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ABSTRACT

Brennan, M. Jane PhD, Purdue University, August 2015. Design and Characteriza-
tion of Biomimetic Adhesive Materials. Major Professor: Julie C. Liu.

When we engineer new materials, nature provides us with a wealth of inspira-

tion, often in the form of proteins. The blue mussel Mytilus edulis and sandcastle

worm Phragmatopoma californica produce adhesive proteins that help them to ad-

here in wet, turbulent environments [1]. The frog Notaden bennetti secretes a sticky,

proteinaceous emulsion that helps it defend against predators; the velvet worm bom-

bards a similar protein onto its prey to prevent its escape [2]. Mammals and insects

produce remarkably elastic proteins to support highly repetitive motions [3, 4]. This

work describes the design, production, and characterization of several biomimetic

materials inspired by natural adhesive proteins.

First, we evaluated the cytotoxicity of a mussel-mimetic polymer, poly[(3,4-

dihydroxystyrene)-co-styrene]. This polymer was previously shown to be strongly

adhesive with strengths similar to a variety of commercial glues. To investigate the

versatility of the polymer for biomedical applications, we evaluated the polymer cy-

totoxicity by assessing the viability, proliferation rate, and morphology of fibroblasts

cultured with polymer. We demonstrated that the polymer is highly cytocompatible

and is therefore a promising material for applications in which biological contact is

necessary.

Next, we investigated the adhesive capabilities of a system of recombinant elastin-

like polypeptides (ELPs) as well as the extrinsic and intrinsic factors influencing their

adhesion strengths. We found that pH, concentration, and crosslinking did not af-

fect the adhesion strength, whereas moisture was a critical factor. When comparing

protein designs, amino acid composition did not affect the strength as significantly
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as protein structure and length. Finally, our adhesive proteins exhibited comparable

strengths to commercially available protein-based glues. These results have strong

implications for the general understanding and future design of proteinaceous adhe-

sives.

Finally, we developed an elastin-based mussel-mimetic adhesive. The ELP is

easily over-expressed and purified from E. coli. Following enzymatic conversion to

produce adhesive DOPA residues, the protein demonstrated strong cytocompatibil-

ity, enhanced adsorption to glass, significant dry adhesion, and moderate adhesion

in a humid environment. Additionally, the protein possesses a reversible phase tran-

sition behavior that can be tuned to physiological conditions. Upon transitioning,

the protein forms a protein-rich coacervate phase that can provide measurable ad-

hesion strength after being applied underwater. This novel material has potential

applications as a surgical adhesive or a scaffold for tissue engineering.
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1. INTRODUCTION

1.1 Protein-based Adhesion

Adhesive materials can be found throughout nature. Numerous organisms pro-

duce adhesive compounds for a variety of purposes, including attachment, defense,

predation, and others. Many of these adhesives come in the form of proteins [1,5,6].

In the pursuit of better glues and a better understanding of adhesive bonding, sci-

entists have studied or mimicked many of these adhesive proteins. In other cases,

natural proteins with native functions unrelated to adhesion have been formulated to

act as novel adhesives [7, 8]. The following section will describe some of the major

types of protein-based adhesives.

1.1.1 Mussel Adhesion

Mussels produce several proteins that allow them to adhere to nearly any solid

surface, even under the duress of crashing waves. Mussels attach to their rocky

tidepools by secreting a byssus from their foot. The byssus consists of a bundle

of fibers, each with a sticky plaque at the tip [6, 9–11]. The byssus threads and

plaques are made up of six distinct foot proteins which are numbered in the order of

discovery [9, 10].

One unifying characteristic of mussel adhesive proteins (MAPs) is the high con-

centration (up to 30 mol%) of 3,4-dihydroxyphenyl-l-alanine (DOPA) residues, which

are formed by post-translational hydroxylation of tyrosines [9,10]. It has been shown

that DOPA alone can furnish adhesive properties [12], and indeed that the presence

of DOPA in MAPs is essential for strong adhesion [13].

DOPA contributes to adhesion via several different mechanisms. When DOPA is

oxidized to its reactive quinone form, it is able to crosslink with itself through radical
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chemistry to form a hardened, sclerotized material [14, 15]. In the lab, crosslinking

can be performed by enzymatic oxidation with tyrosinase [16], chemical oxidation

with periodate or hydrogen peroxide [12], or by metal chelation followed by radical

generation [17, 18]. In nature, the mussel secretory gland is acidic (pH ≈ 5); the

sudden exposure to seawater (pH ≈ 8) induces crosslinking [19]. Optimal adhesion

requires an intermediate level of DOPA crosslinking since both adhesive and cohesive

forces are necessary for a strong bond [20].

DOPA may also provide adhesive interactions by reacting with its substrate di-

rectly. Like most adhesive materials, DOPA forms very strong interactions with high

energy (highly polar) surfaces such as glass and steel but interacts very poorly with

low energy (non-polar) surfaces such as plastic [12, 21]. Atomic force microscopy

(AFM) measurements of the interactions of a single DOPA residue revealed that

DOPA formed a reversible bond with inorganic TiO2 with the highest strength ever

reported for a small biomolecule [22]. This bond was weakened significantly by oxida-

tion to the quinone form. However, with an organic amine-modified surface, DOPA

could form an irreversible covalent bond [22]. Furthermore, these experiments were

performed underwater, where the high dielectric constant of water normally inhibits

strong interactions between an adhesive and substrate [10].

Although MAPs possess strong underwater adhesive properties, the use of natural

MAPs is limited; the production of 1 g of MAP requires ∼10,000 mussels [9]. Com-

mercially, MAPs are sold as Cell-Tak (BD Biosciences) for approximately $1500 per

10 mg. As a result, many scientists have mimicked mussel adhesion by incorporating

catechol groups into synthetic polymers [23,24] or recombinant proteins [25–33].

1.1.2 Adhesives from Soy and Other Crops

In 1923, Otis Johnson patented an adhesive material formulated from soy protein

isolate [34]. Shortly thereafter, soy protein became popular as a commercial wood

glue and lost popularity only when petroleum products became inexpensive [7]. More
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recently, soy and other plant-based adhesives have shown a resurgence in popularity

because of the modern focus on environmental sustainability [8, 35].

Soy proteins are primarily globulins whose solubility shows a strong dependence

on pH, with maximum insolubility occurring at the isoelectric point (pH 4.2-4.6) [36].

Methods for the production of soy protein concentrate (64% protein content) or soy

protein isolate (92% protein content) [36] often utilize the isoelectric point; the pH

of soy flour solution is lowered to the isoelectric point, at which point the proteins

become insoluble (but not denatured) and are easily separated from contaminating

carbohydrates and lipids [37]

Adhesive bonding of soy proteins occurs largely as a result of mechanical inter-

locking with the substrate combined with molecular attractive forces (e.g., hydrogen

bonds, van der Waals forces) [7]. Because of this mechanism, adhesion strength is

highly dependent on numerous factors, including particle size, viscosity, protein struc-

ture, substrate surface roughness, and processing conditions [38]. For example, the

substrate surface should be porous but not too rough since excessive roughness will

cause cohesive failure [39]. In addition, significant adhesion strength can only be

achieved upon protein denaturation, which exposes the proteins’ internal residues to

the wood surface [7]. Denaturation is commonly achieved through alkali treatment

at pH 10 or higher [38]. This treatment also results in increased water resistance;

however, too high of a pH can reduce the useful life of the adhesive to only a few

hours [38] as well as cause alkali stain in the wood substrate [40].

Numerous studies have investigated various protein modifications to improve ad-

hesive properties such as viscosity, water resistance, economics, or worker safety [7].

Many modifications explore alternate methods of reducing protein structure, including

chemical denaturation with organic solvents, urea, guanidine hydrochloride, or sodium

dodecyl sulfate [38, 41, 42]; physical denaturation with heat or grinding [38]; or the

addition of salts or reducing agents to weaken interactions among proteins [36,43,44].

Other types of modifications include crosslinking [38, 45], treatment with enzymes

such as trypsin [46], or various chemical reactions (acylation, oxidation, etc.) [7].
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Inspiration has even come from mussels; soy proteins have been modified via the

addition of catechol groups to improve water resistance [47,48].

1.1.3 Other Natural Protein-based Adhesives

A variety of other organisms produce protein-based glues, including barnacles,

sandcastle worms, frogs, and various insects [5, 49, 50]. Adult barnacles permanently

attach to their chosen substrate by producing a cement in a layer ∼5 µm thick [51,52].

The cement layer is composed of ten proteins, several of which are highly insoluble,

and none of which have any significant homologs in current databases [51, 53]. The

fully cured cement is composed of a laminated array of matrix proteins surrounded

by a layer of calcium carbonate [54]. The mechanism for barnacle cement adhesion

remains unclear but could involve the formation of disulfide bonds [55] or amyloid

plaques [52].

Like barnacles, sandcastle worms also adhere to their environment by forming a

protein-based cement [1,56]. Unlike barnacles, however, DOPA contributes to the ad-

hesion of sandcastle worm cement [57]. Phosphoserine, another non-canonical amino

acid, is also present in sandcastle cement proteins at up to 30 mol% and is thought

to participate in adhesive bonding [57]. Other sandcastle glue proteins belong to

one of three classifications: glycine/tyrosine-rich, serine/tyrosine-rich, and histidine-

repeats [58]. The adhesive mechanism of sandcastle worm cement is thought to involve

complex coacervation triggered by a pH change upon secretion into seawater [57,59],

although more recent findings suggest a mechanism based on electrostatic interactions

between soluble macromolecules [57].

Biomimetic approaches to sandcastle worm cement have yielded success. One

approach utilized a coacervate network formed from two different methacrylamide-

based molecules to mimic DOPA- and lysine-rich proteins; upon addition of divalent

cations, wet adhesion increased to a maximum of ∼100 kPa [60]. Recently, the bond

strength of this system was improved by the addition of polymerizing polyethylene

glycol (PEG)-diacrylate (PEGDA) monomers as a second network within the first
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coacervate network [61]; adhesion strength after a 24 h cure underwater reached up

to 1.2 MPa and was directly related to the concentration of PEGDA.

An entirely different type of proteinaceous adhesive is produced by the Notaden

bennetti frog, various types of insects, and the velvet worm [2, 5]. These adhesives

are secreted as protein-rich hydrogels and are used for many purposes, including for

defense (in the case of Notaden bennetti) [62], for egg attachment (in the case of

insects such as the sheep blowfly, gum moth, ladybird, etc.) [5], or for predation (in

the case of the velvet worm) [2,5]. The protein adhesives are often secreted as viscous

solutions or emulsions that quickly dehydrate into a glassy state and thus immobilize

the target object [2]. Unlike the adhesive proteins of mussels or sandcastle worms,

however, the proteins in these adhesives do not contain DOPA, and do not often

contain other non-canonical amino acids such as hydroxyproline [2, 5]. Instead, the

unifying characteristic of these adhesives is an amino acid composition rich in glycine

and/or proline or serine; because of the over-abundance of glycine, these proteins

are also largely unstructured [2, 5, 62]. Notably, the glycine/proline-rich amino acid

composition and disordered structure are quite similar to those of elastomeric proteins

such as elastin [5, 62], the details of which will be in the next section.

1.2 Elastin

Elastin is a natural protein found in vertebrates and provides reversible elasticity

to connective tissues, including skin and elastic cartilage. Elastin is also found in

arterial walls where its role is to store elastic strain energy; it facilitates the pulsing

flow of blood which lowers blood pressure and maintains a steady flow of blood to

tissues [3, 63]. In humans, the elastin gene product is known as tropoelastin and

is characterized by repetitive hydrophobic domains and crosslinking domains. The

hydrophobic domains are dominated by repeated motifs of amino acids consisting

of valine (V), proline (P), glycine (G), alanine (A), leucine (L), and isoleucine (I)

residues. The crosslinking domains contain numerous lysine (K) residues within P-
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and A-rich regions [3]. Mature elastin consists of numerous crosslinked tropoelastin

molecules, which form an insoluble polymer [3].

Mature elastin demonstrates low stiffness (Einit = 1.1 MPa), high extensibility

(σmax = 2 MPa), and high resilience (90%) [64]. These properties are strongly affected

by hydration level [63,65]. In the body, elastin turnover is incredibly low, and as such,

elastin possesses a long lifetime of 60-80 years in humans [63]. However, elastin is not

found in situations with high-frequency loading such as that found in insect wings.

At these frequencies, the resilience of elastin drops significantly [63]. A similar effect

is seen with low hydration.

Elastin is also characterized by an inverse transition temperature, which is also

known as the lower critical solution temperature (LCST). At low temperatures, elastin

is soluble in water. Upon raising the temperature past the LCST, phase separation oc-

curs via coacervation; in this process, elastin fibers first align and then aggregate [66].

The mechanical properties of elastin change with the coacervation process. At low

temperatures or high strain rates, elastin exhibits high stiffness and low extensibility,

which are properties of a rigid polymeric glass [63]. At high temperatures or low

strain rates, elastin exhibits low stiffness and high extensibility, which are properties

of a typical rubber [63].

Structurally, elastin has been studied extensively with circular dichroism (CD),

Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, nuclear mag-

netic resonance (NMR) spectroscopy, and X-ray diffraction (XRD) [67]. Unfortu-

nately, detailed structural information is limited due to the insolubility of mature

elastin and the significant mobility of the elastin backbone [67]. However, it is known

that elastin’s structure is dynamic and composed largely of β-II turns as well as some

disordered β-sheets [68, 69]. Originally, this dynamic structure was thought to be

the source of the entropic driving force for elasticity [70–72]. However, molecular dy-

namics simulations have found that the interaction between elastin and surrounding

water molecules is more likely responsible for its elasticity as well as its transition

behavior [69]. In its soluble state, elastin’s main-chain polar atoms hydrogen bond
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with surrounding water and form a low-entropy hydration shell. Upon heating, elastin

collapses to a compact, higher-structure, lower-entropy state and expels the waters of

hydration. However, the total change in entropy is positive due to a large increase in

entropy of the surrounding water [69]. This entropic driving force is responsible for

elastin’s elastic behavior.

Because native elastin is characterized by repetitive amino acid motifs, many re-

search groups have studied elastin-like polypeptides (ELPs) constructed from those

motifs. These ELPs possess physical and mechanical properties similar to native

elastin, including the properties self-assembly and an inverse transition tempera-

ture [73,74]. One of the most common ELPs is the repeating pentapeptide poly(VPGXG),

where X indicates any amino acid except proline [73,74]. This repeated motif is based

on VPGVG, the most common repeat in native elastin [75]. The LCST of these

ELPs can be tuned by adjusting the protein molecular weight or the hydrophobicity

of residue X [76, 77]. In addition, poly(VPGXG) has been shown to be highly bio-

compatible [78] and easily over-expressed and purified from Escherichia coli [79, 80];

thus, poly(VPGXG) is an attractive choice for protein engineering.

1.3 Tissue Adhesives

Each year, more than 230 million major surgical procedures are performed world-

wide; many of these surgeries utilize sutures or staples for wound closure [81]. Al-

though sutures and staples provide advantages such as accurate closure with high

tensile strength and low dehiscence rate [82], they inherently cause damage to the

surrounding healthy tissue, require the use of local anesthetics [83], are infection-

prone [84, 85], and cause patient discomfort [86]. As such, surgical adhesives are an

attractive alternative for wound closure. Adhesives have several advantages, including

ease of application [85], low infection risk [85], and no need for anesthetics [83]. To be

an effective surgical adhesive, however, a material should, at a minimum, possess four

characteristics: biocompatibility, adhesion in wet environments, appropriate adhesive

and cohesive properties [25], and mechanical properties to match the surrounding
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tissue to ensure normal tissue function during healing. Unfortunately, there is no

adhesive currently available that fulfills all four criteria for the case of soft tissues.

Current FDA-approved surgical adhesives and sealants include cyanoacrylate-

based glues such as SurgiSeal [87] and Dermabond [88]; fibrin-based sealants such

as Tisseel and Artiss; albumin/glutaraldehyde adhesives such as BioGlue [89]; PEG-

based adhesives [90, 91]; and TissuGlu, a urethane-based adhesive [92–94]. However,

each of these adhesives possesses specific drawbacks. Although cyanoacrylates cure

in the presence of moisture, they are stiff [95] and their degradation products are

toxic [96]. Consequently, cyanoacrylates are approved only for external wound clo-

sure [97].

Fibrin-based adhesives are biocompatible and biodegradable, but their bond

strength is weak; thus, fibrin adhesives are only sufficient for use as hemostatic agents

or sealants and are insufficient for wound closure [98–100]. In addition, fibrin is de-

rived from blood, and thus there is an additional risk of bloodborne pathogen trans-

mission [101,102].

Albumin/glutaraldehyde adhesives have similar advantages to fibrin adhesives,

but due to similarly low adhesion strengths, they are approved only for hemostasis

and not wound closure [89].

PEG adhesives, on the other hand, are non-toxic, biocompatible, and exhibit

strong bonding and rapid curing [91]. They are currently approved for internal use

as a sealant for sutures and vascular grafts [90]. However, PEG adhesives must cure

in a dry environment [90], and when in a wet environment, they swell up to 400% by

volume and have the potential to cause moderate inflammatory responses [103].

The most recently approved tissue adhesive, TissuGlu, is a urethane-based adhe-

sive composed of isocyanate groups that form a high-affinity bond with nucleophiles

such as water [92]. Like cyanoacrylates, urethane-based adhesives therefore polymer-

ize upon contact with moisture while bonding with tissue through a urea bond. How-

ever, due to low overall bond strength, TissuGlu is not approved for wound closure;

instead, it is used to hold planes of tissue together to eliminate dead space for fluid
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accumulation following abdominoplasty [104]. In addition, in biocompatibility tests,

TissuGlu showed an increased risk of irritation following subcutaneous implantation,

and in clinical trials, seroma formation occurred in 22% of patients [104].

In conclusion, although there have been many recent advances in tissue adhesive

technology, the challenge of a strong, underwater bond with appropriate mechanical

properties has yet to be met. However, biomimetic approaches such as mussel-inspired

adhesion are promising solutions, and are currently under investigation by many

researchers [50,105].

1.4 Thesis Outline and Contributions

The goal of this thesis was to explore various characteristics of engineered biomimetic

adhesive materials. We show in Chapter 2 that a synthetic mussel-mimetic adhesive

polymer is highly cytocompatible and therefore has potential use for biomedical ap-

plications. In Chapter 3, we assess the effect of extrinsic and intrinsic factors on the

adhesion strength of elastomeric proteins and demonstrate their potential as adhesive

materials. In Chapter 4, we describe the development of a novel elastomeric adhe-

sive protein that can be applied underwater. For this dissertation, I designed and

produced all proteins, planned and carried out all experiments, and wrote all of the

chapters unless stated otherwise.

Chapter 2 describes the evaluation of the cytocompatibility of a mussel-mimetic

adhesive polymer, poly[(3,4-dihydroxystyrene)-co-styrene]. Following ISO standards

for in vitro evaluation of cytotoxicity, we examined the effect of the polymer alone and

polymer with crosslinker on fibroblast viability, proliferation rate, and morphology.

Cell viability was assessed with cells grown with polymer extracts, leached polymer,

and unleached polymer. Proliferation and morphology were assessed with cells on

unleached polymer only. Our data show that cell viability, proliferation rate, and

morphology are similar to cells cultured on a positive control which indicates that

the polymer is highly cytocompatible. Dr. Heather J. Meredith and Dr. Courtney L.

Jenkins (Department of Chemistry, Purdue University) prepared the polymer solu-
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tion and polymer-coated coverslips and wrote the corresponding methods and results

sections. Dr. Courtney L. Jenkins also created the schematic shown in Figure 2.1A.

Chapter 3 describes the investigation of critical factors for the bulk adhesion

strength of ELPs. Using a single ELP, the effects of pH, concentration, crosslinker,

humidity, cure time, and temperature were examined. Of these extrinsic factors,

only humidity, cure time, and cure temperature had a significant effect on protein

adhesion. Generally, moisture was detrimental to adhesion since longer cure times

and higher temperatures caused the protein solutions to dry out and resulted in in-

creased adhesion strength. The effect of intrinsic factors such as protein amino acid

composition, structure, and molecular weight were also probed. Amino acid compo-

sition did not have a strong effect on adhesion strength, but higher molecular weights

resulted in increased adhesion strength. Protein structure was also found to be im-

portant as the addition of a denaturant to a structured control protein improved

its adhesion strength, whereas it had no effect on a naturally unstructured elas-

tomeric protein. Adhesion strength of the elastomeric proteins was also found to be

equivalent or greater than two commercially available protein-based adhesives. Haefa

Mansour and Victoria Messerschmidt assisted with cloning. Sydney E. Hollingshead

developed the temperature cycling purification protocol for ELP[KEY4-48]. Michael

Laird Johnston (Department of Chemistry, Purdue University) performed the ther-

mogravimetric analysis. Dr. Connie Bonham (Campus-Wide Mass Spectrometry

Center, Purdue University) performed matrix-assisted laser desorption/ionization-

time of flight (MALDI-TOF) spectrometry. Dr. John Schulze (Molecular Structure

Facility, University of California, Davis) performed amino acid analysis.

Chapter 4 describes the development of a novel elastin-based adhesive for under-

water application. An ELP was designed to be rich in lysine and tyrosine residues.

Upon treatment with mushroom tyrosinase enzyme, the tyrosines were converted to

adhesive DOPA residues to provide wet adhesion strength reminiscent of MAPs. The

converted ELP displayed high cytocompatibility, strong adsorption to glass, and sig-

nificant dry adhesion strength (>2 MPa). In a humid environment, the converted
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ELP exhibited significantly higher adhesion strength than either the unconverted

ELP, BSA, or the fibrin sealant Tisseel. In addition, the ELP formed a coacervate in

physiological conditions; the coacervate could be dispensed underwater and provided

measureable underwater adhesion strength. Bridget Kilbride developed the protocol

for purification and performed the purification of the protein. Sydney E. Hollingshead

obtained turbidity measurements. Melissa L. Sweat (School of Chemical Engineer-

ing, Purdue University) captured videos of underwater adhesion testing. Dr. Connie

Bonham (Campus-Wide Mass Spectrometry Center, Purdue University) performed

MALDI-TOF spectrometry. Dr. John Schulze (Molecular Structure Facility, Univer-

sity of California, Davis) performed amino acid analysis.

Chapter 5 contains a summary with the major conclusions of this research. Future

directions are also outlined.
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2. CYTOCOMPATIBILITY STUDIES OF A BIOMIMETIC POLYMER WITH

SIMPLIFIED STRUCTURE AND HIGH-STRENGTH ADHESION

This chapter consists of a manuscript by Brennan MJ, Meredith HJ, Jenkins CL,

Wilker JJ, and Liu JC, prepared for submission in 2015.

2.1 Abstract

The development of wet-setting adhesives suitable for biomedical applications has

been challenging given that these materials must exhibit sufficient adhesion strengths,

clinically-relevant cure times, and biocompatibility. Biomimetic materials inspired by

mussel adhesive proteins appear to contain many of the necessary characteristics for

wet-setting adhesives. In particular, poly[(3,4-dihydroxystyrene)-co-styrene] has been

shown to be a high strength adhesive material with bonding comparable to or even

greater than several commercial glues. Herein, a thorough study on the cytocompati-

bility of this copolymer provides insights on the suitability of a mussel-mimicking ad-

hesive for applications development. The cytotoxicity of poly[(3,4-dihydroxystyrene)-

co-styrene] was evaluated through assessment of the viability, proliferation rate, and

morphology of NIH/3T3 fibroblasts when cultured with copolymer extracts or di-

rectly in contact with the copolymer adhesive. After 1 and 3 days of culture, both

the copolymer alone and copolymer cross-linked with periodate exhibited minimal

effects on cell viability. Likewise, cells cultured on the copolymer displayed prolifer-

ation rates and morphologies similar to cells on poly-L-lysine. These results indicate

that poly[(3,4-dihydroxystyrene)-co-styrene] is highly cytocompatible and therefore a

promising material for use where biological contact is important.
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2.2 Introduction

The development of materials exhibiting strong adhesive bonds in wet environ-

ments has posed challenges for decades. In the context of biomedical applications,

wet adhesion is especially difficult. In addition to maintaining a strong bond, such

a biomedical material needs to comply with numerous other requirements including

durability, [106] degradability, [96] surgically-relevant cure times, [107] and biocom-

patibility [25, 106]. Current adhesives and sealants fall short of some, if not most,

of these requirements. For example, fibrin-based sealants (e.g., Tisseel) possess high

biocompatibility and degradability but are difficult to use, require precise mixing

ratios, and fail to create bonds with relevant strengths [108, 109]. Poly(ethylene gly-

col) (PEG) sealants (e.g., SurgiSeal) demonstrate similarly low adhesion strengths

and also elicit inflammatory reactions upon swelling of the material [91]. As a re-

sult of their low adhesion strengths, these two types of materials are often used only

as sealants and hemostatic agents because they are ineffective for wound closure.

Conversely, cyanoacrylate-based adhesives (e.g., Dermabond) possess high adhesion

strengths on moist tissue, but the degradation products are highly toxic and therefore

cannot be used for internal applications [96,110].

Animals such as mussels [23, 24], geckos [111, 112], and sandcastle worms [60,

61] have inspired the development of non-toxic adhesives for wet environments. In

particular, mussels have received significant attention due to their ability to adhere in

turbulent tidal environments. The mechanism by which mussel adhesives function is

largely related to the non-canonical amino acid 3,4-dihydroxyphenylalanine (DOPA)

present at 3-30 mol % in the adhesive proteins that form the mussel plaques [9, 10].

Marine mussels are able to sequester metals such as iron from seawater and thus

enable DOPA in the plaques to undergo chelation, oxidation, and radical formation,

which creates a cross-linked, cured adhesive [113, 114]. The catechol functionality of

DOPA provides both adhesive bonding at the surface and cohesive interactions in

the bulk through cross-linking, which forms a durable adhesive even in the presence
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of water [114, 115]. Taking advantage of the material design used by these animals

has allowed biomimetic materials to be developed in the form of both recombinant

proteins [25–33,116] and synthetic polymers [23, 24].

One of the simplest mussel-mimetic polymers is poly[(3,4-dihydroxystyrene)-co-

styrene]. This copolymer is constructed from a polystyrene backbone with ran-

domly distributed pendant catechol groups and is reminiscent of mussel adhesive

proteins’ polypeptide backbone with periodic DOPA groups [117]. Past studies of

this copolymer system have provided essential information on bulk adhesion. It is

now known that ∼33 mol % of 3,4-dihydroxystyrene incorporated into poly[(3,4-

dihydroxystyrene)-co-styrene] achieves a suitable balance of adhesive and cohesive

bonds [118]. A detailed look at molecular weight, copolymer concentration, different

cross-linkers, addition of fillers, and cure time and temperature provided a formu-

lation that gave strengths greater than that of commercial adhesives (i.e., Elmer’s

Glue-All, SuperGlue, and Loctite Epoxy) on a variety of surfaces (i.e., aluminum,

polytetrafluoroethylene, polyvinylchloride, steel, and red oak) [117–120]. Even when

glued underwater, poly[(3,4-dihydroxystyrene)-co-styrene] has been shown to bond

aluminum [121].

Although much is known about the adhesive properties of

poly[(3,4-dihydroxystyrene)-co-styrene], little is known of the ways in which a bi-

ological environment would respond to this copolymer. To determine if this material

is relevant for biomedical applications such as a surgical adhesive or tissue engineer-

ing scaffold, cytocompatibility studies with poly[(3,4-dihydroxystyrene)-co-styrene]

are presented in this paper. Following ISO standard 10993-5 for the in vitro cytotox-

icity evaluation of medical devices, NIH/3T3 mouse fibroblasts were cultured with

leached copolymer, leached extracts, and in direct contact with copolymer-coated cov-

erslips (Figure 2.1A). After 1 and 3 d of culture, cell viability, proliferation rate, and

morphology were evaluated with a LIVE/DEAD assay, a bromodeoxyuridine (BrdU)

assay, and actin staining, respectively. Copolymer groups were compared to culture

on a positive control substrate, poly-l-lysine. Because the biomimetic copolymer
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group demonstrated equivalent cytocompatibility to the positive control group in all

tests, it can be considered non-cytotoxic.

2.3 Materials and Methods

Materials

All materials used in this study were purchased from Sigma-Aldrich, unless indi-

cated otherwise.

Copolymer Synthesis and Characterization

A detailed procedure for the synthesis of poly[(3,4-dihydroxystyrene)-co-styrene]

has been described in previous work [117, 118]. In short, the protected copoly-

mer, poly[(3,4-dimethoxystyrene)-co-styrene], was synthesized by anionic polymer-

ization using n-BuLi with purified styrene and 3,4-dimethoxystyrene monomers. For

the deprotection, BBr3 was used to remove the methoxy groups to give poly[(3,4-

dihydroxystyrene)-co-styrene]. The composition and purity of the copolymer was

determined by 1H NMR spectroscopy recorded on a Varian Inova-300 MHz spectrom-

eter. Molecular weights were determined by gel permeation chromatography (GPC)

using a Polymer Laboratories PL-GPC20 system. The composition of the copolymer

used in this study was 27 mol % 3,4-dihydroxystyrene and 73 mol % styrene with

a number average molecular weight (Mn) = 49,000 g/mol, weight average molecular

weight (Mw) = 73,000 g/mol, and polydispersity index (PDI) = 1.5.

Spin Coating

A spin coater (Laurell Technologies Corporation, Model WS-650MZ-23NPP) was

used to deposit a layer of poly[(3,4-dihydroxystyrene)-co-styrene] onto glass coverslips

(12-mm diameter, VWR). The copolymer was dissolved in acetone at a concentra-

tion of 0.10 g/mL . The copolymer solution (45 µL ) was statically dispensed onto

the entire area of the coverslip before spinning. For the cross-linked system, tetra-



17

butylammonium periodate [N(C4H9)4](IO4) was prepared according to a published

procedure [122] and characterized by ultraviolet-visible absorption spectroscopy, 1H

NMR spectroscopy and melting point determination. To coat the coverslips, tetra-

butylammonium periodate solution (15 µL of 0.104 g/mL in acetone) was immediately

added to the copolymer solution on the coverslip prior to spinning. These volumes

maintained a 1:3 molar ratio of cross-linker to 3,4-dihydroxystyrene. The coated

coverslips were then spun for 15 s at 3500 rpm followed by 30 s at 3000 rpm. The

coverslips were cured for 2 h at 55 °C. Thickness and roughness measurements were

determined by profilometry (Tencor Instruments, Alpha-Step 200).

Cell Culture

NIH/3T3 mouse fibroblasts (courtesy of Dr. Alyssa Panitch) were cultured at

37 °C and 5% CO2 in high-glucose Dulbecco’s Modified Eagle’s Medium (DMEM)

supplemented with 100 U/mL penicillin-streptomycin (Gibco) and 10% fetal bovine

serum (Lonza, 14-501F). Cells were subcultured upon reaching 60-80% confluency.

For experiments, cells were seeded onto coverslips in a 24-well plate (BD Falcon) at

2500 cells per cm2. As a positive control, base-washed coverslips were coated for 5 min

in 0.01% poly-l-lysine (Trevigen) then washed three times with phosphate-buffered

saline (PBS, 4.2 mM NaHPO4, 0.8 mM KH2PO4, 50 mM NaCl, Avantor Performance

Materials). Copolymer-coated coverslips were sterilized for 30 min in 70% ethanol at

37 °C and then washed three times with PBS. All images were taken with a Nikon

Ti-E C-1 Plus microscope. All groups were tested in triplicate.

LIVE/DEAD Viability Assay

The effect of the copolymer on fibroblast viability was assessed with the LIVE/DEAD

Viability/Cytotoxicity Kit (Molecular Probes). After culturing cells for either 1 or

3 d, cells were rinsed with PBS and incubated for 45 min at 37 °C with a solution of

1.5 µM ethidium homodimer-1 and 0.5 µM calcein AM (calcein acetoxymethyl ester)
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in PBS. Once staining was complete, cells were rinsed three times with PBS and

imaged. All PBS contained 0.01% CaCl2 and 0.01% MgCl2 to prevent cell detach-

ment. To ensure that the protocol was able to detect dead cells, a negative control

was created by incubating cells in filtered 70% ethanol for 30 min at 37 °C prior

to staining. For experiments with leached coverslips or copolymer extracts, leaching

was performed in accordance with the International Organization for Standardiza-

tion (ISO) standard 10993-5 for in vitro cytotoxicity evaluation of medical devices.

Briefly, coverslips were leached by incubating copolymer-coated or uncoated base-

washed coverslips with culture medium for 24 h at 37 °C before sterilization with

ethanol. Culture medium containing leached extracts was sterile-filtered before use.

Cells were imaged with a 10x objective. A minimum of 40 cells were imaged per

replicate. Cells were counted with NIS-Elements software (Nikon), and viability for

each replicate was calculated as the number of living cells divided by the total number

of cells counted.

BrdU Proliferation Assay

The effect of the copolymer on the proliferation rate of fibroblasts was determined

with a bromodeoxyuridine (BrdU) assay (Calbiochem). After culturing cells for either

1 or 3 d, BrdU label was added to all wells at a final dilution of 1:12000 and incubated

at 37 °C for 2 h. Cells were then fixed with ice-cold, filtered 70% ethanol for 5 min

and washed twice with filtered PBS. DNA denaturation was achieved by incubating

coverslips in 2 N HCl for 30 min. Cells were once again washed twice in filtered PBS

before being blocked in PBS with 1% bovine serum albumin (BSA, EMD Chemicals

2930) and 0.1% Triton X-100 for 1 h at room temperature. Coverslips were then

incubated with anti-BrdU primary antibody at 1:100 dilution for 1 h and washed

three times with PBS. Secondary antibody (Alexa Fluor 488 Goat Anti-Mouse IgG,

Molecular Probes) was applied at a 1:1000 dilution in PBS with 1% BSA for 1 h

followed by three washes with PBS. To check for non-specific labeling, control groups

either without primary or without secondary antibody were performed. All cell nuclei
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were stained with DRAQ5 (Biostatus Limited) diluted 1:500 in PBS for 30 min.

Coverslips were rinsed twice in PBS, mounted with 50% glycerol in PBS, sealed with

clear nail polish, and stored at 4 °C. Confocal imaging was performed with EZ-C1

software (Nikon) using a 20x objective. Nuclei were counted with NIS-Elements

software with a minimum of 60 cells counted per replicate. Results were expressed as

the percentage of cells stained with BrdU relative to the total number of cells.

Actin Staining

The effect of the copolymer on fibroblast morphology was assessed via actin stain-

ing. After culture on the copolymer for 1 or 3 d, cells were fixed in ice-cold acetone for

1 min and then washed three times with filtered PBS. Coverslips were then incubated

for 20 min with Alexa Fluor 488 phalloidin (Molecular Probes) at a 1:40 dilution in

PBS. Following three 10 min washes with PBS, cells were then counterstained with

1.5 µM ethidium homodimer-1 (Molecular Probes L-3224) for 45 min. Finally, cover-

slips were rinsed twice in PBS, mounted with Vectashield (Vector Laboratories), and

sealed with nail polish. Confocal imaging was performed with EZ-C1 software using

a 40x objective.

Statistical Analysis

The percent viability and percent BrdU-positive are represented as the mean ±

the standard deviation. Assumptions of normality and homogeneous variance were

first checked using the Shapiro-Wilk test and Levene’s test, respectively. Data for

direct contact LIVE/DEAD testing at 3 d did not comply with these assumptions,

so they were transformed according to the Box-Cox method. Statistically significant

groupings within a single time point were calculated using one-way analysis of variance

(ANOVA) followed by Tukey’s Honestly Significant Difference (HSD) post hoc test.

All statistical analyses were performed using Statistical Analysis Software (SAS),

version 9.4. A p-value less than or equal to α = 0.05 was considered significant.
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2.4 Results

Copolymer Synthesis and Coating

Spin coating was a simple way to prepare a thin layer of poly[(3,4-dihydroxystyrene)-

co-styrene] onto coverslips. The resulting film was uniform (average roughness of ∼0.1

µm) with an average thickness of ∼20 µm. Coverslips with poly[(3,4-dihydroxystyrene)-

co-styrene] alone and with the same copolymer cross-linked with tetrabutylammonium

periodate were evaluated. Although both samples were translucent, the copolymer

alone samples were colorless and the cross-linked samples had a yellowish-brown hue

(Figure 2.1B). After sterilization with a 70% ethanol solution, the coverslips coated

with copolymer alone became slightly opaque.

Figure 2.1. (A) Schematic of fibroblast cells cultured directly on
poly[(3,4-dihydroxystyrene)-co-styrene]-coated coverslips for evalua-
tion of cytotoxicity. (B) Photo of glass coverslips coated with copoly-
mer alone (left) and copolymer with tetrabutylammonium periodate
as the cross-linker (right).

LIVE/DEAD Viability Assay

The viability of NIH/3T3 mouse fibroblasts was tested on leached biomimetic

copolymer or a positive control (poly-l-lysine, PLL) after culturing for 1 and 3 d

(Figure 2.2A). Leaching was performed in culture medium for 24 h at 37 °C in ac-

cordance with ISO standard 10993-5 for in vitro cytotoxicity evaluation of medical

devices. After 1 d of culture, cell viabilities on PLL, copolymer alone, and cross-

linked copolymer were 99 ± 1%, 89 ± 4%, and 95 ± 2%, respectively. After 3 d, cell

viabilities were 93 ± 4%, 99 ± 1%, and 97 ± 1%, respectively. Although the viability
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on copolymer alone was lower than those on PLL and cross-linked copolymer after 1

d, viability on copolymer alone was significantly higher than that on PLL and was

similar to that on cross-linked copolymer after 3 d. Overall, cell viability on all sur-

faces was high, which demonstrates that the leached biomimetic copolymer did not

have a strong effect on cell viability.

Figure 2.2. LIVE/DEAD viability data for cells cultured on (A)
leached coverslips and (B) with leached copolymer extracts. After
both 1 and 3 d, viability in all groups is above 85%, and the copolymer
demonstrated minimal toxicity. Groups with identical letters within
a single time point are statistically similar (p > 0.05) as determined
by Tukey’s HSD post hoc test.

Because toxic agents may have been leached out of the copolymer prior to cell

seeding, the effect of leached copolymer extracts on fibroblast viability was also tested

(Figure 2.2B). After 1 d of culture, all groups had similar viabilities of 96 ± 3%, 97 ±

1%, and 98 ± 3% for PLL, copolymer alone, and cross-linked copolymer, respectively.

After 3 d, cells on PLL and copolymer alone had similar viabilities of 92 ± 4% and

93 ± 1%, which were significantly lower than the viability on cross-linked copolymer,

99 ± 1%. Once again, however, the viability of fibroblasts in all conditions was high,

which indicates that the biomimetic copolymer has low cytotoxicity.
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As a more stringent test of copolymer toxicity, a third set of viability tests was

performed with fibroblasts cultured in direct contact with unleached copolymer (Fig-

ure 2.3). Similar to previous tests, there was no difference in viability in any group

after 1 d of culture. Cell viabilities on PLL, copolymer alone, and cross-linked copoly-

mer were 99 ± 1%, 99 ± 2%, and 95 ± 1%. After 3 d, cells cultured on copolymer

demonstrated higher viability (98 ± 0.3% and 98 ± 0.4% for copolymer alone and

cross-linked copolymer, respectively) than those cultured on PLL (93 ± 3% viability).

In general, treatments with viabilities exceeding 90% are considered non-toxic, and

thus no group demonstrated any significant level of toxicity after either 1 or 3 d of

culture.

Figure 2.3. (A) Representative images and (B) quantified results for
LIVE/DEAD viability assay for cells in direct contact with unleached
copolymer. Viable cells are shown in green, whereas non-viable cell
nuclei are colored red. Scale bar represents 100 µm. After 1 d of cul-
ture, there is no difference in viability between the copolymer groups
and the positive control (PLL). After 3 d, the biomimetic copolymer
shows higher viability than PLL. Cells in all groups exhibit high via-
bility (>90%) at all time points. Groups with identical letters within
a single time point are statistically similar (p > 0.05) as determined
by Tukey’s HSD post hoc test. Poly-l-lysine data are the same as
shown in Figure 2.2A.
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BrdU Proliferation Assay

To assess the effect of the copolymer on cell proliferation rates, a BrdU assay

was performed after 1 and 3 d of culture (Figure 2.4). As seen in the representative

images in Figure 2.4A, all groups showed a similar percentage of BrdU-positive cells

at both time points, and therefore, all groups were proliferating at similar rates. The

quantified data (Figure 2.4B) show that after 1 d, 54 ± 7% of cells on PLL were

BrdU-positive compared to 51 ± 9% on copolymer alone and 40 ± 12% on cross-

linked copolymer. After 3 d, 66 ± 15% of cells on PLL were BrdU-positive. On

copolymer alone and on cross-linked copolymer, 49 ± 8% and 58 ± 2% were BrdU-

positive, respectively. No statistical differences were found between the proliferation

rates of fibroblasts on either copolymer alone or cross-linked copolymer compared to

a positive control at any time point.

Actin Staining

The overall morphology of fibroblasts cultured on the copolymer was compared

to a positive control by staining the cytoskeletal actin filaments with fluorescently

labeled phalloidin (Figure 2.5). After both 1 and 3 d of culture, cells in all groups

had similar morphology and exhibited well-organized actin fibers and long, leading

lamellae. Whether cross-linked or not, the biomimetic copolymer had no discernable

effect on fibroblast morphology compared to the positive control, PLL.

2.5 Discussion

The cytotoxicity of poly[(3,4-dihydroxystyrene)-co-styrene] was assessed by exam-

ining the viability, proliferation rate, and morphology of fibroblasts cultured in contact

with the copolymer. The copolymer consists of a polystyrene backbone with periodic

pendant catechol groups that mimic the DOPA groups of natural mussel adhesive

proteins. Previous studies with polystyrene have demonstrated strong biocompati-

bility [123–125]. An FDA-approved tri-block copolymer containing 30% polystyrene
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Figure 2.4. (A) Representative images for BrdU proliferation assay.
All cell nuclei are shown in red, and BrdU-positive nuclei are shown in
green. Scale bar represents 100 µm. (B) Quantified results for BrdU
proliferation assay. All groups show similar percentages of BrdU-
positive cells at all time points, and therefore neither copolymer group
has any effect on the proliferation rate of NIH/3T3 fibroblasts grown
in direct contact with the copolymer. Groups with identical letters
within a single time point are statistically similar (p > 0.05) as deter-
mined by Tukey’s HSD post hoc test.
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Figure 2.5. Representative images from actin staining of fibroblasts
cultured on PLL, copolymer alone, and copolymer with cross-linker.
Actin fibers are shown in green, whereas cell nuclei are shown in
red. At both 1 and 3 d, there is no obvious difference in overall
cell morphology among the groups. Fibroblasts demonstrate normal
spread morphology on all substrates. Scale bar represents 50 µm.
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(SIBS30) elicited normal capsule formation and inflammatory cell counts correspond-

ing to the lowest categorical level of toxicity after 30 and 180 d of implantation in

mice [123]. More data are available regarding the safety of polystyrene when used

for food packaging [124, 125]. In a report to the FDA, the Styrene Information and

Research Center estimates that up to 90 g of polystyrene can be consumed each

day without any adverse health risks [124]. When used in contact with food, the

U.S. Code of Federal Regulations mandates that polystyrene should contain less than

1% of unpolymerized styrene monomer [125]. Our previous NMR results suggest

that poly[(3,4-dihydroxystyrene)-co-styrene] conforms to this specification [117,118].

Taken together, the previous research on polystyrene suggests that our polystyrene-

based material should not be toxic. However, it was still critical to test our material

to ensure that the pendant catechol groups did not elicit a toxic response.

When cultured with NIH/3T3 fibroblasts, poly[(3,4-dihydroxystyrene)-co-styrene]

showed a minimal effect on the cells’ viability, proliferation rate, and morphology.

These three aspects were assessed in accordance with the recommendation of ISO

standard 10993-5 to evaluate cytotoxicity with respect to cell damage (either quanti-

tatively or qualitatively via morphology), cell growth, and aspects of cell metabolism.

Specifically, our experimental design followed the ISO guidelines of testing at time

points of >24 h with subconfluent cells cultured with sample extracts and on the

sample itself.

In the first set of experiments, an initial assessment of cytotoxicity was made by

determining cell viability when cultured on leached copolymer or with the correspond-

ing leached extracts. The LIVE/DEAD assay was chosen to provide a quantitative

assessment of cell survival by directly counting the number of viable and non-viable

cells. After 1 d, the leached copolymer alone group showed a slight decrease in viabil-

ity compared to the PLL or cross-linked copolymer, but by day three, all biomimetic

copolymer groups had statistically similar or higher viability than PLL. When cul-

turing cells with the extracts, both biomimetic copolymer groups displayed equal or
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greater viability than the PLL group at all time points. These results indicated high

cytocompatibility of the copolymer and its extracts.

From this point on, all experiments were conducted with cells cultured directly

on the copolymer (with no leaching of the copolymer), which is a more stringent

assay. The unleached direct contact LIVE/DEAD results showed equal or greater

viability on both biomimetic copolymer groups compared to the positive control,

PLL; therefore, the copolymer again demonstrates high cytocompatibility. In all of

our viability assays, the positive control group (PLL) exhibits very mild cytotoxicity

on day three of culture. Although PLL is a common cell attachment reagent, it is

also known to induce a toxic response in mammalian systems [26,126].

To ensure that poly[(3,4-dihydroxystyrene)-co-styrene] did not affect the rate of

cell proliferation or overall cell morphology, additional testing was conducted. Quan-

titative assessment of proliferation rate was determined using the BrdU assay. In

this assay, newly-synthesized DNA is labeled via incorporation of a thymidine analog

(BrdU) that can be detected with a specific antibody [127,128]. For cells cultured on

both copolymer alone and cross-linked copolymer, no difference in the percentage of

BrdU incorporated was seen compared to cells cultured on PLL at any time point.

To assess cell morphology, actin cytoskeletons were stained with fluorescently labeled

phalloidin. After both 1 and 3 d, there were no obvious qualitative differences among

the three groups, and cells showed normal elongated fibroblast morphology. Inter-

estingly, cells attached and spread on the polystyrene-based copolymer even though

fibroblasts do not normally attach well to untreated polystyrene [129]. This observed

improvement in cell attachment can most likely be attributed to the adhesive quality

of the catechol groups shown in previous studies [130–132].

Some mussel-inspired catechol-rich materials have demonstrated low levels of tox-

icity. A citrate-based adhesive with a poly(ethylene glycol) (PEG) backbone showed

minor to moderate cytotoxicity in vitro compared to unmodified PEG diacrylate so-

lutions [108]. The citrate-based polymer was presented in a concentrated pre-polymer

form and as a leached extract from the polymerized material. Mild to moderate tox-
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icity was observed and found to be directly correlated to both the soluble fraction of

the adhesive and the concentration of the sodium periodate cross-linker. At its high-

est value, the concentration of periodate ion used to cross-link the citrate adhesive

reached over twice the concentration used in the present study, which might account

for some of the disparity in observed toxicity. A catechol-modified PEG hydrogel

was similarly tested for toxicity both in vitro and in vivo [133]. In vitro testing with

leached extracts and in direct contact with the hydrogel showed very slight toxicity

compared to the control. A mussel-inspired hyperbranched poly(amino ester) polymer

also demonstrated mild toxicity in vitro; when polymer was added to the cell culture

medium, metabolic activity was reduced by ∼25% compared to a positive control

after 4 and 7 d of culture [87]. These results are in contrast to the polystyrene-based

copolymer in the present study, which showed almost no toxicity. A minimal cyto-

toxic response was also found with another PEG-DOPA hydrogel [130]. L-929 mouse

fibroblasts cultured with the leached extracts and in direct contact with the hydrogel

displayed similar metabolic activity to a control group after 1 d but significantly lower

metabolic activity after 2 and 3 d. These results contrast with our polystyrene-based

copolymer, which showed very slight toxicity after 1 d when leached, but showed no

toxicity after 3 d for all conditions. Much like our copolymer, however, morphology

of cells cultured on the PEG-DOPA hydrogel was comparable to the control after 2

d of culture directly on the gel.

Numerous mussel-inspired materials, however, show little or no cytotoxicity, much

like poly[(3,4-dihydroxystyrene)-co-styrene]. A recombinant DOPA-containing pro-

tein derived from natural mussel protein sequences has been shown to have no effect

on in vitro metabolic activity and proliferation rate over 24 h compared to a PLL con-

trol [27]. For another set of PEG-DOPA polymers, the toxicity has been thoroughly

investigated both in vitro with human fetal membranes45 and in vivo with islet trans-

plantation [134]. Fetal membranes displayed a similar percentage of apoptotic cells

compared to control groups when cultured either with leached extracts or in direct

contact with the PEG-DOPA polymer, which indicates its low cytotoxicity. When
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used as an adhesive for extrahepatic islet transplantation in mice, the PEG-DOPA

polymer elicited a minimal inflammatory response. Both of these studies utilized a

sodium periodate cross-linker but, similar to the present study, saw no adverse effects

from the cross-linker. Thus, similar to many mussel-inspired materials in the liter-

ature, the addition of catechol groups to polystyrene and the use of periodate for a

cross-linker still resulted in high cytocompatibility of this biomimetic copolymer.

2.6 Conclusions

The mussel-mimetic material, poly[(3,4-dihydroxystyrene)-co-styrene], is an ad-

hesive that provides strong bonds, sets in a wet environment, and exhibits cytocom-

patibility. In this study, the copolymer was tested for in vitro cytotoxicity following

the guidelines of ISO standard 10993-5. NIH/3T3 fibroblasts were cultured both

directly and indirectly with copolymer alone and copolymer cross-linked with tetra-

butylammonium periodate. After 1 and 3 d of culture, cell viability in response to

leached copolymer extracts, leached copolymer, and unleached copolymer was fairly

similar to that on a positive control, PLL. Also, no effect was seen on cell proliferation

rate or morphology when cells were cultured directly on the copolymer. These re-

sults establish the high cytocompatibility of poly[(3,4-dihydroxystyrene)-co-styrene].

From these promising results, future studies of this copolymer could investigate use

in applications requiring biological contact such as tissue engineering scaffolds, bone

cements, or tissue adhesives.

2.7 Acknowledgments

This work was supported by the Purdue School of Chemical Engineering and the

College of Engineering, the National Science Foundation (Awards DMR-1309787,

CHE-0952928, and a Graduate Fellowship to M.J.B.), a 3M Nontenured Faculty

Award, a Steven C. Beering Fellowship to M.J.B., and the Office of Naval Research



30

(Award N00014-13-1-0327). We thank Dr. Alyssa Panitch (Purdue University) for

her kind gift of NIH/3T3 mouse fibroblasts.



31

3. CRITICAL FACTORS FOR THE BULK ADHESION OF ELASTOMERIC

PROTEINS

This chapter consists of a manuscript by Brennan MJ, Hollingshead SE, Wilker JJ,

and Liu JC, prepared for submission in 2015.

3.1 Abstract

Many natural protein-based adhesives, such as soy protein and mussel adhesive

proteins, have been the subject of scientific and commercial interest. Recently, a vari-

ety of protein adhesives have been isolated from diverse sources such as insects, frogs,

and even squid ring teeth. Many of these protein adhesives have similar amino acid

compositions to well-studied elastomeric proteins such as elastin. Although elastin

is widely investigated as a structural biomaterial, little work has been done to as-

sess its potential as an adhesive. In this study, a recombinant system of elastin-like

polypeptides (ELPs) was created to probe the factors affecting adhesion strength.

Lap shear adhesion was used to examine the effects of extrinsic factors (pH, concen-

tration, crosslinker, humidity, cure time, and cure temperature) and intrinsic factors

(protein sequence, structure, and molecular weight). Of the extrinsic factors tested,

only humidity, cure time, and cure temperature had a significant effect on adhesion

strength. Generally, as water content was reduced, adhesion strength increased. Of

the intrinsic factors tested, protein amino acid sequence did not significantly affect

adhesion strength, but less protein structure and higher molecular weights directly

increased adhesion strength. The adhesion strengths of the proteins in this study

(>2 MPa) were comparable to or higher than the strengths of commercially available

protein-based adhesives (hide glue and fibrin sealant). These results indicate general

rules for the design of adhesives from elastomeric proteins.
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3.2 Introduction

Protein-based adhesion has been the subject of recent and historical scientific in-

terest. Soy protein was originally patented in 1923 and has been used commercially

as a renewable, low-cost wood glue for nearly a century [7, 34]. Similar adhesives

can be created from other crops, including sorghum, camelina, and canola [135]. For

these glues, adhesive performance derives primarily from the mechanical interlocking

between protein chains and the porous wood structure with contributions from hy-

drogen bonding and van der Waals forces [7]. As such, adhesion strength is directly

related to a variety of factors, including protein denaturation, glue viscosity, particle

size, and substrate physical properties [7, 136].

Mussel adhesive proteins (MAPs) have also received significant interest from the

scientific community for their ability to form adhesive bonds in wet environments [23,

24]. The wet adhesion strength of MAPs is largely due to the presence of the non-

canonical amino acid 3,4-dihydroxyphenylalanine (DOPA) [9,10,137]. DOPA provides

bulk adhesive strength through the combination of adhesive interactions with the

substrate and cohesive interactions from crosslinking [114,115]. The presence of many

charged lysine residues in MAPs has also been cited as a potential contributor to MAP

adhesion strength [12,121,138,139].

More recently, other natural protein-based adhesives have been isolated and char-

acterized. For example, the frog species Notaden bennetti secretes a sticky protein

solution as a defense mechanism [62], and the velvet worm captures its prey with a

similar protein solution [2]. A wide variety of insects also produce protein-based glues

for a number of purposes. Gum moths, blowflies, and ladybirds utilize protein glues

for egg attachment, and spittle bugs, froghoppers, and lerps produce protein-based

materials for protection [5]. If raised above their glass transition temperature, the

structural proteins from squid ring teeth also form a strong underwater adhesive [140].

Interestingly, the reported shear adhesion strengths (1 - 2 MPa) for these protein ad-

hesives are all quite similar [5,62,140]. Furthermore, many of these protein adhesives
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have similar amino acid compositions: glycine is nearly always over-represented, and

proline and serine are often present at unusually high mole percentages [2,5,62,140].

The amino acid compositions of these natural adhesive proteins are also similar

to that of elastin, an elastomeric protein renowned for its structural properties of low

stiffness, high extensibility, and high resilience [3,66,73,74]. In addition, elastin can be

produced recombinantly with high yields in Escherichia coli [73]. Recombinant design

provides for precise control over protein molecular weight and amino acid sequence;

this control allows for investigation into the effect of small protein sequence changes

on protein function [77, 141, 142]. Despite the fact that elastomeric proteins have

been widely studied as biomaterials, only a few studies have examined the adhesive

properties of elastomeric proteins [32,143].

Because of their similarities to natural protein-based adhesives, we hypothesized

that elastin-like polypeptides (ELPs) would have significant bulk adhesion strength.

Furthermore, we wanted to assess the potential of ELPs as adhesive materials and

understand the important factors contributing to the adhesive qualities of these and

other natural protein-based glues. In this study, we used a set of recombinant ELPs

with varied guest residue compositions to systematically investigate the effect of var-

ious extrinsic and intrinsic factors on the lap shear strength of protein adhesives.

3.3 Materials and Methods

Reagents

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) or Avantor

Performance Materials (Center Valley, PA) unless stated otherwise. Water was ultra-

purified with a Milli-Q ultrapurification system (Millipore, Billerica, MA).

Protein Design and Cloning

DNA sequences were designed using Geneious software (Biomatters Inc., San Fran-

cisco, CA). Complete amino acid sequences for the final protein constructs are shown
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in Figure 3.1. Predicted protein isoelectric points (pI) were estimated with Geneious

software. The grand average of hydropathicity (GRAVY), based on the scale by Kyte

and Doolitte [144], was calculated for each protein using the ExPASy ProtParam tool

(http://web.expasy.org/protparam).

The elastin-based proteins ELP[KEY4-24], ELP[KEY4-48], ELP[KEY4-96],

ELP[K2Y2V2-48], and ELP[K3Y3-48] were constructed with a cloning scheme modi-

fied from one previously developed by our lab [145]. The new scheme utilized AgeI

and AvaI restriction enzymes (New England Biolabs, Ipswich, MA) to achieve seam-

less repeats of the elastin-like sequence. Standard molecular cloning techniques were

used throughout [146].

Protein Expression

For each protein, the following bacterial expression strains were screened to iden-

tify the strain with the highest expression: Rosetta2(DE3)pLysS (EMD Chemicals,

Gibbstown, NJ), BL21(DE3)pLysS (courtesy of Dr. Chongli Yuan, Purdue Uni-

versity), BL21(DE3), and BL21-CodonPlus-(DE3)-RIPL (both courtesy of Dr. Jo

Davisson, Purdue University). The strains chosen for expression of each protein are

shown in Table 3.1. Cells were grown overnight at 37 °C in 2xYT medium containing

appropriate antibiotics.

For ELP[KEY4-48] and ELP[K3Y3-48], overnight cultures were diluted at a 1:250

ratio into a fermentor (BioFlo 110, 14 L capacity, New Brunswick Scientific, Enfield,

CT) with 10 L of Terrific Broth (TB) containing appropriate antibiotics. At an

optical density (OD) of 4-6, protein expression was induced by 2.5 mM isopropyl β-

d-1-thiogalactopyranoside (IPTG, EMD Chemicals). After culturing for an additional

1-3 h, cells were harvested by centrifugation at 8000g for 15 min at 4 °C.

For ELP[KEY4-24], ELP[KEY4-96], and ELP[K2Y2V2-48], overnight cultures were

diluted at a 1:140 ratio into 4 L baffled flasks containing 1 L of 2xYT medium with

appropriate antibiotics. Cells were cultured at 37 °C and 300 rpm. Once cell growth

had reached an OD of ∼1, protein expression was induced by 1 mM IPTG. Cells were
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then cultured for an additional 3 h and harvested by centrifugation at 3220g for 20

min at 4 °C.

Protein Purification

ELP[KEY4-48] was purified by a temperature cycling method similar to those

previously described [80]. The cell pellet was resuspended in 0.01 M sodium carbon-

ate with ∼0.1 mg each of deoxyribonuclease I, ribonuclease A, and phenylmethane-

sulfonylfluoride (PMSF). The pellet was then subjected to at least two freeze-thaw

cycles and followed by sonication with a Misonix XL-2000 (Qsonica, Newtown, CT)

for at least 90 cycles of 1 min sonication followed by 1 min cooling on ice. Next,

a hot cycle was performed to induce the protein into a coacervate state: the pH of

the cell lysate was adjusted to 8.6, heated at ∼60 °C for 45 min, and centrifuged at

11000g for 45 min at 40 °C. The pellet from the hot cycle was then subjected to a

cold cycle to resolubilize the target protein: the pellet was resuspended in 0.01 M

sodium carbonate at 3 mL per gram of pellet, adjusted to pH ∼11, cooled on ice, and

then centrifuged at 11000g for 45 min at 4 °C. Beginning with the supernatant from

this cold step, an additional hot cycle and cold cycle were performed, but the second

heated pellet was resuspended at 20 mL per gram of pellet.

ELP[K3Y3-48] was purified similarly to ELP[KEY4-48], but with both hot and

cold cycles at pH 7.4 and the addition of sodium chloride to a final concentration of

1 M during the hot cycles.

ELP[KEY4-24], ELP[KEY4-96], and ELP[K2Y2V2-48] were purified using dena-

turing nickel affinity chromatography. Cell pellets were resuspended in Buffer B (8

M urea, 100 mM NaH2PO4, 100 mM Tris-Cl, pH 8.0), subjected to at least two

freeze-thaw cycles, and sonicated as above. The cell lysate was centrifuged at 10000g

for 45 min at 4 °C to remove cell debris. The supernatant was mixed with nickel-

nitrilotriacetic acid (Ni-NTA) agarose (QIAGEN, Valencia, CA) at a concentration

of 2 mL of lysate per mL of Ni-NTA and loaded onto a chromatography column

(Flex-Column, Kimble Chase, Vineland, NJ). The column was incubated at 37 °C
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and 100 rpm for 1 h to allow the desired protein to bind to the Ni-NTA. Next, unde-

sired proteins were allowed to drip out of the column by gravity flow, and the column

was washed with 3 bed volumes of Buffer C (8 M urea, 100 mM NaH2PO4, 100 mM

Tris-Cl, 10 mM imidazole, pH 6.3). Purified protein was eluted with 5 bed volumes

of Buffer D/E (8 M urea, 100 mM NaH2PO4, 100 mM Tris-Cl, pH 5.5).

Purified proteins were dialyzed extensively against 5% acetic acid at 4 °C to remove

salts and were then lyophilized. Protein expression and purification were confirmed

by analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) and Western blot using standard techniques [147]. Proteins were detected

using an anti-T7 tag antibody conjugated to horseradish peroxidase (EMD Chem-

icals, Gibbstown, NJ) with a colorimetric substrate (3,3’,5,5’-tetramethylbenzidine,

Kirkegaard & Perry Laboratories, Gaithersburg, MD). SDS-PAGE gels were stained

with Coomassie Brilliant Blue R-250. Protein purity was assessed through densito-

metry analysis with ImageJ software (NIH, Bethesda, MD) [148]. Purified protein

molecular weights were verified by matrix-assisted laser desorption/ionization-time of

flight (MALDI-TOF) mass spectrometry (Dr. Connie Bonham, Campus-Wide Mass

Spectrometry Center, Purdue University). Briefly, the MALDI mass spectra were

obtained on a Voyager DE-Pro TOF mass spectrometer (Applied Biosystems, Fram-

ingham, MA) in the linear mode with delayed extraction. The matrix was sinapinic

acid. Positive-ion spectra were obtained with an acceleration voltage of 25000 V.

Additionally, purified protein amino acid compositions were verified by the Molecular

Structure Facility at the University of California, Davis.

Lap Shear Adhesion

Bulk lap shear adhesion bonding was performed following a modified version of

the ASTM D1002 standard, as previously described [119, 149]. Briefly, adherends

were prepared using ASTM standard D2651-01 for adherend cleaning [150]. Protein

was resuspended at 150 mg/mL in water (unless otherwise specified), and 5 µL of

this solution was spread onto each aluminum adherend. Tris(hydroxymethyl) phos-
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phine (THP, Strem Chemicals, Newburyport, MA) was used to crosslink primary

amine groups. For all crosslinked protein samples, protein was resuspended at 167

mg/mL, and crosslinker solution was added to make a final protein concentration of

150 mg/mL. The concentration of crosslinker solution was calculated based on the

ratio of hydroxyl groups to the number of primary amines in the protein. Titebond

Liquid Hide Wood Glue was tested by applying an equivalent weight of glue solids

(1.5 mg per test) based on a 41.3 wt% water content (previously determined by C. L.

Jenkins, personal communication). Tisseel (donated by Baxter Biosurgery, Deerfield,

IL) was prepared according to the manufacturer’s directions and tested by applying

an equivalent protein content (1.5 mg per test).

Adherends were overlapped with an area of 1.2 cm x 1.2 cm and were cured for

6 h at 37 °C (unless otherwise specified). Humid curing conditions were created by

covering the adherends with a layer of damp paper towels followed by a layer of plastic

wrap to prevent drying. Lap shear bond strengths were measured using an Instron

5544 Materials Testing System (Norwood, MA) with a loading rate of 2 mm/min and

a 2000 N load cell. Maximum force was divided by overlap area to determine the

adhesion strength. When investigating the effects of pH, concentration, crosslinker,

moisture, cure time, and cure temperature, 5 samples were tested for each condition.

For all other conditions, 10 samples were tested.

Circular Dichroism (CD)

The secondary structure of proteins in solution (0.1-0.2 mg/mL in water or 3

M urea) was determined using a Jasco-815 circular dichroism spectrometer (Halifax,

Nova Scotia, Canada) with the following parameters: 1 mm path length, 1 nm data

pitch, 2 nm bandwidth, 100 nm/min scanning speed. Each spectrum, including the

baseline spectra of water and 3 M urea, was averaged from five scans.
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Thermogravimetric Analysis (TGA)

The residual water content during curing at 37 °C was determined via thermogravi-

metric analysis. For each cure time tested, 20 µL of ELP[KEY4-48] at 150 mg/mL

in water was pipetted into a 6.7 mm x 2.7 mm aluminum pan (Thermal Support,

Hayesville, NC). The sample was then heated in a TGA Q50 (TA Instruments, New

Castle, DE) to 37 °C at a rate of 5 °C/min and held at 37 °C for the duration of

the cure. Finally, the sample underwent a temperature ramp to 200 °C at a rate of

20 °C/min. Water content was calculated from the weight loss that occurred near

100 °C. Throughout the experiment, the sample was purged with nitrogen gas at a

rate of 40 mL/min.

Statistical Analysis

Adhesion data are represented as the mean ± the standard deviation. First, out-

liers were removed from the data after assessment with Grubbs’ test. Next, equality

of variance was evaluated with Levene’s test. Statistically significant differences were

determined by one-way ANOVA followed by Tukey’s Honestly Significant Difference

(HSD) or the Games-Howell (for unequal variances) post hoc test. The normality

of ANOVA residuals was assessed with the Komogorov-Smirnov test. In the case

of non-normally distributed residuals, the original data were transformed according

to the Box-Cox or Johnson method before repeating the above analysis. Statistical

difference between two groups was determined with an unpaired t-test. Statistical

analyses were performed with Minitab 17 (State College, PA) or GraphPad online

software (La Jolla, CA). A p-value ≤ 0.05 was considered significant.

3.4 Results

Protein Design, Expression, and Purification

In this study, we designed and produced a system of ELPs that would allow us to

probe the effects of protein design on protein adhesion (see Figure 3.1 and Table 3.1
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for details). Three ELPs were designed with varying charged residue content, and

hydrophobic tyrosine and valine residues were used to maintain a similar average

hydrophobicity based on the scale developed by Urry [77, 151]. ELPs are named

following the method previously described by the Chilkoti lab [76,152]. Briefly, each

ELP is designated as ELP[AiBjCk-n], in which A, B, and C refer to guest residues

(X) of the VPGXG pentapeptide. Subscripts i, j, and k describe the numbers of

each guest residue used within a group of six pentapeptides, and n refers to the total

number of pentapeptides in the protein. For example, ELP[KEY4-96] contains 96

total VPGXG pentapeptides in which 1/6 of the guest residues are K, 1/6 are E, and

4/6 are Y. One of the ELPs, ELP[KEY4-n], was produced with 24, 48, and 96 total

pentapeptides to probe the effect of protein molecular weight.

Figure 3.1. Complete amino acid sequences of the ELPs used in this
study. (A) At their N-terminus, all proteins contain a T7 tag for West-
ern blot identification, a 7xHis tag for nickel column purification, and
an enterokinase cleavage site. (B) Within the elastomeric domains,
ELP guest residues are bolded, and charged residues are underlined.

Each of the proteins was cloned and then over-expressed using the T7 expres-

sion system. ELP[KEY4-48] and ELP[K3Y3-48] were purified using a temperature

cycling protocol similar to others used to purify ELPs [80]. The remaining ELPs

were purified using nickel affinity chromatography. Final purified yields are shown in

Table 3.1. Expression and purification were confirmed by SDS-PAGE and Western

blot (Supporting Information, Figure 3.10). Protein molecular weight was confirmed
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Table 3.1.
Detailed information on recombinant proteins.

Protein
Predicted Molecular Hydropathicity Expression Yield

pI Weight (kDa) (GRAVY) Strain (mg/L)a

ELP[KEY4-n]
n = 24 6.38 15.5 -0.321 BL21(DE3)pLysS 62
n = 48 6.39 26.6 -0.209 Rosetta2(DE3)pLysS 358
n = 96 6.40 48.8 -0.140 BL21(DE3) 47

ELP[K2Y2V2-48] 10.11 25.5 0.095 BL21-CodonPlus-(DE3)-RIPL 71
ELP[K3Y3-48] 10.23 26.3 -0.295 BL21(DE3)pLysS 17
aYield was calculated per liter of bacterial culture.
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by MALDI-TOF (Supporting Information, Figure 3.11), and protein composition was

confirmed by amino acid analysis (Supporting Information, Tables 3.4 - 3.8).

Effect of Extrinsic Factors on Bulk Adhesion

To examine the effect of pH, concentration, crosslinker, humidity, and cure time

and temperature, lap shear adhesion testing was performed on a single protein,

ELP[KEY4-48]. Unless stated otherwise, all extrinsic factors were tested with the

protein at 150 mg/mL, pH 3, and cured at 37 °C for 6 h with 5 replicates.

pH can affect protein charge, solubility, and secondary structure and in doing

so, could affect protein adhesive and cohesive interactions. The overall charge as a

function of pH was estimated for ELP[KEY4-48] (see Supporting Information, Fig-

ure 3.12), and the secondary structure was examined with circular dichroism (Fig-

ure 3.2A). At a pH below 4 or above 10, the protein is highly charged, is soluble in

aqueous solution, and although largely unstructured (negative peak at 198 nm), it

exhibits β-II turn structure (negative peak at 220 nm) characteristic of ELPs [153].

At intermediate pH values (∼4.5 and ∼9), ELP[KEY4-48] again displays β-II turn

structure and is moderately charged. At a relatively neutral pH, the protein is near

its isoelectric point and is completely insoluble and aggregated in aqueous solution.

As a result, we were unable to obtain spectra near neutral pH. In addition, spectra

could not be recorded at pH 12 due to the interference of high concentrations of acid

and base required.

The bulk adhesive strength of ELP[KEY4-48] was tested at pH 3, 4.5, 7, 9, 10.5,

and 12 (Figure 3.2B). Average strengths ranged from 0.65 MPa at pH 10.5 to 1.2 MPa

at pH 4.5 and 7. Despite the strong effect that pH has on protein charge, solubility,

and structure, there were no statistically significant differences in adhesion strengths

across the range of pH values tested.

The next extrinsic factor tested was protein concentration (Figure 3.3). Concen-

tration can affect the solution viscosity and bond thickness, and therefore could have

an effect on adhesion strength [154]. Although the concentration of ELP[KEY4-48]
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Figure 3.2. Effect of pH on (A) secondary structure and (B) bulk
adhesion strength of ELP[KEY4-48]. (A) CD spectrometry was per-
formed on protein solutions at pH 3, 4.5, 9, and 10.5. Secondary
structure did not vary significantly with pH. (B) Bulk adhesion test-
ing was performed with protein at pH 3, 4.5, 7, 9, 10.5, and 12. Ad-
hesion strengths did not demonstrate significant variation with pH,
as assessed by one-way ANOVA followed by Tukey’s HSD post hoc
analysis.
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was varied from 50 to 500 mg/mL, adhesion strengths at all concentrations were not

significantly different from each other.

Figure 3.3. Effect of ELP[KEY4-48] protein concentration on bulk
adhesion strength. Varying the concentration of protein from 50 to
500 mg/mL resulted in no change in the adhesion strength as assessed
by one-way ANOVA followed by Tukey’s HSD post hoc analysis.

Bulk adhesion is a balance of adhesive and cohesive interactions between the

glue and the substrate [11]. The addition of a crosslinking agent could change this

balance and thus affect the adhesion strength. THP, the crosslinker used in this

study, crosslinks primary amine groups on the protein via condensation reactions

in relatively mild reaction conditions with water as a byproduct. When testing the

effects of crosslinker on adhesion strength, the stoichiometric ratio of reactive THP

hydroxyl groups to primary amines on ELP[KEY4-48] was varied between 0x and

100x (Figure 3.4). However, there were no significant differences in bulk adhesion

strengths across the crosslinker ratios tested.

Historically, adhesion in the presence of moisture has been one of the key challenges

for glue development. To determine the effect moisture might have on the adhesion of

elastomeric proteins, ELP[KEY4-48] was cured in a highly humid environment (Fig-
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Figure 3.4. Effect of THP crosslinker on the bulk adhesion strength
of ELP[KEY4-48]. Stoichiometric crosslinker ratio (THP reactive hy-
droxyl groups to protein primary amines) was varied between 0x and
100x, but no significant changes in the adhesion strength were de-
tected as assessed by one-way ANOVA followed by Tukey’s HSD post
hoc analysis.
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ure 3.5). As might be expected, samples cured in humid conditions demonstrated

significantly reduced adhesion strength (0.19 MPa) compared with previous tests in a

dry environment (1.31 MPa). In addition, it was observed that samples cured in a hu-

mid environment retained visible moisture, whereas those cured in a dry environment

had visibly dried out upon testing.

Figure 3.5. Effect of a humid cure environment on bulk adhesion
strength. ELP[KEY4-48] was cured at 37 °C in both dry and highly
humid environments. Humid curing conditions significantly decreased
the bulk adhesion strength of the protein. The dry cure data is the
same as that shown in Figure 3.2B at pH 3. A statistically significant
difference (unpaired t-test, p < 0.05) is indicated by the asterisk.

Other curing factors such as time and temperature can also be critical to the final

adhesion strength. In this study, samples were cured in a dry environment for eight

different times (1 min, 5 min, 1 h, 3 h, 6 h, 12 h, 24 h, 7 d) at each of three different

temperatures (22 °C, 37 °C, 55 °C). Results are shown in Figure 3.6. When a two-

way ANOVA was used, both cure time and temperature were significant factors for

adhesion strength. With regards to temperature, 22 °C resulted in significantly lower

strengths than either 37 or 55 °C. With regards to time, 1 min and 5 min cure times
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were statistically equivalent, as were 12 h, 24 h, and 7d. Samples cured for 1 h, 3

h, and 6 h were significantly different from each other and from samples cured for

very short (< 1 h) or very long (> 6 h) cure times. One-way ANOVA allows us to

more closely examine the trends identified by two-way ANOVA. Similar to what was

identified in two-way ANOVA, higher temperatures increased adhesion strengths, but

this effect was only found at short cure times (≤6 h). At long cure times (≥12 h),

this phenomenon was no longer observed.

We believed that the increase in adhesion strength with cure time was most likely

related to the remaining water content in the samples. To test this hypothesis, TGA

was performed on a protein solution at the same concentration and pH (Table 3.2).

The protein solution was cured at 37 °C for 2, 5, 30, 60, and 100 min. As the cure

time at 37 °C was increased from 2 min to 100 min, the water content remaining in the

sample decreased from 75.3% to 1.3%. TGA results show that significant water loss

occurs over time at 37 °C; however, the time scale of water loss does not match that

seen in lap shear adhesion, and this discrepancy is most likely due to the differences

in exposed surface area. Combined with the adhesion results from a humid cure,

the TGA results demonstrate that water loss is likely responsible for the increase in

adhesion strength with cure time and temperature.

Table 3.2.
Thermogravimetric analysis results.

Cure Time Remaining Water
(min) Content (%)

2 75.3
5 71.4
30 19.5
60 2.8
100 1.3
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Figure 3.6. Effect of cure time and temperature on the bulk adhe-
sion of ELP[KEY4-48]. Adhesion strengths vs. cure times are shown
at (A) 22, (B) 37, and (C) 55 °C. Groups with identical letters are
statistically similar (p > 0.05) as determined by one-way ANOVA
followed by Tukey’s HSD post hoc analysis. (D) The same data are
grouped by cure time. Groups that share a letter are statistically
similar (p > 0.05) as determined by a one-way ANOVA (performed
within a single time point) followed by either Tukey’s HSD or the
Games-Howell post hoc test. Adhesion strength increases with cure
time and temperature up to 6-12 h, after which adhesion strength
remains constant at all temperatures. Two-way ANOVA results indi-
cate that the relative adhesion strengths vary according to 22 °C <
37, 55 °C and 1 min, 5 min < 1 h < 3 h < 6 h < 12 h, 24 h, 7 d.
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Effect of Intrinsic Factors on Bulk Adhesion

To examine the effect of amino acid composition, structure, and molecular weight,

lap shear adhesion testing was performed using different recombinant proteins. Unless

stated otherwise, all intrinsic factors were tested with 10 replicates of 150 mg/mL of

protein cured at 37 °C for 24 h. These cure conditions were based on the optimum

found from the extrinsic factor tests.

Three ELPs were used to elucidate the effect of amino acid composition on bulk

adhesion strength: ELP[KEY4-48], ELP[K3Y3-48], and ELP[K2Y2V2-48]. The three

ELPs have similar hydrophobicities based on the scale by Urry [77,151], but they have

different numbers of charged residues (i.e., lysine and glutamic acid), which results in

an overall sequence difference of ∼10%. To control for the factor of size, all of these

proteins have approximately the same molecular weight (∼26 kDa). Bulk adhesion

strengths of these proteins are shown in Figure 3.7. All of the ELPs have statistically

similar adhesion strengths.

Figure 3.7. Effect of protein amino acid sequence on the bulk adhesion
strength. Despite a ∼10% variation in protein sequence, all of the
ELPs possessed similar adhesion strengths as assessed by one-way
ANOVA followed by Tukey’s HSD post hoc analysis.
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Based on previous work with soy protein adhesives, the addition of a denaturant

could increase adhesion strength due to disruption of protein structure [41]. The effect

of protein structure on bulk adhesion was examined by the addition of a denaturant (3

M urea) to ELP[KEY4-48] and BSA, a folded protein control. Because a denaturant

could have more impact on a structured protein than an unstructured one, BSA

was used as a control. As seen in Figure 3.8, the presence of 3 M urea significantly

increased the adhesion strength of BSA; however, even with the enhancement, BSA

was still significantly weaker than ELP[KEY4-48] alone. Urea did not have an effect

on the strength of ELP[KEY4-48].

Figure 3.8. Effect of a denaturant (3 M urea) on bulk adhesion
strength. The adhesion strength of the highly structured BSA pro-
tein was compared with the relatively unstructured ELP[KEY4-48]
protein. The addition of denaturant had a highly positive effect on
the adhesion strength of BSA, whereas it had no effect on the ELP.
Statistically significant differences (unpaired t-test, p < 0.05) are in-
dicated by an asterisk.

The final factor investigated in this study was the effect of protein molecular

weight, or length, on bulk adhesion strength (Figure 3.9). The protein ELP[KEY4-n]

was produced with 24, 48, and 96 repeats (15.5, 26.6, and 48.8 kDa, respectively)
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to directly assess the effect of molecular weight on adhesion strength. Adhesion

strength of ELPs improved with increasing molecular weight. Furthermore, a 1:1:1

molar ratio (keeping the total mass constant) of the three protein sizes was also tested

to determine the effect of a mixture of molecular weights since this strategy improved

adhesion strength in a previous study with a mussel-mimetic polymer [119]. The

mixture of molecular weights exhibited similar adhesion strength to the proteins with

48 and 96 pentapeptides.

Figure 3.9. Effect of protein molecular weight on bulk adhesion
strength. The adhesion strength of ELP[KEY4-n] with 24, 48, and 96
pentapeptides was tested. To see the effect of a mixture of molecu-
lar weights, a 1:1:1 molar ratio of the three weights was also tested.
Generally, adhesion strength increased with molecular weight. The
mixture of molecular weights resulted in a similar adhesion strength
to that of either of the two longest proteins tested alone. Groups with
identical letters are statistically similar (p > 0.05) as determined by
one-way ANOVA followed by Tukey’s HSD post hoc analysis.
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Comparison to Commercial Adhesives

To put these results in broader context, the adhesion strength of commercial

protein-based adhesives was compared with that of our proteins. Two commercial

adhesives were chosen for comparison: Titebond Liquid Hide Wood Glue and Tisseel

fibrin sealant. For each adhesive, total protein mass was kept consistent with our

testing (i.e., ∼1.5 mg total protein per test). Results are shown in Table 3.3. The

adhesion strength of Hide Glue was ∼2 MPa, which is similar to the highest strength

measured in this study using the ELP[KEY4] 1:1:1 molar ratio (2.6 MPa). The

adhesion strength of Tisseel was significantly lower, however, at an average strength

of 0.7 MPa.

Table 3.3.
Lap shear adhesion of recombinant elastomeric proteins compared
with commercial adhesives.

Adhesive
Strength ± Standard

Deviation (MPa)a

Hide Glue 1.9±1.1A

Tisseel 0.7±0.3B

ELP[KEY4] 1:1:1 Ratiob 2.6±0.8A

aGroups with identical superscript capital letters are statistically similar

(p > 0.05) as determined by one-way ANOVA followed by the Games-Howell

post hoc analysis.
bELP data is the same as in Figure 3.9.

3.5 Discussion

Nature has created numerous protein-based glues for a wide variety of purposes.

Interestingly, many of these protein adhesives have similar adhesion strengths and

amino acid contents [2, 5, 62, 140]. In this study, we systematically probed poten-

tial factors critical to protein-based adhesion strength to: 1) better understand the

function of these adhesives in nature and 2) aid in the design of future protein-based
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adhesives. We approached this problem by designing a system of recombinant ELPs

since these proteins have similar amino acid compositions to natural protein glues

and have been widely studied as structural biomaterials [2,5,62,73,140]. In addition,

the use of recombinant proteins allows us to have precise control over sequence and

molecular weight. Using these proteins, we examined the effect of various extrinsic

and intrinsic factors on lap shear adhesion strength.

We first investigated the effect of extrinsic factors on the adhesion of a single

protein, ELP[KEY4-48]. Our results suggest that neither pH nor concentration con-

tributes to adhesion strength in any significant fashion despite the fact that varia-

tions in pH affect protein surface charge, structure, and solubility (see Figures 3.2A

and 3.12) and variations in concentration affect solution viscosity and bond thick-

ness [154]. In the literature, concentration is often a factor in adhesion strength,

whereas the contribution of pH to protein-based adhesion is mixed.

pH is highly critical to soy protein adhesives [36,38,40]. When formulating the ad-

hesive, the processing pH affects protein solubility and therefore the product formed.

When applying the glue, a moderately high pH leads to protein hydrolysis and in-

creased adhesion strength [7]. An excessively high pH negatively affects the adhesive

properties of soy, however [38,40].

The changes in protein properties resulting from pH can also affect the interactions

between protein and substrate and thereby affect the adhesive bond. For example, the

adsorption of a DOPA-less mussel adhesive protein varied greatly between pH 3 and

5.5 [155]. In general, adsorption of other proteins is highly dependent on pH [156].

On the other hand, adjusting the pH from 4 to 11 did not have an effect on the single

molecule adhesion of a silk-based protein [157].

Other adhesive systems suggest that protein concentration should affect adhesion

strength. For a synthetic mussel-mimetic polymer, increasing the concentration from

75 mg/mL to 1.2 g/mL led to a significant increase in adhesion strength [120]. The

increase in strength was attributed to an increase in viscosity, which can affect bond

thickness and resulting strength [154]. Viscosity and concentration are also central
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to soy protein adhesion. Strength increases up to an optimal concentration of ∼100

mg/mL before decreasing at a concentration of ∼140 mg/mL [158], and viscosity

affects adhesion strength by altering the interaction between soy protein and its sub-

strate [36, 38,158].

The use of a crosslinker was also thought to be potentially important because bulk

adhesion strength is dependent on a balance between adhesive and cohesive forces [20].

A crosslinking agent can induce greater protein-protein interactions and thus theoret-

ically reduce the possible protein-substrate interactions. In our recombinant protein

system, however, varying the crosslinker ratio from 0x to 100x did not affect the

adhesion strength of ELP[KEY4-48]. In contrast, the addition of a crosslinker has a

strong effect on adhesion strength in systems that utilize DOPA [116, 120, 159, 160].

Crosslinking agents have also been used to improve the adhesive properties of soy

protein adhesives [7, 38, 45]. Notably, however, the adhesive proteins derived from

the frog Notaden bennetti display no evidence of crosslinking as part of the curing

process [62].

The single most important extrinsic factor for our protein adhesives was mois-

ture. When cured in a humid environment, the adhesion strength of ELP[KEY4-48]

decreased by a factor greater than 4. When cure time and temperature were var-

ied, adhesion strength increased with time and temperature until it reached a stable

optimum around ∼2 MPa; thermogravimetric analysis suggests that the increase in

strength is directly related to residual water content. These results are not unex-

pected; with few exceptions [140], adhesion in wet environments is nearly always

weaker than in a dry environment and remains one of the greatest challenges for

adhesive engineering. For example, proteinaceous glue from Notaden bennetti also

produced optimum strengths of ∼1.7 MPa when completely dried [62]. It should be

noted, however, that final adhesion strength of our protein was not related to the

cure temperature. This result is similar to that with a mussel-mimetic recombinant

protein [116] but quite distinct from that with a mussel-mimetic polymer [120]. Soy

protein adhesives demonstrate varying responses to cure temperature; in one study,



54

increasing the cure temperature from 25 °C to 100 °C increased the strength from

∼1.5 to ∼2 MPa [158], whereas another study found that varying the temperature

between 120 °C and 160 °C had no effect on strength [161].

Our recombinant protein system also allowed us to examine the effect of factors

intrinsic to the proteins themselves, including amino acid composition, structure, and

molecular weight. To probe the effect of small changes in protein sequence, we com-

pared the bulk adhesion of several ELPs whose guest residues varied in their content

of charged (lysine, glutamic acid) and hydrophobic (tyrosine, valine) residues while

maintaining similar overall hydrophobicity. The ELP sequences differed by ∼10%

and varied in their isoelectric points from 6.38 to 10.23. However, there was lit-

tle difference in adhesion strength. A similar effect was seen with silk-elastin-like

polypeptides [143]. Cysteine, glutamic acid, and tyrosine were each over-represented

in different constructs, but there was no difference in protein surface adhesion as

measured by a tape peel test. Likewise, other natural adhesive proteins demonstrate

strong adhesion despite large variations in amino acid composition and overall hy-

drophobicity [2, 5, 62, 140].

However, other types of protein adhesives have noted a strong influence of amino

acid composition. For example, numerous studies of mussel-mimetic systems have

noted the potential importance of lysine residues in MAP adhesion [12,121,138,139].

In one study, increasing the cation content of a synthetic mussel-mimetic polymer

from 0% to 7% increased the dry adhesion strength from 2.4 MPa to 2.8 MPa and

doubled the underwater adhesion strength to a maximum value of 0.4 MPa [121].

Although hydrophilic lysine residues are thought to improve adhesion in MAPs, the

adhesion strength of soy and sorghum adhesives has been correlated with increased

hydrophobicity and hydrophobic amino acid content; it is thought that these residues

aid in repelling water from the adhesive bond [41,162].

Although amino acid composition varies among many natural adhesive proteins,

many of these adhesives are unified by the over-representation of glycine, proline,

and/or serine [2,5,62,140]. Because glycine is over-represented in many of these natu-
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ral adhesive proteins, many of them also lack significant secondary structure [2,62,163]

and are thus similar to ELPs [153]. To determine the effect that protein structure

might have on adhesion strength, we compared the adhesion strength of BSA and

an ELP dissolved in either water or 3 M urea. As shown by CD (Figure 3.2A),

ELP[KEY4-48] is largely unstructured (negative peak at 198 nm) but possesses slight

secondary structure in the form of β-II turns (negative peak at 220 nm). In con-

trast, BSA is a highly structured globular protein. The addition of 3 M urea to

BSA resulted in a significant improvement in adhesion strength, whereas it had no

effect on the adhesion strength of ELP[KEY4-48]. The BSA results match studies

performed with soy adhesives. In general, denaturation of soy proteins is required to

produce significant adhesion strength [7, 36]. One of the most effective methods of

soy protein denaturation is alkali treatment [40], although other methods have been

used, including sodium dodecyl sulfate, sodium dodecylbenezene sulfonate, urea, and

guanidine hydrochloride [41,42,164]. In one study, the adhesion strength of soy pro-

tein increased with denaturant concentration up to an optimum concentration of 3 M

urea or 1 M guanidine hydrochloride; very high concentrations of either denaturant (8

M and 3 M, respectively) resulted in reduced adhesion strength [41]. Similar results

were observed in another study: partial denaturation of soy protein with 1 M urea

increased adhesion strength, whereas further denaturation with 3 M urea reduced

adhesion strength [164]. Altogether, these results indicate that unstructured proteins

may be beneficial to protein-based adhesion.

The final factor examined in this study was the effect of protein molecular weight.

We produced one of our ELPs, ELP[KEY4-n], with n = 24, 48, or 96 elastin-like

pentapeptides, which resulted in proteins of three different molecular weights: 15.5

kDa, 26.6 kDa, and 48.8 kDa, respectively. The adhesion strength of these proteins

increased with protein molecular weight. This result is similar to numerous other

adhesive systems: poly(dimethylsiloxanes) (tested up to 68,000 g/mol) [165, 166], a

mussel-mimetic polymer (tested up to 100,000 g/mol) [119], silk-elastin-like polypep-

tides (tested up to 130 kDa) [143], and trypsinized soy protein isolate (mixtures of
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proteins with molecular weights ≤ 200 kDa) [136]. The bond strength enhancement

is thought to be related to increased chain entanglement and elongation prior to

breaking [119, 166, 167]. On the other hand, another study with soy protein adhe-

sives showed increased adhesion strength after treatment with the protease trypsin,

which should have reduced the average molecular weight of the soy proteins [46].

In addition, epoxidized natural rubber [168, 169] and poly(vinyl alcohol) [170, 171]

demonstrated optimum adhesion at intermediate molecular weights (50,000 g/mol

and 100,000 g/mol, respectively), but this result may be due to increased surface

wetting [166,169].

Because bonding derives from a balance between wettability and strength [168,

169], optimum conditions could result from a blend of molecular weights [119]. In na-

ture, protein adhesives from insects and amphibians are often a mixture of molecular

weights [2,5,62]. Additionally, mussels are known to adhere through a spatially orga-

nized combination of six adhesive proteins of varying molecular weights, and proteins

with lower molecular weights are found closer to the adhesive interface [6]. When

this idea was applied to a synthetic mussel-mimetic polymer, a blend of molecular

weights possessed an adhesion strength similar to the average strength of the indi-

vidual components [119]. We investigated how a similar approach would affect the

adhesion strength of our protein adhesives. We mixed the three molecular weights of

ELP[KEY4-n] in a 1:1:1 molar ratio. Unlike the mussel-mimetic polymer, however, we

did not see a strength corresponding to the strength of the average molecular weight;

instead, the blended protein mixture demonstrated equivalent strength to that of the

two largest molecular weight proteins alone.

To bring greater context to our results, we also compared the adhesion strength

of our proteins with those of two commercial protein adhesives: a wood glue derived

from animal hide and Tisseel, a fibrin-based surgical sealant. When tested in iden-

tical conditions with an equivalent mass of protein per test, our elastomeric proteins

demonstrated equivalent adhesion strength to that of hide glue and superior adhe-

sion strength to that of Tisseel. From this work, it can be said that unstructured
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ELPs are able to produce significant adhesion strength that rivals commercial glues

and that these protein adhesives are not affected by variations in pH, concentration,

crosslinking, or sequence.

3.6 Conclusions

In this work, we examined the potential for elastomeric proteins to be used as ad-

hesive materials. By using a system of ELPs, we were able to probe the critical factors

related to adhesion strength. We found that for a single protein, moisture content

was a more significant factor than pH, concentration, or crosslinking. In terms of pro-

tein design, protein length and structure had the most significant effect on adhesion

strength. Finally, our proteins demonstrated significant adhesion strengths equivalent

to or greater than two commercially available protein-based adhesives. These results

have strong implications for the general understanding of natural and recombinant

protein-based adhesion and for the design of future protein-based adhesives.
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3.8 Supporting Information

Figure 3.10. SDS-PAGE gels and Western blots showing expression
and purified protein samples for each protein in this study. Lanes
1-3 correspond to SDS-PAGE gels, whereas lanes 4-6 correspond to
Western blots. Lanes 1 and 4 show culture samples prior to induction
of expression with IPTG. Lanes 2 and 5 show culture samples at
harvest with over-expressed proteins. Lanes 3 and 6 show purified
protein at ∼1 mg/mL. Protein standard bands are labeled with their
weight in kDa. The expected molecular weights of the proteins are
shown in Table 3.1.
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Figure 3.11. MALDI-TOF spectra of the proteins used in this study.
Spectra for all proteins exhibited peaks within 0.13% of the expected
protein molecular weights. Many spectra also contained the doubly
charged ion peak, which appears at ∼50% of the protein expected
molecular weight. In addition, the spectrum for ELP[KEY4-24] ex-
hibits a peak at twice the expected molecular weight corresponding
to a protein dimer.
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Table 3.4.
Amino acid analysis of ELP[KEY4-24].

Amino Acid Observed mol % Expected mol %

ASX 4.00 3.90
THR 1.33 1.30
SER 0.65 0.65
GLX 4.42 4.55
PRO 15.83 16.23
GLY 34.57 34.42
ALA 1.40 1.30
VAL 15.72 16.23
ILE 0.04 0.00
LEU 2.01 1.95
TYR 10.40 10.39
PHE 0.00 0.00
HIS 4.56 4.55
LYS 3.59 3.25
ARG 1.47 1.30

Table 3.5.
Amino acid analysis of ELP[KEY4-48].

Amino Acid Observed mol % Expected mol %

ASX 3.41 2.17
THR 1.42 0.73
SER 1.64 0.36
GLX 5.49 4.01
PRO 16.27 17.88
GLY 32.91 36.86
ALA 2.02 0.73
VAL 15.26 17.88
ILE 0.44 0.00
LEU 2.14 1.09
TYR 10.20 11.68
PHE 0.53 0.00
HIS 2.68 2.55
LYS 3.83 3.28
ARG 1.67 0.73
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Table 3.6.
Amino acid analysis of ELP[KEY4-96].

Amino Acid Observed mol % Expected mol %

ASX 1.77 1.17
THR 0.75 0.39
SER 0.46 0.19
GLX 3.90 3.70
PRO 17.93 18.87
GLY 37.44 38.33
ALA 0.89 0.39
VAL 17.70 18.87
ILE 0.19 0.00
LEU 0.99 0.58
TYR 11.68 12.45
PHE 0.06 0.00
HIS 1.72 1.36
LYS 3.72 3.31
ARG 0.82 0.39

Table 3.7.
Amino acid analysis of ELP[K2Y2V2-48].

Amino Acid Observed mol % Expected mol %

ASX 2.45 2.19
THR 0.84 0.73
SER 0.41 0.36
GLX 1.15 1.09
PRO 17.53 17.88
GLY 37.13 36.86
ALA 0.84 0.73
VAL 22.74 23.72
ILE 0.05 0.00
LEU 1.17 1.09
TYR 5.72 5.84
PHE 0.00 0.00
HIS 2.70 2.55
LYS 6.45 6.20
ARG 0.80 0.73
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Table 3.8.
Amino acid analysis of ELP[K3Y3-48].

Amino Acid Observed mol % Expected mol %

ASX 2.48 2.19
THR 0.93 0.73
SER 0.48 0.36
GLX 1.44 1.09
PRO 17.20 17.88
GLY 36.48 36.86
ALA 1.13 0.73
VAL 17.18 17.88
ILE 0.24 0.00
LEU 1.26 1.09
TYR 8.39 8.76
PHE 0.17 0.00
HIS 2.17 2.55
LYS 9.65 9.12
ARG 0.80 0.73

Figure 3.12. Estimated net charge vs. pH for ELP[KEY4-48]. An
online calculator (available at http://protcalc.sourceforge.net/) was
used to estimate charge based on the pKa values of the amino acids.
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4. A BIOINSPIRED ELASTIN-BASED PROTEIN AS A CYTOCOMPATIBLE

UNDERWATER ADHESIVE

This chapter consists of a manuscript by Brennan MJ, Kilbride BF, Wilker JJ, and

Liu JC, prepared for submission in 2015.

4.1 Abstract

The development of adhesives that can be applied and bond underwater is a signif-

icant challenge for materials engineering. When the adhesive is intended for biomed-

ical applications, further criteria, such as biocompatibility, must be met. Current

biomedical adhesive technologies do not meet these needs. In response, we designed

a bioinspired adhesive material that shows promise to achieve biocompatible under-

water adhesion with environmentally responsive, or “smart”, behavior. The material,

ELY16, is constructed from an elastin-like polypeptide (ELP) that can be produced in

high yields from Escherichia coli and coacervate in response to environmental factors

such as temperature, pH, and salinity. To confer wet adhesion, we utilized design prin-

ciples from marine organisms such as mussels and sandcastle worms. When expressed,

ELY16 is rich in tyrosine; upon modification with tyrosinase to form mELY16, the tyro-

sine residues are converted to 3,4-dihydroxyphenylalanine (DOPA). Both ELY16 and

mELY16 exhibit cytocompatibility and significant dry adhesion strength (>2 MPa).

Modification with DOPA increases protein adsorption to glass and provides adhesion

strength in a highly humid environment (∼250 kPa). Furthermore, our ELP exhibits

a tunable phase transition behavior that can be formulated to coacervate in physio-

logical conditions and provides a convenient mechanism for application underwater.

Finally, mELY16 possessed significantly higher adhesion strength in dry, humid, and
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underwater environments compared with a commercially available fibrin sealant. In

conclusion, our ELP shows great potential as a new “smart” underwater adhesive.

4.2 Introduction

There has been a wealth of recent interest in the development of adhesive mate-

rials that function in wet or underwater environments. In particular, much of this

focus has been placed on adhesive development for biomedical applications, as a suit-

able biomedical adhesive could have an immense impact on health and the economy.

Each year, over 230 million major surgeries are performed worldwide [81], and over

12 million traumatic wounds are treated in the U.S. alone [172]. Approximately 60%

of these wounds are closed using mechanical methods such as sutures and staples [50].

Sutures and staples have several disadvantages relative to adhesives, including patient

discomfort [86], higher risk of infection [84,85], and the inherent damage to surround-

ing healthy tissue. With the aid of developments in adhesive technology, it has been

estimated that by 2017, hemostats, sealants, and adhesives could comprise a market

share of $38 billion [50].

Current FDA-approved adhesives and sealants face several challenges. First, nu-

merous adhesives exhibit toxic characteristics. For example, cyanoacrylate-based ad-

hesives like Dermabond and SurgiSeal can only be applied topically due to carcino-

genic degradation products [96,97]. Fibrin sealants like Tisseel and Artiss are derived

from blood sources and therefore carry the potential for bloodborne pathogen trans-

mission [101, 102]. Poly(ethylene glycol) (PEG) adhesives are approved as a suture

sealant but, due to intense swelling when wet, have the potential to cause moderate

inflammatory responses [103]. TissuGlu, a recently approved urethane-based adhe-

sive, showed increased risk of irritation following subcutaneous implantation, and,

in clinical trials, seroma formation occurred in 22% of patients [104]. More impor-

tant, however, is that most of these adhesives do not possess strong adhesion in

an excessively wet environment and are not approved for application in wound clo-
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sure [90, 98–100, 104]. In fact, many of these materials specifically advise to dry the

application area as much as possible [90,173].

In approaching the challenge of developing a strong adhesive for wet applications,

many researchers have been inspired by natural glues. Specifically, underwater appli-

cation and bonding has been demonstrated with materials based on organisms such as

sandcastle worms [60,61] and mussels [121]. Both of these organisms produce proteins

containing the non-canonical amino acid 3,4-dihydroxyphenylalanine (DOPA), which

has been shown to provide adhesion strength, even in wet environments [11, 12]. In

the case of a mussel-mimetic polymer, underwater application was achieved by dis-

solving the polymer in a chloroform/methanol solution to maintain phase separation

from the aqueous environment [121]. The use of toxic organic solvents, however, is

not appropriate for biomedical applications.

An alternative method for underwater application uses the phenomenon of coac-

ervation, a form of aqueous liquid-liquid phase separation that is implicated in the

adhesion mechanism of sandcastle worms, caddisfly larvae, and mussels [57]. Adhe-

sive coacervate materials mimicking both mussels [174] and sandcastle worms [60,61]

have been developed. To form these coacervates, multiple components needed to be

mixed in specific conditions and thus limited their overall applicability.

On the other hand, elastin-like polypeptides (ELPs) possess the innate ability to

coacervate without the need for additional components [66]. Instead of relying on the

condensation of oppositely charged polyelectrolytes (as in the sandcastle worm) [57],

the phase transition behavior of elastin derives from the entropically favored rear-

rangement of water that occurs when elastin is heated above its lower critical solution

temperature (LCST) [69]. Additionally, ELPs are “smart” materials; their LCST is

highly tunable and can be designed to respond to specific environmental factors such

as temperature, pH, and salt concentration [73]. Furthermore, ELPs can be pro-

duced recombinantly and in high yields in E. coli [73, 74] and exhibit outstanding

biocompatibility [78] due to sequence homology with native human elastin. Finally,

crosslinked ELPs exhibit mechanical properties similar to native elastin: low stiffness,
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high extensibility, and high resilience [3, 66, 73, 74]. These mechanical properties are

attractive due to their similarities to the properties of soft tissues [73]. Furthermore,

the properties can be modulated over a broad range (0.1 - 1 MPa) to match specific

tissue types by varying the molecular weight between crosslinks and the extent of

crosslinking [74].

In this study, we report the development of a mussel-inspired adhesive ELP (Fig-

ure 4.1A). To confer wet adhesion strength on the expressed protein, tyrosine residues

are enzymatically converted to DOPA. The DOPA-rich material exhibits cytocom-

patibility, strong adsorption to glass, significant dry adhesion strength, and moderate

adhesion strength in a humid environment. Furthermore, the ELP can tunably and

reversibly coacervate near physiological conditions and is thus a convenient adhesive

material for underwater applications.

4.3 Materials and Methods

Reagents

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) or Avantor

Performance Materials (Center Valley, PA) unless stated otherwise. Water was ultra-

purified with a Milli-Q ultrapurification system (Millipore, Billerica, MA). NIH/3T3

fibroblasts were a generous gift from Dr. Alyssa Panitch (Purdue University). Tisseel

was generously donated by Baxter BioSurgery (Deerfield, IL).

Protein Design and Cloning

The ELP called ELY16 was designed with Geneious software (Biomatters Inc.,

San Francisco, CA) using the repeated amino acid sequence Val-Pro-Gly-Xaa-Gly;

the guest residues Xaa were evenly divided among Tyr, Lys, and Val. The com-

plete amino acid sequence for full-length ELY16 is shown in Figure 4.1B. Cloning was

performed using standard techniques [146] and a scheme modified from one previ-

ously developed by our lab [145]. The new scheme utilized AgeI and AvaI restriction
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enzymes (New England Biolabs, Ipswich, MA) to achieve seamless repeats of the

elastin-like sequence.

Protein Expression and Purification

The recombinant plasmid encoding ELY16 was transformed into

the Rosetta2(DE3)pLysS E. coli expression host(EMD Chemicals, Gibbstown, NJ).

Bacterial colonies were inoculated into 2xYT medium containing appropriate antibi-

otics and grown overnight. The overnight culture was diluted 1:250 for expression in a

14 L-capacity fermentor (BioFlo 100, New Brunswick Scientific, Enfield, CT) with 10

L of Terrific Broth (TB). When the optical density (OD) at 600 nm reached 5-6, pro-

tein expression was induced by the addition of isopropyl β-d-1-thiogalactopyranoside

(IPTG, EMD Chemicals) at a final concentration of 2.5 mM. Upon reaching station-

ary phase, cells were harvested at by centrifugation and immediately resuspended in

Buffer B (8 M urea, 100 mM NaH2PO4, 100 mM Tris-Cl, pH 8.0) before being frozen

at -80 °C.

Purification was performed by a salting and heating method that was modified

from a previously described protocol [175, 176]. Cells were lysed by multiple freeze-

thaw cycles in combination with sonication (Misonix XL-2000, Qsonica, Newtown,

CT) for 1 min followed by a 1 min incubation on ice. Total sonication time was at

least 2 h. The cell lysate was then centrifuged at 10000g for 45 min and 4 °C to remove

cell debris. To salt out undesired proteins, 10 (w/v)% ammonium sulfate was added

to the cleared supernatant. The mixture was incubated on ice for ≥10 min followed

by centrifugation for 45 min at 10000g and 4 °C. The supernatant was decanted from

the pellet, and an additional 10 (w/v)% ammonium sulfate was added to precipitate

ELY16. The solution was incubated on ice and centrifuged as before. The pellet was

then resuspended in water at 500 mg/mL based on pellet wet weight, heated to 80 °C,

vortexed, and heated again to 80 °C. The heated solution was centrifuged for 45 min

at 10000g and 25 °C, and the supernatant was dialyzed extensively against reverse

osmosis water at 10 °C before lyophilization.
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Expression and purification of ELY16 were confirmed by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot using standard

techniques [147]. SDS-PAGE gels were stained with Coomassie Brilliant Blue R-

250. The protein was detected in the Western blot using an anti-T7 tag antibody

conjugated to horseradish peroxidase (EMD Chemicals, Gibbstown, NJ) in combina-

tion with a 1-component 3,3’,5,5’-tetramethylbenzidine (TMB) colorimetric substrate

(Kirkegaard & Perry Laboratories, Gaithersburg, MD). Purity was assessed using

densitometry analysis with ImageJ software (NIH, Bethesda, MD) [148].

The molecular weight was confirmed using matrix-assisted laser desorption/

ionization-time of flight (MALDI-TOF) (Dr. Connie Bonham, Campus-Wide Mass

Spectrometry Center, Purdue University) with sinapinic acid as the matrix. Briefly,

the MALDI mass spectra were obtained on a Voyager DE-Pro TOF mass spectrometer

(Applied Biosystems, Framingham, MA) in the linear mode with delayed extraction.

Positive-ion spectra were obtained with an acceleration voltage of 25000 V.

The amino acid composition was verified with amino acid analysis (John Schulze,

Molecular Structure Facility, University of California, Davis). Briefly, the sample

underwent liquid phase hydrolysis in 2 N HCl/1% phenol at 110 °C for 24 h before

being dried. The sample was then dissolved in norleucine dilution buffer to a final

volume of 1 mL, vortexed, and spun down. Injection volume was 50 µL at a 2.0 nmol

scale.

Tyrosinase Conversion

To convert tyrosine residues to DOPA, ELY16 was dissolved at 2 mg/mL in 0.1 M

sodium acetate buffer with 0.1 M ascorbic acid, pH 5.5. Mushroom tyrosinase was

added to a final concentration of 150 U/mL, and the mixture was incubated at 37 °C

and 200 rpm for 8 h. Enzyme activity was halted with 0.2 mL of 6 N HCl per mL

of reaction as described previously [16]. The tyrosinase-modified ELY16 (mELY16)

solution was dialyzed extensively in 5% acetic acid at 4 °C and lyophilized.
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The extent of conversion was measured with difference spectrophotometry [177]

and comparison to standard solutions of l-DOPA. The increase in molecular weight

due to conversion was confirmed by MALDI-TOF and SDS-PAGE. DOPA content

was also assessed with amino acid analysis using a procedure similar to that described

above with the modifications of using a 5.0 nmol scale and S-2-aminoethyl-l-cysteine

as a diluent. The DOPA elution peak was compared with that of an l-DOPA control

solution.

Protein Adsorption to Coverslips

Acid-washed coverslips (12 mm diameter, VWR, Radnor, PA) were incubated

overnight at 4 °C with ELY16, mELY16, or bovine serum albumin (BSA, Fraction V,

EMD Chemicals, Gibbstown, NJ) dissolved at 1 mg/mL in water. Protein surface

density was measured by washing coverslips three times with MilliQ water and per-

forming a bicinchoninic acid (BCA) colorimetric assay. Separate standard solutions

for ELY16 and BSA were used to determine adsorbed protein concentration. Four

replicates were tested for each sample.

Cell Culture

NIH/3T3 fibroblasts were generously donated by Dr. Alyssa Panitch (Purdue

University). Fibroblasts were cultured at 37 °C and 5% CO2 in high-glucose Dul-

becco’s Modified Eagle’s Medium (DMEM) supplemented with 100 U/mL penicillin-

streptomycin (Gibco, Carlsbad, CA) and 10% bovine calf serum. Cells were subcul-

tured at 60-80% confluency.

Cytocompatibility Testing

Coverslips coated in adsorbed protein were sterilized by incubation in 70% ethanol

for 5 min, blocked in sterile-filtered BSA (1 mg/mL in water) for 30 min, and rinsed

with phosphate-buffered saline (PBS, 4.2 mM NaHPO4, 0.8 mM KH2PO4, 50 mM
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NaCl, pH 7.4). Fibroblasts were seeded onto coverslips at 2500 cells per cm2 in a 24-

well plate (BD Falcon, Durham, NC). For a positive control, acid-washed coverslips

were incubated for 5 min in 0.01% poly-l-lysine (PLL, Trevigen, Gaithersburg, MD)

then rinsed three times in PBS. Images were taken with a Nikon Ti-E C-1 Plus

microscope. All groups were tested in triplicate.

To assess cell viability, cells were cultured for 2 days and tested with a LIVE/DEAD

viability/cytotoxicity kit (Molecular Probes, Carlsbad, CA). Cells were incubated in

staining solution (1.5 µM ethidium homodimer-1 and 0.5 µM calcein acetoxymethyl

ester (calcein AM) in PBS), rinsed three times with PBS, and imaged with a 10x

objective. All PBS was supplemented with 0.01% CaCl2 and 0.01% MgCl2 to prevent

cell detachment. As a negative control, cells on PLL were incubated in 70% ethanol

for 30 min at 37 °C prior to staining. Cells were counted using NIS-Elements software

(Nikon, Tokyo, Japan), and at least 90 cells were counted per replicate. Viability was

calculated as the number of living cells divided by the total number of cells in each

replicate.

Cell morphology was assessed via actin staining. After culturing for 2 days, cells

were fixed in ice-cold acetone for 1 min and then washed three times with filtered

PBS. Coverslips were then incubated for 20 min with Alexa Fluor 488 phalloidin

(Molecular Probes, Carlsbad, CA) at a 1:40 dilution in PBS. Following three 10 min

washes with PBS, cells were then counterstained for 30 min with DRAQ5 (Biostatus

Limited, Leicestershire, UK) diluted 1:500 in PBS. Finally, coverslips were rinsed

twice in PBS, mounted with Vectashield (Vector Laboratories), and sealed with nail

polish. Confocal imaging was performed with EZ-C1 software using a 40x objective.

Turbidity Testing

Lower critical solution temperatures (LCSTs) of ELY16 and mELY16 were assessed

using turbidity readings from a Crystal16 (Technobis Group, Alkmaar, the Nether-

lands). Protein samples were held at 10 °C for 15 min, ramped at 1 °C/min to 50 °C,

then held at 50 °C for 2 min. Light transmission data was recorded and normalized
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to the maximum transmission for each sample. The LCST was calculated as the

inflection point of the transmission vs. temperature curve.

Lap Shear Adhesion

Aluminum adherends were prepared and cleaned using ASTM standard D2651-

01 [150]. Bulk lap shear adhesion bonding was tested with a modified version of

the ASTM D1002 standard, as previously described [119, 149]. Briefly, protein was

resuspended at 150 mg/mL in water, and 5 µL of this solution was spread onto each

aluminum adherend. Tisseel (generously donated by Baxter Biosurgery, Deerfield, IL)

was prepared according to the manufacturer’s instructions and tested by applying an

equivalent total mass of protein (1.5 mg per test), based on the stated protein content

of Tisseel. Adherends were overlapped with an area of 1.2 cm x 1.2 cm and were cured

for 24 h at 37 °C. Bond strengths were quantified using an Instron 5544 Materials

Testing System (Norwood, MA) with a 2000 N load cell and a loading rate of 2

mm/min. Maximum force was divided by overlap area to determine the adhesion

strength. Each condition was tested with at least 5 samples.

For humid curing, adherends were covered with a layer of damp paper towels

followed by a layer of plastic wrap to prevent them from drying out. For underwater

curing, protein solution (either ELY16 or mELY16) was adjusted to pH 7.5. Aluminum

adherends were placed in a PBS bath at 37 °C. Protein coacervate (10 µL ) was applied

to one adherend, and the other adherend was overlapped as before. For underwater

testing, at least 7 samples were tested for each group.

Statistical Analysis

Data are represented as the mean ± the standard deviation. All data were first

examined for outliers using Grubbs’ test; any outliers were discarded from further

analysis. Next, Levene’s test was used to assess equality of variances, and data

were analyzed with one-way analysis of variance (ANOVA) followed by Tukey’s Hon-



74

estly Significant Difference (HSD) or the Games-Howell (for unequal variances) post

hoc test. Finally, the normality of the ANOVA residuals was assessed with the

Kolmogorov-Smirnov test. If the residuals were not normally distributed, the original

data were transformed with the Box-Cox method, and the analysis was repeated on

the transformed data. If only two groups were being compared, an unpaired t-test

was used instead of ANOVA to assess statistical difference. All statistical analyses

were performed with GraphPad online software (La Jolla, CA) or Minitab 17 (State

College, PA). A p-value ≤ 0.05 was considered significant.

4.4 Results

Adhesive Protein Design and Production

The goal of this study was to create a cytocompatible adhesive with underwater

functionality (Figure 4.1A). To achieve this goal, we designed an ELP with a mixture

of three guest residues (tyrosine, lysine, and valine) and an overall LCST near body

temperature; the LCST was calculated based on the hydrophobicity scale developed

by Urry [77, 151]. Tyrosine was chosen as a precursor to DOPA. Lysine was chosen

because numerous studies have suggested that it also contributes to wet adhesion

strength in mussel adhesive proteins (MAPs) [6,12,121,138,178]. Valine was included

as a third guest residue to balance out hydrophobicity. The final amino acid sequence

is shown in Figure 4.1B. The ELP was named ELY16 to indicate that it contains 16

tyrosine (Y) residues available for conversion to DOPA.

ELY16 was highly over-expressed in a 14 L fermentor and then purified using a

salting and heating method common to resilin-like polypeptides [4] (Figure 4.1C).

Although the salting and heating method is not traditionally used for ELPs, it pro-

duced pure protein very efficiently with a final yield of 220 mg per liter of culture

and >98% purity. MALDI-TOF and amino acid analysis confirmed protein identity

(Supporting Information, Figure 4.6A and Table 4.1).
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Figure 4.1. Design and production of underwater protein adhesive.
(A) Schematic of material design. A tyrosine-rich ELP referred to as
ELY16 is expresssed in E. coli. Using mushroom tyrosinase, tyrosines
are then converted to DOPA to create our adhesive protein, mELY16,
which can form a crosslinked adhesive material. (B) Complete amino
acid sequence of ELY16. The final protein contains an N-terminal
T7 tag, a 7xHis tag, and an enterokinase cleavage site followed by
an elastin-like domain based on the repeated pentapeptide VPGXG.
Guest residues (X) of the pentapeptides are shown in bold. Tyrosine
residues available for conversion to DOPA are underlined. (C) Ex-
pression and purification of ELY16. SDS-PAGE gel and Western blot
showing pre-induction (t0) and harvest (tf ) expression samples, as
well as purified protein (P). ELY16 runs near its expected molecular
weight of 25.548 kDa, as indicated by the standard protein ladders
(band weights labeled in kDa).
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Tyrosinase Conversion

Mushroom tyrosinase was used to convert tyrosines to adhesive DOPA residues.

Several methods were used to confirm a successful reaction with tyrosinase, including

amino acid analysis, difference spectrophotometry [177], SDS-PAGE, and MALDI-

TOF. Amino acid analysis can be used to assess the loss of tyrosine residues, from

which a conversion percent can be calculated. As seen in Supplementary Table 4.1,

the molarity of tyrosine was reduced from 5.7% in ELY16 to 0.7% in mELY16, a

conversion of 88%.

Difference spectrophotometry, on the other hand, measures the difference in ab-

sorbance that results from the chelation of borate by DOPA [177]. Using this method,

we measured a conversion of 54%. There are several reasons that difference spec-

trophotometry might estimate a lower conversion. First, because difference spec-

trophotometry relies on the presence of the reduced form of DOPA to chelate bo-

rate, it will underestimate DOPA concentration when DOPA has been oxidized [177].

Furthermore, although this method has been validated for use with DOPA, its ef-

fectiveness has not been assessed in the presence of reaction side products such as

3,4,5-trihydroxyphenylalanine (TOPA).

Finally, we assessed the change in molecular weight from tyrosinase conversion.

On an SDS-PAGE gel (Supporting Information, Figure 4.7), mELY16 ran distinctly

higher than ELY16, indicating that the molecular weight increased significantly with

tyrosinase conversion. The change in molecular weight was quantitatively assessed

with MALDI-TOF (Supporting Information, Figure 4.6B). The spectrum for mELY16

shows a peak with a broad distribution centered around 25925 Da. This value is

greater than the molecular weight one would expect if all of the tyrosines were con-

verted to DOPA. However, tyrosinase is able to further oxidize DOPA to higher-

molecular-weight TOPA [179,180]; thus, mELY16 could contain a mixture of tyrosine,

DOPA, and TOPA.
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Cytocompatibility Testing

To assess the potential for use in biomedical applications, we tested the cytocom-

patibility of ELY16 and mELY16. Testing was performed in compliance with ISO

10993-5 standards for in vitro evaluation of cytotoxicity by growing cells for >24 h in

direct contact with the material. Using a LIVE/DEAD cytotoxicity kit, we first mea-

sured the viability of NIH/3T3 fibroblasts cultured for 48 h directly on an adsorbed

layer of ELY16, mELY16, or PLL (positive control). Quantified results are shown in

Figure 4.2A. In all groups, viability was >95%. Additionally, the viability in both

ELP groups was statistically similar to the positive control group. Therefore, neither

ELY16 nor mELY16 has an effect on cellular viability.

To assess the effect of ELY16 and mELY16 on cellular morphology, we also per-

formed actin staining. As shown in Figure 4.2B, cells grown on PLL display normal

spread fibroblast morphology. Cells grown on ELY16 or mELY16 exhibit less spread-

ing, which is likely due to the observation that cells grown on ELY16 and mELY16

did not attach as firmly to the surfaces. However, cells on ELY16 and mELY16 still

appear healthy with relatively normal morphology.

Adsorption

To assess the surface coating abilities of ELY16 and mELY16, we measured the

amount of protein adsorbed to glass coverslips. Additionally, this allowed us to quan-

tify the amount of protein on each surface during cytocompatibility testing. Using

BSA as a control protein, we quantified protein adsorption with a BCA assay. Fig-

ure 4.3 shows that BSA and unmodified ELY16 adsorb to glass at similar densities

(∼0.3 µg/cm2) whereas mELY16 adsorbs significantly more strongly at more than

twice the surface density (0.66 µg/cm2).
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Figure 4.2. Cytocompatibility of ELY16 and mELY16. NIH/3T3
fibroblasts were cultured directly on an adsorbed layer of ELY16

or mELY16 for 48 h, after which they were tested with a (A)
LIVE/DEAD assay to assess viability or (B) actin staining to assess
morphology. (A) Cell viabilities on ELY16 and mELY16 are statisti-
cally similar (p > 0.05) to cell viability on the positive control sur-
face, PLL, as determined by Tukey’s HSD post hoc test. All groups
demonstrate >95% viability. (B) Cells grown on PLL show normal
spread morphology. Cells grown on ELY16 and mELY16 are slightly
less spread but still relatively healthy. Scale bar represents 50 µm.
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Figure 4.3. Addition of DOPA to ELY16 significantly increases its ad-
sorption to glass. Protein solutions of BSA (control protein), ELY16,
and mELY16 were adsorbed to acid-washed glass coverslips overnight
at 4 °C then washed several times before quantification with a BCA
assay. Groups with identical letters are statistically similar (p > 0.05)
as determined by Tukey’s HSD post hoc test.
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Lap Shear Adhesion

Lap shear adhesion testing of ELY16 and mELY16 was performed in both dry

and humid environments to investigate their potential as bulk adhesives (Figure 4.4).

BSA was used as a negative control protein, and the fibrin sealant Tisseel was used

as a commercial adhesive comparison. After a 24 h dry cure at 37 °C, ELY16 and

mELY16 exhibited statistically similar strengths of 2.6 and 2.1 MPa, respectively;

these strengths were significantly higher than either BSA (0.1 MPa) or Tisseel (0.7

MPa). When cured in a 100% humid environment, however, the adhesion strength of

mELY16 (0.24 MPa) was significantly higher than that of ELY16 alone (0.05 MPa),

BSA (0.07 MPa), or Tisseel (0.07 MPa). These results indicate that addition of

DOPA contributed wet adhesive strength to mELY16 and that its strength in a humid

environment exceeds that of a commercial tissue sealant.

Coacervation and Underwater Adhesion

One of the attractive properties of ELPs is their ability to form a phase-separated

coacervate at a tunable LCST. To assess its tunability, we measured the LCSTs of

both ELY16 and mELY16 in conditions relevant to adhesion testing and biomedical

applications (Figure 4.5A). In water at 150 mg/mL and pH 7, the LCST of ELY16

was 55 °C. Raising the pH to 7.5 lowered the LCST to 38 °C. The addition of salt via

PBS or higher protein concentrations also resulted in lower LCSTs; at 150 mg/mL

in PBS, the LCST was lowered to 26 °C, whereas at 75 mg/mL in PBS, the LCST

was 28 °C. Finally, the LCST of mELY16 at 150 mg/mL in water was 23 °C, a value

much lower than that of ELY16 alone.

When raised above its LCST, a solution of ELP forms a separate protein-rich liquid

phase, and this ability can be exploited for underwater adhesive application. As a

proof of concept for this technique, we prepared solutions of ELY16 and mELY16 that

would be soluble in water at room temperature but would form a coacervate in PBS at

37 °C. We then applied these solutions underwater in a PBS bath to test their adhesion
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Figure 4.4. Lap shear adhesion testing of ELY16 and mELY16 in
(A) dry and (B) humid environments. In each condition, ELY16 and
mELY16 were compared with BSA as a negative control protein and
the fibrin sealant Tisseel as a commercial comparison. (A) In dry
conditions, both ELY16 and mELY16 exhibited significantly higher ad-
hesion strength than either control group. (B) In humid conditions,
the addition of DOPA to ELY16 provided enhanced adhesion strength
compared with ELY16 alone, BSA, or Tisseel. Groups with identical
letters are statistically similar (p > 0.05) as determined by either the
Games-Howell (dry cure) or Tukey’s HSD (humid cure) post hoc test.
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strength. Snapshots of underwater application are shown in Figure 4.5B-C, and

videos of the underwater application are available in Supporting Information (Videos

1-3). The underwater adhesion strength of BSA could not be tested as it solubilized

immediately in solution. Because Tisseel immediately crosslinks when dispensed, it

could be applied underwater and tested; however, underwater application of Tisseel

was difficult because it adhered to the applicator tip and dispersed slightly in solution

(see Video 4 in Supporting Information). After a 24 h cure underwater in PBS at

37 °C, mELY16 exhibited an average adhesion strength of 3 kPa, whereas neither

ELY16 alone nor Tisseel provided any detectable adhesion strength.

4.5 Discussion

In this study, we developed an elastin-based adhesive with tunable phase transi-

tion behavior that allows for underwater application. We designed the protein as an

ELP to confer valuable properties such as high yield from E. coli, cytocompatibil-

ity, and “smart” coacervation behavior to respond to environmental factors such as

temperature, pH, and salinity. In addition, the protein design is rich in tyrosine and

DOPA residues in order to mimic the wet adhesive abilities of mussels and sandcastle

worms.

Two recent studies produced protein-based adhesives from other structural pro-

teins. The first study combined MAP sequences with an amyloid fiber-forming

sequence to create recombinant self-assembling wet adhesive proteins [33]. Simi-

lar to our system, the recombinant proteins were expressed in E. coli and post-

translationally modified with tyrosinase. The second study focused on a resilin-based

protein [32]. In this case, DOPA was incorporated through a chemical oxidation

reaction originally designed to crosslink tyrosine residues. In each of these studies,

the proteins demonstrated adhesive properties, but bulk adhesion strength was not

investigated.

In the present study, we used mushroom tyrosinase to confer wet adhesion via con-

version of tyrosine residues to DOPA. Several methods were used to assess the effect
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Figure 4.5. Phase transition behavior of ELY16 and mELY16 allows
for underwater adhesive application. (A) Turbidity testing of ELY16

and mELY16 at pH 7-7.5 to determine the tunability of the LCST.
The sharp decrease in light transmission corresponds to a rise in tur-
bidity associated with the onset of coacervation. Raising the pH,
adding salt, or increasing the protein concentration resulted in lower
LCST values. mELY16 also demonstrated a much lower LCST value
compared with ELY16 alone. (B-C) Snapshots of videos taken of un-
derwater application of mELY16 coacervate. Full videos available in
Supporting Information.
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of tyrosinase modification on ELY16, including difference spectrophotometry, amino

acid analysis, SDS-PAGE, and MALDI-TOF. There was a discrepancy in the conver-

sion values measured spectroscopically (54%) and analytically (>85%). However, the

spectroscopic method measures chelation of borate by DOPA, a result which could

be confounded by oxidation of DOPA or phenolic side products like TOPA [177].

Furthermore, we did not include borate in the tyrosinase reaction mixture to prevent

the formation of TOPA [179], and SDS-PAGE and MALDI-TOF indicate that the

molecular weight of mELY16 was higher than would be expected for conversion of all

tyrosine residues in ELY16 to DOPA. These results support the idea that mELY16

contained a mixture of tyrosine, DOPA, and TOPA.

The use of mushroom tyrosinase in previous studies has had varying results. The

study by Zhong et al. reported conversion values ranging from 52-65% as measured

by difference spectrophotometry and amino acid analysis [33]. On the other hand,

various papers by the Cha group reported conversion values varying from <5% to

40% [27,116,132,160,181] as measured by MALDI-TOF, difference spectrophotome-

try, and/or an iron-phenanthroline-based colorimetric assay [182]. MALDI-TOF was

often used as a secondary form of measurement to a spectroscopic method; when both

results were reported, there was an approximate difference of 5-10% between the as-

says. Overall, the conversion values reported in these studies are significantly lower

than those measured for mELY16. It is known, however, that tyrosinase is greatly

affected by steric hindrance and shows increased activity on free tyrosine and short

peptides compared to folded proteins [16,179,183]. Unlike the proteins utilized in pre-

vious studies, however, each tyrosine residue in ELY16 is flanked by glycine residues,

substantially reducing the probability of tyrosinase being sterically hindered.

The next aspect of our adhesive protein that we assessed was cytocompatibility.

Both ELY16 and mELY16 are highly cytocompatible, as demonstrated by high via-

bility and spread morphology of fibroblasts grown on each protein. Similar to our

protein, cytocompatibility studies performed with the mussel-mimetic fp-151 protein

demonstrated no toxicity to mammalian cells [27]. The addition of an RGD sequence
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to the protein further improved its cytocompatibility and cell attachment charac-

teristics [132]; because our protein is also designed to be modular, this type of do-

main addition could be easily performed in our system to improve cell attachment to

ELY16 and mELY16. Cytocompatibility has also been assessed in several DOPA-rich

synthetic polymers. Although mild toxicity has been seen with citrate-based adhe-

sives [108] and one catechol-modified PEG adhesive [133], other catechol-modified

PEG adhesives have been shown to be highly biocompatible [134,184].

Next, we assessed the bulk adhesion strength of our proteins to determine their

potential as glues. We compared the adhesion strength of ELY16 and mELY16 with

that of BSA, a protein control, and Tisseel, an FDA-approved fibrin sealant as a

commercial comparison. In dry conditions, both ELY16 and mELY16 demonstrated

significant (>2 MPa) adhesion strength. In addition, the adhesion strengths of our

proteins were significantly greater than BSA and even Tisseel, thus demonstrating

their potential as bulk adhesive materials relative to commercial standards.

Bulk adhesion studies have been performed with other mussel-mimetic adhesive

materials. For example, initial bulk adhesion studies with fp-151 showed lap shear

adhesion strengths of up to 1 MPa [116]. As with ELY16 and mELY16, both the

modified (tyrosinase-converted) and unmodified fp-151 proteins demonstrated similar

adhesion strengths, indicating that the presence of DOPA did not affect adhesion in

dry conditions. Later optimization of bulk adhesion was performed with fp-151 and

other mussel-mimetic proteins and resulted in dry shear adhesion strengths of ∼2.5

MPa [160], a value similar to those achieved with ELY16 and mELY16. Interestingly,

the formation of a complex coacervate with hyaluronic acid and either fp-151 or fp-131

improved the dry adhesion strength to ∼4 MPa [174]. However, none of these proteins,

either alone or as a coacervate, were tested in moist or underwater conditions.

In humid conditions, mELY16 achieved an adhesion strength of 0.24 MPa, a value

significantly higher than the strengths of BSA, ELY16, or Tisseel (≤0.07 MPa). Sim-

ilar strengths were achieved with citrate-based adhesives when bonding porcine tis-

sue in humid conditions [108]. The citrate adhesives bonded with strengths ranging
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from 0.03 - 0.12 MPa, outperforming a fibrin-based adhesive which bonded with a

strength of 0.02 MPa. Unlike our material, however, the citrate-based adhesives

elicited a mild to moderate cytotoxic response that was directly correlated to both

the soluble fraction of the adhesive and the concentration of the sodium periodate

crosslinker [108]. Several catechol-modified PEG-based polymers were also tested in

moist conditions. In one study, a catechol-modified PEG adhesive was applied to

wet bovine pericardium and cured overnight while immersed in PBS; its final adhe-

sion strength reached ≤8 kPa, whereas a commercial PEG-based sealant (CoSeal)

possessed nearly zero adhesion strength in the same conditions [133]. However, this

catechol-modified adhesive showed a small initial cytotoxic response, as well. Other

catechol-modified PEG adhesives have reached strengths from 30-50 kPa when tested

on porcine skin in a similar setup [185–187], although these have been shown to be

highly biocompatible [134,184].

None of these materials, however, was set up to adhere while completely under-

water. Because of their ability to coacervate, our proteins possessed the ability to be

applied while completely underwater. Although neither ELY16 nor Tisseel demon-

strated any detectable adhesion strength when tested underwater, mELY16 held an

average bond strength of 3 kPa. Few other materials have been tested under such

challenging adhesion conditions. First, a polystyrene-based polymer rich in catechol

and cation residues attempted this feat and reached an adhesion strength of ≤400

kPa [121]. The polymer was dissolved in a mixture of chloroform and methanol,

which allows it to maintain phase separation underwater but restricts its use to non-

biomedical applications due to the toxicity of the organic solvents.

A different strategy for underwater adhesion was achieved by mimicking the sand-

castle worm, which produces a set of proteins that form a complex coacervate upon

being released into seawater [50,57]. The Stewart research group developed a synthetic

adhesive composed of catechol- and charge-rich molecules that forms a complex coac-

ervate when mixed at specific ratios and pH values [60,61]. When applied and tested

underwater, initial formulations of this adhesive reached strengths ≤100 kPa [60].
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This version of the adhesive was also utilized for craniofacial reconstruction [188]; the

toxic response with this adhesive was similar to that from other common methods

of reconstruction, and in addition, the adhesive was degradable and osteoconductive.

Later formulations of the adhesive added a secondary network of PEG-diacrylate

(PEGDA), which resulted in increased underwater adhesion strength to an impres-

sive 1.2 MPa [61].

Although the adhesion strength of mELY16 is lower than reported values for other

underwater adhesive systems, further optimization of various conditions (e.g., via

adjustment of pH, concentration, DOPA content, crosslinker, etc.) could identify a

formulation with enhanced mechanical properties. Furthermore, the LCST at which

ELPs like ELY16 form a coacervate is sensitive to guest residue hydrophobicity, con-

centration, molecular weight, pH, and salt [76, 189–192]. This sensitivity makes our

adhesive design “smart” – that is, the design can be modulated to form a coacervate

under conditions that suit a specific situation. Additionally, ELPs form coacervates

without the addition of any secondary components [66], so precise mixing and mea-

surement are not necessary for successful application, unlike the system mimicking the

sandcastle worm [60, 61]. With the combination of these properties, we believe that

our material design shows exciting promise as a cytocompatible underwater adhesive

material.

4.6 Conclusions

We have designed and produced a mussel-mimetic elastin-based adhesive protein

that can be purified in high yields. It exhibits cytocompatibility and strong adsorp-

tive properties that could be utilized for application as a coating. In dry conditions,

both ELY16 and mELY16 produce significant (>2 MPa) bulk adhesive strength, and

in humid conditions, the presence of DOPA provides a substantial enhancement in

adhesion strength. Furthermore, the ELP sequence permits the coacervation tem-

perature to be tuned to suit a specific situation, and the coacervate form allows for

underwater adhesive application. In all conditions, mELY16 demonstrates an adhe-
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sion strength significantly greater than that of a commercially available fibrin sealant.

Finally, because of its recombinant design, our adhesive can be easily modified to suit

a variety of applications. Future studies will optimize the adhesive performance of

mELY16 and explore its potential as a tissue adhesive.
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Figure 4.6. MALDI-TOF spectra of ELY16 and mELY16. Peaks near
7274 are bacterial contaminant proteins that often persist through
purification procedures.

Table 4.1.
Amino acid analysis of ELY16 and mELY16.

Amino
Acid

Expected
mol %

ELY16 mELY16

Observed Observed
mol % mol %

ASX 2.19 2.42 2.08
THR 0.73 0.87 0.96
SER 0.36 0.52 0.40
GLX 1.09 1.55 0.78
PRO 17.88 17.15 16.42
GLY 36.86 36.13 37.09
ALA 0.73 1.5 0.77
VAL 23.72 22.69 25.53
ILE 0.00 0.18 0.00
LEU 1.09 1.20 1.11
PHE 0.00 0.12 0.23
HIS 2.55 2.26 2.57
LYS 6.20 6.94 6.48
ARG 0.73 0.81 0.71
TYR 5.84 5.66 0.68

DOPA N/A 0.00 4.19



90

Figure 4.7. SDS-PAGE gel showing that conversion of ELY16 to
mELY16 significantly increases its molecular weight.
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5. CONCLUSIONS

5.1 Summary

This work describes the development and characterization of novel adhesive ma-

terials inspired by natural proteins. First, a synthetic mussel-mimetic polymer,

poly[(3,4-dihydroxystyrene)-co-styrene], was evaluated for cytocompatibility. Pre-

vious work with the polymer demonstrated that it possessed significant adhesion

strength equivalent or superior to several commercial glues, but it was unclear whether

the polymer would be appropriate for biomedical applications. To investigate poly-

mer cytocompatibility, we cultured mouse fibroblasts with polymer extracts or di-

rectly in contact with the polymer. The polymer exhibited high cytocompatibility;

cells cultured with polymer possessed equivalent viabilities, rates of proliferation, and

morphologies when compared to a positive control group.

Next, we investigated the factors affecting the adhesion strength of elastin-like

polypeptides (ELPs) to determine the potential for these proteins to act as glues. The

effects of extrinsic (pH, concentration, crosslinker, humidity, cure time and tempera-

ture) and intrinsic (amino acid composition, structure, length) factors were assessed

using a system of recombinant ELPs. Of the extrinsic factors tested, only humid-

ity and cure time and temperature affected adhesion strength. Generally, adhesion

strength increased up to an maximum level as moisture content decreased. Of the in-

trinsic factors, increased length and decreased structure improved adhesion strength,

whereas changes of ∼10% in amino acid composition had no effect. When compared

to commercially available protein-based adhesives, our ELPs exhibited equivalent or

superior adhesion strength.

Finally, we designed and performed initial testing on a bioinspired underwater

adhesive material. An ELP was designed to contain mussel-mimetic guest residues to
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confer wet adhesion strength. Following enzymatic modification, the protein displayed

cytocompatibility and increased adsorption to glass. In a dry environment, both the

modified and unmodified ELP possessed significant (>2 MPa) adhesion strength,

and in a humid environment, the modified ELP possessed improved water resistance

relative to adhesive controls. Finally, the ELP exhibited tunable phase transition

behavior that allowed it to form a coacervate in physiological conditions. Because of

its properties, the modified protein coacervate could be applied and tested underwater

and provided an adhesion strength superior to that of an FDA-approved tissue sealant.

5.2 Future Directions

This dissertation lays a foundation for exciting future research in biomimetic ad-

hesives. We first showed that a mussel-mimetic polymer was highly cytocompatible

with a mouse fibroblast cell line. Future studies could examine the in vivo biocom-

patibility of the polymer and test the effectiveness of the polymer for surgical wound

closure in animal models.

Next, we showed that ELPs possess inherent adhesion strength that varies with

moisture content, length, and protein structure. Previous studies have shown that

natural glues such as that from the frog Notaden bennetti and or the velvet worm

possess amino acid compositions similar not only to elastin, but also to other struc-

tural proteins such as resilin, abductin, and silk [2, 5, 62, 140]. Potential future work

could examine the differences in adhesion strength among these types of structural

proteins to probe the effects of protein hydrophobicity and specific secondary struc-

ture. Because resilin, silk, and abductin can be produced recombinantly [4,193,194],

protein molecular weight and composition could be controlled across all proteins in

the study.

Finally, we designed and characterized a bioinspired elastomeric underwater ad-

hesive. Future work with this protein would characterize adhesion strength relative

to DOPA content to determine if an optimum DOPA content exists. Future stud-

ies could also investigate the interaction between coacervation and adhesion, since
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previous work has shown that coacervation has the potential to enhance adhesive

properties [57,174]. Once optimized conditions are found, adhesion on biological sub-

strates could be investigated in vitro (e.g., with porcine skin) and in vivo. Another

aspect of this material that could be investigated is that of mechanical properties. Soft

hydrogels could be formed through chemical and physical crosslinking of the DOPA

groups (e.g., through oxidation or chelation of transition metals) [185, 195–197], and

mechanical properties could be further modulated by crosslinking or testing in con-

ditions below or above the protein inverse transition temperature [79, 198]. Once

characterized, these hydrogels could be targeted for applications such as soft tissue

adhesives or tissue engineering scaffolds. Finally, modular protein engineering could

be utilized to modulate cellular interactions with the adhesive via the insertion of

bioactive sequences (e.g., RGD cell adhesive domain or stem cell differentiation mo-

tifs) [199].
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adhesive strength of recombinant hybrid mussel adhesive protein. Biofouling,
25:99–107, 2009.

[117] G Westwood, T N Horton, and J J Wilker. Simplified polymer mimics of cross-
linking adhesive proteins. Macromolecules, 40:3960–3964, 2007.
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A. CLONING SCHEMES AND PROTEIN CODING SEQUENCES

A.1 General Description of Methods and Sequences

Cloning schemes for all proteins created are shown, as well as relevant DNA and

protein coding sequences.

DNA oligonucleotides were purchased from Sigma-Aldrich. All cloning was mod-

eled in silico with Geneious Pro software prior to in-lab construction. Constructs

were cloned in the 10-β bacterial host (New England Biolabs). The pAL and pJB

plasmids are derivatives of pUC19 designed by Andrew Lundfelt and M. Jane Bren-

nan to have a custom polylinker region. The pET28aRW plasmid is a derivative

of pET28a designed by Ralf Weberskirch to contain a T7 tag, a 7xHis tag, and an

enterokinase cleavage site.

Cloning was completed with great help from Renay Sheng-Chuan Su, Teresa Lin,

Peter Meléndez, Haefa Mansour, and Victoria Messerschmidt.

Figures A.1, A.2, and A.3 show the molecular cloning schemes for (EL18-9Y)2,

(EL6Yα)8, and RZY20, respectively. Elastomeric domains are shown in blue, and the

9Y pre-adhesive domain is shown in red.

Figure A.4 contains the full DNA sequence (single stranded) of pET28aRW-

(EL6Y4)8, including the corresponding amino acid sequences (blue) and relevant

restriction sites (red) as shown in the cloning scheme in Figure A.2. pET28aRW-

(EL6YK3)8, -(EL6Y3)8, -(EL6Y2)8, -RZY20, and -(EL18-9Y)2 are constructed ex-

actly the same way as pET28aRW-(EL6Y4)8, so only the coding regions for these

proteins are shown (see Figures A.5 - A.9).
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A.2 A Note on Nomenclature

Many of the proteins designed and characterized for this dissertation underwent

several name changes. For example, in the original ELP designs, (EL18-9Y)2 was

originally called (EL3-9Y)2, as the elastin domain contained 3 cassettes of 6 VPGXG

pentapeptides. All other original ELP designs followed a similar naming convention

to (EL3-9Y)2.

The newer ELP protein designs have also undergone several name changes. When

originally designed in Geneious, (EL6Y4)n was referred to as “Design 1”, (EL6Y2)n as

“Design 3”, and (EL6YK3)n as “Design 5”. “Design 2” (also referred to as (EL6Y3)n)

contained guest residues in the order YKYFEY and was successfully cloned into pJB.

However, further cloning was not pursued because it was predicted to suffer from

similar insolubility at neutral pH as (EL6Y4)8. A fourth design (“Design 4”, guest

residues YRKYRG) was fully cloned in silico but was never pursued in vitro because

it was decided that Design 3 contained preferential guest residues (i.e., K) with an

identical tyrosine content.

Within each design in Geneious, the various concatemers are referred to by the

number of total elastin pentapeptides (e.g., pET-EL48 instead of pET28aRW-(EL6Yα)8).

Also, pJB was originally referred to in the Geneious files as pAL2 as it is a modifica-

tion of the original pAL vector developed by Andrew Lundfelt.

In general, the newer ELPs were named to reflect the tyrosine content (“Y4”,

“Y3”, “Y2”, etc.) compared to the number of elastin repeats as their original pur-

pose was to have their tyrosines converted to DOPA. For the purposes of clarity in

Chapter 3, the naming convention for all of the newer ELPs was again changed. In-

stead of being named (EL6Yα)n, where n refers to the number of cassettes, proteins

were referred to in the style created by the Chilkoti group [76, 152]: ELP[AiBjCk-

n] where A, B, and C refer to guest residues (i.e., X in the VPGXG pentapeptide)

with frequency indicated by subscripts i, j, and k. The total number of elastin pen-
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tapeptides is indicated by n. Therefore, (EL6Y4)8 became ELP[KEY4-48], (EL6Y2)8

became ELP[K2Y2V2-48], and (EL6YK3)8 became ELP[K3Y3-48].

For the purposes of clarity and brevity, the name of (EL6Y2)8 was again modified

for use in Chapter 4. The protein was renamed “ELY16” to reflect its elastin-based

sequence (EL) and the number of tyrosine (Y) residues (16). When converted with

tyrosinase enzyme, the protein was referred to as “mELY16” where “m” refers to its

“modified” nature.

A.3 Cloning Schemes

A.4 DNA and Amino Acid Sequences
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Figure A.1. Cloning scheme to construct pET28aRW-(EL18-9Y)2.
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Figure A.2. Cloning scheme to construct pET28aRW-(EL6Y4)8,
pET28aRW-(EL6Y3)8, and pET28aRW-(EL6Y2)8.
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Figure A.3. Cloning scheme to construct pET28aRW-RZY20.
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       1           XbaI t|ctaga11                                     
       1                                                   M  M  A  S 
       1 caattcccctctagaaataattttgtttaactttaagaaggagatataccATGATGGCTA 
       5   M  T  G  G  Q  Q  M  G  H  H  H  H  H  H  H  D  D  D  D  K 
      61 GCATGACTGGTGGACAGCAAATGGGTCACCACCACCACCACCACCATGATGATGATGATA 
     121                  AvaI c|ycgrg138                             
     121           PpuMI rg|gwccy131                                  
      25   L  D  G  T  L  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V 
     121 AACTCGACGGGACCCTCCCGGGCTATGGGGTGCCGGGTAAGGGCGTTCCGGGTTATGGCG 
      45   P  G  Y  G  V  P  G  E  G  V  P  G  Y  G  V  P  G  Y  G  V 
     181 TACCGGGTTACGGCGTACCGGGTGAAGGGGTTCCAGGCTACGGTGTACCGGGCTATGGGG 
      65   P  G  K  G  V  P  G  Y  G  V  P  G  Y  G  V  P  G  E  G  V 
     241 TGCCGGGTAAGGGCGTTCCGGGTTATGGCGTACCGGGTTACGGCGTACCGGGTGAAGGGG 
      85   P  G  Y  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V 
     301 TTCCAGGCTACGGTGTACCGGGCTATGGGGTGCCGGGTAAGGGCGTTCCGGGTTATGGCG 
     105   P  G  Y  G  V  P  G  E  G  V  P  G  Y  G  V  P  G  Y  G  V 
     361 TACCGGGTTACGGCGTACCGGGTGAAGGGGTTCCAGGCTACGGTGTACCGGGCTATGGGG 
     125   P  G  K  G  V  P  G  Y  G  V  P  G  Y  G  V  P  G  E  G  V 
     421 TGCCGGGTAAGGGCGTTCCGGGTTATGGCGTACCGGGTTACGGCGTACCGGGTGAAGGGG 
     145   P  G  Y  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V 
     481 TTCCAGGCTACGGTGTACCGGGCTATGGGGTGCCGGGTAAGGGCGTTCCGGGTTATGGCG 
     165   P  G  Y  G  V  P  G  E  G  V  P  G  Y  G  V  P  G  Y  G  V 
     541 TACCGGGTTACGGCGTACCGGGTGAAGGGGTTCCAGGCTACGGTGTACCGGGCTATGGGG 
     185   P  G  K  G  V  P  G  Y  G  V  P  G  Y  G  V  P  G  E  G  V 
     601 TGCCGGGTAAGGGCGTTCCGGGTTATGGCGTACCGGGTTACGGCGTACCGGGTGAAGGGG 
     205   P  G  Y  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V 
     661 TTCCAGGCTACGGTGTACCGGGCTATGGGGTGCCGGGTAAGGGCGTTCCGGGTTATGGCG 
     225   P  G  Y  G  V  P  G  E  G  V  P  G  Y  G  V  P  G  Y  G  V 
     721 TACCGGGTTACGGCGTACCGGGTGAAGGGGTTCCAGGCTACGGTGTACCGGGCTATGGGG 
     245   P  G  K  G  V  P  G  Y  G  V  P  G  Y  G  V  P  G  E  G  V 
     781 TGCCGGGTAAGGGCGTTCCGGGTTATGGCGTACCGGGTTACGGCGTACCGGGTGAAGGGG 
     841                                           XhoI c|tcgag883    
     841                                           AvaI c|ycgrg883    
     841                           RsrII cg|gwccg867                  
     841                  AgeI a|ccggt858   BsmI gaatgcn|876          
     265   P  G  Y  G  V  P  V  A  D  R  G  M  R  L  E  *  *          
     841 TTCCAGGCTACGGTGTACCGGTAGCGGACCGTGGAATGCGGCTCGAGTAATAAagtcgag 
     901 caccaccaccaccaccactgagatccggctgctaacaaagcccgaaaggaagctgagttg 
     961 gctgctgccaccgctgagcaataactagcataaccccttggggcctctaaacgggtcttg 
    1021 aggggttttttgctgaaaggaggaactatatccggattggcgaatgggacgcgccctgta 
    1081 gcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgcca 
    1141 gcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggct 
    1201 ttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggc 
    1261 acctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgat 
    1321 agacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttcc 
    1381 aaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgc 
    1441 cgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaatttta 
    1501 acaaaatattaacgtttacaatttcaggtggcacttttcggggaaatgtgcgcggaaccc 
    1561 ctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaattaattcttag 
    1621 aaaaactcatcgagcatcaaatgaaactgcaatttattcatatcaggattatcaatacca 
    1681 tatttttgaaaaagccgtttctgtaatgaaggagaaaactcaccgaggcagttccatagg 

Figure A.4. Complete plasmid DNA sequence for pET28aRW-
(EL6Y4)8 (molecular weight = 26.580 kDa). Pertinent restriction
sites are labeled in red, and coding regions are labeled in blue.
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    1741 atggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctatt 
    1801 aatttcccctcgtcaaaaataaggttatcaagtgagaaatcaccatgagtgacgactgaa 
    1861 tccggtgagaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagcca 
    1921 ttacgctcgtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcc 
    1981 tgagcgagacgaaatacgcgatcgctgttaaaaggacaattacaaacaggaatcgaatgc 
    2041 aaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattct      
    2101 tctaatacctggaatgctgttttcccggggatcgcagtggtgagtaaccatgcatcatca 
    2161 ggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagt 
    2221 ctgaccatctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaac 
    2281 tctggcgcatcgggcttcccatacaatcgatagattgtcgcacctgattgcccgacatta 
    2341 tcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggccta 
    2401 gagcaagacgtttcccgttgaatatggctcataacaccccttgtattactgtttatgtaa 
    2461 gcagacagttttattgttcatgaccaaaatcccttaacgtgagttttcgttccactgagc 
    2521 gtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaat 
    2581 ctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaaga 
    2641 gctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgt 
    2701 ccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacata 
    2761 cctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttac 
    2821 cgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacgggggg 
    2881 ttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcg 
    2941 tgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaag 
    3001 cggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatct 
    3061 ttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtc 
    3121 aggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggcctt 
    3181 ttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccg 
    3241 tattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcga 
    3301 gtcagtgagcgaggaagcggaagagcgcctgatgcggtattttctccttacgcatctgtg 
    3361 cggtatttcacaccgcatatatggtgcactctcagtacaatctgctctgatgccgcatag 
    3421 ttaagccagtatacactccgctatcgctacgtgactgggtcatggctgcgccccgacacc 
    3481 cgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttacagac 
    3541 aagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaac 
    3601 gcgcgaggcagctgcggtaaagctcatcagcgtggtcgtgaagcgattcacagatgtctg 
    3661 cctgttcatccgcgtccagctcgttgagtttctccagaagcgttaatgtctggcttctga 
    3721 taaagcgggccatgttaagggcggttttttcctgtttggtcactgatgcctccgtgtaag 
    3781 ggggatttctgttcatgggggtaatgataccgatgaaacgagagaggatgctcacgatac 
    3841 gggttactgatgatgaacatgcccggttactggaacgttgtgagggtaaacaactggcgg 
    3901 tatggatgcggcgggaccagagaaaaatcactcagggtcaatgccagcgcttcgttaata 
    3961 cagatgtaggtgttccacagggtagccagcagcatcctgcgatgcagatccggaacataa 
    4021 tggtgcagggcgctgacttccgcgtttccagactttacgaaacacggaaaccgaagacca 
    4081 ttcatgttgttgctcaggtcgcagacgttttgcagcagcagtcgcttcacgttcgctcgc 
    4141 gtatcggtgattcattctgctaaccagtaaggcaaccccgccagcctagccgggtcctca 
    4201 acgacaggagcacgatcatgcgcacccgtggggccgccatgccggcgataatggcctgct 
    4261 tctcgccgaaacgtttggtggcgggaccagtgacgaaggcttgagcgagggcgtgcaaga 
    4321 ttccgaataccgcaagcgacaggccgatcatcgtcgcgctccagcgaaagcggtcctcgc 
    4381 cgaaaatgacccagagcgctgccggcacctgtcctacgagttgcatgataaagaagacag 
    4441 tcataagtgcggcgacgatagtcatgccccgcgcccaccggaaggagctgactgggttga 
    4501 aggctctcaagggcatcggtcgagatcccggtgcctaatgagtgagctaacttacattaa 
    4561 ttgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaat 
    4621 gaatcggccaacgcgcggggagaggcggtttgcgtattgggcgccagggtggtttttctt 
    4681 ttcaccagtgagacgggcaacagctgattgcccttcaccgcctggccctgagagagttgc 
    4741 agcaagcggtccacgctggtttgccccagcaggcgaaaatcctgtttgatggtggttaac 

Figure A.4 (continued)
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    4801 ggcgggatataacatgagctgtcttcggtatcgtcgtatcccactaccgagatatccgca 
    4861 ccaacgcgcagcccggactcggtaatggcgcgcattgcgcccagcgccatctgatcgttg 
    4921 gcaaccagcatcgcagtgggaacgatgccctcattcagcatttgcatggtttgttgaaaa 
    4981 ccggacatggcactccagtcgccttcccgttccgctatcggctgaatttgattgcgagtg 
    5041 agatatttatgccagccagccagacgcagacgcgccgagacagaacttaatgggcccgct 
    5101 aacagcgcgatttgctggtgacccaatgcgaccagatgctccacgcccagtcgcgtaccg 
    5161 tcttcatgggagaaaataatactgttgatgggtgtctggtcagagacatcaagaaataac 
    5221 gccggaacattagtgcaggcagcttccacagcaatggcatcctggtcatccagcggatag 
    5281 ttaatgatcagcccactgacgcgttgcgcgagaagattgtgcaccgccgctttacaggct 
    5341 tcgacgccgcttcgttctaccatcgacaccaccacgctggcacccagttgatcggcgcga 
    5401 gatttaatcgccgcgacaatttgcgacggcgcgtgcagggccagactggaggtggcaacg 
    5461 ccaatcagcaacgactgtttgcccgccagttgttgtgccacgcggttgggaatgtaattc 
    5521 agctccgccatcgccgcttccactttttcccgcgttttcgcagaaacgtggctggcctgg 
    5581 ttcaccacgcgggaaacggtctgataagagacaccggcatactctgcgacatcgtataac 
    5641 gttactggtttcacattcaccaccctgaattgactctcttccgggcgctatcatgccata 
    5701 ccgcgaaaggttttgcgccattcgatggtgtccgggatctcgacgctctcccttatgcga 
    5761 ctcctgcattaggaagcagcccagtagtaggttgaggccgttgagcaccgccgccgcaag 
    5821 gaatggtgcatgcaaggagatggcgcccaacagtcccccggccacggggcctgccaccat 
    5881 acccacgccgaaacaagcgctcatgagcccgaagtggcgagcccgatcttccccatcggt 
    5941 gatgtcggcgatataggcgccagcaaccgcacctgtggcgccggtgatgccggccacgat 
    6001 gcgtccggcgtagaggatcgagatctcgatcccgcgaaattaatacgactcactataggg 
    6061 gaattgtgagcggataa 
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       1         PpuMI rg|gwccy9                                      
       1  SalI c|tcgac2 AvaI c|ycgrg16                                
       1 V  D  G  T  L  P  G  Y  G  V  P  G  K  G  V  P  G  V  G  V   
       1 GTCGACGGGACCCTCCCGGGCTATGGGGTGCCGGGTAAAGGCGTTCCGGGTGTGGGCGTA 
      21 P  G  Y  G  V  P  G  K  G  V  P  G  V  G  V  P  G  Y  G  V   
      61 CCGGGTTACGGCGTACCGGGTAAAGGGGTTCCAGGCGTGGGTGTACCGGGCTATGGGGTG 
      41 P  G  K  G  V  P  G  V  G  V  P  G  Y  G  V  P  G  K  G  V   
     121 CCGGGTAAAGGCGTTCCGGGTGTGGGCGTACCGGGTTACGGCGTACCGGGTAAAGGGGTT 
      61 P  G  V  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  V  G  V   
     181 CCAGGCGTGGGTGTACCGGGCTATGGGGTGCCGGGTAAAGGCGTTCCGGGTGTGGGCGTA 
      81 P  G  Y  G  V  P  G  K  G  V  P  G  V  G  V  P  G  Y  G  V   
     241 CCGGGTTACGGCGTACCGGGTAAAGGGGTTCCAGGCGTGGGTGTACCGGGCTATGGGGTG 
     101 P  G  K  G  V  P  G  V  G  V  P  G  Y  G  V  P  G  K  G  V   
     301 CCGGGTAAAGGCGTTCCGGGTGTGGGCGTACCGGGTTACGGCGTACCGGGTAAAGGGGTT 
     121 P  G  V  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  V  G  V   
     361 CCAGGCGTGGGTGTACCGGGCTATGGGGTGCCGGGTAAAGGCGTTCCGGGTGTGGGCGTA 
     141 P  G  Y  G  V  P  G  K  G  V  P  G  V  G  V  P  G  Y  G  V   
     421 CCGGGTTACGGCGTACCGGGTAAAGGGGTTCCAGGCGTGGGTGTACCGGGCTATGGGGTG 
     161 P  G  K  G  V  P  G  V  G  V  P  G  Y  G  V  P  G  K  G  V   
     481 CCGGGTAAAGGCGTTCCGGGTGTGGGCGTACCGGGTTACGGCGTACCGGGTAAAGGGGTT 
     181 P  G  V  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  V  G  V   
     541 CCAGGCGTGGGTGTACCGGGCTATGGGGTGCCGGGTAAAGGCGTTCCGGGTGTGGGCGTA 
     201 P  G  Y  G  V  P  G  K  G  V  P  G  V  G  V  P  G  Y  G  V   
     601 CCGGGTTACGGCGTACCGGGTAAAGGGGTTCCAGGCGTGGGTGTACCGGGCTATGGGGTG 
     221 P  G  K  G  V  P  G  V  G  V  P  G  Y  G  V  P  G  K  G  V   
     661 CCGGGTAAAGGCGTTCCGGGTGTGGGCGTACCGGGTTACGGCGTACCGGGTAAAGGGGTT 
     721                                         XhoI c|tcgag761 
     721                                         AvaI c|ycgrg761 
     721                         RsrII cg|gwccg745     
     721                AgeI a|ccggt736   BsmI gaatgcn|754 
     241 P  G  V  G  V  P  V  A  D  R  G  M  R  L  E   
     721 CCAGGCGTGGGTGTACCGGTAGCGGACCGTGGAATGCGGCTCGAG 
 
 
 
 
 
 
 
 
 
  

Figure A.5. Coding region for (EL6Y2)8 (molecular weight =
25.548 kDa). Final sequence made via insertion at the XhoI site in
pET28aRW.
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6/12/2015 Output Window

http://bioinformatics.org/sms/rest_trans_map.html 1/1

The Sequence Manipulation Suite: Rest and Trans Map
Results for 765 residue sequence starting "GTCGACGGGA".
The left character in each restriction site label is aligned with the first base after the
cleavage position on the direct strand. Sites were found using the linear form of the
sequence.
       1         PpuMI rg|gwccy9                                     
       1  SalI g|tcgac2 AvaI c|ycgrg16                               
       1 V  D  G  T  L  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V  
       1 GTCGACGGGACCCTCCCGGGCTATGGGGTGCCGGGTAAGGGCGTTCCGGGTTACGGCGTA
      21 P  G  K  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V  
      61 CCGGGTAAAGGCGTACCGGGTTACGGGGTTCCAGGCAAGGGTGTACCGGGCTATGGGGTG
      41 P  G  K  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V  
     121 CCGGGTAAGGGCGTTCCGGGTTACGGCGTACCGGGTAAAGGCGTACCGGGTTACGGGGTT
      61 P  G  K  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V  
     181 CCAGGCAAGGGTGTACCGGGCTATGGGGTGCCGGGTAAGGGCGTTCCGGGTTACGGCGTA
      81 P  G  K  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V  
     241 CCGGGTAAAGGCGTACCGGGTTACGGGGTTCCAGGCAAGGGTGTACCGGGCTATGGGGTG
     101 P  G  K  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V  
     301 CCGGGTAAGGGCGTTCCGGGTTACGGCGTACCGGGTAAAGGCGTACCGGGTTACGGGGTT
     121 P  G  K  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V  
     361 CCAGGCAAGGGTGTACCGGGCTATGGGGTGCCGGGTAAGGGCGTTCCGGGTTACGGCGTA
     141 P  G  K  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V  
     421 CCGGGTAAAGGCGTACCGGGTTACGGGGTTCCAGGCAAGGGTGTACCGGGCTATGGGGTG
     161 P  G  K  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V  
     481 CCGGGTAAGGGCGTTCCGGGTTACGGCGTACCGGGTAAAGGCGTACCGGGTTACGGGGTT
     181 P  G  K  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V  
     541 CCAGGCAAGGGTGTACCGGGCTATGGGGTGCCGGGTAAGGGCGTTCCGGGTTACGGCGTA
     201 P  G  K  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V  
     601 CCGGGTAAAGGCGTACCGGGTTACGGGGTTCCAGGCAAGGGTGTACCGGGCTATGGGGTG
     221 P  G  K  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V  
     661 CCGGGTAAGGGCGTTCCGGGTTACGGCGTACCGGGTAAAGGCGTACCGGGTTACGGGGTT
     721                                         XhoI c|tcgag761
     721                                         AvaI c|ycgrg761
     721                         RsrII cg|gwccg745    
     721                AgeI a|ccggt736        BsmI gaatgcn759
     241 P  G  K  G  V  P  V  A  D  R  G  M  R  L  E  
     721 CCAGGCAAGGGTGTACCGGTAGCGGACCGTGGAATGCGGCTCGAG

Figure A.6. Coding region for (EL6YK3)8 (molecular weight =
26.292 kDa). Final sequence made via insertion at the XhoI site in
pET28aRW.
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       1         PpuMI rg|gwccy9                                      
       1  SalI c|tcgac2 AvaI c|ycgrg16                                
       1 V  D  G  T  L  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V   
       1 GTCGACGGGACCCTCCCGGGCTATGGGGTGCCGGGTAAAGGCGTTCCGGGTTACGGCGTA 
      21 P  G  F  G  V  P  G  E  G  V  P  G  Y  G  V  P  G  Y  G  V   
      61 CCGGGTTTCGGCGTACCGGGTGAAGGGGTTCCAGGCTACGGTGTACCGGGCTATGGGGTG 
      41 P  G  K  G  V  P  G  Y  G  V  P  G  F  G  V  P  G  E  G  V   
     121 CCGGGTAAAGGCGTTCCGGGTTACGGCGTACCGGGTTTCGGCGTACCGGGTGAAGGGGTT 
      61 P  G  Y  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V   
     181 CCAGGCTACGGTGTACCGGGCTATGGGGTGCCGGGTAAAGGCGTTCCGGGTTACGGCGTA 
      81 P  G  F  G  V  P  G  E  G  V  P  G  Y  G  V  P  G  Y  G  V   
     241 CCGGGTTTCGGCGTACCGGGTGAAGGGGTTCCAGGCTACGGTGTACCGGGCTATGGGGTG 
     101 P  G  K  G  V  P  G  Y  G  V  P  G  F  G  V  P  G  E  G  V   
     301 CCGGGTAAAGGCGTTCCGGGTTACGGCGTACCGGGTTTCGGCGTACCGGGTGAAGGGGTT 
     121 P  G  Y  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V   
     361 CCAGGCTACGGTGTACCGGGCTATGGGGTGCCGGGTAAAGGCGTTCCGGGTTACGGCGTA 
     141 P  G  F  G  V  P  G  E  G  V  P  G  Y  G  V  P  G  Y  G  V   
     421 CCGGGTTTCGGCGTACCGGGTGAAGGGGTTCCAGGCTACGGTGTACCGGGCTATGGGGTG 
     161 P  G  K  G  V  P  G  Y  G  V  P  G  F  G  V  P  G  E  G  V   
     481 CCGGGTAAAGGCGTTCCGGGTTACGGCGTACCGGGTTTCGGCGTACCGGGTGAAGGGGTT 
     181 P  G  Y  G  V  P  G  Y  G  V  P  G  K  G  V  P  G  Y  G  V   
     541 CCAGGCTACGGTGTACCGGGCTATGGGGTGCCGGGTAAAGGCGTTCCGGGTTACGGCGTA 
     201 P  G  F  G  V  P  G  E  G  V  P  G  Y  G  V  P  G  Y  G  V   
     601 CCGGGTTTCGGCGTACCGGGTGAAGGGGTTCCAGGCTACGGTGTACCGGGCTATGGGGTG 
     221 P  G  K  G  V  P  G  Y  G  V  P  G  F  G  V  P  G  E  G  V   
     661 CCGGGTAAAGGCGTTCCGGGTTACGGCGTACCGGGTTTCGGCGTACCGGGTGAAGGGGTT 
     721                                         XhoI c|tcgag761 
     721                                         AvaI c|ycgrg761 
     721                         RsrII cg|gwccg745     
     721                AgeI a|ccggt736   BsmI gaatgcn|754 
     241 P  G  Y  G  V  P  V  A  D  R  G  M  R  L  E   
     721 CCAGGCTACGGTGTACCGGTAGCGGACCGTGGAATGCGGCTCGAG 
 
 
 
 
 
 
 
 
  

Figure A.7. Coding region for (EL6Y3)8 (molecular weight =
26.452 kDa). Final sequence made via insertion at the XhoI site in
pET28aRW.
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       1         PpuMI rg|gwccy9                                      
       1  SalI c|tcgac2  AfeI agc|gct17                               
       1 V  D  G  T  L  S  A  Q  T  P  S  S  K  Q  Y  G  A  P  A  Q   
       1 GTCGACGGGACCCTCAGCGCTCAGACCCCTTCTTCCAAGCAGTATGGCGCTCCGGCGCAG 
      21 T  P  S  S  Q  Y  G  A  P  A  Q  T  P  S  S  K  Q  Y  G  A   
      61 ACACCGAGCAGCCAGTACGGTGCACCGGCTCAGACCCCTTCTTCCAAGCAGTATGGCGCT 
      41 P  A  Q  T  P  S  S  Q  Y  G  A  P  A  Q  T  P  S  S  K  Q   
     121 CCGGCGCAGACACCGAGCAGCCAGTACGGTGCACCGGCTCAGACCCCTTCTTCCAAGCAG 
      61 Y  G  A  P  A  Q  T  P  S  S  Q  Y  G  A  P  A  Q  T  P  S   
     181 TATGGCGCTCCGGCGCAGACACCGAGCAGCCAGTACGGTGCACCGGCTCAGACCCCTTCT 
      81 S  K  Q  Y  G  A  P  A  Q  T  P  S  S  Q  Y  G  A  P  A  Q   
     241 TCCAAGCAGTATGGCGCTCCGGCGCAGACACCGAGCAGCCAGTACGGTGCACCGGCTCAG 
     101 T  P  S  S  K  Q  Y  G  A  P  A  Q  T  P  S  S  Q  Y  G  A   
     301 ACCCCTTCTTCCAAGCAGTATGGCGCTCCGGCGCAGACACCGAGCAGCCAGTACGGTGCA 
     121 P  A  Q  T  P  S  S  K  Q  Y  G  A  P  A  Q  T  P  S  S  Q   
     361 CCGGCTCAGACCCCTTCTTCCAAGCAGTATGGCGCTCCGGCGCAGACACCGAGCAGCCAG 
     141 Y  G  A  P  A  Q  T  P  S  S  K  Q  Y  G  A  P  A  Q  T  P   
     421 TACGGTGCACCGGCTCAGACCCCTTCTTCCAAGCAGTATGGCGCTCCGGCGCAGACACCG 
     161 S  S  Q  Y  G  A  P  A  Q  T  P  S  S  K  Q  Y  G  A  P  A   
     481 AGCAGCCAGTACGGTGCACCGGCTCAGACCCCTTCTTCCAAGCAGTATGGCGCTCCGGCG 
     181 Q  T  P  S  S  Q  Y  G  A  P  A  Q  T  P  S  S  K  Q  Y  G   
     541 CAGACACCGAGCAGCCAGTACGGTGCACCGGCTCAGACCCCTTCTTCCAAGCAGTATGGC 
     201 A  P  A  Q  T  P  S  S  Q  Y  G  A  P  A  Q  T  P  S  S  K   
     601 GCTCCGGCGCAGACACCGAGCAGCCAGTACGGTGCACCGGCTCAGACCCCTTCTTCCAAG 
     661                                                  RsrII cg|gwccg718 
     661                                                AleI cacnn|nngtg709 
     221 Q  Y  G  A  P  A  Q  T  P  S  S  Q  Y  G  A  P  K  W  A  D   
     661 CAGTATGGCGCTCCGGCGCAGACACCGAGCAGCCAGTACGGTGCACCGAAGTGGGCGGAC 
     721              XhoI c|tcgag734 
     721              AvaI c|ycgrg734 
     721       BsmI gaatgcn|727 
     241 R  G  M  R  L  E   
     721 CGTGGAATGCGGCTCGAG 
  

Figure A.8. Coding region for RZY20 (molecular weight = 27.653
kDa). Final sequence made via insertion at the XhoI site in
pET28aRW.
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       1               PpuMI rg|gwccy15                               
       1        NdeI ca|tatg8                                         
       1  SalI c|tcgac2       AvaI c|ycgrg22                          
       1 V  D  H  M  R  T  L  P  G  V  G  V  P  G  I  G  V  P  G  F   
       1 GTCGACCATATGAGGACCCTCCCGGGCGTGGGGGTGCCGGGTATCGGCGTTCCGGGTTTT 
      21 G  V  P  G  K  G  V  P  G  I  G  V  P  G  V  G  V  P  G  V   
      61 GGCGTACCGGGTAAGGGCGTACCGGGTATTGGGGTTCCAGGCGTTGGTGTACCGGGCGTG 
      41 G  V  P  G  I  G  V  P  G  F  G  V  P  G  K  G  V  P  G  I   
     121 GGGGTGCCGGGTATCGGCGTTCCGGGTTTTGGCGTACCGGGTAAGGGCGTACCGGGTATT 
      61 G  V  P  G  V  G  V  P  G  V  G  V  P  G  I  G  V  P  G  F   
     181 GGGGTTCCAGGCGTTGGTGTACCGGGCGTGGGGGTGCCGGGTATCGGCGTTCCGGGTTTT 
     241                                                    AgeI a|ccggt292 
      81 G  V  P  G  K  G  V  P  G  I  G  V  P  G  V  G  V  P  V  A   
     241 GGCGTACCGGGTAAGGGCGTACCGGGTATTGGGGTTCCAGGCGTTGGTGTACCGGTAGCG 
     301                BsmI gaatgcn|316                              
     301 RsrII cg|gwccg301                                            
     101 D  R  H  G  G  M  R  K  Y  A  Y  G  Y  A  S  G  Y  A  S  Y   
     301 GACCGCCATGGAGGAATGCGGAAATATGCGTATGGTTACGCGTCCGGTTATGCTTCCTAC 
     361                                                    XhoI c|tcgag413 
     361                                                    AvaI c|ycgrg413 
     121 G  K  A  Y  G  S  K  E  Y  S  Y  G  S  A  Y  G  E  L  E   
     361 GGCAAGGCTTATGGCTCAAAAGAATACTCCTACGGCTCCGCATACGGCGAACTCGAG 
 

Figure A.9. Coding region for EL18-9Y (molecular weight of two-
cassette protein = 28.770 kDa). Final sequence made by inserting
twice at the XhoI site in pET28aRW.
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B. ADDITIONAL PROTOCOLS

B.1 Tyrosinase Immobilization

References

� Maŕın-Zamora ME et al. Cinnamic ester of d-sorbitol for immobilization of

mushroom tyrosinase. J Chem Tech and Biotech, 2005. 80:1356-1364.

� Maŕın-Zamora ME et al. Direct immobilization of tyrosinase enzyme from nat-

ural mushrooms (Agaricus bisporus) on d-sorbitol cinnamic ester. J Biotech,

2006. 126:295-303.

Preparation of totally cinnamoylated derivative of d-sorbitol (SOTCN)

1. Add 3.6 g D-sorbitol to 100 mL pyridine and heat at 60C for 1 hour while stirring

(should turn a light yellow)

2. Cool to room temperature and add 25 g cinnamoyl chloride

3. Stir at room temperature for 4 hours (will heat up as mixes). Meanwhile, begin

stirring 200-300 mL of water at 4 °C.

4. After 4 hours, add the cinnamoyl solution to the cold, stirring water (this dis-

solves the unreacted reagents into solution).

5. Filter cinnamoyl/water solution with bottle top filter until “water spots” are no

longer visible. The sticky precipitate is the desired product.

a. DO NOT use filter paper - the sticky product will shred the paper.

b. Put the precipitate on the filter last so that it doesn’t clog.

c. Liquid flow-through should be put in an appropriate waste container.

6. Wash SOTCN twice with chloroform and hexanes:
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a. Dissolve sticky precipitate in the minimum volume of chloroform.

b. Pour solution into vigorously stirring hexanes (SOTCN precipitates).

c. Filter as before until as dry as possible.

d. Repeat steps a - c.

7. Dry in vacuum desiccator (with P2O5 as drying agent) overnight (gets bubbly!)

Coating of beads in SOTCN and immobilization of tyrosinase

1. Degrease beads by immersing in a small amount of trichloroethylene for 30 min.

a. 20 mL is enough volume to immerse 40 mL beads

b. VERY TOXIC! - be careful!

2. Wash beads numerous times with acetone and then water until clean.

3. Dissolve dried SOTCN in chloroform at a concentration of 0.5 g per 20 mL.

a. Store extra SOTCN at 4 °C wrapped in foil in desiccator under N2 or Ar.

4. Submerse beads in SOTCN/chloroform solution.

5. Use a vacuum to evaporate chloroform until dry (overnight).

6. Polymerize SOTCN with a Mercury lamp (UV light) for 30 minutes.

7. Place beads in a 15 mL tube and submerse in 0.1 M potassium phosphate buffer

(pH 4.5) with 0.2 mg/mL Tyrosinase.

8. Incubate at 4 °C for 3 hours.

9. Wash with MilliQ water several times and store at 4 °C.
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B.2 Tyrosinase Reaction

References

� Taylor S. Chemoenzymatic synthesis of peptidyl 3,4-dihydroxyphenylalanine for

structure-activity relationships in marine invertebrate polypeptides. Anal Biochem,

2002. 302:70-74.

� Marumo K and Waite JH. Optimization of hydroxylation of tyrosine and tyrosine-

containing peptides by mushroom tyrosinase. Biochim et Biophys Acta, 1986.

872:98-103.

Acetate Reaction Buffer (500 mL)

0.1 M acetate buffer, 20-200 mM ascorbic acid, 0-100 mm boric acid (optional)

� For 500 mL of stock 0.1 M acetate buffer (pH 4.5), mix:

2.72 g sodium acetate

1.01 mL acetic acid

MilliQ water to final volume of 500 mL

� Add ascorbic acid fresh for each reaction (200 mM = 35.2 mg/mL)

� If desired, add boric acid (20 mM = 1.24 mg/mL)

� Adjust pH as desired

Tyrosinase Reaction

1. Mix reaction buffer and protein as desired (recommended final concentration: 2

mg/mL)

2. Right before incubation, add tyrosinase enzyme

a. For soluble enzyme, add 50-150 units per mL of reaction

b. For immobilized enzyme, add 0.05-0.2 g wet beads per mL of reaction

3. Incubate at 37 °C, 150-250 rpm for at least 2 h
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4. Quench reaction by adding 20 µL 6 N HCl per mL of reaction

5. Dialyze extensively against 5% acetic acid at 4 °C

a. Change buffer at least 10 times

b. This is to eliminate all traces of ascorbic acid which causes a false positive

in DOPA measurement assays

B.3 IRPH Assay for Measurement of DOPA

References

� Issopoulos PB. High-sensitivity spectrophotometric determination of trace amounts

of Levodopa, Carbidopa and α-Methyldopa. Fresenius J Anal Chem, 1990.

336:124-128.

Iron(III)-o-phenanthroline (IRPH) Mixture (50 mL)

� Mix:

0.1 g o-phenanthroline monohydrate

1 mL 1 N HCl

0.08 g ammonium ferric sulfate dodecahydrate

� Fill with MilliQ to 50 mL

� Stable for at least 1 month if stored in cool, dark place (refrigerator)

Measure DOPA concentration

Note: Since assay is kinetic in nature, a new standard curve is required each time

1. Pre-read 96-well plate

2. Add to wells:

10 µL sample or standard solution (0 - 1 mM DOPA)
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200 µL MilliQ water

50 µL IRPH solution

Note: A half-volume assay will also work, but make sure to use the same

volume for all wells

3. Incubate at room temperature for 75 minutes

4. Measure in plate reader at 510 nm

Note: Anomalous behavior was noted when using this assay with highly-converted

protein (i.e., mELY16 from Chapter 4). During assay incubation, the rate of color

development for the samples was different from the rate of color development for

the standard l-DOPA solutions. As a result, after 1 min of incubation, a “con-

version” value of 80% was measured, but after 15 min, the “conversion” value had

dropped to 38%. Calculated conversion values continued to drop as the incubation

time increased. Because the assay was verified only for free l-DOPA and related

compounds, it is possible that the anomalous behavior is related to the presence

of 3,4,5-trihydroxyphenylalanine (TOPA) residues or the interaction of the protein

backbone with the assay reagents.

B.4 Difference Spectrophotometry for Measurement of DOPA

References

� Waite JH. Determination of (catecholato)borate complexes using difference spec-

trophotometry. Anal Chem, 1984. 56:1935-1939.

Measure DOPA concentration

1. Pre-read 96-well plate

2. For each sample or standard, measure the absorbance at 292 nm of:
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100 µL 0.1 N HCl + 100 µL sample or standard

100 µL sodium borate (pH 8.5) + 100 µL sample or standard

3. After zeroing data to pre-read, subtract the HCl absorbance from the borate

absorbance for each sample or standard. Height of peak at 292 nm is proportional

to DOPA concentration.

B.5 Silver Staining of Adsorbed Protein in Microtiter Plates

References

� Root DD and Wang K. Kinetic silver staining of proteins. The Protein Protocols

Handbook, 2nd edition, Humana Press, Inc., p. 1935-1939.

Reagent A (50 mL)

0.2% AgNO3, 0.2% NH4NO3, 1% tungstosilicic acid, 0.3% formaldehyde solution

� Mix:

0.1 g AgNO3

0.1 g NH4NO3

0.5 g tungstosilicic acid

150 µL of 37% formaldehyde solution

� Fill to 50 mL with MilliQ water

� Store in the dark at room temperature

Protocol

1. Adsorb protein solution(s) of interest to wells of plate by incubating overnight

at 4 °C

For 96-well plate, use 50 µL solution

For 24-well plate, use 350 µL solution
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2. GENTLY wash the wells with adsorbed protein several times with MilliQ water

3. Prepare standard protein solutions in MilliQ water.

4. Add standard solutions to wells of plate in same volumes as used to adsorb

protein in step 1.

5. Cover plate with a Kimwipe and allow to dry out (may take several days)

6. Mix equal volumes of reagents A and B (5% (w/v) Na2CO3) immediately before

use. Quickly (within 10 min) add a fixed volume of the mixture to all wells with

protein (samples and standards).

For 96-well plate, add 100 µL

For 24-well plate, add 500 µL

7. Let incubate at room temperature for at least 18 h, or until reaches equilibrium

8. Read the absorbance of the wells at 405 nm using plate reader.

Standard curve should be linear up to 2500 ng/mL

B.6 Protein Adsorption

References

� Protocol is based on procedure developed by Yeji Kim for her dissertation [200].

Protocol

1. Adsorb protein solution(s) to materials of interest by incubating overnight at 4

°C. Materials should be in disk form and placed in a 96 or 24 well plate. Potential

materials include:

Glass (acid- or base-washed coverslips)

Poly(vinyl chloride) (PVC) or poly(tetrafluoroethylene) (PTFE)disks

Order thin sheets of materials. Wash with soap and water before use.

Punch out disks with leather punch. Disks should fit into wells of plate.

Aluminum: Wrap glass/PTFE disks in aluminum foil. Super glue in place.
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2. GENTLY wash the disks with adsorbed protein several times with MilliQ water

and transfer to a fresh plate.

3. Prepare standard protein solutions in MilliQ water.

It is important to use the same protein for both adsorption and standard

solutions, as different proteins react differently to protein concentration assays.

4. To wells in plate, add the same volume of protein standard solution or water (to

wells with adsorbed protein disks).

5. Perform protein concentration assay of choice.

BCA assay is recommended, although Bradford is good for higher expected

concentrations. Silver staining can work for very low concentrations.

6. Compare reading on adsorbed protein disks to standard curve and calculate the

amount of protein present on the disks.

B.7 Lap Shear Adhesion Testing

Notes: Protocol is based on ASTM Standard D1002. Aluminum adherends made

from Farmer’s Copper 6061-T6. Cut to size: 3.5 in long, 0.125 in thick, and 0.5 in

wide. A 0.25 in diameter hole for fixing into Instron is located 0.825 in from one end.

Area for overlap is on end opposite the hole, and is 1.2 cm long.

Preparing Adhesion Samples

1. Choose adherend pairs very carefully. Having consistently smooth/rough ad-

herends of same thickness can make a big difference in the results.

2. On a large flat board (Teflon, plastic, etc), tape a metal plate of same thickness

as adherends.

3. Dispense 10 - 40 µL sample evenly in the overlap region on a pair of adherends.

Spread evenly over entire overlap region.
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Note: Appropriate volume will not result in any leakage outside of overlap

area when adherends are pressed together.

4. Add 3 - 15 µL crosslinker solution, if desired.

5. Align and press adherends together:

a. Align long side of one adherend with Teflon measuring block (should have

a 1.2 cm square drawn to help ensure consistent overlap area).

b. Lift 2nd adherend and drop gently onto 1st adherend so that the “hole

end” of 2nd adherend rests on metal plate and adherends overlap in overlap

region.

c. Press bond together. If desired, “mix” crosslinker into solution by gently

lifting and pressing down on 2nd adherend.

d. Align adherends by sandwiching between 2 white Teflon measuring blocks.

e. GENTLY pull white blocks away without disturbing bond area.

f. If desired, place a weight (conical tube filled with lead shot) onto overlap

area during cure.

g. For humid cure, wet paper towels with water and squeeze out excess.

Gently place damp towels so that they completely cover the overlap area of

adherends. Gently cover adherends with plastic wrap, taping and sealing all

edges to prevent drying.

h. For underwater curing, set up a large tub with a flat bottom as you would

normally set up a testing board. Add water or PBS until have bath ∼1-2” deep,

and pre-warm bath for several hours if curing above room temperature. Set

up each adherend in the center of the tub as usual, being very careful not to

disrupt the adhesive solution when placing the top adherend (i.e., place it very

gently and evenly). Press down on overlap and VERY CAREFULLY move to

one side of the tub. Setting up in the center of the tub gives you more room to

manipulate the adherends. Continue until all adherends are set up. Gently and

slowly move the entire tub into incubator for cure. Test as usual.
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6. Let all samples cure at desired temperature for desired time.

Testing Adhesion Samples on Instron 5544

1. Attach 2 kN load cell and lap shear apparatus, if necessary.

2. Turn on Instron 20-30 min before testing to warm up.

3. Turn on and sign into computer

Username: Wilkeradmin

Password is posted on computer

4. Double-click on Merlin icon on desktop

5. Select “Monahan-1” method

6. Once method loads, click on button in upper-right that looks like a cylinder with

an arrow pointing down on the bottom.

7. Click on Limits. Change values to -1.8e+003 and 1.8e+003.

8. Put metal rod through holes in top of lap shear apparatus.

Note: Be sure to use the same rods in the same location each time

9. Click “Calibrate” and then click “OK”.

10. Once is finished calibrating, check the box “Enabled” in Min/Max Limit

11. Click “Done”.

12. Click button on right that looks like 3 staggered hourglasses

13. Click on “Specimen”. Change the sample name, then click on the results window,

and then click on the specimen window again.

14. Measure sample overlap region with calipers. Note: Can measure after testing

instead

15. Place sample in testing apparatus:

Pinch sample in overlap area and press one end into the rubber stopper at

the bottom of the apparatus.
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Put metal rod through apparatus and adherend together to hold sample in

place.

Check that sample is sitting vertically in all directions.

Jog down on the Instron (arrows on controller pad) and slide in 2nd metal

rod through top of apparatus and top adherend.

Important: Make sure no strain is being put on sample before running test!

Use fine tuning (plastic spinning knob on controller pad) to put a small gap

above and below rod in top sample hole.

16. Press triangular “play” button (in software or on controller) to start test.

17. Press square “stop” button (in software or on controller) once sample breaks to

stop test.

18. Record max load (ignore other numbers).

19. Calculate adhesion strength: (Strength (MPa)) = (Load (N))/(area of overlap

(mm2))

20. When finished, save data: File - Data - End and Save. Save to DATA folder.

21. Transfer data from DATA folder (shortcut on Desktop) to folder of choice.

22. Exit Merlin software and shut down computer and Instron.

23. Take pictures of broken overlap regions, if desired.

B.8 Adherend Cleaning

Protocol is modified from ASTM standard D2651-01.

1. Prepare adherends by soaking in acetone and scraping off any visible solids from

overlap area. If acetone is insufficient to remove sample, soak in trichloroethylene

(toxic!).

2. Set up base wash in medium crystallizing dish:
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6.75 g sodium metasilicate

3.38 g sodium hydroxide

1.13 g sodium dodecyl benzene sulfonate

300 mL DI water

Stir and heat to 75 °C

3. Set up acid wash in medium crystallizing dish:

33.75 g ferric sulfate

14 mL sulfuric acid

278 mL DI water

Stir and heat to 60 °C

4. Set up adherends on metal rods with a spacer (0.5” nut) between each adherend

and place in base bath as follows:

First row: 5 adherends

Second row: 9 adherends

Third row: 10 adherends

Fourth row: 11 adherends

Fifth row: 10 adherends

Sixth row: 9 adherends

Seventh row: 5 adherends

5. Soak in base bath for 10-15 min.

Note: Bath level should be high enough to submerge adherend overlap area.

If level gets low due to evaporation, add more DI water.

6. Rinse adherends with water into appropriate waste container. Wipe with paper

towel.

7. Move adherends to acid bath and soak for 10-15 minutes.

8. Rinse adherends with water into appropriate waste container. Wipe with paper

towel.
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9. Soak adherends in methanol for 1-2 min.

10. Soak adherends in boiling water for 1 min.

Note: This step is not part of the ASTM standard, but it prevents a side

reaction between the adherend surface and periodate.

11. Let adherends dry for at least one day, or put in oven (55-60 °C) for a few

minutes to speed drying process.

B.9 Nickel Column Purification

From QIAGEN QIAexpressionist and in-lab experimentation

Buffers for Native Conditions

50 mM NaH2PO4, 300 mM NaCl, varied imidazole, pH 8.0

Mix and fill to 1 L with MilliQ water:

� 6.9 g NaH2PO4-H2O

� 17.54 g NaCl

� Imidazole (MW 68.08 g/mol):

Lysis buffer: 10 mM

Wash buffer: 20 mM

Elution buffer: 250 mM

� Adjust pH to 8.0 with NaOH/HCl

Buffers for Denaturing Conditions

100 mM NaH2PO4, 10 mM Tris, 8 M urea, varied pH

Mix and fill to 1 L with MilliQ water:

� 13.8 g NaH2PO4-H2O
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� 1.2 g Tris(base)

� 480.5 g Urea

� Adjust pH with NaOH/HCl:

Buffer B (Lysis): pH 8.0

Buffer C (Wash): pH 6.3 (optional: add 10-20 mM imidazole)

Buffer D (Elution of monomers): pH 5.9

Buffer E (Elution of aggregates): pH 4.5

Buffer “D/E” (General elution): pH 5.5

Purification

Note: Use each column for ONE protein. If solution is not dripping at reasonable

rate, can use a small amount of air pressure to speed things up. However, do NOT

let agarose dry out, and do not push liquid through faster than 2 cm/min, as this will

not allow binding to occur properly.

1. Add Ni-NTA slurry to column (0.5 mL bed per mL of slurry). Let liquid drip

out.

2. Equilibrate column with at least 4 bed volumes lysis buffer.

3. Add up to 8 mL cleared lysate per mL bed volume to column. Forcibly mix

Ni-NTA bed and cleared lysate.

4. Close up column and incubate on rotary shaker at 37 °C, 200 rpm for 1-2 h.

5. Let solution drip out of column. Take a sample for SDS-PAGE analysis (“Flow

Through”).

6. Wash with 2 bed volumes of wash buffer. Collect wash samples or fractions for

SDS-PAGE analysis.

7. Elute protein with at least 5 total bed volumes of elution buffer. Collect sam-

ples/fractions for analysis by SDS-PAGE.
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8. Clean column by rinsing with 0.5 M NaOH for 30 minutes.

Note: If agarose turns a brownish-gray color, column needs to be regenerated.

9. Store column at 4 °C in 30% ethanol to prevent microbial growth.

B.10 Nickel Column Regeneration

From QIAGEN QIAexpressionist

Regeneration Buffer (50 mL)

6 M GuHCl, 0.2 M acetic acid

� 28.65 g GuHCl

� 0.57 mL acetic acid

� Fill to 50 mL with MilliQ water

Procedure

Wash column with following solutions:

1. 2 bed volumes Regeneration Buffer

2. 5 bed volumes MilliQ water

3. 3 bed volumes 2% SDS

4. 1 bed volume 25% ethanol

5. 1 bed volume 50% ethanol

6. 1 bed volume 75% ethanol

7. 5 bed volumes 100% ethanol

8. 1 bed volume 75% ethanol

9. 1 bed volume 50% ethanol
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10. 1 bed volume 25% ethanol

11. 1 bed volume MilliQ water

12. 5 bed volumes 100 mM EDTA, pH 8.0 (1.46 g EDTA per 50 mL)

13. 6-7 bed volumes MilliQ water

14. 2 bed volumes 100 mM NiSO4 (1.31 g NiSO4-6H2O per 50 mL)

15. 2 bed volumes MilliQ water

16. 2 bed volumes Regeneration Buffer

Equilibrate column with 2 bed volumes of either lysis buffer (for immediate use) or

30% ethanol (for storage at 4 °C).

B.11 BrdU Cell Proliferation Assay

Note: Protocol has been optimized for NIH/3T3 fibroblasts cultured on glass cover-

slips in a 24-well plate. Volumes and incubation times (especially for the BrdU label)

may need to be modified for other setups. All reagents from Calbiochem except for

secondary antibody (AlexaFluor 488 goat anti-mouse IgG from Molecular Probes).

1. Culture cells as desired.

2. On day of assay, add 200 µL BrdU label solution (1 µL label per 2 mL medium)

to each well.

3. Fix cells with 500 µL ice-cold filtered 70% ethanol for 5 min.

4. Wash twice with 2 mL filtered PBS, incubating each wash for 5 min.

5. Denature DNA with 500 µL 2 N HCl for 30 min.

6. Wash twice with 2 mL PBS, incubating each wash for 5 min.

7. Block with 500 µL blocking solution (1% BSA, 0.1% Triton X-100 in PBS) for

1 h.

8. Flip coverslips facedown onto parafilm with 70 µL droplet of anti-BrdU solution

(antibody diluted 1:100 in diluent solution) and incubate for 1 h.
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Also do a “No primary antibody” control by incubating a positive control

coverslip in blocking solution instead of antibody solution.

9. Transfer coverslips back to well plate and wash 3 times as before in PBS.

10. Incubate coverslips in 70 µL secondary antibody solution (diluted 1:1000 in PBS

with 1% BSA) as before for 1 h.

Also do a “No secondary antibody” control by incubating a different positive

control coverslip in 1% BSA solution without antibody.

11. Transfer coverslips back to plate and wash 3 times with PBS as before.

12. Incubate coverslips as before with 50 µL DRAQ5 nuclear stain solution (stain

diluted 1:500 in PBS) for 30 min.

13. Wash coverslips by dipping into two separate 50 mL aliquots of filtered PBS,

then dab with a Kimwipe.

14. Mount coverslips facedown on glass slide with 50% glycerol in PBS (or antifade

agent). Soak up excess solution with Kimwipe.

15. Seal coverslips with clear nail polish and let dry for at least 10 min.

16. Store at 4 °C until ready to image.

17. Image on confocal microscope with 488 nm and 632 nm lasers.



140



141

C. ADDITIONAL DATA

C.1 (EL18-9Y)2 Project

Significant work was performed with the protein (EL18-9Y)2 (see Fig. C.1). How-

ever, its design of a tyrosine-rich 9Y domain resulted in high insolubility, making it

difficult with which to work. Notably, it would not remain soluble in any form of salt

solution and could only be solubilized in either 5% acetic acid or 8 M urea. Because of

its intractability in salt, coacervation (by the addition of salt) could not be achieved,

so purification was performed using denaturing nickel affinity chromatography. Fi-

nally, tyrosinase conversion could not be effectively performed on the protein because

it would not remain soluble in the reaction buffer under any conditions in which the

enzyme would function, even with the use of immobilization to stabilize the enzyme.

Due to a lack of DOPA conversion and general insolubility, the project was eventually

abandoned. However, the following data were collected on the protein’s expression,

purification, cytotoxicity, adsorption, bulk adhesion, characterization with MALDI-

TOF and amino acid analysis. An optimization study of the immobilized tyrosinase

reaction was also performed using BSA as a model protein to assess the effects of

reaction conditions on conversion.
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Figure C.1. (A) Schematic of adhesive protein (EL18-9Y)2. The ex-
pressed protein consists of flexible elastin domains and pre-adhesive
tyrosine-rich domains. After oxidation with the enzyme tyrosinase,
the pre-adhesive domain is converted to an adhesive domain contain-
ing a mixture of tyrosine and DOPA residues. (B) Complete amino
acid sequence of expressed protein (EL18-9Y)2. The protein consists
of a T7 tag for detection, a 7xHis tag for purification, an enteroki-
nase cleavage site, and then two cassettes each containing a flexible
elastin domain and a pre-adhesive tyrosine-rich domain. Pre-adhesive
tyrosine residues are underlined.

Figure C.2. Expression (lanes 1-4) and purification (lane 5) of (EL18-
9Y)2, as assessed by SDS-PAGE and Western blot. Purity of the
protein sample in lane 5 is greater than 95%, as assessed by densit-
ometry analysis. The (-) and (+) symbols indicate before and after
induction of protein expression with IPTG. The arrowheads in the
standard protein ladders indicate protein expected molecular weight
(28.77 kDa).
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Figure C.3. (EL18-9Y)2 displays no cytotoxicity as compared to a
positive control. Protein solutions were adsorbed to acid-washed glass
coverslips overnight at 4 °C and then washed gently with water. For
soluions with crosslinker, concentrated sodium periodate solution was
added simultaneously with protein solution at a ratio of 3 DOPA for
each periodate ion. DOPA conversion calculated to be 4% from IRPH
assay. NIH/3T3 mouse fibroblasts were cultured on the adsorbed pro-
tein or poly-l-lysine positive control for 1 or 3 days, then assayed with
LIVE/DEAD staining. At least 40 cells per coverslip were counted
with NIS Elements software, and viability was calculated by the ratio
of living cells to the total number of cells.
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Figure C.4. Adsorption of (EL18-9Y)2 to glass coverslips. Converted
protein adsorbs significantly more than unconverted protein or a non-
adhesive control, BSA. The increase in adsorption could be due to the
aggregation of protein that results from the tyrosinase conversion pro-
cedure. To measure adsorption, protein solution was first adsorbed
to acid-washed glass coverslips in a 24-well plate overnight at 4°C.
Sodium periodate crosslinker was added simultaneously to relevant
coverslips at a ratio of 3 DOPA:1 periodate ion (DOPA conversion
calculated to be 4% from IRPH assay.) Following adsorption, excess
protein solution was aspirated, and the coverslips were washed gently
several times with water and then transferred to a fresh 24-well plate.
Protein content was measured using a bicinchoninic acid (BCA) as-
say and compared to protein standards in solution. Letters indicate
Tukey groupings (p<0.05).
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Figure C.5. Adsorption of (EL18-9Y)2 to poly(tetrafluoroethylene)
and poly(vinyl chloride) disks. Converted protein adsorbs signifi-
cantly more than unconverted protein or a nonadhesive control, BSA.
The increase in adsorption could be due to the aggregation of protein
that results from the tyrosinase conversion procedure. To measure
adsorption, protein solution was first adsorbed to small washed disks
in a 96-well plate overnight at 4°C. Sodium periodate crosslinker was
added simultaneously to relevant coverslips at a ratio of 3 DOPA:1 pe-
riodate ion (DOPA conversion calculated to be 4% from IRPH assay.)
Following adsorption, excess protein solution was aspirated, and the
coverslips were washed gently several times with water and then trans-
ferred to a fresh 96-well plate. Protein content was measured using
a bicinchoninic acid (BCA) assay and compared to protein standards
in solution. Letters indicate Tukey groupings (p<0.05).
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Figure C.6. Bulk adhesive strength of (EL18-9Y)2 is similar to fibrin-
based surgical adhesive Tisseel and significantly greater than nonad-
hesive control BSA or crosslinker alone. Protein solutions (20 µL of
BSA and (EL18-9Y)2 at 300 mg/mL, 100 µL of Tisseel to match to-
tal protein content) were applied to aluminum adherends for lap shear
testing. Adherends were cured for 6 h at 37°C with 55 g weights placed
on the overlap region to ensure good contact. Letters indicate Tukey
groupings (p<0.05).
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Figure C.7. Matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) mass spectrometry of (EL18-9Y)2 showing that puri-
fied product is expected molecular weight (28.77 kDa).
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Table C.1.
Amino acid analysis of (EL18-9Y)2 showing the protein has expected
amino acid composition.

Amino Acid Observed mol% Expected mol%

ASX 3.04 2.67
SER 3.72 3.67
GLX 2.73 2.33
GLY 28.03 30.33
HIS 4.06 3.67

ARG 2.41 2.00
THR 1.22 1.00
ALA 4.40 4.33
PRO 12.39 12.67
TYR 6.12 6.00
VAL 16.47 16.67
MET 2.84 2.67
LYS 4.58 4.33
ILE 3.79 4.00
LEU 2.10 1.67
PHE 2.10 2.00
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Figure C.8. Circular dichroism spectroscopy of (EL18-9Y)2 from 4°C
to 70°C, showing structural changes expected of an elastin-based pro-
tein. Negative peaks near 197 nm are indicative of a disordered struc-
ture, while the negative peaks near 222 nm are indicative of beta-turn
structure. As the temperature of the sample is increased, the elastin-
based protein gains structure in the form of beta-turns, as has been
seen previously in the work of Urry et al. [153].
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Table C.2.
Tyrosinase reaction optimization with BSA and (EL18-9Y)2. Immo-
bilized tyrosinase reactions were performed in 50 mL conical tubes in
order to assess the effects of oxygenation method, buffer type, ascor-
bic acid concentration, and pH. From these experiments, it was found
that the optimal conditions for tyrosinase reactions used agitation
(easier to control than bubbled air), acetate buffer, 200 mM ascorbic
acid, at pH 4.5. Following the reaction, samples were dialyzed ex-
tensively against 5% acetic acid, and conversion was measured with
the IRPH assay. Although over 10% conversion was measured, it was
accompanied by protein oxidation, aggregation, and insolubility. Fur-
ther studies performed by Jessica Román also determined that the
IRPH assay was likely detecting non-specific oxidation (in addition to
any potential DOPA residues), which would be likely to occur after
reacting for multiple days.

Protein
Reaction

pH
Aeration Ascorbic Buffer Percent

Time (d) Method Acid (mM) Type Conversion

BSA 10 3 Bubbled Air 50 Phosphate 9.2
BSA 10 3 Agitation 100 Phosphate 1.9
BSA 10 4 Agitation 100 Phosphate 9.9
BSA 10 4.5 Agitation 100 Phosphate 13.6
BSA 10 7 Agitation 100 Phosphate 6.6
BSA 9 4.5 Agitation 50 Acetate 9.1
BSA 9 4.5 Agitation 50 Phosphate 3.9
BSA 9 4.5 Agitation 100 Phosphate 10.7
BSA 9 4.5 Agitation 200 Phosphate 12.2

(EL18-9Y)2 10 4.4 Agitation 100 Acetate 9.6
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C.2 Unused Protein Designs

Along with (EL18-9Y)2, several similar protein designs were developed that varied

the number of tyrosine residues in the tyrosine-rich domain as well as the length of

the elastin domain in each cassette. Each design followed the schematic shown in

Figure C.9.

Figure C.9. Schematic showing overall design of original family of
proteins. Each protein possessed an N-terminal domain containing
a T7 tag, a 7xHis tag, and an enterokinase cleavage tag. This do-
main was followed by an elastin-based domain containing either 2 or
3 cassettes of the amino acid sequence indicated. The elastin domain
was followed by a tyrosine-rich domain with either the 9Y or the 20Y
sequence. The elastin domain and the tyrosine-rich domain together
formed a cassette which was repeated n times.

The first protein attempted was (EL12-20Y)4. After extensive troubleshooting

with various expression techniques (cold expression, autoinduction, etc.), it was de-

termined that this protein would not express due to the presence of four rare Arginine

codons (one from each cassette). Western blots of expression samples showed no bands

at the expected molecular weight of 50 kDa, but very faint bands were present near
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27 kDa and 39 kDa, the expected weights at which two of the rare codons might cause

translation to halt. To help ameliorate this issue, expression of shorter versions of

this protein, (EL12-20Y)2 and (EL12-20Y)3, were attempted. Western blots showed

that a full-length version of these proteins were expressed, but their expression bands

were not discernible by eye using SDS-PAGE, indicating poor overall expression (see

Figure C.10). It is believed that the low expression level is due to having so many

tyrosines in the 20Y domain that the bacterial translational machinery cannot pro-

vide enough charged Tyrosine tRNAs to keep up with demand. Finally, expression of

(EL18-9Y)2 and (EL18-9Y)3 was attempted and yielded strong over-expression (see

Figures C.2 and C.11). Because the three-cassette version showed even less solubil-

ity than (EL18-9Y)2, the two-cassette version was selected for further analysis and

characterization as described in Section C.1.
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Figure C.10. Western blot and corresponding SDS-PAGE of expres-
sion samples of the protein(EL12-20Y)2 in four different expression
hosts. Although a full-length version of the protein expressed in all
four hosts, as evidenced by a band on the Western blot at the cor-
rect molecular weight, no corresponding expression band is visible on
SDS-PAGE, indicating poor overall expression. (-) indicates a sample
taken before IPTG induction, (+) indicates a sample taken at har-
vest, and the arrowheads point to the expected molecular weight of
26.3 kDa. The bands visible near 39 kDa on the Western blot were
determined to be a bacterial protein detected at background levels by
the T7 antibody.
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Figure C.11. SDS-PAGE gel and corresponding Western blot of ex-
pression samples of the protein(EL18-9Y)3 in Rosetta2(DE3)pLysS
expression host. The protein runs near its expected molecular weight
of 41.65 kDa. The symbol t0 indicates a sample taken before IPTG
induction and tf indicates a sample taken at harvest. Protein ladder
molecular weights are labeled in kDa.
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