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ABSTRACT

Tomar, Sakshi PhD, Purdue University, December 2015. Understanding the determi-
nants for substrate recognition, regulation of enzymatic activity and the development
of broad-spectrum inhibitors of coronavirus 3-chymotrypsin-like proteases. Major
Professor: Andrew D. Mesecar.

Coronaviruses include lethal human pathogens like severe acute respiratory syn-

drome coronavirus (SARS-CoV) and the recently emerged Middle-east respiratory

coronavirus (MERS-CoV). Coronavirus also impact global economy by infecting farm

animals like pigs (porcine epidemic diarrhea virus, PEDV), cows (bovine coronavirus,

BCoV) and poultry (avian infectious bronchitis virus, IBV). Moreover, the global dis-

tribution of bats that naturally harbor one or more coronavirus strains heightens the

likelihood of emergence of a novel highly pathogenic coronavirus in the near future. To

combat infections of existing and emerging coronaviruses, it is important to identify

coronavirus drug targets that can be utilized for the development of broad-spectrum

anti-coronaviral therapeutics. Viral encoded 3-Chymotrypsin-like protease (3CLpro)

is essential for viral polyprotein processing to release non-structural proteins that

form the replicase complex machinery for viral genome replication. Due to its indis-

pensable role in coronaviral replication, 3CLpro is an attractive drug target. Moreover,

high sequence conservation in the vicinity of active site among 3CLpro proteases from

different coronavirus subclasses make them an excellent target for the development

of broad-spectrum therapeutics for coronavirus infections. The overarching goal of

this project is to investigate enzymatic and structural properties of multiple 3CLpro

enzymes encompassing different coronavirus subclasses. Understanding the determi-

nants of structural and functional disparity between different 3CLpro enzymes and the

factors regulating these properties will aid in the design of broad-spectrum inhibitors

of 3CLpro enzymes.



xxi

Here, the successful expression and purification of six different coronavirus 3CLpro

enzymes is reported. These 3CLpro enzymes include four 3CLpro enzymes from human-

coronaviruses SARS, MERS, OC43 and HKU1; 3CLpro from bat coronavirus HKU5,

which is closely related to MERS-CoV, and 3CLpro from murine hepatitis virus

(MHV), which serves as a good model system to study virus replication in cell cul-

ture. Successful expression of these enzymes was achieved in E.coli BL21-DE3 cells

using codon-optimized 3CLpro genes that were cloned into pET-11a expression vec-

tors. During construct design, either the TEV-protease cleavage site or the 3CLpro

auto-cleavage site was inserted between the N-terminus His6-tag and the 3CLpro

gene, resulting in the expression of 3CLpro enzymes with authentic N-termini. The

auto-cleavage of His6 affinity-tag during protein expression in E.coli cells prohibits

the use of immobilized metal ion chromatography (IMAC) for protein purification.

Therefore, a native step purification protocol involving 2-4 sequential steps includ-

ing different combinations of hydrophobic-interaction, ion-exchange and gel-filtration

chromatographies was utilized to obtain highly pure 3CLpro enzymes for kinetic and

structural studies.

For kinetic studies, a FRET-based peptide substrate was used that was custom

synthesized by our lab based on the auto-cleavage sequence of multiple 3CLpro en-

zymes. Due to the inner-filter effect, studies were limited to use this substrate only

at low concentrations (<4 µM). Due to issues associated with inner-filter effect, com-

bined with high sub-mM KM values that have been reported, only the apparent values

of k cat/KM could be determined for 3CLpro enzymes. Under the assay conditions uti-

lized, it was determined that MHV 3CLpro and HKU1 3CLpro enzymes were the most

efficient enzymes, while 3CLpro from MERS-CoV was the least efficient enzyme. En-

zymatic efficiency of MERS-CoV 3CLpro was 10-fold lower than the enzymatic activity

of 3CLpro enzymes from MHV and HKU1, and 5-fold lower than that of SARS-CoV

3CLpro. Therefore, the factors that might cause a decrease in the enzymatic activity

of MERS-CoV 3CLpro were further explored.
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Since dimerization has previously been shown to regulate the enzymatic activity of

SARS-CoV 3CLpro, it was hypothesized that the lower enzymatic efficiency of MERS-

CoV 3CLpro stems from a weaker dimer formation in MERS-CoV 3CLpro. Interest-

ingly, further kinetic and biophysical investigations revealed that the monomer-dimer

dissociation constant Kd for MERS-CoV 3CLpro is significantly higher (high µM)

compared to Kd values determined for 3CLpro enzymes from SARS-CoV and closely

related HKU4 and HKU5 coronaviruses (low nM). These results suggested that lower

enzymatic efficiency of MERS-CoV 3CLpro stems from a weaker dimer formation in

MERS-CoV 3CLpro. Weaker dimer formation of MERS-CoV 3CLpro would implicate

that inside a virus-infected cell either higher expression levels of 3CLpro will need to be

achieved to form an active dimer and/or a mechanism like ligand-induced dimeriza-

tion must exist to promote dimer formation even at low expression levels. Therefore,

whether MERS-CoV 3CLpro is capable of undergoing ligand-induced dimerization was

determined. For these experiments, a substrate-mimetic peptide covalent inhibitor

of MERS-CoV 3CLpro was utilized. Analytical ultracentrifugation (AUC) studies of

MERS-CoV 3CLpro performed in the presence of different stoichiometric ratios of the

covalent inhibitor revealed a significantly higher population of dimeric species com-

pared to MERS-CoV 3CLpro analyzed in the absence of any ligand. Similar results

were obtained in the presence of a small, non-covalent substrate-mimetic compound.

In fact, measuring the activity levels of MERS-CoV 3CLpro in the presence of vary-

ing concentrations of the non-covalent, substrate-mimetic compound demonstrated

that the enzyme is activated under low compound concentrations, and that the com-

pound displays any inhibitory activity only at higher concentrations. Experiments

performed at three different concentrations of MERS-CoV 3CLpro yielded similar re-

sults suggesting that activation via ligand-induced dimerization regulates the activity

of MERS-CoV 3CLpro during virus replication.

To determine the structural basis for weak dimer formation and ligand-induced

dimerization of MERS-CoV 3CLpro, crystallization of MERS-CoV 3CLpro both in

the apo form and in complex with the substrate-mimetic compounds was attempted.
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Although, the crystallization attempts for the apo form of MERS-CoV 3CLpro were

unsuccessful, high-resolution diffraction quality crystals of MERS-CoV 3CLpro in com-

plex with the covalent and non-covalent substrate-mimetic compounds were obtained.

MERS-CoV 3CLpro-compound complexes crystallized as dimers. Detailed analysis

and comparison of the MERS-CoV 3CLpro dimer structure with the dimer struc-

tures of SARS-CoV 3CLpro and HKU4-CoV 3CLpro did not reveal any differences

that would clearly suggest the structural basis for weaker dimer formation or ligand-

induced dimerization of MERS-CoV 3CLpro. Furthermore, based on sequence align-

ment of MERS-CoV 3CLpro with closely related HKU4-CoV and HKU5-CoV 3CLpro

enzymes, amino acids that participate in dimer formation are conserved in all the

three enzymes. Based on these observations, it is speculated that the non-conserved

residues of MERS-CoV 3CLpro that are distant from the dimer interface may regulate

dimer formation via long-range interactions. Further mutagenesis studies would be

required to identify residues that regulate dimer formation specifically in MERS-CoV

3CLpro.

Besides regulating 3CLpro activity via influencing the dimer formation, long-range

interactions can regulate the enzymatic activity of 3CLpro enzymes by impacting their

structural stability. Our collaborators identified mutants of MHV 3CLpro, V148A,

that display a temperature-sensitive (-ts) growth phenotype. Surprisingly, the second-

site compensatory mutation (V148A/H134Y) that emerged would be structurally

distant (>15 Å) from the original temperature-sensitive mutation. It was suggested

that these distant mutations communicate through long-range interactions in MHV

3CLpro. To determine the exact mechanism for -ts and compensatory phenotypes,

this study reports the characterization of thermal stability of these mutants. The

mutant proteins were purified using a protocol similar to the purification protocol for

the wildtype MHV 3CLpro. It was demonstrated that the -ts V148A mutant under-

goes rapid loss in activity after incubation at 40 °C, while both the single (H134Y)

and double (V148A/H134Y) second site compensatory mutants maintain their enzy-

matic activity for two hours at 40 °C. Determination of melting temperatures (Tm)
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by measuring the circular dichroism signal at 222 nm as a function of temperature

over the range of 10 °C to 90 °C demonstrated that the -ts V148A mutant under-

goes faster global structural destabilization compared to the wildtype or H134Y and

V148A/H134Y enzymes. Analysis of a structural model of the wildtype MHV 3CLpro

enzymes reveals that the amino acid at position 148 would be coupled to amino acid

at position 134 through a network of hydrogen-bonding and hydrophobic interactions.

It is speculated that the -ts and compensatory mutations influence the structural sta-

bility of MHV 3CLpro by altering this hydrogen-bonding and hydrophobic network.

Based on sequence analysis of other 3CLpro enzymes, it is further suggested that

amino acid Y134 acts as a general facilitator of structural stabilization for 3CLpro

enzymes.

Long-range interactions do not only influence the dimer formation and structural

stability of 3CLpro enzymes as discussed in previous sections, they can have a direct

impact on substrate binding and catalysis. This study also reports the character-

ization of a physiologically relevant drug-resistant mutation (Y22C) that is distant

from the substrate binding site in HKU1 3CLpro. Biochemical and kinetic analysis re-

veals that despite being structurally distant from the active site, the Y22C mutation

directly impacts the binding and hydrolysis of a reactive ester inhibitor.

All these results suggest that long-range interactions regulate 3CLpro activity

through multiple mechanisms. Long-range interactions can modulate 3CLpro enzy-

matic activity either by influencing dimer formation, structural stability or directly

altering substrate binding and catalysis. Impact of long-range interactions on the

structure and function of 3CLpro enzymes is not well understood and studies reported

in this dissertation provide few of the initial models for mechanisms utilized by long-

range interactions to regulate the function of 3CLpro enzymes.

Finally, one of the goals of this project is to identify broad-spectrum inhibitors

of 3CLpro enzymes. This study reports the identification of low-micromolar and sub-

micromolar non-covalent inhibitors of SARS-CoV 3CLpro. These compounds were

synthesized by our collaborators as part of a focused library of 237 compounds that
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were developed based on the initial hits from a high-throughput screen. Several

compounds that were able to target multiple 3CLpro enzymes were also identified.

Structure activity relationships (SARs) of these compounds are being established in

conjunction with the determination of high-resolution crystal structures of SARS-

CoV 3CLpro in complex with multiple inhibitors from different chemical scaffolds.

Structural analysis reveals that most of the direct interactions formed between in-

hibitor molecules and SARS-CoV 3CLpro involve either the peptide backbone or the

side chains of amino acids that are conserved across all 3CLpro enzymes. Engage-

ment of conserved structural features of SARS-CoV 3CLpro by these inhibitors open

avenues for the development of more potent second-generation inhibitors that can

inhibit multiple 3CLpro enzymes.
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CHAPTER 1. INTRODUCTION

1.1 Taxonomy and classification of coronaviruses

Coronaviruses are enveloped (+) single-stranded (ss) RNA viruses. Genus “coron-

avirus” of Coronaviridae family belongs to the order Nidovirales (Figure 1.1). Mem-

bers in the order Nidovirales, including coronaviruses, are characterized by the syn-

thesis of 3’ co-terminal nested set of subgenomic viral mRNAs (sg mRNA) during

infection [1]. The name “coronavirus” is derived from the Latin word corona, which

means crown and refers to the crown-like morphology of the virions as seen under

electron microscopy. This morphology is provided by the surface spike protein S of

the virus and is important for interaction with host receptors.

Based on phylogenetic analysis, coronaviruses can be further classified as al-

phacoronavirus, betacoronavirus, gammacoronavirus and deltacoronavirus (Figure

1.2) [2]. Designation alpha, beta and gammacoronavirus replaced the former clas-

sification into groups 1, 2 and 3, respectively. Lineage 1a of alphacoronaviruses in-

cludes feline coronavirus (FCoV), feline infectious peritonitis virus (FIPV) and pig

TGEV, while lineage 1b encompasses human coronaviruses NL63 and 229E, porcine

epidemic diarrhea virus (PEDV) and several species of bat coronaviruses. Human

coronaviruses HCoV-HKU1, HCoV-OC43 belong to lineage 2a of betacoronaviruses

along with murine hepatitis virus (MHV) and bovine coronavirus BCoV, lineage 2b of

betacoronaviruses includes SARS-CoV and several strains of SARS-like coronaviruses

from bats (BtSARS), MERS-CoV and Bat coronaviruses HKU4 and HKU5 cluster in

lineage 2c, and several strains of bat coronavirus HKU9 constitute lineage 2d of beta-

coronaviruses. Gammacoronaviruses include avian infectiuos bronchitis virus (IBV)

and primarily infect birds. Deltacoronavirus is a newly characterized class and include

several bird coronaviruses and strains of porcine coronavirus HKU15.
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Fig. 1.1.: Classification and taxonomy of coronaviruses. According to Bal-
timore classification, coronaviruses belong to Group IV that encompasses all the
viruses containing positive-sense single-stranded RNA genomes. Family Coronaviri-
dae, along with Roniviridae and Arteriviridae, constitute the order Nidovirales. Based
on genome sequencing, coronaviruses can further be classified as alpha, beta, gamma
and deltacoronaviruses.

1.2 Human coronaviruses

Coronaviruses gained prominence in 2003 with the emergence of the global severe

acute respiratory syndrome (SARS) epidemic. The early human cases of SARS in-

fection were reported in the Guangdong province in China in November 2002. The

infection, however, quickly spread to 30 different countries globally, infecting over

8000 individuals with a case fatality rate of 10% [3–6]. Soon after the initial re-

ports of SARS infection, the etiological agent was identified as a coronavirus, sub-

sequently named SARS-CoV. SARS-CoV quickly evolved in human hosts to allow

efficient human-to-human transmission [1, 3–6]. SARS-CoV infection was rapidly
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contained through effective global health response via partnerships between WHO

and 115 national health services. [5, 6]

Prior to the emergence of SARS-CoV, two human coronaviruses (HCoV) had been

identified. HCoV-229E and HCoV-OC43 were identified in the mid-1960s (Figure 1.2)

[7–9]. Infection from these viruses cause mild, self-contained cold-like symptoms, and

are considered harmless. With renewed interest in the coronavirus research after the

SARS outbreak, two new human coronaviruses, HCoV-NL63 and HCoV-HKU1, were

discovered in 2004 and 2005, respectively (Figure 1.2) [10–12]. Symptoms associated

with NL63 and HKU1 infections include mild flu-like symptoms, however, severe

outcomes have been reported in infants, elderly and immuno-compromised individuals

[10–12].

News of coronavirus infections emerged again in September 2012, when the first

confirmed case of a novel human coronavirus infection was reported in a patient from

Qatar [13, 14]. Since the initial cases of this new human coronavirus infection were

reported in countries from the Middle East, the virus was subsequently named Mid-

dle East respiratory syndrome coronavirus (MERS-CoV) (Figure 1.2) [15]. As of

October 22, 2015, a total of 1599 cases of MERS-CoV infection have been reported

from 27 different countries globally. These cases include endemic cases as well as

travel-associated cases [16]. 574 global deaths have so far been reported by the WHO

bringing the case fatality rate from MERS-CoV infections to 35%. Clinical outcomes

from MERS-CoV infections can range from being asymptomatic to severe cases of

respiratory failure and gastrointestinal symptoms. Severe cases have mostly been re-

ported in older patients with weakened immune system and underlying diseased con-

ditions. Although human-to-human transmission of MERS-CoV is not efficient, cases

of virus transmission between patients and healthcare staff upon close contact have

been reported [13,17–20]. Currently, no licensed vaccine or antiviral treatment exists

for MERS-CoV. Recent reports, however, on the success of DNA vaccines based on

viral S protein in rhesus macaques and isolation of a potent MERS-CoV-neutralizing
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Fig. 1.2.: Phylogeny and host tropism of representative coronaviruses.
Based on full genome sequencing, coronaviruses can be classified into four distinct
groups: Alphacoronaviruses (green), Betacoronaviruses (blue), Gammacoronaviruses
(orange), and Deltacoronaviruses (not shown). Taxonomic classification based on
former designations into Groups 1, 2 and 3 are also shown. Host tropism for repre-
sentative coronaviruses in each subgroup is displayed. Figure adapted from Graham
et al. [2]

antibody holds promise for the development of treatment regimens against infection

from MERS-CoV [21,22].

1.3 Animal coronaviruses

Besides humans, coronaviruses also infect a variety of animals, which could be life-

threatening for animals in certain cases (Figure 1.2). For example, Porcine epidemic
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diarrhea virus (PEDV) first appeared in the United States in 2013 and has so far been

reported to have killed approximately 7 million swine with a concomitant increase in

pork prices [23,24]. Although the virus is not transmissible to humans, it can cause up

to a 75-100 % loss of the infected piglets. Transmissible gastroenteritis virus (TGEV)

is another coronavirus that infects pigs, and similar to PEDV causes severe diarrhea

in piglets [1]. Coronavirus infections have been reported in other farm animals as well.

Infectious bronchitis virus (IBV) infects chicken, while bovine coronavirus (BCoV)

cause respiratory tract infection and diarrhea in cattle [1, 25, 26].

Coronaviruses can also infect companion animals like cats and dogs. Infection with

feline infectious peritonitis virus (FIPV), a highly virulent form of feline coronavirus

(FCoV), can be fatal for cats [1, 27]. Canine coronavirus infections are usually mild,

but can be fatal if associated with simultaneous infection with canine parvovirus.

Infection from all the aforementioned animal viruses imposes a significant eco-

nomic or emotional burden to the animal owner and further highlights the signifi-

cance of understanding coronavirus biology and potential development of antiviral

therapeutics to combat existing and emerging coronavirus infections.

1.4 Zoonotic transmission of coronaviruses

SARS-CoV crossed species from Himalayan palm civets and raccoon dogs to in-

fect humans [1, 28]. The zoonotic animal-to-human transmission of SARS-CoV is

believed to have occurred in the live animal wet markets in China, where the ani-

mal handlers became infected after handling of the infected live animals [1, 29]. The

virus underwent rapid adaptation in both the animal and the human hosts; however,

further investigations suggested that the palm civets or the raccoon dogs are not the

natural reservoirs of SARS-like coronaviruses. Isolation of a SARS-like virus from the

Chinese horseshoe bats, habitation of these bats near the live animal markets and

further genetic and serological analysis suggests that the horseshoe bats are natural

reservoirs of SARS-like CoV (Figure 1.2) [1,2]. The bat SARS-like CoV spread from
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bats to the intermediate animal hosts, like palm civets, before adaptation to infect

the human population.

Moreover, several studies published recently strongly support bats as the natu-

ral reservoir for the recently emerged MERS-CoV as well [30–33]. β-CoV lineage

2c members (bat coronaviruses HKU4 and HKU5) share close phylogenetic relation-

ship with MERS-CoV (Figure 1.2), suggesting a potential bat origin for MERS-CoV.

Additionally, neutralizing antibodies against MERS-CoV have been isolated from

dromedary camels, implicating dromedary camels as the intermediary host for MERS-

CoV [34, 35]. In a more recent study, Wang et al. demonstrated that the receptor

binding domain of the S protein of Bat-CoV HKU4 can recognize the human receptor

CD26 (also known as Dipeptidyl peptidase-4 or DPP4) for cell entry [32]. These

findings further solidify the notion of a bat origin for MERS-CoV.

SARS-CoV and MERS-CoV are not the only examples of cross-species trans-

mission of coronaviruses. Genomic sequence similarity between bovine coronavirus

(BCoV) and human coronavirus OC43 suggests zoonotic transmission of the virus

from bovine to human host around 100 years ago [1]. Emergence of transmissible

gastroenteritis virus (TGEV) in pigs has been suggested to be the result of a cross-

species transmission of canine coronavirus CCoV-II, which in turn has emerged from

a recombination event between an unknown coronavirus, canine coronavirus CCoV-I

and feline coronavirus FCoV-I [1].

Over 1,100 species of bats have been documented so far. Global prevalence of bats

and their habitation proximity to humans and animals enhances their potential to

harbor novel coronaviruses capable of bat-to-animal and bat-to-human transmission.

Moreover, since bats serve as natural reservoir for multiple coronaviruses (Figure

1.2), there exists a constant threat for the re-emergence of potentially lethal human

or animal coronaviruses. Therefore, continuous research on coronavirus replication

and pathogenesis is mandated for the development of effective antiviral therapeutics.
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1.5 Coronavirus lifecycle

Coronavirus particles are pleomorphic with diameters ranging from 70-120 nm [2].

The positive-sense RNA genome (25-32 kb) is present inside the virus particle in com-

plex with nucleocapsid protein (N) (Figure 1.3). The N protein-RNA genome complex

is surrounded by a host-membrane-derived lipid bilayer envelope. The surface of the

lipid bilayer envelope is decorated with viral structural proteins: Spike (S), Membrane

(M) and Envelope (E) proteins. The spike glycoprotein interacts with host-specific

cellular receptor, and mediates the virus attachment and entry [2]. Low sequence

conservation of receptor-binding domain of the spike glycoprotein allows variability

in the usage of host cellular receptor among different coronaviruses and contributes

towards the broad host- and cell-tropism of coronaviruses [2]. A brief list of repre-

sentative coronaviruses and their cellular receptors is provided in table 1.1 [1]. The

ion channel activity of E protein is essential for virus replication, and this integral

membrane protein also plays role in virus assembly and budding [1].

Fig. 1.3.: Coronavirus virion structure and proteins. Schematic illustration of a

coronavirus virion is shown with the structural proteins (S, M, N and E), the positive-sense

single-stranded RNA genome and the lipid bilayer envelope.

The coronavirus lifecycle (Figure 1.4) commences with the attachment of the

virus particle on the host cell via interaction between the virus spike protein and the
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Fig. 1.4.: Coronavirus life cycle. Virus entry is mediated through interaction between
the viral spike protein and host cell surface receptor. Viral genomic RNA (gRNA) is re-
leased into the cytoplasm and translated into two overlapping polyproteins pp1a/1ab using
host translational machinery. The polyproteins undergo proteolytic processing using viral
encoded cysteine proteases (PLpro and 3CLpro) and release sixteen non structural proteins
(nsp1-16). The non-structural proteins assemble to form replicase complex ER-derived
double membrane vesicles and facilitate the transcription of (-)gRNA, a nested set of sub-
genomic mRNAs (sgRNA) and also the replication of (+)gRNA . sgRNAs are translated into
structural proteins (S, E, M and N) and accessory proteins. N protein assembles with the
newly synthesized (+)gRNA to form the nucleocapsid, while other structural proteins S, E
and M traffic through ER and combines with the nucleocapsid at the endoplasmic-reticulum
golgi intermediate compartment (ERGIC). The virions are packaged into smooth-walled
vesicles and the mature virus particles exit the host cell via exocytosis.
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Table 1.1.
Representative coronaviruses and their cellular receptors

Group Subgroup Host Virus Receptor (Co-receptor)

Alpha

1a Bat† BtCoV Unknown
Cat FCoV, FIPV APN, APN
Dog CCoV APN
Pig TGEV APN (Sialic Acid)

1b Human HCoV-229E APN
Human HCoV-NL63 ACE2
Pig PEDV APN

Beta

2a Cattle BCoV Sialic Acid
Human HCoV-HKU1 Unknown
Human HCoV-OC43 Unknown (Sialic Acid)
Mouse MHV CEACAM1a (Sialic Acid)
Pig PHEV Unknown

2b Bat† Bat-SCoV ACE2?
Human SARS-CoV ACE2 (DC-SIGN,

DC-SIGNR, LSECtin)
2c Human MERS-CoV DPP4 (also known as CD26)

Bat BtCoV-HKU4 DPP4

Gamma
3a Chicken IBV Unknown (Sialic Acid)
3b Beluga whale SW1 Unknown
3c Thrush ThCoV-HKU12 Unknown

Delta - Bird
Bird CoVs

Unknown
(multiple species)

† Several species of bat coronaviruses have been identified and classified as members of
genogroup alphacoronavirus or betacoronavirus. BtCoV, bat coronavirus; FCoV, feline
coronavirus; FIPV, feline infectious peritonitis virus; CCoV, canine coronavirus; TGEV,
transmissible gastroenteritis virus; HCoV, human coronavirus; MHV, murine hepatitis
virus; PHEV, porcine hemagglutinating encephalomyelitis virus; Bat-SCoV, bat SARS-
related coronavirus; SARS-CoV, severe acute respiratory syndrome coronavirus; MERS-
CoV, Middle-East respiratory syndrome coronavirus; IBV, infectious bronchitis virus;
ThCoV, thrush coronavirus; APN, aminopeptidase N; ACE2, angiotensin-converting en-
zyme 2; CEACAM1a, carcinoembryonic cell adhesion molecule 1a; DC-SIGN, dendritic cell-
specific ICAM3-grabbing non-integrin; DC-SIGNR, DC-SIGN-related protein; LSECtin,
liver and lymph node sinusoidal C-type lectin; DPP4, dipeptidyl peptidase 4; CD, cluster
of differentiation. Table is adapted from Perlman et al. [1]

host cellular receptor. Interaction with the cellular receptor triggers conformational

changes in the spike protein that mediate membrane fusion and entry. Next, the
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positive sense RNA genome is released into the cytoplasm and two-thirds of the

viral genome translated into viral replicase polyproteins 1a and 1ab (Figure 1.5.A).

Processing of the polyproteins into 16 non-structural proteins (nsp1-16) is mediated

by two viral proteases, papain-like protease (PLpro) or 3 chymotrypsin-like protease

(3CLpro). PLpro mediates the release of nsp1, nsp2 and nsp3, while the protease

activity of 3CLpro releases nsp4 through nsp16 (Figure 1.5.A). The non-structural

proteins assemble at the ER-derived double membrane vesicles to form the replicase

complex, which carries out the synthesis of full-length genomic RNA as well as a

nested set of sub-genomic mRNA (sgRNA). Figure 1.5.B summarizes the role of

different non-structural proteins during virus genome replication and synthesis of

sgRNA [1]. Translation of sgRNA produce structural protein S, E, M and N. S, E

and M structural proteins mature and traffic through the endoplasmic reticulum, and

combines with the N-protein encapsidated viral genome in the ER-golgi intermediate

complex (ERGIC). The complete virion assembles in the ERGIC and exits the host

cell via exocytosis.

1.5.1 Coronavirus proteases as drug targets

As mentioned earlier, coronavirus polyprotein processing requires the proteolytic

activity of two different virus encoded proteases. Proteolytic activity of a single

(or two in some cases) papain-like protease, PLpro, is responsible for the release of

nsp1 to nsp3 via proteolytic processing at three distinct cleavage sites nsp1|nsp2,

nsp2|nsp3 and nsp3|nsp4 [36]. PLpro is encoded as a protease domain within the

large multi-functional nsp3 protein. In addition to the protease activity, PLpro also

possesses the ability to remove ubiquitin and ISG15 (interferon-stimulated gene 15)

molecules from a variety of cellular substrates [36]. Since a variety of cellular proteins

undergo ubiquitination and ISGylation during activation of innate immune response,

the deubiquitination and deISGylation activities of PLpro play important roles in the

viral antagonism of host innate immune response [36].
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Fig. 1.5.: Coronavirus genome and non-structural proteins. A. Schematic illustra-
tion of SARS-CoV genome arrangement. ORFs (ORF1a and 1b) for the replicase polypro-
teins along with the ORF’s for structural and accessory proteins are depicted. The first
two-thirds of the genome is translated into two overlapping polyproteins 1a and 1ab, where
translation of 1ab results from the presence of a ribosome frame-shift element at the termi-
nation site for 1a. The polyproteins are processed by viral encoded proteases PLpro (red box)
and 3CLpro (blue box). PLpro and 3CLpro cleavage sites are shown as red and blue scissors,
respectively. nsp1-16 are released from the polyproteins and form the replicase complex. B.
nsp’s are listed along with their associated functions. PLpro, papain-like protease, ADRP,
ADP-ribose-1”-monophosphatase; SUD, SARS unique domain; 3CLpro, 3 Chymotrypsin-
like protease; RDRP, RNA-dependent RNA polymerase; DMV, double-membrane vesicle.
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The second viral encoded protease, 3CLpro or 3 chymotrypsin-like protease, un-

dertakes polyprotein processing at eleven distinct cleavage sites, and is responsible for

the release of nsp4 through nsp16 [1]. 3CLpro has also been referred as non-structural

protein 5 (nsp5) and Main protease (Mpro) in the literature. Both PLpro and 3CLpro

have been targeted for inhibitor design for the development of antiviral therapeutics

against existing and emerging coronaviruses [36–39].

1.6 Coronavirus 3CLpro protease

The coronavirus 3CLpro enzyme is essential for the polyprotein processing at eleven

distinct cleavage sites, albeit with different efficiencies [1, 40, 41]. Each 3CLpro pro-

tomer is structurally organized into three domains (Figure 1.6.A). Domains 1 and

2 constitute the catalytic fold with a typical chymotrypsin-like fold. In SARS-CoV

3CLpro, His41 and Cys 145 form a catalytic dyad (Figure 1.6.B) that is present in

the cleft between the domains 1 (amino acids 1-101) and 2 (amino acids 102-185).

Domain 3 (amino acids 201-306) is unique to 3CLpro enzymes, when compared to

chymotrypsin, and contributes significant number of residues that are essential for

3CLpro dimerization [42–48].

1.6.1 Enzymatic reaction mechanism for coronavirus 3CLpro

Unlike a typical serine protease that contains a Cys-His-Asp catalytic triad, the

active site of SARS-CoV 3CLpro is comprised of a Cys145-His41 catalytic dyad. A

conserved water molecule has been observed in the crystal structures of SARS-CoV

3CLpro [43,49,50] and is suggested to assist in catalysis by stabilizing the active con-

formational orientation of His41 (Figure 1.7, E) [51, 52]. His41 extracts one proton

from the side chain thiol of Cys145 via hydrogen bonding interaction between the

side chain nitrogen on His41 and the thiol side chain of Cys145 (Figure 1.7, Step a).

Next, the thiolate nucleophile attacks the carbonyl carbon of the scissile bond in the

substrate (Figure 1.7, formation of ES complex). The pi -electrons of the substrate
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Fig. 1.6.: Detailed dimeric structure of SARS-CoV 3CLpro. A. SARS-CoV 3CLpro

dimer with monomers A (salmon) and B (blue) is depicted. Domains I, II and III are
labeled. The catalytic dyad, composed of His41 and Cys145, is present in the cleft between
domains I and II. B. Active site residues, His41 and Cys145, are illustrated in ball-and-stick
model. Gly143, Ser144 and Cys145 form the oxyanion hole. Primary interactions at the
dimer interface involve: C. interactions between S1 subsite of monomer A (salmon) and
the N-terminal finger (residues 1-7) of monomer B (blue); D. interactions of the S1 subsite
and the N-terminal finger of monomer A with residues from domain III of monomer B; E.
interactions between A’ α-helices (amino acids 10-15) from each monomer.
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carbonyl group are pushed onto the oxygen leading to the formation of a transient

tetrahedral intermediate (TI-1) with an oxygen anion (oxyanion) (Figure 1.7, forma-

tion of FP complex). The oxyanion is transiently stabilized by hydrogen bonding

interactions with the backbone amide of residues in the oxyanion hole (Gly143 and

Cys145). Next, the oxyanion electrons are pushed back to reform the carbonyl double

bond at the C-terminus of the scissile bond. The scissile bond is cleaved resulting

in the formation of thioester enzyme intermediate (Figure 1.7, species F), and the

C-terminus of the cleaved peptide substrate dissociates from the active site after

abstracting a proton from the side chain nitrogen of His41.

Another water molecule enters the active site via hydrogen bond formation with

His41 and attacks the carbonyl carbon of the thioester intermediate. The X-ray crys-

tal structures of SARS-CoV 3CLpro in complex with peptidomimetic inhibitors pro-

vide clear evidence for the presence of this water molecule within hydrogen-bonding

distance of His41 (PDB ID: 2ALV and 2QIQ; [53,54]). This results in the formation

of second tetrahedral intermediate (TI-2) and abstraction of one proton from water

by His41 (Figure 1.7, formation of FQ complex). The oxyanion of TI-2 is transiently

stabilized by backbone amides of Gly143 and Cys145. Next, electrons from the oxyan-

ion reform the carbonyl double bond while the the Cys145 sulfur abstracts a proton

from His41. Finally, the bond between Cys145 sulfur and carbonyl carbon from the

substrate breaks, regenerating Cys145 thiol side chain, and the N-terminus half of

the cleaved substrate dissociates from the active site.

1.6.2 3CLpro is catalytically active as a dimer

Using recombinantly expressed and purified protein, several studies have shown

that SARS-CoV 3CLpro exists as a tightly associated dimer in solution in a concen-

tration dependent manner [45]. X-ray crystal structures of SARS-CoV 3CLpro, either

in apo or ligand-bound forms, also reveal the enzyme as a dimer, suggesting this qua-

ternary structural form as the biological functional unit [43–47]. In fact, mutation of
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Fig. 1.7.: Enzymatic reaction mechanism for SARS-CoV 3CLpro. Active site
residues, Cys145 and His41, that form the catalytic dyad are shown. Oxyanion hole residues
Gly143 and Cys145 are also shown. Active site water molecule that assists in making His41
a strong base is shown in orange, while catalytic water molecule that attacks the carbonyl
oxygen of the scissile bond to form TI-2 is shown in blue. The peptide substrate is depicted
in green.Figure is adapted from Baez-Santos et al. [36]

residues that interact across the dimer interface results in a partial or complete loss

of dimer formation with a concomitant loss in the enzymatic activity. X-ray crystal

structures of the dimer illustrate that the two monomers orient almost perpendicular

to each other (Figure 1.6.A). In the active conformation, the S 1 substrate binding
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pocket (Figure 1.6.C) is present an open conformation to allow the binding of the

corresponding P1 substrate residue. Additionally, the oxyanion hole (Figure 1.6.C)

of the active conformation is in the correct orientation to donate two hydrogen bonds

from the main chain amides (Gly143 and Cys145) to stabilize the oxyanion of the

first tetrahedral intermediate formed during the catalytic cycle. Crystal structures

of monomeric SARS-CoV 3CLpro mutants suggest that the loss in enzymatic activity

for the monomer originates from the inaccessible collapsed conformation of both the

S 1 subsite and the oxyanion hole [47,55].

Interactions at the dimer interface of SARS-CoV 3CLpro

Residues that interact to form the 3CLpro dimer interface primarily cluster at the

following hot spots: 1) the N-terminal finger (amino acids 1-7); 2) the N-terminal

helix (also known as the A’ α-helix; amino acids 10-15); 3) amino acids near the

S 1 subsite; and 4) amino acids in domain III, mainly at the C-terminus. The N-

terminal finger residues from one monomer make hydrogen bonding and hydrophobic

interactions with several amino acids that form the S 1 subsite and the oxyanion

hole of the opposing monomer (Figure 1.6.C ). Interaction between Arg4 (domain

I) and Glu290 (domain III) across the dimer interface is critical (Figure 1.6.D) [55],

since mutation of any of these residues drastically ablates the dimer formation and

the enzymatic activity. Arg298 is another important residue that is essential for

the dimer formation and its mutation results in complete loss of dimerization and

enzymatic activity [47]. Mutation studies have further highlighted the significance of

residues of the N-terminal helix in the dimer formation (Figure 1.6.E) [56].

Since residues from both the N- and C-termini participate in dimer formation, it

is absolutely critical to use a recombinant enzyme without any modification (addition

of affinity tags or deletion of residues) on the termini for experimental studies. Fur-

thermore, several groups (including ours) have shown that SARS-CoV 3CLpro with
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‘authentic’ N- and C-termini forms a stable dimer that has orders of magnitude higher

activity compared to the enzyme with modifications at the termini [45].

1.6.3 Model for auto-release of SARS-CoV 3CLpro from the polyprotein

As discussed in the previous section, SARS-CoV 3CLpro is a functional dimer

and modifications at either termini interfere with the dimer formation. Since the

dimer is the active form of the enzyme, it is intriguing how 3CLpro liberates itself

from the polyprotein in the context of viral replication. Based on several studies

performed in-Vitro with the recombinantly purified protein, the following model has

been proposed to describe the auto-cleavage of SARS-CoV 3CLpro (Figure 1.8) [43,

57,58]. First, two immature monomers present in two different polyproteins approach

each other and form an ‘immature’ dimer conformation through interactions between

their third domains. This results in a domain swap where the N-terminus region of

the polyprotein immediately upstream of 3CLpro interjects itself into the active site

of the opposing monomer, leading to the formation of an immature dimer (Figure

1.8, Step 1). Next, the polyprotein is cleaved at the N-terminus auto-cleavge site

of SARS-CoV 3CLpro (Figure 1.8, Step 2). In Step 3, the uncleaved C-terminus of

the dimer is aligned in the active site of another dimer. The uncleaved C-termini of

the dimer is then processed liberating an active mature dimer of SARS-CoV 3CLpro

(Step 4). Once an active dimer is formed, it can process other cleavage sites in the

polyprotein (Step 5).

1.7 Statement of intent

Emergence of two highly pathogenic human coronaviruses in the 21st century high-

lights the significance of studying coronavirus biology and identify coronavirus drug

targets. Coronavirus 3CLpro protease has been utilized by several groups for the

development of anti-coronaviral therapeutics. The overarching goal of this project

is to investigate enzymatic and structural properties of multiple 3CLpro enzymes
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Fig. 1.8.: Proposed model for auto-release of SARS-CoV 3CLpro form the
polyprotein. (adapted from Chen et al. [57]) SARS-CoV 3CLpro is illustrated as rectangu-
lar box (domain I and II) and cylinder (domain III). N- and C-termini are labeled. 3CLpro

substrate (cleavage sites in the polyprotein) is shown as yellow cylinder labeled ‘S’. Steps
for SARS-CoV 3CLpro auto-release from the polyprotein and subsequent 3CLpro-mediated
processing of the polyprotein have been described in details in the text.

encompassing different coronavirus subclasses. Understanding the determinants of

structural and functional disparity between different 3CLpro enzymes and the fac-
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tors regulating these properties will aid in the design of broad-spectrum inhibitors of

3CLpro enzymes.
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CHAPTER 2. EXPERIMENTAL PROCEDURES

Parts of the data and text in this chapter have been published in various journal

articles [45, 59, 60].

2.1 Recipes for expression and purification of 3CLpro enzymes

2.1.1 Recipe for 1 liter LB medium

10 gm tryptone

5 gm yeast-extract

10 gm Sodium chloride

pH was adjusted to 7.5 before adjusting the final volume to 1 liter, followed by

sterilizing the media by autoclaving.

2.1.2 Recipe for 1 liter Super-LB medium for auto-induction

3 gm KH2PO4

6 gm Na2HPO4

20 gm tryptone

5 gm yeast-extract

5 gm Sodium chloride

pH was adjusted to 7.2 before adjusting the final volume to 1 liter, followed by

sterilizing the media by autoclaving.

8% lactose and 10% glucose were prepared in autoclaved water and then filter-

sterilized. 60% glycerol was prepared in water and then autoclaved. For auto-

induction, 25-50 mL of overnight bacterial culture was inoculated in 1 liter of Super-

LB media with 25 mL of 8% lactose, 5 mL of 10% glucose, 10 ml of 60% glycerol and
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100 µg/mL of carbenicillin. Cells were grown in an INFORS multitron incubation

shaker with an orbital diameter of 2.5 cm at 25 °C for 22-24 hours at 180 rpm.

2.1.3 Buffers for purification of 3CLpro enzymes

SARS-CoV 3CLpro purification buffers

•Buffer A

20 mM Tris pH-7.5

0.05 mM EDTA

5 mM β-mercaptoethanol (BME); freshly added right before purification

•Buffer B

50 mM Tris pH-7.5

0.05 mM EDTA

1.0 M Sodium chloride

5 mM BME; freshly added right before purification

•Buffer C

50 mM Tris pH-7.5

0.05 mM EDTA

1.0 M Ammonium sulfate

5 mM BME; freshly added right before purification

•Buffer D

25 mM HEPES pH-7.5

2.5 mM dithiothreitol (DTT)

Storage buffer was prepared by adding 10% glycerol to buffer D

MHV 3CLpro purification buffers

•Buffer A

50 mM Tris pH-7.5
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0.05 mM EDTA

0.2 M Ammonium sulfate

5 mM β-mercaptoethanol (BME); freshly added right before purification

•Buffer B

20 mM Tris pH-7.5

0.05 mM EDTA

5 mM β-mercaptoethanol (BME); freshly added right before purification

•Buffer C

20 mM MES pH-6.0

0.05 mM EDTA

5 mM β-mercaptoethanol (BME); freshly added right before purification

•Buffer D

50 mM Tris pH-7.5

0.05 mM EDTA

1.0 M Sodium chloride

5 mM BME; freshly added right before purification

•Buffer E

25 mM HEPES pH-7.5

2.5 mM dithiothreitol (DTT)

Storage buffer was prepared by adding 5% glycerol to buffer E

HKU1 3CLpro purification buffers

•Buffer A

50 mM Tris pH-7.5

0.05 mM EDTA

0.2 M Ammonium sulfate

5 mM β-mercaptoethanol (BME); freshly added right before purification

•Buffer B
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20 mM Tris pH-7.5

0.05 mM EDTA

5 mM β-mercaptoethanol (BME); freshly added right before purification

•Buffer C

50 mM Tris pH-7.5

0.05 mM EDTA

1.0 M Sodium chloride

5 mM BME; freshly added right before purification

•Buffer D

25 mM HEPES pH-7.5

2.5 mM dithiothreitol (DTT)

Storage buffer was prepared by adding 10% glycerol to buffer D

OC43 3CLpro purification buffers

•Buffer A

50 mM Tris pH-7.5

0.05 mM EDTA

0.2 M Ammonium sulfate

5 mM β-mercaptoethanol (BME); freshly added right before purification

•Buffer B

20 mM Tris pH-7.5

0.05 mM EDTA

5 mM β-mercaptoethanol (BME); freshly added right before purification

•Buffer C

20 mM MES pH-6.0

0.05 mM EDTA

5 mM β-mercaptoethanol (BME); freshly added right before purification
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•Buffer D

50 mM Tris pH-7.5

0.05 mM EDTA

1.0 M Sodium chloride

5 mM BME; freshly added right before purification

•Buffer E

25 mM HEPES pH-7.5

2.5 mM dithiothreitol (DTT)

Storage buffer was prepared by adding 10% glycerol to buffer E

HKU5-CoV 3CLpro purification buffers

•Buffer A

20 mM Tris pH-7.5

0.05 mM EDTA

5 mM β-mercaptoethanol (BME); freshly added right before purification

10% glycerol

•Buffer B

50 mM Tris pH-7.5

0.05 mM EDTA

1.0 M Ammonium sulfate

5 mM β-mercaptoethanol (BME); freshly added right before purification

10% glycerol

•Buffer C

50 mM Tris pH-7.5

0.05 mM EDTA

1.0 M Sodium chloride

5 mM BME; freshly added right before purification

10% glycerol
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•Buffer D

25 mM HEPES pH-7.5

2.5 mM dithiothreitol (DTT)

10% glycerol

MERS-CoV 3CLpro purification buffers

•Buffer A

20 mM Tris pH-7.5

0.05 mM EDTA

5 mM β-mercaptoethanol (BME); freshly added right before purification

10% glycerol

•Buffer B

50 mM Tris pH-7.5

0.05 mM EDTA

1.0 M Ammonium sulfate

5 mM β-mercaptoethanol (BME); freshly added right before purification

10% glycerol

•Buffer C

50 mM Tris pH-7.5

0.05 mM EDTA

1.0 M Sodium chloride

5 mM BME; freshly added right before purification

10% glycerol

•Buffer D

20 mM MES pH-5.5

0.05 mM EDTA

5 mM BME; freshly added right before purification

10% glycerol
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•Buffer E

50 mM MES pH-5.5

0.05 mM EDTA

1.0 M Sodium chloride

5 mM BME; freshly added right before purification

10% glycerol

•Buffer F

25 mM HEPES pH-7.5

2.5 mM dithiothreitol (DTT)

10% glycerol

2.2 Expression and purification of SARS-CoV 3CLpro

The codon-optimized gene for SARS-CoV 3CLpro was subcloned into the pET-

11a expression vector by Grum-Tokers et al. [45] with nucleotides coding for a TEV

protease cleavage site between the N-terminal (His)6-tag and the first amino acid for

SARS-CoV 3CLpro (Figure 2.1). This construct results in the expression of SARS-

CoV 3pro without any N-terminal or C-terminal extension.

For protein expression, E. coli BL21-DE3 electro-competent cells were trans-

formed via electroporation with pET-11a plasmid containing the gene for SARS-CoV

3CLpro as described above. The transformed cells were grown overnight at 37 °C on

LB agar supplemented with 50 µg/mL of carbenicillin. A single colony was picked

from the agar plate and was used to inoculate 100 mL of LB media supplemented with

100 µg/mL of carbenicillin. The cells were grown in the incubation shaker at 37 °C

for overnight at 200 rpm. 25 mL of overnight culture was used to inoculate one liter of

Super-LB media supplemented with 100 µg/mL of carbenicillin and the protein was

expressed through auto-induction for 22-24 hours at 25 °C. The cells were harvested

by centrifugation at 5000 × g for 20 minutes at 4 °C, and the pellets were stored at
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Fig. 2.1.: Construct design for 3CLpro enzymes. Codon-optimized gene for 3CLpro

protease was cloned into a pET-11a expression vector with an N-terminal (His)6-tag fol-
lowed by either the TEV protease cleavage site or the nsp4|nsp5 auto-cleavage site for the
corresponding 3CLpro enzyme.

−80 °C until further use. Approximately 22 grams of cell pellet was obtained from 2

L of bacterial culture under the given expression conditions.

The frozen pellets from 2 L of bacterial cell culture were thawed on ice and re-

suspended in 5 mL of Buffer A per gram of cell pellet with 500 µg of lysozyme and a

small amount of DNase. The cells were then lysed via sonication at 60 % amplitude,

with 10 seconds on and 20 seconds off cycles, using a 400 W model Branson sonifier.

Cell debris was removed from the cleared lysate by centrifuging at 29,000 × g for 20

minutes.

2.2.1 DEAE anion-exchange chromatography

The clarified cell lysate (120 mL) was loaded at a flow rate of 3 mL/min onto a 60

mL DEAE anion-exchange column (XK 26/20, Amersham Biosciences) equilibrated
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with Buffer A. The unbound protein fraction from the load was collected. Once all

the sample was loaded, the column was washed with 2 × column volume (120 mL)

of Buffer A to remove additional unbound protein fraction. A 2 × column volume

linear gradient to 100% Buffer B was finally used to elute the bound protein fraction;

10 mL fractions were collected. Based on SDS-PAGE analysis (Figure 2.2.A) and

specific activity measurements, the majority of SARS-CoV 3CLpro was present in the

unbound fraction (flow-through).

2.2.2 Hydrophobic-interaction chromatography

Solid ammonium sulfate (70.91 gm) was added to the flow-through (190 mL)

obtained from the previous step to a final 60% saturation through gradual mixing

on ice using a magnetic stirrer. The sample was then centrifuged at 29,000 × g

for 20 minutes at 4 °C. The pellet of precipitated proteins was then resuspended in

65 mL of Buffer C. Sample was loaded at a flow rate of 3 mL/min onto a 30 mL

Phenyl Sepharose 6 fast-flow high-sub column (XK 16/20, Amersham Biosciences)

equilibrated with Buffer C. The column was then washed with 4 × column volume

(120 mL) of Buffer C at a flow rate of 3 mL/min. The protein was eluted using

a 10 × column volume (300 mL) linear gradient to 100% Buffer A. The fractions

(5 ml) were collected and those containing SARS-CoV 3CLpro, as judged through

SDS-PAGE analysis (Figure 2.2.B) and specific activity measurements, were pooled

(40 mL) and exchanged into 2 L of Buffer A via overnight dialysis in dialysis tubing

(10,000 MWCO SnakeSkinr, Thermo Scientific).

2.2.3 Mono-Q anion-exchange chromatography

Following dialysis, the protein sample was filtered through a 0.22 µm pore size

Millex-GP filter (Millipore) to remove any precipitated protein. The filtered sample

was then loaded at a flow-rate of 2 mL/min onto a 8 mL Mono-Q 10/100 column

(Amersham Biosciences) equilibrated in Buffer A. Protein was eluted at a flow rate of
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3 mL/min using a 10 × column volume (80 mL) and linear gradient to 100% Buffer B

(Figure (Figure 2.2.C). Fractions (3 mL) were collected and those containing SARS-

CoV 3CLpro were pooled (9 mL) and concentrated to approximately 4 mg/mL using

Amiconr Ultra 15 mL Centrifugal Filters (Millipore).

2.2.4 Gel-filtration chromatography

As the final purification step, the concentrated protein sample was loaded onto

a prep grade Superdex 75 26/60 gel filtration column (Amersham Biosciences) equi-

librated with Buffer D. Protein was eluted isocratically at a flow rate of 1 mL/min

with buffer D (Figure 2.2.D). Fractions (5 ml) containing SARS-CoV 3CLpro were

pooled (total volume of 20 mL) and concentrated to approximately 1.5 mg/mL us-

ing Amiconr Ultra 15 mL Centrifugal Filters (Millipore). For final storage of the

purified SARS-CoV 3CLpro enzyme, 300 µL protein aliquots containing glycerol to a

final concentration of 10% were placed into 1 mL screw-cap vials, flash-frozen under

liquid nitrogen and then stored at −80 °C until further use.

A summary of the percent enzyme yield, total activity units, and the fold-purification

after each chromatographic step is summarized in Table 2.1. Approximately 13 mg of

highly pure SARS-CoV 3CLpro can be obtained from 2 liters of bacterial cell culture.

Table 2.1.
Purification summary of SARS-CoV 3CLpro from 2 L culture of E.coli

BL21-DE3

Sample
Protein Total activity Specific activity Fold

% Yield
(mg) Units (Units/mg) purification

Lysate 602 10115 17 1 100
DEAE 478 9231 19 1 91
Phenyl-Sepharose 31 2035 66 4 20
Mono-Q 23 2052 91 5 20
Superdex 75 13 2514 199 12 25
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Fig. 2.2.: Purification of SARS-CoV 3CLpro. A. Left-Elution profile from DEAE
column. Right-SDS-PAGE analysis of the eluted fractions highlighted in yellow in the
elution profile. MW marker sizes are indicated. Red arrows indicate the expected size of
SARS-CoV 3CLpro; FT - flow through (unbound fraction). B. Left-Elution profile from
Phenyl-sepharose column. Right-SDS-PAGE analysis of the eluted fractions highlighted in
yellow in the elution profile. C. Left-Elution profile from Mono-Q column. Right-SDS-
PAGE analysis of the eluted fractions highlighted in yellow in the elution profile. D. Left-
Elution profile from Superdex 75 column. Right-SDS-PAGE analysis of the eluted fractions
highlighted in yellow in the elution profile.
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2.3 Expression and purification of MHV 3CLpro

The gene encoding 3CLpro of MHV (amino acids 3334-3636 in the replicase polypro-

tein, GenBank: AAU06352.1) was codon optimized for optimal expression in E.coli

(BioBasic Inc) and was subcloned by Dr. Aimee Eggler (Mesecar lab) into pET-

11a expression vector with an N-terminal (His)6-tag and TEV protease cleavage site

(Figure 2.1). The plasmids with V148A, H134Y and V148A/H134Y mutations were

provided by Dr. Christopher Stobart (Denison lab, Vanderbilt University).

For protein expression, E. coli BL21-DE3 electro-competent cells were trans-

formed via electroporation with pET-11a plasmid containing the wildtype and mutant

genes. The transformed cells were grown overnight at 37 °C on LB agar supplemented

with 50 µg/mL of carbenicillin. A single colony was picked from the agar plate and

was used to inoculate 100 mL of LB media supplemented with 100 µg/mL of carbeni-

cillin. The cells were grown in an incubator shaker at 37 °C for overnight at 200 rpm.

20 mL of overnight culture was used to inoculate one liter of LB media supplemented

with 100 µg/mL of carbenicillin and the cells were grown at 37 °C, 200 rpm. When

the OD600 of the culture approached 0.6, protein expression was induced via addition

of IPTG to a final concentration of 0.15 mM. Expression of the wildtype and H134Y

mutant was induced at 37 °C for 4 hours at 180 rpm, while V148A and V148A/H134Y

mutants were expressed at 25 °C for 4 hours at 180 rpm. Cells were harvested by

centrifugation at 5000 × g for 20 minutes at 4 °C, and the pellets were stored at −80

°C until further use. Approximately 6 grams of cell pellet was obtained from 3 L of

bacterial culture under the given expression conditions.

The frozen pellets from 3 L of bacterial cell culture were thawed on ice and re-

suspended in 5 mL of Buffer A per gram of cell pellet with 50 µg of lysozyme and

10 µg of DNase. The cells were then lysed via sonication at 50% amplitude using a

400 W model Branson sonifier and cell debris was removed from the cleared lysate

by centrifuging at 29,000 × g for 20 minutes.
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2.3.1 Hydrophobic-interaction chromatography

The cleared lysate was loaded at a flow rate of 2 mL/min onto a 30 mL Phenyl

Sepharose 6 Fast Flow High Sub column (XK 16/20, Amersham Biosciences) equili-

brated with Buffer A. The unbound protein fraction was removed from the load by

washing with 3 × column volumes of Buffer A at a flow rate of 3 mL/min. The

bound protein fraction was then eluted using a 3 × column volume linear gradient

to 100% Buffer B (20 mM Tris pH-7.5, 0.05 mM EDTA and 10 mM BME); 6 mL

fractions were collected. The fractions were analyzed through SDS-PAGE (Figure

2.3.A) and specific activity determination. The fractions containing MHV 3CLpro

were pooled and pH of the pooled fractions was manually adjusted to 6.0 by gradual

addition of solid MES [2-(N -morpholino)ethanesulfonic acid] on a magnetic stirrer.

For V148A/H134Y, 1 ml of Buffer D was added for every 10 ml of the pooled sam-

ple before pH was adjusted. After adjusting the pH, any precipitated protein was

removed by filtering through a 0.22 µm pore size Millex-GP filter (Millipore).

2.3.2 DEAE anion-exchange chromatography

The protein sample from the previous step was loaded at a flow rate of 2 mL/min

onto a 60 mL DEAE anion-exchange column (XK 26/20, Amersham Biosciences)

equilibrated with Buffer C. The unbound protein fraction was collected in a separate

beaker. Once the sample was loaded, the column was washed with 1 × column volume

of Buffer C at a flow rate of 3 mL/min to remove additional unbound protein fraction.

Finally, 3 × column volume linear gradient to 100% Buffer D was used to elute the

bound protein fraction; 5 mL fractions were collected. Based on SDS-PAGE analysis

(Figure 2.3.A) and specific activity measurements, the majority of 3CLpro was present

in the unbound fraction. The protein was buffer exchanged via overnight dialysis

into 2 L of Buffer E using a dialysis tubing (10,000 MWCO SnakeSkinr dialysis

tubing, Thermo Scientific). The dialyzed sample was concentrated to 1-2 mg/mL

using Amiconr Ultra 15 mL Centrifugal Filters (Millipore) and used for the kinetic
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assays. For the CD experiments, gel-filtration chromatography was employed as the

final purification step. All the thermal inactivation and CD experiments (Chapter 4)

were performed using freshly purified (i.e. not frozen) proteins.

2.3.3 Gel-filtration chromatography

The concentrated protein sample was loaded onto a prep grade Superdex 75 26/60

gel filtration column (Amersham Biosciences) equilibrated with Buffer E. A flow rate

of 1 mL/min of buffer E was used for isocratic elution of the protein. The fractions

containing 3CLpro were pooled and concentrated to approximately 1-2 mg/mL. To-

tal activity units (µM product/min), specific activity (units/mg) and milligrams of

protein obtained (BioRad protein assay) were determined after each chromatographic

step to calculate the final protein yield.

Table 2.2.
Purification summary of MHV 3CLpro from 3 L culture of E.coli

BL21-DE3

Sample
Protein Total activity Specific activity Fold

% Yield
(mg) Units (Units/mg) purification

Lysate 199 19255 97 1 100
Phenyl-Sepharose 26 7429 283 3 39
DEAE 10 4821 461 5 25

2.4 Expression and purification of HKU1-CoV 3CLpro

The gene encoding 3CLpro of HKU1 3CLpro was codon optimized for optimal

expression in E.coli (BioBasic Inc) and was subcloned by Dr. Aimee Eggler (Mesecar

lab) into pET-11a expression vector with an N-terminal (His)6-tag and TEV protease

cleavage site (Figure 2.1). The construct was verified by DNA sequencing at the

Purdue University Genomics Core Facility.
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Fig. 2.3.: Purification of MHV 3CLpro. A. Left-Elution profile from Phenyl-sepharose
column. Right-SDS-PAGE analysis of the eluted fractions highlighted in yellow in the
elution profile. MW marker sizes are indicated. Red arrows indicate the expected size of
MHV 3CLpro; FT - flow through (unbound fraction). B. Left-Elution profile from DEAE
column. Right-SDS-PAGE analysis of the eluted fractions highlighted in yellow in the
elution profile.
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For protein expression, E. coli BL21-DE3 electro-competent cells were trans-

formed via electroporation with pET-11a plasmid containing the gene for HKU1

3CLpro. The transformed cells were grown overnight at 37 °C on LB agar supple-

mented with 50 µg/mL of carbenicillin. A single colony was picked from the agar

plate and was used to inoculate 100 mL of LB media supplemented with 100 µg/mL

of carbenicillin. The cells were grown in an incubator shaker at 37 °C for 8 hours at

200 rpm. 50 mL of the bacterial culture was used to inoculate one liter of LB media

supplemented with 100 µg/mL of carbenicillin and the cells were grown at 37 °C, 200

rpm. When the OD600 of the culture approached 0.6, protein expression was induced

via addition of IPTG to a final concentration of 0.5 mM for 12-15 hours at 18 °C,

180 rpm. The cells were harvested by centrifugation at 5000 × g for 20 minutes at 4

°C, and the pellets were stored at −80 °C until further use. Approximately 12 grams

of cell pellet was obtained from 3 L of bacterial culture under the given expression

conditions.

The frozen pellets from 3 L of bacterial cell culture were thawed on ice and re-

suspended in 5 mL (57 mL) of of Buffer A per gram of cell pellet with 50 µg of

lysozyme and 10 µg of DNase. The cells were then lysed via sonication at 60%

amplitude using a 400 W model Branson sonifier and the cell debris was removed

from the cleared lysate by centrifuging at 29,000 × g for 20 minutes.

2.4.1 Hydrophobic-interaction chromatography

The cleared lysate (61 mL) was loaded at a flow rate of 2 mL/min onto a 30 mL

Phenyl Sepharose 6 Fast Flow High Sub column (XK 16/20, Amersham Biosciences)

equilibrated with Buffer A. The unbound protein fraction was removed from the load

by washing with 3 × column volumes of Buffer A at a flow rate of 3 mL/min. The

bound protein fraction was then eluted using a 2 × column volume (60 mL) linear

gradient to 100% Buffer B (20 mM Tris pH-7.5, 0.05 mM EDTA and 10 mM BME); 6

mL fractions were collected. The fractions were analyzed through SDS-PAGE (Figure
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2.4.A) and specific activity determination. The fractions containing HKU1 3CLpro

were pooled (66 mL).

2.4.2 DEAE anion-exchange chromatography

The pooled fractions from the previous step were loaded at a flow rate of 2 mL/min

onto a 60 mL DEAE anion-exchange column (XK 26/20, Amersham Biosciences)

equilibrated with Buffer B. The unbound protein fraction was collected. Once the

sample was loaded, the column was washed with 1 × column volume of Buffer B

at a flow rate of 3 mL/min to remove additional unbound protein fraction. A 8 ×

column volume (480 mL) linear gradient to 100% Buffer C was finally used to elute the

bound protein fraction; 5 mL fractions were collected. Based on SDS-PAGE analysis

(Figure 2.4.B) and the specific activity measurements, the majority of HKU1 3CLpro

was present in the unbound fraction (flow-through). The DEAE flow-through was

concentrated to approximately 10 mg/mL using Amiconr Ultra 15 mL Centrifugal

Filters (Millipore) for next step of purification.

2.4.3 Gel-filtration chromatography

As the final purification step, the concentrated protein sample was loaded onto

a prep grade Superdex 75 26/60 gel filtration column (Amersham Biosciences) equi-

librated with Buffer D. A flow rate of 1 mL/min of buffer D was used for isocratic

elution of the protein. The fractions containing HKU1 3CLpro were pooled (Figure

2.4.C) and concentrated to approximately 5 mg/mL using Amiconr Ultra 15 mL

Centrifugal Filters (Millipore). Total activity units (µM product/min), specific ac-

tivity (units/mg) and milligrams of protein obtained (BioRad protein assay) were

determined after each chromatographic step to calculate the final protein yield. A

summary of the percent enzyme yield, total activity units, and the fold-purification

after each chromatographic step is summarized in Table 4.3. Approximately 9 mg of

highly pure HKU1-CoV 3CLpro can be obtained per liter of bacterial cell culture.
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For final storage of the purified HKU1 3CLpro enzyme, 300 µL protein aliquots

containing glycerol to a final concentration of 10% were placed into 1 mL screw-cap

vials, flash-frozen under liquid nitrogen and then stored at −80 °C until further use.

Table 2.3.
Purification summary of HKU1 3CLpro from 1 L culture of E.coli

BL21-DE3

Sample
Protein Total activity Specific activity Fold

% Yield
(mg) Units (Units/mg) purification

Lysate 231 5952 26 1 100
Phenyl-Sepharose 18 1874 105 4 31
DEAE 10 1525 159 6 26
Superdex 75 9 1176 136 5 20

2.5 Expression and purification of OC43-CoV 3CLpro

The gene encoding 3CLpro of OC43 coronavirus 3CLpro was codon optimized for

optimal expression in E.coli (BioBasic Inc) and was subcloned by Dr. Aimee Eggler

(Mesecar lab) into pET-11a expression vector with an N-terminal (His)6-tag and TEV

protease cleavage site (Figure 2.1). The construct was verified by DNA sequencing

at the Purdue University Genomics Core Facility.

For protein expression, E. coli BL21-DE3 electro-competent cells were trans-

formed via electroporation with pET-11a plasmid containing the gene for OC43

3CLpro. The transformed cells were grown overnight at 37 °C on LB agar supple-

mented with 50 µg/mL of carbenicillin. A single colony was picked from the agar

plate and was used to inoculate 100 mL of LB media supplemented with 100 µg/mL

of carbenicillin. The cells were grown in an incubator shaker at 37 °C overnight at

200 rpm. 50 mL of overnight culture was used to inoculate one liter of Super-LB

media supplemented with 100 µg/mL of carbenicillin and the protein was expressed

through auto-induction for 22-24 hours at 25 °C. Cells were harvested by centrifu-
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Fig. 2.4.: Purification of HKU1 3CLpro. A. Left-Elution profile from Phenyl-sepharose
column. Right-SDS-PAGE analysis of the eluted fractions highlighted in yellow in the
elution profile. MW marker sizes are indicated. Red arrows indicate the expected size
of HKU1 3CLpro; FT - flow through (unbound fraction). B. Left-Elution profile from
DEAE column. Right-SDS-PAGE analysis of the eluted fractions highlighted in yellow in
the elution profile. C. Left-Elution profile from Superdex 75 column. Right-SDS-PAGE
analysis of the eluted fractions highlighted in yellow in the elution profile.
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gation at 5000 × g for 20 minutes at 4 °C, and the pellets were stored at −80 °C

until further use. Approximately 13 grams of cell pellet was obtained from 1 liter of

bacterial culture under the given expression conditions.

The frozen pellet from 1 L of bacterial cell culture was thawed on ice and re-

suspended in 5 mL of Buffer A per gram of cell pellet with 50 µg of lysozyme and 10

µg of DNase. The cells were then lysed via sonication at 60% amplitude using a 400

W model Branson sonifier and the cell debris was removed from the cleared lysate by

centrifuging at 29,000 × g for 20 minutes.

2.5.1 Hydrophobic-interaction chromatography

The clarified lysate was loaded at a flow rate of 2 mL/min onto a 30 mL Phenyl

Sepharose 6 Fast Flow High Sub column (XK 16/20, Amersham Biosciences, Piscat-

away, NJ) equilibrated with Buffer A. Once all the lysate was loaded onto the column,

additional buffer A was passed through the column at 3 mL/min until UV280 stabi-

lized. The unbound protein fractions under distinct peaks were collected in separate

beakers. Once UV280 stabilized, gradient to 60% Buffer B was immediately started

and 10 ml fractions were collected. A gradient of 60% Buffer B eluted the majority

of OC43 3CL from the column. Once UV280 went down and stabilized again, the

gradient was switched from 60% to 100% of Buffer B in 1 × column volume of Buffer

B (30 mL). The fractions were analyzed through SDS-PAGE (Figure 2.5.A) and the

specific activity determination. The fractions containing OC43 3CLpro were pooled

and exchanged into 2 L of Buffer C via overnight dialysis in a dialysis tubing (10,000

MWCO SnakeSkinr, Thermo Scientific).

2.5.2 DEAE anion-exchange chromatography

The dialyzed sample from the previous step was loaded at a flow rate of 2 mL/min

onto a 60 mL DEAE anion-exchange column (XK, 26/20, Amersham Biosciences)

equilibrated with Buffer C. The unbound protein fraction was collected. Once the
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sample was loaded, the column was washed with additional Buffer C at a flow rate of

3 mL/min until UV280 stabilized. A 2 × column volume (120 mL) linear gradient to

100% Buffer D was finally used to elute the bound protein fraction; 10 mL fractions

were collected. Based on SDS-PAGE analysis (Figure 2.5.B) and the specific activity

measurements, the majority of OC43 3CLpro was present in the unbound protein

fraction (flow-through). The DEAE flow-through was concentrated to approximately

10 mg/mL Amiconr Ultra 15 mL Centrifugal Filters (Millipore) for next step of

purification.

2.5.3 Gel-filtration chromatography

As the final purification step, the concentrated protein sample was loaded onto

a prep grade Superdex 75 26/60 gel filtration column (Amersham Biosciences) equi-

librated with Buffer E. A flow rate of 1 mL/min of buffer E was used for isocratic

elution of the protein. The fractions containing OC43 3CLpro were pooled (Figure

2.5.C) and concentrated to approximately 5 mg/mL. Total activity units (µM prod-

uct/min), specific activity (units/mg) and milligrams of protein obtained (BioRad

protein assay) were determined after each chromatographic step to calculate the final

protein yield. A summary of the percent enzyme yield, total activity units, and the

fold-purification after each chromatographic step is summarized in Table 4.4. Ap-

proximately 30 mg of highly pure OC43 3CLpro can be obtained per liter of bacterial

cell culture.

For final storage of the purified OC43 3CLpro enzyme, 300 µL protein aliquots

containing glycerol to a final concentration of 10% were placed into 1 mL screw-cap

vials, flash-frozen under liquid nitrogen and then stored at −80 °C until further use.

2.6 Expression and purification of HKU5-CoV 3CLpro

The gene encoding 3CLpro of HKU5-CoV 3CLpro was codon optimized for optimal

expression in E.coli and was subcloned by BioBasic Inc into pET-11a expression
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Fig. 2.5.: Purification of OC43 3CLpro. A. Left-Elution profile from Phenyl-sepharose
column. Right-SDS-PAGE analysis of the eluted fractions highlighted in yellow in the
elution profile. MW marker sizes are indicated. Red arrows indicate the expected size
of OC43 3CLpro. B. Left-Elution profile from DEAE column. Right-SDS-PAGE analysis
of the eluted fractions highlighted in yellow in the elution profile. C. Left-Elution profile
from Superdex 75 column. Right-SDS-PAGE analysis of the eluted fractions highlighted in
yellow in the elution profile. FT - flow through (unbound fraction).
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Table 2.4.
Purification summary of OC43 3CLpro from 1 L culture of E.coli

BL21-DE3

Sample
Protein Total activity Specific activity Fold

% Yield
(mg) Units (Units/mg) purification

Lysate 1014 7811 8 1 100
Phenyl-Sepharose 79 4579 58 8 59
DEAE 39 6634 172 22 85
Superdex 75 30 1547 51 7 20

vector with an N-terminal (His)6-tag followed by nsp4|nsp5 auto-cleavage site. This

construct results in the expression of HKU5-CoV 3CLpro without any N-terminal or

C-terminal extension.

For protein expression, E. coli BL21-DE3 electro-competent cells were trans-

formed via electroporation with pET-11a plasmid containing the gene for HKU5-CoV

3CLpro as described above. The transformed cells were grown overnight at 37 °C on

LB agar supplemented with 50 µg/mL of carbenicillin. A single colony was picked

from the agar plate and was used to inoculate 100 mL of LB media supplemented

with 100 µg/mL of carbenicillin. The cells were grown in an incubator shaker at 37

°C overnight at 200 rpm. 25 mL of overnight culture was used to inoculate one liter of

Super-LB media supplemented with 100 µg/mL of carbenicillin and the protein was

expressed through auto-induction for 22-24 hours at 25 °C. The cells were harvested

by centrifugation at 5000 × g for 20 minutes at 4 °C, and the pellets were stored at

−80 °C until further use. Approximately 12 grams of cell pellet was obtained from 1

L of bacterial culture under the given expression conditions.

the frozen pellet from 1 L of bacterial cell culture was thawed on ice and re-

suspended in 4 mL (50 mL) of Buffer A per gram of cell pellet with 100 µg of lysozyme

and a small amount of DNase. The cells were then lysed using a single pass through

French press at 1200 psi and the cell debris was removed from the cleared lysate by

centrifuging at 29,000 × g for 30 minutes. Solid ammonium sulfate was added to
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the cleared lysate (50 mL) to a final concentration of 1 M (3.56 gm) through gradual

mixing on ice using a magnetic stirrer.

2.6.1 Hydrophobic-interaction chromatography

The cleared lysate, mixed with ammonium sulfate, was loaded at a flow rate of

3 mL/min onto a 30 mL Phenyl Sepharose 6 fast-flow high-sub column (XK 16/20,

Amersham Biosciences, Piscataway, NJ) equilibrated with Buffer B. The column was

then washed with 5 × column volume (150 mL) of Buffer B at a flow rate of 3 mL/min

to remove the unbound protein fraction. The bound protein fraction was eluted using

a 5 × column volume (150 mL) linear gradient to 100% Buffer A. The fractions (5

ml) were collected and those containing HKU5-CoV 3CLpro as judged through SDS-

PAGE analysis (Figure 2.6.A) and the specific activity measurements, were pooled

(55 mL) and exchanged into 2 L of Buffer A via overnight dialysis in a dialysis tubing

(10,000 MWCO SnakeSkinr, Thermo Scientific).

2.6.2 DEAE anion-exchange chromatography

The dialyzed sample from the previous step was loaded at a flow rate of 3 mL/min

onto a 60 mL DEAE anion-exchange column (XK 226/20, Amersham Biosciences)

equilibrated with Buffer A. The column was then washed with 2 column volume (120

mL) of Buffer A at a flow rate of 3 mL/min. A linear gradient to 50% Buffer C in

5 × column volume (300 ml) was used to elute the bound protein fraction (Figure

2.6.B). The fractions (5 ml) were collected and those containing HKU5-CoV 3CLpro

were pooled (50 mL) and dialyzed for 4 hours in 4 L of Buffer A using a dialysis

tubing (10,000 MWCO SnakeSkinr, Thermo Scientific).
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2.6.3 Mono-Q anion-exchange chromatography

Following dialysis, the protein sample was filtered by passing through a 0.22 µm

pore size Millex-GP filter (Millipore) to remove any precipitated protein. The filtered

sample was then loaded at a flow-rate of 1 mL/min onto a 8 mL Mono-Q 10/100

column (Amersham Biosciences) equilibrated in Buffer A. The protein was eluted at

a flow rate of 2 mL/min using a 25 × column volume (200 mL) and linear gradient to

50% Buffer B (Figure 2.6.C). The fractions (2 mL) were collected and those containing

HKU5-CoV 3CLpro were pooled and dialyzed overnight in Buffer D. For final storage

of the purified HKU5-CoV 3CLpro enzyme, 300 µL protein aliquots were placed into

1 mL screw-cap vials, flash-frozen under liquid nitrogen and then stored at −80 °C

until further use for kinetic characterization.

A summary of the percent enzyme yield, total activity units, and the fold-purification

after each chromatographic step is summarized in Table 4.5. Approximately 28 mg of

highly pure HKU5-CoV 3CLpro can be obtained from 1 liter of bacterial cell culture.

Gel-filtration chromatography was employed as the final purification step only to

prepare the protein sample for crystallization.

Table 2.5.
Purification summary of HKU5-CoV 3CLpro from 1 L culture of E.coli

BL21-DE3

Sample
Protein Total activity Specific activity Fold

% Yield
(mg) Units (Units/mg) purification

Lysate 486 9407 19 1 100
Phenyl-Sepharose 84 4857 58 3 52
DEAE 37 4459 122 6 47
Mono-Q 28 3767 136 7 40
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Fig. 2.6.: Purification of HKU5-CoV 3CLpro. A. Left-Elution profile from Phenyl-
sepharose column. Right-SDS-PAGE analysis of the eluted fractions highlighted in yellow
in the elution profile. MW marker sizes are indicated. Red arrows indicate the expected
size of HKU1 3CLpro; FT - flow through (unbound fraction). B. Left-Elution profile from
DEAE column. Right-SDS-PAGE analysis of the eluted fractions highlighted in yellow
in the elution profile. C. Left-Elution profile from Mono-Q column. Right-SDS-PAGE
analysis of the eluted fractions highlighted in yellow in the elution profile. D. Final gel
showing sample purification achieved after each purification step.
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2.7 Expression and purification of MERS-CoV 3CLpro

The expression and purification protocol for MERS-CoV 3CLpro has been de-

scribed in details in Chapter 5.

2.8 Sample preparation for SDS-PAGE analysis

Some of the 3CLpro enzymes we investigated exhibit a peculiar pattern when an-

alyzed on the SDS-PAGE. We observed that boiling of the protein for SDS-PAGE

sample preparation results in the formation of high-order protein aggregates display-

ing a ladder-like pattern (Figure 2.7). Western-blot analysis of MHV 3CLpro using

an anti-3CLpro antibody confirmed that the higher molecular weight bands on the

SDS-PAGE are in fact higher order aggregates of MHV 3CLpro monomer. Therefore,

samples were prepared by mixing the sample volume containing 5-10 µg protein with

appropriate volume of SDS-PAGE loading buffer containing 1 mM of fresh DTT,

instead of BME as the reducing agent.

Recipe for 5× SDS sample loading buffer

0.2 M Tris-HCl, pH-6.8

10% SDS

10 (or 20)% glycerol

0.02% Bromophenolblue

5 mM DTT (added fresh from 1M stock, right before preparing samples for running

on SDS-PAGE)

For MHV 3CLpro, samples were then heated at 70 °C for 2 minutes. Heating of the

samples was completely avoided for HKU1 3CLpro and OC43 3CLpro as it results in

the formation of protein aggregates that accumulate in the stacking gel. For MERS-

CoV 3CLpro and HKU5-CoV 3CLpro, samples were heated at 95 °C for 2 minutes;

while samples for SARS-CoV 3CLpro were boiled at 95 °C for 5 minutes.
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Fig. 2.7.: Formation of 3CLpro high-order aggregates on SDS-PAGE. High-order
aggregate formation during SDS-PAGE analysis of 3CLpro enzymes from HKU1, OC43
and MHV is shown. Red arrows indicate expected molecular weights for monomer, and
higher-order 3CLpro aggregates. Right panel - Western blot analysis of MHV 3CLpro using
anti-3CLpro antibody is shown alongside coomassie staining for the sample.

2.9 Concentration determination

Protein concentration was determined using two different methods depending

upon the purification of the sample. Protein concentration was followed during

protein purification using a Bradford assay that was performed in a 96-well, clear

flat-bottom microtiter plate. For purified samples, protein concentration was deter-

mined by measuring the absorbance at 280 nm and the theoretical molar extinction

coefficient of the protein determined through Expasy’s Protparam tool.

2.9.1 Mini-bradford assay

•Dye reagent was prepared by diluting concentrate dye (from BIORAD) with DI

water in 1:4 ratio.

•BIORAD BSA stock was prepared in DI water with final BSA concentration of

1.36 mg/mL. Next, 0.5 mg/mL working stock of BSA was prepared by diluting 36.8

µL of BIORAD BSA stock with 63.2 µL of DI water.

•Five dilutions of BSA standard were prepared by dispensing 0, 2.5, 5.0, 7.5 and

10 µL of BSA working stock into five different wells of a 96-well clear flat-bottom
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microtiter plate. These volumes correspond to 0, 0.125, 0.25, 0.375 and 0.5 mg/mL

of BSA, respectively for the standard curve.

•10 µL of each sample was dispensed in the microtiter plate for duplicate readings,

followed by addition of 200 µL of dye reagent to the sample wells as well as the BSA

standard wells. Samples and the dye were mixed thoroughly for 1-2 minutes using a

microplate mixer.

•Absorbance of the samples was measured at 595 nm using BioTek Synergy H1

plate reader. If OD595 of any sample was not withing the linear range for BSA

standards, OD595 was measured again after adjusting the sample volume dispensing

in the well.

•A linear trendline was created for BSA standards with OD595 on the y-axis and

concentration (mg/mL) on the x-axis. Finally, calculated slope and intercept of the

trendline were used to calculate the concentration of other protein samples.

2.9.2 OD280 based determination of protein concentration

The optical density at 280nm (OD280) of the reference buffer was measured using

a 1 cm pathlength cuvette. Next, the OD280 of purified protein sample was measured

after dilution in the reference buffer. The final OD280 value was calculated after

subtracting the reference OD value from the OD value for protein sample. The

protein concentration (M) was then determined using the Beer-Lambert equation.

The values for molar extinction coefficient were calculated from the primary sequence

of the protein using Expasy’s Protparam tool. Molar extinction coefficient values for

different 3CLpro enzymes are provided in Table 2.6.

2.10 Kinetic assays

The enzymatic activity of 3CLpro enzymes was measured using the following cus-

tom synthesized peptide: (HilyteFluorTM-488)-ESATLQSGLRKAK-(QXLTM-520)-

NH2 (AnaSpec, Inc.). The HilyteFluorTM-488 fluorescence group is internally quenched
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Table 2.6.
Molar extinction coefficient values for different 3CLpro enzymes

calculated using Expasy Protparam tool

3CLpro Mol.Wt. (kDa) Extinction coefficient (M−1.cm−1)
SARS-CoV 33845.7 32890
MHV 33158.9 41370
HKU1-CoV 33199.1 45840
OC43-CoV 33477.4 42860
HKU5-CoV 33459.4 42400
MERS-CoV 33330.2 43890

by QXLTM-520 dye. This substrate works as a generic peptide substrate for 3CLpro

enzymes and was designed based on the nsp4|nsp5 cleavage sequence for many coro-

navirus 3CLpro enzymes. The rate of enzymatic activity was determined at 25 °C by

following the increase in fluorescence (λexcitation = 485 nm, λemission = 528 nm, band-

widths = 20 nm) of Hilyte Fluor-488 upon peptide hydrolysis by the enzyme as a

function of time. Assays were conducted in black, half-area, 96-well plates (Corning)

in assay buffer (50 mM HEPES pH-7.5, 0.1 mg/mL BSA, 0.01% Triton X-100 and

2 mM DTT) using a final reaction volume of 100 µL. The resulting florescence was

monitored using a BioTek Synergy H1 plate reader. The rate of the reaction in ar-

bitrary florescence units per sec (AFU/sec) was determined by measuring the initial

slope of the progress curves, which were then converted to units of µM of product

produced per min (µM/min) using experimentally determined values of ‘fluorescence

extinction coefficient’. All reactions were carried out in triplicate.

2.10.1 Determination of fluorescence extinction coefficient for the sub-

strate UIVT3

To calculate the value of fluorescence extinction coefficient, 100 µL reactions were

set up. Substrate concentrations were determined gravimetrically. 20 µL of 5×

working stocks of varying substrate concentrations were dispensed in duplicate in
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black, half-area, 96-well plates. The final substrate concentrations varied over the

range from 0 to 2 µM. 80 µL of high concentration of 3CLpro enzyme prepared in assay

buffer was dispensed in one set of reaction wells with substrate. 80 µL of assay buffer

without enzyme was mixed in second set of reaction wells. The resulting florescence

was monitored using a BioTek Synergy H1 plate reader. The maximum florescence

released after complete turnover of the substrate into products was measured for

each substrate concentration. the background florescence released at each substrate

concentration was also measured from the reaction wells without enzyme. ∆AFU was

calculated by subtracting background AFU from maximum AFU at each substrate

concentration. The florescence extinction coefficients (AFU.µM−1) can be determined

from the slope of the line that results from a plot of ∆AFU (y-axis) against the

substrate concentration (x-axis).

2.10.2 Determination of enzymatic efficiency

The apparent enzymatic efficiency (kcat/KM) for each of the 3CLpro enzymes was

determined by measuring the rate of enzymatic activity as a function of varying

substrate concentration in 100 µL reactions. Reactions were initiated by the addition

of enzyme to the wells of an assay plate containing varying concentrations of substrate.

The final substrate concentrations varied over the range from 0 to 2 µM. The final

enzyme concentrations for each 3CLpro studied were the following: SARS-CoV 3CLpro

at 100 nM, MHV 3CLpro at 100 nM, HKU1 3CLpro at 100 nM, OC43 3CLpro at 100

nM, HKU5-CoV 3CLpro at 250 nM, HKU4-CoV 3CLpro at 200 nM and MERS-CoV

3CLpro at 1 µM. Since 3CLpro enzymes cannot be saturated with this substrate at

a substrate concentration that would still allow accurate fluorescent measurements

without the inner filter effect, only the apparent k cat/KM values can be determined

from the slope of the line that results from a plot of the enzymatic activity (y-axis),

normalized for the total enzyme concentration, against the substrate concentration

(x-axis). Under the given assay conditions, MHV 3CLpro and HKU1 3CLpro enzymes
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were the most efficient enzymes (Table 2.7), while 3CLpro from MERS-CoV was the

least efficient enzyme (Table 2.7). Enzymatic efficiency of MERS-CoV 3CLpro was

10-fold lower than the enzymatic activity of 3CLpro enzymes from MHV and HKU1,

and 5-fold lower than that of SARS-CoV 3CLpro (Table 2.7). Therefore, the factors

that might cause a decrease in the enzymatic activity of MERS-CoV 3CLpro were

further explored and have been discussed in Chapter 5.

Table 2.7.
Enzymatic efficiency (apparent kcat/KM) for different 3CLpro enzymes

3CLpro apparent kcat/KM

(×102) (µM−1.min−1)
SARS-CoV 15.5 ± 0.9
MHV 34.1 ± 0.6
HKU1-CoV 31.0 ± 0.5
OC43-CoV 25.1 ± 2.6
HKU5-CoV 8.8 ± 0.1
MERS-CoV 3.1 ± 0.03

2.11 Inhibition assays

Based on initial hits from a high-throughput screen of ∼300,000 compounds con-

ducted to develop small-molecule reversible inhibitors of SARS-CoV 3CLpro (see

Chapter 3 for details), our collaborators synthesized a focused librabry of 237 com-

pounds. To determine the inhibitory activity of these compounds for 3CLpro enzymes,

the % Inhibition of 3CLpro in the presence of 100 µM of compound was first deter-

mined. For compounds displaying more than 50% inhibition, the IC50 values were

determined from a dose response curve obtained by calculating % Inhibition of 3CLpro

over a range of concentrations of the compound.
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2.11.1 % inhibtion determination

To determine the percent inhibition for compounds, the total concentration of the

substrate was fixed at 2.0 µM, and the enzymes were fixed at 250 nM for SARS-CoV

3CLpro and OC43 3CLpro, 80 nM for MHV 3CLpro and HKU1 3CLpro, and 1 µM for

HKU5-CoV 3CLpro and MERS-CoV 3CLpro. Next, 100 × working stocks (10 mM)

of the compounds were prepared from 40 mM stocks by diluting in DMSO. DMSO

working stocks of the compounds were then diluted hundred-fold (1 µL) to a final

concentration of 100 µM in 80 µL of the enzyme solution in the wells of black, 96-well,

half-area plates, and incubated for 10 minutes after mixing on a plate-mixer. After

10 minutes, the enzymatic activity was measured as the initial slope of the progress

curve, obtained by initiating the reaction with 20 µL of 10 µM substrate. The %

Inhibition was calculated using Equation 2.1.

% Inhibition =

[
1− Ratesample − Rateneg

Ratepos − Rateneg

]
× 100 (2.1)

In Equation 2.1, Ratesample is the initial slope of the progress curve in AFU/sec

measured in the presence of the compound, Ratepos is the initial slope measured in the

absence of any compound and Rateneg is the baseline substrate hydrolysis calculated

in the absence of enzyme. All the reactions were carried out in triplicate and contained

a final DMSO concentration of 1%.

2.11.2 IC50 determination

For compounds displaying more than 50% inhibition, a more extensive character-

ization was conducted. The IC50 value refers to the inhibitor concentration required

to achieve half maximum inhibition of the enzyme. The IC50 values for the inhibitors

were determined through measuring a dose response with subsequent analysis. To

determine the IC50 value, 100 × working stocks over a range of concentration for the
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compounds were prepared from serial dilutions of 40 mM DMSO stocks. Next, DMSO

working stocks of the compounds were diluted one hundred-fold, to obtain their re-

spective final concentrations in 80 µL of the enzyme solution. The compounds were

allowed to incubate for 10 minutes. After 10 minutes, the enzymatic activity was

measured as initial slope of the progress curve, obtained by initiating the reaction

with 20 µL of 10 µM substrate. The final concentrations of 3CLpro enzymes for IC50

determination were kept the same as used for % Inhibition determination. The final

substrate concentration in the reaction well was 2.0 µM, and the inhibitor concentra-

tion ranged from 120 µM to 0.313 µM. The IC50 values were calculated by fitting the

data into Equation 2.2 using non-linear regression program SigmaPlot.

% Inhibition =
Max.% Inhibition× [Inhibitor]

[Inhibitor] + IC50

(2.2)

Fig. 2.8.: Representative dose response curve for IC50 determination. Maximum
% inhibition represents the extrapolated value for % inhibition obtained from fitting the %
Inhibition versus [Inhibitor] data into Equation 2.2. IC50 value represents the concentration
of inhibitor required to achieve 50% of Maximum inhibition.

A representative dose response curve for IC50 determination is shown in Figure

2.8. The nhibitory activity of inhibitors is discussed in detail in Chapter 3.
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2.12 Crystallization of SARS-CoV 3CLpro in complex with inhibitors

The purified SARS-CoV 3CLpro was concentrated to 5.0-2.5 mg/mL in buffer (25

mM HEPES pH-7.5 with 2.5 mM DTT). Inhibitor complexes of SARS-CoV 3CLpro

are listed in Table 2.8 and were formed by incubating SARS-CoV 3CLpro with the

compounds in a 1:3 stoichiometric ratio at 4 °C for at least one hour. After itera-

tive rounds of optimization of protein concentration, drop ratio and the incubation

temperature, the crystals of SARS-CoV 3CLproinhibitor complexes suitable for X-ray

diffraction were grown by the hanging-drop, vapor diffusion method at 4 °C using 2

µL:1 µL protein:reservoir buffer ratio. Crystallization conditions for all the SARS-

CoV 3CLpro:Inhibitor complexes are summarized in Table 2.8. All the crystallization

solutions were kept in the cold room before setting up the crystal trays. For X-ray

data collection, crystals were flash-cooled in liquid nitrogen after dragging the crys-

tals through a cryo-solution that contained the crystallization solution supplemented

with 15% 2-methyl-2,4-pentanediol (MPD) and 500 µM of corresponding inhibitor.

Crystallization conditions for SARS-CoV 3CLpro-Inhibitor complexes are summarized

in Table 2.8.

High-resolution diffraction quality crystals could also been obtained for MERS-

CoV 3CLpro in complex with both the non-covalent and covalent inhibitors. Details

for the crystallization, X-ray data collection and structure refinement of the MERS-

CoV 3CLpro-Inhibitor complexes are provided in Chapter 5.

2.13 Data collection and structure refinement

2.13.1 Procedure

The X-ray diffraction data were collected for the SARS-CoV 3CLpro-Inhibitor

complexes at the Life Sciences Collaborative Access Team (LS-CAT) Sector 21 at the

Advanced Photon Source, Argonne National Laboratory. The data were processed

and scaled using HKL2000 version 706 (46). The method of rigid body refinement
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Table 2.8.
Crystallization conditions for SARS-CoV 3CLpro-Inhibitor complexes

Inhibitor Reservoir buffer [Protein] [Inhibitor] Drop Cryo-
ratio solution

CQ3 0.05 M MES pH-6.0, 5 mg/mL 500 µM 2:1 Reservoir buffer
0.04 M KCl, 1% MPD, + 15% MPD

8% PEG-10,000, 3 mM DTT + 500 µM CQ3
R30 0.05 M MES pH-6.0, 5 mg/mL 500 µM 2:1 Reservoir buffer

0.04 M KCl, 1% MPD, + 15% MPD
7% PEG-10,000, 3 mM DTT + 500 µM R30

R2Y 0.05 M MES pH-6.0, 5 mg/mL 500 µM 2:1 Reservoir buffer
0.04 M KCl, 1% MPD, + 15% MPD

7% PEG-10,000, 3 mM DTT + 500 µM R2Y
R2X 0.05 M MES pH-6.0, 5 mg/mL 500 µM 2:1 Reservoir buffer

0.04 M KCl, 1% MPD, + 15% MPD
8% PEG-10,000, 3 mM DTT + 500 µM R2X

886 0.05 M MES pH-6.0, 2.5 mg/mL 250 µM 2:1 Reservoir buffer
0.04 M KCl, 1% MPD, + 15% MPD

6.5% PEG-10,000, 3 mM DTT + 500 µM 886
CUG 0.05 M MES pH-6.0, 5 mg/mL 500 µM 2:1 Reservoir buffer

0.04 M KCl, 1% MPD, + 15% MPD
8% PEG-10,000, 3 mM DTT + 500 µM CUG

FMW 0.05 M MES pH-6.0, 5 mg/mL 500 µM 2:1 Reservoir buffer
0.04 M KCl, 1% MPD, + 15% MPD

8% PEG-10,000, 3 mM DTT + 500 µM FMW
KWW 0.05 M MES pH-6.0, 2.5 mg/mL 250 µM 2:1 Reservoir buffer

0.04 M KCl, 1% MPD, + 15% MPD
6.5% PEG-10,000, 3 mM DTT + 500 µM KWW

XM2 0.05 M MES pH-6.0, 5 mg/mL 500 µM 2:1 Reservoir buffer
0.04 M KCl, 1% MPD, + 15% MPD

7% PEG-10,000, 3 mM DTT + 500 µM XM2

was used to obtain the initial phases using the program Refmac5 in ccp4 suite version

6.2.0. The X-ray structure of SARS-CoV 3CLpro in complex with REY (PDB ID:

3V3M) was used as a phasing model (32). The inhibitor molecules were manually

added to the corresponding pdb files using COOT and then refined in the Phenix

suite. Each structure was then refined using iterative cycles of refinement using

Phenix Refine coupled to manual model building using COOT (48) based on the

Fo − Fc and 2Fo − Fc maps. The coordinates and molecular library files for inhibitor

molecules were built using the program Sketcher in the ccp4 suite. Water molecules

were added to the peaks in residual (Fo − Fc) density maps that were greater than
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3σ using the “Find Water” function in COOT. MolProbity was used to assess the

structural quality of the final model (49). Pymol was used to generate the figures of

all the structures (50).

2.13.2 Results

High-resolution crystal structures of SARS-CoV 3CLpro for all the inhibitors listed

in Table 2.8 were determined. All the SARS-CoV 3CLpro-inhibitor complexes crys-

tallized in the space group C 2 with one molecule in the asymmetric unit. Summaries

of the statistics for the X-ray data collection and refinement are provided in Tables

2.9-2.13. Analysis of inhibitor binding in the X-ray crystal structures is discussed in

detail in Chapter 3.

2.14 Summary

Coronavirus 3CLpro is a high profile target for the development anti-coronaviral

therapeutics. In our effort to develop broad spectrum inhibitors of 3CLpro enzymes

from different coronavirus classes, we aimed to characterize 3CLpro enzymes from

SARS-CoV, MHV, HKU1, OC43, HKU5-CoV and MERS-CoV to understand their

similar and distinct features. Towards this goal, we report successful expression and

purification of these 3CLpro enzymes. For protein expression, the gene sequence was

codon-optimized in order to achieve optimal expression of 3CLpro enzymes in E.coli

BL21-DE3 cells. 3CLpro gene was cloned into pET-11a expression vector with an

N-terminal His6-tag and either a TEV protease cleavage site or 3CLpro auto-cleavage

site between the tag and 3CLpro gene sequence. This construct results in the expres-

sion of 3CLpro with authentic N-terminus during expression in bacterial cells. For

protein expression, a combination of chromatographic steps including hydrophobic-

interaction, ion-exchange and gel-filtration were utilized to obtain highly pure 3CLpro

enzymes. Using the purification protocols described in this chapter, sufficient quan-

tities of all the 3CLpro enzymes were achieved for kinetic characterization, inhibition
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Table 2.9.
X-ray data collection and refinement statistics for SARS-CoV 3CLpro in

complex with CQ3 and R30

Beamline: LS-CAT Sector 21 ID-F
CQ3 R30

Data collection
Wavelength (Å) 0.97872 0.97872
Resolution range (Å) 100-1.28 (1.30-1.28)a 50.00-1.33 (1.35-1.33)a

Protein monomers in asymmetric units 1 1
Space group C2 C2
Unit cell dimensions
a, b, c (Å) 107.93, 82.42, 53.49 108.16, 82.01, 53.49
α, β, γ (o) 90, 104.03, 90 90, 104.07, 90
Total number of reflections 720,003 681,777
Number of unique reflections 116,580 103,693
Multiplicity 3.8 (2.6)a 3.9 (4.0)a

Completeness (%) 97.0 (90.6)a 99.1 (99.9)a

Mean I/σI 12.34 (1.97)a 13.46 (3.63)a

Rmerge (%)b 11.3 (50.9)a 7.9 (35.4)a

Refinement
Resolution range (Å) 64.76-1.28 26.23-1.33
Number of reflections in working set 94,233 96,818
Number of reflections in test set 4,977 4,851
Rwork (%)c 16.6 17.7
Rfree (%)c 18.4 19.9
Number of non-hydrogen atoms 3,118 3,125
Protein / water 2,577/472 2,499/566
RMSD - bond lengths (Å) 0.012 0.010
RMSD - bond angles (o) 1.84 1.24
Ramachandran favored (%) 99 99
Ramachandran outliers (%) 0 0
Molprobity clash score 4.7 2.1
Average B-factor (Å2) 20 21
Protein 18 18
Ligands 29 22
Solvent 31 32
a Values in parentheses are for highest-resolution shell.
b Rmerge = ΣhΣi|Ii(h) − 〈I(h)〉|/ΣhΣiIi(h), where Ii(h) is the ith measurement and
〈I(h)〉 is the weighted mean of all measurements of I(h).

c Rwork and Rfree = h(|F (h)o| − |F (h)c|)/h|F (h)o| for reflections in the working and
test sets, respectively.
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Table 2.10.
X-ray data collection and refinement statistics for SARS-CoV 3CLpro in

complex with R2Y and R2X

Beamline: LS-CAT Sector 21 ID-F
R2Y R2X

Data collection
Wavelength (Å) 0.97872 0.97872
Resolution range (Å) 100-1.21 (1.23-1.21)a 50.00-1.33 (1.35-1.33)a

Protein monomers in asymmetric units 1 1
Space group C2 C2
Unit cell dimensions
a, b, c (Å) 108.05, 82.1, 53.43 108.25, 81.79, 53.43
α, β, γ (o) 90, 104.19, 90 90, 104.06, 90
Total number of reflections 181,3044 758,292
Number of unique reflections 137,251 103,427
Multiplicity 8.2 (7.7)a 4.0 (4.0)a

Completeness (%) 99.7 (100.0)a 99.4 (99.7)a

Mean I/σI 17.92 (6.75)a 15.47 (3.39)a

Rmerge (%)b 11.3 (31.4)a 7.4 (36.3)a

Refinement
Resolution range (Å) 25.87-1.21 64.52-1.33
Number of reflections in working set 135,507 91,361
Number of reflections in test set 6,818 4,833
Rwork (%)c 12.6 16.5
Rfree (%)c 14.8 18.1
Number of non-hydrogen atoms 3,220 3,116
Protein / water 2,535/625 2,547/510
RMSD - bond lengths (Å) 0.013 0.012
RMSD - bond angles (o) 1.51 1.85
Ramachandran favored (%) 99 99
Ramachandran outliers (%) 0 0
Molprobity clash score 5.7 4.7
Average B-factor (Å2) 24.30 19.50
Protein 20 17
Ligands 32 22
Solvent 40 30
a Values in parentheses are for highest-resolution shell.
b Rmerge = ΣhΣi|Ii(h) − 〈I(h)〉|/ΣhΣiIi(h), where Ii(h) is the ith measurement and
〈I(h)〉 is the weighted mean of all measurements of I(h).

c Rwork and Rfree = h(|F (h)o| − |F (h)c|)/h|F (h)o| for reflections in the working and
test sets, respectively.
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Table 2.11.
X-ray data collection and refinement statistics for SARS-CoV 3CLpro in

complex with 886 and CUG

Beamline: LS-CAT Sector 21 ID-F
886 CUG

Data collection
Wavelength (Å) 0.97872 0.97872
Resolution range (Å) 50.00-1.33 (1.35-1.33)a 100.0-1.38 (1.40-1.38)a

Protein monomers in asymmetric units 1 1
Space group C2 C2
Unit cell dimensions
a, b, c (Å) 108.10, 81.59, 53.53 107.92, 82.14, 53.56
α, β, γ (o) 90, 104.2, 90 90, 104.22, 90
Total number of reflections 738,039 724,368
Number of unique reflections 103,035 92,788
Multiplicity 4.0 (3.2)a 4.0 (3.4)a

Completeness (%) 97.1 (94.0)a 99.3 (98.2)a

Mean I/σI 14.38 (1.79)a 12.94 (2.00)a

Rmerge (%)b 8.3 (57.9)a 8.6 (51.5)a

Refinement
Resolution range (Å) 32.12-1.33 32.21-1.38
Number of reflections in working set 87,838 81,098
Number of reflections in test set 4,370 4,042
Rwork (%)c 17.8 18.3
Rfree (%)c 20.6 20.8
Number of non-hydrogen atoms 3,120 3,057
Protein / water 2542/510 2551/457
RMSD - bond lengths (Å) 0.008 0.016
RMSD - bond angles (o) 1.23 1.22
Ramachandran favored (%) 99 99
Ramachandran outliers (%) 0 0
Molprobity clash score 1.3 2.1
Average B-factor (Å2) 20 21
Protein 18 19
Ligands 22 33
Solvent 30 32
a Values in parentheses are for highest-resolution shell.
b Rmerge = ΣhΣi|Ii(h)−〈I(h)〉|/ΣhΣiIi(h), where Ii(h) is the ith measurement and 〈I(h)〉

is the weighted mean of all measurements of I(h).
c Rwork and Rfree = h(|F (h)o| − |F (h)c|)/h|F (h)o| for reflections in the working and test

sets, respectively.
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Table 2.12.
X-ray data collection and refinement statistics for SARS-CoV 3CLpro in

complex with FMW and KWW

Beamline: LS-CAT Sector 21 ID-F
FMW KWW

Data collection
Wavelength (Å) 0.97872 0.97872
Resolution range (Å) 50.00-1.33 (1.35-1.33)a 100.00-1.65 (1.68-1.65)a

Protein monomers in asymmetric units 1 1
Space group C2 C2
Unit cell dimensions
a, b, c (Å) 108.05, 82.09, 53.56 108.19, 82.35, 53.77
α, β, γ (o) 90, 104.16, 90 90, 104.52, 90
Total number of reflections 655,855 958,009
Number of unique reflections 103,903 53,109
Multiplicity 2.1 (2.0)a 3.5 (3.6)a

Completeness (%) 97.3 (91.1)a 98.1 (97.9)a

Mean I/σI 23.24 (1.46)a 15.00 (2.59)a

Rmerge (%)b 6.2 (42.4)a 8.3 (40.5)a

Refinement
Resolution range (Å) 25.93-1.33 32.37-1.66
Number of reflections in working set 103,487 46,878
Number of reflections in test set 5,126 2,372
Rwork (%)c 18.1 17.7
Rfree (%)c 19.3 20.5
Number of non-hydrogen atoms 3,137 3,239
Protein / water 2,595/492 2,581/610
RMSD - bond lengths (Å) 0.009 0.010
RMSD - bond angles (o) 1.19 1.17
Ramachandran favored (%) 99 98
Ramachandran outliers (%) 0 0
Molprobity clash score 2.2 3.2
Average B-factor (Å2) 22 18
Protein 20 14
Ligands 36 24
Solvent 32 31
a Values in parentheses are for highest-resolution shell.
b Rmerge = ΣhΣi|Ii(h)− 〈I(h)〉|/ΣhΣiIi(h), where Ii(h) is the ith measurement and 〈I(h)〉

is the weighted mean of all measurements of I(h).
c Rwork and Rfree = h(|F (h)o| − |F (h)c|)/h|F (h)o| for reflections in the working and test

sets, respectively.
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Table 2.13.
X-ray data collection and refinement statistics for SARS-CoV 3CLpro in

complex with XM2

Beamline: LS-CAT Sector 21 ID-F
XM2

Data collection
Wavelength (Å) 0.97872
Resolution range (Å) 50.00-1.33 (1.35-1.33)a

Protein monomers in asymmetric units 1
Space group C2
Unit cell dimensions
a, b, c (Å) 108.11, 81.71, 53.59
α, β, γ (o) 90, 104.15, 90
Total number of reflections 701,632
Number of unique reflections 103,708
Multiplicity 4.0 (3.2)a

Completeness (%) 99.6 (96.7)a

Mean I/σI 17.02 (1.83)a

Rmerge (%)b 7.6 (53.2)a

Refinement
Resolution range (Å) 32.13-1.33
Number of reflections in working set 90,059
Number of reflections in test set 4,506
Rwork (%)c 17.4
Rfree (%)c 20.0
Number of non-hydrogen atoms 3,157
Protein / water 2,575/506
RMSD - bond lengths (Å) 0.011
RMSD - bond angles (o) 1.17
Ramachandran favored (%) 99
Ramachandran outliers (%) 0
Molprobity clash score 1.5
Average B-factor (Å2) 20
Protein 18
Ligands 26
Solvent 30
a Values in parentheses are for highest-resolution shell.
b Rmerge = ΣhΣi|Ii(h)−〈I(h)〉|/ΣhΣiIi(h), where Ii(h) is the ith measurement

and 〈I(h)〉 is the weighted mean of all measurements of I(h).
c Rwork and Rfree = h(|F (h)o|−|F (h)c|)/h|F (h)o| for reflections in the working

and test sets, respectively.
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analysis and crystallization attempts. Successful crystallization conditions for SARS-

CoV 3CLpro and MERS-CoV 3CLpro in complex with different inhibitors have also

been discussed. These crystals diffracted to high resolution and were instrumental in

getting molecular insights into inhibitor-3CLpro interactions.
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CHAPTER 3. SARS-COV 3CLPRO INHIBITOR DEVELOPMENT

Parts of the data and text in this chapter have been published in various journal

articles [38, 39, 60].

Introduction

3.1 Different classes of SARS-CoV 3CLpro inhibitors

As discussed in Chapter 1, coronavirus encoded proteases PLpro and 3CLpro are

indispensable for virus replication and thus serve as excellent targets for therapeu-

tic development. Several groups, including ours, have published crystal structures of

SARS-CoV 3CLpro in complex with inhibitors providing critical insights into the bind-

ing interactions between the inhibitor molecules and the active site. These inhibitors

can be classified based on their chemical scaffolds, and discussed below.

3.1.1 Natural product inhibitors

Chen et al. screened a library of 720 natural products and drugs to identify

compounds that can inhibit SARS-CoV 3Cpro in an HPLC-based assay [61]. Initial

hits identified from this library (Figure 3.1, compound 1 ) are structurally similar to

pure ingredients from natural teas. Next, the authors utilized a fluorometric assay

to test the inhibitory activity of known ingredients isolated from tea extracts. They

identified several tea polyphenols that could inhibit SARS-CoV 3CLpro with low µM

IC50 values. The most potent tea polyphenol in their assays, compound 2, inhibited

SARS-CoV 3CLpro with an IC50 of 9.5 µM. It is to be noted that flavonoids and

polyphenolic compounds have been reported in the literature to form aggregates that
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promiscuously inhibits a variety of enzymes and are considered pan-assay interference

compounds (PAINS) [62–64].

Wen et al. tested a small library of 221 compounds to identify phytochemical com-

pounds that can inhibit SARS-CoV dependent cytopathic effects and viral replication

in Vero E6 cell-based assays [65]. They identified 22 compounds that have anti-SARS

biological activity. Of these compounds, the majority were classified as terpenoids

and lignoinds isolated from medicinal plants. Further characterization of these com-

pounds in a fluorometric assay using purified SARS-CoV 3CLpro demonstrated that

these compounds are competitive inhibitors of SARS-CoV 3CLpro. Compounds 3

(terpenoid) and 4 (lignoid) with the highest inhibitory activity against SARS-CoV

3CLpro are shown in Figure 3.1.

Fig. 3.1.: Inhibitory activity of natural product and non-peptidic inhibitors
of SARS-CoV 3CLpro. Compounds 1 -4 belong to different classes of natural
product inhibitors of 3CLpro enzyme. Biphenyl sulfones and pyrazole analogues are
included in the non-peptidic class of inhibitors. Inhibitory activity is represented as
either IC50 value or Ki value.
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3.1.2 Non-peptidic inhibitors

Biphenyl sulfones

Lu et al. performed a structure-based virtual screening on 58,855 small-molecule

compounds from the Maybridge library [50]. Based on the template built from the

virtual-screen hits, followed by inhibition assays, 21 compounds were identified that

inhibited SARS-CoV 3CLpro with IC50 values < 50 µM. X-ray crystal structure with

the most potent inhibitor, compound 5 in Figure 3.1, revealed a unique binding

orientation of the inhibitor molecule in the S 3-S 5 pockets of the enzyme. Compound

5 interacts with the enzyme through an extensive network of hydrogen-bonding and

hydrophobic interactions. The inhibitor molecule also induces conformational changes

in the active site that moves His41 of the catalytic dyad away from Cys145, essentially

disrupting the catalytic machinery.

Pyrazole analogues

High-throughput screening of a 6800 compound library led to the identification of

one compound (compound 6, Figure 3.1) that not only inhibited 3CLpro from SARS-

CoV, but also inhibited 229E-CoV pro, as well as 3Cpro protease from picornaviruses

RV14 and EV71. Kuo et al. further evaluated the inhibitory activity of several ana-

logues of compound 6 from another library [66]. The most potent of these analogues,

compound 7 showed a broad-spectrum specificity for other viral proteases (Figure

3.1).

3.1.3 Metal-conjugated inhibitors

Several metal ions, including Hg2+ and Zn2+, can react with or strongly interact

(coordinate) with the active site Cys of Cys proteases and inhibit their activities.

Phenylmercuric acetate (PMA) is used as a bactericidal and antimicrobial preservative

in several drug preparations. Hsu et al. screened a library of 960 bioactives and



66

commercially available drugs to identify inhibitors of SARS-CoV 3CLpro [67]. They

identified several Hg and Zn containing compounds that act as potent inhibitors of

SARS-CoV 3CLpro with nanomolar Ki values. Further analysis of the X-ray crystal

structures of SARS-CoV 3CLpro in the inhibitor bound forms by Lee at al revealed

that Hg containing compound PMA (Figure 3.2, compound 8 ) binds in the S 3 subsite

and coordinates with Cys44, Met49 and Tyr54 (Figure 3.2, compound 8 ); however

Zn based compounds bind in the active site and coordinate with the His41-Cys145

catalytic dyad (Figure 3.2, compound 9 ) [68].

Fig. 3.2.: Inhibitory activity of metal-conjugated, boronic-acid based, C2-
symmetric diol and anilide inhibitors of SARS-CoV 3CLpro. 3CLpro amino
acids that coordinate with the metal in the metal-conjugated inhibitors are shown.
Inhibitory activity is represented as either IC50 value or Ki value.
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3.1.4 Bifunctional boronic acid inhibitors

Bacha et al. predicted that the conserved serine cluster (Ser139, Ser144, Ser147)

of SARS-CoV 3CLpro can be targeted for the development of potent inhibitors. Given

the reactivity of boronic acid with hydroxyl groups, they tested inhibitory activity

of boronic acid based compounds against SARS-CoV 3CLpro [69]. They found one

compound that inhibited the enzyme with a Ki value of 4.5 µM. Further testing of

different analogues of this compound led to the identification of compound 10 (Figure

3.2) that inhibits SARS-CoV 3CLpro with nanomolar potency.

3.1.5 C2-symmetric diol inhibitors

Shao et al. initially observed that TL-3, a C2-symmetric diol non-covalent in-

hibitor of HIV-protease, also inhibits SARS-CoV 3CLpro [70]. Aided by computational

modeling, they developed a series of lead compounds. The most potent compound,

compound 11 (Figure 3.2), achieved nanomolar potency and selectivity for the inhi-

bition of SARS-CoV 3CLpro.

3.1.6 Anilide inhibitors

Based on previous reports of enhancement in the inhibitory potency of AG7088

analogues by placing L-phenylalanine at the P1 position, Shie et al. designed a

series of analogues [71]. These analogues were derivatives of chloro para-aniline that

contained L-phenylalanine at the P1 position and varying substitutions at other P x

positions. The most potent analogue, compound 12 (Figure 3.2), inhibited SARS-

CoV 3CLpro with an IC50 value of 60 nM and Ki value of 30 nM. Compound 12 was

stable and did not undergo hydrolysis in the presence of enzyme upon several hours

of incubation.
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3.1.7 Inhibitors with ‘warhead’ functionalities

Traditional approaches for the development of inhibitors for cysteine-active-center

proteases tend to favor irreversible inhibitors, which consist of a substrate-mimetic

sequence attached to a reactive warhead group such as an ester, aldehyde, ketone or

Michael-acceptor. The warhead group attacks the active site cysteine and forms a

covalent complex.

Fig. 3.3.: Inhibitory activity of compounds with reactive ‘warhead’ func-
tionalities. Warhead groups are highlighted in blue circles. Inhibitory activity is
represented as either IC50 value or Ki value. EC50 value represents the inhibitor
concentration that blocks virus replication by 50%.
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Reactive ester inhibitors

Benzotriazole esters- Wu et al designed a series of reactive benzotriazole based

esters with nanomolar potency, compound 13 Figure 3.3 [72]. These compounds dis-

played a time and concentration dependent decrease in the enzymatic activity indicat-

ing modification of the active site cysteine. Further optimization of these compounds

to develop more stable non-covalent inhibitors of SARS-CoV 3CLpro yielded com-

pound 14 (Figure 3.3) that inhibited SARS-CoV 3CLpro with a Ki value of 1 µM. In

compound 14, the ester oxygen was replaced with a carbon.

Chloropyridyl esters- Our lab, in collaboration with the Ghosh lab at Purdue

University, developed a series of chloropyridyl esters that not only inhibited SARS-

CoV 3CLpro with nanomolar potency, but also blocked virus replication with low

micromolar EC50 values (compounds 15 -17, Figure 3.3) [37].

Peptide aldehyde inhibitors

Several groups have reported the development of highly potent aldehyde based

inhibitors [73, 74]. The terminal-carboxyl of the P1 residue is substituted with an

aldehyde group in these compounds. These compounds are mechanism-based in-

hibitors that covalently modify the active site cysteine. Surprisingly though, kinetic

characterization and X-ray crystal structure determination of compound 19 (Fig-

ure 3.3) in complex with SARS-CoV 3CLpro indicated that compound 19 acts as a

competitive inhibitor of the enzyme without modifying the active site cysteine [74].

Epoxy-ketone inhibitors

Based on P1-P4 substrate specificity of 3CLpro, Goetz et al. developed a library

of 2000 small-molecules, containing reactive warheads, for high-throughput screening

[75]. Optimization of their initial epoxide ketone scaffold resulted in the development

of α,β-epoxy ketone compound 20 (Figure 3.3) that inhibited SARS-CoV 3CLpro
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with low micromolar potency and also effectively blocked virus replication. Further

analysis of inhibitor-bound crystal structure revealed that the epoxide ring opens upon

nucleophilic attack by the active site cysteine and the linearized oxirane occupies the

S 1 subsite in the enzyme active site.

Halomethyl ketone inhibitors

Halomethyl ketones, such as compound 21 (Figure 3.3), have been identified as

potent inhibitors of SARS-CoV 3CLpro. Inhibition kinetics and structural studies

reveal that this class of compounds inhibit the enzyme via S-alkylation of active site

cysteine. The halomethyl carbon of the inhibitor undergoes nuclephilic attack by

Cys145, which results in the formation of a thioether bond [76].

Michael acceptors

Our lab has reported the development of Michael-acceptor based inhibitors of

SARS-CoV 3CLpro. These α,β-unsaturated esters, such as compound 22 (Figure

3.3), inactivate the enzyme in a time and concentration dependent manner suggesting

inactivation via covalent modification of active site cysteine [54]. Structural studies

further reveal the formation of a 1.8 Å bond between the gamma-sulfur of the ac-

tive site Cys and the electrophilic β-carbon of the Michael acceptor. The P1-lactam

mimics the P1-glutamine and occupies the S 1 subsite in the enzyme. These pep-

tidomimetic inhibitors interact with the enzyme through a series a hydrogen-bonding

interactions. Some of the inhibitors in this class also display antiviral activity, albeit

at high concentration [54].

Despite the straightforward approach to design potent irreversible inhibitors of

cysteine proteases, they tend to display off-target side-effects and toxicity in cellular

environments by modifying reactive cysteines of cellular proteins [77, 78]. Moreover,

none of the 39 marketed protease inhibitors that act via covalent modification of active

site amino acid target cysteine proteases, underlining the challenge of utilizing such
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inhibitors as drugs [38, 77, 78]. Therefore, it is important to design potent reversible

inhibitors that can specifically target 3CLpro without having off-target side effects.

3.2 Development of non-covalent reversible inhibitors of SARS-CoV 3CLpro

The Mesecar lab, in collaboration with Craig Lindsley’s and Shaun Stauffer’s lab

(Vanderbilt University), synthesized a focused librabry of 237 compounds to optimize

two unique chemical scaffolds (furanyl-amide and benzotriazole; scaffolds 2 and 4, re-

spectively, in Figure 3.4) to develop small molecule, reversible inhibitors of SARS-CoV

3CLpro. These scaffolds were identified based on initial hits from a high-throughput

screen of ∼300,000 compounds conducted in 2009 as a part of NIH molecular libraries

initiative in collaboration with the Scripps Research Institute Molecular Screening

Center (SRIMSC), Figure 3.4 [38, 39]. Scaffolds 2 and 4 were preferred over scaf-

folds 3 and 4 for hit to lead development for several reasons. Firstly, scaffolds 2 and

4 displayed slightly higher inhibition of SARS-CoV 3CLpro compared to other scaf-

folds. Additionally, scaffolds 2 and 4 exhibited higher cluster representation among

the 101 confirmed HTS hits. Finally, these scaffolds were more amenable to chemical

modifications allowing rapid expansion of the chemical library.

Different substitutions were made at R1, R2 and R3 positions to synthesize com-

pounds in this library. Several compounds, with both furanyl-amide and benzotriazole

scaffolds, that inhibit SARS-CoV 3CLpro with low micromolar or sub-micromolar po-

tency were identified partly through work done by previous Mesecar lab members

Valerie Grum-Tokars and partly through work described in this dissertation. Deter-

mination of X-ray crystal structures of SARS-CoV 3CLpro in complex with multiple

inhibitors from both the classes provide insights into enzyme-inhibitor interactions.

In this chapter, structure activity relationships (SARs) of compounds in our in-house

237 compound library and identification of specific functional groups that engage

in hydrogen-bonding interactions with the enzyme, and are therefore, essential for

inhibitory activity of the compounds are discussed.
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Fig. 3.4.: Chemical scaffolds identified through high-throughput screening
(HTS) for SARS-CoV 3CLpro inhibitor development. Left panel represents a
summary of the HTS campaign. Of the original 406 hits identified from HTS, 380
compounds that were available from Molecular Libraries Small Molecule Repository
(MLSMR) were re-evaluated to confirm their inhibitory activity against SARS-CoV
3CLpro. 136 compounds inhibited SARS-CoV 3CLpro with >12.5 % inhibition at 10
µM compound concentration. Out of 101 active hits from the confirmation screen, 39
compounds inhibited SARS-CoV 3CLpro with IC50 <10 µM and displayed no signif-
icant inhibitory activity against PLpro. The initial 101 compounds can be classified
into four different scaffolds (right panel) based upon chemical structural clustering.
Scaffolds 2 and 4 were utilized for further hit to lead development. Figure has been
adapted from [79].

Although these compounds were initially developed to inhibit SARS-CoV 3CLpro,

this study reports the evaluation of the inhibitory activity of these compounds against

a panel of 3CLpro enzymes from other human CoVs (SARS, OC43, HKu1, HKU5 and

MERS) as well as MHV. The latter was chosen since it is a convenient model system

for studying CoV replication in cell culture. Several compounds that can inhibit

multiple 3CLpro enzymes and therefore, have great potential to be developed as broad-
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spectrum inhibitors of 3CLpro enzymes from existing and emerging coronaviruses were

identified.

3.3 Results

3.3.1 Furanyl amide scaffold - SAR

Early during the lead development, the Mesecar lab determined the crystal struc-

ture of SARS-CoV 3CLpro in complex with a furanyl amide scaffold analogue [38].

The structure revealed the binding orientation of the inhibitor in the enzyme ac-

tive site. For convenience, structure activity relationships (SAR) discussed below are

shown based on SARS-CoV 3CLpro subsites (S 1’-S 3) that are expected to accommo-

date varying functional groups at different positions in the furanyl amide scaffold (See

top panel of Figure 3.5).

Varying functional groups in S 1 subsite

•Stereo-preference

Based on the inhibitory activities of compounds VNM (racemic mixture), REY

(R-stereoisomer) and RF9 (S -stereoisomer), it is evident that the active site residues

impose stereo-selectivity on the functional group that binds in the S 1 subsite of SARS-

CoV 3CLpro (Figure 3.5, green box). The R-stereoisomer is active (REY), while

S -stereoisomer (RF9) showed a complete loss of inhibitory activity.

•Position of pyridine nitrogen

Changing the position of the pyridine nitrogen from meta to ortho or para re-

sults in a total loss of inhibitory activity (Figure 3.5, blue box). Pyrimidine (QEF),

pyrazine (886) and pyridazine (884) with at least one nitrogen at the meta position
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Fig. 3.5.: Furanyl amide scaffold - SAR of varying functional groups in S 1

subsite of SARS-CoV 3CLpro. Binding mode schematic of reference compound
VNM in the active site of SARS-CoV 3CLpro is illustrated in the top panel. Subsites
S 1’-S 3 with the amino acids that form hydrogen-bonding interactions (dashed lines)
with the inhibitors are also shown.green box - stereoselectivity in the S 1 subsite; blue
box - effect of varying positions of the pyridine nitrogen; pink box - effect of addition
of methyl group at the para-position of pyridine ring; orange box - substitution of
pyridine ring with five-membered heteroaromatic rings. *Standard error for IC50

value is not available.
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are also active. The observation is consistent with the formation of hydrogen-bond

between the pyridine meta-nitrogen and the imidazole ring -NH of conserved His163.

•Para-methyl pyridinyl group

Addition of a methyl group to the pyridine ring (89R) results in a complete loss

of activity possibly due to steric clashes, suggesting a compact S 1 sub-site (Figure

3.5, pink box). In fact, based on the X-ray crystal structure of SARS-CoV 3CLpro

in complex with the compound REY (PDB ID: 3V3M) [38], distance between the

carbon at the position 4 of the pyridine ring and the methylene carbon of Phe140

side chain in the S 1 pocket is only 3.6 Å, which would not only binding of compound

89R due to steric hindrance.

•Six-membered versus five-membered heteroaromatic rings

All five-membered heteroaromatic ring systems (imidazole, pyrazole and triazole)

failed to show any inhibitory activity against SARS-CoV 3CLpro suggesting that six-

membered aromatic heterocycles are preferred over five-membered heterocycles (Fig-

ure 3.5, orange box). Reduction in the inhibitory activity for compounds 87U, 887

and 88J can be explained by a reduction in their hydrogen-bond accepting capability

due to a decrease in the pKa values for the diazole (87U and 887, pKa = 2.5) and

triazole (88J) functional groups compared to the pKa of pyridine group (VNM, pKa

= 5.2). Reduction in the inhibitory potency for the compound 88U is possibly ex-

plained by an increase in the distance between -N of the imidazole functional group

in 88U and the -NH of His163, thereby decreasing the hydrogen-bond strength.
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Varying functional groups in S 1’ subsite

•Substitution on the furanyl ring

Addition of a single methyl group to the furan ring results in a significant loss of

inhibitory potency (RWW, RVC), whereas addition of larger -CF3 or benzyl groups

completely abolishes inhibition (Figure 3.6, green box). The loss of inhibition is

possibly due to steric clashes with Gly143 as suggested by the crystal structure of

SARS-CoV 3CLpro-REY complex, suggesting that the S 1’ pocket is compact.

•Six-membered substituted or hetero-aromatic rings

Replacement of furan ring by six-membered hetero-aromatic or substituted aro-

matic ring results in a complete loss of inhibition activity (Figure 3.6, pink box)

either due to the bulkier size of these rings or due to the loss of proper orientation

of hydrogen-bond acceptor. Furanyl oxygen forms hydrogen-bond with backbone

carbonyl oxygen of conserved Gly143.

•Non-aromatic cyclic or acyclic groups

Substitution of the furan ring with non-aromatic cyclic or acyclic groups (Fig-

ure 3.6, orange box) results in a partial loss of activity, suggesting a preference for

aromatic heterocycles over non-aromatic groups.

•Five-membered heteroaromatic rings

Replacing the furan ring of REY with pyrrole (QEM) or pyrazole ring (RWQ and

RW3) results in a significant loss of activity possibly due to the loss of hydrogen-

bond with Gly143 (Figure 3.6, blue box). Oxazole (QE7, RWB) is tolerable in the

S 1’ subsite of SARS-CoV 3CLpro, albeit with a higher IC50 value. Finally, XM2 with

an imidazole group is the second best inhibitor of SARS-CoV 3CLpro, after REY, with
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Fig. 3.6.: Furanyl amide scaffold - SAR of varying functional groups in S 1’
subsite of SARS-CoV 3CLpro. Binding mode schematic of reference compound
VNM in the active site of SARS-CoV 3CLpro is illustrated in the top panel. Subsites
S 1’-S 3 with the amino acids that form hydrogen-bonding interactions (dashed lines)
with the inhibitors are also shown. green box - effect of substitutions in the furanyl
ring; pink box - effect of replacing the furan ring with six-membered heteroaromatic
or substituted ring systems; orange box - effect of replacing the furan ring with non-
aromatic cyclic or acyclic groups; blue box - effect of replacing the furan ring with
varying five-membered heteroaromatic rings. *Standard error for IC50 value is not
available.
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an IC50 value of 4.5 µM. The imidazole ring of XM2 contains both hydrogen-bonding

acceptor and donor groups, and might be involved in the formation of additional

hydrogen-bonding interactions with the enzyme. In fact, X-ray crystal structure

of SARS-CoV CLpro in complex with the compound XM2 (Section 3.5.2) reveals

that the imidazole -NH of XM2 forms additional hydrogen-bonding interactions with

the enzyme through a water-mediated network. It is likely that the oxazole -N of

compound RWB engages SARS-CoV 3CLpro in a similar manner. When compared

to RWB, the reduction in the inhibition activity of compound QE7 can be explained

by the loss of hydrogen-bonding interactions as a result of the change in oxazole -N

position in QE7.

Varying functional groups in the S 3 subsite

Compounds CTR and L3V (Figure 3.7) displayed a significant loss in the in-

hibitory activity against SARS-CoV 3CLpro. The loss in activity can possibly be

explained by deletion of the carbonyl oxygen of the inhibitor that forms an impor-

tant hydrogen-bond with the backbone amide group of Glu166 as shown with other

inhibitors in SARS 3CLpro (Figure 3.7).

Compound T8J (Figure 3.7) contains an ester group instead of an amide group

(VNM). As amides are more polarized than esters, the strength of hydrogen-bond

with Glu166 will be weaker in T8J. Additionally, replacement of tert-butyl group

with a methyl group (L3V) will also decrease the van der Waals interactions with the

enzyme. Additional compounds would need to be synthesized in order to test the

amide hydrogen-bond strength and van der Waals interaction hypotheses.
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Fig. 3.7.: Furanyl amide scaffold - SAR of varying functional groups in S 3

subsite of SARS-CoV 3CLpro. Binding mode schematic of reference compound
VNM in the active site of SARS-CoV 3CLpro is illustrated in the top panel. Subsites
S 1’-S 3 with the amino acids that form hydrogen-bonding interactions (dashed lines)
with the inhibitors are also shown. Formation of a weaker hydrogen-bond (T8J)
with Glu166 or complete disruption of the hydrogen-bond (CTR and L3V) possibly
influence the inhibitory activity of the given compounds.

Varying functional groups in S 2 subsite

•Non-aromatic ring substitutions

Compounds QRD, QR9 and QRA are completely inactive against SARS-CoV

3CLpro (Figure 3.8, green box), indicating that non-aromatic or significantly bulky

ring structures in the S 2 pocket are unfavorable for binding and hence inhibitory

activity.

•para-substituted halophenyls

VGL with a fluorophenyl group does not have any inhibitory activity against

SARS-CoV 3CLpro (Figure 3.8, pink box). Compound GB8 with an iodophenyl sub-
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Fig. 3.8.: Furanyl amide scaffold - SAR of varying functional groups in S 2

subsite of SARS-CoV 3CLpro. Binding mode schematic of reference compound
VNM in the active site of SARS-CoV 3CLpro is illustrated in the top panel. Subsites
S 1’-S 3 are also shown. green box - effect of non-aromatic ring substitutions; pink box
- effect of para-substituted halophenyls.

stitution displayed higher % inhibition compared to VGL when tested at 100 muM

inhibitor concentration with an IC50 value of 27 µM for SARS-CoV 3CLpro (Figure

3.8, pink box).
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•Size of alkyl or aryl groups attached to benzene ring at S 2 position

Attachment of either a tert-butyl group (VNM) or a sec-butyl (XPC) group to

the benzene ring is the most favorable addition for inhibition of SARS-CoV 3CLpro

(Figure 3.9, green box). Compared to the tert- or sec-butyl groups of VNM and XPC,

as the size of this group is increased or decreased, the inhibitory activity decreases

(VFM and 893 in Figure 3.9, green box). The SARS-CoV 3CLpro S 2 subsite still,

however, tolerates a broader size range of chain substitutions attached to the benzene

ring. Compound GDF with a phenyl-ethylene group attached to the benzene ring

(Figure 3.9, green box) is most likely very bulky to be accommodated in the S 2

subsite and therefore, does not display good inhibitory activity.

•Alkoxy-phenyls

For alkoxy-phenyl substitutions in the S 2 pocket of SARS-CoV 3CLpro, inhibitory

activity increases as the size of alkyl chain increases (isopropoxy-phenyl is the most

favored) with a preference for compact branched chains (KWW, CUG) over long

flexible chains (CUF, GB0) (Figure 3.9, orange box).

•Substituted and heteroaromatic biphenyl rings

The unsubstituted biphenyl compound (GBN) is a potent inhibitor of SARS-

CoV 3CLpro. Substitution of cyano or fluoro groups are more preferred at ortho

positions than meta and para positions (Figure 3.10). However, FMW, with a

pyrimidinyl-phenyl, has better inhibitory activity against SARS-CoV 3CLpro com-

pared to pyridinyl-phenyl (FN9 and 88H), (Figure 3.11). Compound FN8 with fluoro-

pyridinyl phenyl displays poor inhibitory activity. All these observations suggest that

the pyrimidine nitrogens in FMW might participate in hydrogen-bonding interactions

with the enzyme and these interacts are disrupted in FN9, 88H, FN8. Additionally,

the number and position of the nitrogen atoms in the phenyl ring differentially affect
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Fig. 3.9.: Furanyl amide scaffold - SAR of varying functional groups in
S 2 subsite of SARS-CoV 3CLpro cont... Binding mode schematic of reference
compound VNM in the active site of SARS-CoV 3CLpro is illustrated in the top
panel. Subsites S 1’-S 3 are also shown. green box - effect of size of alkyl or aryl groups
attached to benzene ring; orange box - effect of alkoxy-phenyl groups. *Standard
error for IC50 value is not available.
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Fig. 3.10.: Furanyl amide scaffold - SAR of varying functional groups in
S 2 subsite of SARS-CoV 3CLpro cont... Binding mode schematic of reference
compound VNM in the active site of SARS-CoV 3CLpro is illustrated in the top
panel. Subsites S 1’-S 3 are also shown. Effect of substituted biphenyl groups, in the
S 2 pocket, on the inhibitory activity of compounds is represented.

the electron cloud of aromatic ring systems that might influence the interactions of

these inhibitors with amino acids in the S 2 subsite of SARS-CoV 3CLpro.
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Fig. 3.11.: Furanyl amide scaffold - SAR of varying functional groups in
S 2 subsite of SARS-CoV 3CLpro cont... Binding mode schematic of reference
compound VNM in the active site of SARS-CoV 3CLpro is illustrated in the top panel.
Subsites S 1’-S 3 are also shown. Effect of heteroaromatic biphenyl groups, in the S 2

pocket, on the inhibitory activity of compounds is represented.

3.3.2 Benzotriazole scaffold - SAR

Early during the lead development, our lab determined the X-ray crystal structure

of SARS-CoV 3CLpro in complex with a benzotriazole scaffold analogue [39]. The

structure revealed an induced-fit binding mechanism and the precise orientation of the
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inhibitor in the enzyme active site. For convenience, structure activity relationships

(SAR) are shown based on the SARS-CoV 3CLpros subsites (S 1’-S 4) that are expected

to accommodate varying functional groups at different positions in the benzotriazole

scaffold.

Analysis of structure activity relationships (SAR) for the benzotriazole scaffold

analogues primarily focused on: 1) replacing the benzotriazole group in the S 1 subsite

with other hydrogen-bond accepting functional groups; 2) modifications of N-alkyl

phenylamide in the S 1’-S 2 site; and 3) modifications of S 1’-S 2 N-alkyl phenylamide

in P3-truncated benzotriazole analogues, Figure 3.12.

Fig. 3.12.: Binding mode of benzotriazole scaffold in the active site of SARS-
CoV 3CLpro. Left- The binding mode for an extended, benzotriazole-based scaffold
is illustrated . Right- The binding mode for a P3-truncated benzotriazole based
scaffold is illustrated. Subsites S 1’-S 4 with the amino acids that form hydrogen-
bonding interactions (dashed lines) with the inhibitors are also shown.

Replacing the benzotriazole group in the S 1 subsite (Inactive analogues)

The X-ray crystal structure of SARS-CoV 3CLpro in complex with a benzotriazole

scaffold analogue revealed that the N-3 nitrogen of the benzotriazole group hydrogen-

bonds to the His163 -NH in the S 1 subsite. Due to the formation of this important
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hydrogen-bond, analogues lacking functional groups with the correct position and

electronic configuration for the hydrogen-bond acceptor were inactive, Figure 3.13.

Fig. 3.13.: Inactive analogues of benzotriazole scaffold. Chemical structures of
benzotriazole scaffold analogues that did not inhibit SARS-CoV 3CLpro are shown.
Highlighted in green is the functional group that replaced the benzotriazole group.

Modifications of N-alkyl phenylamide for the S 1’-S 2 subsite in P3-extended

benzotriazole analogues

•Amide versus sulfonamide

Replacement of the amide group of XPY attached to the benzene ring with sul-

fonamide (XPK) reduced the inhibitory activity with a three-fold increase in the IC50

value for SARS-CoV 3CLpro (Figure 3.14).
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Fig. 3.14.: P3-extended benzotriazole scaffold - SAR of varying functional
groups in S 1’-S 2 subsite of SARS-CoV 3CLpro. Effect of varying size of alkyl
chains attached to the amide is shown. *Standard error for IC50 value is not available.

•Size of alkyl chain attached to amide group

Among these compounds, XRR (isopropyl amide) and REQ (cyclobutyl amide)

display maximum inhibition of SARS-CoV 3CLpro (Figure 3.14). An increase (RF5,
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RFF) or decrease (XPY, XTF, RF4) in the size of alkyl chain results in a slight

decrease in the inhibitory activity, possibly as a result of steric clashes or decrease in

van der Waal interactions, respectively.

P3-extended versus P3-truncated benzotriazole analogues

The X-ray crystal structure of SARS-CoV 3CLpro in complex with the P3-extended

benzotriazole analogue suggested that the P3 functional group is relatively solvent

exposed, and might impose an entropic penalty for solvation [39]. Therefore, a series

of second generation P3-truncated benzotriazole analogues were designed. In general,

the inhibitory activity of P3-truncated benzotriazole analogues was higher than the

corresponding P3-extended benzotriazole analogues. For example, the IC50 value of

P3-truncated R30 is more than two-folds lower than the corresponding P3-extended

XTF, Figure 3.15.

Fig. 3.15.: Inhibitory activity of P3-extended (R30) versus P3-truncated
(XTF) benzotriazole analogues.
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Modifications of N-alkyl phenylamide for the S 1’-S 2 site in P3-truncated

benzotriazole analogues

•Size of alkyl chain attached to phenyl amide

For SARS-CoV 3CLpro, inhibitory activity decreases with increase in the size of

alkyl chain (Figure 3.16). The ethyl amide (R30) is the most potent compound in

this series with an IC50 value of 2.9 µM, while the bulky cyclohexyl amide (RF1) and

phenyl amide (RFM) displayed almost a total loss in inhibitory activity.

•Long alkoxy groups attached to phenyl amide

Longer flexible chains without branching (R2Y, R2X in Figure 3.17) inhibit SARS-

CoV 3CLpro with IC50 values <10 µM . However, branched bulkier alkyl chain (REL)

show a loss of inhibitory activity possibly due to steric clashes.

It was observed that compared to the benzamide group (RFM, Figure 3.16), be-

nazalamine group (R2W, Figure 3.17) displayed strikingly higher inhibitory activity.

This observation suggests that the increase in flexibility due to loss of amide oxygen

allows this group to better accommodate and interact in the S 1’-S 2 pocket of the

enzyme. Based on this observation, a series of biaryl compounds were evaluated.

•Biaryls

Compounds with biaryls in the S 1’-S 2 pocket dramatically increased the inhibitory

potency of the inhibitors. Phenyl biaryl (T8L, Figure 3.17) is the most potent non-

covalent inhibitor of SARS-CoV 3CLpro identified so far. Other inhibitors in this

group also display low micromolar and submicrmolar potency for inhibition of SARS-

CoV 3CLpro.

In summary, several non-covalent inhibitors of SARS-CoV 3CLpro that display

low micromolar and submicromolar inhibition potency have been identified. Potent

inhibitors were identified in both the furanyl amide and benzotriazole scaffold series.
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Fig. 3.16.: P3-truncated benzotriazole scaffold - SAR of varying functional
groups in S 1’-S 2 subsite of SARS-CoV 3CLpro. Effect of varying size of alkyl
chain attached to phenyl amide is shown.

In general, the P3-truncated benzotriazole analogues were more potent than corre-

sponding P3-extended benzotriazole analogues. The most potent compound from the

furanyl amide series, REY, also exhibit antiviral activity against SARS-CoV in Vero-

E6 cells with an EC50 value of 13 µM [38]. Experiments to determine the antiviral

activity of the potent benzotriazole analogues failed to show antiviral efficacy. Pres-

ence of three polar nitrogen atoms in the benzotriazole ring of these analogues may
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Fig. 3.17.: P3-truncated benzotriazole scaffold - SAR of varying functional
groups in S 1’-S 2 subsite of SARS-CoV 3CLpro cont... Effect of long alkoxy
and groups attached to phenyl amide and biaryls is shown.

potentially result in poor cell permeability that would explain their poor antiviral

activity.
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3.4 Identification of inhibitors with broad-spectrum activity against 3CLpro

from different coronaviruses

One of the goals of this dissertation project on coronavirus 3CLpro research is

to understand the determinants for molecular recognition of 3CLpro protease across

different coronavirus subclasses. Insights into similar and distinct features utilized by

different 3CLpro proteases for ligand interaction will aid in the development of potent

broad-spectrum inhibitors that can be used as antiviral agents against existing and

emerging human CoV infections.

It is hypothesized that by engaging interactions between the inhibitor and the

protein backbone and/or conserved residues, potent broad-spectrum inhibitors of hu-

man CoV 3CLpro can be developed. This hypothesis is supported by the following

observations. First, 3CLpro from different subclasses of human CoV share a minimum

of 40% sequence identity. Moreover, the sequence identity is maintained more rigor-

ously in the vicinity of 3CLpro active site. Second, recent success in efforts to develop

inhibitors of HIV protease ( [78, 80–82]) presents a proof-of-principle foundation for

an approach capitalizing on conserved structural features to develop broad-spectrum

antiviral agents. One of the main goals of this study was to develop both covalent and

non-covalent inhibitors of 3CLpro. Success with rhinovirus protease inhibitor AG-7088

into Phase I clinical trials demonstrated the potential of compounds with covalent

mode of action to be advanced as effective antiviral agents [83]. Additionally, insights

gained from the successful identification of several reversible non-covalent inhibitors

of SARS 3CLpro can be utilized to develop inhibitors targeting 3CLpro from other

coronavirus subclasses [38, 39].

In this study, an in-house library of 237 non-covalent compounds was tested

against a panel of 3CLpro enzymes from different coronaviruses. 3CLpro enzymes

from SARS, OC43, MHV, HKU1, HKU5 and MERS coronaviruses were included.

SARS, OC43, KHU1 and MERS are human coronaviruses, MHV infects mice, and

HKU5 is a bat coronavirus closely related to MERS-CoV. The materials and methods
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utilized for testing the compound library are described in detail in Chapter 2. Briefly,

the percent inhibition of each enzyme was determined in the presence of 100 µM of

compound. Compounds displaying more than 50% inhibition at this concentration

were further evaluated in a dose response assay to determine the IC50 values. Com-

pounds exhibiting inhibitory activity against multiple 3CLpro enzymes are listed in

Figures 3.18 and 3.19.

Several compounds belonging to both the furanyl-amide and benzotriazole scaf-

folds were identified that displayed inhibitory against multiple 3CLpro enzymes. Since

the compound library was originally synthesized for SARS-CoV 3CLpro enzymes, it

was not surprising that most of the compounds listed in Figure 3.19 displayed better

inhibitory activity against SARS-CoV 3CLpro compared to other 3CLpro enzymes we

tested. Among the furanyl-amide analogues, it was observed that 3CLpro enzymes

from OC43, MHV and HKU1 can only accomodate small alkyl chians attached to

the phenyl ring at the P2 position, suggesting that the P2 pocket of these enzyme is

smaller than SARS-CoV 3CLpro. For example, compound FMW with a bulky sub-

stitution at the P2 position inhibits SARS-CoV 3CLpro with an IC50 value of 4.5 µM

(Figure 3.11) but displays <20 % inhibition of other 3CLpro enzymes tested here.

Compound XM2, followed by compounds QEF and RWB, are the most potent in-

hibitors in this class with broad spectrum activity against multiple 3CLpro enzymes

(Figure 3.19). Both of these compounds contain an imidazole ring in place of a furan

ring at the position that occupies the S 1 subsite of 3CLpro. The imidazole ring would

not only maintain the hydrogen-bond with Gly143, but it also contains a hydrogen-

bond donor that might engage in additional interactions with the enzymes. It is

predicted that the cross-reactivity of XM2 and QEF emanates from the formation of

additional hydrogen-bonding interactions with the enzymes.

Among the benzotriazole analogues, it was observed that P3-truncated benzotria-

zole analogues are better cross-reactive inhibitors that the corresponding P3-extended

benzotriazole analogues. Most of the cross-reactive inhibitors in this class displayed

lowest inhibitory activity against MHV 3CLpro. Compounds RF4, R2Y, R2X, T8M
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Fig. 3.18.: Chemical structures of broad spectrum 3CLpro inhibitors. In-
hibitors from the furanyl amide, P3-extended benzotriazole and P3-truncated benzo-
triazole scaffolds are highlighted in cyan, purple and orange, respectively.

and T8N inhibited all the 3CLpro enzymes tested, albeit with different potencies. Al-

though CQ3 did not display good inhibitory activity against MHV 3CLpro, it was
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Fig. 3.19.: Broad spectrum 3CLpro inhibitors. A list of inhibitors with broad
spectrum inhibitory activity against multiple 3CLpro enzymes is provided. Inhibitors
from furanyl amide, P3-extended benzotriazole and P3-truncated benzotriazole scaf-
folds are highlighted in cyan, purple and orange, respectively. % inhibition was de-
termined at final compound concentration of 100 µM. IC50 values were determined
from a dose-response curve; IC50 values are given in parenthesis. nd - not determined.
*Standard error for IC50 value is not available.

able to achieve sub-micromolar inhibitory activity against 3CLpro from SARS-CoV

and HKU5-CoV.
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3.5 X-ray crystal structure determination of SARS-CoV 3CLpro-inhibitor

complexes

Crystal structure analysis is a great tool to validate SARs and gain further insights

into interactions important for specificity versus cross-reactivity of inhibitors. In

addition to the reported crystal structure of the most potent compound ML188 (or

REY), nine high-resolution crystal structures of inhibitors (five from the furanyl amide

series and four from the benzotriazole series) bound to SARS-CoV 3CLpro, including

complex with the cross-reactive XM2 agent, were determined.

3.5.1 X-ray crystal structures in complex with P3-truncated benzotria-

zole inhibitors

Figures 3.20-3.21 show the crystal structures of SARS-CoV 3CLpro bound to four

compounds (CQ3, R30, R2Y and R2X) from the benzotriazole series. All these

compounds have similar binding orientations in the active site and form equivalent

hydrogen bonds with His163 and Glu166 (Figure 3.22). Compared to the compounds

in the furanyl-amide series (discussed in the next section), which form at least four

hydrogen bonds with SARS-CoV 3CLpro, the benzotriazole analogues form only two

hydrogen bonds with the enzyme. Interestingly, these inhibitors display an induced-

fit binding mode, which is slightly different from the traditional S 1’-S 4 subsites that

accomodate the peptidomimetic compounds. The thiophene ring occupies the S 2-S 4

subsites, while the other functional group occupies the S 1’-S 2 subsites. Rearrange-

ment of Gln189 and Met49 is largely responsible for the formation of the induced-fit

binding pockets. In addition to the conserved hydrogen-bond formation with His163

and Glu166, the alkoxy oxygen of compounds R2Y and R2X might also engage Thr25

with hydrogen-bonding interactions in the S 1’-S 2 pocket.
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Fig. 3.20.: X-ray crystal structure of SARS-CoV 3CLpro in complex with
P3-truncated benzotriazole inhibitors CQ3 and R30. A. and C. Solvent-
accessible surface of SARS-CoV 3CLpro in complex with inhibitors CQ3 and R30,
respectively. Inhibitor molecules are displayed in ball and stick models. Electron
density associated with the inhibitors is shown as a Fo−Fc electron density difference
map contoured to 3σ (mesh). B. and D. SARS-CoV 3CLpro-CQ3 and SARS-CoV
3CLpro-R30 complexes, respectively, are illustrated with the SARS-CoV 3CLpro back-
bone represented as a ribbon model and relevant amino acids that interact with the
inhibitors represented as ball and sticks. Hydrogen bonds are depicted as red dashed
lines.

3.5.2 X-ray crystal structures in complex with furanyl-amide inhibitors

Figure 3.23 show the crystal structures of SARS-CoV 3CLpro in complex with

compounds 886, CUG, FMW, KWW and XM2. All these compounds have similar

binding orientations in the active site and form equivalent hydrogen bonds with His163
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Fig. 3.21.: X-ray crystal structure of SARS-CoV 3CLpro in complex with
P3-truncated benzotriazole inhibitors R2Y and R2X. A. and C. Solvent-
accessible surface of SARS-CoV 3CLpro in complex with inhibitors R2Y and R2X,
respectively. Inhibitor molecules are displayed in ball and stick models. Electron
density associated with the inhibitors is shown as a Fo−Fc electron density difference
map contoured to 3σ (mesh). B. and D. SARS-CoV 3CLpro-R2Y and SARS-CoV
3CLpro-R2X complexes, respectively, are illustrated with the SARS-CoV 3CLpro back-
bone represented as a ribbon model and relevant amino acids that interact with the
inhibitors represented as ball and sticks. Hydrogen bonds are depicted as red dashed
lines.
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Fig. 3.22.: Superposition of inhibitors CQ3, R30, R2Y and R2X from the
X-ray crystal structures of SARS-CoV 3CLpro in complex with inhibitors.
X-ray crystal structures of SARS-CoV 3CLpro in complex with P3-truncated benzo-
triazole inhibitors CQ3, R30, R2Y and R2X reveal similar binding orientations in
the active site of the enzyme. These inhibitor molecules display an induced-fit bind-
ing mode with different functional groups binding in the S 1, S 1’-S 2, S 2-S 4 and S 1

subsites of the enzyme. Conserved hydrogen-bonding interactions with His163 and
Glu166 are depicted as dashed lines.

and Glu166, Figure 3.24. Compared to the benzotriazole analogues, which form two

hydrogen bonds with SARS-CoV 3CLpro, furanyl-amide analogues form at least four

direct hydrogen bonds with the enzyme. These inhibitors occupy the traditional

S 1’-S 3 subsites that accomodate the peptidomimetics. Furan oxygen (or imidazole

nitrogen) and amide oxygen form bifurcated hydrogen-bonds with the backbone amide

of Gly143 in the S 1’ subsite. Pyridine nitrogen engages His163 side chain with a

hydrogen-bond in the S 1 pocket. Second amide oxygen of the inhibitor backbone

interacts with Glu166 through a hydrogen-bond formation.
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Fig. 3.23.: X-ray crystal structure of SARS-CoV 3CLpro in complex with
furanyl-amide inhibitors 886, CUG, FMW, KWW and XM2. Inhibitor
molecules and the neighboring amino acid side chains are displayed in ball and stick
models. Water molecules are represented as red spheres. Electron density associated
with the inhibitors is shown as a Fo − Fc electron density difference map contoured
to 3σ (shown as mesh). Previously solved crystal structure of SARS-CoV 3CLpro in
complex with compound REY is shown for reference.
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Fig. 3.24.: Superposition of inhibitors REY, 886, CUG, FMW, KWW and
XM2 from the X-ray crystal structures of SARS-CoV 3CLpro in complex
with inhibitors. X-ray crystal structures of SARS-CoV 3CLpro in complex with
furanyl-amide inhibitors REY, 886, CUG, FMW, KWW and XM2 reveal similar
binding orientations in the active site of the enzyme. Different functional groups of
these inhibitor molecules occupy S 1’, S 1, S 2 and S 3 subsites of the enzyme in a manner
similar to the binding of substrate-mimetic compounds. Conserved, direct hydrogen-
bonding interactions with Gly143, His163 and Glu166 are depicted as dashed lines.

SARS-CoV 3CLpro-XM2 crystal structure

Cross-reactive inhibitor XM2 engages the enzyme via hydrogen-bonding inter-

actions with conserved structural elements (either backbone amides or side chains

of conserved residues) of SARS-CoV 3CLpro. These interactions are similar to the

interactions formed by other inhibitors in this class. Interestingly though, as pre-

dicted through SAR analysis, the imidazole ring of XM2 forms a network of four

additional hydrogen-bonds through bridging water molecules. These hydrogen-bonds

engage backbone of SARS-CoV 3CLpro via Val42 and Cys44, and conserved His41

of the catalytic dyad. Additional structural analysis reveals that MPD (2-Methyl-

2,4-pentanediol) molecule, added as a cryo-protectant during crystallization, binds
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at the bottom of S 2 pocket in the active site and can be displaced by corresponding

non-conserved Met25 residue in other 3CLpro enzymes (Thr25 in SARS-CoV 3CLpro).

Fig. 3.25.: SARS 3CLpro-XM2 complex crystal structure. A. Solvent-accessible
surface of SARS-CoV 3CLpro in complex with inhibitor XM2, respectively. Inhibitor
molecule and solvent molecule MPD are displayed as stick models. Electron density
associated with the ligands is shown as a Fo − Fc electron density difference map
contoured to 3σ (mesh). Water molecules are shown as red spheres. B. Interactions
between XM2 and SARS 3CLpro active site residues are illustrated. Hydrogen bonds
are shown as dashed lines. Water molecules are shown as red spheres. C. MPD
molecule (green sticks) was modeled near the active site in the extra electron density
observed in Fo − Fc map. MPD molecule (added as cryo-protectant) found near the
active site in SARS 3CLpro can be displaced by non-conserved Met25 residue in other
3CLpro enzymes, while this residue is Thr25 in SARS 3CLpro).
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3.6 Summary

In an effort to develop potent non-covalent inhibitors of SARS-CoV 3CLpro, we

designed a focused in-house library of 237 compounds. The compound library was

designed based on the initial hits from a high-throughput screen of approximately

30,000 compounds. We identified several potent (low micromolar furanyl-amide ana-

logues, sub-micromolar benzotriazole analogue) inhibitors of SARS-CoV 3CLpro. SAR

of these compounds was developed and suggested significance of key functional groups

that occupy different subsites in SARS-CoV 3CLpro. Based on SAR, S 2 subsite is the

most variable site and can tolerate a variety of substitutions in SARS-CoV 3CLpro.

Several SARS-CoV 3CLpro inhibitors also displayed cross-reactivity against 3CLpro

enzymes from coronaviruses OC43, MHV, HKU1 and HKU5. The X-ray crystal struc-

ture analysis of SARS-CoV 3CLpro in complex with the most potent broad-spectrum

inhibitor XM2 suggests that formation of additional water-mediated hydrogen-bonds

by XM2 might be playing a crucial role in cross-reactivity. These results suggest

that designing of potent non-covalent inhibitors of 3CLpro enzymes that also display

cross-reactive activity can be achieved.
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CHAPTER 4. MECHANISTIC BASIS FOR THE TEMPERATURE

SENSITIVITY OF 3CLPRO MUTANTS OF MURINE HEPATITIS VIRUS (MHV)

Parts of the data and text in this chapter have been included in a manuscript enti-

tled “Mechanistic basis for the temperature sensitivity of 3CLpro mutants of murine

hepatitis virus” and is currently under preparation.

4.1 Abstract

All coronaviruses (CoVs) require the protease activity of viral-encoded nsp5 (3CLpro)

to process the viral replicase polyproteins 1a and 1ab. Domains 1 and 2 of 3CLpro

form the catalytic fold, while unique domain 3 is critical for 3CLpro dimerization. For

the CoV murine hepatitis virus (MHV), our collaborator, Prof. Mark Denison at Van-

derbilt University, recently identified multiple temperature sensitive (-ts) mutations

in domains 2 and 3 that are each complemented by a common, structurally distant re-

vertant H134Y in domain 2, implicating long-distance, intramolecular communication

in regulation of CoV 3CLpro activity. However, the structural and biochemical bases

for the -ts and revertant phenotypes were not determined. In this study, biochemi-

cal, biophysical and structural analyses of these physiological relevant mutations of

MHV 3CLpro were performed. It is demonstrated that V148A mutation results in the

global destabilization of the protein structure, which denatures at elevated tempera-

tures. Interestingly, the H134Y mutation increases the melting temperature (Tm) by

7 °C compared to the V148A mutant. Moreover, the V148A/H134Y double mutant

is more stable than the V148A mutant, albeit less stable than the wildtype or the

single mutant H134Y. Structural analysis reveals that V148A occupies a structural

‘weak spot’, while the H134Y mutation provides a rather general mechanism for en-

hancing the structural stability of MHV 3CLpro. Emergence of H134Y to suppress
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the -ts phenotype of multiple independent mutants of MHV 3CLpro as well as the

natural existence of a tyrosine residue at position 134 in several other CoV 3CLpro

enzymes highlight the potential evolutionary significance of this residue as a facilitator

of structural stability for multiple 3CLpro enzymes.

4.2 Introduction

CoVs are positive-strand RNA viruses that include important human pathogens

like severe acute respiratory syndrome coronavirus (SARS-CoV) and the recently

emerged Middle East respiratory syndrome coronavirus (MERS-CoV). Besides in-

fecting humans, CoVs are also pathogenic to a variety of other vertebrates including

but not limited to livestock, mouse, cats, dogs etc. Upon entry inside the host

cells, the viral positive-strand RNA translates into replicase polyproteins 1a and 1ab.

CoV 3CLpro protease is a non-structural protein that processes the viral polypro-

teins into mature non-structural proteins required for the assembly of replicase com-

plex [1,40,41,84]. Due to its indispensable role in viral replication, 3CLpro serves as an

attractive drug target for the development anti-coronaviral therapeutics [37–39, 53].

Structures of several 3CLpro from different alpha, beta and gamma CoVs have been

determined and reveal an overall similar structural architecture [60,85,86]. 3CLpro is

comprised of three distinct domains; domains 1 and 2 form the typical chymotrypsin-

like fold that contains the His41-Cys145 catalytic dyad and the substrate-binding

site [42]. CoV 3CLpro domain 3 is unique among chymotrypsin-like enzymes and has

been shown to be important for 3CLpro dimerization [47,48]. The role of amino acids

present at the dimer interface or substrate-binding pocket that regulates 3CLpro struc-

ture and activity has been illustrated in great depth through mutagenesis, biochemical

and structural studies [43–47,60]. However, we are only beginning to understand the

mechanisms by which a distant residue can modulate dimerization or catalytic activity

of 3CLpro through long-range interactions [60, 87–89].
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Previous studies have suggested the role of long-range interactions in regulating

the activity of 3CLpro of murine hepatitis virus (MHV). Sparks et al. showed that a

temperature sensitive (-ts) V148A mutation in MHV 3CLpro impairs viral growth and

polyprotein processing at 40 °C [90]. Emergence of a second site H134Y mutation,

physically distant from V148A mutation site, suppresses the -ts phenotype [90, 91].

Moreover, MHV with two other independent -ts mutations, S133A and F219L, also

select for H134Y as the second site compensatory mutation [90, 91]. Since these

mutations showed differential impairment in the processing of nsp8 and nsp5 in the

virus-infected cells, it was suggested that the altered polyprotein processing at spe-

cific cleavage sites results in the -ts phenotype of these mutant viruses [91]. It was

also suggested that the suppression of -ts phenotype by the distant H134Y mutation

is mediated through long-range interactions, and the long-range interactions play a

significant role in regulating 3CLpro enzymatic activity during polyprotein processing

and virus replication [90,91]. However, the structural basis of temperature sensitivity

of mutant enzymes and the suppression of -ts phenotype by H134Y mutation was not

elucidated.

Mutation of these residues may influence MHV 3CLpro in a variety of ways in

the virus-infected cells. These mutations can impact enzymatic activity by altering

substrate binding site or catalysis, influence the kinetic and thermodynamic stability

of protein structure, impair polyprotein processing at the rate-limiting cleavage step

or alter interaction of 3CLpro with a viral/host binding partner. To understand the

mechanistic basis for temperature sensitivity of the physiologically relevant -ts V148A

mutation of MHV 3CLpro and its rescue by the distant H134Y mutation, it was hy-

pothesized that the V148A mutation leads to significant destabilization of the protein

structure at elevated temperatures. A series of kinetic, biophysical and molecular

dynamics studies were conducted on the in vitro purified wildtype, V148A, H134Y

and V148A/H134 enzymes. Utilizing a combination of biochemical investigations,

molecular dynamics (MD) simulations and constraint network analysis, a potential

mechanism for the observed phenotypes in the MHV 3CLpro variants is proposed.
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Moreover, to the best of our knowledge, this study is the first to report biochemical

characterization of physiologically relevant mutations of coronavirus 3CLpro. Finally,

structural analysis of the H134Y mutation suggests a general mechanism for improved

stability of 3CLpro that may have implications when utilizing structurally unstable

-ts mutant viruses for vaccine design.

4.3 Materials and methods

4.3.1 Construct design and expression of MHV 3CLpro

The construct design and protocol for the expression of MHV 3CLpro wildtype

and the mutants have been described in Chapter 2, Section 2.3.

4.3.2 Protein purification

The purification protocol for MHV 3CLpro wildtype has been described in detail

in Chapter 2. For the CD experiments (section 4.3.4), gel-filtration chromatography

was employed as the final purification step. All experiments were performed using

freshly purified (i.e. not frozen) proteins.

Total activity units (µM product/min), specific activity (units/mg) and milligrams

of protein obtained (BioRad protein assay) were determined after each chromato-

graphic step to calculate the final protein yield.

4.3.3 Thermal inactivation at permissive and non-permissive tempera-

tures

Aliquots of freshly purified proteins with a concentration of 10 µM were trans-

ferred to microcentrifuge tubes and kept at ambient temperature for 10-15 minutes

before incubating at higher temperatures. The samples were then incubated at ambi-

ent temperature and either at 30 °C or 40 °C in a circulating water bath for a period

of two hours. Samples incubated at room temperature served as controls. Aliquots
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were taken out at different time points within a two hour period and one hundred-

fold dilutions were prepared in an assay buffer containing 50 mM HEPES pH-7.5, 0.1

mg/mL BSA, 0.01% Triton X-100 and 2 mM DTT at ambient temperature. Then,

80 µL of the enzyme mixed in assay buffer was dispensed into the wells of a black,

half-area, 96-well plate (Corning). Data were collected in triplicate. The cleavage of a

peptide substrate with an internal FRET donor-quencher pair, (HilyteFluorTM-488)-

ESATLQSGLRKAK-(QXLTM-520)-NH2 (AnaSpec, Inc.), was used to determine the

protease activity of the enzymes. The reactions were initiated by adding 20 µL of

10 µM substrate to 80 µL of the enzyme solution. The total reaction volume was

100 µL with final enzyme and substrate concentrations of 80 nM and 2 µM, respec-

tively. The increase in fluorescence over time was monitored in a BioTek Synergy H1

plate reader using a filter cube with 20 nm bandwidths for excitation and emission

wavelengths of 485 nm and 528 nm, respectively. Enzymatic activity was determined

by measuring the initial slope of the progress curve. Percent (or fractional) residual

activity, calculated with respect to the activity measured at 0 min incubation, was

plotted as a function of incubation time at a given temperature.

For samples displaying a reduction in the enzymatic activity upon incubation at

30 °C or 40 °C, fractional residual activity versus time of incubation (min) data were

fit into Equation 4.1 using non-linear regression program GraphPad Prism version

6.0 and the value of decay rate constant was determined.

Y = Plateau + (Y0 − Plateau)× exp−k(X−X0) If X>X0, Y0 (4.1)

In Equation 4.1, Y is the fractional residual activity, X is the time of incubation

in minutes, X0 is the time at which the decay begins, Y0 is the average Y value upto

time X0, plateau is the Y value at infinite times, k is the decay rate constant.



109

4.3.4 Determining secondary structural changes at permissive and non-

permissive temperatures

To monitor changes in the protein secondary structure, far-UV CD signal was

measured for the wildtype and mutant enzymes upon incubation at permissive (30 °C)

and non-permissive (40 °C) temperatures. CD signal was monitored between 205–250

nm using Chirascan CD spectrophotometer (Applied Photophysics). CD signal for 0.1

M potassium phosphate buffer, pH-7.5 was measured as a reference. Enzymes were

diluted to a final concentration of 1.0 µM in 0.1 M potassium phosphate buffer, pH-

7.5 and transferred to a 1 cm path length CD cuvette with Teflon stopper to prevent

evaporation. Samples were constantly stirred while the CD signal was measured at

regular intervals for a period of two hours at given temperatures.

4.3.5 Determination of melting temperature, Tm, using circular dichro-

ism

To compare the stability of the wild type and mutant enzymes, CD signal at 222

nm was monitored using Chirascan CD spectrophotometer (Applied Photophysics)

to determine the melting temperature, Tm. Samples were prepared as described

in the previous section. Samples were constantly stirred as the temperature was

raised continuously from 10 °C to 90 °C at a constant rate of 0.5 °C /min. Prior

to the thermal scans for protein samples, 222 nm CD signal for 0.1 M potassium

phosphate buffer, pH-7.5 was measured at 10 °C as reference. CD signal, obtained

after subtracting the reference signal, was plotted as a function of temperature, and

the melting temperature (Tm) was calculated as the inflection point of the melting

curves using non-linear regression program SigmaPlot version 10. Final Tm value

for each enzyme was calculated as the average of Tm values determined from three

independent experiments.



110

4.3.6 Homology Modeling

A homology model of MHV 3CLpro was built using the Prime module implemented

in Schrödinger Suite [92]. 3CLpro from human coronavirus HKU1 (PDB ID 3D23)

was selected as the template for model building [86]. The sequence of HKU1 3CLpro is

84% identical to that of MHV 3CLpro and shares 92% overall sequence similarity. The

model was built using an energy-based refinement and the model was then minimized

using the OPLS2005 force-field. From this minimized structure, three mutant struc-

tures were created; V148A, H134Y, and the revertant double mutant V148A/H134Y.

These mutations were made in the Maestro interface [92]. These studies were per-

formed in collaboration with Dr. Laura Kingsley (Mesecar Lab).

4.3.7 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations were performed using Gromacs 5.0.2 [93,94]

using the Amber99SB-ILND forcefield [95]. Each system was prepared by solvating

in TIP3P waters and adding the appropriate counter ions to neutralize the system,

in this case four sodium atoms. The system was minimized using 1000 steps steepest

descent and particle mesh Ewald (PME) summation with a grid size of 0.12 nm.

A 2 fs integration time step was used. Following minimization, the surrounding

water network was relaxed using 500 ps simulation in which all non-water atoms were

restrained. Next, a 10 ns equilibration was performed wherein all atoms were free to

move. Finally, a 50 ns production run was completed. This procedure was carried out

for each simulation at both 30 °C and 40 °C, resulting in a total of eight simulations.

Upon completion of the simulations, the root mean square fluctuation (RMSF) was

calculated at the alpha-carbon for each residue using the g rmsf utility of gromacs

[96]. In addition, the distance between the centers of mass of the catalytic dyad

residues (H41 and C145) was calculated using the gmx distance utility [96]. The

gmx sasa and gmx select tools were used to analyze the solvent accessible surface

area (all defaults were used) and to count nearby waters (within 5.0 Å) of the group
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of interest, respectively [96] These studies were performed in collaboration with Dr.

Laura Kingsley (Mesecar Lab).

4.3.8 CNAnalysis

Snapshots from the MD simulations were extracted every 100 ps resulting in a

total of 501 snapshots for each simulation. These snapshots were used as an input

into the CNA webserver and all default settings were used. The output of this anal-

ysis provides information on the predicted temperature transition points during the

simulated unfolding of the protein and also information about the relative rigidity

of various residues [97]. However, for our analysis we were specifically interested in

unfolding nuclei, also known as ‘weak spots’ in the protein.

The top-10 predicted weak spots were calculated for each simulation. The number

of times this residue appeared in all simulations (frequency) as well as the average

score it received in those simulations (score) were calculated. From this list, residues

that were predicted in half or more of the ensembles were collected These studies were

performed in collaboration with Dr. Laura Kingsley (Mesecar Lab).

4.3.9 Mutual Information Analysis

The pairwise correlation between the residues was calculated using the MutInf

program [98]. All standard settings were used and correlation was calculated based

on the phi, psi, and chi angles of each residue which were calculated using the g chi

module of gromacs [96]. The 50 ns simulations were broken down into five “runs”

each containing 1000 snapshots which were taken every 10 ps. Notably, this number

of frames at this interval is on the low end of the author’s recommendations, but is

not believed to affect the results. The data was then converted into a heatmap using

the R-code developed by Sebastian Raschka [99]. The diagonals were set to equal

zero rather than 1.0 for clarity These studies were performed in collaboration with

Dr. Laura Kingsley (Mesecar Lab).
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4.4 Results

4.4.1 Protein expression and purification

The canonical cleavage site of 3CLpro closely resembles the TEV cleavage site

ENLYFQ↓S. As a result, 3CLpro cleaves between the Q and S amino acids from the

construct, resulting in the removal of N-terminus (His)6-tag and the production of

3CLpro with an authentic N-terminus during expression in E.coli. Cleavage of the

His-tag was confirmed from inability of the protein to bind nickel beads.

MHV 3CLpro wildtype and mutants were purified using two (or three for CD ex-

periments) sequential chromatographic steps. The final protein yield was determined

by measuring the total units of activity, specific activity and the total amount of pro-

tein obtained after each chromatographic step during the entire purification process.

Approximately 10 mg of wildtype MHV 3CLpro can be obtained from 3 L of bacterial

culture. Similar yields were obtained for the mutant proteins. Table 5.1 represents

the purification summary for the wildtype MHV 3CLpro.

Table 4.1.
Purification summary of MHV 3CLpro from 3 L culture of E.coli

BL21-DE3

Sample
Protein Total activity Specific activity Fold

% Yield
(mg) Units (Units/mg) purification

Lysate 199 19,255 97 1 100
Phenyl-Sepharose 26 7,429 283 3 39
DEAE 10 4,821 461 5 25

4.4.2 The H134Y mutation rescues the -ts V148A mutant from thermal

inactivation at non-permissive temperature

A multitude of factors may contribute to the temperature sensitivity of V148A

mutant inside the virus-infected cells. For example, the loss of the enzymatic activity
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due to local structural changes in the active site, global unfolding of the protein

structure, impaired polyprotein processing at the rate-limiting cleavage step or altered

interaction with a viral/host binding partner may all result in -ts phenotype. To

investigate whether the temperature sensitivity of the V148A mutant stems from the

loss of activity at non-permissive temperature, we compared the ability of wildtype

and mutant enzymes to retain protease activity upon incubation at permissive and

non-permissive temperatures over a period of two hours.

All the enzymes maintained their full activity for two hours upon incubation at

30 °C (Figure 4.1.A, Table 4.2). Interestingly, the -ts V148A mutant lost > 90% of

its activity during two hours incubation at the non-permissive temperature of 40 °C,

while the wildtype enzyme maintained nearly the full activity (Figure 4.1.B, Table

4.2). Moreover, the V148A/H134Y enzyme also retained its full activity at 40 °C. The

H134Y mutant behaved similar to the wildtype enzyme. The loss of enzymatic activity

of V148A at 40 °C suggests that thermal inactivation at non-permissive temperature

largely contributes towards temperature sensitivity of this mutant in virus-infected

cells. Moreover, addition of the H134Y compensatory mutation renders more stability

resulting in slower thermal inactivation of V148A/H134Y revertant. These results

establish a clear correlation between the in vitro thermal inactivation behavior of the

purified enzymes and the temperature-sensitive and reversion phenotypes observed in

virus-infected cells.

4.4.3 Loss in secondary structure accompanies thermal inactivation of

V148A

The loss in enzymatic activity can be achieved via local structural changes in the

active site and does not mandate a total loss of protein structure. To gain insights

into the biophysical mechanism for thermal inactivation behavior of the wildtype and

mutant enzymes, the change in protein secondary structure at 30 °C and 40 °C was

examined. CD signals were measured between 205–250 nm at regular time intervals
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Fig. 4.1.: Thermal inactivation of MHV 3CLpro wildtype and the mutants. Log
% residual activity versus time of incubation plots at A. 30 °C, and B. 40 °C. C. Plot of
fractional residual activity versus incubation time at 40 °C was utilized to calculate the rate
constant for decay of V148A by fitting the data into Equation 4.1.
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Table 4.2.
Thermal inactivation of MHV 3CLpro wildtype and mutants upon

incubation at 30 oC and 40 oC for 120 minutes

Enzyme *Viral % Residual % Residual k 40oC Half-life40oC
phenotype40oC activity30oC activity40oC (×103) (min−1) (min)

Wildtype Wildtype 112 ± 4 114 ± 1 ND �120

H134Y Wildtype 106 ± 4 111 ± 4 ND �120

V148A/H134Y revertant 100 ± 2 99 ± 3 ND �120

V148A -ts 107 ± 1 10 ± 1 12.6 ± 1.4 55 ± 6
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over a period of two hours at a given temperature. The CD signal at 222 nm was

then utilized to calculate the percent change in secondary structure (Table 4.3).

Over a period of two hours, wildtype and H134Y enzymes maintained > 90% of

their secondary structure at 30 °C and 40 °C. Both V148A and V148A/H134Y mutant

enzymes were stable at 30 °C for two hours (Figures 4.2.A and 4.2.C, respectively).

However, we observed a rapid loss of the secondary structure for V148A at 40 °C

(Figure 4.2.B). As determined from the CD signal at 222 nm, V148A lost more

than 75% of the secondary structure over a period of two hours of incubation at

40 °C. In contrast, the V148A/H134Y revertant maintained approximately 80% of its

secondary structure at 40 °C (Figure 4.2.D). These results clearly demonstrate that

the structural stability of V148A mutant is lower than the V148A/H134Y mutant at

the non-permissive temperature of 40 °C. These biophysical data corroborate directly

with the thermal inactivation data suggesting that structural unfolding accompanies

thermal inactivation of V148A, while addition of H134Y mutation rescues the activity

by providing additional structural stability to the V148A/H134Y revertant mutant.

Table 4.3.
Loss of secondary structure and Tm determination through measurement

of CD signal at 222 nm

Enzyme *Viral % Residual Tm
oC

phenotype40oC CD signal40oC

Wildtype Wildtype > 90 52.07 ± 0.17

H134Y Wildtype > 90 54.77 ± 0.52

V148A/H134Y revertant ∼ 80 49.69 ± 0.46

V148A -ts < 25 47.33 ± 0.24
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Fig. 4.2.: Protein unfolding characterized through circular dichroism. A. - D.
Changes in protein secondary structure as determined through the CD signal (205-250 nm)
during two hours incubation of V148A and revertant V148A/H134Y at 30 °C and 40 °C is
shown. Both enzymes maintain their secondary structures at 30 °C for two hours. More than
75% of the secondary structure (signal at 222 nm) is lost for the V148A mutant over a period
of two hours incubation at 40 ; V148A/H134Y revertant maintains approximately 80% of
its secondary structure at this temperature. E. Melting curves, represented as CD signal
at 222 nm as the temperature was raised from 10 to 90 , are shown for the wildtype (blue),
H134Y (green), revertant V148A/H134Y (orange) and V148A (red). Melting temperatures,
Tm in °C, for the wildtype, H134Y, revertant and V148A are 52.07 ± 0.17, 54.77 ± 0.52,
49.69 ± 0.46 and 47.33 ± 0.24, respectively.
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4.4.4 The difference in the melting temperatures suggests global desta-

bilization of V148A

Melting temperatures (Tm) were determined as the inflection point of the melting

curves for the wildtype and mutant enzymes. The CD melting curve for each en-

zyme is shown in Figure 4.2.E and the Tm values are provided in Table 4.3. The Tm

value for the V184A -ts mutant is 5 °C lower than the wildtype enzyme whereas the

V148A/H134Y mutant is only 2.5 °C lower, supporting our previous observations that

the V148A mutant is thermally less stable at the non-permissive temperature of 40

°C. Interestingly, the single H134Y mutant that leads to compensation of the -ts phe-

notype of V184A is about 2.5 °C more stable than the wildtype enzyme. This demon-

strates that the loss in activity observed for -ts V148A at non-permissive temperature

is due to global destabilization of protein structure that causes a time-dependent loss

of enzymatic activity at elevated temperatures. Moreover, the V148/H134Y mutant

is better able to mantain its structure and activity at the non-permissive tempera-

ture due to the additional stability provided by H134Y mutation. Taken together, the

biochemical and biophysical data corroborate directly with the viral data published

previously [90,91].

4.4.5 Distant residues V148 and H134 are connected through hydrogen

bonding and hydrophobic networks

To determine the structural mechanism by which mutation of residues at positions

134 and 148 are influencing protein stability, the structural model of MHV 3CLpro

wildtype was analyzed. A structural model of MHV 3CLpro was built using the X-

ray crystal structure of HKU1 3CLpro as a template in homology modeling. In the

resulting structural model, residues V148 and H134 are present at 15.6 Å (C-alpha

distance) apart from each other. It is intriguing how a residue at position 134, which

is distant from position 148, compensates for the structural instability emerging from

a mutation at position 148.
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Fig. 4.3.: Network of residues connecting positions 148 and 134 in MHV 3CLpro.
A. Network of residues (T173, H163 and S147) connecting amino acids at positions 134 and
148 through hydrogen bonds (red dashed lines) are shown. B. Network of hydrophobic
residues connecting amino acids at positions 134 and 148. Hydrophobic interactions are
shown as pink dashed lines. C. Y134 (yellow sticks) mutation is expected to extend the
underlying hydrophobic network through a cluster of aromatic residues (orange sticks) and
other hydrophobic residues (pale green sticks).
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Long-range interactions have been shown to manifest through a network of non-

covalent interactions including hydrogen bonds, salt-bridges and hydrophobic interac-

tions [100,101]. To probe the network of non-covalent interactions connecting residues

H134 and V148, the shortest path between these two residues comprising of either

hydrophobic contacts, or hydrogen bonds was examined. An inspection of the struc-

tural model revealed that only three hydrogen-bonding interactions are required to

connect H134 to V148 (Figure 4.3.A). The backbone carbonyl oxygen of H134 forms a

hydrogen bond with the side-chain hydroxyl group of T173. T173 interacts with H163

through a hydrogen bond between its backbone carbonyl oxygen and the imidazole

NH of H163. H163 further engages amino acid S147, adjacent to V148, through a

hydrogen bonding interaction between backbone NH of H163 and backbone carbonyl

oxygen of S147. In addition to the hydrogen-bonding network between H134 and

V148, the network of hydrophobic residues (within 5 Å of each other) that bridges

these two residues was also examined.

Based on the structural analysis, five residues that are involved in connecting H134

and V148 through hydrophobic interactions were identified (Figure 4.3.B). These

residues are P184, Y185, F181, Q164 and M166. H134 is present within hydrophobic

contact distance from P184, which also forms hydrophobic contacts with the aromatic

ring of Y185. The β-carbon of Y185 interacts with the aromatic ring of F181 through

hydrophobic contacts, which in turn forms hydrophobic contacts with the aliphatic

β-carbon of Q164. The γ-carbon of Q164 lies within hydrophobic contact distance of

aliphatic γ-carbon of M162. Residue M162 is the closest amino acid to V148 in this

hydrophobic network, where its γ-carbon forms hydrophobic contacts with the side

chain of V148.

It is likely that the mutation of V148 to alanine disrupts the aforementioned

hydrogen bonding or hydrophobic network, while mutation of H134 to tyrosine either

preserves this network or form additional hydrogen bonding or hydrophobic networks

to compensate for the loss of these interactions in the V148A mutant.
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4.4.6 Significance of mutation of surface residue histidine to more hy-

drophobic tyrosine at position 134

In contrast to the popular belief that introduction of hydrophobic residues at

the protein surface is thermodynamically unfavorable, several studies have demon-

strated the significance of a surface hydrophobic residue in enhancing the protein

structural stability [102–104]. These surface hydrophobic residues, which are usually

present in cavities, enhance protein structural stability either by extending the hy-

drophobic network, especially aromatic-aromatic interactions, of underlying residues

or by creating a hydrophobic barrier that protects the underlying buried residues

and secondary structural elements from solvent molecules. The structural model of

the H134Y mutant was therefore analyzed to examine the formation of extended hy-

drophobic network. Interestingly, it was observed that Y134 extends the underlying

cluster of aromatic residues from the buried core of domain 2 to the surface (Figure

4.3.C). Moreover, the residue at position 134 (histidine or tyrosine) lies on one side

of a small cavity formed largely by hydrophobic amino acids. We speculate that mu-

tation at position 134 from histidine to more hydrophobic tyrosine assists in creating

a protective hydrophobic shield from waters to form unfavorable interactions with

underlying hydrophobic residues in the cavity.

4.4.7 Constraint Network Analysis predicts residue 148 as a weak spot

Computational tools were utilized to gain more insights into the molecular mech-

anism by which the V148A and H134Y mutations influence the activity and stability

of MHV 3CLpro. A constraint network analysis was performed on each of the trajec-

tories using the CNA webserver developed by Krüger et al. [97]. This webserver was

used to locate and analyze residues that may be prone to unfolding, also called ‘weak

spots’ in each structural ensemble.

The top predicted weak spots from all simulations are shown in Table 4.4 and

graphically in Figure 4.4.A (the wildtype 30 °C ensemble was selected as a represen-
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Fig. 4.4.: Structural weak spots in MHV 3CLpro. A. Location of the top predicted
unfolding nuclei for all simulations are shown in spheres. The active site residues (H41 and
C145) have been shown in sticks and the active site is highlighted in green. The structure
is colored by the unfolding score (colored high to low score in red to blue) predicted in the
wildtype 30 °C ensemble by the CNA webserver. In all structures, domain 3 was found to
be very stable while domain 2 was found to contain most, if not all of the identified weak
spots. B. Amino acids (40-70) demonstrating different behaviors between the 30 and 40 °C
simulations in V148A mutant are shown in yellow; at 40 °C these residues are more mobile
than at 30 °C based on RMSF and solvent accessible surface area (SASA) calculations.

Table 4.4.
Unfolding nuclei predicted by CNA webserver

Position Residue Frequency Score
Average

rank
148 V/A 7 63.63 1
149 G 7 59.19 4
150 Y 7 57 7
162 M 6 58.61 5
113 T 4 56.69 8
159 F 4 55.19 8
163 H 4 59.73 5
175 T 4 58.48 3

The residue number and name are given along with the number of times
the residue was predicted in the top-10 positions across all simulations
(maximum of 8 was possible). From those residues found in top-10 for
each simulation the average score and average rank was calculated.
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tative, but all were relatively similar). In seven of the eight total ensembles residue

148 was predicted to be in the first or second most likely point where unfolding may

occur. Nearby residues, including 149 and 150, were also predicted as weak spots in

the protein and together, these three residues form a large portion of a β-sheet imme-

diately following the loop containing the active site cysteine (C145) (Figure 4.4.A).

Interestingly, all frequently predicted weak spots occurred in the β-sheets of domain

2 (Figure 4.4.A).

Notably, residue 148 was not predicted as a weak spot in the 40 °C simulation of

the wildtype protein. This was the only simulation in which this residue was not in

the top-1 or top-2 position, in fact it was predicted in the 16th position with a score of

48.5. However, compared to the other simulations, the 40 °C wildtype simulation had

a much tighter data distribution. For instance, the top-1 ranked residue (Thr175)

in the wildtype scored a 53.69, just 4 units larger than the tenth ranked residue

(Leu87). In comparison to the other simulations, the scores and the distribution for

the 40 °C wildtype were lower and narrower on average. This may suggest that the

tested mutations exasperate the weak spot at residue 148, but that there may be

other vulnerable residues in the wildtype structure.

4.4.8 Distinct residue fluctuations for amino acids 45-70 in the mutants

and the wildtype

In addition to assessing the weak spots in the protein, the root mean square

fluctuation (RMSF) of each residue was also calculated over the length of the 50 ns

trajectory (Figure 4.5). In general for each simulation, the 30 °C and 40 °C simulations

are relatively similar in RMSF, with the exception of residues 45-70 which form one

side of the active site cleft. In the V148A mutant (Figure 4.5.C), there is a notable

difference between the 30 °C and 40 °C simulations in this region; at 40 °C these

residues appear to be more mobile than at 30 °C. This is in contrast to the wildtype

(Figure 4.5.A) and H134Y mutant (Figure 4.5.D) wherein the fluctuations in this
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section of the protein are approximately equal or even slightly less flexible in the 40

°C simulations versus the 30 °C simulations. The RMSF profile of these residues in

the revertant (Figure 5B) falls in between the wildtype and the V148A mutant, where

from residues 45-60 it resembles more closely the V148A mutant, but from 60-70 more

closely parallels the wildtype (Figure 4.5.E).

While the RMSF reveals differences between the wildtype and the V148A mutant

on one side of the active site cleft, the active site residues themselves do not appear to

be highly influenced. Figure 4.6 shows a running average of the distance between the

centers of mass of the active site cysteine and histidine at 30 °C (Figure 4.6.A) and 40

°C (Figure 4.6.B). There is not a noticeable difference between any of the simulations

or across the two temperatures. In all cases, the average distance between the residues

is approximately 1.28 nm.

4.4.9 Mutual Information Analysis

This finding suggests that the structural implications of the mutation do not

directly influence the active site, but likely influence surrounding residues in an al-

losteric manner. To further investigate this possibility, mutual information matrices

were calculated using the MutInf program [98]. While there were several minor differ-

ences observed between the V148A mutant and the wildtype, many of these changes

were not reflected in the revertant. In other words, it would be expected that similar

patterns would be observed in both the revertant and the wildtype at 40 °C and

that these patterns would be altered in the V148A mutant. However, such consistent

patterns were minor, if apparent at all.

4.4.10 Solvent Accessible Surface Area

Based on the changes observed in the RMSF in the cleft region, this region along

with the mutation sites and active sites, were further assessed by calculating the

solvent accessible surface area (SASA).
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Fig. 4.5.: RMSF fluctuations in the alpha carbons of MHV 3CLpro. A. wildtype,
B. V148A/H134Y revertant, C. V148A, D. H134Y. An overlay of the 30 °C and 40 °C
simulations of the wildtype, H134Y, V148A mutant and V148A/H134Y revertant are shown
in panels E. and F., respectively.
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Fig. 4.6.: Distance between the centers of mass of the catalytic dyad (H41 and
C145). A. at 30 °C, and B. 40 °C. For clarity, the distances have been plotted as a running
average with a step size of 1 ns (100 points).
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Not surprisingly the SASA of the entire protein was nearly identical across all sim-

ulations (Table 4.5). This suggests that the mutations and/or temperature changes

do not drastically alter the stability or overall fold of the protein. In addition, the

SASA of both mutation sites was relatively constant across all simulations. Position

148 is less exposed than position 134, but overall the SASA of these residues is rela-

tively constant, suggesting that the source of the observed activity change is distant

from the mutation sites.

Table 4.5.
SASA of various residues and groups of residues

MHV All Position Position Catalytic Active site Waters around

3CLpro residues 148 134 dyad clefta catalytic dyadb

30
°C

si
m

u
la

ti
on

s

Wildtype 145.8±2.4 0.00±0.01 0.57±0.09 0.4±0.19 17.0±0.77 16±4

Revertant 147.6±2.2 0.01±0.02 0.79±0.1 0.22±0.10 16.0±0.63 12±2

V148A 147.2±2.1 0.01±0.02 0.58±0.1 0.25±0.1 16.2±0.70 11±2

H134Y 147.6±2.4 0.00±0.01 0.8±0.11 0.3±0.12 16.9±0.58 13±2

40
°C

si
m

u
la

ti
on

s

Wildtype 145.3±2.4 0.0±0.1 0.66±0.11 0.5±0.20 16.2±0.67 17±4

Revertant 147.3±2.7 0.02±0.03 0.8±0.12 0.4±0.19 17.0±0.12 14±4

V148A 146.2±2.7 0.0±0.1 0.63±0.10 0.5±0.22 17.681±0.91 16±4

H134Y 145.9±2.5 0.0±0.1 0.8±0.11 0.3±0.13 16.6±0.684 10±3

3
a refers to amino acids 40-70
b waters within 5 Å of catalytic dyad

While SASA of the mutation sites, catalytic dyad, and the overall protein were

consistent across the various forms of the protein, the active site cleft showed subtle

variations in the 40 °C V148A mutant. Compared to the V148A mutant simulation

at 30 °C, the 40 °C simulation showed a slight increase in SASA for part of the active

site cleft (residues 40-70, highlighted in yellow in Figure 4.4B). Compared to the

wildtype, revertant and H134Y mutant simulations, the SASA of active site cleft in
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the 40 °C V148A mutant is not only larger, but also has a larger standard deviation,

suggesting that this region is more variable in the V148A mutant at 40 °C than in

the other simulations (Table 4.5). This finding was in agreement with the RMSF

calculations reported above.

Although the SASA of the catalytic dyad remained relatively unchanged, we eval-

uated whether the surrounding topology was affected by the mutation. To do this,

the number of waters present within 5.0 Å of either active site residue over the length

of the trajectory was calculated (Table 4.5). If the active site cleft is destabilized, it

is possible that this could alter the number of water molecules able to penetrate into

the active site cleft and therefore alter activity without altering the SASA of the cat-

alytic dyad itself. In general, the number of waters near the active site increased with

increasing temperature. However, the most drastic change between the 30 °C and

40 °C simulations was observed for the V148A mutant, where the number of waters

increased from an average of 11 to an average of 16. While the average number of

waters does not differ greatly in comparison to the other simulations, the large change

observed between the two temperatures may indicate a greater destabilization of the

V148A mutant protein at this temperature as compared to the other variants tested.

4.5 Discussion

The coronavirus 3CLpro is an essential enzyme that processes the replicase polypro-

teins 1a and 1ab at eleven distinct cleavage sites. Structures of 3CLpro from several

coronaviruses have been determined. Several groups have reported the in vitro char-

acterization of structural and functional determinants of 3CLpro from SARS-CoV

using purified protein [43, 45–47, 89]. Amino acids that directly influence substrate

binding, catalysis and dimer formation due to their physical proximity to the sub-

strate binding pocket or the dimer interface have been identified through kinetic,

biophysical and structural studies [43,45–47,49,60]. Interestingly, a few groups have

also identified amino acids that influence dimerization or catalysis through long-range
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interactions [60,87–89]. Surprisingly though, the ramifications of mutating the amino

acids that influence catalysis or dimerization either through direct or long-range inter-

actions have rarely been investigated in the context of coronavirus replication. Our

collaborators previously identified mutations (V148A, S133A and F219L) in MHV

3CLpro that impart temperature sensitive phenotype to the recombinant viruses car-

rying these mutations [90,91]. They also reported the emergence of a common second

site compensatory mutation (H134Y) that partially or completely suppresses the tem-

perature sensitive phenotype and was implicated to communicate with the tempera-

ture sensitive mutations through long-range interactions. This study highlights the

first, to our knowledge, in vitro characterization of physiologically relevant mutations

of 3CLpro. Our biochemical, biophysical and molecular-dynamics based structural

analysis provide the mechanistic basis for temperature sensitive and reversion pheno-

types of V148A and H134Y mutations, respectively in 3CLpro from MHV.

4.5.1 Position 148 is a structural ‘weak spot’

The -ts phenotype of V148A mutation may ensue via perturbation of a variety

of pathways in the virus-infected cells. The -ts V148A mutation can directly impact

protease activity of 3CLpro, influence the kinetic and thermodynamic stability of pro-

tein structure, impair polyprotein processing at the rate-limiting cleavage step or alter

interaction of 3CLpro with a viral/host binding partner. Other groups have reported

alteration of 3CLpro-mediated polyprotein processing upon introduction of mutations

in nsp3 and nsp10, suggesting interaction of 3CLpro with other viral proteins in the

replicase complex. Differences in the cleavage site specificity, rather than the protease

activity, have also been reported for certain mutations of nsp4 protease from equine

arteritis virus. Based on the processing of nsp5 (3CLpro) and nsp8 in the -ts V148A

virus, Stobart et al. suggested that the temperature sensitive phenotype may have

resulted from altered processing at different polyprotein cleavage sites. It was hypoth-

esized that the -ts phenotype of V148A mutant arises from altered structural stability
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of the mutant protein at the non-permissive temperature of 40 °C. The biochemical

examination of V148A mutant enzyme reveals that V148A mutation results in global

destabilization of the protein structure which then rapidly falls apart at elevated tem-

perature. Constraint network analysis (CNA) based structural investigation reveals

that the residue 148 is a structural weak spot and the major unfolding nuclei are

clustered in the β-sheets of domain 2 near the V148A substitution. This area forms

the core of the second domain and is located just past the active site cysteine (C145).

It was interesting that majority of the weak spots are identified in domain 2; inherent

flexibility is usually expected to exist in a catalytic domain for optimal enzymatic

activity in general and for interaction with a variety of substrates, eleven polyprotein

cleavage sites, specifically for 3CLpro.

4.5.2 Y134 acts as a a general facilitator for 3CLpro stabilization

Viral evolution necessitates viral proteins to accrue mutations that provide selec-

tive advantage for adaptation in a new host or under stressed environmental condi-

tions like elevated temperatures or introduction of drugs. For example, development

of resistance against a drug often involves introduction of a mutation in the vicinity of

the binding site. Likewise, emergence of compensatory mutations in physical proxim-

ity to the cognate temperature sensitive mutation is common occurrence. Emergence

of distant second-site H134Y compensatory mutation that suppresses the temperature

sensitive phenotype of V148A mutant virus was interesting. Our biochemical analysis

demonstrates that H134Y mutation indeed provides extra stability to V148A MHV

3CLpro mutant. To identify the structural basis for improved stability of the H134Y

mutant, the structural model of this mutant was analyzed. Numerous studies have

described the stabilizing role of a surface hydrophobic residue [102–104]. Stabiliz-

ing effect of a surface hydrophobic residue is usually derived from the expansion of

underlying hydrophobic network and the formation of a shield that excludes water

molecules from destabilizing the surface layer secondary structures. Analysis of the
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structural models of wildtype and the V148A/H134Y revertant suggests that muta-

tion to an aromatic tyrosine residue at position 134 stabilizes the protein structure in

a similar manner. Moreover, specific mechanism of reversion phenotype is not recog-

nized through MD simulation analysis of V148A/H134Y mutant. These data suggest

that residue Y134 acts as a general facilitator for structural stability of MHV 3CLpro.

The role of Y134 as a gatekeeper residue for structural stability is further exem-

plified from the emergence of H134Y compensatory mutation to suppress the tem-

perature sensitive phenotypes of two other independent -ts mutations, S133A and

F219L, in MHV 3CLpro as previously reported. Furthermore, 3CLpro enzymes from

other closely related β-coronaviruses in genogroup 2a, HKU1 and OC43, contain a

tyrosine at position 134. Interestingly, introduction of V148A mutation in chimeric

3CLpro from HKU1 and OC43 engineered in MHV background does not result in -ts

phenotype [105]. Moreover, V148A/Y134H chimeric OC43 3CLpro exhibits -ts phe-

notype [105]. All these results suggest that site 134 acts as an evolutionary sentry

for structural stability of MHV 3CLpro that can be readily mutated to tyrosine to

provide extra stability when required.

While one possible interpretation of the data is provided here, taken together, the

findings indicate that the mechanisms behind the temperature sensitive nature of this

enzyme are subtle and do not involve a readily observable or drastic conformational

change which is not surprising. In fact, it has been suggested that in some cases

changes in the entropic/enthalpic landscape rather than backbone conformational

changes may be responsible for the allostery observed in some systems [106]. Dissect-

ing and analyzing the specific structural implications of temperature is an evolving

field and one we are only beginning to understand [107].
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4.5.3 Implications for the prediction of viral -ts and corresponding sup-

pressor mutations in the design of viral vaccines

Temperature sensitive mutations not only serve as powerful tools for studying

the function of specific genes, they have long been utilized for the development of

attenuated viral vaccines. Understanding the structural implications of temperature

on these mutations is, therefore, of considerable significance. Several groups have

reported the genetic instability of temperature sensitive mutations in an attenuated

virus [108]. Reversion of the temperature-sensitive mutation to the wildtype as well

as the emergence of second-site compensatory mutations are common occurrences and

may have detrimental effects on the efficacy of attenuated virus as vaccine [108]. How-

ever, studies investigating the effect of these specific mutations on the structural and

biochemical properties of the viral proteins harboring them, esp. the compensatory

mutations, remain largely unexplored.

The Mesecar group, in collaboration with Prof. Susan Baker’s group (Loyola

University), recently reported the generation of an attenuated murine hepatitis virus

via incorporation of a temperature-sensitive mutation in the Ubl2 domain of MHV

papain-like protease PLP2 [109]. The attenuated mutant virus was capable of elicit-

ing immune response in mice. Interestingly, this mutation was able to influence the

enzymatic activities and stability of purified MHV PLP2 despite its presence in an en-

tirely distinct Ubl2 domain than the active site, suggestive of long-range interactions

between the Ubl2 domain and the active site.

In the current study, the mechanistic basis of temperature-sensitivity of a pre-

viously identified mutation in MHV 3CLpro was elucidated. We also provided the

biochemical and structural basis for reversion of the temperature-sensitive phenotype

by a distant second-site compensatory mutation. Existence of long-range interactions

is not only limited to MHV 3CLpro but has also been reported by several groups, in-

cluding ours, for 3CLpro from SARS-CoV [87–89,91] and MERS-CoV [60]. Therefore,

it is important to understand the protein structural dynamics that allows interaction
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between distant residues. While considering a specific -ts mutation for the devel-

opment of attenuated viral vaccines, emergence of distant second site compensatory

mutations specifically highlight the need for powerful computational tools to predict

the location for second-site compensatory mutations in advance. From an evolution-

ary perspective, emergence of compensatory mutation at a completely conserved site

is highly unlikely. The virus is more likely to mutate at a less conserved site to a

residue that is present in other closely related viruses. The fact that position 134

is naturally occupied by a tyrosine in 3CLpro from other coronaviruses like HKU1,

OC43, BtCoV HKU8 and PEDV suggests that MHV strategically selected for a com-

pensatory residue that has already been sampled for a functional protease in other

coronaviruses. Although current methods are limited to either predicting -ts muta-

tions or thermo-stable mutations, with recent advancements in computational perfor-

mance we expect to see the development of computational tools for predicting and

simulating the emergence of second site compensatory mutations in the near future.
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CHAPTER 5. LIGAND-INDUCED DIMERIZATION REGULATES MERS-COV

3CLPRO

Parts of the data and text in this chapter have been published in the journal article

entitled “Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS)

Coronavirus nsp5 Protease (3CLpro): implications for nsp5 regulation and the devel-

opment of antivirals.” [60]

5.1 Abstract

All coronaviruses, including the recently emerged Middle East respiratory syn-

drome coronavirus (MERS-CoV) from the β-CoV subgroup, require the proteolytic

activity of nsp5 protease (aka 3C-like protease, 3CLpro) during virus replication, mak-

ing it a high value target for the development of anti-coronavirus therapeutics. Kinetic

studies indicate that in contrast to 3CLpro from other β-CoV 2c members including

HKU4 and HKU5, MERS-CoV 3CLpro is less efficient at processing a peptide sub-

strate due to MERS-CoV 3CLpro being a weakly associated dimer. Conversely, HKU4,

HKU5 and SARS-CoV 3CLpro enzymes are tightly associated dimers. AUC studies

support that MERS-CoV 3CLpro is a weakly associated dimer (Kd ∼ 52 µM) with a

slow off-rate. Peptidomimetic inhibitors of MERS-CoV 3CLpro were synthesized and

utilized in AUC experiments and demonstrate that MERS-CoV 3CLpro undergoes

significant ligand-induced dimerization. Kinetic studies also revealed that designed

reversible inhibitors act as activators at low compound concentration as a result of in-

duced dimerization. Primary sequence comparisons and X-ray structural analyses of

two MERS-CoV 3CLpro-inhibitor complexes, determined to 1.6 Å, reveal remarkable

structural similarity of the dimer interface with 3CLpro from HKU4-CoV and HKU5-

CoV. Despite this structural similarity, substantial differences in the dimerization
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ability suggest that long-range interactions by the non-conserved amino acids distant

from the dimer interface may control MERS-CoV 3CLpro dimerization. Activation of

MERS-CoV 3CLpro through ligand-induced dimerization appears to be unique within

the genogroup 2c and may potentially increase the complexity in the development of

MERS-CoV 3CLpro inhibitors as antiviral agents.

5.2 Introduction

Coronaviruses (CoVs) are enveloped, positive strand RNA viruses that infect a

variety of vertebrates. Coronaviruses (CoVs) are enveloped, positive-strand RNA

viruses that infect a variety of vertebrates, including bats, livestock, pets, poultry

and humans [1, 25, 26]. Although human CoVs cause respiratory illnesses of mild to

moderate severity [8–11, 110, 111], two recently emerged CoVs, SARS-CoV (severe

acute respiratory syndrome coronavirus) and MERS-CoV (Middle East respiratory

syndrome coronavirus), have demonstrated their potential to become a serious threat

to public health. The MERS-CoV emerged late in 2012 and unlike its predecessor

SARS-CoV, MERS-CoV continues to exhibit up to a 35 % case-fatality rate [15,112,

113].

Based on the sequence analysis of seven genes of the replicase domain, MERS-

CoV has been classified as a β-CoV genogroup 2c member, along with closely related

bat coronaviruses HKU5 (Pipistrellus bat) and HKU4 (Tylonycteris bat) [114, 115].

Increasing evidence suggests that bats may serve as zoonotic reservoirs for MERS-

CoV [30, 31]. Evidence presented by recent studies also supports the local zoonotic

transmission of MERS-CoV from dromedary camels to humans [34, 35]. Alarmingly,

human-to-human transmission during close contact, especially in elderly or patients

with underlying health conditions, has also been reported for MERS-CoV [13,17–19].

In the wake of the recent upsurge in the laboratory-confirmed cases of MERS-CoV,

including two recently identified cases in the United States [116], there is an urgent
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need to study and characterize the properties of important drug targets of MERS-CoV

for the development of effective therapeutics.

Coronaviruses express a >800 kDa replicase polyprotein, which is processed by vi-

ral 3CLpro protease (or nsp5) at eleven distinct cleavage sites to yield intermediate and

mature non-structural proteins (nsp) responsible for many aspects of virus replication

[1, 40, 41, 84]. Due to its indispensable role in virus lifecycle, 3CLpro is an important

target for therapeutic intervention against coronavirus infections [37–39,49,53,85,117].

A number of kinetic, biophysical and X-ray structural studies have demonstrated

that SARS-CoV 3CLpro is only active in vitro as a tightly associated dimer with

a dimer dissociation constant (Kd) in the low nM range [43–47]. The addition or

deletion of amino acids, e.g. (His)6-affinity tags, at either the N- or C-terminus dras-

tically reduces the enzymatic rate and decreases the ability of SARS-CoV 3CLpro to

dimerize [45]. Although the cellular evidence for the auto-cleavage mechanism (cis vs

trans) of 3CLpro is lacking, models for how 3CLpro cleaves itself from the polyprotein

to form the mature dimer have been proposed based on in Vitro studies using pu-

rified 3CLpro [43, 57, 58]. A current model posits that two inactive 3CLpro molecules

within two separate polyproteins recognize each other and form an immature dimer

capable of cleaving the nsp4|nsp5 and nsp5|nsp6 sites in trans, followed by formation

of an active and mature dimer that can then rapidly process other cleavage sites and

multiple polyproteins. It has also been proposed that substrate-induced dimeriza-

tion regulates the enzymatic activity of SARS-CoV 3CLpro during virus replication;

however, no experimental evidence of this has ever been demonstrated in infected

cells [58]. Although our knowledge of SARS-CoV 3CLpro is extensive, the dimeriza-

tion properties of 3CLpro from MERS-CoV and other coronaviruses, as well as the

factors regulating their enzymatic activity, remain largely unknown.

To understand the properties of MERS-CoV 3CLpro, a series of kinetic, biophysical

and X-ray structural studies were conducted. Herein, the detailed kinetic and bio-

physical analysis of MERS-CoV 3CLpro activity and dimerization is reported. These

kinetic and biophysical studies provide evidence for a weakly associated MERS-CoV
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3CLpro dimer. In addition, utilizing the previous knowledge on the design of potent

SARS-CoV 3CLpro peptidic inhibitors, a series of inhibitors of MERS-CoV 3CLpro

that exhibit low micromolar potency were designed. It is demonstrated that MERS-

CoV 3CLpro requires the binding of a ligand for dimer formation, indicating that

ligand-induced dimerization is likely a key mechanism in the regulation of MERS-

CoV 3CLpro activity during virus infection.

5.3 Experimental Procedures

5.3.1 Construct design and expression of MERS-CoV 3CLpro

The gene encoding 3CLpro protease of MERS-CoV (amino acid residues 3248—3553

in the replicase polyprotein, GenBank: AHC74086.1) was codon optimized for optimal

expression in E.coli (BioBasic Inc). The gene was subcloned into pET-11a expression

vector with an N-terminal (His)6-tag followed by nsp4|nsp5 auto-cleavage site using

the forward primer 5′-ATATACATATGCACCACCACCACCACCACAGCGGTGTT

CTGCAGTCTGGTC-3′ and the reverse primer 5′-GACGGATCCTTACTGCATCAC

AACACCCATGATCTGC-3′. Construct was verified by DNA sequencing at the Pur-

due University Genomics Core Facility. This construct results in the expression of

MERS-CoV 3CLpro without any N-terminal or C-terminal extension. MERS-CoV

3CLpro was expressed through auto-induction in E.coli BL21-DE3 cells in the pres-

ence of 100 µg/mL of carbenicillin as described previously [118]. Cells were harvested

by centrifugation at 5000 × g for 20 minutes at 4 °C, and the pellets were stored at

−80 °C until further use.

5.3.2 MERS-CoV 3CLpro purification

Frozen pellets from 4 L of bacterial cell culture were thawed on ice and re-

suspended in 250 mL of Buffer A [20 mM Tris pH-7.5, 0.05 mM EDTA, 10% glycerol

and 5 mM β-mercaptoethanol (BME)], containing 500 µg of lysozyme and a small
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amount of DNase. Cells were then lysed using a single pass through French press at

1200 psi and cell debris was removed from the cleared lysate by centrifuging at 29,000

× g for 30 minutes. Solid ammonium sulfate was added to the cleared lysate to a

final concentration of 1 M through gradual mixing on ice.

Hydrophobic-interaction chromatography

The cleared lysate, mixed with ammonium sulfate, was loaded at a flow rate of

3 mL/min onto a 60 mL Phenyl Sepharose 6 fast-flow high-sub column (XK 26/20,

Amersham Biosciences, Piscataway, NJ) equilibrated with Buffer B (50 mM Tris pH-

7.5, 1 M ammonium sulfate, 0.05 mM EDTA, 10% glycerol and 5 mM BME). The

column was then washed with 5 × column volume (300 mL) of Buffer B at a flow rate

of 4 mL/min. Protein was eluted using a 5 × column volume (300 mL) linear gradient

to 100% Buffer A. Fractions (12 ml) were collected and those containing MERS-CoV

3CLpro, as judged through SDS-PAGE analysis (Figure 5.1.A) and specific activity

measurements, were pooled (120 mL) and exchanged into 2 L of Buffer A via overnight

dialysis in a dialysis tubing (10,000 MWCO SnakeSkinr, Thermo Scientific).

DEAE anion-exchange chromatography

The dialyzed sample from the previous step was loaded at a flow rate of 3 mL/min

onto a 120 mL DEAE anion-exchange column (XK 26/40, Amersham Biosciences)

equilibrated with Buffer A. The column was then washed with 2 column volume (240

mL) of Buffer A at a flow rate of 4 mL/min. A linear gradient (total volume 480

ml) to 40% Buffer C (50 mM Tris pH-7.5, 1 M NaCl, 0.05 mM EDTA, 10% glycerol

and 5 mM BME) was used to elute the protein (Figure 5.1.B). Fractions (6 ml) were

collected and those containing MERS-CoV 3CLpro were pooled (66 mL) and dialyzed

for 4 hours in 4 L of Buffer D (20 mM MES pH-5.5, 0.05 mM EDTA, 10% glycerol

and 5 mM BME).
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Mono S cation-exchange chromatography

Following dialysis, the pH of the sample was manually adjusted to 5.5 using 1

M solution of MES pH-5.5, and any precipitated protein was removed by filtering

through a 0.22 µm pore size Millex-GP filter (Millipore). The filtered sample was then

loaded at a flow-rate of 2 mL/min onto a 8 mL Mono S 10/100 column (Amersham

Biosciences) equilibrated in Buffer D. The column was then washed with 5 × column

volume (40 mL) of Buffer D at a flow rate of 2 mL/min. Protein was eluted using

a 25 × column volume (200 mL) and linear gradient to 50% Buffer E (50 mM MES

pH-5.5, 1 M NaCl, 0.05 mM EDTA, 10% glycerol and 5 mM BME) (Figure 5.1.C).

Fractions (2 mL) were collected and those containing MERS-CoV 3CLpro were pooled

(22 mL) and concentrated to approximately 5 mg/mL using Amiconr Ultra 15 mL

Centrifugal Filters (Millipore).

Gel-filtration chromatography

As the final purification step, the concentrated protein sample was loaded onto

the prep grade Superdex 75 26/60 gel filtration column (Amersham Biosciences) equi-

librated with Buffer F [25 mM HEPES pH-7.5, 10% glycerol, 2.5 mM dithiothreitol

(DTT)]. Protein was eluted isocratically at a flow rate of 1 mL/min with buffer F

(Figure 5.1.D). Fractions (2 ml) containing MERS-CoV 3CLpro were pooled (total

volume of 34 mL) and concentrated to approximately 5 mg/mL. For final storage of

the purified MERS-CoV 3CLpro enzyme, 300 µL protein aliquots were placed into

1 mL screw-cap vials, flash-frozen under liquid nitrogen and then stored at −80 °C

until further use.

Purification of SARS-CoV 3CLpro and HKU5-CoV 3CLpro has been described in

Chapter 2. HKU4-CoV 3CLpro was purified using a protocol similar to the purification

of HKU5-CoV 3CLpro [119].



140

Fig. 5.1.: Purification of MERS-CoV 3CLpro. A. Left-Elution profile from Phenyl-
sepharose column. Right-SDS-PAGE analysis of the eluted fractions highlighted in yellow
in the elution profile. MW marker sizes are indicated. Red arrow indicates the expected
size of MERS-CoV 3CLpro. B. Left-Elution profile from DEAE column. Right-SDS-PAGE
analysis of the eluted fractions highlighted in yellow in the elution profile. C. Left-Elution
profile from Mono S column. Right-SDS-PAGE analysis of the eluted fractions highlighted
in yellow in the elution profile. D. Left-Elution profile from Superdex 75 column. Right-
SDS-PAGE analysis of the eluted fractions highlighted in yellow in the elution profile.
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5.3.3 Western-blot analysis

For western-blot analysis, the samples were prepared by mixing 2 µg each of

the purified MERS-CoV 3CLpro, untagged SARS-CoV 3CLpro (negative control) and

a His-tagged protein (positive control) with SDS-PAGE loading buffer (containing

fresh DTT to a final concentration of 1 mM as the reducing agent instead of BME)

and heated at 90 °C for 2 minutes. The samples were loaded in duplicate along with

the prestained SDS-PAGE standards (Bio-Rad) in the wells of a 12.5% SDS-PAGE

gel, both for Coomassie staining and western-blot analysis. The samples were run

for 40 minutes at a constant voltage of 180 V. The gel was then cut into two; the

first half was analyzed through regular Coomassie staining and the second half was

used for western blot analysis. For western blot, the proteins were transferred from

the gel onto a PVDF membrane at 4 °C in 1X transfer buffer (25 mM Tris-HCl,

192 mM glycine, 10% methanol and 0.01% sodium dodecyl sulfate). The membrane

was then blocked for 2 hours at room temperature in 5% non-fat dry milk solution

prepared in 1X TBST buffer (50 mM Tris base, 150 mM NaCl and 0.05% Tween

20). The membrane was then rinsed thrice in TBST buffer for 5 minutes each. After

washing, the membrane was incubated with HRP conjugated anti-His antibody from

GenScript (1:1000 dilution prepared in TBST buffer) for 1 hour at room tempera-

ture. The membrane was then rinsed again in TBST buffer for three times. Next,

the membrane was incubated for 5 minutes with SuperSignalr West Dura Extended

Duration substrate (Thermo Scientfic) and finally imaged using Chemi with Markers

setting of FluorChem E imaging system from ProteinSimple.

5.3.4 MALDI mass-spectral analysis

For molecular weight determination through MALDI-TOF analysis, purified MERS-

CoV 3CLpro was diluted to a concentration of 1 mg/mL in 25 mM HEPES pH-7.5

buffer. Matrix was prepared by dissolving Sinapinic acid in a 70% acetonitrile solution

in deionized water with 0.1% TFA. The protein sample was mixed with the matrix at
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a ratio of 1:2. 1 µL of the protein-matrix mix was spotted on the MALDI sample plate

and allowed to dry completely before the plate was loaded into the mass-spectrometer.

MALDI-TOF analysis was performed in linear mode on an Applied Biosystems 4700

Proteomics analyzer (Framingham, MA) available in the Purdue Proteomics Facility.

5.3.5 Synthesis of compounds 1-11

The peptidomimetic compounds with Michael acceptor groups (Table 5.3) were

synthesized via very similar methods to those published previously [53,54]. Synthesis

of non-covalent peptidomimetic compounds 10 and 11 has been described previously

[39].

5.3.6 Fluorescence-based kinetic assays

The enzymatic activity of 3CLpro was measured using the following custom synthe-

sized peptide: (HilyteFluorTM-488)-ESATLQSGLRKAK-(QXLTM-520)-NH2 (AnaSpec,

Inc.). The HilyteFluorTM-488 fluorescence group is internally quenched by QXLTM-

520 dye. This substrate works as a generic peptide substrate for 3CLpro enzymes and

was designed based on the nsp4|nsp5 cleavage sequence for many coronavirus 3CLpro

enzymes. The rate of enzymatic activity was determined at 25 °C by following the

increase in fluorescence (λexcitation = 485 nm, λemission = 528 nm, bandwidths = 20

nm) of Hilyte Fluor-488 upon peptide hydrolysis by the enzyme as a function of

time. Assays were conducted in black, half-area, 96-well plates (Corning) in assay

buffer (50 mM HEPES pH-7.5, 0.1 mg/mL BSA, 0.01% Triton X-100 and 2 mM

DTT) using a final reaction volume of 100 µL. The resulting florescence was moni-

tored using a BioTek Synergy H1 plate reader. The rate of the reaction in arbitrary

florescence units per sec (AFU/sec) was determined by measuring the initial slope of

the progress curves, which were then converted to units of µM of product produced

per min (µM/min) using experimentally determined values of ‘fluorescence extinction

coefficient’ as described in Chapter 2. All reactions were carried out in triplicate.
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5.3.7 Determination of enzymatic efficiency

The apparent enzymatic efficiency for each of the 3CLpro enzymes was determined

by measuring the rate of enzymatic activity as a function of varying substrate con-

centration in 100 µL reactions. Reactions were initiated by the addition of enzyme

to the wells of an assay plate containing varying concentrations of substrate. The

final substrate concentrations varied over the range from 0 to 2 µM. The final enzyme

concentrations for each 3CLpro studied were the following: MERS-CoV 3CLpro at 1

µM, SARS-CoV 3CLpro at 100 nM, HKU5-CoV 3CLpro at 250 nM and HKU4-CoV

3CLpro at 200 nM. Since 3CLpro enzymes cannot be saturated with this substrate at

a substrate concentration that would still allow accurate fluorescent measurements

without the inner filter effect, only the apparent k cat/KM values can be determined

from the slope of the line that results from a plot of the enzymatic activity (y-axis),

normalized for the total enzyme concentration, against the substrate concentration

(x-axis).

5.3.8 Influence of dimerization on the activity of 3CLpro enzymes

The dependence of the enzymatic activity on the total enzyme concentration was

determined using the FRET-based assay described above. The final enzyme concen-

trations were varied over a concentration range from 2 µM to 100 nM for MERS-CoV

3CLpro, 500 nM to 10 nM for SARS-CoV 3CLpro, 250 nM to 0.6 nM for HKU5-CoV

3CLpro and 200 nM to 10 nM for HKU4-CoV 3CLpro. Reactions were initiated by the

addition of substrate, at a final concentration of 2 µM, to the assay plates containing

varying enzyme concentrations in the assay buffer. Initial rates were determined from

the initial slopes of the progress curves at each enzyme concentration.

The rates of the 3CLpro catalyzed reactions measured over a range of enzyme

concentrations can be fit to either Equation 5.1 or Equation 5.2 to determine the

values of the dissociation constant for the monomer-dimer equilibrium as well as the
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turnover numbers. Non-linear regression and the program TableCurve 2D version 4.0

were used to fit the data to either Equation 5.1 or Equation 5.2 below [120].

Vmax = kcat,M
−Kd +

√
Kd

2 + 8KdCT

4
+ kcat,D

Kd + 4CT −
√

Kd
2 + 8KdCT

8
(5.1)

In Equation 5.1, Vmax is the rate of the enzymatic activity calculated at each

enzyme concentration (CT), Kd is the monomer-dimer equilibrium dissociation con-

stant, and kcat,M and kcat,D are the turnover numbers for the monomer and the dimer,

respectively.

Vmax = kcat[D] = kcat
Kd + 4CT −

√
Kd

2 + 8KdCT

8
(5.2)

For Equation 5.2, Vmax, CT and Kd have been described previously, and kcat is

the turnover number for the dimer only.

5.3.9 Inhibition assays

To determine the percent inhibition for compounds 1 to 9, the total concentration

of the substrate was fixed at 1.0 µM, and the enzymes was fixed at 250 nM for SARS-

CoV 3CLpro, HKU5-CoV 3CLpro, HKU4-CoV 3CLpro and at 500 nM for MERS-CoV

3CLpro. DMSO stocks (100 ×) of the compounds were diluted hundred-fold to a final

concentration of 50 µM in 80 µL of the enzyme solution and incubated for 20 minutes.

After 20 minutes, the enzymatic activity was measured as initial slope of the progress

curve, obtained by initiating the reaction with 20 µL of 5 µM substrate. % Inhibition

was calculated using Equation 5.3.

% Inhibition =

[
1− Ratesample − Rateneg

Ratepos − Rateneg

]
× 100 (5.3)



145

In Equation 5.3, Ratesample is the initial slope of the progress curve in AFU/sec

measured in the presence of the compound, Ratepos is the initial slope measured

in the absence of any compound and Rateneg is the baseline substrate hydrolysis

calculated in the absence of enzyme. All the reactions were carried out in triplicate

and contained a final DMSO concentration of 1%. For compounds displaying more

than 50% inhibition, a more extensive characterization of the inactivation kinetics

was performed through progress curve analysis. To the reaction well, 20 µL of 5

µM substrate was added to a final concentration of 1 µM and the total inhibitor

concentration [I]total was varied from 0 to 50 µM. The reaction was initiated with

the addition of 80 µL of MERS-CoV 3CLpro to a final concentration of 500 nM.

Fluorescence intensity was then measured over time as AFUt] for a period of 70

minutes. Equation 5.4 describes the resulting time-course of reaction.

[P ]t =
vi

kobs

[1− exp(−kobs × t) + [P ]i (5.4)

In Equation 5.4, vi is the initial velocity of the reaction, kobs is the observed first-

order rate constant for the reaction in the absence and presence of inhibitor, t is the

time in minutes, [P ]t is the concentration of product produced at time t and [P ]i is the

initial product concentration which is zero. Product concentrations were calculated

from the values of AFUt, using experimentally determined ‘fluorescence extinction

coefficient’. The resulting values of [P ]t were then plotted against time t and the

data were fit to Equation 5.4 with [P ]i = 0 using the non-linear regression program

TableCurve 2D to derive the fitted parameters vi and kobs and their associated errors

∆vi and ∆kobs. Values for each kobs were then plotted against [I ]total and the data

were fit to Equation 5.5.

kobs =
kinact[I]total

KI + [I]total

(5.5)
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In Equation 5.5, kinact defines the maximum rate of inactivation at infinite inhibitor

concentration, and KI defines the concentration of inhibitor that yields a rate of in-

activation equal to 1/2kinact. The half-life of inactivation at infinite inhibitor concen-

tration, which is a measure of inactivation efficiency, is defined as t1/2

∞
=0.693/kinact.

5.3.10 Analytical ultracentrifugation (AUC) analysis

To determine the oligomeric state of MERS-CoV 3CLpro, sedimentation velocity

experiments were performed at 20 °C on the Beckman-Coulter XLA ultracentrifuge

using varying concentrations of MERS-CoV 3CLpro (4 to 23 µM) in 25 mM HEPES

pH-7.5, 50 mM NaCl and 1 mM TCEP at 50,000 rpm. In order to characterize

the effect of the ligand on the monomer-dimer equilibrium of MERS-CoV 3CLpro,

sedimentation velocity experiments were conducted on the Beckman-Coulter XLI in-

strument using different stoichiometric ratios of MERS-CoV 3CLpro with compounds

6 and 10. Samples were prepared by mixing 25 µM of MERS-CoV 3CLpro with 25,

50 and 100 µM of compound 6 or 10 and incubating the mixture overnight at 4 °C

before performing the experiments. Absorbance optics (280 nm) and interference op-

tics were utilized for protein detection. Solvent density, viscosity and partial specific

volumes were calculated using SEDNTERP. SEDPHAT was used to fit the data to

monomer-dimer self-association model to estimate the sedimentation coefficients (S),

apparent molecular weights, Kd and koff from size distribution analysis. To obtain

exact molecular weights, sedimentation equilibrium experiments were performed at

concentrations of 3 and 17 µM MERS-CoV 3CLpro. The experiments were done at

20 °C utilizing a 2-channel centerpiece and run at multiple speeds (8100, 13,800 and

24,000 rpm) in a AN-60 Ti rotor.

5.3.11 SEC-MALS analysis

Size-exclusion chromatography (SEC) coupled with on-line multi-angle light scat-

tering (MALS) analysis was utilized to determine the molecular weight and homo-
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geneity of the protein sample. SEC-MALS analysis was performed on 100 µL aliquots

of purified MERS-CoV 3CLpro at three different concentrations, 90 µM (or 3 mg/ml),

45 µM and 22.5 µM, in buffer containing 25 mM HEPES pH-7.5, 50 mM NaCl and 1

mM TCEP. Superdex 75 analytical gel filtration column (GE healthcare) was used at

a flow rate of 0.5 ml/min for size exclusion and was coupled to a Dawn Heleos MALS

instrument (Wyatt technology) and an Optilab rEX instrument (Wyatt technology).

Weighted-average molecular weight and polydispersity index was determined by mea-

suring the intensity of Rayleigh scattering as a function of the differential refractive

index and the angular dependence of the scattered light within the horizontal plane.

5.3.12 MERS-CoV 3CLpro activation and inhibition by a non-covalent

inhibitor

The rates of the MERS-CoV 3CLpro catalyzed reactions were determined at final

enzyme concentrations of 0.5, 1.0 and 2.0 µM and in the absence and presence of

varying concentrations (0.1 µM to 60 µM) of compound 10. The substrate concen-

tration was fixed at 2.0 µM. DMSO stocks (100 ×) of compound 10 were diluted

hundred-fold in 80 µL of enzyme solution and incubated for 10 minutes. At the same

time, a zero-inhibitor control reaction was set up by mixing DMSO to a final con-

centration of 1% into 80 µL of enzyme solution. After 10 minutes, the rate of the

enzymatic activity was measured as the initial slope of the progress curve, obtained

by initiating the reaction with 20 µL of 10 µM substrate. Equation 5.6 was utilized

to calculate the percent activity.

% Activity =

[
Ratesample − Rateneg

Ratepos − Rateneg

]
× 100 (5.6)

Ratesample, Ratepos and Rateneg are described above for Equation 5.3.
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5.3.13 MERS-CoV 3CLpro Crystallization, X-ray Data collection and Struc-

ture determination

Purified MERS-CoV 3CLpro was concentrated to 1.6 mg/mL in 25 mM HEPES

pH-7.5, and 2.5 mM DTT. Inhibitor complexes of MERS-CoV 3CLpro with compounds

6 and 11 were formed by incubating MERS-CoV 3CLpro with the compounds in a

1:3 stoichiometric ratio at 4 °C overnight. After iterative rounds of optimization of

the crystallization conditions based on the initial hits obtained from high-throughput

screening of Qiagen Nextel Screens, crystals of MERS-CoV 3CLpro inhibitor complexes

suitable for X-ray diffraction were grown by the hanging-drop, vapor diffusion method

at 20 °C in 0.2 M sodium acetate, 0.1 M Bis-Tris pH-7.0 and 20% PEG-3350 for the

MERS-CoV 3CLpro-6 complex, and 0.2 M ammonium acetate, 0.1 M Bis-Tris pH-5.5,

12% PEG-3350 for the MERS-CoV 3CLpro-11 complex. For X-ray data collection,

crystals were flash-cooled in liquid nitrogen after dragging the crystals through a

cryo-solution that contained the crystallization solution supplemented with 15% 2-

methyl-2,4-pentanediol.

X-ray diffraction data were collected for MERS-CoV 3CLpro-6 and MERS-CoV

3CLpro-11 complexes at the Lilly Research Laboratories Collaborative Access Team

(LRL-CAT) Sector 31 and the Life Sciences Collaborative Access Team (LS-CAT)

Sector 21 at the Advanced Photon Source, Argonne National Laboratory, respectively.

Data were processed and scaled using Mosflm version 7.0.5 [121] and HKL2000 version

706 [122]. The method of molecular replacement was used to obtain initial phases

using the program PHASER-MR in Phenix suite version 1.8.4 [123].

For MERS-CoV 3CLpro-6 complex, the X-ray structure of SARS-CoV 3CLpro

(PDB ID: 3V3M) was used as a phasing model [38]. The final MERS-CoV 3CLpro-6

complex structure was then used to calculate the initial phases for the MERS-CoV

3CLpro-11 complex model. Automated model building using Autobuild in Phenix

was initially used to build a preliminary model of the MERS-CoV 3CLpro-6 inhibitor

complex. Each structure was then refined using iterative cycles of refinement using
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Phenix Refine coupled to manual model building using COOT [124] based on Fo−Fc

and 2Fo − Fc maps. Coordinates and molecular library files for inhibitor molecules

were built using the program eLBOW in the Phenix suite. Water molecules were

added to peaks in residual (Fo − Fc) density maps that were greater than 3σ us-

ing the “Find Water” function in COOT. MolProbity was used to assess structural

quality of the final model [125]. The measured structure factor amplitudes and the

atomic coordinates for the final structures were deposited in the Protein Data Bank

with accession codes 4RSP (MERS-CoV 3CLpro-6 complex) and 4YLU (MERS-CoV

3CLpro-11 complex), respectively. Structural superposition was performed using the

method of Least-Squares fitting (LSQ) of C-alpha atoms in COOT. Pymol was used

to generate figures of all the structures [126].

5.4 Results

5.4.1 Production of MERS-CoV 3CLpro with authentic N- and C-termini

Insertion of the nsp4|nsp5 cleavage site between N-terminal (His)6-tag and the

coding region for MERS-CoV 3CLpro (Figures 5.2.A) results in auto-processing of the

His-tag, and over-expression of MERS-CoV 3CLpro without any N-terminal extension

in E. coli BL21-DE3 cells. MERS-CoV 3CLpro was purified to high purity (Figure

5.2.B) and an overall yield of 10% using four sequential chromatographic steps. A

summary of the percent enzyme yield, total activity units, and the fold-purification

after each chromatographic step is summarized in Table 5.1. Approximately 12 mg

of highly pure MERS-CoV 3CLpro can be obtained per liter of bacterial cell culture.

Western blot analysis of purified MERS-CoV 3CLpro using an anti-(His)6 antibody

confirmed the absence of the N-terminus (His)6-tag associated with the expression

plasmid (Figure 5.2.C). To further verify the production of the enzyme with correct

N- and C-termini, the molecular weight of purified MERS-CoV 3CLpro was deter-

mined by MALDI-TOF analysis (Figure 5.2.D). MALDI calculated molecular weight

of purified MERS-CoV 3CLpro is 33.4 kDa, which is close to the theoretical molecular
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weight of 33.3 kDa for the authentic/mature MERS-CoV 3CLpro monomer. These

results demonstrate that the N-terminal (His)6-tag is auto-catalytically removed by

MERS-CoV 3CLpro during its expression in E. coli, indicating MERS-CoV 3CLpro is

enzymatically active when expressed in E. coli.

Fig. 5.2.: Production of MERS-CoV 3CLpro with authentic N- and C-termini. A.
Schematic diagram of MERS-CoV polyproteins pp1a/1ab. PLpro domain within the nsp3 is
shown in red while the 3CLpro (nsp5) is shown in green. Red and green arrows indicate the
cleavage sites processed by PLpro and 3CLpro respectively. B. Purification of MERS-CoV
3CLpro as analyzed on SDS-PAGE gel. Lane M represents the molecular weight markers,
lane 1 is the crude lysate obtained after lysing the bacterial cells expressing MERS-CoV
3CLpro and lane 2 is the purified MERS-CoV 3CLpro. C. Verification of the production
of MERS-CoV 3CLpro with authentic N- and C- termini. On the left is the gel analysed
through coomassie staining; on the right are the same samples analysed through western
blot using an anti-His antibody. Lane M represents the molecular weight markers, Lane
1 is the purified MERS-CoV 3CLpro, lane 2 is the purified SARS-CoV 3CLpro (negative
control) and lane 3 is a protein with (His)6 N-terminal tag (positive control). D. Molecular
weight of purified MERS-CoV 3CLpro was determined to be 33430 Da using MALDI-TOF.
MALDI-TOF calculated molecular weight is close to the theoretical molecular weight of
33330 Da for MERS-CoV 3CLpro monomer with authentic N-terminus.
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Table 5.1.
Purification summary of MERS-CoV 3CLpro per liter of E.coli

BL21-DE3

Sample
Protein Total activity Specific activity Fold

% Yield
(mg) Units (Units/mg) purification

Lysate 1102 1168 1 1 100
Phenyl-Sepharose 219 185 1 1 16
DEAE 22 189 8 8 16
Mono-S 15 142 9 9 12
Superdex 75 12 114 10 10 10

5.4.2 MERS-CoV 3CLpro hydrolyzes a fluorescent peptide substrate with

lower efficiency than other 3CLpro enzymes

A FRET-based peptide substrate was used to measure the enzymatic activity of

MERS-CoV 3CLpro as a function of substrate concentration over a substrate con-

centration range from 0 to 2.0 µM (Figure 5.3.A). It was observed that MERS-CoV

3CLpro cannot be saturated by the substrate over this concentration range, which is

typical for other coronavirus 3CLpro enzymes since the KM values for peptide sub-

strates approach 1 mM [127–130]. Therefore, the slope of the kinetic response of

MERS-CoV 3CLpro to increasing substrate concentration was determined to derive

an apparent (k cat/KM) value, which is a measure of enzymatic efficiency. Next, the

determination and comparison of the apparent (k cat/KM) values for 3CLpro enzymes

from SARS-CoV, HKU5-CoV and HKU4-CoV under similar experimental conditions

were performed (Figure 5.3.B). MERS-CoV 3CLpro is able to hydrolyze the peptide

substrate, however, the enzymatic efficiency of MERS-CoV 3CLpro (k cat/KM = 3.1

± 0.03 × 10−2 µM−1 min−1) is noticeably lower than other 3CLpro enzymes tested.

Specifically, MERS-CoV 3CLpro was five-fold less efficient at processing the peptide

substrate when compared to SARS-CoV 3CLpro. Even among the β-CoVs from the

same 2c genogroup (MERS, HKU5 and HKU4), MERS-CoV 3CLpro was the least

efficient enzyme.
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Fig. 5.3.: Comparison of enzymatic efficiencies (kcat/KM) of 3CLpro enzymes
from different CoVs. A. Rates for the enzymatic activity, normalized to the total en-
zyme concentration, are plotted as a function of varying substrate concentrations. Total
concentration of each enzyme in the final reaction is following: MERS-CoV 3CLpro at 1 µM,
SARS-CoV 3CLpro at 100 nM, HKU5-CoV 3CLpro at 250 nM and HKU4-CoV 3CLpro at
200 nM. Slope of the line represents the apparent value of kcat/KM. Error bars represent the
standard deviation for triplicate data. B. *Apparent value of kcat/KM for the non-saturable
substrate, calculated as the slope of the linear plot from panel A.
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5.4.3 MERS-CoV 3CLpro is a weakly associated dimer

Since a dimer has consistently been shown to be the catalytically active form of all

3CLpro enzymes studied to date, the hypothesis that the lower enzymatic efficiency

of MERS-CoV 3CLpro is a result of the reduction in its ability to dimerize was tested.

Therefore, the dependence of the enzymatic activity of MERS-CoV 3CLpro on the

total enzyme concentration was determined and compared to other 3CLpro enzymes

from HKU4, HKU5 and SARS coronaviruses (Figure 5.4).

Table 5.2.
Comparison of the apparent turnover number, k cat, and the

monomer-dimer dissociation constant, Kd, for different 3CLpro enzymes

3CLpro Non-linear fitting of kinetic dataa

kcat (min−1)b Kd (µM)
MERS-CoV 0.2 ± 0.02 7.8 ± 1.3
SARS-CoV 0.47 ± 0.03 0.06 ± 0.01
HKU5-CoV 0.53 ± 0.02 0.06 ± 0.01
HKU4-CoV 0.84 ± 0.07 0.1 ± 0.03

a Values determined through non-linear fitting of the kinetic data to Equation 5.2.
b kcat represents the apparent turnover number.

It is immediately apparent from the data plotted in Figure 5.4 that the response of

MERS-CoV 3CLpro enzymatic activity to an increasing enzyme concentration is non-

linear. The strong curvature suggests that a dimer is either the most active form or the

only active form of MERS-CoV 3CLpro. To determine the mechanism of dimerization,

the data in Figure 5.4 were first fit to Equation 5.1 (see Experimental Procedures),

which describes a model where both the monomer and the dimer are active. A fit of

the data to Equation 5.1 yielded a negative turnover value for the monomer (kcat,M),

suggesting the monomer is inactive and that the dimer is the only active form of the

enzyme. Therefore, the data were fit to Equation 5.2 (see Experimental Procedures),

which considers only the dimer as the active form of the enzyme. The kinetic data

for all four 3CLpro enzymes, MERS-CoV, HKU4-CoV, HKU5-CoV and SARS-CoV,
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Fig. 5.4.: Dependence of the enzymatic activity of MERS-CoV, HKU4-CoV,
HKU5-CoV and SARS-CoV 3CLpros on the total enzyme concentration. A.
Kinetic response of each CoV 3CLpro to increasing enzyme concentration is plotted along
with the resulting fit of the data to Equation 5.2. Resulting values for the apparent turnover
number, kcat, and the monomer-dimer equilibrium constant, Kd, are shown in Table 5.2.
Final enzyme concentrations varied over the concentration ranges of 2 µM to 100 nM for
MERS-CoV 3CLpro, 500 nM to 10 nM for SARS-CoV 3CLpro, 250 nM to 0.6 nM for HKU5-
CoV 3CLpro and 200 nM to 10 nM for HKU4-CoV 3CLpro. Final substrate concentration
was fixed at 2 µM. Experiments were done in triplicate. Error bars represent the standard
deviation for triplicate data. Shaded box represents the data that are plotted in panel B.
B. Enlarged view of the fitted data at low total enzyme concentrations, marked in shaded
box in panel A, illustrating the non-linear dependence of enzymatic activity on the total
concentrations of 3CLpro from SARS-CoV, HKU5-CoV and HKU4-CoV.
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fit well to this model and the resulting values for the monomer-dimer equilibrium

dissociation constant, Kd, and apparent turnover number, kcat, for each enzyme are

provided in Table 5.2.

The lower kcat value for MERS-CoV 3CLpro, when compared to other coronavirus

3CLpro enzymes, indicates a moderate reduction (2- to 4-fold) in its ability to turnover

the substrate, which is consistent with the observed lower apparent (k cat/KM) value.

In contrast, there is a substantial reduction in the ability of MERS-CoV 3CLpro to

dimerize compared to the other 3CLpro enzymes. Based on the Kd values, the capacity

of MERS-CoV 3CLpro to dimerize is approximately 78- to 130-fold weaker than the

other enzymes (Table 5.2). These results indicate that the MERS-CoV 3CLpro dimer

is much more weakly associated than the other coronavirus 3CLpro enzymes studied

and raises questions as to the structural and mechanistic differences among the 3CLpro

enzymes that ultimately regulate protease activity during coronavirus replication.

5.4.4 MERS-CoV 3CLpro inhibition by designed peptidomimetic com-

pounds

In an effort to develop potent inhibitors of MERS-CoV 3CLpro, our collabora-

tor (Prof. Arun Ghosh, Purdue University) designed and synthesized nine pep-

tidomimetic compounds containing a Michael acceptor group, i.e. an α,β-unsaturated

carbonyl, capable of irreversibly reacting with the active site cysteine of MERS-CoV

3CLpro (Table 5.3). These compounds were designed and synthesized based on our

understanding and knowledge of the interactions of similar inhibitor molecules with

SARS-CoV 3CLpro [37,53]. At a concentration of 50 µM, compounds 6 to 9 displayed

more than 50% inhibition of MERS-CoV 3CLpro and were further evaluated for their

ability to inactivate the enzyme in a time- and concentration-dependent manner (Fig-

ure 5.5). Data from the kinetic progress curve for compound 6 (Figure 5.5), as well

as for compounds 7 to 9, were fit to the appropriate equations (see Experimental
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Procedures) to obtain the kinetic parameters, kinact, t∞1/2 and KI, and the resulting

values are provided in Table 5.3.

Fig. 5.5.: Progress curves for the MERS-CoV 3CLpro catalyzed reaction in the
presence of compound 6. Time-dependent hydrolysis of 1 µM of substrate catalyzed by
500 nM of MERS-CoV 3CLpro was measured over a time period of 70 minutes and at fixed
variable concentrations of compound 6 ranging from 0 to 50 µM. Values for the inactivation
kinetic parameters kinact, t∞1/2 and KI were calculated by fitting the progress curve data to
Equation 5.4 and Equation 5.5. Chemical structure of compound 6 is shown in inset.

Out of the nine compounds tested, four compounds, 6 to 9, were identified as

micromolar inhibitors of MERS-CoV 3CLpro with KI values less than 10 µM, (Table

5.3). Analysis of structure-activity relationships (SAR) of these compounds suggests

that the S 2 subsite pocket of MERS-CoV 3CLpro is small and can only accommodate

a smaller P2-isobutyl substituent (compounds 6 to 9 ), but not bigger substituents

such as P2-benzyl or P2-isobutylenyl (compounds 1 to 5 ). It was also observed that

replacing the P4-ethoxy (Compound 6 ) with P4-isopropoxy (compounds 7 and 8 )

has no effect on the inhibitory activity of the compounds. Finally, these compounds

provide an excellent chemical scaffold to study the molecular details of interactions

of substrate-like compounds with the enzyme and to develop more potent inhibitors

of MERS-CoV 3CLpro for therapeutic intervention.

To evaluate broad-spectrum specificity of these compounds, the percent inhibition

of SARS-CoV 3CLpro, HKU5-CoV 3CLpro and HKU4-CoV 3CLpro after 20 minutes

incubation in the presence of 50 µM of compounds 6 to 9 was also determined.
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Table 5.3.
Chemical structures and inhibitory activity of compounds 1 to 11

against MERS-CoV 3CLpro

Peptidomimetic compounds with Michael-acceptor groups
Non-covalent

peptidomimetics

Cmpd † % Inhi * kinact
b t

∞

1/2

c KI
d Cmpd IC50

e

1 a 46 nd nd nd 10 >100
2 a 11 nd nd nd 11 >100
3 a 21 nd nd nd
4 a 0 nd nd nd
5 a 46 nd nd nd
6 99 0.81 ± 0.08 0.86 ± 0.08 3.6 ± 0.8
7 100 0.84 ± 0.05 0.83 ± 0.05 4.7 ± 0.6
8 100 1.12 ± 0.20 0.62 ± 0.11 9.0 ± 2.3
9 100 1.13 ± 0.20 0.61 ± 0.11 9.9 ± 2.6

† The Michael-acceptor group for Compound 1 is shaded to highlight this group for all the com-

pounds; * % Inhibition measured as % loss in enzymatic activity after 20 minutes incubation of 500

nM of MERS-CoV 3CLpro with 50 µM of compound; a kinact, t
∞

1/2
and KI were not determined (nd)

for compounds 1 to 5 that showed <50% inhibition of MERS-CoV 3CLpro; b kinact (× 103)(sec−1);
c t

∞

1/2
(× 10−3)(sec); d KI (µM); e IC50 (µM) calculated from a dose response curve determined after

10 minutes incubation of 1 µM MERS-CoV 3CLpro with varying concentrations of compounds.
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Except for compound 9 which inhibited SARS-CoV 3CLpro by 76%, 100% inhibition

of all other enzymes in the presence of compounds 6 to 9 was observed. Furthermore,

progress curve analysis of HKU5-CoV 3CLpro and HKU4-CoV 3CLpro in the presence

of varying concentrations of compounds 6 to 9 was performed. The KI values of

compounds 6 to 9 for HKU5-CoV 3CLpro are 0.49 ± 0.16, 0.60 ± 0.21, 1.30 ± 0.53,

and 0.47 ± 0.06 µM, respectively. The KI values of compounds 6 to 9 for HKU4-CoV

3CLpro are 0.39 ± 0.14, 0.50 ± 0.17, 0.85 ± 0.33, and 0.64 ± 0.25 µM, respectively.

These data suggest that peptidomimetic compounds 6 to 9 have the potential to be

developed as coronavirus 3CLpro inhibitors with broad-spectrum specificity.

5.4.5 Weak association of the MERS-CoV 3CLpro dimer is supported by

AUC and SEC-MALS studies

To further explore the mechanism of MERS-CoV 3CLpro dimerization, analyti-

cal ultracentrifugation sedimentation velocity (AUC-SV) studies were performed at

varying concentrations of MERS-CoV 3CLpro (Figures 5.6.A, 5.7.A and 5.7.B). Unlike

enzyme kinetics, AUC allows determination of the monomer-dimer equilibrium con-

stant (Kd) in the absence of substrate. MERS-CoV 3CLpro displayed a continuous size

distribution at different protein concentrations. Two distinct peaks corresponding to

monomer (2.9 S) and dimer (3.9 S) species are observed, with the dimer peak be-

coming more pronounced at higher enzyme concentrations (Figure 5.7.A). The AUC

data were fitted to a monomer-dimer equilibrium model to determine the values for

Kd and koff, where Kd is the equilibrium dissociation constant for a monomer from

the dimer and koff is the rate constant for dissociation of the monomer from the

dimer. The resulting best-fit value for Kd is 52 ± 5 µM and that for koff is 10−4 sec−1.

The Kd value of 52 µM for MERS 3CLpro is dramatically different from SARS-CoV

3CLpro, which has reported Kd values ranging from low nM up to 10 µM depending

on the enzyme construct used and the experimental conditions and methods utilized

to determine the dissociation constant [45]. The dimer affinity of MERS-CoV 3CLpro
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is substantially weaker than that for SARS-CoV 3CLpro, when comparing the same

enzyme construct, i.e. the enzyme without any N- or C-terminal modifications. The

AUC-SV calculated Kd value for MERS-CoV 3CLpro is ∼ 150,000-times higher than

the value of 0.35 nM determined for SARS-CoV 3CLpro [43].

Fig. 5.6.: AUC-SV raw boundary profiles for MERS-CoV 3CLpro. A. Raw bound-
ary profiles from absorbance signal at 280 nm for varying concentrations of MERS-CoV
3CLpro. B. Raw boundary profiles from interference optics signal for MERS-CoV 3CLpro in
complex with varying stoichiometric ratios of compound 6. C. Raw boundary profiles from
interference optics signal for MERS-CoV 3CLpro in complex with varying stoichiometric
ratios of compound 10. Points represent the experimental data and solid lines represent
the best fit to Lamm equation using the SEDFIT program.

The AUC results (Figure 5.7.A) show that the monomer peak at ∼ 2.9 S does

not gradually shift peak position towards the dimer peak at ∼ 3.9 S with increasing

concentrations of MERS-CoV 3CLpro; rather, the two peaks change in area, which
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Fig. 5.7.: AUC-SV and SEC-MALS analysis of MERS-CoV 3CLpro. A. Sedi-
mentation coefficient distribution for varying concentrations of MERS-CoV 3CLpro (4.1 to
23 µM) with sedimentation coefficient values of 2.9 S and 3.9 S for the monomer and the
dimer, respectively. Best-fit value for AUC-SV calculated Kd is 52 ± 5 µM. B. Population
isotherm showing contribution of monomer (purple) and dimer (blue), respectively. Solid
lines represent the best fit to a monomer-dimer equilibrium model. C. Molecular weight
determination through SEC-MALS analysis of varying MERS-CoV 3CLpro concentrations
indicate monomer as the major species in solution. D. Sedimentation coefficient distri-
bution of MERS-CoV 3CLpro (25 µM) in the presence of different stoichiometric ratios of
compound 6 (25, 50 and 100 µM) and E. compound 10 (25, 50 and 100 µM).
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is indicative of very slow monomer-dimer exchange rate (koff ∼ 10−4 sec−1) and the

formation of hydrodynamically stable monomer and dimer species (Figure 5.7.B)

[131]. This koff value is 1,000-times slower than the koff value (10−1 sec−1) reported

for SARS-CoV 3CLpro indicating that the SARS-CoV enzyme has a significantly

more rapid monomer-dimer exchange rate [132]. These observations support a model

whereby the MERS-CoV 3CLpro dimer is weakly associated, suggesting the enzyme

exists mainly as a monomer in solution.

SEC-MALS analysis also confirmed MERS-CoV 3CLpro monomer as the major

species in solution (Figure 5.7.C). Three tested MERS-CoV 3CLpro concentrations

eluted at slightly different retention times. SEC-MALS calculated molecular weights

for 90 µM, 45 µM and 22.5 µM concentration of MERS-CoV 3CLpro are 39.5 kDa,

38.5 kDa and 35.7 kDa, respectively. Calculated average molecular weight is 37.9 ± 2

kDa, which is close to the theoretical molecular weight of 33.3 kDa for the monomer

and is clearly indicative of monomer as the major species in the solution.

5.4.6 MERS-CoV 3CLpro undergoes extensive ligand-induced dimeriza-

tion

The weak association of MERS-CoV 3CLpro monomers engenders questions such

as, “Are higher levels of expression of 3CLpro in MERS-CoV infected cells necessary

to allow formation of active dimer?” “Are other mechanisms such as substrate or

ligand-induced dimerization involved in activating 3CLpro?” To explore the latter

question of ligand-induced dimerization of MERS-CoV 3CLpro, AUC experiments

were performed in the presence of compound 6, which acts as a substrate mimetic

and mechanism-based inhibitor, aka suicide substrate. Peptidomimetic compounds

such as compound 6, which contain a Michael acceptor group, interact and react

with the active site cysteine of cysteine proteases to covalently modify them. The

compound 6 was utilized to form a covalent MERS-CoV 3CLpro-inhibitor 6 complex

that is stable over long periods of time making it amenable to analysis by AUC-SV
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experiments. In contrast, incubation of a normal peptide substrate with the enzyme

would lead to immediate hydrolysis of the substrate and dissociation of the products

from the enzyme, confounding AUC experiments and subsequent data analysis.

MERS-CoV 3CLpro was incubated with varying concentrations of compound 6 in

stoichiometric ratios of (1:1, 1:2 and 1:4). The modified enzyme was then subjected

to AUC studies to determine the influence of compound 6 on the monomer-dimer

equilibrium (Figures 5.6.B, 5.7.D). A significant shift in the area under 2.9 S peak

(monomer) to 4.1 S peak (dimer) is detected upon addition of increasing concentra-

tions of compound 6 (Figure 5.7.D). Similar results were obtained when AUC studies

were performed utilizing a complex of MERS-CoV 3CLpro with a non-covalent pep-

tidomimetic inhibitor (Compound 10, Figures 5.6.C and 5.7.E). The transition of

MERS-CoV 3CLpro from monomer to dimer in the presence of compounds 6 and 10

suggests that the enzyme undergoes extensive dimerization upon substrate binding.

5.4.7 MERS-CoV 3CLpro is activated by ligand-induced dimerization

The observed ligand-induced dimerization of MERS-CoV 3CLpro, as demonstrated

through AUC studies, prompted us to investigate whether or not the enzymatic ac-

tivity of MERS-CoV 3CLpro could be increased at low concentrations of a compound

via ligand-induced dimerization. To do so, a non-covalent peptidomimetic compound

(compound 10, Figure 5.8.A) that we previously identified as an inhibitor of SARS-

CoV 3CLpro was used. Due to the time-dependent, irreversible nature of the reaction

between compound 6 and MERS-CoV 3CLpro, use of compound 6 was not ideal for

these kinetic studies as it would further complicate kinetic data analysis.

The kinetic response of MERS-CoV 3CLpro to increasing concentrations of com-

pound 10 was first measured at a single enzyme concentration of 1.0 µM (Figure

5.8.A). Interestingly, an increase in the activity of MERS-CoV 3CLpro, as high as

195%, was observed in the presence of low inhibitor concentrations (0.1 to 20 µM).

Inhibition of enzymatic activity was observed only at higher inhibitor concentrations
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Fig. 5.8.: Activation of MERS-CoV 3CLpro via ligand-induced dimerization. A.
Enzymatic activity of 0.5, 1.0 and 2.0 µM MERS-CoV 3CLpro was measured in the absence
and presence of varying concentrations of compound 10. Substrate concentration was fixed
at 2.0 µM. % Activity, normalized to zero-inhibitor enzymatic activity, was plotted as a
function of increasing inhibitor concentration. Error bars represent the standard deviation
for triplicate data. Increase in enzymatic activity (highlighted in cyan shaded box) is
observed in the presence of low concentrations of compound 10. Inhibition of enzymatic
activity is observed at higher inhibitor concentrations (highlighted in yellow shaded box).
B. Kinetic model describing the equilibrium between different species of MERS-CoV 3CLpro

that are formed in the absence (blue box) and presence (green box) of a ligand is shown.
Based on the AUC calculated Kd value of ∼ 52 µM, MERS-CoV 3CLpro primarily exists
as a monomer in solution in the absence of a ligand. Upon ligand binding (inhibitor “I” in
our case) to the monomer, the monomer-dimer equilibrium shifts towards dimer formation.
Next, under lower inhibitor concentrations (cyan shaded box), substrate binds in the second
active site and catalysis takes place. However, under higher inhibitor concentrations (yellow
shaded box), inhibitor directly competes with the substrate for the second active site and
inhibition of the enzymatic activity is observed.
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(40 µM or greater). These results suggest that at low concentrations, compound 10

binds to a monomer and induces the formation of a dimer. The resulting dimer then

has one free active site that is capable of processing the substrate. At higher concen-

trations of inhibitor, the substrate and inhibitor directly compete for the free active

site.

The model of activation and inhibition suggested by the data at 1 µM of enzyme

would predict that at higher enzyme concentrations, less activation by a compound

would be observed at lower inhibitor concentrations and inhibition of activity would

be detected at lower inhibitor concentrations since the equilibrium would be pushed

towards dimer formation. In contrast, lower enzyme concentrations would result in

higher activation by compounds and inhibition by the compound would occur at sig-

nificantly higher compound concentrations. Therefore, the activity of MERS-CoV

3CLpro was further measured at two additional enzyme concentrations (0.5 and 2.0

µM) in the presence of varying concentrations of compound 10. Remarkably, it was

observed that the activation effect was most pronounced at the lowest MERS-CoV

3CLpro concentration tested (0.5 µM), and the effect decreased as the enzyme con-

centration was increased (1.0 and 2.0 µM) (Figure 5.8.A). Moreover, inhibition by

compound 10 occurred at lower compound concentrations when higher concentra-

tions of enzymes were used. These observations further support a model whereby

enzyme activation can occur through ligand-induced dimerization.

The activation and inhibition of MERS-CoV 3CLpro by compound 10 can be ex-

plained by a simple kinetic model depicted in Figure 5.8.B. The MERS-CoV 3CLpro

monomer exists in equilibrium with the dimer and their relative concentrations de-

pend on the total enzyme concentration. In the absence of substrate or compound, the

Kd value is 52 µM and the equilibrium is represented by the grey spheres (blue box)

in Figure 5.8.B. The monomer is unable to hydrolyze the substrate and is, therefore,

inactive. Binding of inhibitor (blue triangle) to the monomer results in monomer-

to-dimer switch leading to the formation of a dimer that contains inhibitor bound in

one of the active sites. Once the dimer is formed, the substrate binds in the second
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active site and catalysis takes place. Under high inhibitor concentrations, however,

the inhibitor molecule directly competes with substrate for the free dimer active site

and inhibition of the enzymatic activity is observed as a result.

The induced dimerization and activation is also expected to be observed in the

presence of the substrate. Indeed, the monomer-dimer kinetic studies performed in

Figure 5.4 were performed at a fixed concentration of substrate at 2 µM. In this

experiment, the Kd value for the MERS-CoV 3CLpro dimer was determined to be

7.8 µM, which is lower than the Kd value determined in the absence of substrate

using AUC, thereby supporting substrate-induced dimerization. Given the high KM

of 3CLpro for the peptide substrate [127–130], even higher substrate concentrations

would be required to observe substrate activation in a plot of catalytic activity versus

substrate concentration. However, the use of the FRET-based substrate is limited

to only low substrate concentrations due to a significant inner filter effect at higher

concentrations of substrate. Therefore, a compound that both mimics substrate and

has higher binding affinity can act as a useful surrogate for the substrate, allowing

the observation of ligand-induced dimerization and activation even at low substrate

concentrations.

5.4.8 X-ray structure of MERS-CoV 3CLpro-compound 6 complex

To gain atomic level detail and molecular insight into the mechanism for substrate-

induced dimerization of MERS-CoV 3CLpro, crystallization and X-ray structure de-

termination of the unliganded MERS-CoV 3CLpro monomer and the MERS-CoV

3CLpro covalently modified with compound 6 were attempted. Unfortunately, all

the attempts to crystallize the unliganded MERS-CoV 3CLpro monomer failed after

multiple attempts, but we were able to crystallize and determine the X-ray struc-

ture of MERS-CoV 3CLpro in complex with compound 6 to a resolution of 1.6 Å.

The statistics for X-ray data collection, processing and refinement are summarized in

Table 5.4. The MERS-CoV 3CLpro-6 complex crystallized as a biologically relevant,
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symmetrical dimer in space group C 2 with one monomer in the asymmetric unit.

Electron density for the entire protein was clearly visible and strong electron density

(Fo − Fc > 4σ) was present for compound 6 within the active site (Figure 5.9.A).

Table 5.4.
X-ray data collection and refinement statistics

MERS-CoV 3CLpro-6 MERS-CoV 3CLpro-11
Beamline: LRL-CAT Sector 31 ID-D LS-CAT Sector 21 ID-G
Data collection
Wavelength (Å) 0.9793 0.9786
Resolution range (Å) 19.35-1.62 (1.68-1.62)a 50.00-2.10 (2.14-2.10)a

Protein monomers in asymmetric units 1 4
Space group C2 P21
Unit cell dimensions
a, b, c (Å) 106.49, 57.31, 48.88 63.44, 114.93, 92.34
α, β, γ (o) 90, 112.78, 90 90, 90.89, 90
Total number of reflections 63855 816216
Number of unique reflections 32851 76865
Multiplicity 1.9 (1.9)a 2.2 (2.2)a

Completeness (%) 95.0 (93.8)a 96.8 (93.8)a

Mean I/σI 5.2 (1.3)a 11.17 (1.83)a

Rmerge (%)b 8.3 (67.2)a 8.8 (58.6)a

Refinement
Resolution range (Å) 19.35-1.62 42.59-2.10
Number of reflections in working set 30824 76623
Number of reflections in test set 2026 2019
Rwork (%)c 17.8 15.91
Rfree (%)c 21.7 21.51
Number of non-hydrogen atoms
Protein / water 2380 / 208 9383 / 995
RMSD - bond lengths (Å) 0.007 0.013
RMSD - bond angles (o) 1.09 1.35
Ramachandran favored (%) 99 98
Ramachandran outliers (%) 0 0
Molprobity clash score 3.3 1.94
Average B-factor (Å2) 20.4 33.1
Protein 19.8 32.5
Ligands 16.6 41.1
Solvent 27.7 37.9
a Values in parentheses are for highest-resolution shell.
b Rmerge = ΣhΣi|Ii(h)− 〈I(h)〉|/ΣhΣiIi(h), where Ii(h) is the ith measurement and 〈I(h)〉 is the

weighted mean of all measurements of I(h).
c Rwork and Rfree = h(|F (h)o| − |F (h)c|)/h|F (h)o| for reflections in the working and test sets,

respectively.
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Fig. 5.9.: X-ray crystal structure of MERS-CoV 3CLpro in complex with in-
hibitors. A. Solvent-accessible surface (grey shaded surface) of MERS-CoV 3CLpro-
compound 6 complex. Compound 6 is displayed in ball and stick model. Electron density
associated with compound 6 is shown as a Fo−Fc electron density difference map contoured
to 3σ (green mesh). Substrate binding pockets S4-S1’ are labeled, where * indicates the
electrophilic carbon of compound 6 that forms a C-S covalent bond with the active site
cysteine C148. B. MERS-CoV 3CLpro-compound 6 complex with the MERS-CoV 3CLpro

backbone represented as a ribbon model and relevant amino acids that interact with com-
pound 6 represented as ball and sticks. Hydrogen bonds are depicted as red dashed lines.
C. Sequence logos showing amino acid conservation for the eleven polyprotein cleavage
sites of different 3CLpro enzymes (MERS-CoV, HKU5-CoV, HKU4-CoV and SARS-CoV),
generated using the WebLogo server [133]. Residues P2-P1’ are shown. Height of each
letter corresponds to the amino acid conservation at that position. D. Solvent-accessible
surface (grey shaded surface) of MERS-CoV 3CLpro-compound 11 complex. Compound
11 is displayed in ball and stick model. Electron density associated with compound 11 is
shown as a 2 Fo−Fc electron density difference map contoured to 1.5σ (green mesh). Func-
tional groups of compound 11 with their corresponding binding pockets are highlighted in
yellow, green and blue ellipses. Chemical structure of compound 11 is shown in inset. E.
Interactions between MERS-CoV 3CLpro and compound 11 are illustrated.
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5.4.9 MERS-CoV 3CLpro has a smaller S2 pocket than SARS-CoV 3CLpro

The active site of MERS-CoV 3CLpro bound with compound 6 is shown in Fig-

ures 5.9.A and 5.9.B. Compound 6 is covalently bound to the active site cysteine

(C148) via a 1.8 Åbond between the gamma-sulfur and the electrophilic β-carbon of

the Michael acceptor. The P1’-ethyl ester carbonyl, which mimics the carbonyl of

the scissile bond in a substrate, forms a hydrogen bond with the backbone NH of

G146 that forms part of the oxyanion hole (Figure 5.9.B). Within the S 1 subsite, the

P1-lactam carbonyl, which is a surrogate for the amide of P1-glutamine of substrates,

participates in a hydrogen bonding interaction with the imidazole ring of H166, and

the P1-lactam NH forms a hydrogen bond with the carboxylate oxygen of E169. The

P2-backbone amide NH forms a hydrogen bond with the side chain carbonyl of Q192

(Figure 5.9.B). The P2-leucine side chain atoms of the inhibitor make hydrophobic

contacts with the side chains of M168 and L49 that line the S 2 subsite pocket. More-

over, compared to the equivalent residue T25 in SARS-CoV 3CLpro, M25 in the S 2

pocket of MERS-CoV 3CLpro is expected to reduce the size of the hydrophobic pocket,

which is supported by our observed SAR described above.

The smaller size of the S 2 pocket in MERS-CoV 3CLpro is also consistent with the

preference for a smaller leucine residue at the P2 position of cleavage sites instead of

a bulkier phenylalanine or methionine residue. Indeed, analysis of the preference for

leucine or phenylalanine at the P2 position for the eleven 3CLpro cleavage sites within

the polyprotein of MERS-CoV shows that none of the eleven cleavage sites contain

a phenylalanine residue at this position (Figure 5.9.C). Leucine is the predominantly

favored residue at this position followed by methionine. Analysis of the cleavage sites

from SARS-CoV, HKU4-CoV and HKU5-CoV shows that none of the eleven cleavage

sites from group 2c members (MERS-CoV, HKU4-CoV and HKU5-CoV) contain a

phenylalanine residue at the P2 position; however, the SARS-CoV nsp5|nsp6 cleavage

site contains a phenylalanine residue at this position.
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Other interactions are also observed to play a significant role in stabilizing the

MERS-CoV 3CLpro-compound 6 complex. The P3-carbonyl and P3-NH participate

in hydrogen bonding interactions with the backbone NH and carbonyl of E169. The

P4-serine side chain is within hydrogen bonding distance of the side chain carboxam-

ide of Q195 and the backbone carbonyl of K191.

5.4.10 X-ray structure of MERS-CoV 3CLpro in complex with a non-

covalent inhibitor

High-resolution diffraction quality crystals of MERS-CoV 3CLpro were obtained

in complex with compound 11, which has an almost identical chemical structure as

that of compound 10 (Figure 5.9.D). Our group previously showed that compounds

similar to 10 and 11 act as potent non-covalent inhibitors of 3CLpro from SARS-

CoV [39]. The X-ray structure of compound 11 bound to MERS-CoV 3CLpro was

determined to a resolution of 2.1 Å and the X-ray data collection, processing and re-

finement statistics are summarized in Table 5.4. The MERS-CoV 3CLpro11 complex

crystallized in space group P21 with two biologically relevant dimers in the asym-

metric unit. The overall RMSD between the C-alpha atoms of the four chains was

less than 1 Å, with the highest C-alpha RMSD of 0.719 Å between chains C and D.

Strong electron density (Fo − Fc > 4σ) was present for compound 11 within all the

4 active sites of the two dimers (Figure 5.9.D).

The binding orientation for compound 11 in the active site of MERS-CoV 3CLpro

is similar to the binding orientation of related compounds in the active site of SARS-

CoV 3CLpro (PDB ID: 4MDS). The benzotriazole group binds in the S 1 subsite,

phenyl propionamidyl occupies the S 1’-S 2 subsite and the thiophene group binds in

the S 2 subsite. Compound 11 also forms two direct and one water-mediated hydrogen

bond interactions with amino acids in the MERS-CoV 3CLpro active site (Figure

5.9.E). The N-(3) of the benzotriazole ring forms a hydrogen bond with the side chain

ε-nitrogen of conserved H166, and the central acetamide oxygen forms a hydrogen
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bond with the backbone NH of conserved E169. The NH of phenyl propionamidyl

group interacts with backbone carbonyl oxygen of the catalytic H41 residue through a

water-mediated hydrogen bond and the imidazole ring of H41 engages with the phenyl

ring of phenyl propionamidyl group through T-shaped π-stacking. The phenyl ring

also form hydrophobic contacts with L49.

5.4.11 Interactions at the 3CLpro dimer interface

Analysis of the MERS-CoV 3CLpro-6 and MERS-CoV 3CLpro-11 crystal struc-

tures reveal key differences between the dimer interface of MERS-CoV and SARS-

CoV 3CLpro (PDB ID: 2ALV) [53] (Figure 5.10). Two arginine residues, R4 and

R298 (Figures 5.10.A-5.10.C), form some of the key interactions at the dimer inter-

face of SARS-CoV 3CLpro, and mutation of either of these amino acids results in a

drastic loss of dimerization in SARS-CoV 3CLpro [46, 47]. Interestingly, these two

arginine residues (R4 and R298) are substituted in MERS-CoV 3CLpro by two hy-

drophobic residues (V4 and M298) that are unable to participate in the formation

of hydrogen bonds or salt-bridges. Therefore, it was initially thought that the loss

of these key interactions might simply explain the >100,000-fold weaker dimeriza-

tion observed for MERS-CoV 3CLpro compared to SARS-CoV 3CLpro. Surprisingly

though, structural analysis of the dimer interface from the available X-ray structure

of HKU4-CoV 3CLpro (PDB ID 2YNB, unpublished; Figures 5.10.B and 5.10.C), and

primary sequence alignment of 3CLpro from MERS-CoV, HKU5-CoV, HKU4-CoV

and SARS-CoV (Figure 5.11) revealed that V4 and M298 are conserved between all

the β-CoV 2c members studied here. Substantial differences between the ability of

MERS-CoV 3CLpro and HKU4/HKU5-CoV 3CLpro to dimerize, despite their high se-

quence identity, led us to the hypothesis that non-conserved residues between 3CLpro

enzymes from MERS-CoV and other β-CoV 2c members that are remote from the

dimer interface may play a significant role in dimer formation.
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Fig. 5.10.: Comparison of X-ray crystal structures of 3CLpro dimers from MERS-
CoV, HKU4-CoV and SARS-CoV. A. Superposition of dimers of MERS-CoV 3CLpro

(pink color), HKU4-CoV 3CLpro (yellow color, PDB ID: 2YNB) and SARS-CoV 3CLpro

(blue color, PDB ID: 2ALV). For SARS-CoV 3CLpro, residues R4 and S123 from monomer
A, and residues Q127, K137, E290 and M298 from monomer B are represented as spheres.
B. For SARS-CoV 3CLpro, interactions between the side chain of R4 from monomer A and
Q127, E290 and K137 residues from monomer B are shown. The corresponding residues in
MERS-CoV 3CLpro and HKU4-CoV 3CLpro are V4 in monomer A and E290 in monomer
B, which do not interact at the dimer interface. C. For SARS-CoV 3CLpro, S123 from
monomer A engages in hydrogen bonding with R298 from monomer B across the dimer
interface. The corresponding residue in monomer B of MERS-CoV 3CLpro and HKU4-CoV
3CLpro is M298, which does not participate in any interaction with T126 from monomer A
across the dimer interface.
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Fig. 5.11.: Sequence alignment of 3CLpro enzymes from MERS-CoV, HKU5-
CoV, HKU4-CoV and SARS-CoV. Programs MultAlin [134] and ESPript [135] were
used for the sequence alignment and visualization. Secondary structural elements of MERS-
CoV 3CLpro are represented as spirals for alpha-helix, arrows for beta-strands, η for 310

helix and T for beta-turns. Residues V4 and M298 in MERS-CoV, HKU5-CoV, HKU4-
CoV 3CLpro, and R4 and R298 in SARS-CoV are shown in green box; catalytic residues
H41 and C148 are highlighted in purple box. The non-conserved residues of MERS-CoV
3CLpro are marked with pink arrows. % Identity with MERS-CoV 3CLpro is shown.
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5.4.12 Analysis of non-conserved residues of MERS-CoV 3CLpro

Analysis of our current crystal structures does not reveal a clear mechanism for

the monomer to dimer switch of MERS-CoV 3CLpro upon ligand binding. Therefore,

attempts to identify the non-conserved residues in MERS-CoV 3CLpro that might

affect enzymatic activity due to their proximity to key residues involved in substrate

binding and/or dimer formation were made next.

Based on a sequence alignment, MERS-CoV 3CLpro contains ∼ 24 non-conserved

amino acids (pink arrows in Figure 5.11). Upon analyzing the position of these amino

acids in the crystal structure, it was observed that a remarkable number of these amino

acids are present in the loop regions. Figure 5.12.A illustrates the non-conserved

residues present in the loop regions as grey (monomer A) and pink (monomer B).

Interestingly, it was also observed that there are hotspots in the protein structure

where most of these amino acids are clustered. These hotspots include the N-terminal

region, the active site region, the inter-domain loop (loop between the catalytic fold

and domain III) and the domain III. In MERS-CoV 3CLpro, non-conserved amino acid

H8, which forms van der Waals contacts with K155 of the same monomer and T128

of the other monomer, is present at the end of the N-terminal finger (Figures 5.12.B

and 5.12.C), while amino acids D12 and A15 are part of the N-terminal helix (Figure

5.12.B). Additionally, amino acids T128, K155 and S158 are present within 6 Å of the

N-terminal region (Figure 5.12.B). Substitution to these amino acids in MERS-CoV

3CLpro might have changed the protein dynamics in a way that only ligand binding

populates the monomer conformation, which is more amenable to dimer formation.

It was also observe that some of the non-conserved residues in MERS-CoV 3CLpro

are located in proximity to the substrate-binding site and might contribute towards

ligand-induced dynamic changes favorable for dimer formation. For example, non-

conserved amino acid M61 forms hydrophobic interactions with M43, which in turn

is in close proximity to the catalytic residue H41 (Figure 5.12.D). Residue A171 is

present on a loop and this loop, along with conserved residues H166 and H175, form
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Fig. 5.12.: Analysis of the non-conserved amino acids of MERS-CoV 3CLpro. A.
Cartoon illustration of MERS-CoV 3CLpro dimer with monomers A and B colored in orange
and yellow, respectively. Non-conserved residues that are present in the loop regions are
shown as spheres in grey and pink for monomers A and B, respectively. Other non-conserved
residues are represented as spheres with the corresponding chain color. Domains I, II, III,
and the inter-domain loop are labeled. Catalytic residues H41 and C148 are shown as green
spheres. Inhibitor molecule is shown in both active sites in blue sticks. B G. Residues of
Monomer B are shown (yellow and pink), unless otherwise labeled. B. Clustering of some of
the non-conserved amino acids, H8, D12, A15, T128, K155 and S158, near the N-terminal
region is shown. N-terminal helices for both monomers are labeled. C. H8 from the N-
terminal region forms van der Waals contacts with K155 of the same monomer and T128 of
the other monomer in the dimer. D. Non-conserved residue M61 forms hydrophobic contacts
with M43 residue, which is in close proximity to catalytic residue H41. E. Loop containing
the non-conserved residue A171 forms the S1 pocket along with residues H166 and H175.
F. V132 forms hydrophobic contacts with a residue within the same domain (A114), as
well as E290 from domain III. G. Non-conserved residue Y137 makes hydrophobic contacts
with Y185; Y185 along with two other non-conserved residues T183 and M189 are present
on the inter-domain loop.
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the S 1 subsite for binding the P1 amino acid of the substrate (Figure 5.12.E). In ad-

dition to its influence on substrate binding, A171 may also contribute towards dimer

formation upon substrate binding due to its close proximity with E169. This glu-

tamate residue in SARS-CoV 3CLpro (E166) has been established as a key residue

linking substrate-binding site to dimer interface [132]. V132 forms hydrophobic in-

teraction with other non-conserved residue A114 within domain II (Figure 5.12.F).

Additionally, V132 is present within van der Waals contact distance of E290 from

extra-helical domain III (Figure 5.12.F). It is noteworthy that E290 forms a salt-

bridge with R4 across the dimer interface in SARS-CoV 3CLpro. However, this inter-

action is not formed in MERS-CoV 3CLpro due to the substitution of R4 with V4.

Y137 forms hydrophobic contacts with the conserved residue Y185 (Figure 5.12.G).

Besides amino acid V132 that connects domains II and III, residue Y185, along

with two other non-conserved residues, T183 and M189, is present on the inter-domain

loop that connects the catalytic fold (domains I and II) with the extra helical domain

III (Figure 5.12.G). Flexibility within these residues might affect the orientation of

domain III required for dimer formation.

5.5 Discussion

5.5.1 A Model for regulation of the enzymatic activity of MERS-CoV

3CLpro during polyprotein processing

Enzymatic activity of coronavirus 3CLpro is required for the processing of viral

polyproteins at eleven distinct cleavage sites, allowing the release of non-structural

proteins that subsequently form a replication complex for virus genome replication.

Due to its indispensable role in the virus life cycle, regulation of the enzymatic ac-

tivity of 3CLpro is instrumental for efficient replication of coronaviruses. Based on

the experimental results discussed in this dissertation, a model to explain the mech-

anism for regulating the enzymatic activity of MERS-CoV 3CLpro in the context of

polyprotein processing during virus infection is proposed (Figure 5.13).
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Fig. 5.13.: Proposed model for polyprotein processing in MERS-CoV regulated
by ligand-induced dimerization of MERS-CoV 3CLpro. MERS-CoV 3CLpro domains
I and II are together represented as the rectangular box, and domain III is represented as a
cylinder. The N- and C-termini are labeled, and the yellow cylinder labeled ‘S’ represents
a ligand that can be a peptide inhibitor, peptide substrate, or 3CLpro cleavage sites in the
polyprotein. Various steps required for the auto-release of 3CLpro from the polyprotein and
subsequent processing of the polyprotein cleavage sites are described in the main manuscript.
Suggested by our AUC and kinetic studies, shaded region (Steps 5 and 6) highlights the
additional steps MERS-CoV 3CLpro would undertake during polyprotein processing and
have been described in the kinetic model depicted in Figure 5.8.B.
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A number of in Vitro studies performed on SARS-CoV 3CLpro have established

the mechanism for 3CLpro auto-release from the polyprotein [43, 57, 58]. Based upon

these studies and our data on MERS-CoV 3pro, the polyprotein processing model for

MERS-CoV 3pro is proposed in Figure 5.13. The steps proposed for auto-release of

MERS-CoV 3pro from the polyprotein (Steps 1 to 4, Figure 5.13) have been adapted

from Chen et al. [57], where it is suggested that N-terminal auto-processing does

not require the formation of a mature 3CLpro dimer for SARS-CoV. Based on the

differences between the properties of SARS-CoV 3CLpro and MERS-CoV 3CLpro,

as highlighted in our studies, two additional steps (Steps 5 and 6, Figure 5.13) that

MERS-CoV 3CLpro may need to utilize for efficient polyprotein processing were added.

In Step 1, two immature MERS-CoV 3CLpro monomers in the polyprotein approach

each other and form an immature dimer via interactions between domain III, which

allows each of the monomers to insert their N-termini into the active site of the other

monomer. In Step 2, the N-termini are cleaved and the dimer with uncleaved C-

termini adopts a conformation similar to the mature dimer. Our observation of auto-

cleavage of the N-terminal (His)6-tag from MERS-CoV 3CLpro during expression in

bacterial cells supports Steps 1 and 2, where formation of an immature dimer capable

of auto-processing the N-terminus occurs. In Step 3, two dimers with uncleaved C-

termini approach each other, followed by insertion of the C-terminus from one dimer

into one of the active sites of the other dimer. In Step 4, the C-termini are cleaved

and mature dimer is released from the polyprotein.

For SARS-CoV, the 3CLpro dimer formed in Step 4 continues to process cleavage

sites in the polyprotein, effectively skipping Steps 5 and 6 (red arrow in Figure 5.13)

since the dimer is tightly associated. However, the high Kd value of MERS-CoV

3CLpro dimer suggests that the active and mature dimer may dissociate into inactive,

mature monomers in the absence of any ligand (Step 5). In order for polyprotein

processing to proceed, another step (Step 6) must occur. In Step 6, a substrate ‘S’,

e.g. one of the eleven polyprotein cleavage sites, would induce dimer formation and,

hence, activate catalysis and cleavage at the substrate recognition sites. Our AUC
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results and the kinetic activation studies performed in the absence and presence of

inhibitors support Steps 5 and 6 where the inactive but mature monomers require

binding of a ligand to undergo ligand-induced dimerization and formation of an active,

mature dimer that can then process the polyprotein cleavage sites.

5.5.2 Non-conserved amino acids of MERS-CoV 3CLpro may regulate the

dimer formation

Long-range interactions have been reported to modulate dimerization and activ-

ity of 3CLpro enzymes. Barrila et al. demonstrated that mutation of a conserved

amino acid S147, which is distant from the dimer interface, results in a total loss of

dimerization and enzymatic activity of SARS-CoV 3CLpro [87]. Although S147 does

not form direct interactions at the dimer interface, disruption of the dimer upon mu-

tation stems from the fact that S147 makes several interactions with other residues

involved in forming a hydrogen-bonding network within SARS-CoV 3CLpro. Site-

directed mutagenesis studies on domain III of SARS-CoV 3CLpro, where N214A and

S284-T285-I286/A mutants were characterized, revealed that in spite of being present

on an entirely different domain, these residues affect catalysis through a network of

residues undergoing correlated motions across the entire protease [88, 89]. Utilizing

3CLpro temperature sensitive mutants of MHV, Stobart et al. have also demon-

strated that second-site mutation physically distant from the temperature sensitive

mutation suppresses the temperature sensitive phenotype through long-range inter-

actions, thereby regulating 3CLpro enzymatic activity during polyprotein processing

and virus replication [91].

Our studies also suggest that long-range interactions among the non-conserved

residues can significantly alter the properties of MERS-CoV 3CLpro. A detailed anal-

ysis of non-conserved residues of MERS-CoV 3CLpro among β-CoV 2c members iden-

tified hotspots, including the N-terminal finger and helix, the active site region, the

inter-domain loop and the domain III, where these residues are clustered. Several
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studies done on SARS-CoV 3CLpro have demonstrated that amino acids from the N-

terminal finger, the N-terminal helix and domain III significantly contribute towards

dimer formation.

In addition to the direct interactions at the dimer interface, correct orientation

between the catalytic fold and domain III is also crucial for dimer formation. Wu et al.

showed that the most dramatic difference between the crystal structures of monomer

and ligand-bound dimer of R298A mutant of SARS-CoV 3CLpro was a 33° rotation

of domain III [47, 48]. This rotation results in a steric clash between domain III

from two monomers and would essentially block dimer formation. However, upon

addition of a ligand, domain III of the R298A mutant adopts the correct orientation

and results in the formation of a dimer structure. Similar to the SARS-CoV 3CLpro

R298A mutant, ligand binding into the active site of MERS-CoV 3CLpro monomer

possibly stabilizes the inter-domain loop conformation that maintains domain III in

the correct orientation for dimer formation. Most of the non-conserved residues within

domain III are present on the surface, and also are distant from the dimer interface.

These residues may be involved in providing the flexibility required for conformational

changes during the monomer to dimer switch.

Several amino acids have been identified in MERS-CoV 3CLpro that may con-

tribute to the dimer formation upon ligand binding. However, single amino acid

mutagenesis alone is unlikely to reveal significant differences in the dimerization prop-

erties. As demonstrated by Myers et al. [101] for ornithine decarboxylase, response

of single amino acid to ligand binding may be limited to only local conformational

changes and may not have significant contribution towards dimer stability. However,

local conformational changes in a network of residues may propagate larger effects

that stabilize dimer formation upon ligand binding. Analysis of the non-conserved

residues of MERS-CoV 3CLpro discussed here sets forth a framework to perform sys-

tematic single or multiple mutagenesis studies to gain insights into the mechanism

for ligand-induced dimerization of the enzyme.
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5.5.3 Development of 3CLpro inhibitors with broad-spectrum specificity

Insights into the mechanistic and structural similarities as well as differences be-

tween 3CLpro enzymes from different coronavirus subgroups are instrumental for the

development of 3CLpro inhibitors with broad-spectrum specificity. To evaluate the

broad-spectrum specificity of our peptidomimetic compounds, their inhibitory activ-

ity against 3CLpro from MERS-CoV, SARS-CoV, HKU5-CoV and HKU4-CoV was

determined. The inhibitory data and KI values clearly show that compounds 6 to

9 inhibit all the 3CLpro enzymes tested here. The X-ray structure of MERS-CoV

3CLpro in complex with compound 6 revealed that out of eight direct hydrogen bonds

formed between compound 6 and MERS-CoV 3CLpro, four of these hydrogen bonds

involve interactions with conserved structural elements of the peptide backbone of the

enzyme. Furthermore, the amino acids that form hydrogen bonds with compound 6

through side chain interactions are conserved in all the coronavirus 3CLpro evaluated

here, as well as 3CLpro from other β-coronaviruses like MHV, OC43 and HKU1. These

results suggest that canonical structural features exist among the 3CLpro enzymes that

can be exploited for structure-based design of broad-spectrum inhibitors.

For the non-covalent inhibitor compound 11, the X-ray structure reveals two direct

hydrogen-bonding interactions between the compound and MERS-CoV 3CLpro. One

of the hydrogen bonds forms with the side chain ε-nitrogen of conserved H166, and

the second involves the backbone NH of conserved E169. It is speculated that these

interactions remain conserved in other 3CLpro enzymes as well, since H166 and E169

amino acids are conserved in all 3CLpro enzymes. In fact, the crystal structure of

SARS-CoV 3CLpro in complex with an inhibitor similar to compound 11 (PDB ID:

4MDS) reveals that the interactions of the inhibitor with the amino acids H166 and

E169 are conserved.

The identification of 3CLpro-inhibitor interactions utilizing conserved elements of

the protein structure, including the peptide backbone and conserved side chains of
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active site residues, suggests that the development of broad-spectrum inhibitors of

coronavirus 3CLpro is feasible.

Our studies here demonstrate the unique properties of MERS-CoV 3CLpro among

β-CoV 2c members, evident from the requirement for a ligand to induce dimerization.

Although the peptidomimetic compounds containing a Michael acceptor group (for

example, compounds 6 to 9 ) induce dimer formation of MERS-CoV 3CLpro, the

irreversible nature of their reaction with the active site cysteine ensures complete

inhibition of the enzyme at stoichiometric ratios in a time dependent manner. On

the contrary, non-covalent peptidomimetic compounds (for example, compounds 10

and 11 ) inhibit the enzymatic activity of MERS-CoV 3CLpro only at high compound

concentrations. Based on these observations, compounds that irreversibly modify the

3CLpro active site may serve as better candidates for the development of inhibitors

for MERS-CoV 3CLpro.

5.5.4 Potential complexity in the development of MERS-CoV 3CLpro in-

hibitors as antiviral agents

Induced dimerization of MERS-CoV 3CLpro, as seen in the presence of pep-

tidomimetic inhibitors, has significant implications in the development of antiviral

agents targeting MERS-CoV 3CLpro. As a consequence of enzyme activation, the

development of an effective antiviral agent may necessitate the development of a

compound that can inhibit the MERS-CoV 3CLpro monomer and stabilize it with-

out inducing dimerization and/or inhibit the active sites of the dimer at low doses,

ensuring inactivation of both the active sites within the dimer. On the contrary,

it is also possible that the presence of an inhibitor could enhance the activity of

MERS-CoV 3CLpro to an extent that results in a complete loss of the temporal and

spatial regulation of the enzymatic activity, thereby disrupting viral genome repli-

cation. Ramifications of ligand-induced dimerization and activation of MERS-CoV
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3CLpro, as seen in the presence of lower concentrations of inhibitor, will need to be

further explored in virus infected cells.
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CHAPTER 6. CHARACTERIZATION OF DRUG-RESISTANT Y22C MUTANT

OF HKU1 3CLPRO

Parts of the data and text in this chapter have been included in a manuscript entitled

“Chimeric murine hepatitis virus identifies nsp5 protease (3CLpro) inhibitors active

against subgroup 2a beta coronaviruses HKU1 and OC43” and is currently under

preparation in collaboration with the Denison group at Vanderbilt University.

Compound CE-5 (Figure 6.2) is an ester-based small molecule inhibitor of multi-

ple 3CLpro enzymes [37, 59, 136]. CE-5 also displays antiviral activity and has been

shown to efficiently inhibit replication of SARS-CoV, MHV, HKU5-CoV and MERS-

CoV [37, 59, 136]. Our collaborators identified a mutation, Y22C, in HKU1 3CLpro

that renders the virus harboring this mutation resistance to inhibitor CE-5 (unpub-

lished data). It is interesting that emergence of mutation Y22C, which is structurally

distant from the active site of HKU1 3CLpro, confers drug resistance to the enzyme.

In order to explore the mechanism by which Y22C mutation confers drug resistance

towards CE-5, enzyme inhibition and reactivation assays were performed using puri-

fied enzymes. Based on the molecular dynamics simulation that were performed on

the wild-type and structural model of Y22C mutant enzymes, a potential mechanism

for drug resistance for this mutant is proposed.

6.1 Material and Methods

6.1.1 in vitro enzymatic assay and IC50 determination

Wild-type and Y22C drug-resistant mutant of HKU1 3CLpro were over-expressed

in E. coli BL21-DE3 cells and purified using the purification protocol described

in Chapter 2. Enzymatic efficiency (apparent k cat/KM) was determined at room-
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temperature and 37 °C by measuring the rate of hydrolysis of the FRET-based pep-

tide substrate as a function of substrate concentration varied in the range from 0 to

2 µM. Enzyme solution was prepared in assay buffer to a final concentration of 100

nM, and 5 × stocks of varying substrate concentrations were incubated separately at

either room temperature or 37 °C in the wells of a 96-well microtiter plate. After 15

minutes, the reaction was started by adding 20 µL of substrate to 80 µL of enzyme

solution. Increase in fluorescence over time was then monitored in a BioTek Synergy

H1 plate reader using an excitation wavelength of 485/20 nm and emission wavelength

of 528/20 nm. Enzymatic activity was converted from units of RFU/s to µM/min

using experimentally determined value of fluorescence extinction coefficient. Appar-

ent k cat/KM values were determined by calculating slope of the linear plot between

rate of enzymatic activity, normalized for total enzyme concentration, and substrate

concentration i.e. Rate/[Enzyme] versus [Substrate].

For IC50 determination, 100 × DMSO stocks of varying concentrations of com-

pound CE-5 (2.5 µM to 5 nM) were diluted hundred-fold in 80 µL of the enzyme

solution and incubated for 20 minutes at 37 °C. After 20 minutes, enzymatic activity

was measured as initial slope of the progress curve, obtained by initiating the reaction

with 20 µL of 10 µM substrate. Final enzyme and substrate concentrations in 100

µL reactions were 100 nM and 2 µM, respectively. Percent inhibition was plotted as

a function of inhibitor concentration, and IC50 values were calculated by fitting the

data to a dose-response curve using non-linear regression program GraphPad Prism.

6.1.2 Enzyme reactivation assay

To monitor complete hydrolysis of CE-5 from the active site and consequential

reactivation of the enzyme, enzymatic activity of both the wild-type and Y22C mutant

was measured after incubating in the presence of CE-5 over a period of 7 hours at 37

°C. 10 × enzyme stocks were incubated with either 2 M equivalents of CE-5 or DMSO

(uninhibited enzyme control) at 37 °C. Final DMSO concentration was 1%. 10 µL
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aliquots were taken at specific time points post incubation and mixed with 70 µL of

assay buffer. Reaction was initiated by the addition of 20 µL of 10 µM substrate.

Final concentrations of enzyme, CE-5 and substrate in the reaction were 100 nM, 200

nM and 2 µM, respectively. Enzymatic activity was measured as initial slope of the

progress curve for increase in fluorescence over time. Percent residual activity was

calculated as the percent activity of uninhibited enzyme at the same time point and

plotted as a function of time.

6.1.3 Molecular Dynamics Simulations and Analysis

To assess the influence of the Y22C mutation on HKU1 3CLpro, molecular dy-

namics (MD) simulations were performed using the Desmond Molecular Dynamics

tool [137] implemented in the Schrödinger software suite. All the molecular dynamics

simulations and subsequent analyses were performed by Dr. Laura Kingsley (Mese-

car Lab). The crystal structure, PDB ID: 3D23 [86], of HKU1 3CLpro was used for

all simulations with the co-crystalized ligand removed. For the mutant form of the

protein, the mutation was made using the Maestro [138] interface prior to protein

preparation.

In each case, the protein was prepared using the Protein Preparation Wizard

module in Schrödinger. In general, this process involves the assignment of bond

orders, addition of hydrogens, rebuilding of missing atoms or residues, and capping

terminal residues.

The systems were prepared for the Desmond MD run using the System Setup panel

in Maestro [137]. The systems were solvated in a cubic box of TIP3P water molecules

using a distance of 15 Å between the solute and edge of the solvent box. Ions were

added to neutralize the overall charge of the system. Each system was minimized

using the steepest descent method until a gradient threshold of 25kcal/mol/Å was

reached. Prior to the production run, the simulation was relaxed using the default

protocol in Desmond; 12 ps NVT ensemble simulation at 10K with the non-hydrogen
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atoms restrained, followed by 12 ps NPT ensemble simulation at 10K and 1 atm with

non-hydrogen atoms restrained, next the temperature was raised to 300K for a 12 ps

NPT ensemble simulation with the non-hydrogen atoms restrained, and finally a 24

ps NPT ensemble with no restraints. An additional equilibration step of 1ns was also

completed prior to the production run. A 10 ns production run was then completed

at a temperature of 300K using a timestep of 2 fs. Long-range interactions were

calculated using the Smooth Particle Mesh Ewald method and a cutoff of 9 Å.

The simulations were visualized using VMD, and the root mean squared devi-

ation (RMSD) of all backbone atoms and the backbone atoms at the site of the

mutation and immediately following (residues 22-30) were calculated using the Sim-

ulation Event Analysis panel in Schrödinger [137]. Distance measurements between

the oxygen and nitrogen atoms in the backbones of residues 22 and 25, respectively

were also completed using this module.

6.2 Results

6.2.1 Mechanism for drug-resistance of Y22C mutant of HKU1 3CLpro

To investigate the mechanism for drug-resistance of Y22C mutant, the wild-type

HKU1 3CLpro and the HKU1-Y22C mutant enzyme were expressed and purified using

the purification protocol described in Chapter 2. At room temperature, the wild-type

and Y22C mutant enzymes were equally efficient at hydrolyzing the peptide substrate

with apparent k cat/KM values of 7.5 ± 0.03 × 10−2 µM−1 min−1 and 7.4 ± 0.2 ×

10−2 µM−1 min−1, respectively. However, the enzymatic efficiency of Y22C (apparent

k cat/KM = 2.1 ± 0.2 × 10−2 µM−1 min−1) was noticeably lower than for the wild-type

(apparent k cat/KM = 10.3± 0.2× 10−2 µM−1 min−1) at the physiological temperature

of 37 °C. Significant difference in the enzymatic efficiencies of wild-type and Y22C

mutant at 37 clearly indicates that the active sites of these two enzymes are distinct.

Even subtle differences in the active site can manifest into altered interactions with

CE-5 inhibitor, thereby, conferring drug resistance to Y22C mutant.
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To test the mechanism of drug-resistance, the IC50 values of CE-5 for both the

wild-type and Y22C mutant of HKU1 3CLpro were determined at 37 °C (Figure 6.1).

IC50 values of CE-5 for wild-type and Y22C mutant were 115 ± 5 nM and 153 ±

12 nM, respectively (Figure 6.1), a statistically significant (P <0.01), increase of

33 % in the IC50 value for Y22C mutant over the wild-type enzyme. While this

might contribute towards drug-resistance, this subtle difference could not completely

explain the resistance phenotype. Since the IC50 values were determined following 20

minutes incubation of the enzymes with CE-5 inhibitor, difference in the IC50 values

only report differences leading up to the formation of thioester intermediate in the

ester hydrolysis reaction pathway (Figure 6.2).

Drug-resistance could also ensue from a faster release of the second hydrolysis

product after formation of the thioester intermediate Figure 6.2, thereby regenerat-

ing the active enzyme. To probe this possibility, the residual activity of enzymes

incubated in the presence of inhibitor CE-5 was measured in a time-dependent man-

ner over a period of seven hours at 37 °C (Figure 6.1). The wild-type enzyme required

more than 5 hours to restore 50 % activity. In contrast, the Y22C mutant 3CLpro re-

covered 50 % of its activity in less than 3 hours. After seven hours, Y22C completely

restores its activity, while only 60 % of the wild-type enzyme was reactivated. These

studies clearly suggest that in addition to increase in IC50 value, faster restoration

of the enzymatic activity via release of the second hydrolysis product is the likely

mechanism for drug-resistance of Y22C mutant.

To test for correlates of molecular activity, molecular dynamics simulations were

performed on the wild-type and Y22C mutant of HKU1 3CLpro. The Y22C mutation

occurs at the end of a β1-strand and is immediately followed by a loop leading to

a second β strand, which lies directly adjacent to the active site. In the wild-type

simulations the tip of this loop is held together by a hydrogen bond between the

nitrogen in the backbone of Y22 and the oxygen in the backbone of M25. Due to

this hydrogen bond the distance between the backbones of these two residues at the

tip of the loop is well maintained (Figure 6.3- inset). However, in the Y22C mutant
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Fig. 6.1.: Mechanism for drug-resistance of Y22C mutant of HKU1 3CLpro.
Top- IC50 values were determined from dose-dependent % inhibition of wild-type and Y22C
mutant after 20 minutes of incubation with CE-5 at 37 °C. * indicates the difference in IC50

values for Y22C and wild-type enzymes being statistical significant with a P-value <0.01.
Bottom- Time dependent restoration of the enzymatic activity in the presence of CE-5,
calculated as % residual activity of uninhibited enzyme control, is plotted for Y22C and
wild-type enzymes. Restoration of enzymatic activity results from complete hydrolysis and
release of CE-5 covalent intermediates from the active site.

enzyme, this hydrogen bond was found to be less stable and was found to break and

eventually reform during the simulation (Figure 6.3).

The presence or absence of this hydrogen bond directly influences the flexibility

in this region. When broken, the flexibility in this region increases (Figure 6.3-

RMSD inset) and M25 was found to adopt an alternative conformation that was not

observed in the wild-type simulations (Figure 6.3). This alternative conformation

opens a pocket near the active site that would otherwise be occupied by the side

chain of M25 (Figure 6.1, right panel- yellow dashed line).
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Fig. 6.2.: Reaction mechanism for hydrolysis of the ester-based inhibitor CE-5 by
HKU1 3CLpro. Catalytic cysteine (Cys145), compound CE-5 and reaction intermediates
are illustrated. Reaction steps 1-4 are labeled as well.

6.3 Discussion

Our collaborators identified a mutation within HKU1 3CLpro protease that con-

ferred resistance to the CE-5 inhibitor in the context of virus replication. Ester based

inhibitor CE-5 forms different covalent intermediates after reacting with the active

site cysteine. Different mutations in 3CLpro can confer drug-resistance through dif-

ferent mechanisms based upon the altered rate of formation of any of the covalent

intermediates. Our proposed mechanism for drug-resistance of Y22C mutant of HKU1

3CLpro is distinct from the drug-resistance mechanism of T26I/D65G mutant of MHV

3CLpro reported by Deng et al [136]. For T26I/D65G MHV 3CLpro mutant, an eight

fold increase in IC50 value over the wild-type enzyme was reported, suggesting that

the likely mechanism for drug-resistance is lowered affinity of the active site for CE-5

and/or slower formation of the thioester intermediate. Moreover, a comparison of
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Fig. 6.3.: Molecular dynamics simulation of HKU1 3CLpro wild-type and Y22C
mutant. Left- Active site of HKU1 3CLpro wild-type is shown with amino acid Y22,
catalytic cysteine C145 and another amino acid M25. Right- Active site of HKU1 3CLpro

Y22C mutant is shown with amino acid C22, catalytic cysteine C145 and another amino
acid M25. Inset- RMSD and distance measurements between the backbone nitrogen and
oxygen atoms of residues 22 and 25, respectively are shown.

restoration of the enzymatic activity after longer incubation period with the inhibitor

showed contrasting results between the T26I/D65G and Y22C mutant. Release of

the second hydrolysis product, measured as restoration of the enzymatic activity, was

slower for T26I/D65G mutant compared to the wild-type MHV 3CLpro as opposed

to a faster release that is observed for Y22C mutant of HKU1 3CLpro in our studies.

To gain insight into the structural implications of the Y22C mutant, MD simulations

of the wild-type and mutant forms of nsp5 were performed. Our simulations suggest

that the Y22C mutation may cause intermittent disruptions of the hydrogen bond

between the mutation site and M25 resulting in a local destabilization and “opening”

at the tip of the 3CLpro β1-sheet. When this hydrogen bond is broken, M25 is free

to adopt an alternative conformation (Figure 6.3-right panel) which opens a pocket

adjacent to the active site and exposes the active site to solvent. It is proposed that

the intermittent opening of this pocket allows water to penetrate the active site more

frequently than in the wild-type enzyme and increases the rate of inhibitor hydrolysis.

This is in agreement with our kinetic findings that the rate of inhibitor binding is
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approximately equivalent between the mutant and wild-type forms, but that the rate

of hydrolysis is increased in the mutant form.



192

CHAPTER 7. SUMMARY

Coronavirus 3-Chymotrypsin-like protease (3CLpro) is an attractive drug target for the

development of antiviral therapeutics. High sequence conservation in the vicinity of

active site among 3CLpro proteases from different coronavirus subclasses make them

an excellent target for the development of broad-spectrum antivirals. The overall

goal of this project was to investigate enzymatic and structural properties of multiple

3CLpro enzymes encompassing different coronavirus subclasses. Understanding the

determinants of structural and functional disparity between different 3CLpro enzymes

and the factors regulating these properties will aid in the design of broad-spectrum

inhibitors of 3CLpro enzymes.

Here, we report the successful expression and purification of six different coron-

avirus 3CLpro enzymes (SARS, MERS, OC43 HKU1, HKU5 and MHV). Since, the

N- and C-termini of 3CLpro play an important role in dimer formation, all the 3CLpro

enzymes discussed in this project were purified in their authentic form, without any

N- or C-termini modification, using 2-4 sequential chromatographic steps.

Using a custom synthesized FRET-based peptide substrate, we determined the

enzymatic efficiencies (apparent values of k cat/KM) for 3CLpro enzymes. In our assay

conditions, MHV 3CLpro and HKU1 3CLpro enzymes are the most efficient enzymes,

while 3CLpro from MERS-CoV is the least efficient enzyme.

Further investigations with MERS-CoV 3CLpro reveal that this enzyme is a weakly

associated dimer and primarily exists in a monomeric form in solution. These re-

sults suggest that lower enzymatic efficiency of MERS-CoV 3CLpro stems from a

weaker dimer formation. Biophysical and kinetic analysis performed in the presence

of substrate-mimetic compounds further revealed that MERS-CoV 3CLpro undergoes

significant ligand-induced dimerization. We propose that ligand-induced dimerization

can serve as a regulatory mechanism for 3CLpro activation during polyprotein process-
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ing in the context of virus replication. Since, structural and sequence analysis did not

reveal any differences that would clearly suggest the structural basis for weaker dimer

formation or ligand-induced dimerization of MERS-CoV 3CLpro, we further propose

long-range interactions between distant non-conserved residues as the regulator of

dimerization and activity of MERS-CoV 3CLpro.

Characterization of physiologically relevant temperature-sensitive (V148A) and

compensatory (H134Y) mutants of MHV 3CLpro further suggests that long-range

interactions can also influence structural stability of 3CLpro enzymes.

We also explored the mechanism for drug-resitant Y22C mutant of HKU1 3CLpro.

Y22 residue is distant from both the active site and dimer interface of HKU1 3CLpro.

Our studies suggest that distant mutation Y22C can directly influence substrate bind-

ing and catalysis, most-likely through long-range interactions.

Finally, despite the varying influences of long-range interactions on dimerization,

stability and catalysis of 3CLpro enzymes, we were able to identify several inhibitor

molecules that can inhibit multiple 3CLpro enzymes. Inhibitors identified in this study

may serve as excellent scaffolds for the development of next-generation compound

library with better potency and broad-specificity.
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