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ABSTRACT

Afra, Reza PhD, Purdue University, August 2015. Kinetics of polymer cyclization
reaction and novel covalent DNA cross-linking assays. Major Professor: Brian A.
Todd.

In this dissertation I first do an extensive review of polymer cyclization kinetics.

Different theories of polymer cyclization kinetics, their assumptions and their predic-

tions are presented along with the predictions of computer simulations. In addition,

the experimental results for synthetic and biological polymers are summarized.

Secondly, from our Brownian dynamics simulations of the worm-like chain we

discovered that the polymer cyclization kinetics cannot be adequately described by

transition-state-like theories that reduce the high dimensional kinetics to a one di-

mensional diffusion along a reaction coordinate. It is common in Brownian dynamics

simulations of WLC to discretize time step. In our simulations, however, we recovered

the continuum limit for time by extrapolating the time steps to zero and found that

finite time steps lead to erroneous results for cyclization kinetics. This is the only

work to date that shows the inadequacy of 1D diffusion-reaction models in capturing

the kinetics of polymer cyclization.

Lastly, we developed novel assays for covalently crosslinking DNA. To this end,

we screened different crosslinking methods and found that Iodine-mediated disul-

fide bonding and copper-free azide-alkyne cycloaddition are the most viable paths to

ligase-free DNA crosslinking. We developed methodologies for labeling and purifica-

tion of dsDNA with those reactive moieties and carried out experiments to test the

yield of these chemistries at low DNA concentrations. Our results establish a method

for crosslinking long linear dsDNA through their ends.
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1

1. Polymer Cyclization Kinetics

Polymer cyclization has been the subject of extensive study since it is a way to

probe the internal dynamics of isolated polymer chains [1]. Furthermore, polymer

cyclization is an elementary step in many biological [2,3] as well as polymer synthesis

processes [4]. The chief aim of this review is to present a review of various theoretical

and experimental advancements over the past few decades in the area of polymer

cyclization. While the dependence of cyclization kinetics on various properties of

polymer-solvent systems is discussed, our major focus is on the dependence of the

kinetics on the length of polymer, reaction radius, the solvent and the type of the

polymer.

1.1 Introduction

The kinetics of contact formation between the ends of a single polymer chain

is a topic of broad interests for it occurs in processes involving biological [2, 3] and

synthetic polymers [1]. In cellular processes the contact formation is an elementary

step toward the formation of ordered structures of nucleic acids [3] and proteins [2].

Linear synthetic polymers are also capable of undergoing cyclization which leads to

the formation of cyclic byproducts that terminate the polymerization reaction [5].

Much effort over the past few decades has been devoted to the theoretical [6–9]

and experimental [1] investigation of polymer cyclization. The main aim of this

review is presenting both theoretical advancements and experimental finding for the

polymer cyclization kinetics of a single chains in dilute solution. In particular we

present the scaling of cyclization kinetics with the chain length. We review the

major existing theories of polymer cyclization, their assumptions and their predictions

about different polymer-solvent systems. Furthermore, we review the predictions of
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computer simulations and finally we review the experiments on the cyclization kinetics

of synthetic polymers, nucleic acids, and polypeptide chains.

1.2 Theories of Polymer Cyclization

1.2.1 Wilemski-Fixman Theory

Wilemski and Fixman (WF) introduced a general framework for calculating ki-

netics in reaction-diffusion processes [10] and applied it to the specific problem of

calculating the reaction rate between terminal reactive groups of a Rouse chain [7,11].

The starting point in WF theory is a diffusion equation coupled with a sink term

that accounts for the reactivity of the terminal reactive groups.

∂p

∂t
−Dp = −uS(r)p. (1.1)

This equation determines the time evolution of p(r, t|r0), the conditional proba-

bility density of finding the chain at the conformational state r, given that the system

has initially been at r0. S(r) is the sink function and specifies the spatial dependence

of the reactive region. For instance, a delta function sink means reactions occur only

at the origin. u is the probability density of reaction given that the sinks overlap.

u quantifies the sink strength; for u = 0 no reaction occurs and for u → ∞ the

reactants react instantaneously upon reaching the sink. Finally, D is the diffusion

operator whose exact form is specified by the polymer model. The solution to Eq. 1.1

in terms of the Green’s function of the sink-free differential equation is

p(r, t|r0) = G(r, t|r0)− u
∫
dt′
∫
dr0G(r, t− t′|r0)S(r)p(r, t|r0) (1.2)

The quantity of greatest interest is the survival probability φ(t), defined as the prob-

ability that a chain is unreacted at t and is equal to the fraction of unreacted chains.

Defining ψ(r, t) as the probability density that a chain has the conformation r and

is still unreacted, φ(t) is obtained from integrating ψ(r, t) over all the possible chain

conformations.

φ(t) =

∫
ψ(r, t)dr. (1.3)
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ψ(r, t) is in turn obtained from integrating p(r, t|r0) over the initial conformations.

WF theory assume that the system is initially in equilibrium, ψ(r0, 0) = peq(r0), which

leads to the following equation for the survival probability

φ(t) =

∫
dr

∫
dr0p(r, t|r0)peq(r0). (1.4)

An exact expression for φ(t) is then obtained form Eqs 1.2, 1.3 and 1.4.

φ(t) = 1− u
∫ t

0

dt

∫
dr′S(r′)ψ(r′, t). (1.5)

The integrand of the time integral is the joint probability of finding two reactive

groups near each other. Denoting this probability by v(t), the differential equa-

tion corresponding to Eq. 1.4 is dφ(t)
dt

= −uv(t). The physical interpretation of this

equation is that the time evolution of the survival probability is proportional to the

probability of finding active reactive groups near each other.

The common way to obtain closed form expression for integral equations of the

form Eq. 1.5 is the start from an educated guess for ψ. WF proposed the following

ansatz referred to as the ”closure approximation”ψ(r, t) = peq(r)f(t),

v(t) = veqf(t).

(1.6)

Which assumes that the spatial form of the probability distribution can be approxi-

mated by the equilibrium distribution. The time dependence is obtained by multiply-

ing both sides of the first equation with S(r) and integrating over the conformational

space. The second equation ensures that the closure approximation does not affect

the sink occupancy v(t). This is necessary since the temporal change of φ(t) directly

depends on the sink occupancy.

It is then straightforward to obtain a solution for φ(t) and the mean lifetime

defined as τ =
∫∞

0
φ(t)dt using Laplace transformation. We will not present the

details of derivation here and skip to the final results,

τ =
1

kveq
+

∫ ∞
0

dt

(
C(t)

v2
eq

− 1

)
. (1.7)
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Where C(t) is the sink-sink correlation function. For a spherically symmetric sink

this quantity is expressed as

C(t) =

∫
dr

∫
dr0S(r)G(r, t|r0)S(r0)Peq(r0). (1.8)

It is assumed that an steady-state is established at long time; the Green’s function

approaches the equilibrium distribution and from Eq. 1.8 the sink-sink correlation

function becomes C(∞) = v2
eq. The first term in Eq. 1.7 is the reaction-limited term

and dominates when u → 0. In this limit the mean lifetime is proportional to the

probability of finding proximate sinks. The second term is the diffusion-limited term

and dominates when u→∞.

1.2.2 Predictions Of Wilemski-Fixman Theory For Rouse Chain

WF theory predicts that the cyclization time of long free-draining Rouse chain is

linearly dependent on the maximum relaxation time of the Rouse chain and nearly

independent on the size of the capture radius, that is τ ∝ τm ∝ N2, where N is the

number of beads in Rouse chain. Interestingly, this is in sharp contrast with the results

for harmonic spring model (Rouse chain with N = 2) where the cyclization time scales

with the inverse of the capture radius [8,11]. This dependence on the capture radius is

intuitive because one would expect from transition state theory for the kinetics to be

dependent on the probability of the transition state, which in turn depends on the size

of the reaction radius. The peculiar independence of the cyclization kinetics of the

free-draining Rouse chain on the reaction radius was explained by Doi who pointed

out that this peculiarity arises form from the behavior of the chain end monomers [8].

He showed that the dependence of the cyclization time on the ratio of size of the

capture radius to the root mean square end-to-end distance a/R is dependent on the

time correlation of end-to-end vector. Yang and Cao pointed out that the second

term in Eq. 1.7 includes two contributions, at short times the dynamics is dominated

by the short time fluctuation of end-to-end distance and at longer times the dynamic

is dominated by global relaxation of the chain [12]. The former is dependent upon
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the reaction radius and has the simple form known for Smoluchowski reaction rate

τ ∝ R3/a ∝ b3N3/2/a, while the latter scales as b2N2. The relative magnitude

of these two terms determines the nature of the dependence of cyclization kinetics

on the capture radius and it can be seen that a transition occurs roughly around

N ∼ (a/b)2. Obviously, for a harmonic spring model (N = 1, a < b) no transition

occurs and the kinetics is dependent on the capture radius. On the other hand, for

very long chains the global relaxation dominates the sink-sink correlation function

and kinetics becomes independent of the capture radius. For the Non-draining Rouse

chain WF found τ ∼ N3/2 with a weak dependence on the sink size [11]. In this case

both the short term contribution and the maximum relaxation time scales as N3/2

and consequently the cyclization time scales with N3/2 as well.

Table 1.1.
Scaling exponent of a Rouse chain by WF theory along with RG and
SSS theories discussed in the following sections. Presence or absence of
excluded volume interactions and hydrodynamic interactions alters the
cyclization kinetics.

without excluded volume with excluded volume

free draining non-draining free draining non-draining

WF 2 1.5 – –

RG 2 1.5 2.2 1.875

SSS 1.5 – 1.8 –

1.2.3 Predictions Of Wilemski-Fixman Theory For Other Polymer Dy-

namics Models

Other properties of polymeric liquids have also been investigated within the frame-

work of WF theory. Chakrabarti [13] generalized WF theory to Rouse chain in vis-

coelastic fluid and found that up to a certain chain length cyclization is faster in
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viscoelastic fluid than in Newtonian fluid and after that threshold the order is re-

versed. Interestingly, in viscoelastic fluids no scaling was observed.

Another effect deemed important particularly in polypeptide contact formation

is internal friction [14]. It has been shown [15] that internal friction slows down the

cyclization with dependence on the chain length weaker than internal-friction-free

Rouse and Zimm chains. The scaling predicted to be τ ∼ N1.1−1.3 for the Rouse

chain and τ ∼ N0.5−0.8 for the Zimm chain with weaker length dependence at higher

internal friction.

1.2.4 Validity Of Wilemski-Fixman’s Closure Approximation

The validity of closure approximation has been studied extensively [12,16–20] and

it is argued that its correctness depends on the relation between the diffusion term and

the reaction term in Eq. 1.1 or, the relation between two time scales, the diffusional re-

laxation time and the reaction time. Polymers exhibit a spectrum of relaxation times

and their spontaneous fluctuations relax to equilibrium after the maximum relaxation

time, τm. Therefore, the relevant diffusional time scale for polymer reactions is the

longest relaxation time. The closure approximation is plausible when the intrinsic

reaction rate is small or the diffusional relaxation is fast [21], kτm → 0, because in

these cases chain remains always near equilibrium. A perturbation analysis by Weiss

confirms this point [19]. For slowly relaxing systems or larger reaction rates there is

no reason to assume that a chain will remain near equilibrium; In fact, one would

intuitively expect significant departure from equilibrium in these cases. Nevertheless,

WF approximation yields surprisingly satisfactory predictions for these cases. Suna-

gawa and Doi examined the validity of WF theory for the harmonic spring polymer

model (reactants attached by a harmonic spring) and an infinitely reactive spherically

symmetric sink [18]. They found that WF theory slightly overestimates the reaction

time but its accuracy improves as the sink size approaches zero. Battezati et al.

further expanded the analysis for harmonic spring model by examining the effect of
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different sinks on the reaction rate [22] . They showed that the rate for three choices

of sink, delta function, step function and Gaussian function can be expressed as a

series of a/R powers

τ = τm(a−1(a/R)−1 + a0 + a1(a/R) +O((a/R)2). (1.9)

Where aks are constants of the same order of magnitude for different sinks and a/R

is the capture radius normalized to the polymer length. These results suggest that

for a harmonic spring polymer the qualitative features of the mean reaction dynamics

are independent of the exact form of the sink. The qualitative agreement between

the looping kinetics for delta sink, for which WF is exact, and forms of sink suggests

that for reactants in a harmonic potential WF theory is safely applicable as long as

a/R� 1.

Brownian dynamic simulations for a Rouse chain and infinitely reactive delta sink

suggest that WF theory’s accuracy improves as a/R→ 0. Srinivas et. al. performed

Brownian dynamics simulation for the Rouse chain and a sink with the form (a/r)−6

and found that survival probability predicted by WF theory is only satisfactory when

the a/R � 1. The results of these simulations as well as variational approximations

suggest that survival probability predicted by WF approximation is an upper bound

on the survival probability and thereby, WF overestimates the reaction time [23].

1.2.5 Validity Of Markovian Approximation In Wilemski-Fixman Theory

It should be noted that the satisfactory agreement between the mean cyclization

time predicted by WF theory and simulations does not mean the assumptions are al-

ways valid. To see this imagine a polymer with delta-sink, the closure approximation

approximates the probability distribution of reactive conformation with the equilib-

rium conformation. This implies that all degrees of freedom of the chain have relaxed

to equilibrium before the sinks overlap; the chain forgets all its fluctuations instanta-

neously. This is the Markovian assumption implicit in WF theory. The validity this
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assumption has been recently discussed and it was shown that Markovian assumption

leads to overestimation of both survival probability and mean lifetime [24–26].

1.2.6 Renormalization Group Theory

Friedman and O’Shaughnessy [27–36] developed a scheme based on Renormaliza-

tion Group theory (RGT) to obtain cyclization rates. This approach has the advan-

tage that the closure approximation of WF theory is not needed. Akin to a paramag-

net near the Curie temperature that shows long range correlations in spin fluctuation,

a long polymer exhibits long range correlation in chain fluctuations [37,38]. The cor-

relation length of the monomer density fluctuations at this long chain limit is of the

order of R. The physics of critical systems is dominated by these long range cor-

relations and is independent of the microscopic fluctuations. It is known that at

the critical point(e.g. N → ∞) these systems show universal behavior and physical

observables are governed by scaling laws an example being the well-known R ∼ N ν

scaling relation. These scaling laws are universal, that is, the macroscopic observables

(e.g. coil size, osmotic pressure, cyclization rate) are independent of the microscopic

properties (e.g. chemical composure of monomers, reactivity of end monomers, sink

size) of the system.

In critical systems short range fluctuation can be eliminated through a coarse

graining method first introduced by Kadanov [39] for Ising model where the elemen-

tary length of the system (lattice spacing) is gradually enlarged. de Gennes [40]

first noted the analogy between the magnetic systems and polymers and introduced

a method similar to Kadanov’s known as decimation procedure. In this procedure

polymer is described in terms of blocks of monomers and the block size is gradually

enlarged. Upon gradual coarse graining the interaction parameters of the system are

drawn to fixed points. At these fixed points scaling laws emerge and the system will

be invariant under further coarse graining. Oono [41] advanced this general scheme to

renormalize the divergent perturbation series of various physical quantities of poly-
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mers and obtain scaling laws for these quantities. Friedman and O’Shaughnessy

adapted Oono’s scheme to obtain the universal scaling laws for cyclization rate in

different polymer models.

Here we review the basic procedure of renormalization. Let G be a certain quantity

whose value from ”bare” (non renormalized) calculation is GB. Under renormalization

all quantities are scaled in the form Γ = ZΓΓ0 where ZΓ is the scaling coefficients for

the quantity Γ so in general we have GB = Z−1
G G({ZΓΓ0}). {ZΓΓ0} represents the

set of all variables G depends on. Since the bare quantities are independent of the

level of coarse graining we can write [42,43]

L
∂GB

∂L
= 0. (1.10)

Using the chain rule we will have equations of the form (∂ lnZΓ

∂ lnL
)Γ′ 6=Γ which determine

the change of various physical parameters upon coarse graining. Fixed points of

physical quantities are zeros of these equations. These fixed points represent universal

values of the renormalized parameters the are independent microscopic details.

1.2.7 Predictions Of Renormalization Group Theory For Rouse Chain

Here we introduce the application of this scheme to the cyclization kinetics in

Rouse chain. For a chain whose dynamic is governed by Eq. 1.1 and a delta sink the

rate is

k = u0 < δ(r) > +u2
0

∫ ∞
0

dt[< δ((r(0))δ((r(t)) > − < δ((r) >2] +O(u3
0). (1.11)

This equation to the second order in u0 is the same as Eq. 1.7. One can rewrite

this equation as a series expansion in the powers of a coupling constant defined as

w0 = u0ξ0L
ε/2 where L is a phenomenological length that sets the level of coarse

graining, ζ0 is the microscopic friction coefficient and ε = 4 − d. For a Rouse chain

this bare perturbation series is

−kN2
0 = A

w0

ξ0

(
N0

L
)ε/2 +

w2
0

ξ0

(
N0

L
)ε(B/ε+ const.). (1.12)
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This bare perturbation series is singular at d = 4 and also divergent for long chain

(Large N0) at other dimensions.

The coupling constant then is renormalized w = Zww0 where Zw is the scaling

coefficient. Assuming that Z−1
w is Taylor expandable, Zw = 1 +w2 + · · · , one obtains

to the first order w0 = w +A1w
2 + · · · . Substituting this in Eq. 1.12 and solving for

the value of A1 which removes the singularity from perturbation series one obtains

w0 = w − 1
64πε

w2 + · · · . The cyclization rate k ≡ k(L,w,N, ζ) is independent of the

level of description of the system, that is L ∂k
∂L

= 0. Using the chain rule one obtains

for the Rouse chain,

L
∂w

∂L
+ β(w)

∂w

∂L
= 0. (1.13)

Where β(w) = L(∂w
∂L

)w̃0,N0,ζ0 and w̃0 = w0L
−ε/2. One may wonder why there is

no dependence on N or ζ. In the presence of hydrodynamic and excluded volume

interactions there are terms associated with these two variables into the RG equation.

However in the absence of these interactions ZN = Zζ = 1 and the terms associated

with them drop out.

Using the expression for w in terms of w0 one finds β(w) = (w/128π)(w − w∗)

which has two zeros: w∗ = 0,−64πε. The negative w∗ is the stable fixed point

meaning the upon renormalization transformation the value of the coupling constant

is drawn to this point regardless of its microscopic value, w0. Figure 1.1 illustrates

the flow of the coupling constant as a result renormalization transformation. From

L (∂w
∂L

)w̃0,N0,ζ0 = w/128π(w−w∗) it is apparent that the change in w is positive with

increasing L when β(w) > 0 negative when β(w) < 0. Therefore, all points with and

negative microscopic coupling constant arrive finally at the stable fixed point upon

renormalization transformation.

The scaling relation for the cyclization rate is obtained by evaluating Eq. 1.12 at

the stable fixed point and taking the limit at N →∞

k = 16ε/πζN2. (1.14)



11

Figure 1.1. Phase portrait of the flow equation for the sink strength w.
Upon renormalization all points with negative microscopic values of w are
drawn to the stable fixed point w∗ = −64πε.

To the first order in ε. The maximum relaxation time of the Rouse chain in 3D is

τm = N2ζ
3π2T

and a universal relation is obtained kτm = 0.52, in good agreement with the

prediction of WF that kτm = 0.46. This scaling relation suggests that, as expected,

the rate is independent of the bare sink strength u0. For finite chains an interpolative

formula is obtained

k =
X

1 +X
16ε/πζN2. (1.15)

Where X = (N/L)
ε
2

w
w−w∗ . This equation interpolates between two extremes: high

molecular weight chains with highly reactive sink X � 1 where k ∼ N2 and low

molecular weight chains with weekly reactive sink (X � 1) where k ∼ Nd/2.

1.2.8 Predictions Of Renormalization Group Theory For Other Polymer

Dynamics Models

For the Rouse chain with volume interactions RG predicts k = 8ε/πζN2.2 again

at N → ∞. In both of these free draining (no hydrodynamic interactions) models

k ∝ 1/τm ∝ N−zν , where z is the dynamical exponent given by τm ∝ Rz. Apparently,

the rate depends on a single time scale, the longest relaxation time of the chain,
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suggesting a diffusion-controlled (DC) behavior [32,34]. In short, FD models exhibit

DC kinetics at N →∞. Also note that in accordance with Doi’s and WF’s prediction

at this limit the rate becomes independent of the sink size.

For the non-draining models (Zimm in theta solvent and Zimm in good solvent)

hydrodynamic effects are accounted for by a dimensionless coupling constant ξ0 ≡

(ζ0/η0)Lε/2 in addition to the sink coupling constant and excluded volume constants,

w0 and e0. For Zimm chain in theta solvent volume interactions are absent and at

the fixed points for e and ξ one finds β(w) = w2/128π indicating the absence of a

non vanishing fixed point. RG predicts [32,34]

k = −(
12

π2ηNd/2ε
)

1

X
. (1.16)

Where X = 128π
w
− ln(N/L). This equation predicts k = C Nνd

ln(N/L)
in the N →∞ and

C is a universal constant. For the large enough values of N the logarithmic correction

becomes independent of N and in 3D one obtains k ∼ N−3/2 in agreement with WF’s

prediction.

For Zimm chain at the fixed points for e and ξ (e∗ = π2ε/2 and ξ∗ = 2π2ε) two

zeros exist for β(w) = −w(w∗−w)/128π: w∗ = 16πε, 0. In this case the non vanishing

point is positive and a similar analysis with the analysis shown in Figure 1.1 shows

that this point is unstable. The rate is this case is given by [32,34]

k = (
2

π3η
)(
L

N
)νdL−

d
2

1

X − 1
. (1.17)

Where X = (N
L

)
εν
4 (w−w

∗

w
). Simple analysis shows for N → ∞ one obtains k ∼ peq

(≈ 0) k ∼ Nν(d+g). g = ε/4 + O(ε2) is the correlation hole exponent which arises

due to excluded volume interactions. The direct proportionality of the rate with the

equilibrium probability suggests that the cyclization kinetics in good solvents obeys

the law of mass action.

Additionally, Yeung and Friedman [35,44] determined the cyclization rate of Rouse

and Zimm polymers initially in a ring conformation and found that the cyclization

rate of a chain initially at equilibrium or in ring condition are related at times faster
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than the maximum relaxation time; keq ∝ t1−σ and keq ∝ t−σ, where σ = 5/4 for

ultra long Rouse chains and σ = −1 for ultra long Zimm chain.

1.2.9 Regimes Of Polymer Cyclization Kinetics Predicted By Renormal-

ization Group Theory

The RG theory results suggests that the nature of the cyclization kinetics in

infinitely long polymer chains is independent of the detail of the reactive group and is

determined by the polymer-solvent model. Strictly speaking, the class of reaction is

determined by the exponent θ = d+g/z. For θ < 1 the kinetics is diffusion controlled

while for θ > 1 it obeys the law of mass action. The marginal case of θ = 1 occurs

in Zimm chain in Θ solvent in which the diffusion-limited and law of mass action

kinetics predict same scaling relations. This classification is a generalization of de

Gennes classification of reaction-diffusions to compact and non-compact [45]. For a

Rouse chain (g = 0, z = 4 and θ = d/z) the number of points in the conformational

space visited after time t is proportional to t while the number of points in the volume

explored after t is ∼ td/z. When d/z < 1 then the number of visited points exceeds the

number of points in the explored space and hence the volume is searched compactly. In

this case the sink overlap is frequent and reaction kinetic shifts towards the diffusion-

controlled regime. In contrast, when d/z > 1 (d > 4) the available conformational

space is searched sparsely, sink overlap is infrequent and the reaction kinetics obeys

the law of mass action [34].

1.2.10 Single Reaction Coordinate Theory

Wilemski and Fixman included the reactivity in the reaction-diffusion equation

by adding a source term to the high dimensional diffusion equation and calculated. In

their approach the reaction time is a sum of a reaction-limited term and the diffusion-

limited term or the mean first passage time, τ . In WF theory diffusion-limited term is

related to sink-sink correlation function. This is not the only way to obtain the mean
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first passage time. Indeed, the traditional method of finding the first passage time

which bypasses the solution of the time dependent reaction-diffusion and obtains the

mean first passage time from an inhomogeneous differential equitation [46–48]. For

a one-dimensional Smoluchowski equation the solution to this equation is obtained

in the form of a quadrature [9, 49]. Smoluchowski equation describes a Markovian

drift-diffusion process and hence its transition probability satisfies the Chapman-

Kolmogorov equation [50].

p(x, t|x0, t0) =

∫ ∞
−∞

p(x, t|x′, t′)p(x′, t′|x0, t0)dx′. (1.18)

The survival probability, the probability that the diffuser has not yet reached the

absorbing boundary at time t reads [51]

φ(y, t) =

∫ L

a

p(x, t|y, 0)dy. (1.19)

The probability that the particle is absorbed in a short interval after t, termed as the

first passage time probability density is

f(y, t) = −∂φ(y, t)

∂t
. (1.20)

The time dependence of the f(y, t) probability contains the information on the kinetics

of the process. It is straightforward to establish from this equation by differentiation

that the survival probability satisfies the following Smoluchowski equation for the

adjoint diffusion operator.
∂φ(x, t)

∂t
= D†φ(x, t). (1.21)

Using the equation for the lifetime and 1.21 one obtains an equation for the τ

D†τ(x) = −1. (1.22)

Although Eq. 1.22 is valid in all dimension it can be solved analytically only for ef-

fectively one dimensional systems. In particular for a one-dimensional draft-diffusion

process, diffusion in an one potential of the mean force, a solution in the form of a

quadrature is readily obtainable

τ(y) =

∫ y′

a

peq(y
′′)

D(y′′)

∫ L

y

dy′

peq(y′)
. (1.23)
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Where peq(y) = e−U(y) is the equilibrium probability of the location of the dif-

fuser. Szabo, Schulten and Schulten [9] generalized the above method to diffusion-

reaction with a partially absorbing boundary condition, or radiation boundary condi-

tion j(a, t) = up(a, t) and a reflecting boundary condition j(L, t) = 0. The quantity

commonly measured in experiments is the mean reaction time. SSS obtained this

quantity by averaging τ(y) over the equilibrium probability density. The resulting

equilibrium averaged reaction time reads [9, 49,52]

τ =

∫ L

α

1

D(x)peq(x)
dx

(∫ L

x

peq(y) dy

)2

+ (upeq(a))−1. (1.24)

Note that resemblance between Eqs. 1.24 and 1.7. Indeed, For systems with spherical

symmetry and governed by Smoluchowski equation and a localized fully absorbing

boundary the former reduces to the latter.

1.2.11 Predictions Of Single Reaction Coordinate Theory For Rouse Chain

SSS calculated the diffusion-controlled cyclization time (u → ∞ in Eq. 1.24)

for a Gaussian chain by using a single diffusion constant. For a small sink SSS

model predicts τ ∼ N3/2

Da
[6, 9, 49] [9, 49]. This prediction disagrees with several

computer simulations and WF and RG’s prediction that τ ∝ N2 and independent of

reaction radius. However, Toan et. al. [6] found that when a scale-dependent diffusion

coefficient, instead of a constant is used the prediction of SSS theory matches those

of other theories.

1.2.12 Predictions Of Single Reaction Coordinate Theory For Other Poly-

mer Dynamics Models

The SSS model and its high barrier equivalent, Kramers rate theory [53], are

regarded commonly regarded as the appropriate model for the cyclization of wormlike

chain (WLC) polymers [54–57]. WLC is the standard model for the semiflexible

polymer [58], polymers that show stiffness on the length scales beyond their monomer
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length. The stiffness of these polymers is commonly parametrized with a persistence

length, lp, which is the length over which the directional correlation of the chain draws

to 1/e [59]. The relaxation of these polymers is much faster than flexible chains and

the local equilibrium assumption is valid for these chains [60]. In these polymers the

bending energy imposes a high barrier for the cyclization. It is known [61,62] that at

the high barrier limit the MFPT is equal to the inverse of the Kramers’ escape rate.

Kramers scape rate then yields a simple analytical formula for τ [54, 60]

τ ∼ 1

DP ′eq(α)
∼ 1

αDGeq(0)
. (1.25)

Where Peq(r) = 4πr2Geq(r). Note that DP ′eq is the steady state probability flux on

the surface of the sink.

Finally, similar to WF approach, SSS’s approach is based on the assumption the

process is Markovian [63] and approximate reactive conformations with equilibrium

reactive conformations. Recently, some authors have calculated the first passage time

without Markovian assumption [24, 25, 25, 26]. It is desirable to study the effect of

non-Markovian dynamics on polymer cyclization kinetics.

1.2.13 Validity Of Single Reaction Coordinate Theory For Rouse Chain

SSS model has been widely employed to interpret computer simulations and ex-

periments. In some cases and regimes the model yields satisfactory results while in

others it fails both qualitatively and quantitatively. The failure of the SSS model is

commonly attributed to the local equilibrium assumption. To reduce the high dimen-

sional dynamics of a polymer to one-dimensional Smoluchowski equation Szabo et. al.

approximated the high dimensional probability density of the polymer by the equilib-

rium probability of internal coordinates given a certain end-to-end distance multiplied

by the time-dependent probability of end-to-end distance. p(r, t) = peq(ri|r)p(r, t)

where ri is the set of all the internal coordinates (all coordinates except the coor-

dinates of the end monomers) [63]. This assumption reduces the high dimensional

diffusion equation of the chain to a one dimensional Smoluchowski equation. This
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approximation is commonly referred to as the local equilibrium approximation and

is thought to be valid when τm < τ . This validity of the this assumption is therefore

depends on the polymer-solvent model, the polymer length and sink size.

A critical assumption in the passage time approach is that the survival probability

behaves as single exponential φ(t) ∼ e−kt (i.e. is Poissonian) implying that the process

has a simple first order kinetics [9, 64]. The validity of this assumption depends on

the relative spacing between the eigenvalue of the Smoluchowski operator and their

coefficients in the eigenvalue expansion. The eigenfunction expansion of the survival

probability and mean first passage time are φ(t) =
∑∞

i=0Cie
−βλit τ =

∑∞
i=0

Ci
βλi

respec-

tively , where λi are eigenvalues of the Smoluchowski operator. It is known that the

spectrum of Smoluchowski equation is non-negative and in ascending order [47]. The

kinetics is Poissonian when the first eigenvalue is much smaller than other eigenvalues

so that the main contribution comes from the first term [64].

Recently Amitai et al. [64,65] calculated MFPT in the full conformational space of

the polymer (i.e. without dimensional reduction) and found that cyclization kinetics

for free and confined Rouse chain is almost Poissonian and the kinetics is dominated by

single time scale, the inverse of the largest eigenvalue of the diffusion equation; τ ≈ 1
λ0

.

Amitai et al found that for a/b ≤ 1/
√
N the expansion of the first eigenvalue leads

to the following equation for the cyclization time of a Rouse chain in 3 dimensions.

τ = (
N

2Dκ
)3/2

√
2

D4πa
+ A3

b2

D
N2 +O(1). (1.26)

Where κ is the spring constant in the Rouse model, b the equilibrium average spring

length and A3 is a constant. This equation suggest that two different scaling relations

observed for the Rouse chain originate from the expansion of the first eigenvalue. The

crossover between the two scaling regimes, commonly observed in computer simula-

tions [6,66], is determined solely by N and a. At large N the second term is dominant

and τ ∼ N2 in accordance with prediction based on WF approximation [7, 8] and

RG [32,34]. At smaller length the scaling is given by τ ∼ N3/2

a
. Note that there is no

discordance with predictions Doi and RG because those predictions are valid for long

chains.
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1.3 Simulations

1.3.1 Simulation Methodology

Due to the inherent complexity of polymer dynamics, an analytical treatment of

cyclization kinetics that takes all physical characteristics of the system into account

has been elusive; the problem becomes intractable as one goes beyond infinitely long

Rouse Chain with localized and perfectly absorbing sinks.

Computational techniques allow one to build more complicated and more realistic

models of polymer dynamics. The time scale of polymer cyclization kinetics typically

lies beyond the time scales where all-atom Molecular Dynamics is applicable and

hence except polymer chain with a few monomers one has recourse to course-grained

models.

It is customary to model the linear polymers as either bead-spring or bead-rod

systems where each bead represents a group of chemical monomers and springs (or

rods) model the physical interactions and constraints [67–71].

The simplest system for polymer dynamics is the Rouse chain; a series of N beads

connected through N − 1 harmonic springs. Each bead represent a large number of

chemical monomers that interacts only with its nearest neighbors through Hookean

springs. The model also ignores any interactions. Although the Rouse model ignores

many features of real polymer, similar to other ideal systems in physics (e.g. ideal gas,

ideal Hydrogen atom) it is the starting point upon which more sophisticated models

can be built. Moreover, numerically calculated cyclization kinetics of the Rouse chain

provides a benchmark to test validity of various cyclization kinetic theories [63].

The dynamics of polymer chains is commonly modeled using Brownian Dynamics

[72]. Kinetic Monte Carlo methods can also be used to examine scaling [57, 66]

methods. Here we give a very brief introduction to the rudiments of BD simulations.

A polymer in solution collides incessantly with the solvent molecules. The total

effect of the collisions is modeled by a random force and a friction force on the beads.



19

Additionally, each bead experiences a systematic force from its nearest neighbors. The

equation of motion of each bead of mass m is governed [73] by the Langevin Equation,

mv̇j = −λvj + f + g(t). (1.27)

Here vj and ṙj are respectively the velocity and the acceleration of the jth bead. The

first term is the friction force. The second term is the systematic force which for a

Rouse chain is calculated from the potential of the chain [73].

f = −k
2

N∑
j=2

∇(rj − rj−1)2. (1.28)

Where k = 3kBT
b2

is the spring constant. The last term is a random force satisfying,

〈gj(t)〉 = 0, 〈gjα(t)gkβ(t′)〉 = 2λkBTδjkδαβδ(t− t′). (1.29)

Where α and β specify the vector components.

A bead collides many times during its observation time and because of the Central

Limit Theorem the random force is Gaussian.Furthermore, because the collisions have

no directional preference the mean force is zero. The second equation reflects the fact

that forces at two different times are completely uncorrelated.

Inertia can be ignored at time scales much greater than the momentum relaxation

time m/λ and Eq. 1.27 reduces to the equation for Brownian motion

λv = f + g(t). (1.30)

There are various schemes for integrating Eq. 1.30 and propagating the conforma-

tions of Rouse chain in time [72]. A widely used algorithm is the Ermak-McCammon

algorithm [63,74].

rj(tk+1) = rj(tk) + f sδt+
√

(2Dδt)Wj. (1.31)

Were Wj is the Weiner process defined as Ẇ (t) =
√

2λkBTg(t) [47].

In order to calculate the cyclization time the chain conformations are propagated

in time until the end beads reach a certain distance of each other. Typically, the

cyclization time is calculated by averaging over several simulations each starting from

a initial conformation randomly sampled from equilibrium distribution.
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1.3.2 Simulation Of Cyclization Kinetics For Rouse Chain

The scaling of the cyclization time with of the chain length and capture radius

can be written in the general form τ ∝ (a/b)υNγ. Three distinct scaling regimes can

be identified for the Rouse chain: For long chains (hundreds of beads) simulations

suggest that υ → 0 and γ = 2 [6, 36, 75, 76]. This scaling is in agreement with the

predictions of Wilemski-Fixman, Doi [7, 8] and de Gennes [45] [34] that for large

N the cyclization time becomes independent of the capture radius and scales with

the maximum relaxation time. Below N ≈ 100 with a/b > 1 the dependence on the

capture radius becomes stronger (υ ↑) while the dependence on N remains unchanged.

This regime is consistent with the predictions of the Toan’s augmented SSS model [6]

and WF [7]. For a/b < 1 the dependence on chain length becomes weaker(γ = 1.65−2)

and finally the SSS scaling regime (υ = −1, γ = 1.5) emerges when a
√
N/b � 1

[6,57,63] and its predictions become exact for N = 1 and 2 [63]. As is apparent form

Figure 1.2 that as the length of chain grows the dependence of the cyclization rate

on a/b becomes weaker and approaches the asymptotic value of zero for ultra large

chains. The jump in the values of υ occurs around N ∼ (a/b)2, in agreement with

the prediction by Yang and Cao [12] and indicates a transition from a−dependent

regime (kinetics dominated by high frequency fluctuation) to a−independent regime

(kinetics dominated by slowest mode).

A persistent question in polymer cyclization kinetics is if the kinetics can be

described by a single time scale. In other words, does the survival probability decay

exponentially? Several authors answered yes to this question for Rouse chain [36,64,

77]. Yeung and Friedman [36], for example, found that the survival probability of

chains with up to N = 800 decay almost exponentially for t > τm. Amitai [64] found

that with N = 16, 32 and a/b = 0.1 the survival probability [36] is well-approximated

by a single exponential but more exponential terms are needed for larger chains

(N = 64) with larger capture radius(a/b = 0.4). The general conclusion that can
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Figure 1.2. Scaling exponent, υ, of the cyclization time of Rouse chain
as a function of the chain length, N [36]. The approach of υ to zero for
long chains is in agreement with capture-radius-independent cyclization
predicted by renormalization group theory and Wilemski-Fixman theory.

be made is that the smaller the chain length and the capture radius the better the

survival probability can be fit by a single exponential.

1.3.3 Simulation Of Cyclization Kinetics For Chains With Excluded Vol-

ume And Hydrodynamic Interactions

The cyclization kinetics of more complex polymer models has also been simulated

by several groups. For the Rouse chain with excluded volume simulations report

y = 2.1 − 2.4 [6, 76–79], in satisfactory agreement with the values the prediction of

RG theory γ = 2.2. Toan et. al.’s simulation [6] suggest that in poor solvent γ = 1

which indicates that the chains cyclizes much faster poor solvent than in good solvent.

For a chain with hydrodynamic interactions in theta solvent Ortiz-Repiso et. al.

[76] reports γ = 1.69 for a/b = 0.5 and γ = 1.81 for a/b = 1. For a chain with both
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hydrodynamic and excluded volume interactions they report γ = 2 for a/b = 0.5 and

γ = 2.23 for a/b = 1 both being higher than the values predicted by RG, γ = 1.764.

1.3.4 Simulation Of Cyclization Kinetics For Worm-like Chain Polymers

Polymers exhibit backbone rigidity on various length scales depending on their

molecular structure. The rigidity is commonly characterized by the persistence length

lp, formally defined as the characteristic length over which the directional correlation

of the chain decays by a factor of 1/e [73],

〈t(s) · t(0)〉eq = 〈cos(θ)〉eq = e−s/lp . (1.32)

Where t(s) is the unit vector tangent to the chain contour, θ is the angel between

two points on chain contour separated by s.

The statics and dynamics of chain with contour length much longer than lp re-

sembles that of flexible chains [80]. In the opposite extreme, chains with length much

smaller than lp are described as elastic rods [80,81]. The statics and dynamics of poly-

mers at these regimes are analytically tractable and has been studied extensively [82].

However, the length of many polymers lie between these two extremes. These poly-

mers are commonly referred to as semiflexible polymers and the standard model for

them is the wormlike chain model [83]. In WLC model a polymer is described as an

inextensible differentiable curve with harmonic bending energy [73].

In contrast to flexible polymers where cyclization time is an increasing function of

chain length, WLC exhibits two distinct regimes separated by a minimum [54,56,60,

84, 85]. This minimum, located between 2-4 lp emerges due to the interplay between

the entropy and bending energy of the chain. For very long chains the two ends have

to search through many highly probable states before they find each other. On the

other hand, in very short chains a loop is highly improbable because the bending

energy needed for cyclization is much greater than the thermal energy. Therefore, it

takes short chains a long time to obtain this energy from the solution and cyclize.

In contrast to long chains, the cyclization time of the short chains has a very strong
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dependence on length and increases exponentially as the chain length approaches zero.

At some point in between these two regimes the cyclization energy has a minimum

for which the cyclization time is minimum (Figure 1.3).

The analytical treatment of WLC kinetics through WF theory has proven to be

formidable and only tractable with unrealistic approximations such as approximating

the equilibrium probability distribution of the WLC to be Gaussian [86]. SSS theory,

on the other hand, is widely viewed as being capable of adequately capturing the

WLC cyclization kinetics. Because the bending energy cost reduces the probable

phase space of the semiflexible polymers, their relaxation time to equilibrium is short

and satisfies the local equilibrium condition(τm < τ) necessary for the validity of SSS

theory. In addition, since the probability density around the capture radius is small

SSS model can be simplified to Kramers rate theory. Kramers rate theory predicts a

very simple relation for the cyclization time of a WLC,

τ ∝ 1

DP ′(α)
. (1.33)

Where the prime sign denotes differentiation with respect to end-to-end distance

r. SSS theory and Kramers rate theory can be collectively called single reaction

coordinate theories because they reduce the kinetics to diffusion along an effective

reaction coordinate.

The qualitative and quantitative agreement of WLC kinetics with the predictions

of single reaction coordinate theories have been studied and the results suggest that

the theory makes correct qualitative predictions over a limited range of parameter

space of l/lp and α = a/lp.

The results of several simulations [54, 56, 60, 84, 85] for WLC are compared in

Figure 1.3. The graph indicated that SSS theory correctly predicts some of the

qualitative features of the WLC cyclization kinetics; it predicts the existence of two

distinct regimes and a minimum. Furthermore, it predicts the location of the min-

imum between 2-4 l/lp. However, there are quantitative disagreement between SSS

theory and simulations. In particular, SSS theory predicts a stronger dependence on
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chain length when compared to Afra and Todd’s simulation based on the a chain-

length dependent diffusion constant. The explicit α−dependence of the cyclization
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Figure 1.3. Cyclization time from several Brownian Dynamics simulations
of the wormlike chain are compared with the single reaction coordinate
theory(red solid line) by Szabo et. al. [9]. Data are adapted from Afra and
Todd( [60], black), Hyoen and Thirumalai( [56], green), Chen et. al.( [57],
cyan) and Baleff et. al.( [85], blue)

.

time in the limit α→ 0 can be obtained by introducing the equilibrium Green’s func-
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tion Geq(r) defined by Peq(r) = 4πr2Geq(r) in the limit α→ 0 and Eq. 1.33 takes the

form [54,60]

τ =
1

8πDαGeq(0)
. (1.34)

Geq(r) is the radial probability distribution of end-to-end distance and Geq(0) is the

loop formation probability [54, 87, 88]. τ ∝ α−1 scaling is the signature of 1D diffu-

sion models and can used as a test for the applicability of these models for cyclization

kinetics. Mixed results are reported regarding the agreement of the simulated cy-

clization time with 1D diffusion models based on the dependence of the cyclization

time on α. While some authors [54,57] find agreement with 1D diffusion models over

a certain range of α Afra and Todd [60] found a range of α where cyclization time

shows a weaker dependence on the capture radius.

These disagreeing results can be attributed to different methodology of simula-

tions. The common approach to cyclization kinetics of WLC is to discretize the

chain [70, 89–92] with bending energy between nearest neighbors and discretized the

continuous time with discrete time steps. Afra and Todd have recently implemented

an alternative approach and extrapolated the cyclization times obtained from the

discretized time and discretized WLC to the continuum limit and found that time

and space discretization leads to erroneous estimation of the cyclization time.

Additionally, some simulations [56, 84, 93] are based an indirect method in which

the cyclization time is not calculated directly but it is obtained from the dissociation

time of initially cyclized chains and the following approximation:

P (cyclized)

P (dissociated)
≈ τ

τdis
. (1.35)

It is also worth noting that the effective diffusion coefficient of end-to-end vector

in most simulations of the WLC is approximated by a constant that is fitted across

the calculated cyclization times [54, 56, 84]. However, this coefficient has a weak

dependence on the chain length and only for long chains it approaches a constant.

These differences between the simulation technique can account for their disagree-

ments.
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1.4 Experiments

The cyclization kinetics of synthetic [1,94–112] and biological [113–124] polymers

has been measured over the past few decades by various photo-physical methods.

Commonly, polymer termini are labeled with photo-excitable probes that form en-

counter complexes upon end-end collision.The rate of encounter complex formation is

determined by monitoring the characteristic absorption or emission of that encounter

complex. Commonly the dependence of cyclization rate is measured as a function

of the degree of polymerization, as measuring dependence on capture radius is much

more difficult.

1.4.1 Cyclization Kinetics In Synthetic Polymers

The cyclization kinetics of synthetic polymers, in particular Polystyrene (PS)

and Polyethylene Oxide (PEO) has been studied extensively. The effect of vari-

ous parameters such as degree of polymerization [1, 95, 96, 106, 107, 110, 125], solvent

quality [1, 96–98], viscosity [97, 98], temperature [99–102], probe size [95] and dan-

gling ends [112] has been the subject of these studies. These studies show a wide

range of scaling exponent of the cyclization rate k ∝ N−γ with γ ranging from 1 to

1.9 [1, 95,96,106,107,110,125].

Winnik pioneered using pyrene excimer formation [125] to investigate various as-

pects of polymer cyclization. In these experiments, derivatives of pyrene, a tetracyclic

aromatic hydrocarbon, are attached to the ends of a polymer chain. Upon irradia-

tion pyrene is excited and emits a blue-violet light. The pyrene in excited state can

form a complex known as pyrene excimer upon encounter with a second pyrene in

ground state through a diffusion-controlled process. Pyrene excimer has a broad emis-

sion spectra with peak in blue-green region and distinctly different from the pyrene

monomer emission [94]. This red shift in the emission allows one to measure the

kinetics of excimer formation via a combination of time-resolved and steady state
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fluorescent measurements. By monitoring the decay of the excited monomer one can

obtain the cyclization rate from Eq. 1.36 [94]

〈k〉 =
1

〈τ〉
− 1

τ ◦py
. (1.36)

Where 〈. . .〉 denotes averaging over the distribution of chain length in a sample,

〈τ〉 is the average lifetime of pyrene measured in time-resolved fluorescent measure-

ment when the excited state of monomer decays through either naturally or excimer

formation. τ ◦py is the natural lifetime of the pyrene monomer [126].

The accuracy of 〈k〉 obtained from eq 1.36 becomes poor for the long chain where

τ becomes the comparable to τ ◦. This limitation is circumvented by steady state

fluorescent measurements; the cyclization rate of a long chain is determined from the

cyclization rate of a short chain using the relation between the relative intensities of

an excimer and a monomer for short chain(2), and long chain(1),

(Ie/Im)1

(Ie/Im)2

=
〈k1〉
〈k2〉

. (1.37)

Which is based on the fact that Ie ∝ k1&2Im [94].

The cyclization rate measurement in theta solvent is a way to study the dynamics

of polymer chains in the absence of excluded volume perturbations. Winnik measured

the cyclization rate for pyrene modified PS (Py2-PS) chains with number average

molecular weight in the range Mn = 2.9− 99.7 kDa (N = 60− 1920) in theta solvent

(Cyclohexane, 34.5 C) and found γ = 1.62 [94, 127]. An alternative method for

measuring the cyclization kinetics is to decay of the triplet state of anthryl group via

triplet-triplet electron transfer. In this method, chain termini are substituted with

anthryl moieties instead of pyrene derivatives. Horie et. al. studied the cyclization

of PS chains in theta solvent using this technique and found a biphasic behavior with

γ = 1.5 for N ≤ 300 and γ = 1.0 for N > 300, in disagreement with the results

obtained from pyrene excimer measurements [96].

In a good solvent, one would intuitively expect to see a slower cyclization kinetics

compared to theta solvent because the chain is swollen and the probability of the
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Table 1.2.
The scaling coefficient of cyclization kinetics with the degree of polymer-
ization for different polymers and solvent conditions.

Polymer Solvent γ Reference

PS Good 1.6 [103]

PS Good 1.4 [107]

PS Good 1.5 for N > 300 [96]

PDMS Good 1.5 [110]

PS Theta 1.6 [103]

PS Theta 1.5 [96]

ends meeting is reduced. Winnik measured the cyclization rate of PS chains with

Mn = 3900− 27000(Mn is the number averaged molecular weight) and found that in

toluene (good solvent for PS) γ = 1.62. It is important in these measurements to take

into account the molecular weight of the end labels. Winnik found that correction

for the effect of end labels reduces γ = 1.62 to 1.52. After taking into account the

polydispersity of their samples this value drops to 1.35, much smaller than what

is predicted by different theories [94] These findings highlighted the sensitivity of

γ to polydispersity and emphasized the need for samples with very narrow length

distribution. Ushiki et al 1983 introduced an alternative method and measured the

cyclization rate of photo dimerization of anthryl moieties attached to the end of PS

chain, anthryl2-PS, in good solvent(benzene) with N = 280−3000 and found 1.4±0.2

[107]. Winnik’s data suggests that the cyclization rate is enhanced in theta solvent [1]

while other authors have found contradictory results. For instance, Ghiggino et.

al. studied the Py2-PEO chains, Mw = 1070, 1350, 3700(Mw is the weight averaged

molecular weight), and did not observed an increase in cyclization between good and

theta solvents [98]. Yet Martinho [105] who studied the cyclization rate for Py2-PS a

mixture of cyclopentane and acetone and found that with changing the concentration
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Figure 1.4. The cyclization rate for different synthetic polymers in dif-
ferent solvents as a function of average degree of polymerization. PS in
theta solvent(red): Winnik et al. [103] (red squares), Horie et. al. [96] (red
circles). PS in good solvent(black): Winnik et. al. [103] (black squares),
Horie et. al. [96] (black circles), Ushiki et. al. (black triangles). And,
polycarbonate [106] (blue squares) and PDMS [110] (green squares), both
in good solvents.

of acetone, which causes a change in the strength of excluded volume interactions

the value of γ varies, reaching a maximum near the solvent mixture with strongest

excluded volume interactions.
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Opposite to a good solvent, in a poor solvent a polymer chain collapses making

its size much smaller than the size at theta point [37]. The comparison of cyclization

of a polycarbonate chain in good (acetone) and poor (acetonitrile) solvent shows that

the cyclization rate is enhanced in poor solvent [106], a finding that is supported by

simulations. [6].

Another factor impacting the cyclization kinetics is the chemical composure of the

monomers. While the global behavior of the chain are expected to be independent

of the type of monomer, the magnitude of the cyclization rate shows dependence on

monomers. For instance, a study on PDMS polymers with Mn = 6, 640 − 258, 000

kDa in good solvent suggest shows that PDMS cyclizes two times faster compared to

PS in the solvent of the same solvent power and viscosity [110]. These results also

show that γ = 1.5, in agreement with the prediction of WF theory for non-draining

chains. This can attributed to the fact that conformational changes are more difficult

for PS with bulky phenyl side groups than for PDMS.

Another important factor is dependence of the cyclization kinetics on solvent

viscosity; kc ∝ ηβ. As mentioned earlier, β = 1 is an indicator encounter-limited

kinetics. Several studies shows that the β = 1 which indicates that the pyrene

excimer formation is diffusion controlled [97, 98]. For instance, Cheung et. al. [97]

studied cyclization kinetics of Py2-PEO with polymer with Mn = 9600 in 12 solvents

and found that in 10 out of 12 solvents β = 1.

It is expected that the cyclization rate would increase with the size of the probe

relative to the size of polymer. Sinclair et. al. compared the pyrene excimer forma-

tion rate and pyrene-dimethylaniline exciplex formation rate of PS chains in a good

solvent (Toluene 22◦C) and observed that substitution of a pyrene with the larger

dimethylaniline leads to enhanced cyclization rates [104]. Experiments on the role of

probe size on the cyclization rate are scant and further work is needed to fully clarify

the capture radius dependence of polymer cyclization rate.



31

1.4.2 Cyclization Kinetics In Nucleic Acids

Contact formation between distal segments is an elementary step in many bio-

logical processes including RNA folding, protein folding, transcriptional regulation of

gene expression, chromosomal packaging and viral DNA packaging. Most biopolymers

have significant backbone rigidity compared to synthetic polymers and fall into cate-

gory of semiflexible polymers. Experimental studied have been conducted to measure

the cyclization rate of unstructured polypeptides and ssDNA. Of special interest is

the dependence of cyclization rate on the length, viscosity and sequence.

The cyclization rate of short single-stranded polynucleotides has been studied by

several authors. The collision between distal nucleotides along a strand is a necessary

step for the formation of hydrogen bonds between bases that leads to the formation

of secondary structures [3]. The kinetics of DNA hairpin formation as the simplest

nucleic acid secondary structure has been widely studied. In a pioneering work Bonnet

et. al. measured the closing rate of a hairpin and found that the closing rate scales

with loop length with a scaling exponent 2.6± 0.3 [123]. In their work they obtained

that scaling based on a two state model in which the strand is considered in either

closed or open state. Further studies however has shown that a two state kinetic

model is inadequate to describe the hairpin loop formation due to the non-negligible

time scale of stem formation [128].

The first measurement of end-to-end collision kinetics of ssDNA was performed

by Wang and Nau who measured the looping rate for 2-5 nt long oligonucleotides

using DBO (2,3-diazabicyclo-[2.2.2]- oct-2-ene) as fluorophore and terminal guanine

base as quencher(DBO − poly(dX)n − dG,X = dA, dC, dUordT ) by measuring the

difference between the fluorescence decay of DBO in the absence and presence of

Guanine [124]. They found that the cyclization rate varies form 0.1 to 9µs ( Fig.

1.5) and has strong length and sequence dependence with poly-dA exhibiting kinetics

one order of magnitude slower than their polypyrimidine counterparts. This effect is

attributed to the stronger base stacking interactions in polyadenylates. Due to the
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short lifetime of DBO compared to oligonucleotide cyclization kinetics this method

was not suitable for oligonucleotides longer than 5 nucleotides.
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Figure 1.5. Cyclization rate of polynucleotides: red symbols repre-
sent polythymines and black symbols represent polyadenines. Data are
adapted from Uzawa et. al. [121] (triangles), Kawai et. al. [120] (squares)
and Wang and Nau [124] (circles).

Kawai et. al. measured the cyclization kinetics for longer oligonucleotides by

monitoring the kinetics of pyrene dimer radial cation formation ( Fig. 1.5) for pairs

of pyrene groups attached to the ends of polynucleotides [120,129,130]. In this method

one of the pyrenes tagged to the oligonucleotide is ionized to pyrene radical cation

(Py·+) by two-photon ionization. Upon encounter with the ground state pyrene at
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the other end the pair form a pyrene dimer radical cation (Py·+2 ). Their data confirms

the faster kinetics in polythymines.

Uzawa et. al. measured the cyclization rate of poly-dT in the range of 6-26 nu-

cleotides ( Fig. 1.5) using a long-lived ruthenium complex as chromophore, and

DABSYL and Viologen as quencher [121]. Their data shows a biphasic behav-

ior; week length dependence for strands shorter than 11 nucleotides and a strong,

γ = 3.49 ± 0.13, length dependence for longer strands. More recently, Uzawa et. al.

has repeated their measurements with DABSYL as the quencher and found a scaling

exponent of γ = 3.52±0.87 for poly-dT and γ = 2.99±0.45 for polyadenines bearing

terminal thymines [122]. This length dependence is in contrast with the theoreti-

cal predictions and the measured length dependence in uncharged and unstructured

polypeptides. Uzawa et al. suggest that this strong dependence is due to the non-

trivial electrostatic effects which are more pronounced for relatively short oligonu-

cleotides. They attribute the week length dependence for strands smaller than 11 nt

to the effect of flexible spacer arms used to tag the DNA with luminophore-quencher

pair.

It is clear form Fig. 1.5 that polythymines cyclize faster than polyadenines.

This has been attributed to the stronger stacking interactions in poly(adenine) [122].

While the cyclization of polythymine is limited by entropic search through chain

conformations until the ends meet, the cyclization of polyadenine requires overcoming

energetic barrier of stacking interactions.

Uzawa’s scaling relation contrasts that found by Qu et al who measured the cy-

clization rate for 2 to 16 nucleotide-long poly(thymine) protruding a dsDNA [131].

They used PET-FCS, Photo-induced Electron Transfer Fluorescence Correlation Spec-

troscopy and found k ∼ L−1.4±0.2, in agreement with SSS prediction for a Gaussian

chain.
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1.4.3 Contact Formation Kinetics In Polypeptides

Diffusion-limited contact between polypeptide segments is an elementary step in

protein folding and this process sets an upper limit on protein folding [132]. Kinetics

of inter-segmental contact formation has been studied extensively and the dependence

of the kinetics on the number of residues [113–117], denaturant type [115, 117–119]

and sequence of amino acids [116,117] have been the subject of these investigations.

These studies show that the contact formation kinetics is dependent on the num-

ber of polypeptide bonds; the common trend in polypeptide chains with different

sequences shows a biphasic behavior similar to the behavior observed in polynu-

cleotides. For short polypeptides the cyclization kinetics is insensitive to the chain

length yet it shows strong length dependence for long polypeptides. Similar to cycliza-

tion kinetics in oligonucleotides the cyclization kinetics in polypeptides is sequence

dependence. Kinetic measurements on a number of polypeptides with a tryptophan-

DBO (fluorophore-quencher) pair separated by six identical amino acids shows that

the cyclization rate varies by as much as two orders of magnitude depending on the

type of amino acid [116].

The most pronounced difference in chain-length dependence of kinetics is between

the poly (glycine-serine) chains for which γ = 1.36 − 1.8 and poly(proline) where

γ = 4.4. The reason for this difference is attributed to the fact that poly(proline) are

significantly stiffer than their poly glycine-serine counterparts [116,117].

While poly (glycine-serine) peptides can be characterized as flexible polymers,

Buscaglia et. al. found in experiments on cysteine-(alanine-glycine-glutamine)j-

tryptophan, (j = 1− 9) that the chains are well described by a wormlike chain with

excluded volume and a persistence length of 0.4 nm, roughly the size of an amino

acid [115]. Krieger et. al. compared the cyclization rate between poly(glycine-serine)

and poly(serine) polypeptide chains and found that the substitution of the flexible

glycine with serine leads to slower contact formation kinetics [117].
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Figure 1.6. The dependence of polypeptide contact formation ki-
netics on the number of amino acid residue. The kinetic data for
poly(glycine-serine)(black symbols,Refs. [113,116,117,133]), poly(alanine-
glycine-serine) (Refs. [114, 115], red symbols), poly(serine) ( [117], blue
triangles) and poly(proline)( [116], green squares).

Since the size of a polypeptide chain is small, it is imaginable that the long range

electrostatic interactions would also alter the cyclization rate. However, the effect of

charge on cyclization kinetics has been studied by changing the state of protonation of

polypeptides with negatively charged (tryptophan-(aspartic acid)6-DBO), positively

charged (tryptophan-(lysine)6-DBO) and uncharged (tryptophan-(glutamine)6-DBO)

backbone and minimal charge dependence was observed [116].
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The presence of denaturants such as guanidine hydrochloride, ethanol and urea

also affects the cyclization rate. The logarithm of cyclization rates has been shown to

drop linearly with increasing the concentration of these three denaturants with rates

dropping by as much as one order of magnitude in the presence of 8 M guanidine

hydrochloride [117]. In a study on cysteine-(alanine-glycine-glutamine)j-tryptophan

it was found that the diffusion-limited rates are significantly smaller in denaturant

and exhibit a steeper length dependence. Krieger et. al. found that in the pres-

ence of 8 M guanidine hydrochloride the length dependence of poly (glycine-serine)

cyclization rate is slightly steeper with (γ = 1.8 ± 0.1) compared to the cycliza-

tion in aqueous solution(γ = 1.7± 0.1). The kinetics measurements on polypeptides

with alanine-glycine-glutamine repeating unit and tryptophan and cysteine termini

showed a stronger dependence of scaling behavior on the denaturant, with γ = 2.0 in

denaturing condition and γ = 1.72 in aqueous solution [115].

Most kinetics measurements of polypeptide cyclization kinetics are concerned with

a system initially at equilibrium. Volk et. al. [134] studied the recombination of thiyl

radicals at the end of peptides with ring initial condition, that is a nonequilibrium

initial state. They found that kinetic is described by a stretched exponential φ(t) ∼

exp(−(kt)κ) with κ = 0.1 ± 0.01 and τ = (κk)−1Γ(−κ) different form the single

exponential dependence observed for the kinetics of systems initially at equilibrium.
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2. Kinetics of Loop Formation in Worm-like Chain Polymers

A common theoretical approach to calculating reaction kinetics is to approximate

a high-dimensional conformational search with a one-dimensional diffusion along an

effective reaction coordinate. We employed Brownian dynamics simulations to test

the validity of this approximation for loop formation kinetics in the worm-like chain

polymer model. This model is often used to describe polymers that exhibit backbone

stiffness beyond the monomer length scale. We find that one-dimensional diffusion

models overestimate the looping time and do not predict the quantitatively correct

dependence of looping time on chain length or capture radius. Our findings highlight

the difficulty of describing high-dimensional polymers with simple kinetic theories.

2.1 Introduction

Kramers’ approach to reaction kinetics reduces the complex motion of a molecule

to the diffusion of a single degree of freedom along a one-dimensional “reaction co-

ordinate”. [53] The reaction rate is then equivalent to the rate at which a diffusing

particle crosses a barrier imposed by the potential energy landscape. Using this ap-

proximation, one obtains an Arrhenius equation for the special case of a high potential

barrier; the general case can be solved by numerical quadrature. [48, 135]

Because of its pervasiveness, it is important to identify the limitations of Kramers’

approach. When is it impossible to model reaction kinetics by 1D diffusion along

an effective reaction coordinate? A well-studied example concerns the kinetics of

reactants attached to flexible polymers, first described by Wilemski and Fixman. [7]

In its simplest form, this problem involves reactive groups attached to each end of a

polymer. A reaction occurs when the ends come close together, giving the polymer the

form of a “loop”. The difficulty in predicting this looping rate, from the perspective of
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Kramers’ rate theory, is that the polymer exhibits a spectrum of diffusional timescales,

all of which matter in the overall rate of loop formation. [8] And, after many attempts,

[6, 9, 64, 114] it still seems impossible to coarse-grain the flexible polymer looping

problem down to a 1D diffusion model à la Kramers’ approach. [36, 63,66,75,77]

In this paper, we consider polymer looping kinetics, not for flexible polymers,

but for a polymer model that includes bending stiffness called the worm-like chain

(WLC). The WLC polymer model is often used to describe biopolymers, such as

DNA [136] and polypeptides. [114] Applications of looping occur in the regulation of

gene expression [137] and in the kinetics of protein folding. [114, 138] WLC looping

kinetics were considered previously [54,56,57,84,139,140] and it was concluded that

WLC looping kinetics can be described by 1D diffusion models. [54, 56, 57, 84, 140]

The rationale for this distinction from flexible polymers, as given by Jun et al. [54]

and Hyeon et al. [56], is that stiffness in the WLC reduces the probability of loop-

ing, allowing the polymer time to completely establish “local equilibrium” along the

reaction coordinate.

We reconsidered this problem, using Brownian dynamics simulations to confront

the predictions of Kramers’ rate theory for a high barrier and a more general treat-

ment given by Szabo, Schulten, and Schulten (SSS theory). [9] We will collectively

refer to these theories as “1D diffusion models” because the salient feature of this

class of models is that they reduce molecular motion to a single-degree of freedom

that is explored on a single time scale. We find that 1D diffusion models, while pre-

dicting reasonable qualitative trends, cannot quantitatively describe the dependence

of looping time on chain length or capture radius. It seems that, similar to the case

for flexible polymers, [8] the spectrum of WLC diffusional timescales matter in the

rate of loop formation.

The paper is arranged as follows. In Section II we state the problem. In Section

III we briefly introduce the WLC model and describe the basic length and time scales

that are employed throughout the paper. In Section IV the details of the Brownian

dynamic simulation are discussed. Section V reviews 1D diffusion models. Section V
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Figure 2.1. We consider the time required for a thermally average WLC
polymer to diffuse into a configuration where the end-to-end vector, ~ree
has a small length α, called the capture radius. In this configuration, the
polymer has the form of a loop, so, the average time is referred to as the
“looping time”, tL.

also describes the details of computing an effective diffusion coefficient for 1D diffusion

models. The looping times from the Brownian dynamics simulations and 1D diffusion

models are compared in Section VI.

2.2 Problem Statement

In this paper, we characterize the average time required for the two ends of a WLC

polymer to diffuse to within a small separation, α, referred to as the capture radius

(Fig. 2.1). In this configuration, the polymer has the form of a “loop”, so, we refer

to this average time as the “looping time”, tL. In experiments or polymer processes

where a polymer contains reactive ends, tL corresponds to the average time required

for the formation of looped molecules.

2.3 WLC Polymer Model

The WLC is a polymer model that describes a continuous inextensible rod with

potential energy due to bending. The WLC model is useful for describing real poly-

mers that exhibit stiffness over length scales much larger than the monomer length.

Prominent examples include: double-stranded DNA, [136] RNA, [141] actin, [142]

collagen, [142] clatherin [143], carbon nanotubes [144] and polyanaline. [145] The
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bending elasticity of WLC is parametrized by the persistence length, lp. Many ex-

cellent textbooks [59] and reviews [58,146] describe the WLC in detail and so, we do

not repeat those descriptions here.

We non-dimensionalize the WLC model using the following length and time scales.

All lengths are relative to the worm-like chain persistence length, lp. All diffusion co-

efficients presented are relative to Dlp , defined as the translational diffusion coefficient

for a WLC with contour length equal to one persistence length. lp and Dlp together

define a time-scale, tlp ≡ l2p/Dlp. All times presented in the paper are relative to tlp .

In order to obtain predictions for a particular WLC polymer our results need only

be scaled by these quantities. For instance, in Fig. 2.5, we find that for a WLC

contour length of L = 2.2 and a reaction radius α = 0.1 the average looping time is

tL ≈ 10. For double-stranded DNA, lp ≈ 50 nm, and Dlp ≈ 30 µm2/s, [147] so, this

predicts for a 110 nm length DNA and a 5 nm reaction radius the looping time for

DNA would be 800 µs.

2.4 Brownian Dynamics Simulations

We employed numerical Brownian dynamics simulations to estimate the WLC

looping time. We consider the looping time calculated using this procedure to be

accurate. Precision is limited only by the available computational resources. Our

simulations were run on 72 cores from the Rossmann computer cluster operated by

Rosen Center for Advanced Computing at Purdue University over a period of several

months.

Our WLC Brownian dynamics simulation is identical to the simulation described

by Wang and Gao. [70] Wang et al.’s algorithm was, in turn, derived from that of

Jian and Vologodski [89] but augmented to include an inextensibility constraint. [148]

We omit hydrodynamic interactions from our simulation in order to limit the number

of model parameters. We verified our implementation of Wang et al.’s simulation by

reproducing Ref. [70] Figures 3(a) and 7(a) and Ref. [89] Figure 6 and Table II.
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Each simulation begins with a thermally averaged WLC configuration that is

discretized along the polymer contour length at distances of ∆l. The polymer con-

figuration is propagated forward in time using Brownian dynamics until the distance

between the two ends of the polymer is below the capture radius, α. This produces

one realization of the looping time. An average looping time, tL is obtained by re-

peating this procedure starting from approximately 300 different WLC configurations

drawn from the equilibrium distribution.

The average looping time, tL calculated by Brownian dynamics has a pronounced

dependence on the discretization step-size, ∆l (data shown in Appendix 2.9.1). This

should be expected as polymer looping kinetics are sensitive to the smallest time

scales exhibited by the polymer. [8] The discrete approximation to the WLC used

in Brownian dynamics simulations truncates the infinite relaxation spectrum of the

continuous WLC model and imposes an arbitrary smallest time scale. We recover the

continuum limit by simulating with increasingly smaller ∆l and then extrapolating

to ∆l = 0. This extrapolation procedure is described in detail in Appendix 2.9.1.

Looping times for discrete approximations to the WLC were obtained previously.

[56,57,140] We are the first to obtain the looping time for the continuous WLC.

2.5 1D Diffusion Models

A persistent theme in polymer looping theory is the extent to which the polymer

looping time can be approximated by a single-degree of freedom diffusing along a 1D

reaction coordinate given by the polymer end-to-end distance(Ref. [6] and references

therein). This 1D diffusion approximation is akin to Kramers’ approach to chemical

reaction kinetics where multidimensional molecular motions are projected onto a sin-

gle reaction coordinate explored on a single time scale. Many applications of Kramers’

rate theory make an additional simplification that the rate limiting step involves a

potential barrier much larger than the thermal energy. However, this simplification is

not strictly necessary within the 1D diffusion approximation. Below we first describe
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general solutions for the 1D diffusion approximation to the polymer looping problem

and then introduce the high barrier approximation in order to obtain a Kramers’ rate

equation.

2.5.1 SSS Theory

Polymer looping can be phrased as a first passage time problem; we seek the

time required for the polymer end-to-end distance to first passage to a value smaller

than the capture radius. The formal solution to the first passage time problem for

a continuous-time Markov process governed by a Fokker-Planck equation with one

degree-of-freedom was obtained by Pontryagin et al. [48, 135] The solution yields

a quadrature for the average time required for a particle initially at x, such that

a < x < l with a reflecting boundary at l and an absorbing boundary at a to leave

the domain by being absorbed at a, [48]

t(x) =

∫ l

a

1

DPeq(x)
dx

∫ l

x

Peq(y) dy. (2.1)

Peq is the equilibrium probability density and D is the particle diffusion coefficient.

This solution was first applied to polymer looping by Szabo et al. [9] They assumed

that the location of the absorbing boundary is the capture radius a = α. All subse-

quent treatments of this problem incorporated this assumption. [6, 56, 57, 63, 84] For

the WLC, the location of the reflecting boundary is given by the maximum extension

of the polymer (the inextensible contour length) l = L. This yields an equation,

t(x) =

∫ L

α

1

DPeq(x)
dx

∫ L

x

Peq(y) dy. (2.2)

In order to obtain the average looping time, Eq. 2.2 is then averaged over the equi-

librium distribution of end-to-end distances, tL =
∫ L
α
t(x)Pex(x)dx, to obtain,

tL =

∫ L

α

1

DPeq(x)
dx

(∫ L

x

Peq(y) dy

)2

. (2.3)

Because this solution was first applied to polymer looping by Szabo, Schulten, and

Schulten, Eq. 2.3 has come to be known as “SSS theory” in the polymer literature.
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Figure 2.2. WLC looping times from single-particle reaction-diffusion
models. The looping time vs. chain length for SSS theory (red line,
Eq. 2.3) and Kramers approximation (blue line, Eq. 2.4). Kramers ap-
proximation approaches SSS theory in the limit of small L. For large L,
Kramers approximation underestimates SSS theory by a factor of 2.

We evaluate Eq. 2.3 numerically as a function of WLC length using α = 0.1

(red line, Fig. 2.2).The equilibrium probability density, Peq was obtained from values

tabulated by Mehraeen et al. [149]

2.5.2 Kramers Rate Theory

Equation 2.3 can be simplified à la Kramers’ rate theory when the probability

density around α is small (equivalently the potential barrier at α is high). This

approximation, derived in Appendix 2.9.2, simplifies Eq. 2.3 to give,

tL ≈
1

DP ′eq(α)
. (2.4)

where P ′eq is the derivative of the equilibrium probability density with respect to the

polymer end-to-end distance. We evaluated Eq. 2.4 as a function of WLC length with

α = 0.1 (blue line, Fig. 2.2). This Kramers approximation approaches SSS theory

in the limit of small WLC contour length, L → 0. As L becomes large, Eq. 2.4

systematically underestimates the looping time predicted by Eq. 2.3 by a factor of 2.
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Because we are interested in the extent to which the 1D diffusion models can describe

the polymer looping rates and not the high barrier approximation per se, we do not

consider Eq. 2.4 further. All subsequent comparisons between the Brownian dynamics

simulations and the 1D diffusion models will be made using the more accurate SSS

theory, Eq. 2.3.

2.5.3 Effective Single Particle Diffusion Constant

In order to compare predictions from the 1D diffusion models with Brownian

dynamics simulations, the diffusion coefficient, D, in Eq. 2.3 and Eq. 2.4 must be

specified. This problem has been discussed previously [6] and D is often assumed

constant [9] and fitted to simulation data across some range of polymer lengths.

[54, 56, 84] More recently, Toan et al. [6] pointed out that D should not be assumed

constant but should correspond to the value that characterizes the diffusive relaxation

of the polymer end-to-end vector, for a particular length. Using this procedure they

are able to extend the validity of the 1D diffusion models in the calculation of a

looping time for flexible polymers.

We follow Toan et. al.’s approach to this problem and extract a single diffusion

constant, Dee that approximates the relaxation of the WLC end-to-end fluctuation,

〈δ~r 2
ee(∆t)〉 = 〈[~ree(t+ ∆t)− ~ree(t)]2〉. (2.5)

by a single exponential relaxation,

〈δ~r 2
ee(∆t)〉 ∼ 〈〈δ~r 2

ee〉〉(1− e−∆t/tee). (2.6)

Single brackets indicate averaging over t; double brackets indicate averaging over both

t and ∆t. tee is characteristic relaxation time of the end-to-end vector. Jun et al. [54]

have given a useful interpolation for tee,

tee =
2

3π2

L4(
π
4

)2
+ L2

. (2.7)
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Figure 2.3. In SSS theory, relaxation of the polymer end-to-end vector is
approximated by a single diffusion coefficient, Dee, defined by Eq. 2.8. We
extract Dee from numerical simulations of the WLC conformational fluc-
tuations. This example corresponds to L = 3.2. The simulated end-to-end
autocorrelation (black line) is well-characterized by a single exponential
relaxation (red line, Eq. 2.6) except in the limit ∆t→ 0 (inset).

The diffusion coefficient corresponding to Eq. 2.6 (1/6 of the slope in the limit ∆t→ 0)

is,

Dee =
〈〈δ~r 2

ee〉〉
6tee

. (2.8)

This definition of Dee differs only slightly from Toan et al.’s (see Ref. [6], Eq.9). When

applied to a system that is truly characterized by a single diffusion coefficient, the

definition of Dee in Eq. 2.8 yields the correct diffusion coefficient. We verified this

using simulations of two particles connected by a harmonic spring (not shown).

Figure 2.3 compares 〈δ~r 2
ee(∆t)〉 obtained from a WLC Brownian dynamics simu-

lation (black line) with a single exponential relaxation (red line, Eq. 2.6). 〈〈δ~r 2
ee〉〉 in

Eq. 2.6 is obtained from the limiting value of 〈δ~r 2
ee(∆t)〉 at large ∆t. tee is the time

at which 〈δ~r 2
ee(∆t)〉 draws within a factor of e−1 of 〈〈δ~r 2

ee〉〉. While, at first glance,

Eq. 2.6 provides a good description of the WLC autocorrelation function (red line is
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Figure 2.4. Dee for different WLCs lengths. The relationship between Dee

obtained by simulation simulation (symbols) and WLC contour length can
be described to the empirical relation, Dee(L) = 6.69/L0.825 (line).

similar to black line), it is clear that the single exponential relaxation differs from

the WLC in the limit ∆t → 0 (inset in Fig. 2.3). The behavior of end-to-end fluc-

tuations in this limit plays an important role in the scaling behavior of the looping

time with capture radius. [8, 150] The fact that the WLC curve is steeper at small

∆t and later converges to the single-exponential relaxation reflects the fact the WLC

polymer end-to-end vector undergoes anomalous sub-diffusion. [81]

Dee depends on the WLC length. At each length, we obtained Dee for increas-

ingly finer discretization of the WLC contour length and then extrapolated to the

continuum limit, as described in Appendix 2.9.1. The end-to-end diffusion coeffi-

cients obtained in this manner for different lengths are shown in Fig. 2.4. Over the

range of lengths considered, 1 ≤ L ≤ 40, the relationship between Dee and L could

be described by (Fig. 2.4, solid line)

Dee(L) = 6.69/L0.825. (2.9)

We use this empirical relation to obtain the single time scale predictions of the

looping time from Eq. 2.3 at different lengths.

2.6 Predictions of The Looping Time

Predictions of the looping time, tL as a function of polymer length, L at fixed

capture radius, α = 0.1 are presented in Fig. 2.5. Mean values from the Brownian
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dynamics simulations are the black symbols; error bars represent the standard error of

the mean (described in detail in Appendix 2.9.1). Also plotted are the predictions of

SSS theory, Eq. 2.3 with D given by Eq. 2.9 (solid red line). SSS theory overestimates

the looping time by factors > 3.To examine the scaling behavior of SSS theory, we

divided SSS theory by an ad hoc factor of 3 (dashed red line). This matches the

predictions of the Brownian dynamics simulations to within simulated precision over

a limited range, 1.4 < L < 3.2. Outside this range—both at smaller and larger L

there are discrepancies between Brownian dynamics simulations and the predictions

of SSS theory. SSS theory predicts a dependence on length that is stronger than what

is observed in the simulations. On Fig. 2.5, we also indicate the polymer relaxation

time, tee, obtained from simulations (blue squares) as well as those predicted by

Eq. 2.7 (blue line). All of the simulated looping times exceed the polymer relaxation

time.

We also investigated the dependence of the looping time, tL on capture radius, α at

fixed WLC contour length L = 2.2 (Fig. 2.6). Mean looping times from the Brownian

dynamics simulations are the black symbols; error bars represent the standard error

of the mean. Predictions based on SSS theory, Eq. 2.3 with D given by Eq. 2.9 again

overestimate the looping time by a factor of 3 (solid red line). Dividing SSS theory

predictions by the ad hoc factor of 3 we obtain agreement with the Brownian dynamics

simulations for α > 0.1 (dashed red line). For 0.025 < α < 0.1, the simulated looping

times exhibit a weaker dependence on capture radius than predicted by SSS theory.

As α decreases, SSS theory increasingly overestimates the looping time. For the

smallest values of α < 0.025, the dependence of the looping time on capture radius

is consistent with the tL ∝ α−1 scaling expected for SSS theory (red dashed line), or,

any 1D diffusion model in the limit α → 0 (green line)(cf. Appendix 2.9.2). Also,

plotted is the relaxation time for the polymer, tee, from Eq. 2.7 (blue line). With

the exception of the largest α value, all of the simulated looping times exceed the

polymer relaxation time.
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Figure 2.5. Looping time vs. WLC length at fixed capture radius, α =
0.1. Brownian dynamics simulations (black symbols and error bars) are
compared to SSS theory (solid red line). SSS theory overestimates the
looping time by factors > 3. If we arbitrarily divide the predictions of SSS
theory by 3 (dashed red line), we can obtain agreement with the simulation
to within simulated precision in the range 1.4 < L < 3.2. Discrepancies
exist both at small L and large L. SSS theory predicts a dependence on
length that is stronger than what is observed in the simulations. Also,
shown are the polymer end-to-end relaxation times, tee, obtained from
Brownian dynamics simulations (blue squares) and predicted by Eq. 2.7
(blue line).
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Figure 2.6. Looping time vs. reaction radius at fixed WLC length, L = 2.2.
Brownian dynamics simulations (black symbols and error bars) are com-
pared to SSS theory (solid red line). The SSS theory overestimates the
looping time by factors > 3. If we arbitrarily divide the predictions of
the SSS theory by 3 (dashed red line), we can obtain agreement with the
simulation to within simulated precision for α > 0.1. Also, plotted for
comparison is the tL ∝ α−1 scaling relation (green line) that would be
expected for any 1D diffusion model in the limit α → 0. The simulated
WLC looping times include a region, 0.025 < α < 0.1, with weaker depen-
dence on reaction radius than predicted by SSS theory. Also, indicated is
the relaxation time, tee predicted by Eq. 2.7 (blue line).
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2.7 Discussion

We used Brownian dynamics simulations to obtain looping dynamics for the WLC

and explored the extent to which WLC looping dynamics could be described by SSS

theory. SSS theory is an exact solution to the first passage time problem for a single

degree of freedom and should therefore represent the ultimate accuracy that can be

obtained from any 1D diffusion model; an example of a less accurate 1D diffusion

model would be Kramers rate theory for a high barrier.

As previously reported, [54, 56, 84] we find that 1D diffusion models predict a

dependence of looping time on WLC contour length that shares qualitative features

with the Brownian dynamics simulations: there exists a minimum looping time at

L ∼ 2−4 and looping time increases sharply for short chains and increases weakly for

long chains. The 1D diffusion models predict a qualitatively similar dependence of the

looping time on capture radius over two orders of magnitude in capture radii. More

quantitatively, we find that SSS theory everywhere overestimates the looping rate by

at least a factor of 3. Dividing the predictions of SSS theory by an ad hoc factor

of 3 reduces the discrepancy but cannot attain quantitative agreement between the

predictions of SSS theory and the simulation results; SSS theory predicts a stronger

dependence of the looping time on both WLC contour length and capture radius,

as compared to the Brownian dynamics simulations. We conclude that the WLC

looping dynamics cannot be described quantitatively over the range of parameters

investigated here by a 1D diffusion model. This is reminiscent of Wilemski’s and

Fixman’s finding for flexible polymers. [11] However, the effects are more subtle in

the case of WLC polymers, as compared to flexible polymers.

This is the first work to describe the discrepancies between WLC looping dynam-

ics and 1D diffusion models. Indeed, previous work on WLC chain looping drew the

opposite conclusion; that is, that SSS theory could adequately capture WLC looping

dynamics. [54, 56, 57, 84] Some of this discordance can be understood by considering

the range of parameters that were investigated. Chen et al. [57, 66] and Klenin et
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al. [84] for instance, both considered a narrower range of α than we considered. As

seen in Fig. 2.6, scaling consistent with SSS theory can be seen within limited param-

eter ranges, though SSS scaling does not generally hold. Jun et al. [54] concluded that

there is agreement between Kramers rate theory and Brownian dynamics simulations

for short chains. However, their data are in agreement with ours, i.e. they show

that Kramers rate theory predicts a stronger dependence of looping time on WLC

length than what is observed in simulations; discrepancies for short chains were as

large as three orders of magnitude (see Ref. [54], Fig. 2). We therefore presume that

Jun et al.’s conclusion that Kramers rate theory adequately describes WLC looping

is meant only in the same qualitative sense that we mentioned above. Finally, Hyeon

et al. [56] employed Podtelezhnikov and Vologodskii [140] approach to calculate loop-

ing rates and used these calculations to validate Kramers rate theory. They find

agreement over a range of contour lengths of lp < L < 10lp. We do not understand

why these results are different from our own and from Jun et al.’s. One possibility is

that Podtelezhnikov’s method does not simulate the looping time directly but rather

estimates it based on the simulated unlooping time and the equilibrium probability

for the looped DNA conformations. It was recently pointed out that the distribution

of configurations upon flexible loop formation is not representative of the equilib-

rium distribution, [26] perhaps calling into question Podtelezhnikov’s approach for

calculating the looping time. Since this same procedure was used by Hyeon et al.

to validate Kramers rate theory, this may account for the discrepancy between their

findings and our own.

Our finding that the WLC looping time includes a region that depends more

weakly on reaction radius than predicted by 1D diffusion models is consistent with the

known anomalous sub-diffusion of the WLC end-to-end vector. [81] It is only for simple

Fickian diffusion that diffusion-limited kinetics exhibit the scaling characteristic of

the 1D diffusion models, tL ∝ α−1. For anomalous sub-diffusion with mean-square

displacement proportional to tβ, one expects a reaction time to scale with reaction

radius as, α2/β−N , where N is the number of spatial dimensions. [8,150] Analysis of the
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WLC end-to-end diffusion for short chains suggests that the exponent characterizing

the WLC anomalous sub-diffusion is 3/4 ≤ β ≤ 7/8. [81] In this case, the expected

scaling of looping time would range from tL ∝ α−1/3 to tL ∝ α−5/7. This range is

consistent with our observation of a weak dependence of looping time on capture

radius for 0.025 < α < 0.1 in Fig. 2.6.

We showed that predictions of 1D diffusion models everywhere overestimate the

time required for a WLC to form a loop. We suggest that this discrepancy can be

partially rescued by selecting the capture radius for 1D diffusion model differently.

In previous work, [6, 56, 57, 63, 84] this capture radius has been taken to be equal to

the physical capture radius in the polymer looping problem. However, 1D diffusion

models coarse-grain the polymer dynamics up to the slowest relaxation time of the

polymer end-to-end distance. During this time, the faster modes of the polymer will

move the ends of the polymer very rapidly and cause the polymer ends to explore a

larger volume than is given by the physical capture radius. [8] In order for the course-

grained description to be consistent with the actual polymer, the volume explored

by the omitted relaxation modes should define an effective capture radius for the 1D

diffusion level of description, rather than simply using the physical capture radius

for the polymer looping problem. For the parameters considered here, the factor of

3 required to reconcile SSS theory with the WLC simulations suggests the effective

reaction radius is approximately a factor of 3 times larger than the physical capture

radius.

Previous work has argued that 1D diffusion models should adequately describe

polymer looping dynamics provided that the looping time exceeds the relaxation time

of the polymer (“local equilibrium”). [6,54,56,63] With the exception of the largest α

value in Fig. 2.6, this condition is satisfied for all of the simulation conditions that we

considered here. Yet, we see significant differences between WLC Brownian dynamics

simulations and the predictions of 1D diffusion models. We therefore conclude that the

local equilibrium condition, as it is currently understood, is not a sufficient condition
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for obtaining quantitatively accurate predictions of the WLC looping time from 1D

diffusion models.

One possible remedy for this would be to assert that the current criteria for local

equilibrium is not stringent enough. That is, perhaps it is not sufficient for the

reaction time to simply exceed the relaxation time but instead, that the reaction

time must exceed the relaxation time many fold. In order to exclude the region

of our results where WLC simulations and SSS Theory are discrepant, the local

equilibrium criteria would need to exceed the reaction time by 78-fold. However, we

do not favor this interpretation. Firstly, previous work has shown that a cross-over in

scaling behavior occurs where the looping time is approximately equal to the polymer

relaxation time. [54,57,66] Secondly, the discrepancies that we observe between WLC

looping times and the 1D diffusion models in Fig. 2.6 at 0.025 < α < 0.1 occur in an

intermediate region, sandwiched between two regions that exhibit the capture radius

dependence predicted by SSS theory (albeit with different prefactors). For this reason,

we believe that the discrepancies that we observe are related to additional necessary

conditions, unrelated to “local equilibrium”. One additional necessary condition may

be that the effective capture radius needs to accurately reflect the volume explored by

the degrees of freedom that are frozen out upon coarse-graining to the 1D diffusion

model. How precisely to determine this effective reaction radius remains unclear.

Brownian dynamics simulations will therefore continue to be an important tool for

checking the validity of simplified kinetics models.

There are no experimental measurements of the looping kinetics of semiflexible

polymers with which to compare our results. Lapidus et al. measured the looping

kinetics of polypeptides. [114] Polypeptides, however, have persistence lengths that

are only a few times larger than the length of a single chemical bond (lp ∼ 0.6 nm).

Polypeptides are therefore not well-described by the WLC model which requires many

degrees of freedom within a single persistence length. Since it is these underlying

degrees of freedom that give rise to the discrepancies between WLC kinetics and the

predictions of 1D diffusion models, we would not expect such effects to be apparent
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in Lapidus et al.’s data on polypeptide looping. We are not aware of any additional

experimental studies where looping kinetics of a model WLC polymer, such as DNA,

have been measured.

We can make several predictions regarding the results of future experimental mea-

surements of WLC looping kinetics. Firstly, if the looping rate of a WLC were mea-

sured over a sufficient range of capture radii, then we would expect that the looping

rate would include a regime that scaled more weakly than the tL ∝ α−1 scaling pre-

dicted by 1D diffusion models. If instead, the chain length dependence of the looping

rate were measured, then we predict that the experimental length dependence would

be weaker than predicted by 1D diffusion models. This effect exists for both short

(L < 3lp) and long chains, although, the effects are more subtle and will be more

difficult to resolve for short chains. A much more dramatic comparison could be

made if the microscopic parameters for the reaction namely, the diffusion coefficient,

capture radius, and persistence length were known independent of the looping rate.

In this case, the a priori predictions of 1D diffusion models based on the microscopic

parameters would overestimate the looping time by a substantial margin (3× for the

parameters considered here). Any of these effects would indicate that the WLC con-

tains a spectrum of degrees of freedom that contribute substantially to the kinetics

of diffusion-limited reactions.

2.8 Conclusions

We evaluated the accuracy of 1D diffusion models for describing the looping dy-

namics of the WLC polymer model. One-dimensional diffusion models characterizes

the time evolution of the chain configuration with a single time scale and leave out

the fast motions of the polymer. Our results show that ignoring the short time mo-

tion leads to overestimation of the looping time and a distortion of scaling with both

length and capture radius. We suggest that the introduction of an effective reaction
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radius that accounts for the volume explored by the short time motions may rescue

the 1D diffusion models.

2.9 Appendix

2.9.1 Extrapolating Brownian Dynamics Simulations To The Continuum

Limit

Our Brownian dynamics simulations approximate the WLC with discrete contour

segments and continuous time with discrete time steps. [70] In order to recover the

continuum limits, we simulate with increasingly smaller contour segments, ∆l and

extrapolate our results for different ∆l to the limit ∆l → 0. Our simulation time

step, ∆t is proportional to ∆l so, this extrapolation also approaches the limit of

continuous time.

Extrapolation to the continuum limit seems particularly important in polymer

looping calculations because polymer looping times can be dominated by the smallest

relaxation times exhibited by the polymer; [8] simulations truncate the relaxation

spectrum by imposing an arbitrary smallest relaxation time and therefore might be

expected to alter the predictions of the model, as compared to the usual continu-

ous WLC. In addition, Brownian dynamic simulations are known to overestimate

first passage times and converge rather slowly to the continuum limit (usually as
√

∆t). [151] Finally, inextensibility can be modeled only approximately in Brownian

dynamics simulations. [148] The error in this constraint also vanishes as ∆l→ 0. To

our knowledge, we are the first to extrapolate simulations of WLC looping rates to

determine the continuum limit.

Examples of our extrapolations are shown in Fig. 2.7 for WLCs of total lengths

L = 13 (Fig. 2.7a) and L = 1.4 (Fig. 2.7b). At each ∆l the dot represents the

mean simulated value and the error indicates the standard error of the mean. Our

extrapolation procedure is a modification of the procedure described by Öttinger. [72]

In brief, we attempt least-square best-fits to the mean values simulated at M different
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Figure 2.7. Extrapolating Brownian dynamics looping times to the con-
tinuum limit. Simulated looping times (dots and error bars) as a function
of the contour length step-size, ∆l used in the discrete approximation to
the WLC for L = 13 (a) and L = 1.4 (b). Polynomial fits (lines) and the
value extrapolated to ∆l = 0 (squares). For long contour lengths,(a), the
discrete approximation tends to overestimate the looping time whereas for
short contour lengths,(b), the discrete approximation tends to underesti-
mate the looping time. An identical extrapolation procedure was used to
determine values of Dee in the continuous limit.
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∆l using polynomials of order less than M −2. We accept the extrapolation with the

smallest chi-square probability value. [152] The extrapolated value is the intercept of

the polynomial fit and the uncertainty in the extrapolated value is the square root

of the zero-order term in the covariance matrix. The uncertainty in the extrapolated

value is represented by the vertical lines at ∆l = 0 in Figs. 2.7a and b and defines

the procedure used to generate the error bars shown in Figs. 2.5 and 2.6.

The examples shown in Fig. 2.7 show that discrete approximations to the WLC

model can both overestimate (in the case of L = 13, Fig. 2.7a) and underestimate

(in the case of L = 1.4, Fig. 2.7b) the looping time obtained in the continuum limit.

Overestimation of the looping time was typical for discrete WLCs with L > 3. Along

the lines of Doi’s [8] reasoning, this overestimation is the result of omitting degrees-of-

freedom and erroneously reducing the rate at which the polymer end explores space.

In the case of L ≤ 3, the discrete simulations tend to underestimate the continuous

limit. This was due to violations of the inextensibility constraint that introduce an

erroneous degree of freedom (the polymer length). This error decreases as segment

length decreases and the simulated discrete WLC approaches the continuum limit.

[148]

An identical procedure was used to extrapolate values of the end-to-end diffusion

coefficients, Dee to the continuum limit. Dee had a much weaker dependence on ∆l,

as compared to tL.

2.9.2 Kramers Rate Theory

In this appendix we use Kramers’ approximation for a high barrier to derive an

analytical expression for the looping time. [47,53] This expression explicitly shows the

tL ∝ α−1 in the limit α→ 0, which is a signature of 1D diffusion models (The green

line in Fig. 2.6) .Starting from Eq. 2.2, Kramers assumes that the particle begins from

the minimum in an effective potential, x0 = xmin,

tL(x) =

∫ xmin

α

1

DPeq(x)
dx

∫ L

x

Peq(y) dy. (2.10)
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Additionally, Kramers assumes that Peq(x) around α is very small (high potential

barrier approximation). Because of the 1/Peq(x) term in Eq. 2.10, this causes tL to

be dominated by the portion of the integral around x = α. In this region, the integral

over Peq(y) changes little and is insensitive to the precise value of the lower bound, x.

This allows the bound to be replaced by any value around α, and the two integrals

to be decoupled,

tL =

∫ xmin

α

1

DPeq(x)
dx

∫ L

α

Peq(x) dx. (2.11)

Substituting the dimensionless potential f(x) for the probability density using the

relation

f(x) = − ln(Peq(x)) (2.12)

into Eq. 2.11 we obtain the familiar Kramers rate equation (compare to Ref. [47] Eq.

5.109).

tL =

∫ xmin

α

ef(x)

D
dx

∫ L

α

e−f(x) dx. (2.13)

At this point, f(x) is typically Taylor expanded to second order and integrated to

obtain an explicit expression for tL. In this problem, however, the right hand integral

integrates over nearly the entire range of x,
∫ L
α
e−f(x) dx ≈ 1. This reduces Eq. 2.13

to,

tL ≈
∫ xmin

α

ef(x)

D
dx. (2.14)

Because this integral is dominated by the region around α, we Taylor expand

f(x) around x = α. For an absorbing boundary, the first derivative of the potential

is discontinuous at α; that is the potential has the form of a cusp. Hence we expand

f(x) to first-order only in the region just outside of α,

f(x) ≈ f(α) + f ′(α)(x− α). (2.15)

Inserting Eq. 2.15 into Eq. 2.14 and integrating we obtain,

tL ≈
ef(α)

Df ′(α)
(ef

′(α)(xmin−α) − 1). (2.16)

For a high barrier ef
′(α)(xmin−α) � 1. In addition from Eq. 2.12,

ef(α)

f ′(α)
=
−1

P ′eq(α)
. (2.17)
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These reduce Eq. 2.16 to a compact from

tL ≈
1

DP ′eq(α)
. (2.18)

The explicit α−dependence of the looping time in the limit α→ 0 can be obtained by

introducing the equilibrium Green’s function Geq(x) defined by Peq(x) = 4πx2Geq(x).

For any non-zero Geq(0), P ′eq(x) = 8παGeq(0) in the limit α → 0 and Eq. 2.18 takes

the form,

tL ≈
1

8πDα

1

Geq(0)
. (2.19)

An identical expression was derived previously by Jun et al. [54] This equation shows

that in the limit α → 0 all 1D diffusion models predict a looping time tL ∝ α−1

(shown as green line in Fig. 2.6). In Fig. 2.6 we showed that for WLC the looping

time departs from this expected dependence. This indicates that 1D diffusion models

may not be applicable to WLC in the ranges of parameter space where they are

expected to be.
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3. Novel Crosslinking Assays for Non-Enzymatic DNA

Ligation

3.1 Introduction

Measuring the flexibility of DNA is a way of learning about the structural char-

acteristics of this complex macromolecule. The cyclization of DNA is the established

method for quantifying the flexibility of DNA. The cyclization experiments have tra-

ditionally been carried out using an enzymatic reaction in which T4 DNA ligase

catalyzes the formation of a phosphodiester bond between juxtaposed 5′ phosphate

and 3′ hydroxyl termini in duplex DNA. It is assumed in these experiments that

the enzyme itself has no significant effect on the flexibility of DNA. However, it was

recently found that the non-specific binding of the enzyme alters the flexibility of

DNA [153]. Because of DNA breathing–the spontaneous and transient breakage of

the hydrogen bonds between DNA base pairs–DNA bases get exposed to the sur-

rounding solvent. The enzyme can then bind to these flipped out bases and stabilize

these local un-pairings. These stabilized unpaired bases can enhance the flexibility of

DNA.

Another limitation of the ligation assay is that ligase is inhibited by high concen-

tration of monovalent cations (e.g. [Na+] > 200 mM) and its optimal pH range is

limited to pH 7.2-7.8. Moreover, the enzyme’s activity quickly diminishes at room

temperature. All these factors limit the range of measurements that can be done by

ligation assays to a narrow range of reaction conditions where the enzyme is active.

Several groups have developed ligase-free assays over the past few years. Wiggins

et. al. [146] employed atomic force microscopy to measure the bending angles of DNA

on a surface as a measure of the flexibility of DNA. Vafabakhsh and Ha developed a

single molecule assay in which the DNA molecules were attached to a surface and their
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ends were labeled with fluorescent dyes Cy5 and Cy3 [154]. The cyclization rate was

then measured by monitoring the rate of Forster energy transfer between the dyes.

However, a recent simulation by Waters et. al. suggests that pinning down a polymer

to a surface increases the probability of cyclization, a result that calls into question

the conclusions of cyclization assays that involve DNA-surface interactions [155].

We aimed at developing a ligase-free DNA cyclization assay in which DNA is free

to move in solution. To this end, we first identified the strategies for chemical ligation

of DNA. There were several requirement for these strategy to be applicable to DNA

cyclization experiments. First, reactive moieties must be attachable to DNA. Second,

the reaction should be rapid enough so that significant amount of product is formed

under the extremely low (less than 0.2 µM) concentrations compatible with DNA

cyclization experiments. Third, the reaction conditions should not degrade DNA or

cause damages such as strand break to DNA.

Based on these requirements we devised several strategies to label the ends of DNA

and make covalent crosslinking between the ends of DNA molecules. The chemistries

tested are disulfide bond formation, copper-free click chemistry, maleimide-thiol reac-

tion and succinimide-amine reaction. The details of these methodologies are presented

in the following subsections.

The starting point in our screening process was testing each reaction on oligo de-

oxyribonucleotides (ODN). Working with oligonucleotides instead of dsDNA allows us

to initially bypass the complicated and multi-step labeling and purification needed for

chemically crosslinking of dsDNA. Additionally, the crosslinking reactions for oligonu-

cleotides can be carried out in hundreds-of-micromolar concentrations which allows

us to screen for the reactive group with fastest kinetics. One strategy we conceived

for crosslinking DNA is using homo-bifunctional crosslinkers. A homo-bifunctional

crosslinker is a chemical structure in which two identical moieties are separated by a

spacer arm such as an ethylene glycol chain. These crosslinkers are classified based on

the type of chemical group they react with. Two prominent examples are maleimide–a

thiol reactive moiety–and succinimide–an amine reactive moiety (see Fig. 3.1). A



63

 

SH 

+

S 

S 

SH 

SH 

SH 

I2 

S S 

A

NH2 

NH2 

B

pH = 6.5-7.5 

pH 7-9 

NH 

NH 
++

+

+

C

+

NaCl 

D

Figure 3.1. The reaction scheme for four different oligonucleotide co-
valent crosslinking methods. (A) Thiol-functionalized oligonucleotides
are crosslinked by a bis-maleimide crosslinker. (B) Amine-functionalized
oligonucleotides are crosslinked by a bis-succinimide crosslinker. (C)
Thiol-functionalized oligonucleotides are crosslinked via Iodine-oxidation-
mediated disulfide bond formation. (D) Azide-functionalized (red) and
BCN-functionalized oligonucleotides (blue) are crosslinked through a
copper-free click reaction.



64

third path to crosslinking two DNA fragments is through Iodine-oxidation-mediate

disulfide bonding [156]. This strategy is suggested to be a fast and efficient way to

couple two DNA fragments. Lastly, an approach for crosslinking that is growing in

popularity due to its wide range of applicability is click chemistry.

3.2 DNA Crosslinking By Maleimide-Thiol reaction

3.2.1 Experimental Procedure

Maleimide reacts with free thiols in pH 6.5-7.5 to form a stable thioether bond

[157]. We used a pegylated bis-maleimide crosslinkers, 1,8-bis(maleimido) diethylene

glycol, or simply BM(PEG)2 from Pierce Biotechnology. We imagined that in the

presence of thiolated oligonucleotides the maleimide groups would react with thiol

groups at the ends of oligonucleotides and crosslink two oligonucleotides.

The oligonucleotide in this experiment was a 28-nt-long 5′OH-C6-SS-C6-ODN28

(Integrated DNA Technologies) with sequence shown in table 3.1.

Table 3.1.
The sequence of 28-mer and 21-mer oligonucleotides used in maleimide
crosslinking and Iodine-mediated disulfide bonding experiments

Code Oligonucleotide 5′ to 3′

5′SH-C6-ODN28 SH-C6-TGACTGCGTGTATAACTAGCCTGCCCCG

3′SH-ODN21 TTTTGTCGTATGTTAGCGTAG-p-SH

Since free thiols are prone to air oxidation, which results in disulfide bond forma-

tion, the modified oligo is synthesized and lyophilized with a protective group (OH-

C6-S-) which must to be removed after reducing the disulfide bond and right before

the crosslinking experiment. The disulfide bond is attached to an oxygen on the 5′

phosphate of oligonucleotide through a 6-carbon-long chain(C6). We first resuspended

the crosslinker in DI H2O. To reduce the disulfide bond we used the Bond-Breaker
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TCEP Solution (tris(2-carboxyethyl)phosphine) (Pierce Biotechnology). TCEP and

5′OH-C6-SS-C6-ODN were mixed to the final concentrations [TCEP] = 2.25 mM

and TCEP : 5′OH-C6-SS-C6-ODN 100:1 in PB pH 6.5, incubated at room temper-

ature for 2 hours with several vortexing. The reduction of 5′OH-C6-SS-C6-ODN28

by TCEP generates two products, 5′OH-C6-SH and HS-C6-ODN28. The protective

group 5′OH-C6-SH then must be removed because otherwise it would compete with

SH-C6-ODN28 for reacting with crosslinkers.

To remove the protective group (OH-C6-SH) after reduction we used OIAquick

Nucleotide Removal Kit (Qiagen) and followed manufacturers’ protocol. Stock so-

lution of crosslinker BM(PEG)2 was made by dissolving in DMSO right before the

crosslinking experiment. Crosslinking reactions were carried out at room temperature

for 70 minutes in PB pH 6.5, 7, 7.5 with 90 µM or 9 µM of BM(PEG)2 and 9 µM

of cleaned-up SH-C6-ODN28. For sample 3 we did Iodine oxidation as a control to

compare with Maleimide crosslinking. This sample was made by mixing equimolar

amount of I2 and cleaned-up SH-C6-ODN28.

After the specified reaction time, 2× TBE-Urea sample buffer (Invitrogen) was

added to the samples and samples were heated for 3 minutes at 70◦C. The samples

were electrophoresed on 15% TBE-Urea gels (Invitrogen) at constant 180 V using

X-Cell SureLock Mini-Cell Electrophoresis system. To visualize the gels we stained

the gels in a solution of 1× SYBR Gold (Invitrogen) in 1× TBE buffer for 40 minutes

at room temperature while gently rocking the staining dish. The gel images were

captured using GENi gel documentation system (Syngene) which emits 312 nm UV

light that excites SYBR Gold.

3.2.2 Results

We observe very little dimerization for the sample that is reduced by TCEP but

not yet purified. After removing the protective group by spin-column purification, we

see that some of the oligonucleotides dimerize, apparently through air oxidation of
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Figure 3.2. Crosslinking of thiol-functionalized oligonucleotides by a
bis-maleimide crosslinker. Lane M: Low Molecular Weight Marker
(Affymetrix). Lane 1: 5′OH-C6-SS-C6-ODN28 reduced by TCEP before
clean-up, lane 2: sample 1 after clean-up, lane 3: lane 2 oxidized by I2,
lanes 4-6: lane 2 with BM(PEG)2 : SH-C6-ODN28 1 : 1 in PB pH 6.5,
7 and 7.5 respectively, lanes 7-9: lane 2 with BM(PEG)2:SH-C6-ODN28

10 : 1 in PB pH 6.5, 7 and 7.5 respectively.

end thiols. The same results is seen when the sample is oxidized by I2(lane 3, Fig. 3.2).

Adding bis-maleimide did not result in a significant increase of dimerization. When

the ratio of crosslinker to oligo was increased to 10, the yield of dimers reduced. This

is because when crosslinker is in high excess, that is, for maleimides there is a shortage

of thiols, most of the crosslinkers will react with only one thiolated oligo and there will

not be significant dimerization. The dependence of dimerization yield on the ratio of

crosslinker to oligo indicates some degree of reaction between maleimide and thiol.

There could be two explanations for the fact that the majority of the oligonucleotides

remain in the monomer form. First, one may ask if the crosslinker:ODN 1:1 is too

high, resulting in blocking the ends of oligonucleotides by crosslinker. The objection

to this hypothesis is that even when oxidation is carried out by Iodine we do not

observe a high yield. This leads us to think that the reduction of the oligonucleotides

with TCEP has been suboptimal. Unfortunately, there is no standard protocol for

reduction of thiol-functionalized oligonucleotides by TCEP. The protocol used here
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is the result of consultation with Pierce Technology scientist. A possible direction

to take in the future would be to try to come up with an optimized protocol for

reduction and then complete removal of the both protective group and TCEP.

A major problem with this approach is the hydrolysis of maleimide which competes

with the reaction of maleimide with thiol groups. It is critical to keep the pH in the

range 6.5-7.5. While maleimide hydrolysis occurs even at this near-neutral pH, at pH

> 8 the maleimide hydrolysis would be dominant, turning maleimides to maleimic

acid before they react with thiols. One does not know the hydrolysis rate and how

it compares with the rate of maleimide-thiol reaction. Another challenge in working

with maleimide is that extreme care should be taken to carefully desiccate the dry

BM(PEG)2 as moisture can cause hydrolysis of the maleimides.

These considerations convinced us that maleimide-thiol coupling is not a good

approach for crosslinking dsDNA; if the rate of hydrolysis is faster than maleimide-

thiol coupling at tens-of-micromolar concentrations then at nanomolar concentrations

needed for crosslinking dsDNA it would not be a suitable method.

3.3 DNA Crosslinking By Succinimide-Amine Reaction

3.3.1 Experimental Procedure

We attempted to crosslink amine-functionalized oligonucleotides by a water solu-

ble crosslinker having amine-reactive N-hydroxysulfosuccinimide (NHS) ester at each

end of an 8-carbon spacer arm named BS3 for Bis(Sulfosuccinimidyl) suberate. NHS

esters are reactive toward primary amines in pH 7-9 which leads to the formation of

amide bonds and the release of N-hydroxysulfosuccinimide group [157].

The advantage of this method is that unlike free thiols, amine groups do not

react with each other, eliminating the need to develop protocols from reduction and

purification of thiol-functionalized oligos.
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The oligo used in this experiment has the same sequence as the one used in

maleimide crosslinking experiment except the thiol modification was replaced by an

amine moiety: 5′NH2-C6-ODN28 (Integrated DNA Technologies).

We first prepared a 1.0 mM 5′-NH2-C6-ODN28 stock solution by dissolving the

oligo in 0.20 M PB pH 7. Since NHS esters can easily hydrolyze and become non-

reactive, it is necessary to resuspend BS3 immediately before initiating the crosslink-

ing reaction. We dissolved BS3 in DI H2O, immediately before the start of crosslinking

reaction. The final concentration of oligo in crosslinking reaction was 25 µM with 1,

10, 50 and 100 molar excess of BS3 and in pH 8. We tested the efficiency for four dif-

ferent BS3:5′-NH2-C6 ODN28 ratios at pH 8 and two reaction conditions: 30 minutes

room temperature and 2 hours on ice. Procedure for electrophoresis and visualization

was the same as the procedure for maleimide reaction (see Sec. 3.2).

3.3.2 Results

A faint dimer band is seen on the gel shown in Fig. 3.3. Because this band

is present even in the absence of crosslinker, we conclude that crosslinking has not

occurred by BS3. We believe that the negative results is due to the hydrolysis of Sulfo-

NHS ester group of BS3 which readily hydrolyzes and become non-reactive. If the

rate of hydrolysis is much faster than the second order rate of amide bond formation

by Sulo-NHS and amine group, no significant amount of crosslinked oligonucleotide

will form.
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Figure 3.3. Crosslinking of amine-functionalized oligonucleotides by the
bis-Succinimide crosslinker BS3. Lane M: Low Molecular Weight Marker,
lane 1: 5′-NH2-C6-ODN. Lanes 2-5: the samples with BS3:5′-NH2-C6-
ODN28 100:1, 50:1, 10:1 and 1:1 respectively and reaction conditions 30
min at room temperature, lanes 6-9: the same as lanes 2-5 except the
reaction condition was 2 hours on ice. Monomer and Dimer indicate the
location of 5′-NH2-C6-ODN28 monomer and its dimer.

3.4 DNA Crosslinking By Disulfide Bond Formation

3.4.1 Experimental Procedure

Disulfide bond formation is an alternative method for the crosslinking biologi-

cal molecules. Upon oxidation of free thiol groups they can form disulfide bonds.

Although oxygen can oxidize thiols and assist disulfide bonding it has been sug-

gested that Iodine (I2) can mediate disulfide bond formation much faster than oxy-

gen [156, 158]. Oxidation with Iodine along with hydrogen peroxide (H2O2) and

potassium ferricyanide K3[Fe(CN)6] has been suggested as candidates for fast and

efficient crosslinking strategies for nucleic acids [156,158]. To screen the oxidants for

fast, efficient and template independent crosslinking via disulfide bond formation we

tested I2, K3Fe(CN)6 and H2O2. We found in our experiments that Iodine is the

only oxidant that oxidizes thiols and mediates disulfide bonding quickly, efficiently

and without a template. In addition, the experiments show that Iodine oxidation is

ratio sensitive and in the presence of excess Iodine the efficiency of reaction drops.
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This has been attributed to oxidative de-sulfurization of thiophosphate whose rate

increases with increasing the concentration of Iodine [158].

In the first set of experiments the efficiency of H2O2 and I2 were compared for

crosslinking a 3′-thiophosphate oligonucleotide (Fig. 3.4). This oligonucleotide was

21-nt-long and had a thiol group on a 3′ phosphate group or 3′SH-ODN21 (see table

3.1). 100 µM of this oligonucleotide was mixed in 10 µL of 0.03% H2O2 on ice for the

reaction times varying from 30 minutes to 4 hours. For Iodine oxidation we tested

0.1 mM and 1 mM I2 in saturated KI corresponding to I2:SH 1:1 and 10:1, with both

reactions kept on ice. The reason for saturating I2 in KI is that I2 is non-polar and

hence does not dissolve in water while in the presence of KI which ionizes in water

the molecular iodine reacts with I− to form the water soluble I−3 .

In another experiment we compared the efficiency of disulfide bonding by Iodine

and potassium ferricyanide (Fig. 3.5). In this experiments 100 µM of 3′SH-ODN21

was in the presence of 1, 10 or 100 molar equivalent of K3Fe(CN)6 for 3 hours at

RT. For K3Fe(CN)6:SH-ODN21 100:1 the reaction was tested on both ice and RT.

For Iodine oxidation the reaction were with 100 µM of 3′SH-ODN21 and 1 or 10

molar equivalent Iodine in saturated KI. For I2:SH-ODN21 100:1 the dimerization is

relatively inefficient which highlights the importance of the ratio of Iodine to thiols

in this reaction. The electrophoresis condition was the same as the conditions in

Sec. 3.2.

3.4.2 Results

It is clear from the gel (Fig. 3.4) that in equimolar concentration of Iodine and

thiophosphate the conversion of SH-ODN21 to its dimer is nearly complete in only 30

minutes whereas for H2O2 or H2O (air oxidation) no dimerization is observed.

From the gel shown in Fig. 3.5 evident that potassium ferricyanide does not make

disulfide bonds at any of the reaction conditions tested. Oppositely, I2 generates
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dimers with a very high yield. This experiments convinced us that Iodine oxidation

of thiophosphate oligonucleotides is a viable path for chemically ligating dsDNA.
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Figure 3.4. Comparison between dimerization of a 21-nt-long end thio-
lated oligonucleotide through disulfide bond formation in the presence of
H2O2 and I2. Lane M: Low Molecular Weight Marker, lanes 1 and 2:
3′SH-ODN21 in H2O and H2O2 for 4 hours, lanes 3 and 4: 2 hours, lanes
5 and 6, 1 hour, lane 7: in H2O2 for 30 minutes, lane 8: in equimolar
concentration of I2 for 30 minutes, lane 9: in 10-fold excess of I2 for 30
minutes. All reaction were on ice.
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Figure 3.5. Comparison between dimerization of a 21-nt-long end thio-
lated oligonucleotide through disulfide bond formation in the presence of
K3Fe(CN)6 and I2. Lane M: Low Molecular Weight Marker, lane 1: 3′SH-
ODN21, lane 2: lane 1 plus equimolar concentration of K3Fe(CN)6, lane
3: lane 1 plus 10-fold excess of K3Fe(CN)6, lane 3: lane 1 plus 100-fold
excess of K3Fe(CN)6. Lanes 2-4 reaction were at room temperature for 3
hours. Lane 5: lane 4 but on ice for 3 hours. Lanes 6 and 7: lane 1 plus
equimolar concentration of I2 reacted on ice for 3 hours and 30 minutes
respectively, lane 8: lane 1 plus 10-fold excess of I2 reacted on ice for 30
minutes, lane 9: lane 1 but kept on ice for 3 hours.

3.5 DNA Crosslinking By Click Chemistry

3.5.1 Experimental Procedure

An alternative path to crosslinking of nucleic acids is click chemistry. In click

chemistry an azide moiety on a biomolecule reacts with an alkyne or its derivatives

on another molecule leading to the formation of cyclic structures. In our experiment

we chose a particular type of click chemistry named Strain-Promoted Azide-Alkyne

Cycloaddition (SPAAC) which is an example of copper-free click reactions. The

choice of a copper-free reaction was due to the fact that the copper ion commonly

used in copper-based click reactions can degrade DNA. This approach has the great

advantage that is bioorthogonal, that is, azide and alkyne moieties do not interfere

with native biochemical processes inside the cell. Therefore, the approach has the

potential to be applied to in vivo measurements.
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We tested the crosslinking efficiency of ssDNA and dsDNA constructs via SPAAC

reaction in aqueous solution. The chief aim of this experiment was to find a reaction

that unlike Iodine-mediated disulfide bonding works over a wide range of reaction

conditions.

N
3

N
3

BCN BCN

Figure 3.6. Schematic representation of crosslinking of two adapters
(orange and green) via click reaction by a BCN-modified oligonu-
cleotide(black). In the presence of NaCl hybridization of each adapter
to the complementary half of the crosslinker allows azide and BCN to
react quickly, leading to the formation of a triazole linkage.

These constructs have azide attached to one of their thymine bases (Table 3.2).

Another oligonucleotide was designed to have two cyclooctyne derivative BCN (bi-

cyclo[6.1.0]nonyne) attached to two of its thymine bases. This oligonucleotide acts

as crosslinker. We first built partially duplex azide-modified adapters by a annealing

using the same protocol described in Sec. 3.4. We mixed equimolar concentrations

(0.10 µM final) of N3-ODN29 + ODN19 and BCN2-ODN14, N3-ODN33 + ODN15 and

BCN2-ODN28 and all three components in Tris-Buffered Saline (200 mM NaCl, 10

mM Tris-HCl, pH 7.5 @ RT for 1 M Tris-HCl) and let the reaction proceed for 15

minutes or 1 hour (Fig.3.7). The reactions were then terminated by adding 2× load-

ing buffer and doing electrophoresis on a 20% TBE gel (Invitrogen). The gels were
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then stained with SYBR Gold and visualized by GENi gel imaging system. The loads

of each lane are 29.9 ng each adapter in lanes 2 and 3 and 18.3 ng of crosslinker in

lane 1.

Table 3.2.
List of oligonucleotides used in click-chemistry-based DNA crosslinking

Code Oligonucleotide 5′ to 3′

N3-ODN29 ACAGATN3ATCATATTCGTGTAATGAGAACA

ODN19 CATGTGTTCTCATTACACG

N3-ODN33 CTGGTCCACACCTTAGTGAACAGATN3ATCATATT

ODN15 TCACTAAGGTGTGGA

BCN2-ODN28 AATATGATBCNATCTGTATGTACATBCNAATGTT

3.5.2 Results

We observe that in the last 2 lanes on the gel a band with mobility between ∼

50-75 bp of the marker (lane M) is observed. The molecular weight of the crosslinked

product formed by all 3 components is roughly equal to a 60 bp dsDNA and thus we

can identify that band as the crosslinked product. The dominant product in bands 4-7

can be identified as the product of crosslinking of the crosslinker with each individual

partially duplex DNA. It is clear from this gel that SPAAC reaction crosslinks the

molecules in only 15 minutes, a fast reaction time considering the sub-micromlar

concentration of reaction components.

The fact that this reaction is fast with a straightforward protocol and the reaction

groups react selectively with each other suggest that this method is a strong candidate

for cyclizing and dimerizing dsDNA.
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Figure 3.7. Crosslinking of adapters via copper-free click chemistry. Lane
1: GeneRuler Ultra Low Range DNA Ladder(Thermo Scientific), lane 1:
BCN2-ODN28, lane 2: N3-ODN29 + ODN19, lane 3: N3-ODN33 + ODN15,
lanes 4 and 5: BCN2-ODN28 reacted with N3-ODN29 + ODN19 for 15
minutes and 1 hour, lanes 6 and 7: BCN2-ODN28 reacted with N3-ODN33

+ ODN15 for 15 minutes and 1 hour, lanes 8 and 9: All three components
reacted for 15 minutes and 1 hour.
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4. Crosslinking double-stranded DNA via Iodine oxidation

4.1 Introduction

After identifying the proper crosslinking reaction, there are three steps that need

to be completed before doing the reaction for dsDNA. First is the preparation of

dsDNA sample with desired length. Second, incorporation of the reactive moiety into

that dsDNA and finally purification of modified dsDNA to remove any stray reactive

groups that remain after modification.

There are a few DNA modifying enzyme that can incorporate either a modified

nucleotide monophosphate or a modified oligonucleotide at the end of a dsDNA.

A family of DNA modifying enzymes known as polymerases can polymerize DNA

strands, that is, to put dNMP at the end of DNA. We chose DNA Polymerase I,

Large (Klenow) Fragment since it is the most widely used polymerase.

To prepare DNA samples of desired length we used a group of enzymes named

Restriction Endonucleases (REases) that digest (cut) dsDNA by recognizing a specific

sequence on dsDNA and breaking the phosphodiester bonds. The product of digestion

is a linear dsDNA with either blunt ends or single stranded protruding ends called

sticky ends or overhangs. The number of bases in sticky ends depends on the enzyme

used for cutting the DNA and is typically in low single digits.

4.2 Experimental Procedure

For our experiments we chose an REase called HindIII that generates two sticky

ends with sequence 5′AGCT at the ends of DNA. We cut a plasmid (circular DNA)

called pBR322 which is 4,361 bp long and has one recognition site for HindIII, hence,

HindIII-pBR322 DNA is a linear 4,361 bp long DNA with 5′AGCT sticky ends.
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To incorporate the thiophosphate group into the ends of HindIII-pBR322 DNA we

did a polymerase reaction with modified deoxyadenosine triphosphate (2′-Deoxythymidine-

5′-O-(1-Thiotriphosphate)) or simply thio-dTTP (TriLink BioTechnologies, Fig. 4.1)

along with dATP, dGTP and dCTP. Klenow fills in the 5′ overhang of the dsDNA

with these dNTPs and generates a dsDNA with thiophosphate moiety at its end.

All our reagents were purchased from New England Biolabs unless otherwise stated.

In our assay, we followed the protocol of the manufacturer: 0.1 pmol (0.3 µg) of

HindIII-pBR322 was supplied with 0.66 nmol of each dNTP and 0.3 unit of Klenow

in NEBuffer 2. We call the end thiolated 4361-bp-long DNA SH-DNA4361.

Figure 4.1. 2′-Deoxythymidine-5′-O-(1-Thiotriphosphate) or simply thio-
dTTP. This modified nucleoside triphosphate is incorporated to the ends
of dsDNA by Klenow. Image is taken from TriLink BioTechnologies web-
site.

We verified the modification of dsDNA ends by a ligase assay in which the ligation

pattern of modified and non-modified HindIII-pBR322 DNA are compared (Fig. 4.2).

DNA with 4 nt overhang has a significantly faster ligation rate compared to a DNA

ends blunted by dNTPs. In this experiment 98 µL of of either modified or non-

modified DNA was added to 0.5 µL of T4 DNA Ligase (200 CEU), 1 µL T4 DNA

Ligase Buffer and 1.5 µL DI H2O. After the specified reaction time at RT, the

samples were heated at 65◦C for 10 minutes to heat inactivate the ligase. The sample

were then mixed with 2 µL of 6× blue dye and electrophoresed on 0.8% Agarose
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Figure 4.2. Verification of klenow end labeling assay by a ligation assay.
Lane M: 1 kb DNA ladder(NEB), lane 1: pBR322. Lanes 2-7 are in NEB-
uffer 2 ; lane 2: HindIII-pBR322 DNA, lanes 3 and 4: HindIII-pBR322
DNA ligated for 10 minutes and 1 hour respectively, lane 5-7: HindIII-
pBR322 end-filled by thio-dTTP pre-ligation, ligated 10 minutes and 1
hour respectively. Lanes 8-13 are the same as lanes 2-7 but in CutSmart
buffer. All lanes except M contain 200 ng of DNA.

gel (Invitrogen), stained by SYBR Gold (Invitrogen) and visualized by GENi gel

documentation system (Syngene). It is evident that while non-modified DNA forms

circular and linear products upon ligation, no product is formed after DNA is modified

with thio-dTTP.

The next step after labeling DNA is removing the stray thio-dTTP. These stray

reactive species have to be removed from the solution because otherwise they will

react with the thiol groups at the ends of DNA and will block the reaction between

the ends of large DNA fragment(s). Unfortunately, the ratio of stray thio-dTTP to

thiol at the end of DNA is 3.3×103 :1, meaning that a huge excess of thio-dTTP is

present in the reaction. This high excess of thio-dTTP is needed for Klenow because

otherwise the end modification will not be successful.

We cleaned up the reaction by using PureLink R© PCR Purification Kit (Invitro-

gen). This kit is based on spin column nucleic acid purification where in high salt
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concentration nucleic acids bind to the silica membrane while enzymes, dNTPs and

ultra small DNA fragments and other contaminants are washed out.

After purifying the samples twice, we tested the reactivity of end-thiolated dsDNA

by I2 oxidation which does not yield any products (Fig. 4.3). In this particular

experiment in 30 µL of 1× CutSmart buffer 1 nmol of each dNTP was mixed with 0.45

units of Klenow and 0.45 µg of HindIII-pBR322 DNA. After 15 minutes incubation

at 25◦C the reaction was stopped by adding EDTA to the final concentration of 10

mM and heating at 75◦C for 20 minutes. The Iodine oxidation reactions were carried

out in saturated KI with I2 concentrations of 0.025 nM, 0.10 nM and 10.0 µM on

ice for 10 minutes. Half of the samples were heated at 65◦C for 10 minutes before

loading into the gel and the other half were not heated. We did this control because

we suspected that heating might lead to breaking of the disulfide bonds.
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Figure 4.3. Iodine oxidation of thio-dTTP modified DNA. Lane M: 1 kb
DNA Ladder, lane 1: pBR322, lane 2 and 3: SH-DNA4361, lane 4 and
5: SH-DNA4361 in saturated KI, lanes 6 and 7: SH-DNA4361 reacted with
0.025 nM I2, lanes 8 and 9: SH-DNA4361 reacted with 0.10 nM I2, lanes
8 and 9: SH-DNA4361 reacted with 10.0 µM I2. Lanes with odd number
from 2-10 were heated at 65◦C for 10 minutes before loading. Lanes 2-11
each contain 180 ng of 3′SH-DNA4361.
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The fact that no product is formed upon ligation of thio-dTTP strongly suggested

that the modification has been successful. We suspect that the reason for the lack

of any reaction would be the presence of stray thio-dTTP after purification. While

our purification method will certainly remove most of the stray thio-dTTPs, we did

not have any method to quantify the amount left over and given the huge excess

of thio-dTTPs even 0.01% would be still a 3.3 fold excess of thio-dTTP, enough to

significantly inhibit dimerization of long dsDNA.

We tested a second approach for labeling the ends of dsDNA. In this approach

instead of a modified dNTP we incorporate a modified oligonucleotide into the ends

of a linear DNA by using T4 DNA ligase. The advantage of this method is that the

molar excess of modified oligonucleotides over DNA needed for successful modifica-

tion is much less than what is needed for the incorporation of modified nucleotides

by Klenow. Therefore, removing the stray modified oligonucleotides after DNA mod-

ification is easier than removing modified nucleotides.

In our experiments we used a 28-nt-long oligonucleotide (TriLink Biotechnologies)

which is modified at its 5′ end to have a thiophosphate group. We made a partially

duplex DNA, called adapter, by annealing this end-thiolated oligonucleotide to a

32-nt-long oligonucleotide (TriLink Biotechnologies) which has 28 contiguous bases

complementary to the end-thiolated oligonucleotide and 4 nt overhang 5′AGCT that

is complementary to the ends generated by HindIII. To anneal oligonucleotides we

suspend equimolar amounts of each oligonucleotide in annealing buffer (10 mM Tris,

pH 7.5 − 8.0, 50 mM NaCl, 1 mM EDTA), heated up the solution to 86◦C for 5-10

minutes and let the sample gradually cool down at room temperature for 1 hour.

HindIII-pBR322 was prepared as described before and the adapter was ligated to its

ends using a 350:1 adapter to HindIII-pBR322 ratio in CutSmart buffer. The final

product is a 4417 bp long dsDNA with thiophosphate ends (SH-DNA4417). Some of

the modified DNA was then purified by PureLink PCR purification kit following the

manufactures protocol for high cut-off binding buffer that removes dsDNA shorter

than 300 bp in length.
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Figure 4.4. Iodine oxidation of end-thiolated dsDNA. Lane M: 1 kb DNA
Ladder, lane 1: pBR322, lanes 2 and 3: SH-DNA4417 in H2O and 10 µM
I2 respectively before adapter removal. Lanes 4-13 are all SH-DNA4417

after adapter removal. Lane 4: SH-DNA4417 in H2O, Lanes 5-7: SH-
DNA4417 in 0.100 µM I2/saturated KI for 30 minutes, 6 hours and 27
hours respectively. Lanes 8-10: the same as 6-8 but in 10.0 µM, Lanes
11-13: the same as 5-7 but in 1.0 mM. Lanes 2−13 all contain 200 ng of
SH-DNA4417.

Iodine oxidation was carried out on purified and non-purified (mixed with adapters)

SH-DNA4417 using 0.1 µM, 10.0 µM and 1.0 mM I2 in saturated KI. These amounts

of Iodine correspond to I2:thiol 7:1, 7×102 and 7×104 and we tested 3 reaction times

for each Iodine to thiol ratio: 30 minutes, 6 hours and 27 hours.

4.3 Discussion

First, it is clear from comparing the products of reaction with and without re-

moving adapters that purification enhances the multimerization of DNA upon Iodine

oxidation. Second, Comparison of the ratios suggests that while there is no difference

between the reaction with 0.1 µM and 10.0 µM I2, almost no product is formed when

the concentration of I2 is increased to 1.0 mM.

Perhaps the most counterintuitive finding here is that for all three I2 concentra-

tions no product is observed when the reaction time is 27 hours. This is contradictory

to our intuition that with increasing the reaction time more thiolated monomer DNA

would be converted to dimers and multimers.
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The fact that the efficiency of Iodine-mediated dimerization is much better for

oligonucleotides than dsDNA suggests that the final yield is sensitive to the concen-

tration of thiolated DNA. We believe that this could be due to difficulty in controlling

the concentration of I2 at sub-micromolar concentrations. The Iodine is dissolved in

saturated solution of KI, which has a concentration of [KI] = 8.7 M. There are two

possible reactions that can alter the concentration of I2. One is the oxidation of Iodide

through the following reaction.

I–⇀↽ 1
2
I2 + e–

Or, KI can react with CO2 and O2 to produce potassium carbonate along with ele-

mental Iodine.

4 KI + 2 CO2 + O2 −−→ 2 K2CO3 + 2 I2

It is possible that at concentrations in the range of ∼ 100 µM the contribution of

these reactions to the total Iodine is less significant that for ultra low concentrations

of ∼ 200 nM.
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5. Summary

In Chapter 1 I presented an extensive review of theoretical, computational and ex-

perimental aspects of polymer cyclization kinetics. The major theories of polymer

cyclization kinetics are WF theory [7,11], SSS theory [9] and RG theory [34]. Among

these, SSS theory is the simplest approach as it models the complex high-dimensional

dynamics of polymer cyclization as diffusion along a single reaction coordinate; the

end-to-end vector. While this elegant approach results in a simple analytical solution,

it is not applicable to every polymer-solvent system. For instance, the model does

not accurately predict the cyclization kinetics for infinitely long Rouse chain [63] or

WLC [60]. More complex WF theory and RG theory have a broader range of appli-

cability, however, their complexity does not allow simple and tractable extension to

more real polymer models such as WLC.

In Chapter 2 I presented the predictions of our computer simulations for WLC

cyclization kinetics. Our simulations are the first simulations that recover the contin-

uum limit by extrapolating the results for finite discretization of chain and time steps

to zero. We found that discretization commonly done in other simulations leads to

overestimating the kinetics. Those simulations leave out the high-frequency fluctua-

tions of a polymer by imposing an arbitrary time cut-off on its dynamics [54,56,84,93].

Furthermore, we examined the assumption that when local equilibrium assumption is

valid, SSS theory predicts the cyclization kinetics correctly. Our simulations suggest

that when high-frequency fluctuations are included in simulations, prediction of SSS

theory disagree with simulations, even when local equilibrium assumption is valid.

To sum up, there is a need for developing theories that capture the underlying

dynamics of polymer cyclization more adequately and are generalizable to different

polymer-solvent systems. A future work would be developing theories that include

non-Markovian dynamics in the dynamics of non-Gaussian polymers. An example
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would be the non-Markovian dynamics of worm-like chain polymers. Since the com-

plexity increases dramatically as one moves toward more realistic models, it is likely

that those models would be highly approximative. Therefore, computer simulations

will remain the best way to study the kinetics of polymer cyclization because building

more realistic models of polymer dynamics in simulations is much easier than building

analytical models.

In Chapters 3 and 4 I presented the results of our work on developing novel assays

to crosslink DNA. Over the past few decades the ligation-based cyclization assays

have been the standard technique for measuring the flexibility of DNA [159]. The

underlying assumption in these experiments is that the mere function of ligase is

covalently closing the DNA with juxtaposed end by catalyzing phosphodiester bond

formation. However, this assumption is recently called into question [153], hence a

need for developing ligase-free methods of DNA crosslinking.

We conducted extensive crosslinker screening experiments to find the viable ap-

proaches to crosslinking DNA. To this end, we tested maleimide-thiol reaction, succinimide-

amine reaction, disulfide bonding and copper-free click reaction. We observed that

maleimide-thiol reaction and succinimide-amine reaction do not crosslink thiol and

amine modified oligonucleotides even at ∼ 0.1 mM concentrations. In addition, we

found that while hydrogen peroxide and potassium ferricyanide do not dimerize thiol-

modified oligonucleotides, Iodine mediates dimerization in high yield and without a

template. We also showed that DNA crosslinking can be achieved conveniently by

SPAAC reaction. This method is an alternative that shows potential for being appli-

cable over a wide range of reaction conditions.

In Chapter 4 I described the techniques we developed to prepare DNA samples of

desired length, label them with a reactive moiety and then purify them. Our demon-

stration of Iodine-assisted dimerization of end-thiolated dsDNA is unprecedented and

is an important step toward developing an assay for measuring the flexibility of DNA.

A future work would be fine tuning the click-chemistry-based DNA crosslink-

ing and oxidative disulfide bonding, or coming up with other chemistries that can
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crosslink DNA. This would require finding methods to obtain µg quantities of DNA

of various length, verification of the sequence of those DNA molecules, developing

assays that test the efficiency of purification and finally optimizing reaction condition

for which the reactions occur at sub-nanomolar concentrations.
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