ ‖2 ≤ c(‖en+1

φ ‖+ ‖en+1
w ‖+ ‖en+1

φ − enφ‖+ ‖Rn+1
w ‖+ ‖Gn‖).

Since ‖Gn‖ . ‖enφ‖, by the results obtained in Lemma 1, we conclude that

‖en+1
φ ‖2 ≤ c(‖en+1

φ ‖+ ‖en+1
w ‖+ ‖en+1

φ − enφ‖+ ‖Rn+1
w ‖+ ‖enφ‖) . δt1/2.
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3.3.2 Improved pressure estimates

With Lemma 1, we can establish the following sub-optimal error bound for the

pressure:

Lemma 6 Under the assumption of Theorem 3, for both stabilized scheme (3.7)-

(3.11) and convex splitting scheme (3.17)-(3.21), we have the error for pressure as

‖qδt‖l2(L2(Ω)) . δt1/2. (3.91)

Proof As before, we only show the case for the stabilized scheme (3.7)-(3.11), as

the convex splitting scheme (3.17)-(3.21) can be analyzed similarly. Remark 3.3.1

ensures that

‖(δteu)δt‖l∞(L2(Ω)d) . δt, ‖(δteu)δt‖l2(L2(Ω)d) . δt3/2. (3.92)

Adding (3.35) to (3.34), we get

−µ0∇2ẽn+1
u +∇qn+1 = hn+1,

∇ · ẽn+1 = gn+1, ẽn+1|∂Ω = 0,
(3.93)

where

hn+1 = h̃n+1 − ρ0
en+1
u − enu
δt

,

h̃n+1 = Rn
u +Rn

p − enu · ∇u(tn+1)− un · ∇ẽn+1
u + λ(w(tn+1)∇enφ + en+1

w ∇φn),

gn+1 =
δt

ρ0

∇2(pn+1 − pn).

(3.94)

Using the similar arguments in Lemma 1, we find

‖gn+1‖ = ‖∇ · ẽn+1
u ‖ ≤ ‖∇ẽn+1

u ‖ . δt1/2, ‖h̃n+1‖−1 . δt1/2. (3.95)

Then, we have

‖hn+1‖−1 ≤ ‖h̃n+1‖−1 + ρ0‖
en+1
u − enu
δt

‖−1, (3.96)

and it is not difficult to see

‖hδt‖l2(H−1(Ω)d) . ‖h̃δt‖l2(H−1(Ω)d) +
1

δt
‖(δteu)δt‖l2(L2(Ω)d) . δt1/2. (3.97)
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Applying stand stability results for inhomogeneous Stokes system [14] to (3.93), it

turns out

‖ẽn+1
u ‖1 + ‖qn+1‖ . ‖hn+1‖−1 + ‖gn+1‖, (3.98)

and we have

‖qδt‖l2(L2(Ω)) . δt1/2. (3.99)

The sub-optimal error estimate for pressure is derived.

In order to derive improved estimates for pressure, we shall estimate errors for the

time increment, and use a similar procedure as in [43]. The idea is to use the stability

results for Stokes system, and improved L2 estimate for δte
n
u. For a sequence of

functions ϕ0, ϕ1, . . . , ϕk, . . ., we set

δtϕ
k = ϕk − ϕk−1. (3.100)

Lemma 7 Under the assumptions of Theorem 3, for both the stabilized scheme (3.7)-

(3.11) and the convex splitting scheme (3.17)-(3.21), we have

‖δtenu‖ . δt3/2, ‖δteu,δt‖l2(L2(Ω)d) . δt2, 1 ≤ n ≤ [T/δt]. (3.101)

Proof We only present the proof for stabilized scheme (3.7)-(3.11), as the proof for

convex splitting scheme (3.17)-(3.21) is similar to the proof shown below by combining

the previous arguments in proving Lemma 1 together.

We work on equations for the time increment δte
n
u, δte

n
φ and δte

n
w. Denote

εnu = δte
n
u, ε̃nu = δtẽ

n
u, εnφ = δte

n
φ, εnw = δte

n
w, ψn = δtq

n. (3.102)

Applying time increment operator δt to (3.32)-(3.35), we have for n ≥ 1

εn+1
φ − εnφ
δt

− γ∆εn+1
w = δtR

n+1
φ − R̃n+1

φ , (3.103)

εn+1
w − S

ε2
(εn+1
φ − εnφ) + ∆εn+1

φ = δtR
n+1
w + δtG

n, (3.104)

ρ0
ε̃n+1
u − εnu
δt

− µ0∆ε̃n+1
u +∇ψn = δtR

n+1
u − R̃n+1

u,u − R̃n+1
u,φ , (3.105)

ρ0
εn+1
u − ε̃n+1

u

δt
+∇(ψn+1 − ψn) = δtR

n+1
p , (3.106)
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where

R̃n+1
φ = ẽnu · ∇δtφn + δtu(tn+1) · ∇enφ + ε̃n+1

u · ∇φn + u(tn) · ∇εnφ, (3.107)

δtG
n = f(φ(tn))− f(φn)− f(φ(tn−1)) + f(φn−1), (3.108)

R̃n+1
u,u = ρ0δtu

n · ∇ẽnu + ρ0e
n
u · ∇δtu(tn+1) + ρ0u

n · ∇ε̃n+1
u + ρ0ε

n
u · ∇u(tn), (3.109)

R̃n+1
u,φ = −λenw∇δtφn − λδtw(tn+1)∇enφ − λw(tn)∇εnφ − λεn+1

w ∇φn. (3.110)

Next, we proceed as in the proof of Lemma 1. Thanks to Lemma 5, we can avoid

the estimates for ‖εnw‖1, which leads to a simplified proof.

(i) For n = 1, from (3.62), there holds

‖e1
w‖1 . δt, ‖e1

φ‖1 . δt3/2, ‖e1
u‖1 . δt. (3.111)

Letting n = 0 in (3.32)-(3.35), we have

e1
φ

δt
+ ẽ1

u · ∇φ0 − γ∆e1
w = R1

φ, (3.112)

e1
w −

S

ε2
e1
φ + ∆e1

φ = R1
w, (3.113)

ρ0
ẽ1
u

δt
+ ρ0(u0 · ∇)ẽ1

u − µ0∆ẽ1
u − λe1

w∇φ0 = R1
u, (3.114)

ρ0

δt
(e1
u − ẽ1

u) +∇q1 = R1
p. (3.115)

Taking inner product of (3.112) with δte1
φ, (3.113) with γδt∆e1

w, (3.114) with δtẽ1
u,

respectively, we have

‖e1
φ‖2 + γδt(∇e1

w,∇e1
φ) = −δt(ẽ1

u · ∇φ0, e1
φ) + δt(R1

φ, e
1
φ), (3.116)

−γδt(∇e1
w,∇e1

φ) +
Sγδt

ε2
‖∇e1

φ‖2 + γδt‖∆e1
φ‖ = γδt(∆R1

w, e
1
φ), (3.117)

ρ0‖ẽ1
u‖2 + µ0δt‖∇ẽ1

u‖2 = δt(R1
u, ẽ

1
u) + λδt(e1

w∇φ0, ẽ0
u). (3.118)

Here we have used the fact that ∂ne
1
w|∂Ω = 0 and e1

w ∈ H2(Ω), since e1
w = f(φ(t1))−

f(φ0) − S
ε2

(φ(t1) − φ0) and f ′ is Lipschitz. It is also clear that ‖e1
w‖2 . δt if φt(t) ∈

H2(Ω).
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Combining (3.116)−(3.117)−(3.118), and applying Cauchy inequality and Sobolev

inequality, we get

‖e1
φ‖2 + γδt‖∆e1

φ‖2 +
Sγδt

ε2
‖∇e1

φ‖2 + ρ0‖ẽ1
u‖2 + µ0δt‖∇ẽ1

u‖2

=− δt(ẽ1
u · ∇φ0, e1

φ) + δt(R1
φ, e

1
φ) + γδt(∆R1

w, e
1
φ) + δt(R1

u, ẽ
1
u) + λδt(e1

w∇φ0, ẽ1
u)

≤cδt‖∇φ0‖L3‖e1
φ‖1‖ẽ1

u‖+ c(δt2‖R1
φ‖2 + δt2‖R1

w‖2
2) +

1

2
‖e1

φ‖2 + cδt2‖R1
u‖2

+
ρ0

4
‖ẽ1

u‖2 + cδt‖e1
w‖1‖∇φ0‖L3‖ẽ1

u‖

≤cδt2(‖e1
φ‖2

1 + ‖e1
w‖2

1 + ‖R1
φ‖2 + ‖R1

w‖2
2 + ‖R1

u‖2) +
1

2
‖e1

φ‖2 +
ρ0

2
‖ẽ1

u‖2.

In view of (3.111), we have ‖e1
φ‖2 + ‖ẽ1

u‖2 . δt4. By using the property of projection

PH , we have ‖∇q1‖ . ‖R1
p‖+ ‖ẽ1u‖

δt
≤ δt . Hence, we have

‖ε1φ‖2 + ‖ε1u‖2 + ‖ε̃1u‖2 + δt2‖∇ψ1‖2 + δt‖ε̃1u‖2
1 + δt‖∆ε1φ‖2 . δt4. (3.119)

(ii) Taking inner product of (3.103) with λδtεn+1
φ , we obtain

λ

2
(‖εn+1

φ ‖2−‖εnφ‖2 + ‖εn+1
φ − εnφ‖2) + λγδt(∇εn+1

φ ,∇εn+1
w )

=λδt(δtR
n+1
φ + R̃n+1

φ , εn+1
φ ). (3.120)

Taking inner product of (3.104) with λγδtεn+1
w and λγδt∆εn+1

φ , we get

λγδt‖εn+1
w ‖2−Sλγ

ε2
δt(εn+1

φ − εnφ, εn+1
w )− λγδt(∇εn+1

φ ,∇εn+1
w )

=λγδt(δtG
n, εn+1

w ) + λγδt(δtR
n+1
w , εn+1

w ), (3.121)

and

−λγδt(∇εn+1
w ,∇εn+1

φ )− Sλγ

ε2
δt(εn+1

φ − εnφ,∆εn+1
φ ) + λγδt‖∆εn+1

φ ‖2

= λγδt(δtG
n,∆εn+1

φ ) + λγδt(δtR
n+1
w ,∆εn+1

φ ). (3.122)

Taking inner product of (3.105) with δtε̃n+1
u , we have

ρ0

2
(‖ε̃n+1

u ‖2 − ‖εnu‖2 + ‖ε̃n+1
u − εnu‖2) + µ0δt‖∇ε̃n+1

u ‖2 + δt(ψn, ε̃n+1
u )

= δt(δtR
n
u + R̃n

u,u + R̃n
u,φ, ε̃

n+1
u ). (3.123)



72

Then, summing up (3.120)+1
2
(3.121)+1

2
(3.122)+(3.123), we derive

λ

2
(‖εn+1

φ ‖2 − ‖εnφ‖2 + ‖εn+1
φ − εnφ‖2) +

ρ0

2
(‖ε̃n+1

u ‖2 − ‖εnu‖2 + ‖ε̃n+1
u − εnu‖2)

+ µ0δt‖∇ε̃n+1
u ‖2 +

λγδt

2
‖εn+1
w ‖2 +

λγδt

2
‖∆εn+1

φ ‖2 + δt(∇ψn, ε̃n+1
u )

=
Sλγ

2ε2
δt(εn+1

φ − εnφ, εn+1
w ) + λδt(δtR

n+1
φ , εn+1

φ ) + λδt(R̃n+1
φ , εn+1

φ ) +
λγδt

2
(δtG

n, εn+1
w )

+
λγδt

2
(δtR

n+1
w , εn+1

w ) + δt(δtR
n+1
u , ε̃n+1

u ) + δt(R̃n+1
u,u + R̃n+1

u,φ , ε̃
n+1
u )

+
Sλγ

2ε2
δt(εn+1

φ − εnφ,∆εn+1
φ ) +

λγδt

2
(δtG

n,∆εn+1
φ ) +

λγδt

2
(δtR

n+1
w ,∆εn+1

φ ).

(3.124)

All the terms on the RHS are easy to control except the third, fourth, seventh and

ninth terms. Lemma 1 and 5, together with the assumptions on the exact solution

imply the following estimates

‖δtφn‖1 ≤ ‖δtφ(tn)‖1 + ‖δtenφ‖1 . δt,

‖φn‖2 ≤ ‖φ(tn)‖2 + ‖enφ‖2 ≤ c,

‖δtun‖1 ≤ ‖δtu(tn)‖1 + ‖εnu‖1 . δt+ ‖ε̃nu‖1,

(3.125)

where we have also used the fact that εnu = PH(ε̃nu) and that the projection PH is

stable in H1. Using the property that f ′ is bounded and Lipschitz, we derive

|δtGn| =
∣∣∣∣∫ 1

0

f ′(sφ(tn) + (1− s)φn)enφ ds−
∫ 1

0

f ′(sφ(tn−1) + (1− s)φn−1)en−1
φ ds

∣∣∣∣
=

∣∣∣∣∫ 1

0

f ′(sφ(tn) + (1− s)φn)εnφ ds+ en−1
φ

∫ 1

0

δtf
′(sφ(tn) + (1− s)φn)) ds

∣∣∣∣
≤ c

ε2

(
|εnφ|+ |en−1

φ | (|δtφ(tn)|+ |δtenφ|)
)
.

Combining the above results with Lemma 1 and 5, we have

λδt

2
(R̃n+1

φ , εn+1
φ )

=
λδt

2
(ẽnu · ∇δtφn + δtu(tn+1) · ∇enφ + ε̃n+1

u · ∇φn + u(tn) · ∇εnφ, εn+1
φ )

≤cδt
[
‖∇δtφn‖‖ẽnu‖1‖εn+1

φ ‖1 + ‖δtu(tn+1)‖1‖∇enφ‖‖εn+1
φ ‖1

+ ‖∇φn‖‖ε̃n+1
u ‖1‖εn+1

φ ‖1 + ‖u(tn)‖2‖∇εnφ‖‖εn+1
φ ‖

]
≤cδt

(
δt2‖ẽn+1

u ‖2
1 + δt4 + ‖εn+1

φ ‖2
1 + ‖εnφ‖2

1

)
+
µ0δt

8
‖∇ε̃n+1

u ‖2.



73

λγδt

2
(δtG

n, εn+1
w ) ≤cδt(‖εnφ‖‖εn+1

w ‖+ ‖en−1
φ ‖L6‖δtφ(tn)‖L3‖εn+1

w ‖+ ‖en−1
φ ‖L6‖εnφ‖L3‖εn+1

w ‖)

≤cδt(‖εnφ‖‖εn+1
w ‖+ ‖en−1

φ ‖1‖δtφ(tn)‖1‖εn+1
w ‖+ ‖en−1

φ ‖1‖εnφ‖1‖εn+1
w ‖)

≤cδt(‖εnφ‖‖εn+1
w ‖+ δt2‖εn+1

w ‖+ δt‖εnφ‖1‖εn+1
w ‖)

≤cδt(δt4 + ‖εnφ‖2
1) +

λγδt

8
‖εn+1
w ‖2.

For sufficiently small δt, we have

δt(R̃n+1
u,u + R̃n+1

u,φ , ε̃
n+1
u ) = δt(R̃n+1

u,u , ε̃
n+1
u ) + (R̃n+1

u,φ , ε̃
n+1
u )

≤cδt
(
‖δtun‖1‖∇ẽnu‖ ‖ε̃n+1

u ‖1 + ‖enu‖1‖∇δtu(tn+1)‖‖ε̃n+1
u ‖1

+ ‖εnu‖‖u(tn)‖W 1,3‖ε̃n+1
u ‖1

)
+ cδt

(
‖enw‖1‖δtφn‖1‖ε̃n+1

u ‖1 + ‖w(tn)‖L3‖∇εnφ‖‖ε̃n+1
u ‖1

+ ‖δtw(tn+1)‖1‖∇enφ‖‖ε̃n+1
u ‖1 + ‖εn+1

w ‖‖φn‖W 1,2d/(d−1)‖ε̃n+1
u ‖L2d

)
≤cδt

(
(δt+ ‖ε̃nu‖1)‖∇ẽnu‖‖ε̃n+1

u ‖1 + δt‖enu‖1‖ε̃n+1
u ‖1 + ‖εnu‖‖ε̃n+1

u ‖1

)
+ cδt

(
δt‖enw‖‖ε̃n+1

u ‖1 + δt2‖ε̃n+1
u ‖1 + ‖∇εnφ‖‖ε̃n+1

u ‖1 + ‖εn+1
w ‖‖ε̃n+1

u ‖1/2
1 ‖ε̃n+1

u ‖1/2
)

≤cδt
(
δt2‖ẽn+1

u ‖2
1 + δt2‖ẽnu‖2

1 + δt2‖enu‖2
1 + ‖εnu‖2 + ‖ε̃n+1

u ‖2 + ‖∇εnφ‖2

+ δt2‖enw‖2
1 + δt4

)
+
λγδt

8
‖εn+1
w ‖2 +

µ0δt

8
‖∇ε̃nu‖2 +

µ0δt

8
‖∇ε̃n+1

u ‖2.

The ninth term in (3.124) can be controlled similarly as follows

λγδt

2
(δtG

n,∆εn+1
φ ) ≤cδt

(
‖εnφ‖‖∆εn+1

φ ‖+ ‖enφ‖L6‖δtφ(tn)‖L3‖∆εn+1
φ ‖

+ ‖enφ‖L6‖εnφ‖L3‖∆εn+1
φ ‖

)
≤cδt(δt4 + ‖εnφ‖2

1) +
λγµ0δt

8
‖∆εn+1

φ ‖2.

It remains to control δt(∇ψn, ε̃n+1
u ) on the LHS of (3.126). We have the following

result analogous to Lemma 1:

δt(∇ψn, ε̃n+1
u ) =

δt2

2ρ0

(‖∇ψn+1‖2 − ‖∇ψn‖2) +
ρ0

2
(‖εn+1

u ‖2 − ‖ε̃n+1
u ‖2)

− δt2

ρ0

(δtR
n+1
p ,∇ψn)− δt(δtRn+1

p , ε̃n+1
u ),

where the last two terms can be easily bounded by the Cauchy inequality.
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Combining the above estimates into (3.124), we obtain

λ

2
(‖εn+1

φ ‖2 − ‖εnφ‖2 + ‖εn+1
φ − εnφ‖2) +

ρ0

2
(‖εn+1

u ‖2 − ‖εnu‖2 + ‖ε̃n+1
u − εnu‖2)

+ µ0δt‖∇ε̃n+1
u ‖2 +

λγδt

2
‖εn+1
w ‖2 +

λγδt

2
‖∆εn+1

φ ‖2 + +
δt2

2ρ0

(‖∇ψn+1‖2 − ‖∇ψn‖2)

≤cδt3(δt2 + ‖ẽn+1
u ‖2

1 + ‖ẽnu‖2
1 + ‖enu‖2

1 + ‖enw‖2
1) + cδt(δt2‖∇ψn‖2 + ‖ε̃n+1

u ‖2

+ ‖εn+1
φ ‖2 + ‖εnφ‖2 + ‖εnu‖2) +

λγδt

4
‖∆εn+1

φ ‖2 +
λγδt

8
‖∆εnφ‖2 +

λγδt

4
‖εn+1
w ‖2

+
µ0δt

4
‖∇ε̃n+1

u ‖2 +
µ0δt

8
‖∇ε̃nu‖2,

(3.126)

where we have applied the inequality

‖∇εnφ‖2 = −(∆εnφ, ε
n
φ) ≤ α‖∆εnφ‖2 +

1

4α
‖εnφ‖2, ∀α > 0. (3.127)

Since ‖ε̃n+1
u ‖ ≤ ‖εnu‖+‖ε̃n+1

u − εnu‖, (3.126) would imply that for n ≥ 1 and sufficiently

small δt

λ

2
‖εn+1
φ ‖2 +

ρ0

2
‖εn+1
u ‖2 +

δt2

2ρ0

‖∇ψn+1‖2 +
1

4

n+1∑
k=2

(
λ‖εkφ − εk−1

φ ‖
2 + ρ0‖ε̃ku − εk−1

u ‖2
)

+
n+1∑
k=2

(
5µ0δt

8
‖∇ε̃ku‖2 +

λγδt

8
‖∆εkφ‖2 +

λγδt

4
‖εkw‖2

)

≤cδt3
n+1∑
k=1

(δt2 + ‖ẽku‖2
1 + ‖eku‖2

1 + ‖ekw‖2
1) + cδt

n+1∑
k=1

(δt2‖∇ψk‖2 + ‖εkφ‖2 + ‖εkφ‖2 + ‖εku‖2)

+
λγδt

8
‖∆ε1φ‖2 +

µ0δt

8
‖∇ε̃1u‖2 +

λ

2
‖ε1φ‖2 +

ρ0

2
‖ε1u‖2 +

δt2

2ρ0

‖∇ψ1‖2.

Then, applying the Gronwall inequality to the above, and using Lemma 1 and the

initial step estimate (3.119), we arrive at the desired result.

We are now ready to prove Theorem 3.

Proof [Proof of Theorem 3] We only show the case for the stabilized scheme

(3.7)-(3.11), as the case for the convex splitting scheme (3.17)-(3.21) is very similar.

Lemma 7 ensures that

‖(δteu)δt‖l∞(L2(Ω)d) . δt2, ‖(δteu)δt‖l2(L2(Ω)d) . δt2. (3.128)



75

Using the similar arguments in Lemma 6, for the same Stokes system (3.93), we

find

‖hδt‖l2(H−1(Ω)d) . ‖h̃δt‖l2(H−1(Ω)d) +
1

δt
‖(δteu)δt‖l2(L2(Ω)d) . δt. (3.129)

Applying stand stability results for inhomogeneous Stokes system [14] to (3.93), there

holds

‖ẽn+1
u ‖1 + ‖qn+1‖ . ‖hn+1‖−1 + ‖gn+1‖, (3.130)

and we obtain

‖qδt‖l2(L2(Ω)) . δt. (3.131)

The proof is complete.

3.4 Allen-Cahn Navier-Stokes equations

The Allen-Cahn phase-field model assumes the phase function φ follows the Allen-

Cahn dynamics and the phase equations for φ can be written in a form similar to the

Cahn-Hilliard Phase-field model (3.1)-(3.5). In detail, the Allen-Cahn Navier-Stokes

equations are given by

φt + u · ∇φ = γ(∆φ− f(φ)) in Ω ⊂ Rd, (3.132)

ρ0(ut + (u · ∇)u)− µ0∆u+∇p− λw∇φ = 0, in Ω ⊂ Rd, (3.133)

∇ · u = 0, in Ω ⊂ Rd, (3.134)

u|∂Ω = 0,
∂φ

∂n
|∂Ω = 0, (3.135)

with given initial data u(0) = u0, φ(0) = φ0. Note that the above system does not

conserve the volume fraction, but this can be fixed by adding a Lagrange multiplier

as in [29].

The above system satisfies the following energy law

d

dt

∫
Ω

(
1

2
ρ0|u|2 +

λ

2
|∇φ|2 + λF (φ)

)
dx = −

∫
Ω

(
µ0|∇u|2 +

λ

γ
|φt + u · ∇φ|2

)
dx,

(3.136)

where F (s) =
∫ s

0
f(σ) dσ and f are the same as those in the Cahn-Hilliard case.
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The following stabilized scheme for (3.132)-(3.135) is introduced in [23]:

Given (un, φn, wn, pn), find (ũn+1, φn+1) such that

1

δt
(φn+1 − φn) + ũn+1 · ∇φn + γwn+1 = 0, (3.137)

wn+1 − S

γε2
(φn+1 − φn) = −∆φn+1 + f(φn), (3.138)

ρ0(
ũn+1 − un

δt
+ un · ∇ũn+1)− µ0∆ũn+1 +∇pn − λwn+1∇φn = 0, (3.139)

∂φn+1

∂n
|∂Ω = 0, ũn+1|∂Ω = 0. (3.140)

Given (ũn+1, pn), find (un+1, pn+1) such that
ρ0
un+1 − ũn+1

δt
+∇(pn+1 − pn) = 0, (3.141)

div un+1 = 0, (3.142)

un+1 · n|∂Ω = 0. (3.143)

Note that we assume f satisfies the property (3.13) for the above scheme (3.137)-

(3.143). The stability result is shown in [23]:

Theorem 4 For S ≥ 1
2
, the scheme (3.137)-(3.143) is unconditionally energy stable

in the following sense:[
λ

2
‖∇φn+1‖2 +

ρ0

2
‖un+1‖2 + λ

(
F (φn+1), 1

)]
+
δt2

2ρ0

‖∇pn+1‖2

+µ0δt‖∇ũn+1‖2 + λγδt‖wn+1‖2 +
ρ0

2
(‖ũn+1 − un‖2)

≤
[
λ

2
‖∇φn‖2 +

ρ0

2
‖un‖2 + λ (F (φn), 1)

]
+
δt2

2ρ0

‖∇pn‖2, n ≥ 0.

The convex splitting scheme for the Allen-Cahn phase field model can be formu-

lated similar to the Cahn-Hilliard case. From tn to tn+1 (n ≥ 0), we first compute the

phase and intermediate velocity. Given (un, wn,∇pn, φn), find (ũn+1, wn+1, φn+1).

φn+1 − φn

δt
+ ũn+1 · ∇φn + γwn+1 = 0, (3.144)

wn+1 = −∆φn+1 +
(
fc(φ

n+1)− fe(φn)
)
, (3.145)

ρ0(
ũn+1 − un

δt
+ un · ∇ũn+1)− µ0∆ũn+1 +∇pn − λwn+1∇φn = 0, (3.146)

∂φn+1

∂n
|∂Ω = 0, ũn+1|∂Ω = 0. (3.147)
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Given (ũn+1,∇pn), find (un+1,∇pn+1).


ρ0
un+1 − ũn+1

δt
+∇(pn+1 − pn) = 0, (3.148)

div un+1 = 0, (3.149)

un+1 · n|∂Ω = 0. (3.150)

By using essentially the same arguments in [24], we have the following results:

Theorem 5 The scheme (3.144)-(3.150) is stable in the following sense:[
λ

2
‖∇φn+1‖2 +

ρ0

2
‖un+1‖2 + λ

(
F (φn+1), 1

)]
+
δt2

2ρ0

‖∇pn+1‖2

+µ0δt‖∇ũn+1‖2 + λγδt‖wn+1‖2 +
ρ0

2
(‖ũn+1 − un‖2)

≤
[
λ

2
‖∇φn‖2 +

ρ0

2
‖un‖2 + λ (F (φn), 1)

]
+
δt2

2ρ0

‖∇pn‖2, n ≥ 0.

We now define the error functions enφ, enw, enu, ẽnu and qn the same way as in the Cahn-

Hilliard-Navier-Stokes case. Then by using essentially the same arguments as in the

proof of Theorem 3, we can prove the following results:

Theorem 6 Under the assumption that solution (φ,w, u, p) is smooth enough, the

numerical solution (un, pn, φn, wn) of the stabilized scheme (3.137)-(3.143) or the

convex splitting scheme (3.144)-(3.150) satisfies the following error estimates for

0 ≤ n ≤ [ T
δt

]:

‖eφ,δt‖l∞(H1(Ω)) + ‖eu,δt‖l∞(L2(Ω)d) + ‖ẽu,δt‖l∞(L2(Ω)d) . δt,

‖ew,δt‖l2(L2(Ω)) + ‖eu,δt‖l2(H1(Ω)d) + ‖ẽu,δt‖l2(H1(Ω)d)‖+ ‖qδt‖l2(L2(Ω)) . δt,

‖ew,δt‖l∞(L2(Ω)) + ‖eu,δt‖l∞(H1(Ω)d) + ‖ẽu,δt‖l∞(H1(Ω)d) + ‖qδt‖l∞(L2(Ω)) . δt1/2.

3.5 Concluding remarks

We have rigorously derived error estimates for energy stable time discretizations

of a phase-field model for two-phase incompressible flow, including both the Navier-

Stokes-Cahn-Hilliard equations and the Navier-Stokes-Allen-Cahn equations. In the
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energy stable schemes, the Cahn-Hilliard/Allen-Cahn equation was discretized by the

stabilized scheme or the convex splitting scheme and the Navier-Stokes equation was

discretized by the projection method. The main difficulties of the analysis were the

the splitting error in the projection step and the coupling between the phase function

and velocity. We derived the optimal convergence rates for both phase functions and

velocity in the H1 norm and pressure in the L2 norm. The analysis was presented

for the Navier-Stokes-Cahn-Hilliard equations and could be easily extended to the

Navier-Stokes-Allen-Cahn equations.
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4. SPECTRAL METHOD FOR COMPLEX GEOMETRIES

In this chapter, we develop an efficient algorithm for the following problem:

αu− β∆u = f, in Ω, (4.1)

u|∂Ω = g,

where Ω is a smooth bounded domain and α > 0, β > 0 and f and g are smooth

functions.

4.1 Introduction

Spectral method has been used to solve the PDEs after it was introduced by

Orszag. Its main advantage over other numerical methods like finite element, finite

difference is that the convergence rate is exponential, not algebraic. Hence its com-

putational cost is less than other methods. However one of the main disadvantage

is that the spectral method can be only applied to regular geometries (i.e. rectan-

gle, cube, disk,...). There has been many attempts to apply the spectral method to

complex geometries.

In [44], the author used a mapping to transform complex geometries into regular

geometries so that traditional spectral method could be applied. The other approach

is called a fictitious domain method. The fictitious domain method has been studied

extensively in seventies [45,46]. In the fictitious domain method, the original domain

Ω is embedded into a larger and regular extended domain Ω̃. And the problem is

solved on the extended domain. Since the extended domain is regular, one may use

structured meshes or currently existing solvers.

In this section, we introduce two algorithms of spectral method for complex ge-

ometries. In [47], the author develops a spectral method for complex geometries.
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The author embed the original domain into a square. And the spectral collocation

method without the boundary condition is applied to solve the problem. The spectral

collocation method uses the Lagrange polynomial as a basis function and the matrix

introduced by the spectral collocation method is full. In this section, we use Legendre

polynomials as a basis and weak formulation. As a result, we could obtain ten digit

accuracy for some test problems.

The second algorithm in this section is based on splitting of the equation (4.1).

In [9], authors split the equation (4.1) into two parts and use a Fourier spectral

method and the boundary integral equation solver. The main idea of the algorithm

introduced in [9] is that a function need to be extended periodically over the extended

domain. However it is known that a periodic expansion of a non-periodic function

suffers from Gibbs phenomenon [48] so the convergence is slow. Hence we suggest a

fictitious domain method which only requires a smooth extension of a given function.

Note that both algorithms suggested in this section assume we have a smooth

extension of a given function. And obtaining a smooth extension would be a further

research topic.

This chapter is organized as follows. In Section 4.2, we apply spectral method to a

fictitious domain method suggested in [46] and observe that the boundary condition on

the fictitious domain introduces derivative discontinuity. In Section 4.3, we introduce

the first algorithm. In section 4.4, we introduce the second algorithm and the choice

of the extended domain. The conclusion follows in Section 4.5.

4.2 Fictitious domain method with boundary condition

In this section, we summarize the fictitious domain method developed in [46] and

apply it to the spectral method. In [46], the authors consider the following fictitious

domain problem, given f , find ũ ∈ H1
0 (Ω̃) such that

αũ− β∆ũ = f̃ in Ω̃,

ũ|∂Ω
= g,

(4.2)
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where f̃ is a smooth extension of f on Ω̃. It is obvious that ũ|Ω solves problem

(4.1). To solve (4.2), we consider the following variational form. Find (ũ, λ) ∈

H1
0 ×H−1/2(∂Ω) such that∫

Ω̃

αũv + β∇ũ · ∇vdx−
∫
∂Ω

λvds =

∫
Ω̃

f̃vdx,∫
∂Ω

ũµds =

∫
∂Ω

gµds,

(4.3)

for all (v, µ) ∈ H1
0 (Ω̃)×H−1/2(∂Ω). In [46], a finite element was used to solve (4.3) as

a test space and trial space. Here we use the Legendre-Galerkin method as follows.

XN = span{(Li(x)− Li+2(x))(Lj(y)− Lj+2(y))|0 ≤ i, j ≤ N − 2}, (4.4)

where Li is ith Legendre polynomial. It is known that XN is a dense subset of H1
0 (Ω̃).

And it is shown in [21] that {(Li(x)−Li+2(x))(Lj(y)−Lj+2(y))} forms a very efficient

basis for the Legendre-Galerkin method. Let γ : [0, 2π] → R2 be a parametrization

of ∂Ω. Given Nθ, let

ΛNθ = {f |f is a function from {γ(0), γ(
2π

Nθ

), · · · , γ(
2(Nθ − 1)π

Nθ

)} to R}. (4.5)

Using definition (4.4) and (4.5), we can define a discrete form of (4.3): find (ũN , λNθ) ∈

XN × ΛNθ ∫
Ω̃

αũNvN + β∇ũN · ∇vNdx+

∫
∂Ω

λNθvds =

∫
Ω̃

IN f̃vNdx,∫
∂Ω

ũNµNθds = gµNθds,

(4.6)

for all (vN , µNθ) ∈ XN × ΛNθ . In the following subsection, we observe the result of

this numerical experiment of (4.6).

4.2.1 Numerical experiment

In this section, we perform a numerical test to observe the efficiency of the scheme

(4.6). The domain Ω of the test problem is a circle which is centered at (0, 0) with

a radius 1
2

and Ω̃ = (−1, 1)2. Coefficients are α = β = 1 and the exact solution is

u = sin(x+ y).
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Fig. 4.1 is a computed solution ũ and an exact solution u on Ω̃ and the error

between two functions. Fig. 4.2 is a graph of the error as a function of N . Fig. 4.3 is

a graph of the computed solution and its derivative along y = 0.

Fig. 4.1 shows that the computed solution ũN and the exact solution u and their

difference u− ũN on Ω̃ with N = 60, Nθ = 30. The upper left graph is the computed

solution ũN and the upper right graph is the exact solution u. Since the exact solution

does not belong to H1
0 (Ω̃), two graphs are different. However, the lower left picture

shows the error on Ω is negligible. In Fig. 4.2, the error on Ω as a function of N

is shown to observe the order of accuracy. It is observed that the error decreases

with the order 1/N . Let hN be the largest mesh size. Since hN ' 1/N , (4.6) shows

first-order accuracy, not spectral accuracy. The smoothness of ũN gives us a better

understanding of this situation.

The extended solution ũ of (4.3) satisfies (4.1) and it also satisfies the following

equation:

αw − β∆w = f̃ , in Ω̃\Ω,

w|∂Ω = g,

w|∂Ω̃ = 0.

(4.7)

Hence we have

ũ|Ω = u,

ũ|Ω̃\Ω = w.
(4.8)

If the solution u of (4.1) and the solution w of (4.7) have different derivatives at ∂Ω,

ũ cannot be smooth on Ω̃. In this example, ũ has a discontinuity of derivatives at

∂Ω and we can observe this in Fig. 4.3. Fig. 4.3 is the computed solution ũN and its

derivatives along y = 0. Ω is a circle which is centered at the origin and with radius

1
2

and discontinuity of derivatives is expected at x = ±1
2
. The first graph shows the

computed solution along y = 0. It is continuous but piecewise smooth. In the second

and third graphs, we observe the discontinuity of derivatives of ũN at x = ±1
2

as

expected.
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Figure 4.1. Exact and computed solutions and error on Ω̃
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4.3 Fictitious domain methods without boundary condition

In Section 4.2, spectral accuracy was not obtained due to the discontinuity of

derivatives. The main reason is boundary conditions are imposed on ∂Ω and ∂Ω̃.

In [47], the author applied a spectral collocation method with no boundary condition.

In this section, we apply the Legendre-Galerkin method with no boundary condition

on ∂Ω̃. In this section, we consider the following formulation:

Given f̃ , find ũ ∈ H2(Ω̃) such that∫
Ω̃

(αu− β∆ũ)vdx =

∫
Ω̃

f̃vdx, in Ω̃,

u|∂Ω = g,

(4.9)

for all v ∈ L2(Ω̃).

4.3.1 Description of method

To solve (4.9) numerically, we need to define the proper subspaces. We define the

following discretized problem. Given f̃ , find uN ∈ XN∫
∂Ω

(αuN − β∆uN)vNdx =

∫
∂Ω

IN f̃vNdx, (4.10)

uN(γk) = g(γk), (4.11)

for all vN ∈ YN and 1 ≤ k ≤ M and γk is a discretization of ∂Ω. The Legendre

polynomial forms an orthogonal space with respect to the L2-inner product. Hence

the natural choice of XN is

XN = PN × PN = span{Li(x)Lj(y)|0 ≤ i, j ≤ N}. (4.12)

Note that choosing YN = XN would bring us overdetermined system. Hence we

choose

YN = PN−2 × PN−2 = span{Li(x)Lj(y)|0 ≤ i, j ≤ N − 2}, (4.13)

and we choose

M = 4N, (4.14)
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to make the system square. Hence the following system needs to be solved. A

B

 ū =

 y

z

 , (4.15)

where A ∈ R(N−1)2×(N+1)2
and Aū = y correspond to (4.10) and B ∈ R4N×(N+1)2

and

Bū = z corresponds to (4.11).

The main purpose of this chapter is to observe the accuracy of the scheme. Hence

we solve the system (4.15) by making (N + 1)2 by (N + 1)2 the full matrix and

MATLAB backslash operator. The development of an efficient algorithm solving

(4.15) could be future work.

4.3.2 Numerical experiment

In this section, we solve a test problem to observe the accuracy of the scheme.

We solve the equation (4.10)-(4.11) on two different geometries. The domain is

Ω1 = {(x, y)|(x/.6)2 + (y/.9)2 ≤ 1} and the exact solution is u = sin(π/2(1 −

(x/.6)2 − (y/.9)2)). We call this an ellipse problem. The second geometry is Ω2 =

{(x, y)|(x/.6)2 + (y/.9)2 ≤ 1} and the exact solution is u = sin(π/2(1 − (x/.6)2 −

(y/.9)2)). We call this a circle problem. For both examples, we have α = 0, β = 1.

Fig. 4.4 is the error on Ω1 as a function of N . Fig. 4.5 is a few selected computed

solutions of the ellipse problem on the extended domain Ω̃ with various N . Fig. 4.6

is the error on Ω2 as a function of N . Fig. 4.7 is a few selected computed solutions

of the circle problem on Ω̃ with various N .

In Fig. 4.4, we can observe two behaviors. When N is small, we can observe

that the error decays very smoothly. As N gets larger, the error decays but behaves

very unsmoothly. We can observe the behavior of the global solution to see why the

error has such behavior. Fig. 4.5 shows the global solutions of the ellipse problem.

It is observed that the computed solution converges to a smooth function when N is

small, which reflects the smooth behavior of the error. However, it is observed that

the global solution does not converge to a function. We conjecture that one reason is
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the well-posedness of the original problem (4.9). It is known that the solution exists

and is unique on Ω, but its existence and uniqueness are not proved on Ω̃. Hence if we

could prove or disprove well-posedness of (4.9), we could have a clear understanding

of this problem.

For the circle problem, we can observe spectral accuracy. This problem shows

smooth error decay for small N in Fig. 4.6, but Fig. 4.7 shows that the computed

global solution does not converge to a function for small N . Hence it is not always

true that the global solution converges for small N .

In this section, we solved the problem (4.1) using the fictitious domain method.

We discretized (4.9) and restricted the computed solution to Ω. For the example we

tried, the global solution does not always converge to a function. And studying the

well-posedness of (4.9) would give us better understanding of this behavior. In the

following section, we a develop a fictitious method based on the splitting, which has

well-posedness of PDEs.

4.4 Fictitious domain method using splitting

In [9], the authors developed a spectral embedding method to solve the advection-

diffusion equation. The scheme is

1. Find smooth and periodic f̃ on Ω̃ such that f̃ |Ω = f .

2. Solve the following equation using the Fourier spectral method.

αũ− β∆ũ = f̃ , in Ω̃,

ũ|∂Ω̄ = 0.
(4.16)

3. In Ω, using a boundary element approach, find v such that

αv − β∆v = 0, in Ω

v|∂Ω = g − ũ.
(4.17)

4. u = ũ+ v.
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There are two main ideas. The first idea is that the authors obtain ũ by the Fourier

spectral method in step 2. The second idea is that the authors split the original

equation into two equations (4.16) and (4.17) so that the boundary element solver

could be used.

In this section we use a non-periodic solver in step 2 to avoid Gibss phenomenon.

Hence the new scheme would be as follows.

1. Find smooth extension f̃ on Ω̃ such that f̃ |Ω = f .

2. Solve the following equation,

αũ− β∆ũ = f̃ , in Ω̃,

ũ|∂Ω̄ = 0.
(4.18)

3. In Ω, using a boundary element approach, find v such that

αv − β∆v = 0, in Ω

v|∂Ω = g − ũ.
(4.19)

4. u = ũ+ v.

One of the main idea is the choice of the extended domain Ω̃. In the following section,

we show that the disk is a good choice rather than a square.

4.4.1 Choice of extended solver

In this subsection we discuss the choice of a proper extended domain Ω̃. The

Legendre-Galerkin method developed in [21] is very efficient in terms of complexity.

Hence it is a good candidate among the existing spectral methods. However the do-

main is a d dimensional cube and this causes a singularity of the solution with smooth

right-hand side function. We perform a numerical tests to observe this phenomenon.

If f̃ = sin(πx)sin(πy), u = 1
2π2 sin(πx)sin(πy) solves (4.16) with α = 0, β = 1. Since
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u is smooth, we can expect spectral accuracy. However if f̃ = 1, it is known in [21]

that the following function,

u(x, y) =
64

π2

∞∑
n,odd

∞∑
m,odd

(−1)
1
2

(n+m) 1

nm(n2 +m2)
cos(

1

2
nπx)cos(

1

2
mπy), (4.20)

solves (4.16) with α = 0, β = 1, Ω̄ = (−1, 1)2. Fig. 4.8 shows the convergence rate of

the numerical solution where the exact solution of f̃ = 1 case is chosen for N = 200. If

f̃ = sin(πx)sin(πy), we need twenty points to obtain round-off errors and we obtain

spectral accuracy. However, we obtain algebraic accuracy for f̃ = 1 case and we need

N = 100 to obtain a ten-digit accuracy. Hence it is natural to try a different type of

spectral method.

The main reason for algebraic accuracy is non-smoothness of the exact solution,

and this was caused by corners of the domain. Since it is known in [49] that the

solution is smooth at the boundary if the domain is smooth, we can avoid this problem

by selecting a disk as an extended domain Ω̃. We perform the same experiment on a

disk. We use the pseudospectral method for disk essentially developed in [50] and [51].

The main idea is we use a polar coordinate with −1 ≤ r ≤ 1 and 0 ≤ θ ≤ π to avoid

singularity at r = 0, and we use a polynomial expansion in r direction and a Fourier

expansion in θ direction as a basis function. The detailed implementation can be

found in [51], chapter 11.

Fig. 4.9 shows a convergence rate of (4.16) with a different right-hand side α =

0, β = 1. For both cases, we observe spectral accuracy. It is observed that we obtain

round-off error for the case of f̃ = 1 with only a few points. The polar coordinate

form of (4.16) is

αu− β(urr +
1

r
ur +

1

r2
uθθ) = 1,

u|Ω̃ = 0.

(4.21)

Because u = 1
4
(1−r2) solves (4.21) for α = 0, β = 1 and u is a low degree polynomial.

Hence we obtain round-off error with only a few points using the pseudospectral

method.
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4.4.2 Boundary Integral Equation

The advantage of the method suggested in this section is that we can use existing

solvers as a blackbox. In this subsection, we briefly explore one boundary integral

equation solver introduced in [52]. We consider the following model problem:

−∆u = 0, in Ω,

u|∂Ω = g.
(4.22)

The double layer representation of (4.22) is

u(x) =

∫
∂Ω

ρ(s)
∂

∂n
log|x− s|ds, x ∈ Ω (4.23)

where ρ is called a density function defined on ∂Ω. And ρ is obtained by solving the

following boundary integral equation:

−πρ(t) +

∫
∂Ω

ρ(s)
∂

∂n
log|t− s|ds = g(t), t ∈ ∂Ω. (4.24)

Hence the numerical scheme to solve (4.22) consists of two steps. We first obtain ρ

from (4.24) and find u(x) at x ∈ Ω by evaluating (4.23).

Let r(t) = (ξ(t), η(t)) be a parametrization of ∂Ω for 0 ≤ t ≤ 2π. We can define

K as follows:

K(t, s) =


η′(s)(ξ(t)− ξ(s))− ξ′(s)(η(t)− η(s))

(ξ(t)− ξ(s))2 + (η(t)− η(s))2
, t 6= s,

η′(t)ξ′′(t)− ξ′(t)η′′(t)
2(ξ(′(t)2 + η′(t)2)

, t = s.

(4.25)

And we can rewrite (4.24) as follows:

−πρ(t) +

∫ 2π

0

K(t, s)ρ(s)ds = g(t), 0 ≤ t ≤ 2π. (4.26)

Since K and functions g and ρ are periodic in [0, 2π], the most efficient numerical

method is a trapezoidal rule. For a given N , let h = 2π/N and tj = jh for j =

1, 2, . . . ,. Then we can solve the system,

−πρN(ti) + h
N∑
j=1

K(ti, tj)ρN(tj) = g(tj), j = 1, . . . , N. (4.27)

We can also use the trapezoidal rule to evaluate (4.22) if we have a density function

ρ.
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Figure 4.10. Convergence rate of extended domain solver

4.4.3 Numerical experiment

In this section we perform numerical tests to observe the order of accuracy. Since

we have two different solvers, the extended domain solver and the BIE solver, we

observe the convergence rate of each solver. The exact solution is u(x, y) = e2x+y and

Ω = {(x, y)|(x/a)2 + (y/b)2 = 1} with a = 7/8 and b = 1/2 and the coefficients are

α = 0, β = −1 in (4.1).

Fig. 4.10 is the spectral accuracy of (4.18) part. In this example, we fix the

accuracy of (4.19) solver to be the order of round-off error and increase the accuracy

of (4.18). Fig. 4.11 is the spectral accuracy of (4.19). In this example, we fix accuracy

of (4.18) solver to be the order of round-off error and increase the accuracy of (4.19).

For both cases, we obtain spectral accuracy.

4.5 Concluding remarks

In this section, we developed two algorithms of spectral method for complex ge-

ometry. In Section 4.2, we applied a fictitious domain method with a homogeneous
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boundary condition on Ω̃ to spectral method. Since the exact solution is not smooth,

we obtained the first-order accuracy. In Section 4.3, we did not impose a boundary

condition on ∂Ω. A numerical experiment shows that the solution of the extended

solver did not converge to a function, but we could observe a high order of accuracy.

In Section 4.4, we developed a non-periodic version of the spectral embedding method

developed in [9]. We showed that the disk is a good choice for the extended domain

Ω̃. In that case, we obtained spectral accuracy.

In this chapter, we assumed we have smooth extension f̃ on Ω̃. So the smooth

extension f̃ to extended domain Ω̃ could be a further research topic. The application

of both methods suggested in Section 4.3 and Section 4.4 to a three-dimensional

problems or real world problems also needs to be investigated.
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5. SECOND-ORDER DEFECT CORRECTION

We present a solver for an ordinary differential equation based on spectral deferred

correction (SDC). SDC uses Euler’s method as a corrector and we use another kind

of corrector. Our corrector is a high-order method in the sense that order of accuracy

increases by two at each correction, while one in SDC. If the underlying problem is a

constant coefficient linear problem, the method is the same as the collocation method.

Hence it is A-stable. The distribution of quadrature points can be arbitrary; therefore

Gauss type points can also be used.

5.1 Introduction

In this paper, we consider an efficient and accurate numerical scheme for solving

the following ordinary differential equation,

y′(t) = f(t, y(t)), t ∈ (0, T ], (5.1)

y(0) = y0, (5.2)

where f : (0, T )×Cn → Cn, y : (0, T )→ Cn is a smooth function and y0 ∈ Cn. There

has been extensive research to construct efficient and high-order numerical methods

for ordinary differential equations. There are two types of strategies to obtain a

high order of accuracy. One strategy is to construct a numerical scheme with a high

order of consistency error (i.e. Runge-Kutta or multi-step method). For a non-stiff

problem, the explicit Runge-Kutta method is efficient. For the stiff problem, the

implicit Runge-Kutta method can be used to avoid an excessively small time step.

The other direction to obtain a high order of accuracy is the defect correction type

method.
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The defect correction method is a generic term as described in [13]. Given an

approximate solution, one finds the ‘defect’ which shows how good the approximate

solution is. Then one finds the correction quantity using the defect. One obtains a

better solution by adding the given approximate solution and correction quantity.

In [12], Dutt, Greengard and Rockhlin developed the spectral defect correction

method (SDC), which is based on the classical defect correction method. They im-

proved the classical defect correction method in two ways. They discretized the

interval using Gauss points, rather than equidistance points, and they changed the

differential equation into a Picard integral equation. In the classical defect correction

method, a polynomial interpolation was performed on the equidistance points which

lead to the well-known Runge’s phenomenon. Obtaining high order was not easy,

but SDC could avoid the Runge’s phenomenon and obtain high order by using Gauss

points.

Following SDC, there has been extensive research to extend the method. In [53],

the authors showed that SDC is equivalent to a preconditioned Neumann series ex-

pansion if the original problem is linear. And they used an iterative solver, GMRES,

to accelerate the convergence and improved the stability and the accuracy. In [54],

the authors applied the Krylov Deferred Correction (KDC) method developed in [53]

to a Differential Algebraic Equation (DAE). In their paper, KDC could obtain an

accuracy similar to the existing DAE method, but it could take a much larger time

step. In [55], the author developed the Semi-Implicit Spectral Deferred Correction

(SISDC) which is a semi-implicit version of SDC. The SISDC is efficient when the

equation of interest can be split into a stiff part and a non-stiff part. By treating

the stiff term implicitly and the non-stiff term explicitly, the computational costs are

reduced.

In this chapter, we suggest a different type of corrector. The new corrector im-

proves the existing SDC in two directions. One is A-stability and the other is the

order of accuracy. Stability of scheme is very important to avoid an excessively small

time-step for stiff problems. One way to measure stability of the scheme is to look
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at the stability region. If the stability region covers the left-half plane, it is called

A-stable [11]. However, SDC is not A-stable. Our new type of corrector solves collo-

cation method after one correction if the underlying problem is a constant-coefficient,

linear problem. Hence its stability function is the same as the collocation method.

Therefore it is A-stable. In terms of order of accuracy, we also have an advantage.

Using our corrector, the formal order of accuracy increases by two at each correction

whereas backward Euler’s method improves by one. And the extra cost we need to

pay is O(2k2
1n) = O(n) flops on top of the cost of the backward Euler corrector where

n is the size of the problem and k1 +1 is the number of the nodes in subinterval. Since

the problem size is nk1 and k1 is small (usually k1 < 10), the extra cost is negligible.

The rest of the chapter is arranged as follows. In Section 5.2, we briefly review the

SDC and introduce the algorithm. In Section 5.3, the new corrector is introduced.

In Section 5.4, numerical experiments are performed. In the final section, we discuss

our conclusions and further research possibilities.

5.2 Spectral deferred correction

We have two different kinds of mesh. The coarse mesh is

0 = t0 < · · · < tP = T, (5.3)

where we use equidistant points for simplicity.

tp+1 − tp = h,

for p = 0, · · · , P − 1. And each mesh [tp, tp+1] has fine mesh defined by tp,k = tp + ckh

for k = 0, · · · , k1 where ci is an arbitrary increasing sequences with 0 = c0 < · · · <

ck1 = 1 . Usually they are chosen to be equidistance points or Legendre-Gauss-

Lobatto points. Let tp = tp,0 for simplicity. Since SDC is a one-step method, we will

consider the problem (5.4) in a subinterval [tp, tp+1] throughout the chapter. First we

change the differential equation into an integral equation as follows:

y(t) = y0 +

∫ t

tp

f(s, y(s))ds. (5.4)
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Let y(t) be the exact solution and y[0](t) be an approximate solution. Then we can

compute the residual r(t) defined as

r(t) =

∫ t

tp

f(s, y[0](s))ds− (y[0](t)− y0). (5.5)

If we call δ(t) = y(t)− y[0](t) an error, we can substitute y(t) in equation (5.4), then

δ(t) + y[0](t) = y0 +

∫ t

tp

f(s, δ(s) + y[0](s))ds,

δ(t) =

∫ t

tp

f(s, δ(s) + y[0](s))− f(s, y[0](s))ds+

∫ t

tp

f(s, y[0](s))ds− (y[0](t)− y0).

Then we obtain the equation for the error δ(t) :
δ(t)−

∫ t

tp

f(s, y[0](s) + δ(s))− f(s, y[0](s))ds = r(t),

δ(tp) = 0.

(5.6)

The residual r(t) is something we can compute and we have equation for the error

δ(t). Hence we can compute the δ(t) in principle. To implement SDC, we need proper

discretization.

We will be working in the space Cnk1 with the following notation:

~η = (~ηk)1≤k≤k1 = (~η1, · · · , ~ηk1)T where ~ηi ∈ Cn for 1 ≤ i ≤ k1. (5.7)

We can define the discrete residual operator rk1 : Cnk1 → Cnk1 . Suppose that we have

initial value y0. Then the discrete residual is

rk1~η = (

∫ tp,i

tp

(f(tp, y0)l0(s) +

k1∑
k=1

f(tp,k, ~ηk)lk(s))ds− (~ηi − y0))1≤i≤k1 , (5.8)

where

lk(t) =
Πj 6=k(t− tp,j)

Πj 6=k(tp,k − tp,j)
.

Note that (5.8) is a Lagrange polynomial interpolation of (5.5) on tp,k for 1 ≤ k ≤ k1.

Suppose we have an approximate solution ~y[j−1] ∈ Cnk1 where

~y
[j−1]
k ∼ y(tp,k),
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for 1 ≤ k ≤ k1. Using (5.8), we can define the discrete residual ~r[j−1] ∈ Cnk1 as

follows:

~r[j−1] = rk1~y
[j−1]. (5.9)

Then the vector of error ~δ ∈ Cnk1 where

~δ
[j]
k ∼ (y(tp,k)− ~y[j−1]

k ),

for 1 ≤ k ≤ k1 can be solved by the Euler’s method. In this chapter, we present the

backward Euler’s method for simplicity. The first error ~δ
[j]
1 which is an approximate

error at tp,1 can found by solving the following equation:

~δ
[j]
1 − (tp,1 − tp0)(f(tp,1, ~y

[j−1]
1 + ~δ

[j]
1 )− f(tp,1, ~y

[j−1]
1 )) = ~r

[j−1]
1 , (5.10)

and the approximate errors ~δ
[j]
k at tp,k for k = 2, . . . , k1 can be found by solving the

following equation successively:

~δ
[j]
k − ~δ

[j]
k−1− (tp,k − tp,k−1)(f(tp,k, ~y

[j−1]
k + ~δ

[j]
k )− f(tp,k, ~y

[j−1]
k )) = ~r

[j−1]
k − ~r[j−1]

k−1 . (5.11)

We can describe the algorithm for SDC in the following subsection.

5.2.1 Algorithm for SDC

SDC is a one-step method and its algorithm is completely described by local

behavior, advancing from tp to tp+1.

Comment: Fix h, k1, J.

Comment: Assume y(tp) = y0 is given. We want to find y(tp+1) = y(tp + h):

1. Find an initial guess ~y
[0]
k ∼ y(tp,k) using Euler’s method for 1 ≤ k ≤ k1 by

solving (5.4).

for j = 1, · · · , J

(a) Compute the residual ~r[j−1] = rk1~y
[j−1] by (5.8);

(b) Find ~δ
[j]
k for 1 ≤ k ≤ k1 by solving (5.10) or (5.11).

(c) Update the solution: ~y[j] = ~y[j−1] + ~δ[j].

end for
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5.3 New scheme

In this section we introduce a new scheme and how to obtain the solution.

5.3.1 Corrector

In this section we describe a new corrector besides the Euler’s method. There

are two main ideas. One is using a linearly implicit formulation described in [12]

Section 6.3. The other one is using a high-order integration rule other than the

Euler’s method. We consider the following approximation:

f(t, y[j−1](t) + δ(t))− f(t, y[j−1](t)) ∼ J(t, y[j−1](t))δ(t). (5.12)

We can apply (5.12) to our new scheme. Hence we solve the equation

δ(t)−
∫ t

tp

J(s, y[j−1](s))δ(s)ds = r(t), (5.13)

instead of (5.6). J is the Jacobian as

J(t, y) =
∂f(t, y)

∂y
. (5.14)

The other key is the time discretization of (5.13). Consider the following operator

K̂~y[j−1] : Cnk1 → Cnk1 defined by

K̂~y[j−1]~η = (

∫ tp,i

tp

k1∑
k=1

J(tp,k∗ , ~y
[j−1]
k∗

)~ηklk(s)ds)1≤i≤k1 , (5.15)

where k∗ = [k1

2
]. k∗ can be chosen as anything from 1 to k1. Here we choose the

middle one where k∗ = [k1

2
].

Then id− K̂~y[j] can be efficiently solved. The matrix notation of id− K̂~y[j−1] is

id− K̂~y[j−1] = Ik1 ⊗ In − hSk1 ⊗ J(tp,k∗ , ~y
[j−1]
k∗

), (5.16)

where

(Sk1)i,j =

∫ ci

0

lj(x)dx where 1 ≤ i, j ≤ k1. (5.17)
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Consider the Schur decomposition of the Sk1 = Qk1Rk1Q
T
k1

where Rk1 is an upper

triangular matrix and Qk1 is an orthogonal matrix. Then (5.16) is written as

(Qk1 ⊗ In)(Ik1 ⊗ In − hRk1 ⊗ J(tp,k∗ , ~y
[j−1]
k∗

))(QT
k1
⊗ In). (5.18)

Note that Ik1 ⊗ In− hRk1 ⊗ J(tp,k∗ , ~y
[j−1]
k∗

) is an upper block triangular matrix by the

definition of the tensor product. Even though the problem size is nk1, we need to

solve the problem of size n, k1 times by using backsubstitution. Computational cost

is the same as backward Euler’s method except multiplying Qk1 ⊗ In and QT
k1
⊗ In

which is O(2k2
1n) = O(n).

5.3.2 Algorithm

new scheme is a one-step method and its algorithm is completely described by

local behavior, advancing from tp to tp+1.

Comment: Fix h, k1, J.

Comment: Assume y(tp) is given. We want to find y(tp+1) = y(tp + h).

1. Find an initial guess ~y
[0]
k ∼ y(tp,k) using FE or BE for 1 ≤ k ≤ k1 by solving

(5.4).

for j = 1, · · · , J

(a) Compute the residual ~r[j−1] = rk1~y
[j−1] by (5.8);

(b) Find ~δ
[j]
k ∼ δ(tp,k) for 1 ≤ k ≤ k1 by solving (id− K̂~y[j−1])~δ[j] = ~r[j−1];

(c) Update the solution: ~y[j] = ~y[j−1] + ~δ[j].

end for

• Remark 1 . Diagonalization of Sk1 is numerically possible and would enable us

to do a parallel computing. The process is numerically unstable even for the

small k1. A detailed discussion with numerical evidence is provided in Section

5.4.3.
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• Remark 2. If the problem is a constant-coefficient, linear problem, we obtain

the collocation solution of the problem. Hence extra iteration is unnecesary.

5.3.3 Stability of the scheme

Consider the following model problem:

y′(t) = λy(t), t ∈ [0, 1],

y(0) = 1.
(5.19)

If ỹ(1) is a numerical solution of (5.19) with h = 1, then the amplification factor or

stability function Am(λ) is defined by the formula

Am(λ) = ỹ(1). (5.20)

The set {λ ∈ C : |Am(λ)| < 1} is called a stability region, and if the stability region

contains the left half plane, the method is called A-stable.

If the quadrature points {ci} are Gauss-Lobatto type points, the collocation

method based on {ci} is called a Lobatto IIIA method. It is known that Lobatto

IIIA method is A-stable [11]. The problem (5.19) is a constant-coefficient linear

problem. From Remark 2 in Section 4.3.2, the stability function is the same as the

collocation method. Hence the method suggested in this chapter is A-stable.

5.4 Numerical experiments

In the first subsection, we perform numerical experiments on an ordinary differ-

ential equations. We verify the order of accuracy and the relation between the new

scheme and the collocation method.

The numerical scheme for the ordinary differential equation could be applied to

the time-dependent partial differential equation. We choose our test example as the

Allen-Cahn equation and verify the order of accuracy.
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5.4.1 Linear ordinary differential equation

In this subsection we perform two numerical experiments. The purpose of the first

example is to observe the order of the accuracy of the scheme. Also we observe the

effect of the node distribution of the fine mesh. In the second example, we study the

relation between new scheme and the collocation method.

Our first example is a variable-coefficient linear problem. In this problem, we

observe the order of accuracy and the effect of choice of fine mesh. Consider the

following problem:

y′(t) = −(2 + t)(y − cos(2πt))− 2πsin(2πt), (5.21)

y(0) = 1. (5.22)

T = 1 with the exact solution cos(2πt). Fig. 5.1 is the result of the numerical scheme

with Legendre-Gauss-Lobatto points and k1 = 4. Note that each dotted lines are

slope 1, 3, 5, 7, 8. The first thing we can observe is that we obtain two orders at each

correction, which is proved in Section 5.3. We can also observe that maximum order

achieved is 8 = 2k1 which is the order of the accuracy of the underlying collocation

method when {ci} are chosen to be Legendre-Gauss-Lobatto points.

We perform the same experiment with different {ci} to observe the effect of fine

mesh. We choose fine mesh to be c0 = 0, c1 = 1/2, c2 = 3/4, c3 = 7/8, c4 = 1.

Fig. 5.2 is the result of the experiment. Note that each dotted lines have slopes

1, 3, 4. We can observe at first correction the order of accuracy is 3. But further

correction does not increase the order of accuracy and it is bounded by four. Same

as the previous example, it is also the order of accuracy of the collocation method.

So, Legendre-Gauss-Lobatto points can be chosen for the better performance.

To verify the relation to the collocation method we choose the following second

example:

y′(t) = −2(y − cos(2πt))− 2πsin(2πt), (5.23)

y(0) = 1, (5.24)
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Figure 5.1. Error of the computed solution of (5.21) using LGL fine mesh
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Figure 5.2. Error of the computed equation (5.21) using arbitrary fine mesh

where T = 20 with 5 Legendre-Gauss-Lobatto points (k1 = 4) and the exact solution

is cos(2πt). The expected order of accuracy is 8. Each doted lines have slope one

and eight. The 0 iteration is just the backward Euler’s method; therefore we obtain

the first order of accuracy. At one iteration we get almost the same solution as the



111

0.0039 0.0078 0.0156 0.0312 0.0625 0.125 0.25

10
−15

10
−10

10
−5

10
0

dt

er
ro

r

 

 
collocation solution
no correction
1 correction
2 correction

Figure 5.3. Error of the computed solution of (5.23)

collocation method. Since we have the collocation solution, the second iteration does

not help.

5.4.2 2D Allen-Cahn equation

In this subsection, we apply the new scheme to the Allen-Cahn equation to observe

the order of accuracy. The Allen-Cahn equation is

ut = γ(∆u− 1

ε2
(u3 − u)), x ∈ Ω, (5.25)

∂u

∂n
|∂Ω = 0.

The Allen-Cahn equation was developed by Allen and Cahn to describe the behavior

of anti-phase boundaries in crystalline solids. u is a concentration of each metallic

component and ε is the width of the interface of two alloys.

We perform the order of accuracy test with the exact solution

u(t, x, y) = cos(t)cos(πx)cos(πy),

at T = 1 with γ = ε = 1 with Ω = (−1, 1)2. The Legendre-Galerkin method was used

for the spatial discretization. Fig. 5.4 is the result and dotted lines have slopes one,
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three and five. We can observe that the expected order of accuracy is obtained as

the time step gets smaller. At each correction step, the following type of correction

equation needs to be solved:

γ

ε2
(3u2 − 1)δ − γ∆δ = r, (5.26)

∂δ

∂n
|∂Ω = 0.

(5.26) is a variable-coefficient equation so the GMRES iteration was used with a

constant-coefficient equation solver as a preconditioner. For this particular problem,

around four iterations were enough to achieve round-off error.
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Figure 5.4. Order of accuracy for 2D Allen-Cahn equation (5.25)

5.4.3 Round-off error of eigenvalue decomposition

In new scheme the Schur decomposition Sk1 = Qk1Rk1Q
T
k1

was applied to solve

the system. Since Schur decomposition results in triangular matrix Rk1 , the system

Ik1 ⊗ In − dtRk1 ⊗ J needs to be solved in sequence just like backward substitution.

But if we can do the eigenvalue decomposition to the integration matrix Sk1 , then

every subproblem is completely decoupled, allowing for the parallel computing of
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the problem. The eigenvalues of Sk1 for 2 ≤ k1 ≤ 50 obtained from numerical

computations are all distinct and Sk1 were diagonalizable. However, this approach

should be restricted to small k1 to prevent numerical instability. We can observe this

from following the numerical experiment. Fig. 5.5 is the error plot as a function of

k1 for the problem:

y′(t) = −y(t),

y(0) = 1,

with h = Tmax = 1. To see the effect of diagonalization of Sk1 , we solve the equation

with two different methods in (5.16). One is with the Schur decomposition and the

other one is with diagonalization of Sk1 . With both methods we observe the spectral

accuracy until k1 reaches 7. But as k1 grows, the error of diagonalizing method grows,

while the error of the Schur decomposition stays around the round-off error. One way

to explain this situation is to observe the condition number of the diagonalization

matrix Vk1 where Sk1 = Vk1Λk1V
−1
k1

and Λk1 is a diagonal matrix. Since the eigenvalue

decomposition matrix is not unique, we normalized Vk1 so that each column of Vk1

has L2-norm one. Fig. 5.6 is the the condition number of Vk1 as a function of k1. The

condition number grows exponentially and if k1 = 8 where V is an 8 by 8 matrix, the

conditioner number is larger than 104 and it is ill conditioned. However the Schur

decomposition gives us a unitary transform matrix which has a condition number 1

and the method is numerically stable.

5.5 Concluding remarks

In this chapter, we developed a defect correction type numerical scheme for an

ordinary differential equation. The main property of the scheme is that we could

recover order of accuracy by 2 at each correction and the cost is almost the same as

the backward Euler’s method. In terms of stability, the suggested scheme is the same

as the collocation method if the underlying problem is a linear-constant coefficient

problem. Since the Lobatto IIIA mehod is A-stable, the suggested method is A-stable.
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We verified the results by numerical experiment. This method can be also applied to

PDEs and we could obtain a formal order of accuracy for the 2D Allen-Cahn equation.

However, it should be pointed out that the suggested method is based on Schur

decomposition, hence, it is more complicated than other methods in terms of pro-

gramming.

We have tested for the Allen-Cahn equation only but it could be applied to other

time dependent PDEs.
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Appendix: A brief review of Legendre-Galerkin method

In this appendix, we review the Legendre-Galerkin method briefly on a model problem

for simple geometries.

A.1 Legendre-Galerkin method for second-order two boundary value prob-

lem

In 1d case, we consider the following model problem:

αu− β∆u = f, in Ω, (A.1)

a±u(±1) + b±u
′(±1) = 0, (A.2)

where α and β are positive real numbers and Ω = (−1, 1). The Galerkin method is

given a function f , find uN ∈ XN such that

α

∫
Ω

uNvNdx− β
∫

Ω

u′′NvNdx =

∫
Ω

INfvNdx, (A.3)

for all vN ∈ YN and INf is an interpolation of f in XN . Choosing a proper basis of XN

and YN is a crucial factor for building an efficient numerical scheme. In [21], the author

developed a basis which consists of Legendre polynomials for simple geometries.

Hence it is natural to try the following function as a basis.

φi(x) = Li(x) + aiLi+1(x) + biLi+2(x), (A.4)

for i ≥ 0. It is known that if we choose (ai, bi) to be the solution of the system

(a+ +
b+

2
(i+ 1)(i+ 2))ai + (a+ +

b+

2
(i+ 2)(i+ 3))bi = −a+ −

b+

2
i(i+ 1),

−(a− −
b−
2

(i+ 1)(i+ 2))ai + (a− −
b−
2

(i+ 2)(i+ 3))bi = −a− +
b−
2
i(i+ 1),

(A.5)

and φi satisfies (A.2). And (A.5) can be solved uniquely under some mild condition.

Details can be found in [56]. Note that in particular, if a± = 1 and b± = 0, we
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obtain ai = 0 and bi = −1. And if a± = 0 and b± = 1, we obtain, ai = 0 and

bi = −i(i + 1)/((i + 2)(i + 3)) for i ≥ 0. We consider a homogeneous boundary

condition for simplicity (i.e. a± = 1 and b± = 0). Given N , we can consider the

following space:

XN = PN ∩H1
0 (Ω) = span{φi(x)|0 ≤ i ≤ N − 2}, (A.6)

where PN is a set of polynomials with degree equal or less than N . We can consider

the following matrices:

Si,j =

∫
Ω

φj(x)′φi(x)′dx, (A.7)

Mi,j =

∫
Ω

φj(x)φi(x)dx, (A.8)

f̄i =

∫
Ω

INfφi(x)dx, (A.9)

for all 0 ≤ i, j ≤ N − 2. It is known that Legendre polynomials have the following

properties. ∫ 1

−1

Li(x)Lj(x)dx =
2

2i+ 1
δij,

(2i+ 3)Li(x) =
d

dx
(Li+2(x)− Li(x)),

(A.10)

for all i, j ≥ 0 and δij is a Kronecker delta. Using (A.10), we can find stiffness matrix

S and mass matrix M . Let

Si,j =

(4i+ 6), if i = j,

0 otherwise,
(A.11)

and

Mi,j = Mj,i =



2

2i+ 1
+

2

2i+ 5
, if i = j,

2

2i+ 5
, if i = j + 2,

0, otherwise ,

(A.12)

for all 0 ≤ i, j ≤ N − 2. Then (A.3) has the following matrix form:

(αM + βS)ū = f̄ , (A.13)
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where ū = (u0, . . . , uN−2)T . Let uN(x) =
N−2∑
i=0

uiφi(x) and u be a solution of (A.1).

Then it has following estimates

‖u− uN‖+N‖u− uN‖ ' C(s)‖u‖s, (A.14)

where u ∈ Hs and ‖ · ‖s is the norm on Hs.

A.2 Legendre-Galerkin method on second-order 2d boundary value prob-

lem

We consider the homogeneous boundary value problem:

αu− β∆u = f, in Ω, (A.15)

u|∂Ω = 0. (A.16)

The weak formulation of (A.15) is, find uN ∈ XN ,

α

∫
uNvNdxdy − β

∫
(∂xxuN + ∂yyuN)vNdxdy =

∫
INfvNdxdy, (A.17)

for all YN . We consider the following test space and trial space,

XN = (PN × PN) ∩H1
0 (Ω) = span{φi(x)φj(y)|0 ≤ i, j ≤ N − 2},

YN = XN .
(A.18)

(A.17) has the following matrix form:

αMUMT + β(SUMT +MUST ) = F, (A.19)

where

F̄i,j =

∫
Ω

INfφi(x)φj(y)dxdy, (A.20)

for all 0 ≤ i, j ≤ N − 2. Then

uN(x, y) =
N−2∑
i=0

N−2∑
j=0

Ui,jφi(x)φj(y), (A.21)
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solves (A.17).

Since Ω is separable and (A.15) is separable, we can develop an efficient method

to solve (A.19) based on a separation of variables. Consider the following generalized

eigenvalue problem:

ME = SEΛ, (A.22)

where Λ is a diagonal matrix. We can put W = E−1U(ET )−1, then we have

αMEW (ME)T + β(SEW (ME)T +MEW (SE)T ) = F. (A.23)

Substuting (A.22) to (A.23), we obtain

αSEΛWΛT (SE)T + β(SEWΛT (SE)T + SEΛW (SE)T ) = F. (A.24)

Multiplying (SE)−1 to the left and (SE)−T to the right of (A.24), we obtain

αΛWΛT + β(WΛT + ΛTW ) = G, (A.25)

where G = (SE)−1F (SE)−T . Note that (A.25) can be solved by the equation

Wi,j = Gi,j/(αΛiiΛjj + β(Λjj + Λii)), (A.26)

for all 0 ≤ i, j ≤ N − 2. And we find the solution by U = EWET . Hence the

algorithm to solve the system (A.19) is as follows:

1. Precompute : Solve generalized eigenvalue problem (A.22) and compute (SE)−1.

2. Find G = (SE)−1F (SE)−T .

3. Compute W by (A.26).

4. Obtain U = EWET .
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