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ABSTRACT 

Tabatabaei Ghomi, Hamed. Ph.D., Purdue University, December 2015. Computational 

Modelling of Protein Fibrillation with Application to Glucagon. Major Professor: Markus 

A. Lill. 

 

 

A computational method to model the steric zipper of amyloid fibrils (FibPreditor) is 

developed. The method generates an ensemble of structures for the steric zipper by a 

number of geometric operations and presents the most energetically favorable candidates 

as models of steric zipper. The method is shown to successfully reproduce a number of 

experimentally determined fibril structures.   

FibPredictor is then applied to model the steric zipper of glucagon fibrils. Phosphate ester 

derivatives of glucagon are designed based on these models as soluble and stable 

prodrugs or active alternatives for glucagon.  

A number of penta-peptide chaperones are also designed as excipients to delay glucagon 

fibrillation. Although penta-peptides can delay glucagon fibrillation, they are less 

effective compared to phosphorylation of glucagon.     
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CHAPTER 1. INTRODUCTION 

1.1 Computational Modelling of Amyloid Fibrils 

Amyloid fibrils have been associated with many important pathological conditions such 

as Alzheimer’s disease and type II diabetes. Amyloid fibrils also pose an important 

challenge in peptide and protein drug delivery as a major degradation pathway and have 

gained importance as bio-nanotubular scaffolds and triggerable drug delivery platforms 1–

6. The rational design of drugs that inhibit fibrillation, the design of stable formulations of 

peptide and protein drugs and the development of bio-nanotechnological fibril devices all 

depend on understanding the structure of amyloid fibrils1. However, experimental 

amyloid fibril structure determination is difficult 7. Computational method thus are 

specifically useful to predict the structure of amyloid fibrils and study their dynamics and 

energetics8.  

There have been a few successful attempts to generate de novo computational models for 

some specific amyloid fibrils 9–11, many computational studies on the mechanisms of 

fibril formation8, and many methods to predict aggregation-prone regions and amyloid 

forming sequences8,12–14.  Nonetheless, a method for modelling any class of amyloid 

fibrils starting from its sequence has been lacking until now. In this dissertation, a 

computationally fast and general computational procedure, FibPredictor, is proposed to 

generate structural models for any amyloid fibril, starting from its sequence. 
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1.2 Glucagon Fibrillation 

Glucagon is a 29-residue peptide hormone secreted by pancreatic α-cells which plays an 

important role in glucose metabolism. Currently, it is used for the emergency treatment of 

hypoglycemia and as a muscle relaxant for endoscopy procedures 15. Due to poor water 

solubility of this peptide in neutral pH it has to be solubilized in acidic pH. However, it is 

not stable even in acidic solution and comes out of solution forming irreversible, 

insoluble amyloid fibrils. Amyloid fibrils are highly stable protein constructs formed by 

long β-sheets known as β-spines which interact side-by-side by entanglement of their side 

chains forming a “steric zipper” 16,17.  

Glucagon amyloid fibrils formation compromises the potency of drug, generates toxic 

effects and increases solution viscosity which causes difficulty in delivering the 

formulation using an infusion pump or injection pen 15. Because of these solubility issues, 

glucagon is currently formulated as a lyophilized powder that is reconstituted just prior to 

administration, and any leftover solution is discarded immediately 18. The inconvenience 

and the risk of needle exposure and dosing error associated with the current formulation 

has led to underutilization of glucagon despite its safety and efficacy for treatment of 

insulin-induced hypoglycemia 18. Moreover, glucagon solubility issues has hindered 

development of closed loop artificial pancreas device. An artificial closed loop pancreas 

device can administer insulin and glucagon automatically in response to fluctuations in 

blood glucose and can significantly improve quality of life for insulin dependent diabetic 

patients 15. It is impractical to use the lyophilized formulation for an artificial pancreas, 

which requires that an adjustable amount of glucagon solution be administered 

instantaneously in response to fluctuations in blood glucose. Therefore, formulating 
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glucagon as stable solution not only promotes its utilization for the current uses but also 

is a major step for expanding glucagon’s therapeutic benefits. Nonetheless, in spite of 

many attempts to solubilize glucagon and inhibit glucagon fibrillation such as modifying 

glucagon’s chemical structure 19,20, controlling solution conditions (e.g., pH, ionic 

strength) 21–24 and using stabilizing additives (e.g., cyclodextrins) 25, to date a stable 

solution formulation of glucagon is not yet available in clinic.  

Stable phosphorylated glucagon derivatives are introduced in this dissertation as pro-

drugs or active alternatives to glucagon which are soluble in neutral pH and do not show 

any fibrillation for at least for one month. Penta-peptide chaperones are also tested as an 

alternative method to delay glucagon fibrillation. 

1.3 Outline 

Chapter 2 presents penta-peptide chaperones to delay glucagon fibrillation. Although 

penta-peptides delay glucagon fibrillation, their effects are limited compared to 

alternative approaches, such as the one presented in chapter 5. Chapter 3 presents a 

number of statistical potentials for protein structure prediction. One of these statistical 

potentials is then used in the software presented in chapter 4. Chapter 4, presents a 

computational method for modelling the steric zipper of amyloid fibrils. This 

computational method is applied in chapter 5 to design phosphate ester derivatives of 

glucagon as stable and soluble pro-drugs or active alternatives to glucagon.  

I have performed the computational studies in Dr. Markus A. Lill’s lab, and the 

experimental part in Dr. Elizabeth M. Topp’s lab.  
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CHAPTER 2.  PENTAPEPTIDE CHAPERONES TO INHIBIT GLUCAGON 

FIBRILLATION 

2.1 Introduction 

This chapter presents small peptide chaperones, to inhibit glucagon fibrillation. Small 

peptides have previously used in other cases of problematic amyloid β-fibrils and a 

number of natural and non-natural peptides have been shown to successfully inhibit 

fibrillation 26–29. We go in the same direction and design small peptide chaperones to 

inhibit glucagon fibrillation. Due to the particular restrictions in case of glucagon such as 

high hydrophobicity and unavailability of the atomic structure for the fibril, we use a 

design approach which differs from that of our predecessors. The peptides introduced in 

this paper, successfully delayed glucagon fibrillation in spite of their simple structure and 

small size. These peptides provide a starting point for further investigation of small 

peptide chaperones for inhibiting β-fibril formation. 

 

2.2 Materials and methods 

2.2.1 Peptide design 

A few natural and non-natural small peptide chaperones have shown to inhibit β-fibril 

formation in Alzheimer amyloidosis. The natural peptides were designed using the 

hydrophobic fragment of the target fibrillating protein as template. Proline residues were 

then incorporated into the template sequence for their known β-breaker properties due to
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 their special geometric and hydrogen bonding characteristics 26–28. Although this design 

approach is shown to be successful in other cases, it cannot be used to design peptides to 

inhibit fibrillation of our target, glucagon. Glucagon hydrophobic region is too 

hydrophobic and not soluble at all. Incorporation of proline residues would only 

aggravate this water insolubility resulting in insoluble peptide chaperones. The rational 

structure-based design approach applied in case of previous non-natural peptides that 

inhibit fibrillation is also not possible in the case of glucagon. Those non-natural peptides 

were designed specifically to interact with the steric zipper region of their target fibrils 

and prohibition of zipper formation inhibited fibrillation in those cases 29. This design 

approach depends on availability of atomistic details of the zipper structure which is not 

at hand for glucagon. Due to the challenges of β-fibril structure determination, a three-

dimensional atomistic structure of glucagon fibril is not yet available 7,30.  

Since the template-based and structure-based design approaches were not possible in case 

of glucagon, we aimed at global screening of peptides for their ability to interfere with 

glucagon fibrillation. In order to limit the screening set, we focused on penta-peptides, 

the shortest natural peptides with known fibrillation-inhibition properties 26. However, 

even for penta-peptides, there are 205 = 3,200,000 candidates, and a comprehensive 

screening was impractical. Fractional factorial design was used to design a small set of 

peptides covering the whole penta-peptide space. Fractional factorial design approach has 

previously used for designing small but information-rich sets of peptides 31,32 and 

theoretically, a set designed in this way provides a fast and cheap way to screen the 

whole peptide space for hits. 
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Two numerical descriptors for amino acids (tciz1 and tciz2) introduced by Muthas et al 32 

were used. The two descriptors are the first two principle components of a number of 

different descriptors for amino acids. These two descriptors  have been shown to capture 

most of the variance in peptide sets and are calculated for many natural and unnatural 

amino acids 32. There are two sets of these variables, one calculated based on only amino 

acids, the other calculated based on a larger set of natural, unnatural and derivatized 

amino acids 32. The latter set was used due to its larger scope and extendibility to 

unnatural amino acids in later studies.  

Describing each amino acid with two descriptors, each penta-peptide was described with 

ten residue-position-specific variables (table 1). A 210-6 fractional factorial design table 

was used (obtained from 33) (table 1). This fractional factorial design table assumes two 

levels for each descriptor, and hence the values for the descriptors should be discretized 

in two levels. As the current study was focused on natural peptides, the positivity or 

negativity of the variable calculated based on both natural and unnatural amino acids 

could not be used for discretizing the values into two levels. Therefore, the average value 

of the tciz1 and tciz2 for natural amino acids was set as the zero point and all the 

descriptors were transformed accordingly. The negativity and positivity of the 

transformed values was the criteria to discretize the variables in two levels: positive or 

negative.  

Having two descriptors each with two discretized levels, amino acids were categorized 

into four classes: positive-positive, negative-positive, positive-negative and negative-

positive (table 2). Representative amino acids were chosen to represent each category 

(table 2). T (negative-negative), F (positive-negative) and Q (negative-positive) were 
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shown to be important in glucagon fibrillation in our MD simulation studies 34 and thus, 

were chosen to represent their corresponding categories. H was chosen for the (positive-

positive) class as it can participate in various types of interactions and its interaction 

versatility may facilitate the peptide-glucagon interaction. 

Substituting the representative amino acids in table 1, we obtained our set of peptides 

(Table 3). From the sixteen peptides of this set, H6 and H11 were excluded due to their 

very high insolubility which interferes with the experiments. 

 

2.2.2 Sample Preparation 

 

Glucagon at 1.6 mg/mL in 3.2 mM HCl, 0.9% NaCl (w/v) (pH 2.5) was centrifuged at 

14,000 rpm for 5 min and filtered through 0.1 μm filters to eliminate any insoluble 

particles. For water-soluble peptides (h1, h3, h4, h8, h9, h10, h12, h13, h14, h15 and 

h16), 100 μL of the filtered glucagon sample was quickly transferred to a 96-well black 

flat bottom microtiter plate in duplicate or triplicate depending on peptide availability and 

incubated with 40 μL of 10 mg/ml solution of peptide in buffer and 50 μM ThT final 

concentration. For peptides with less water-solubility (h2, h5, h7), 10 μL of 40 mg/ml 

solution of peptide in DMSO was used. The final volume was adjusted to 200 μL using 

the buffer as mentioned above. Two control triplicates of glucagon and ThT without 

peptide, one without and the other with 10 μL DMSO were also prepared as standards. 

Samples of peptides with ThT but without glucagon were also prepared as negative 

controls as described above. Buffer was used to adjust the final volume of the control 

samples to 200 μL. The plate was sealed with a clear sealing tape. Fluorescence 
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measurements were carried out in a BioTek Synergy 4 Multi-Detection microplate reader 

(BioTek Instruments, Winooski, VT) as described below. 

 

2.2.3 ThT Assay 

 

The fluorescence intensity of ThT was measured over 24 hours every 15 minutes at 23°C 

with 5 s automixing before each reading with the excitation and emission wavelengths set 

to 440 nm and 482 nm. Fluorescence signals exceeding 100,000 (overflow) were re-set to 

100,000 for graphing purposes. 

 

2.2.4 Intrinsic Fluorescence Assay 

 

The excitation and emission wavelengths were set to 295 nm and 355 nm, respectively, to 

look at the fluorescence of Trp25. Peptides do not have tryptophan in their sequence and 

therefore do not interfere with glucagon signal. Measurement was carried out for 24 h at 

23°C at 15-min intervals preceded by 5 s automixing before each reading. Very high 

fluorescence signals exceeding 100,000 (overflow) were re-set to 100,000 for graphing 

purposes. 

 

2.2.5 Partial Least Square Regression 

 

Partial least square regression (PLSR) is a common linear modelling technique for QSAR 

modelling and is superior to multiple linear regression (MLR) due to its ability to build 
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reliable models with numerous collinear and noisy variables. In this method, latent 

independent and dependent factors are constructed aiming at maximizing correlation 

between the variations of the independent and dependent ones 35. 

2.2.6 MD Simulations 

Initial structures of the N-terminal (residues 1–8) and C-terminal (residues 22–29) 

fragments were generated from reported NMR structures of glucagon (Protein Data Bank 

(PDB) ID: 1KX6)36. Three different models were selected as starting configurations for 

MD simulations, and are referred to as models 1, 5, and 10 in keeping with the 

numbering in the ensemble of NMR models in the original PDB file. In simulations of the 

interactions of two molecules of either the 1–8 fragment or the 22–29 fragment, the 

molecules were initially placed close to one another with arbitrary relative initial 

orientation, maintaining at least a 4 Å distance between any two atoms in the two 

fragments. Combining the conformations of the three NMR models for each fragment, 

three starting configurations were generated for each of the N-terminal and C-terminal 

fragment simulations. Specifically, starting configurations for both the N-terminal 

fragment (1, 2, 3, 4, 5, 6, 7 and 8) and the C-terminal fragment (22, 23, 24, 25, 26, 27, 

28 and 29) simulations were: model 1 with model 5, model 1 with model 10, and model 5 

with model 10. All simulations were performed on capped peptides (i.e., N-terminus 

acetylated and C-terminus amidated) and the side chains of His residues in the N-terminal 

fragments were doubly protonated to represent the most likely state in solution at pH 2.5. 

To simulate the interactions of peptide fragments, the molecules were solvated in a 

preequilibrated octahedron of TIP3P water molecules, with a minimum distance of 10 Å 

between the octahedron boundary and solute atoms 37. Production simulations were 
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performed in an NPT ensemble using the AMBER-99SB force field with periodic 

boundary conditions and an integration time step of 2 fs, applying the particle mesh 

Ewald method to treat electrostatic interactions38. All bonds involving hydrogen atoms 

were constrained using the SHAKE algorithm 39 and van der Waals interactions were 

truncated at a distance of 10 Å. A Langevin thermostat 40 with collision frequency of 1 

ps−1 was used to maintain the temperature at 298 K, and pressure was maintained at 1 atm 

using isotropic position scaling with a pressure relaxation time of 2 ps. The N-terminal 1–

8 fragment simulation was neutralized by the addition of one Cl− ion per fragment. In a 

simulation, the water molecules with constrained peptide(s) first were energy minimized. 

The system was then gradually heated from 0 K to 298 K over a 20 ps MD simulation 

period. The system was then equilibrated at constant temperature and pressure for 200 ps 

and final production runs performed for 100 ns. Snapshots were saved every 0.05 ns, 

resulting in 2000 snapshots for each production simulation. 

A contact between residues from two molecules was identified if a distance <5 Å was 

observed between any pair of atoms. Only contacts formed between two different peptide 

molecules were analyzed, and not those within a single strand. All MD snapshots of the 

simulations were considered for contact analysis. The frequencies of observing contacts 

were first analyzed for the three separate simulations of two molecules, and then 

averaged over all three simulations to obtain a single mean contact frequency. The α-

helix content of each snapshot was analyzed using the DSSP software 41,42. In simulations 

of two interacting peptides, snapshots were analyzed separately for each peptide. For 

each amino acid, the percentage of snapshots in which it was part of an α-helix 

substructure was computed for all simulations, and the mean structural content of the 
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various single and two peptide molecule(s) simulations was computed. Molecules were 

visualized in PyMOL 43–45 and the graphs were generated using Python and matplotlib 46. 

2.3 Results 

2.3.1 Glucagon interactions by MD simulation 

MD simulations were performed to provide insight into structural changes and early 

interactions involved in glucagon fibrillation. The α-helix content of fragment 1–8 was 

negligible in simulations of either one or two molecules, the latter allowing for effects of 

interaction on secondary structure (Figure 1, A and B). In contrast, the C-terminal 

fragment 22–29 formed α-helices in both one- and two-molecule simulations (Figure 2, C 

and D), with greater α-helix content in simulations of two molecules. To mimic the 

experimental conditions, MD simulations were repeated in the presence of 0.9% NaCl for 

a system containing two N-terminal fragments (model 1 with model 10) and two C-

terminal fragments (model 1 with model 10). The simulations were performed for 15 ns 

and compared to the first 15 ns of the salt-free simulations. Though a slight increase in 

secondary structure was observed in the presence of salt, the difference in the α-helix 

content was minimal (data not shown). 

In light of the experimental evidence that C-terminal interactions are involved in the early 

stages of fibrillation34, we aimed to identify the critical contacts for the C-C-terminal 

interactions. When analyzing the contacts between amino acids, the C-terminal fragment 

22–29 showed at least one contact in >94% of snapshots for all models tested. To 

highlight the preferred side-chain interactions, the 10 most frequently observed contacts 

averaged from three independent simulations of two molecules of the C-terminal 

fragment 22–29 were identified (Figure 2). Hydrophobic interactions between amino 
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acids are most frequently observed and account for eight of the 10 most frequent 

interactions. In particular, Trp-25 participates in four of the 10 most frequent interactions, 

i.e., with Phe-22, Val-23, Leu-26, and Met-27. Amino acids adjacent to Trp-25 also 

participated in hydrophobic contacts. Phe-22, for example, is engaged in five out of the 

top 10 most frequent interactions, four with hydrophobic or aromatic residues. An 

aromatic T-shaped interaction between Phe-22 and Trp-25 is also among the most 

frequent contacts34.
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Figure 1 Simulations  of  α-helix  content  of  glucagon-derived  peptides:  (A)  a  single 

molecule  of  fragment  1-8,  (B)  two  molecules  of  fragment  1-8,  (C)  a  single  

molecule  of fragment 22-29 and (D) two molecules of fragment 22-29. The α-helix 

content for each amino acid in the fragment is shown. 
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Figure 2 Identification of critical contacts for the C-terminal interactions in glucagon 

fibrillation under acidic conditions. The 10 most frequent contacts observed in 

simulations of two molecules of glucagon fragment 22–29 are shown. Each line 

represents one of the 10 interactions, which are ordered from red to blue based on 

frequency. The amino acid residues are indicated by their single letter code with residue 

numbers on the left. 
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2.3.2 Glucagon Fibrillation 

The ThT fluorescence signal increases upon interaction of ThT molecules with an 

amyloid β-fibril and allows following fibrillation. Tryptophan fluorescence signal drops 

as tryptophan residues get buried upon peptide aggregation and thus, provides a second 

complementary method to conform ThT results 34. ThT and tryptophan intrinsic 

fluorescence of glucagon were followed over 24 hours in presence and absence of each 

peptide, in order to investigate the fibrillation inhibitory effects of the peptide set. 

ThT fluorescence graphs (Figure 3) show that glucagon fibrillation starts with a lag time 

followed by a sudden log phase and ends reaching a plateau. This is a known pattern and 

is previously reported and explained by us and others 34,47. This pattern shows that once 

the fibrillation passes the lag time, it fast goes to completion. Any effort to stop or reverse 

the fibrillation is better to be focused on elongation of the lag time. Tryptophan 

fluorescence graphs (Figure 1), although less clearly, show a general pattern similar to 

ThT: a lag time and a sudden drop indicating a fast aggregation. However, the tryptophan 

fluorescence patterns are less clear and definitive compared to ThT fluorescence graphs. 

Nonetheless, the sudden drop in the tryptophan fluorescence, if identifiable, happens 

usually close to the time that ThT fluorescence surges and verifies the lag time identified 

by ThT fluorescence.  

Although the lag time-log phase-plateau pattern is generally preserved across DMSO- 

and water-soluble peptides, the shape of the graphs are slightly different between these 

two groups. The difference is most salient in the standard glucagon samples with no 

peptide, where the DMSO containing standard show a less definitive plateau compared to 

the other standard not containing DMSO. Also the lag time for the glucagon standard is 
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shorter in presence of DMSO compared to the no DMSO standard sample. This indicates 

that DMSO interferes with the fibrillation process and make it slightly faster. None of the 

peptides show fibrillation of their own (graphs not shown) and the glucagon containing 

samples were the only ones which showed fibrillation. 

Although the general patterns of ThT and tryptophan fluorescence graphs were preserved 

in presence or absence of peptides, the lag time varied significantly in presence of 

peptides as discussed in detail in the next section. 

2.3.3 Fibrillation lag time extension 

Figure 4 shows the lag time difference between the standard glucagon without any 

peptide and glucagon in presence of each of the peptides. All of the peptides studied 

affected the fibrillation lag time and except H7, all of them elongated the lag time. The 

most effective peptide H8 (QFFTQ) elongated the fibrillation lag time for more than 700 

minutes resulting in a total lag time of nearly 1000 minutes. H8 is water soluble and its 

solubility in addition to its effectiveness make it a promising hit for glucagon fibrillation 

inhibition. 

There is considerable variation between the effects of different peptides on the fibrillation 

lag time. This variation shows the lag time elongations are not due to general presence of 

any peptide, but are in fact the sequence-specific. Note that the sequence of these 

peptides are composed of only four different residues and the variation between the 

sequences is very limited. Nonetheless, even this limited sequence variety results in 

considerable divergence in fibrillation inhibitory effects. Variation in inhibitory effects of 

the DMSO-soluble peptides shows the effect is not reducible to simple physical 
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properties such as hydrophobicity and supports sequence-specificity of the inhibitory 

effects.  
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Figure 3 ThT and Tryptophan fluorescence over time. The dotted y=4000 line indicates 

the cutoff for end-of-lag-time identification. 
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Figure 3 continued 
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Figure 3 continued 



21 

 

2
1
 

 

Figure 4 The glucagon fibrillation lag time difference between the samples containing 

various peptides and the standard no-peptide samples. Bars related to water soluble and 

DMSO soluble peptides are colored in grey and white respectively. Water soluble and 

DMSO soluble peptides were compared with their corresponding standard samples. 
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Figure 5 Root mean squared error of the predicted lag time differences with experimental 

values vs number of factors in the PLS model 
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Figure 6 Measured lag time difference vs predicted lag time difference 
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Figure 7 Distribution of calculated lag time differences with standard for all possible 

penta-peptides 
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2.3.4 PLS model 

Figure 5 shows the root mean squared error between the predicted lag time differences 

with standard and the experimental measurement (rmsep) vs the number of latent 

independent factors included in the PLS model. The figure shows improvement in rmsep 

up to three factors. Figure 6 shows the predicted lag time difference with standard vs the 

measured values for the PLS model with three latent factors. Based on these results the 

PLS model with three latent factors was used to predict the lag time difference with 

standard for all possible penta-peptides. The results are shows in Figure 7. According to 

these predictions, there are many candidate penta-peptides that can delay fibrillation, and 

the study suggests hit penta-peptides, such as QFFTQ. However, the maximum delay will 

be limited to around two thousand minutes (≈33 hours) which is not enough for practical 

uses of glucagon.  

2.4 Conclusions 

Protein aggregation poses an important challenge for therapeutic formulation of proteins 

48. Glucagon fibrillation is an example where the therapeutic benefits of a peptide drug is 

significantly limited by low stability of its formulation. Many attempts to stabilize 

glucagon have not yet resulted in its soluble formulation in clinic. This studies the 

potential of small peptide chaperones, more specifically penta-peptides, to inhibit 

glucagon fibrillation. We also suggested a hit penta-peptide sequence: QFFTQ. The 

fibrillation inhibitory effects of these peptides is sequence-specific. This opens a path 

towards developing more effective and more potent glucagon fibrillation peptide 

inhibitors. However, the limited delay predicated for these penta-peptides is not enough 
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to solve glucagon formulation problem. Other paths (such as the chemical modification 

of glucagon presented in the next chapters) should be pursued.  

The methods and the results presented in this paper have implications even beyond 

glucagon fibrillation. Amyloid β-fibrils are involved in many serious pathological 

conditions and are important drug targets 49. The present work and its predecessors show 

that small peptide chaperones have the potential to successfully inhibit amyloid β-

fibrillation and underscore the importance of small peptide chaperones for drug 

development. However, peptide drug design is challenging due to the combinatorially 

large number of candidate sequences. The peptide design approach used in this study can 

provide a general guideline for the initial steps of designing small peptide libraries. 
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Table 1 210-6 fractional factorial design table; each row corresponds to one peptide 

Amino acid 1  Amino acid 2 Amino acid 3 Amino acid 4 Amino acid 5 

tciz1 tciz2  tciz1 tciz2 tciz1 tciz2 tciz1 tciz2 tciz1 tciz2 

-1 -1  -1 -1 -1 -1 -1 -1 +1 +1 

+1 -1  -1 -1 +1 -1 +1 +1 -1 -1 

-1 +1  -1 -1 +1 +1 -1 +1 -1 -1 

+1 +1  -1 -1 -1 +1 +1 -1 +1 +1 

-1 -1  +1 -1 +1 +1 +1 -1 -1 +1 

+1 -1  +1 -1 -1 +1 -1 +1 +1 -1 

-1 +1  +1 -1 -1 -1 +1 +1 +1 -1 

+1 +1  +1 -1 +1 -1 -1 -1 -1 +1 

-1 -1  -1 +1 -1 +1 +1 +1 -1 +1 

+1 -1  -1 +1 +1 +1 -1 -1 +1 -1 

-1 +1  -1 +1 +1 -1 +1 -1 +1 -1 

+1 +1  -1 +1 -1 -1 -1 +1 -1 +1 

-1 -1  +1 +1 +1 -1 -1 +1 +1 +1 

+1 -1  +1 +1 -1 -1 +1 -1 -1 -1 

-1 +1  +1 +1 -1 +1 -1 -1 -1 -1 

+1 +1  +1 +1 +1 +1 +1 +1 +1 +1 
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Table 2 Four classes of amino acids based on the two-level discretization of tciz1 and 

tciz2 variables. 

tciz1  tciz2  Amino acids 

-1 -1 A, T, S, C 

+1 -1 V, L, I, M, F, 

W 

-1 +1 N, D, Q, E 

+1 +1 K, H, R, T 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 

 

2
9
 

Table 3 training set; each row corresponds to one peptide 

Peptide code aa 1 aa2 aa3 aa4 aa5 

H1 T T T T H 
H2 F T F H T 
H3 Q T H Q T 
H4 H T Q F H 
H5 T F H F Q 
H6 F F Q Q F 
H7 Q F T H F 
H8 H F F T Q 
H9 T Q Q H Q 

H10 F Q H T F 
H11 Q Q F F F 
H12 H Q T Q Q 
H13 T H F Q H 
H14 F H T F T 
H15 Q H Q T T 
H16 H H H H H 
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CHAPTER 3. ARE DISTANCE-DEPENDENT STATISTICAL POTENTIALS 

CONSIDERING THREE INTERACTING BODIES SUPERIOR TO TWO-BODY 

STATISTICAL POTENTIALS FOR PROTEIN STRUCTURE PREDICTION? 

3.1 Introduction 

Protein structure prediction still represents a significant challenge to computational 

biophysics. Recently developed statistical scoring functions have proven to be a valuable 

tool for identification of the native structure among a typically large set of candidate 

structures 50,51. These potentials are typically based on the assumption that the total free 

energy of a protein structure can be computed by the sum of all pairwise free energies 

(∆𝐺(𝑟𝑖𝑗))  

 

 ∆𝐺𝑡𝑜𝑡 = ∑ ∆𝐺(𝑟𝑖𝑗)

𝑖<𝑗

 Eq. 1  

 

where i and j are either interacting bodies e.g. individual atoms of the protein or 

representative points for each amino acid, e.g. the Cα atom etc. The pairwise free 

energies are often calculated based on the pairwise distribution function (P(rij)) between a 

specific pair of atom types or amino acids, i and j  

 𝑃(𝑟𝑖𝑗) =  
1

𝑍
exp(

−∆𝐺(𝑟𝑖𝑗)

𝑅𝑇
) Eq. 2  
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where Z is the partition function, R is the gas constant and T is the temperature. 

Therefore, the inverse Boltzmann equation used to calculate ∆𝐺(𝑟𝑖𝑗) would be:  

  

 ∆𝐺(𝑟𝑖𝑗) = −𝑅𝑇 𝑙𝑛 𝑃(𝑟𝑖𝑗) − 𝑅𝑇 𝑙𝑛 𝑍 Eq. 3  

 

Typically ∆𝐺(rij)  (the potential of mean force (PMF)) is computed with respect to a 

reference state R representing a hypothetical system with uniform and unbiased 

interactions between the different atom types or amino acids. The relative free energy 

between a pair of atoms or residues i and j with respect to this reference state is then 

computed by   

 ∆𝐺(𝑟𝑖𝑗) =  −𝑅𝑇 ln
𝑃(𝑟𝑖𝑗)

𝑃𝑅(𝑟𝑖𝑗)
− 𝑅𝑇 ln

𝑍

𝑍𝑅
 Eq. 4  

 

The pairwise distribution function can be computed by measuring the frequency of pairs 

of atom types at a given distance using databases of experimentally solved protein 

structures 52. An early example of such potential functions is developed by Samudrala 

and Moult. Their function models potentials of atomistic interactions based on the 

pairwise distance between two interacting bodies 51.  

The underlying assumption of Eq. 1, that the total free energy of a protein structure can 

be computed by the sum of all pairwise free energies, however, is not physically justified. 

More precisely, the exact free energy of a system is determined by the statistical 

mechanical relationship between the N-body distribution function and the free energy51. 
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 ∆G(r1, … , rN) =  −kBT ln P(r1, … , rN) − kBT ln Z  Eq. 5  

 

      Thus Eq. 1 neglects correlation effects between multiple atoms or amino acids in a 

protein. In order to model these higher order interactions a number of multi-body contact 

based statistical potentials have been developed. Most of these statistical potentials are 

based on Delauney tessellation - a geometric technique to identify the neighboring bodies  

53–57, although some other geometric approaches have also been investigated  58. To the 

best of our knowledge none of these multi-body potentials look into the details of 

distance between interacting residues. Also they usually use very coarse-grained 

representations of interactions e.g. interaction between residues and do not model 

interactions between various atom types. Based on this discussion, we asked the question 

if we can model details of three-body interactions using distance dependencies between 

pairs of pairwise interactions between atomistic interacting bodies. More precisely we 

hypothesized that considering the presence of a third body adds valuable information to 

statistical potentials based on interaction pairs. This additional information of multi-body 

interactions may improve the scoring process and consequently the identification of 

native protein structures.  

      The importance of three-body terms in determining the stability of globular forms of 

polymers has been established long ago, and by analogy their inclusion in statistical 

potentials for protein native structure detection has been conjectured 59.  The importance 

of multi-body interactions in protein folding has been shown independently using other 

computational methods 57,60, which makes the idea of building a multi-body distance-

based statistical potential for protein structure determination seem even more promising. 
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In this study, we generated a distance-based quasi-three-body statistical potential for 

atom-based interacting bodies and analyzed if we can identify dependence between 

multiple pair-wise interactions. We investigated the effect of the distance from a third 

body on the pairwise distance of two interacting partners. 

     We developed statistical potentials describing the simultaneous interaction of three 

bodies that represent important physical elements of the protein and used it to 

differentiate native protein structures from decoys. Those elements characterize either 

physicochemical properties of the protein, which we call the physicochemical elements 

throughout the paper (hydrogen-bond acceptors and donors, negatively and positively 

charged, hydrophobic, and aromatic groups), Amber atom types, or amino acid Cα atoms. 

We assumed that the presence of the third interacting element affects the pairwise 

distribution function of the other two interacting elements by altering the energetically 

optimal distance between the two interacting bodies. We also used three simple counting 

scoring functions (counting hydrophobic centers or Cα's within a certain distance from 

each other and counting the number of hydrogen bonds) in order to investigate if using 

more sophisticated and computationally costly methods perform better compared to very 

simplistic approaches.  

In order to assess the performance of different scoring functions, we tested the functions’ 

ability to separate decoys from native protein structures.  Three different decoy sets were 

utilized to evaluate the performance of the scoring functions for protein structure 

prediction 61. The performances of our quasi-three-body scoring functions were compared 

to existing method including FoldX, DFIRE2, dDFIRE, GOAP, Rosetta, and simple 

counting methods. 
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3.2 Materials and Methods 

3.2.1 Assigning the properties to proteins 

Statistical potentials were derived between different elements characterizing the 

physicochemical and structural properties of a protein structure. Physicochemical 

properties of a protein were defined as hydrophobic (H), hydrogen-bond donor (D), 

acceptor (A), and aromatic (R) properties and formally charged functional groups (P for 

positively charged, N for negatively charged,). For a given protein, the physicochemical 

elements were assigned as follows: Hydrophobic elements were assigned to carbon and 

sulfur atoms that are not bonded to an oxygen or nitrogen atom. For assigning hydrogen 

bond donors and acceptors, hydrogen atoms were added to the protein structure using 

Open Babel 2.3.1. Hydrogen bond acceptor and donor physicochemical elements were 

included in the generation of statistical potentials only if they form intra-protein hydrogen 

bonds, discarding unpaired hydrogen bonds. The following criteria were used to define 

hydrogen bonds: The distance between a donor group and the acceptor atom must be 

closer than 4.6 Å, the angle between donor heavy atom, donor hydrogen and the acceptor 

heavy atom needs to be in the range 120-180°, and the angle between acceptor lone-pair, 

acceptor heavy atom and the donor hydrogen must be smaller than 45°. Acceptor and 

donor elements were then assigned to the acceptor and donor heavy atoms. It should be 

noted that although only acceptor or donor groups that are engaged in hydrogen bonds are 

considered in the analysis, triplets can freely contain one partner independent of the other 

as well as both partners.  An aromatic physicochemical element was assigned to the 

center of each aromatic ring, i.e. to the side chains of Phe, Tyr, His and Trp. Negatively 

and positively charged physicochemical elements were assigned to Glu, Asp, Arg and 
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Lys specific side chain atoms.  Scoring functions constructed from physicochemical 

elements are denoted by “Phys_” in their names. We also generated statistical scoring 

functions based on analyzing quasi-three-body and two-body interactions using all heavy 

atoms classified by Amber99 atom types. These scoring functions are denoted by 

“Amb_”. Two additional scoring functions are based on quasi-three-body and two-body 

interactions among the Cα atoms of all residues; no classification with respect to amino 

acid attributes was used. These scoring functions are denoted by “Ca_”. Throughout this 

paper we call the scoring functions resulting from the quasi-three-body approach as 

quasi-three-body scoring functions (denoted by the suffix “_3b_score”) to differentiate 

them from the two-body scoring functions (denoted by suffix “_2b_score”) resulting from 

pair-wise distance distributions. Physicochemical elements, Amber atom types and amino 

acid Cα atoms were assigned using in-house software. 

3.2.2 Protein database for generation of statistical potential 

To generate the statistical potentials, 1000 non-redundant protein structures were chosen 

from the PDB databank by clustering proteins into groups based on their pairwise 

sequence similarity and picking a representative from each group using the online tool 

VAST.  

3.2.3 Interacting Pairs and Triplets 

For each set of properties (physicochemical elements, Amber atom types and Cα atoms) 

pair-wise and quasi-three-body statistical potentials were derived for all possible 

combinations of properties. For pair-wise potentials the frequency of each pair of 

properties A and B as a function of distance is stored in histograms (𝐹𝑖
𝐴𝐵) where i 

represents one of 32 distance bins with a bin width of 0.25 Å. Distances between 2 to 10 
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Å are considered in our analysis. Throughout the paper, parentheses around vectors and 

matrices like those around (𝐹𝑖
𝐴𝐵) refers to the vector or matrix as a whole, and lack of 

these parentheses denotes an element in that vector or matrix 

For quasi-three-body interactions, we extend pair-wise statistical potentials to triplets of 

interacting properties using a novel geometric approach. The three distances AB, AC, and 

BC unambiguously describe the relationship of the triplet of interacting elements A, B, 

and C (Fig. 8-B). The corresponding histogram would require for each triplet of 

properties data sampling for 323=32,768 bins (32 bins per distance).  Obtaining sufficient 

experimental data for such a large number of bins is impractical. To address this 

sampling problem, we reduced the dimensionality of the triplet by reducing the 

description of triplet interactions to two distances spawning from a center point (Fig. 1-

A). As a consequence, three different pairs of distances (Fig.8-A) with different center 

element can be formed which constitute different statistical potentials, i.e.  (AB, BC) with 

center B, (BA, AC) with center A, (AC, CB) with center C. Therefore each triplet is 

defined by its center and the two other elements (Fig. 8-A). Consequently, the full three-

body statistical potential is reduced to two pairs of conditional pair-wise interactions, 

which we named quasi-three-body potentials throughout this study. 

Each of the properties is used as the center of the triplet, and all of the combinations of 

other properties that form triplets with this center are computed. For example, for six 

different physicochemical elements 126 triplets were formed. A two-dimensional 

distance matrix (𝐹𝑖𝑗
𝐴𝐵𝐶) for each triplet ABC (center: B) is computed with a distance 

range from 2.0 to 10 Å, and a bin size of 0.25 Å.  The bin number for distance AB and BC 

are i and j. (𝐹𝑅,𝑖𝑗
𝐴𝐵𝐶) is the same matrix populated based on the reference state described 
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below. A vector (𝐹𝑖
𝐴𝐵) is used to store distance data in a similar way for two-body 

interactions. (𝐹𝑅,𝑖
𝐴𝐵) stores the distance data for pair-wise interactions in the reference 

state.  (𝐹𝑖𝑗
𝐴𝐵𝐶) , (𝐹𝑅,𝑖𝑗

𝐴𝐵𝐶) , (𝐹𝑖
𝐴𝐵) , (𝐹𝑅,𝑖

𝐴𝐵) vectors and matrices of each triplet or pair are 

normalized to one to give the probabilities (𝑃𝑖𝑗
𝐴𝐵𝐶) , (𝑃𝑅,𝑖𝑗

𝐴𝐵𝐶), (𝑃𝑖
𝐴𝐵) , (𝑃𝑅,𝑖

𝐴𝐵). 

3.2.4 Statistical potential and definition of reference state 

The quasi-three-body and two-body statistical potentials are derived from the elements of 

the distance matrix 𝑃𝑖𝑗
𝐴𝐵𝐶  and vector 𝑃𝑖

𝐴𝐵  using Boltzmann inversion: 

 𝐵𝑖𝑗
𝐴𝐵𝐶 =  −𝑅𝑇 ln

𝑃𝑖𝑗
𝐴𝐵𝐶

𝑃𝑅,𝑖𝑗
𝐴𝐵𝐶 Eq. 6  

and  

 𝐵𝑖
𝐴𝐵 =  −𝑅𝑇 ln

𝑃𝑖
𝐴𝐵

𝑃𝑅,𝑖
𝐴𝐵 Eq. 7  

for interacting triplets and interacting pairs respectively. R is the gas constant, T is the 

temperature, and (𝐵𝑖𝑗
𝐴𝐵𝐶)  and (𝐵𝑖

𝐴𝐵) are matrices of the individual quasi-three- and two-

body interaction terms of a statistical potential. If 𝑃𝑅,𝑖𝑗
𝐴𝐵𝐶is equal to or less than 410-6 or if 

𝑃𝑅,𝑖
𝐴𝐵is equal to or less than 210-4, 𝐵𝑖𝑗

𝐴𝐵𝐶   or 𝐵𝑖
𝐴𝐵 are set to zero respectively in order to 

avoid artificially high values due to division by a value close to zero. 

A randomized state with no specific interactions between the protein-describing elements 

is generated to serve as reference state. In generating the random state we adopted a 

shuffling approach 62:  randomized state matrices (𝑃𝑅,𝑖𝑗
𝐴′𝐵′𝐶′

) are generated by assigning 

each triplet ABC from a protein structure with given distance bins i and j to the same 

distance bins but randomized properties A’, B’, and C’. For example, a donor-acceptor-
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aromatic triplet with distance bins i=6, j=15 will be assigned to the same distance bins 

i=6, j=15 in the random 𝑃𝑅,𝑖𝑗
𝐴′𝐵′𝐶′

 matrix where A’B’C’ might be any random triplet of 

properties such as acceptor, positively charged, hydrophobic, etc.. In this way, the 

random state matrices for different triplets preserve the shape and associated interaction 

distances of the proteins used in the analysis. As the reference state has a protein-like 

shape, the resulting scoring function will not be biased towards decoys solely by having a 

protein-like shape. Using an ideal gas to generate the random matrix would not remove 

the inherent shape and density dependency of the statistical potential from the protein 

shape.  In other words, the ideal gas reference state produces a random spherical 

distribution of properties, and all protein structures, native and decoy, would already vary 

significantly from this reference state due to having a protein-like shape. 

For the Ca_score scoring function, there is only one type of triplet or doublet which 

makes the use of the randomization method described above infeasible. In this scoring 

measure, for each protein, a 1 Å grid is overlaid onto the protein structure. The protein’s 

shape is reproduced by those grid points whose x, y and z coordinates of a grid point fall 

between the x, y and z coordinates of any two Cα's of the protein respectively. Then the 

same number of Cα atoms of a protein are randomly distributed onto those grid points 

that cover the shape of the protein with a minimum distance of 1.5 Å between any two 

Cα atoms. This distribution generates a pseudo protein corresponding to each protein 

structure and is used as the reference state for that protein. 
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3.2.5 Smoothed Potential 

smthd_Phys_2b and _3b potentials were generated by smoothing Phys_2b and _3b using 

a cubic spline. Every other bin was been used as a knot and the fitted cubic spline was 

then used to calculate the values for the other bins. 

3.2.6 Scoring 

The total scores result from the summation of sub-scores corresponding to all individual 

pairs or triplets in a protein: Matrices (𝐶𝑖𝑗
𝐴𝐵𝐶) or vectors (𝐶𝑖

𝐴𝐵) are constructed for each 

protein by counting the number of observations for each triplet ABC or pair AB in the 

distance interval corresponding to bin ij or bin i, respectively. The sub-score for each 

triplet ABC (SABC) or pair (SAB) is then calculated using the following formula: 

 𝑆𝐴𝐵𝐶 =  ∑(
𝐶𝑖𝑗

𝐴𝐵𝐶 .  𝐵𝑖𝑗
𝐴𝐵𝐶

𝑑𝑖
2.  𝑑𝑗

2 )

𝑖,𝑗

 Eq. 8  

and  

 𝑆𝐴𝐵 =  ∑(
𝐶𝑖

𝐴𝐵.  𝐵𝑖
𝐴𝐵

𝑑𝑖
2 )

𝑖

 Eq. 9  

𝑑𝑖 is the AB distance and 𝑑𝑗  is the BC distance in angstroms. Division by 𝑑𝑖
2 ∙  𝑑𝑗

2 and 𝑑𝑖
2 

normalizes the frequency of observing interacting bodies with respect to their distance 

from the central body of the triplet. The total quasi-three-body and two-body scores are 

then calculated by summing over all quasi-three-body or two-body sub-scores. 

3.2.7 Other scoring functions used for comparison 

To evaluate the performance of our statistical scoring functions for identifying the native 

protein structure, the following existing scoring functions and some simplistic counting 

methods were used for comparison: 
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3.2.7.1 Simple Counting Methods 

Two dominant interaction types are often considered to be main forces for the stability of 

proteins: the hydrophobic effect and hydrogen bonding  63. For comparison with our 

statistical scoring function, these two underlying forces are represented in two very 

simplistic counting methods to differentiate native structures from decoys. The number of 

hydrophobic atoms within 5 Ȧ distance of each other (count_Phob_score), and the 

number of hydrogen bonds formed (count_H_score), were considered. The final simple 

counting scoring function measures the compactness of the protein by counting the 

number of Cα’s within 5 Ȧ distance of each other Cα atom (count_Ca_score).  

3.2.7.2 Conventional Scoring Functions 

Four widely used scoring functions, DFIRE2, dDFIRE, GOAP, FoldX and Rosetta 

(called conventional scoring functions in this paper) are tested for comparison. Details of 

these scoring functions is as follows and more can be found in the cited references: 

FoldX: FoldX uses an empirical scoring function that calculates the free energy by linear 

combination of several empirical terms describing various energetic contributions to the 

stability of protein structures (e.g. van der Waals energy, hydrogen bond energy etc.): 

 

∆G = a.∆Gvdw + b.∆GsolvH + c.∆GsolvP + d.∆Gwb + e.∆GHbond 

+ f.∆Gel + g.∆Gkon + h.T∆Smc + k.T∆Ssc + l.∆Gclash                  

Eq. 10  

in which a, b,…,l are relative weights of different energies and T is temperature. ∆Gvdw 

represents van der Waals interactions and is calculated based on experimental data of 

vaporizing amino acids from water. ∆GsolvH and ∆GsolvP represent desolvation energies of 

hydrophobic and polar groups respectively and are calculated based on experimental data 
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on transferring amino acids from aqueous to organic solvents. ∆Gwb represents the energy 

of water molecules forming more than two hydrogen bonds with the protein. ∆GHbond 

represents hydrogen bonding energies and is computed based on data resulted from 

engineered double mutant cycles. ∆Gel is the electrostatic interaction energy and is 

computed using Coulomb’s law. ∆Gkon is an additional electrostatic component between 

atoms of different polypeptide chains. ∆Smc and ∆Ssc are entropic penalties for restraining 

the backbone and side chains in a certain conformation and is calculated based on results 

of statistical analyses on protein structures. ∆Gclash is a measure of the energy penalty 

associated with steric clashes between different atoms. 

FoldX can be used to investigate the destabilizing/stabilizing effects of point mutations 

on protein structure. The executable of FoldX (version 6.0) was downloaded from 

foldx.crg.es. 

Rosetta: Rosetta scoring function includes a combination of statistical and physical 

scoring terms. The terms of the scoring function include residue solvation, residue pair 

interactions, strand-pairing, arrangement of strands into sheets, helix packing, radius of 

gyration, Cβ density which is related to solvation, steric repulsion, preferred torsions in 

the Ramachandran map, Lennard-Jones interactions, hydrogen-bonding, solvation, 

electrostatic and disulfide interactions of various residues, energies of different rotamer 

states, and unfolded state reference energy.  Details on these terms in Rosetta can be 

found in the cited references. We used Mini-Rosetta 3.3 downloaded from 

rosettacommons.org 

DFIRE and dDFIRE: DFIRE potential stands for Distance-scaled Finite-Ideal gas 

Reference potential and is a statistical energy function based on distances observed 
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between pairs of atom types in known protein structures. The atom types are residue 

specific which resulted in a total of 167 atom types. The pair energy is calculated using 

the following equation: 

 

�̅�𝐷𝐹𝐼𝑅𝐸(𝑟𝑖𝑗)

=  {
−𝑅𝑇 ln

𝑁𝑜𝑏𝑠(𝑖, 𝑗, 𝑟)

(
𝑟

𝑟𝑐𝑢𝑡
)𝛼(

∆𝑟
∆𝑟𝑐𝑢𝑡

)𝑁𝑜𝑏𝑠(𝑖, 𝑗, 𝑟𝑐𝑢𝑡)
  , 𝑟 < 𝑟𝑐𝑢𝑡

0,                                                                            𝑟 ≥ 𝑟𝑐𝑢𝑡

 

Eq. 11  

 

in which R is the gas constant, T is temperature (300 K), α equals 1.61, Nobs(i,j,r) is the 

number of (i,j) pairs within the sphere with radius r observed in the structure database, rcut 

is 14.5 Ȧ, and ∆r (∆rcut) is the bin width at r (rcut). 

dDFIRE potential stands for dipolar DFIRE. The difference between DFIRE and dDFIRE 

is that the latter takes the angles between interacting dipoles into consideration thus 

accounting for dipole-dipole interactions. 

The executables were downloaded from 

sparks.informatics.iupui.edu/yueyang/download/index.php?Download=dDFIRE1.1-

bin.tbz and 

sparks.informatics.iupui.edu/yueyang/download/index.php?Download=DFIRE2.1-

bin.tbz. 

GOAP: A plane is associated with each heavy atom defined by the heavy atom and its 

two neighbor bonded heavy atom. A local coordinate system (𝜗𝑥, 𝜗𝑦, 𝜗𝑧) is defined based 

on this plane. Two polar angles ψ and θ  and a torsional angle χ are defined based on this 
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coordinate system (for details look at the cited reference).The GOAP potential, then, is 

defined as follows: 

 

 𝐸(𝑟𝑎𝑏, 𝜃𝑎, 𝜓𝑎 , 𝜃𝑏 , 𝜓𝑏 , 𝜒) = −𝑅𝑇 
𝑃𝑜𝑏𝑠(𝑟𝑎𝑏, 𝜃𝑎, 𝜓𝑎 , 𝜃𝑏 , 𝜓𝑏 , 𝜒)

𝑃𝑒𝑥𝑝(𝑟𝑎𝑏, 𝜃𝑎, 𝜓𝑎 , 𝜃𝑏 , 𝜓𝑏 , 𝜒)
 Eq. 12  

 

where a and b represent atom types of the two interacting partners, rab is the distance, 

𝑃𝑒𝑥𝑝(𝑟𝑎𝑏 , 𝜃𝑎 , 𝜓𝑎 , 𝜃𝑏 , 𝜓𝑏 , 𝜒) is the probability observed in the reference state and 

𝑃𝑜𝑏𝑠(𝑟𝑎𝑏 , 𝜃𝑎 , 𝜓𝑎 , 𝜃𝑏 , 𝜓𝑏 , 𝜒) is the probability observed in known protein structures. It 

should be noted that GOAP benefits from the DFIRE reference state and uses different 

equations for indifferent cut-offs. For details please refer to the cited reference. 

3.2.8 Decoy Sets 

Three different decoy sets from Decoys ‘R’ Us version 1.3 (dd.compbio.washington.edu) 

61 were used to test the performance of the various scoring functions for differentiating 

native protein structures from decoys. These decoy sets differ by the type of proteins and 

the method employed to generate the decoys. The details of these decoy sets are as 

follows. 

hg_structural: This set contains decoys for 29 globin proteins. For each protein, 

comparative modeling with all other globins in the set was performed to generate decoys 

for each of the proteins; hence each globin set contains 28 decoy structures in addition to 

the native structure. All structures were energy minimized using ENCAD  22.   

vhp_mcmd: This set focuses on the thermostable domain of villin (1vii). 6255 structures 

were selected from snapshots of five 100 ns MD simulations, four of them producing 
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decoy sets and one of them which is based on the X-ray structure generating native-like 

structures. The decoy trajectories were generated starting from conformations obtained 

from a coarse-grained MC simulation.  All the structures were energy minimized with 

MM/GBSA using CHARMM. The set contains 1251 native and 5004 decoy structures. 

fisa: This set is generated from four small alpha-helical proteins (1fc2, 1hdd-C, 2cro, and 

4icb). The main chains for the decoys were modeled by fragment-insertion simulated 

annealing and Bayesian scoring functions based on fragments from proteins with similar 

local sequences. Then the SCWRL software package was used to model the side 

chains.  All the structures were energy minimized using CHARMM22b. 500 decoys for 

each of these four proteins were generated (a single file ackcalb11-min.pdb related to 

4icb was missing so one of the sets has 499 decoys). 

Considering the differences between these decoy sets, different strategies were used to 

calculate the area under the curve (AUC) in their corresponding scoring experiments (see 

section 3.2). Unlike vhp_mcmd which has only one sub-set (1vii), hg_structural and fisa 

have 29 and 4 sub-sets respectively with only one native structure in each sub-set. Hence, 

while the number of native structures found was used for calculating the AUC for 

vhp_mcmd, we used the number of sub-sets with identified native structure to calculate 

the AUCs for fisa and hg_structural. For hg_structural, identification of a structure with 

RMSD less than 2 Å with the native structure was considered equivalent to identification 

of the native structure.   
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Figure 8  A) ABC triplet (AB,BC) with center B (yellow) and BAC triplet  (BA, AC) 

with center A(red). Each triplet is defined with a center and two other points, hence it 

comprises two distances. Changing the point considered as the center will lead to a a 

different triplet as the new triplet would have one common and one different distance 

compared to the previous triplet. B): Three distances observed in a triplet: AB (green), 

BC (yellow), and AC (red). By choosing a center, there will be only two distances in 

each triplet (Fig.1-A). 
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3.3 Results and Discussions 

Scoring functions are named based on prefixes and suffixes introduced in the Materials 

and Methods section. For a brief description of the scoring functions please refer to Table 

4. 

3.3.1 Quasi-three-body pseudo-potentials 

We first wanted to investigate if the presence of a third interaction site or body C does 

have any effects on the pairwise interaction of two other bodies A and B. If such an 

influence is not present, then ABi (AB pair having distance corresponding to bin i) and 

BCj (BC pair having distance corresponding to bin j) would be independent variables for 

all bins i, j. In such a case a cut of (𝑃𝑖𝑗
𝐴𝐵𝐶) along a specific j, would generate a contour 

that reproduces the pattern of probability density (𝑃𝑖
𝐴𝐵) multiplied (or scaled) by the 

value of 𝑃𝑗
𝐵𝐶  for that specific bin j, i.e. 𝑃𝑖𝑗

𝐴𝐵𝐶 = 𝑃𝑗
𝐵𝐶 ∙ 𝑃𝑖

𝐴𝐵. If C has no influence on the 

interaction profile of AB, this similarity in contour should be observed for any i, j. 

Therefore multiple contours of (𝑃𝑖𝑗
𝐴𝐵𝐶) for different j should have the same pattern with 

different scaling factors. This pattern should also match that of the corresponding 

pairwise interactions. However, observing different patterns in the contour maps and 

those also which differ from the corresponding pairwise pattern, would mean that the 

(𝑃𝑖
𝐴𝐵) distribution is influenced by j (BC distance) which implies a statistical dependency 

of ABi and BCj. Dependency between ABi and BCj means that there is higher order 

information in (𝑃𝑖𝑗
𝐴𝐵𝐶) not implied in either (𝑃𝑖

𝐴𝐵) or (𝑃𝑗
𝐵𝐶) which could be used in 

differentiating native from decoy structures.  
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Using the abovementioned strategy, we can visualize the existence of any dependency 

between ABi and BCj in (𝐵𝑖𝑗
𝐴𝐵𝐶). (𝐵𝑖𝑗

𝐴𝐵𝐶) and (𝐵𝑖
𝐴𝐵) are calculated based on (𝑃𝑖𝑗

𝐴𝐵𝐶) and 

(𝑃𝑖
𝐴𝐵) using Eq. 6 and 7 respectively as described in detail in Materials and Methods and 

are the statistical potentials used in our scoring functions (see Eq. 8 and 9).  Figures 9 and 

10 are graphs of (𝐵𝑖𝑗
𝐴𝐵𝐶) and (𝐵𝑖

𝐴𝐵) for a number of representative triplets ((𝐵𝑖𝑗
𝐴𝐵𝐶) 

graphs for all of the triplets can be found in figure 12). The examples of (𝐵𝑖𝑗
𝐴𝐵𝐶) shown in 

figure 9 represent the effects of the presence of a third body on the potential of interaction 

between hydrogen-bond donors (D) and acceptors (A) and the (𝐵𝑖𝑗
𝐴𝐵𝐶) shown in figure 10 

represent such effects on interactions between two hydrophobic (H) elements. The 

contours of each three-dimensional plot are also shown on each side of the graph. The 

(𝐵𝑖
𝐴𝐵) corresponding to pairwise interactions is shown with the red line overlaid on the 

contours on each side of the graph. For HHX potentials (X referring to the third 

physicochemical elements) we see very high positive peaks at distances less than 3.5 Å 

(see figure 12) which can be attributed to van der Waals clashes. These peaks overwhelm 

the scaling of the rest of the graph which makes observation of discernible patterns 

difficult. In order to examine the pattern of contours in HHX potentials, the first 8 bins 

were ignored. The trimmed potentials were then re-plotted (figure 10). It is noteworthy 

that the potential from the beginning bins (~2.5-3.5 Å) dominates the whole potential for 

nearly all of the triplets. 

Despite small fluctuations the (𝐵𝑖𝑗
𝐴𝐵𝐶) graphs in figures 9 and 10 have contours that 

generally follow the same pattern. Also the pattern of contours is the same as the pairwise 

interaction potentials. This demonstrates lack or weakness of higher order information in 
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(𝐵𝑖𝑗
𝐴𝐵𝐶) and shows the potentials have not been highly influenced by introducing the third 

interacting body. Lack of higher order information observed in the ADX triplets could be 

related to the fact that the AD interactions are dominated by backbone-backbone 

interactions leading to the formation of secondary structure elements of the protein, thus 

they are less susceptible to the presence of a third interacting body. 

In addition to visual comparison of patterns in the quasi-three body and two-body 

distance-dependent statistical potentials, we aimed to quantify the lack of difference 

between those patterns. Using the underlying quasi-three body and two-body probability 

distribution functions, we performed Kolmogorov-Smirnov tests (K-S tests). K-S test 

compares a test sample with a reference sample and identifies if they originate from the 

same probability distribution. In our study, the null hypothesis to be tested states that the 

two samples, i.e. the pair-wise distribution functions and the corresponding slices of the 

quasi-three body function, originate from the same probability distribution. The null 

hypothesis is tested against a certain significance level where a typical value of 0.05 is 

used in this study 64,65 

 

In detail, all two-body contours (�̂�𝑖
𝐴𝐵) and (�̂�𝑗

𝐴𝐵) were obtained from bins 4 to 32 for 

each three-body probability distribution 𝑃𝑖𝑗
𝐴𝐵𝐶. Each of the contours was normalized. The 

contours were tested against their corresponding two-body distributions (𝑃𝑖
𝐴𝐵) and (𝑃𝑗

𝐵𝐶) 

obtained from an analysis of the same protein database. The first three bins were 

excluded from the analysis since they cover distances between 2.0 and 2.75 Ȧ for which 

typically only few if any observations were made in the database. For each triplet, there 

are a total of 58 pattern comparisons, 29 for each of the two pairwise interactions 
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embedded within a triplet. Out of 126 triplets, only 9 triplets violate the null hypothesis in 

more than 10% of the comparisons and only two triplets in more than 20% of the 

comparisons (Table 5). 77 triplets do not violate the null hypothesis at all, i.e. the 

probability distributions of quasi-three body interactions are identical to the 

corresponding pair-wise interactions for all slices with a significance level of 0.05. The 

results show that higher order information is not established for almost 93% of all 

triplets. All of the triplets that violate the null hypothesis in more than 10% of all 

comparisons (Table 5) contain positive-negative (PN) or negative-only interactions 

(NNN). Whereas these results may be interpreted as engagement of charged atoms in 

higher order interactions, it should be noted that interaction triplets containing two 

charged atoms are relatively rare compared to all other triplets studied, and that the small 

sample size of those triplets might at least contribute to the relatively frequent violation 

of the null hypothesis. 

Figure 11 shows the statistical potential for triplet APN that displays the most significant 

higher order interactions based on the KS-test. The shallow maximum in the region 

AP=3.0-5.0 and PN=5.0-8.0 might represent an instance of higher order interactions in 

this potential map.  

3.3.2 Quasi-three-body scoring functions 

KS-test analysis demonstrated that there are only a few three-body potentials with 

significant higher order interactions. Consequently, a significant improvement in scoring 

performance is not expected between quasi- three-body distance-dependent potentials and 

their two body counterparts. The following study was designed to support this argument 

in a practical application setting. We constructed statistical potentials to test whether or 
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not the influence of a third body on the interaction profile between two particles would 

improve the performance of the potential in its ability to discriminate native-like 

structures from decoy structures. The graphs resulted from using various scoring 

functions tested for vhp_mcmd, hg_structural and fisa decoy sets can be found in 

Supplementary Material (figures 13, 14 and 15). The area under the curve (AUC) 

(ranging 0 to 1) of these graphs are plotted in figure 16 and can be used for comparison 

between different scoring functions.  

In general the scoring functions developed in this study are very successful in identifying 

native structures from decoys. Our scoring functions perform perfectly on the fisa decoy 

set displaying highest AUC (equal to the ideal scoring function). Also these scoring 

functions have very good performances which are comparable to or better than the 

conventional scoring functions for vhp_mcmd and hg_structural decoys sets. This 

observation is important as it supports our idea of using protein structure prediction as a 

practical test case for comparing quasi-three body and pairwise atomistic statistical 

potentials. Although Ca_2b_score and Ca_3b_scores are not as successful as the rest of 

our pairwise and three body scoring function for two of the decoy sets, it is hard to 

identify one representation of the interacting bodies which always leads to superior 

performance. Also there is not a significant difference between scoring performance of 

smthd_Phys_score and Phys_score and they almost overlap. Simple counting methods 

have good performances in fisa and show better or comparable results compared to 

conventional scoring functions. 

The general linear correlation in figure 16-A implies similar scoring performances of 

three-body and pairwise functions. In fact except one case (Ca_3b_score for fisa), we do 
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not observe a significant improvement or deterioration in scoring performance by 

switching between pairwise and three-body functions.  

Examples of approximate time needed for calculations of two main steps for pairwise and 

quasi-three body scores are shown in table 6. The first step is populating (𝐶𝑖𝑗
𝐴𝐵𝐶) or 

(𝐶𝑖𝑗
𝐴𝐵) and normalizing them with distance squared (d2). The second step is multiplication 

of distance-normalized (𝐶𝑖𝑗
𝐴𝐵𝐶) by (𝐵𝑖𝑗

𝐴𝐵𝐶)  to calculate 𝑆𝐴𝐵𝐶 and 𝑆𝐴𝐵 (equations 8 and 9). 

Although pairwise scoring takes less time, quasi-three-body scoring is still extremely 

fast. For instance, the total time needed for qusi-three-body scoring of the largest protein 

tested (153 amino acids) is less than 4 sec. 

3.3.3 Correlations between different scoring functions 

In order to investigate potential correlations between the various scoring functions tested 

in this study, we calculated the Pearson correlation coefficient between scores obtained 

from the various scoring functions for each subset in all decoy sets. Specifically, a high 

correlation between two-body and quasi-three-body scores can be additional evidence for 

the lack of higher order information in quasi-three-body potentials. Figure 17 graphically 

shows correlations for selected subsets of various decoy sets. The correlation heat maps 

for all subsets of all decoy sets can be found in the Supplementary Material (Figure 18). 

Figure 17 shows correlation between the scoring functions for the vhp_mcmd decoy set 

(represented by 1vii). In general, all of the corresponding two-body and quasi-three-body 

scoring functions show very high correlations (> 0.8) with each other. Excluding the 

Ca_3b_score and Ca_2b_score scoring functions, the remainder of the two-body and 

quasi-three-body statistical scoring functions and the four studied conventional scores 
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(dDFIRE, DFIRE2, GOAP, Rosetta, FoldX) are highly correlated (>0.7 with DFIRE2, 

dDFIRE, FoldX, and >0.6 with Rosetta, GOAP). Correlation coefficients between 

various scoring functions for the hg_structural decoy set (as represented by 2pgh-A 

subset in figure 17) follow the same general pattern as the vhp_mcmd.  We again see 

high correlations (>0.8) between two-body and quasi-three-body scores in this decoy set.  

There is much less correlation among the physicochemical element-based statistical 

scoring functions, dDFIRE, DFIRE2, GOAP, FoldX and Rosetta for the fisa decoy set. 

Similar to vhp_mcmd and hg_structural decoy sets scores based on Cα's are weakly 

correlated with our other scores (figure 17) although they are highly correlated with each 

other (>0.7). The high correlation (>0.6) between two-body and quasi-three-body scores 

is repeated in this decoy set.  
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Figure 9 Graphs of (𝐵𝑖𝑗
𝐴𝐵𝐶) (quasi-three-body statistical potential for interacting triplet ABC 

with distance bins i and j) of a number of representative triplets (indicated by the three letter 

code on top of each graph). Only interactions with pairwise distances between 2 to 10 Å are 

considered. The contours of each plot (darker colors for bins with larger distances) are shown 

on each side of the graph. The corresponding (𝐵𝑖
𝐴𝐵) (two-body pseudo-statistical potential for 

interacting pair AB with distance bins i) is shown by a red line overlaid onto the contours. 

These quasi-three-body pseudo-potentials show the effects of the presence of a third body on 

the potential of interaction between hydrogen bond donor (D) and acceptor (A) elements 
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Figure 10 Graphs of (𝐵𝑖𝑗
𝐴𝐵𝐶) (quasi-three-body statistical potential for interacting triplet 

ABC with distance bins i and j) of a number of representative triplets (indicated by the 

three letter code on top of each graph). Only interactions with pairwise distances between 

2 to 10 Å are considered. The contours of each plot (darker colors for bins with larger 

distances) are shown on each side of the graph. The corresponding (𝐵𝑖
𝐴𝐵) (two-body 

pseudo-statistical potential for interacting pair AB with distance bins i) is shown by a red 

line overlaid onto the contours. These quasi-three-body pseudo-potentials show the effects 

of the presence of a third body on the potential of interaction between two hydrophobic 

(H) elements. 
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Figure 11 Graph of (𝐵𝑖𝑗
𝐴𝑃𝑁) (quasi-three-body statistical potential for interacting triplet 

APN with distance bins i and j). Only interactions with pairwise distances between 2 to 

10 Å are considered. The contours of the plot (darker colors for bins with larger 

distances) are shown on each side of the graph. The corresponding (𝐵𝑖
𝐴𝑃) and (𝐵𝑖

𝑃𝑁) 

(two-body pseudo-statistical potential for interacting pair AP and PN respectively with 

distance bins i) is shown by a red line overlaid onto the contours. APN shows the most 

significant higher order interactions compared to pairwise interactions. 
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Figure 12 Graphs of (𝐵𝑖𝑗
𝐴𝐵𝐶) of a number of representative triplets (indicated by the three 

letter code on top of each graph). Only interactions with pairwise distances between 2 to 

10 A are considered. The contours of each plot (darker colors for bins with larger 

distances) are shown on each side of the graph. The corresponding (𝐵𝑖
𝐴𝐵) (two-body 

pseudo-statistical potential for interacting pair AB with distance bins i) is shown by red 

line overlaid onto the contours. 
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Figure 12 continued 
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Figure 12 continued 
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Figure 12 continued 
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Figure 12 continued 
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Figure 12 continued 
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Figure 12 continued 
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Figure 12 continued 
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Figure 12 continued 
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Figure 13 Number of sub-sets in vhp_mcmd decoy set that their native structure is ranked 

among various top percentages of structures, by A) dDFIRE, DFIRE2, FoldX, Rosetta, 

B) two-body and quasi-three-body scoring functions, and C) by simple counting methods 
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Figure 14 Number of native structures in hg_structural decoy set ranked among various 

top percentages of structures, by A) dDFIRE, DFIRE2, FoldX, Rosetta, B) two-body and 

quasi-three-body scoring functions, and C) simple counting methods. 
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Figure 15 Number of sub-sets in fisa decoy set that their native structure is ranked in 

among various top percentages of structures, by A) dDFIRE, DFIRE2, FoldX, Rosetta, 

B) two-body and quasi-three-body scoring functions, and C) simple counting methods. 
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Figure 16 A) AUCs resulted from quasi-three-body scores vs AUCs of their two-body 

scores in different decoy sets tested. Comparison of pairwise to quasi-three body scoring 

functions shows little differences in structure-prediction quality. B) AUCs resulted from 

conventional scoring functions and simple counting methods. Result for vhp_mcmd, fisa, 

and hg_structural are represented by ,  and . 
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Figure 18 : Pearson correlation coefficient among 1- Phys_2b_score 2-  Phys_3b_score 

3- Amb_2b_score 4- Amb_3b_score 5- CALPHA_2b_score 6- CALPHA_3b_score 7- 

FoldX 8- Rosetta 9- dDFIRE 10- DFIRE2. The title of each graph shows ‘decoy set : 

subset of the decoy set’ 
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Figure 18 continued 
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Figure 18 continued 
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Figure 18 continued 
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Figure 18 continued 
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3.4 Conclusion 

Calculating the free energy of a protein system using statistical potential derived from 

pair-distribution functions is not physically justified. Theoretically, for using statistical 

potentials to compute the total free energy of a protein system, the energies should be 

expressed in terms of multi-body interaction terms. Various multi-body potentials have 

been developed based on this theoretical argument. Higher order information and better 

scoring performances are reported for those multi-body potentials57,66–68. To the best of 

our knowledge, however, all of those multi-body potentials are based on a coarse-grained 

representation of interacting bodies and are contact-based. In this study, we asked the 

question if higher order information is also important for distance-dependent statistical 

potentials that are based on an atomistic representation of the interacting bodies.  

Our results indicate that the multi-body interaction energies are dominated by pairwise 

interactions, with small contributions from higher order interactions, resulting in the lack 

of significant difference between pairwise and quasi-three-body potentials. In contrast to 

our initial hypothesis, we have seen in the majority of cases a lack of distance 

dependency between two pairs of interacting bodies constituting quasi-three-body 

statistical potentials. Higher order interactions can only be established in few triplets 

modeling interactions between charged atoms. In other words, besides charge 

interactions, considering the effect of the distance of a third interacting body on the pair 

distribution function of two other interacting bodies utilizing the methods we presented in 

this study adds negligible additional information to the statistical potential. Considering 

scarcity of charged bodies in protein structures compared to other types of interacting 

bodies, similar performance of two-body and quasi-three-body scores is not surprising. 
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This similar performance can be attributed to the lack or weakness of such higher order 

information in quasi-three-body potentials. We see a very high correlation between 

corresponding quasi-three-body and two-body scores which is in line with similarities in 

the patterns of contour maps observed in quasi-three-body and two-body potentials. 

The scoring functions developed in this study show higher or comparable performances 

with the four conventional scoring functions tested. We also obtain good results for many 

systems from simple counting scoring functions designed to model hydrophobic or 

hydrogen bond interactions. High performance of these simple counting approaches can 

be attributed to the decoy sets not being sufficiently challenging. Also it can imply that 

hydrogen bonding and hydrophobic effect can adequately be used to differentiate native 

structures from decoys in many protein systems. It is not surprising considering the 

importance of these interactions in the protein folding process69. 
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Table 4 Brief description of the scoring functions generated throughout the study. 

Score Title  Description 

count_Ca_score Number of Cα’s within 5 Ȧ distance of each other 

count_Phob_score Number of hydrophobic atoms within 5 Ȧ distance of each other 

count_H_score Number of hydrogen bonds formed 

Phys_2b_score Two-body score based on physicochemical elements 

Phys_3b_score Quasi-three-body score based on physicochemical elements 

smthd_Phys_2b_score Phys_2b smoothed by a cubic spline 

smthd_Phys_3b_score Phys_3b smoothed by a cubic spline 

Amb_2b_score Two-body score based on AMBER atom types 

Amb_3b_score Quasi-three-body score based on AMBER atom types 

Ca_2b_score Two-body score based on Cα atoms 

Ca_3b_score Quasi-three-body score based on Cα atoms 
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Table 5 Triplets with more than 10% violations of null hypothesis in KS-test: Normalized 

contours of quasi-three-body joint probability distributions are compared with the 

corresponding two-body probability distribution using KS-test. Out of 126 triplets, nine 

triplets violate null hypothesis that distributions are the same for more than 10% of all 

distance slices. 

Triplet Number of violations of null hypothesis with significance 

level of 0.05 

APN 43 

DPN 12 

HPN 11 

PPN 7 

RPN 7 

NNN 6 

RPN 6 

NPN 6 

HNP 6 
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Table 6 Examples of time needed for calculations of main steps of quasi-three-body and 

pairwise scoring (precision of 1 msec) 

 

 

 

 

 

 

 

 

 

 

 

 

 

protein decoy set #amino 
acids 

Populating 

(𝑪𝒊𝒋
𝑨𝑩𝑪)  

and 
normalizin
g with d2 

Populating 

(𝑪𝒊𝒋
𝑨𝑩)  and 

normalizin
g with d2 

Calculatin
g 𝑺𝑨𝑩𝑪 

Calculating 
𝑺𝑨𝑩 

NATIVE_13
2 

vhp_mcmd 36 0.124 0.002 0.001 0 

2cro fisa 65 0.399 0.005 0.001 0 
1emy hg_structura

l 
153 2.916 0.033 0.001 0 
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CHAPTER 4. FIBPREDICTOR: A COMPUTATIONAL METHOD FOR RAPID 

PREDICTION OF AMYLOID -FIBRIL STRUCTURES 

4.1 Introduction 

In this chapter, a computationally fast and general computational procedure, FibPredictor, 

is proposed to generate structural models for any amyloid fibril, starting from its 

sequence. Despite the efficiency of the algorithm, the generated models are accurate in 

generating experimental structures among the top-5 ranked models, for providing a 

description of the structural landscape available to an amyloid fibril forming sequence 

and can be used as initial structures for more sophisticated computational studies. 

FibPredictor is available at http://nanohub.org/resources/fibpredictor. 

The following two-step procedure of Fibpredictor was developed to generate amyloid 

fibril structures: For a given protein sequence, an ensemble of candidate amyloid fibril 

structures is generated comprehensively representing the amyloid fibril conformational 

space accessible to that specific sequence. This ensemble contains representative 

structures from all eight classes of amyloid fibrils. These eight classes are described in 

table 7 and figure 19. Further details can be sought at the cited references 16,30. Using a 

scoring function developed for protein-structure prediction, the most energetically 

favorable candidate structures are then identified comprising the suggested computational 

models of amyloid fibrils.
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None of the individual steps of this computational procedure includes time consuming 

and computationally expensive methods, such as molecular dynamics simulations, so the 

procedure is computationally efficient and easy to implement. Validity of the approach is 

demonstrated by reproducing the experimentally determined structures of six amyloid 

fibrils. 

4.2 Materials and Methods 

4.2.1 Input for Fibpredictor 

The minimum necessary input for the program Fibpredictor are the sequences of all 

strands within each of the interacting β-spines. β-spines are β-sheets which interact with 

each other side-by-side to form the full amyloid fibril. The sequences of each individual 

strand within each β-spine can be identical or different, covering various cases of amyloid 

fibrillation. The number of β-strands and their length should be the same for both β-

spines. 

4.2.2 Generating the structural ensemble 

Figure 20 summarizes the procedure for generating the structural ensemble of amyloid 

fibrils. First, coordinates of the backbone atoms (Cα, C, O and N) are generated for one 

of the β-spines as a regular β-sheet. These strands should have the same number of 

residues. Two separate sets of coordinates are generated, one as a parallel and the other as 

an anti-parallel β-sheet. For each set of coordinates, the normal vector of the approximate 

sheet formed by all Cα’s is determined. This normal vector is calculated by averaging 

over normal vectors of all planes formed by any three Cα’s. This vector is then tilted and 

elongated randomly within a user-defined range of values for tilt angles and elongation 

length. This process defines a translation vector, which will be used to place the 
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backbone of the second β-spine. The ranges for tilt angles and elongation lengths in the 

current study were set to 45 degrees and 3.5 - 14 Å, respectively, but can be adjusted by 

the user to the target amyloid fibril specifications. Note that in order to adjust these 

specifications, no knowledge about the details of the structure of the target amyloid fibril 

is necessary. Instead, the length of the side chains in their fully extended conformations 

can be used to set the maximum distance between the sheets. The length of the fully 

retracted conformations of the side chains, on the other hand, can be used to set the 

minimum distance between the sheets. Initial hypotheses on the probable types of 

interactions between certain amino acids on the first and the second sheet can be used to 

limit the range of the tilting angles. 

Multiple translation vectors are randomly generated to create structural options for the 

second β-spine relative to the first β-spine. It is necessary to sample relative positions for 

the two β-spines which can lead to proper entanglement of the side-chains, creating a 

strongly interacting steric zipper. Fifty translation vectors were used for this study.  For 

each of these translation vectors, the backbone atom coordinates of the first β-spine are 

copied along the translation vector to generate the backbone coordinates of the second β-

spine. In addition to simple copying of the coordinates, rotation operations are performed 

on the second -spine to generate other members of the eight potential classes of amyloid 

fibrils.  Rotation around the z-axis generates similar or different directionalities of the -

spine (classes two, three, six and eight) and rotation around the x-axis generates face-to-

face or face-to-back steric zippers (classes one, three, five and eight). In summary, the 

different copies of the second -spine are generated by simple copying or by additional x-

rotation, z-rotation or zx-rotations. These rotations result in four different amyloid fibril 
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classes for each of the initial parallel and anti-parallel backbone coordinates comprising 

all eight classes of amyloid fibrils. Table 7 shows the initial β-sheet conformations and 

rotations used to generate each of the eight classes. 

Each of these initial backbone structures is then passed to the side-chain prediction 

program SCRWRL4 which adds all sidechains to the backbone using a rotamer library 

aiming to minimize the SCWRL4 scoring function 70. 

4.2.3 Scoring the ensemble structures 

We tested three different scoring functions to identify the most energetically favorable 

candidate structures in the ensemble: GOAP, Amb_3b, and the SCWRL4 internal scoring 

function. The SCWRL4 internal scoring function is used by SCWRL4 to predict the 

energetically lowest side chain orientations 70. SCRWL4 uses a rotamer library and 

calculates the self-free energy and the pair-wise free energy of the different rotamers 

using a scoring function including terms describing intra- and intermolecular interactions 

such as hydrogen bonding and van der Waals interactions. For more details the reader is 

referred to 70. 

 GOAP71, is a statistical scoring function widely used in homology modelling, especially 

as part of the homology-modelling software MODELLER72. GOAP defines a plane with 

each heavy atom and two other neighboring bonded heavy atom and associates a local 

coordinate system (𝜗𝑥, 𝜗𝑦, 𝜗𝑧) with this plane. Two polar angles ψ and θ  and a torsional 

angle χ are then defined using this coordinate system. The GOAP potential, then, is 

calculated as shown in Eq. 12. 

Amb_3b is a statistical  scoring function developed in our lab, which has shown better 

performance than a number of conventional scoring functions including Rosetta and 
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FoldX in differentiating native from decoy protein structures in three different protein 

structure ensembles 73. Interacting partners are represented as AMBER atom types. The 

total energy of the protein structure is then determined using a pre-calculated quasi-three 

body statistical potential as shown below: 

 𝐴𝑚𝑏_3𝑏 =  ∑ ∑(
𝐶𝑖𝑗

𝐴𝐵𝐶 .  𝐵𝑖𝑗
𝐴𝐵𝐶

𝑑𝑖
2.  𝑑𝑗

2 )

𝑖,𝑗
𝐴𝐵𝐶

 Eq. 13  

Where A, B and C represent interacting partners, ABC refers to any possible quasi-three 

body interaction, i and j refer to the discretized distance between the first and second, and 

second and third interacting partners, di and dj represent the interaction distances in 

angstroms, 𝐶𝑖𝑗
𝐴𝐵𝐶 is the frequency of each triplet ABC in the distance interval 

corresponding to i and j and  𝐵𝑖𝑗
𝐴𝐵𝐶 is the pre-calculated quasi-three body potential for 

ABC interaction in distance i and j. 

4.2.4 FibPredictor usage and GUI 

A graphical user interface (GUI) was developed for FibPredictor (Figure 21) allowing the 

user to specify the options of the software and export the results. For complete details on 

usage the reader is referred to user’s manual available on 

https://nanohub.org/resources/fibpredictor/supportingdocs. The most important options 

are described in more detail in the following. 

4.2.4.1 Sequences of the first and the second sheets:  

FibPredictor models amyloid fibrils as two β-sheets parallel or antiparallel to each other. 

Each β-sheet consists of two or more β-strands. The user can enter the sequences of the 
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strands of the first (top box) and the second (bottom box) β-sheet in one-letter amino-acid 

code.   

4.2.4.2 Sense of the β-sheets: 

Amyloid fibrils can be formed by parallel or anti parallel β-sheets. FibPredictor can 

generate both types of backbone structure for amyloid fibrils, but the user can limit the 

modelling to only one types if experimental data on the sense of the target amyloid fibril 

does exist. 

4.2.4.3 Scoring function: 

Either the Amb_3b or GOAP scoring function, or both, can be chosen for ranking the 

ensemble of generated amyloid fibril models. The SCWRL4 internal scoring function is 

always used internally in FibPredictor as part of the side-chain optimization using 

SCWRL. Amb_3b is computationally more efficient than GOAP and can be used for 

initial modeling studies. A consensus scoring scheme using all of the three available 

scoring functions may allow for the most robust ranking of the structure models. 

4.2.4.4 Rotations: 

Rotations of one β-sheet with respect to the other are used to generate the various classes 

of amyloid fibrils. All types of rotations should be chosen unless experimental data allow 

some amyloid classes to be eliminated. 

4.2.4.5 Number of randomly generated models (Rand. models): 

This variable specifies the number of translation vectors generated to place the second 

sheet relative to the first sheet, randomly somewhere in the chopped cone (Figure 20). 
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With increasing number of random vectors, the chance of obtaining good models 

increases at the cost of reduced computational efficiency. 

4.2.4.6 Top models: 

This variable determines the number of top-ranked structures provided as output to the 

user, based on the selected scoring function. This output allows the user to perform a 

more focused analysis of the predicted amyloid fibril models. 

4.2.4.7 Minimum distance between the sheets:  

This variable specifies the minimum distance between the sheets and should provide 

enough space between the sheets to accommodate side chains in the steric zipper 

conformation in a fully entangled conformation (Figure 20 and Figure 22-A). 

4.2.4.8 Distance variation between the sheets: 

This variable specifies the variation between minimum and maximum distance of the two 

sheets when generating the amyloid fibril structure models. The distance separation for 

each model will be a random number within this range (Figure 20 and Figure 22-A). 

4.2.4.9 Angle variation between the sheets: 

This parameter specifies the maximum horizontal translation of the second sheet with 

respect to the first sheet for investigating different entanglements of sidechains between 

the sheets (Figure 20 and Figure 22-B). 

4.2.5 Validation 

In order to demonstrate the ability of Fibpredictor to correctly model amyloid β-fibrils, 

we aimed to reproduce the experimentally determined structure of six β-fibrils. The 
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corresponding PDB-IDs of the six structures are 3OVL (class1)74, 3HYD (class 1), 

2ONV (class 4), 3OW9 (5), 2OMQ (class 7) and 2ONA (class 8) 16. Despite the 

increasing number of amyloid fibril structures deposited in the protein data bank, only a 

small fraction are suitable for validating our structure prediction method because many of 

the deposited structure lack either the β-sheet or the steric zipper portion of amyloid 

fibrils.  

Using an in-house program based on BioPython, all computational models generated for 

each of these six systems were superimposed on their corresponding reference PDB 

structure and their root mean square deviation (RMSD) from the experimental structure 

was calculated for all heavy atoms.
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Figure 19 Eight classes of amyloid fibrils. Molecular models do not represent any natural 

fibril and are only presented to highlight the different classes. For more details refer to 

Table 1 and reference 16. 
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Figure 20 Procedure for generating computational candidate models for 

amyloid structures (example PDB ID: 2ONA). Multiple translation vectors are 

generated randomly and for each candidate structure four separate structures 

are generated using rotation operations. 
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Figure 21 Fibpredictor GUI 
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Figure 22 Minimum distance, distance variation (A) and angle variation (B) parameters 

in FibPredictor. The green schematic represent the initial β-sheet. The blue schematics 

represent the copied β-sheets. 
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4.3 Results and discussion 

Figure 23 shows the modelled structures with the lowest RMSD, superimposed on their 

reference PDB X-ray crystal structures. For all of the six amyloid fibril test systems, 

FibPredictor generates structures with an RMSD less than 2.5 Å from the reference PDB 

structure. This demonstrates the feasibility of the computational sampling procedure to 

generate ensembles which contain fibril structures very close to the experimentally 

observed structure. 

In order to investigate the accuracy of the three tested scoring functions for identifying 

the native fibril structures in the generated ensembles, an enrichment analysis was 

performed. For each protein system, the ensemble structures belonging to the class of the 

amyloid reference structure were ranked according to the three different scoring 

functions. The percentage of near-experimental structures (RMSD <3 Å) identified as a 

function of scoring rank of all predicted structures was plotted in the enrichment graphs 

shown in Figure 24; the underlying scatter plots are shown in Figure 25. The performance 

of an ideal scoring function and that generated by a random ranking of the structures are 

also shown for comparison. We observe that the results of the scoring functions usually 

are significantly better than random selection and sometimes even approach the ideal 

enrichment. This means that the scoring functions are generally successful in identifying 

the correct fibril structures. Overall, GOAP is the most successful scoring function in 

four of the test systems and Amb_3b is the best scoring function for the other two fibril 

systems. Within the correct class of amyloid fibril, the first native-like model is identified 

among the top 5 ranked structures with both GOAP (3OVL, 3HYD, 2ONV, 3OW9, 

2OMQ) and Amb_3b (2ONA, 3HYD, 2ONV, 3OW9, 2OMQ). For the remaining tested 



106 

 

1
0
6
 

amyloid fibrils, the first native-like model appears among the top 10 structures for both 

GOAP and Amb_3b. 

Although the scoring functions were successful in enriching native-like structures among 

the top-ranked structures within one class, they failed to differentiate between classes. 

Figure 26, for example, displays GOAP scores as a function of RMSD for the 2OMQ 

system. The graphs of the other scores and amyloid fibril systems follow the same 

general pattern (Figure 25). Although there are small differences between various classes, 

there are always predicted structures with favorable scores which belong to classes other 

than that of the reference structure and thus have high RMSD. This, however, does not 

necessarily mean that the scoring functions failed in identifying favorable structures, as 

structural polymorphism is widely observed in amyloid fibrils 75–77. Hence, it is likely 

that the structure represented by the reference PDB is only one of several amyloid fibril 

structures energetically accessible to the peptide sequence. Structures with favorable 

scores but high RMSD may represent other polymorphs of the β-fibril as they display 

steric zipper interactions of potentially similar strength as the crystallized form of the 

fibril. 
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Figure 23 Predicted structure (carbon atoms in white) with the lowest RMSD value 

superimposed to their experimental reference PDB structure (orange) for the six fibril 

structures investigated in this study. 
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Figure 24 Enrichment plots for the four amyloid classes using three different scoring 

functions, showing the percentage of identified near-experimental fibril structures as a 

function of ranked ensemble structures. The reference PBD ID, its amyloid class, sense of 

the initial sheet (parallel (par) or anti-parallel (antipar)) and applied rotation operations 

(none, z, x or zx) are included in the title of each graph. 
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Figure 25 Various scores vs. RMSD for all of the six amyloid systems tested. The 

triangle shows the score of the reference PDB structure. 
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Figure 25 continued 
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Figure 25 continued 
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Figure 25 continued 
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Figure 25 continued 
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Figure 25 continued 
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Figure 25 continued 



119 

 

1
1
9
 

Figure 25 continued 
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Figure 25 continued 
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Figure 26 GOAP score vs. RMSD for 2OMQ fibril. The triangle displays the score of the 

reference PDB structure. 
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4.4 Conclusions 

In this paper, we have reported a general, computationally efficient method for structure 

prediction of amyloid fibrils. We have demonstrated that native-like amyloid fibril 

structures can be generated based on the sequence alone. Currently, due to the lack of 

knowledge about potential structural polymorphism of amyloid fibrils, it is unclear 

whether the method identifies the most energetically favorable class of amyloid fibril for 

a peptide sequence, or whether equally favorable amyloid fibril structures for the same 

sequence exist. Thus, FibPredictor results should be combined with  experimental data to 

determine the sense of the amyloid β-spine 78, to reduce the analysis to a small subset of 

fibril classes.  In such cases, FibPredictor demonstrated the ability to identify the correct 

amyloid fibril structures among the top-ranked conformations.  

The structures generated by our program can also be useful in interpreting experimental 

data, e.g., by fitting them to SAXS spectra or for interpreting residue interactions 

observed by NMR. Fibpredictor results can also be combined with more sophisticated but 

computationally demanding simulation methods to further refine the initial predicted 

structures, identify potentially important interactions in amyloid fibrils, study mechanical 

properties of amyloid fibrils79,80 and quantify the free energies of amyloid fibril stability. 

Finally, analysis of ensembles of energetically favorable structures generated by 

FibPredictor can be used to identify important interactions in the steric zipper. 
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Table 7 Eight classes of amyloid β-fibrils 16 and the rotation operations used by 

FibPredictor to generate each amyloid class. Figure 19 presents visualization of the 

different fibril classes. 

Class Sense of β-

Sheet  

Directions of 

the two β-

sheets 

Steric Zipper Rotation 

operation 

1 Parallel Up-up Face-to-face X 

2 Parallel Up-up Face-to-back Z 

3 Parallel Up-down Face-to-face ZX 

4 Parallel Up-down Face-to-back No rotation 

5 Anti-Parallel Up = down Face-to-face X 

6 Anti-Parallel Up = down Face-to-back Z 

7 Anti-Parallel Up-up Face = back No rotation 

8 Anti-Parallel Up-down Face = back ZX 
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CHAPTER 5. PHOSPHATE ESTER DERIVATIVES OF GLUCAGON 

5.1 Introduction 

In this chapter stable phosphorylated glucagon derivatives are introduced as glucagon 

pro-drugs which are soluble in neutral pH. Phosphate groups which can be removed upon 

administration by serum phosphatases have been successfully used in past to enhance 

small molecule and peptidomimetic drug solubility and delivery 4–6,81,82.  Also, 

phosphorylation has been shown to be able to affect fibril formation of small peptides 

5,6,83–88. Based on the idea of phosphate derivate prodrugs and phosphate-mediated 

fibrillation modulation, we designed stable and soluble phospho-glucagon prodrugs. This 

design was based on a rigorous computational analysis which suggested that 

phosphorylation at certain rationally-picked residues can effectively prevent fibrillation. 

The enhanced solubility and chemical and physical stability of these prodrugs are shown 

by various methods. Also results show the phosphate group can be removed 

enzymatically in phosphatase enzyme concentrations close to serum conditions, resulting 

in free native glucagon. 

5.2 Materials and Methods 

5.2.1 Phosphorylation Sites and Possible Phospho-glucagon Prodrugs 

There are 10 readily phosporhylatable sites on glucagon (i.e., His1, Ser2, Thr5, Thr7, 

Ser8, Tyr10, Ser11, Tyr13, Ser16, Thr29), which means there are hypothetically 10
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singly phosphorylated, 45 doubly phosphorylated and 120 triply phosphorylated possible 

glucagon prodrugs carrying between one and three phosphate groups, a total of 175 

distinct molecules.  Allowing for up to ten sites of phosphorylation, the number of 

distinct phospho-glucagon derivatives increases to 1023. This study is focused on 

phospho-glucagon derivatives containing only one phosphate group, since these are the 

simplest to produce and serve to demonstrate the approach. 

5.2.2 Computational Modelling of Glucagon Fibrils 

Crystal structures of a glucagon fibril have not been resolved yet. Therefore, 

computational modeling was used to rationally identify strategies for inhibiting glucagon 

fibrillation. Small angle X-ray scattering (SAXS) 30 and Fourier transform infrared 

(FTIR) spectroscopy data of glucagon fibril structures21 were used to limit the possible 

geometries for glucagon fibrils. FTIR data21 shows that the glucagon fibril is formed by 

antiparallel β-sheets.  SAXS data shows that the glucagon fibril has a diameter of 45 Å, 

which is half of the length of a fully extended glucagon. This suggests that glucagon folds 

onto itself and is not fully extended in its fibril form. Combining the SAXS data with 

FTIR, only two different fibril classes remain possible for glucagon. Each of these classes 

can form steric zipper by entanglements of side chains on two sides of the β-sheet which 

results in four formations in total (Figure 28).  

Due to impreciseness inherent to the SAXS data, however, it is not clear how many of the 

amino acids engage in forming the steric zipper, how many form the loop and how many 

terminal residues are free and unstructured. With a loop length ranging from 3 to 17 

amino acids and allowing zero, one or two free terminal amino acids yields 64 possible 

fibril formations (Figure 29). Moreover, each of these fibril formations can fold in two 
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different directions (Figure 28) doubling the number of possible formations. FibPredictor, 

a program developed in the investigators’ lab for computational modelling of steric 

zipper regions of amyloid fibrils89, was then used to generate 100 candidate structures for 

each of 128 formations, amounting to 12,800 structural models covering a comprehensive 

set of hypothetically possible structures for the geometries compatible with the SAX and 

FTIR data. Fibpredictor models the steric zipper by first placing the backbone atoms of 

the two sheets within a user defined minimum and maximum distance (and a certain 

range of tilting angles). Then the side chains are optimized for each relative position of 

the two sheets using SCWRL4 70 and the energy of the final structure model is calculated. 

Fibpredictor has two options for scoring, GOAP71 and Amb_3b73. For this study, we used 

the GOAP score to identify energetically favorable models. 

From the 128,000 steric zipper models, the top 500 most energetically favorable were 

investigated by an in-house program for the most frequent inter-residue contacts. To 

overcome the preference for larger models, the energy was normalized by the number of 

residues. A pair of residues with any two heavy atom closer than 5 Å to each other were 

considered as a contact. 

5.2.3 MD Simulations 

The model of glucagon steric zipper generated by FibPredictor with the lowest average 

energy per residue among all models (NOP) (Figure 29A) and three phosphorylated 

analogues (Figure 29B) were simulated to investigate the effect of phosphorylation on the 

stability of the steric zipper. The phosphorylated analogues represented the 

phosphorylated steric zipper in three different protonation states: doubly protonated 

(SEN)90, singly protonated (S1P) and not protonated phosphate group (SEP)91. NOP, 
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SEN and S1P were simulated in pH 2.5, and SEP was simulated in pH 7.4 to reproduce 

different experimental conditions of fluorescence studies described below. The proteins 

were solvated in a pre-equilibrated octahedron of TIP3P water molecules with a 

minimum distance of 20 Å between the box boundary and any solute atom37. Simulations 

were performed using the AMBER constant pH force field 92.  

The shake algorithm was used to constrain hydrogen containing bonds 39. The 

simulations were performed in an NPT ensemble. The temperature was maintained at 298 

K with a Langevin thermostat40 with collision frequency of 1 ps-1. Isotropic position 

scaling with pressure relaxation time of 2 ps was used to maintain pressure at 1 atm. The 

electrostatic interactions in periodic boundary conditions were treated using the particle 

mesh Ewald method 38. The cut-off for van der Waals interactions was set to 10 Å. The 

integration time step was 2 fs.  

The water molecules and peptide were energy minimized first with and then without 

restraints. The system was then heated from 0 K to 298 K gradually over a 20 ps. The 

system was then equilibrated in an NPT ensemble for 100 ps. The main production MD 

runs were performed for 60 ns. 1200 snapshots were saved for each production 

simulation. Contacts were defined as two residues on the two sides of the steric zipper 

with closest distance to each other. The terminal amino acids were excluded from this 

study due to their flexibility. Initial contacts were defined as contacts that were identified 

in the initial equilibrated structure. Contacts were defined between two closest amino 

acids on the two sides of the steric zipper. The contacts were tracked over the full 

simulation length using an in-house python code. 
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5.2.4 Peptides and their solubility 

Research  grade  human  glucagon  was  purchased  from  ProSpec  (East  Brunswick,  

NJ). Phosphorylated-glucagon derivatives were purchased from GenScript (Piscataway, 

NJ). Solubility of glucagon derivatives were reported by GenScript.  

5.2.5 Stability study (24 h) 

Glucagon, phospho-Ser2-, phospho-Thr5- and phospho-Ser8-glucagon were prepared at 

1.6 mg/mL in 3.2 mM HCl, 0.9% NaCl (w/v) (pH 2.5) and phospho-Thr5-glucagon and 

phospho-Ser8-glucagon were prepared at 1.6 mg/ml in 1X phosphate buffer saline (PBS),  

pH 7.4. Samples were centrifuged at 14,000 rpm for 5 min and filtered through 0.1 μm 

filters to remove any insoluble material. 100 μL of the filtered samples were quickly 

transferred to a 96-well black flat bottom microtiter plate in triplicate and incubated with 

50 μM ThT final concentration. The final volume was adjusted to 200 μL using the 

corresponding buffer as mentioned above. The plate was sealed with a crystal clear 

sealing tape. Fluorescence measurements were carried out in a BioTek Synergy 4 Multi-

Detection microplate reader as described below. 

5.2.6 Initial stability study (31 days) 

Phospho-Thr5- and phospho-Ser8-glucagon were prepared at 1 mg/mL in 50 mM sodium 

phosphate, pH 7.4. Samples were centrifuged at 14,000 rpm for 5 min and filtered 

through 0.1 μm filters to remove any insoluble material. 100 μL of the filtered samples 

were quickly transferred to a 96-well black flat bottom microtiter plate in triplicate and 

incubated with 50 μM ThT final concentration. The final volume was adjusted to 200 μL 

using 50 mM sodium phosphate, pH 7.4. For monitoring fibrillation under different 

temperature conditions, all the samples were prepared in three separate plates. The plates 
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were sealed with a crystal clear sealing tape and incubated at 5 ˚C, 23 ˚C and 37 ˚C. 

Fluorescence measurements were carried out at regular intervals for 31 days as described 

below. 

For turbidity measurement, 100 μL of the above filtered samples were quickly transferred 

to a 96-well crystal-clear microtiter plates in triplicate and the final volume was made up 

to 200 μL using 50 mM sodium phosphate, pH 7.4. For monitoring aggregation under 

different temperature conditions, all the samples were prepared in three separate plates. 

The plates were sealed with a crystal clear sealing tape and incubated at 5 ˚C, 23 ˚C and 

37 ˚C. Measurements were carried out as described below. 

To determine the chemical stability, 1 mL of the above filtered samples were transferred 

to 2 mL glass vials which were stored at three temperatures (5 ˚C, 23 ˚C and 37 ˚C).  

5.2.7 Satibility study (35 days) 

Phospho-Thr5- and phospho-Ser8-glucagon were prepared at 1 mg/mL in 50 mM sodium 

phosphate, pH 7.4 and 1 mg/mL in 50 mM sodium phosphate with 10-4 M EDTA, pH 7.4. 

Both with EDTA and without EDTA samples were centrifuged at 14,000 rpm for 5 min 

and filtered through 0.1 μm filters to remove any insoluble material. The samples were 

aliquoted to vials and sealed under nitrogen gas and stored away from light in room 

temperature. At regulars intervals, sample vials were taken out to for the measurements 

described below. Used sample vials were then discarded. 

For fluorescence measurements, 100 μL of the filtered samples were quickly transferred 

to a 96-well black flat bottom microtiter plate in triplicate and incubated with 50 μM ThT 

final concentration. The final volume was adjusted to 200 μL using 50 mM sodium 

phosphate, pH 7.4. Plates were also prepared at half of this concentration by transferring 
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50 μL of the filtered samples microtiter plate and following the same procedure as above. 

The plates were sealed with a crystal clear sealing tape. Fluorescence measurements were 

performed as described below.  

Same vials were used for turbidity measurement. 100 μL samples were quickly 

transferred to a 96-well crystal-clear microtiter plates in triplicate and the final volume 

was made up to 200 μL using 50 mM sodium phosphate, pH 7.4. Measurements were 

carried out as described below. 

5.2.8 ThT fluorescence measurements 

Fibrillation was followed by measuring the fluorescence intensity of ThT with the 

excitation and emission wavelengths set to 440 nm and 482 nm, respectively. For the 24-

hour studies, measurements were carried out at 15-min intervals for 24 h at 23°C with 5 s 

automixing before each reading. For the initial 31 day studies, measurements were 

carried out every other day for 31 days with 5 s automixing before each reading. For the 

second 35 days studies measurements were carried out every week for 31 days with 5 s 

automixing before each reading. Fluorescence signals of over 100,000 (overflow) were 

set to 100,000 for visualization purposes. 

5.2.9 Intrinsic fluorescence measurements 

The excitation and emission wavelengths were set to 295 nm and 355 nm, respectively, 

corresponding to the fluorescence of Trp25. For the 24-hour study, measurement was 

carried out for 24 h at 23°C at 15-min intervals preceded by 5 s automixing before each 

reading. For the initial 31 day study, measurement was carried out every other day for 31 

days preceded by 5 s automixing before each reading. For the second 35 day study, 

measurement was carried out every week for 35 days preceded by 5 s automixing before 
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each reading. Very high fluorescence signals of over 100,000 (overflow) were set to 

100,000 for visualization purposes. 

5.2.10 Turbidity measurements 

The turbidity of the peptide solutions was measured by UV absorbance at 405 nm 

and 340 nm using a BioTek Synergy 4 Multi-Detection microplate reader (BioTek 

Instruments, Winooski, VT). UV absorbance at 280 nm and 450 nm (Eq.14) and UV 

absorbance at 280 nm and 450 nm (Eq.15) were used to calculate the aggregation index-1 

(AI1) and aggregation index-2 (AI2) respectively. Measurement was carried out every 

other day for initial 31 day stability study and every week for the second 35 stability study 

preceded by 5 s automixing before each reading. The aggregation index was calculated 

using Eq. 14 and/or Eq. 15. 

 𝐴𝐼1 = 100 × (
𝐴𝑏𝑠 450𝑛𝑚 

𝐴𝑏𝑠 280𝑛𝑚 − 𝐴𝑏𝑠 450𝑛𝑚
) Eq. 14  

 
𝐴𝐼2 = 100 × (

𝐴𝑏𝑠 340𝑛𝑚 

𝐴𝑏𝑠 280𝑛𝑚 − 𝐴𝑏𝑠 340𝑛𝑚
) 

Eq. 15  
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Figure 27: Possible conformations for glucagon fibril according to SAXS and 

FTIR data. A and B show the two classes of possible formations. Each of these 

classes can form the steric zipper also on the other side of the sheet resulting in 

formations shown in C and D. 
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Figure 28: All formations of glucagon steric zipper modelled by FibPredictor. The black 

blocks show the sequence engaged in the steric zipper. 
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5.3 Results 

5.3.1 Computational analysis 

An example of an energetically favorable model of the steric zipper of glucagon fibril is 

in shown in Figure 29A. The model shown has the lowest average energy per residue 

among all models. The top 10 most frequent inter-residue contacts in the top 500 most 

energetically favorable models of the steric zipper region of the glucagon fibril are shown 

in Table 8. The top three most frequent contacts, Trp25-Phe6, Val23-Phe6 and Trp25-

Gly4 are of hydrophobic nature. In addition, hydrophobic residues such as Phe6, Val23 

and Trp25 are involved in seven out of the ten most frequent contacts, which confirms the 

importance of hydrophobic interactions within the steric zipper. It is also observed that 

four residues (Ser2, Thr5, Ser8 and Tyr10) which are involved in the top-10 most 

frequent contacts can be phosphorylated. Based on this contact analysis, out hypothesis 

was that the addition of a phosphate group on these four residues will insert a charged 

and highly hydrophilic group into the core of a highly hydrophobic steric zipper, thus 

“opening” the zipper and inhibiting fibril formation.  Moreover, the charged phosphate 

groups are expected to increase the solubility of the peptide. 

5.3.2 MD Simulations of the Steric Zipper Model with and without Phosphorylation 

Figure 30 shows the percentage of the initial contacts lost over the course of the 

simulation of a model of the steric zipper (NOP) and its doubly protonated (SEN), singly 

protonated (S1P) and doubly charged (SEP) phosphorylated analogues. FibPredictor is 

designed to generate energetically favorable steric zippers and therefore, native contacts 

are supposed to contribute to fibril formation. Loss of initial contact therefore, suggest a 

potential instability of the steric zipper. NOP loses less than 10% of its initial contacts 
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over the course of simulation and the steric zipper maintains its original formation. SEN 

and S1P, which reproduce different protonation species of the phosphorylated analogues 

in pH 2.5, lose around 10% and 15% of initial contacts. It should be noted that according 

to the pKa of phosphoserine93the dominant species in pH=2.5 is the doubly protonated 

analogue and therefore, the steric zipper of phosphorylated analogues at this pH is nearly 

as stable as native glucagon. This observation is in line of fibril formation of phos-Ser8-

glucagon in pH=2.5. Nevertheless, SEP in pH=7.4 loses over 20% of its initial contacts 

suggesting that the steric zipper is less stable at this pH value. This observation is in 

agreement with the experimental results showing no fibrillation for phos-Ser8-glucagon 

at pH=7.5. 

5.3.3 Solubility  

While glucagon is not soluble in pH 7.4, two of the glucagon derivatives, phospho-Thr5- 

and phospho-Ser8-glucagon are soluble (10 mg/ml and 8 mg/ml respectively) in neutral 

pH (Table 9). The solubility values presented here are according to reports by GenScript. 

More accurate solubility measurements are underway in Dr. Elizabeth Topp’s lab. 

5.3.4 Fluorescence measurements over 24 hours 

Fluorescence measurements over 24 hours are shown in Figure 31A-D.  Interaction of 

ThT with amyloid β-fibrils results in an increase in the ThT fluorescence signal and 

allows amyloid β-fibril formation to be probed. In pH 2.5 (Figure 31A), native glucagon 

begins to fibrillate after a lag time of approximately 8 hours. Glucagon rapidly goes to 

complete fibrillation after this lag time and the ThT signal reaches a plateau after 

approximately 16 hours. The phosphorylated prodrugs also fibrillate at this pH but with a 

longer lag time of approximately 15 hours. However, at pH 7.4 (Figure 31B) phospho-
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Thr5- and phospho-Ser8-glucagon show no fibrillation over 24 hours and the ThT signal 

remains low for the period of study. Native glucagon and phospho-Ser2-glucagon cannot 

be tested for fibrillation at pH 7.4 since they are not soluble at this pH. This demonstrates 

that while glucagon and the phosphorylated prodrugs studied fibrillate under acidic 

conditions, phospho-Thr-5- and phospho-Ser8-glucagon do not fibrillate in neutral pH 

over 24-hours. A decrease in the Trp intrinsic fluorescence signal indicates 

oligomerization of the peptide. In pH 2.5 (Figure 31C), glucagon intrinsic fluorescence 

shows a sudden decrease after a lag time of nearly 9 hours. Similar behavior is observed 

for phospho-glucagon prodrugs at pH 2.5, but with longer lag times of approximately 18 

hours (phospho-Ser8-glucagon) and 21 hours (phospho-Ser2- and phospho-Thr5-

glucagon). Nonetheless, at 7.4 (Figure 31D) phospho-Ser8- and phospho-Thr5-glucagon 

intrinsic fluorescence signals remain high with no decreasing trend, which indicates a 

lack of oligomerization for these peptides at pH 7.4. 

5.3.5 ThT fluorescence measurements over the initial 31-day stability study 

Figure. 32A-C show the results for ThT assays for 31 days.  As mentioned above, upon 

interaction of ThT with amyloid fibrils, the ThT fluorescence signal increases and allows 

identification of amyloid fibril formation. The ThT fluorescence remained low for 

samples stored at 5˚C (Figure 32A), 23˚C (Figure 32B) and 37˚C (Figure 32C) for 31 

days. This indicates lack of fibrillation in these samples over the extended time period 

and the three temperatures studied. 

5.3.6 ThT fluorescence measurements over the 35-day stability study 

Figure 33 shows the results for ThT assays for 35 days.  As mentioned above, upon 

interaction of ThT with amyloid fibrils, the ThT fluorescence signal increases and allows 
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identification of amyloid fibril formation. The ThT fluorescence remained low for 

samples stored with and without EDTA for 35 days. This indicates lack of fibrillation in 

these samples over the extended time period and the three temperatures studied. 

5.3.7 Intrinsic fluorescence measurement over the initial 31-day stability study 

Figure 34A-C show results from Trp intrinsic fluorescence measurements over 31 days. 

A decrease in the Trp intrinsic fluorescence signal indicates oligomerization of the 

peptide. No such decrease was observed in the Trp fluorescence signal for samples stored 

at 5˚C (FIG. 4A), 23˚C (FIG. 4B) and 37˚C (FIG. 4C) for 31 days. This indicates no 

oligomerization at any of the incubation temperatures over 31 days. 

5.3.8 Intrinsic fluorescence measurement over the 35-day stability study 

Figure 35A-C show results from Trp intrinsic fluorescence measurements over 35 days. 

A decrease in the Trp intrinsic fluorescence signal indicates oligomerization of the 

peptide. No such decrease was observed in the Trp fluorescence signal for samples stored 

with or without EDTA for 35 days. This indicates no oligomerization over 35 days in 

either of the formulations. 

5.3.9 Turbidity measurement over the initial 31-day stability study 

Figure 36A-C show the results of aggregation index measurements over 31 days. Proteins 

do not absorb UV light at 450 nm. Any absorbance observed in this wavelength is 

generally due the light scattering by particles resulting from aggregation, and the 

aggregation index-1 (AI-1) helps quantify this. AI-1 values remained below 5 for samples 

stored at 5˚C (Figure 36A), 23˚C (Figure 36B) and 37˚C (Figure 36C) for 31 days. This 

indicates that no significant turbidity was observed for either of the two phospho-

glucagon peptides at any of the incubation temperatures. 
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5.3.10 Turbidity measurement over the 35-day stability study 

Figures. 37 and 38 shows the results of AI-1 and AI-2 respectively over 35 days. Proteins 

do not absorb UV light at 450 nm and 340 nm. Any absorbance observed in these 

wavelength is generally due the light scattering by particles resulting from aggregation, 

and the aggregation indices (AI-1 and AI-2) helps quantify this. AI values remained 

below 5% for samples stored with or without EDTA for 35 days. This indicates that no 

significant turbidity was observed for either of the two phospho-glucagon peptides in any 

of the two formulations. 

5.3.11 Visual Inspection of Vials in the Second Stability Study 

FIGs 10A-D show photographs of sample of the second stability study up to 28 days. No 

turbidity or visible particles were observed in the vials of phospho-Ser8-Glucagon and 

phospho-Thr5-Glucagon with or without EDTA. 
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A B 

Figure 29: A) An example of energetically favorable steric zipper models 

generated by FibPredictor. B) Same model phosphorylated at Ser-8. 
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Figure 30: percentage of the native contacts lost over the course of the simulation of a 

model of steric zipper (NOP) and its doubly protonated (SEN), singly protonated (S1P) 

and doubly charged (SEP) phosphorylated analogues in different pH conditions 
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Figure 31: Fluorescence measurements over 24 hours 
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Figure 32: ThT assay of the initial 31-day stability study in A) 5 ͦC, B) 23 ͦC and C) 37 ͦC 
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Figure 33: ThT assay of the 35-day stability study 



144 

 

1
4
4
 

 

 

 

 

 

0

50000

100000

day 1 day 3 day 5 day 7 day 9 day 11day 13day 15day 25day 27day 29day 31Fl
u

o
re

sc
en

ce
phos-Ser8-Glucagon phos-Thr5-GlcagonA 

0

20000

40000

60000

80000

100000

day 1 day 3 day 5 day 7 day 9 day 11day 13day 15day 25day 27day 29day 31

Fl
u

o
re

sc
en

ce

phos-Ser8-Glucagon phos-Thr5-GlucagonB 

0

20000

40000

60000

80000

100000

day 1 day 3 day 5 day 7 day 9 day 11day 13day 15day 25day 27day 29day 31

Fl
u

o
re

sc
en

ce

phos-Thr5-Glucagon phos-Ser8-GlucagonC 

Figure 34: Intrinsic fluorescence assay of the initial 31-day stability study in A) 5 ͦC, B) 

23 ͦC and C) 37 ͦC. 
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Figure 35: Intrinsic fluorescence assay of the 35-day stability study 
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Figure 36: Aggregation index over 31-day initial stability study study in A) 5 ͦC, B) 23 ͦC 

and C) 37 ͦC. 
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Figure 37: Aggregation index-1 over 35 days 
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Figure 38: Aggregation index-2 over 35 days 
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Figure 39: photographs of sample of the second stability study on day A) 7, B) 14, C) 

21 and D) 28 and E) 35. Samples remain clear with no visible particle. 
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Figure 39 continued 
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5.4 Discussions 

Computational modelling of the glucagon fibril steric zipper suggests that 

phosphorylation on Ser8 and Thr5 can effectively inhibit fibrillation by introducing an 

anionic charged group into the hydrophobic entanglements of sidechains between the two 

β-sheets. This computational prediction is verified by experiments that show phospho-

Ser8- and phospho-Thr5-glucagon are soluble and stable. Neither phospho-Thr5-

Glucagon nor phospho-Ser8-Glucagon shows fibrillation and neutral pH solution of both 

remain clear with no turbidity for more than one month. This indicates the potential of 

these molecules to be formulated as injection pen or for use in artificial pancreas devices. 

The fact that phospho-Ser2-glucagon fibrillates in both acidic and neutral pH shows that 

phosphorylation inhibits fibrillation in a site-specific way and merely hanging a charged 

group on glucagon is not enough for preventing its fibrillation. The charged group should 

be placed on the correct residue. 

Phosphate derivatization increases the net charge of glucagon and, consequently, 

increases the solubility of glucagon at neutral pH. As a result, while glucagon is not 

soluble at neutral pH and should be solubilized in acidic pH, all three of the 

phosphorylated glucagon analogues tested in this study are soluble at both acidic and 

neutral pH. 

ThT assays and intrinsic fluorescence assays over 24 hours show that phospho-Thr5-

Glucagon and phospho-Ser8-Glucagon are both stable and do not fibrillation at pH 7.4. 

Both of these molecules, however, fibrillate at pH 2.5. This observation can be explained 

by different charge states of the phosphate group in the acidic and neutral pH. MD 

simulations of glucagon and its phosphorylated analogues in different pHs confirm and 
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clarify the effect of the charge state of the phosphate group on its fibrillation inhibition 

effects. MD simulations show that the steric zipper of phospho- glucagon is stable in 

absence of the phosphate group, and in singly and doubly protonated states in neutral pH 

simulations. The steric zipper, however, does not remain stable in acidic pH simulations 

where the phosphate group is not protonated and is doubly charged. The steric effect of 

the additional volume introduced by the phosphate group therefore, is not enough to 

destabilize the steric zipper and the electric charge of the phosphate moieties plays an 

important role in their fibrillation inhibition effects.  

 

5.5 Conclusions 

In this study phosphate-ester derivatives of glucagon were computationally designed and 

tested as soluble and stable prodrugs or active derivatives of glucagon. The 

phosphorylated glucagons showed significantly improved solubility in neutral pH 

compared to glucagon. Also, contrary to glucagon which fibrillates in few hours, the 

phosphorylated glucagons did not fibrillate and were stable for weeks.  

Our research group has applied for a patent on all phosphate ester derivatives of glucagon 

(patent application number 62/195,537). 
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Table 8: The 10 most frequent inter-residue contacts in the 500 most energetically 

favorable models of the steric zipper region of glucagon fibril. 

Contact Frequency 

Trp25-Phe6 327 

Val23-Phe6 256 

Trp25-Gly4 249 

Trp25-Thr5 206 

Met27-Ser2 183 

Asp21-Tyr10 183 

Trp25-Gln3 159 

Val23-Ser8 158 

Gln24-Phe6 145 

Asp21-Ser8 142 
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Table 9: Solubility in neutral pH 

Peptide pH 7.4 (PBS) 

Glucagon Not Soluble 

phospho-Ser2-Gluc. Not Soluble 

phospho-Thr5-Gluc. 8 mg/ml 

phospho-Ser8-Gluc. 10 mg/ml 
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CHAPTER 6. CONCLUSIONS 

Two strategies were tested for stabilization of glucagon formulation and preventing its 

fibrillation, penta-peptide chaperon excipients and derivatization of glucagon itself. 

Penta-peptides were shown to delay glucagon fibrillation for a few hundred minutes. 

However, after this lag time, glucagon entered a log phase and fibrillated rapidly. This 

delay, therefore, was not enough for stable formulation of glucagon.  

Derivatization of glucagon was shown to be more effective for inhibiting glucagon 

fibrillation. Two phosphate ester derivatives of glucagon, phospho-Ser8- and phospho-

Thr5-glucagon designed in this study, were stable and stayed in solution at neutral pH for 

at least one month. Currently dephosphorization studies, chemical stability studies, cell-

based assays and animal studies are underway to test the activity of these molecules and 

their mechanism of actions and find ways to further improve their formulation. 

The phosphate ester derivatives of glucagon were designed based on a computational 

method (FibPredictor) developed as a part of this project to model the steric zipper of 

amyloid fibrils. This computational method is not limited to a specific protein and can be 

applied to generate models of steric zippers starting from any user-defined sequence. The 

generated models can be used in combination with experimental data or as input for 

further computational studies. This computational method is now publicly available on 

anoHub.org. 
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Another developments in this dissertation, were a number of quasi-three body statistical 

potentials for protein structure predictions. The most successful of these potentials (Amb-

3b) has been implemented in FibPredictor. However, the application of these potentials is 

not limited to fibrils and they can be broadly used for any type of protein structure 

prediction. Moreover, the theoretical framework of these quasi-three body potentials can 

be further expanded for information-theoric studies on protein structure94.   
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