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ABSTRACT

Subramanian, Shreyas Vathul Ph.D., Purdue University, December 2015. Multi-level Sys-
tems Modeling and Optimization for Novel Aircraft. Major Professor: Daniel A. DeLau-
rentis.

This research combines the disciplines of system-of-systems (SoS) modeling, platform-

based design, optimization and evolving design spaces to achieve a novel capability for

designing solutions to key aeronautical mission challenges. A central innovation in this

approach is the confluence of multi-level modeling (from sub-systems to the aircraft sys-

tem to aeronautical system-of-systems) in a way that coordinates the appropriate problem

formulations at each level and enables parametric search in design libraries for solutions

that satisfy level-specific objectives. The work here addresses the topic of SoS optimiza-

tion and discusses problem formulation, solution strategy, the need for new algorithms that

address special features of this problem type, and also demonstrates these concepts using

two example application problems - a surveillance UAV swarm problem, and the design of

noise optimal aircraft and approach procedures.

This topic is critical since most new capabilities in aeronautics will be provided not

just by a single air vehicle, but by aeronautical Systems of Systems (SoS). At the same

time, many new aircraft concepts are pressing the boundaries of cyber-physical complex-

ity through the myriad of dynamic and adaptive sub-systems that are rising up the TRL

(Technology Readiness Level) scale. This compositional approach is envisioned to be ac-

tive at three levels: validated sub-systems are integrated to form conceptual aircraft, which

are further connected with others to perform a challenging mission capability at the SoS

level. While these multiple levels represent layers of physical abstraction, each discipline

is associated with tools of varying fidelity forming strata of ‘analysis abstraction’. Further,

the design (composition) will be guided by a suitable hierarchical complexity metric for-

mulated for the management of complexity in both the problem (as part of the generative
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procedure and selection of fidelity level) and the product (i.e., is the mission best achieved

via a large collection of interacting simple systems, or a relatively few highly capable, com-

plex air vehicles). The area of optimization in evolving design spaces has had only limited

exploration, but will be studied and incorporated into the SoS optimization framework. We

envision a framework that resembles a multi-level, mult-fidelity, multi-disciplinary assem-

blage of optimization problems.

The challenge is not simply one of scaling up to a new level (the SoS), but recognizing

that the aircraft sub-systems and the integrated vehicle are now intensely cyber-physical,

with hardware and software components interacting in complex ways that give rise to new

and improved capabilities. The work presented here is a step closer to modeling the in-

formation flow that exists in realistic SoS optimization problems between sub-contractors,

contractors and the SoS architect.
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Readers may follow directions shown above to guide their reading experience. The

current chapter will be highlighted in grey as shown. Detailed explanations of two of

our algorithms, Differential Evolution with Self Organizing Maps (DESOM) in chapter 3

and Adaptive Random Projection (ARP) in chapter 5 are important, and provide a deeper

coverage than that in chapters 4 and 6 demonstrating their use in application problems 1

and 2 respectively.
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1. Introduction

Advancement in aircraft design science and optimization is being given considerable atten-

tion as manufacturers attempt to reduce the time-to-market of new projects. [1,2] However,

more challenging requirements and greater demands for system verification have increased

complexity of both, the design artifact and the design process. Aircraft design optimiza-

tion problems are frequently non-convex, multi-modal and ill-conditioned. This makes the

complete Multidisciplinary Design Optimization (MDO) of aircraft systems prohibitively

expensive. [1] Analysis and optimization of these complex systems, characterized by such

high-dimensional design spaces, require an array of closely knit, discipline-specific mod-

ules. While a multitude of relevant disciplines contribute to the ‘multi-disciplinary’ aspect

of MDO, researchers have intelligently made use of ‘multi-fidelity’ approaches to obtain

reliable results under reduced computational effort. [3–6] Typical optimization procedures

target specific parts of an aircraft’s mission, which then translate to specific technical re-

quirements. For example, certain aspects of a commercial airliner may be optimized for

cruise. MDO techniques have been very successfully implemented in the design of a par-

ticular system (in this example, an aircraft, that is optimized for cruise). The aircraft itself,

however, is composed of several other sub-systems that may be designed and optimized

by companies that specialize in that product (for example, a Pratt and Whitney aircraft

engine). Several existing design procedures are restricted to a single level of analysis that

may yield high quality results for a given sub-problem. Therefore, a ‘multi-level’ synthesis

of optimization problems that treats every system and sub-system involved in a mission

is required for obtaining realistic results. It is important to recognize that an assemblage

of optimal sub-systems may not necessarily result in an optimum system. Extending this

idea to SoS, multiple stakeholders, contractors and sub-contractors may contribute towards

fulfilling an overall top level capability. Component manufacturers (eg: circuit boards),

sub-system manufacturers (eg: multi-spectral camera), system manufacturers (eg: surveil-
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lance UAV) and the SoS architect (eg: surveillance swarm) may all have independent de-

sign and optimization procedures. Levels of hierarchy presented here are linked through

“products” or “objects” designed independently, but all contributing towards a common

mission. While there have been several working approaches into the effort of formulating

and solving multi-level, multi-fidelity, multi-disciplinary optimization problems, the ap-

proaches generally focus on the design and optimization of a single system. The concept

of Systems-of-Systems, due to its hierarchical nature with operationally and manageri-

ally independent systems designed and manufactured by respective stakeholders, yields

itself naturally to the structure of the problem we have begun alluding to in this paragraph.

Ayyalasomayajula also points out that the solution methodology for SoS problems depends

on the distinctive features of the problem itself. [7]

While an aircraft development effort must be viewed in the context of the SoS within

which it exists, [8] the aircraft itself is a complex system composed of a set of interde-

pendent sub-systems. This seemingly clear hierarchy masks the complicated and varied

interactions that exist between the levels. These subtle interactions are responsible for the

observed heterogeneity of designs that satisfy the same capability. The top-level SoS ca-

pability needs to guide the system (aircraft) level synthesis, that in turn drives sub-system

(example: avionics) requirements. For example, a swarm of UAVs (SoS level) may provide

continuous surveillance (capability) over a predefined area. At this level, communications,

patterns and trajectories may need to be optimized for improving performance or reduc-

ing the cost of operation. The UAV itself (system level) can be optimized across multiple

disciplines such as aerodynamics, structure and propulsion for satisfying the given capa-

bility. Individual components (like an infrared camera) that characterize the UAV will also

have to be chosen carefully and optimized (sub-system level). In this work, we attempt

to solve such problems by directly tying sub-system and system design optimization to

SoS-level objectives and requirements, while mimicking the information flow that exists in

the realistic design of a mission-capable SoS. In particular, we are interested in Aerial SoS

applications.
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Figure 1.1.: Levels and systems that exist in a sample SoS optimization problem

The infographic in figure 1.1 describes a SoS that is to be designed and optimized for

a particular collaborative mission. A group of operationally and managerially independent

systemsv that form an SoS are to provide a particular capability, or fulfill a given mission

(the actual mission description is not important here). Each of these systems are designed

and optimized for a particular requirement provided by the top level (or the SoS level).

The systems themselves may be assembled by the primary manufacturer or contractor,

with other sub-contractors manufacturing relevant sub-systems needed in the assembly of

a system. Thus, the capability to be achieved by the SoS flows down as requirements posed

by contractors to sub-contractors (large arrow on the left of figure 1.1). Sub-products are

assembled to form products, which are then grouped to form a mission-suitable SoS (large

arrow on the right of figure 1.1). It is such problems that shall be considered in this work.
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1.1 Literature Review

Customers in the Aerospace industry now ask for broad capabilities and solutions

(demonstration and implementation) rather than for specific individual systems. [9] Sev-

eral authors have showcased important methods that produce high quality solutions at a

particular desired level of fidelity or modeling. First, we explore the possibility of using

existing methods, either directly or with modifications and suggested extensions of the

methods1. We recognize that the problem structure that we are interested in is special, and

therefore, methods that could be used directly (without any modification) may be rare, or

may solve specific versions of the problem at hand. We use the vast literature on MDO as

a starting point here due to a large and obvious overlap in the problem features that will

made clear in the forthcoming sections.

Mane et al. handled this special kind of multi-level problem by using an appropriate

mixture of current and new systems in the form of a SoS to enable design and optimization.

The authors perform aircraft sizing at the system level to achieve a capability of transporting

passengers at the SoS level. Note that the framework is active only at two levels. SoS

operate in an uncertain environment and evolve with time. The authors in [10] attempt

to solve the problem by simplifying it as a static, deterministic case. Taylor and Weck

attempted the same problem, but with an integrated approach rather than a decomposed

one. However, the parameterization of aircraft in their research was simplified – the SoS

architect was allowed to choose one of three fixed aircraft to be used in the network. Hence

here too, the problem was a two level, deterministic one. [11]

Other examples of research involving simultaneous airline route structure and aircraft

design optimization are [12] and [13]. Nusawardhana and Crossley use a circular sequential

decomposition at the core of their framework. Again, the authors significantly simplify the

aircraft design portion of the research by having a lower level optimization problem with

primarily three aircraft design variables – Thrust-to-weight ratio (T/W), Wing Loading

(W/S), and Aspect Ratio (AR). Moreover, the SoS architect is allowed to choose systems

1Some of these modifications and extensions are suggested by authors themselves
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from a pool of only three aircraft. Davendralingam and Crossley reduce a similar problem

into a semi-definite programming (SDP) form to address uncertainty. [14] A low fidelity

aircraft sizing code (Flight Optimization System , FLOPS) is used to design aircraft that op-

erate on an 8 city network at the SoS level while maximizing airline revenue (an SoS level

metric). The methodology is innovative and can handle uncertainty in constraints (refer

to the Bertsimas-sim application to robust portfolio optimization [15]). Nevertheless, it is

only applicable to problems with a top level objective function. We aim to design a frame-

work that goes one step further: incorporate high fidelity simulation-based-optimization

that bridges the gap between the theory, and practical application of SoS (which may or

may not have a top level function to optimize). Note that even today, SoS optimization

studies are not limited to conceptual ones. Azarnoush et al. solve a practical SoS problem

involving mobile robots trying to detect a threat in an unknown environment. The problem

consists of two levels – A master robot at the SoS level and a swarm of robots in the sys-

tem level. The trajectory of each robot is optimized with respect to a local objective. The

final SoS objective is simply a weighted sum of all the individual lower level objectives. A

similar practical SoS optimization demonstration using swarm robotics is discussed in [16].

Wolf examines the simultaneous design of ships that belong to a SoS (Sea-base con-

cept). [9] A single, top level SoS performance objective (time to transport/deliver troops or

cost) drives the design. Collaborative optimization (CO) is used to decompose this problem

into individual ship optimization problems. It is difficult to perform simultaneous analy-

sis and design of each of these individual ships, which have their own (multiple) design

goals and constraints, while also contributing to the overall top-level SoS performance.

The author rightly identifies that designing systems independently (or ignoring SoS) may

result in underutilized (excess) equipment and capability. [9] Wolf extends collaborative

optimization to a case with multiple objectives, but still identifies disadvantages such as

computational ineffectiveness and sub-optimal solutions with redundant capabilities due

to the use of Genetic Algorithm (GA). Here again, the author was able to apply a MDO

approach (CO) to this SoS optimization problem since the number of distinct levels was

two. It is important for us to acknowledge here that the original implementations of the
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MDO methodologies discussed here (like CO, MDF, BLISS etc.) are not limited by the

number of sub-spaces or levels. The preceding discussion only introduces some specific

implementations of the same. However, all these implementations are well suited to disci-

plinary decomposition, and may solve problems that need to be decomposed by discipline

and level of the SoS (for example: airfoil < wing < aircraft < swarm) with suitable mod-

ifications.

Kim and Hidalgo’s research is one of a kind in that a clear approach to SoS optimiza-

tion by linking multi-stage programming and MDO is offered. [13] Like in [12], the author

looks at the problem as a combination of resource allocation and product design. However,

only four aircraft are introduced in total during four stages (i.e. one aircraft per stage),

which are themselves results of a lower level optimization problem involving design vari-

ables T/W, W/S, AR and number of passengers. Although this work also explores a bi-level

decomposition of such a problem, it offers a method to extend the formulation to multiple

levels (by considering them as several bi-level problems and solving the lowest level first).

Nested MDO strategies (like Analytical Target Cascading (ATC) with CO used by Allison

et al. [17]) are closest in structure to type of problems we are interested in - disciplinary

decomposition through MDO to design a sub-system, followed by requirements-based as-

sembly of sub-systems to form systems at higher levels.

We observe the following in all the aforementioned research work:

1. MDO methods are not designed to effectively captured the multi-stage aspect of SoS

design beyond two levels. Usually, the levels considered are the SoS or fleet level,

and the aircraft level. We recognize that the implementations of MDO approaches

discussed here are problem-specific and are therefore not expected to solve generic

SoS optimization problems without modifications. MDO approaches use disciplinary

decomposition to design and optimize systems, and may even be modified to use

other sub-spaces as a proxy for individual disciplines 2. We intend to describe a

framework that naturally describes practical problems that are multi-stage, multi-

level, and multi-disciplinary in nature.
2Such modifications may give rise to multi-level or hierarchical decompositions
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2. The aircraft level is generally simplified to reduce ‘impractical’ computational cost.

It must be recognized that each level in an SoS framework is important, although

finally the top-level capability must be achieved. Also, current parallel computing

architectures are making computationally expensive tools faster to run.

3. As discussed by Dennis and Arroyo, [18] for some SoS problems, there may be no

discernible top level objective other than to find a feasible strategy. Oftentimes, a

mission-suitable SoS or a SoS with a desired capability is designed. When trans-

lated to the actual solution strategy used, this means that a candidate SoS may need

to be checked or validated against this desired capability, rather than optimized with

respect to some objective function. Authors use a top-level function (like cost or

time/performance) so as to use existing frameworks and algorithms, or for a con-

crete mathematical formulation. This often takes the form of minimizing the sum of

constraint violations or constraint programming. While having the option of using

constraint programming for certain sub-problems in the framework adds flexibility

to the approach, cost is frequently used as a top level function in SoS problems. If

two options provide the same capability, the option with lower cost is desired.

4. SoS evolve with time, and therefore the design space also evolves with time. Authors

have chosen to use static (or minimally changing) design spaces due to computational

difficulties, and scarcity of algorithms to handle evolving design spaces.

In summary, we identify that the direct application of current state-of-the-art method-

ologies are not appropriate in terms of at least three essential areas, and hence may not

be useful in our approach (see table 1.1). Our approach aims to push the envelope of

SoS-based optimization by formally defining the problem structure, and by proposing one

possible approach to solve problems that fit into this new structure.

Cramer and Frank discuss SoS analogs of popular MDO methodologies. [18] Although

actual applications of these SoS optimizing frameworks were not provided, it is useful to

reflect upon these comparisons (see table 1.2). This provides us with a good starting point

to progress towards the final goal. Attempting to optimize SoS as a whole by coupling all
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Author Method Features Levels

Wolf et al. [9] CO 1,2,3,4,5 2

Taylor & Weck [11] Decomposition 1,2,3,4,5 2

Mane et al. [10] MINLP, MDO 1,3,4,5 2

Nusawardhana & Crossley [12] DP, NLP, ILP 1,3,4,5 2

Davendralingam & Crossley [14] SDP 1,3,5 2+

Kim & Hindalgo [13] MSP, MDO 1,2,3,4,5 2+

Marwaha & Kokkolaras [19] MINLP, Re-

sponse surfaces

1, 3, 4, 5 2

Sobieszczanski-Sobieski [20] TLISS 1, 2, 4, 5, 3

Kim et al. [21] ATC 1, 2, 4, 5 2+

Legend

Features 1 - Static Design Space, 2 - Determinis-

tic, 3 - Simplified Aircraft, 4 - Required

Top Level objective, 5 - Only one level of

abstraction

Method CO - Collaborative Optimization,

MINLP - Mixed Integer Nonlinear Pro-

gramming, DP - Dynamic Programming,

LIP - Integer Linear Programming, SDP

- Semi-Definite Programming, MSP

- Multi-stage Programming, TLISS -

Tri-Level Integrated System Synthesis,

ATC - Analytical Target Cascading

Levels Number of SoS levels considered. Here

2+ indicates that the work demonstrates

the use of a particular framework /

method on two levels, however the au-

thors state that the work ‘can be extended’

to higher number of levels.

Table 1.1: Existing methodologies for solving similar Aerial SoS problems organized ac-

cording to the authors and features of their methods.
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its levels to form one massive optimization problem is impractical, although it might be

achievable with an embarrassingly parallel, distributed computational set-up. This how-

ever, is not the focus of the current work. Our goal is to present an efficient framework

for analyzing Aerial-SoS applications that are challenging and difficult to solve, for the

purpose of improving current aerial mission scenarios or evaluating hypothetical ones. The

framework we envision must:

1. handle two types of interactions – intra-level interactions (within one particular level),

and inter-level interactions (across levels)

2. handle varying fidelities of sub-system and system analysis code appropriately so as

to obtain high quality products (sub-systems, aircraft and SoS). Each fidelity may

require inputs of varying levels of abstraction (for example, the same aircraft may

have a simplified representation for use as an input to a lower fidelity aerodynamic

analysis code)

3. manage the complexity of the process (computational) and the products formed (sub-

systems, aircraft and SoS networks), especially when operating under a computa-

tional/resource budget.

4. recognize that the top-level capability may be an objective or just a feasibility crite-

rion.

5. be demonstrated for three essential levels, but must also be easily extensible to 4 or

more levels of the SoS.
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System of Systems (SoS) Multidisciplinary Design Optimization (MDO)

Inactive Central Authority (ICA) Multidisciplinary Analysis

Guiding Central Authority (GCA) Multi-discipline Feasible (MDF)

Mediating Central Authority (MCA) Individual Discipline Feasible (IDF)

Omnipotent Central Authority (OCA) All At Once (AAO)

Table 1.2: Equivalent SoS methods when compared to existing Multidisciplinary Optimiza-

tion (MDO) methods

1.2 Targeted Aerial SoS Challenge Problems

The Northrop Grumman Global Hawk and the Aurora Flight Sciences Theseus have

similar endurance values (24 - 36 hours) and similar service ceilings (65000 to 82000 feet),

but have completely different airframes, due to independent design processes, parameters

and payload requirements resulting in different optimal designs. [22] Often times, these

optimal designs neglect the interactions between sub-systems (and consequently systems

themselves), resulting in significantly unexplored design choices. Our view is that the

hierarchical capability and function flow structure must be considered explicitly, from indi-

vidual sub-systems to the systems-of-systems abstraction. The hierarchy spans operational

layers of abstraction (γ-level to α-levels) and multiple levels of fidelity in each layer (repre-

sented by available tools/models in segmented boxes for each layer), illustrating the highly

complex, computationally intensive and interconnected nature of designing an aeronautics

SoS capability. While research efforts have focused on addressing the computational issues

of integrating designs across computationally intensive sub-system level artifacts (e.g. CFD

and structural analysis of a wing), there is largely unexplored area of dealing with integra-

tion and complexity management across the SoS hierarchy, in achieving an overarching

capability.

Three primary integrative aspects are depicted by figure 1.2 : 1) A multi-level approach

for simultaneous analysis and optimization of components at each level of the hierarchy, 2)
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Figure 1.2.: Collection of aircraft at the SoS level (γ), Individual aircraft at system level

(β ) and components at sub-system level (α)

Multi-disciplinary analysis techniques to help solve the highly coupled sub-problems such

as efficient propulsion-structure integration, and 3) Multi-fidelity analysis and optimization

will allow intelligent use of computational resources to obtain high quality results for each

discipline (structure, aerodynamics, control), at each level (sub-system, system and SoS

level) of the analysis. These dimensions allow for effective management of design choices

across the hierarchical levels, judicious computational resource allocation in managing in-

formation across varied levels of fidelity, and optimal selection of baskets of systems that

best meet the SoS level capability objectives.

As a demonstration of our proposed approach, we will solve two multi-level problem

that each span the three levels of physical and analytical abstraction. Although the SoS

optimization problems are comprised of three levels, extension of the proposed framework

to four or more levels is trivial and involves no modification of the framework or the math-

ematical formulation.
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1.2.1 UAV-swarm for Agricultural Surveillance

UAVs are frequently assigned to dangerous, dull or dirty missions; further, their use

often occurs as part of a heterogeneous fleet with multiple operators, constituting a SoS.

Examples of these applications include wildfire detection and tracking, search and rescue,

agricultural aerial surveillance and domestic policing. However, these commercial applica-

tions are rarely optimized in a rigorous manner so that each contributor works cohesively

to achieve an overarching capability, or to properly select or develop the individual air-

craft. Our SoS-centric perspective enables effectively designing heterogeneous swarms of

UAVs with diverse, but complementary system level capability that cohesively give rise to

a potentially greater performance at the SoS level.

Our first challenge problem is the multi-level design of a fleet of surveillance UAVs

in the agricultural domain. Precision Agriculture using unmanned aerial systems (UAS)

is a relatively new concept used for collecting high-resolution multi-spectral imagery for

automated crop-stress detection and identification. The concept involves deploying a set of

20-40 UAVs from a mobile van, having the UAV fly over specified regions collecting im-

agery along the way, and returning to the van at the end of the mission. Large and complex

interactions between camera capabilities, electrical power systems, UAV performance and

image quality makes this a very challenging design problem. Given an area to be surveyed,

a possible design problem is as follows:

1. At the SoS level, the problem is to determine the number and mix of UAVs that fly on

pre-determined trajectories. These trajectories (which are part of the decision space)

may depend on on-board camera characteristics, imaging requirements in terms of

resolution, sun angle, and revisit time between adjacent images.

2. At the system level, the problem is to design each UAV’s wing and fuselage Outer

Mold Line (OML) such that the needed payload and range can be obtained.

3. At the sub-system level, the problem is to design airfoil sections along the wing root

to wing tip.
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This application problem is important to the field of precision agriculture and moni-

toring and paves the way for affordable, current and accurate Geo-information. [23–25] A

majority ( 80%) of non-military (commercial) applications of UAVs will be for agricultural

purposes (surveillance, precision agriculture, crop dusting etc.). [26] Important aspects of

the problem structure and the proposed solution strategy are highlighted in Application

Problem 1. Application Problem 2 presents a detailed analysis of a more realistic problem.

1.2.2 Passenger Aircraft with Minimal Noise Impact

Any increase in airport capacity must be sustainable, be safe, and abide by community

noise restrictions. Recent research has revealed that aviation noise not only causes irritation

to the members of a community that is close to an airport, but that continuous exposure

to noise may have other long term health problems. [27] Apart from mitigating noise on

the ground via insulation and the use of sound barriers, two clear solution paths may be

followed:

1. Minimize aircraft (or System level) noise. This may further include:

(a) Engine noise

(b) Airframe noise

(c) Noise due to flaps, slats, extensions, speed brakes and landing gear

2. Minimize operational (or SoS level) noise through improved approach procedures

that take into account noise sensitive areas and mandated constraints.

Given an airport that is selected for improved approach procedures, a possible design

problem is as follows:

1. At the SoS level, the problem is to dynamically determine the spacing between air-

craft for minimum area of impact due to noise, such that safety is not compromised.
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Thus, given noise noise optimal aircraft 3, the task is to find improved procedures can

be flown at the SoS level to minimize the area covered by a specified noise contour.

2. At the system level, the problem is to minimize the airframe noise emitted by aircraft

during the final approach phase with respect to level-specific decision variables such

as aircraft wing, fuselage and tail section parameters.

3. At the sub-system level, we consider the aero-structural design of airfoil sections

from the wing root to wing tip, as well as turbojet engine feasibility analysis.

To summarize, this application problem derives an operational approach procedure that

these “noise optimal” aircraft must follow for safe and efficient flight, the aircraft them-

selves being assembled from a set of relevant components and sub-systems.

1.3 Research Tasks

We recognize that problems such as the ones described above in Sections 1.2.1 and

1.2.2 are important to the industry as well as academia. Take for example, the recent ven-

ture of the online shopping giant, Amazon, which is embarking on an ambitious project of

creating a delivery fleet for delivering products to customers “within minutes”. [28] Zookal

Inc. plans to have a similar fleet of UAVs that will deliver textbooks in Australia next

year. [29] Currently, tests are being conducted with single drones for judging the payload

limit. However, with a framework for simulating the entire mission involving a fleet of

UAVs or aircraft, with intricate sub-system and system design, will speed-up the develop-

ment time, and reduce the amount of flight testing required. This is done by introducing

improved fidelity models that can properly predict performance, thereby reducing the need

for iterative improvement based on experimental test results. Additionally, a framework

that is built on the strong foundations of multi-level optimization and hierarchical com-

plexity will be efficient in highlighting potential issues and benefits at the fleet(SoS) level.

The framework we envision can be summarized as follows :
3In our application problem, we use far field noise intensity of aircraft in the clean wing configuration. More
details can be found in Chapter 6
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Multi-level Aerial SoS (ASoS) optimization testbed (Algorithms, Problem formula-

tion, Solution strategy and Demonstrations) for critical analysis of new and existing,

collaborative aircraft mission scenarios.

Although MDO-based methods can be tweaked for solving certain classes of SoS op-

timization problems4, we base our framework on a unique mathematical formulation

that fits this problem type, and develop relevant algorithms to solve discipline-specific or

level-specific sub-problems. We have identified the shortcomings of existing methods for

handling such large scale Aerial SoS problems (see section 1.1), and present a framework

that involves the following tasks.

1. Describe typical steps involved in setting up and solving SoS optimization prob-

lems. Also set up and demonstrate use of overarching hierarchical complexity

metric to make the process and product tractable (Chapter 2).

• The process refers to intelligent management of computations, data trans-

fers, convergence criteria and auto-adjusting parameters that control the ef-

fectiveness of the algorithm.

• Products are components in each level of the SoS having multiple levels of

abstraction per level of representation.

2. Develop a core optimization algorithm that addresses computational difficulty

and the need for global search (Chapter 3)

(a) Each level involves the use of expensive, discipline-specific black-box tools

that are usually avoided, or replaced by lower fidelity tools for conceptual

search.

4See chapter 2 for discussion on the difference in problem structure between MDO and SoS optimization
problems
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(b) The SoS level also needs an efficient optimization algorithm for identifying

feasible networks (of discrete choices aircraft) for that particular mission.

A custom algorithm that can be used in both of the above scenarios is needed.

3. Explore and present the concepts related to Evolving Design spaces in the context

of optimization from the perspective of application and theory. (Chapter 5)

4. Integrate and demonstrate the proposed testbed for a Precision-Agriculture UAV

swarm and a Noise efficient aircraft and arrival procedures. (Chapters 4 & 6

respectively)

1.3.1 Areas of Contribution

The three main areas of contribution of this research work are summarized below:

Template for other SoS optimization problems

This research seeks to achieve a SoS based design paradigm, via the simultaneous in-

tegration of three essential levels of hierarchical optimization. The paradigm serves as

a generic template for SoS problem formulations for the purposes of optimization. We

define the structure of an SOS optimization problem, and differentiate it from MDO and

Nested-MDO problems. Given this new problem structure, a novel solution method is in-

troduced (see Chapter 2 for details). It merges tenets of intelligent optimization techniques

and hierarchical, interrelated levels to allow for the design and development of an SoS.

The template also allows for the assessment of behaviors under conditions of uncertainty.

Our research demonstrates this through solution of the aforementioned challenge problems.

The challenge problems can be generalized and extended, and a standardized mathematical

formulation for a multi-level, multi-fidelity problem is also presented.
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Algorithm Development

This research will result in algorithmic advancements that address the complexities

in dealing with multi-fidelity tools across the hierarchical spectrum of designing an SoS

entity. Our optimization algorithm, Differential Evolution with Self Organizing Maps (DE-

SOM) will form the backbone of the entire methodology. The sub-problems in this research

such as shape optimization of entire aircraft, detailed engine analysis etc. will require the

creation of new optimization and analysis tools.

Development of an optimization algorithm at the SoS level is a challenging task since

the concept of SoS itself is fluid in nature, and involves qualitative aspects such as pol-

icy, group judgment and concurrent operations. Sobieszczansky-Sobieski acknowledges

that potentially incompatible design objectives may occur at every level of a decomposed

SoS, and introduces a tri-level algorithm for hierarchical optimization. [30] Other options

for multilevel optimization include Collaborative Optimization (hierarchical decomposi-

tion along disciplinary boundaries), and Concurrent Sub-Space Optimization (temporary

decoupling of subsystems). [31, 32] These methods are promising solution strategies that

may need to be suitably modified for application to certain classes of SoS optimization

problems (to be explained in detail in Chapter 2). [33–35] However, we propose a solu-

tion strategy that is generic, and may be used to solve all SoS problems that are posed as

shown in our mathematical stencil. Generic SoS problem formulations developed will be

leveraged in the development of solution strategies and algorithms for generating holistic

solutions valid across all levels of the SoS.

The vastly unexplored area of evolving design spaces becomes relevant in the context

of SoS optimization. Two methods of improving designs by extending a design space are

explored - 1) Numerical continuation and 2) Random projections. Each of the challenge

problems adopt one of these strategies to implement optimization in an evolving design

space. Also, in the course of solving application problem 2, a new hybrid method for

calculating optimal trajectories is developed. The aircraft are then flown in a custom SoS

CFD environment.
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Computational Resource Monitoring

The problems we attempt to solve are computationally intractable in nature, due to the

presence of multiple simulation tools, use of evolutionary algorithms and the sheer number

of sub-processes needed in order to complete a top-level process. Also, two computa-

tionally similar problems may suit completely different speed-up methods - for example,

certain problems suit parallelization using CPU cluster, whereas others may suit GPU-style

computations. To showcase this variety in structure, we carefully choose suitable computa-

tional architectures available freely or commercially (Eg. in MATLAB). In a resource con-

strained scenario, a simple, yet novel hierarchical complexity metric adapted from sources

in literature is used to monitor these processes and allocate available resources intelligently

(refer to chapter 2 and the application problem 1 in chapter 4). On the other hand, a se-

quential or iterative computational set-up may suit certain other problems (refer application

problem 2 in chapter 6). In addition, our framework supports the use of multi-fidelity tools

through the use of a Value-of-Information (VoI) based decision logic that connects the time

required for an analysis and the value of utilizing that level of fidelity for analyzing a de-

sign.
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In this chapter we introduce the mathematical framework that will be used to represent

SoS optimization problems, and also discuss some key steps, features and foundations of the

approach including Platform-based Design, Hierarchical Complexity, multi-fidelity analy-

sis and the use of Value of Information. Specific optimization-related algorithms developed

will be discussed separately in forthcoming chapters.
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2. Technical Approach

This chapter introduces concepts related to SoS optimization such as the problem structure

(Section 2.1) and its relation to MDO and nested-MDO problems. Features specific to SoS

optimization problems that differentiate them from multi-level, multi-disciplinary problems

are also described. Finally, we describe a generic solution strategy that can be used to solve

problems that fit into the generic mathematical template presented (Section 2.2).

Special features are added to a standard multi-level optimization problem to represent

an SoS optimization problem. Since SoS optimization problems are expected to be ex-

pensive by nature, a hierarchical complexity metric is proposed to control and manage the

process during actual implementation. Foundational elements of this framework such as

Platform-based Design (PBD) paradigm, evolving design spaces, multi-fidelity analysis

and hierarchical complexity are also described as part of the process description.

2.1 SoS Optimization : Problem Structure

Figure 2.1 shows an Euler diagram for the set of optimization problems. 1 This dia-

gram does not differentiate or classify these problem types based on problem features. It

simply allows us to defines sets of problems that we are interested in based on the math-

ematical structure, and then show valid subsets and intersections. MDO problems (which

are optimization problems themselves) are examples of a larger set of problems - Nested

MDO. A network or a hierarchy of MDO problems is a nested MDO problem. In this

sense, MDO problems are special instances of Nested MDO problems, similar to a node

being a special instance of a network (a network may have a single node too, therefore, all

MDO problems are special cases of nested MDO problems, with the number of MDO’s

1This is similar to the popular P vs NP Euler diagram. Note that this diagram is only for demonstration
purposes and does not come with any formal proof
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involved = 1). These Nested MDO problems share its general problem structure with SoS

optimization problems, that we are interested in here. However, unique additions to the

structure of SoS optimization problems differentiate them from Nested MDO. The inter-

section between Nested MDO and SoS optimization problems represent the set of problems

that may be solved by existing techniques. Therefore, Nested MDO problems may man-

ifest themselves as SoS optimization problems. This is true when the special features of

an SoS problem structure is non existent, but the problem still involves more than one in-

teracting MDO problem. We are interested in the set of problems that can be represented

by SoS optimization problem structures alone. Problems in the intersection of SoS and

Nested MDO may very well be solved by existing methodologies. We further explain the

difference between these problem types in the following paragraphs. Note that more com-

prehensive or general problem formulations may exist, but the discussion below uses a

minimal representation to demonstrate the difference in problem structure.

Figure 2.1.: The set of SoS optimization problems and their relation to MDO and nested-

MDO problems

Let us first recognize that the set of SoS optimization problems have a unique structure;

this differentiates this problem set from other related problems such as MDO problems,

nested-MDO problems and optimization problems of the general variety. A general opti-

mization problem may be formulated as:
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x∗ = argmin
x

f (x)

S.To g(x)≤ 0

h(x) = 0

(2.1)

where x∗ is an optimum point with respect to an objective function f , subject to equality

(h) and inequality (g) constraints.

An MDO problem P uses global as well as discipline specific variables, constraints

and copies of variables to reach a solution and may be written as (from Martins [176]):

{x∗0, x∗i }= argmin
x,ŷ,y,ȳ

f0(x,y)+
N

∑
i=1

fi(x0,xi,yi)

S.To g0(x,y)≤ 0

h0(x,y) = 0

gi(x0,xi,yi)≤ 0

hi(x0,xi,yi) = 0

ŷ− yi = 0

Ri(x0,xi,yi, ȳi, ŷ j 6=i) = 0

(2.2)

where ()0 pertain to global constraints and variables, and ()i pertain to discipline or sub-

space specific ones. x and y are design variables and coupling variables respectively. Copies

of the coupling variables (ŷ) are enforced via consistency constraints ŷ− yi = 0. State

variables ȳ may occur in physics-based solvers relevant to that discipline (eg: Navier-

stokes CFD solver in the Aerodynamics discipline that may need to “converge” below

some tolerance level). The result of an MDO problem (problem P) is an optimized

product, which may then be used as part of an assembly. 2 Here, the local and global

design variables describe the product (x∗0,x
∗
i ). It is important to note that a product as a

result of this MDO problem may be interchangeably denoted as {x∗0, x∗i } or P itself for

brevity in the discussion that follows. For example, P may represent an aircraft.
2Other authors may refer to a “product” as an “object”, a “component” or a “sub-assembly”
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Next, we consider a Nested-MDO problem (defined as interacting MDO, or hierarchical

MDO, or a network of MDO problems) using the above notation as :

P∗
0 = argmin

{P j}
F(P0)

S.To P0 = {P j, ∀ j = 1 : M}

A({P j,Pk}) = 0, ∀ j,k = 1 : M

C({P j,Pk}) = 0, ∀ j,k = 1 : M

V ({P j}) = 0, ∀ j = 1 : M

(2.3)

where P0 is the outermost problem, {P j} are interior problems which may themselves

be MDO problems, F is a measure of performance of the assembly P0, A are interface

constraints or physical connections, C are communication constraints, and V are analysis

or validation constraints. The constraints A and C describe how two solutions P j and Pk

communicate or connect, whereas validation functions V may be required to test interior

solutions prior to their use in the outermost problem P0.

SoS optimization problems are similar in structure to Nested-MDO problems, but have

several unique features shown below:

Pt,∗
0,l = argmin

{Pt
j,l}

F(Pt
0,l)

S.To Pt
0,l = {P j, ∀ j = 1 : M+∆M}

A({Pt
j,l,P

t
k,l}) = 0, ∀ j,k = 1 : M+∆M,∀l at time t

C({Pt
j,l,P

t
k,l) = 0, ∀ j,k = 1 : M+∆M,∀l at time t

V ({Pt
j,l}) = 0, ∀ j = 1 : M+∆M,∀l at time t

Pt+∆t
j,l = Pexpert

(2.4)

where experts may introduce new products Pexpert at a particular time t (which may be

treated as solutions of an MDO problem), solutions may now exist at multiple levels of

fidelity or “abstraction”, and new problems may be introduced through an evolving design
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space (increasing number of choices to pick from, or changing the optimization problems

that result in the product itself). The aforementioned features allow us to use the same

structure as nested MDO problems while also better reflecting the nature of problems found

in practice.

It is easy to see that these additional, unique features arise because of SoS characteris-

tics, for example :

1. Operational and Managerial Independence - Each level designs and optimizes prod-

ucts (or solutions to MDO problems) independently. However, an interaction exists

through instructions that flow across and within levels (to be detailed shortly).

2. Evolving Nature - introduction of optimization in an evolving design space

3. Levels of abstraction - a product may have different interpretations at different levels

4. Stakeholder involvement through designs that are provided by experts

5. Multi-stage aspect due to the added dependence on time t

Next, we provide details about the steps involved in our approach for the solution of

SoS optimization problems.

2.2 SoS Optimization : Solution Strategy

We motivate our approach and associated process description with the precision agri-

culture UAV challenge problem introduced in section 1.2.1. Solving an SoS optimization

problem will generally involve the following steps:

1. Capability Flowdown

2. Multi-level, multi-disciplinary Analysis Management

(a) Forming sub-system sets

(b) Populating the system library
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(c) SoS-level synthesis

3. Multi-Fidelity analysis

4. Complexity Management

Note that depending on the problem type, the phase of design and the quality of models

used in the process, some of the above steps may not be used. For example, a problem

that does not operate on a computational or time budget may not require the management

of process complexity (although product complexity may feature in one of the problems) .

On the other hand, a problem that does not involve multi-fidelity tools may not require our

method for multi-fidelity analysis management.

2.2.1 Step 1 - Capability Flowdown

The capability of our UAV-based precision agriculture challenge problem may be de-

composed into two basic SoS level capabilities (surveillance and data processing) and fur-

ther decomposed to system and component requirements (see Figure 2.2). Apart from

the capabilities explicitly derived from the SoS level, there may be capabilities that are

application- or level-specific. For instance, growers may require precision maps containing

information about nutrition, water, insects or fertilizers. Information about insects can be

obtained with a fleet capable of providing higher effective resolution, whereas a coarser res-

olution map is sufficient for obtaining information relevant to optimizing water distribution

and irrigation channels. These implicit and explicit capabilities at the system level will cor-

respond to several items in the material and sub-system library. The capability flowdown

map generated is a cursory representation of the actual computational framework.

The capability flowdown step translates the required capability from the SoS level, to

specific requirements that the lower levels must satisfy. Lower levels may have existing

systems that satisfy this requirement. Otherwise, new systems are designed or optimized

by triggering or activating lower levels to satisfy these requirements. Of course, these

requirements are modeled as performance thresholds, or constraint violations. This allows
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Figure 2.2.: Sample capability flowdown for the precision agriculture SoS example

for under- or over-achievement also. Capability flowdown is therefore matched by a flow

in the upward direction by products in the sub-system, system or SoS level.

Here, we clarify the difference between ‘levels of an SoS’ and ‘levels of abstraction’

at a level in the SoS. Consider the system level (with a library or collection of assembled

aircraft). The aircraft at this level may be represented in several ways (several fidelities of

representation):

• By the span and aspect ratio of its wing, and fuselage length.

• By a detailed CAD model representing the aircraft geometry to a high level of detail.

Each of these representations (abstractions) are useful for tools to be used at that par-

ticular level of fidelity. For example, a very detailed, high resolution geometry is required

for a CFD tool, but the a lifting-line theory based code analyzing the same aircraft may

not use this level of detail. Levels of the SoS, on the other hand, correspond to the level

that a product (for example, an airfoil or an aircraft) belongs to. This brings us to one the

foundations of this research, Platform-based design.
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Platform Based Design

A platform is defined as a library of components, across multiple hierarchical levels,

that can be assembled to generate a design at that level of abstraction. [36] Each element

in the library is associated with some performance parameters, supported functionalities

and interfaces. The library as a whole is a parameterization of the design space. The

PBD design process is neither top-down, nor bottom-up; rather, it is a meet-in-the-middle

process. [36] The PBD methodology was successfully adopted by several automotive man-

ufacturers in Europe for managing development time and increased complexity, but the

methodology used is generic, and not limited to automotive applications. [37] Two key

principles of PBD make it useful in the design of complex aerospace systems:

1. It addresses complexity by introducing layers of abstraction, and

2. It separates out the specification of functionality and architecture at each layer.

We expect the updates at the sub-system, system and SoS levels happen independently

in our design process. The architecture choices used may depend on the style of central

authority (omnipotent, in the case of Application problem 1, and mediating in Application

problem 2).

PBD is also linked to the use of libraries of components that exist in each level in our

framework. This collection or library of components exist at multiple levels of abstraction.

For example, the system level may append a new aircraft to the existing collection or library

of aircraft that it offers as a choice to the SoS architect. However, the aircraft analysis code

that exists in the system level may “see” this aircraft at a much higher fidelity level or

resolution, than the SoS level, where important, discernible characteristics of the aircraft

may be sufficient for use in SoS level performance evaluation codes.

2.2.2 Step 2 - Multi-level, Multi-disciplinary Analysis Management

The establishment of a capability flow down in Step 1 generates requirements data that

flow to each hierarchical level. To support our design paradigm, analysis and simulation
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tools should allow designers to combine models from different domains into integrated

system and SoS level models, and allow models of components and sub-systems (including

algorithms) to evolve throughout the design process from conceptual design to detailed

design. This requires the development of a multitude of system models at SoS levels, as

well as models involving combinations of disciplinary analyses and optimization blocks.

Step 2a. Forming Sub-System Sets

Once all relevant sub-systems and material types are selected from the corresponding

libraries, they are modified and tuned for system integration - both across the hardware and

software spectra of the sub-system hierarchies where components in the library must have

an interface specification that describe compatibility requirements with other components.

Optimization at the sub-system level introduces a range of operational modes of each sub-

system. An engine (sub-system) designed to provide 1000 lbs of thrust can be improved

to provide 1100 lbs (1.1x) at a lower rate of fuel consumption. Engines corresponding to

optimal (1.1x) and sub-optimal (1x to 1.1x) configurations form a flexible set of designs.

Flexible sub-systems help form flexible systems, and this flexibility is implicitly transferred

up to the SoS level. Although this flexibility may or may not be explicitly desired, higher

levels may test the hypothesis that sub-optimal sub-systems may be assembled to form

optimal systems in an SoS optimization framework. Thus, at each level, we have sets of

co-related designs instead of disparate design points. Our use of evolutionary optimization

algorithms allows for the grouping of sets of feasible designs (population members) that

have varying performance characteristics.

Step 2b. Populating the System Library

Unlike the sub-system and material libraries, the system library that is to comprise of

a set of feasible aircraft, can initially be empty. The library is dynamically updated as and

when feasible, mission certified aircraft are available via the simulation-based design op-

timization. The creation of primary designs will involve global search using multi-fidelity
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and multi-disciplinary tools. An aircraft is assembled using products delivered by analysis

blocks the sub-system level, and only feasible or optimal aircraft are added to the library of

aircraft for selection by the SoS level.

A core capability required for composing the system models is an understanding of

system behavior under nominal and off-nominal conditions. We propose to simulate the

behavior of the system under nominal and off-nominal operating conditions to reason about

component failures and functional losses, and assess their impact downstream at the sub-

system level as well as upstream at the SoS level. [38, 39] This is achieved through robust

counterpart optimization and sensitivity analysis. Due to its central position in our Aerial

SoS example problems, System level is critical to the flow of information upstream and

downstream.

Step 2c. SoS-level Synthesis

The synthesis of aircraft systems, with capabilities, requirements and risk (for example,

technology readiness level (TRL)), bears much resemblance to that of a portfolio problem

where the objective is to select collections of systems, each subject to specific rules of

connectivity and requirements, that work cohesively in providing some overarching SoS

level capability. These systems or nodes and associated rules of connectivity or links can be

selected judiciously using optimization paradigms that can balance potential benefits of the

resulting SoS architecture against manifestations of various measures of operational risk.

This work will employ recent algorithmic advances in optimization to enable navigation of

the complex combinatorial trade-space, and aid in the selection of complete collections of

systems that constitute an optimal SoS. [40, 41]

When a new aircraft is added to the system library, it is verified to be mission-suitable,

and is then added as one of the nodes in a potential SoS network. However, as new elements

are added to a system library, the number of potential SoS configurations grows (at worst,

by n2 where n is number of nodes in system library). Further, the sub-system, system

and SoS level updates may happen asynchronously (depending on the computational set-
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up), thus making the design space dynamic in nature. Here, the design space becomes

dynamic since one of the design variables in the optimization problems considered could

be the choice a component from a library (that increases in size, thereby allowing more

than the original number of options / choices). Depending on the mission type and the

objective function, homogeneous or heterogeneous networks may be preferred. If cost (in

$) is the objective function in the present precision agricultural example, it may be useful

to delegate specific functions to different sets of aircraft. Such trades are addressed via an

overall complexity management process.

2.2.3 Step 3- Multi-Fidelity Analysis

Fidelity is the degree to which a model reflects the behavior of a real system. Model A

is said to be at a higher fidelity than Model B if more physical phenomenon are modeled

in an effort to replicate real physics of the analysis involved. Accuracy, on the other hand,

applies only to the results of a simulation. It answers the question, how close are the results

obtained to the real value of the parameter(s) being measured? [42] Two main bifurcations

of multi-fidelity modeling used in optimization are 1) constant parameter dimension, and

2) variable parameter dimension. [43] The difference lies in the dimension of ‘inputs’ (x)

to a lower fidelity model f̂ and that of a higher fidelity model f . While Robinson et al.

describes typical methods used in 2), our simulations are more suited to 1), where the same

input vector may be interpreted and used at different levels of fidelity. State-of-the-art

methods in this class of multi-fidelity global optimizers include Efficient Global Optimizer

(EGO) and Value-based Global Optimizers (VGO). [42, 44]

Operating in a constant parameter multi-fidelity space allows us to use state-of-the-art

methods that are shown to have provably convergent formulations that are equivalent to

optimization in the highest fidelity level. [42, 44] Although the proofs of these algorithms

are provided for convex and differentiable functions, demonstration problems have shown

their effectiveness for non-convex functions as well. Both EGO and VGO use a surrogate

model as a backbone to derive properties relevant to their global optimizer in a multi-
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fidelity environment (DACE for EGO, and Gaussian processes for VGO). While EGO uses

the Expected Improvement (EI) metric, VGO uses the more versatile Value of Information

(VoI) metric. VoI allows for the use of multiple fidelity levels, whereas EI (and the global

optimizers that use this) allows only one higher fidelity model. [42] Furthermore, EI is as-

sociated with an arbitrary, user-defined stopping criteria whereas VoI’s stopping criteria is

intuitive (that is, stop when cost ≥ benefit, or VoI ≤ 0). VoI suits our purpose since it is a

utility function that encompasses not only the final product, but also the cost of the process

needed to design that product. We modify the VoI formulation found in [42], since the orig-

inal formulation suggests the next point to be sampled as well as the fidelity level, whereas

our ‘next point’ is chosen by the evolutionary optimization algorithm DESOM2. [45] Let

the function we wish to maximize be f : Rn→ R. Let the previous sample points until the

current time-step be given as {xk}, with corresponding function values { fk}, regardless of

function fidelity. The value of an analysis at fidelity i is given as: [42]

vi = max(E( f | fk), fmax)− fmax (2.5)

Given a cost Ci for using a model of fidelity i for evaluating f (xi), the value of incre-

mental gain Gi may be given as:

Gi = vi/Ci

=
max(E( f | fk), fmax)− fmax

Ci

(2.6)

We diverge from the original VoI formulation at this point since 1) we intend to use

existing sampling methods or global optimizers, and 2) Our decision on fidelity level to use

is based on a single model that represents outputs from sample points at all fidelity levels,

and our cost is measured in units of time (thus, we avoid writing Gi = vi−Ci). We use

results reported in [45] (summarized in chapter 3) , where we derive the expected value

of a new population member xi generated by an evolutionary optimizer. Note that one

would be aware of the cost Ci, which is measured in units of time since prior tests may be
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conducted to measure the average time taken to complete an analysis at a particular fidelity

level. Assume that the function f is convex and differentiable. 3 Then from [45],

E(xi) =CR · xav +(1−CR) · xi (2.7)

where CR is the crossover probability, and xav is the average location of the popula-

tion members (where we expect to finally find the optimum f ∗ ≥ fmax. Depending on the

optimizer used, we may not find a f ∗ ≥ fmax. Now, using Jensen’s inequality for convex

functions, we obtain:

E( f (xi))≥ f (E(xi))

= f (CR · xav +(1−CR) · xi)
(2.8)

Since f is a convex function, f (CR · xav +(1−CR) · xi) ≤CR · fmax +(1−CR) · f (xi),

which gives:

E( f (xi))≥CR · fmax +(1−CR) · f̂ (xi) (2.9)

where f̂ is the potential method surrogate model used by DESOM2. The gain Gi is then

given as:

Gi =
max(CR · fmax +(1−CR) · f̂ (xi), fmax)− fmax

Ci

=
max(CR+(1−CR) · f̂ (xi)/ fmax,1)−1

Ci/ fmax

(2.10)

The incremental gain (Gi) values corresponding to each fidelity level is used during

an optimization run to decide the fidelity of the model i∗ to be chosen for a particular

population member xi. Let the fidelity levels be represented from lowest (1) to the highest

available (N f ). The following decision logic is used in correspondence to the Gi values.

3Although the assumption that f is convex and differentiable is restrictive, this allows us to perform some
more
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i∗ =


argmaxi{Gi} , if min(Gi)> 0

argmaxi\i′{Gi}, i′ = arg(Gi = 0) , if min(Gi)≥ 0

1 , Otherwise

If model error is known, a worst case function value may be used instead of f̂ (xi). Re-

sults presented here are purely theoretical with example problems that indicate effective-

ness outside these assumptions. Our implementation of the VoI metric and the formulae

discussed here use results pertaining to the DE-SOM algorithm. The implementation using

other global optimizers has not been explored here. Also, depending on the application

problem, the Ci term may not have the units of time. Thus, a careful modification of these

metrics is required for effective and correct usage.

Bertschinger et al. use VoI in their work describing information geometry on non-

cooperative games. [46] The authors show how the intuition that “additional information is

always valuable” may be violated in games involving multiple players or bounded rational

behavior. So, a higher fidelity source has higher information content (lower noise). The

authors in [46] briefly describe single player games and the calculation of VoI, which is

related to our implementation of a single player choosing an appropriate fidelity level.

They define marginal value or improvement (VoI) as the projection of the gradient of the

expected utility (here, f̂ ) and the gradient of VoI. Extensions of the work presented here

will incorporate such metrics for multi-fidelity optimization.

2.2.4 Step 4- Complexity Management

The process then proceeds to the management of inherent complexities that manifest

across the three sub-steps (sub-levels) of (2a-c). The pressure to conduct affordable devel-

opment programs requires that the orchestration of complex systems be planned to signif-

icant detail, well in advance of actual design studies. This is because complex distributed

systems can exhibit behavior that is not easily predictable. [47] The RAND corporation

attributed the rise in costs of fixed-wing military aircraft to increased complexity. [48] Due
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to the dynamic nature of interactions seen in tightly coupled aircraft sub-systems, it is dif-

ficult to minimize the complexity of a system at the conceptual design stage. [37] In our

research framework, complexity takes on two distinct forms:

1. Product Complexities - associated with operational complexity of assemblies, or net-

worked components in all levels of the SoS architecture, and

2. Process Complexities - associated with computational resources required on infor-

mation systems (IT) that directly support the development of the end operational

SoS architecture.

The challenge of developing future complex systems in a cost-effective manner can

addressed by a new generation of multi-level design processes and tools. [37] A multi-level

design tool may be used study the scale, impact and behavior of system interactions early

in the design process to ensure that complexity is understood before making key design

decisions. While the complexity associated with each of the two noted forms requires

domain specific knowledge for management, they share salient features. These facets of

complexity management are described next.

2.2.5 Facets of Complexity Management

Quantification of Complexity

Complexity of a system has traditionally been quantified based on information the-

ory as the measure of information content of the system, or by the uncertainty present in

it. [49–51] Summers et al. model complexity by the degree of interconnections between

various components of the system. [50] Although it may seem convenient to model com-

plexity at each level in this problem using a network-centric approach, this disassociates

one level from another. Initially, the conversion of a generic top-level capability description

to an actual abstraction level design form can be controlled by using the ‘designing effort’

metric defined by Braha et al. [52] Due to the multi-disciplinary nature of the design pro-

cess, abstract (i.e, low-fidelity) complexity metrics may serve as an early indicator, while
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detailed network based metrics (high-fidelity) may be used at later stages of the design

process. Apart from metrics that describe the process (like designing effort) and the infor-

mation content (network based), an overall complexity must be defined for the hierarchy

that comprises of all three primary levels.

To manage process complexity, we adapt the model of hierarchical complexity, a frame-

work for scoring the complexity of task execution based on how information is orga-

nized. [53] It can be made to account for evolution of systems by recognizing that their

patterns are comprised of tasks, performed at specified orders. This metric will be used to

control the number of times a library at a particular level is accessed, or the time allotted to

a specific task such as sub-system optimization. The entire process is quantified by orders,

tasks, stages, and performance. The functional decomposition of the process reveals sev-

eral primary functions (such as architecture evolution and system optimization) and some

secondary functions (such as a library item notification). The order portion of the metric

quantifies the direction and frequency of information flow from one function to another.

The task portion quantifies the difficulty of a particular function to process information

and provides results to other parent or child functions. One can imagine that initially the

sub-system and system levels may be more active than the SoS level since the correspond-

ing libraries are still being populated. These libraries may saturate and the SoS level may

involve more processing. This aspect is captured by the stage portion of the metric. Lastly,

each function may process information at different rates depending on the problem being

solved. For example, CFD analysis may involve meshing different geometries of aircraft

while meshing speed depends on the geometry itself. Thus a performance portion is also

required to completely capture the notion of hierarchical complexity of the proposed design

process.

Complexity Distribution

The ability to quantify complexity is as important as the process of minimizing and

allocating complexity ‘budgets’ to various levels. The complexity of components present
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in each level needs to be distributed according to the objective function and constraints.

In the aerial precision agriculture SoS example, suppose the objective is to minimize the

sum of system cost and operational cost of the SoS. An SoS involving several small, cheap,

and re-usable systems (SoS-1) may be more optimal than another SoS involving two high-

performance surveillance aircraft (SoS-2). At the SoS level, SoS-2 is much simpler than

SoS-1 since it contains just two sophisticated systems capable of even completing indi-

vidual missions. However this impression is reversed when we move to lower levels of

the hierarchy. The sophisticated nature of systems of SoS-2 arises from the fact that the

sub-systems are more complex. Thus, complexity considerations can eliminate the need to

construct and evaluate an SoS based on a time-consuming virtual simulation, if it is likely to

result in an unfavorable objective function value. Monitoring performance and complexity

in the vertical and horizontal dimensions is only important when both time, and the number

of computational resources are limited (as in application Problem 1). Here, the available

set of processors schedule jobs pertaining to each level, and all levels of the problem share

the same computational resources. Thus Application problem 1 uses a parallel computing

setup that allows all levels to progress in parallel. On the other hand, when either time, or

computational resources are limited and distributed, a sequential parallel architecture can

be used with level-specific workers that wait for data from other levels (as in application

problem 2).

Before we quantify our hierarchical complexity metric, we define the following terms:

• Task - An analysis or a job (or some form of computation) to be completed. It holds

a value of 1 if it is completed, and 0 if it is not.

• Order - Ideal forms of complexity or performance evolution with time prescribed by

experts.

• Stage - Refers to an actual task performed with respect to an order

• Classical Information Complexity (Ch) - This ‘horizontal’ or component-specific

form of complexity is the number of yes-no questions it takes to describe a prod-
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uct. For our use, this is given by

Ch = Components + Links.

• Hierarchical Complexity (Cv) - This ‘vertical’ complexity is defined by the number

of processes required before, and in order to perform a more complex process. [53]

This is given by

Cv = ∑i=sos,sys,sub Tasksi

• Product Performance - Performance of a product (component) at a particular stage

(horizontal). For example at the SoS level,

Ph = fsos(Xsos)

• Process Performance - Performance of the tasks to be performed at each level at a

particular time instant (vertical)

Pv = ∑i, j
Fidelityi×Task j

Time to complete Task j

Note that this calculation is valid for problem set-ups where the user is aware of

various fidelity levels, and is able to calculate the Value of Information (VoI). In

this case, Fidelityi may be replaced by VoIi. For cases where the VoI metric is not

suitable, other methods must be used to indicate a difference of fidelities. Note that

a careful and appropriate modification of the formulae for Pv is required with the use

of VoIi as a metric for fidelity since our implementation already factors in time (as

cost, Ci), in addition to the time to complete Task j.

Our metrics for horizontal and vertical product and process performance is simple and

intuitive and used to direct the next step of the SoS optimization framework such that

Products / processes below a predicted performance threshold or above a complex-

ity threshold are not formed / scheduled.

This is done by controlling the value of stage and order of hierarchical performance

(Hp) and hierarchical complexity (Hc):



39

0 2 4 6 8 10
0

5

10
Complexity Evolution

Time (hr) or Generations

C
v o

r 
C

h

 

 

Stage
Order

0 2 4 6 8 10
0

5

10
Performance Evolution

Time (hr) or Generations

P
v o

r 
P

h

 

 

Stage
Order

Figure 2.3.: Schematic showing evolution of stage and order of complexity and perfor-

mance with respect to time or number of generations of the framework.

Hp =
stage(Pi)

order(Pi)
, i = v,h and Hp ≥ 1 (2.11)

Hc =
stage(Ci)

order(Ci)
, i = v,h and Hc ≤ 1 (2.12)

An example time history of the framework trying to control the values of Hp and Hv is

given in figure 2.3. It is desired that the performance (vertical or horizontal) is maintained

above a threshold or order (left), and that the complexity is below some corresponding

order (right).

2.3 Mathematical representation of the SoS Optimization Framework

Section ?? described the structure of SoS optimization problems in general. As a re-

minder, the structure resembles a network, hierarchy or nested system of MDO problems

that may evolve with time. However, suggesting a mathematical structure for the most gen-

eral case of nested MDO problems is not the focus of this work. First, we must recognize

that SoS are hierarchical in nature. Thus, a tree or hierarchy of problems is most suitable

for building a mathematical stencil for SoS optimization problems. This section builds this

generic mathematical representation from regular optimization, to multi-level optimization,

and then through unique differentiating features, to SoS optimization problems.

Multilevel optimization was introduced in 1952 by von Stackelberg who proposed a

two level strategy for use in systems where top level policy changes influences decisions



40

at the lower level. [54] We first describe the difference between well known optimization

formulations, and how adding a few specific features to this standard formulation may be

useful in representing SoS-optimization problems. We then formalize our discussion and

offer a mathematical description of this framework (Section 2.3.1).

Characteristics of a conventional parameter optimization problem can be described us-

ing the generic formulation shown in Equation 2.13. Typically, an optimum point (x∗),

such that x ∈ Rn is to be found with respect to an objective function f or a vector of ob-

jective functions J. The problem may be further restricted by variable bounds (LB,UB),

equality (H) and inequality (G) constraints. In this problem description, the size of the

design variable is fixed, that is, x ∈Rn is true for all time / all generations / all optimization

iterations.

Min/Max J(x) = [ f1, f2, . . . , fk]
T (x) : k ≥ 1

Subject To

Inequality G(x) = [g1,g2, . . . ,gl]
T (x)≤ 0 : l ≥ 0

Equality H(x) = [h1,h2, . . . ,hm]
T (x) = 0 : m≥ 0

Variable Bounds LB≤ x≤ UB

Where x ∈ Rn : n≥ 1

(2.13)

We may modify this description to yield a ‘multi-level’ optimization problem with s

number of levels (Equation 2.14). Each upper level in the list of s levels uses variables

that are optimum values of the lower levels. The symbols f , g , h , J etc. have their usual

meanings, however a subscript is added to identify the current level of operation. Also, we

notice that although the number of equality and inequality constraints may be zero, there

must be a top level objective function J in each level. In other words, multiple layers of

unconstrained optimization functions form a valid multi-level, multi-objective problem.
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Min/Max J1(x1) = [ f 1
1 , f 1

2 , . . . , f 1
k ]

T (x1) : k1 ≥ 1

Subject To

Inequality G1(x1) = [g1
1,g

1
2, . . . ,g

1
l ]

T (x1)≤ 0 : l1 ≥ 0

Equality H1(x1) = [h1
1,h

1
2, . . . ,h

1
m]

T (x1) = 0 : m1 ≥ 0

Variable Bounds LB1 ≤ x1 ≤ UB1

Where x1 ∈ Rn1
: n1 ≥ 1

(2.14a)

Where x1 solves:

x1 = Min/Max J2(x2) = [ f 2
1 , f 2

2 , . . . , f 2
k ]

T (x2) : k1 ≥ 1

Subject To

Inequality G2(x2) = [g2
1,g

2
2, . . . ,g

2
l ]

T (x2)≤ 0 : l2 ≥ 0

Equality H2(x2) = [h2
1,h

2
2, . . . ,h

2
m]

T (x2) = 0 : m2 ≥ 0

Variable Bounds LB2 ≤ x2 ≤ UB2

Where x2 ∈ Rn2
: n2 ≥ 1

(2.14b)

...

Where xs−1 solves:

xs−1 = Min/Max Js(xs) = [ f s
1, f s

2, . . . , f s
k ]

T (xs) : s1 ≥ 1

Subject To

Inequality Gs(xs) = [gs
1,g

s
2, . . . ,g

s
l ]

T (xs)≤ 0 : ls ≥ 0

Equality Hs(xs) = [hs
1,h

s
2, . . . ,h

s
m]

T (xs) = 0 : ms ≥ 0

Variable Bounds LBs ≤ xs ≤ UBs

Where xs ∈ Rns
: ns ≥ 1

(2.14c)
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Authors have utilized existing methods from optimization, Multi-disciplinary optimiza-

tion (MDO), Analytical Target Cascading (ATC) and decomposition based approaches to

formulate SoS optimization problems as nested or hierarchical versions of regular, multi-

level optimization problems. [20, 21, 55–57] Others have solved application problems (es-

pecially simultaneous, bi-level, aircraft and fleet optimization problems) that are posed as

SoS design optimization problems. [55, 58–61] As detailed in [62], these frameworks gen-

erally consider a static design space, with levels of optimization problems with a required

top-level objective, and a single level of abstraction. Here we present additional features

present in SoS optimization problems that distinguish them from conventional multi-level

optimization problems.

For explanation purposes, let us re-introduce the targeted SoS optimization application

problem that involves the selection of suitable UAVs for imaging a plot of agricultural land

(‘Precision Agriculture Swarm’). The problem span three levels - The sub-system level

contains parts of a UAV such as engines, wings, tail sections etc.; the system or aircraft level

containing a library of aircraft assembled (optimally or feasibly) from the sub-system level;

and an SoS level or Swarm level containing networks formed by selecting instances from

the aircraft library. We shall use this example to explain features of the full fledged SoS

optimization problem that is obtained by modifying the standard multi-objective, multi-

level problem shown in Equation (2.14).

• Optional objective function J for any given level (1 to s)

Unlike conventional multi-level problems, an SoS problem need not necessarily

optimize a function J at all levels. Thus, it may be sufficient to have a feasible x

at a particular level, rather than optimizing for a minimum or maximum x as in

constraint programming. Alternatively, a level may also have an unconstrained

optimization problem (only J with no f or g). In our intended application prob-

lem (Precision agriculture UAV swarm), the top level SoS may only require that

the selection of UAVs (x) completes a mission (representing a feasible design
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point). The SoS may not be optimal; that is, the mission may not be completed

in minimum time or with maximum area of coverage. If a method for measur-

ing how well the capability is satisfied exists (through some metric, for example,

probability of mission success), this may be treated as an objective function. We

then have a measure of under- or over-achievement with respect to some desired

level of performance.

• Evolving design space

The size of the design variable vector (n) and the objective function are fixed

in conventional optimization problems, but may vary (in a predictable fashion)

for SoS optimization problems. We must further understand the nature of this

evolution. In our application problem, as the number of UAVs in the aircraft

level of the SoS optimization problem increases, the number of potential SoS (or

network of UAVs) increases tremendously.

• Uncertain resources

Solutions and performance of an optimization must remain relatively unchanged

when exposed to uncertain conditions. Uncertainties may exist in 1. Design

Variables, 2. Environmental parameters, 3. Objective function or 4. Constraints.

Uncertainty in a particular item described here may be aleatory (intrinsic and

irreducible kind) or epistemic (due to lack of knowledge a designer may have).

In our application problem, weather, policy changes, manufacturing limits and

operating conditions are all uncertain.

• Multiple levels of abstraction
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A single design variable represents one feature, but possibly at multiple levels

of abstraction. In other words, a design variable that represents the same fea-

ture may have varying levels of detail or fidelity. For example, imagine that a

particular aircraft (at the systems level in the optimization problem) is a design

variable for the SoS level. So, the SoS may ‘choose’ this aircraft to form one

of its nodes. The aircraft (a design variable) may be represented with increasing

levels of detail. Two extreme examples are listed below :

1. Wing Area

2. CAD model of entire wing, fuselage and stabilizers along with engines and

other appendages

• Choice-set varies with time

In a real-world SoS, systems may retire or may be replaced by better systems

ahead of their scheduled time for end of service. In order to incorporate this into

the generic formulation of the SoS optimization template, we introduce swapped

variables yc at each level. These variables replace the values of a design variable

vector x, thereby inducing no change in the size of the design space n. Progress

in time may be incorporated by changing the simulation environment or tweak-

ing simulation parameters. In our application problem, imagine that a particular

engine is to be replaced by a newer version of the same engine on all aircraft that

use it, but after roughly 100 missions. The sub-system library (represents the set

of all x in the sub-system level) then replaces the older engine (retired) xc with a

newer engine yc.

• Capability flowdown by setting targets
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The framework must involve flow of information in the

1. Upward or conventional multi-level optimization direction i.e. optimum

values or products from lower levels are used in upper levels

2. Downward direction, i.e. higher levels provide feedback on as to how ef-

fective the ‘optimum’ values suggested by the lower levels were through

targets.

For example, an airfoil may be optimized for maximum cl
cd at a lower level, but

may not necessarily be selected to form a rib on an optimum wing on the upper

level. The target specification aims to establish communication in the downward

direction. Targets can be made part of objectives in each level. For example, a

previously found optimum objective function value, say T can be improved by

using min f − T in the approach. T may also indicate customer needs and/or

market requirements.

• Expert in the loop

Since no realistic SoS optimization can be made intelligent enough to be com-

pletely automated, provisions must be made to accommodate human decisions

and to allow for the morphing of objective functions, variable dimensions or

constraints during the implementation of the framework for SoS optimization.

For example, an expert may know through intuition or an external analysis that a

particular type of UAV must not be considered for the current problem. Formu-

lating and reformulating the SoS problem to obtain a high quality, refined result

must also be an easy, efficient process.
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2.3.1 Mathematical Formulation

Although the changes made are subtle, they complicate or prohibit use of conventional

optimization frameworks and algorithms used for standard multilevel or multi-objective

problems. The final framework that incorporates all the aforementioned details is given in

equation (2.16). In Equation (2.16), superscripts 1 to s represent the level number. In a three

level SoS optimization problem, the top-most level is usually referred to as the SoS level,

whereas lower levels are called system and sub-system levels. For problems with more than

three levels, the level number (1 to s) is used as is for identification, with level 1 representing

the top-most (or SoS level), and level s representing the lowest level. Depending on various

factors, one can decide as to which level of fidelity ( j) is required for an optimization step

(iteration) i at that time (t) being simulated in the model. Also, variables at a particular

level may be swapped with new ones (x ./ yc), may increase (x(t, i+1) = xnew∪x(t, i)) or

decrease in dimension (x(t, i+1) = x(t, i)\ xold). To handle uncertainties, we use features

from the Robust Counterpart Approach [63] Suppose we wish to optimize a function f

over a variable set x. Let x vary in precision / confidence by ε , and due to environmental

uncertainties / operational conditions (α). Then,

Min/Max f (x|ε,α)≡ sup
ξ∈(x|ε)

/ inf
ξ∈(x|ε)

fR(ξ ,α) (2.15)

where fR is the robust counterpart of f . Constraint functions may also be represented

in the same manner. Adding an expert in the loop, and implementing capability flowdown

based on target specification are programmatic details that must be incorporated while ac-

tually implementing the optimization framework, and are problem specific. An objective

function in a level s may be a combination of other simpler functions. That is, f s = ∑ f̂ s.

We consider the case when f s evolves to include another new function in the sum (i.e.,

f s = ∑ f̂ s + f̂new), especially when f̂ are all convex and Lipchitz continuous (see chap-

ter 5 for details). To enable capability flowdown, we use targets as a part of objectives

in each level (an objective f is replaced by f −T to measure under-achievement or over-

achievement). For example, a previously found optimum objective function value, say f ∗
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can be improved by minimizing f − f ∗ in an attempt to find a design with an objective

function that is better than the previously found f ∗. The quantity f ∗ here may also indi-

cate customer needs and/or market requirements. However, textual targets and customer

requirements, as they are commonly presented, may have to be quantified before use in the

framework. For the final mathematical stencil, see Equation 2.16.

Min/Max :

J1
R(x

1|ε1,α)≡ sup
ξ 1∈(x1|ε1)

/ inf
ξ 1∈(x1|ε1)

J1(ξ 1) = [ f 1
1 , f 1

2 , . . . , f 1
k ]

T (ξ 1)

Subject To

G1
R(x

1|ε1,α1)≡ sup
ξ 1∈(x1|ε1)

/ inf
ξ 1∈(x1|ε1)

G1(ξ 1) = [g1
1,g

1
2, . . . ,g

1
l ]

T (x1)≤ 0

H1
R(x

1|ε1,α1)≡ sup
ξ 1∈(x1|ε1)

/ inf
ξ 1∈(x1|ε1)

H1(ξ 1) = [h1
1,h

1
2, . . . ,h

1
m]

T (x1) = 0

LB− ε
1 ≤ x1 ≤ UB+ ε

1

Swap Variable values : (x|ε)1
c ./ (y|υ)1

c

Evolve Design Space :

x1(t, i+1) = x1
new∪x1(t, i) ‖ x1(t, i+1) = x1(t, i)\ x1

old

f 1
p = ∑

q
f̂ 1
pq + f̂ 1

new, ∀p ∈ [1,k1],q≥ 1

Where : x1 ∈ Rn1

k1 ≡ k1(t, i, j)≥ 0

l1 ≡ l1(t, i, j)≥ 0

m1 ≡ m1(t, i, j)≥ 0

n1 ≡ n1(t, i, j)≥ 1

(2.16a)
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...

Where ξ s−1 solves:

Min/Max

Js
R(x

s|εs,α)≡ sup
ξ s∈(xs|εs)

/ inf
ξ s∈(xs|εs)

Js(ξ s) = [ f 1
s , f 1

s , . . . , f s
k ]

T (ξ s)

Subject To

Gs
R(x

s|εs,αs)≡ sup
ξ s∈(xs|εs)

/ inf
ξ s∈(xs|εs)

Gs(ξ s) = [gs
1,g

s
2, . . . ,g

s
l ]

T (xs)≤ 0

Hs
R(x

s|εs,αs)≡ sup
ξ s∈(xs|εs)

/ inf
ξ s∈(xs|εs)

Hs(ξ s) = [hs
1,h

s
2, . . . ,h

s
m]

T (xs) = 0

LB− ε
s ≤ xs ≤ UB+ ε

s

Swap Variable values : (x|ε)s
c ./ (y|υ)s

c

Evolve Design Space :

xs(t, i+1) = x1
new∪xs(t, i) ‖ xs(t, i+1) = xs(t, i)\ xs

old

f s
p = ∑

q
f̂ s
pq + f̂ s

new, ∀p ∈ [1,ks],q≥ 1

Where xs ∈ Rns

ks ≡ ks(t, i, j)≥ 0

ls ≡ ls(t, i, j)≥ 0

ms ≡ ms(t, i, j)≥ 0

ns ≡ ns(t, i, j)≥ 1

(2.16b)

2.3.2 Boundaries of Applicability

Although the formulation shown in Equation (2.16) is generic and widely applicable,

there are limitations. For example, the only kind of uncertainties that can be handled are

deterministic (defined by fixed parameters ε and α) in nature. Beyer and Sendhoff identify

two more forms of uncertainty - probabilistic (involving likelihood of by which a certain
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event occurs) and possibilistic (fuzzy measure describing if an event is plausible or believ-

able).

There do exist SoS frameworks that address other dimensions of the rapidly growing

SoS field like complexity, simulation [64], capability [65], architecting and exploration

[66]. However a specialized mathematical framework for optimizing SoS does not exist.

This framework is set up to handle these SoS ilities in the form of objective functions (J) or

constraints (G or H) and focuses on optimization rather than measuring a particular metric.

As such, the framework is metric-independent. That is, other frameworks can be effective

add-ons used to expand the current framework. We imagine our framework to resemble

a tree of MDO problems (See figure 2.4), involving inter- and intra-level interactions and

evolving design spaces, with information, data or target instructions flowing in the upward

or downward directions. The individual MDO problems (gray boxes) are related through

the products or objects they design as a result of the optimization run. Products of lower

levels (or sub-systems) are assembled at higher levels to form larger products (or systems).

Each level designs a product, and may involve multiple disciplines and fidelities. The

products from lower levels that are part of an assembly in the higher level are transferred

appropriately. The problem can then be (roughly) imagined as a combination of Analytical

Target Cascading (ATC) and MDO, minus the additional features described in Section 2.3.
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MDO problem

Discipline block /

Static optimization

Evolving optimization

Figure 2.4.: Framework aims to solve a tree of MDO problems where products are designed

at each level (sub-system, system and SoS) and appropriately transferred to higher levels

when required

2.4 Evolving design spaces through Numerical Continuation

Evolving design spaces are an apposite characteristic of System of Systems (SoS). Al-

though ‘evolving nature’ is portrayed as one of the most important traits of a SoS (DeLau-

rentis et al. [67]), the context of the word evolving was not the same as the one adopted

in this work. Here, our aim is to formalize the notion of SoS optimization by providing a

mathematical stencil, boundaries of applicability, suitable optimization algorithms, typical

application problems and useful extensions to the overall framework. From the perspective

of optimization, SoS may evolve over time. This form of evolution is more suitable for

use in Dynamic Programming environments. On the other hand, the resources and oper-

ations of the SoS can be optimized for a particular time instant, range of times, or for all

times. This form is more suited to multi-level optimization. The mathematical basis of this

framework for SoS optimization is inspired by the field of multilevel optimization, but only

resembles it in terms of overall form and structure. We demonstrate the use of evolving de-

sign spaces using two solution strategies as part of the two application problems (Chapters

4 and 6).
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Evolving design spaces are rarely used in the widely available literature on optimiza-

tion. A design space may be finite or infinite. Imagine a grid of cells that can be individually

activated to add them to the set of design variables x, or individually switched off to remove

them from the active set of variables. This design space is evolving but finite. This kind

of design space evolution is relatively more common in structural topology optimization.

Jang and Kwak use design space adjustment based on a fixed grid and demonstrate the

superiority of their method over conventional topology optimization. They report lesser

computational cost and an increased chance of finding global optima incrementally. [68]

To handle the possible discontinuities that arise in objective functions and constraints due

to changing design space, Kim and Kwak propose a design continuation method that is also

used in this work. [69] Here, the existing design points are represented with the new set of

design variables.

In the above examples of structural topology, the evolving design space is based on a

fixed background grid. Thus the maximum resolution or fidelity is fixed. On the other

hand, design spaces may be infinite (no maximum resolution). Padmanabhan et al. use

a modified branch-and-bound technique for acceleration (optimization) of streaming ap-

plications (video / data streaming online etc.). [70] To contain the search in an infinite

space, the authors use heuristics to order the variables created (called branching variables)

such that each branching leads to maximum decomposition of the search space. Zahir and

Zheengong demonstrate that a diminishing design space may also be useful. In their exper-

iment that involves multiple fidelity objective functions, a Genetic Algorithm based solver

finds an optimum of the lower fidelity function space. [71] Then, a surrogate model is built

around the 5% region around the low fidelity optimum. Thus, although the design space

evolves (reduces), the number of possible reductions are infinite.

A primary contribution of this thesis is the development of a provably convergent

method to solve optimization problems with evolving design spaces. This method, Adap-

tive Random Projections (ARP) will be discussed before we solve the second application

problem (in chapter 5).
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2.5 Nature of Application Problems

Our two demonstration problems are fundamentally different, but use the same opti-

mization framework to find a solution across multiple levels. However, only algorithms

and techniques that are relevant to specific problem features are used. The table 2.1 clas-

sifies the two problems, and also paves the way for description of these algorithms and

solution techniques in the following chapters.
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Feature Application

no.

Solution Method Relevant

Chapters

1 2

No. of levels 3 3 SoS Optimization framework 2

Inter-level interactions

(apart from product

transfer)

No Yes - 6

Intra-level interactions Yes Yes - 4 and 6

Intractable black-box

Optimization

Yes Yes DE-SOM and DE-SOM2 3, 4 and 6

Multi-disciplinary Op-

timization

No Yes Enhanced Collaborative Op-

timization, Individual Disci-

pline Feasible

6

Multi-fidelity Opti-

mization

No Yes Value of Information (VoI) 6

Parameter Uncertainty Yes No Robust Counterpart approach 2 and 4

Sensitivity analysis No Yes Random sampling 6

Evolving design space:

Type 1

Yes No Numerical Continuation 4

Evolving design space:

Type 2

No Yes Adaptive Random Projec-

tions

5 and 6

Time budget enforced/

Process and product

complexity monitored

Yes No Hierarchical Complexity 4

Omnipotent Central

Authority

Yes No Single Process Multiple Data

(SPMD)

4

Mediating Central Au-

thority

No Yes Sequential programming in

parallel instances

6

Table 2.1: Comparison of Application problem 1 and 2
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Differential Evolution with Self Organizing Maps (DESOM) forms one of the backbones

of our framework, and is the preferred evolutionary algorithm used as the optimizer in

various levels of the application problems described in Chapters 4 and 6.
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3. Differential Evolution with Self-Organizing Maps (DE-SOM and

DE-SOM2)

This chapter describes a novel hybrid Differential Evolution (DE) Self-Organizing-Map

(SOM) Algorithm for the optimization of expensive black-box functions. Several improve-

ments are made to DE-SOM (DE-SOM2) to solve the IEEE CEC benchmark set. We rec-

ognize that our framework involves the use of several computationally expensive black-box

tools that need to be used for multi-fidelity optimization of aircraft structures, aerodynamics

and propulsion systems. Noting that our overall SoS optimization problem could possibly

involve several black-box functions, this algorithm will be a good candidate algorithm for

exploring solutions at all three levels of the Aerial SoS.

Typical objective functions arising from results (function calls) of these tools could

represent a multi-modal, rough, discontinuous landscape. Thus, it is suggested that one

uses evolutionary algorithms (see section 3.1 below). Another advantage of evolutionary

optimization algorithms that makes it suitable for use in our framework is that at any given

time, once can record the best solution obtained so far, which is associated with several

other designs (depending on the population size) that may also be feasible for use in higher

levels of the problem. This is how the designs are presented as “flexible” ones, rather than

singular points in the design space. Evolutionary algorithms, however, are expensive by

nature. This is our attempt to modify an existing evolutionary algorithm, with the motiva-

tion of reducing the total number of function evaluations. Once the DE-SOM algorithm is

validated with benchmark functions, sample application problems are solved.

3.1 Introduction to DE-SOM

There has been significant interest in the use of evolutionary methods for the global

optimization of real-valued black-box problems for which analytical methods are not ap-
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plicable. Differential Evolution (DE) is a parallel direct optimization algorithm which was

recently introduced by Storn and Price. [72] Vesterstrom et al. showed that DE performed

better than other evolutionary algorithms such as Particle Swarm Optimization (PSO) and

Genetic Algorithm (GA) on a suite of 34 widely used benchmark functions. [73] Other

authors confirmed similar results when DE was pitted against time-tested global methods

such as Annealed Nelder Mead Approach (ANM), the Breeder Genetic Algorithm (BGA),

the EASY (Evolutionary Algorithm with Soft Genetic Operators) algorithm, the method

of Stochastic Differential Equations, Cuckoo-search, Artificial Bee Colony and interac-

tive GA algorithms. [74–76] Common non-hybrid variants of DE like DE/rand/1/bin and

DE/best/1/dir provide only marginal increase in performance for the same number of func-

tion evaluations. For the interested reader, these are presented by Mezura-Montes et al. [77]

Here, we use an artificial neural network variant to enhance the DE algorithm.

The Self-Organizing Map (SOM) is the most popular artificial neural network algorithm

in the unsupervised learning category. [78] It is often associated with clustering, data visu-

alization, dimensionality reduction, nonlinear data projection and manifold mapping. [79]

The SOM uses a network of neurons to form a discrete topological mapping of a set of

input vectors. In our implementation, we use the positions of the DE population members

as ‘inputs’ to the SOM. The position of a neuron, also known as its ‘weight’, wi, is a vector

that has a dimension equal to that of any input vector in the DE population (Xi ∈ Rn). The

weights of the neurons in this SOM are updated until they converge to the input vectors

(Xi). Neurons of the SOM network move towards clusters of the DE population members.

As such, once the SOM structure ‘converges’, it may be associated with one or more DE

population members. The number of associations of a particular neuron in the SOM is

called ‘hits’. The SOM network morphs and moves to alter the “focus region” since the

network itself is a result of the positions of the previous generation’s population members.

DE, PSO and other evolutionary algorithms have been commonly used to evolve the

weights of SOM for performance enhancement, and this has been the only form of hy-

bridization attempted. [80–84] We have used a converse form of hybridization wherein

the global optimizer is enhanced by SOM. Obayashi and Sasaki’s work on data mining of
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Pareto solutions involving more than three objectives is also an interesting application of

the SOM algorithm in optimization. [85] In their work, edges of the SOM of the objective

function values (obtained from the result of a Multi-Objective Genetic Algorithm (MOGA)

run) is a representation of a 4D Pareto front. Furthermore, the authors cluster design vari-

ables based on another SOM to help visualize design variable trade-offs. Here we present a

novel method to improve the performance of DE by introducing a learning phase that helps

contain the likely optimum, while continuously reducing the active design space without

the use of additional function evaluations. In section 3.2, we offer a qualitative discussion

of the DE-SOM algorithm and compare it to the regular DE algorithm. Then in Section

3.3, we show mathematically how DE-SOM may achieve an optimal solution with lesser

number of total function evaluations. Section 3.4 supports this claim by comparing experi-

mental results of 15 widely used benchmark functions. Finally, we compare the DE-SOM

algorithm with GA and DE for an airfoil optimization problem (section 3.5). Versions of

this airfoil optimization problem are used in both the application problems (chapters 4 and

6).

3.2 The DE-SOM Algorithm

Consider a fitness function f : Rn → R. Both, the DE and DE-SOM algorithm first

form a mutant vector vi from three mutually exclusive vectors xr1, xr2 and xr3 chosen from

a total population consisting of NP members. The crossover probability CR decides if the

trial vector ui inherits components of the original vector xi or the mutated vector vi in that

generation G. The primary difference between the DE and DE-SOM algorithms occurs

in the selection step (see Algorithms in Appendix A). In DE, the function value of the

trial vector is compared with that of the original vector
(

f (ui, j)≤ f (xi, j)
)

to decide which

vector wins a position in the population of the next generation. DE-SOM uses a random

variable p (called the pswitch value) to control the amount of function evaluations saved.

A value of p = 1 implies that the algorithm used is purely DE, and a value of p = 0 means

that the DE-SOM algorithm will be used for all vectors in that generation. In our research,
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p values ranged from 0.25 to 0.75. An SOM is used to construct the convex hull of the

population in the current generation, and the convex hull of the current generation is used

for testing the presence of a new trial vector near the likely optimum.

Figure 3.1.: The DE population members

(white circles) are scattered randomly on

a fitness landscape with one global optima

(center) and several local optima.The SOM

(dashed) is initialized as a regular 4×4 grid.
The SOM is a network of neurons whose positions are given by weights wi ∈ Rn. The

weights of the neurons are also n-dimensional since they are used in the elite replacement

step in which a valuable neuron (one that may have a favorable function value) replaces a

low scoring population member. In a given generation, the members of the population xi

occupy different positions on the fitness landscape of the function being minimized (see

white circles in figure 3.1). A 4×4 network of neurons (or SOM template) is shown in fig-

ure 3.1. Neurons of this SOM are represented by dashed boxes, and links between them by

dashed lines. The neurons of the SOM change their weights using an unsupervised learning

algorithm until convergence (note that this ‘convergence’ of the network is different from

the convergence of the optimization algorithm. This step occurs at every generation of the

DE-SOM algorithm). At convergence, the network forms a closed polygonal volume with

vertices that coincide with the extremum members of the population (see figure 3.2). Fig-

ure 3.2 also highlights some salient points of the learning step of this algorithm: Point ‘1’

shows that the outermost neurons in the SOM snap onto the extremum members of the DE
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population. While most neurons are associated with one or more DE population members,

some neurons may be unassociated (or may have zero hits). Point ‘2’ shows that the SOM

itself may not be convex in some regions, but the convex hull of the extremum points of the

SOM always contains (or is identical to) the convex hull of the DE population members.

Point ‘3’ shows that a particular neuron may be associated with multiple DE population

members (in this case, three).

Figure 3.2.: The SOM neurons(dashed

boxes) converge to the members of the DE

population (white circles) at the end of each

generation.

Like any other evolutionary algorithm,

DE tends to form clusters around local

or global optima as the generation num-

ber progresses (when approaching con-

vergence). Thus, a neuron associated

with multiple population members (in other

words, a neuron with a large number of

hits) is more likely to have a favorable func-

tion value. In the elite replacement step, a

fixed percentage of low scoring DE popu-

lation members are replaced with neurons

with a large number of hits. Point ‘4’ indi-

cates that the global optimum is contained

in the convex hull for all subsequent steps

if a trial vector happens to be placed there after a particular intermediate step, as in other

evolutionary algorithms. The difference in the selection step helps save unnecessary func-

tion evaluations. Suppose the DE population member at point ‘2’ has a poor function value.

A regular DE algorithm would generate a trial vector, and compare function values of the

original vector and the new trial vector (two function evaluations). DE-SOM on the other

hand, would generate a trial vector, but would test if the trial vector is contained in the

convex hull of the converged neuron weights (positions) of the previous generation. In our

hypothetical scenario, let us assume that the trial vector ui is inside the convex hull of the

SOM. During the initial stages when exploration is premature, there is no guarantee that
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a convex hull test is equivalent to a function value comparison test. However, as will be

shown in the mathematical treatment of the algorithm, the mean value of the positions of

the population members are representative of the point with the best function value. This

is always true during the final stages of convergence when all the population members may

be assumed to reside on a smooth, continuous function slope towards the optimum. It

cannot be stressed further that the SOM simply assists the search by preventing function

evaluations, but the primary exploration is still performed by DE (or any other evolution-

ary algorithm that SOM is applied to). The elite replacement step also introduces valuable

members to the original DE population at no additional functional cost. The next section

formalizes our discussion of the DE-SOM algorithm, and provides bounds of the parameter

p that is crucial in deciding the number of function evaluations saved.

3.3 Convergence and Parameter Bounds

In this section, we provide mathematical preliminaries that better explain the DE-SOM

algorithm. The aim of this section is to compare the DE and DE-SOM algorithm, and

to say that the DE-SOM algorithm achieves the same Expected Value of the Trial Vector

(see section 3.3.1) and comparable velocity of the population members (section 3.3.2).

The variation in population is derived as a function of the probability of containment q in

section 3.3.3. Finally we find critical values of this function and discuss how a member xi

can be converted to a trial vector ui that is most probably contained in the convex hull of

the members of the current generation. Note that only partial derivations / final results will

be provided here. For detailed derivations, kindly refer to Appendix B.
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3.3.1 Expected Value of the Trial Vector (ui)

Let xi be the i’th population member in the final stages of the DE-SOM algorithm. We

assume that all the members of the population are concentrated around the optimum. For

the DE/rand/1 version of the algorithm, the mutant vector vi is generated as follows:

vi = xr1,i +F× (xr2,i− xr3,i) (3.1)

where F is the mutation scaling factor and the xrk terms with k ∈ {1,2,3} are mutually

exclusive random vectors drawn without replacement from the population of the current

generation. Since the vectors xrk are independent of each other, P(xri | xr j) = P(xri). The

trial vector ui is a result of the crossover operation given by

ui =

vi if rand ≤CR∨ j = jrand

xi otherwise
(3.2)

The expected value of the trial vector ui is calculated in equation 3.3 (see Appendix B

for details).

E(ui) = (1−CR) · (xi)+CR · (xav) (3.3)

Equation 3.3 implies that for values of CR ∈ [0,1], the expected value of the trial vector

ui (after mutation and crossover) lies in between xi and xav. Equation 3.3 is true even for the

DE algorithm (without the SOM), but we derive it here to highlight the following. Since

the convex hull of a set of vectors includes the average vector, we can conclude that the best

vector of the current generation is close to the average of the convex hull. A pure DE algo-

rithm would naturally progress towards the average of the population. We achieve the same

effect by containing the average vector, and replacing badly performing extremum points

with internal neurons which are more likely to be optimal (i.e. neurons with a large number

of hits). Since CR ≤ 1, points are forced to be on or inside the convex hull of population

members in DE. For instance, point ‘2’ in figure 3.2 will move towards the average of the

population members (around point ‘4’) in the DE algorithm. In DE-SOM, the same point

‘2’ will move towards ‘4’ due to either reduction of the convex hull in that direction, or
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elite replacement of the poorly performing point ‘2’, with the neuron above point ‘3’. Thus

we can effectively replace the function comparisons in some generations with the convex

hull test (for example, the Quickhull algorithm) to achieve the same expected value of a

population member in the next generation. [86, 87]

3.3.2 Desired velocity of population members

The expected value of the velocity of a vector xi (with respect to time or iteration num-

ber t) is derived in Appendix B and can be given by equation 3.4

E(
dxi

dt
) =

1
2

E(ui− xi)

=
1
2
(E(ui)−E(xi))

=
1
2
((1−CR) · (xi)+CR · (xav)− xi)

=
CR
2
(xav− xi)

(3.4)

Since the expected value of the trial vector ui is simply a function of the individual

operators for mutation and crossover (as derived in section 3.3.1), we are able to get an

expression for expected velocity of a member that is similar to DE. Therefore from equation

3.4, close to convergence, the velocity of each member of the population is directed towards

the average of the population. For any non-empty convex set A, a point a∈ A is an extremal

point if A−{a} is also convex. [88] Here, we are replacing the extremal points (see point

‘2’ in figure 3.2) with more optimal internal points. These new internal points are added

to existing groups or clusters in the elite replacement step. This aids in the clustering of

the members around optimal regions in the function space. Thus adding new members

to existing clusters during the elite replacement step accelerates movement towards the

average. Here, we have achieved the desired velocity of population members without the

use of function evaluations.
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3.3.3 Variation of the population

Here we discuss the benefits of DE-SOM by calculating the number of function eval-

uations saved, and by comparing the variance of the expected value of vectors after the

mutation and crossover steps for DE and DE-SOM. Our aim in this section is to show that

comparable variation in population is obtained in DE and DE-SOM. Let C be the total

number of generations in the case of DE and DE-SOM, and p be the switching probability

of using either DE-SOM or DE for the current generation. Let NF be the number of func-

tion evaluations, and NP be the number of population members. For DE, it can be easily

verified that

NFde = 2C ·NP (3.5)

whereas for DE-SOM, only the generations that use pure DE will incur function evalu-

ations. Let Cde be the generations that use DE, and Cdesom such that Cde +Cdesom =C, and

therefore p = Cde
C . Then :

NFdesom = (2CdeNP)+2CdesomNP ·0

= 2pC(NP)
(3.6)

Since p ≤ 1, NFdesom ≤ NFde. Note that p may not be perfectly random, and hence

equation 3.6 is only valid at a large number of generations. Now, saving function evalua-

tions at the cost of quality of the solution is undesirable. Therefore, we need to study the

variance of the positions of the population members. We derive this quantity in Appendix

B, and refer to it below.

E(Var(u)) =
(

q2

NP
+

(
2F2− 2

NP

)
q+1

)
Var(x)

= Lq ·Var(x)

(3.7)

Where equation 3.7 relates the expected value of the variance of the final trial vector to

the variance of the initial population through Lq, a polynomial in q. Note that a value of
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Lq > 1 implies that the variation of the trial population increases, whereas a value of Lq < 1

implies the opposite. We can find critical values of q by solving Lq = 1. We then obtain

two roots: q = 0, or q = 2−2F2(NP). A detailed mathematical treatment of the parameter

bounds discussing critical values are derived in Appendix B.

3.4 Results: Benchmark Set 1

Tests were conducted to compare the performance of DE, DE-SOM and GA with a

suite of 15 typical benchmark functions for global optimization (see table A.1 in Appendix

C). [73, 77, 89]. A wide variety of benchmark functions is required for testing any new

algorithm. By this, the algorithm is prevented from taking advantage of specific features

of any function, such as being symmetric, its optimum being at the center of the variable

bounds, or optimum at the variable bounds. [90] Each algorithm was allotted five trials for

optimization of each benchmark function. The best of five trials of each algorithm, DE,

DE-SOM and GA were tabulated (see table 3.1). A small population size (NP = 20) is

used to make convergence more difficult. The value of F and CR were fixed at 0.5 and 0.8

respectively, as recommended by authors in the past. [73, 77]

DE and DE-SOM were set to converge based on variance of the population, more

specifically if Var(x) < 1e− 6, whereas the MATLAB implementation of GA used here

had five stopping criteria. [91] Our results show that this implementation of GA converges

prematurely (see multiple entries of 1040 function evaluation). During several trials, GA

was seen to ‘get stuck’ in local optima (see f13, for example). In all 15 cases, GA was

outperformed by DE and DE-SOM (as seen in [73]). In terms of function evaluations, GA

converged with lower number of function evaluations than DE for functions f3, f5, f7,f8,f9

and f15. However, as can be seen from the function value column, GA converged at a

sub-optimal point for all these cases.
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3.4.1 DE-SOM : Results of Two-Dimensional Benchmark Function Tests

As expected, DE-SOM performed better than DE with all 15 benchmark functions in

terms of function evaluations. Table 3.1 only tests the functions in 2 dimensions (n = 2).

The p value used in each trial may be adjudged by the ratio of function evaluations of DE

to that of DE-SOM, and is adjusted during the multiple trials corresponding to one function

(only the best of five trials is reported). When optimum function values are compared, we

see that DE-SOM performs at least as well, if not better than DE in 10 of the 15 cases. For

example, the row corresponding to the Easom function (f7 in table 3.1) shows that there is

an error of 4e−7 in the final function value obtained. However, we must acknowledge that

the number of function evaluations saved is highly significant. For the Sphere function (f2

in table 3.1), the number of function evaluations of DE-SOM (320) is only a fraction (29%)

of the total function evaluations taken by DE (1120). Benchmark functions f1, f4, f6, f10,

f11, f12 and f14 are a few functions where large amounts of savings in terms of function

evaluations are achieved. In these functions, the optimum value found is always as good

or better than that of DE. Note that from the column on generations, that there is no exact

algebraic relation between the number of generations and DE-SOM function evaluations

as in DE. For instance, f12 and f14 converge after different number of generations, but

have the same number of function calls(1040). In case of the Schwefel function (f13),

DE-SOM converged to a value close to the reported optimum only once out the five trials

corresponding to that row, whereas DE converged twice to a value close to −837, and GA

did only found a local optimum.

In the case of DE or GA however, the number of function evaluations is always equal

to 2 ·NP ·C (since each population member is used twice per generation). For functions

f12, f13 and f14 the value of p was reduced to a very low value of 0.15. This means that

the SOM learning is only used about 15% of the time. Nevertheless, function evaluations

were reduced, and the quality of the final optimum value was not sacrificed. In case of the

Schwefel function (f13), DE-SOM was seen to oscillate around a local optima in two of the

five function trials. Reducing the value of p allowed DE-SOM to reach the known global
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optimum. In fact, DE-SOM converged to a more optimal value than DE in this case. The

column for comparison of time is only an indication of the fact that given simple functions,

wherein an analytical function evaluation is almost instantaneous on any computer, noth-

ing can be said about which algorithm is faster. However, given an optimization problem

involving expensive engineering functions, the amount of time savings will also be as sig-

nificant as the number of function evaluations saved. Since the functions are instantaneous,

the time column represents time taken by the auxiliary functions (display, neural net train-

ing etc.), which is almost constant for a given population size. The time taken by expensive

objective functions will render this time negligible.

3.4.2 DE-SOM : Higher Dimensional Function Results

Next, we performed tests on higher dimensional problems. 10-D and 30-D Versions of

benchmark problems f1, f2, f3, f5, f10, f12 and f14 were used (see table 3.2). Again, each

function was tested five times for a given dimension(10 or 30), and the best performance

was recorded. Additional experiments with interesting results were recorded to show vari-

ation in performance due to change in control parameters. Of the functions listed in table

1, only some were extensible to larger than 2 dimensions. For all cases recorded in table

3.2, the population size was fixed (NP = 30). The dimension of the SOM network was also

fixed, regardless of the dimension of the problem. This can be explained as follows. Con-

sider an optimization problem that handles two-dimensional variables. Each trial vector

contains 2 dimensions, and the function contour can be visualized in the third dimension.

SOM neurons also have the same number of components as any population member (two,

in the example point). However, the neurons can form a one-dimensional line network, a

2-dimensional area network or a 3-dimensional volume network for the purpose of moving

towards and converging at the positions of extremum population members (see figure 3.3).

In our second set of experiments, the SOM forms a sheet (as shown in the center of figure

3.3) in n-Dimensions (kn = n−1).
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Figure 3.3.: Contour of a function involving variables with n = 2. The SOM network has

neurons of the same dimension (n = 2), and may have links such that the SOM network

formed is 1-D (left), 2-D (center) or 3-D (right).

In all cases, DE-SOM converged in lesser number of function evaluations when com-

pared to DE. Another general observation across all test cases is that the variance of the

final population was always lesser in the case of DE-SOM. For the benchmark function f1,

the function value reached by DE and DE-SOM at convergence were sub-optimal. When

DE is applied to f1 and f2, there is a sudden increase in number of function evaluations

when transitioning from a 10- to 30-dimensional problem. On the other hand, the change

in function evaluations is less obvious in the case of DE-SOM. The second 30-dimensional

case for f2 and the second 10-dimensional case for f3 are worth mentioning since the num-

ber of function evaluations are much lesser than the cases used for comparison with DE,

for a sub-optimal function value at convergence. The reader is reminded that these extra

trials are reported since they are interesting, and are also one of the five trials correspond-

ing to that benchmark function. The median function value for f3 was also reported to be

sub-optimal by other authors using DE variants. [92] In the case of f5, the value of CR was

decreased to 0.6 (from the default value of 0.8), and also, the number of replaceable elite

population members was increased from increased from NP/10 to NP/7. Decreasing CR

helped in accepting a larger percentage of mutant vectors, and the increased proportion of

elite replacements helped escape local optima. DE-SOM converged after only a fraction of

the function evaluations for the benchmark functions f10, f12 and f14. In these cases, the
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Table 3.2: DE and DE-SOM performance comparison on higher dimensional (n = 10 and

n = 30) benchmark functions

Function Dimension (n) Std. Dev Function Value f* Function Eval

DE DE-SOM DE DE-SOM DE DE-SOM

f1 10 9.68E-04 6.89E-04 0.00461 0.0048 0 5640 1120

30 9.61E-04 8.99E-04 0.00436 0.00596 0 25440 3680

f2 10 9.18E-04 5.09E-04 0.00001 2.1E-05 0 5680 800

30 9.55E-04 9.34E-04 4.8E-05 1.00E-07 0 25960 4240

30 n.a 5.28E-04 n.a 3.2E-05 0 n.a 1200

f3 10 9.07E-04 9.06E-04 7.33223 7.7902 9 13280 7800

10 n.a. 8.85E-04 n.a 9 9 n.a 440

30 9.47E-04 2.65E-04 26.7968 26.7452 27 43640 1800

f5 10 4.99E-04 6.74E-04 5.2E-05 0.00019 0 15660 26520

10 n.a 5.43E-04 n.a 2.97051 0 n.a 7520

30 6.92E-04 6.69E-04 0.00145 1.96969 0 181740 147660

30 n.a 5.81E-04 n.a 0.3017 0 n.a 68520

f10 10 9.05E-04 9.77E-04 1.9E-05 3E-06 0 19020 5580

30 9.63E-04 8.66E-04 3.8E-05 1.7E-05 0 120180 4860

f12 10 9.64E-04 8.10E-04 0.00143 1.00E-07 0 93120 2360

30 9.44E-04 8.75E-04 0.00217 0.00269 0 175680 3900

f14 10 9.40E-04 7.73E-04 2.1E-05 5E-06 0 19380 3720

30 9.76E-04 8.61E-04 1.8E-05 2.8E-05 0 100860 3660

variance of the population was smaller for DE-SOM, and the function value was closer to

the global optimum function value.

3.5 Airfoil Shape Optimization

This section reports the application of the DE-SOM algorithm to a benchmark airfoil

optimization problem with the single objective of maximizing the efficiency factor, Cl
Cd .

Although researchers have used different methods to parameterize the airfoil shape, their

objective function has been Cl
Cd (effectively). For example, Koziel et al. uses NACA pa-
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rameters for lift-to-drag maximization [93]. Buckley and Zingg parameterize the airfoil ge-

ometry using B-spline control points, and perform lift constrained drag minimization [94]

(as in Chernukhin and Zingg who use GA for the same, [95]). Our aim here is to ex-

pose the true utility of the DE-SOM algorithm by applying it to an optimization problem

with a computationally expensive function call. Authors have used panel codes and CFD

techniques to optimize airfoil shapes (for minimum drag, maximum lift, desired pressure

distribution etc.). In our problem, the simultaneous maximization of lift and minimization

of drag of an airfoil is captured by the single efficiency factor Cl
Cd . The first task is to choose

an appropriate parameterization technique that has a large design space. Authors have used

bezier curves, polynomials, splines and other curve fits to represent airfoils. [96–100] Here

we use a recent method called Class/Shape Transformation (CST) introduced by Kulfan et

al. for representing airfoil shapes. [101]. CST is chosen for our demonstration since it is

able to represent a variety of airfoils using only six parameters (three parameters for each of

the surfaces, upper and lower). [102] Unlike parameterization techniques that have specific

parameters controlling specific features of the airfoil (for example, leading edge radius,

camber etc.), the CST technique controls the shape of the airfoil indirectly. Therefore, our

design variable x has six dimensions. The design space considered along with some sample

airfoils is shown in figure 3.4.

The variable bounds were estimated by trial and error. The black-box function used

to analyze airfoils a popular open-source tool Xfoil. In the trials conducted, a ‘function

evaluation’ involves writing an input file to the Xfoil program, analyzing the airfoil that

airfoil at a Reynolds Number (Re) of 106 and a Mach number (M) of 0.2 for a range of angle

of attacks (α =−5 to 25). The maximum Cl
Cd (regardless of the corresponding α) is reported

as the objective function value. In case Xfoil is not able to converge (usually due to an

unconventional airfoil shape), we attribute that design point with a random, large, positive
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number so that the same design point is avoided in the next generation. Our bounded, single

objective optimization problem can thus be formulated in equation 6.25:

Minimize − Cl
Cd

Subject To LB≤ x≤UB

Where LB = [0.05 0.05 0.05 -1.00 -1.00 -1.00]>

UB = [1.00 1.00 1.00 -0.05 0.00 0.00]>

(3.8)
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Figure 3.4.: Graphical representation of the

airfoils formed with all six design variables

at the lower bound (blue), and at upper bound

(red). A feasible airfoil (one that lies between

the upper and lower bounds) is also shown

(black dashed lines)

Note that the problem is posed as a

minimization problem with the appropriate

sign change for the objective function. A

graphical representation of the airfoil de-

sign space (which are formed by the six pa-

rameters in x) is shown in figure 3.4. A

variety of airfoils with upper surfaces in

the red region and lower surfaces in the

blue region can be formed (a sample fea-

sible airfoil is also shown). Again in this

section, our experiment involves compre-

hensive tests to compare GA, DE and DE-

SOM. Tests are performed to compare the

three algorithms for cases with different population sizes (10, 20, 30 and 50). Each case

(corresponding to a particular algorithm and a particular population size) is run thrice, and

only the best case is reported (see table 3.3).

We immediately observe the savings in number of function evaluations and time in the

DE-SOM cases. For example, DE-SOM obtains values of Cl
Cd close to those obtained by

DE and GA (around 55), at a fraction of the function evaluations. The Xfoil black-box

function used to evaluate each airfoil takes 5 to 10 seconds for each function evaluation.

These benefits will be magnified for costlier black box functions. We also notice that GA

with a population of 20 obtains a higher value of maximum Cl
Cd than for any other case.
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Figure 3.5.: Airfoils belonging to the different population cases that are results of the DE-

SOM algorithm distinguished by their Cp distribution.

Table 3.3: Results of the airfoil optimization problem

Algorithm Npop Generations fun.evals Time taken (s) f*

GA

10 55 560 2.02E+03 -48.1578

20 76 1540 1.48E+04 -60.8231

30 51 1560 6.54E+04 -55.7278

50 100 5050 5.81E+04 -56.6223

DE

10 57 1140 1.10E+04 -55.0891

20 24 960 1.42E+04 -55.1958

30 38 2280 2.22E+04 -55.4316

50 43 4300 4.35E+04 -55.1854

DE-SOM

10 25 360 1.95E+03 -54.5445

20 28 720 6.84E+03 -55.3173

30 34 1260 1.27E+04 -55.1654

50 45 3200 3.15E+04 -55.2247
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However, this case takes almost as many function evaluations as the next case run with a

population of 30. It should also be noted that there do exist other airfoils in this design

space with a higher value for maximum Cl
Cd . For example, the sample airfoil shown in

Figure 3.4 has a maximum Cl
Cd that is greater than 200. Initial populations were random,

and involved airfoils with large thickness, negative camber and even leading edge cusps.

Figure 3.5 shows the airfoils that resulted from the DE-SOM runs for each population case.

The corresponding coefficient of pressure (Cp) distribution is also shown to distinguish

between the overlapping airfoils. Appendix D shows the final airfoils obtained for each of

the 5 population cases for GA and DE. Larger population sizes and a larger mutation rate

may be used for obtaining better designs.

3.6 Improvements made to produce DE-SOM2

The authors’ experience with using DE-SOM has exposed the following shortcomings.

Firstly, certain objective functions with multi-modal characteristics saw convergence to a

local optimum instead of the global optimum. Note that this is an issue with several ex-

isting global optimizers. Secondly, the convergence rate depends on the parameters F , CR

and p, the values of which are decided by the user. A situation that demands solving a

new problem may not allow the user to fix these quantities using intuition or experience,

especially since we are targeting costly black-box functions as our objectives. Thirdly,

commercially available (or freely available) convex hull techniques cannot handle large di-

mensional problems (> 9D). SOM convergence is also sluggish for these large dimensional

problems. This limits the use of our algorithm for a special class of large dimensional prob-

lems with expensive objective functions. Lastly, the SOM implementation involves saving

function evaluations by using a continuously converging convex hull. The number of hits

associated with neurons in the SOM network are only used in the elite replacement step, but

may be used more effectively for building a virtual map of the function during the algorithm

runs. These issues are discussed in the following sub-sections. Each of the suggestions are

incorporated into DE-SOM2, an improved version of DE-SOM.
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3.6.1 Premature convergence

From previous tests, the authors observed that some non-smooth, multi-modal objective

functions, the algorithm converged to a local optimum. In these tests, the parameter p

remained constant until the end of the simulation run. This implied that the probability of

the algorithm chosen to be DE-SOM was finite until the end of the simulation. However,

towards the end of the simulation, convergence ensures that the variance in the population

members tends to a very low value (related to line of Algorithm in Appendix A). This

poses a problem to available SOM implementations due tho the fact that several population

members may be collinear, and this introduces bad scaling related issues. A subtle change

introduced to fix this issue is the strict usage of DE at the final stages of the algorithm

regardless of the p value. This change is made when the variance of the population is

below 1e−1 in DE-SOM2 (see line 4 of Algorithm in Appendix A).

3.6.2 Self-adaptive parameters

Several authors have chosen to use simple, self-adaptive strategies to change parameter

values (like F and CR for DE) on the fly. [103–106] For evolutionary algorithms, self adapt-

ing involves targeting behavior of population members related to one of the following goals

- exploration, exploitation, constraint handling or randomization. However, it is more com-

mon to base parameter values off a particular distribution (such as Cauchy or normal). Our

self adaptation incorporates knowledge of performance of DE in the previous generations.

Note that this is completely different from the more commonly seen choice of adapting the

parameters according to DE performance based on a specific set of these parameters. Our

view is that a given problem may be solved using several disparate choices for the set of

control parameters (albeit with different convergence rates). Thus, it is more interesting to

search for the right history of parameters, rather than the ‘perfect’ set of parameters that

will solve the problem. We use self-adaptation for both F and p in our improved DE-SOM2

(lines 35-40 of Algorithm in Appendix A). For self-adapting the parameter p, we define

new supporting, user-defined parameters γp1 > 1 and γp2 > 1, which represent the rates
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of increase or decrease in the value of p. Obviously, p, which represents the probability

of choosing DE over DE-SOM, ranges from (0,1]. Self adapting depends on monitoring

the performance of the algorithm using a moving average window of fixed size. Let f avgk

represent the moving average function value (with a window size fixed to 10, or any other

user specified value m) at the kth iteration or generation. Now, f avgk+l is compared with

f avgk to update the value of p (which is now a function of iteration number, therefore pk).

More precisely,

pk+l =

min(pk× γp1,1) if f avgk+l ≥ f avgk

max(pk/γp2,0) if f avgk+l < f avgk

(3.9)

This promotes the informed choice of the parameter p during the algorithm run. In-

troduction of the γp parameters helps vary the rate of change of p. Similarly, we adapt

the value of F across the interval [Fmin,Fmax] if the performance becomes worse, or if the

performance stagnates across a user specified window m. Notice that since F is a mutation

parameter, we adapt the parameter randomly to encourage or discourage exploration (here

rand represents a random number ∈ [0,1]):

Fk+m =

min(Fk/rand,Fmax) if f avgk+l ≥ f avgk

max(Fk× rand,Fmin) if f avgk+l < f avgk

(3.10)

3.6.3 Online surrogate modeling

SOM provides additional information about the function landscape that may be used to

construct an online surrogate model that may further reduce the number of function eval-

uations. Recall that each neuron in the SOM network is associated with a certain number

of population numbers (called hits). Now, given that we keep track of f (xi), the objective

function values associated with the population members, and hits j, the number of hits as-

sociated with the jth neuron with wights w j, we modify the potential method introduced

by Takahama and Sakai to obtain the following modified potential method, which itself
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performed well against benchmark functions when used in conjunction with DE. [107] Let

w j← xi imply that the population member xi is associated with the neuron with weight w j.

Notice that we could use the value of the mutant vector vi, the trial vector ui or the value of

the population member xi here. Let d(x,w) represent the Euclidian distance between x and

w.

1. f (w j) =
∑i w j← xi

hits j

2. Uo(xi) =
∑ j hits j× f (w j)

d(xi,w j)

3. Uc(xi) =
∑ j hits j

d(xi,w j)

4. f̂ (xi)≈
Uo(xi)

Uc(xi)

(3.11)

where the variables Uo and Uc are potential for the objective and potential for congestion

respectively (as defined in the original potential method), and f̂ is the required surrogate

model of f (incorporated as a condition in line 24 of Algorithm in Appendix A).

3.6.4 Handling higher dimensional problems

As mentioned earlier, SOM implementations suffer from bad scalability for problems

of higher dimensions. Solutions to this problem are usually in the form of batch or parallel

implementations. [108] Since the size of the ‘dataset’ (here, the positions of all population

members) is typically fixed to 50− 200, our problems arise in the next step - namely,

finding the convex hull of the neuron position vectors w j. Convex hull algorithms do not

usually support triangulation in dimensions greater than 9D. [87] This has implications in

the choice of benchmark problems that can be used, as it is standard practice to test the new

algorithm with problems of up to 100D, let alone large scale optimization problems of up

to 1000D. Our workaround is to use a minimum volume covering ellipsoid (MVCE) for

higher dimensional problems. We recommend using the Khachiyan algorithm to determine

the MVCE, which is given as the solution to the following optimization problem [109]:
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Min. log(|A|)

S. to (xi− c)T ·A · (xi− c)≤ 1

with respect to the variables c and A, where c is the center of the ellipse in Rd , and A is

a d× d matrix of the ellipse equation in center form (i.e., (x− c)T A(x− c) = 1). Here

|A| represents determinant of A, and xi are the population members in Rd . Note that even

this workaround is a temporary one, since the calculation of the minimum volume cov-

ering ellipsoid involves a costly matrix inversion step. Other implementations of MVCE

algorithms using interior point optimization techniques also exist in literature. [110]

3.7 Results: Benchmark Set 2

In this section, we use the lessons learned through benchmark tests in the previous sec-

tion to test the suggestions incorporated into DE-SOM2. The problems considered here

are the ones contained in the IEEE CEC 2005 benchmark set. [111] A compilation of the

results by all participating algorithms are presented in Hansen [112], and a characteriza-

tion of these functions as real-valued black-box landscapes over continuous domains can

be found in Muller and Sbalzarini. [113] In this series of tests, we use 10−D variants of

the compositional functions, which are treated as black-box functions. The success per-

formance (SP) of an algorithm is used as a measure for the expected number of function

evaluations (FE’s) to reach a target function value (as defined by CEC 2005). The maxi-

mum number of function evaluations for all tests in 10D is 105. We run 25 runs on each of

the 25 benchmark problems and compare the results obtained with other state-of-the-art al-

gorithms as defined by Hansen. [112] Problem definitions are detailed in Suganthan et al.,

but are repeated in the Appendix C for completeness. [114] A run is successful if the global

optimum is reached with the given precision before 105 function evaluations is reached.

We compare our algorithm DE-SOM2 with the 11 state-of-the-art algorithms compared

in [112]. Note that in order to prevent exploitation of search space symmetry, problems

presented are rotated, shifted and also hybridized with other functions. All convergence
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graphs presented show the median performance of the total runs with termination criteria

specified or due to exceeding 105 function evaluations. Performance measured on the plots

show log10( f (x)− f (x∗)). Tests were conducted using MATLAB 2013a running on RHEL,

powered by two 2.1 GHz 12 core AMD 6172 processors. For each function, we also report

the best, median, and worst performance, along with mean and standard deviation of the

runs measured at termination (described above). Two types of studies were conducted in

the CEC 2005 competition - 1) Number of function evaluations to reach a fixed accuracy

level (used in this study), and 2) Accuracy levels (best, median, worst etc.) at checkpoints

of certain specific function values (1e+03,1e+04 and 1e+05). We compare DE-SOM2

with the performance of DE as reported in [115], [116] and [117]. Only two of these three

authors who participated in the CEC 2005 benchmark competition with DE or DE variants

report the average function values taken to attain a fixed accuracy ( [115] and [117]). To

keep our results consistent with Benchmark Set 1, we use the same conditions for conver-

gence (variance of population ≤ 1e− 6). Note that for the practical problems we wish to

solve using this algorithm, a variance-based convergence along with a function evaluation

budget is more appropriate than a maximum function evaluation budget alone, since our

scenario involves optimization under limited resources.

3.7.1 DE-SOM2 : Results for Unimodal functions

Results pertaining to functions 1-6 are reported in this section. Table 3.4 below sum-

marizes the results obtained from 25 independent runs of these functions.

The table 3.4 shows the number of function evaluations, best value, median, worst

and mean value, along with the standard deviation of the 25 runs at convergence. The

convergence graphs shown in figure 3.6 shed more light about the convergence nature of

DE-SOM2. For unimodal 10-D functions f1 to f6, we see good progress towards the op-

timum (plotted in terms of logarithm of the error). Functions f3 and f5 show poor or

sluggish convergence (when considering median of all 25 runs), mainly due to the fact that

the population is initialized randomly. For function f5, [114] states that if the population



79

Table 3.4: DE-SOM2 performance on 10 dimensional, unimodal CEC 2005 benchmark

functions f1 - f6. The column Function Eval corresponds to the median number of function

evaluations across all 25 runs.

Function Function Eval Best Median Worst Mean Std. Dev

f1 27900 2.371E-06 4.897E-06 2.891E+00 4.810E-01 7.266E+00

f2 58900 1.653E-06 1.083E+00 4.738E+02 1.895E+01 8.079E+01

f3 90100 7.438E+02 1.291E+03 3.432E+04 1.373E+03 6.864E+03

f4 58700 2.862E-06 8.906E-05 9.268E+00 9.497E-01 2.118E+00

f5 78400 4.261E+00 4.734E+01 1.171E+04 1.244E+02 2.450E+02

f6 91600 6.068E-01 5.557E-01 3.22E+00 8.910E-02 1.041E+00

is initialized on the bounds, “the problem may be solved easily”. Clearly, f3 is the worst

performing function among all unimodal functions f1 to f6. However, when compared

to the parent algorithm’s (DE) performance (see [117]), the reported best(1.34E + 04),

median(1.47E +05) and worst values(9.41E +05) are lower for DE-SOM2 (compare with

corresponding values in table 3.4). Similar comparisons can be made for f4 and f6. On the

other hand, f5 converges to a lower best value of error than DE in lesser number of function

evaluations, but has a higher worst value and similar median value of error. For other func-

tions in which DE-SOM2 shows a high success rate such as f1 and f2, the global optimum

is reached well before DE, which is also well before the maximum function evaluation

budget is met.

3.7.2 DE-SOM2 : Results for Multimodal functions

The functions f7, f9, f10, f11, f12 and f15 are discussed in this section. As per Hansen

et al., these functions have been solved at least once by at least one algorithm in the CEC

2005 competition. The table 3.5 summarizes the results obtained from 25 independent runs

of these six multimodal functions.
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Figure 3.6.: Convergence histories for unimodal functions f1 to f6.

Table 3.5: DE-SOM2 performance on 10 dimensional, multimodal CEC 2005 benchmark

functions f7, f9, f10, f11, f12 and f15. The column Function Eval corresponds to the

median number of function evaluations across all 25 runs.

Function Function Eval Best Median Worst Mean Std. Dev

f7 34000 1.267E+03 1.2677E+03 1.267E+03 6.566E+02 6.484E+02

f9 98700 1.820E+01 1.820E+01 3.518E+01 1.441E+01 1.476E+01

f10 98700 2.572E+01 2.572E+01 4.011E+01 1.759E+01 1.753E+01

f11 99600 7.319E+00 9.210E+00 9.935E+00 9.110E+00 6.651E-01

f12 46500 9.596E-01 1.372E+01 7.123E+01 5.268E+01 1.476E+02

f15 76600 1.734E+02 1.437E+02 4.447E+02 1.671E+02 1.901E+02

As with other DE variants, performance for multi-modal functions is sluggish as seen

in the convergence histories (figure 3.7). To comparing results with [115] and [117], we

observe that the authors are not able to solve functions f7, f10, f11, and f12 (zero success

rate). While [115] solved f9, [117] was able to solve f15. Due absence of final function

values reported for zero success rate runs, a fair comparison could not be made with respect
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to the multimodal functions based on progress of our algorithm. For example, although f9,

f10 and f11 were not solved to the required level of accuracy, the error values are seen to

gradually decrease towards the known optimum. We notice that DE-SOM2 performs very

well with respect to f12, with which all three DE variants ( [115], [116] and [117]) are seen

to perform badly. Further investigation is required to ascertain why DE-SOM2 performs

well in the case of f12 - a multimodal, rotated function which is asymmetrical and contains

a large number of local optima.
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Figure 3.7.: Convergence histories for multimodal functions f7, f9, f10, f11, f12 and f15

3.7.3 DE-SOM2 : Results for Never solved functions

Results pertaining to functions f8, f13, f14, f16, f17, f18, f19, f20, f21, f22, f23, f24

and f25 are reported in this section. The table 3.6 summarizes the results obtained from 25

independent runs of these functions.

The convergence graphs corresponding to these never-before solved compositional func-

tions are shown in figure 3.8 below. Our algorithm was not successful in finding the global

optimum of any of these functions, similar to all other algorithms that competed in CEC
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Table 3.6: DE-SOM2 performance on 10 dimensional, never-solved CEC 2005 benchmark

functions f8, f13, f14, f16, f17, f18, f19, f20, f21, f22, f23, f24 and f25. The column

Function Eval corresponds to the median number of function evaluations across all 25

runs. Note: More significant digits are added to the f24 row to distinguish between column

entries

Function Function Eval Best Median Worst Mean Std. Dev

f8 86400 2.035E+01 2.065E+01 2.094E+01 2.064E+01 1.258E-01

f13 96600 1.822E+00 2.745E+00 3.518E+00 2.724E+00 4.578E-01

f14 89500 4.056E+00 4.562E+00 4.791E+00 4.515E+00 1.181E-01

f16 92800 1.441E+02 1.710E+02 1.879E+02 1.684E+02 1.262E+01

f17 86500 1.503E+02 1.784E+02 1.944E+02 1.740E+02 1.293E+01

f18 19500 3.000E+02 8.001E+02 8.009E+02 6.602E+02 2.291E+01

f19 21400 3.000E+02 8.000E+02 8.005E+02 6.601E+02 2.291E+01

f20 21200 3.000E+02 8.000E+02 9.637E+02 6.760E+02 2.248E+02

f21 15400 3.019E+02 8.007E+02 1.056E+03 7.156E+02 2.382E+02

f22 78900 3.000E+02 7.755E+02 7.854E+02 7.155E+02 1.579E+02

f23 98300 5.594E+02 7.121E+02 1.226E+03 7.201E+02 1.886E+02

f24 48600 2.000E+02 2.00003E+02 2.0001E+02 2.00004E+02 2.885E-03

f25 98400 1.692E+03 1.774E+03 1.786E+03 1.767E+03 2.333E+01

2005. Hansen et al. only compiles the rank of the median of the best function values ob-

tained by all algorithms. When comparing final best values obtained by other DE variants

in the competition, we notice that DE-SOM2 reaches a lower (or same) value for func-

tions f8*, f13*, f14*, f16, f17*, f18*, f19*, f20, f21, f22, f23 and f24 (see [115], [116]

and [117]. For starred(*) functions, DESOM2 performed better than at least one other DE

variant). For functions where DE-SOM2 obtained the same value of error, lesser function

evaluations were used.
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Figure 3.8.: Convergence histories for never-solved CEC 2005 functions f8, f13, f14, f16,

f17, f18, f19, f20, f21, f22, f23, f24 and f25. The inset may be useful in differentiating

between functions with similar convergence histories in that range (f19 - f22)

3.8 Section Conclusion

The performance of DE-SOM and DE-SOM2 were studied using two sets of bench-

mark functions. Using benchmark set 1, custom implementations of the DE and DE-SOM

algorithm were compared to MATLAB’s implementation of GA. Across 15 problems in

benchmark set 1, DE-SOM performed better than DE (in terms of function evaluations

and function value) and GA(in terms of function value). DE-SOM performed better than

DE on higher dimensional benchmark functions by converging to the global optimum with

less variability in the population and lower number of function evaluations. Functions in

benchmark set 2 (IEEE CEC 2005) were solved using an improved version of DE-SOM

(DE-SOM2), and compared with state-of-the-art DE implementations. DE-SOM2 con-

verged to lower values of error with lesser function evaluations for several unimodal and

multimodal functions. Of the 13 never solved functions in benchmark set 2, DE-SOM2
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reaches a lower (or same) value for 12 functions. The effectiveness of the algorithm is also

demonstrated in solving two real world application problems with objective functions that

are computationally expensive (and that are not in the form of closed form equations).

The benchmark and application problems solved with the help of appropriate black-box

functions successfully demonstrated that DE-SOM and DE-SOM2 find high performance

designs as compared to DE and GA. While DE-SOM converges to better designs than DE

after fewer function evaluations, DE-SOM2 improves the design further using additional

function evaluations. Our SOM implementation is generic, as this can be applied to any

other evolutionary algorithm that is set up in the typical format representing the steps of an

evolutionary algorithm, namely mutation-crossover-selection. The improvement to be ex-

pected while using SOM as an add-on is convergence to a higher or similar quality answer

as the parent algorithm, but with lesser function evaluations. Extension of the algorithm

to constrained and stochastic optimization remains a challenge for our future work. It is

important to improve the SOM implementation to handle constraints, bounds and multiple

objectives directly, and in a computationally effective manner.

We have now described tools required to solve the precision agriculture UAV swarm

problem. Other tools required to solve the second application problem will be described in

the following chapters.
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We now proceed to describe and solve our first challenge problem. Although the scale

of the problem in terms of number of computational workers used, time taken to obtain

a solution at all three levels of the SoS at hand, and amount of detail/ fidelity involved

is small, it involves unique features such as evolving design spaces through numerical

continuation and a suitable computational architecture (Single Program Multiple Data).

Since we attempt to solve this problem on a time budget and a shared set of processors (1

worker), monitoring performance and complexity of the process and the product at each

level using the hierarchical complexity metric becomes more relevant (than in application

problem 2).
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4. Application Problem 1

4.0.1 Problem Description

An SoS consisting of one or more aircraft is to be used for surveying a plot of land

of width Sx = 20 km and height Sy = 10 km. Each aircraft is equipped with an imager

that can resolve a strip of 10 m width at cruising altitude. note that although the cruising

altitude changes for different aircraft, the imaging resolution remains the same by changing

the sensors themselves. At the SoS level, the aircraft chosen to form the SoS are simulated

over the plot of land described. The wind conditions over the plot of land at the cruising

altitude vary randomly (uniform random about mean zero), and hence the trajectory of the

aircraft simulated varies from an ideal one. Each aircraft is assumed to travel at a constant

speed (its designated cruise speed). The minimum radius of curvature (corresponding to

the maximum G-loading) varies with respect to the cruise velocity of the vehicle. At the

SoS level, the design variables are :

1. Aircraft Name / index - this allows us to access the designated cruise velocity (Varies

from 1 to number of aircraft at that point of time in the library, for each aircraft

considered in the SoS)

2. Final weight fraction to calculate theoretical endurance. (Varies from 0.5 to 0.9 -

theoretical maximum and minimum for demonstration purposes.)

3. Specific Fuel Consumption (SFC) of the engine used. (Varies from 0.1 lb/lbf-hr to

3.0 lb/lbf-hr).

An aircraft is simulated along a typical “Lawn Mower Surveillance Pattern” and con-

tinues on this pattern until the edge of the plot is reached, or the fuel remaining is just

enough for the aircraft to return home (see figure 4.1. Note that the aircraft’s imaged area
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Figure 4.1.: Part of the typical lawnmower path adopted by aircraft at the SoS level. The

inset shows a magnified view of the wind contour, colored by magnitude in m/s. The small

blue and green arrows indicate the (random) initial and final positions of the wind vector

during the SoS level simulation

depends on the distance travelled and the image resolution on the ground. We assume that

in the presence of multiple aircraft in an SoS, the mission is suitably varied so that there

is not much overlap between the areas captured by the multiple aircraft. Thus, when an

aircraft returns to the home location for lack of fuel or otherwise, the next aircraft begins

imaging the plot from last position imaged by the previous aircraft. For the purpose of this

demonstration, all aircraft start from the home position. We require to find a set of aircraft

that when combined, image most of the plot of 20 km by 10 km.

Ideally we would want an aircraft that covers the entire plot while exactly using up

the fuel available. Suppose p is the percentage of endurance of the vehicle used. The

excess endurance is thus given by pe = 100− p. Let us define the Area Ratio A = Sx×

Sy/(Area Imaged). Thus, an optimal SoS would minimize the sum of the excess endurance

pe and the Area Ratio A. The number of aircraft in the SoS is evolved from one to a

maximum of five, since it is expected that less than five aircraft will be required to survey a

plot of land of the given size. A custom Agent Based Model (ABM) is used as the objective

function.
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The SoS selects aircraft from the System level library to form potential SoS. The aircraft

themselves are part of a library or database of aircraft, which is continuously updated to

include new optimal aircraft that the SoS can select. The design variables at the system

(aircraft) level describe the wing of an aircraft.

1. Root Chord

2. Taper Ratio

3. Sweep

4. Dihedral

5. Span

6. Root airfoil

7. Tip airfoil

An open source Vortex Lattice Method code, Tornado, is used to simulate the aircraft

across several operating points for the appropriate cruise velocity and angle of attack for the

best endurance factor C
3
2
L /CD, which is the objective to be maximized at the system level.

Although the design variables form a simple wing with two sections, the other aircraft in

the library are detailed and involve geometry such as tails, control surfaces and bodies such

as fuselages and engines. Unlike the SoS library that is initially empty, the aircraft library

has 32 aircraft before the beginning of the simulation. New aircraft are added as the aircraft

optimization problem progresses. An example of an aircraft from the library is shown in

figure 4.2 below:

The airfoil optimization problem used in 3.5 is repeated at the Sub-system level. Read-

ers may re-visit that section if required. The airfoil, although represented by the CST

parameterization for the purpose of optimization, is interpreted as a number of panels by

the Xfoil black-box program. Increasing the number of panels increases the fidelity of the

solution. Note that the VoI metric is not used in this case for simplicity. In our demon-

stration, we gradually increase the number of panels from 50 to 150 in multiples of 10.

The reader is reminded that the design space converges if say, the optimum airfoil with
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Figure 4.2.: A: A top view drawing of the Messerschmitt Me 262, an aircraft in the library

of aircraft, and B: Representation of Me 262 in the VLM code Tornado

50 panels is almost the same as that with 60 or 70 panels on its surface. The final SoS

optimization problem can be represented as in table 4.1

A summary of the algorithms used at each level and other relevant details are given in

table 4.2. Note that all problems were bound-constrained, and other implicit constraints

(for example aircraft 2D dynamics in the ABM or template for forming new aircraft) are

hard-coded in the actual implementation.

In the context of the current problem, the framework we introduced in Chapter 2 is

depicted in Appendix A. The multi-level and multi-fidelity aspects are clearly depicted, and

the indicated steps involved are described in detail in this section. Foundational elements

of this framework such as Platform-based Design (PBD) paradigm, evolving design spaces,

multi-fidelity analysis and hierarchical complexity are also described as part of the process

description.

4.0.2 Complexity Assessment

Figure 4.3 shows the function control graph of the program used to implement the above

application problem. The graph is essential for the calculation of Cyclomatic Complexity
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Level Relevant Equations Comments

Iterate G = G+1 if

(Cv ≤Cmax
v )∧ (Ch ≤Cmax

h ) and

Ppredicted ≥ Pmin
Move to next Genera-

tion if thresholds satis-

fied

Converge X lib,G+1
sos =X lib,G

sos if


G > Gmax or

f G
sos(X

∗
sos)→ f G+1

sos (X∗sos) or

f G
sos(X

∗
sos)≤ f G+1

sos (X∗sos)

Conditions to stop

evolving component

libraries

SoS X lib
sos = X lib

sos∪{X∗sos}|Opt. fsos(Xsos)∨gsos(Xsos)≤ 0

Xsos = {Xk
sys,X

k+1
sys , . . . ,Xk+l−1

sys }

l ≤ |X lib
sys|

Assemble SoS from

systems. Append

Optimal/feasible SoS

components (X∗sos)

System Subject to

X lib
sys = Opt. fsys(Xsys)∨gsys(Xsys)≤ 0

Xsys = {Xk
sub,X

k+1
sub , . . . ,Xk+m−1

sub }

m≤ |X lib
sub|

Form optimal systems

(X∗sys) from evolving

sub-system library.

Note that this level

itself does not evolve.

Sub-

system

Subject to

X lib
sub = X lib

sub ∪{X
∗
sub}|Opt. fsub(Xsub)∨ gsub(Xsub) ≤

0

Xsub = {Xk
cmp,X

k+1
cmp , . . . ,X

k+n−1
cmp }

n = |X lib
cmp|

Where X lib
cmp = {X1

cmp,X
2
cmp, . . . ,X

n
cmp}

Form optimal sub-

systems (X∗sub) from

fixed library of airfoils

Table 4.1: Summary of the SoS optimization problem with level-specific equations

(Cv) which is one of the parameters used to control the overall process. As we can see

from table 4.3, Cv is maximum for the lowest level (airfoil optimization), and minimum for
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Level Optimization /

Algorithm

Details

SoS GA

Min Atotal/A +

Endu.excess

•Library initially empty

•3 variables per aircraft node (Id., Weight

fraction, SFC)

•Objective function is a custom ABM

System GA

Max. C3/2
L /CD

•32 aircraft in library

•7 variables (Chord, Taper ratio, Sweep,

Dihedral, Span, Root and Tip airfoils)

•Option to create new aircraft based on

template

•Tornado VLM + Pablo

Sub-

System

DESOM

Max. Cl/Cd

•88 airfoils in library

•6 variables

•Adjust fidelity through number of panels

•Xfoil (viscous)

Table 4.2: Details of optimization problem formulated in each level

the SoS level. Note that the SoS, System and Sub-system level programs run in parallel,

and interact only through the common libraries (marked ‘Airfoils’ and ‘Aircraft’). For

measuring Process Performance (Pv), we notice from the same control graph that the SoS

program has a low fidelity end state, whereas the System and Sub-system programs have

one high fidelity end state each (represented as black-boxes ‘Xfoil’ and ‘Tornado’. Process

Performance is high if a particular level finishes jobs involving higher fidelity processes in

quicker manner. Table 4.4 shows Process Performance (Pv) as a function of time. Thus Cv

and Pv are used to either manually or automatically control the process.

Product complexity (Ch), on the other hand, is controlled by the SoS level. In our

application problem, we assume that the aircraft are fully connected, and the nodes are the
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Level No. of

Edges (E)

No. of

Nodes (N)

No. of end

states (P)

Cyclomatic

Complex-

ity

(Cv = E −

N +2P)

SoS 6 6 1 2

System 7 6 2 5

Sub-system 8 8 4 8

Table 4.3: Calculation of Cyclomatic Complexity of programs used in optimization of each

of the three levels

Level No. of Fidelity 1

Processes

No. of Fidelity 2

Processes

Process Perfor-

mance Pv(t)

SoS 6 0 6/t

System 6 1 8/t

Sub-system 7 1 9/t

Table 4.4: Calculation of Process Performance of programs used in optimization of each of

the three levels as a function of time taken for completing the process (t)



94

Figure 4.3.: Function control graph of the program used to implement the SoS optimization

framework for the current application problem. The graph is used to calculate Cyclomatic

Complexity, Cv

aircraft themselves. Thus for n aircraft, Ch is equal to the sum of number of components

and number of links, or Ch = n+ n×(n−1)
2 . Since optimization is performed in each level to

maximize product performance, the fourth characteristic graph is irrelevant.

Target specification is also incorporated through components in the library. For ex-

ample, optimal airfoils are added to the library at regular intervals (checkpoints in the

optimization process) and may or may not be used by aircraft in the system level unless

an improvement in the objective function of the lower level is seen. Optimal aircraft that

continuously do not make use of the new optimal airfoils being added to the sub-system

library is an indication of low utility of these airfoils across levels. These airfoils are there-

fore removed from the library. Copies of sub-optimal or optimal airfoils that are used by

optimal aircraft are placed in the airfoil library to increase the chance of selecting these

airfoils for system-level tests. Similar addition and removal of components is carried out

in the system level aircraft library.
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4.1 Results

The three level (‘SoS’, ‘Sys’ and ‘Sub’) SoS optimization problem was implemented

in MATLAB’s parallel computing toolbox using SPMD (Single Process Multiple Data).

The maximum allowable time was set to 500 minutes (or 30000 seconds, as seen in the

upcoming plots). The three ‘streams’ of code corresponding to each level were started

synchronously. As mentioned earlier, the SoS and sub-system levels are evolving levels,

whereas the system level is static. The reader is reminded that aircraft are continuously

added to the system library, but the number of variables used to describe the aircraft is con-

stant (7). The SoS level grows from having to select 1 aircraft to 5, and at the sub-system

level, the number of panels on an airfoil is changed from 50 to 150. One of the main

thrusts of incorporating hierarchical complexity is to manage computational intractabil-

ity. However, in this example we use a single fidelity of tools at the end state of each

function. In other words, the objective function exists at a single fidelity level; either low

fidelity (fidelity= 1) or high fidelity (fidelity= 2). No level offers the overseeing hierar-

chical complexity manager a choice of fidelity. Nevertheless, our demonstration clearly

suggests where, how and when these ‘choices’ can be made.

During the implementation of this problem, two new airfoils and one new aircraft were

added to the corresponding level-specific libraries. Optimization at each level limits the

following:

1. Product Performance - At each level, the performance at each level is maximized (ap-

propriately interpreted as maximizing and minimizing the objective function subject

to constraints and variable bounds).

2. Product Complexity - The maximum number of a) panels on an airfoil (150), b)

variables to describe an aircraft (7) and c) nodes that form an SoS are fixed.

Thus, as part of our results in this section, we will only be visualizing the Process

performance and Process Complexity. Results are described in terms of five important

milestones during the progress of the simulation (see table 4.5).
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Milestone Time (s) Significance

1 1879 SoS evolves Once (Uses aircraft generated from Sys-

tem level for optimum SoS)

2 5594 SoS evolves again (Uses Me 262 and B47 B, rejects

older optimum)

3 11016 SoS design space converges (Function value in-

creases. Uses three other aircraft at optimum)

4 27391 Airfoil optimization ends

5 30000 Aircraft Optimization is stopped

Table 4.5: Milestones during the simulation along with their significance (To be used for

interpretation in subsequent tables)

Figure 4.5 shows the time history of the total process complexity and process perfor-

mance throughout the simulation period. Initially, both total performance (Pv) and com-

plexity (Cv) decrease as expected. Complexity Cv only decreases when the SoS design

space converges (third milestone). Until that point, all three levels are active. Performance

decreases since the SoS level is growing in size (evolving) during the first two milestones.

It must be noted that at the end of the first epoch of evolution, the SoS level uses the air-

craft ‘Simple2’ that is generated by the system level in its optimum result. The aircraft

‘Simple2’ is however, not an optimum aircraft with respect to the system level. Never-

theless, we add another instance of this aircraft to the system library since it is useful to

the SoS level. After the second epoch of evolution in the SoS level, the aircraft used are

the Messerschmitt 262 and the Boeing B-47 Stratojet. The path of taken by these aircraft

with the optimum parameters is shown in figure 4.4. Note that the second aircraft (here,

the B-47) starts imaging from the spot that the first aircraft (Me-262) stopped. Also, there

is no excess endurance, since both aircraft have spent the entire amount of fuel, and have

imaged most of the area. Although uncertain wind was used in these simulations, wind

contours are not shown in figure 4.4 for clarity. The plot is to be interpreted as areas which
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Figure 4.4.: Path taken by the optimal SoS of aircraft to complete surveillance over the 20

km by 10 km plot of land.

have been imaged (denoted by color-coded squares) below the trajectory taken by each air-

craft in the SoS. Note that in our application problem, the SoS level is the focus. Other

application problems may consider the system level to be the focus, for example, and may

not even have an SoS objective function (according to this framework, it must at least have

constraints or variable bounds).

The SoS design space is said to have ‘converged’ at milestone 3 since the optimal

objective function value is worse than the optimum value after the second evolution. After

this point, the SoS code is stagnant, and may either wait for completion of other levels or

may be re-run to validate results. We further study the impact of these processes in terms

of performance and complexity using the figures 4.6 and 4.7. In figure 4.6, we see that

the performance decrease is dominated by the fact that the SoS level stops operating after

the third milestone. Thus after milestone 3, computationally heavier Sub and Sys levels

are allocated all the available resources. As time progresses, the convergence of the airfoil

optimization code using Xfoil causes all computational resources to be allocated to the

System level, which is stopped prematurely due to the time constraint. Since cyclomatic

complexity is not dependent on the time between each milestone, the stacked bar graphs
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seem more regular. The number of levels seen at a particular milestone represents the

number of active levels at that point of time. As we can see, the optimization problems

at the SoS and Sub levels have converged at least once by milestone 4, and the aircraft

optimization is active throughout the simulation time.

Thus we are able to make the following conclusions for the benefit of those who would

like to replicate or modify these results in the future:

1. To actively control the performance and complexity of the entire simulation, lower

fidelity end states must be added. Here the ‘black box’ applications Tornado and

Xfoil are to be complemented by lower level, heuristics based or vote based objective

functions.

2. The current results (Pv and Cv) may be used as orders or thresholds for any following

analyses where Hc and Hv can be calculated continuously to make level specific

decisions.

3. Evolutionary algorithms are used for optimization at each level. Instead, analytical

functions may be developed for use with standard gradient based algorithms for ini-

tial design space exploration, whereas more flexible evolutionary algorithms can be

used for final convergence.

4. Since it was expected that the most computationally intensive level would be the

system level, a non-evolving aircraft optimization problem was chosen. Adding mul-

tiple fidelity end states at the system level may relax this constraint and allow for an

evolving design space.
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Figure 4.5.: Variation of total (all three levels) Cv and Pv with time

Figure 4.6.: Vertical performance variation with respect to time along with contribution of

each level

Figure 4.7.: Cyclomatic complexity variation with respect to time along with contribution

of each level



100

The vastly unexplored area of optimization under evolving design spaces are dealt with

in this chapter. We provide a provably convergent algorithm for solving a special class of

problems involving change in dimension, and demonstrate the use of this algorithm (adap-

tive Random Projection) on real-world application problems.
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5. Dual averaging with Adaptive Random Projection (ARP) for solving

evolving distributed optimization problems

Before we present our final application problem, we discuss a second type of evolving de-

sign space 1, and its corresponding solution method. In this chapter, we study a sequential

form of the distributed dual averaging algorithm which minimizes the sum of convex func-

tions in a special case where the number of functions increases gradually. 2 This is done

by introducing an intermediate ‘pivot’ stage that is posed as a convex feasibility problem

that minimizes average constraint violation to a family of convex sets. By doing so, we

introduce a version of the minimum sum optimization problem that incorporates an evolv-

ing design space. Two very relevant, and popular problems are solved using our method in

the setting of evolving design spaces - finding a robust source location in a wireless sensor

network, and minimizing the compliance of a structural topology domain. Results obtained

confirm that the new designs in the evolved design space are superior due to the unique path

followed to reach the optimum.

5.1 Introduction

We are interested in convex optimization problems of the form shown in equation 5.1.

Define problem at time t, Pt as follows

Pt :
min

x

n

∑
i=1

fi(x)

x ∈ X

(5.1)

1Type one was discussed earlier, and was solved using numerical continuation
2This special form of the objective function (sum of individual convex functions) is used commonly in dis-
tributed optimization applications.
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where f : Rn → R is a convex function (may not be differentiable), and X is a non-

empty, closed and convex set with X ⊆ Rn. In our case, the optimization problem at time

t, Pt may evolve at a certain time (say t + 1) to include p more individual functions, for

example problem Pt+1 may be given as:

Pt+1 :
min

x

n+p

∑
i=1

fi(x)

x ∈ X

(5.2)

with X ∈Rn+p. To simplify notation, we can consider an equivalent optimization prob-

lem in equation 5.3 which is based on functions that are distributed over a network specified

by an undirected graph at time t, Gt = (Vt ,Et) over the vertex set Vt ⊆{1,2, ...,n}with edge

set Et ⊆Vt×Vt .

min
x ∑

i∈Vt

fi(x)

x ∈ X

(5.3)

To relate equations 5.2 and 5.3, we note that adding a vertex to the network is akin to

adding a set of p variables to the optimization problem. Each vertex is associated with an

agent that calculates a local function fi, typically a function of p variable dimensions of the

total n dimensions in x ∈ X ,X ⊆ Rn.

Define f := ∑i∈Vt fi(x) | x ∈ X . Let f ∗t = f (x) | x∗t ∈ X solve problem Pt . Furthermore,

define t+ := {t ′|t ′ > t}. We discuss our answers to the following questions through this

paper:

1. Given an optimization problem (P0) of the form in equation 5.3 that is associated

with a graph G0 at time t = 0, how do we sequentially obtain better f ∗t+ as new

vertices are included in the graph Gt+? This also defines our motivation - to find a

minimum such that f ∗t+ < f ∗t .

2. Is there any benefit of finding the trace of f ∗t sequentially rather than solving a static

problem at tend?
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3. When does one stop considering the option of changing the number of vertices (n(Vt))

in graph Gt to obtain a final f ∗tend
?

5.2 Foundations of the algorithm

Problems of the form shown in equation 5.1 have received much attention in the recent

years due to their applicability to a variety of fields and disciplines. Several branches of

optimization problems and their resulting applications are focused on optimizing ‘additive

cost’ as in this paper. Some examples include Least squares and Inference, Stochastic Pro-

gramming, Dual optimization and Machine Learning. [118, 119] Bertsekas provides a uni-

fied framework, along with convergence and convergence rates of a variety of methods that

can be derived from three basic solution strategies - incremental gradient, incremental sub-

gradient and proximal methods. [119] However, all of the methods and variants presented

in literature only tackle a problem of fixed size (n). Although Nedic and Olshevsky [120]

use a subgradient method for solving a distributed optimization problem over time varying

graphs, the number of vertices remain fixed (i.e. V does not vary with time). We present

a novel method that combines Distributed Dual Averaging (Sect. 5.2.1) and the Random

Bregman Projection method (Sect 5.2.2) that solves our version of the time varying mini-

mum sum problem as seen in equation 5.3.

5.2.1 Distributed dual averaging

From the perspective of decentralized or distributed optimization, the goal is to op-

timize a ‘global’ objective by only ‘local’ (or node specific) function evaluations. Prac-

tical implementation of these optimization algorithms to tracking and localization prob-

lems, sensor networks and multi-agent coordination have proved to be very effective in the

past. [121,122] Although the form of the function handled by Duchi et al. [123] is slightly

different, our work is an offshoot of the method presented therein, and is re-purposed to

effectively handle an evolving design space along with the techniques in Section 5.2.2.
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Basic assumptions

Standard dual averaging schemes are based on a proximal function φ : X → R that is

strongly convex with respect to some norm ‖ · ‖. In our paper, we use the canonical form

of this proximal function, a quadratic of the form φ(x) = 1/2‖x‖2
2 which is strongly convex

with respect to the L2 norm for x ∈ Rn. Also, we assume that all nodal cost functions ( fi’s)

are L−Lipchitz with respect to each norm as in Duchi et al. [123] That is,

| fi(x)− fi(y)| ≤ L‖x− y‖,∀x,y ∈ X (5.4)

The functions used in in this chapter are all convex functions in compact domains, and

hence satisfy this condition. Note that a formal proof is possible only using this assump-

tion, but our demonstrations in forthcoming sections are not limited to convex problems.

An important inference of equation 5.4 that is used in the proof of convergence of the

Distributed Dual Averaging (DDA) algorithm, is that for any x ∈ X and any subgradient

gi ∈ ∂ fi(x), ‖g‖∗ ≤ L.3

Define the adjacency matrix At ∈ Rn×n of graph Gt as follows:

At(i, j) =

 1 if (i, j) ∈ Et

0 otherwise
(5.5)

Each node in the network may be associated with neighbors j ∈ N(i) := { j ∈ Vt |

(i, j) ∈ Et}. Let degree of each node be defined as δi := |N(i)| = ∑
n
j=1 At(i, j), and D =

diag{δ1, . . . ,δn}. Let δmax = maxi∈Vt δi, and let us define the characteristic matrix P as:

P(Gt) := I− 1
δmax +1

(D−A) (5.6)

The matrix P is symmetric and doubly stochastic (∑i Pi j = ∑ j Pi j = 1) by construction,

which are characteristics needed by Duchi et al. for their convergence proof to be valid,

and is an essential part of our algorithm. [123]

3‖ · ‖∗ is the dual norm to ‖ · ‖. See [123] for details
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Algorithm details

First we note that the distributed dual averaging is implemented at a particular fixed

time t. The details described here are for iterations (counted using the parameter k =

1,2, . . .) that occur at a time (t) during the evolution of the problem Pt+. During these

iterations, each node maintains a local copy of two values (xi(k),zi(k)) ∈ X ×R1, and

also calculates the subgradient gi(k) ∈ ∂ fi(xi(k)). Each node receives information about

parameters {z j(k), j ∈ N(i)} from nodes in its neighborhood. Define a projection onto X

with respect to some proximal function φ and positive scalar step-size α as

Π
φ

X(z,α) := argmin
x∈X
{< z,x >+

1
α

φ(x)} (5.7)

Given a non-increasing sequence of positive step-sizes α(k), the DDA algorithm in-

volves each node i ∈Vt via the following iterative updates at a fixed time t :

zi(k+1) = ∑
j∈N(i)

Pjiz j(k)+gi(k)

xi(k+1) = Π
φ

X(zi(k+1),α(k))

(5.8)

Convergence of the DDA algorithm to the optimum x∗ ∈ X , convergence rates and

modifications for various network types (random, fixed degree etc.) can be found in [123].

However, this method is only suited to solve static problems, and not dynamic or evolving

problems that we are interested in. Strong convergence results for even variants of DDA

that include stochastic communication links and composite objective function forms, as

well as superior experimental performance when compared to state-of-the-art algorithms

such as Markov Incremental Gradient Descent (MIGD) [124] and Distributed Projected

Gradient Method [125] encourage us to modify this algorithm suitably for this new class

of evolving optimization problems. The following section introduces the Bregman Projec-

tion, which is helpful in motivating the need for our Adaptive Random Projection (ARP)

algorithm in the pivot phase.



106

5.2.2 Bregman projection method

Of the several algorithms related to steered sequential projections described by Censor

et al. [126], we are interested in algorithms that use Bregman distance functions for pro-

jection onto a set. A Bregman distance is defined on a zone S with respect to a function f ,

and denoted by D f (x,y) for the distance between two points x and y as

D f (x,y) := f (x)− f (y)−< ∇ f (y),x− y > (5.9)

If Ω⊆ Rn is closed, a Bregman projection (P f
Ω

) is then defined as

Π
f
Ω
(x) = argmin

z
{D f (z,x) | z ∈Ω∩ cl(S)} (5.10)

where cl(S) is the closure of the zone S. We use a special form of the Bregman function

1/2‖x‖2
2 (with zone Rn). Recall that this Bregman function has the same form as the prox-

imal function used in Sect. 5.2.1. In this case, Bregman projections become orthogonal

(Euclidian) projections. The iterates of the algorithm are defined as

x(k+1) = x(k)+σk(Pi(k)(x(k))− x(k)) (5.11)

where {i(k)} is a cyclic control sequence, and the sequence {σk}k≥0 is an m-steering

sequence as defined in Censor et al. [126] However, although the steered version of the

Bregman Projection method can solve inconsistent problems, it cannot be applied to evolv-

ing optimization problems where Pt− 6= Pt 6= Pt+.

Given that we are able to find the optimum f ∗t of a problem Pt of the form in equation

5.3 through updates of the DDA algorithm (equation 5.8) at some time t > 0, our aim

is to find a superior f ∗t+ < f ∗t by activating or deactivating certain nodes in the network

(i∈Vt+,Vt+⊆{1,2, . . . ,n},Vt+ 6=Vt). In words, we are modifying the network by selecting

a new set of nodes from a ‘library’ of n existing nodes. Solving the problem Pt+ using

DDA again may find an f ∗t+< f ∗t , but we are ignoring the progress made through solving the

problems P0 to Pt . Thus, a form of numerical continuation is required, and is established

through a ‘pivot’ phase at time t, before solving the problem Pt+.
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At time t, problem Pt of the form equation 5.3 is solved to obtain an optimum f ∗ and

a corresponding value of x∗ ∈ X . Let 4Vt be the symmetric difference between the sets

Vt and Vt+ (that is, 4Vt =Vt4Vt+ = (Vt ∪Vt+)\ (Vt ∩Vt+). This gives us the nodes added

or removed in the new time step t+. It is important to note that typically nodes are added

to the network since most applications of the algorithm (as will be seen in the penultimate

section). Thus, we can re-write equation 5.3 as follows

min
x ∑

i∈Vt+

fi(x)

≡min
x
(∑

i∈Vt

fi(x)± ∑
i∈4Vt

fi(x))

x ∈ X

(5.12)

Since the first sum of functions have been solved for in the previous time step with

i ∈ Vt , the problem at the pivot step is reduced to a simpler, convex feasibility problem

which can be written as

min
x

0T x

f ∗t+1 = ∑
i∈Vt+

fi(x)< f ∗t ,x ∈ X
(5.13)

Represent the convex set x ∈ X at any pivot time as QX and ∑i∈Vt+ fi(x) < f ∗t as QF .

Thus at the pivot point, our solution is a point x̃ ∈ QX ∩QF . There exist several convex

feasibility algorithms for finding a point x∗ ∈ Q := ∩m−1
i=0 Qi, which is the intersection of

finitely many closed, individual sets Qi ∈Rn. [127–129] However, most of these algorithms

are applicable only to the ‘consistent’ case wherein Q 6= ∅. In our case, it is not known

a prori that Q 6= ∅ at time t+. Thus, a sequential projection method that is proved to be

convergent for the inconsistent as well as consistent case is used here. [126] Thus, we are

interested in an iterative algorithm to find a point in the intersection of the sets QX and

QF . Additionally, as in the paper by Nedic, we would also like to determine if such a point

exists by observing the algorithm’s iterates itself. [120] Our Adaptive Random Projections

(ARP) algorithm (introduced and analyzed in the following sections) is well suited to solve

such dynamic problems.
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5.3 Adaptive Random Projection

Our algorithm is based on the hypothesis that finding a point in the intersection of Qi’s

corresponds to a an improvement in f ∗. We prove this hypothesis using the following

argument.

Consider an existing f ∗ ≥∑i fi(x) = F(x), and a pair of new candidate functions f1 and

f2. First suppose that adding f1 does not satisfy the feasibility criterion in Equation 5.13,

and that adding f2 does satisfy it. In other words, a) F(x)+ f1(x)− f ∗ > 0 ∀x ∈ Q1 but b)

F(x)+ f2(x)− f ∗ ≤ 0 ∀x∈Q2. We are interested in the case where both these conditions a)

and b) are simultaneously true, that is Q1∩Q2 6=∅. Exclusion of the node corresponding to

f1 is justified since f ∗ ≥ F ∀x ∈Q1, and F(x)+ f1(x)+ f2(x)− f ∗ ≤ f1(x) ∀x ∈Q1∩Q2.

Of course, when Q1∩Q2 =∅, we cannot find a common point x to evaluate f1 and f2.

Now consider another candidate function f3 which satisfies c) F(x)+ f3(x)− f ∗ ≤ 0

∀x ∈ Q3. We are interested in the scenario where b) and c) are simultaneously true. When

Q2 ∩Q3 6= ∅, F(x) + f2(x) + f3(x)− f ∗ ≤ f2(x) and F(x) + f2(x) + f3(x)− f ∗ ≤ f3(x)

are both true. Since f2 ≤ f ∗−F(x) and f3 ≤ f ∗−F(x), {F(x)+ f2(x)+ f3(x)− f ∗} ≤ 0

always holds true. Also, there may be a greater benefit when both functions f2 and f3

are considered simultaneously than with any one of the functions alone. More nodes with

corresponding functions fi can be added when b) and c) are found to be true. With this

motivation, we now proceed to introduce our algorithm.

5.3.1 Algorithm details

Recall that in Section 5.2.2, we introduced our problem as a convex feasibility problem.

More precisely, our problem is related to a body of research on the Maximum Feasible

Subset (MFS) problem in which the goal is to identify (enumerate) the sets that have a

feasible intersection. In view of our overall goal, a feasible intersection of a subset of

the candidate library of nodes translates to a definite improvement of the global objective

function by adding these nodes. Other similar but closely related problems include the

Minimum Unsatisfied Linear Relation problem (MINULR) and Minimum Cardinality Set
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Covering Problem (MINCOVER) that are typically applied to a set of linear constraints.

Finding the MFS of linear constraints is NP-hard, and is widely studied. [130–132]

In the pivot stage, we are to determine a point x∗ such that it lies in the intersection of a

select subset of x∗ ∈ X ,
⋂

i∈I Xi, where I ∈ 1, . . . ,m, |I | ≥ 2. Our proposed Adaptive

Random Projection algorithm is stated as follows - given an iterate xk ∈ Rn, subsequent

iterates are given by

xk+1 = Πωk(xk) (5.14)

where the random variable ω at time step k is a value in the set {1, . . . ,m}. Each constraint

set Xi is associated with an “agent” or “node” that decides which set to project to next by

maintaining a set of m probabilities. Each of these probabilities corresponds to projecting

onto a set i. Denote this set of m probabilities associated with the node i at an iteration k as

Pr so that Pr(i, j) implies probability of projecting from set i to set j. Note that traditionally

in literature, only probability of projecting onto a set Pr(i) is defined. Here we can obtain

this value implicitly, that is Pr(i) = ∑
m
j=1 Pr( j, i).

We identify the Maximum Feasible Set (MFS) during the course of convergence by

using constraint violation values. Constraint violation with respect to a constraint set i can

be calculated (using Equation 5.13) as

ci = max

(
∑

i∈Vt+

fi(x)− f ∗t ,0

)
(5.15)

Define dX(x) Bregman distance of a point x ∈ Rn to a set X . Notice that a point on the

intersection of the MFS does not correspond to a point with the minimum distance to all

sets dmin. That is, we are interested in the case where

1. d 6= 0, since all the sets in question (Xi’s) may not intersect

2. d 6= dmin, since some sets may be excluded from the MFS, and

3. d = d∗ > dmin which is corresponds to a point on the intersection of the MFS (see

Figure 5.1)
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dmin

Figure 5.1.: We intend to find d∗ at the intersection of the MFS rather than dmin which

applies to all four sets shown in the figure

Let ci j be the constraint violation measured using equation 5.15 for set i from a point

on set j. We are now ready to define the adaptive probabilities Pr(i, j) for iterations k =

0,1,2, . . .

Pr(i, j) =


0 if i = j, k = 0

1−∑ j 6=i Pr(i, j) if i = j, k > 0

2
m−1

(
1− 1

1+exp(−γk c̄i j)

)
if i 6= j, k ≥ 0

(5.16)

where c̄i j is the moving average value of ci j, and γk is a gradually increasing sequence

of positive numbers that amplify the constraint violation c̄i j with the properties γk+1 > γk,

γ0 = 0 and ∑
∞
k=0 γk = ∞. Pr is a doubly stochastic matrix like P, that is used in the first

phase (Equation 5.6). Note that at iteration k = 0, Pr(i, j) = 1
m−1∀i 6= j. Thus, it is equally

probable to project onto other sets j from set i. As the iterations progress, the algorithm is

expected to initially behave like a standard random projection algorithm to find dmin since γk

is close to zero. As the average constraint violation c̄i j increases, it becomes less probable

to project onto the set j from set i. Also, a stagnant or non-changing constraint violation
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is also penalized since γk keeps increasing. This reduces the probability of projecting onto

frequently penalized nodes gradually towards zero.

An easy way to visualize the above paragraph is as follows. Let the candidate nodes to

be added i = 1, . . . ,m be a fully connected graph G = (V,E). Initially, all links exist, and

we wish to gradually fade away these links as c̄i j increases. As the algorithm progresses,

Pr(i, j)→ 0 implies that link does not exist. A high probability Pr(i, j) and Pr( j, i) indi-

cates that sets i and j may have an intersection. On the other hand, a high value of Pr(i, j)

and a corresponding low probability of Pr( j, i) implies that improvement of f ∗ is relatively

higher for set corresponding to j than for set i. In this sense, ARP is an online learning

algorithm. The network analogy will be referred to again since it is useful for our next step,

and also lends support to practical implementation of the algorithm on actual distributed

nodes.

5.3.2 Continuation via Edge Contracting

As discussed in the previous paragraph, edge contracting plays an important role in

ARP. Recall that a link between two nodes implies that an intersection probably exists.

Since the above procedure aims to isolate unconnected nodes while confirming pairwise

intersections, we continue our analysis by using an edge contracting procedure. This is

visually similar to the Karger’s algorithm (See figure 5.2), but has a completely different

purpose and procedure. [133] In our scheme, the result of ‘contracting’ an edge that con-

nects nodes u and v is the formation of a new node u− v. Since Pr(i, j) is not necessarily

symmetric, we obtain a directed version of the graph shown in Figure 5.2. At this point,

we are convinced that an intersection exists between the sets Xu and Xv. Denote the set

Xu−v = Xu∩Xv, as the intersection set and the corresponding node on our graph G = {V,E}

as u− v. The procedure is formally described below:
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1 2

34 34

1 2

34

1-2

a) b) c)

Figure 5.2.: a) Initialized graph with respect to the hypothetical problem in figure 5.1. b)

Node 4 corresponding to set 4 is isolated as part of ARP. c) Node 1 and node 2 coalesce to

form node 1-2. Projections are thereafter performed one node 1-2 and 3

Procedure Contract G = {V,E}

IF |V | ≥ 1

Choose edge e = {u,v} ∈ E : Pr(u,v)> 0 ∧ Pr(v,u)> 0 ∧ γkc̄uv→ ∞

Denote new node u− v

G = G\ e

V =V \{u,v},V =V ∪u− v

Isolate nodes:

Choose node k ∈V : Pr(u,k) = 0 ∧ Pr(k,u)≥ 0 ∀u 6= k, u ∈V

V =V \ k

γk+1 = γ0

Continue ARP

Practically, we look for a Pr(u,v) > Pthr instead of Pr(u,v) > 0, and Pr(u,v) < Prthr

instead of Pr(u,v) = 0, where Pthr is some small positive threshold value. Note that a node

may be isolated if all edges to it, or from it are removed. After the formation of the node

u− v, all projections are made through parallel projections onto both sets ΠXu and ΠXv . As

a result, projections onto the set Xu−v may be obtained using:



113

ΠXu−v(x) =
ΠXu(x)+ΠXv(x)

2
(5.17)

Bauschke and Borwein study the convergence of these parallel (or more generally,

weighted) projections through the use of active indices in their review paper. [134] Thus, in

our algorithm we simply consider the average projection as the projection onto node u− v.

Note that as the algorithm progresses along with edge contracting, we coalesce nodes with

feasible intersections into a node denoted by u− v− ·· ·−w. Finally, the desired MFS is

obtained by the indices that identify this coalesced node. Note that in some cases, the co-

alesced node(s) obtained may be strongly associated with other nodes and as such it may

become necessary to include these nodes into the final solution.

5.3.3 Mathematical Convergence of ARP

In this section we present mathematical convergence results in relation to our algorithm.

Our goal is to show that in the pivot stage,

‖xk+1− x∗‖ ≤ ‖xk− x∗‖+ e(xk,ωk) (5.18)

As in Wang and Bertsekas [135], we show this by bounding each term on the right hand

side (RHS) of the above equation to show that the iteration error e, which is a function of

the current iterate xk and the random index ωk is stochastically decreasing.

To do this, we take the conditional expectation of the “average improvement” of the

process given its history Fk = {x0,x1, . . .xk,ω0,ω1, . . .ωk,γ0,γ1, . . . ,γk}. That is, we ana-

lyze E[‖xk+1− x∗‖2 |Fk] where E[·] denotes the expected value of a random variable.

Finally we study the equivalence of two problems - one involving our version of MFS

involving all m sets, and the second involving convergence onto a smaller number of sets

which are results of solving the MFS problem a priori. As in Wang and Bertsekas, we

assume that the collection of sets Xi satisfy linear regularity as follows.
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Assumption 1 There exists a positive scalar η such that for any x ∈ Rn

‖x−Π(x)‖ ≤ η max
i∈V :G={V,E}

‖x−ΠXi(x)‖

There are several situations including polyhedral sets where linear regularity holds true,

and for a detailed discussion on this property we refer the reader to Deutsch and Hundal.

[136] In simple words, the assumption roughly translates to saying that the distance of a

point from two sets is closely related to the distance from the intersection of these two sets,

when such an intersection exists.

We also assume non-expansiveness of the projection operator Π, that is:

Assumption 2 For any two points x and y in Rn, and for all projections Π = ΠXi consid-

ered

‖Π(x)−Π(y)‖ ≤ ‖x− y‖

Finally assume that we can generate an increasing sequence of numbers {γk}. With

this, we begin our mathematical treatment of the algorithm, following the stencil provided

by Wang and Bertsekas. [135].

Lemma 1 For any x ∈ Rn, and y ∈ S with S⊆ Rn,

‖ΠS(x)− y‖2 ≤ ‖x− y‖2−‖x−ΠS(x)‖2

Proof .

‖ΠS(x)− y‖2 = ‖ΠS(x)− x+ x− y‖2

= ‖x− y‖2 +‖x−ΠS(x)‖2−2 · (x− y)′(x−ΠS(x))

= ‖x− y‖2 +‖x−ΠS(x)‖2−2 · (x−ΠS(x)+ΠS(x)− y)′(x−ΠS(x))

Since (y−ΠS(x))′(x−ΠS(x))≤ 0
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‖ΠS(x)− y‖2 ≤ ‖x− y‖2 +‖x−ΠS(x)‖2−2 · (x−ΠS(x))′(x−ΠS(x))

= ‖x− y‖2−‖x−ΠS(x)‖2

For the next Lemma, we use the following information:

1. Lemma 1

2. ARP iterates xk+1 = Πωkxk

3. 2a′b≤ ε ‖a‖2 + 1
ε
‖b‖2∀a,b ∈ Rn [135]

4. Distance dX(x) = ‖x−ΠX(x)‖

Lemma 2 For any x ∈ Rn, and y ∈ S with S⊆ Rn,

‖xk+1− y‖ ≤ (1+ ε)‖xk− y‖+(1+
1
ε
)d2(xk)

Proof .

‖ΠS(x)− y‖2 ≤ ‖x− y‖2 +‖x−ΠS(x)‖2−2 · (x− y)′(x−ΠS(x))

≤ ‖x− y‖2 +‖x−ΠS(x)‖2 +[ε ‖x− y‖2 +
1
ε
‖x−ΠS(x)‖2]

= (1+ ε)‖x− y‖2 +(1+
1
ε
) ·d2(x)

where the required result is easily obtained by substituting x = xk. A consequence of

this lemma can be seen by substituting x = xk and y = x∗, and having the set S = Xωi , that

is

‖Πωi(xk)− x∗‖2

= ‖xk+1− x∗‖2 ≤ (1+ ε)‖xk− x∗‖2 +(1+
1
ε
) ·d2(xk)

(5.19)
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Although this is not of significant consequence to our “expected” or average decrease in

error, it is an interesting side note. Also, we can extend this result to an N step look-ahead

as follows. We are interested to study the progress of the quantity ‖xk+N− x∗‖2 as N grows.

Equation 5.19 looks one step ahead, that is, N = 1. For N = 2,

‖xk+2− x∗‖2 ≤ ‖xk+1− x∗‖2−d2(xk+1)

≤ ‖xk− x∗‖2−d2(xk)−d2(xk+1)
(5.20)

Therefore, for an N step look-ahead we can construct Equation 5.21:

‖xk+N− x∗‖2 ≤ ‖xk− x∗‖2− [d2(xk)+d2(xk+1)+ . . .+d2(xk+N−1)] (5.21)

5.3.4 Progress Towards the Optimum

Before progressing to proposition 1, we provide a lower bound of the ARP. This average

progress of ARP is given as the expected value of ‖x−Πωk(x)‖ subject to the history of

the algorithm’s iterates Fk until the current iteration k.

E[‖x−Πωk(x)‖
2 |Fk] = ∑

i∈V
Pr(ωk = i|Fk)‖x−Πi(x)‖2

= ∑
i∈V

Pr(ωk = i|ωk−1 = j)‖x−Πi(x)‖2

≥ 2
m−1

(
1− 1

1+ exp−γk(̄c)i j

)
‖x−Πi(x)‖2

(5.22)

where c̄i j corresponds to the minimum corresponding average constraint violation.

Now maximizing the RHS over j and using linear regularity (see assumption 1)

E[‖x−Πωk(x)‖
2 |Fk]≥

2
η(m−1)

(
1− 1

1+ exp(−γkc̄i j)

)
‖x−Πi(x)‖2 (5.23)

Finally, we discuss the average progress of the algorithm towards the solution x∗ in the

following proposition.
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Proposition 1 Let assumptions 1 and 2 hold, and let x∗ be an optimal solution such that it

converges to the MFS intersection while identifying the set itself. Then the ARP algorithm

generates a sequence of iterates xk such that

E[d2(xk+1)|Fk]≤
(

2+ ε +
1
ε

)
· 1

η(m−1)
·d2(xk)

Proof . Let ε be a positive scalar as defined earlier. Let d represent the distance to the

intersection of the MFS, and S represent the MFS. In Lemma 2, we use y = Πωkxk and

d2(xk+1)≤ ‖xk+1−ΠS(xk)‖2 to get

d2(xk+1)≤ ‖xk+1−ΠS(xk)‖2

≤ (1+ ε)‖xk−ΠS(xk)‖+(1+
1
ε
)d2(xk)

Now, taking the conditional expected value of both sides with respect to Fk and using

Equation 5.23, (or see Equation 5.19) we get

E[d2(xk+1)|Fk]≤ (2+ ε +
1
ε
) · 2

η(m−1)
·
(

1− 1
1+ exp(−γkc̄i j)

)
·d2(xk)

≤ (2+ ε +
1
ε
) · 1

η(m−1)
·d2(xk)

5.3.5 Implication of γk sequence

The purpose of γk is to gradually amplify the effect of the average constraint violation

c̄i j. For the purpose of this discussion, let us assume that the sequence of {γk} is generated

using:

γk+1 = rγ · γk (5.24)

with γ0 > 0, and rate of increase rγ > 0. It is obvious that the rate rγ must be upper-bounded

to avoid artificial or premature convergence. This may lead to a wrong choice of nodes that
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form the MFS, although some node that improves the value of f ∗ may be found. However,

the value of this upper bound depends on the rate of variation of the average constraint

violation c̄i j which is problem specific.

5.4 Application problems

We now explore two application problems 1) a topology optimization problem solved

using a centralized optimization routine to find an initial f ∗ followed by ARP (Section

5.4.1, and 2) a sensor management problem solved using DDA to find the initial f ∗ fol-

lowed by ARP (Section 5.4.2). A modified version of the application problem on topology

optimization will be used in Chapter 6 in the aero-structural optimization module. The sec-

ond application problem in this chapter is provided to highlight the the fact that a variety

of problems (even ones that include uncertain parameters) may be solved using ARP.

5.4.1 Application to a Topology Optimization problem

The purpose of topology optimization is to find the optimum layout of a structure given

the domain, loads and distribution of material. The Messerschmitt-Bolkow-Blohm (MBB)

beam problem is a classical problem in topology optimization literature and is used as an

example case here. [137] The objective is to minimize compliance with the constraint on

the amount of material used. The standard version of the MBB problem is interesting in

itself, but has a fixed design domain boundary. Our implementation can be easily extended

to increasing domain sizes. In our version of the problem, four agents or nodes control the

extended portions of the the design space as shown in the figure, each of which contain 15

additional variables (See Figure 5.3).
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1

2

3

4

Figure 5.3.: The design domain, boundary conditions, external load applied, and new por-

tions of the extended domain that the four new agents are in control of (marked 1,2,3 and

4)

Formally stated, the problem we wish to solve is:

min
x

c(x) =UT KU =
N

∑
i=1

Ei(xi) · (ui)
T kui

S.To. V (x)/V0 = v f rac

KU = F

0≤ x≤ 1

(5.25)

where c(x) is the compliance of the structure, which is a global measure of deformation, U ,

F and K are the global displacement vector, force vector and stiffness matrix for an element

with unit Young’s modulus respectively. V (x) and V0 are the material volume and domain

volume, and v f rac is the volume fraction. For a given domain size, v f rac is fixed. This

value is adjusted to maintain the total amount of material used as we evolve the domain.

The objective function is written as a sum of compliance of individual elements with ui

being the displacement vector of each element, and k being the element specific stiffness

matrix. It is assumed that the Young’s modulus of each element is obtained as a function

of densities xi according to Equation 6.27 shown below.

Ei(xi) = Emin + xp
i (E0−Emin) (5.26)
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The values of Emin, E0 and p used here are 1e−9, 0 and 3 respectively. More information

about the optimality criteria method, sensitivity studies and alternative solution methodolo-

gies may be obtained from a wide variety of existing literature. [137–142] It is important

to note that the material considered here is isotropic and linearly elastic. Compared to the

optimality criteria method, other methods such as the Level-set method, or Finite Element

Method (FEM) may provide higher fidelity results and/or reduced noise and checkerbox-

ing.

A significantly modified version of the 88 line topology optimization code by Sigmund

is used to find the optimum f ∗ and to perform projections. [139] Note that the strategy of

implementing the projections as an optimization problem that minimizes the norm is not

practical here since the total number of variables involved is very large (1260 to be exact).

Thus the projections used here may be non-orthogonal, but suit the purpose of the paper

since the projections are extremely efficient.

Results

All simulations were conducted in a custom MATLAB 2014a code running on an Intel

Core i7-2630QM 2GHz processor. The sequence of γk was generated as a simple geometric

sequence with γ0 = 0.01 and γk+1 = γk ∗1.0015 (refer Section 5.3.5 for discussion on rate

of increase of γ). Optimization using a heavily modified version of [139] yielded the layout

and structure shown in Figure 5.5a. The maximum number of iterations in the pivot phase

is set to be 5000, and is sufficiently large as discussed later in this section. Since we solve a

feasibility problem using alternating projections in the pivot phase, agents do not typically

have access to the overall objective function c(x). Hence, during the pivot phase, we use a

density filter that directly transforms the original variables (x) rather than a sensitivity filter

as used in the first phase which modifies the sensitivities ∂c
∂x (see details of implementation

in Sigmund [138, 139]).4

4Note that solving the first phase of this problem (i.e. finding f ∗) using the original DDA is impractical due
to the number of agents/nodes required, and is also irrelevant for this problem type.
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We stop the iterations in the pivot stage if the maximum number of projections of 5000

is reached (implying usability in on-board systems) or if a probability value in Pr(i, j)

matrix is above 0.95. Also, for coalescing nodes, we use the a threshold probability value

of Prthr = 0.01. The average constraint violation matrix c̄i j at the end of 4723 projections

is shown below:

c̄i, j =


0 1.1324 0.7900 0.5672

0.5769 0 1.1447 0.5107

0.5679 0.8067 0 0.9616

0.8339 0.7300 0.6129 0



Pr(i, j) =


0.9725 0.0007 0.0056 0.0210

0.0199 0.9502 0.0007 0.0292

0.0209 0.0051 0.9720 0.0020

0.0043 0.0080 0.0161 0.9716


Given the value of Pthr used, we obtain the following directed graph corresponding to

Pr(i, j) values shown in .

1 2

34 34

1 2

34

a) b) c)

1 2

Figure 5.4.: Edge contracting procedure for topology optimization example. As a result,

node 4 is selected, and all other nodes are isolated.

Thus the MFS of this problem is set 4 alone, and the corresponding sub-domain is

added to the topology optimization problem. We then continue optimizing the topology

to obtain the final structure. Four differentiating cases are tested as shown in figure ??.



122

The optimum topology obtained in the original domain is shown in Figure 5.5a. Solving

the problem using the entire extended domain (all four nodes included) in a centralized

manner yields the result shown in Figure 5.5b. Figure 5.5c is the topology obtained when

node 4 (which is ascertained as a result of ARP) is added to the original domain a-priori,

and solved in a centralized manner. Figure 5.5d represents the solution method presented

in this paper, that is if the topology obtained in Figure 5.5a is used after the ARP pivot

phase until convergence.

(a) Optimized topology in original domain (b) Optimized topology in extended domain

(include all nodes)

(c) Optimized topology in partially extended

domain (include node 4)

(d) Final topology if domain is improved us-

ing ARP

Figure 5.5.: Comparison of four cases tested - The actual procedure corresponds to im-

proving structure in a) using ARP to obtain d)

As seen in Table 5.1, Case 5.5d reports the best final f ∗ and only requires an addi-

tional 9 iterations to converge after the pivot phase. The centralized cases 5.5b and 5.5c

also converge to better values when compared to the original. The topologies obtained in

the four cases reported here are vastly different (visually) when compared to the relative

closeness in f ∗ values. It is interesting to note that when node 4 is forcibly added to the do-

main (Case 5.5c), the structure obtained is different as the path to that optimum is different.

Similar looking topologies were obtained in literature using other methods. The results
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presented herein are repeatable and may be obtained using codes and input parameters

provided in [138, 139] corresponding to the MBB-beam problem.

Case Figure Iterations f ∗

Case a 5.5a 129 120.0345

Case b 5.5b 158 119.9221

Case c 5.5c 237 119.3652

Case d 5.5d 138 115.5444

Table 5.1: Comparison of the four test cases in terms of number of iterations and f ∗.

5.4.2 Application to a Sensor Management problem

There has been a growing interest in topics related to distributed optimization studies of

sensor management applications. Generally, optimization involves improving the value of

some system performance metric such as information maximization or risk minimization.

[143] We include an application problem in the sensor management domain due to typical

problem features that make application of our algorithm to this problem very apt such as 1)

distributed/localized function evaluations, 2) optimization of a global goal by using local

interactions, 3) the need to add additional sensors/nodes/targets to the network, each of

which are typically associated with a local function, and 4) incremental algorithms like

ours may be used for practical problems that involve on-board computing.

Robust estimation is a popularly solved sub-problem in this category. Each sensor

in a network may collect local readings of an environmental variable (like temperature

or rainfall), or of a location parameter (like an energy source or target) subject to some

noise. [122,144–151] Robust estimates of parameters and locations are often obtained from

functions such as squared error and the Huber loss function [146]. Here we will make use
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of the latter function as the local fi being calculated at by each sensor. The Huber loss

function is given by:

ρ(θ ,x) =


(x−θ)2

2 if |x−θ | ≤ γ

γ|x−θ |− γ2

2 otherwise
. (5.27)

with the multi-dimensional variant involving the sum of these losses across all dimensions.

The Huber loss function is convex and differentiable. A general description of the robust

source estimation follows. Each sensor i = 1, . . . ,N collects a set of m measurements xi,

which are randomly sampled from normal distributions N (θ ,σ2). 75% of the sensors

have sample the source location θ with a noise characterized by σ2, whereas the other 25%

are faulty sensors with a noise of 10σ2. We would like to find an estimate of the source

θ ∈ X which minimizes :

f (θ ,x) =
1
n

n

∑
i=1

ρi(θ ,x)

x ∈ X

(5.28)

In our problem, we randomly generate a network with N = 100 nodes uniformly distributed

on the unit square [0,1]× [0,1] (X) as shown in the figure 5.6a. We then connect the nodes

based on whether their distance is less than 0.145 units (obtained by reducing the threshold

value until the network remains connected) similar to the example in [152]. In the context

of our paper, any new sensors added will also follow the same rule of establishing con-

nections with other existing nodes. This relates to the real world situation where wireless

sensors may connect to other sensors within some range. Each sensor processes m = 200

readings. The location of the sensors and the source are randomly generated. A set of 16

new candidate sensors (positions shown in figure 5.6b) are given access to the last 50 read-

ings of the original set of 100 sensors. We first solve the problem with the original set of

100 sensors in the randomly generated network using DDA. The aim is then to use the best

source location obtained as a result of the DDA algorithm to improve f ∗ value while simul-

taneously selecting the most valuable, maximum subset of the 16 new candidate sensors.
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(a) Randomly generated initial network
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(b) New candidate sensors

Figure 5.6.: In both images shown above,  represents a sensor, � represents the source’s

location, and a # around a sensor indicates that it is faulty (also randomly generated).

Results

All simulations were conducted using a similar set-up as in section 6.7.3, but is repeated

here for the sake of completeness. A custom MATLAB 2014a code running on an Intel

Core i7-2630QM 2GHz processor was used. The sequence of γk was generated as a simple

geometric sequence with γ0 = 1 and γk+1 = γk ∗1.0015 (refer Section 5.3.5 for discussion

on rate of increase of γ). The value of α for the initial run of the DDA algorithm is fixed at

a value of 0.01. The path taken by the mean source location is shown in figure 5.7. As we

can see, the mean estimate of the source location continuously improves towards the actual

location as the DDA algorithm progresses.

The maximum number of projections in ARP is set at 5000 (implying usability in on-

board systems) or the number of projections for a probability value in Pr(i, j) matrix to be

above 0.95. Also, for coalescing nodes, we use the a threshold probability value of Prthr =

0.05. Corresponding to the Pr(i, j) values, we obtain characteristic directed graphs for the
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Figure 5.7.: Path taken by the mean estimate of the source (shown as2) moving towards the

actual source location � as time progresses in the presence of faults. Sizes of the sensors

 have been reduced for clarity.

purpose of edge contraction and isolation as shown in figure 5.8. After the 5000th iteration

edge contraction and isolation procedures take place before ARP continues (Note transition

between figures 5.8d and 5.8e). At k = 5600 (figure 5.8h), four pairs of nodes (seen with

bidirectional links) coalesce to form new nodes while allowing the corresponding edges to

contract. In figure 5.8i we see the result of ARP with a final converged set of nodes. A

clear improvement in f ∗ is noticed while selecting candidate sensors (see table 5.2). The

final network is shown in figure 5.9b.

As in section 6.7.3, we compare these results (mean f value) with a centralized opti-

mization counterpart with the following cases - Case a) Original 100 node problem, Case

b) All 16 candidate nodes are added to the network (figure 5.9a, Case c) Nodes selected by

ARP are added a-priori (figure 5.9b), and Case d) Solved using DDA and ARP. Since the

mean f value itself oscillates at each iteration in this example, the best and worst f values

are also reported.
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Case Mean f Std. dev f Best f Worst f

Case a 0.1376 0.2759 1.356e-4 1.020

Case b 0.1146 0.2840 9.839e-5 1.654

Case c 0.1135 0.2329 1.556e-4 1.264

Case d 0.1363 0.2719 2.191e-4 1.017

Table 5.2: Comparison of the four test cases in terms of number of mean, standard de-

viation, best and worst f values (Iterations are not reported since they are related to the

number of readings taken, which in this case is always 250)

It is important to remember that Cases a, b and c are run with varying numbers of sen-

sors, and therefore sample and distribute information differently. Furthermore, these cases

are run for exactly 200 time steps (or iterations of the DDA algorithm). Case d, on the other

hand includes the pivot phase of the ARP algorithm for sensor selection and improvement.

The values reported in columns of table 5.2 are valid at the 200th iteration. It is possible

for other iterations to potray different comparisons since the problem is stochastic in na-

ture. That being said, the ARP algorithm selects useful sensors and improves f ∗. These

additional 7 sensors, when added to the network a priori (Case c, figure 5.9b) and solved

using DDA reports the best mean f value. When all 16 sensors are added (Case b, figure

5.9a), the mean, best and worst values are slightly inferior to Case c although this may be

an artifact of the aforementioned stochastic nature of the problem.
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(b) k = 2000
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(c) k = 3000
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(d) k = 4000
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(h) k = 5600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(i) k = 5821

Figure 5.8.: Progress of the ARP algorithm for selection of a subset of the 16 candidate

sensors shown edge contraction of a directed graph corresponding to Pr(i, j) values after

the kth iteration number. Circled nodes are selected, and dashed lines connect coalesced

nodes.
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(a) Case b
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(b) Case c

Figure 5.9.: Refer to cases in text : Case b) Final network after ARP selection. Case c)

Network used when all candidate sensors are added a-priori. New sensors are colored gray.
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5.5 Chapter Summary

An evolving counterpart of the standard minimum sum problem involving convex func-

tions is presented. For the purpose of a formal proof of convergence, convex functions are

utilized. However, demonstration problems also involved non-convex examples. We intro-

duce a pivot phase in which new nodes (corresponding to new functions) are selected by

first converting the overall optimization problem to a convex feasibility problem and then

deriving the MFS. Proof of convergence of this Adaptive Random Projection (ARP) algo-

rithm is provided. A relation for the upper bound of the rate of increase of the sequence

{γk} is an important area that is yet to be explored. We solve application problems which

involve the minimization of the total compliance of structural topology, and robust source

localization in the setting of evolving design spaces. In both problems, evolving the design

space and solving using ARP allows us to improve the design by intelligently reusing pre-

viously obtained results. Comparisons were also made with alternate cases where nodes or

agents selected by the ARP algorithm are added a-priori, and also when all candidate nodes

are added at once. The algorithm is widely applicable, and may be important in problems

where the subset of candidate nodes or agents to be added for an overall improvement is

completely unknown. We now proceed to introduce and solve our final application prob-

lem.
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We have now described and assembled the tools required to solve our final application

problem. The problem solved takes the form of a tree of MDAO modules, and is made

computationally tractable by a sequentially run parallel simulation with multiple workers

on the Rossmann Super-computing cluster at Purdue University. A novel hybrid optimal

control method used to determine trajectories to be flown at the SoS level is also introduced

in this chapter. Other topics covered are an SoS CFD implementation to simulate the en-

vironment for multiple interacting aircraft, MDO architectures for individual level-specific

modules and a holistic solution for an aircraft design problem involving commercial air-

craft in the approach phase.
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6. Application Problem 2

Nomenclature

BVP Boundary value problem

DOF Degrees of freedom

NLP Non-linear Programming

MDO Multidisciplinary Optimization

PCHIP Piecewise Cubic Hermite Interpolating Polynomial

TPBVP Two point boundary value problem

D drag force magnitude, N

L lift force magnitude, N

L/D lift to drag ratio

T thrust force magnitude, N

g acceleration due to gravity, m/s2

m vehicle mass, kg

v relative velocity magnitude, m/s

t time, s

x downrange distance, m

y crossrange distance, m

z altitude, m

α angle of attack, rad

γ relative flight path angle, rad

λgam costate for relative flight path angle

λv costate for velocity

λx costate for downrange distance

λy costate for crossrange distance

λz costate for altitude

σ bank angle, rad

ψ heading angle, rad

p PCHIP polynomial

ε goal attainment factor

oi objective i

gi goal i

m Number of objectives
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6.1 Introduction

One important aspect of SoS Engineering, often overlooked, is the role it plays in im-

proving the design of individual systems. In this vein, our work has sought to exemplify

such a synergistic approach for aircraft design. Also, aircraft design is a prime example

of a SoS design problem with heterogeneous systems, interdisciplinary constraints, large

number of interactions and high orders of complexity in design. Any increase in airport

capacity must be sustainable and safe, and must abide by community noise restrictions.

Recent research has revealed that aviation noise not only causes irritation to the members

of a community that is close to an airport, but that continuous exposure to noise may have

other long term health problems. [27] Apart from mitigating noise on the ground via insu-

lation and the use of sound barriers, two strategies may be pursued:

1. Minimize aircraft (or System level) noise. This may include:

(a) Engine noise

(b) Airframe noise

(c) Noise due to flaps, slats, extensions, speed brakes and landing gear

2. Minimize operational (or SoS level) noise.

Research has shown that aircraft flying in formation (an Aerial SoS) can improve aero-

dynamic efficiency. [153–155] Our application problem however does not intend to mea-

sure this improvement, but rather derives an operational procedure that these aircraft must

follow for safe and efficient flight. These optimization problems that occur at multiple lev-

els are described in further detail in the following sections. Note that further details are

available as appendices in the supplementary material provided.

6.2 Baseline Scenario

Customers and stakeholders are often interested in holistic solutions that show improve-

ment over the state-of-the-art or baseline solution. Furthermore, they are interested in de-
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signs that span all levels of the hierarchy. In this section, we briefly describe the baseline

solution corresponding to our aircraft design application problem. Aircraft are forced to fly

inefficient, multi-staged landing procedures due to constraints related to separation assur-

ance and safety, and for limitations posed by some legacy avionics modules. This is so that

controllers may use the speed of an aircraft as a surrogate for distance. In the terminal area,

controllers place aircraft at a 3 nautical mile (nm) distance from one another and ensure

constant speed that is easy to monitor. We attempt to improve the CDA procedure Con-

tinuous Descent Approach (CDA) which has shown to have benefits in terms of time, fuel

savings, and noise abatement. [156] The flight path angle at the intersection point (marked

with a star in figure 6.1 is fixed at a constant 3 degree slope. Appendix C shows the air-

port map of the Austin Bergstrom airport. We design a minimum time trajectory to match

the location, glide slope and heading at the intersection point (CHADE to runway 17R and

DOFFS to runway 17L) before final approach.1 Since the leading aircraft and the following

aircraft in all our simulations are assumed to belong to the same weight category, a 2.5 nm

separation is required on the final approach course.2

Recent projects launched by the FAA with regards to the conservative following dis-

tance used by controllers have reached major milestones in 2012 and 2013, with imple-

mentations of these procedures at several airports. The RECAT program 3 classifies air-

craft according to its wingspan and ability to withstand wakes (in addition to the usual

takeoff weight categorization). Implementing RECAT at Memphis has reportedly reduced

arrival separations by 0.7 miles. A recent FAA order that is applicable to our problem is

JO 7110.308, which determined that for aircraft following large or small leaders, using a

parallel approach staggered by 1.5 nm was feasible and met safety mitigations 4. The con-

cept was successfully implemented at the San Francisco International Airport in September

2013.
1Airport maps were retrieved from www.aeroplanner.com (6/25/2015)
2Pilot and Air Traffic Controller Guide to Wake Turbulence, Technical Report, FAA. (URL - https://www.
faa.gov/training_testing/training/media/wake/04SEC2.PDF)
3Wake Turbulence Recategorization program or RECAT - http://www.faa.gov/documentLibrary/

media/Order/Final_Wake_Recat_Order.pdf
4FAA JO 7110.308 - http://www.faa.gov/documentLibrary/media/Order/JO%207110.308.pdf

www.aeroplanner.com
https://www.faa.gov/training_testing/training/media/wake/04SEC2.PDF
https://www.faa.gov/training_testing/training/media/wake/04SEC2.PDF
http://www.faa.gov/documentLibrary/media/Order/Final_Wake_Recat_Order.pdf
http://www.faa.gov/documentLibrary/media/Order/Final_Wake_Recat_Order.pdf
http://www.faa.gov/documentLibrary/media/Order/JO%207110.308.pdf
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Figure 6.1.: Scenario involving three aircraft in the final approach phase. Note that the

aircraft are not drawn to scale

Figure 6.1 shows a hypothetical scenario wherein three aircraft, A1, A2 and A3 are

in their final stage of a standard, staggered approach towards the Austin Bergstrom air-

port with two parallel runways, 17L and 17R. In the situation shown in our hypothetical

scenario, the order of landing is A1 followed by A3, followed by A2 (assume that in this

perspective, the blue flight path segment to 17R is longer than the red segment to 17L). We

also assume that departure operations do not affect the rate of arrival of aircraft into the air-

port (hereafter referred to capacity). Our aim is to safely increase the capacity of the airport

system with respect to the baseline scenario by varying parameters that define the approach

procedure (SoS level) while also meeting SoS level noise constraints, aircraft operating on

these procedures (system level), and components that form aircraft (sub-system level). In

the following sections, we describe key modules that reside in various levels of our solution

framework. These modules are trajectory generation (section 6.3), noise analysis (section

6.4), wake turbulence analysis (section 6.5) and airfoil optimization (section 6.7). Once

these modules are described, we then define the complex interactions between these mod-

ules (see section 6.8) that mimic real world engineering scenarios. Readers interested in

the final results and implementation may direct their attention to the discussion in section

6.9.
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6.3 Time-optimal trajectory generation

6.3.1 5-DOF Aircraft Model

The 5-DOF model used in this section is described by Eq.6.1 - Eq.6.6, where t is the

time, x is the downrange, y is the crossrange, z is the altitude, v is the relative velocity

magnitude, ψ is the heading angle, γ is the relative flight path angle, D is the drag force

magnitude, T is the thrust force magnitude, L is the lift force magnitude, m is the mass of

the aircraft, g is the acceleration due to gravity of Earth, and σ is the bank angle. [157] The

effects of rotation of Earth have been ignored. The tangential and normal components of

force on the vehicle are denoted by FT and FN respectively. During approach the velocity is

assumed to be constant and hence acceleration as described in Eq.6.4 is zero. The variation

of angle of attack, α then becomes a function of flight path angle, γ and is given by Eq.6.6.

ẋ = vcosγ cosψ (6.1)

ẏ = vcosγ sinψ (6.2)

ż = vsinγ (6.3)

v̇ =
FT

m
−gsinγ = 0 (6.4)

ψ̇ =
FN sinσ

mvcosγ
(6.5)

γ̇ =
FN cosσ

mv
− gcosγ

v
(6.6)

where

FT = T cosα - D

FN = T sinα + L

In the next section, we discuss the optimization problem formulated using the hybrid

trajectory optimization technique. Details about equations and simplifications used in the

indirect method can be found in Appendix A, and are closely related to the following dis-

cussion of our Hybrid trajectory optimization method.
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6.3.2 Hybrid optimal control method for time optimal trajectory

Our objective is to use the best features of direct and indirect optimal control methods

to obtain rapid, high quality solutions for minimum time optimal control problems. Our

method converts trajectory optimization problems into equivalent parameter optimization

problems which can be solved using existing Non-linear Programming (NLP) solvers. We

add complexity to the standard parameter optimization problem (see [158]) by introduc-

ing additional costate variables and their corresponding time histories. In spite of intro-

ducing additional variables, higher quality solutions may be obtained more rapidly. The

following discussion exploits this special structure. First we re-define the minimum time

optimal control problem as a minimize final point error problem. The problem structure

is changed to satisfy end-point boundary conditions, and we acknowledge that the co-state

dynamics must also be modified. The original objective (minimum time) is retained in a

multi-objective strategy to be discussed shortly. The redefined problem is as follows:

J = Φ(t f ,x(t f ))+
∫ t f

t0
L(t,x(t),u(t))dt (6.7)

ẋ = f (t,x(t),u(t)) (6.8)

x(t0) = x0 (6.9)

φ(t f ,x(t f )) = ||x(t f )− x∗t f
||2 (6.10)

where x∗t f
contains the optimal values of the state variables at the end point that need to

be achieved. Note that when certain state parameters are free in the original problem,

components of the norm associated with these free parameters can be excluded. The path

cost L is now 0 instead of 1. As in Indirect methods, we use the necessary conditions of

optimality given Euler-Lagrange equations (see Eq.A.20-A.21 in Appendix A). λ in the

following equations is an n-dimensional costate vector, and H is the Hamiltonian. We

then follow the indirect methods to derive the costate dynamics and optimal control as in

Eq.A.22-A.29 (in Appendix A), with a minor deviation in the equations that represent the

costates λx, λy and λz:
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λ̇x = 2 · (x(t f )− x∗t f
) (6.11)

λ̇y = 2 · (y(t f )− y∗t f
) (6.12)

λ̇z = 2 · (z(t f )− z∗t f
) (6.13)

At this juncture, we deviate from the classic indirect methods. State and costate time

histories are represented as Piecewise Cubic Hermite Interpolating Polynomials (PCHIP) as

a function of the normalized time that ranges from 0 to 1. Note that in practice, the dynamic

equations must be scaled by t f to maintain equivalence. PCHIPs maintain the monotonicity

of the original data while also preserving the interpolation, which is reflective of the time

histories of the physical quantities we wish to represent using these interpolants. [159]

Furthermore, these curves (that represent time histories of variables) can be easily differ-

entiated and integrated during the course of solving if necessary. This allows us to convert

our original TPBVP, to an End-point problem. PCHIPS representing the states, costates,

and controls (and differentials and integrals of these time histories) are now controlled us-

ing sets of parameters specific to each of these quantities with specified starting points. As

mentioned earlier, components of the states or costates which are fixed and free are either

excluded or included in the set of optimization design variables of the NLP respectively.

In our problem, since acceleration v̇ = 0, our velocity along the trajectory is constant

but unknown and is therefore introduced as another parameter or design variable in the

optimization process. Since x,y and z are purely functions of v,ψ and γ , we only use

PCHIPs for this subset of states. Lastly, we define parameters to represent the PCHIPs of

λ̇ψ and λ̇γ . Note that the values of all costates at t f are obtained using the transversality

condition as 0 with u∗ as control. This allows us to make appropriate adjustments in the

curve obtained during integration of the costate equations. In summary, we convert the

indirect optimal control problem into a nine-parameter optimization problem involving two

intermediate control points in each of ψ(t) and γ(t), three control points of λγ , value of

velocity v along the trajectory, and the value of t f . The value of t f is useful in scaling of

the dynamics of state variables to represent the same in the interval [0,1], and also as part
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Variable ψ1 ψ2 γ1 γ2 λpsi,1 λpsi,2 λpsi,3 v t f

Lower Bound (ylb) -pi/2 -pi/2 -pi/6 -pi/6 -50 -50 -50 200 30

Upper Bound (yub) pi/2 pi/2 pi/6 pi/6 50 50 50 250 60

Table 6.1: Values of lower and upper bounds of variables used in the hybrid optimization

problem

of the objective function which helps us relate back to our original interest - time optimal

trajectories. We pose this NLP problem as a constrained multi-objective goal attainment

problem involving two objectives o1 and o2:

o1 :(x(t f )− x∗t f
)2 +(y(t f )− y∗t f

)2 +(z(t f )− z∗t f
)2 + t f

o2 :max(abs(H(t)))
(6.14)

While o1 drives the appropriate end states to the desired end point while minimizing

time, o2 drives the value of H to zero at all points of time t, which is desired in our problem.

Since the final state constraints are expected to be satisfied, our problem is equivalent to

the vector optimization problem involving minimizing t f and driving H towards zero. The

‘goals’ we wish to drive these objectives are thus gt f = 0 and gH = 0. It is easy to see how

one can modify these goals to satisfy any other optimal control problem. In our formulation

of the problem, the constraints are in the form of lower and upper bounds of the variables

that the parameters represent to force realistic values. These constraints are listed in table

6.1.

The multi-objective goal attainment problem tries to find the parameters y that minimize

the maximum of the objectives oi, given a set of weights wi:

minmax
oi(y)−gi

wi
(6.15)
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by converting the problem into a simpler form involving a single parameter ε ∈ R:

min
y

ε (6.16)

S.To. oi(y)−wiε ≤ gi, ∀i = 1, . . . ,m (6.17)

ylb ≤ y≤ yub (6.18)

(6.19)

In our current problem, m = 2. Our implementation involves the use of fgoalattain

function in the optimization toolbox of MATLAB, which itself is based on the works by

Gembicki [160], Han [161] and Powell [162] and has proved to be globally convergent

for certain classes of NLP. Readers are reminded that due to the method of calculation of

trajectories (not involving classic dynamic propagation and root solving), the error in the

final trajectories involve 1) deviation from the optimal answer, and 2) deviation of state

and co-state dynamics. The optimizer used must be able to drive H and the boundary

constraints to zero (practically, with some tolerance) for all time. Since it is difficult to find

an optimizer that achieves this for all problems, user discretion and tuning is necessary.5

6.4 Noise Analysis

6.4.1 System Level - Minimizing Airframe Noise

The bottom-up design of aerospace vehicles is a process that involves multidisciplinary

efforts in a vast design space. At the very core of this sub-problem lies the USAF Stabil-

ity and Control Digital DATCOM, which provides a systematic summary of methods for

estimating stability and control characteristics. An open source version of the software,

Digital DATCOM was used in the tool, as will be discussed later. Antoine and Kroo used

MDO to determine the extent to which noise can be traded against other performance mea-

sures. [163] This work showed that, of the different figures of merit that were optimized

5A future version of this algorithm will involve the use of the Covector Mapping Theorem for obtaining the
co-state trajectories from the Lagrange multipliers of the optimizer used (a feature of some direct methods),
and also propagating dynamic equations throughout the complete time history to obtain physical/realistic
trajectories at all intermediate steps (a feature of indirect methods
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(takeoff weight, operating cost, noise, nitrous oxide emissions, and fuel burn), optimization

for noise required the greatest concessions in the other potential objectives. The engine, air-

frame, and the interference between the engine and airframe are the main sources of the

aircraft noise. Airframe noise represents a lower bound or minimum noise generated by

the aircraft, and is a large percentage of the total noise during approach.

The Authors’ evolutionary algorithm, Differential Evolution with Self-Organizing Maps

(DESOM) was used as a top-level optimizer. [45] The algorithm uses the neural network

variant, SOM to accelerate convergence towards an optimum design with reduced function

evaluations. This is required since the objective function (see discussion below) is multi-

modal, non-linear and is computed as a result of a simulation in the black-box function,

DATCOM which consumes approximately 10 seconds of processing time. The objective

function is a modified version of the Lockard and Lilley [164] noise metric as presented

by Leifsson [165] a form that is used to approximate the far-field noise intensity (I) of a

clean-wing at high lift (see equation below):

f (x) = I =
1.7
2π3

v∞M2
∞W

CLH2

(
1+

C2
L

4

)
(6.20)

for level flight at a particular altitude (H) and velocity (v∞) that corresponds to Mach num-

ber (M∞) and coefficient of lift (CL). The equation only models clean-wing noise, and does

not capture the effects of engine noise or noise due to high lift devices like slats and flaps. It

is important to minimize noise intensity of the clean configuration at approach since it acts

as the lower bound of all noise sources including flaps, slats, engine noise and landing gear

noise (see Lockard and Lilley [164] for a discussion of clean configuration noise in the ap-

proach phase). Since DATCOM was used as a black box function, several design variables

were required to define a single aircraft (in 3D). The table below defines the “namelists”

(groups of design variables) used. Note that in this study, the design variable space is re-

duced to have 42 dimensions by keeping the fuselage fixed (accounting for an additional 9

variables) to that of the baseline design, a Boeing 737.

DATCOM input files were supplied by a custom MATLAB wrapper, which was then

executed to provide data used by the objective function and constraints. The 35 discipline-
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Name-list Significance Variables Number

Synths Configuration of

wing, stabilizers

and Fuselage

L, xw, xh, zh, zw,

xv, aliw, xvf, zvf,

bnose, btail

11

Wgplnf Wing planform

parameters

chr, chrdt, type,

chrdbp, sspan,

sspanop, savsi,

sspanne, savso,

dhdadi, dhado

12

Vtplnf Vertical stabilizer

parameters

chr, chrdt, sspan,

sspanne, twista,

savsi, savso,

dhdadi

8

Htplnf Horizonal stabi-

lizer parameters

chr, chrdt, sspan,

sspanne, twista,

savsi, savso,

dhdadi

8

Wsec Aifoil selection -

wing and stabiliz-

ers

w, h, v 3

Fuse Fuselage shape

parameters

ay1, ay2, ay3,

by1, by2, by3,

cy1, cy2, cy3

9

Total 42 (51)

Table 6.2: Design variables used in the aircraft level problem (42 of the possible 51 design

variables are used here). The Name-list column uses group names as seen in the DATCOM

input file.
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specific constraints were added to the objective function using the linear form as shown

in Equation 6.21. φ is the pseudo-objective function, and rp is a user specified penalty

multiplier (here we used a constant value of 20 for rp). We recognize that the final optimum

values and design vectors are sensitive to the value of rp, but a comprehensive sweep of

tests to determine the best rp value is out of the scope of this work and will be discussed in

a later publication.

φ(x) = f (x)+
35

∑
i=1

gi(x) (6.21)

The 35 constraints used may be broadly classified as configuration-based and perfor-

mance based. Configuration based constraints ensure that the aircraft maintains sensible

proportions. The configuration constraints appear as linear, upper and lower limits. The

constraints g28 to g35 are non-linear performance constraints. Although some of these

constraints may appear linear, their relation with the design variables are highly non-linear.

These values are derived from the output of a full simulation at a specific Mach Number

M, and a range of angle-of-attack (α) values. The list of mathematical constraints used,

along with their significance are shown in Appendix E. At this level, our implementation

corresponds to the popular MDO architecture, Individual Discipline Feasible (IDF) with

a top level optimizer (DE-SOM2) that enforces coupling between all disciplines by using

a common global design. Modules containing equations related to weights and balance,

configuration, operation (landing, tail scrape angle etc.), aerodynamics and stability use

the DATCOM analysis output in the IDF framework.

6.4.2 SoS Level - Monitoring Noise Exposure Contours

Several innovations at the SoS (or operational) level have improved noise levels, but

have worsened community perception of noise. A combination of on-site noise monitoring

and development of accurate noise models have helped reduce noise levels over the years.

Alternate forms of the equivalent noise exposure metric (Leq) have been developed and

used by the Federal Aviation Administration (FAA) through their Integrated Noise Model
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(INM), and the Civil Aviation Administration (CAA) through their noise model ANCON

(Aircraft Noise Contour Model 1). Both INM and ANCON have significant similarities and

relate noise sources to 4D trajectories of the aircraft. The Leq value measures “annoyance”,

which can be related to community impact. Readers interested in other short term noise

exposure metrics are referred to the technical manuals of INM and ANCON. [166–168]

An appropriate operational or SoS-level measure of noise is the area enclosed by the 57

dB Leq noise contour. For example, despite the growth in number of flights arriving at

Heathrow, the noise contour area has decreased by almost 90% since the early 1970s, with

little or no improvement since 2000. [27]

We use CAA’s ANCON noise model at the SoS level to analyze and monitor the noise

contour area. It is typical to use a set of Leq noise contours from 51 dB to 72 dB in steps

of 3 dB to judge low, moderate and high annoyance. Note that the 57 dB Leq contour is

the current “accepted representation of the onset of annoyance”. Given an aircraft trajec-

tory, an SoS-level requirement is to decrease the area of a noise contour with respect to

baseline aircraft traveling on baseline trajectories. The resolution (distance between virtual

monitoring sites) is set to 10 m.

Our noise contour calculation is an implementation of CAA’s ANCON detailed in the

official technical report. [169] At the core of the Leq model is the calculation of a sound

exposure level assuming that the aircraft generates noise as a constant source along an in-

finite path at constant velocity, flight path angle and heading. The calculation also depends

on a corresponding database of measured maximum noise (Lmax) levels. In our work we

obtain this value of Lmax from the recorded average arrival noise levels for Boeing 767-300

with PW4000 engines. [168] 6 The model then accounts for various adjustments to the base

noise level using atmospheric noise dissipation, Noise and Number Index (NNI) attenua-

tion, directivity patterns, lateral attenuation, wing-mounted engine installation effects, and

acoustic impedance adjustment. However, our implementation does not assume effects of

6Noise data for the B737 with the new CFM56-3 engines were not publicly available at the time of writing
this thesis.
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terrain or line of sight blockage, and no thrust reversal adjustment post landing (which are

all additional attenuation factors used by FAA’s INM and CAA’s ANCON).

6.5 Aircraft Wake Turbulence Analysis

6.5.1 System Level - Augmented Betz Method

At the System Level, we first compute the wake vortex of the aircraft traveling at a

particular Mach number at a fixed number of spans behind the aircraft. At this level, we

choose to use an analytical model over more complicated models like the Navier Stokes

due to the need to balance available resources with other modules in other levels. Ning

et al. suggests the use of the Betz model for inviscid wake roll-up over other empirical

models such as the Rankine model and the Lamb-Oseen model since it does not assume

a form for the vorticity distribution but rather calculates it based on the lift distribution

(which is obtained from the DATCOM software in our case). [170] The only assumptions

made are that 1) the vortices generated by the lifting body are asymmetrical; 2) negligible

interaction between two active vortices; and 3) The core size does not grow and is about

1-2 % of the wingspan. Also, our use of the Betz model can be justified by pointing

to the surprisingly accurate predictions made in comparison to experimental tests. [170,

171] The theory relates the wing loading Γ and span-wise station y to give the circulation

in the rolled-up vortex shed (Γ′) as a function of radial distance from the center of the

asymmetrical vortex.

Donaldson outlines the procedure to calculate the center and strengths of multiple vor-

tices shed across the wing. [171] This procedure is repeated here briefly for completeness:

1) Obtain the circulation over the wing (Γ), 2) Calculate the distribution of the shed vortic-

ity dΓ/dy, 3) Calculate the number and location of the minima of |dΓ/dy| (these are the

regions of where vortices are shed from, which will include the tip vortex), 4) Calculate the

positions of maxima of the distribution, |dΓ/dy| (these are locations of the center of the

vortex), 5) Given a region in (3) that corresponds to a center or maxima (ym) in (4), select

two points y1 and y2 equidistant from the center ym. The circulation of the shed vortex at
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a radial distance r from ym is equal to Γ(y1)−Γ(y2). Finally, wake roll-up may be cal-

culated by displacing these centers using the effect of upwind vortices and wind/traveling

velocity. A typical Rankine vortex representation is used, where the maximum tangential

velocity is limited to Vθ ,max = 886 · t−1/2, at a core radius rc = Γmax/(2πVθ ,max), assuming

the wake is fully developed after t seconds (here, we consider t=10 seconds, and Γmax is

6000 f t2/s). [172–174] 7 The velocity distribution in a vortex shed by the wing according

to the Rankine model is given as:

Vθ =


Γ

2πrc
r
rc , if 0 < r < rc

Γ

2πr , if r ≥ rc

A ‘snapshot’ of the velocity distribution at t = 10 seconds is used in the CFD atmo-

sphere of the SoS level to propagate wakes to the entire field. Given the relative location

of a leading aircraft, the following aircraft must travel through consecutive sections of the

wake while maintaining a safe distance [154, 155]

6.5.2 SoS Level - Computational Fluid Dynamics Simulation Environment

Each aircraft in the SoS simulation environment is represented as a 5 DoF point mass

traveling on a time-optimal trajectory. Velocity distributions obtained by the Augmented

Betz method are then propagated or developed in the SoS simulation environment, which

is essentially a CFD box. Note also that the trajectories are being monitored to check if the

aircraft operations satisfy noise constraints. The incompressible, isothermal Navier-Stokes

(NS) equation is used to simulate the aircraft traveling through the CFD box, which is as-

sumed to contain air (considered to be Newtonian). A form of the NS equation known as the

Pressure Poisson equation (PPE, derived from the momentum equation) takes advantage of

the weak coupling between pressure and velocity given boundary conditions. [175] Equiva-

lence of the PPE to NS is demonstrated by Cornthwaite. [176] While [176] uses an Galerkin

Finite element Method, we use an explicit time-stepping method to recover pressure from

7These empirical relations are derived after extensive tests conducted on B-737. [172, 174]
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velocity distributions (which are discretized using a central scheme), and then update the

pressure field through PPE. The implementation is similar to the SIMPLE (Semi-Implicit

Method for Pressure-Linked Equations) algorithm which can be found in [177]. Note that

for numerical stability, we follow the recommendations of the CFL (Courant Friedrichs

Lewy ) condition threshold. More details may be obtained from [175–178].

6.5.3 Trajectory adjustment based on CFD environment

The calculated time optimal trajectory does not take into account other aircraft in the

airspace as is. An aircraft may follow another aircraft in the arrival airspace by estimating

a safe following distance rather than relying on empirical tables. In our implementation,

the original trajectory can be modified based on the existing flow-field of the SoS CFD

environment. Numerical computations and experiments have shown that aircraft traveling

in the upwash generated by leading aircraft can also experience drag and fuel saving bene-

fits. [153,154,170] We modify the original trajectory by first identifying a new path through

regions close to sections along the trajectory with maximum drag benefit. Then we add the

root mean square (RMS) distance from the original time-optimal trajectory as an additional

objective function in our Hybrid optimal control method. Figure 6.2 illustrates this modifi-

cation of the original trajectory (in blue) to a new, improved one (in red) with drag benefits.

The “drag benefit” contour sections (as they are popularly referred to in literature) shown

along the trajectory are relevant regions of interest to help modify the original trajectory

(red regions have higher benefit in this diagram). Obviously, the modified trajectory may

not be time-optimal.

Note that although our main goal is to actively judge the distance at which an aircraft

must follow a leading aircraft rather than rely on thumb-rules and tables, our ‘drag benefit

trajectory’ may allow following aircraft to operate at a lower throttle level, therefore also

saving fuel and reducing noise. These are only by-products of our implementation.
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Original Time-optimal trajectory

Modified drag benefit trajectory

Figure 6.2.: Original time-optimal trajectory is adjusted to obtain a new trajectory with drag

benefit. The popularly used “drag benefit” trajectory is used to ascertain a safe following

distance dynamically

6.6 Aircraft Engine Analysis

A custom MATLAB Simulink model of a conventional turbojet with single compres-

sor and turbine stages was constructed using the Aerospace Toolbox and corresponding

physical systems library.8 We wish to use the Engine analysis module to check if a con-

stant (required) thrust can be maintained by controlling the mass flow rate in the presence

of uniform internal system noise and changing altitude (and therefore, changing ambient

atmospheric parameters) . The internal white-noise introduces fluctuations in the thrust

output of the Engine, which in turn affects the specific fuel consumption, fuel-to-air ratio,

and fuel flow rate and output dB level of sound. Although the amplitude of the noise has

a maximum value equal to 10% of the required thrust, fluctuations in output thrust may

prevent the aircraft from traveling at a (close-to) constant velocity along the trajectory as

8A basic version of a turbojet is available in the Aerospace toolbox of Simulink called sscturbojet. A later
version of this work will involve modeling of a High Bypass Turbofan engine, which is a more accurate
representation of the engine used in commercial aircraft
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required by our 5DoF model during approach. Only the core turbojet is modeled here for

simplicity. Further studies will include a more realistic turbofan engine model.

At the intake, Mach number and ambient temperature (assumed constant) are used to

calculate the total pressure and inlet temperature. This is calculated using equation 6.22,

where subscripts i and a stand for inlet and ambient conditions respectively.

Ti = (1+(γ−1)/2M2) ·Ta

Pi = P · (1+(γ−1)/2M2)(γ/(γ−1))
(6.22)

Next, an adiabatic process at the compressor (see Equation 6.23) is used to increase the

pressure of the intake are 8-fold (fixed 8:1 pressure ratio). In the equations below, PRC, T RC

and η stand for compressor pressure ratio, temperature ratio and efficiency respectively.

Pc = PRC ·a.p

T = Ti · (1+(1/η) · ((PRC)
((γ−1)/γ)−1))

T RC = (1+1/η · ((CPR)((γ−1)/γ)−1))

Tc = T ·T RC

(6.23)

The burner or combustor adds heat at a constant pressure, and therefore increases the

temperature almost instantaneously (to TB). This air at a high pressure and temperature is

passed through the turbine. the energy balance between the turbine and compressor is used

to calculate the outlet pressure and temperature. Notice the use of bypass air at temperature

equal to the inlet temperature.

TT = TB−Ti · (T RC−1)

PC = PC · (1−1/η(1−TB/Ta))
(γ/(γ−1))

(6.24)

The nozzle then further accelerates the flow by decreasing the pressure to ambient pres-

sure. The MATLAB model uses empirical tables and tabulated logs for this step (unavailable

to public).
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A custom engine controller module is used to continuously modify the reference mass

flow rate that is required to increase or decrease thrust by the appropriate amount to at-

tain the required thrust at the current operating conditions and time during the trajectory.

MATLAB control systems toolbox is used to automatically tune the PID controller for every

trajectory that is flown. A standard compensator formula for the PID controller is used:

P+ I
1
s
+D

N
1+N 1

s

where P, I and D are the proportional, integral and derivative gains, and N is the filter

coefficient. Saturation blocks are used to limit the maximum producible thrust and maxi-

mum achievable mass flow rate. The MATLAB Simulink model used is shown in figure 6.5

(see Appendix B).

6.7 Airfoil Aero-structural Optimization

Although aircraft modeled in the System level optimization problems have the option to

choose from a library of over 60 airfoils for use in constructing its wings, vertical stabilizers

and horizontal stabilizers, targets or requirements from the upper levels (System- and SoS-

levels) may drive the airfoil design towards a particular region in the design space. Airfoil

section characteristics like efficiency, zero-lift drag and pressure distribution have a direct

impact on wings constructed using these airfoils. Apart from aerodynamic impacts, we

also use airfoils to form ribs, which are important structural members which are subject to

stress and fatigue. At the sub-system level, we may only attempt to find an optimum aero-

structural configuration of normalized airfoil, i.e, an airfoil with a chord length of one unit

since wing planform shapes are a result of the upper level aircraft optimization problem.

Our implementation is a single point optimization run, and is multi-disciplinary in nature.

We could however, use a multi-point strategy to add value to the results obtained. We now

describe a combination of evolutionary optimization of airfoil shapes for maximum aerody-

namic efficiency (CL/CD), along with topology optimization to define an internal structure

while minimizing compliance. To coordinate these disparate optimization problems, we
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use the MDO architecture called Enhanced Collaborative Optimization (ECO). [179, 180]

This architecture choice suits our problem set up since the top level optimizer only strives

to achieve compatibility between the disciplinary sub-spaces (here, this corresponds to the

airfoil boundary or shape), while the discipline-specific optimization problems maintain

independence (See Appendix F for the Extended Design Structure Matrix or XDSM for

our ECO implementation).

6.7.1 Aerodynamic Optimization Module

The airfoil optimization problem used in 3.5 is repeated at the Sub-system level. How-

ever, unlike application problem 1, the sub-system level now involves multi-fidelity aero-

structural optimization instead. In addition to this, the structural optimization module in-

volves an evolving design space of type 2 (using ARP), and also a final parameter sen-

sitivity analysis. The aerodynamic optimization module is re-described here in brief for

completeness. The Class/Shape Transformation (CST) technique introduced by Kulfan et

al. controls the shape of the airfoil. Therefore, our design variable x has six dimensions.

The design space considered along with some sample airfoils is shown in Fig. 6.3.

In the trials conducted, a ‘function evaluation’ involves writing an input file to the Xfoil

program, analyzing the airfoil that airfoil at a Reynolds Number (Re) of 106 and a Mach

number (M) of 0.2 for a range of angle of attacks (α = −5 to 25). The maximum Cl
Cd

(regardless of the corresponding α) is reported as the objective function value. In case

Xfoil is not able to converge (usually due to an unconventional airfoil shape), we attribute

that design point with a random, large, positive number so that the same design point is
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avoided in the next generation. Our bounded, single objective optimization problem can

thus be formulated in Eq. 6.25:

Minimize − Cl
Cd

Subject To LB≤ x≤UB

Where LB = [0.05 0.05 0.05 -1.00 -1.00 -1.00]>

UB = [1.00 1.00 1.00 -0.05 0.00 0.00]>

(6.25)
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Upper Bound
Lower Bound
Feasible Airfoil

Figure 6.3.: Graphical representation of the

airfoils formed with all six design variables

at the lower bound (blue), and at upper bound

(red). A feasible airfoil (one that lies be-

tween the upper and lower bounds) is also

shown (black dashed lines). Distances are

non-dimensionalized.

Note that the problem is posed as a

minimization problem with the appropriate

sign change for the objective function. A

graphical representation of the airfoil de-

sign space (which are formed by the six pa-

rameters in x) is shown in Fig. 6.3. A vari-

ety of airfoils with upper surfaces in the red

region and lower surfaces in the blue region

can be formed (a sample feasible airfoil is

also shown).

6.7.2 Multi-fidelity Analysis

Airfoil analysis may be performed at

two levels of fidelity. In our chapter on Ap-

plication problem 1 (Chapter 4), we loosely

defined fidelity according to an integer ‘level’ along with the average time taken to com-

plete a particular analysis run. [181] Our airfoil optimization in this application problem

can take advantage of two levels of fidelity - inviscid analysis and full viscous analysis.

The inviscid formulation used by Xfoil is a linear-vorticity stream function panel method,

and the viscous model uses boundary layers and wakes described by a two-equation lagged

dissipation integral formulation. [182, 183] 500 iterations are used for convergence in the

case of viscous analysis (average of 6.012 seconds per run) as compared to 100 for inviscid
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analysis (an average of 2.479 seconds per run). Any process that takes more than 10 CPU

seconds is killed externally. Note that although validations were made with respect to ex-

perimental runs, standard error was not reported. This precludes us from using the original

VoI formulation.

6.7.3 Structural Optimization Module

The purpose of topology optimization is to find the optimum layout of a structure

given the domain (here, the airfoil boundary), loads and distribution of material. The

Messerschmitt-Bolkow-Blohm (MBB) beam problem is a classical problem in topology

optimization literature and is modified to form the structural module of the airfoil aero-

structural MDO problem. [137] The objective of this sub-problem is to minimize compli-

ance with the constraint on the amount of material inside the airfoil boundary (therefore,

minimizing mass is not the objective). Formally stated, the problem we wish to solve is:

min
x

c(x) =UT KU =
N

∑
i=1

Ei(xi) · (ui)
T kui

S.To. V (x)/V0 = v f rac

KU = F

0≤ x≤ 1

(6.26)

where c(x) is the compliance of the airfoil structure, U , F and K are the global displace-

ment vector, force vector and stiffness matrix for an element with unit Young’s modulus

respectively. V (x) and V0 are the material volume and domain volume, and v f rac is the

volume fraction. For a given domain size, v f rac is fixed. As in section 5.4.1 this value is

adjusted to maintain the total amount of material used as we evolve the airfoil. The objec-

tive function is written as a sum of compliances of individual elements with ui being the

displacement vector of each element, and k being the element specific stiffness matrix. It

is assumed that the Young’s modulus of each element is obtained as a function of densities

xi according to Equation 6.27 shown below.
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Ei(xi) = Emin + xp
i (E0−Emin) (6.27)

The values of Emin, E0 and p used here are 1e−9, 0 and 3 respectively. Guiles’ work on

multi-complexity structural topology optimization is similar to our work in that the outer

domain size decides the number of elements, and therefore the number of variables. [184]

An airfoil with larger internal area would need more number of descriptive design variables.

While the domain used by Guiles is the entire wing, discretized by shear webs, spar caps

and skin elements, we discretize the airfoil that would appear as ribs at three equidistant

locations (root, tip, and mid-point) on the wing with density elements. The phenomenon of

checkerboxing in resulting solutions here may be prevented in the same way as reported in

Guiles [184], that is, by prescribing the perimeter of the domain beforehand. More informa-

tion about the optimality criteria, sensitivity studies and alternative solution methodologies

may be obtained from a wide variety of existing literature. [137–142] It is important to note

that the material considered here is isotropic and linearly elastic.

A significantly modified version of the 88 line topology optimization code by Sigmund

is used to find the optimum internal structure of an airfoil with the minimum compliance.

The above optimization problem is solved using an Optimality Criteria method through a

proven heuristic updating scheme. [139] The number of variables involved (|xi|) is deter-

mined by the shape of the outer boundary (here, the airfoil boundary) and the resolution

(chosen value is 1/60 across all our simulations). Given this resolution, the maximum

number of variables for the structural optimization problem is 1200, which corresponds to

a rectangular airfoil in a 60×20 space. In reality, the number of variables is closer to about

800 for airfoil shapes.

We gauge the robustness of the final design by performing sensitivity analysis as a post-

optimization step. This is distinctly different from Robust Optimization wherein parameter

or design variable uncertainty is incorporated into the optimization loop itself. [185] During

optimization runs, the point of application of the unit force is at 80% (θ = 0.8) of the

chord length. For sensitivity analysis, we use the final optimum airfoil generated by the
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aero-structural optimization problem and test it against a uniformly distributed set centered

around θ = 0.8 with a resolution of 0.01 and a sample size of 100.

0 0.2 0.4 0.6 0.8 1
0.05

0

0.05

0.1

0.15

1 2

34

Figure 6.4.: Airfoil structural optimization problem definition in an evolving design space

to be solved using ARP. The arrow represents the unit force applied at 80% chord

We employ the use of Adaptive Random Projection (ARP) to solve a slightly modified

problem shown in figure 6.4. Our aim is to use ARP to find an airfoil that has a superior f∗

value than the final optimal airfoil, given that a hole in the shape of a square spar is to be

drilled through. The spar cross section covers the area that is responsible for 16 variables.

These 16 additional variables are controlled by 4 agents (labeled in the figure). ARP is

used to decide which agents (and therefore which variables), and what combination of

agents must be selected to be added to the base design for in improvement in the previously

calculated optimum value, f∗.

6.8 Summary of Linkages Between Optimization Levels

As we can see from the above description (sections 6.3 to 6.7), SoS optimization prob-

lems are often complex and detailed in nature. This is to ensure realistic solutions that

may be used in practical scenarios. Also, stringent customer requirements and market de-

mand characteristics often drive the need to build multi-fidelity, multi-disciplinary models

to ensure high levels of confidence with respect to the final solution offered. Given the

complex models used in this example problem, our SoS optimization framework simplifies

the problem solving process by placing these modules in a tree of MDO problems. When
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posed as a tree of MDO problems, the interactions between modules and optimization pro-

cesses become very important in ensuring tractability and solution quality. Thus, process

and data flow between the MDO problems and analysis modules belonging to different lev-

els in our three-level SoS optimization problem are critical to the overall functioning of the

framework, as well as the solution itself.

Figure 6.5 describes the inter-level and intra-level interactions between modules used

to assemble the SoS optimization problem. The ECO MDO framework is used to link

the optimization modules contained in airfoil aerodynamic and structural analysis. Note

that the airfoil aerodynamic optimization is a multi-fidelity analysis block. ARP is used

to find if an airfoil structural compliance may be decreased by evolving the design space.

This airfoil is then fed to the IDF framework at the system level for minimizing airframe

noise of an aircraft analyzed using DATCOM. The lift distribution over the wing is used to

derive the multiple-vortex system in the downwash of the wing after 10 seconds of wake

development. This wake snapshot is used by the SoS CFD environment an propagated in

time. Using properties of available or newly generated aircraft, time optimal trajectories

are calculated while monitoring noise levels and safe separation distances given the wakes

generated by leading aircraft.
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Figure 6.5.: Summary of linkages in the given SoS optimization problem

6.9 Results and Discussion

Simulations were run using several MATLAB Linux instances as jobs submitted to a

cluster computing system at Purdue (Rossmann Cluster). A maximum of 3 compute nodes

were used at any given point of time - Each node is equipped with a 2.1 GHz 12-core AMD

6172 processor and 192 GB of RAM and a 10 GigE Interconnect. The jobs were not data

intensive, but involved the use of custom Python and MATLAB codes, commercially and

freely available software and data transfer between the levels of the SoS optimization prob-

lem. As per directions from the capability flow-down concept used in the framework, we

first attempt to find a solution in the top-most (SoS) level by improving approach proce-

dures for existing systems that are composed of existing sub-systems. If no improvement

can be made with changes at the top level alone, instructions to design better systems and

sub-systems cascade downward, with improved products from each level flowing upwards.

In this specific aircraft design example, we see that the entire three level hierarchy needs

to be active in creating new and improved products or designs at each level. We will now

present level-specific results.
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Figure 6.6.: Optimum airfoil with maximum CL/CD = 61.03

6.9.1 Sub-system Optimization

At the sub-system level, airfoil optimization and Engine control analysis were per-

formed. The final airfoil generated with maximum CL/CD is shown in figure 6.6 with its

corresponding plot of coefficient of pressure as analyzed in the high fidelity module of

Xfoil. The airfoil level is triggered by the System level since the baseline aircraft does not

satisfy the original requirements of posed (more details in the System optimization section).

The convergence history of DE-SOM2 (shown in figure 6.7) includes plots of the con-

vergence to the final value of maximum CL/CD as well as the values of pswitch which

decides roughly the percentage of function evaluations that is carried out using DE versus

DE-SOM2.

The structural optimization module generates an internal structure for a given airfoil

boundary throughout the convergence history. Structural optimization is conducted once

every 20 generations of airfoil aerodynamic optimization. Readers are reminded that a

point load is applied in the downward direction at 80% of the chord. Here, we extend
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Figure 6.7.: DE-SOM2 convergence history including objective function and pswitch val-

ues
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Figure 6.8.: Distribution of objective function values with respect to a uniformly varying

point of application about the 80% chord location.

this simple, single point analysis by visualizing the histogram of the objective function

corresponding to the distribution of load application points (uniformly distributed samples

of positions from 75 to 85 % of the chord) in figure 6.8. A bi-modal distribution is observed

with an overall objective variance of 0.051. As a post-optimization step, this sensitivity

analysis may be used by designers to transition from the preliminary to the detailed design

stage.
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ARP is used to analyze the effect of creating a hole for a spar that passes through ribs

in the wing. Prior to the use of ARP, the structural optimum function value ( f ∗) was found

to be 20.8309. At the end of 5000 iterations of the ARP algorithm, the probability values

corresponding to the projection of the solution with one agent onto the space related to the

other 3 agents were all 0.333. As a result, all agents must be included for improvement.

The final optimum after using ARP ( f ∗ = 20.3288) showed a 2.4% improvement, which is

larger than the improvement corresponding cases when individual nodes 1 ( f ∗ = 20.6882),

2 ( f ∗ = 20.7829), 3 ( f ∗ = 20.8169) and 4 ( f ∗ = 20.7004) were added. Any other pairwise

or triplet combinations of nodes also did not produce any additional improvement. However

the final structure obtained was equivalent to projecting to the coalesced node 2-3-4 from

1. When projected onto this node, the final function value improvement is still not superior

to the final ARP solution ( f ∗ = 20.5255). If the final x∗ of the ARP process is not used

(directly optimizing a structure with no spar hole, which is similar to our final solution, but

by forcing the hole to be filled), the objective function value is further reduced to 20.0991.

6.9.2 System Optimization

Due to its expensive nature, Airframe noise minimization at the system-level had a max-

imum function evaluation budget of 5000. To verify the validity of the design, optimization

was run 5 times for a given top level requirement. The mean design vector is presented as

the final design for comparison with the baseline aircraft (B-737 type airliner). To reiterate,

the results shown here only pertain to our given problem formulation which is the design

of a noise optimal aircraft in the approach phase alone (not a combined result considering

other phases of flight such as cruise, take-off etc.). Involving all other phases of flight will

improve the overall quality of the aircraft design solution, and will also present a more

holistic, and realistic result. This, however is out of the scope of this research.

Since the SoS level requirements are not satisfied by baseline aircraft (through our

tests to be discussed next), the aircraft level is triggered to create a new aircraft. This

aircraft obtains its requirements from a capability flowdown as described in Chapter 2 . The



162

objective function value at the system level of the baseline aircraft corresponds to 87.161

dB, which is around the range of values recorded for similar sized aircraft. [166, 168] The

improved design is shown in figure 6.10 in comparison to the baseline. A less swept, large

aspect ratio wing is selected with the wing, horizontal stabilizer and vertical stabilizer built

using NACA 66112, NACA 31312 and NACA 0015 airfoils. At this juncture, we remind

the reader that the performance constraints used only pertain to the approach phase. Using

a multiple phase of flight type of modeling or optimization may result in a different, more

conventional looking aircraft that is optimized for cruise. Once the new airfoil from the sub-

system level is generated, it is selected by the optimizer to replace the wing airfoil. The

objective function value for the improved aircraft with the wing airfoil being NACA 66112

is 70.421 dB, whereas with the newly generated airfoil is 76.251 dB (these values are used

by the top level SoS noise contour module along with the suggested approach velocity).

Although the objective function value is larger, the pseudo-objective in the latter case is

marginally smaller. This is due to the fact that fewer constraints are active or violated.

All configuration constraints were satisfied. Performance constraints that were violated

are set by the user, and not to be treated as hard constraints, but rather as guidelines for

the optimizer. The constraint to judge the negative slope of the Cmα curve is found to be

active (+1e−6 constraint violation), and the downwash constraint is also active (+1e−12

constraint violation). The static margin constraint is a soft constraint that may be violated

- a calculated static margin of 5% is acceptable since it is close to the value calculated

for the baseline (around 5.37%). The tail scrape angle for approach is violated (constraint

violation of 0.4941), since fuselage design is not part of our optimization process. This is

mainly due to angle of attack for maximum CL being larger than the difference between the

tail-scrape angle and the approach glide slope in the clean configuration.

The increased area, larger aspect ratio wing allows for lower stalling velocity and a

higher maximum CL respectively in the clean configuration. Also, all configuration con-

straints were satisfied. Refer to the discussion above for active and satisfied performance

and other disciplinary constraints in the IDF MDO block. Figure 6.9 shows a side-by-side
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(a) Top view (b) Front view

Figure 6.9.: Comparison of the baseline (left) vs. the improved design (right) for minimized

airframe noise - Orthogonal views.

comparison of the baseline (left) and improved(right) designs. A perspective view compar-

ison is also shown below for clarity (see figure 6.10)

6.9.3 SoS Analysis and Optimization

The baseline and improved aircraft designs are flown in trajectories designed in the

SoS level of the problem while monitoring noise constraints. Given the lift distributions

of the wing, the Augmented Betz block calculates that a single vortex system at 56.37

feet from the symmetry plane of the aircraft will be generated with a strength (Γcore) of

1828.551 f t2/s, and a core radius rc = 4.771 f t after 10 seconds of propagation. This is

a simplified version of the vortex system generated close to the wing tips, but the reader

is reminded that the Augmented Betz method is also capable of producing more complex,

multi-vortex systems. Our methodology of generating this system is similar to “effect-

based” models used in [186], [187] and [188]. More complex immersed boundary based

solvers may be used in the future.
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(a) Baseline design (b) Improved design

Figure 6.10.: Comparison of the baseline vs. the improved design for minimized airframe

noise - 3D perspective
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Figure 6.11.: Details of the final vortex distribution on the ‘wake snapshot’ to be propagated

in the SoS CFD box

The CFD solver used on a regular grid with 6363101 cells (251×251×101) to resolve

a volume of (2500m× 2500m× 500m). The trajectories and CFD results shown apply to

aircraft traveling to the point of intersection before final approach.
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Figure 6.12.: Computational grid used - One in 5 mesh points are plotted as lines on the

mesh. X, Y and Z axes are measured in units of meters (m)

A snapshot of a fully developed vortex core is shown (inner and outer) as volume rib-

bons colored using vorticity magnitude. Observe that a stable, constant magnitude vortex

structure is generated. Although pressure fluctuations are minimal (see figure 6.13), a com-

plete picture of the computational domain may be obtained by visualizing slices of vorticity

magnitudes along the travel direction (negative y-direction) as shown in figure 6.14.

The path taken by the aircraft approaching runway 17L can also be judged by the vor-

tex distribution contour plot on the X direction contour slice. Since aircraft approaching

runway 17R shed vortices that do not interact with aircraft approaching 17L, analyzing the

effects of the same would be unnecessary (unless cross-wind effects are present). Given

that a follower aircraft “sees” this particular vorticity magnitude distribution ahead of it,

the only problem that remains to be solved for a complete solution is the modification

of the original time optimal trajectory to the intersection point of the approach course to

runway 17R. Velocity gradient Eigenmodes are used to extract vortex cores present in the

simulation (refer TECPLOT documentation, www.tecplot.com) This helps us confirm the

www.tecplot.com
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Figure 6.13.: Snapshot of a fully developed vortex core behind the aircraft

Figure 6.14.: Slices of vorticity magnitude along the travel direction. For the given aircraft,

two cores are shed from each side of the wing. In the given figure, the aircraft travels on

the central x-slice from the right to left.
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presence of stable vortex cores behind the aircraft being simulated. In addition to the vortex

core, iso-surfaces of high vorticity are displayed in figure 6.15. This allows us to record

areas of high vorticity to be avoided by follower aircraft. As shown in figure 6.15, any

follower aircraft must avoid the vortex cores (in red), as well as high vortex regions (iden-

tified in blue with iso-surfaces of vorticity magnitude ≥ 0.8 /s, which is less than half the

maximum recorded value in the domain 1.723 /s).

Figure 6.15.: Side view and top view of the computational domain showing extracted vortex

cores (in red) and iso-surfaces of vorticity magnitude = 0.8

To incorporate this new information from the calculated vortex iso-surfaces, a third

objective is added to our multi-objective goal attainment problem. This also demonstrates

the flexibility of the hybrid optimal control solution method. Other solvers may also achieve
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Figure 6.16.: Time optimal and wake modified trajectories to the parallel runways in con-

sideration. Time optimal trajectory to runway 17L is identical to the baseline and is hence

not shown here. Noise contour shown corresponds to baseline aircraft flown on new opti-

mal trajectories.

the same effect (say, through continuation), and the ease with which new dimensions of the

problem (or new objectives) can be added can vary. The third objective is to maximize

the integral of distance to these high cortex centers. Calculation involves measuring the

distance from each point on a given trajectory to the closest point on the isosurface. As

mentioned earlier, we only expect a minor deviation in course with an associated loss in

time (time of flight increased from 29.402 seconds to 29.490 seconds. Figure 6.16 shows

all trajectories analyzed in our problem.

Noise intensity comparisons can be made using figure 6.17. The baseline scenario (a)

is improved in (b), but is flown using baseline aircraft. As shown in figure 6.17 (b), the

size of the noise contours in the pre-approach phase are larger. This provides incentive for

the System level (and subsequently the sub-system level) to provide more noise optimal

designs. Figure 6.17 (c) shows the wake-modified trajectories flown by the new, improved

aircraft.
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(a) Baseline trajectories flown by baseline aircraft (b) Optimal trajectories flown by baseline aircraft
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(c) Optimal trajectories flown by optimal aircraft

Figure 6.17.: Trajectory comparison - Optimal aircraft flown on optimal trajectories have

the smallest noise contour areas. Coordinates are scaled by a factor of 10 and translated

such that the intersection altitude is zero in the new coordinate system
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Figure 6.18.: Relative distance of the follower aircraft with respect to the current position

of the leader aircraft

To ascertain the follower distance (and indirectly, the capacity of the aircraft queue),

spheres of increasing radius and center being the end point of the leader aircraft’s trajec-

tory are constructed. Notice in figure 6.18 that the radii are selected based on points on

the follower’s trajectory to determine the relative position of the follower aircraft. The res-

olution of these trajectories (points shown as square markers) depends on the number of

nodes used in the hybrid optimal control method. At a radius of about 1800m (0.97nm), we

see that the maximum local vorticity magnitude is less than 50% of the overall maximum

magnitude. Currently, since there is no association with the follower’s position in space and

the local vorticity magnitude, an aircraft may be instructed to follow a leader at a farther

distance (say, 2.5 nm), but through regions where the local vortex magnitude is close to the

maximum recorded magnitude.
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Finally, given the change in altitude the constant mach number of the aircraft along

the designed trajectory, we analyze if the turbojet engine installed can maintain a constant

thrust of 105 KN in the presence of 1) varying atmospheric parameters, and 2) uniform

Gaussian fluctuations of total thrust. Recall that the aircraft travels at a constant velocity

along the trajectory, the value of which is determined as a parameter as a result of the

hybrid optimization problem. As seen in figure A.7 (see Appendix B), although the ram

drag increases gradually, mass flow rate is adjusted appropriately by the PID controller

(after auto-tuning) to maintain constant thrust. Other outputs of the model such as fuel

rate, SFC and net thrust may be used in future studies and analyses.

6.10 Chapter Summary

The proposed SoS optimization framework is demonstrated using a detailed, multi-

level, multi-disciplinary aircraft design problem involving the modification, analysis and

optimization of aircraft sub-systems, aircraft and approach procedures. More specifically,

time optimal trajectories to the intersection points of an approach course to runways 17L

and 17R of Austin Bergstrom airport are constructed. Since the baseline aircraft flown

on these new trajectories increased the area of noise exposure contours, new aircraft were

designed using an evolutionary optimization algorithm (DE-SOM2). Furthermore, sub-

system level problems such as the control of the total thrust generated by the turbojet, and

the aero-structural optimization of potential new airfoils to be used were solved as part of

the process. Thus, we have interpreted and demonstrated the SoS optimization problem by

constructing a tree of MDO problems and associated disciplinary analyses that also involve

features such as evolving design spaces and interacting optimization problems.

Although the tools and methods used in this chapter yield products at each level that are

locally optimal or “improved” with respect to a baseline, the process of obtaining these so-

lutions through our procedure (including capability flowdown and multi-disciplinary anal-

ysis management) is more important. Consider a hypothetical result wherein improving

the approach procedure/ trajectory alone (at the SoS level) may have satisfied our require-
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ments and noise constraints with the baseline aircraft. In this scenario, there would be

no need for improving the aircraft at the System-level, and therefore no need to improve

the airfoil used in the sub-system level. Since there is no capability flowdown from the

SoS level here, a “solution” to this problem would have only consisted of changes in the

SoS level. This differentiates the procedure used here from existing decomposition MDO

or decomposition approaches. Additionally, the application problem that we have dealt

with here may not be solved as is using exiting MDO or decomposition frameworks for

two reasons: 1) Our framework operates on a tree of MDO problems, and not a single,

level-specific MDO problem, thus allowing inter- and intra-level interactions. This roughly

relates to the question - “How does one MDO problem interact with another MDO prob-

lem”, and 2) Although MDO frameworks may introduce a sense of hierarchy by assuming

that the disciplines (in MDO) solve level-specific problems (for example, aircraft level and

swarm/fleet level), our inability to use these MDO frameworks as is from literature to solve

SoS optimization problems arises from the fact that we are not dealing with the design and

optimization of a single system, but the assembly and operation of a group of systems, that

may each be designed by an MDO method. In the example problem shown in this chapter,

IDF and ECO frameworks were used to design these sub-systems or systems (frequently

called products or objects). These systems contribute to the assembly of a system at a

higher level in the SoS hierarchy.

Our discussion above highlights important points about the problem structure itself.

However, the solution methodology used in Application Problem 2 (this chapter) is differ-

ent from that used in Application problem 1. In Application Problem 1 (chapter 3), we

allowed the progression of each of the three levels in the hierarchy in parallel through the

use of SPMD. This would mean that level constantly checks for updates in the correspond-

ing libraries of systems in lower levels. These updates happen independently, as though

sub-contractors would design new systems, and add them to their brochure of available

systems for contractors or higher-level manufacturers to pick from. In Application prob-

lem 2, however, the aircraft level is triggered into action through a capability flowdown if

and only if an improved approach procedure with baseline aircraft does not satisfy some
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requirements or constraints. In this scenario, a sub-contractor is incentivized to produce

a new product only if none of the other products in his brochure of available systems or

products satisfies the needs (or requirements) of a higher level contractor. This brings the

solution methodology closer to practical information flow in realistic design projects in the

industry.
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7. Conclusions and Future work

A procedure to integrate and solve a tree of level-specific MDAO problems through a gen-

eralized mathematical template is presented. The framework incorporates special features

commonly encountered in the SoS optimization context. Managing inter- and intra-level

interactions in a hierarchy of MDO problems is achieved using features from Platform-

based design and an adaption of the hierarchical complexity metric. Other features such as

the use of expensive black-box functions in optimization, optimization in evolving design

spaces, and the use of multi-fidelity tools have spurred the need for specialized algorithms

and methods to be created (DE-SOM, ARP and a modified version of VoI). Research con-

clusions and future work are discussed in the following sections:

7.1 SoS Optimization Framework

The work presents a design paradigm that serves as a generic template for SoS design

optimization. This portion of the work involved the following topics:

• Used a Platform-based SoS design and optimization framework for

– Assembling optimal sub-systems, novel aircraft systems and SoS

– Hierarchical complexity guided design (high performance while product &

process is controlled)

• Demonstrated solution for a unique problem formulation:

– Multi-level, multidisciplinary, multi-fidelity

– Evolving design spaces at multiple levels (progressing in parallel)

– Solution strategy for cases where levels do not have a primary objective
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• Complexity Management: Complexity guided search was established in the case

of SoS optimization problems with both a time, as well as computational resource

budget. Here complexity involves both, operational complexity of the components

at each level, and computational complexity associated with resources. We are re-

quired to test the proposed Hierarchical complexity metric for managing a sample

process involving design and optimization of SoS. The metric, along with Value of

Information (VoI) used for multi-fidelity analysis, can be improved or reformulated

as required.

• SoS System Simulator - Developed an SoS System Simulator (physics based ABM)

to test the SoS in the face of operational constraints. The aircraft designed in the

System level are ‘flown’ in the SoS level to judge mission feasibility.

• Challenge Problems - Two unique application problems were solved to demonstrate

the various facets of this research. Although the two problems are instances of the

same SoS optimization framework, they are different in terms of scale, the kind of

algorithms use and the nature of the evolving design space.

• Hardware and software tools - Set up computational tools and frameworks that are

used to solve two completely different application problems. In the first application

problem, Single Program Multiple Data (SPMD) was used to demonstrate an embar-

rassingly parallel solution method when there are limited number of processors and

a constrained time budget. On the other hand, multiple workers were sequentially

used to solve the second application problem. Choice of hardware tools and paral-

lel processing architectures suit the time scale of problem itself (synchronous levels

versus asynchronous levels).

7.2 Algorithm Development

Apart from presenting a standardized mathematical framework for the solution of SoS

optimization problem, this work also improves the state of the art for efficient analysis of
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a multi-level, evolving design space that is characteristic to SoS problems. Although we

could take advantage of the several optimization algorithms existing in literature, the chal-

lenge problem described here is special, and can not be solved efficiently by any existing

framework. Algorithmic advancements that address the special features germane to SoS

optimization problems are summarized below:

• We extend our existing DE-SOM algorithm to handle the following special cases:

– Discrete-continuous combination of variables forming the design space,

– Stochastic program (objective function or constraints are not deterministic),

– multi-level, evolving design space.

As a result, we have rigorously tested and widely applicable evolutionary optimiza-

tion algorithms for (DE-SOM and DE-SOM2) expensive objective functions

• Demonstrated the use of a provably convergent algorithm, Adaptive Random Projec-

tions (ARP) for use in Evolving design spaces of type 2, Type 1 being Numerical

Continuation, which is well known in Topology optimization literature.

• Introduced a Hybrid Optimal Control method that converts a trajectory optimization

problem to a form that can be utilized by existing multi-objective, non-linear opti-

mizers. Comparisons with trajectories and control histories generated by other direct

and indirect optimal control solvers will be presented in a future paper. At the time

of writing this thesis, this algorithm is still a work in progress and has already been

subject to various improvements to yield more realistic, physical trajectories.

7.3 Submitted Journal Papers

The following papers in relation to this research work have been submitted to / are in

review with journals mentioned below:
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1. Self-Organizing Maps based Differential Evolution for Resource Intensive Optimization,

Journal of Global Optimization, May 2015

2. Dual Averaging with Adaptive Random Projection (ARP) for Solving Evolving Distributed

Optimization Problems , Journal of Optimization Theory and Applications, June 2015

3. Application of Multidisciplinary System-of-systems Optimization to an Aircraft Design

Problem , Wiley Systems Engineering Journal, July 2015

4. Dual Phase Consensus Algorithm for Distributed Sensor Management, IEEE Transactions

on Aerospace and Electronic Systems, July 2015
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A. APPENDICES

A.1 Appendices for Chapter 1

Please see next page for large infographic.



180Figure A.1.: Appendix A for Chapter 1 : Info-graphic describing the framework envisioned
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A.2 Appendices for Chapter 3

Appendix A - Algorithms
Algorithm DE
Require: Initial bounds contain targeted optimum

1: Initialization(); Generate uniformly distributed random population

2: while termination condition not met do

3: for i = 1 to NP do

4: Select random indexes r1,r2 and r3 to be different from each other and from the index i

5: vG
i = xG

r1 +F× (xG
r2− xG

r3)

6: jrand = rand(1,N)

7: for j = 1 to N do

8: if (rand(0,1)≤CR or j == jrand) then

9: uG
i, j← vG

i, j

10: else

11: uG
i, j← xG

i, j

12: end if

13: end for

14: if ( f (ui, j)≤ f (xi, j) then

15: xG+1
i, j ← uG

i, j

16: end if

17: end for

18: end while
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Algorithm DE-SOM
Require: Initial bounds contain targeted optimum

1: Initialization(); Generate uniformly distributed random population

2: Set p,CR, F

3: while termination condition not met do

4: if rand ≤ p then

5: Use DE

6: else

7: Use DE-SOM

8: end if

9: for i = 1 to NP do

10: Select random indexes r1,r2 and r3 to be different from each other and from the index i

11: vG
i = xG

r1 +F× (xG
r2− xG

r3)

12: jrand = rand(1,N)

13: for j = 1 to N do

14: if (rand(0,1)≤CR or j == jrand) then

15: uG
i, j← vG

i, j

16: else

17: uG
i, j← xG

i, j

18: end if

19: end for

20: if xG+1
i, j is in convex hull of all xG

i, j and Use DE-SOM then

21: xG+1
i, j ← uG

i, j

22: else if Use DE and ( f (ui, j)≤ f (xi, j) then

23: xG+1
i, j ← uG

i, j

24: else

25: xi, j remains the same

26: end if

27: end for

{Replace under-performers with elite members from SOM}:

28: Perform SOM to obtain weights

29: Rank-order Neurons

30: Top e% neurons become members

31: end while
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Algorithm DE-SOM2
Require: Initial bounds contain targeted optimum

1: Initialization(); Generate uniformly distributed random population

2: Set p0,γp1,γp2,F0,Fmax,Fmin, CR

3: while termination condition not met do

4: if rand ≤ pk and var(population)≤ 1e−1 then

5: Use DE

6: else

7: Use DE-SOM

8: end if

9: for i = 1 to NP do

10: Select random indexes r1,r2 and r3 to be different from each other and from the index i

11: vG
i = xG

r1 +F× (xG
r2− xG

r3)

12: jrand = rand(1,N)

13: for j = 1 to N do

14: if (rand(0,1)≤CR or j == jrand) then

15: uG
i, j← vG

i, j

16: else

17: uG
i, j← xG

i, j

18: end if

19: end for

20: if xG+1
i, j is in convex hull of all xG

i, j and Use DE-SOM then

21: xG+1
i, j ← uG

i, j

22: else if xG+1
i, j is MVCE of xG

i, j and Use DE-SOM then

23: xG+1
i, j ← uG

i, j

24: else if Use DE and ( f̂ (uG
i, j)≤ f (xG−1

i, j ) then

25: xG+1
i, j ← uG

i, j

26: else if Use DE and ( f (ui, j)≤ f (xi, j) then

27: xG+1
i, j ← uG

i, j

28: else

29: xi, j remains the same

30: end if

31: end for

32: end while
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Algorithm DE-SOM2 (continued...)
Require: continue from line 32 in while loop

{Replace under-performers with elite members from SOM}:

32: Perform SOM to obtain weights

33: Rank-order Neurons

34: Top e% neurons become members

35: if mod(k,l)=0 then

36: pk+l =


min(pk× γp1,1) if f avgk+l ≥ f avgk

max(pk/γp2,0) if f avgk+l < f avgk

37: end if

38: if mod(k,m)=0 then

39: Fk+m =


min(Fk/rand,Fmax) if f avgk+l ≥ f avgk

max(Fk× rand,Fmin) if f avgk+l < f avgk

40: end if



185

Appendix B - Convergence of DE-SOM

The following supplementary material is assembled for the interested reader to obtain

detailed information about the mathematical derivations and formulae presented in the main

text. We also provide additional results from the application problems presented therein.

Nomenclature

α = angle of attack

ε = displacement

σ = stress

Cd = section drag coefficient

Cl = section lift coefficient

CR = crossover probability

F = mutation factor

G = generation number

f = objective function

kn = dimension of self organizing map

L = polynomial of a random variable

M = mach number

N = dimension of the design variable

NF = number of function evaluations

NP = size of population

p = switching probability

q = probability of containment

rand = random number ∈ [0,1]

Re = Reynolds number

u = trial vector

v = mutant vector

w = neuron vector
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Detailed Derivations

Expected Value of the Trial Vector

Let xi be the i’th population member in the final stages of the DE-SOM algorithm. We

assume that all the members of the population are concentrated around the optimum. For

the DE/rand/1 version of the algorithm, the mutant vector vi is generated as follows:

vi = xr1,i +F× (xr2,i− xr3,i) (A.1)

where F is the mutation scaling factor and the xrk terms with k ∈ {1,2,3} are mutually

exclusive random vectors drawn without replacement from the population of the current

generation. Since the vectors xrk are independent of each other, P(xri | xr j) = P(xri). The

trial vector ui is a result of the crossover operation given by

ui =

vi if rand ≤CR∨ j = jrand

xi otherwise
(A.2)

Thus, the probability of the trial vector ui inheriting components of the mutant vector

vi is given by CR. Thus the expected value of the trial vector is given by

E(ui) = (1−CR) · (xi)+(CR)
NP

∑
i=1

NP

∑
i=1

NP

∑
i=1
{P(xr1) ·P(xr2) ·P(xr3)× (vi)} (A.3)

where P(xrk) represents probability of picking a random vector from the population to

form the mutant. Since three vectors r1, r2 and r3 are independently selected, P(xrk) =
1

NP .

Also, the mutant vector is given by

vi = xr1 +F · (xr2− xr3).
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∴ E(ui) = (1−CR) · xi +
CR
NP3 ·

NP

∑
i=1

NP

∑
i=1

NP

∑
i=1
{xr1 +F(xr2− xr3)}

= (1−CR) · xi +
CR
NP3 ·

NP

∑
i=1

NP

∑
i=1

NP

∑
i=1

x1 +F(
NP

∑
i=1

NP

∑
i=1

NP

∑
i=1

x2−
NP

∑
i=1

NP

∑
i=1

NP

∑
i=1

x3)

= (1−CR) · (xi)+
CR
NP

NP

∑
i=1

(xi)

Thus, with mean vector xav =
1

NP ∑
NP
i=1(xrk), we get:

E(ui) = (1−CR) · (xi)+CR · (xav) (A.4)

Desired velocity of population members

As in Dasgupta et al., let us assume that DE is a process that occurs in continuous time,

and the decision of selecting xi or ui is made using the heavyside unit step function, given

by [189]

w(a) =

1 if a≥ 0

0 otherwise

Now, change in the position vector of a DE population member is given by ∆xi = ui−xi.

Based on whether ui or xi is preferred, we need to use the heavyside step function to switch

to the desired output. We repeat part of the proof in [189] and extend it to our algorithm.

Consider the expression:

∆xi

∆t
= w{ f (xi)− f (xi +∆xi)

∆t
} · (ui− xi) (A.5)

Equation A.5 has the following implications : If f (xi) ≤ f (xi−∆xi), ∆xi = 0 and thus

there is no change in the vector xi. However if f (xi) ≥ f (xi−∆xi), ∆xi = ui− xi, and so

the vector xi becomes ui in the next generation. As we have established in the discussion
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above, DE-SOM achieves the same effect as a function value comparison without actual

function evaluations. For a continuous time approximation, the time step ∆t → 0. Thus,

from Equation A.5 we get:

lim
∆t→0

∆xi

∆t
= lim

∆t→0
w
(

f (xi)− f (xi +∆xi)

∆t
· ∆xi

∆t

)
· (ui− xi)

=⇒ dxi

dt
= w

(
− f ′(xi)

xi

dt

)
(ui− xi)

(A.6)

For some large value of k, we can write an approximation for the heavyside step func-

tion as w(a)u 1
2 +

k
4a. [189]

∴
dxi

dt
=

(
1
2
− k

4
f ′(xi)

xi

dt

)
(ui− xi)

=⇒ dxi

dt
=

1
2
(ui− xi)

(
1+

k
4

f ′(xi)(ui− xi)

)−1

u−k
8
(ui− xi)

2 f ′(xi)+
(ui− xi)

2

(A.7)

But f ′(xi) = 0 at optimum. Using this information, and taking expected value of both

sides of equation A.6, we get the expected value of the velocity of a vector xi -

E(
dxi

dt
) =

1
2

E(ui− xi)

=
1
2
(E(ui)−E(xi))

=
1
2
((1−CR) · (xi)+CR · (xav)− xi)

=
CR
2
(xav− xi)

(A.8)

Expected Variation in Population

Recall that the mutant vector is vi and the trial vector is ui. We know that E(Var(v)) =

E(v2)−E(v2). Since the mutation step is the same as a regular DE, we use the expression

for E(Var(v)) from Zaharie et al. [190], which is given by equation A.9
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E(Var(v)) =
(

2F2 +
NP−1

NP

)
(A.9)

In DE-SOM, the selection step is given by equation A.10

ui =

vi if vi ∈ conv(x1→NP)

xi otherwise
(A.10)

Let the probablity of a point’s presence in a convex hull be given by q (referred to as

Probability of Containment). The expected value of the variance of the trial vector may be

given by E(Var(u)) = E(u2)−E(u2). Now,

E(u2) =
1

NP

NP

∑
i=1

E(u2
i )

=
1

NP

NP

∑
i=1

(
(1−q) ·E(x2

i )+q ·E(v2
i )
)

= (1−q)x2 +(q)E(v2)

(A.11)

E(u2) =
1

NP2 E

(
(

NP

∑
i=1

ui)
2

)

=
1

NP2

(
E(

NP

∑
i=1

u2
i )+E(∑

i 6= j
ui ·u j)

)

=
1

NP
E(u2

i )+
1

NP2 E(ui) ·E(u j)

(A.12)

But we know that, E(ui)E(u j) = [(1−q)E(xi)+qE(vi)]× [(1−q)E(x j)+qE(v j)] , and

E(vi) = E(xr1 +F(xr2−xr3)) = x. Thus we can calculate the value of E(ui)E(u j) in equa-

tion A.12:
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∑
i6= j

E(ui)E(u j) =
NP

∑
i=1

(E(ui))
2−

NP

∑
i=1

E(u2
i )

= [
NP

∑
i=1

(1−q)xi +qx]2−
NP

∑
i=1

[(1−q)xi +qx]2

= (NP2−2(NP)+(NP)q2)x2−NP(1−q)2x2

Substituting this value in equation A.12 we get

E(u2) =
1

NP
E(u2)+(NP2−2(NP)+(NP)q2)x2−NP(1−q)2x2 (A.13)

From equation A.11, A.12 and A.13, we can assemble E(Var(u)) = E(u2)−E(u2) to

get:

E(Var(u)) = (1− 1
NP

)E(u2)−
(

1− 2q
NP

+
q2

NP

)
x2 +(

(1−q)2

NP
)x2

=

(
NP−1

NP

)(
(1−q)x2 + p

(
2F2 NP

NP−1
+1
)

x2− 2F2(NP)
NP−1

)
−
(

1− 2q
NP

+
q2

NP

)
x2 +

(
(1−q)2

NP

)
x2

This can be simplified to obtain the following result:

E(Var(u)) =
(

q2

NP
+

(
2F2− 2

NP

)
q+1

)
Var(x)

= Lq ·Var(x)

(A.14)

Where equation A.14 relates the expected value of the variance of the final trial vector

to the variance of the initial population through Lq, a polynomial in q.
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Parameter bounds

Suppose the convex n-dimensional polytope decreases in hyper volume by a quantity

∆V with respect to its original volume V . The quantity q is simply the probability of a

point’s presence in the changed hyper-volume, which is given by q = ∆V
V . In figure 2,

replacing the DE member at point ‘2’ with an internal point causes the volume to decrease

(∆V ). A small change in hyper-volume implies that the newly generated point can most

probably be found in the new hyper-volume. Thus, q = 0 corresponds to a condition where

there is a variance in the internal population, but the convex hull (or its volume) remains

the same. Minimum change in variance may be obtained by minimizing the polynomial

Lq, which is given in equation A.15.

Min(Lq) =⇒ d
dq

Lq = 0

=⇒ d
dq

(
q2

NP
+

(
2F2− 2

NP

)
q+1

)
= 0

=⇒
(

2q
NP

+2F2− 2
NP

)
= 0

=⇒ q∗= 1−F2(NP)

(A.15)

At the minimum point of the polynomial Lq, the condition q > 0 must be satisfied for

the desired effect of continuously decreasing volume of the convex hull. Thus we can

conclude that (1− (F2)NP) > 0 or the range of the mutation factor F must be given as

F ∈ (0, 1√
NP

]).

There is a need to adapt the value of F according to the dimension of the members in

the population. Figure A.2a shows the effect of holding the value of F fixed (Case A). For

a small number of F values corresponding to certain integer values of NP, there is a valid

region of q from q = 0 to q = 2−2F2 ·NP that will generate trial vectors that will land in

the convex hull. The points corresponding to negative values of q are invalid. Note that

any q value that is on a curve under the Lq = 1 line is valid. In the example shown, NP

is varied from 1 to 20 with a fixed value of F = 0.5. Suppose we adapt the parameter F

according to the size of the population as F = h · (1/
√

NP), where h ∈ (0,1]. At h = 0,
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(a) Case A (b) Case B

Figure A.2.: Case A: Plot of Lq with varying NP and F = 0.5. Case B: Plot of Lq with

varying NP and F = h · 1√
NP

. Here h = 0.5

F = 0 and hence the gap between the two roots q = 0 and q = 2−2F2(NP) is maximum.

This is not practical as there is no mutation. A value of h = 1 implies that the roots coincide

at q = 0. We need to choose a value of h such that these extreme cases are not encountered.

Shown in figure A.2b Case B is where h = 0.5. While solving a particular problem (fixed

population), F may be varied within the valid region under Lq = 1. Comparing with figure

A.2a, we can see that adapting the value of F as F = h · (1/
√

NP) forces all the curves to

have valid regions of q values with a corresponding Lq under 1.
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Appendix C - Benchmark Sets

Benchmark Set 1

Table A.1: List of functions used in the benchmark set 1 with the corresponding global

optima. Also, the bounds (or extant of the search space) in each direction is shown)

No. Name Function f* Bounds

f1 Ackley’s Function −20exp(−0.2
√

1
n ∑

n
i=1 x2

i )− exp(1
n ∑

n
i=1 cos(2πxi))+20 0 [−2,2]

f2 Sphere Function ∑
n
i=1 x2

i 0 [−2,2]

f3 Rosenbrock’s Function ∑
n−1
i=1

[
100

(
xi+1− x2

i
)2

+(xi−1)2
]

0 [−2,2]

f4 Goldstein-Price Function

(
1+(x1 + x2 +1)2 (19−14x1 +3x2

1−14x2 +6x1x2 +3x2
2
))(

30+(2x1−3x2)
2 (18−32x1 +12x2

1 +48x2−36x1x2 +27x2
2
))

3 [−3,3]

f5 Levi Function sin2(πx1)+∑
n−1
i=1 (xi−1)2(1+10sin2(πxi+1))+(xn−1)2 0 [−5,5]

f6 Three-hump Camel Function 2x2
1−1.05x4

1 +
x6

1
6 + x1x2 + x2

2 0 [−5,5]

f7 Easom Function −cos(x1)cos(x2)exp
(
−
(
(x1−π)2 +(x2−π)2

))
−1 [−10,10]

f8 Beale’s Function (1.5− x1 + x1x2)
2 +
(
2.25− x1 + x1x2

2
)2

+
(
2.625− x1 + x1x3

2
)2 0 [−4.5,4.5]

f9 Booth’s Function (x1 +2x2−7)2 +(2x1 + x2−5)2 0 [−10,10]

f10 Matya’s Function 0.26
(
∑

n
i=1 x2

i
)
−0.48∏

n
i=1(xi) 0 [−10,10]

f11 Griewank’s Function 1+ 1
4000 ∑

n
i=1 x2

i −∏
n
i=1 cos

(
xi√

i

)
0 [−5,5]

f12 Rastrigin’s Function An+∑
n
i=1
(
x2

i −Acos(2πxi)
)

0 [−5.12,5.12]

f13 Schwefel’s Function ∑
n
i=1−xi · sin(

√
|xi|) −837.9658 [−500,500]

f14 Moved-axis parallel ellipsoid ∑
n
i=1 5i · x2

i 0 [−4,4]

f15 Michalewicz’s Function - ∑
n
i=1 sin(xi) ·

(
sin
(

i·xi
π

))20
−1.8983 [−15,15]

Benchmark Set 2
Appendix D - Optimal Airfoils of GA and DE
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Figure A.3.: Airfoils belonging to the different population cases that are results of the GA

algorithm distinguished by their Cp distribution.
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Figure A.4.: Airfoils belonging to the different population cases that are results of the DE

algorithm distinguished by their Cp distribution.
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Figure A.5.: Airfoils belonging to the different population cases that are results of the

DE-SOM algorithm distinguished by their Cp distribution.
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Table A.2: List of functions used in the benchmark set 2 (CEC 2005) with the correspond-

ing global optima. Also, the bounds (or extant of the search space) in each direction is

shown). In all problems, z = x− o, with o being the shifted optimum. For shifted rotated

functions, z = (x−o)×M, with M being a linear transformation matrix specified in [114].

A and B matrices are also specified in [114]. Note that functions f15 to f25 are composi-

tion functions that involve complex combinations of five or more functions and cannot be

succinctly defined here.

No. Name Function f* Bounds

f1 Shifted Sphere Function ∑
n
i=1 z2

i −450 −450 [−100,100]

f2 Shifted Schwefel’s Function ∑
n
i=1 ∑

i
j=1(z j)

2−450 −450 [−100,100]

f3 Shifted Rotated High Conditioned El-

liptic Function

∑
n
i=1(106)

i−1
n−1 −450 −450 [−100,100]

f4 Shifted Schwefel’s Problem 1.2 with

noise

(∑n
i=1(∑

i
j=1)

2) ∗ (1 +

0.4|N(0,1)|)−450

−450 [−100,100]

f5 Schwefel’s Problem 2.6 with Global

Optimum on Bounds

max(|Aix−Bi|)−310 −310 [−500,500]

f6 Shifted Rosenbrock’s Function ∑
D−1
i=1 (100(z2

i −zi+1)
2+(zi−1)2)+

390

+390 [−100,100]

f7 Shifted Rotated Griewank’s Function

without Bounds

∑
n
i=1

z2
i

4000 −∏ i = 1ncos( zi√
i
) + 1 +

180

−180 [0,600]

f8 Shifted Rotated Ackley’s Function

with Global Optimum on Bounds

−20exp(−0.2
√

1
n ∑

n
i=1 z2

i )−

exp(1
n ∑

n
i=1 cos(2πzi)) + 20 + e −

140

−140 [−32,32]

f9 Shifted Rastrigin’s Function ∑
n
i=1(z

2
i −10cos(2πzi)+10)−330 −330 [−5,5]

f10 Shifted Rotated Rastrigin’s Function ∑
n
i=1(z

2
i −10cos(2πzi)+10)−330 −330 [−5,5]

f11 Shifted Rotated Weistrasss Function ∑
n
i=1(∑

kmax
k=1 [akcos(2πbk(zi +

0.5))])

−n∑
kmax
k=1 [akcos(2πbk ·0.5)]+90,

a = 0.5,b = 3,kmax = 20

+90 [−0.5,0.5]

f12 Schwefel’s Function 2.13 ∑
n
i=1(Ai−Bi(x))2−460 −460 [−π,π]

f13 Expanded f8 plus f2 f 8( f 2(x1,x2)) + f 8( f 2(x2,x3)) +

. . .

+ f 8( f 2(zn−1,zn)) +

f 8( f 2(zD,z1))−130

−130 [−3,1]

f14 Shifted Rotated Expanded f6 F(z1,z2) + F(z2,z3) + . . . +

F(zn−1,zn) + F(zn,z1),F(x,y) =

0.5+ sin2(
√

x2+z2−0.5)
(1+0.001(x2+y2))2

−300 [−100,100]

f15 - f25 See [114] - - -
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A.3 Appendices for Chapter 6

Appendix A - Indirect Method for Optimal Control

Trajectory optimization problems are generally expressed in the form of minimizing

an integral (Eq.A.16) subjected to dynamics constraints (Eq.A.16), initial value of states

(Eq.A.17), and a terminal cost constraint (Eq.A.18, L is the path cost, x is an n-dimensional

state vector, u is an m-dimensional control vector and φ is a p-dimensional terminal con-

straint vector. [191]

J = Φ(t f ,x(t f ))+
∫ t f

t0
L(t,x(t),u(t))dt (A.16)

ẋ = f (t,x(t),u(t)) (A.17)

x(t0) = x0 (A.18)

φ(t f ,x(t f )) = 0 (A.19)

The objective in this trajectory optimization problem is to minimize time of flight, t f .

Indirect methods involve satisfying the necessary conditions of optimality using Euler-

Lagrange equations given by Eq.A.20 - A.21. λ in the following equations is an n-dimensional

co-state vector and H is the Hamiltonian.

λ̇ =−dH
dx

(A.20)

dH
du∗

= 0 (A.21)

where

H = L + λ Tẋ

The Hamiltonian for the given problem and the time derivatives of co-states were then

found using Eq.A.20 and are described by Eq.A.22 - A.27.

λ̇x = 0 (A.22)

λ̇y = 0 (A.23)

λ̇z = 0 (A.24)
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λ̇v =−λxcosγcosψ−λycosγsinψ−λzsinγ+
λψ

√
1−u2 (L+T sinα)

mv2cosγ
−λγ

(
gcosγ

v2 − u(L+T sinα)

mv2

)
(A.25)

λ̇ψ = vcosγ(λxsinψ−λycosψ) (A.26)

λ̇γ = λxvcos(ψ)sinγ +λyvsinγsinψ−λzvcosγ−λγ

(
gsinγ

v
− gucosγ(D+mgsinγ)

T vsinα

)
−λψ

(
sinγ
√

1−u2(L+T sinα)

mvcosγ2 − g
√

1−u2(D+mgsinγ)

T vsinα

)
(A.27)

The control laws were found using Eq.A.21 and are described by Eq.A.28 - A.29.

u1 =−
λγ√

λ 2
γ +(λψsecγ)2

(A.28)

u2 =
λγ√

λ 2
γ +(λψsecγ)2

(A.29)

It is to be noted that two control law options were found. Using Pontryagin’s minimum

principle, the control law that minimizes the Hamiltonian was then chosen at each data

point. [191]
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Appendix B - Engine Analysis block

Figure A.6.: Simulink model of the turbojet Engine used for propulsion system analysis
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Figure A.7.: Outputs generated by the Simulink model of the turbojet Engine with the aim

of maintaining a constant total thrust along the trajectory. Note that the total time of the

trajectory is divide into 1000 time steps.
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Appendix C - Parallel Runway Airport Map
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Figure A.8.: Final approach to Runway 17L, Austin Bergstrom International airport
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Figure A.9.: Final approach to Runway 17R, Austin Bergstrom International airport
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