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ABSTRACT

Zhang, Ruoqiao PhD, Purdue University, December 2015. Advanced Statistical Mod-
eling for Model-Based Iterative Reconstruction for Single-Energy and Dual-Energy
X-Ray CT. Major Professor: Charles A. Bouman.

Model-based iterative reconstruction (MBIR) has been increasingly broadly ap-

plied as an improvement over traditional, analytical image reconstruction methods in

X-ray CT, primarily due to its significant advantage in drastic dose reduction with-

out diagnostic loss. Early success of the method in conventional CT has encouraged

the extension to a wide range of applications that includes more advanced imaging

modalities, such as dual-energy X-ray CT, and more challenging imaging conditions,

such as low-dose and sparse-sampling scans, each requiring refined statistical models

including the data model and the prior model. In this dissertation, we developed

an MBIR algorithm for dual-energy CT that included a joint data-likelihood model

to account for correlated data noise. Moreover, we developed a Gaussian-Mixture

Markov random filed (GM-MRF) image model that can be used as a very expressive

prior model in MBIR for X-ray CT reconstruction. The GM-MRF model is formed by

merging individual patch-based Gaussian-mixture models and therefore leads to an

expressive MRF model with easily estimated parameters. Experimental results with

phantom and clinical datasets have demonstrated the improvement in image quality

due to the advanced statistical modeling.
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1. INTRODUCTION

As a systematic approach of image reconstruction, the model-based iterative recon-

struction (MBIR) algorithm has been increasingly widely applied as an improvement

over traditional, deterministic image reconstruction methods for single-energy X-ray

CT [1–6]. It has been demonstrated that MBIR can substantially improve image

quality by simultaneously reducing noise and improving resolution [7–11]. Impor-

tantly, this primary advantage of MBIR can potentially lead to the clinical benefit of

drastically reduced X-ray dosage without diagnostic quality loss.

The power of MBIR methods is due to the synergy that results from modeling both

the sensor (i.e., forward model) and the image being reconstructed (i.e., prior model).

To reconstruct the unknown image x from the measurements y, MBIR algorithms

typically work by computing the maximum a posteriori (MAP) estimate of x given

y, by

x̂← arg min
x∈Ω
{− log p(y|x)− log p(x)} . (1.1)

In this framework, p(y|x) is the conditional probability density function of y given

x, which comprises the forward model of the measurement process. The density

p(x) is the prior model for x, which describes the characteristics of the object being

reconstructed.

The achievement of MBIR in conventional CT has encouraged the extension to

a wide range of applications in the field of medical imaging. Dual-energy X-ray CT

(DECT), for example, is one of the advanced applications that may benefit from ap-

plying MBIR methods. Unlike the traditional single-energy CT, by using two different

X-ray spectra for imaging, DECT allows reconstruction of the distinctive energy-

dependent X-ray attenuation and is therefore capable to identify the materials being

reconstructed. However, the traditional deterministic reconstruction approaches for
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DECT require a decomposition process that significantly amplifies the noise. More-

over, accurate reconstruction of the data collected with advanced imaging modalities

such as the fast kV switching can be challenging due to incomplete and mismatched

measurements. Thus, it is interesting to design an MBIR algorithm for DECT that

includes an accurate forward model to account for data missing and mismatching, to

improve the image quality and accuracy in the reconstructions.

On the other hand, the early success of MBIR has naturally resulted in an in-

creasing number of scans at low dose. Existing MBIR algorithms typically exploit

the conventional Markov random field (MRF) model with limited number of param-

eters as a prior. The simple parameterization of the conventional MRF reduces the

model complexity but limits its ability to capture comprehensive characteristics of

images. Though very effective under normal condition, this simple structure may be

inadequate for challenging imaging conditions such as low-dose imaging, where the

signal-to-noise ratio is low. Moreover, due to the simple parameterization, traditional

MRFs can only provide single regularization strength for the whole reconstruction.

Therefore, it is difficult for MBIR with traditional MRFs to produce a reconstruction

that is “optimal” for different tissues. For example, one will need to reduce the total

amount of global regularization to render sharper bone structures, which consequently

compromises the image quality in soft tissue with a non-negligible increase of noise.

Thus, it will be desirable to have an MRF model that is expressive enough to capture

important image features while the parameter estimation remains simple.

In this dissertation, we propose MBIR algorithms for the applications of image

reconstruction in low-dose single-energy X-ray CT and dual-energy X-ray CT. Firstly,

we will present the MBIR algorithm for DECT using a joint quadratic likelihood

model that accounts for the correlated noise in the measured data. Secondly, we will

present an advanced patch-based image model that can be used as an expressive prior

model in MBIR algorithms, which can be extremely useful for challenging imaging

conditions such as low-dose imaging.
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1.1 MBIR for dual-energy X-ray CT

Recently, DECT has drawn much attention from both academia and industry.

By using two different X-ray spectra, DECT can potentially reduce artifacts and

improve contrast as compared to conventional single-energy X-ray CT. Moreover,

one might also expect to improve resolution and reduce noise by applying MBIR to

dual-energy data. However, the direct implementation of MBIR for DECT requires

the use of a nonlinear forward model to account for the broad spectra, which increases

not only complexity but also computation. Alternatively, one may employ simplified

forward models that process the material-decomposed sinograms separately, but these

approaches do not fully take into account the statistical dependencies in the sinogram

entries.

In Chapter 2, we propose an algorithm for joint dual-energy MBIR (JDE-MBIR),

which simplifies the forward model while still takes into account the complete noise

correlation in the material-decomposed sinogram components. The JDE-MBIR ap-

proach employs a quadratic approximation for the polychromatic log-likelihood func-

tion, separate MRFs as the prior for material separation, and a simple but exact

non-negativity constraint in the image domain based on the real physical property.

The optimization is performed by using iterative coordinate descent (ICD) algorithm

with well-known KKT conditions. We demonstrate that our method is particularly

effective when the fast kVp switching technique is used in the DECT system, since in

this case the model takes into account the potential inaccuracy caused by interpolated

sinogram components. Note that this method was presented in a conference [12] and

was later published as a journal article [13].

1.2 Advanced prior model for MBIR

Most MBIR algorithms use conventional MRFs as prior models to reconstruct the

underlying image. While MRFs provide a simple and often effective way to model the

spatial dependencies in images, they suffer from the fact that parameter estimation
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is difficult. In practice, this means that MRFs typically have very simple structure

that cannot completely capture the subtle characteristics of complex images.

In Chapter 3, we propose a Gaussian-mixture Markov random field (GM-MRF)

model that can be used as a very expressive prior model for inverse problems such as

denoising and reconstruction. The GM-MRF forms a global image model by merging

together individual Gaussian-mixture models (GMMs) for image patches. In addition,

we present a novel analytical framework for computing MAP estimates using the

GM-MRF prior model through the construction of exact surrogate functions that

result in a sequence of quadratic optimizations. We also introduce a simple but

effective method to adjust the GM-MRF so as to control the sharpness in low- and

high-contrast regions of the reconstruction separately. Note that this method was

presented in a conference [14] and has been submitted to a journal for review [15].
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2. MODEL-BASED ITERATIVE RECONSTRUCTION

FOR DUAL-ENERGY X-RAY CT USING A JOINT

QUADRATIC LIKELIHOOD MODEL

2.1 Introduction

Dual-energy CT (DECT) scanners, which acquire X-ray projections with two dis-

tinct spectra, are of great interest in applications such as medical imaging [16, 17],

security inspection [18, 19], and nondestructive testing [20]. The objective of DECT

reconstruction is to determine the energy-dependent attenuation at each voxel. For-

tunately, for most materials, the energy-dependent attenuation is accurately approx-

imated as a linear combination of two basis functions corresponding to photoelectric

absorption and Compton scattering [21]. In practice, it is usually more convenient to

reparameterize the energy-dependent attenuation as a linear combination of two basis

materials or components [22] such as water and iodine. So in this case, our objec-

tive is then to accurately reconstruct cross-sections corresponding to the equivalent

densities of, say, water and iodine.

Early work on dual-energy reconstruction focused on decomposing the dual-energy

measurements into two independent sinograms, each of which corresponds to a basis

component or material. This can be done by first applying a material-decomposition

function to the two energy measurements. This material-decomposition function then

produces two sinograms corresponding to the two basis materials. Many methods have

been proposed over the years for experimentally determining this function. Alvarez

and Macovski [21] proposed the numerical inversion of a polynomial approximation

to the polychromatic measurement process. Other approaches directly approximate

the material-decomposition function as a polynomial [22–27], or compute the decom-

position through an iterative estimation process [19,28–30].
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Alternatively, other approaches to dual-energy reconstruction work by first re-

constructing images from the low- and high-energy sinograms using filtered back

projection (FBP) method, and then performing image-domain material decomposi-

tion [31–34]. However, while sometimes effective, this type of image-domain recon-

struction makes substantial approximations, particularly when the X-ray spectrum

for each measurement is broad. So the resulting reconstructions may be quantita-

tively inaccurate and suffer from artifacts. Recently, an iterative FBP method [35]

has been proposed to account for the polychromatic spectra. It repeats the process

that performs back projection, image-domain material decomposition, and forward

projection of the decomposed results with a calibrated nonlinear model. This method

can be applied to the case where one of the dual-energy measurements is missing for

each ray.

Recently, statistical reconstruction based on iterative methods has been found to

be very effective in single-energy CT reconstruction [3–6]; and in particular, model-

based iterative reconstruction (MBIR) methods [1–3,6], have demonstrated the ability

to reduce noise and improve resolution [7–11].

Several statistical iterative approaches have been proposed for DECT reconstruc-

tion. These methods can be mainly classified into two categories, the direct-inversion

methods and the decomposition-based methods. The direct-inversion methods recon-

struct images directly from dual-energy measurements [36–40]. In particular, Fessler

et al. [37] formulated the likelihood function of the detector output by using a Pois-

son model. Huh and Fessler [39] applied a penalized weighted least square (PWLS)

approach to DECT with fast kVp switching acquisition and used an approximate

Gaussian noise model for the log-transformed measurements. These approaches gen-

erally include a highly nonlinear forward model in the likelihood function to model

the polychromatic measurement process, so this formulation increases complexity and

consequently complicates the optimization.

Alternatively, decomposition-based statistical approaches reconstruct images from

material-decomposed sinograms [41–43] with a simplified forward model. Fessler et
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al. [41,43] applied PWLS approaches with diagonal weighting matrices for the pair of

decomposed sinogram entries. These methods, which we refer to as independent dual-

energy MBIR (independent DE-MBIR), model the decomposed sinogram entries as

statistically independent when conditioned on image content. The independent DE-

MBIR methods are computationally simpler than the direct-inversion methods, but

the decoupled likelihood functions ignore the correlation in sinogram entries that are

caused by the decomposition process [44, 45]. Perhaps the most closely related work

is Kinahan, Alessio, and Fessler’s [42] method for dual-energy PWLS reconstruction

in PET/CT attenuation correction. This framework also allowed for the potential

correlation of sinogram entries, but left open the specifics of how the entries should

be weighted.

In this chapter, we develop a novel joint dual-energy MBIR (JDE-MBIR) method

to reconstruct basis material densities from the decomposed sinograms. In Sec. 2.2.3,

we introduce a key novelty of the JDE-MBIR method, which is a quadratic approxi-

mation to the joint likelihood model. This quadratic approximation weights the de-

composed sinogram entries by non-diagonal matrices that explicitly model the noise

correlation in the decomposition domain. The proposed method also incorporates a

prior model that accounts for the separation into materials and introduces a simple

but exact non-negativity constraint that accurately reflects the true physical con-

straint of non-negative X-ray attenuation. We use the iterative coordinate descent

(ICD) algorithm to compute the solution. We note that this method and associated

experimental results have been published in [12,13].

An important novelty of JDE-MBIR is that it achieves computational efficiency

by reconstructing from material-decomposed sinograms while retaining an accurate

forward model and noise model in the decomposition domain. In particular, the JDE-

MBIR models the interdependence in decomposed sinogram entries that result from

the decomposition process. This model leads to reconstructions with less noise than

those of the independent DE-MBIR methods.
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The JDE-MBIR also allows for accurate modeling of DECT data collected using

fast kVp switching techniques. Fig. 2.1 illustrates a model for the fast kVp switching

technique, in which the system alternates between low- and high-energy measurements

from view to view. In this case, each view contains either low- or high-energy measure-

ments, whereas the material decomposition requires both to be available. Although

the angular difference between the low- and high-energy measurements is small, an

additional interpolation step needs to be performed for the traditional decomposition-

based approaches to ensure perfect registration. The JDE-MBIR method also exploits

sinogram interpolation; however, the reconstruction principally depends on only the

real measurements, which makes it robust to interpolation error and capable of pre-

serving more resolution than other decomposition-based approaches.

low energy

high energy

X−ray source

Detector

X−ray tube voltage

high
(140 kVp)

low
(80 kVp)

TimeT
1

T
2

T
3

T
4

... ...

T
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T
2
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3

T
4

Fig. 2.1. This figure illustrates a model for fast kVp switching tech-
nique. A single X-ray tube alternates the voltage between low- and
high-kVp from view to view. Thus each view contains only one mea-
surement, either low- or high-energy.
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We also propose a novel non-negativity constraint for the DECT reconstruc-

tion. Previous approaches have enforced non-negativity constraints directly on re-

constructed material densities [36, 39, 46], which is not generally physically correct.

We proposed a non-negativity constraint that is applied in the attenuation space. This

constraint can be enforced as two simple linear constraints on the material images

and accurately reflects the true physical constraints of X-ray attenuation.

In our experiments, we evaluate the performance of the JDE-MBIR by using

phantom and clinical data. The experimental results show that the JDE-MBIR sig-

nificantly improves resolution and reduces noise in the reconstructed material density

images and the synthesized monochromatic images.

The chapter is organized as follows. Sec. 2.2 describes the formulation of the JDE-

MBIR. Sec. 3.3 gives the ICD solution to the optimization problem. Sec. 2.4 presents

the experimental results on phantom and clinical data to demonstrate the image

quality improvement achieved by JDE-MBIR as compared to FBP and independent

DE-MBIR.

2.2 MAP Reconstruction Framework

Let y ∈ <M×2 be the set of dual-energy CT measurements, where each row,

yi = [yi,l, yi,h], specifies the low- and high-energy projection measurements for the

ith ray. We use subscript “l” for “low-energy” and subscript “h” for “high-energy”.

Furthermore, let m ∈ <N×2 be the reconstructed density images of the scanned object

for the selected material basis pair, where each row, mj = [mj,W , mj,I ], represents the

water- and iodine-equivalent densities for the jth voxel. We use subscript “W” for

“water” and subscript “I” for “iodine”. In this chapter, we choose water and iodine

since they are frequently used as basis materials for separation into low and high X-

ray attenuation characteristics, respectively. However, the use of other material pairs

is equally valid. The integer M specifies the number of distinct ray paths during data

acquisition, and N specifies the number of voxels in the reconstructed volume.
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Our goal is to reconstruct the material density images, m, from the measurements,

y. One typical approach is to compute the maximum a posteriori (MAP) estimate

of m given by

m̂ = arg max
m∈Ω
{logP (y|m) + logP (m)}, (2.1)

where P (y|m) is the conditional distribution of y given m, P (m) is the prior distri-

bution of m, and Ω is the constraint set for the reconstruction.

The following sections develop the theoretical framework for the JDE-MBIR al-

gorithm from the basic physical models. Section 2.2.1 presents a noise model for

the dual-energy detector measurements based on photon statistics. Section 2.2.2

then derives the forward model for the dual-energy data using widely accepted mod-

els of polychromatic X-ray attenuation through materials. With this framework in

place, Section 2.2.3 then introduces the primary innovation of our technique, which

is a quadratic approximation to the log-likelihood function in the projection domain.

Section 2.2.4 then shows how this innovative model can be applied to the important

problem of fast kVp switching data and provides a theoretical analysis of JDE-MBIR’s

advantages in this application.

2.2.1 Measurement Preprocessing

In the X-ray transmission problem, we measure the photon flux after object at-

tenuation, which is denoted by λi,k for ray i and source spectrum k, where k ∈ {l, h}.
We also measure the air scan photon flux, λi,k,0, which counts the detected photons

with no object present. The air scan counts can be calibrated accurately by repeated

scans and therefore are assumed noiseless. The projection measurement, yi, is then

computed as the negative log of the photon measurement normalized by the corre-

sponding air scan photon count,

yi = [yi,l, yi,h] ,

[
− log

(
λi,l
λi,l,0

)
, − log

(
λi,h
λi,h,0

)]
. (2.2)
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We model λi,k as the summation of a Poisson random variable with conditional

mean λ̄i,k and a Gaussian random variable with mean zero and variance σ2
e . In fact,

λ̄i,k is the conditional mean of λi,k given the image m, and the Gaussian random

variable presents additive electronic noise in the detector system. From this, the

conditional mean and variance of λi,k are given by

E[λi,k|m] = λ̄i,k, (2.3)

Var(λi,k|m) = λ̄i,k + σ2
e . (2.4)

Then we approximate the conditional mean of yi,k as

E[yi,k|m] ∼= − log

(
λ̄i,k
λi,k,0

)
. (2.5)

To compute the conditional variance of yi,k, we first perform a first-order Taylor series

expansion to the expression of yi,k in (2.2) about λ̄i,k,

yi,k = − log

(
λi,k
λi,k,0

)
∼= − log

(
λ̄i,k
λi,k,0

)
− 1

λ̄i,k
(λi,k − λ̄i,k)

∼= E[yi,k|m]− 1

λ̄i,k

(
λi,k − λ̄i,k

)
, (2.6)

which yields the approximation we will use for the conditional variance of yi,k [47],

Var(yi,k|m) ∼= Var(λi,k|m)

λ̄2
i,k

=
λ̄i,k + σ2

e

λ̄2
i,k

∼= λi,k + σ2
e

λ2
i,k

, (2.7)
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where λ̄i,k is approximated by its observation, λi,k. Thus, we will model the condi-

tional mean and covariance of yi as

E[yi|m] = [E[yi,l|m], E[yi,h|m]] , (2.8)

Cov(yi|m) =

 Var(yi,l|m) 0

0 Var(yi,h|m)

 . (2.9)

Note that the off-diagonal elements of the covariance matrix are zeros since we assume

that the low- and high-energy measurements are made independently.

Assuming yi is conditionally Gaussian with mean and covariance given by (2.8)

and (2.9), the distribution of yi is given by

− logP (yi|m) =
1

2
(yi − E[yi|m])Wi (yi − E[yi|m])T + C, (2.10)

where C is a normalizing constant, and Wi is the inverse covariance of yi,

Wi =

 wi,l 0

0 wi,h

 , Cov−1(yi|m), (2.11)

where

wi,l =
1

Var(yi,l|m)
∼=

λ2
i,l

λi,l + σ2
e

, (2.12)

wi,h =
1

Var(yi,h|m)
∼=

λ2
i,h

λi,h + σ2
e

. (2.13)

With the assumption of measurements at distinct projections being conditionally

independent, the distribution of the data given the object information is given by,

− logP (y|m) =
1

2

M∑
i=1

(yi − E[yi|m])Wi (yi − E[yi|m])T + C. (2.14)
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However, this function is still a nonlinear function of m because the conditional

expectation, E[yi|m], is in general a nonlinear function of the argument m. In Section

2.2.3, we will use this result to construct a fully quadratic approximation to the

log-likelihood in (2.14).

2.2.2 Forward Model

We next need to formulate a physical model for E[yi|m]. Given the linear atten-

uation coefficients, µ, the conditional mean of λi,k is computed by integrating the

photon attenuation over the source spectrum,

E[λi,k|µ] = λ̄i,k =

∫
<
λi,k,0 Sk(E)e

−
∫
rayi

µ(r,E)dr
dE , (2.15)

where E (keV) is the photon energy, Sk(E) is the normalized photon energy distribu-

tion for source spectrum k, and µ(r, E) (cm−1) is the linear attenuation coefficient as

a function of location r and energy E , representing X-ray photon absorption per unit

distance. Since µ and m contain the same information, note that E[·|µ] = E[·|m].

If we discretize µ(r, E), then this leads to the expression

E[λi,k|µ] =

∫
<
λi,k,0 Sk(E)e−

∑N
j=1 Ai,jµj(E)dE , (2.16)

where A ∈ <M×N is the projection matrix, with its element, Ai,j (cm), representing

the intersection of ray i with voxel j. We use the distance driven approach [48] to

compute A. Then from (2.5), the conditional mean of the projection measurement is

given by

E[yi|µ] = − log

(∫
<
S(E)e−

∑N
j=1 Ai,jµj(E)dE

)
, (2.17)

where yi = [yi,l, yi,h] and S(E) = [Sl(E), Sh(E)].
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Moreover, the linear attenuation coefficient can be expressed as a linear combi-

nation of the mass attenuation functions of two or more basis materials [22]. With

water and iodine as the basis, the linear attenuation function can be decomposed as

µj(E) = mj,WϕW
(E) +mj,IϕI

(E), (2.18)

where mj,s (mg/cm3) is the equivalent density for basis material s at voxel j, where

s ∈ {W, I}, and ϕs(E) (cm2/mg) is the known energy-dependent mass attenuation

function for basis material s, which represents the photon absorption per unit distance

for the particular material with 100% concentration under standard temperature and

pressure. Note that the reconstructions, mj,W and mj,I , do not depend on energy.

Then, by substituting (2.18) into (2.17), we have

E[yi|m] =− log

(∫
<
S(E)e−

∑N
j=1 Ai,j(mj,W

ϕ
W

(E)+mj,I
ϕ
I
(E))dE

)
,− log

(∫
<
S(E)e−pi(ϕ(E))T dE

)
, (2.19)

where ϕ(E) , [ϕ
W

(E), ϕ
I
(E)], and pi (mg/cm2) is the material density projection

defined as

pi , [pi,W , pi,I ] ,

[
N∑
j=1

Ai,jmj,W ,
N∑
j=1

Ai,jmj,I

]
, [Am]i. (2.20)

The quantity pi represents the line integral of material densities along ray i. We then

define a vector-valued function, h : <2 → <2, as

h(pi) , − log

(∫
<
S(E)e−pi(ϕ(E))T dE

)
, (2.21)

which models the nonlinear relationship between the material density projections and

the expected photon attenuation. From this, we have

E[yi|m] = h([Am]i). (2.22)
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The function h does not depend on particular ray paths generally; however, it can be

a function of the ray index, i, if the source spectrum, S(E), varies among rays. This

is the case in practice with systems including bowtie filters to shape the X-ray beam

to a particular scanned object.

Thus, substituting (2.22) into (2.14), we have the negative log-likelihood function,

− logP (y|m) =
1

2

M∑
i=1

(yi − h([Am]i))Wi (yi − h([Am]i))
T + C. (2.23)

This is the likelihood function used in the direct-inversion methods.

While the forward model of (2.23) could be used directly for MBIR reconstruction,

it is not practical for a number of reasons. First, the function h is generally not

measured on real CT systems. In practice, real CT systems require a knowledge of

the material decomposition function, h−1, as described in the following section. This is

because h−1 is required for implementation of standard direct reconstruction methods

such as FBP; so it is accurately measured using calibration procedures. However, h

is not easily computed from h−1 and would require a completely separate calibration

procedure. Second, direct nonlinear optimization of the MAP cost function using

(2.23) would be very complex and potentially very computationally expensive since

it does not have a quadratic form. So our goal will next be to derive a quadratic

function that accurately approximates (2.23).

2.2.3 Quadratic Joint Likelihood Model

In this section, we introduce a quadratic approximation to the negative log-

likelihood function, − logP (y|m), which reduces the complexity of the reconstruc-

tion algorithm while still retaining an accurate model of the noise correlation in the

decomposition domain.

We first define the inverse function, h−1 : <2 → <2, as

h−1(h(pi)) , pi . (2.24)
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In practice, the h−1 function is called the “material decomposition function”. There

are a variety of means to determine this function. One may employ a polynomial

approximation to the h function and then solve numerically for pi [21], or directly ap-

proximate the h−1 function as a polynomial [22–27]. The coefficients of the polynomial

approximations can be determined empirically by system calibration. Possible cali-

bration methods include a projection-domain calibration [26,49], or an image-domain

approach [27]. One may also compute the decomposition through an iterative esti-

mation process [19, 28–30]. In practice, we approximate the h−1 function as a high

order polynomial through calibration, which will be described in detail in Sec. 2.4.

With the h−1 function, we can then compute the decomposed sinogram entries,

p̂i = [p̂i,W , p̂i,I ], as

p̂i , h−1(yi), (2.25)

with p̂i an estimate of the material density projection, pi. Performing a Taylor series

expansion of [Am]i at yi yields,

[Am]i = h−1(h([Am]i))

∼= h−1(yi) + (h([Am]i)− yi)
[
∇h−1(yi)

]
= p̂i + (h([Am]i)− yi)

[
∇h−1(yi)

]
, (2.26)

where ∇h−1(yi) is the gradient of function h−1 at yi. For our problem, ∇h−1(yi) is

a 2× 2 invertible matrix. This results in the linear approximation we will use in the

model,

yi − h([Am]i) ∼= (p̂i − [Am]i)
[
∇h−1(yi)

]−1
. (2.27)

Thus by substituting (2.27) into (2.23), we approximate the true log-likelihood func-

tion in (2.23) by

− logP (y|m) ∼= 1

2

∑
i

(p̂i − [Am]i)Bi (p̂i − [Am]i)
T + C ′, (2.28)
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where the estimated material projection, p̂i, is given by (2.25), and the statistical

weighting matrix, Bi, is given by

Bi , [∇h−1(yi)]
−1Wi[∇h−1(yi)]

−T . (2.29)

Each Bi is a 2×2 symmetric matrix representing the inverse covariance of the decom-

posed sinogram entries, p̂i. Each Bi is therefore also positive semi-definite and has a

zero eigenvalue if and only if the diagonal matrix, Wi, has a zero eigenvalue, which

implies that λi,l = 0 in (2.12) or λi,h = 0 in (2.13).

The equation (2.28) gives the likelihood model we use in the proposed JDE-MBIR

method. In contrast to the direct-inversion methods, our model has a simple quadratic

form, so it allows for direct application of existing quadratic optimization methods

for the computation of the MAP reconstruction.

It should also be noted that our weighting matrix, Bi, is in general non-diagonal

for every projection. The off-diagonal elements of Bi provide significant information

about the noise correlation between distinct decomposed sinogram entries.

2.2.4 Likelihood Model For Fast kVp Switching Modality

Our proposed model is particularly well suited for CT systems that use fast kVp

switching to acquire dual-energy data. Fig. 2.1 graphically illustrates a model for

the fast kVp switching technique, in which the system alternates between low- and

high-energy measurements between adjacent views. Fast kVp switching requires high-

speed detectors and X-ray sources and generators that allow for fast switching, but it

offers the advantage that low- and high-energy measurements are interlaced closely in

time and space so that misalignments due to motion or other effects are minimized.

Notice that a fast kVp switching system has the capability of varying the duty cycle

between low- and high-energy views to optimize dose. This is graphically depicted

by the fact that the low-energy (orange) line may be longer than the high-energy

(green) line. For typical scans, the low-energy dwell time is greater than the high-
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energy dwell time, but this depends on many details of the scan parameters. While

the dwell time may be different from view to view, data acquisition still results in

consecutive views alternating between low- and high-energy measurements. Dwell

time characteristics are taken into account in h−1 by calibration. The dwell time of

the view generally will affect the resulting noise variance, with longer dwell times

reducing noise variance and short ones increasing variance. However, this change in

variance is fully accounted for by the estimates of noise variance given in Sec. 2.2.1

and more specifically equation (2.7).

For fast kVp switching, each projection contains either low- or high-energy mea-

surements. Therefore, for each projection, either yi.l or yi,h is missing. In the case

of the true likelihood of equation (2.23), this missing measurement can be accommo-

dated by setting the weighting matrix to be

Wi =



 wi,l 0

0 0

, for low-energy projections; 0 0

0 wi,h

, for high-energy projections.

(2.30)

So in this case, the missing measurement is always weighted by zero.

However, in the case of the joint approximation in (2.28), we still must determine a

value for the weighting matrix Bi from equation (2.29) and the estimated projection,

p̂i, from equation (2.25). Unfortunately, both these values depend on the missing

measurement. In order to solve this problem, we interpolate the missing value of yi,

and use this interpolated value to compute both the gradient of h−1 used for the weight

matrix Bi, and the projection p̂i. While this interpolation process does introduce

error, this error is relatively minor when the joint log-likelihood approximation is

used, which allows using relatively straightforward interpolation techniques without

significant concern for the quality of the reconstructed images. In order to see this,

consider the plots of Figs 2.2 and 2.3.
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Fig. 2.2 graphically illustrates the importance of using the joint log-likelihood ap-

proximation rather than the simplified independent approximation using some typical

values of [yi,l, yi,h] = [3.9, 3.8] at 80 kVp and 140 kVp. In the independent approx-

imation, the off-diagonal entries of Bi are set to zero, so the errors in p̂i,W and p̂i,I

are modeled as independent, and the approximated log-likelihood function has el-

lipsoidal level curves. This is a very poor approximation of the true log-likelihood

and artificially imposes a penalty for any deviation from its unique maximum. With

incorporation of the off-diagonal terms in Bi, the joint approximation is much more

accurate. The joint approximation appropriately retains the under-specified nature

of the maximum-likelihood projection estimate, allowing it to move along its level

lines without change in cost.
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Fig. 2.2. Plots of the true log-likelihood function, the independent
approximation, and the proposed joint approximation, with contours
plotted underneath.

Fig. 2.3 illustrates more precisely the effect of interpolation error in the joint and

independent log-likelihood approximations. The figure shows contour plots of the

log-likelihood function of Fig. 2.2, but also shows the effect of a 5% interpolation

error in the missing sample. More precisely, without loss of generality, we fix the air

scan photon flux as [λl,0, λh,0] = [5000, 5000], and then simulate the low, medium, and

high attenuation cases with photon measurements [λl, λh] as [2500, 2650], [500, 550],

and [100, 110], respectively. The interpolation error has a relatively minor effect on

the joint approximation, while shifting quite significantly the maximum of the inde-
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pendent model. Intuitively, the joint approximation is very robust to interpolation

error because the weighting matrix, Bi, has a zero eigenvalue in the direction of any

interpolation error. This is due to the fact that the underlying matrix Wi of equa-

tion (2.29) has a zero in the location of the missing sample. In practice, we will see

that the independent approximation results in reconstructions which lose resolution

due to the interpolation process. Alternatively, the joint approximation approach

preserves resolution by primarily depending on only the uninterpolated samples in

the reconstruction.

Fig. 2.4 provides a pseudocode of the joint log-likelihood approximation for fast

kVp switching. First, the missing measurement is interpolated, and then the inter-

polated value is used to compute the material decomposition estimate, p̂i, and the

projection weighting matrix, Bi.

2.2.5 Prior Model

We model the reconstructed density image as a Markov random field (MRF) with

the following form

− logP (m) =
∑

s∈{W,I}

∑
{j,r}∈C

bjr,sρs(mj,s −mr,s), (2.31)

where s is the index of material type, {j, r} specifies a neighboring pair consisting of

voxel j and voxel r, C represents the set of all such voxel pairs, bjr,s is the prior strength

for voxel pair {j, r} and material s, and ρ(.) is the potential function. We choose bjr,s

to be inversely proportional to the distance between voxel j and voxel r, and the

scale of bjr,s can be further adjusted to balance between noise and resolution in the

reconstruction. By choosing this model, we perform the regularization independently

on each of the material components in the image domain.
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Fig. 2.3. Figure plots contours of the true log-likelihood function and
different approximations. Independent and joint models are compared
at three attenuation levels. Within each subfigure, we plot the con-
tours of the true log-likelihood (blue), approximation without inter-
polation error (red), and with 5% interpolation error (green). Each
plot covers two standard deviations of water and iodine projections.
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JDE-MBIR(yl, yh, wl, wh, h
−1,∇h−1){

for i = 1 to M do
if wi,h = 0 then
yi,h ← Interpolation

else if wi,l = 0 then
yi,l ← Interpolation

end if
yi ← [yi,l, yi,h]
Wi ← diag{wi,l, wi,h}
p̂i ← h−1(yi) {Material decomposition}
Bi ← [∇h−1(yi)]

−1Wi[∇h−1(yi)]
−T

end for
m̂← ImageRecon(p̂, B)
return m̂
}

Fig. 2.4. Pseudocode of JDE-MBIR for DECT that uses fast kVp
switching. First, we interpolate the missing sample for each projec-
tion. Second, we perform material decomposition and also compute
the statistical weighting matrix. Finally, we use the decomposed sino-
grams and weighting matrices to reconstruct the images iteratively.
The subroutine ImageRecon is described in Fig. 2.8.

Our particular choice of potential function is the q-generalized Gaussian MRF

(q-GGMRF) of the form

ρs(∆) =
|∆|p

1 + |∆/cs|p−q
, (2.32)

with 1 < q ≤ p ≤ 2. This type of prior has shown to be effective in many tomographic

reconstruction studies [3, 6, 50, 51]. With 1 < q ≤ p ≤ 2, the potential function is

strictly convex [3], which guarantees global convergence of the cost function and

produces reconstruction as a continuous function of the data [52].

We set p = 2.0 and q = 1.2 in our application, since this particular setting

has shown a desirable compromise between noise and resolution in similar clinical

studies [3]. With p = 2.0, the potential approximates a quadratic function for small

voxel differences, which preserves details in low contrast regions. The value, q =

1.2, approximates the behavior of a generalized Gaussian MRF [52] for large voxel
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differences, which preserves edges in high contrast regions. The parameter c models

the transition between low and high contrast contents. In practice, we choose c
W

= 10

mg/cm3 for water image and c
I

= 0.5 mg/cm3 for iodine image.

2.2.6 Constrained Optimization

In X-ray tomographic reconstruction problems, an important physical constraint

to the reconstruction is that the linear attenuation of any material at any photon

energy must be non-negative. More precisely, for all E ∈ [40, 140] keV, we know that

µj(E) = mj · ϕ(E) ≥ 0 , (2.33)

where the photon energy range [40, 140] keV is of particular interest for medical

imaging and is above the k-edge of iodine.
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Fig. 2.5. This figure illustrates the feasible values of a voxel,
mj = [mj,W ,mj,I ], where mj,W is the water-equivalent density and
mj,I is the iodine-equivalent density. The yellow region shows the con-
strained solution set, which is formed by the intersection of only two
half planes, one defined by nmax and the other by nmin. The green
arrows show the attenuation vectors at intermediate energies.
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Let Ω′ be the constraint set of a single voxel value, as

Ω′ = ∩E∈[40,140]{mj ∈ <2 : mj · n(E) ≥ 0}, (2.34)

where n(E) , ϕ(E)
||ϕ(E)|| is the normalized mass attenuation vector. In this way, Ω′ is

formed by the intersection of an infinite number of half planes. However, the form

of Ω′ can be dramatically simplified by observing that the direction of n(E) moves

continuously with E . As a consequence, the constraint can be represented much more

simply by the intersection of only two planes corresponding to the minimum and

maximum values of n(E), as nmin = n(40) and nmax = n(140),

Ω′ =
{
mj ∈ <2 : mj · nmin ≥ 0 and mj · nmax ≥ 0

}
, (2.35)

Fig. 2.5 illustrates the constraint set and the associated mass attenuation vectors.

Then the constraint set for the entire image, denoted by Ω, is given by

Ω = Ω′
N
, (2.36)

where N is the number of voxels in the reconstructed volume. Clearly, Ω′ is a convex

set and so is Ω.

The proposed constraint allows negative values for the reconstructed densities of

water and iodine. This is because the reconstructed densities are only some coefficients

for the linear combination that produces the equivalent attenuation. However, in the

attenuation domain, the combination of the reconstructed material densities should

remain non-negative.

Combining the log-likelihood in (2.28) and the prior in (2.31) with the constraints

in (2.36) yields the expression for the MAP reconstruction of equation (2.1),

m̂ = arg min
m∈Ω

1

2

M∑
i=1

(p̂i − [Am]i)Bi (p̂i − [Am]i)
T +

∑
s∈{W,I}

∑
{j,r}∈C

bjr,sρ(mj,s −mr,s)

 .

(2.37)
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2.3 Optimization Algorithm

There are a wide variety of techniques that can be used to solve the optimiza-

tion problem in (2.37), from which we choose the iterative coordinate descent (ICD)

algorithm. The ICD algorithm has the advantages that it has rapid convergence at

high spatial frequencies [1], especially when initialized with FBP to obtain a good

original estimate of low frequencies. Moreover, it can easily incorporate the proposed

non-negativity constraint.

The ICD algorithm sequentially updates voxels of the reconstructed image. Within

each ICD iteration, every single voxel is updated with remaining voxels fixed so

as to minimize the total cost function. Within each ICD update, we compute the

exact solution to the constrained voxel update with the Karush-Kuhn-Tucker (KKT)

condition.

More precisely, by changing only one voxel while fixing the rest of the image, we

compute the voxel update, m̂j, from the current image, m, by

m̂j ← arg min
u∈Ω′

1

2

M∑
i=1

‖p̂i − [Am]i + Ai,j (mj − u)‖2
Bi

+
∑

s∈{W,I}

∑
r∈∂j

bjr,sρ (us −mr,s)

 ,

(2.38)

We denote ‖x‖2
B

= xBxT for simplicity. We introduce a dummy variable u = [u
W
, u

I
]

to represent the voxel value being updated, to distinguish from its current value, mj.

Define the error sinogram, e , Am − p̂. Then intuitively, the first term in equation

(2.38) describes the change in the error sinogram introduced by the change in the

voxel value. Equivalently, equation (2.38) can be written as

m̂j ← arg min
u∈Ω′

(u−mj)θ1 +
1

2
‖u−mj‖2

θ2
+

∑
s∈{W,I}

∑
r∈∂j

bjr,sρ(us −mr,s) + const.

 .

(2.39)
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where θ1 and θ2 are the first and second derivatives of the log-likelihood function,

which are given by

θ1 ,
M∑
i=1

Ai,jBie
T
i , (2.40)

θ2 ,
M∑
i=1

A2
i,jBi. (2.41)

where ei = [Am]i − p̂i is the ith row of the error sinogram, and Ai,j is a scalar

representing the intersection of ray i with voxel j.

Solving the 2-D optimization problem in (2.39) simultaneously for both material

components may be difficult, since the prior term cannot be explicitly expressed as

a function of u. To address this problem, one may use a functional substitution

approach [6,53–56]. In this problem, we introduce a quadratic substitute function for

the potential function. More precisely, let ∆ = us−mr,s and ∆∗ = mj,s−mr,s. Then

we define the substitute function, q(∆; ∆∗), as

q(∆; ∆∗) =
αjr,s

2
∆2 + Cjr,s, (2.42)

with

αjr,s =
ρ′(∆∗)

∆∗
, (2.43)

Cjr,s = ρ(∆∗)− ρ′(∆∗)

2
∆∗,

where Cjr,s is an offset constant and therefore can be ignored during optimization.

This function, q(∆; ∆∗), satisfies the following two constraints for a valid substitute

function [6, 53–55].

q(∆∗; ∆∗) = ρ(∆∗),

q(∆; ∆∗) ≥ ρ(∆).



27

Intuitively, a valid substitute function for minimization should equal the true function

at the current point and upper bound the true function everywhere else. Fig. 2.6

illustrates the desired substitute function, q(∆; ∆∗). It is important to know that

replacing the true potential function with the substitute function still guarantees

monotone convergence of the cost function [6, 55].
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Fig. 2.6. This figure illustrates the desired substitute function. The
substitute function q(∆; ∆∗) upper bounds the true function ρ(∆)
except for the fixed point ∆ = ∆∗, where two functions are equal.
Thus, the true function must decrease when the substitute function
is minimized.

Replacing the potential function in (2.39) with the substitute function yields a

quadratic cost function of u,

m̂j ← arg min
u∈Ω′

{
(u−mj)θ1 +

1

2
‖u−mj‖2

θ2
+

1

2

∑
r∈∂j

‖u−mr‖2
ψr

+ const.

}
, (2.44)

where

ψr ,

 bjr,Wαjr,W 0

0 bjr,Iαjr,I

 . (2.45)
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Furthermore, define

φ1 , θ1 − θ2m
T
j −

∑
r∈∂j

ψrm
T
r , (2.46)

φ2 , θ2 +
∑
r∈∂j

ψr. (2.47)

By using φ1 and φ2, we rewrite (2.44) into a standard form,

min
u

1

2
uφ2u

T + uφ1 + const. (2.48)

s.t. u · nmin ≥ 0

u · nmax ≥ 0

This is a standard quadratic minimization problem with two linear constraints. It

can be solved exactly by applying the KKT condition following a standard procedure

[57]. Fig. 2.7 shows the procedure for computing the solution. We first test the KKT

condition on the unconstrained solution. If it fails, we solve the minimization problem

on either boundary of the feasible set by rooting the derivative of the resulting 1D cost

function, and then test the corresponding solution with the KKT condition. Once the

KKT condition is met, the particular solution becomes our updated value. This is

because the KKT condition is both necessary and sufficient in this problem, given that

the cost function and the constraints are continuously differentiable and convex [58].

The origin will be the only feasible solution if no qualified solution is found in the

previous cases. The derivation of the solution is provided in the appendix.

The pseudocode in Fig. 2.8 summarizes the procedure for reconstructing the image

from the decomposed sinograms. We initialize the image and the error sinogram with

the raw FBP images. Then within each iteration, for each selected voxel j, we first

compute the jth column of the forward projection matrix, which is A∗,j, by using

the distance driven method [48]. Second, we compute the first two derivatives of the

log-likelihood function, θ1 and θ2. Third, we compute the surrogate prior coefficients,

ψr, for each of the neighboring voxels by using (2.43) and (2.45). Fourth, we compute
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KKTSolve(φ1, φ2, nmin, nmax){
// unconstrained solution
u← −φ−1

2 φ1

if u · nmin < 0 or u · nmax < 0 then
// solve on the boundary defined by u · nmin = 0

uT ← −
(
φ−1

2 −
φ−1

2 nTminnminφ
−1
2

nminφ
−1
2 nTmin

)
φ1

λ1 ← nTminφ
−1
2 φ1

nminφ
−1
2 nTmin

if u · nmax < 0 or λ1 ≤ 0 then
// solve on the boundary defined by u · nmax = 0

uT ← −
(
φ−1

2 −
φ−1

2 nTmaxnmaxφ
−1
2

nmaxφ
−1
2 nTmax

)
φ1

λ2 ← nTmaxφ
−1
2 φ1

nmaxφ
−1
2 nTmax

if u · nmin < 0 or λ2 ≤ 0 then
// only feasible solution is the origin
u← [0, 0]

end if
end if

end if
return u
}

Fig. 2.7. Pseudocode for solving the quadratic minimization problem
in (2.48) with the KKT condition. We first test the KKT condition
on the unconstrained solution. If it fails, we solve the minimization
problem on either boundary of the feasible set, and then we test the
corresponding solution with the KKT condition. Once the KKT con-
dition is met, the particular solution becomes the updated value. The
origin will be the only feasible solution if no qualified solution is found
in the previous cases. The derivation for the solution is provided in
the appendix.

the first two derivatives for the quadratic cost function, φ1 and φ2, by using (2.46)

and (2.47). Fifth, we solve the optimization problem in (2.48) by using the KKT

condition to obtain the voxel update. Finally, we forward project the change in voxel

to update the error sinogram and update the image as well.



30

ImageRecon(p̂, B){
m← raw FBP images
A← Compute
e← Am− p̂
nmin, nmax ← Compute

repeat
repeat
j ← Select a voxel according to random schedule
A∗,j ← Compute
θ1, θ2 ← Compute by using (2.40) and (2.41)
for each r ∈ ∂j do
ψr ← Compute by using (2.43) and (2.45)

end for
φ1, φ2 ← Compute by using (2.46) and (2.47)
m̂j ← KKTSolve(φ1, φ2, nmin, nmax)
e← e+ A∗,j(m̂j −mj)
m← m+ δj(m̂j −mj)

until All voxels have been visited
until Image m converges to the desired level
return m
}

Fig. 2.8. Pseudocode for reconstructing the image by using generic
ICD algorithm. We initialize m with the raw FBP images and also
initialize the error sinogram. Within each iteration, for each selected
voxel, we first compute the column of the forward projection matrix.
Second, we compute first two derivatives of the log-likelihood function.
Third, we compute the coefficients for the surrogate prior. Fourth, we
compute the first two derivatives of the quadratic cost function. Fifth,
we solve the optimization problem with the KKT condition to obtain
the voxel update. Finally, we update the error sinogram and the
image. We define δj as an N × 1 vector that is 1 for element j and 0
otherwise. The subroutine KKTSolve is described in Fig. 2.7.

2.4 Experimental Results

We have applied the proposed JDE-MBIR algorithm to real 3D DECT recon-

struction problems. Raw data were acquired on a Discovery CT750 HD scanner (GE

Healthcare, WI, USA) in a dual-energy fast switching acquisition mode, with the

X-ray tube voltage alternating between 80 kVp and 140 kVp from view to view.
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This spectral CT imaging technique is also referred to as Gemstone Spectral Imaging

(GSI). Each scan contains approximately 2500 views per rotation, with each kVp

having the same number of views, which is approximately 1250. Each scan was made

with a large bowtie present. Each of the reconstructed images has a thickness of

0.625 mm, with 512×512 pixels. We reconstruct with water and iodine sinograms af-

ter material decomposition, with each material having the same number of views per

rotation, which is approximately 2500. The reconstructed images represent the cross-

sections corresponding to water- and iodine-equivalent densities in units of mg/cm3.

The “monochromatic” image, which specifies the cross-section corresponding to the

attenuation given the photon energy, can then be generated by a linear combination of

the reconstructed density images as in equation (2.18). Note that we do not generate

monochromatic sinograms for reconstruction.

The function h−1 in (2.25) is approximated by using a high order polynomial with

the following form,

[p̂i,W , p̂i,I ] = h−1(yi,l, yi,h) =

[
L∑

m=0

L∑
n=0

cm,n,Wy
m
i,ly

n
i,h,

L∑
m=0

L∑
n=0

cm,n,Iy
m
i,ly

n
i,h

]
, (2.49)

with L = 10. The specific coefficients for the polynomial, denoted by {cm,n,W , cm,n,I},
∀m ∈ {0, 1, · · · , L}, ∀n ∈ {0, 1, · · · , L}, are computed in a calibration procedure

for each device as described in [59]. As described in Sec. 2.2.2, these coefficients

depend on many specific details of the device’s physics including the X-ray spectra

and detector sensitivity. The coefficients of the material decomposition are estimated

in two stages. First, a polynomial is estimated to correct for beam hardening on

a water phantom, and then the full set of coefficients are estimated for complete

material decomposition.

We will compare the proposed JDE-MBIR method with two other decomposition-

based methods, one using FBP reconstruction and the other using independent DE-

MBIR. The FBP method consists of first obtaining two material sinograms from the

material decomposition and then performing FBP on each sinogram with a stan-



32

dard reconstruction filter kernel. Then the resulting material density images are

processed by a correlation-based noise reduction method [44, 60]. The independent

DE-MBIR was implemented in the same way as described in Sec. 2.2.4. That is,

the off-diagonal terms of the weighting matrix, Bi, were set to 0. All of the above

methods work with the same decomposed sinograms. In practice, we implement the

interleaved non-homogeneous ICD algorithm [6] for both independent DE-MBIR and

JDE-MBIR. This method focuses computation where updates are mostly needed,

which consequently accelerates the convergence. Both the independent DE-MBIR

and JDE-MBIR are implemented on a standard 2.53 GHz clock rate 8 core Intel pro-

cessor workstation with the Linux operating system. For both methods, we run 10

iterations to obtain the fully converged results.

In order to compare fairly among different reconstruction methods, for each ex-

periment we match the noise level in 70 keV monochromatic images. That is, the

difference of the noise standard deviation measured within a fixed ROI is less than 1

HU among different methods. We adjust the prior strength, bjk,s in (2.31), to match

the noise level.

We first evaluate the performance of different methods using the phantom. For

quantitative assessment, we use a 20 cm diameter GE Performance Phantom (GEPP)

scanned in 64× 0.625 mm helical mode at pitch 0.938:1 in 540 mAs in 300 mm field

of view (FOV). The GEPP contains a Plexiglas insert with resolution bars and a

50 µm diameter tungsten wire placed in water. We measure the standard deviation

within a fixed ROI in a homogeneous region of Plexiglas for noise assessment, and

also measure the modulation transfer function (MTF) by using the wire for in-plane

resolution assessment [61]. The width of the MTF is proportional to the spatial

resolution. In this chapter, 10% MTF is chosen for comparison, since it generally

reflects the visual resolution of the image. In addition to the above wire method,

we also use the cyclic bar patterns to measure the spatial resolution. Following the

method described in [62], we compute the MTF gain as the image modulation divided

by the object modulation.
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noise = 21.21 mg/cm
3

(a) FBP, water

noise = 14.31 mg/cm
3

(b) ind. DE-MBIR, water

noise = 9.68 mg/cm
3

(c) JDE-MBIR, water

noise = 0.60 mg/cm
3

(d) FBP, iodine

noise = 0.89 mg/cm
3

(e) ind. DE-MBIR, iodine

noise = 0.30 mg/cm
3

(f) JDE-MBIR, iodine

noise = 14.18 HU

(g) FBP, 70 keV

noise = 13.55 HU

(h) ind. DE-MBIR, 70 keV

noise = 13.69 HU

(i) JDE-MBIR, 70 keV

Fig. 2.9. Comparison of FBP, independent DE-MBIR (ind. DE-
MBIR) and JDE-MBIR reconstructions from a GEPP scan. From
top to bottom: water density image, iodine density, and 70 keV
monochromatic image. From left to right: FBP, independent DE-
MBIR, JDE-MBIR. Display window for water: [650 1250] mg/cm3;
for iodine: [-8.0 7.0] mg/cm3; for mono images: [-300 300] HU. The
white box on the 70 keV FBP image (first at the third row) indicates
the region where the noise standard deviation is evaluated.
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The JDE-MBIR method improves the spatial resolution and simultaneously re-

duces noise in the phantom study. This is illustrated by the GEPP reconstructions

shown in Fig. 2.9. As shown in the figure, JDE-MBIR provides greater noise suppres-

sion than FBP and independent DE-MBIR in both water and iodine images, which

leads to visually smoother homogeneous regions. Meanwhile, JDE-MBIR improves

the resolution by producing a less blurred wire spot and spatially more distinguish-

able bars. One can also observe the resolution improvement in the monochromatic

images in Fig. 2.10, which are synthesized using the reconstructed material densities

in Fig. 2.9 following (2.18). The increased visual separation of the bars is illustrated

by the profile plots in Fig. 2.11.

(a) FBP (b) indepedent DE-MBIR (c) JDE-MBIR

Fig. 2.10. Resolution bars in the 70 keV monochromatic images from
a GEPP scan reconstructed with: (a) FBP; (b) independent DE-
MBIR; (c) JDE-MBIR. Display window: [-500 -300] HU. Each image
zooms in to the resolution bars of the monochromatic images shown
in Fig. 2.9 with a different display window.

The visual improvement on the GEPP reconstruction is further verified by quanti-

tative measurements in Table 2.1. With comparable noise level in 70 keV monochro-

matic images, JDE-MBIR significantly reduces noise as compared to FBP and in-

dependent DE-MBIR, especially for water images. JDE-MBIR also improves the

in-plane resolution substantially as compared to FBP and independent DE-MBIR,

according to these two different resolution metrics.
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(a) profile line on the image
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(b) attenuations along the profile line

Fig. 2.11. Profile plot across the resolution bars on the GEPP 70 keV
monochromatic images for FBP, independent DE-MBIR, and JDE-
MBIR. Left: profile line on the image; right: attenuations along
the profile line with FBP (blue), independent DE-MBIR (green), and
JDE-MBIR (red).

Fig. 2.13 and 2.14 show the resolution and noise of the monochromatic images

across various photon energies, where we match the noise level at 70 keV for different

methods for comparison. Fig. 2.12 presents the monochromatic images at two distinct

energies as an example. As shown in Fig. 2.13, JDE-MBIR significantly raises the

resolution as compared to FBP and independent DE-MBIR. Fig. 2.14 also shows this

resolution improvement by investigating the bar patterns at three different spatial

frequencies. Each plot is computed using the method described in [62]. Note that for

each frequency, the JDE-MBIR produces the largest contrast (i.e., closest to an ideal

value of 100%) across all energies. This is consistent with the visual quality of the

resolution bars in Fig. 2.10 and 2.12.

In addition, Fig. 2.13 shows that the JDE-MBIR monochromatic image contains

less noise than the FBP image for all energies of diagnostic interest. It also has a

more tractable noise characteristic than the monochromatic image with the indepen-

dent DE-MBIR. More precisely, although the independent DE-MBIR monochromatic

image appears slightly less noisy than the JDE-MBIR monochromatic image for some

energy levels, the noise rises rapidly for the independent model as energy decreases.



36

Table 2.1.
Comparison of FBP, independent DE-MBIR and JDE-MBIR for mea-
surement of noise and in-plane resolution for the images in Fig. 2.9.
The resolution measured by using the cyclic bars method is made in
the 70 keV monochromatic images at the three lowest spatial frequen-
cies.

Noise Measurement (Standard Deviation)

water
(mg/cm3)

iodine
(mg/cm3)

70 keV mono.
(HU)

FBP 21.21 0.60 14.18

Independent DE-MBIR 14.31 0.89 13.55

JDE-MBIR 9.68 0.30 13.69

Resolution Measurement (10% MTF by the wire method)

water
(lp/cm)

iodine
(lp/cm)

70 keV mono.
(lp/cm)

FBP 6.15 5.81 6.60

Independent DE-MBIR 8.61 6.35 8.90

JDE-MBIR 11.80 10.59 11.70

Resolution Measurement (MTF gain by the cyclic bars method)

6.25 lp/cm
(%)

7.69 lp/cm
(%)

10 lp/cm
(%)

FBP 11.55 3.70 0

Independent DE-MBIR 15.35 3.74 0.25

JDE-MBIR 40.30 19.10 3.28

This is because the iodine component dominates the photon attenuation at low energy

and the independent DE-MBIR method tends to produce noisy iodine reconstructions.

Also, optimizing the prior strength for independent DE-MBIR becomes difficult due

to this huge variation. This result also indicates that one can further reduce noise

while still earning the advantage in spatial resolution by using the JDE-MBIR.
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noise = 24.82 HU

(a) FBP, 50 keV

noise = 36.90 HU

(b) ind. DE-MBIR, 50 keV

noise = 22.58 HU

(c) JDE-MBIR, 50 keV

noise = 18.98 HU

(d) FBP, 130 keV

noise = 10.11 HU

(e) ind. DE-MBIR, 130 keV

noise = 9.92 HU

(f) JDE-MBIR, 130 keV

Fig. 2.12. Comparison of FBP, independent DE-MBIR (ind. DE-
MBIR), and JDE-MBIR monochromatic images of the GEPP at dif-
ferent energies. From top to bottom: photon energy at 50 keV and
130 keV. From left to right: FBP, independent DE-MBIR, JDE-
MBIR. Display window for mono images: [-300 300] HU. These
monochromatic images are synthesized using the reconstructed mate-
rial densities in Fig. 2.9 based on (2.18).

We also compared the convergence speed of the JDE-MBIR and the standard

single-energy MBIR [6] with the GEPP reconstruction to measure the additional com-

putational burden occasioned by the dual-energy reconstruction. For single-energy

MBIR, we simply took the water sinogram and weight from the data used in the ex-

periment of Fig. 2.9 and performed the reconstruction. In this case, the data used in

JDE-MBIR and single-energy MBIR share the same scanner geometry and settings

such as helical pitch, rotation speed, and local statistics for the water component.

Note that the resulting single-energy MBIR reconstruction has no particularly quan-
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(a) in-plane resolution

40 60 80 100 120 140
0

10

20

30

40

50

60

70

x−ray photon energy (keV)

n
o
is

e
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n
 (

H
U

)

 

 

FBP

independent DE−MBIR

JDE−MBIR

(b) noise standard deviation

Fig. 2.13. Resolution and noise of the monochromatic images across
various energy levels with different reconstruction methods.
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(a) 6.25 lp/cm
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(b) 7.69 lp/cm
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(c) 10 lp/cm

Fig. 2.14. MTF measured at the cyclic bars of three different spatial
frequencies in the monochromatic images across various photon en-
ergies. The JDE-MBIR produces higher MTF values than the other
two methods at all three frequencies.

titative meaning, but it is still useful for comparing the computation time. Both

algorithms were implemented on the same software platform and run on the same

hardware. Fig. 2.15 shows the comparison of convergence speed between JDE-MBIR

and single-energy MBIR. Since these two methods do not reach the same final cost

due to different cost functions, we scale the cost of the single-energy MBIR such that

it has the same final cost as JDE-MBIR, assuming full convergence has been reached

in 10 iterations as usually observed in practice. As shown in the figure, both algo-

rithms converge within 4 iterations. In this experiment, the average total computation
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time per iteration for JDE-MBIR was 1.47 times the computation required for single-

energy MBIR as measured across about 9 million voxels located differently in the 3D

FOV. The main reason for the increase in computation stems from the fact that the

sinograms for JDE-MBIR contain twice as much data as that for single-energy MBIR

because of interpolation.

0 2 4 6 8 10
200

250

300

350

400

450

500

Iteration

C
o

s
t

 

 

Single−energy MBIR

JDE−MBIR

Fig. 2.15. Comparison of the convergence speed of the JDE-MBIR
and the standard single-energy MBIR with the GEPP reconstruction
in Fig. 2.9. The cost for the single-energy MBIR is scaled such that
it reaches the same final cost as JDE-MBIR.

We also evaluated the reconstruction accuracy of JDE-MBIR by using a GE GSI

contrast phantom, which was scanned in 32×0.625 mm axial mode in 384 mAs in 500

mm FOV. This phantom consists of a water phantom with several cylindrical rods

inserted, each containing known concentrations of iodine and water. Fig. 2.16 shows

the JDE-MBIR reconstructions of this phantom, with the theoretical iodine and water

densities given in Table 2.2. Fig. 2.16 also plots the reconstructed iodine and water

densities for FBP and JDE-MBIR. For each rod with known iodine concentration,

we calculated the average of the reconstructed values in an ROI within the rod. As

shown in the plots, FBP and JDE-MBIR produce equally accurate material densities.

We also compared FBP, independent DE-MBIR, and JDE-MBIR by using real

clinical data, as shown in Figs 2.17 - 2.22. The data were collected from an abdom-

inal scan in 64 × 0.625 mm helical mode at pitch 0.984:1 in 540 mAs in 500 mm
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Table 2.2.
Theoretical densities of iodine and water for the inserted rods in the
GSI contrast phantom as shown in Fig. 2.16.

Rod 1 2 3 4 5 6

Iodine (mg/cm3) 0 2.5 5 7.5 15 20

Water (mg/cm3) 1000 999.5 999 998.5 997 995.9

(a) iodine image (b) water image
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(d) reconstructed water density

Fig. 2.16. Top row shows the JDE-MBIR reconstructions of the GE
GSI contrast phantom. This phantom consists of a water phantom
base and several cylindrical rods, each of which contains certain con-
centrations of iodine and water. Display window for water: [700 1300]
mg/cm3; for iodine: [-1.25 16.25] mg/cm3. Bottom row shows the re-
construction accuracy of FBP and JDE-MBIR for iodine and water.

FOV. Fig. 2.17 and 2.18 show that the JDE-MBIR dramatically reduces the noise

in the homogeneous regions (e.g., liver) in both water and iodine images. The bone
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structures in the JDE-MBIR water image also suffer from less blooming and have

sharper edges than the other two methods. Meanwhile, the JDE-MBIR improves the

resolution in the iodine image as compared to the other two methods. For example,

one can see details such as liver vessels more clearly in the JDE-MBIR image.

Fig. 2.19 - 2.22 present the corresponding monochromatic images at various en-

ergies. The resolution improvement can be observed in the JDE-MBIR images as

compared to the other two methods, with a fixed noise level in the 70 keV monochro-

matic image. However, according to the resolution and noise curves shown in Fig. 2.13,

one can achieve less noise while still retaining better resolution for the JDE-MBIR

method as compared to the FBP method, by adjusting the prior strength. These re-

sults illustrate the potential diagnostic benefits of the JDE-MBIR method for DECT

reconstruction. Note that either JDE-MBIR or independent DE-MBIR can be further

improved by tuning the parameters for a particular clinical application.

2.5 Conclusion

In this chapter, we have presented a JDE-MBIR approach for DECT reconstruc-

tion. The proposed method combines a joint likelihood model to account for the noise

correlation in material-decomposed sinograms with MRF regularization, and features

a physically realistic constraint that ensures non-negative X-ray absorptions. We also

demonstrate that the JDE-MBIR method retains a more accurate model of the data

likelihood than other decomposition-based statistical iterative methods when DECT

uses fast kVp switching techniques. The experimental results on phantom and clini-

cal data show that the JDE-MBIR method can reduce noise and increase resolution

as compared to the FBP method and the independent DE-MBIR method. We ex-

pect that the improvement in terms of lower noise and higher resolution brought by

the JDE-MBIR method may potentially reduce the CT dose required for a particu-

lar image quality. Future investigation will assess how to further improve material

separation performance and investigate potential clinical benefits.
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(a) FBP (b) ind. DE-MBIR

(c) JDE-MBIR

(d) Difference: (c) – (a) (e) Difference: (c) – (b)

Fig. 2.17. Comparison of water images reconstructed by FBP, inde-
pendent DE-MBIR and JDE-MBIR methods for an abdominal clinical
scan. Display window for water images: [850 1150] mg/cm3; for water
difference images: [-100 100] mg/cm3.
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(a) FBP (b) ind. DE-MBIR

(c) JDE-MBIR

(d) Difference: (c) – (a) (e) Difference: (c) – (b)

Fig. 2.18. Comparison of iodine images reconstructed by FBP, inde-
pendent DE-MBIR and JDE-MBIR methods for an abdominal clinical
scan. Display window for or iodine images: [-2.25 15.25] mg/cm3; for
iodine difference images: [-4.5 4.5] mg/cm3.
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(a) FBP (b) ind. DE-MBIR

(c) JDE-MBIR

(d) Difference: (c) – (a) (e) Difference: (c) – (b)

Fig. 2.19. Comparison of 70 keV monochromatic images synthesized
from FBP, independent DE-MBIR and JDE-MBIR reconstructions,
in Figs. 2.17 and 2.18 based on (2.18). Display window for mono
images: [-160 240] HU; for mono difference images: [-100 100] HU.
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(a) FBP (b) ind. DE-MBIR

(c) JDE-MBIR

(d) Difference: (c) – (a) (e) Difference: (c) – (b)

Fig. 2.20. Comparison of 60 keV monochromatic images synthesized
from FBP, independent DE-MBIR and JDE-MBIR reconstructions,
in Figs. 2.17 and 2.18 based on (2.18). Display window for mono
images: [-160 240] HU; for mono difference images: [-100 100] HU.
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(a) FBP (b) ind. DE-MBIR

(c) JDE-MBIR

(d) Difference: (c) – (a) (e) Difference: (c) – (b)

Fig. 2.21. Comparison of 100 keV monochromatic images synthesized
from FBP, independent DE-MBIR and JDE-MBIR reconstructions,
in Figs. 2.17 and 2.18 based on (2.18). Display window for mono
images: [-160 240] HU; for mono difference images: [-100 100] HU.
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(a) FBP (b) ind. DE-MBIR

(c) JDE-MBIR

(d) Difference: (c) – (a) (e) Difference: (c) – (b)

Fig. 2.22. Comparison of 130 keV monochromatic images synthesized
from FBP, independent DE-MBIR and JDE-MBIR reconstructions,
in Figs. 2.17 and 2.18 based on (2.18). Display window for mono
images: [-160 240] HU; for mono difference images: [-100 100] HU.
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3. GAUSSIAN MIXTURE MARKOV RANDOM FIELD

FOR MODEL-BASED ITERATIVE RECONSTRUCTION

3.1 Introduction

In recent years, model-based iterative reconstruction (MBIR) has emerged as a

very powerful approach to reconstruct images from sparse or noisy data in applica-

tions ranging from medical, to scientific, to non-destructive imaging [3, 51, 63–68].

In medical applications, for example, MBIR has been demonstrated to substantially

improve image quality by both reducing noise and improving resolution [7, 10, 11].

This important advantage of MBIR comes from the tight integration of the forward

model and the prior model, which improves the estimation of the underlying image

substantially.

While the MBIR forward model is typically based on the physics of the sensor,

accurate prior modeling of real images remains a very challenging problem. Perhaps

the most commonly used prior model is a very simple Markov random field (MRF)

with only very local dependencies and a small number of parameters [1,3,69]. Alter-

natively, total-variation (TV) regularization approaches can also be viewed as simple

MRF priors [70–73]. While these models have been very useful, their simple form

does not allow for accurate or expressive modeling of real images.

More recently, methods such as K-SVD have been proposed which can be adapted

as prior models in MBIR reconstruction [74–76]. Other patch-based or dictionary-

based methods such as BM3D [77], non-local means [78], or bilateral filters [79] can

be very effective in denoising applications, but are not directly suited for application

in model-based reconstruction problems. While K-SVD can be adapted as a prior

model, it does not explicitly model the multivariate distribution of the image. This

can lead to drawbacks in applications. For example, the K-SVD algorithm is designed
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to be invariant to scaling or average gray level of image patches. In applications such

as CT reconstruction, this is a severe limitation since regions of different densities

generally correspond to different tissues (e.g., bone and soft tissue) with distinctly

different characteristics. In [80], Wang and Qi adapted a non-local prior model as

a mechanism to capture subtler image characteristics. A variety of research also

adapted the ideas of dictionary learning to the problem of prior modeling in CT

reconstruction [81–83].

Another approach to prior modeling is to allow different patches of the images to

have different distributions. This approach has been used by both Zoran et. al. [84]

and Yu et. al. [85] to construct non-homogeneous models of images as the composition

of patches, each with a distinct Gaussian distribution. The Gaussian distribution

of each patch is selected from a discrete set of possible distributions (i.e., distinct

mean and covariance). The reconstruction is then computed by jointly estimating

both the image and a discrete class for each patch in the image. This approach can

be very powerful for modeling the different spatially varying characteristics in real

images. However, the approaches suffer from the need to make hard classifications of

each patch. These hard classifications can lead to artifacts when patch distributions

overlap, as is typically the case when a large number of classes are used.

In this chapter, we introduce the Gaussian-mixture MRF (GM-MRF) image prior

along with an associated method for computing the MAP estimate using exact sur-

rogate functions. (See [14] for an early conference version of our method). The

GM-MRF model is constructed by seaming together patches that are modeled with

a single Gaussian mixture (GM) distribution. The advantages of this approach are

that:

• The GM-MRF prior provides a theoretically consistent and very expressive

model of the multivariate distribution of the image;
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• The GM-MRF parameters can be easily and accurately estimated by fitting a

GM distribution to patch training data using standard methods such as the EM

algorithm [86];

• MAP optimization can be efficiently computed by alternating soft classification

of image patches with MAP reconstruction using quadratic regularization.

To create a consistent global image model, we seam together the GM patch models

by using the geometric mean of their probability densities. This approach, similar

to the product-of-experts technique [87] employed in deep-learning, produces a single

consistent probability density for the entire image. Moreover, we also show that the

resulting GM-MRF model is a Markov random field (MRF) as its name implies.

Of course, an accurate image model is of little value if computation of the MAP

estimate is difficult. Fortunately, it can also be shown that the GM-MRF prior has

an exact quadratic surrogate function for its log likelihood. This surrogate func-

tion allows for tractable minimization of the MAP function using a majorization-

minimization approach [88]. The resulting MAP optimization algorithm has the

form of alternating minimization. The two alternating steps are soft classification

for patches followed by MAP optimization using quadratic regularization (i.e., a non-

homogeneous Gaussian prior). Moreover, our approach to MAP optimization with

the GM-MRF prior avoids the need for hard classification of individual patches. In

practice, this means that patch-based GM-MRF models with a large numbers of

overlapping mixture components can be used without adverse modeling effects. This

allows for the use of very expressive models that capture fine details of image behavior.

Our results show that patch-based GM-MRF priors can be used to model complex

characteristics of real images. So for example, the GM-MRF model can capture the

different texture and edge characteristics of bone and soft tissue in medical images.

However, our experiments indicate that when used with an accurate prior model, the

MAP estimate tends to produce images that are exceedingly sharp in high-contrast

bone regions and exceedingly smooth in low-contrast soft-tissue regions. Though
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favorable in some situations, these MAP estimate images may not meet the specific

needs of certain applications in visual quality. Therefore, to optimize the visual

quality for different applications, we introduce a simple method for adjusting the

GM components of the GM-MRF prior, so as to control the sharpness in low- and

high-contrast regions of the reconstruction separately.

Our experimental results indicate that GM-MRF method results in improved im-

age quality and reduced RMS error in simple denoising problems as compared to

simple MRF and K-SVD priors. We also show multi-slice helical scan tomographic

reconstructions from both phantom and clinical data that demonstrate that the GM-

MRF prior produces visually superior images as compared to filtered back-projection

(FBP) and MBIR using the traditional q-GGMRF prior [3].

The rest of the chapter is organized as follows. Sec. 3.2 describes the formulation

of the GM-MRF model. Sec. 3.3 provides the usage of GM-MRF as a prior in MAP

estimation with the optimization strategy. Sec. 3.4 introduces a systematic approach

to adjust the GM-MRF prior in MAP estimation for better visual quality. Sec. 3.5

presents the results with a 2-D image denoising experiment and 3-D CT reconstruction

experiments on phantom and clinical data.

3.2 Gaussian mixture Markov random field

Recall the typical formulation of MBIR algorithms as

x̂← arg min
x∈Ω
{− log p(y|x)− log p(x)} , (3.1)

where x represents the unknown image that is being reconstructed and y represents

the measured data. In this framework, p(y|x) is the conditional probability of y given

x, which comprises the forward model of the measurement process. The density p(x)

is the prior model for x, which will be discussed in detail in this section.

Let x ∈ <N be an image with pixels s ∈ S, where S is the set of all pixels in x

with |S| = N . Let Ps ∈ ZL×N be a patch operator that extracts a patch from the
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image, where the patch is centered at pixel s and contains L pixels. More precisely,

Ps is a rank L matrix that has a value of 1 at locations belonging to the patch and 0

otherwise. Furthermore, we assume that each patch, Psx, can be modeled as having

a multivariate Gaussian mixture distribution with K components,

g(Psx) =
K∑
k=1

πk|Rk|−
1
2

(2π)
L
2

exp

{
−1

2
‖Psx− µk‖2

R−1
k

}
, (3.2)

where parameters πk, µk, Rk represent the mixture probability, mean, and covariance,

respectively, of the kth mixture component.

Then let {Sm} ,m ∈ {1, · · · , L} , be a partition of the set of all pixels into L

sets, each of which tiles the image space. In other words, {Psx}s∈Sm forms a set of

non-overlapping patches, which contain all pixels in x. A simple 2-D example of this

is when each Psx is a square r × r patch, and Sm is the set of pixels at each rth row

and column. Then the set of patches, {Psx}s∈Sm , tiles the plane.

Importantly, there are exactly L distinct tilings of the image space where L is

the number of pixels in a patch. In order to see why this is true, consider the 2-D

example in Fig. 3.1. (Note that this tiling method can be easily extended to n-D

space with n ≥ 3 by using n-D patches.) Notice that each distinct tiling of the space

is determined by the position of the center pixel for the first (e.g., upper left hand)

patch since the positioning of the first patch determines the phase shift of the tiling.

With this in mind, there are exactly L distinct phase shifts corresponding to the L

pixels in a single patch. Using this notation, we model the distribution of each tiling

as the product of distributions of all its patches, as

pm(x) =
∏
s∈Sm

g(Psx) . (3.3)

In this case, pm(x) has the desired distribution for each patch. However, the discrete

tiling of the space introduces artificial boundaries between patches. To remove the

boundary artifacts, we use an approach similar to the product-of-experts approach
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Fig. 3.1. 2-D illustration of the tiling method. Each blue grid repre-
sents one of nine distinct tilings with 3×3 patches on a 6×6 grid, i.e.,
L = 9, with the center pixel of each patch marked in red. Toroidal
boundary condition is considered in this illustration. Note that there
are exactly 9 distinct phase shifts of the tiling, each of which is deter-
mined by the center pixel of the first patch in the upper-left corner,
which corresponds to a distinct pixel location in the shadowed patch.

in [87] and take the geometric average of the probability densities for all L tilings of

the image space to obtain the resulting distribution

p(x) =
1

z

(
L∏

m=1

pm(x)

) 1
L

=
1

z

(∏
s∈S

g(Psx)

) 1
L

, (3.4)

where z is a normalizing factor introduced to assure that p(x) is a proper distribution

after the geometric average is computed.
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Let V (Psx) = − log{g(Psx)}. Then we formulate a Gaussian mixture MRF (GM-

MRF) model directly from (3.4) as

p(x) =
1

z
exp {−u(x)} , (3.5)

with the energy function

u(x) =
1

L

∑
s∈S

V (Psx) , (3.6)

and the potential function

V (Psx) = − log

{
K∑
k=1

πk|Rk|−
1
2

(2π)
L
2

exp

{
−
‖Psx− µk‖2

R−1
k

2

}}
. (3.7)

Notice that p(x) is a Gibbs distribution by (3.5). Therefore, by the renowned

Hammersley-Clifford theorem [69], p(x) is also an MRF.

3.3 MAP estimation with GM-MRF prior

For typical model-based inversion problems, the log-likelihood function may be

modeled under the Gaussian assumption as

− log p(y|x) =
1

2
‖y − Ax‖2

D, (3.8)

where A ∈ <M×N is the projection matrix with M measurements and N unknowns.

The weighting D is a diagonal matrix with each diagonal element inversely propor-

tional to the variance of the corresponding measurement.



55

3.3.1 Surrogate prior

By substituting (3.5) and (3.8) into (3.1), we can calculate the MAP estimate

with the GM-MRF prior as

x̂← arg min
x∈Ω

{
1

2
‖y − Ax‖2

D + u(x)

}
. (3.9)

However, the function u(x) is not well suited for direct optimization due to the mixture

of logarithmic and exponential functions. Therefore, we will use a majorization-

maximization approach, in which we replace the function u(x) with a quadratic upper-

bounding surrogate function.

More precisely, the objective of the majorization-maximization method is to find

a surrogate function u(x;x′) that satisfies the following two conditions.

u(x′;x′) = u(x′) (3.10)

u(x;x′) ≥ u(x) (3.11)

Intuitively, these conditions state that the surrogate function upper bounds u(x) and

that the two functions are equal when x = x′. Importantly, these conditions also

imply that any reduction of u(x;x′) also must reduce u(x).

In order to construct a surrogate function for our problem, we introduce the

following lemma that is proved in Appendix A. The lemma provides a surrogate

function for a general class of functions formed by the log of a sum of exponential

functions. Since the potential function of (3.7) has this form, we can use this lemma

to construct a surrogate function for our MAP estimation problem. Fig. 3.2 illustrates

the usage of the lemma for a particular case of Gaussian mixture distribution.

Lemma (surrogate functions for logs of exponential mixtures): Let f : <N → < be a

function of the form

f(x) =
∑
k

wk exp{−vk(x)} , (3.12)
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where wk ∈ <+,
∑

k wk > 0, and vk : <N → <. Furthermore ∀(x, x′) ∈ <N × <N

define the function

q(x;x′) , − log f(x′) +
∑
k

π̃k(vk(x)− vk(x′)) , (3.13)

where π̃k = wk exp{−vk(x′)}∑
l wl exp{−vl(x′)}

. Then q(x;x′) is a surrogate function for − log f(x), and

∀(x, x′) ∈ <N ×<N ,

q(x′;x′) = − log f(x′) (3.14)

q(x;x′) ≥ − log f(x) (3.15)

Proof: see Appendix A.

Since the function u(x) specified by (3.6) and (3.7) has the same form as assumed

by the lemma, we can use this lemma to find a surrogate function with the following

form

u(x;x′) =
1

2L

∑
s∈S

K∑
k=1

w̃s,k‖Psx− µk‖2
R−1

k
+ c(x′) , (3.16)

where x′ is the current state of the image, c(x′) only depends on the current state,

and the weights w̃s,k are given by

w̃s,k =

πk|Rk|−
1
2 exp

{
−1

2
‖Psx′ − µk‖2

R−1
k

}
K∑
l=1

πl|Rl|−
1
2 exp

{
−1

2
‖Psx′ − µl‖2

R−1
l

} . (3.17)

Note that the weights w̃s,k are only functions of the current image x′. Therefore, the

optimization in (3.9) can be implemented as a sequence of optimizations as

repeat{ x̂← arg min
x

{
1

2
‖y − Ax‖2

D + u(x;x′)

}
(3.18)

x′ ← x̂ } ,
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with u(x;x′) being a quadratic prior that adapts to the current image at each iteration.

Importantly, the weights in (3.17) represent a soft classification of the current

patch into GM components. This differs from existing approaches in which each

patch is classified to be from a single component of the mixture [84,85].
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(a) Gaussian mixture distribution
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(b) surrogate function

Fig. 3.2. Figure illustrates the lemma with a 1-D GM distribution.
The quadratic function q(x;x′) is a surrogate function for the negative
log of the GM distribution f(x) at point x′. The surrogate function
is a weighted sum of the quadratic exponents of the exponential func-
tions in the GM distribution. The weights π1, π2, π3 give the posterior
probabilities of the point x′ belonging to different GM components.

3.3.2 Optimization

Denote the cost function in (3.18) as C(x),

C(x) ,
1

2
‖y − Ax‖2

D + u(x;x′) (3.19)

=
1

2
‖y − Ax‖2

D +
1

2L

∑
s∈S

K∑
k=1

w̃s,k‖Psx− µk‖2
R−1

k
.
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Then the gradient of the cost function is given by

∇xC(x) = AtΛ(Ax− y) +
1

L

∑
s∈S

K∑
k=1

w̃s,kP
t
sR
−1
k (Psx− µk) . (3.20)

Therefore, the MAP estimate of x is given by

x̂ =

(
AtΛA+

1

L

∑
s∈S

K∑
k=1

w̃s,kP
t
sR
−1
k Ps

)−1(
AtΛy +

1

L

∑
s∈S

K∑
k=1

w̃s,kP
t
sR
−1
k µk

)
.

(3.21)

Note that Ps is a patch operator that only involves a few pixels and therefore is very

sparse. Then one may use simultaneous update methods to calculate the solution

based on (3.21).

Alternatively, we use the iterative coordinate descent (ICD) algorithm [1] to solve

this quadratic minimization problem in (3.18). The ICD algorithm sequentially up-

dates each of the pixels by solving a 1-D optimization problem, as

x̂j ← arg min
xj

{
1

2
‖y − Ax′ + A∗j(x

′
j − xj)‖2

D + u(xj;x
′)

}
, (3.22)

with the surrogate prior for xj, as

u(xj;x
′) =

1

2L

∑
r∈Sj

K∑
k=1

w̃r,k‖Prx− µk‖2
R−1

k
+ c(x′) , (3.23)

where the weights w̃r,k are given by (3.17) and Sj represents a set of center pixels

whose patches contain pixel j.

By rearranging the terms, we can explicitly write (3.22) as a quadratic function

of xj, as

x̂j ← arg min
xj

{
(θ1 + ϕ1)xj +

θ2 + ϕ2

2
(xj − x′j)2 + c(x′)

}
, (3.24)
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where c(x′) is constant to xj and θ1, θ2, ϕ1, ϕ2 are given by

θ1 = At∗jD(Ax′ − y) , (3.25)

θ2 = At∗jDA∗j , (3.26)

ϕ1 =
1

L

∑
r∈Sj

∑
k

w̃r,k(Prδj)
tR−1

k (Prx
′ − µk) , (3.27)

ϕ2 =
1

L

∑
r∈Sj

∑
k

w̃r,k(Prδj)
tR−1

k (Prδj) , (3.28)

where the calculation of the projection matrix A follows the same procedure in [3].

The function δj ∈ <|S| is a Kronecker delta function, which is a vector with a value of

1 at entry j and with 0 elsewhere. Therefore, Prδj is simply an operator that extracts

a particular column from a matrix corresponding to the location of the pixel j within

the patch operator Pr.

Solving (3.24) by rooting the gradient, we then have

x̂j ← x′j −
θ1 + ϕ1

θ2 + ϕ2

. (3.29)

3.4 Covariance Control for GM-MRF

We will see that the GM-MRF distribution can be used to form a very accurate

model of images. However, in applications such as CT reconstruction, the MAP

estimate may not be visually appealing even with an accurate forward and prior

model. This is because the MAP estimate tends to produce a reconstruction that is

under-regularized (i.e., too sharp) in high-contrast regions and over-regularized (i.e.,

too smooth) in low-contrast regions. While this variation in spatial resolution may

produce a lower mean squared error (MSE), in particular applications it may not be

visually appealing.

In order to address this problem of spatial variation in sharpness, in this section we

introduce a simple parameterization for systematically controlling the covariance of

each GM component of the GM-MRF model. In the experimental results section, we
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will then demonstrate that this simple parameterization can be used to effectively tune

the visual quality of the MAP reconstruction. In real applications such as medical

CT reconstruction, this covariance adjustment can be used to effectively fine-tune the

rendering of specific tissue types, such as soft tissue, lung, and bone, which may have

different desired characteristics.

We start by introducing regularization parameters, σx and {σk}Kk=1, into the dis-

tribution given by

uσ(x) = − 1

Lσ2
x

∑
s∈S

log{gσ(Psx)} , (3.30)

with the patch Gaussian mixture distribution

gσ(Psx) =
K∑
k=1

πk|Rk/σ
2
k|−

1
2

(2π)
L
2

exp

{
−
σ2
k‖Psx− µk‖2

R−1
k

2

}
. (3.31)

Notice that σx controls the overall level of regularization and that the K values of σk

control the regularization of each individual component of the GMM. When the value

of σx is increased, the overall reconstruction is made less regularized (i.e., sharper)

and when the value of σk is increased, the individual GM component is made more

regularized.

Now for a typical GM-MRF model there may be many components, so this would

require the choice of many values of σk. Therefore, we introduce a simple method to

specify these K parameters using the following equation,

σk =
(
λ̄k/α

2
)p/2

, (3.32)

where p and α are two user-selectable parameters such that 0 ≤ p ≤ 1, α > 0, and

λ̄k = |Rk|
1
L is the geometric average of the eigenvalues of Rk. Define R̃k = Rk/σ

2
k

as the covariance matrix after scaling. Then its corresponding average eigenvalue is

given by

¯̃λk = α2pλ̄1−p
k . (3.33)
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Fig. 3.3 illustrates this scaling with various values of p and α.
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Fig. 3.3. The covariance scaling defined in (3.32) and (3.33) with
various values of p and α on a log scale. The black dotted line shows
the case when no scaling is present, i.e., p = 0. When 0 < p ≤ 1, the

average eigenvalues ¯̃λk are “compressed” toward α2, where eigenvalues
further away from α2 lead to greater change and a larger p results in
greater compression. For a fixed value of p, increasing α increases the
covariance of each GM component.

In this model, the parameters p and α collectively compress the dynamic range of

the average eigenvalues λ̄k of all GM covariance matrices. That is, for those GM com-

ponents with large average eigenvalues of covariance, which typically correspond to

high-contrast or structural regions, applying the scaling in (3.32) decreases the eigen-

values, which leads to increased regularization. Conversely, for those GM components

with small average eigenvalues of covariance, which are typically associated with low-

contrast or homogeneous regions, applying the scaling increases the eigenvalues and

subsequently results in reduced regularization.

More specifically, p is the compression rate with a larger value resulting in greater

compression of the dynamic range, and α defines a stationary point during the com-

pression, i.e.,

¯̃λk = λ̄k , if λ̄k = α2 . (3.34)
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When 0 < p < 1, the average eigenvalues ¯̃λk are “compressed” toward α2, with

eigenvalues further away from α2 leading to greater change. When p = 1, all GM

components have the same average eigenvalue α2, while they maintain the original

eigenvalues when p = 0. Fig. 3.4(a)(c)(e) illustrate the change in the distribution and

the energy function as p varies.

In addition, the parameter α controls the “smoothness” of the GM distribution.

With p fixed, increasing the value of α leads to a smoother distribution of (3.31),

which potentially reduces the degree of non-convexity of the energy function in (3.30).

Moreover, an increased α also reduces the overall regularization. Fig. 3.4(b)(d)(f)

illustrate the change in the distribution and the energy function as α varies.

Table 3.1 presents the selection of the regularization parameters and the corre-

sponding effect. Note that the parameter α is related to the reconstruction noise

and therefore has the same unit as the reconstruction. For instance, in X-ray CT

reconstruction, the parameter α is in Hounsfield Unit (HU).

Table 3.1.
Parameter selection for GM-MRF model.

Parameter Selection Effect

σx

≈ 1 MAP estimate

>> 1 large value → weak overall regularization

<< 1 small value → heavy overall regularization

p

0 unmodified GM-MRF

0.5

regularization strength increases for GM

components with large average eigenvalues;

reduces for those with small average eigenvalues

1
same regularization strength

for all GM components

α 33 (HU)

large value → smooth prior distribution

→ weak regularization

small value → peaky prior distribution

→ heavy regularization
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Fig. 3.4. 1-D illustration of the covariance scaling in (3.32). The 1-D
energy function is given by u(x) = − log(φ(x)) with the Gaussian

mixture distribution φ(x) =
∑

k
1√

2πλk/σ
2
k

exp
{
− 1

2λk/σ
2
k
(x− µk)2

}
,

with λk the original variance and the scaling σk = (λk/α
2)p/2. Left

column: (a) varying p with α fixed, (c) the resulting distribution, and
(e) the resulting energy function; right column: (b) varying α with
p fixed, (d) the resulting distribution, and (f) the resulting energy
function.
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3.5 Experiments and Results

In this section, we present the results of applying the GM-MRF as a prior for

model-based inversion problems, including 2-D image denoising and 3-D CT recon-

struction experiments.

3.5.1 Training

We trained the GMM patch distribution, g(Psx) in (3.2), on clinical CT images

using the standard EM algorithm with the software in [86]. Training data consisted

of 2-D or 3-D overlapping patches extracted from a 3-D image volume of a normal-

dose clinical CT scan, which was collected on a GE Discovery CT750 HD scanner

in 64× 0.625 mm helical mode with 100 kVp, 500 mA, 0.8 s/rotation, pitch 0.984:1,

and reconstructed in 360 mm field-of-view (FOV).

Instead of training one GMM using all the patches, we partitioned the patches into

different groups and then trained one GMM from each of the groups. In this way, we

were able to collect sufficiently many samples from underrepresented groups to obtain

accurate parameter estimates, while simultaneously limiting the data size for other

groups to retain training efficiency. For the ith group, we trained the parameters,

{πi,k, µi,k, Ri,k}Ki
k , for one GMM, gi(Psx), with Ki components. Then we merged all

GMMs trained from different groups into a single GMM by weighted summation,

g(Psx) =
I∑
i=1

πigi(Psx), (3.35)

where the mixture weights πi were determined by the natural proportions of corre-

sponding groups in the whole training data.

More specifically, we partitioned the patches into six groups based on the mean

and standard deviation as listed in Table 3.2, where the partition thresholds were

empirically determined to roughly reflect typical tissue types in a medical CT image.

Fig. 3.5 illustrates different groups on a 2-D image slice. As shown in Fig. 3.5, different
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groups roughly capture different materials or tissue types in the image, as group 1 for

air, group 2 for lung tissue, group 3 for smooth soft tissue, group 4 for low-contrast

soft-tissue edge, group 5 for high-contrast edge, and group 6 for bone. With this

partition, we were able to collect adequate patches for individual groups separately,

especially for the underrepresented ones as group 4, 5, and 6. During the separate

training process, we empirically fixed the number of GMM components, Ki, in the

EM algorithm for each group. Table 3.3 presents the mixture weights πi for different

GMMs, which were determined by the natural proportions of corresponding groups

in the whole training data.

Table 3.2.
Partition of the training data. Each image patch was classified into
one of the six groups based on its mean and standard deviation. The
number of GMM components for each group was empirically chosen.

Group index,
i

Mean (HU) Standard
deviation

(HU)

Number of
patch samples

Number of
GMM

components,
Ki

1 [-1000 -850) 5× 103 1

2 [-850 -200) 1× 105 15

3 [-200 200) [0 25) 5× 104 5

4 [-200 200) [25 80) 1× 105 15

5 [-200 200) ≥ 80 1× 105 15

6 ≥ 200 1× 105 15

Table 3.3.
Mixture weights of GMMs trained from different groups. The mixture
weights are determined by the proportions of corresponding groups in
the whole training data and will be used when combining different
GMMs to form a single model.

Group index, i 1 2 3 4 5 6

Mixture weight, πi 0.05 0.17 0.40 0.25 0.04 0.09
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(a) original

(b) group 1 (c) group 2 (d) group 3

(e) group 4 (f) group 5 (g) group 6

Fig. 3.5. Partition of the training data. (a): a 2-D axial slice from
the 3-D image volume where training patches were extracted; (b)-(g):
partition of the data based on the criteria in Table 3.2. Display win-
dow: (a) [-160, 240] HU, (b) [-1250, -750] HU, (c) [-1400, 200] HU,
(d)-(f) [-210, 290] HU, (g) [-300, 700] HU. Notice that different groups
roughly capture different materials or tissue types in the image, as
group 1 for air, group 2 for lung tissue, group 3 for smooth soft tissue,
group 4 for low-contrast soft-tissue edge, group 5 for high-contrast
edge, and group 6 for bone.

The blue plot in Fig. 3.6 illustrates the square-rooted geometrically-averaged

eigenvalues, λ̄k, of the trained GMM covariance matrices for a 5×5×3 patch case. The

numbers within the figure correspond to the indices of training groups in Table 3.2.
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Within each group, the GM components are sorted from the most probable to the

least probable based on the trained mixture probabilities, πi,k. Fig. 3.6 shows that

different groups present different amounts of regularization strength. Note that there

is a large variation in average eigenvalues for different groups, which leads to highly

varying regularization strength for different image contents. For example, group 3 has

much smaller average eigenvalues than groups 2 and 6, which indicates that during

the reconstruction, patches dominated by group 3, typically the smooth soft-tissue

patches, will be regularized more heavily than patches dominated by group 2 and 6,

typically lung and bone patches respectively, and therefore will contain less noise in

the reconstructed image.

As introduced in Sec. 3.4, we will apply the simple parameterization of (3.32) to

the trained GMM covariances to tune the visual quality. The red plot in Fig. 3.6

illustrates this adjusted model with p = 0.5 and α = 33 HU. By adjusting the model

parameters, we increase the eigenvalues of group 3 and 4, which will consequently

reduce the regularization for smooth and low-contrast soft-tissue contents, while we

decrease the eigenvalues of group 2, 5, and 6, which will lead to stronger regularization

for lung, high-contrast edge, and bone.

3.5.2 Results

2.5.2.1 2-D image denoising

We applied the proposed GM-MRF method in a 2-D image denoising experi-

ment. The ground-truth image in Fig. 3.7(a) was obtained from the 3-D clinical

CT image volume, whose data was collected on a GE Discovery CT750 HD scanner

in 64× 0.625 mm helical mode with 120 kVp, 200 mA, 0.5 s/rotation, pitch 0.984:1,

and reconstructed in 320 mm FOV. Then, we added Gaussian white noise to the

ground truth to generate the noisy image in Fig. 3.7(b). Different denoising methods

were then applied to the noisy image.
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Fig. 3.6. The covariances of the originally trained GMM and the
adjusted GMM with p = 0.5 and α = 33 HU in (3.32), for a 5 ×
5 × 3 patch case. More precisely, the figure plots the square root of
geometrically-averaged eigenvalues λ̄k of the GMM covariances Rk,
as λ̄k = |Rk|

1
L with L = 75. Numbers within the figure correspond

to the indices of the training groups. Within each group, the GMM
components are sorted from the most probable to the least probable.
The adjusted model increases the eigenvalues for group 1, 3, 4, and
decreases the eigenvalues for most of group 2, 5, and 6.

For this experiment, we trained a 2-D GM-MRF model consisting of 66 GMM

components for 5× 5 image patches using the training procedure in Sec. 3.5.1. Note

that the ground-truth image was not from the 3-D image volume used for training. We

experimented with two different GM-MRF models, where one was the original model

obtained directly from training and the other was adjusted with p = 0.5, α = 33 HU

in (3.32), so as to increase the regularization for high-contrast components and reduce

the regularization for low-contrast components.

We compare the GM-MRF methods with a number of widely used methods, in-

cluding the q-GGMRF method [3], K-SVD method [74], and BM3D method [77].

The q-GGMRF method is implemented with 3 × 3 neighborhood with parameters

p = 2, q = 1.2, c = 10 HU. The K-SVD method is performed by using the software

provided in [89] with 7× 7 patch size and 512 dictionary entries. The BM3D method

is performed by using the software provided in [90] with 8× 8 patch. We adjust the
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(a) ground truth

(b) noisy (RMSE: 39.88 HU) (c) BM3D (RMSE: 13.35 HU) (d) K-SVD (RMSE: 14.57 HU)

(e) q-GGMRF (RMSE: 15.96 HU) (f) original GM-MRF (RMSE:
13.78 HU)

(g) adjusted GM-MRF (RMSE:
14.33 HU)

Fig. 3.7. Denoising results with different methods. The RMSE value
between each reconstructed image and the ground truth is reported.
Display window: [-100 200] HU. GM-MRF methods achieve lower
RMSE values and better visual quality than q-GGMRF method and
K-SVD method. Though having a slightly higher RMSE value, GM-
MRF with original model preserves some real texture in soft tissue
without creating severe artifacts, while BM3D tends to over-smooth
the soft tissue and introducing some artificial, ripple-like structure. In
addition, though compromising the RMSE than the original model,
GM-MRF with the adjusted model produces better visual quality,
especially for the soft-tissue texture.
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regularization strength for all methods to achieve the lowest root-mean-square error

(RMSE) value between the reconstructed image and the ground truth.

Fig. 3.7 presents the denoising result with different methods. It shows that the

mean-square-error (MSE) achieved by GM-MRF method with original covariances is

slightly higher than the BM3D method, but significantly lower than the q-GGMRF

method and K-SVD method. Qualitatively, the GM-MRF method with original model

produces sharper edges and less speckle noise than the q-GGMRF method, and pre-

serves more fine structures and details than the K-SVD method. The BM3D method

seems to produce more enhanced fine structures than GM-MRF due to its strong

structure-preserving behavior. However, it tends to over-smooth the soft tissue re-

gion and meanwhile creating some artificial, ripple-like structures and texture. The

GM-MRF method, on the contrary, is able to preserve some real texture in soft tissue

without inducing severe artifacts, which can be important in some medical applica-

tions.

Interestingly, though compromising the MSE, the GM-MRF method with the ad-

justed model produces images with better visual quality than that with the original

model. The better visual quality is achieved with improved soft-tissue texture and

better rendering of high-contrast structures. This is because the MAP estimate tends

to over-regularize the low-contrast regions and under-regularize the high-contrast re-

gions in the image. Therefore, by adjusting the regularization strength in different

contrast regions, we may achieve desirable visual quality but with the compromise in

the MSE.

2.5.2.2 3-D CT reconstruction

We trained a 3-D GM-MRF model consisting of 66 GMM components for 5×5×3

image patches, that is, a stack of 3 layers with a 5×5 patch at each 2-D layer, using the

training procedure in Sec. 3.5.1. We applied the trained GM-MRF as a prior model

in the MBIR algorithm. We will compare the MBIR using GM-MRF prior with two

other methods: FBP using a standard kernel, and MBIR using a traditional pair-
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wise MRF prior as the q-GGMRF model [3]. Note that we intentionally reduced the

regularization for MBIR with the q-GGMRF prior so as to obtain higher resolution,

which lead to much higher noise as well.

We first evaluate the performance of different methods using the GE Performance

Phantom (GEPP) data taken with four different dose levels. The GEPP contains a

plexiglas insert with cyclic water bars and a 50 µm diameter tungsten wire placed

in water. We will measure the mean and standard deviation within fixed ROIs in

flat regions to assess the reconstruction accuracy and noise. In addition, we will

measure the modulation transfer function (MTF) using the wire to assess the in-

plane resolution and contrast. We will report the 10% MTF since it reflects the

visual resolution of the image, with higher value indicating finer texture, which is

a desirable image quality especially for a low-dose condition. Data were collected

on a GE Discovery CT750 HD scanner in 64× 0.625 mm helical mode with 120 kVp,

1 s/rotation, pitch 0.516:1, with four different magnitudes of tube current as 290 mA,

145 mA, 75 mA, and 40 mA, and were later reconstructed in 135 mm FOV.

We compare the MBIR using GM-MRF prior with two widely used reconstruction

methods: FBP using a standard kernel and MBIR using q-GGMRF prior with reduced

regularization. We match the noise level between q-GGMRF and GM-MRF methods

by adjusting the global regularization parameter, σx, in (3.30). More precisely, for a

given dose level, we match the standard deviations in an ROI within water (ROI 1

in Fig. 3.9(a)) across a number of slices between q-GGMRF and GM-MRF methods

such that the absolute difference of the two is within 1 HU.

Fig. 3.8 shows the GEPP reconstruction under normal X-ray dosage, with zoomed-

in images for the tungsten wire and cyclic bars. It shows that MBIR with the tra-

ditional q-GGMRF prior produces sharper images with less noise than FBP, as in-

dicated by smoother homogeneous regions, a smaller reconstructed wire, and more

enhanced cycling bars. As a further improvement, MBIR with the GM-MRF priors

produce even sharper image than MBIR with the q-GGMRF prior at a comparable

noise level. The GM-MRF priors also improve the texture in smooth regions over the
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q-GGMRF method by reducing the speckle noise and grainy texture. For the GM-

MRF priors, the original model shows a sharper tungsten wire as compared to the

adjusted model, since the adjusted model increases regularization for high-contrast

edge (group 5) and bone (group 6), as shown in Fig. 3.6. However, the limited reg-

ularization for high-contrast edge and bone in the original model also leads to noisy

rendering of high-attenuation objects, such as the non-circular tungsten wire and

irregularly shaped small metal insertion.

The visual comparison is further verified by quantitative measurements in Fig. 3.9,

which presents the measurements of reconstruction accuracy, noise, and resolution,

of the GEPP reconstructions at different dose levels. It is shown that MBIR with

GM-MRF priors improve the in-plane resolution (in Fig. 3.9(b)) while producing

comparable or even less noise than FBP and MBIR with the q-GGMRF prior (in

Fig. 3.9(c)(d)), without affecting the reconstruction accuracy (in Fig. 3.9(e)(f)).

In addition, we present the result of applying the GM-MRF priors on two clinical

data sets; one is normal-dose and the other is low-dose. For the clinical data, we

use the adjusted GM-MRF prior with p = 0.5 and α = 33 HU for more balanced

visual quality between low- and high-contrast regions. Similarly, we compare MBIR

using the GM-MRF prior with FBP using a standard kernel and MBIR using the

q-GGMRF prior with reduced regularization. For the normal-dose data, we adjust

the global regularization in the reconstruction such that the noise measured in the

aorta is matched between q-GGMRF and GM-MRF. However, for the low-dose data,

it is challenging to match the noise between those two methods due to the excessive

speckle noise produced by using under-regularized q-GGMRF prior. Thus, we will

instead demonstrate that the GM-MRF prior achieves higher resolution with even

less noise than the q-GGMRF prior.

We first present the reconstruction results with the normal-dose clinical data.

The data was collected on a GE Discovery CT750 HD scanner in 64× 0.625 mm

helical mode with 120 kVp, 200 mA, 0.5 s/rotation, pitch 0.984:1, and reconstructed

in 320 mm FOV. Figs. 3.10 - 3.11 show the reconstructed results of different methods.
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(a)

(b)

(c)

(d)

Fig. 3.8. GEPP reconstruction with data collected under 290 mA.
From left to right, the rows represent (a) FBP, (b) MBIR with q-
GGMRF with reduced regularization, (c) MBIR with original GM-
MRF, and (d) MBIR with adjusted GM-MRF with p = 0.5, α =
33 HU. The left column shows the wire section and the right column
shows the resolution bars with the display window as [-85 165] HU.
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Fig. 3.9. Quantitative measurements for GEPP reconstructions. Four
different magnitudes of X-ray tube current were used in data acqui-
sition to achieve different X-ray dose levels. The mean values along
with noise were measured within two different ROIs in (a). The MTF
values were measured at the tungsten wire. Figure demonstrates that
MBIR with GM-MRF priors improve the in-plane resolution in (b)
while producing comparable or even less noise than FBP and MBIR
with the q-GGMRF prior in (c) and (d), without affecting the recon-
struction accuracy in (e) and (f).
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As compared to FBP, MBIR with GM-MRF prior produces images with sharper

bones, more lung details, as well as less noise in soft tissues. When compared to MBIR

with traditional q-GGMRF prior with similar noise level, MBIR with GM-MRF prior

reduces the jagged appearance in edges, as shown in the zoomed-in images in Fig. 3.10.

These improvements are due to better edge definition in the patch-based model over

traditional pair-wise models. Moreover, MBIR with GM-MRF prior reveals more fine

structures and details in bone, such as the honeycomb structure of trabecular bone

in the zoomed-in images of Fig. 3.11. This indicates that the GM-MRF model is

also a very flexible prior and inherently allows different regularization strategies for

different tissues in the CT images. This flexibility allows CT reconstructions with

great soft-tissue quality while simultaneously preserving the resolution in regions with

larger variation, such as bone and lung.

Figs. 3.12 - 3.13 present the reconstruction results with the low-dose clinical data.

Experimental data was acquired from the same patient as for the training data in

Sec. 3.5.1, with the same scan setting except for a lower tube current of 40 mA and

a higher pitch of 1.375:1. It is shown that all the improvements revealed by experi-

ment with normal-dose data can be observed more clearly in the low-dose situation,

where the better image prior model is perhaps more valuable. Fig. 3.12 shows that

the GM-MRF prior improves the texture in soft tissue without compromising the fine

structures and details, as compared to the other methods. Particularly, when com-

pared to MBIR with traditional q-GGMRF prior, MBIR with GM-MRF prior reduces

the speckle noise in liver while still maintaining the normal texture and edge defini-

tion. Fig. 3.13 shows the improved resolution in lung and bone as produced by the

GM-MRF prior. More specifically, the zoomed-in images show that the lung fissure

reconstructed by MBIR with GM-MRF have comparable resolution as that produced

by FBP, which is blurred by MBIR with q-GGMRF. The GM-MRF prior also leads

to much clearer bone structure as compared to other methods. These improvements

demonstrate the material-specific regularization capability of the GM-MRF prior.
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3.6 Conclusion

In this chapter, we introduced a novel Gaussian-mixture Markov random field

(GM-MRF) image model along with the tools to use it as a prior for model-based

iterative reconstruction (MBIR). The proposed method constructs an image model by

seaming together Gaussian-mixture (GM) patch models. In addition, we presented

an analytical framework for computing the MAP estimate with the GM-MRF prior

using an exact surrogate function. We also proposed a systematic approach to adjust

the covariances of the GM components of the GM-MRF model, in order to control

the sharpness in low- and high-contrast regions of the reconstruction separately. The

results in image denoising and multi-slice CT reconstruction experiments demonstrate

improved image quality and material-specific regularization by the GM-MRF prior.
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(a)

(b)

(c)

Fig. 3.10. An abdominal axial slice of the normal-dose clinical recon-
struction. From top to bottom, the rows represent (a) FBP (noise:
19.14 HU), (b) MBIR with q-GGMRF with reduced regularization
(noise: 14.43 HU), and (c) MBIR with adjusted GM-MRF with
p = 0.5, α = 33 HU (noise: 14.02 HU). The left column shows the
full field-of-view (FOV) of the reconstructed images, while the right
column shows a zoomed-in FOV. Noise standard deviation is mea-
sured within an ROI in aorta, as illustrated in the FBP image, and
is reported for each method. Display window is [-110 190] HU. Note
the reduced jagged appearance in the GM-MRF reconstruction.
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(a)

(b)

(c)

Fig. 3.11. A sagittal view of the normal-dose clinical reconstruction in
bone window. From top to bottom, the rows represent (a) FBP, (b)
MBIR with q-GGMRF with reduced regularization, and (c) MBIR
with adjusted GM-MRF with p = 0.5, α = 33 HU. The left col-
umn shows the full field-of-view (FOV) of the reconstructed images,
while the right column shows a zoomed-in FOV. Display window is
[-300 900] HU. Note the honeycomb structure of the trabecular bone
reconstructed by the GM-MRF prior, which is missing in other meth-
ods.
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(a)

(b)

(c)

Fig. 3.12. An abdominal axial slice of the low-dose clinical recon-
struction. From top to bottom, the rows represent (a) FBP (noise:
62.15 HU), (b) MBIR with q-GGMRF with reduced regularization
(noise: 25.46 HU), and (c) MBIR with adjusted GM-MRF with
p = 0.5, α = 33 HU (noise: 18.41 HU). The left column shows the
full field-of-view (FOV) of the reconstructed images, while the right
column shows a zoomed-in FOV. Noise standard deviation is mea-
sured within an ROI in aorta, as illustrated in the FBP image, and
is reported for each method. Display window is [-160 240] HU. Note
the suppression of speckle noise in soft tissue and improvement of
sharpness in bone provided by MBIR with the GM-MRF prior.
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(a)

(b)

(c)

Fig. 3.13. A coronal view of the normal-dose clinical reconstruction
in lung window. From top to bottom, the rows represent (a) FBP, (b)
MBIR with q-GGMRF with reduced regularization, and (c) MBIR
with adjusted GM-MRF with p = 0.5, α = 33 HU. The left column
shows the full field-of-view (FOV) of the reconstructed images, while
the right column shows zoomed-in FOVs for lung (top) and spine
(bottom). Display window is [-1400 400] HU. Note the lung fissure
and bone structure are reconstructed much more clearly by using the
GM-MRF prior as compared to the other methods.
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A. SINGLE VOXEL UPDATE BY USING THE KKT

CONDITION

We derive the solution to the 2D quadratic minimization problem defined in equation

(2.48). The optimization problem is given by

min
u

1

2
uφ2u

T + uφ1 + const.

s.t.

u · nmin ≥ 0

u · nmax ≥ 0

where u ∈ <2 and

φ1 = [φ1(1), φ1(2)]T ,

φ2 =

 φ2(1, 1) φ2(1, 2)

φ2(1, 2) φ2(2, 2)

 ,
nmin = [nmin(1), nmin(2)],

nmax = [nmax(1), nmax(2)].
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We solve this problem by using the KKT condition. The KKT condition states

that a valid solution for this problem should satisfy the following conditions,



φ2u
T + φ1 − λ1n

T
min − λ2n

T
max = 0

λ1 · u · nmin = 0

λ2 · u · nmax = 0

u · nmin ≥ 0

u · nmax ≥ 0

λ1 ≥ 0

λ2 ≥ 0

(A.1)

where λ1 and λ2 are the KKT multipliers. Then we can compute the solution

within four different cases, i.e., (λ1 = 0, λ2 = 0), (λ1 > 0, λ2 = 0), (λ1 = 0, λ2 > 0)

and (λ1 > 0, λ2 > 0). Within each case, we compute the solution by using the equal-

ity conditions and then test the resulting solution with the inequality conditions.

Since the cost function and the constraints in this problem are all continuously differ-

entiable and convex, the KKT condition is both necessary and sufficient [58]. Thus,

a solution becomes our updated value if and only if it satisfies both the equality and

inequality conditions.

1. λ1 = 0, λ2 = 0. This combination gives the unconstrained solution, which can

be computed from the first equation in (A.1) as

u = −φT1 φ−1
2 . (A.2)

We need to test this solution with the following inequality conditions

 u · nmin ≥ 0

u · nmax ≥ 0
(A.3)
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2. λ1 > 0, λ2 = 0. In this case, we solve the optimization problem on the boundary

with u · nmin = 0. This combination leads to the following equations

 φ2u
T + φ1 − λ1n

T
min = 0

u · nmin = 0
(A.4)

The solution is given by


u =

(
−φ1(1) + k1φ1(2)

φ2(1, 1)− 2k1φ2(1, 2) + k2
1φ2(2, 2)

)
[1,−k1]

λ1 = (u · [φ2(1, 1), φ2(1, 2)] + φ1(1)) / (nmin(1))

(A.5)

where k1 = nmin(1)/nmin(2). This solution needs to be tested with

 u · nmax ≥ 0

λ1 > 0
(A.6)

3. λ1 = 0, λ2 > 0. In this case, we solve the optimization problem on the boundary

with u · nmax = 0. Similarly to the previous case, this combination gives the

solution 
u =

(
−φ1(1) + k2φ1(2)

φ2(1, 1)− 2k2φ2(1, 2) + k2
2φ2(2, 2)

)
[1,−k2]

λ2 = (u · [φ2(1, 1), φ2(1, 2)] + φ1(1)) / (nmax(1))

(A.7)

where k2 = nmax(1)/nmax(2). This solution needs to be tested with

 u · nmin ≥ 0

λ2 > 0
(A.8)

4. λ1 > 0, λ2 > 0. With this combination, the only feasible solution is u = [0, 0].
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In practice, we test the four cases sequentially. Once all the equality and inequality

conditions are met, the solution becomes the desired voxel update. This process is

shown in Fig. 2.7.
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B. PROOF OF LEMMA: SURROGATE FUNCTIONS FOR

LOGS OF EXPONENTIAL MIXTURES

Proof:

log f(x) = log f(x′) + log

{
f(x)

f(x′)

}
= log f(x′) + log

{∑
k

(
wk
f(x′)

)
exp{−vk(x)}

}

= log f(x′) + log

{∑
k

(
wk exp{−vk(x′)}∑
l wl exp{−vl(x′)}

)
× exp {−vk(x) + vk(x

′)}}

= log f(x′) + log

{∑
k

π̃k exp{−vk(x) + vk(x
′)}
}

≥ log f(x′) +
∑
k

π̃k{−vk(x) + vk(x
′)}

where

π̃k ,
wk exp{−vk(x′)}∑
l wl exp{−vl(x′)}

.

The last inequality results from Jensen’s inequality. Taking the negative of the final

expression results in

− log f(x) ≤ − log f(x′) +
∑
k

π̃k{vk(x)− vk(x′)} , q(x;x′) ,

and evaluating this result at x = x′ results in

− log f(x′) = q(x′;x′).
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