
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

January 2015

Optimizing Virtual Machine I/O Performance in
Virtualized Cloud by Differenciated-frequency
Scheduling and Functionality Offloading
Cong Xu
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Xu, Cong, "Optimizing Virtual Machine I/O Performance in Virtualized Cloud by Differenciated-frequency Scheduling and
Functionality Offloading" (2015). Open Access Dissertations. 1328.
https://docs.lib.purdue.edu/open_access_dissertations/1328

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1328?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1328&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form 30
Updated 1/15/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
 Head of the Departmental Graduate Program Date

CONG XU

Optimizing Virtual Machine I/O Performance in Virtualized Cloud by Differentiated-frequency Scheduling and Functionality
Offloading

Doctor of Philosophy

Dr. Dongyan Xu Dr. Ramana Kompella
Chair

Dr. Patrick Eugster

Dr. Yung-Hsiang Lu

Dr. Sonia Fahmy

Dr. Dongyan Xu

Dr. Sunil Prabhakar/Dr. William J Gorman 12/4/2015

OPTIMIZING VIRTUAL MACHINE I/O PERFORMANCE IN VIRTUALIZED

CLOUD BY DIFFERENCIATED-FREQUENCY SCHEDULING AND

FUNCTIONALITY OFFLOADING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Cong Xu

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2015

Purdue University

West Lafayette, Indiana

ii

To my wife and parents.

iii

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my advisor, Professor

Dongyan Xu. Thank him for the invaluable guidance, caring, encouragement, and support

for the last five years. He is the most influential and most important person who introduced

me into computer science research and taught me how to become a good researcher in all

aspects. He always encourage me to explore new research areas and give me the freedom

to propose new ideas. From him, I learned how to initiate an idea, how to differentiate it

from existing research efforts, how to evaluate the merits of other researchers’ work, how to

structure a paper, and how to deliver my research ideas to the audience in the most efficient

way.

Secondly, I would like to express my sincere thanks to Professor Ramana Kompella

who is my co-advisor. We have been working closely since my second semester at Purdue.

He greatly broaden my view on the computer systems with his expertise on networking and

distributed system. I enjoy the time discussing research ideas with him. He can always give

innovative inspirations and provide constructive suggestions.

I would like to extend my thanks to Professor Patrick Eugster, Professor Yung-Hsiang

Lu, and Professor Sonia Fahmy for serving in my final examining committee and prelim

committee. Their suggestions on my dissertation are very valuable and important to me. I

would also like to thank Dr. Antonio Lain of HP Labs. I really enjoyed the time of being

an intern at Palo Alto in the summer of 2012.

Finally, I would like to thank my parents, Qingtai Xu and Shuhua Tian, for their un-

derstanding, sacrifice, and support for me. I would also like to express my deepest love to

my wife, Xuan Yang. I cannot imagine I could finish this dissertation without her standing

behind me. During the past 5 years, she always gave me the strongest support no matter

what difficulties I met.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABBREVIATIONS . ix

ABSTRACT . xi

1 INTRODUCTION . 1
1.1 Thesis Statement . 1
1.2 Contributions . 3

1.2.1 Overview of the VM I/O Optimization Framework 5
1.2.2 Low Latency VM Scheduler 6
1.2.3 Offloading IRQ Processing to a Turbo-sliced Dedicated Core . . 7
1.2.4 Enabling Direct Read to HDFS Datanode VM Image 7

1.3 Dissertation Organization . 8

2 LATENCY-AWARE VIRTUAL MACHINE SCHEDULING VIA DIFFERENTIATED-
FREQUENCY CPU SLICING . 9
2.1 Introduction . 9
2.2 Problem Demonstration and Motivation 12

2.2.1 Impact of CPU Sharing . 13
2.2.2 Problems with Alternative Solutions 14

2.3 Design . 16
2.3.1 vSlicer Scheduling Model . 18

2.4 Implementation . 22
2.5 Evaluation . 25

2.5.1 Evaluation with Micro-benchmarks 26
2.5.2 Evaluation of Application Performance 31

3 ACCELERATING VIRTUAL MACHINE I/O PROCESSING USING DESIG-
NATED TURBO-SLICED CORE . 38
3.1 Introduction . 38
3.2 Motivation . 41

3.2.1 Existing Approaches . 43
3.3 Design . 45

3.3.1 Modifications to Hypervisor 46
3.3.2 Modifications to Guest OS . 50

v

Page
3.4 Implementation . 54
3.5 Evaluation . 56

3.5.1 Micro-Benchmark Results . 57
3.5.2 Application-Level Results . 61

4 EFFICIENT DATA ACCESS FOR HADOOP IN VIRTUALIZED CLOUDS . 64
4.1 Introduction . 64
4.2 Motivation . 67

4.2.1 Problem Analysis . 68
4.2.2 Alternative Solutions . 70

4.3 Design . 72
4.3.1 vRead User-level API . 73
4.3.2 Reading from a Datanode’s VM Disk Image 75
4.3.3 Data Sharing and Communication Channel 77

4.4 Implementation . 78
4.5 Evaluation . 80

4.5.1 Microbenchmark Performance 82
4.5.2 Application Performance . 85

4.6 Discussion . 90

5 RELATED WORK . 94
5.1 Reducing Virtual Device Overhead . 94
5.2 Scheduling Optimization . 95
5.3 Functionality Offloading to the Hypervisor 96

6 CONCLUSION . 97

7 FUTURE WORK . 99
7.1 Introduction . 99
7.2 Design . 100

REFERENCES . 103

VITA . 108

vi

LIST OF TABLES

Table Page

2.1 Single line VoIP test results under credit scheduler and vSlicer 36

2.2 Multi-line VoIP test results under credit scheduler and vSlicer 36

2.3 Streaming video test results under credit scheduler and vSlicer 36

3.1 VMs’ CPU demand and allocated CPU shares under different scenarios . . . 50

3.2 Results from Apache Olio experiment (single- and two-instance) 62

4.1 vRead API. 72

4.2 Performance improvement for Hbase. 88

4.3 Performance improvement for Hive and Sqoop. 89

vii

LIST OF FIGURES

Figure Page

1.1 Five key components of our I/O optimization framework. 6

2.1 Application responsiveness with credit scheduler 12

2.2 CDF of ping round-trip time . 13

2.3 Unfair CPU allocation under aggressive boost 15

2.4 STREAM benchmark performance under credit scheduler 15

2.5 Application responsiveness with vSlicer 17

2.6 vSlicer with 1 LSVM . 18

2.7 vSlicer with 2 LSVM . 18

2.8 vSlicer scheduling sequence (The green block indicates LSVM) 18

2.9 CDFs for RTTs of 100 ping packets under default credit scheduler and vSlicer 25

2.10 Effect of vSlicer on UDP jitter . 26

2.11 Effect of vSlicer on TCP throughput . 27

2.12 Average CPU utilization for the two types of VMs under vSlicer 28

2.13 STREAM benchmark performance under different configurations 29

2.14 Apache web server experiment results . 30

2.15 Performance of Intel MPI benchmark: Alltoall 32

2.16 Performance of Intel MPI benchmark: Sendrecv 33

2.17 Single line VoIP upstream jitter . 33

2.18 Single line VoIP downstream jitter . 34

2.19 Multi-line VoIP upstream jitter . 35

3.1 Impact of VM CPU sharing on I/O processing. 41

3.2 Impact of micro-timeslice on TCP throughput and memory throughput . . . 42

3.3 Architecture of vTurbo . 45

3.4 Impact of time-slice size on cache misses on turbo cores. 47

viii

Figure Page

3.5 File read/write throughput. 56

3.6 TCP and UDP throughput. 57

3.7 UDP throughput: multiple I/O-intensive VMs. 58

3.8 UDP and TCP throughput for VSMP VMs. 59

3.9 SCP and NFS throughput. 61

4.1 I/O flow in Hadoop for co-located VMs. 68

4.2 Virtual HDFS data access delay caused by device virtualization overhead. . . 70

4.3 I/O Threads synchronization overhead. 71

4.4 I/O flow in Hadoop for co-located VMs with vRead. 73

4.5 I/O flow in Hadoop for remote VMs with vRead. 74

4.6 CPU utilization for co-located read. 81

4.7 CPU utilization for remote read with RDMA. 81

4.8 CPU utilization fore remote read with TCP. 83

4.9 Data access delay for virtual HDFS. 84

4.10 Hadoop setup. 85

4.11 HDFS read throughput. 86

4.12 HDFS read CPU time. 87

4.13 HDFS write throughput. 88

7.1 HDFS write with default replica policy. 100

7.2 HDFS write with shortcut policy. 101

ix

ABBREVIATIONS

ACK Acknowledgment

CDF Cumulative Density Function

CPU Central Processing Unit

EMR Elastic Map/Reduce

HDFS Hadoop Distributed File System

HVE VMwares Hadoop Virtualization Extention

I/O Input/Output

IaaS Infrastructure as a Service

IRQ Interrupt Request

LAN Local Area Network

LSVM Latency Sensitive VM

NLSVM Non-latency-sensitive VM

MPI Message Passing Interface

MSS Maximum Segment Size

NIC Network Interface Card

OS Operating System

PaaS Platform as a Service

PCPU Physical CPU

RAM Random Access Memory

RDMA Remote Direct Memory Access

RTT Round-Trip Time

ROCE RDMA over converged Ethernet

SaaS Software as a Service

TCP Transmission Control Protocol

x

TOE TCP Offload Engine

UDP User Datagram Protocol

WAN Wide Area Network

VCPU Virtual CPU

VM Virtual Machine

VMM Virtual Machine Monitor

xi

ABSTRACT

Cong, Xu PhD, Purdue University, December 2015. Optimizing Virtual Machine I/O Per-
formance in Virtualized Cloud by Differenciated-frequency Scheduling and Functionality
Offloading. Major Professors: Dongyan Xu and Ramana Rao Kompella.

Many enterprises are increasingly moving their applications to private cloud environ-

ments or public cloud platforms. A key technology driving cloud computing is virtual-

ization which can serve multiple VMs in one physical machine hence providing better

management flexibility and significant savings in operational costs. However, one impor-

tant consequence of virtualized hosts in the cloud is the negative impact it has on the I/O

performance of the applications running in the VMs.

In this dissertation, we demonstrate that the negative impact of virtualized hosts is

mainly caused by two reasons. One is VM consolidation, the other one is virtualization

device overhead. First, to alleviate the negative impact of VM consolidation on I/O perfor-

mance, we introduce two solutions vSlicer and vTurbo. vSlicer enables more timely pro-

cessing of I/O events by latency sensitive VMs (LSVMs), without violating the CPU share

fairness among all CPU sharing VMs. vTurbo is a system that accelerates I/O processing

for VMs by offloading I/O processing to a designated core, hence significantly improv-

ing the VMs network and disk I/O throughput. Second, we show that data movement in

the cloud may incur tremendous overhead on different protection layers. Especially, when

we directly move bigdata systems such as Hadoop to a virtualized cloud, we observe that

device virtualization overhead affects I/O performance of the Hadoop distributed file sys-

tem (HDFS). My developed work vRead, which enables ”direct” read to the disk image of

HDFS datanode VM at the hypervisor layer, can avoid most of the virtulization associated

overheads and hence improve the I/O performance of applications running in the VMs.

1

1 INTRODUCTION

Cloud computing is arguably one of the most transformative trends in recent times. Many

enterprises and businesses are increasingly migrating their applications to public cloud

offerings such as Amazon EC2 [1] and Microsoft Azure [2]. By purchasing or leasing

cloud servers with a pay-as-you-go charging model, enterprises benefit from significant

cost savings in running their applications, both in terms of capital expenditure (e.g., reduced

server costs) as well as operational expenditure (e.g., management staff). On the other hand,

cloud providers generate revenue by achieving good performance for their “tenants” while

maintaining reasonable cost of operation.

1.1 Thesis Statement

One of the key factors influencing the cost of cloud platforms is server consolidation—

the ability to host multiple virtual machines (VM) in the same physical server. If the cloud

providers can increase the level of server consolidation, i.e., pack more VMs in each phys-

ical machine, they can generate more revenue from their infrastructure investment and pos-

sibly pass cost savings on to their customers. Two main resources that typically dictate the

level of server consolidation, memory and CPU. Memory is strictly partitioned across VMs,

although there are techniques (e.g., memory ballooning [3]) for dynamically adjusting the

amount of memory available to each VM. CPU can also be strictly partitioned across VMs,

with the trend of ever increasing number of cores per physical host. However, given that

each core is quite powerful, another scaling factor comes by allocating multiple VMs per

core. With the current trend of increasing the core count in multi-core systems, there is

a possibility of allocating one core per-VM. However this is not likely to happen in the

foreseeable future as shown in the current practice (e.g., Amazon EC2 platform), since we

cannot completely eliminate the need for packing multiple VMs in one core , which may be

2

needed for accommodating surge of VM count and for saving power (by turning off some

cores).

In practice, CPU sharing among VMs can be quite complicated. Each VM is typically

assigned one or more virtual CPUs (vCPUs) which are scheduled by the hypervisor on to

physical CPUs (pCPUs) ensuring proportional fairness. The number of vCPUs is usually

larger than the number of pCPUs, which means that, even if a vCPU is ready for execution,

it may not find a free pCPU immediately and thus needs to wait for its turn, causing CPU

access latency. If a VM is running I/O-intensive applications, this latency can have a signif-

icant negative impact on application performance [4–8]. To explain this more closely, let us

look at I/O processing in modern OSes today. There are two basic stages involved typically.

(1) Device interrupts are processed synchronously in an IRQ context in the kernel and the

data (e.g., network data, disk reads) is buffered in kernel buffers; (2) The application even-

tually copies the data from kernel buffer to its user-level buffer in an asynchronous fashion

whenever it gets scheduled by the process scheduler. If the OS were running directly on

a physical machine, or if there were a dedicated CPU for a given VM, both procedures

can be done almost instantaneously. However, for a VM that shares CPU with other VMs,

these two I/O processing procedures may be significantly delayed because the VM may

not be running when the I/O event (e.g., network packet arrival) occurs. Eventually, the

I/O processing delay negatively impact on applications’ I/O performance, resulting in high

latency and low throughput.

Besides the CPU access delay caused by VM consolidation, I/O intensive applications

like Hadoop/HDFS also suffer from another overhead called device virtualization overhead,

because there is additional layer Hypervisor between OS and hardware compared with tra-

ditional host machine. In virtualized hosts, we observed that running Hadoop inside VMs

can lead to sub-optimal performance due to virtualization and data movement overheads.

Specifically, the performance of Hadoop inside VMs is heavily dependent on the I/O effi-

ciency of the Hadoop distributed file system (HDFS) [9], because all consumed data by big

data applications is first loaded from HDFS. In general, when the client application requests

the HDFS datanode to read a file, it reads that file from the local disk and sends its content

3

back to the client over a TCP socket. Depending on the location of the datanode in relation

to the client, this performance can vary drastically. For instance, if there is a co-located

datanode, standard Hadoop implementations prefer a local read from the co-located datan-

ode over other replicas elsewhere. While the local read is efficient when Hadoop is run in

non-virtualized environments, its performance can suffer when the client and datanode are

co-located on the same physical host but in different VMs (recommended deployments by

Docker [10] and VMware’s HVE [11,12]), due to device virtualization overheads and data

movement through protection boundaries (hypervisor, OS, application). Remote reads are

even slower because of the additional network data transfer overheads.

This dissertation addresses the challenge of alleviating the negative impacts of virtu-

alization imposed on I/O intensive applications in the cloud. First, it examines the VM

scheduling induced latency on network packet processing and proposes a solution to re-

duce network latency achieved by applications running in VMs. Second, it analyses the

negative impact on IRQ processing caused by VM consolidation and propose a solution

to boost IRQ processing hence improving network and disk I/O throughput. Third, it ex-

plores overheads induced by the virtualization layer in data copies of HDFS and propose

an ”direct” read to the disk image of datanode VM at hypervisor layer.

The thesis of this dissertation is as follows: Virtualized hosts and VM consolidation

negatively impacts the I/O performance of virtual machines. Differentiated VM schedul-

ing, VM IRQ boosting and Efficient Data Access for Hadoop in Virtualized Clouds can

significantly reduce I/O latency and improve the I/O throughput of virtual machines.

1.2 Contributions

My research aims to improve the I/O performance and reduce the device virtualization

overhead for the VMs in virtualized cloud. At the same time, we guarantee that the re-

source fair-share among all VMs running in the same host is still maintained. All proposed

methods are transparent to the user-level applications. We implemented all these methods

4

in the popular hypervisors (Xen or KVM) and eventually constitute an I/O optimization

framework for VMs.

The contributions of this dissertation can be summarized as follows:

1. We propose a new class of CPU-sharing VMs called LSVMs to mitigate the impact of

VM consolidation on I/O processing latency in VM-hosting clouds. LSVMs achieve

much better performance for I/O-bound applications while maintaining the same cost

benefit and CPU-share fairness across all sharing VMs.

2. We develop a simple, effective technique called vSlicer to realize LSVMs. Based on

the idea of differentiated-frequency microslicing, vSlicer enhances the CPU sched-

uler of the hypervisor by scheduling LSVMs with smaller microslices but with higher

frequency while scheduling NLSVMs with regular (larger) slices, giving I/O-bound

VMs more timely access to the CPU for I/O processing without penalizing the NLSVMs’

CPU shares.

3. We have implemented a prototype of vSlicer in the Xen hypervisor and conducted

extensive evaluation with both micro-benchmarks and application benchmarks. Our

micro-benchmark evaluation shows that vSlicer significantly reduces network packet

round-trip times (RTTs) and packet jitter (by 70% compared to the vanilla Xen sched-

uler). Our evaluation with application benchmarks shows substantial improvement in

application-specific performance metrics. For example, in our experiments, vSlicer

doubles both the connection rate and request processing throughput of an Apache

web server; reduces a VoIP server’s upstream jitter by 62%; and shortens the execu-

tion times of Intel MPI benchmark programs by half or more.

4. We propose a new class of high-frequency scheduling CPU core named turbo core

and a new class of co-vCPU called turbo vCPU. The turbo vCPU pinned on turbo

core(s) is used for timely processing of the I/O IRQs thus accelerating I/O processing

for VMs in the same physical host.

5

5. We develop a simple but effective VM scheduling policy named vTurbo giving gen-

eral CPU cores and turbo core magnitudes different time-slice. The very small CPU

time-slice on turbo cores grants VM low scheduling delay and low I/O IRQ process-

ing latency.

6. We have implemented a prototype of vTurbo based on Xen. Various evaluations

prove the effectiveness of vTurbo. Our micro-benchmark results show that vTurbo

can significantly improve the TCP throughput (by up to 3×), UDP throughput (by up

to 4×), and disk write throughput (by up to 2×). Our evaluation with application-

level benchmarks shows that vTurbo improves application-specific performance as

well. For example, Olio’s throughput is increased by 38.7%. NFS’ throughput is

improved by up to 2×.

7. We propose a new file operation interface for HDFS client VMs which allows Hadoop

applications to read data from HDFS more efficiently.

8. We develop the vRead system, which provides I/O shortcuts at the hypervisor level

via components in the guest and in the hypervisor. vRead works for both virtual local

read (read from co-located datanode VMs) and remote read.

9. We present evaluation results from a vRead prototype implemented in KVM. Our

microbenchmark results show that vRead achieves higher read throughput, lower

latency, and less CPU consumption compared to standard HDFS running on VMs.

For example, Hadoop’s throughput can be improved by up to 60% for read and 150%

for re-read. Results from a number of Hadoop benchmarks also show significant

application-level performance improvements with vRead.

1.2.1 Overview of the VM I/O Optimization Framework

Figure 1.1 illustrates the architectural overview of our optimization framework. Each

key component in this framework represents one concrete work during my PhD study.

Among these works, vSlicer is a differentiated-frequency VM scheduler used to reduce the

6

CPU access delay. vTurbo offloads the IRQ processing to a turbo-sliced designated core.

vPipe aims to shortcut the data movement between virtual devices within the same VM.

While, vRead targets the shortcutting of data copies between different VMs. vHaul focuses

on tuning the VM migration sequence for multi-tier applications. In my dissertation, I will

mainly demonstrate 3 of them, vSlicer, vTurbo and vRead.

VM 2

OS Kernel

Virtual

Devices

Applications

VM 1

OS Kernel

Virtual

Devices

Hypervisor

VM Scheduler

IRQ

Applications

vSlicer

vTurbo

vPipe vRead

vHaul

Figure 1.1.: Five key components of our I/O optimization framework.

1.2.2 Low Latency VM Scheduler

As more VMs share the same core/CPU, the CPU access latency experienced by each

VM increases substantially, which translates into longer I/O processing latency perceived

by I/O-bound applications. To mitigate such impact while retaining the benefit of CPU

sharing, we introduce a new class of VMs called latency-sensitive VMs (LSVMs), which

achieve better performance for I/O-bound applications while maintaining the same resource

share (and thus cost) as other CPU-sharing VMs. LSVMs are enabled by the low latency

VM scheduler called vSlicer, a hypervisor level technique that schedules each LSVM more

frequently but with a smaller micro time slice. vSlicer enables more timely processing of

I/O events by LSVMs, without violating the CPU share fairness among all sharing VMs.

Our evaluation of a vSlicer prototype in Xen shows that vSlicer substantially reduces net-

7

work packet round-trip times and jitter and improves application-level performance. For

example, vSlicer doubles both the connection rate and request processing throughput of

an Apache web server; reduces a VoIP servers upstream jitter by 62%; and shortens the

execution times of Intel MPI benchmark programs by half or more.

1.2.3 Offloading IRQ Processing to a Turbo-sliced Dedicated Core

In a virtual machine (VM) consolidation environment, it has been observed that CPU

sharing among multiple VMs will lead to I/O processing latency because of the CPU ac-

cess latency experienced by each VM. In our I/O optimization framework, vTurbo aims to

accelerate I/O processing for VMs by offloading I/O processing to a designated core. More

specifically, the designated core – called turbo core – runs with a much smaller time slice

(e.g., 0.1ms) than the cores shared by production VMs. Most of the I/O IRQs for the pro-

duction VMs will be delegated to the turbo core for more timely processing, hence acceler-

ating the I/O processing for the production VMs. Our experiments show that vTurbo signif-

icantly improves the VMs network and disk I/O throughput, which consequently translates

into application-level performance improvement.

1.2.4 Enabling Direct Read to HDFS Datanode VM Image

With its unlimited scalability and on-demand access to computation and storage, a vir-

tualized cloud platform is attracting the big data systems such as Hadoop. However, virtu-

alization introduces a significant amount of overhead to I/O intensive applications due to

device virtualization and VMs or I/O threads scheduling delay. In particular, device vir-

tualization causes significant CPU overhead as I/O data needs to be moved across several

protection boundaries. We observe that such overhead especially affects the I/O perfor-

mance of the Hadoop distributed file system (HDFS). In fact, data read from an HDFS

datanode VM must go through virtual devices multiple times – incurring non-negligible

virtualization overhead – even though both client VM and datanode VM may be running

on the same machine. Our proposed vRead, a programmable framework which connects

8

I/O flows from HDFS applications directly to their data. vRead enables direct reads to the

disk images of datanode VMs from the hypervisor. By doing so, vRead can significantly

avoid device virtualization overhead, resulting in improved I/O throughput as well as CPU

savings for Hadoop workloads and other applications relying on HDFS.

1.3 Dissertation Organization

This dissertation is organized as follows: chapter 2 discusses the design and imple-

mentation of vSlicer which reduces VM scheduling delay hence the I/O processing delay

achieved by applications. Chapter 3 discusses vTurbo which offloads VM IRQ processing

to a turbo core so that improves network and disk I/O throughput. Chapter 4 discusses

the vRead enabling a ”direct” read to HDFS datanode VM’s disk image to reduce the data

movement overheads in virtualized Hadoop clusters. Chapter 5 presents the related work in

my area. We conclude the dissertation in Chapter 6 and discuss the future work in Chapter

7.

9

2 LATENCY-AWARE VIRTUAL MACHINE SCHEDULING VIA

DIFFERENTIATED-FREQUENCY CPU SLICING

Recent advances in virtualization technologies have made it feasible to host multiple virtual

machines (VMs) in the same physical host and even the same CPU core, with fair share of

the physical resources among the VMs. However, as more VMs share the same core/CPU,

the CPU access latency experienced by each VM increases substantially, which translates

into longer I/O processing latency perceived by I/O-bound applications. To mitigate such

impact while retaining the benefit of CPU sharing, we introduce a new class of VMs called

latency-sensitive VMs (LSVMs), which achieve better performance for I/O-bound appli-

cations while maintaining the same resource share (and thus cost) as other CPU-sharing

VMs. LSVMs are enabled by vSlicer, a hypervisor-level technique that schedules each

LSVM more frequently but with a smaller micro time slice. vSlicer enables more timely

processing of I/O events by LSVMs, without violating the CPU share fairness among all

sharing VMs. Our evaluation of a vSlicer prototype in Xen shows that vSlicer substantially

reduces network packet round-trip times and jitter and improves application-level perfor-

mance.

2.1 Introduction

The advent of the cloud computing paradigm has allowed enterprises and users to re-

duce their capital and operational expenditures significantly, because they can simply lease

cloud resources to host their applications with a simple pay-as-you-go charging model.

A key approach that powers cloud-based hosting is virtual machine (VM) consolidation,

where a single physical machine is “sliced” into multiple VMs each assigned virtual core(s)

for their execution.

10

While each VM is typically assigned at least one virtual core (e.g., vCPU in Xen [13]

parlance), the mapping between virtual and physical cores is not always one-to-one. For

example, in commercial cloud offerings such as Amazon EC2 [1], the compute instances

(VMs) are allocated in the units of EC2 compute units (ECU), each of which is roughly

equivalent of a 1GHz machine, with the smallest EC2 instance allocated 1 ECU. In a 3

GHz physical machine, there may be three VMs sharing a physical CPU (pCPU). In such

cases, the CPU scheduler in the underlying hypervisor (e.g., Xen’s default credit scheduler)

schedules the runnable VMs in a round-robin fashion, with each VM given access to the

physical CPU for the same amount of time, ensuring fairness among the CPU-sharing VMs.

Unfortunately, recent research [4–6, 8, 14] has discovered a serious downside of CPU

sharing among multiple VMs: It leads to significant negative impact on I/O-bound applica-

tions running in those VMs. In this paper, we especially address a key aspect of the impact:

I/O processing latency perceived by applications. More specifically, a VM with a pending

I/O event will have to wait for its turn to access the CPU before processing the I/O event.

Because of the multiple sharing VMs, the CPU access latency tends to be a multiple of the

default CPU time slice for each VM (e.g., 30ms in Xen); and such latency cannot be hidden

from the corresponding application. This impact is particularly harmful to I/O-bound appli-

cations, which in this paper refer to applications involving both I/O and computation, with

I/O dominating computation. For example, consider a simple VoIP gateway server which

basically establishes and maintains connections between clients. For fast call setup and

traffic relay, the gateway’s network I/O dominates its computation (e.g., audio transcod-

ing). With default CPU slices for the sharing VMs, the VM that hosts the gateway may not

be able to access the CPU in time to process requests for new calls or traffic from ongoing

calls. Another example is a low-volume web server that needs to quickly respond to client

requests, yet its overall CPU usage is relatively lower.

To avoid the impact on I/O processing latency, one could choose to request a non-

sharing VM that exclusively occupies a physical CPU. However, that would incur higher

cost which may not be desirable for cost-sensitive customers. In this paper, we propose

to mitigate such impact with the presence of CPU-sharing VMs (e.g., small- or micro-

11

instances of EC2). More specifically, we introduce a new (sub)class of VM instances called

latency-sensitive VMs (LSVMs), which will achieve better performance for I/O-bound ap-

plications. Contrary to LSVMs, we also define non-latency-sensitive VMs (NLSVMs)

for the execution of CPU-bound applications that do not have stringent timing/latency re-

quirement. LSVMs and NLSVMs will share the same CPU with fair share and similar cost;

whereas the LSVMs will achieve lower I/O processing latency.

One way to enable LSVMs, as advocated by existing work [15–18], is to modify the

hypervisor’s CPU scheduler to prioritize certain I/O-bound VMs over the CPU-bound ones.

For example, [15] preferentially schedules communication oriented applications over their

CPU-intensive counterparts. Unfortunately, it introduces short-term unfairness in CPU

shares. Similarly, partial boost is used in [16] to help I/O-bound tasks to preempt a running

vCPU in response to an incoming event. However, such a system is hard to configure for

preserving fairness among the sharing VMs, which is undesirable for a VM-hosting cloud.

The credit scheduler is extended in [17] to support soft real-time applications. But it may

give more CPU time to latency-sensitive VMs thus breaking the fairness among VMs.

In this paper, we propose our solution named vSlicer to realize LSVMs. vSlicer is

based on a simple idea which we call differentiated-frequency microslicing. Traditional

VM schedulers such as Xen’s credit scheduler “slice up” a CPU in relatively large time

slices. Under vSlicer, we further divide a CPU slice (e.g., 30ms) of a given LSVM into

several microslices (e.g., 5ms) and schedule the LSVM at a higher frequency (e.g., 6 times)

compared to an NLSVM (one time) in each scheduling round. Therefore, both the LSVMs

and NLSVMs sharing a physical core will still obtain the same amount of CPU time thus

ensuring fairness; but an LSVM will be scheduled more frequently albeit with a smaller

time slice, resulting in shorter CPU access latency for the LSVM. Consequently, for an I/O-

bound application, vSlicer gives the corresponding LSVM more frequent CPU accesses

– each for a shorter duration – to process its pending I/O activities, resulting in better

application-level performance.

Since the overall CPU share is the same for both LSVMs and NLSVMs, their charging

model does not need any change and can be priced the same. At first glance, it may appear

12

that every cost-sensitive customer (namely, one who is unwilling to upgrade to VMs with

exclusive CPUs) would request only LSVMs. This is not true for the simple reason that

LSVMs may not help all applications across the board. In particular, running a CPU-bound

application in an LSVM may actually be worse than running it in an NLSVM, because of

the more frequent context switches and subsequently more frequent cache flushes. There-

fore, customers running CPU-bound applications will be motivated to choose NLSVMs

over LSVMs. Consequently, we are likely to see a mix of LSVMs and NLSVMs sharing

the physical machines.

2.2 Problem Demonstration and Motivation

Vanilla VMM

Shared

Buffer

Request

Client

Time

Scheduled

VM

Request

90ms

scheduling

latency

VM1

VM2

VM3

VM4

Response
Response

30ms

Figure 2.1.: Application responsiveness with credit scheduler

In this section, we motivate the problem by demonstrating the impact of VMs’ CPU

sharing on I/O processing latency. We then discuss the inadequacy of existing solutions.

13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

P
ro

ba
bi

lit
y

Round-trip Time [ms]

2 CPU-sharing VMs
3 CPU-sharing VMs
4 CPU-sharing VMs
5 CPU-sharing VMs

Figure 2.2.: CDF of ping round-trip time

2.2.1 Impact of CPU Sharing

To understand the negative impact of VM CPU sharing on the latency of I/O process-

ing, consider the example shown in Figure 2.1. In this example, 4 VMs are sharing a

physical CPU. VM1 is hosting an I/O-bound application while VM2-VM4 are hosting

CPU-bound applications. The application in VM1 waits for client requests and then re-

sponds to the requests with data or control messages. This simple communication pattern

can be found in many applications such as web servers, VoIP proxies, and MPI jobs. We as-

sume that the VM scheduler in the hypervisor uses a proportional-share scheduling policy

adopted by many commercial VM platforms (e.g., Xen, that is used in Amazon EC2 [1],

RackSpace [19] and GoGrid [20] commercial clouds). Since each VM has a runnable task

in it, it occupies the entire CPU slice allotted to it. As shown in the figure, when a request

for VM1 arrives at the physical host, it needs to be buffered outside VM1 (e.g., in the VMM

or in the privileged driver domain not shown in the figure), until VM1 is scheduled to run.

When VM1 gets scheduled, it will process the request and generate a response. Assuming

a CPU slice of 30ms, the request response latency can be as high as 90ms (i.e. (Number

of sharing VMs -1) × Time Slice). Such a high latency hampers the responsiveness (and

consequently, request processing rate) of the application in VM1.

14

We perform a simple experiment to demonstrate this increase in latency empirically.

Figure 2.2 shows the CDF of the round-trip time (RTT) by “pinging” VM1. In our mea-

surement experiments, we vary the number of non-idle, CPU-sharing VMs from 2 to 5

(including VM1). Our results clearly show that the ping RTT increases with the number of

CPU-sharing VMs; and the worst-case RTT is proportional to (Number of sharing VMs -1)

× Time Slice.

2.2.2 Problems with Alternative Solutions

We now examine several alternative solutions and argue why they do not work well in

our setting.

Prioritize I/O-Bound VMs The first option to reduce the above I/O processing latency is

to prioritize the VMs running the I/O-intensive applications. In fact, Xen’s credit scheduler

uses BOOST mechanism to shorten the I/O response time by temporarily boosting (i.e.

assigning a higher priority to) the I/O bound VMs. This mechanism works quite well for

pure I/O bound VMs. However, in the presence of heterogeneous workloads, once the VM

gets scheduled to process the I/O request by the BOOST mechanism, it will consume its

CPU share (i.e. credits in Xen terms) due to the CPU bound segment of the workload.

This will effectively disable the BOOST mechanism for the rest of this scheduling cycle

resulting in higher I/O latency. In other words, while BOOST can temporarily cede the

CPU to I/O-bound VMs, it can often lead to exhausting the VM’s credits early and, as a

result, the VM may starve for the rest of the scheduling round (since the credit scheduler is

CPU-fair across VMs).

A naive workaround to this would be to aggressively boost the I/O bound VMs without

considering its CPU share. Unfortunately, this prioritization will break the overall CPU

fairness in the system. We demonstrate such an unfairness in Figure 2.3, where VM1 is

hosting an I/O-bound application with a network-intensive task and a computation task

whereas other VMs are hosting computation-intensive applications. The incoming packets

to VM1 trigger the boosting of VM1 so that it can process the packets. However, since the

15

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

VM1 VM2 VM3 VM4 VM5

C
P

U
 u

sa
ge

 (%
)

Figure 2.3.: Unfair CPU allocation under aggressive boost

 0

 1,000

 2,000

 3,000

 4,000

 5,000

30 15 5 3 1

M
em

or
y

B
an

dw
id

th
 (M

B
/s

ec
)

Size of the CPU time slice (ms)

Figure 2.4.: STREAM benchmark performance under credit scheduler

hypervisor does not preempt a scheduled VM as long as the VM has runnable tasks, the

computation portion of the application in VM1 will consume the rest of the time slice after

the packet processing is done. This causes CPU-time deprivation of other VMs, as long

as packets destined to VM1 keep arriving, compromising the CPU fairness of the overall

system.

Soft Real-Time Scheduler The second option is to adopt a soft real-time scheduler such

as Xen’s former scheduler – Simple Earliest-Deadline First (SEDF) scheduler [21]. SEDF

is based on a preemptive, deadline-driven real-time scheduling algorithm to achieve latency

16

guarantees. However, such a scheduler requires complex configuration and careful param-

eter tuning and selection – per-VM – to achieve the latency guarantees desired, which may

not be possible in a cloud environment with dynamic placement and migration of VMs. In

addition, and perhaps more importantly, extending SEDF to perform global load-balancing

on multicore systems is non-trivial, making it not attractive on multicore platforms. Be-

cause of these reasons, SEDF has been replaced by the credit scheduler as Xen’s default

scheduler. Another low-latency scheduler available in Xen is based on Borrowed Virtual

Time (BVT) scheduling scheme [22]. BVT achieves low latency by making use of virtual-

time warping. However, lack of a non-work-conserving mode in BVT severely limits its

usability in a number of environments, leading to its retirement from Xen’s latest version.

Reducing Slice Size for all VMs The third option is to uniformly reduce the time slice size

of the credit scheduler so that all the sharing VMs will get scheduled in and out more fre-

quently, resulting in shorter CPU access latency. However, such an option would increase

the number of context switches (and cache flushes) in the system, degrading the perfor-

mance of CPU-bound applications running in the NLSVMs. To demonstrate the problem

with this option, we measure the memory bandwidth of VMs running the STREAM bench-

marks [23], scheduled by the credit scheduler under various time slice sizes (30ms to 1ms).

The STREAM benchmarks measure memory bandwidth for large array operations such as

copy, addition, scalar multiplication, and triad. Here we only present the “STREAM-copy”

results in Figure 2.4. (We obtain similar results from the other 3 benchmarks.) The results

indicate that reducing the time slice size uniformly is clearly not desirable as it degrades

the memory access efficiency and consequently application performance of the VMs.

2.3 Design

The previous section suggests that, if the CPU-sharing VMs are scheduled in a strictly

round-robin fashion, it will be difficult to reduce the I/O processing latency without hurting

the performance of CPU-bound NLSVMs. On the other hand, prioritizing the LSVMs may

violate the CPU share fairness among all VMs.

17

With vSlicer

Shared

BufferClient

Time

Scheduled

VM

30ms

scheduling

latency

30ms

scheduling

latency VM1

VM1

VM2

VM3

VM4

Request

Request

Request

VM1

30ms

scheduling

latency
Request

Response
Response

Response

Response

10ms

Figure 2.5.: Application responsiveness with vSlicer

To address this dilemma, we come up with the following key idea behind vSlicer:

Within one scheduling round, the CPU time for an LSVM does not have to be allocated

in one single time slice. Instead, it can be allocated “in installment” as long as the sum

of the installments (i.e., microslices) is equal to a standard CPU time slice. Such a high-

frequency microslicing will give more opportunities to the LSVM to process pending I/O

events; yet it does not affect/preempt the regular time slices allocated to the NLSVMs. This

ensures timely processing of I/O events while maintaining fair share of the CPU among all

VMs. We illustrate this idea in Figure 2.5 for the same application scenario as in Figure 2.1.

In one scheduling round, the LSVM (VM1) will be scheduled three times (instead of once),

each for a microslice of 10ms (instead of 30ms). As a result, it can process three requests

(instead of one) in the same time period, improving the application’s responsiveness.

For the purely CPU-bound applications, as demonstrated in last Section, there is a

strong incentive not to run them in LSVMs because the higher-frequency microslicing will

cause more frequent cache flushes which will hurt application performance. Fortunately,

18

Time

Default Credit Scheduler

vSlicer with 1 LSVM

10ms 30ms 40ms 50ms 60ms 80ms 90ms 120ms

VM1 VM2 VM3 VM4

VM1 VM2 VM3 VM4VM1 VM1

Figure 2.6.: vSlicer with 1 LSVM

Default Credit Scheduler

vSlicer with 2 LSVMs

VM1 VM2 VM3 VM4

Time

10ms 30ms 60ms 90ms 120ms20ms 70ms 80ms

VM3 VM41 2 1 2 1 2 1 2 1 2 1 2

TS

Tm

Figure 2.7.: vSlicer with 2 LSVM

Figure 2.8.: vSlicer scheduling sequence (The green block indicates LSVM)

the NLSVMs under vSlicer will give these applications the same performance as if running

them in round-robin-scheduled VMs with the default time slice.

2.3.1 vSlicer Scheduling Model

The idea of CPU microslicing itself is quite general; one could pick any size for the

microslice and simply derive the scheduling frequency. There are two main concerns one

needs to keep in mind though. First, setting the microslice too small will excessively in-

crease the context switch overhead; so it is important to keep it to a reasonable duration

(e.g., at least 5ms). Second, the best schedule one can come up with, in terms of latency

for LSVMs, depends on the number of LSVMs and NLSVMs sharing a core. In practice,

we expect only a small number (≤ 5) that share a core, and even among these, the number

of LSVMs is going to be very small (≤ 3).

We use the following approach to determine the scheduling order in one scheduling

round. Assume m LSVMs and n NLSVMs are sharing a single CPU core.

19

We denote the scheduling period (i.e., scheduling round) by TP and the total time an

LSVM executes during a scheduling period as TLSV M. Similarly, the total time an NLSVM

executes during a scheduling period is TNLSV M. We want TNLSV M to be a fairly large value

to allow each CPU-bound VM to execute sufficiently long. (In our implementation we use

Xen credit scheduler’s default time slice 30ms as TNLSV M.) Since we aim to fairly allocate

the CPU among all the VMs (both LSVMs and NLSVMs), we want the following to hold:

TLSV M = TNLSV M (2.1)

Let us denote the time period where one (micro-)round of LSVMs are scheduled after

scheduling an NLSVM as TS. vSlicer runs all the LSVMs during TS in round robin fashion.

We want to further divide TS into micro time slices Tm (refer to Figure 2.7 for illustration

of TS and Tm; here subscript m indicates “micro” rather than the number of LSVMs). The

selection of Tm depends on the scheduling latency we intend to achieve. We will further

discuss the scheduling latency achieved by the vSlicer later in this section. Depending on

the selection of Tm, an LSVM can run one or more times during a single time slice TS. Let

us denote the total time the ith LSVM runs during TS as Tni .

m

∑
i=1

Tni = TS (2.2)

Suppose the ith LSVM can get scheduled ri times during TS. We have:

Tni = ri×Tm where ri ≥ 1 (2.3)

In this paper, we assume all the LSVMs have the same latency requirement and hence,

for any i, j ∈ {1,m} we have Tni = Tn j = Tn and ri = r j = r. Equation 2.3 becomes

Tn = r×Tm where r ≥ 1 (2.4)

and

TS = m×Tn (2.5)

20

Given vSlicer’s alternating scheduling of LSVMs and NLSVMs (i.e., it schedules a

round of all LSVMs followed by one of the NLSVMs), the total time that an LSVM exe-

cutes during a scheduling period TP is equal to the number of NLSVMs multiplied by the

time an LSVM executes during a time slice TS (i.e. Tn). That is:

TLSV M = n×Tn (2.6)

A scheduling period consists of running times of all LSVMs and NLSVMs and there-

fore we get:

TP = mTLSV M +nTNLSV M (2.7)

= m× (n×Tn)+nTNLSV M (2.8)

Rearranging the first term of RHS of Equation (2.8) and substituting from Equation

(2.5) gives us:

TP = nTS +nTNLSV M (2.9)

Also substituting for TLSV M from (2.1) to (2.7) we get :

TP = mTNLSV M +nTNLSV M

= (m+n)TNLSV M (2.10)

Combining Equations (2.9) and (2.10) gives us an important invariant we maintain in

the system:

nTS +nTNLSV M = (m+n)TNLSV M (2.11)

That is, maintaining this invariant ensures that we are not violating CPU share fairness

while scheduling LSVMs more frequently. Moreover, Equation (2.11) allows us to define

TS, Tn in terms of TNLSV M. That is :

TS =
mTNLSV M

n

Tn =
TNLSV M

n

Tmr =
TNLSV M

n
(2.12)

21

As mentioned earlier, the selection of Tm depends on the desired scheduling latency of

the LSVM. Equation (2.12) defines the product of Tm and r in terms of TNLSV M and n. The

only restriction for the selection of Tm is, it should be a whole divisor of TNLSV M
n . However,

selecting a too small value for Tm will increase the number of context switches during TS,

affecting the performance of the all LSVMs.

Let us denote the required latency for an LSVM during TS as Tl . To achieve this schedul-

ing latency we should schedule the ith VM within Tl . Since we schedule all the LSVMs in

a round-robin order, all the other (m−1) LSVMs should be executed in less than Tl . That

is:

(m−1)Tm ≤ Tl

which gives us the upper bound for Tm:

Tm ≤ b
Tl

(m−1)
c

If we consider the influence of NLSVMs, the scheduling latency curve for a specific LSVM

looks like a continuous wavy line. The wave crest is TNLSV M +(m−1)Tm.

Examples We now show two examples of scheduling sequence under two different set-

tings. Figure 2.8 illustrates two scheduling sequences for a system running four VMs. In

Figure 2.6, we have one LSVM and three NLSVMs. If all these VMs were scheduled by

the default credit scheduler, any of them would experience a 90ms scheduling latency. Un-

der vSlicer, by dividing the time slice of the LSVM (i.e. VM1) to multiple microslices

and scheduling it three times during the scheduling round, the latency drops to 30ms. In

Figure 2.7, there are two LSVMs and two NLSVMs in the system. By dividing the time

slice into 5ms microslices, vSlicer can achieve a best-case latency of 5ms and a worst-case

latency of 35ms.

In our discussion towards the end of motivation section, we emphasized that reducing

the time slice uniformly for all sharing VMs is not a desirable option, primarily due to the

increased context switches between the VMs. Now that we have discussed the details of

vSlicer, let us quantitatively compare the credit scheduler – with uniformly reduced time

22

slice – with vSlicer using a system with two LSVMs and two NLSVMs. With the credit

scheduler having the default time slice, the CPU access latency of each LSVM is (m+n-

1)TNLSV M. Here it is (4-1)TNLSV M = 3×30 = 90ms. In order to reduce the latency to 15ms,

we need to reduce the time slice from 30ms to 5ms, which will make the context switch

rate increase by 6×. With vSlicer, however, setting Tm = 5ms – to achieve 15ms average

latency – would increase the number of context switches only by 3×.

2.4 Implementation

vSlicer only requires a simple modification to the VM scheduler in the hypervisor.

The VMs in the physical host are grouped at two levels. First, vSlicer maintains a list

of VMs that are executing in a physical CPU. Second, within this group vSlicer divides

these VMs into LSVMs and NLSVMs. Decision on whether a particular VM is LSVM or

NLSVM is left to the user (or the cloud administrator) and vSlicer provides an interface

to the administrative tools (such as xm tools in Xen) to configure that. If dynamic VM

characterization is preferred, existing methods using virtual interrupt counters or pending

packet counters can be applied to infer VM’s type dynamically. However, the grouping of

VMs per physical CPU is done by the global load balancing algorithm of the VM scheduler.

While the design of vSlicer is generic and hence applicable to many VMMs (e.g., Xen,

VMware [24]), we implement a prototype of vSlicer in Xen 3.4.2. In our implementation,

we add a new scheduler type in Xen, called sched vSlicer by extending the credit sched-

uler. The vSlicer code is in the critical path of the scheduler code which is frequently

executed. Therefore we keep the modifications to the critical path of the credit scheduler to

a minimum, with only 250 lines of additional code. The user-level utilities add another 400

lines of code which is executed only when the user configures the system using the Xen

management tools. vSlicer does not depend on para-virtualization for its scheduling func-

tion. So our prototype can support Xen HVM guests without modifications or performance

degradation.

23

Since vSlicer is based on the credit scheduler, vSlicer inherits its proportional fairness

policy and multi-core support. We maintain the credit scheduler’s existing set of controls,

weight and cap, that decide the proportional share of the VM, and the maximum amount

of CPU a domain will be able to consume even if the host system has idle CPU cycles

respectively. We add a new control in addition to these two to specify the micro time slice.

Initially vSlicer treats all the VMs as NLSVMs, which have their micoslices set to zero.

When a user configures a particular VM to be LSVM, the microslice of that VM will be

set to the specified value. This action will trigger vSlicer configuration functions, which

will in turn recalculate the global parameters such as TS. Starting from the next scheduling

interrupt, vSlicer will schedule that VM as an LSVM.

Scheduling Algorithm The most important function that we modify is do schedule,

which is executed in the critical path and responsible for selecting the next vCPU for pCPU

from the run queue. We show the pseudo-code of the algorithm in Algorithm 1.

We assign micro credits to each LSVM in addition to the credits assigned by the original

algorithm of Xen credit scheduler. vSlicer algorithm uses the micro credits to schedule

LSVMs during TS in a round-robin order. We initialize the algorithm by initializing TNLSV M,

TS, and Tm. TNLSV M is defined by the implementation (in our implementation we used

Xen’s default 30ms). TS and Tm can be calculated using TNLSV M, m, n, and equations in

Section 2.3.1. This initialization has to be done in the event of: a vCPU migration (for load

balance on multi-core), a VM initialization, a VM shutting down or any other event that

changes the number of VMs running on the particular CPU core.

vSlicer algorithm is executed whenever the time slice of the currently running VM

expires. First the algorithm checks the VM type. If it is an NLSVM, the time slice of it has

expired and hence the VM is inserted to the back of the run queue. In vSlicer both NLSVMs

and LSVMs share a single run queue. If the the current VM is an LSVM, depending on

how much credits and micro credits the VM has, it will be scheduled to run in the same TS,

in the same TP, or in the next scheduling period. Then the algorithm picks the next VM to

run from the head of the run queue. If it is an NLSVM, it will be assigned a regular time

slice (TNLSV M). If it is an LSVM, it will be assigned a microslice.

24

Algorithm 1 Scheduling Algorithm for vSlicer
Require: num nlsvm≥ 1

Require: num lsvm+num nlsvm≥ 3

Ensure: schedule time = now

Ensure: time slice = TNLSV M

Ensure: micro slice = Tm

1: burn credit(curr vm.schedule time,now)

2: if curr vm is nlsvm then

3: insert tail(curr vm,runq);

4: else[curr vm is lsvm]

5: burn micro(curr vm.micro credits,micro slice)

6: if curr vm.credits > 0 then

7: if curr vm.micro credits > 0 then

8: insert be f ore nlsvm(curr vm,runq);

9: else[curr vm.micro credits≤ 0]

10: insert a f ter nlsvm(curr vm,runq);

11: end if

12: else[curr vm.credits≤ 0]

13: insert tail(curr vm,runq);

14: end if

15: end if

16: next vm⇐ get f irst elem(runq);

17: if next vm is nlsvm then

18: next vm.runtime⇐ time slice;

19: else[next vm is lsvm]

20: next vm.runtime⇐ micro slice;

21: end if

22: run(next vm);

25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

Response Time [ms]

credit scheduler
vSlicer with 1 LSVM

vSlicer with 2 LSVMs

(a) 3 non-idle VMs sharing a core

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

P
ro

ba
bi

lit
y

Response Time [ms]

credit scheduler
vSlicer with 1 LSVM

vSlicer with 2 LSVMs

(b) 4 non-idle VMs sharing a core

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

P
ro

ba
bi

lit
y

Response Time [ms]

credit scheduler
vSlicer with 1 LSVM

vSlicer with 2 LSVMs

(c) 5 non-idle VMs sharing a core

Figure 2.9.: CDFs for RTTs of 100 ping packets under default credit scheduler and vSlicer

2.5 Evaluation

In this section, we present our detailed evaluation of vSlicer using the Xen-based pro-

totype. We use both micro-benchmarks and application-level benchmarks to evaluate the

effectiveness of vSlicer. Our experiments evaluate three key aspects: (a) transport-level

latency reduction achieved by vSlicer; (b) overall CPU-sharing fairness with vSlicer; and

(c) application-level performance improvement by vSlicer.

Experimental Setup Our experiments involve physical machines (desktops as clients

and servers as VM hosts) connected by a Gigabit Ethernet network. Each physical server

hosts multiple VMs and has a dual-core 3GHz Intel Xeon CPU with 4GB of RAM and a

Broadcom NetXtreme 5752 Gigabit Ethernet card. These hosts run Xen 3.4.2 with Linux

2.6.18 running in the driver domain (dom0). The VMs share one core of the host, whereas

the driver domain is pinned to the other core. Each VM in this host is allocated 512MB of

RAM and a single vCPU, except the VM that hosts the MyConnection media server (Sec-

tion 2.5.2) which is allocated 1GB RAM following the requirement of the MyConnection

benchmarks. The physical client machine has a 2.4GHz Intel Core 2 Duo CPU with 4GB

of RAM and an Intel Pro Gigabit network card and runs Linux 2.6.35.

26

 0

 2

 4

 6

 8

 10

3VMs 4VMs 5VMs

U
D

P
 ji

tte
r

(m
s)

credit scheduler
vSlicer with 1 LSVM
vSlicer with 2 LSVMs

(a) Jitter for 256B datagrams

 0

 5

 10

 15

 20

3VMs 4VMs 5VMs

U
D

P
 ji

tte
r

(m
s)

credit scheduler
vSlicer with 1 LSVM
vSlicer with 2 LSVMs

(b) Jitter for 512B datagrams

 0

 5

 10

 15

 20

 25

 30

 35

3VMs 4VMs 5VMs

U
D

P
 ji

tte
r

(m
s)

credit scheduler
vSlicer with 1 LSVM
vSlicer with 2 LSVMs

(c) Jitter for 1024B datagrams

Figure 2.10.: Effect of vSlicer on UDP jitter

2.5.1 Evaluation with Micro-benchmarks

This section presents improvement of network I/O performance achieved by vSlicer

using micro-benchmarks. In each experiment we vary the number of VMs sharing the

same core from 3 to 5 and measure the same transport-level metrics under vSlicer and

Xen’s default credit scheduler, respectively. We keep the CPU utilization of each VM to

40% using the lookbusy tool [25].

Ping RTT Recall the experiment presented in motivation section that measures the RTTs

of ping packets to a non-idle VM from another physical machine in the same LAN. We

repeat the same experiment, but use vSlicer as the VM scheduler and compare the results

with those achieved by the default scheduler. Figure 2.9(a) and Figure 2.9(b) shows the

CDFs of RTTs of 100 ping packets, with 3, 4, and 5 CPU-sharing VMs, respectively. For

each setup, we show the CDFs under the credit scheduler, vSlicer with 1 LSVM (the ping

receiver), and vSlicer with 2 LSVMs (one being the ping receiver), respectively. These

results show that vSlicer consistently reduces the ping RTTs in all setups. For example, in

the 4-VMs scenario (Figure 2.9(b)), vSlicer reduces the average RTT from 35ms to 10ms

with 1 LSVM (the other three are NLSVMs), a 71% reduction. With 5 CPU-sharing VMs

(Figure 2.9(b)), the average ping RTT is shortened by about 80% under vSlicer. More

importantly, we find that, under vSlicer, the RTT towards an LSVM does not increase

linearly with the number of sharing VMs. With vSlicer, the average RTT we observe across

27

 0

 20

 40

 60

 80

 100

 120

 140

3VMs 4VMs 5VMs

B
an

dw
id

th
 (M

bi
ts

/s
ec

)

Number of VMs

credit scheduler
vSlicer + 1 LSVM
vSlicer + 2 LSVMs

(a) In LAN

 0

 2

 4

 6

 8

 10

 12

 14

3VMs 4VMs 5VMs

B
an

dw
id

th
 (M

bi
ts

/s
ec

)

Number of VMs

credit scheduler
vSlicer + 1 LSVM
vSlicer + 2 LSVMs

(b) For high RTT setting

Figure 2.11.: Effect of vSlicer on TCP throughput

our experiments remains about 12ms with 1 LSVM; and 14ms with 2 LSVMs; whereas a

near-linear increase in average RTT is observed under the default scheduler.

UDP Jitter UDP is a simpler transport protocol with no reliable, in-order packet deliver

guarantee. Yet UDP is popular in audio/video streaming, online gaming and other latency-

sensitive applications. We measure the jitter of UDP datagrams, which will translate into

user-level QoS of the aforementioned applications. We use Iperf [26] to generate a stream

of UDP datagrams and vary the datagram size in each setup. The UDP receiver runs in

a non-idle VM (an LSVM when running on vSlicer) and the UDP sender is a different

physical machine in the same LAN. We also vary the number of CPU-sharing VMs from

3 to 5. The average UDP jitter observed on the receiver side is shown in Figure 2.10. The

results under different datagram sizes all show UDP jitter reduction. The reason for the

jitter reduction is that an LSVM has multiple opportunities to run during one scheduling

round under vSlicer (vs. only one under the default scheduler), leading to more timely and

more evenly timed processing of UDP datagrams.

TCP Throughput Our measurement of TCP throughput generates some interesting

(and somewhat surprising) results. Since vSlicer reduces a VM’s CPU access latency and

benefits latency-sensitive applications, we first thought that vSlicer would also improve

TCP throughput to/from a VM. We use Iperf to measure the TCP bandwidth between a

physical machine and a VM in the same LAN. The Iperf server runs in a non-idle (40%

28

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

 40%

3VMs 4VMs 5VMs

C
P

U
 a

llo
ca

tio
n

(%
)

Number of VMs

LSVM
NLSVM

Figure 2.12.: Average CPU utilization for the two types of VMs under vSlicer

CPU load) VM sharing the CPU core with 2-4 other non-idle VMs. Interestingly, as shown

in Figure 2.11(a), vSlicer does not improve TCP throughput within a LAN. The reason,

after a closer examination, is the following: First, even with vSlicer, LSVMs experience

longer latencies periodically when the NLSVMs are getting scheduled. This delay would

be less compared to the delay with the default credit scheduler (30ms compared to the 60ms

in 3 VM scenario). However, this is still high compared to the sub-millisecond latencies

in the LAN environment. Second, when we microslice the time slice of the LSVM (in this

case from 30ms to 15ms) , we also reduce the amount of packets that can be processed

during a single micro time slice by some fraction (by 50% in this case), which means that

the rest of the packets have to wait one full NLSVM execution time slice until they get

processed, which makes throughput of the connection similar to that achieved by the credit

scheduler.

However, the results are different when we look at a WAN environment. We simulate

higher RTTs in a WAN by adding 30ms of network delay between the TCP sender and

receiver using Linux netem module. The 30ms additional delay is based on average RTTs

between our lab and well-known services (e.g. Google, AmazonEC2 and Microsoft Azure).

This time we observe that vSlicer improves TCP throughput by up to 3×, as shown in

Figure 2.11(b). When we add 30ms network delay, this delay will effectively mask the

execution period of the NLSVM. Recall that our VM scheduling pattern from Section 4.3

– an execution of an NLSVM is always followed by an execution period of all the LSVMs.

29

 0

 0.2

 0.4

 0.6

 0.8

 1

15ms 5ms 3ms 1ms
N

or
m

al
iz

ed
 M

em
or

y
B

an
dw

id
th

Micro Time Slice

NLSVM
LSVM

Figure 2.13.: STREAM benchmark performance under different configurations

So if we consider 3 VM case with one LSVM, once LSVM acknowledges a set of TCP

packets and schedule out, it will take another 30ms time for the arrival of another batch of

TCP data segments due to the added network delay. Now, during this 30ms in the receiving

host, one NLSVM will be executed and the LSVM will be scheduled by the time of the

arrival of TCP data packets, which can be immediately processed. On the other hand, if we

consider the default credit scheduler, adding 30ms network delay will mask the execution

time of just one VM. Since the credit scheduler schedules VMs in a round-robin fashion,

in the 3 VM scenario, packets still have to wait one more time slice until the receiving VM

gets scheduled. With the same experiment setting, we confirm that vSlicer can improve

wide-area TCP throughput under varying additional delays (20ms-100ms) for the same

reason.

Fairness of CPU Sharing After evaluating vSlicer’s improvement of network I/O, we

now evaluate the fairness of CPU sharing among all sharing VMs (LSVMs and NLSVMs).

We use xentop to monitor the CPU utilization of each VM while running lookbusy and sys-

bench benchmark in each VM. We observe that, regardless of its type (LSVM or NLSVM),

each VM has an equal share of the CPU as the other VMs. Figure 2.12 shows the average

CPU utilization (reported by xentop over a period of 30 seconds) of one LSVM and one

30

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140 160 180 200

C
on

ne
ct

io
n

ra
te

 (p
er

 s
ec

)

Connection request rate (per sec)

credit scheduler
vSlicer

(a) Connection rate

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180 200

C
on

ne
ct

io
n

tim
e

(m
s)

Connection request rate (per sec)

credit scheduler
vSlicer

(b) Average connection time

 30

 35

 40

 45

 50

 55

 60

 65

 0 20 40 60 80 100 120 140 160 180 200

R
es

po
ns

e
tim

e
(m

s)

Connection request rate (per sec)

credit scheduler
vSlicer

(c) Average response time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160 180 200

N
et

 I/
O

 (K
B

/s
ec

)

Connection request rate (per sec)

credit scheduler
vSlicer

(d) Net I/O

Figure 2.14.: Apache web server experiment results

NLSVM (out of a total of 3, 4, or 5 VMs) under vSlicer. The results show that vSlicer

maintains CPU sharing fairness between the two types of VMs.

We then measure the performance of a CPU/memory-bound application running in an

NLSVM under vSlicer. We use the STREAM benchmarks as in motivation section and

run 4 VMs – two LSVMs and two NLSVMs in a physical host. We run the STREAM

benchmark in one of the NLSVMs, each getting one regular 30ms time slice in a schedul-

ing round, while we vary the microslice size (from 15ms to 1ms) of the sharing LSVMs.

Figure 2.13 shows the results in terms of memory bandwidth achieved by the benchmark.

For comparison, we normalize the memory bandwidth relative to the one achieved by the

31

default credit scheduler with the same 4 VMs and same workloads. The results show that

the performance of STREAM running in the NLSVM (the red bars) is not affected by the

more frequent scheduling of the LSVMs under vSlicer, maintaining (almost) the same per-

formance as under the credit scheduler. To demonstrate the unsuitability of LSVMs for

CPU-bound applications, we also run the STREAM benchmark in an LSVM and the re-

sults are shown by the black bars in Figure 2.13. This time the STREAM performance

degrades with the decrease of microslice size (i.e., with the increase of LSVM scheduling

frequency).

2.5.2 Evaluation of Application Performance

Experiment with Apache Web Server We first use the Apache web server along with

httperf [27] to evaluate the effectiveness of vSlicer for I/O-bound applications. While not

a soft-real-time application, the Apache web server is sensitive to (network and disk) I/O

processing latency, which will cause delay in both connection establishment and data trans-

mission stages and thus affect the web server’s response time and request handling through-

put.

In this experiment the physical server hosts four core-sharing VMs. Two of the VMs

are LSVMs, with one of them running the Apache web server. A physical client machine

generates requests for a 5KB web page with httperf to measure the web server’s perfor-

mance. To simulate the WAN environment, a random delay between 20ms to 40ms using

the Linux netem is added. For comparison, we perform the experiment under the default

credit scheduler and under vSlicer. We measure the following metrics: (a) connection rate,

(b) connection time, (c) response time, and (d) net I/O (average network throughput), with

the corresponding results shown in the four sub-figures of Figure 2.14. Under the credit

scheduler, the connection rate saturates at 90 connections/sec and the net I/O throughput

saturates at 450 KB/s. Under vSlicer, Apache can sustain up to a 180 connections/sec con-

nection rate and achieve up to 900 KB/s throughput. Moreover, the connection time and

response time are much shorter and more stable under vSlicer; whereas under the credit

32

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 35,000

 40,000

 45,000

64 128 256 512 1,024 2,048 4,096

C
om

pl
et

io
n

Ti
m

e
(m

s)
Message Size (KB)

Credit Scheduler
vSlicer

Figure 2.15.: Performance of Intel MPI benchmark: Alltoall

scheduler, these two metrics increase rapidly once the request rate goes beyond 100 re-

quests/sec.

To understand the root cause for the saturated connection rate of 90 connections/sec

under the credit scheduler, we first traced packets using tcpdump at multiple points: (1) in

the client host, (2) in the driver domain of the physical server, and (3) in the LSVM where

the Apache server runs. We make two interesting observations: First, when the connection

rate goes beyond 90 connections/sec, packet retransmissions start to appear in the trace.

Second, our further analysis of flows with packet retransmissions shows that almost all of

the retransmissions happen due to the packets dropped at the driver domain (by comparing

the traces from the driver domain and from the VM).

To identify the main culprit of the dropped packets inside the driver domain, we inserted

tracing points along the path taken by the packets inside the driver domain from physical

NIC (peth) to the VMs virtual interface (vif). We found out that the I/O ring buffer, which

connects the driver domain and the VM, gets full when the request rate exceeds 90 connec-

tions/sec while the VM is waiting in the run queue. This in turn back-pressures the packet

processing tasklets in the driver domain causing packet drops. On the other hand, with

vSlicer, the LSVM running the Apache server gets scheduled more frequently and hence, it

empties the ring buffer more often hence eliminating the back-pressure. Compared with the

maximum CPU access latency (90ms) under the credit scheduler, the maximum latency for

33

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

64 128 256 512 1,024 2,048 4,096

C
om

pl
et

io
n

Ti
m

e
(m

s)
Message Size (KB)

Credit Scheduler
vSlicer

Figure 2.16.: Performance of Intel MPI benchmark: Sendrecv

-40

-20

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

Ji
tte

r (
m

s)

Packets

credit scheduler
vSlicer

Figure 2.17.: Single line VoIP upstream jitter

the LSVM is 40ms under vSlicer. This translates into a higher connection rate (up to 180

connections/sec) of the web server without packet drops and retransmissions in the driver

domain.

Experiments with MPI Benchmarks We next evaluate the effectiveness of vSlicer for

reducing the execution time of MPI communication primitives using the Intel MPI Bench-

mark (IMB) [28]. Our setup consists of 4 VMs each with MPICH2 [29] libraries installed.

We host these 4 VMs in two physical hosts with 2 VMs sharing a single CPU core. We

also run 2 other VMs per core with CPU-bound tasks. When experimenting with vSlicer,

we mark the VMs running the IMB as LSVMs and the VMs running CPU-bound tasks as

NLSVMs. We measure the execution time of two MPI communications primitives from

IMB suite: Sendrecv and Alltoall.

34

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400 450 500

Ji
tte

r (
m

s)

Packets

credit scheduler
vSlicer

Figure 2.18.: Single line VoIP downstream jitter

In the IMB Alltoall benchmark, each MPI process sends a distinct message to each

process in the system. A process executing this communication pattern usually sends mes-

sages to all other processes using non-blocking sends and waits for the receipt messages

from all other processes. When vSlicer is used, each LSVM gets scheduled frequently for

a micro time slice period (of 5ms), leading to more timely processing of send/receive mes-

sages to/from other processes and hence faster process of the entire MPI job. Figure 2.15

shows that, under various message sizes, vSlicer reduces the execution time by half or

more, compared with the credit scheduler.

In the IMB Sendrecv benchmark, the MPI processes form a periodic communication

chain. Each process sends a message to its right neighbor in the chain and receives a

message from its left neighbor. Figure 2.16 shows the results for this benchmark. vSlicer

leads to significant reduction in the execution time (up to 4.5 × improvement when the

message size is 1024KB). The reduction is even higher than in the Alltoall case. The

main reason lies in the chain of dependencies imposed by this particular communication

pattern. Each process depends on its left neighbor to receive and acknowledge the message

being sent; and each process depends on its right neighbor to send a complete message.

The longer message processing delays incurred by the credit scheduler causes the entire

messaging chain to take longer time in a cascading way. When vSlicer is used, each LSVM

has multiple opportunities in one scheduling round to process those incoming/outgoing

messages, leading to faster progress of messaging chain.

35

-100

-50

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ji
tte

r (
m

s)

Packets

credit scheduler
vSlicer

Figure 2.19.: Multi-line VoIP upstream jitter

Experiments with MyConnection Server Finally, we evaluate the effectiveness of vS-

licer with latency-sensitive, soft real-time applications such as streaming media servers and

VoIP gateways. We use MyConnection Server (MCS) [30] as our benchmark application.

MCS is a suite of benchmarks for assessing the performance and quality of networking

and computing infrastructures for hosting soft real-time applications such as VoIP, video

streaming, IPTV, and video conferencing. We use the VoIP test and the streaming video

test of MCS for our evaluation of vSlicer. We run MCS in a VM which shares the same

CPU core with 3 other non-idle VMs. Two of these VMs are LSVMs, including the VM

that runs the MCS tests. The VoIP/media streaming clients run in another physical machine

in the same LAN, but we simulate remote clients in the real world by introducing a random

delay between 20ms to 40ms using the Linux netem module.

The VoIP test generates voice traffic of one or more active VoIP sessions with a selected

audio compression algorithm. In this test, a VoIP client connects to the MCS via the SIP

protocol, emulates one or more voice conversations using G.711 codec, and measures QoS

metrics such as jitter, packet loss, and the discarded packet percentage.

Figure 2.17 and Figure 2.18 show the upstream and downstream jitter for the single

line VoIP test (i.e. when only one VoIP session is active), respectively. Figure 2.19 shows

the upstream jitter for the multi-line VoIP test (i.e. when multiple VoIP sessions are active

simultaneously). Table 2.1 and Table 2.2 summarize the results of the VoIP test. Compared

with the credit scheduler, vSlicer achieves a 16.6ms (62%) reduction in upstream jitter and

36

11ms (43%) reduction in downstream jitter in the single line VoIP test. In the case of multi-

line VoIP test, vSlicer achieves a 23.7ms (65%) reduction in downstream jitter and 29.2%

reduction in downstream packet loss. Under the credit scheduler, we could not even obtain

meaningful downstream jitter results for the multi-line VoIP test, due to the heavy packet

loss.

Table 2.1.: Single line VoIP test results under credit scheduler and vSlicer

Scheduler Upstream Downstream Packets

Jitter Jitter Discard

Credit scheduler 26.7ms 25.8ms 1.2%

vSlicer 10.1ms 14.8ms 0%

Table 2.2.: Multi-line VoIP test results under credit scheduler and vSlicer

Scheduler Upstream Downstream Packets

Jitter Packet Loss Discarded

Credit scheduler 36.7ms 44.5% 6.0%

vSlicer 13.0ms 15.3% 1.5%

Table 2.3.: Streaming video test results under credit scheduler and vSlicer

Video Audio Trip SETUP DESCRIBE PLAY

Scheduler Jitter Jitter Time Time Time Time

(ms) (ms) (ms) (ms) (ms) (ms)

Credit 46.2 41.2 110 361 480 509

vSlicer 16.6 15.8 51 176 262 243

The streaming video test involves video streaming sessions from the MCS to the clients

via TCP based on the Real Time Streaming Protocol (RTSP) [31]. The streaming video

server sends a series of audio and video packets at a fixed rate to the client. The client will

37

measure the packet jitter and the server will measure the trip time, which is the application-

level round-trip time. The test also measures the time to perform different RTSP com-

mands such as SETUP, DESCRIBE, and PLAY. In this experiment, the payload of each

audio packet is 32 bytes and the payload of each video packet is 160 bytes. The media

transmission rate is 20 packets per second (for both audio and video packets). Table 2.3

shows the results of the test. Compared with the credit scheduler, vSlicer reduces the video

jitter by 29.6ms (64%) and reduces the audio jitter by 25.4ms (62%). Furthermore, vS-

licer achieves significant improvements (time reduction) for all the other streaming video

metrics measured.

38

3 ACCELERATING VIRTUAL MACHINE I/O PROCESSING USING DESIGNATED

TURBO-SLICED CORE

In a virtual machine (VM) consolidation environment, it has been observed that CPU shar-

ing among multiple VMs will lead to I/O processing latency because of the CPU access

latency experienced by each VM. In the previous chapter, we presented vSlicer, a low la-

tency VM scheduler, to reduce the CPU access delay and improve the responsiveness of I/O

intensive applications running in VMs. However, we found this method can not improve

the network (TCP & UDP) throughput in the datacenter, because it can only reduce the

VM scheduling latency to a certain value but this value is not small enough. To get the full

speed bandwith in LAN, the VM scheduling delay should be sub-millisecond level which

is the maximum latency in physical host. To solve this problem, in this chapter, we present

vTurbo, a system that accelerates I/O processing for VMs by offloading I/O processing to

a designated core. More specifically, the designated core – called turbo core – runs with a

much smaller time slice (e.g., 0.1ms) than the cores shared by production VMs. Most of the

I/O IRQs for the production VMs will be delegated to the turbo core for more timely pro-

cessing, hence accelerating the I/O processing for the production VMs. Our experiments

show that vTurbo significantly improves the VMs’ network and disk I/O throughput, which

consequently translates into application-level performance improvement.

3.1 Introduction

IRQ processing delay can affect both network and disk I/O performance significantly.

For example, in the case of TCP, incoming packets are staged in the shared memory be-

tween the hypervisor (or privileged domain) and the guest OS, which delays the ACK

generation and can result in significant throughput degradation. For UDP flows, there is

no such time-sensitive ACK generation that governs the throughput. However, since there

39

is limited buffer space in the shared memory (ring buffer) between the guest OS and the

hypervisor, it may fill up leading to packet loss. IRQ processing delay can also impact disk

write performance. Applications often just write to memory buffers and return. The kernel

threads handling disk I/O will flush the data in memory to the disk in the background. As

soon as one block write is done, the IRQ handler will schedule the next write and so on.

If the IRQ processing is delayed, write throughput will be significantly reduced. If the OS

were running directly on a physical machine, or if there were a dedicated CPU for a given

VM, the IRQ processing component gets scheduled almost instantaneously by preempting

the currently running process. However, for a VM that shares CPU with other VMs, the

IRQ processing may be significantly delayed because the VM may not be running when

the I/O event (e.g., network packet arrival) occurs.

Unfortunately, none of the existing efforts explicitly tackles this problem. Instead, they

propose indirect approaches that moderately shorten IRQ processing latency hence achiev-

ing only modest improvement. Further, because of the specific design choices made in

those approaches, the IRQ processing latency cannot be fundamentally eliminated (i.e.,

made negligible) by any of the designs, meaning that they cannot achieve close-to optimal

performance. For instance, the vSlicer approach [32] schedules I/O-intensive VMs more

frequently using smaller micro-time-slices, which implicitly lowers the IRQ processing la-

tency, but not significantly. Also it does not work under all scenarios. For example, if

two I/O latency-sensitive VMs and two non-latency-sensitive VMs share the same pCPU,

the worst-case IRQ processing latency will be about 30ms, which is still non-trivial, even

though it is better than without vSlicer (which would be 90ms). Similarly, another approach

called vBalance [33] proposes routing the IRQ to the vCPU that is scheduled for the corre-

sponding VM. This may work well for SMP VMs that have more than one vCPU, but will

not improve performance for single vCPU VMs. Even in the SMP case, it improves the

chances that at least one vCPU is scheduled; but fundamentally it does not eliminate IRQ

processing latency because each vCPU is contending for the physical CPU independently.

To solve this problem more fundamentally, we aim to make the IRQ processing latency

for a CPU-sharing VM almost similar to the scenario where the VM is given a dedicated

40

core. To achieve this, we propose a new solution called vTurbo, that involves two basic

ideas. First, we leverage the existence of multiple cores in modern processors to designate

a specialized turbo-sliced core (or turbo core for short), for synchronous processing threads

in the guest OS. In terms of actual hardware, the turbo core is no different from a regular

core, except that the hypervisor-level scheduler schedules VMs on this core with extremely

small quantum (e.g., 0.1ms). Second, we expose this turbo-sliced core to each VM as a

“co-processor” just dedicated to kernel threads that require synchronous processing, such as

IRQ handling. The other regular kernel threads are scheduled on a regular core with regular

slicing just like what exists today. Since the IRQ handlers are executed by the turbo core,

they are handled almost synchronously with a magnitude smaller latency. For example,

assuming 5 VMs and 0.1ms quantum for the turbo core, an IRQ request is processed within

0.5ms compared to 150 ms (assuming 30ms time slice for regular cores).

The turbo core is accessible to all VMs in the system. If a VM runs only CPU-bound

processes, it may choose not to use this core since its performance is not likely to be good

due to frequent context switches. Even if a VM chooses to schedule a CPU-bound process

on the turbo core, it has virtually no impact on other VMs’ turbo core access latency thus

providing good isolation between VMs. We ensure fair-sharing among VMs with differen-

tial requirement between regular/turbo cores because, otherwise, it would motivate VMs to

push more processing to the turbo core. Thus, for example, if there are two VMs—VM1 re-

questing 100% of the regular core, and VM2 requesting 50% regular and 50% turbo cores,

the regular core will be split 75-25% while VM2 obtains the full 50% of the turbo core,

thus equalizing the total CPU usage for both VMs. We also note that, while we mention

one turbo core in the system, our design seamlessly allows multiple turbo cores in the sys-

tem driven by I/O processing load of all VMs in the host. This makes our design extensible

to higher bandwidth networks (10Gbps and beyond) and higher disk I/O bandwidths that

require significant IRQ processing beyond what a single core can provide.

41

VM2 VM3VM4

Time
Request

Response

30 ms

VM1

90 ms

Hypervisor

t1 t2

Scheduled VMs

Figure 3.1.: Impact of VM CPU sharing on I/O processing.

3.2 Motivation

Let us first focus on receive-side I/O processing. In a non-virtualized system, all

receive-side I/O events (e.g., network packet arrival) are typically handled by specific IRQ

routines corresponding to each device (i.e., disk controller or NIC) in the OS kernel. The

data is stored in a kernel buffer first, and once the user process is scheduled, it copies

the data from the kernel buffer to the user buffer. Since I/O-bound processes usually have

higher priority, they get scheduled relatively quickly and the data is subsequently processed

by the application thus achieving high I/O throughput. However, in a virtualized system

with several VMs sharing a physical CPU, each VM gets only a slice of the physical CPU,

which means the incoming I/O event will need to wait until the VM gets access to the

CPU. Such a CPU access latency will significantly affect the timeliness of IRQ processing,

resulting in low I/O throughput.

We illustrate this negative effect using an example shown in Figure 3.1. In this example,

4 VMs share a physical CPU. VM1 runs a mixed workload that includes both CPU-bound

tasks and I/O-bound applications, while VM2 to VM4 run only CPU-bound applications.

Assuming a proportional-share VM scheduling policy (adopted by Xen and VMware ESX),

VM1 gets only 25% of CPU when all VMs are busy, which means that roughly 75% of

time, VM1 has to wait in runqueue and cannot process I/O events immediately. When an

I/O request for VM1 reaches the hypervisor at t1, VM1 cannot process this request and

42

 0

 200

 400

 600

 800

 1,000

0.1 1 10 30

T
C

P
 T

h
ro

u
g
h
p
u
t

(M
b
p
s)

Time Slice (ms)

(a) TCP throughput

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

0.1 1 10 30

M
em

o
ry

 T
h
ro

u
g
h
p
u
t

(M
B

p
s)

Time Slice (ms)

(b) Memory throughput

Figure 3.2.: Impact of micro-timeslice on TCP throughput and memory throughput

respond until t2. If the I/O-bound application in VM1 is a TCP server, for instance, the

client will stop sending data to the server once the client’s TCP window is full, due to lack

of acknowledgments from the server while VM1 is in runqueue. If VM1 runs a UDP server,

even though the client can continue to send data to the server without getting responses, the

packets will be dropped by the hypervisor once the shared buffers (between the hypervisor

and guest OS) are full. As a result, throughput of either TCP or UDP for VM1 would be

much lower than the available capacity.

In the reverse direction (i.e., when a process sends packets or writes to the disk), the

user process first copies data to the kernel buffer associated with the particular output (e.g.,

socket, file descriptor). For some I/O mechanisms such as asynchronous network packet

sends and disk writes, the call to output the data will return to the user process immedi-

ately after the data is copied to the kernel buffer. The kernel components associated with

the corresponding device will asynchronously write the data to the device. However, this

task cannot be continued efficiently if the hypervisor schedules the vCPU out while the

kernel component is waiting for the completion of the write to the device, resulting in low

throughput.There are other sources of delay for interrupt processing even after the I/O event

reaches the VM. These include long periods in which, the VM runs with interrupts disabled,

locking conflicts for shared data structures (such as TCP accept queue [34]) and overhead

of dispatching interrupts in virtualized environments [35]. However, most of these latencies

43

lie within sub-millisecond range in the average case [36, 37], while the scheduling delay

causes the interrupt processing to be delayed for tens of milliseconds (in our example, the

average scheduling delay is about 35ms for Xen VMM).

Symmetric multi-processing (SMP) VMs can take advantage of a multi-core archi-

tecture to execute many different applications in parallel and improve the overall system

throughput. In an SMP-VM, two or more allocated vCPUs are scheduled by the hypervisor

scheduler on any available pCPUs and thus, each vCPU has a higher chance to get sched-

uled. However, the SMP-VM may still suffer from scheduling delays, if none of the vCPUs

can be scheduled in because the pCPUs are all busy executing other vCPUs.

Thus, we cannot guarantee that the vCPU running an IRQ gets scheduled in time when

a target VM receives an I/O request.

3.2.1 Existing Approaches

Now we discuss several existing approaches addressing the problem of CPU sharing

impacting I/O performance of VMs and discuss why they do not work well.

Reducing CPU time-slice. One intuitive approach to solve the scheduling latency prob-

lem is to uniformly reduce the VM scheduling time-slice [18]. In proportional-share schedul-

ing, the worst-case scheduling delay of each VM is (Number of sharing VMs -1) × time-

slice. A small scheduling time-slice enables VMs to get scheduled more frequently thus im-

proving the I/O throughput of VMs. However, the short time-slice results in more frequent

context switches which may hurt the performance of memory-intensive or CPU-bound ap-

plications. We conduct a simple experiment to demonstrate this problem.

In our experiment, 4 single vCPU VMs share one physical CPU. One VM hosts a TCP

server, the client is running in another physical machine in the same LAN. Iperf [26] is

used to measure the server’s TCP throughput. We vary the scheduling time-slice from

0.1ms to 30ms, which is the default time-slice of Xen. From Figure 3.2(a) we can find

that, smaller time-slice leads to higher TCP throughput. Especially, with a 0.1ms time-

slice, the average TCP throughput is up to 900 Mbps which is close to the bandwidth of

44

1Gbps network card used in our experiment. However, the performance of memory/CPU

bound applications degrades under smaller time-slice as shown in Figure 3.2(b). Here,

we run STREAM [23] benchmark in one of the 4 VMs1. So, simply reducing the CPU

time-slice cannot simultaneously benefit both I/O-intensive applications and CPU-intensive

applications. Hence this approach is not suitable for cloud environments where mixed

workloads are common.

Sending I/O interrupts to active vCPU To reduce the IRQ processing delay and improve

I/O throughput for SMP-VMs, a recent approach called vBalance [33] sends I/O interrupts

to the active vCPU of the target VM. In this way, I/O interrupts can be processed in a more

timely fashion and I/O throughput may be improved. However, there are still several is-

sues with this method. As discussed before, an SMP-VM may have increased chances to

get scheduled because of the multiple vCPUs assigned to it. But there is no fundamental

guarantee that the SMP-VM have at least one vCPU running at any time. If none of the

vCPUs is running, an I/O interrupt still cannot be processed in time. Besides, even if the

I/O interrupt is sent to an active vCPU successfully, the I/O cannot be finished if the vCPU

executing the I/O application is not running simultaneously. This specifically impacts TCP,

where the application vCPU may be in the runqueue holding the ownership of the lock

structure, hence the kernel-level TCP processing cannot generate an ACK in time for in-

coming TCP packets. We suspect this is the main reason [33] only reports 400Mbps TCP

throughput in a 1Gbps LAN environment.

Differentiated VM scheduling Tuning VM scheduling policy is another method to speed

up I/O processing. vSlicer [32] schedules each latency-sensitive VM (LSVM) more fre-

quently with a smaller micro time-slice, which enables more timely processing of I/O

events by LSVMs. There are two caveats of this approach. First, we need to know

which VMs are LSVMs running latency-sensitive applications in advance and adjust the

VM scheduler configuration accordingly.

1We conducted a similar experiment in [32]. But here we set even smaller time-slice (0.1ms) and contrast
TCP and memory throughput under such a time-slice.

45

VMM

Hardware
CPU 0 CPU 1

. . .

vTurbo Scheduler

CPU n-1CPU m-1... ...CPU m

Regular Cores Turbo Cores

VM 1

vCPU vTurbovCPU...

I/O IRQs

I/O-bound

Applications

CPU-bound

Applications

Kernel Buffer

VM l

vCPU vTurbovCPU...

I/O IRQs

I/O-bound

Applications

CPU-bound

Applications

Kernel Buffer

Figure 3.3.: Architecture of vTurbo

Second, vSlicer reduces the scheduling delay but does not completely eliminate it, as

discussed earlier. It, therefore, does not improve the TCP/UDP throughput significantly,

although it does reduce application-perceived I/O latency.

3.3 Design

The discussion in the previous section suggests that if we use a very small value as

the CPU time-slice, I/O performance of CPU-sharing VMs can be significantly improved.

However, we also showed that such an approach may hurt the performance of CPU-bound

VMs, for which larger time-slice is desirable. To address this dilemma, we leverage one

key degree of freedom that has not been exploited hitherto: The CPU time-slice for each

core may not be the same for a multi-cores system.

Thus, in our approach called vTurbo, we designate one (or more) core(s) in the system

as what we call a turbo core, which is just any regular physical core, except that we set a

very small (e.g., 0.1ms) CPU time-slice for it. We expose the turbo core to each VM in

46

addition to the regular cores, and allow the guest OS to schedule I/O-bound threads (e.g.,

IRQ handling) in the turbo core thus speeding up I/O processing significantly.

The guest OS still schedules CPU-bound workloads on cores with the regular time-

slice. As such vTurbo achieves I/O processing speedup without impacting CPU-bound

workloads.

In effect, vTurbo focuses on re-factoring the interface between the hypervisor and guest

OS, with the new abstraction of turbo core. This approach is completely transparent to ap-

plications running in VMs, a key advantage of practicality. Another benefit of vTurbo is

that it does not require classification of VMs into I/O- or CPU-intensive VMs, as required

by some solutions such as vSlicer [32]. Such classification is difficult as most VMs in

practice run a combination of I/O and CPU workloads. Of course, the guest OS now needs

to identify I/O-bound threads such as IRQ processing and schedule them on the turbo core.

But that is not hard as there are only a handful of such threads. Our approach also guaran-

tees CPU fairness among all VMs. Any VM using the turbo core will essentially not obtain

any “extra” CPU beyond its fair share—an important property in multi-tenancy clouds.

The architecture of vTurbo requires changes to both the hypervisor and the guest OS.

At the hypervisor level, the VM scheduler needs to accommodate the new turbo core ab-

straction. At the guest kernel-level, we need to modify the VM process scheduler to pin

certain threads to the turbo core in addition to a few changes to the TCP protocol stack. In

the following subsections, we discuss these in more detail.

3.3.1 Modifications to Hypervisor

We mainly need to modify the VM scheduler in the hypervisor to support the turbo core

abstraction.

Upon host initialization, we designate a set of cores in the host as turbo cores. The

number of turbo cores is configurable, and our current version statically assign turbo cores

based on user configuration. However, we believe that our system can be improved by

having a dynamic method to assign turbo cores based on the available machine capacity

47

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0.1 0.5 1 5 10 30

C
ac

h
e

M
is

s
R

at
e

(1
0

-5
/s

ec
)

Time-slice (ms)

4 VMs sharing a turbo core

Figure 3.4.: Impact of time-slice size on cache misses on turbo cores.

(i.e., total number of cores), number of VMs, demand for the turbo core, and overall I/O

intensity (e.g., a host with multiple active NICs or 10GB/s NICs may require more turbo

cores). One can also dynamically change the number of turbo cores via administrative tools

(such as xm tools in Xen). While the current implementation of vTurbo randomly selects

the turbo cores, we can incorporate parameters such as cache affinity to further improve

their performance.

In vTurbo, each VM is assigned a turbo vCPU in addition to its regular vCPUs. The

turbo vCPU is assigned to one of the turbo cores in the host. This step is performed during

VM initialization. For instance, if a user launches an SMP-VM configured with 2 vCPUs,

the VM will have 3 vCPUs after initialization. Among these, the 0th vCPU is the turbo

vCPU, whereas the 1st and 2nd vCPUs are regular vCPUs.

Based on our empirical study (discussed in motivation section), we set 0.1ms as the

CPU scheduling time-slice for turbo cores (as it enables the VM to reach up to 900Mbps

TCP throughput for a 4 CPU-sharing VMs scenario). Since only interrupt processing runs

on turbo cores, frequent context switches caused by the small turbo core time-slice does

not affect the performance of interrupt processing much because of the very short duration

of the processing. According to our measurements (Figure 3.4), when 4 VMs each running

an iperf server share one turbo core, the order of magnitude of cache miss per second on the

turbo core is only 10−5, which is negligible. The CPU time-slice for regular cores is set be a

much larger value — 30ms in the current implementation which is the default time-slice of

48

Xen. The vTurbo VM scheduler uses per-core scheduling timer to trigger scheduling code

to select the next vCPU from the runqueue. We achieve CPU time-slice differentiation by

setting these timers to 0.1ms for turbo cores and 30ms for regular cores.

Once the vCPUs are assigned to turbo cores and regular cores, our next concern is to

correctly handle vCPU migration in the presence of turbo cores. vCPU migration allows

to balance the CPU load among the available cores in the system. However, if we let the

vCPUs to migrate freely among available cores, there is a possibility that a regular vCPU be

migrated to a turbo core making undesirable effects. To solve this, we restrict migration of

regular vCPUs to only among all regular cores and migration of turbo vCPUs only among

turbo cores. We do not allow a turbo vCPU to migrate to a regular core or vice versa. This

is done by changing each vCPU’s affinity to the corresponding set of cores. Hence vTurbo

scheduler not only determines the appropriate mapping between vCPUs and physical cores,

but also ensures fair CPU sharing among all VMs.

VM scheduling policy Since we intend to use the turbo core only for I/O activity, we

cannot treat it as a regular core and apply the existing scheduling policy to guarantee fair

sharing among VMs. The challenge is to determine the CPU share of VMs for turbo and

regular cores in the presence of heterogeneous workloads (i.e., when a VM is CPU inten-

sive, I/O-intensive, or both).

Current schedulers (e.g., Xen’s) use simple credit-based scheduling algorithm for achiev-

ing global load balancing and work-conservation. For instance, in Xen’s credit scheduler,

a VM is assigned some amount of credits periodically based on the priority of the VM. As

the vCPUs belonging to a particular VM run on physical CPUs, credits are deducted from

that VM. When the scheduler needs to make a decision, it uses the amount of available

credits for each VM to decide which vCPU will run on the physical CPU. To accommodate

turbo cores in our system, we mainly need to modify the credit assignment portion of the

credit scheduling algorithm to account for the turbo vCPU execution time.

Specifically, assume l VMs are sharing an n-core host with m regular cores and n-m

turbo cores. Let rdi denote the percentage demand for regular cores (CPU-bound compo-

nent) and let tdi denote the percentage demand for turbo cores (I/O-bound component) for

49

V Mi. We assume the demand for regular core and turbo core in two consecutive scheduling

periods does not change much (if it does, we account for and adjust it in future rounds).

So both rdi and tdi are calculated based on the consumed CPU cycles by the VM in the

previous scheduling period. Since our scheduler is work-conserving, the division of the

total capacity among the regular and turbo cores is determined by the following:

CR
tot =

l

∑
i=1

rdi and CT
tot =

l

∑
i=1

tdi

The total capacity demand of the system is:

Ctot =CR
tot +CT

tot

The fraction of CPU allocated for a VM out of this total capacity is determined by its

assigned weight wti. Hence each VM’s fair share (FSi) of CPU is given by:

FSi = (Ctot×wti)/(
l

∑
j=1

wt j)

In vTurbo, we first allocate turbo core capacity fairly among VMs, as all of the VMs’

IRQ processing is performed by the turbo vCPUs and starvation of turbo vCPUs (even for

CPU-bound VMs) will result in application performance hit. So V Mi’s fair share of the

turbo core (FST
i) is calculated as:

FST
i = (CT

tot×wti)/(
l

∑
j=1

wt j)

Once V Mi’s turbo core share is determined, we allocate the rest of its CPU share from

the regular cores. The fraction of the allocation is given by:

FSR
i = FSi− ˆFST

i

where ˆFST
i denotes the actual usage of the turbo core by V Mi in the previous scheduling

period. We use FST
i and FSR

i to determine the proportion of credits given to VMs out of

total credits in the turbo core pool and regular core pool, for the next scheduling period.

Table 3.1 shows the CPU allocation results from experiments with our prototype, where

two VMs—with equal weight—share one regular core and one turbo core, under various

50

workload demands. Columns 2 and 3 of the table indicate the CPU demand of each VM

(i.e., CPU utilization if they were run without CPU sharing); Columns 4 and 5 indicate

measured consumption in the previous scheduling period; Columns 6 and 7 indicate the

allocated shares of regular and turbo cores based on our policy; and Columns 8 and 9 show

the measured consumption of regular (ˆFSR
i) and turbo (ˆFST

i) core capacity in the next

scheduling period. The results confirm that our policy allocates CPU with proportional

fairness.

Table 3.1.: VMs’ CPU demand and allocated CPU shares under different scenarios

Demand Measured Allocated Consumed

Reg. Turbo rdi tdi FSR
i FST

i
ˆFSR

i
ˆFST

i

VM1 100 0 50 0 50 0 50 0

VM2 100 0 50 0 50 0 50 0

VM1 100 0 50 0 100 0 100 0

VM2 100 100 50 100 0 100 0 100

VM1 100 100 50 50 50 50 50 50

VM2 100 100 50 50 50 50 50 50

VM1 100 15 50 15 70 35 70 15

VM2 100 55 50 55 30 35 30 55

3.3.2 Modifications to Guest OS

Process scheduler As noted before, if CPU-bound workload were scheduled on the turbo

cores, its performance would degrade due to frequent context switches. Since process

scheduling inside the VM is transparent to the hypervisor’s VM scheduler, we should make

the guest OS’s process scheduler aware of the turbo core to prevent user processes and non-

I/O-related kernel threads from being scheduled on the turbo core. This can be achieved

by setting scheduler affinity rule which sets the affinity of the non-I/O related threads to

regular vCPUs. In Linux, this can be easily done by a scheduling mechanism known as

Linux CPU isolation [38].

51

I/O buffers in guest OS With the above change, we can reduce IRQ processing delay to

extremely small values. However, low IRQ processing delay by itself does not automati-

cally translate into high I/O throughput, because of a critical locking behavior between the

kernel and application threads as we explain below. The network receive path in typical

OSes (e.g., Linux) consists of two main steps: (1) Processing IRQ in kernel and buffering

data in kernel buffer; (2) Application reading the data from kernel buffer and clearing it.

Since the CPU time-slice of regular cores is still 30ms in vTurbo, the CPU access delay

on the regular core will make the kernel buffer full very quickly and stop the IRQ threads

from buffering more data, which would lead to poor I/O performance.

To address this problem and to keep the turbo vCPU busy processing IRQs, we need to

tune the kernel buffer to store more received data while the application running on regular

vCPU is blocked. As an example when 4 single-vCPU (excluding turbo vCPU) VMs are

sharing one regular core, the CPU access delay is up to 90ms ((4 - 1) × 30ms). To keep the

IRQ threads on turbo vCPU busy, all data received during this period need to be buffered.

So if the bandwidth of NIC is BN , the minimum kernel buffer required (Bmin) is: Bmin =

BN × Scheduling Delay (i.e., the required kernel buffer is proportional to the number of

VMs sharing the same CPU core). In fact, the real kernel buffer we need is almost always

much larger than Bmin. For example, in our experimental environment with 1Gbps NICs,

if 4 VMs share one CPU, the kernel buffer for UDP should be around 11.25MB. However,

we did not obtain high throughput (more than 900Mbps) until we set the UDP kernel buffer

(net.core.rmem max) to about 40MB.

Modifications to VM’s TCP stack While simply setting the guest kernel buffer to a high

value ensured good UDP performance, it did not improve TCP throughput at all. Upon

a deeper investigation, we found the following problem: In TCP, when a data segment is

received, the receiver generates an ACK to inform the reception of the segment. The sender

uses this ACK to confirm the reception of data as well as for congestion control.

Now, using the turbo core, we eliminate the long delay for processing incoming data

segments. With our additional I/O buffering enabled, the IRQ context now buffers all these

52

Algorithm 2 Generating ACK for Backlog Queue
1: rcv.nxt is the seq. number of expected packet for receive queue

2: bl.nxt is the seq. number of expected packet for backlog queue

3: seq is the seq. number of received packet

4: if backlog queue is empty then

5: if rcv.nxt ≥ bl.nxt then

6: /* initial status or packets in backlog queue are all acked by process context */

7: bl.nxt = rcv.nxt;

8: bl.online = 1; /* enable ACK generation */

9: end if

10: else

11: if bl.online == 0 and bl.nxt ≤ rcv nxt then

12: /* packets in backlog queue are acked by process context */

13: bl.online = 1; /* enable ACK generation */

14: bl.nxt = rcv.nxt;

15: end if

16: end if

17: if bl.online == 1 then

18: if bl.nxt == seq then

19: /* packet to be added to backlog queue is in order */

20: update(bl.nxt);

21: else

22: /* stop ACK generation due to out-of-order packet */

23: bl.online = 0;

24: end if

25: end if

26: if add backlog() is successful and bl.online == 1 then

27: tcp ack backlog(); /* generate and send ACK */

28: end if

53

data packets. However, the locking behavior in the VM’s TCP stack still prevents the ACK

generation in a timely manner, hence reducing TCP throughput significantly.

Specifically, when the user process is calling function recv(), it locks the socket to

prevent the IRQ threads from modifying the socket structure while it is reading from the

socket buffers. If a new data segment arrives during this period, the IRQ process will queue

it in the backlog queue without generating an ACK. When the receiving process engages in

a tight receiving loop, the socket gets locked frequently by the process context. Moreover,

the process can get scheduled out of the regular core while it is holding the lock. When this

happens, ACKs will not be generated for a long period (until the process gets scheduled and

releases the lock), even though the turbo core can accept and buffer TCP segments from

the network. As a result, the sender will throttle down the sending rate leading to sub-par

TCP throughput.

We make a simple modification to the VM’s TCP stack to enable ACK generation

from the IRQ context running in the turbo core, even when the socket structure is locked

by the user process. The high-level steps performed by our modification are shown in

Algorithm 2 which runs in the softIRQ context just before queuing the packet in the TCP

backlog queue. Here, when the IRQ thread discovers that the socket is locked by the user

process, it checks whether the new data segment is in-order. If so, an ACK is generated

for the data packet, which will then be marked as acknowledged and queued. Note that

we are not modifying the socket structure as it is currently owned by the process context.

This is somewhat similar to vSnoop [5], although vSnoop is implemented purely in the

driver domain whereas the ACK generation here is from within the guest VM. Thus we

have access to VM’s TCP information and can afford much larger buffers (compared to

the limited ring buffer space in vSnoop). If a flow encounters an out-of-order packet, we

disable this ACK generation until the missing segments are recovered by the usual slow

path of TCP processing. This small modification helps achieve TCP throughput close to

the line rate.

54

3.4 Implementation

We have implemented a prototype of vTurbo based on Xen 4.1.2. vTurbo only requires

small modifications to the VM scheduler in hypervisor (about 400 lines of code) and guest

OS kernel (less than 200 lines of code).

Hypervisor To differentiate between regular cores and turbo cores, we added a field to

the per-core data structure schedule data, to indicate the CPU time-slice for the specific

core–30ms for regular cores and 0.1ms for turbo cores. Our implementation allows the

flexibility of changing these values dynamically via xm tools.

Our vTurbo scheduler inherits most of its functionality from Xen’s credit scheduler

which provides the proportional fairness and work-conserving properties. We added and

modified functionality of the main scheduler code of the credit scheduler to accommodate

turbo cores and turbo vCPUs. Specifically, we modified function csched schedule(), which

is responsible for selecting vCPUs from the runqueue to run on physical cores and setting

the scheduling timer of turbo cores to 0.1ms.

We assign each VM a turbo vCPU by modifying the VM’s configuration so that an extra

vCPU is added during the configuration parsing step of VM initialization performed by the

Xen tools. Also during this step, the turbo vCPUs are pinned to the set of turbo cores and

regular vCPUs are pinned to the regular cores by modifying the loaded VM’s configuration.

By doing this, we do not have to modify the scheduler code to prevent undesirable vCPU

migrations (discussed in Design section), because the credit scheduler will adhere to the

CPU affinity rules set in the configuration.

CPU accounting is conducted by function csched acct() in the credit scheduler. We

extended this function by implementing two accounting routines for regular and turbo vC-

PUs individually as shown in Algorithm 3. They run at different frequencies in accor-

dance with CPU scheduling frequencies (e.g., 30ms for regular vCPUs and 0.1ms for turbo

vCPUs), because updating credits faster or slower than the scheduling frequency would

cause inaccurate state of vCPUs in terms of OVER and UNDER priorities in Xen. The

vTurbo accounting routines are simple, incurring very low overhead considering the high

55

Algorithm 3 vTurbo accounting algorithm
Require: num tcore≥ 1

Require: num rcore≥ 1

Require: num vm≥ 1

Regular accounting triggered every 30ms:

tcore usage = get rcore usage(); /* CR
tot */

rcore usage = get tcore usage(); /* CT
tot */

for vm in vm list do

vm.credits = vm.weight×

(tcore usage+ rcore usage)/vm weight sum;

vm.tcredits = get turbo core usage(vm);

vm.rcredits = vm.credits− vm.tcredits;

ratio = 300; /* = 30/0.1 */

vm.vturbo slice = vm vcredits/ratio;

update rcredits(vm.rcredits);

end for

vTurbo accounting triggered every 0.1ms:

for vm in vm list do

update tcredits(vm.vturbo slice);

end for

frequency of their execution. Functions get rcore usage() and get tcore usage() retrieve

the consumed clock cycles by regular vCPUs and turbo vCPUs of all VMs respectively;

while functions update rcredits() and update tcredits() set the calculated credits for regu-

lar cores and turbo cores for the next scheduling period. Function get turbo core usage()

retrieves the the clock cycle usage by the turbo vCPU of a given VM. We do not change

method burning credits() in the credit scheduler, which deducts credits from the VMs based

on their running time on the cores. Instead we implement a new method for vTurbo credit

deduction.

56

 0

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

1M 2M 4M 8M 16M

T
h
ro

u
g
h
p
u
t

(K
B

p
s)

Record Size(B)

Xen
vTurbo

(a) Write

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

1M 2M 4M 8M 16M

T
h
ro

u
g
h
p
u
t

(K
B

p
s)

Record Size(B)

Xen
vTurbo

(b) Read

Figure 3.5.: File read/write throughput.

Guest OS Our modification to the TCP stack, to generate early ACKs for packets buffered

in backlog queue, is mainly in function tcp v4 rcv(). There are 3 kernel buffers to buffer

received TCP packets: (1) receive queue, (2) prequeue, and (3) backlog queue. When

a socket is not locked, received packets are buffered in receive queue. However, if the

application process locks the socket while fetching data from the kernel, packets received

during that period will be buffered in backlog queue. We modified the backlog queuing path

of function tcp v4 rcv() to verify a received packet is “expected” and if so, call function

tcp ack() to generate an ACK for the received packet. Since very few packets (less than

0.1%) go to prequeue in CPU sharing VMs, we disable prequeue in vTurbo to simplify our

implementation.

3.5 Evaluation

We first evaluate the effectiveness of vTurbo for different types of I/O operations via a

series of micro-benchmarks. We then use NFS, SCP, and Apache Olio [39] to evaluate the

application-level performance improvement by vTurbo.

Experimental setup Our testbed consists of servers with quad-core 3.2GHz Intel Xeon

CPUs and 16GB of RAM. They are connected via Gigabit Ethernet, except for the experi-

57

ments with 10Gbps Ethernet. These servers run Xen 4.1.2 as hypervisor and Linux 3.2 in

both domain0 and guest VMs. We pin domain0 to one of the cores in all our experiments.

3.5.1 Micro-Benchmark Results

In this section we evaluate the performance of vTurbo for various types of I/O. We use

lookbusy [25] to keep the CPU utilization at determined levels during experiments.

File read and write We use IOzone benchmark [40] to read/write a 1GB file from/to disk

and measure the read/write throughput. Figure 3.5 shows the read and write throughput—in

comparison with the vanilla Xen–when we vary the record size from 1MB to 16MB.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1,000

3 4 5

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Number of VMs

Xen−UDP
vTurbo−UDP
Xen−TCP
vTurbo−TCP

(a) 1Gbps Network

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

3 4 5

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Number of VMs

Xen−UDP
vTurbo−UDP
Xen−TCP
vTurbo−TCP

(b) 10Gbps Network

Figure 3.6.: TCP and UDP throughput.

From Figure 3.5(a) we see that the disk write throughput is improved significantly (by

75% to 82%); whereas the disk read throughput (Figure 3.5(b)) sees less improvement

(only up to 26%). The main reason is that, when the process performs a write, the data is

immediately written to the file system cache and the write() call returns. So the process can

keep writing while the regular vCPU is scheduled. The dirty pages of the disk cache are

flushed to the disk by a kernel thread executed by the turbo vCPU. Therefore with vTurbo,

disk write throughput is greatly improved. However, when the process performs a read for

a fresh block from the disk, it gets blocked until the actual data blocks are read from the

58

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1,000

X
en

v
T

u
rb

o

X
en

v
T

u
rb

o

X
en

v
T

u
rb

o

X
en

v
T

u
rb

o

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Number of I/O Intensive VMs
 1 2 3 4

vm4
vm3
vm2
vm1

Figure 3.7.: UDP throughput: multiple I/O-intensive VMs.

disk. Meanwhile the hypervisor may schedule other vCPUs on the regular core. The turbo

vCPU will be able to handle the disk read completion interrupt and place the data in the

process’ buffer while the regular vCPU is scheduled out. But the process will not be able to

make further read requests until it is scheduled again. Hence in this case, vTurbo achieves

less throughput improvement than in the case of disk write.

UDP throughput To measure the benefit of vTurbo to network I/O we first measure the

UDP throughput improvement achieved by vTurbo. In these experiments, we use iperf to

send a stream of UDP packets for 10 seconds to a VM sharing a core with 2, 3, or 4 other

VMs. The average throughput (averaged over 10 runs) observed at the VM on vanilla Xen

and vTurbo is shown in Figure 3.6(a) by blue and yellow bars, respectively. With vanilla

Xen, the UDP throughput starts to decrease when the number of VMs sharing the core

increases. This is because, when UDP packets arrive at domain0, the target VM may not

be scheduled and the packets have to be buffered in domain0. But the space in domain0 is

limited and hence once this buffer fills up, packets will be dropped causing the throughput

to go down. With vTurbo, the target VM’s network IRQ processing threads get scheduled

frequently and hence the buffer in domain0 can be drained frequently. This leads to much

less packet drops thereby achieving close-to full network bandwidth (1Gbps).

59

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1,000

UDP TCP

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Protocol

Xen
Xen+irqbalance
vTurbo

Figure 3.8.: UDP and TCP throughput for VSMP VMs.

Next, we evaluate the impact of sharing the turbo core among multiple I/O-intensive

VMs. We reuse the setup in the previous experiment. But instead of 1 VM receiving a

UDP packet stream, we increase the number of VMs receiving UDP streams from 1 to

4. Figure 3.7 shows the aggregate throughput achieved as well as the throughput seen by

individual VMs. In both vanilla Xen and Xen with vTurbo configurations, we see that the

I/O bandwidth is fairly shared among VMs. However, vTurbo achieves (close to) wire

speed and outperforms vanilla Xen irrespective of the number of I/O-intensive VMs.

TCP throughput We use a setup similar to the UDP experiments to measure the TCP

throughput improvement achieved by vTurbo. In this experiment, we send a 200MB file

using iperf to a VM from another server and we vary the number of VMs sharing the same

core with the receiving VM. Figure 3.6(a) shows the TCP throughput on vanilla Xen and

Xen with vTurbo by grey and red bars, respectively. Recall that with vTurbo, the TCP stack

is modified to generate ACKs when the regular vCPU is holding the socket ownership and

scheduled out. As the figure shows, vTurbo improves TCP throughput significantly (by

63% - 200%). However the TCP throughput achieved by vTurbo still does not reach the

full available network bandwidth. The reason is, even with our modification, if a packet

60

loss happens, we have to resort to the (usual) slow code path where packet loss recovery is

subject to regular vCPU scheduling delay, which negatively affects the TCP throughput.

10Gbps Ethernet To evaluate the benefit of vTurbo with 10Gbps Ethernet, we repeat the

UDP and TCP experiments. In our setup, two physical servers are connected via 10Gbps

Ethernet. In the UDP experiment, we use netperf [41] to send a 10-second UDP stream

to the target VM sharing a core with 2 to 4 other VMs. In the TCP experiment, we send

a 500MB file using iperf from one physical server to a VM running in the other server,

varying the number of VMs sharing the same core with the receiving VM. The results in

Figure 3.6(b) indicate that, in a 10Gbps network, vTurbo achieves a pattern of improvement

for both UDP and TCP throughput similar to that in the 1Gbps network. However, since the

regular core is shared by multiple VMs, the application does not get enough CPU cycles

to copy the buffered data from kernel space to user space, hence we can not achieve line

speed.

Benefit of vTurbo to VSMP VMs To show the benefit of vTurbo to SMP VMs, we use

iperf to send TCP and UDP traffic (in different runs) to a VM which is assigned 2 vCPUs.

In this experiment, we run 4 VMs each with 2 vCPUs. These vCPUs are restricted to run

in the first 2 cores of the quad-core processor, but are allowed to migrate between the two

cores. Similar to previous experiments, we pin domain0 to the 3rd core and, for vTurbo,

we use the 4th core as the turbo core. In the vanilla Xen configuration, we first disable

irqbalance in VM and allow the interrupts to be directed only to vCPU0 of the VM. Next

we enable irqbalance so that the interrupts can be balanced between the two vCPUs. In

the vTurbo configuration, interrupts are routed to the turbo vCPU. Figure 3.8 shows the

TCP and UDP throughput when transferring 200MB of data to the VSMP VM. vTurbo

vastly outperforms both irqbalance-on and irqbalance-off configurations. However, the

TCP throughput is lower than that under the “4 single-vCPU VMs” configuration (for both

vanilla Xen and vTurbo configurations – see Figure 3.6(a)) . We conjecture that this is

due to the vCPU migrations between the two physical cores and the iperf receiver process

migrations between the two vCPUs of the VSMP VM.

61

3.5.2 Application-Level Results

 0

 20

 40

 60

 80

 100

 120

W
rit

e

R
e−

w
rit

e

R
ea

d

R
e−

re
ad

T
h

ro
u

g
h

p
u

t
(M

B
p

s)

Test

Xen
vTurbo

(a) NFS read/write throughput.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

3 4 5

T
h
ro

u
g
h
p
u
t

(M
B

p
s)

Number of VMs

Xen
vTurbo

(b) SCP throughput.

Figure 3.9.: SCP and NFS throughput.

NFS server throughput NFS uses TCP to transport commands and data blocks between

the NFS client and server. We use the NFS tests in IOzone to evaluate the benefit of vTurbo

to the NFS server. We export a directory of a VM using NFS and run IOzone in another

server which mounts this exported directory. We pin the NFS server VM’s vCPU to a sin-

gle core shared by three other VMs with 30% CPU utilization. Figure 3.9(a) shows the file

read and write throughput (file size: 1GB). vTurbo significantly outperforms vanilla Xen

for all types of operations. The results for “Read” and “Re-read” operations are especially

interesting (and somewhat surprising.) Recall that, for file read/write micro-benchmarks,

vTurbo does not improve disk read throughput much. Yet we observe significant improve-

ment in NFS read and re-read throughput. After some investigation, we figure out the

reasons for the improvements here: First, NFS utilizes pre-fetching for sequential read

operations where multiple read operations are issued in advance. Second, Linux NFS im-

plementation uses in-kernel data transfer from files to sockets. As such, the server process

is able to process many read requests while the regular vCPU is scheduled and to delegate

62

the actual file block transfer operations to the kernel threads run by the turbo vCPU, hence

achieving much higher throughput.

Secure copy (SCP) throughput SCP involves both CPU activity (for encryption and

decryption of data) and I/O activity. We copy a 1GB file using SCP from a client to a VM

sharing a core with 2, 3, or 4 other VMs. In this experiment the sshd process which is

receiving the file is scheduled at the regular vCPU while both TCP processing and disk

I/O handling threads are scheduled at the turbo vCPU. Figure 3.9(b) shows that vTurbo

improves SCP throughput by 53% to 66%.

Table 3.2.: Results from Apache Olio experiment (single- and two-instance)

Single Instance
Two Simultaneous Instances

Instance 1 Instance 2

Operation
Count Count Count Count Count Count

Vanilla Xen vTurbo Vanilla Xen vTurbo Vanilla Xen vTurbo

HomePage 4028 5602 3918 5334 3839 5311

Login 1629 2190 1524 2121 1540 2109

TagSearch 5183 7198 4888 6822 4892 6778

EventDetail 3856 5274 3701 5075 3630 5013

PersonDetail 405 562 379 550 381 508

AddPerson 127 178 131 177 120 167

AddEvent 300 402 280 416 279 413

Total 15528 21406 14821 20495 14681 20299

Rate(ops/sec) 51.8 71.3 49.4 68.3 48.9 67.7

Improvement (%) - 37.6% - 38.2% - 38.4%

Apache Olio To assess the benefit of vTurbo to a cloud application, we use Apache Olio,

an event calender developed using Web 2.0 technologies. The Apache Olio benchmark

consists of 3 components: (1) a web server to process user requests, (2) a MySQL database

63

server to store user profiles and event information, and (3) an NFS server to store images

and documents specific to events. We use the PHP version of the benchmark.

In our setup, we host the 3 Olio components in 3 different VMs each in a separate

physical host. In each host we pin the Olio VM’s vCPU to a single core, which is shared by

3 other VMs having 20% of CPU load. We stress the Olio service with 400 client threads

generating requests using the Faban client simulator for 6 minutes.

In Table 3.2, the “Single Instance” (2nd and 3rd) columns show the breakdown of total

operations (averaged over 3 runs) performed by Olio on vanilla Xen and on vTurbo, respec-

tively. vTurbo achieves higher operation counts than vanilla Xen for all types of operations

during the same period. This is because vTurbo improves communication performance

among the three Olio components as well as file write performance of MySQL and NFS

servers. With vTurbo the overall throughput of the Olio service is improved from 51.8

ops/second to 71.3 ops/second – a 37.6% improvement.

Next, we evaluate the performance of two simultaneous instances of Olio, with the

same set of components hosted by the same physical servers. In this experiment, of the 4

CPU cores of each server, we dedicate one core to domain0 and one core as the turbo core

shared by all VMs. In our replicated Olio configuration, we pin the two copies of each

Olio component to the 2 remaining cores respectively, with each core shared by 3 other

VMs. Columns 4, 5, 6, 7 of Table 3.2 show the breakdown of total operations performed

by the two Olio instances, which are started at the same time and run for the same 6-minute

period. Compared with the “Single Instance” results, most rows see a slight reduction of

operation throughput for both vanilla Xen and vTurbo configurations. We believe this is

due to the sharing of resources such as the disk and network. However, we observe that

with vTurbo, the overall Olio throughput is increased by 38.2% and 38.4% for instances 1

and 2, respectively.

64

4 EFFICIENT DATA ACCESS FOR HADOOP IN VIRTUALIZED CLOUDS

We have demostrated two efficient methods for the CPU sharing scenario. In fact, even

we give each VM dedicated CPU cores, the I/O intensive applications still suffer in vir-

tualized clouds because of the device virtualization overhead. For example, many bigdata

applications such as Hadoop can not get the same performance after simply being moved

to virtualized clouds, because these applications are originally designed for physical ma-

chine. To bridge the bigdata applications to virtual clouds, we will present a new data

access method for Hadoop in this chapter.

Virtualization introduces a significant amount of overhead to I/O intensive applications

due to device virtualization and VMs or I/O threads scheduling delay. In particular, de-

vice virtualization causes significant CPU overhead as I/O data needs to be moved across

several protection boundaries. We observe that such overhead especially affects the I/O per-

formance of the Hadoop distributed file system (HDFS). In fact, data read from an HDFS

datanode VM must go through virtual devices multiple times — incurring non-negligible

virtualization overhead — even though both client VM and datanode VM may be running

on the same machine. In this paper, we propose vRead, a programmable framework which

connects I/O flows from HDFS applications directly to their data. vRead enables direct

“reads” to the disk images of datanode VMs from the hypervisor. By doing so, vRead can

significantly avoid device virtualization overhead, resulting in improved I/O throughput as

well as CPU savings for Hadoop workloads and other applications relying on HDFS.

4.1 Introduction

Many enterprises are increasingly moving their applications from traditional infrastruc-

tures to private/public cloud platforms in order to reduce application running costs, both in

terms of capital as well as operational expenditure. Cloud providers generate revenue by

65

keeping their operational costs low while providing good performance for their “tenants”.

The key technology which drives cloud computing is virtualization. In addition to enabling

multi-tenancy in cloud environments, virtualizing hosts in the cloud environment makes

resource management increasingly flexible, resulting in significant savings in operational

costs.

Similar to other cloud applications, Hadoop [42] applications can also benefit from

cloud deployment by taking advantage of the agility to help deploy, run, and manage

these clusters while maintaining reasonable performance on par with physical deploy-

ments. Compared with running Hadoop on physical machines, virtualized Hadoop allows

clusters to be scaled dynamically — separating data and computation in different virtual

machines (VMs) while keeping data safe and persistent. Several public and private cloud

platforms already embrace this concept. For instance, the Amazon EC2 [1] provides an

Elastic Map/Reduce (EMR) service [43] for hosting data processing applications. Simi-

larly, Openstack [44] is developing the Sahara [45] platform with similar goals as EMR.

VMware’s Hadoop Virtualization Extention (HVE) [11] goes one step further to enhance

Hadoop’s topology awareness on virtualized platforms (upstreamed into Apache Hadoop

release 1.2.0+).

However, running Hadoop inside VMs can lead to sub-optimal performance due to

virtualization and data movement overheads. Specifically, the performance of Hadoop in-

side VMs is heavily dependent on the I/O efficiency of the Hadoop distributed file system

(HDFS) [9], because all consumed data by big data applications is first loaded from HDFS.

In general, when the client application requests the HDFS datanode to read a file, it reads

that file from the local disk and sends its content back to the client over a TCP socket.

Depending on the location of the datanode in relation to the client, this performance can

vary drastically. For instance, if there is a co-located datanode, standard Hadoop imple-

mentations prefer a local read from the co-located datanode over other replicas elsewhere.

While the local read is efficient when Hadoop is run in non-virtualized environments, its

performance can suffer when the client and datanode are co-located on the same physi-

cal host but in different VMs (recommended deployments by Docker [10] and VMware’s

66

HVE [11, 12]), due to device virtualization overheads and data movement through protec-

tion boundaries (hypervisor, OS, application). Remote reads are even slower because of the

additional network data transfer overheads.

In particular, the data flow for each file read on HDFS in a virtualized cloud causes data

to pass through the virtual devices (e.g., virtual block and virtual NIC) multiple times —

causing excessive CPU consumption and performance degradation compared to running

Hadoop in physical machines. Further, even if high speed storage hardware (e.g. SSD) is

used in the virtualized hosts, the HDFS performance, in terms of throughput and latency,

will still be degraded due to a lack of CPU cycles to copy the data. In addition, if low-power

processors (Atom, ARM, etc.) are used (as is the trend in some data centers to obtain better

per-watt performance), this degradation is even more serious.

Therefore, if we can provide an efficient data movement channel between datanode

VMs and client VMs, then we can mitigate the negative impact caused by device virtual-

ization overhead and achieve better data read performance.

In this paper, we focus on improving the I/O performance of virtualized Hadoop ap-

plications or other big data applications which rely on HDFS that involve significant data

reads, either partially or completely, in their work flows. More specifically, we target data

movement between datanode VMs and client VMs — without performing transformation

over virtual network and virtual disk. We propose to alleviate the involved device virtual-

ization overheads by enabling HDFS client VMs to directly read data from the co-located

datanode VM’s virtual disk or utilizing RDMA [46] over converged Ethernet (RoCE) [47]

to transfer data directly from the remote disk to the memory of client VMs via its zero-

copy networking behavior. By doing so, we are able to reduce 1) device virtualization

overhead such as copying data through the virtual disk, virtual network, and the network

stack in both the datanode VM and client VM, 2) data copy overhead between the guest

kernel/application memory and the data buffers in the host kernel for remote reads, and 3)

I/O threads scheduling and synchronization overheads caused by “indirect” reads unneces-

sarily involving the virtual network between VMs.

67

To realize the idea of an efficient data movement channel in the hypervisor layer, we

have developed a system called vRead, where data needed by the HDFS client VM is

directly read from the virtual disk of a datanode VM — avoiding unnecessary data copies

involved in virtual I/O behaviors. vRead installs a kernel module and a library in the guest

providing the file operations interface and a daemon in the host to read data owned by

datanode VMs from local and remote physical disks (via RDMA) then map it into the guest

memory for the application’s use. vRead is transparent to user level applications (such as

Hadoop MapReduce, Hbase, and Hive) using HDFS. Therefore, it is able to support all

existing applications storing data in HDFS.

To summarize, our contributions in this paper are:

1. We propose a new file operation interface for HDFS client VMs which allows Hadoop

applications to read data from HDFS more efficiently.

2. We develop the vRead system, which provides I/O shortcuts at the hypervisor level

via components in the guest and in the hypervisor. vRead works for both virtual local

read (read from co-located datanode VMs) and remote read.

3. We present evaluation results from a vRead prototype implemented on KVM. Our

microbenchmark results show that vRead achieves higher read throughput, lower

latency, and less CPU cycle consumption compared to standard HDFS running on

VMs. For example, Hadoop’s throughput can be improved by up to 60% for read

and 150% for re-read. Results from a number of Hadoop benchmarks also show

significant application-level performance improvements with vRead.

4.2 Motivation

In this section, we motivate the problem by demonstrating the impact of virtualization

overheads on Hadoop I/O efficiency. We then discuss the inadequacy of existing solutions.

68

Virtual Block Virtual NIC

Application

Virtual NIC Virtual Block

HDFS Datanode

Virt-IO Virt-IO

Kernel Kernel

VM1 VM2

Hypervisor

Disk Image of VM1 Disk Image of VM2

Figure 4.1.: I/O flow in Hadoop for co-located VMs.

4.2.1 Problem Analysis

Virtualization-based overheads (e.g., device virtualization and VM or I/O thread schedul-

ing) cause serious performance degradation to HDFS, and this prevents Hadoop and other

applications which rely on HDFS (e.g. Hbase, Hive, and generic Java applications stor-

ing data in HDFS) from achieving their expected performance. To illustrate this problem,

Figure 4.1 presents a concrete example of a Hadoop application hosted in a VM reading

a file from a co-located VM hosting the HDFS datanode1. In this scenario, the Hadoop

application first creates a TCP socket, connects to the HDFS datanode, and sends the file

read request via this socket. Then the HDFS datanode reads the requested file from disk

and sends its content back over the same TCP connection.

Even though the virtual disk and virtual network between co-located VMs are very fast

(mainly due to inter-VM para-virtual I/O techniques such as virt-io [48] and vhost), this

single I/O flow involves at least 5 data copies: 3 data copies caused by virt-io, 1 inter-VM

data copy, and 1 copy between the kernel buffer and application buffer in VM1 (which may

also happen in VM2). Note that each data copy consumes non-negligible CPU cycles and

the whole data transfer incurs overhead from both VMs’ network stacks. Further, if the file

being read was located on a remote datanode VM running on another physical machine,

1Such virtual local reads from co-located VMs are more common than remote reads due to existing virtual
Hadoop optimizations.

69

then we would need to also consider the physical networking overhead and additional de-

lays in the host kernels’ network stacks on each physical machine. Intuitively, such high

I/O costs mean less CPU cycles for the real Hadoop workload, which negatively impacts

the performance of Hadoop applications.

To illustrate this performance degradation, Figure 4.2 compares the observed read de-

lays from HDFS versus the local file system in a virtualized host. In this experiment, we

ran a Java application in one VM that reads a file from the local file system and an HDFS

co-located datanode VM. The local file read (i.e., the baseline reading performance) only

involves 2 data copies: 1) from disk to guest kernel buffer and 2) from guest kernel buffer

to guest user space. We varied the request size (application buffer size) from 64KB to

4MB and used two different read patterns. “Read without cache” means reading data after

clearing the disk memory buffer in the guest kernel (virtual disk cache in the hypervisor is

disabled). “Read with cache” (or re-read) means reading data without clearing the cache.

Figure 4.2 shows that the delay of HDFS hosted in a co-located VM is significantly higher

than the baseline read for all cases. The root cause of this result is that inter-VM reads

involve more data copies and suffer more device virtualization overhead.

However, besides the additional data copies, there exists a second, more systemic cause

of this performance degradation: I/O thread synchronization in the virtualized host. Most

existing hypervisors perform I/O (network or disk) in a dedicated per-VM thread that is

optimized for I/O performance. For instance, Xen uses a netback thread to process I/O

requests for the virtual network, and similarly KVM uses a vhost-net thread for the same

task. Therefore, to get good I/O performance, the VM and the corresponding I/O thread

must run cooperatively on different cores so that the synchronization delay between them is

short. If not, context switches between them will cause slow-down at the hypervisor level.

In addition to the synchronization between a VM and its I/O thread, data movement

between 2 co-located VMs requires the I/O threads of both VMs to synchronize as well.

Therefore, we would need 4 free cores to allow 2 I/O VMs to communicate with each other

unimpededly. As more VMs run in the same host, the data transfer between VMs is further

degraded because the VM scheduler cannot find enough free cores to run the cooperating

70

threads. Figure 4.3 highlights this problem. In this experiment, we ran 2 co-located VMs

hosting a netperf [41] server and client respectively in a quad-core machine. When there

are no other active VMs running, we can get high transaction rates, even with varying

request sizes. However, if an additional 2 VMs are running CPU-intensive workloads (85%

lookbusy [25]) in the same host, then the TCP transaction rate drops by 20%. Since the

total CPU utilization of the vCPU thread and I/O thread of each VM hosting netperf is less

than 75% , we know the host is not overloaded for the 4 VMs scenario. Thus, the only

reason for the drop in transaction rate is the synchronization delay of VMs and I/O threads.

Again, because virtualized Hadoop requires many such cross-VM data movements, this

same scenario causes a loss in I/O performance in virtualized Hadoop as well.

 0

 5

 10

 15

 20

 25

 30

 35

 40

64KB 1MB 4MB

D
at

a
R

ea
d

 D
el

ay
 (

m
s)

size of request

inter−VM
local

(a) Access delay without cache.

 0

 5

 10

 15

 20

 25

 30

 35

 40

64KB 1MB 4MB

D
at

a
R

ea
d

 D
el

ay
 (

m
s)

size of request

inter−VM
local

(b) Access delay with cache.

Figure 4.2.: Virtual HDFS data access delay caused by device virtualization overhead.

4.2.2 Alternative Solutions

We now examine several alternative solutions and their shortcomings when used with

virtual Hadoop.

HDFS Short-Circuit Local Reads HDFS Short-Circuit Local Reads (HDFS-2246 and

HDFS-347) [49] allow a read to bypass the datanode process — so that the client to read

71

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

32KB 64KB 128KB

T
C

P
 T

ra
n
sa

ct
io

n
 R

at
e

(p
er

 s
ec

)

request size

2vms
4vms

Figure 4.3.: I/O Threads synchronization overhead.

each file directly. This approach is only possible when the client process and the datanode

process execute in the same operating system (OS). However, virtual Hadoop separates

HDFS clients and datanodes in different VMs to obtain a more scalable Hadoop cluster

and better on-demand resource allocation. Further, locating some clients and datanodes in

the same VM to utilize HDFS Short-Circuit Local Reads would cause a significant penalty

to virtual remote reads (inter-VM data reads). Thus, traditional HDFS Short-Circuit Local

Reads does not work for virtual Hadoop.

VirtFS VirtFS [50] is a para-virtualized file system interface designed to improve pass-

through technologies which rely on the virt-io framework and the 9P protocol. With VirtFS,

a guest can easily exchange data with the host. However, there are several aspects of VirtFS

which impedes its useful application to HDFS. First, the 9P protocol used by VirtFS is

not efficient, resulting in unacceptable disk I/O performance. Second, the explicit shared

directory assignment of VirtFS makes the virtual Hadoop cluster setup more complex and

inflexible. Third, it is not applicable when datanodes and clients are in different physical

machines, which is a typical pattern in distributed Hadoop systems.

Hadoop Virtualization Extensions VMware’s HVE enables virtual Hadoop to know

the location of data files in order to co-locate inter-VM data reads. However, it does not

optimize the data read path in the hypervisor (causing excessive data copies). This data

flow is similar to the scenario shown in Figure 4.1, and is thus susceptible to the same

aforementioned issues.

72

Inter-VM Shared Memory Inter-VM Shared Memory [51–53] is a popular technology

used to boost the performance of inter-VM communication. However, this zero-copy com-

munication between VMs can only reduce one data copy in the data flow of virtual Hadoop

(Figure 4.1). The involvement of datanode VMs still imposes additional overheads (i.e.,

device virtualization and I/O threads synchronization) on each data read performed by ap-

plications running in client VMs. Again, this approach only works for co-located VMs

running in the same machine.

4.3 Design

Table 4.1.: vRead API.

API Function Input Parameters Return Value Description

vRead open() blk name, datanodeID vRead descriptor
Open the file for an HDFS block stored in a specified

datanode and get the corresponding vRead descriptor.

vRead read()
vRead descriptor, buffer Number of bytes Attempt to read up to length bytes from the file

offset, length read into buffer pointed to by vRead descriptor.

vRead seek() vRead descriptor, offset
Resulting offset as Set the file offset for an opened file pointed to by

measured in bytes the given vRead descriptor.

vRead close() vRead descriptor Successful (0) or not (-1)
Close the file for a given HDFS block indicated

by the vRead descriptor.

Based on the above discussion, it is evident that if we provide an efficient file read

mechanism for HDFS (i.e. if the HDFS clients can read the disk blocks owned by datanode

VMs directly regardless of their location), then we can improve virtual Hadoop’s perfor-

mance significantly. vRead achieves this by letting the HDFS client VMs independently

perform data reads directly from the disk instead of channeling it through the datanode

VM.

First, vRead enables a shortcut in the I/O path that reduces the data access delay. Sec-

ond, a reduction of data copies translates to the reduction of CPU consumption, thus more

CPU resources are available for the actual Hadoop CPU-bound tasks. Third, a shortened

73

inter-VM data transfer path significantly reduces the I/O processing delay caused by syn-

chronization of the VMs’ I/O threads.

Virtual
Block

Virtual
NIC

Application HDFS Datanode

Virt-IO

vR
e

ad
 B

u
ffe

r

Kernel Kernel

VM1 VM2

Hypervisor

vRead Daemon

vRead library

vRead Hash

Virtual
Block

Virtual
NIC

Virt-IO

vRead driver

Disk Image of VM1 Disk Image of VM2

Figure 4.4.: I/O flow in Hadoop for co-located VMs with vRead.

To enable an HDFS client VM to read data directly from a datanode VM’s virtual drive,

vRead needs to provide three features: 1) a new user-level block read interface for inter-

VM block reads, 2) a mechanism to directly read from the virtual drive of the datanode

(an active VM) without channeling through the datanode and, 3) an efficient data sharing

(zero-copy) and communication channel between the guest OS and hypervisor.

The architecture of vRead is shown by Figure 4.4 and Figure 4.5. The above require-

ments are realized with the three main components of vRead shown in these figures. In the

following subsections we will discuss each of these sub-components of vRead in detail.

In this paper, vRead targets HDFS but this framework is able to be generalized to other

similar distributed file systems such as QFS [54] and GFS [55].

4.3.1 vRead User-level API

vRead provides a set of user-level library functions for HDFS to use. It should be noted

that these API calls will only be used by the HDFS components. Hadoop applications are

unaware of the existence of the vRead system and continue to use the original HDFS in-

terfaces to read data — hence requiring no modifications to them. vRead’s implementation

74

is independent of the guest OS so that this user-level library does not need to be adjusted

or changed whenever a different OS is used. We outline the vRead user-level APIs in

Table 4.1. The vRead APIs are a set of functions provided in a user-level library (libvread)

which hides the complexity of interacting with the underlying vRead components. This

library provides 4 main functions. To read a file stored in a datanode VM’s virtual disk, we

first need to call vRead open to initialize a set of data structures inside both the guest OS

as well as inside the hypervisor. This will return a vRead descriptor which is used as a pa-

rameter in the rest of the functions. HDFS only understands block names, hence the vRead

descriptor is invisible to it. Thus, each obtained descriptor is stored in a hash table in the

user-level library, which maps the block names to vRead descriptors, until the vRead close

function is called. This lets HDFS reuse the descriptor for subsequent read/seek operations

on the same block file.

Application

vR
e

ad
 B

u
ffe

r

Kernel

VM1

Hypervisor
vRead Daemon

Hypervisor
vRead Daemon

Kernel

RDMA

VM2

HDFS Datanode
vRead library

vRead Hash vRead Hash

vRead driver

Disk Image of VM2Disk Image of VM1

Figure 4.5.: I/O flow in Hadoop for remote VMs with vRead.

HDFS is designed to support very large files in a distributed environment. Thus, each

file stored in HDFS is divided into chunks called data blocks (some smaller files on disk,

64MB each by default), and if possible, all blocks will reside on different datanodes. As

a distributed file system, all actual data (HDFS blocks) are stored in the same path in each

datanode. To read a file from HDFS, the Hadoop client needs the assistance of the namen-

75

ode which stores the metadata of each file (block mappings, destination data node ID, etc.).

In this work, we preserve all logic between clients and the namenode, and only modify the

file read logic in the HDFS client interface. We re-implement the HDFS interface with the

vRead file operation interface. When an HDFS client plans to read a specific file, it first

gets the block list from a namenode then uses the vRead interface wrapped by the HDFS

interface to send target block information (block name and datanode ID) and operations

to the vRead per-VM daemon running in the hypervisor. The daemon then reads the data

from the destination virtual disk and returns to the client. We discuss the operation of this

daemon in the following subsection.

4.3.2 Reading from a Datanode’s VM Disk Image

We use a daemon running in the hypervisor to aid in reading from the virtual disk

images of datanodes. This daemon receives the requests from a guest and uses a hash

table to store the mappings between HDFS datanode IDs and the corresponding virtual

disk (which can be a local image file, NFS, or iSCSI) information for each datanode VM.

This hash table is initialized when Hadoop is started by accepting information from the

namenode and looking up the VM’s configuration. For the datanode VMs running on

other machines, we only store the IP address of the destination host machine. This table is

dynamically updated once there are any datanode VMs created, deleted, or migrated.

Reading from a Local Datanode To read data from the datanode VM’s virtual disk (i.e.,

an image file) in the hypervisor using existing POSIX APIs, vRead has to meet the follow-

ing two requirements. First, the vRead hypervisor daemon should be able to understand

the file system in the virtual disk. This is because the HDFS blocks are stored as regular

files in the datanode’s file system and accessing these files requires the hypervisor layer

to understand the file system layout of the datanode VM. In KVM environments, a Linux

kernel functions as the hypervisor and this kernel can interpret most file systems used by

guest OSs (typically guests also use a similar if not the same Linux version).

76

To access the content of the datanode’s file system, all datanode VMs’ virtual disks are

mounted in read only mode to a specific directory in the hypervisor (e.g. /mnt/datanode1)

as loop devices with the assistance of losetup (qemu-nbd module is needed if the disk image

file is qcow format). Since each virtual disk is installed independently of the file systems

(maintained by the guest OS), we need to read the partition tables on these virtual devices

and create device maps over the partitions’ segments (we use the existing Linux tool kpartx

for this).

Second, we need to synchronize accesses to this file system by the datanode and HDFS

clients. The datanode’s access is read-write while the HDFS clients’ accesses are read-

only. Since the file system within the guest OS is independent of the file system in the

hypervisor (file system of the VM is in the VM’s address space and hence opaque to the

hypervisor unless we use VM introspection tools), new HDFS blocks generated by the

datanode are invisible to the vRead daemon. Thus, we need to refresh the directory entry

and inode cache information of the hypervisor mount point of the datanode’s disk partition

if any HDFS blocks are created, deleted, or renamed. However, HDFS mostly operates in

“append-only” mode, hence we do not need to refresh all information for the mount point.

Only the added inodes (i.e., new files representing the HDFS blocks) need to be updated.

The synchronization is achieved through the Hadoop namenode. When a datanode

writes new blocks to the file system, it notifies the namenode about the availability of the

new blocks so the readers (HDFS clients) can access these blocks. We use this notification

as a trigger to refresh the mount point corresponding to that datanode. The new block infor-

mation is obtained from the vfsmount structure and superblock of the corresponding virtual

disk. The whole process is similar to a remount. This process is sufficient to guarantee that

there is no read/write conflict issues since HDFS follows the write-once and read-many ap-

proach for its data blocks. This approach assumes that a file in HDFS will not be modified

once it is written. All new written data will generate new blocks. So we do not need to

be concerned with read/write conflicts when issuing a direct read on a virtual disk without

notifying the owner VM.

77

Reading from a Remote Datanode To read data from a remote datanode, the local vRead

daemon contacts the remote host’s vRead daemon using RDMA and sends the request to

the remote daemon. The remote daemon then performs the read operation on the local disk

(as discussed above) and returns the data via RDMA. For vRead, RDMA is not necessary

(traditional TCP/IP also works), but RDMA helps vRead consume less CPU cycles and

ensure lower latency for remote data reads.

RDMA allows an application to communicate directly with another application via re-

mote memory read/write. This means that an application does not need to rely on the

operating system to transfer messages. To communicate with the remote end, we (1) Reg-

ister a Memory Region (MR). This Memory Region is similar to the packets buffer, but

it is shared by the remote party which can directly access it via the RDMA device. (2)

Create a Send and a Receive Completion Queue (CQ). (3) Create a Queue Pair (QP) that is

a Send/Receive Queue Pair. To send or receive messages, Work Requests (WRs) are placed

onto a QP. When processing is completed, a Work Completion (WC) entry is optionally

placed onto a CQ associated with the work queue. To enable the RDMA, we use the sup-

port of two libraries (rdmacm and libverbs) in userspace and a physical NIC with RDMA

support. Traditional RDMA requires an infiniband network which is very expensive, so we

use RoCE (RDMA over Converged Ethernet) instead of infiniband.

4.3.3 Data Sharing and Communication Channel

The communication between the guest OS and local vRead daemon is accomplished

using a shared memory channel and an event mechanism. This channel is a memory ring

buffer shared by the VM and hypervisor. For each HDFS read request, the vRead driver

in the guest places a request in the shared memory and fires an event to notify the vRead

daemon in the hypervisor. In turn, the vRead daemon in the hypervisor reads the data from

the datanode VM’s disk image, writes the data to this channel, and then sends an event to

the guest OS so the data can be consumed by client applications. We cannot use KVM

virt-io’s ring buffer for this purpose since the HDFS client VM needs to read data from

78

the datanode VM’s virtual disk and such an I/O operation is not the intended use of virt-io

channels. Instead we have to use a shared memory mechanism between the local vRead

daemon and guest OS’s vRead driver.

To achieve zero-copy between the hypervisor and guest OS in the VM, we use a POSIX

SHM object as the shared buffer that is assigned to each VM as a character device. For

each guest, this shared memory object appears as a virtual PCI device inside the guest

OS. This POSIX SHM object is divided into multiple chunks (default 1024) to comprise a

ring buffer. The vRead daemon uses SysV APIs to read from/write to this shared buffer.

The guest maps the virtual PCI device’s address space to it’s own address space and then

performs read/write operations. The synchronization between the vRead daemon and guest

OS is guaranteed by a read/write lock on each chunk.

To send notifications between the vRead daemon in the hypervisor and guest OS, vRead

uses interrupts between them that are implemented by assigned eventfds. Each VM listens

on its own eventfd, and uses its corresponding vRead daemon’s eventfd to send an event

(and vice versa). The only difference is that the vRead daemon operates the event directly,

whereas the event received by the VM has to be translated into a virtual interrupt which

can be recognized by the guest OS. This translation is done by the vRead driver in the

guest kernel. With this channel, applications in the guest OS can send requests (e.g., read a

HDFS block) to the vRead daemon and get the result from the shared memory buffer.

4.4 Implementation

We have implemented a prototype of vRead for the KVM [56] hypervisor. We used

Linux 3.12 as the kernel of the VMs and the KVM host. The Hadoop version is 1.2.1.

vRead includes new implementations of the read interfaces for an HDFS client (in the

DFSClient class). These interfaces mainly contain read, seek, and skip functions located in

the DFSInputStream class (a subclass of DFSClient). Of these functions, the read function

is the most important as it is frequently called during HDFS reads. The DFSInputStream

class has 2 different read functions that vRead overrides: called read1 and read2 in this

79

paper. read1 reads a large file from the beginning and its request size is smaller than

one HDFS block (e.g., for use by applications performing sequential reads). Its vRead

implementation is shown in Algorithm 4. Before reading an HDFS block, vRead checks

whether the corresponding file has been opened previously (and thus has a corresponding

vfd in hash) or not. If the file has not been opened previously, a new vRead descriptor

vfd is created by calling vRead open() and added to a hash table for future use. Upon

subsequent calls to read1, vRead checks if the input descriptor is a valid vRead descriptor

(i.e., in the hash table). If so, it is used to read data via vRead read(); if not, the original

HDFS function read buffer is called to perform the read from the datanode. read2 reads

data from a specific position in a file (e.g., for use in asynchronous/random reads). The

implementation of read2 is outlined by Algorithm 5. Generally, read2 is similar to read1

except that it is allowed to read across multiple blocks so vRead has to collect all involved

block information from the namenode and perform the vRead read on them one by one.

Additionally, we slightly modify the write interfaces of HDFS to update the dentry/inode

of the mount point for new blocks generated by the datanode. Specifically, we call the

vRead update function at the end of the standard append function (in the DFSOutputStream

class) once a full block is written to the datanode VM. Likewise, the same thing happens

for a block delete or rename. Note that we do not have to call vRead update for each

append operation before a new block is completely created. Since all vRead functions in

libvread are written in C, but HDFS is implemented in Java, all vRead functions have to be

called via a Java native interface (JNI). After adding the vRead extensions to the DFSClient

class, the Hadoop source code was re-compiled and we replaced the hadoop-core-1.2.1.jar

required by the Hadoop running environment with our new one.

To interact with the vRead buffer, we implemented a guest kernel driver that: 1) helps

the guest OS recognize the assigned POSIX SHM object as a virtual PCI device and 2)

translates the eventfd signals to virtual interrupts and vice versa. This driver is a loadable

kernel module whose implementation is based on the ivshmem [52] VM driver. The address

of the virtual PCI device representing the vRead buffer is mapped to the address space via

mmap() — so that applications in the guest can read from/write to this ring buffer by calling

80

the vRead series functions in libvread. The vRead ring buffer is divided into 1024 slots

(the size is configurable, with a default of 4KB) comprising the critical area between the

application thread in the guest OS and the vRead daemon in the hypervisor. A spinlock

(pthread spinlock t) is used on each slot to guarantee synchronization safety.

The vRead daemon is a generic thread granted read privilege to the entire local physical

disk of the hypervisor. In the KVM platform, each VM is a process/thread in the host.

Therefore, the vRead daemon can communicate with the process representing a VM via an

eventfd and a read/write on the shared POSIX SHM object (vRead buffer).

To connect to remote vRead daemons on other machines with low latency and low

CPU cost, we use RDMA interfaces (declared in rdma/rdma cma.h and infiniband/arch.h)

instead of TCP/IP APIs to exchange data2. Specifically, we call a few standard infiniband

verbs such as ibv reg mr (register memory regions), ibv post send and ibv post recv (send

and receive requests) on the Ethernet links via RoCE techniques to directly map the work-

ing set address of request/response to the remote memory.

To update the file system for new blocks added in a mounted virtual disk, vRead needs

to refresh the dentry/inode of the mount point if the vRead update function is called in

the guest OS. This is done by calling a function extended from attach recursive mnt() (in

the source code of the mount command) which is responsible for updating the vfsmount

structure of the host file system.

4.5 Evaluation

This section presents our evaluation of vRead using both microbenchmarks and real

world Hadoop applications.

Evaluation Setup Our testbed consists of multiple servers, each with a 3.2 GHz Intel

Xeon quad-core CPU and 16GB of memory. An SSD and 10Gbps RoCE NIC are installed

in each server. All physical servers are connected by 10Gbps network in a LAN. These

servers run KVM as the hypervisor and Linux 3.12 as the OS for all guest VMs and the

2We also implemented a TCP/IP version prototype, but note that it consumes more CPU cycles for remote
reads

81

hosts. The Hadoop version is 1.2.1. To emulate the different CPUs (low power and high

frequency), the frequency of our Xeon processor is set to different values (1.6 GHZ, 2.0

GHZ and 3.2 GHZ) via the cpufreq-set command [57].

All VMs in our experiments are assigned 1 vCPU and 2GB RAM each. We do not

set the CPU affinity for the VMs. KVM vhost-net is enabled to boost the virtual network

performance. vhost-blk is disabled because it is still the test version in the latest KVM

release. The virtual disk image of each VM is a raw image file located in the local SSD.

 0%

 20%

 40%

 60%

 80%

 100%

vRead vanilla

C
P

U
 U

ti
li

z
a
ti

o
n

(%
)

others
vhost−net
data copy(vRead−buffer)
data copy(virtio−vqueue)
loop device
client−application

(a) Client CPU utilization.

 0%

 20%

 40%

 60%

 80%

 100%

vRead−daemon vanilla−datanode

C
P

U
 U

ti
li

z
a
ti

o
n

(%
) others

vhost−net
data copy(virtio−vqueue)
loop device
disk read

(b) Datanode CPU utilization.

Figure 4.6.: CPU utilization for co-located read.

 0%

 20%

 40%

 60%

 80%

 100%

vRead vanilla

C
P

U
 U

ti
li

z
a
ti

o
n

(%
)

others
rdma
vhost−net
data copy(vRead−buffer)
data copy(virtio−vqueue)
loop device
client−application

(a) Client CPU utilization.

 0%

 20%

 40%

 60%

 80%

 100%

vRead−daemon vanilla−datanode

C
P

U
 U

ti
li

z
a
ti

o
n

(%
)

others
rdma
vhost−net
data copy(virtio−vqueue)
loop device
disk read

(b) Datanode CPU utilization.

Figure 4.7.: CPU utilization for remote read with RDMA.

82

4.5.1 Microbenchmark Performance

CPU Savings To verify whether vRead’s shortcut to file reading can reduce overall CPU

cost or not, we compare the CPU utilization of reading a 1GB file from the HDFS with

vRead and without. The request size (application buffer on the client-side) of each read is

1MB. There are three scenarios: 1) the client VM and HDFS datanode VM are running on

the same machine (i.e., co-located scenario), 2) the client VM and datanode VM are running

on two different machines (i.e., remote scenario) and the vRead daemons use RDMA to

exchange data, and 3) still the remote scenario but the vRead daemons use TCP instead of

RDMA to exchange data.

Figure 4.6 shows the average CPU utilization when the client reads from the co-located

datanode VM. As expected, the VMs’ CPU utilization with vRead is much lower than the

vanilla case. Since there is no virtual network involved in vRead for this case, vRead saves

a significant number of CPU cycles both in the guest and host. The direct data read from

disk also avoids any unnecessary data copies between the 2 VMS, between the host and

datanode VM, and between the guest kernel buffer and application buffer in the datanode

VM. In total, we save around 40% of the CPU cycles on the client side and around 65% on

the datanode side with vRead.

The results of the remote-read scenario with RDMA enabled are presented in Figure 4.7.

vRead still beats the vanilla case on both the client and datanode sides. Thanks to RDMA,

the inter-host network cost of vRead (shown by the rdma bar) is far lower than the vanilla

(shown by the vhost-net bar). Since our prototype uses an active model for RDMA data

exchange on the datanode side (actively pushing data into the client’s memory), the RDMA

cost of the host running the datanode VM is higher than that of the host holding the client

VM. In this case, we save around 45% of the CPU cycles on client side and more than 50%

on datanode side.

We also evaluate the TCP version of the data exchange for remote reads. In this setup,

the vRead daemons running on different machines use TCP/IP interfaces instead of RDMA

verbs to exchange data. The results of these tests are shown in Figure 4.8. Compared with

83

the RDMA version, the number of CPU cycles spent in sending/receiving data with TCP

is significantly higher. Note that the total CPU utilization is still slightly lower than the

vanilla case, which also uses TCP/IP, because it avoids copying data from the host to the

datanode VM. Nonetheless, the network processing of the vanilla setup (vhost-net) is even

more efficient than our TCP component (“vRead-net”). This is because all operations of

vhost-net are completely done in kernel space, while our TCP version of vRead is a user-

level thread in the host — which has to switch between kernel space and user space and

thus consumes more CPU cycles. Therefore, we prefer the RDMA version utilizing the

RoCE because it helps achieve encouraging performance with low cost.

 0%

 20%

 40%

 60%

 80%

 100%

vRead vanilla

C
P

U
 U

ti
li

z
a
ti

o
n

(%
)

others
vRead−net
vhost−net
data copy(vRead−buffer)
data copy(virtio−vqueue)
loop device
client−application

(a) Client CPU utilization with TCP.

 0%

 20%

 40%

 60%

 80%

 100%

vRead−daemon vanilla−datanode

C
P

U
 U

ti
li

z
a
ti

o
n
(%

)

others
vRead−net
vhost−net
data copy(virtio−vqueue)
loop device
disk read

(b) Datanode CPU utilization with TCP.

Figure 4.8.: CPU utilization fore remote read with TCP.

Data Read Delay Reduction vRead allows the client VM to read files (HDFS blocks)

from a datanode VM’s disk image directly. Theoretically it would achieve performance

close to that of reading data from the local file system. So we repeat the data access delay

experiment (shown in Figure 4.2) described in Section 4.2. However, now we replace the

local reads by HDFS reads with vRead; the baseline is still vanilla HDFS reads. Figure 4.9

shows the average data read delay when performing a 1GB file read from a co-located

HDFS datanode VM. The request size varies from 64KB to 4MB. In the first scenario, only

2 VMs (client and datanode VMs) are running in a quad-core machine. The CPU frequency

84

is set to 2.0 GHZ. We issue two kinds of reads for this case. Figure 4.9(a) shows the results

after clearing the memory cache in the datanode VM and host. Figure 4.9(b) shows the

results without clearing the memory cache, that is, all data are read from the memory cache

and not the disk (called re-read). Our results show that for any request size, vRead beats

the vanilla case in both read and re-read evaluations, because it cuts 3 data copies for each

read.

Further, recall that I/O thread synchronization may negatively impact inter-VM com-

munication — resulting in HDFS read degradation when CPU competition happens among

VMs and I/O threads. To measure vRead’s effectiveness in this scenario, we ran an ad-

ditional 2 VMs in the same quad-core machine so that all vCPU threads and I/O threads

cannot always find a free core to run on. Hence, the HDFS data read delay in the 4 VMs

scenario is higher than the 2 VMs case. vRead’s performance is also affected, but its degra-

dation is lower than the vanilla case. Therefore, the gap between vRead and the vanilla

case is larger in the 4 VMs scenario. Overall, vRead can reduce the data access delay of

the co-located HDFS reads by up to 40% for the 2 VMs scenario and up to 50% for the 4

VMs scenario compared with the vanilla environment.

 0

 10

 20

 30

 40

 50

64KB 1MB 4MB

D
a
ta

 R
e
a
d

 D
e
la

y
 (

m
s
)

size of request

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(a) Data access delay without cache.

 0

 10

 20

 30

 40

 50

64KB 1MB 4MB

D
a
ta

 R
e
a
d

 D
e
la

y
 (

m
s
)

size of request

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(b) Data access delay with cache.

Figure 4.9.: Data access delay for virtual HDFS.

85

VM3

Lookbusy

VM4

Lookbusy

VM3

Lookbusy

VM4

Lookbusy

Host1 Host2

HDFS

VM2
Datanode1

VM1
Datanode2

VM2
Lookbusy

VM1
Client

Namenode

Figure 4.10.: Hadoop setup.

4.5.2 Application Performance

Hadoop Performance In this experiment, we set up a simple Hadoop cluster containing

one client VM and two datanode VMs. The namenode resides in the same VM as the

client. More specifically, one datanode VM shares the same host (Host1) with the client

VM, the other datanode is hosted by another physical machine (Host2) in the same LAN.

Each physical machine hosts up to 4 VMs, and the rest of the VMs are background VMs

running an 85% lookbusy [25] workload. The setup is shown in Figure 4.10.

In the virtual local read scenario, the client reads data from only the co-located datan-

ode VM. In the remote scenario, only the data stored in the datanode VM located on Host2

is read. hybrid means that the client read data from both the co-located datanode VM

and remote datanode VM, which is a more generic scenario in the real world. A widely

used HDFS benchmark TestDFSIO is chosen to measure the read throughput of HDFS and

the CPU running time. Unlike the simple Java application used in our data access delay

experiment, TestDFSIO is a real Hadoop workload utilizing the Map/Reduce framework.

In our experiment, the client reads/re-reads 5GB of data from the HDFS each time with

the default 1MB memory buffer. To measure the performance on different processors, we

vary the CPU frequency from 1.6 GHZ to 3.2 GHZ to emulate low-power processors and

powerful processors. The results shown in Figure 4.11 indicate that if only the client VM

86

 0

 50

 100

 150

 200

 250

 300

1.6GHz 2.0GHz 3.2GHz

T
h
ro

u
g
h
p
u
t

(M
B

p
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(a) Co-located read.

 0

 50

 100

 150

 200

 250

 300

1.6GHz 2.0GHz 3.2GHz

T
h
ro

u
g
h
p
u
t

(M
B

p
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(b) Remote read.

 0

 50

 100

 150

 200

 250

 300

1.6GHz 2.0GHz 3.2GHz

T
h
ro

u
g
h
p
u
t

(M
B

p
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(c) Hybrid read.

 0

 200

 400

 600

 800

 1,000

1.6GHz 2.0GHz 3.2GHz

T
h
ro

u
g
h
p
u
t

(M
B

p
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(d) Co-located re-read.

 0

 200

 400

 600

 800

 1,000

1.6GHz 2.0GHz 3.2GHz

T
h
ro

u
g
h
p
u
t

(M
B

p
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(e) Remote re-read.

 0

 200

 400

 600

 800

 1,000

 1,200

1.6GHz 2.0GHz 3.2GHz

T
h
ro

u
g
h
p
u
t

(M
B

p
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(f) Hybrid re-read.

Figure 4.11.: HDFS read throughput.

and datanode VM are running (2 VMs scenario) vRead obtains around 20% throughput

improvement over the vanilla Hadoop on powerful processors (3.2 GHZ). While, on the

low-power processors (1.6 GHZ), the throughput improvement increases to around 41%.

The CPU bottleneck on low-power processors becomes more severe for the vanilla case,

but its impact on vRead is slight because vRead requires far fewer CPU cycles to perform

a read from the HDFS which is verified by our CPU saving experiments.

When 2 or 3 additional VMs hosting 85% lookbusy are running on the same hosts (4

VMs in total), each VM and its I/O thread cannot be assured a free core to run on. Thus

the synchronization among VMs and their I/O threads are delayed by the CPU fair-share

scheduler. This is why the vanilla case’s throughput drops by up to 22% for the 4 VMs

87

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

1.6GHz 2.0GHz 3.2GHz

C
P

U
 R

u
n
n
in

g
 T

im
e
 (

m
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(a) Co-located read.

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

1.6GHz 2.0GHz 3.2GHz

C
P

U
 R

u
n
n
in

g
 T

im
e
 (

m
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(b) Remote read.

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

1.6GHz 2.0GHz 3.2GHz

C
P

U
 R

u
n
n
in

g
 T

im
e
 (

m
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(c) Hybrid read.

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

1.6GHz 2.0GHz 3.2GHz

C
P

U
 R

u
n
n
in

g
 T

im
e
 (

m
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(d) Co-located re-read.

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

1.6GHz 2.0GHz 3.2GHz

C
P

U
 R

u
n
n
in

g
 T

im
e
 (

m
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(e) Remote re-read.

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

1.6GHz 2.0GHz 3.2GHz

C
P

U
 R

u
n
n
in

g
 T

im
e
 (

m
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(f) Hybrid re-read.

Figure 4.12.: HDFS read CPU time.

scenario. Whereas, vRead’s performance just drops slightly due to less work being done

by the I/O threads (i.e., no inter-VM communication). Therefore, vRead has up to 65%

improvement over the vanilla case in the 4 VMs scenario. Figure 4.12 shows the actual

CPU running time (not the task completion time) spent by the TestDFSIO benchmark when

performing the 5GB reads from the HDFS. This shows that vRead still saves significant

CPU cycles along with gaining better throughput, which is helpful to reduce the electric

power cost for data centers while obtaining encouraging performance.

To enable the new HDFS blocks written into the datanode VM to be visible to the vRead

daemon in the hypervisor, we need to update the mount point information once a new file

is generated in the file system of the virtual disk image. We verify that this will not hurt the

88

 0

 20

 40

 60

 80

 100

 120

 140

co−located remote hybrid

T
h
ro

u
g

h
p
u
t

(M
B

p
s)

vanilla
vRead

Figure 4.13.: HDFS write throughput.

HDFS write performance by running TestDFSIO-write with the same setup as TestDFSIO-

read. Figure 4.13 shows the results of 3 different scenarios (CPU is set to 2.0 GHz) for

the vanilla case and vRead. From this figure we can see that the overhead of updating the

information of the mount directory is negligible.

Big Data Analysis Tools with vRead There are a number of powerful data query tools

in the Apache Hadoop ecosystem helping people store and analyze big data efficiently and

safely. In this subsection, we will evaluate the performance of vRead on some of these

tools (Hbase [58], Hive [59], and Sqoop [60]).

Table 4.2.: Performance improvement for Hbase.

Scan SequentialRead RandomRead

Vanilla 6.26MB/s 3.01MB/s 2.48MB/s

vRead 7.97MB/s 3.72MB/s 2.91MB/s

% Improvement 27.3 23.6 17.3

HBase Apache HBase is a Hadoop database: a distributed, scalable, big data store. It

is capable of hosting very large tables — millions, or even billions, of rows on top of

commodity hardware. Each read/write operation is split into Map/Reduce jobs running

on the underlying Hadoop clusters. For this experiment, we installed HBase-0.94 on top

89

of our Hadoop deployment (same as the hybrid 4 VMs setup in last subsection). The

CPU frequency is set to 2.0 GHZ and the frequency scaling is disabled. In order to use the

extended HDFS with vRead, we replace the Hadoop-core-1.2.1.jar under the hbase-0.94/lib

directory with our new jar package with vRead. We use the built-in HBase benchmark

PerformanceEvaluation to measure the performance of scan, sequential read, and random

read in HBase. We inserted 5 million records via PerformanceEvaluation-SequentialWrite

to HBase as testing data. The results are shown in Table 4.2. Compared with the vanilla

case, vRead can improve the throughput of the 3 operations by 27.3%, 23.6% and 17.3%,

respectively.

Hive Apache Hive is a data warehouse software that facilitates querying and managing

large datasets residing in distributed storage. Hive provides a mechanism to project struc-

ture onto this data and query the data using a SQL-like language. Similar to the HBase

test, we installed Hive-1.1 on top of our Hadoop deployment (same as the hybrid 4 VMs

setup in TestDFSIO test). Following the evaluation approach from the UC Berkeley AMP

Lab, we first created a test table in Hive storing some user information (id, name, birthday,

etc.) and loaded 30 million rows into this table. Then we ran a sql query (select * from

test where id ≥ x and id ≤ y) to select the rows meeting the query conditions. The query

completion time is shown in the second column of Table 4.3. From this we can see that a

21.3% time reduction was achieved by vRead.

Table 4.3.: Performance improvement for Hive and Sqoop.

Select Sql for Hive Sqoop Export

Vanilla 17.945s 385.136s

vRead 14.117s 342.508s

% Improvement
21.3 11.3

/(Reduction)

Sqoop Apache Sqoop is a tool designed for efficiently transferring bulk data between

Apache Hadoop data store and structured datastores such as relational databases (MySQL,

Oracle, MSSQL etc.). Here, we measure the performance of exporting data from Hive

90

to MySQL. The export operation, in fact, is a process of reading data from HDFS and

inserting them to a relational database. In this experiment, we move the test table storing

30 million rows used in our Hive test to a MySQL database running in another physical

machine on the same LAN through Sqoop-export. The job completion time is shown in

the third column of Table 4.3. For these results, we can see that vRead can reduce the

time by around 11.3%. The reduction is lower than our other test case, because the export

performance is limited by both the read efficiency of HDFS and the insert (write) efficiency

of MySQL which vRead cannot optimize.

4.6 Discussion

Interplay with Modern Hardware SR-IOV [61] devices and IOMMUs such as Intel

VT-d [62] enable the hypervisor to directly assign devices to the guests. This allows the

guests to directly interact with the physical devices and eliminates virtualization overhead.

However, it does not work for inter-VM data movement, which is common with virtual

Hadoop. Additionally, with these hardware, delays caused by synchronization between

VMs and I/O threads will still impact the I/O performance of the communicating parties.

Actually, vRead is compatible with SR-IOV and IOMMUs because vRead does not modify

the networking routines for packets on the outgoing host. Therefore, vRead and those

modern hardware are complimentary and could mutually benefit from each other.

Compatibility with VM Migration VM live migration [63] is helpful for maintaining

overall load balance among physical servers in a data center. Live migration requires stor-

ing the VM disk images in a centralized storage. Hypervisors (or the VM host) access the

VM images via NFS or iSCSI. vRead still works in this setup. All image files deployed by

NFS or iSCSI can be mounted in the hypervisor’s file system. The reads/writes on these

virtual disk images are the same as that on image files located on a local disk drive. Once a

VM is migrated to another host, the vRead hash tables in both hosts just need to be updated.

Direct Read Bypassing the File System in the Host Since the vRead daemon has the

privilege to access all local devices, it can directly read a datanode VM’s virtual disk and

91

bypass the file system in the host. This method can avoid mounting the virtual image files

in the host and updating the mount point’s dentry/inode for any new blocks. However,

the main drawback of this method is that it cannot benefit from the file system cache, that

is, all reads have to load data from the physical disk drive. Also, this approach needs to

manually translate the address of each file several times (guest logical to guest physical,

guest physical to host logical, host logical to host physical) for each read. This is much

more complex than mounting the virtual disk image to the host’s file system — which

allows vRead to use Linux POSIX APIs to read/write files.

92

Algorithm 4 DFSInputStream read1 with vRead interface
1: v f d is the vRead descriptor for a given HDFS block

2: v f d hash is the hashtable storing the mappings of HDFS block and vfd

3: datanode id indicates the target datanode

4: blk is the instance of an HDFS block to read

5: bu f is the application buffer

6: len is the number of bytes to read

7: o f f is the offset of the data block

8: procedure READ(bu f ,o f f , len)

9: blk = getCurrentBlock();

10: if v f d hash.containsKey(blk.name) == null then

11: /* call vRead open() to get the vRead descriptor */

12: v f d = vRead open(blk.name, datanode id);

13: v f d hash.put(blk.name,v f d);

14: else

15: v f d = v f d hash.get(blk.name);

16: end if

17: /* read the data with vRead descriptor */

18: if v f d != null then

19: result = vRead read(v f d,bu f ,o f f , len);

20: else

21: /* original method of HDFS */

22: result = read bu f f er(blk,bu f ,0, len);

23: end if

24: if result > 0 then

25: position += result;

26: if position == blk.size then

27: vRead close(v f d);

28: end if

29: end if

30: end procedure

93

Algorithm 5 DFSInputStream read2 with vRead interface
1: v f d is the vRead descriptor for a given HDFS block

2: v f d hash is the hashtable storing the mappings of HDFS block and vfd

3: datanode id indicates the target datanode

4: blk is the instance of an HDFS block to read

5: position is the absolute start position of the target file stored in HDFS

6: bu f is the application buffer

7: len is the number of bytes to read

8: o f f is the offset of the data block

9: procedure READ(position,bu f ,o f f , len)

10: blk list = getRangeBlock(position, len);

11: remaining = len;

12: for each blk in blk list do

13: start = position - blk.getStartO f f set();

14: bytesToRead = min(remaining,blk.size− start);

15: if v f d hash.containsKey(blk.name) == null then

16: /* call vRead open() to get the vRead descriptor */

17: v f d = vRead open(blk.name, datanode id);

18: v f d hash.put(blk.name,v f d);

19: else

20: v f d = v f d hash.get(blk.name);

21: end if

22: /* read the data with vRead descriptor */

23: if v f d != null then

24: result = vRead read(v f d,bu f ,start,bytesToRead);

25: else

26: /* original method of HDFS */

27: result = f etchBlocks(blk,start,bytesToRead,bu f);

28: end if

29: remaining -= bytesToRead;

30: position += bytesToRead;

31: end for

32: end procedure

94

5 RELATED WORK

We have introduced some alternative solutions for optimizing I/O performance of virtual-

ized cloud in the motivation sections of previous chapters. Here, we discuss other related

work in the same area. These efforts can be divided into three categories: reducing device

virtualization overhead, VM scheduling optimization, and functionality offloading.

5.1 Reducing Virtual Device Overhead

In recent years, many efforts have focused on reducing device virtualization overhead

to improve VM I/O performance or capacity of VM hosts. vPipe [64] enables direct “pip-

ing” of application I/O data from source to sink devices, either files or TCP sockets, at the

hypervisor level. By doing so, vPipe can avoid both device virtualization overhead and VM

scheduling delays, resulting in better VM I/O performance. vPipe focuses on reducing the

virtualization overhead between the virtual devices in the same VM, while vRead targets

reducing the redundant data copies between VMs. Menon [65] proposes several optimiza-

tions such as offloading datagram checksum and TCP segmentation (TSO) to the Xen vir-

tual machine monitor (VMM) [66] to improve TCP performance in Xen VMs. [67] aimed

to reduce the TCP per-packet processing cost in VMs by packet coalescing to achieve better

TCP receive performance. [68] proposes offloading part of the network device’s functional-

ity to the hypervisor to reduce CPU cycles consumed by network packet processing. These

three work focus on optimizing some functionalities of TCP/IP in virtual environments,

whereas vRead focuses on optimizing the data movement path between VMs communicat-

ing with each other and mainly targets the applications relying on HDFS.

Similarly, Ahmed et al. propose virtual interrupt coalescing for virtual SCSI controllers

[69] to reduce disk I/O processing overhead in virtualized hosts. In [35, 70], Gordon et

al. propose exit-less interrupt delivery mechanisms to mitigate the overhead of virtual

95

interrupt processing in KVM so that the incoming I/O events are sent to the destination

VM without switching to the hypervisor by a VM-Exit. These two works can reduce the

virtual interrupts’ overhead incurred by processing disk or network I/O requests in a VM,

but they cannot eliminate the unnecessary I/O flow between VMs which is targeted by

vRead.

5.2 Scheduling Optimization

Since VM scheduling delay can significantly affect a VM’s I/O performance in terms

of throughput as well as application-perceived latency in virtual systems, many previous

efforts have focused on reducing VM scheduling delay for I/O-intensive applications. [17]

proposes a soft-realtime VM scheduler to reduce the response time of I/O requests thus im-

proving the performance of soft-realtime applications such as media servers. However, its

preemption-based policy may violate CPU fair-share if a VM is I/O-intensive. vSlicer [32]

minimizes CPU scheduling delay and hence the application-perceived latency — to a cer-

tain degree by setting a smaller time-slice for latency-sensitive VMs. However, such a

time-slice is not small enough to improve TCP/UDP throughput in LAN/datacenter envi-

ronments. These two efforts both assume multiple VMs are running on the same CPU core.

If there is no CPU sharing among VMs, they are less helpful. As new CPUs increasingly

have more cores in each socket, the CPU sharing scenario is less common. vRead does not

have any CPU sharing assumption, it also works no matter the VMs have dedicated cores

or not. Besides, vRead reduces the I/O processing delay by avoiding redundant data copies

between VMs thus eliminating the scheduling delay of I/O threads. MRG [71] proposes

a VM scheduler specifically for Map/Reduce jobs. This scheduler keeps Map/Reduce job

fairness by introducing a two-level group credit-based scheduling policy. The efficiency

of map and reduce tasks can be improved by batching I/O requests within a group, hence

superfluous context switches are eliminated. But, this work can not improve the I/O per-

formance between Map/Reduce jobs and HDFS.

96

5.3 Functionality Offloading to the Hypervisor

Offloading partial I/O operations to reduce virtualization overhead and improve I/O per-

formance is a well studied approach. [72] proposes the idea of offloading common middle-

ware functionality to the hypervisor layer to reduce context switches between the guest

OS and hypervisor. Differently, vRead introduces shortcutting at the inter-VM I/O level

and is applicable to efficiently read files from other VMs’ virtual disks. In [73], the whole

TCP/IP stack is offloaded to a separate core to reduce the I/O response time of VMs shar-

ing the same core. vSnoop [5] and vFlood [4] mitigated the negative impact of CPU access

latency on TCP by offloading acknowledgement generation and congestion control to the

driver domain of the Xen VMM. However, they all focus on the CPU sharing scenarios,

but vRead is applicable no matter the VMs have dedicated cores or not. Besides, they are

hardly applicable to inter-VM communication on the same host, which vRead addresses.

97

6 CONCLUSION

In order to reduce application running costs, both in terms of capital as well as operational

expenditure, virtualization is widely used by most datacenters in the world so that multiple

VMs can run in the same host simultaneously. However, directly moving appliations from

traditional physical machines to the virtualized hosts may lead to sub-optimal I/O perfor-

mance due to the server consolidation and device virtualization overhead. For example,

as more VMs running in the same host, the CPU access delay experienced by each VM

increases substantially. Meanwhile, the IRQ processing can also be delayed for the same

reason. As a result, both I/O (network and disk) latency and throughput are significantly

affected. Besides, compared with physical machine, all data movement within or among

VMs suffers additional overhead incurred by the device virtualization resulting in higher

CPU cycles consumption and lower I/O performance in return.

To solve these problems, in my disseratation, I proposed a series of mechanisms to mit-

igate the issues caused by virtualization. These methods include low-latency VM scheduler

(vSlicer), I/O functionality offloading (vTurbo) and reducing device virtualization overhead

for bigdata applications (vRead). For each approach, we implemented a prototype based

on a popular hypervior and did comprehensive evaluation with it.

vSlicer supports a new class of CPU-sharing VMs called LSVMs. LSVMs improve the

performance of I/O-bound applications by reducing the I/O processing latency; yet they

do not violate the CPU share fairness among all VMs sharing the same CPU. vSlicer is

based on the idea of differentiated-frequency CPU micro-slicing, where the regular time

slice for an LSVM is further divided into smaller microslices for scheduling the LSVM

multiple times within each scheduling round. Therefore, the LSVM is given more frequent

accesses to the CPU for timely processing of I/O events. vSlicer is simple and generic for

implementation in various hypervisors. Our evaluation of a Xen-based vSlicer prototype

98

demonstrates significant improvement at both network I/O and application levels over Xens

credit scheduler.

vTurbo is a system that aims at accelerating I/O processing for VMs sharing the same

core in a multi-core host. More specifically, vTurbo significantly reduces IRQ processing

latency by dedicating one or more turbo core(s) to IRQ processing for all hosted VMs. The

time-slice of a turbo core is magnitudes smaller than that of a regular core hence achieving

negligible IRQ processing latency. vTurbo involves a VM scheduling policy that enforces

fair sharing of both regular and turbo cores among VMs. Our evaluation of a vTurbo

prototype shows that it vastly improves network and disk I/O throughput and consequently

application-level performance for hosted VMs.

vRead is a system that directly improves the performance of HDFS. We observe that

traditional virtual Hadoop systems frequently move data from a disk to a datanode VM

which then sends the data to a client VM via the virtual network – regardless of if the

two VMs are co-located or not. Thus, each HDFS read requires at least 5 data copies

which incurs I/O overhead arising from device virtualization and CPU scheduling latency

among VMs and I/O threads. vRead mitigates such penalty by shortcutting the HDFS

reads at the hypervisor layer. Our evaluation of a vRead prototype shows that vRead can

improve I/O throughput and reduce the CPU cost of HDFS. This benefits all applications

(not limited to Hadoop) storing data in HDFS. Our application case studies demonstrate

vReads applicability and effectiveness.

99

7 FUTURE WORK

7.1 Introduction

In chapter 4, we have introudced one efficient data access method for Hadoop in virtual-

ized clouds named vRead [74] which enables direct ”reads” to the disk images of datanode

VMs from the hypervisor, hence reducing device virtualization overhead and improving

I/O throughput of HDFS. However, this method only benefits read I/O of HDFS deployed

in virtual clusters. Clearly, many bigdata applications running in private or public cloud

also perform write operation frequently such as uploading large file to HDFS or inserting

records into Hadoop database (hbase). Compared with read, HDFS write is more complex.

HDFS is designed to reliably store very large files across machines (VMs), so all blocks of a

file are replicated for fault tolerance. For each HDFS write in virtualized cloud, the data has

to be moved among 3 datanode (by default) and written into different datanode VM which

incurs significant overhead caused by unnecessary data copies and device virtualization.

Our previous work vPipe [64] also generates a short cut on the data movement path

avoiding unnecessary data moving from hypervisor to VM, hence reducing device virtu-

alization overhead. This method work for both read and write operations. While, it has

two limitations. First, it only works well for piped I/O in which data does not need to be

modified by applications running in VMs. However, HDFS has to touch the data when

moving data between network and disk to achieve some specific effects (e.g. maintaining

data integrity). Second, vPipe targets the shortcuts between virtual devices within the same

VM while multiple inter-VM data copies are involved for each HDFS write.

To benefit HDFS write in virtualized cloud, in the future, besides offloading some func-

tionalities of applications to hypervisor to finish the data movement among devices without

VMs involvement, we also try to offload data movement to storage subsystem with the help

100

of locality information of sink device and source device, which can further avoid unneces-

sary data copies and reduce the CPU consumption of VM hosts.

Storage Server

. . .

Data Data

ACK ACK

Write Write Write

Hypervisor

Figure 7.1.: HDFS write with default replica policy.

7.2 Design

Existing VM I/O optimization approaches ingore the locality of source and sink VMs,

which may incur more overhead when moving data among VMs for bigdata applications.

Lets still take the HDFS for example which is shown in Figure 7.1. In HDFS, all blocks

of a file are replicated for better fault tolerance. When one file is written to HDFS, by

default, three replications are written to three different datanode VM respectively. To min-

imize global bandwidth consumption and read latency, HDFS tries to satisfy a read request

from a replica that is closest to the reader while still avoid single-point failure. Therefore,

101

the default replica placement is that: (If the host is virtualized) one replica is placed on a

VM running in the same host as the client, the other two are placed on two VMs running

in another physical machine. In virtualized cloud, physical hosts usually share the same

storage to ease the VM live migration within the datacenter. So each replica datanode need

to write the same data into the same storage during the HDFS write procedure, resulting in

redundant data movement among 3 VMs and 3 disk writes for the same data. If this opera-

tion can cooperate with hypervisor, we can avoid the replica movement between datanode

VMs and just write data back to disk once instead of three times. This can significantly

save disk/network bandwidth and CPU cycles for data write of HDFS or other cloud file

systems such as QFS and ClusterFS.

Storage Server

. . .

OP OP

ACK ACK

Write

Hypervisor

Agent

Figure 7.2.: HDFS write with shortcut policy.

102

To slove the problem discussed above, we can offload the data movement to hypervisor

even storage subsystem which can further save CPU cycles of VM hosts. For instance,

when we plan to build a virtual hadoop cluster in a virtualized data center. We usually just

configure one VM node and copy the hadoop directory to other nodes via scp command.

Even though the inter-VM communication in one host can be boosted by memory copy

channel, it is still CPU consuming. Since all VMs running in the same datacenter usually

share the same backend storage server, we can offload the data copy to storage server (done

by the agent component) to save CPU cycles of the VM host.

After building the hadoop cluster, we need to upload file to HDFS then run MapReduce

workload. This involves the HDFS write first. For each block of the uploaded file, there

will be three replication written to three different HDFS datanode VMs respectively. If

these VMs run in the same host or share the same storage server, we can avoid the data

movement among VMs and only write data to storage server once instead of three times.

This optimization is shown in Figure 7.2. For each received block, we write it back to

storage server and buffer it there when the first VM tries to write the block to its local

disk (virtul disk). We only send the identifier of the block instead of the real data among

VMs with the help of functionality offloading to hypervisor. When we get the address

information where other two VMs try to write, we let the storage server write the bufferred

data to the actual address localy instead of sending the data to storage again. The whole

process only incur one data write in the host and one data copy between host and storage

server. This offloading immediately offers two advantages. First, it saves many CPU cycles

to copy data among VMs and send data from VM host to storage server. Second, the data

movement is faster than vanilla case because we only transfer the identifier of data block

among VMs which is much cheaper than moving actual data.

REFERENCES

103

REFERENCES

[1] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/.

[2] Microsoft Cloud Platform (Microsoft Azure). http://www.windowsazure.com/.

[3] Carl A. Waldspurger. Memory resource management in VMware ESX server. In
USENIX OSDI, 2002.

[4] Sahan Gamage, Ardalan Kangarlou, Ramana Rao Kompella, and Dongyan Xu. Op-
portunistic flooding to improve TCP transmit performance in virtualized clouds. In
ACM SoCC, 2011.

[5] Ardalan Kangarlou, Sahan Gamage, Ramana Rao Kompella, and Dongyan Xu. vS-
noop: Improving TCP throughput in virtualized environments via acknowledgement
offload. In ACM/IEEE SC, 2010.

[6] Carl Waldspurger and Mendel Rosenblum. I/O virtulization. In Communications of
the ACM, 2012.

[7] Mukil Kesavan, Ada Gavrilovska, and Karsten Schwan. Differential Virtual Time
(DVT): Rethinking I/O service differentiation for virtual machines. In ACM SoCC,
2010.

[8] D. Patnaik, A.S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik. Performance
implications of hosting enterprise telephony applications on virtualized multi-core
platforms. In Principles, Systems and Applications of IP Telecommunications (IPT-
Comm), 2009.

[9] Konstantin Shvachko, Sanjay Radia Hairong Kuang, and Robert Chansler. The
Hadoop distributed file system. In IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), 2010.

[10] Docker. http://www.docker.com/.

[11] Hadoop virtualization extensions on VMware vSphere5. In VMware technical white
paper, 2012.

[12] A benchmarking case study of virtualized Hadoop performance on VMware
vSphere5. In VMware technical white paper, 2013.

[13] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
ACM SOSP, 2003.

[14] N. Nishiguchi. Evaluation and consideration of the credit scheduler for client virtual-
ization. In Xen Summit Asia 2008, 2008.

104

[15] Sriram Govindan, Arjun R. Nath, Amitayu Das, Bhuvan Urgaonkar, and Anand Siva-
subramaniam. Xen and Co.: communication-aware CPU scheduling for consolidated
Xen-based hosting platforms. In ACM VEE, 2007.

[16] Hwanju Kim, Hyeontaek Lim, Jinkyu Jeong, Heeseung Jo, and Joowon Lee. Task-
aware virtual machine scheduling for i/o performance. In ACM VEE, 2009.

[17] Min Lee, A. S. Krishnakumar, P. Krishnan, Navjot Singh, and Shalini Yajnik. Sup-
porting soft real-time tasks in the Xen hypervisor. In ACM VEE, 2010.

[18] Yanyan Hu, Xiang Long, Jiong Zhang, Jun He, and Li Xia. I/O scheduling model of
virtual machine based on multi-core dynamical partitioning. In ACM HPDC, 2010.

[19] Rackspace Cloud. http://www.rackspace.com.

[20] Gogrid Cloud. http://www.gogrid.com.

[21] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. Comparison of the
three CPU schedulers in Xen. SIGMETRICS Performormance Evaluation Review,
35(2):42–51, 2007.

[22] Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-time (BVT) scheduling:
supporting latency-sensitive threads in a general-purpose scheduler. In ACM SOSP,
1999.

[23] J. McCalpin. The STREAM benchmark. http://www.cs.virginia.edu/stream/.

[24] VMware ESX. http://www.vmware.com/products/esx/.

[25] Lookbusy-a synthetic load generator. http://www.devin.com/lookbusy/.

[26] The Iperf Benchmark. http://www.noc.ucf.edu/Tools/Iperf/.

[27] Httperf. http://www.hpl.hp.com/research/linux/httperf/.

[28] Intel MPI benchmark. http://software.intel.com/en-us/articles/
intel-mpi-benchmarks/.

[29] MPICH2. http://www.mcs.anl.gov/research/projects/mpich2/.

[30] Myconnection Server. http://www.myconnectionserver.com/.

[31] RFC 2326:Real Time Streaming Protocol (RTSP). http://rfc-ref.org/RFC-TEXTS/
2326/chapter10.html.

[32] Cong Xu, Sahan Gamage, Pawan N. Rao, Ardalan Kangarlou, Ramana Rao Kom-
pella, and Dongyan Xu. vSlicer: Latency-aware virtual machine scheduling via
differentiated-frequency CPU slicing. In ACM HPDC, 2012.

[33] Luwei Cheng and Cho-Li Wang. vBalance: Using interrupt load balance to improve
I/O performance for SMP virtual machines. In ACM SoCC, 2012.

[34] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T. Morris. Improv-
ing network connection locality on multicore systems. In ACM EuroSys, 2012.

105

[35] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Assaf
Schuster, and Dan Tsafrir. ELI: bare-metal performance for I/O virtualization. In
ACM ASPLOS, 2012.

[36] Steen Larsen, Parthasarathy Sarangam, Ram Huggahalli, and Siddharth Kulkarni. Ar-
chitectural breakdown of end-to-end latency in a TCP/IP network. International Jour-
nal of Parallel Programming, 37(6):556–571, 2009.

[37] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin Vah-
dat. Chronos: predictable low latency for data center applications. In ACM SoCC,
2012.

[38] CPU isolation extensions. http://lwn.net/Articles/270623/.

[39] Apache Olio. http://http://incubator.apache.org/olio/.

[40] IOzone Filesystem Benchmark. http://www.iozone.org/.

[41] The Netperf Benchmark. http://www.netperf.org.

[42] Dhruba. Borthakur. The hadoop distributed file system: Architecture and design. In
Hadoop Project Website, volume 11, page 21, 2007.

[43] Elastic Map/Reduce (EMR). http://aws.amazon.com/elasticmapreduce/.

[44] Omar Sefraoui and Mohsine Eleuldj Mohammed Aissaoui. Openstack: toward an
open-source solution for cloud computing. In International Journal of Computer
Applications, volume 55, 2012.

[45] Sahara. https://wiki.openstack.org/wiki/Sahara.

[46] Ro Recio, P. Culley, D. Garcia, J. Hilland, and B. Metzler. An overview of RDMA
protocol specification. In IETF Internet-draft draft-ietf-rddp-rdmap-03, 2005.

[47] Hari Subramoni, Miao Luo Ping Lai, and Dhabaleswar K. Panda. RDMA over Eth-
ernet – A preliminary study. In In Cluster Computing and Workshops (CLUSTER),
2009.

[48] Rusty. Russell. Virtio – towards a de-facto standard for virtual I/O devices. In ACM
SIGOPS Operating Systems Review, 2008.

[49] HDFS Short-Circuit Local Reads. http://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-hdfs/ShortCircuitLocalReads.html.

[50] Venkateswararao Jujjuri, Eric Van Hensbergen, and Anthony Liguori. VirtFS – a
virtualization aware file system pass-through. In OLS, 2010.

[51] Xiaolan Zhang, Pankaj Rohatgi Suzanne McIntosh, and John Linwood Griffin.
XenSocket: A high-throughput interdomain transport for virtual machines. In Mid-
dleware, 2007.

[52] Macdonell, A. Wolfe Gordon Cam, Xiaodi Ke, and Paul Lu. Low-latency, high-
bandwidth use cases for nahanni/ivshmem. In KVM Forum, 2011.

106

[53] Hamid Reza Mohebbi, Omid Kashefi, and Mohsen Sharifi. Zivm: A zero-copy inter-
vm communication mechanism for cloud computing. Computer and Information Sci-
ence, 4(6), 2011.

[54] Michael Ovsiannikov, Silvius Rus, Damian Reeves, Paul Sutter, Sriram Rao, and Jim
Kelly. The quantcast file system. Proceedings of the VLDB Endowment, 6(11):1092–
1101, 2013.

[55] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.
In ACM SIGOPS operating systems review, volume 37, pages 29–43. ACM, 2003.

[56] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: the Linux virtual
machine monitor. In Linux Symposim, 2007.

[57] CPU Frequency Utils. http://mirrors.dotsrc.org/linux/utils/kernel/cpufreq/
cpufrequtils.html.

[58] Apache HBase. http://hbase.apache.org/.

[59] Apache Hive. https://hive.apache.org/.

[60] Apache Sqoop. http://sqoop.apache.org/.

[61] Yaozu Dong, Zhao Yu, and Greg Rose. SR-IOV networking in Xen: architecture,
design and implementation. In WIOV, 2008.

[62] R. Hiremane. Intel virtualization technology for directed I/O (Intel VT-d). Technol-
ogy@ Intel Magazine, 4(10), 2007.

[63] Clark, Christopher, Steven Hand Keir Fraser, Eric Jul Jacob Gorm Hansen, Ian Pratt
Christian Limpach, and Andrew Warfield. Live migration of virtual machines. In
Proceedings of the 2nd Conference on Symposium on Networked Systems Design and
Implementation, volume 2, pages 273–286, 2005.

[64] Sahan Gamage, Cong Xu, Ramana Rao Kompella, and Dongyan Xu. vPipe: Piped I/O
offloading for efficient data movement in virtualized clouds. In ACM SOCC, 2014.

[65] Aravind Menon, Alan L. Cox, and Willy Zwaenepoel. Optimizing network virtual-
ization in Xen. In USENIX ATC, 2006.

[66] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
ACM SOSP, 2003.

[67] Aravind Menon and Willy Zwaenepoel. Optimizing TCP receive performance. In
USENIX ATC, 2008.

[68] Aravind Menon, Simon Schubert, and Willy Zwaenepoel. TwinDrivers: semi-
automatic derivation of fast and safe hypervisor network drivers from guest OS
drivers. In ACM ASPLOS, 2009.

[69] Irfan Ahmad, Ajay Gulati, and Ali Mashtizadeh. vIC: Interrupt coalescing for virtual
machine storage device I/O. In USENIX ATC, 2011.

[70] Nadav Har’El, Abel Gordon, Alex Landau, Muli Ben-Yehuda, Avishay Traeger, and
Razya Ladelsky. Efficient and scalable paravirtual I/O system. In USENIX ATC, 2013.

107

[71] Hui Kang, Yao Chen, Jennifer L. Wong, Radu Sion, and Jason Wu. Enhancement of
Xen’s scheduler for MapReduce workloads. In ACM HPDC, 2011.

[72] Abel Gordon, Muli Ben-Yehuda, Dennis Filimonov, and Maor Dahan. VAMOS: vir-
tualization aware middleware. In WIOV, 2011.

[73] Leah Shalev, Julian Satran, Eran Borovik, and Muli Ben-Yehuda. IsoStack: Highly
efficient network processing on dedicated cores. In USENIX ATC, 2010.

[74] Cong Xu, Brendan Saltaformaggio, Sahan Gamage, Ramana Rao Kompella, and
Dongyan Xu. vRead: Efficient data access for hadoop in virtualized clouds. In
ACM/IFIP/USENIX Middleware, 2015.

VITA

108

VITA

Cong Xu earned his BS degree from Northeastern University in 2007 and MS degree

from Beihang University in 2010. He obtained his PhD degree in computer science from

Purdue University in 2015. His research interests focus on optimizing virtual machine I/O

performance in the virtualized cloud. His research background spans the areas of virtual-

ization technology, operating systems, distributed systems and system evaluation.

	Purdue University
	Purdue e-Pubs
	January 2015

	Optimizing Virtual Machine I/O Performance in Virtualized Cloud by Differenciated-frequency Scheduling and Functionality Offloading
	Cong Xu
	Recommended Citation

	Form 30
	thesis.pdf

