
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

January 2015

CHARACTERIZATION OF MITOTIC
REGULATORS ACM1 AND CDC14
Michael Melesse
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Melesse, Michael, "CHARACTERIZATION OF MITOTIC REGULATORS ACM1 AND CDC14" (2015). Open Access
Dissertations. 1313.
https://docs.lib.purdue.edu/open_access_dissertations/1313

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1313?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1313&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate School Form 30
Updated 1/15/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By  

Entitled

For the degree of 

Is approved by the final examining committee: 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation 
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), 
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of 
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s): 

Approved by:
Head of the Departmental Graduate Program Date

Michael Melesse

CHARACTERIZATION OF MITOTIC REGULATORS ACM1 AND CDC14

Doctor of Philosophy

Mark C. Hall
Chair

Scott Briggs

Chittaranjan Das

Joseph Kappock

Mark C. Hall

Andy Mesecar 12/8/2015



CHARACTERIZATION OF MITOTIC REGULATORS ACM1 AND CDC14

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Michael Melesse

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2015

Purdue University

West Lafayette, Indiana



ii

ACKNOWLEDGMENTS

It would have been impossible for me to complete this chapter of my academic

life without the support of many. First and foremost, I would like to thank my

thesis advisor, Mark Hall, for giving me the opportunity to learn from him. I truly

appreciate all the encouragement, guidance and support he gave me. I would also like

to thank my thesis advisory committee, Scott Briggs, Chitta Das and Joe Kappock for

all the guidance and advice. I would like to thank Hana Hall and Juan Mart́ınez for

being valuable sounding boards for all things research and more. I would additionally

like to thank current and former members of the Hall lab, Christie Eissler, Brendan

Powers and Liang Qin and many others who have helped me with various aspects of

this thesis.

I want to thank those in the Department of Biochemistry for creating an envi-

ronment conducive for scientific exploration. I want to thank Jim Henderson for

encouraging my teaching interests and Vikki Weake for her willingness to let me take

on more responsibility in the classroom. I want to thank those in the main office,

Kristi Trimble, Madia Bickett and others, who were always willing to go beyond their

duties to help me with anything I needed.

The friendships I have developed over the years have sustained me throughout my

time in graduate school. I would like to thank Anton Iliuk who has been a source of

valuable perspectives. My friendships with Christina, Jacob, Valezzka and Wossen

have been invaluable.

I also want to thank my parents, Melesse and Eyerusalem, for constantly encour-

aging me to pursue my academic interests and being supportive at every turn. I want

to thank my sister, Hiwot, and brothers, Eyob and Aman, for making every conver-

sation we have a highlight of my day. I would also like to thank René V., Guadalupe
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ABSTRACT

Melesse, Michael Ph.D., Purdue University, December 2015. Characterization of
mitotic regulators Acm1 and Cdc14. Major Professor: Mark C. Hall.

Mitotic exit and cytokinesis are driven by a complex set of processes that serve to

reset the eukaryotic cell cycle and allow entry into the subsequent cycle. These steps

are driven by a combination of molecular events that lead to the termination of high

cyclin dependent kinase (Cdk) activity and reversal of Cdk mediated phosphorylation.

Proteasomal degradation of cyclins is essential for terminating Cdk activity and active

dephosphorylation of Cdk mediated phosphorylation is important for the appropriate

completion of the cell cycle.

The anaphase promoting complex (APC) is a ubiquitin ligase responsible for pro-

moting events in late mitosis by polyubiquitinating, among other substrates, cyclins

and targeting them for degradation. Cdh1 is a highly conserved activator of the

APC and its activity is regulated by, among other mechanisms, a pseudosubstrate

inhibitor, Acm1. I have demonstrated that Acm1 degradation in G1 is mediated by

a non-canonical proteasomal degradation mechanism that does not require polyubiq-

uitin conjugation. I also show that expression of an Acm1 mutant resistant to this

degradation mechanism (Acm1N∆52) leads to reduced cell fitness.

The activity of mitotic phosphatases is essential for the reversal of Cdk phospho-

rylation at the end of the cell cycle. Cdc14 activity is essential in budding yeast.

However, it is only recently that its role in ordering late mitotic events has begun to

be appreciated. By characterizing Cdc14 substrate selectivity, using phosphopeptide

substrates, it has become clear that Cdc14 preferentially dephosphorylates a sub-

set of Cdk phosphorylation sites. Here I show that Cdc14 substrate selectivity is

conserved across diverse species and this selectivity can be used to gain insight into
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Cdc14 substrates in these organisms, where there is limited understanding of Cdc14

function.

The substrate selectivity observed for Cdc14 enzymes holds the potential for the

development of selective inhibitors. I was able to show that unphosphorylated peptide

containing an optimal substrate sequence is able to inhibit Cdc14 activity. This ob-

servation points to the possibility of developing inhibitors that incorporate substrate

like characteristics and can take advantage of the active site architecture. I have also

developed a high throughput screening strategy and utilized it to screen 50,000 small

molecules for the ability to inhibit Cdc14 activity. Specific Cdc14 inhibitors hold the

potential to study the effects of Cdc14 loss in organisms that have multiple paralogs

of the enzyme or in which genetic manipulations are a challenge.
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1. INTRODUCTION

1.1 Overview of cell division

Successful cell division requires the coordination of multiple molecular events

within a cell. Precise timing of events driving cell division is an essential requirement

of all dividing eukaryotic cells. In the absence of strict regulation of cell division, the

potential for highly deleterious events is likely to culminate in genetic instability and

cell death.

An important goal of the cell cycle is the error free transmission of genetic infor-

mation from one cell to the next generation. In order to avoid errors during division,

eukaryotic cells employ multiple checkpoint mechanisms that monitor proper com-

pletion of sequential steps [1]. The timing of duplication of the genome and the

subsequent partition of identical copies to the new daughter cells are subject to mul-

tiple layers of regulation. Eukaryotic species share several molecular mechanisms for

controlling the process of cell division. These mechanisms include regulation by pro-

tein phosphorylation and control over protein stability throughout the various stages

of the cell cycle.

Understanding the mechanisms that control progress of the cell cycle is essential

for understanding disease states that can occur when the regulatory mechanisms fail.

1.2 The eukaryotic cell cycle

This chapter will discuss the regulation of cell division in the budding yeast (Sac-

charomyces cerevisiae), a model organism that has historically been essential for

understanding the fundamental mechanisms of cell cycle regulation [2]. For the most

part, the mechanisms that regulate the yeast cell cycle apply across multiple eukary-
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otes. Deviations from this will be highlighted, when appropriate, throughout this

chapter.

1.2.1 Stages of the cell cycle

The cell cycle is, for the most part, a unidirectional process in which the order of

events allows cells to divide and multiply while maintaining a consistent complement

of genetic and cellular contents [3]. A large body of research exists characterizing

the mechanisms that drive the processes of the cell cycle based on the foundational

studies of the budding yeast Saccharomyces cerevisiae [2] and fission yeast Schizosac-

charomyces pombe [4] cell cycles. The regulatory systems that drive the eukaryotic

cell cycle are highly conserved across species [5] and the advancements in the under-

standing of the yeast cell cycle have been critical in elucidating control mechanisms

in higher eukaryotes.

The cell cycle involves two major nuclear events, namely, chromosome replication

during S phase and chromosome segregation during M phase. These stages are sepa-

rated by two gap (G) phases: G1 and G2. G1 separates the end of one cycle from

the start of the next, whereas G2 separates S phase and M phase. These gap phases

give cells the opportunity to monitor the appropriate completion of the process in

the preceding cell cycle stage and ensure conditions are appropriate to proceed to the

subsequent stage [6]. In Saccharomyces cerevisiae, a decision point known as START

during G1 allows cells to either commit to another cell cycle and initiate S phase

entry when nutrient conditions are favorable or exit the cell cycle [7].

The progress from S phase to M phase is also under the regulation of surveillance

processes that monitor the appropriate completion of DNA duplication [8]. Mitosis

begins only after DNA synthesis has been completed. Mitosis consists of 4 phases:

prophase, metaphase, anaphase, and telophase. At prophase, replicated chromosomes

begin to condense and at metaphase, the sister chromatid pairs attach to spindle

microtubules from both spindle poles, which align the chromosomes along the center of
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the spindle apparatus. When all kinetochores are properly attached to microtubules,

the cohesin complex linking sister chromatids is cleaved by separase, permitting the

transition from metaphase to anaphase. During anaphase, the mitotic spindle pulls

sister chromatids to opposite poles of the spindle. The final step in cell division,

cytokinesis, is the physical division of the cytoplasm. A contractile ring pinches the

cell into two daughter cells which inherit a complete set of chromosomes and cellular

organelles.

Upon the completion of mitosis, the cell cycle is reset to the G1 state before the

commencement of the subsequent cell cycle in a highly regulated manner. In fact,

there are multiple checkpoints that prevent progress of the cell cycle if events do not

proceed appropriately. Examples of such events include DNA damaging insults or

inappropriate spindle assembly [1].

1.2.2 Cyclin dependent kinase activity drives the cell cycle

The eukaryotic cell cycle is driven by the oscillating activity of cyclin dependent

kinases (Cdks) [9,10]. All Cdks require association with a cyclin subunit for enzymatic

activity, hence, the regulation of this association is the major method by which their

activity is controlled. In budding yeast, there is a single cyclin dependent kinase,

Cdc28, and at least 11 different cyclins, which are responsible for driving the cell

cycle (Figure 1.1) [11].

All Cdks are proline-directed kinases which preferentially phosphorylate the mini-

mal consensus sequence Ser/Thr-Pro [12]. The distinct cyclin-Cdk subclasses (Figure

1.1) exhibit minor differences in their specificities outside of this minimal consensus

that contribute to substrate selection [13]. The three major switch points during the

cell cycle that are controlled by cyclin-Cdk activity are the START (G1/S), mitotic

entry, and the metaphase-anaphase transitions [14].

Cdc28 expression varies little throughout the cell cycle [11]. Cdc28 activity and

target substrates vary substantially between cell cycle stages, owing, in large part, to
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Fig. 1.1.: The cell cycle is driven by Cdk activity.
In budding yeast, distinct sets of cyclins activate Cdc28, a cyclin-dependent kinase
(Cdk), to drive progress through the cell cycle. In G1, the cyclins Cln1, 2, and 3
promote budding and activate the S phase cyclins in preparation for S phase. In
S-phase, cyclins Clb 5 and 6 promote DNA replication. The mitotic cyclins (Clb1-4)
promote spindle formation and mitotic initiation and inhibit mitotic exit and cell
division.
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the periodic presence and/or absence of cyclins. In the cell cycle there are cyclins that

prevail during G1 (Cln1, Cln2 and Cln3), S phase (Clb5 and 6) and mitosis (Clb1

and 2) [15]. Cyclin abundance at particular stages of the cell cycle is a result of the

combined effects of regulated expression as well as degradation by the proteasome

[16,17]. Cdc28 activity is also regulated by post-translational modifications, namely,

an inhibitory phosphorylation by the Wee1/Swe1 kinase [18], which attenuates Cdc28

activity. Cdc28 activity can also be reduced by cyclin-dependent kinase inhibitors

(CKIs) such as Sic1 [15] and Far1 [19].

In budding yeast, mitotic entry is driven by the activity of B-type cyclin bound

Cdc28. Mitotic Cdk activity is negatively regulated by Swe1 and activated by Mih1.

Swe1 phosphorylates Cdc28, on a conserved tyrosine, to prevent premature activation

until Cdc25 (Mih1 in S. cerevisiae) [9,20] reverses the phosphorylation during mitotic

entry. Reversal of the inhibitory Cdk phosphorylation by Mih1 and association with

the B type cyclins promote maximal Cdk activation. An illustration of the effects

of this regulatory system is clearly observed in fission yeast as Wee1 mutants have a

shortened G2 caused by premature activation of Cdk1, whereas Cdc25 mutants never

accumulate sufficient Cdk1 activity to enter mitosis [21–23].

During the metaphase-anaphase transition, Cdk1 is responsible for phosphory-

lating and activating the Anaphase Promoting Complex (APC), the essential E3

ubiquitin ligase required for chromosome segregation [24]. Mitotic Cdk activity also

prevents mitotic exit and cytokinesis to ensure complete spindle assembly and kine-

tochore attachment before cells divide [17].

1.3 Mitotic exit

Mitotic exit refers to the reversal of the mitotic state to an interphase state fol-

lowing successful chromosomal segregation. It includes disassembly of the spindle

apparatus, decondensation of chromosomes, and, in species with an open mitosis,

reformation of the nuclear envelope [25]. Like all other steps of the cell cycle, mitotic



6

exit is under strict regulation. It is essential for cells to appropriately and equally dis-

tribute the genome duplicated during S phase to opposite poles prior to mitotic exit,

since cytokinesis occurs immediately after [26]. Mitotic exit requires the elimination

of all pro-mitotic signals, including Cdk activity.

As discussed above, mitotic entry is driven by increasing Cdk activity. In con-

trast, mitotic exit requires the reduction of Cdk activity. The requirement for Cdk

inactivation prior to cytokinesis ensures that cytokinesis does not occur before com-

pletion of chromosome segregation, a process that requires Cdk activity [17]. There

is increasing evidence that reduction in Cdk activity alone is not sufficient to allow

mitotic exit [27]. Skoufias et al. demonstrated that in the absence of proteasomal

activity, loss of Cdk1 is not sufficient for mitotic exit and that phosphatases that

oppose Cdk activity are required. Failure to dephosphorylate mitotic Cdk substrates

has been shown to inhibit cytokinesis in budding yeast [28]. It is becoming more evi-

dent that active reversal of Cdk phosphorylation is essential to allow cells to undergo

cytokinesis and reset the cell cycle.

1.3.1 Mitotic exit requires mitotic cyclin degradation

Inactivation of Cdk activity is achieved primarily by the regulated reduction of

cyclin abundance in the cell through the action of the ubiquitin proteasome system

(UPS, Figure 1.2) [29]. In a variety of eukaryotes, failure to degrade mitotic cyclins

leads to an arrest in mitosis [30]. The Anaphase Promoting Complex (APC) is res-

ponsible for targeting mitotic cyclins to the proteasome and is essential for mitotic

exit [31].

1.3.2 Reversal of Cdk mediated phosphorylation is essential for mitotic

exit

Mitotic phosphatases are required for proper progression through mitotic exit.

Protein phosphatase 2A (PP2A), protein phosphatase 1 (PP1), and Cdc14 all play
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roles in reversing Cdk1 mediated phosphorylation and promoting cytokinesis to vary-

ing degrees, depending on the species [32–35].

1.4 The Ubiquitin Proteasome System (UPS)

As discussed in the previous subsection, the cell cycle is driven by the activity of

Cdks that phosphorylate their cognate targets [36]. Controlling the levels of cyclins

controls Cdk activity which in turn determines the level of phosphorylated protein

substrates. Cyclin level control is achieved both by controlling their gene transcription

[37] as well as their proteolysis [29]. The majority of cyclin proteolysis is carried out

by the UPS [29].

In eukaryotes, ubiquitin-mediated proteolysis is the major mechanism that elim-

inates proteins in a highly regulated manner, at specific times to allow progress of

the cell cycle. The eukaryotic UPS is responsible for the rapid and specific degra-

dation of cyclins, among other things, ensuring a unidirectional cell cycle. Since the

characterization of the role of polyubiquitination mediated protein degradation of

cyclins [29, 38], the study of the UPS has played a major role in the study of cell

cycle regulation. Beyond cell cycle regulation, the UPS plays essential roles in a wide

variety of biological processes including apoptosis and immune response [38].

The 26S proteasome is a multimeric, ATP-dependent protease made up of two

distinct sub-complexes: one 20S and two 19S particles [39]. The 20S particle is made

up of a stack of four heptameric rings containing six proteolytic active sites in the

interior of the barrel [40]. The two ends of the barrel are each capped by a 19S

particle, restricting access to the active sites (Figure 1.2).

The 19S particle is composed of two sub-complexes, the base and the lid. The

26S proteasome structure requires that polypeptides being degraded are unfolded

and enter the barrel as extended chains. The base contains six ATPase subunits and

mediates the substrate unfolding step [41]. The lid covers the base and is involved in
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Fig. 1.2.: The ubiquitin proteolysis system.
Ubiquitin (Ub) is first activated in an ATP-dependent reaction to form a thioester
bond with the E1 activating enzyme. Ubiquitin is then transferred to a conjugat-
ing (E2) enzyme. Substrates targeted for polyubiquitination are then modified, in
conjunction with an E3 ubiquitin ligase enzyme. The E3 ligase provides selectivity
and determines the identity of substrates being polyubiquitinated. Ubiquitin is cova-
lently attached to the substrate, via an isopeptide bond, between the carboxyl group
of the C-terminal Gly and the ε-primary amino group of a Lys residue in the sub-
strate. Polyubiquitinated substrates are subsequently recognized by 26S proteasome
and degraded. Deubiquitinating enzymes (DUBs) serve to recycle ubiquitin.
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the recognition of ubiquitin chains on substrates before their translocation into the

20S core [42].

1.4.1 Ubiquitination targets proteins to the proteasome

Substrate selectivity of the proteasome is largely a product of restricted access

to the proteolytic active sites [43]. A common mechanism by which substrates are

targeted to the proteasome is via the attachment of polyubiquitin chains (Figure 1.2).

Polyubiquitination is achieved by the covalent attachment of multiple ubiquitins to a

substrate, mainly on lysine residues in a selective process. A minimum chain length of

4 ubiquitins is required for substrates to access the 26S proteasome active site [43,44].

This observation has more recently been challenged by Ying Lu, et al., who have

demonstrated that APC substrates with multiple ubiquitinated lysines are better

proteasome substrates than those with the same number of ubiquitins conjugated,

but have fewer and longer ubiquitin chains [45].

Polyubiquitinated substrate selectivity is a product of the specificity of E3 ubi-

quitin ligases that function downstream of E2 (ubiquitin conjugating enzymes) which

are downstream of E1 (ubiquitin activating) enzymes [46] (Figure 1.2). E1 enzymes

activate ubiquitin by forming a high energy thioester bond in an ATP-dependent

reaction. Ubiquitin is then transferred to an E2 conjugating enzyme via a transthio-

lation reaction in an E1-Ub dependent reaction to form a high-energy thioester bond

between ubiquitin and the cognate E2. In Saccharomyces cerevisiae, there is a single

E1 [47], a dozen E2s, and diverse classes of E3 ligases [46].

There are three major classes of E3 ubiquitin ligases identified thus far, the HECT

(homologous to E6-associated protein C-terminus), RING (really interesting new

gene) domain, and U-box (modified RING motif) E3s [48]. HECT E3 ligases contain

both a substrate recognition element as well as a ubiquitin ligation active site. In

contrast, RING E3s do not directly participate in the chemical transfer of ubiquitin.

RING E3s are thought to function as scaffolds that bring E2 conjugating enzymes
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and substrate proteins into proximity and promote the transfer of Ub directly from

E2s [49].

1.4.2 Polyubiquitin-independent proteasomal degradation

Although it has been well established that ubiquitination is the major mechanism

for targeting proteins to the proteasome, it is clear that alternative mechanisms exist.

A well-established ubiquitin independent mechanism is the proteasomal degradation

of ornithine decarboxylase (ODC) [50,51]. ODC, the first enzyme in polyamine syn-

thesis, is targeted for degradation to the proteasome by its interaction with antizyme,

a protein that becomes abundant during high cellular polyamine concentration. It has

been postulated that antizyme is able to engage the 19S particle of the proteasome

and deliver ODC for degradation. Outside of ODC degradation, Antizyme has been

demonstrated to target Aurora-A for degradation in HeLa cells [52].

1.4.3 The Anaphase Promoting Complex (APC) during mitotic exit

In the context of the cell cycle, there are two major E3 ligases that function in cell

cycle regulation, Skp1-Cullin-1-F-box protein (SCF) and the APC [53]. In budding

yeast, the SCF ubiquitinates substrates to promote S phase, including the Cdk in-

hibitor Sic1, which allows for the activation of S phase Cdk/cyclin complexes [54,55].

The APC, on the other hand, is responsible for driving mitotic progress, namely sis-

ter chromatid segregation and mitotic exit as well as establishing and maintaining

G1 [56].

The APC is responsible for ubiquitin-mediated proteolysis of numerous proteins

to drive mitotic exit [57]. At the metaphase to anaphase transition the APC targets

Securin (Pds1 in yeast), an inhibitor of chromosome segregation, for destruction [58].

Pds1 degradation allows for the activation of the protease separase (Esp1 in budding

yeast) which is responsible for cleaving the cohesin rings that tie sister chromatids

together [26,58]. The APC is also essential for the destruction of mitotic cyclins such
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as Clb2 to terminate Cdk activity, allowing exit from mitosis [59]. APC also promotes

destruction of components of the mitotic spindle apparatus such as Fin1, Ase1, and

Cin8 in yeast to disassemble the spindle at the end of mitosis [60–62].

APC co-activators determine substrate recognition

The APC is a large, ≈ 1.5MDa, multi-subunit E3 ubiquitin ligase complex (Figure

1.3). The human APC consists of 12 identified core subunits and the budding yeast

APC has 13 [63]. The Core APC has two sub-complexes; one sub-complex contains

Apc2 and Apc11 that are essential for ligase activity as well as Doc1 that is required

for processive ubiquitination of substrates (Figure 1.3) [64]. The cullin domain of

Apc2 interacts with the RING domain of Apc11 which is suggested to be responsible

for association with both E2 ubiquitin-conjugating enzyme and a substrate [65, 66].

The other sub-complex contains three TPR (tetra-trico-peptide repeat domain) pro-

teins, Cdc27, Cdc16, and Cdc23 that mediate protein-protein interactions between

subunits. Both sub-complexes are held together by the largest subunit, Apc1. Both

Apc4 and Apc5 connect Apc1 to the TPR sub-complex via Cdc23.

In addition to the core subunits, APC activity requires transient association with

a co-activator subunit. The core APC is present constitutively during the entire cell

cycle; but association with one of its co-activators, either Cdc20 or Cdh1, in a cell

cycle-dependent manner limits APC activity to mitosis and G1 [59,67–69].

The Cdc20 and Cdh1 co-activators are structurally related proteins responsible

for APC’s substrate selectivity [67]. These co-activators bind sequentially to the

core APC as cells progress through mitosis. In budding yeast, Cdc20 is essential

for anaphase onset and Pds1 degradation [70]. Most known substrates of the APC

have destruction motifs (degrons) such as D-box (RxxLxxxxN) and/or KEN, which

are required for their ubiquitination-dependent proteolysis [71–73]. Other sequence

elements such as A-box (in Aurora A) [74], CRY box (Cdc20 in GV-stage mouse
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oocytes) [75], or O-box (degradation of ORC1 in D. melanogaster) [76] have also

been demonstrated as recognition motifs in substrates by the APC.

Although the mechanisms by which APC and a co-activator recognize substrates

and how co-activators discriminate between destruction motifs are still unclear, it is

known that the co-activators are major targets for regulating APC activity. A com-

bination of phosphorylation and protein degradation are employed to regulate APC

activity. Both APC co-activators (Cdc20 and Cdh1) are highly regulated through

phosphorylation by Cdk and Cdc5/Polo kinase. Cdc20 activity is largely limited to

the initiation of mitotic exit, when Cdk activity is high [77] and its phosphoryla-

tion promotes Cdc20 association with the core APC resulting in the degradation of

substrates like Pds1, Clb5, and Dbf4 [68, 78]. Cdc20 is also involved in the activa-

tion of Cdh1 as it degrades mitotic cyclins leading to lowered mitotic Cdk activity.

The reduction in mitotic Cdk activity, in combination with Cdc14 phosphatase me-

diated dephosphorylation, leads to the reduction in the inhibitory phosphorylation of

Cdh1 [79] and increased Cdh1 association with the core APC [34,80].

Multiple mechanisms regulate APCCdh1 activity

Cdh1 is an APC activating subunit that is homologous to Cdc20, and is able to

complement Cdc20 mutants when expressed in high copy number [59]. In contrast

to Cdc20, Cdh1 deletion in budding yeast is not lethal but the degradation of many

proteins, like Ase1, which leads to spindle disassembly and Clb2, which ,in turn,

results in inactivation of mitotic cyclins, is impaired [59, 67]. APCCdh1 function is

also important to establish conditions necessary for DNA replication in S phase.

Cdh1 and Sic1 have been demonstrated to promote efficient origin firing at origins of

replication during S phase entry [81]. In mice, loss of APCCdh1 has been associated

with genomic instability resulting in embryonic lethality [82].

Regulation of Cdh1 is different from that of Cdc20 as Cdh1 protein abundance

is fairly stable throughout the cell cycle and it is a target of multiple kinases that
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regulate its activity [80,83]. Cdh1’s ability to activate APC is inhibited by Cdk phos-

phorylation beginning in late G1 until late mitosis. Cdh1 is unable to bind the APC

when phosphorylated in early mitosis and requires dephosphorylation by Cdc14 phos-

phatase at mitotic exit for its activation [84]. It has been shown that overexpression

of an unphosphorylatable Cdh1 mutant (cdh1-m11 ) is lethal in yeast [62]. This phos-

phoregulation ensures that APCCdc20 is activated and has degraded mitotic cyclins

before APCCdh1 is able to drive late mitotic events. Failure to inactivate APCCdh1

also prevents accumulation of mitotic cyclins and results in G2/M phase arrest.

Acm1 is a pseudosubstrate inhibitor of APCCdh1

Several pseudosubstrate inhibitors which use degron motifs, similar to those found

in APC substrates, to bind to APC and interfere with substrate binding, have been

identified. Examples include Mad3, a subunit of the spindle assembly checkpoint.

Mad3 is a pseudosubstrate inhibitor of the APCCdc20 responsible for delaying anaphase

when errors occur in chromosome attachment to the mitotic spindle by preventing the

degradation of Pds1 [85]. In vertebrates, APCCdh1 can be inhibited by Emi1, which

is important for the stabilization of cyclin A and S phase entry [86].

In budding yeast, APCCdh1 is inhibited by a pseudosubstrate called Acm1. Acm1

forms a ternary complex with Cdh1 and the 14-3-3 homologs Bmh1 and Bmh2 [88].

Acm1 inhibits APCCdh1 mediated polyubiquitination of Clb2, Hsl1, and Fin1 in vitro

[88–90]. The overexpression of Acm1 is also able to rescue the toxicity of Cdh1-m11

overexpression [88].

Acm1 binds tightly to Cdh1 via conserved D and KEN boxes which interact with

the Cdh1 WD40 domain (Figure 1.4) [88, 89, 91, 92]. The reasons why Acm1 can

bind Cdh1 via its degron sequences, in the same manner as substrates, but avoid

polyubiquitination and degradation are not known. There is preliminary evidence

that suggests there are additional sequence elements within Acm1, proximal to its
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Fig. 1.4.: Acm1 is a pseudosubstrate inhibitor of APCCdh1

A. Acm1 contains D and KEN box sequences that are commonly found in APCCdh1

substrates. These sequences are necessary for Acm1 binding to Cdh1 and its ability
to inhibit substrate degradation. The ABBA motif shown is also a sequence that is
known to contribute to Cdh1 binding [87].
B. Acm1 inhibits APCCdh1 by competing for substrate binding sites on Cdh1.
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second D box, that distinguish it from substrates, but the mechanisms are not yet

clear (L. Qin, unpublished results).

Deletion of Acm1 does not result in inappropriate activation of APCCdh1, due to

the robust effect of Cdk phosphorylation. Instead, Acm1 is important for preventing

premature binding of Cdh1 to substrates, particularly the bud neck kinase Hsl1, which

can impair their functions. Loss of Acm1 leads to premature accumulation of Cdh1

at the bud neck, via interaction with Hsl1, resulting in improper positioning of the

mitotic spindle along the mother-bud axis prior to nuclear division which normally

ensures one set of chromosomes ends up in the bud [93].

Consistent with Acm1’s role as a Cdh1 inhibitor, Acm1 protein abundance changes

with the cell cycle. Acm1 is found at higher abundance from late G1 to late mi-

tosis [88, 89, 92] when APCCdh1 is inactive. Multiple mechanisms result in Acm1

degradation, one of which is dependent on the APCCdc20 [91]. However, complete

degradation of Acm1 at the end of mitosis requires an additional APC-independent,

proteasome-dependent mechanism [89,94].

Unphosphorylatable Acm1 mutant is constitutively degraded

Acm1 is a phosphoprotein and is a target of Cdk [92, 94]. Mass spectrometric

analysis revealed that Acm1 is phosphorylated at Cdk consensus sequences. Mutation

of five Cdk sites to alanine leads to a significant reduction in Acm1 stability in all

phases of the cell cycle [94]. These data illustrate that phosphorylation of Acm1

is necessary for its stability and dephosphorylation in late mitosis leads to its rapid

degradation. Inhibition of the yeast proteasome with drug treatment causes abnormal

Acm1 protein stability [92]. The mechanism that targets Acm1 for degradation by

the proteasome is non-canonical and is discussed in Chapter 2.
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1.5 Mitotic phosphatases reverse Cdk phosphorylation

Beyond the inactivation of mitotic Cdks, mitotic exit and cytokinesis require active

reversal of Cdk phosphorylation by mitotic phosphatases [27]. Recent developments

are beginning to shed light on the complexity of the mechanisms regulating the ac-

tivity of mitotic phosphatases [35]. The protein phosphatases Cdc14, PP1 and PP2A

play significant roles in reversing Cdk-dependent protein phosphorylation [32–35].

1.5.1 PP1 and PP2A contribute to mitotic exit

PP1 and PP2A are multimeric members of the serine/threonine phosphoprotein

phosphatase (PSP) family of phosphatases. As is the case for many PSPs, PP1 and

PP2A are regulated and their specificity defined through combinatorial interactions

between a common catalytic subunit and various regulatory subunits [95]. Both have

been implicated in the reversal of Cdk mediated phosphorylation, which is important

for mitotic exit [35].

PP1 functions typically as a dimer consisting of a catalytic subunit (PP1c), which

is encoded by GLC7 in budding yeast [96] and is one of many regulatory subunits. The

catalytic subunit is highly conserved among all eukaryotes with about 70% identity

across any pairwise alignments [95]. Many of the regulatory subunits bind to PP1c

through a highly conserved RVXF/W docking motif [97]. The regulatory subunits

determine in vivo substrate specificity by either directing the holoenzyme subcellular

localization and/or altering its substrate selectivity.

PP2A is a heterotrimeric complex consisting of a structural A subunit, a regulatory

B subunit and a catalytic C subunit [98]. The B-regulatory subunits regulate both

localization and substrate selectivity of the PP2A complex. The two B-regulatory

subunits in budding yeast (Cdc55 and Rts1) bind PP2A in a mutually exclusive

manner. PP2ACdc55 is required for the spindle assembly checkpoint [98,99] and targets

Cdc25 (Mih1) for dephosphorylation during mitosis leading to increased Cdk1 activity

[100].
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1.5.2 Cdc14 activity counteracts Cdk1 mediated phosphorylation

Cdc14 is a member of the dual specificity phosphatase (DSP) family, a subgroup

of the larger PTP super family [101, 102]. Cdc14 phosphatases contain the active

site sequence CX5R, which is a hallmark for the protein tyrosine phosphatase (PTP)

superfamily (Figure 1.5) [103]. In budding yeast, Cdc14 is the major phosphatase

required for mitotic exit and remains sequestered in the nucleolus until early anaphase

at which point it is able to dephosphorylate various Cdk1 substrates [34,104].

Chromosome segregation, spindle disassembly and cytokinesis are late mitotic

events requiring reversal of Cdk mediated phosphorylation. Beyond the inactivation

of Cdk activity by the degradation of cyclins, Cdk substrates are need to be dephos-

phorylated [33]. The budding yeast phosphatase Cdc14 has, for a long time, been

recognized as an essential regulator of mitotic exit. cdc14 mutants arrest in late

mitosis in a telophase like state [105]. Cdc14 triggers mitotic exit by reversal of Cdk-

mediated phosphorylation [34]. Cdc14 dephosphorylates Swi5, a transcription factor

for the Cdk inhibitor Sic1 [106], Sic1 itself, leading to its stabilization [34] and the

APC co-activator Cdh1 [80], which targets mitotic cyclins for degradation. Dephos-

phorylation of Swi5 also leads to the transcriptional activation of other genes at the

M/G1 transition, such as Egt2 [107], required for normal septation. Iqg1 has also

recently been identified as an important Cdc14 substrate in regulating actomyosin

ring contraction during cytokinesis [108]. Cdc14 function is also important for forma-

tion of the pre-replication complex (pre-RC) via dephosphorylation of the replication

initiation proteins Orc2, Orc6, Cdc6, and Mcm3, to allow DNA replication in the sub-

sequent S phase [109]. Cdc14 also regulates the localization and enzymatic activity of

Yen1, a Holiday junction resolvase that plays a role in DNA damage repair [110,111].

Cdc14 activity is tightly regulated

In accordance with its essential role in mitotic exit, Cdc14 activity is under strict

regulation. Its activity is regulated both by the binding of a competitive inhibitor
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as well as by its subcellular localization. For most of the cell cycle until metaphase,

Cdc14 is sequestered and inhibited in the nucleolous by Net1, as part of the regulator

of nucleolar silencing and telophase (RENT) complex [112–114]. Cdc14 disassociation

from its inhibitor and its resulting spread, first, to the nucleoplasm in early anaphase,

and then, throughout the cytoplasm in late anaphase/telophase occurs via two dis-

tinct and sequential regulatory mechanisms: the Cdc fourteen early anaphase release

(FEAR) and Mitotic Exit Network (MEN) pathways, respectively. The FEAR net-

work initiates Cdc14 release within the nucleus and its association with the spindle

pole body as well as the mitotic spindle, mainly to promote proper chromosome seg-

regation. The MEN is activated during telophase and results in the spread of Cdc14

to the cytoplasm where it drives mitotic exit and cytokinesis [35].

There is an increasing body of evidence that Cdc14’s intrinsic selectivity is a driver

for the order of mitotic substrate dephosphorylation. It has been shown that Cdc14

substrates are targeted in two distinct windows of time [115]. Jin et al. tested whether

early Cdc14 substrates were targets of FEAR released Cdc14 and were preferentially

phosphorylated by Cdk1-Clb5 and later substrates of MEN Cdc14 were Cdk1-Clb2

substrates. They observed that the release mechanism does not determine Cdc14

specificity, illustrated by the dephosphorylation of Sld2, an early anaphase substrate,

by both FEAR and MEN released Cdc14, in nocodazole arrested cells. Although

the decrease in Clb5 activity contributes to the steady state levels of early Cdc14

substrates and high Clb2 activity delays the loss of phosphorylation of late substrates,

it does not completely account for the observed timing of substrate dephosphorylation

[104]. Bouchoux et al. show that Cdh1 and Orc6, which are preferential Cdk1-Cdc5

substrates, are late Cdc14 substrates. They also show that ectopic Cdc14 expression

in cells arrested in metaphase does not change the order in which Cdc14 substrates are

dephosphorylated, suggesting a central role for Cdc14 as the main driver of sequential

substrate dephosphorylation, independent of other mitotic events. The study also

demonstrated the catalytic efficiency of Cdc14 towards Fin1, an early Cdc14 substrate
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was 20 times grater than that of Orc6 [104]. The underlying reasons for this substrate

preference have not yet been completely elucidated.

1.5.3 Cdc14 is conserved across multiple species

Although the Cdc14 gene is highly conserved (Figure 1.5), the reversal of mitotic

phosphorylation in other eukaryotes does not strictly require Cdc14. Cdc14 homologs

are found in multiple eukaryotes spanning a large evolutionary space. Studies in a

variety of organisms suggest that Cdc14 is not required for Cdk inactivation or for

bulk Cdk substrate dephosphorylation [116, 117]. Although these phosphatases play

roles during mitotic exit, they are only essential in budding yeast. An interesting

observation pointing to a functional conservation is that the two human Cdc14 par-

alogs (A and B) are able to rescue the cdc14 phenotype in both budding [118, 119]

and fission yeast [120]. The specific biological functions of Cdc14 in organisms other

than budding yeast are still poorly characterized and the extent to which functions

might be conserved across divergent eukaryotes remains unclear. A discussion of the

current data is presented below.

Schizosaccharomyces pombe Cdc14 orthologue, Clp1, is kept sequestered in the

nucleolus as is the case for budding yeast. However, unlike S. cerevisiae Cdc14, Clp1

is not essential for normal cell cycle progression and is released from the nucleolus ear-

lier in mitosis [121]. Clp1 is mainly responsible for regulating cytokinesis and affects

the timing of mitotic entry [122, 123]. Clp1 promotes mitotic exit by promoting the

dephosphorylation and subsequent degradation of Cdc25. Clp1∆ cells display cytoki-

nesis defects and advance prematurely into mitosis but continue to grow. Meanwhile,

cells overproducing Clp1 delay Cdk1 activation but are able to progress through mi-

tosis [122].

There are inconclusive reports regarding the function of Cdc14 in Caenorhabditis

elegans. One group has reported that depletion of C. elegans Cdc14 results in embry-

onic lethality [124]. However, another study demonstrated that cdc14 heterozygous
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null worms are viable and fertile [125]. It was also shown that CeCdc14 localizes to

the central spindle during anaphase and the midzone during telophase suggesting a

role in mitotic events.

In contrast to S. cerevisiae Cdc14, either of the two human paralogs (hCDC14A

and B) are dispensable for the cell cycle. Ectopic expression of hCDC14A results

in the dephosphorylation of Wee1 and its degradation by the proteasome [126] and

delays mitotic entry by counteracting Cdk1-Cyclin B1 activity [120]. Overexpression

of hCDC14B has been shown to transform cells [127]. As an indicator of functional

divergence between the two paralogs, this same study demonstrated that overexpres-

sion of hCDC14A did not result in transformation. hCDC14A and B also appear to

localize differently during interphase; hCDC14A at the centrosome and hCDC14B at

the nucleolus [128]. Specific functions and molecular targets of human Cdc14 enzymes

remain poorly understood.

1.5.4 S. cerevisiae Cdc14 is highly selective for a subset of Cdk phos-

phorylation sites

The crystal structure of hCDC14B shows that it is made up of two structurally

similar domains arranged in tandem [102]. The N-terminal domain (domain A, aa

44-198), thought to contribute to substrate selectivity, has no sequence similarity to

other dual specificity phosphatases. The C-terminal domain (domain B, residues 213-

368) contains the PTP motif. The hCDC14B active site is within the groove at the

domain A and B interface.

Cdc14 phosphatases are unique, in that, despite being members of the PTP family,

they have evolved to specifically dephosphorylate a subset of Cdk substrates. Cdks

phosphorylate Ser/Thr-Pro sites. Cdc14 phosphatases have a strict selectivity for

Cdk phosphoSer-Pro (pS-P) sites. Moreover, they strongly prefer sites followed by

a basic residue at the +3 position (pS-P-X-K, where X represents any amino acid)

with additional downstream basic residues enhancing activity [129,130].
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Our enzymatic studies and the crystal structure solved for hCDC14B in complex

with a peptide indicate that Cdc14 substrate selectivity is primarily determined by

the active site region [102]. The residues thought to contribute to catalysis and

substrate binding (the acidic groove, +1 Pro binding, +3 lysine binding and pSer

selectivity) highlighted in Figure 1.5 are highly conserved across multiple species.

Unlike other mitotic phosphatases previously discussed, Cdc14 does not function as

part of a multimeric complex. Taken together, these observations suggest that Cdc14

enzymes could display similar substrate selectivity across multiple species and may

be amenable to the development of highly specific competitive inhibitors.
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Fig. 1.5.: (Caption on next page)
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Fig. 1.5.: (Previous page) Cdc14 catalytic and substrate interacting motifs are
conserved. Alignment of Cdc14 protein sequences from an evolutionarily diverse set
of organisms. The observed conservation of sequences responsible for catalysis and
substrate selectivity indicates that the enzymatic behavior observed in budding yeast
Cdc14 is likely to be conserved across multiple species.

1.6 Mitotic exit as a therapeutic target

One of the central characteristics of cancer cells is the loss of proliferative control

[131]. This can take the form of either adaptations that allow cells to keep growth

signals active or result from deactivation of growth limiting mechanisms. Inability to

regulate mitotic exit and failure to achieve appropriate temporal control of mitotic

exit events is a potential driving factor in the progression of cancer [132].

A chemotherapeutic strategy that has been clinically relevant in treating cancer for

some time has been the chemical perturbation of mitotic spindle function by taxanes

and vinca alkaloids (reviewed in [133, 134]). The strategy relies on the activation of

the spindle assembly checkpoint (SAC) in the presence of a defective spindle, which

inhibits APCCdc20-mediated securin and cyclin B degradation, and causes an arrest

at metaphase. The sustained mitotic arrest eventually leads to programmed cell

death [134]. It has been observed that cells can undergo mitotic slippage and escape

from arrest by slowly degrading cyclin B1 even though the SAC is activated by these

drugs [135]. Cancerous cells often develop the ability to overcome the microtubule-

targeted mitotic arrest by inappropriately inducing mitotic exit, which further leads

to genome instability. Thus, one of the major challenges with developing effective

chemotherapies that disrupt mitotic spindle function has been avoiding slippage or

other mechanisms of resistance [136].

An alternative therapeutic strategy that has been proposed is the inhibition of

APC activity, because securin and cyclin B degradation by the APC is an essential

step in mitotic exit [137]. The genetic ablation of Cdc20, the APC activating subunit,
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in cancerous cells has been demonstrated to reduce proliferation by preventing mitotic

exit [138]. Sackton et al. have also shown that a combination of two chemicals

is able to block the interaction of APC with Cdc20 as well as Cdc20 with D box

containing substrates, resulting in blockage of mitotic exit [139]. Another study has

demonstrated that coupling microtubule disrupting drugs with the depletion of Cdc20

is capable of reducing the probability of mitotic slippage [136]. This study also found

Cdc20 knockdown more effective at inducing a longer mitotic blockage, compared to

spindle-perturbing drugs, which led to increased apoptosis. These studies suggest

targeting mitotic exit processes is a viable and potentially more effective therapeutic

strategy.

1.6.1 Utility of Cdc14 inhibitor development

As discussed above, targeting mitotic exit for chemotherapy results in improved

therapeutic efficacy, especially when spindle function is simultaneously disrupted

[136]. Inhibiting Cdc14 activity, which plays a role in mitotic exit, in combina-

tion with spindle disrupting drugs, might also prove to be an effective therapeutic

approach. Cdc14 is also known to play a role in the G2 DNA damage response check-

point [140]. This raises the possibility of improving the effectiveness of DNA damag-

ing chemotherapeutic agents like doxorubicin by simultaneously inhibiting Cdc14 to

prevent an effective DNA damage checkpoint response.

1.6.2 Cdc14 inhibitors as research tools

As discussed in previous sections, the role of Cdc14 in regulating the cell cycle

has only been extensively studied in budding yeast, where it is essential for cell

cycle progress, and in fission yeast, where it is not essential and phenotypes observed

are somewhat mild. Outside of these unicellular organisms, there have not been

definitive results from efforts to understand Cdc14 function. The fact that most
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higher eukaryotes have multiple paralogs of the enzyme makes it more difficult to

study its role, because it is not known if these paralogs are functionally redundant.

The development of a specific and high affinity inhibitor of Cdc14 has the potential

to be useful in elucidating Cdc14 roles in higher eukaryotes, including humans. Such

an inhibitor would allow the simultaneous inhibition of all Cdc14 activity in cells,

which has, thus far, not been achieved by genetic approaches.
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2. ACM1 IS DEGRADED VIA AN UNCONVENTIONAL

MECHANISM

2.1 Introduction

1Proper execution of the eukaryotic cell division cycle depends heavily on ubiquitin-

mediated proteolysis, involving the conjugation of polyubiquitin chains to substrate

proteins by E3 ubiquitin ligases and their subsequent recognition and degradation by

the 26S proteasome [38]. Coupled with transcriptional regulation, proteolysis helps

establish cell cycle-dependent protein expression profiles for many key regulators of

cell division, contributing to precise control of the initiation and order of cell cycle

events [53, 137]. Two large ubiquitin ligase complexes are responsible for the ma-

jority of regulated proteolysis during the cell division cycle [53, 141, 142]. One, the

Skp1/cullin/F-box protein complex (SCF) is well known for promoting the degra-

dation of G1 cyclins, cyclin-dependent kinase (Cdk) inhibitors, and numerous other

substrates, and is thought to be constitutively active. However, recognition of most

SCF substrates requires their cell cycle-dependent phosphorylation [143]. The sec-

ond, the anaphase-promoting complex (APC), or cyclosome, targets the chromosome

segregation inhibitor securin, S and M phase cyclins, and many other proteins for

degradation during mitosis and G1 [144, 145]. In contrast to SCF, the activity of

APC is cell cycle-regulated by several mechanisms including phosphorylation of, and

inhibitor binding to, its activator proteins Cdc20 and Cdh1 [146]. Following conju-

gation of polyubiquitin chains to substrate lysines by SCF and APC, recognition by

1

This chapter has been reprinted from Melesse M, Choi E, Hall H, Walsh MJ, Geer MA,
Hall MC (2014) Timely Activation of Budding Yeast APCCdh1 Involves Degradation of Its
Inhibitor, Acm1, by an Unconventional Proteolytic Mechanism. PLoS ONE 9(7): e103517.
doi:10.1371/journal.pone.0103517 under the Creative Commons Attribution 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.



28

the 26S proteasome results in their irreversible degradation, and helps drive the cell

cycle forward.

In this report, we describe an unconventional proteolytic mechanism, independent

of SCF and APC, that helps establish the strict cell cycle expression profile of the

APC inhibitor Acm1 in budding yeast. Acm1 was identified several years ago by

our lab as a tight binding partner and inhibitor of the APC activator Cdh1 [88,

90]. Acm1 uses substrate-like degron sequences to competitively inhibit substrate

binding to Cdh1, making it one of several pseudosubstrate inhibitors of the APC

identified in diverse eukaryotes. One important function of Acm1 appears to be

ensuring proper positioning of the nucleus along the mother-bud axis prior to nuclear

division. Acm1 does this by limiting the premature accumulation of Cdh1 at the bud

neck via interaction with its high affinity substrate Hsl1 [93], although the details of

how this contributes to proper nuclear orientation remain unclear.

Acm1 expression is very tightly cell cycle-regulated. Acm1 protein is absent from

G1 cells, appears around the onset of S phase, and rapidly disappears in late mitosis,

after anaphase onset [88, 90, 91]. The ACM1 promoter is also cell cycle regulated as

part of a large collection of genes turned on at the beginning of S phase [147]. Two

distinct proteolytic mechanisms have been reported to clear cells of Acm1 at the end

of mitosis. First, consistent with the cell cycle profile of Acm1 being reminiscent of

APC substrates, Acm1 was shown to be a target of APCCdc20 during anaphase [91].

In other studies, Acm1 was shown to be very sensitive to an APC-independent

proteolytic mechanism in G1 [92,94]. This APC-independent mechanism is inhibited

by Cdk phosphorylation on Acm1 such that Acm1 is stable only during the cell cycle

window of high Cdk activity. The results presented here provide confirmation of both

proteolytic mechanisms but demonstrate that the APC-independent mechanism is

both necessary and sufficient for complete elimination of Acm1 during mitotic exit.

Interestingly, several lines of evidence suggest that this mechanism is independent of

the conventional ubiquitin conjugation pathway, although it is still mediated by the

26S proteasome. This is one of the first examples of a strict cell cycle expression
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pattern established by proteolytic mechanisms independent of SCF and APC. The

existence of two distinct degradation pathways for Acm1 suggests it is critical for

yeast cells to relieve Cdh1 inhibition in a timely manner to promote mitotic exit,

cytokinesis, and establishment of the ensuing G1 and we provide evidence to support

this.

2.2 Results

2.2.1 APCCdc20 activity is not sufficient for complete Acm1 degradation

Acm1 was reported to be effectively eliminated via APCCdc20 prior to mitotic

exit [91]. However, we originally identified Acm1 as a Cdh1 binding partner at the late

anaphase arrest point of a cdc15-2 strain [88] and therefore suspected that APCCdc20

might not be sufficient for complete elimination of Acm1. To test this rigorously

we had a polyclonal antibody raised against recombinant Acm1 so we could monitor

endogenous Acm1 protein without addition of an epitope tag. Synchronized dbf2-2

cultures were released from α-factor-induced G1 arrest into fresh medium at 37 ◦C so

they would arrest in late anaphase, a point where APCCdc20 has been activated and

has targeted its substrates for degradation (Figure 2.1A and 2.1B). As expected, the

levels of the well-characterized Cdc20 substrates Clb5 and Pds1 rapidly dropped as

cells reached the arrest point. In contrast, the Acm1 level decreased more slowly and

a substantial fraction (>30%) of Acm1 remained after a lengthy arrest.

Next, to definitively test for the presence of an APC-independent proteolytic mech-

anism acting on endogenous Acm1 protein in late mitosis and G1, we probed for Acm1

in extracts from synchronized cultures of a yeast strain (apc2∆ apc11∆ cdc20∆ cdh1∆

pds1∆ clb5∆ SIC110x) engineered to survive in the complete absence of APC activ-

ity by deletion of the essential APC substrate genes CLB5 and PDS1, and 10-fold

overexpression of the Cdk inhibitor Sic1 [148]. When compared with a control strain

containing wild-type APC, Acm1 levels cycled normally (Figure 2.1C), being absent

from G1 cells as previously reported [88]. In contrast, the APC substrate Clb2 was
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strongly stabilized and present throughout the cell cycle in the absence of APC activ-

ity. These results are consistent with previous studies of overexpressed Acm1 stability

in G1-arrested cells harboring a conditional APC mutant allele [92,94]. We conclude

that APCCdc20 is not sufficient for complete elimination of Acm1 in late mitosis and

that an APC-independent mechanism is also required. In the absence of APC ac-

tivity this APC-independent mechanism is sufficient for complete Acm1 elimination

in late mitosis and G1. We therefore set out to characterize the APC-independent

proteolytic mechanism responsible for Acm1 degradation.



31

Fig. 2.1.: APCCdc20 is neither necessary nor sufficient for complete Acm1
degradation at mitotic exit. A) dbf2-2 cells expressing endogenous chromosomally
tagged Clb5-3HA and Pds1-9Myc were released from a G1 arrest at 37 ◦C and the
levels of Clb5, Pds1, and Acm1 monitored by immunoblotting over the indicated
time period. G6PD is a loading control. Numbers under each lane were obtained by
fluorescence microscopic analysis of at least 100 cells at that timepoint stained with
DAPI and scored for the presence of 2 segregated DNA masses indicative of the dbf2-
2 late anaphase arrest point. cyc, asynchronous cycling cultures. B) Protein levels
were quantified from the immunoblots in panel A. The abundance of each protein was
plotted as a percentage of its maximal expression level. C) Extracts from synchronized
cultures of yBRT135 (Wild-type) and mutant strain yBRT159 lacking several subunits
of APC (apc2∆apc11∆cdc20∆cdh1∆pds1∆clb5∆SIC110x) were generously provided
by David Toczyski [148], and were probed for Acm1, Clb2, and the loading control
G6PD by immunoblotting. The budding index under each lane, taken from [148], is
used as an indicator of cell cycle progression.

2.2.2 Acm1 is degraded by the 26S proteasome in vivo

Proteolysis of Acm1 in G1 can be blocked by the proteasome inhibitor MG-

132 [94], suggesting that Acm1 is a substrate of the proteasome. To more rigor-

ously characterize proteasome dependence and rule out the possibility of off-target
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effects of MG-132 we compared Acm1 stability after MG-132 treatment with stability

in a collection of conditional proteasome mutant strains. We used wild-type Acm1,

which is unstable only in G1 cells, and an Acm1 mutant lacking Cdk phosphorylation

sites (Acm15A), which is unstable throughout the cell cycle [94]. Consistent with

our previous results with wild-type Acm1, 3HA-Acm15A was strongly stabilized after

MG-132 treatment in a GAL1 promoter shutoff/cycloheximide chase assay (Figure

2.2A). Using the same assay, the stability of both 3HA-Acm1 and 3HA-Acm15A was

measured in G1-arrested pre1-1 pre2-2 cells harboring temperature-sensitive muta-

tions in the β4 and β5 subunits of the 20S proteasome core particle [149]. Both

3HA-Acm1 and 3HA-Acm15A, as well as the control APC substrate Fin1-3HA were

highly unstable in wild type G1 cells but were strongly stabilized in the pre1-1 pre2-2

mutant strain (Figure 2.2B). These results confirm that Acm1 is degraded by the

proteasome in G1. We also tested Acm1 stability in a proteasome mutant strain,

cim3-1, with a temperature-sensitive defect in the Rpt6 ATPase subunit of the 19S

regulatory particle [150], which is primarily responsible for recognition and process-

ing of poly-ubiquitinated proteins. The cim3-1 strain shows defective proteolysis of

ubiquitinated substrates at restrictive temperature [150]. 3HA-Acm1, 3HA-Acm15A,

and Fin1-3HA were all strongly stabilized in G1-arrested cim3-1 cells (Figure 2.2C).

To ensure this was not an artifact of Acm1 overexpression from the GAL1 promoter

we also monitored the level of endogenous Acm1 in wild-type and conditional protea-

some mutant strains at the restrictive temperature. The steady-state level of Acm1

was increased upon proteasome inactivation in both cim3-1 and pre1-1 pre2-2 cells

(Figure 2.2D). Collectively, these results demonstrate that Acm1 proteolysis requires

activity of the 26S proteasome, not just the 20S core particle, and suggested that

Acm1 is likely targeted to the proteasome via polyubiquitination. We therefore set

out to identify components of the ubiquitin system required for the APC-independent

Acm1 proteolysis.
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Fig. 2.2.: Acm1 degradation requires both the 20S core particle and the 19S
regulatory complex of the 26S proteasome. A) Strain YKA407 carrying plasmid

pHLP298 expressing 3HA-Acm15A from the GAL1 promoter was treated first with galactose to

induce 3HA-Acm15A expression, second with 50 µM MG-132 or a mock treatment, and third with

glucose and cycloheximide to terminate expression (Time = 0). The level of 3HA-Acm15A was then

monitored over time by immunoblotting with an HA antibody. G6PD is a loading control. B) and C)

The same experiment described in panel A was performed with wild-type (YWO0607 for B, MHY753

for C) or the indicated temperature-sensitive proteasome mutant strains (YWO0612 for B, MHY754

for C) carrying plasmids expressing either 3HA-Acm15A, 3HA-Acm1, or Fin1-3HA from the GAL1

promoter. Instead of MG-132 treatment, cultures were shifted to 37 ◦C prior to terminating protein

expression. For 3HA-Acm1, and Fin1-3HA, cells were arrested first in G1. D) The same strains

from panels B and C were grown to exponential phase and shifted to the restrictive temperature to

compare the steady-state level of endogenous Acm1 by immunoblotting with an anti-Acm1 antibody.

G6PD was used as a loading control.

2.2.3 Acm1 proteolysis requires a functional ubiquitin conjugation sys-

tem

To test if Acm1 proteolysis is generally dependent on the ubiquitin conjugation

system, we measured its stability in a strain harboring a conditional mutation, uba1-
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204, in the sole E1 ubiquitin activating enzyme in budding yeast [151]. A pulse of

3HA-Acm1 or Fin1-myc expression was induced from the GAL1 promoter in G1-

arrested wild-type and uba1-ts cells after shift to the non-permissive temperature of

37 ◦C (Figure 2.3). Both 3HA-Acm1 and the control protein Fin1-myc were strongly

stabilized in uba1-ts cells compared to isogenic wild-type cells. Similar, although less

dramatic, results were obtained using a second conditional E1 allele, uba1-ts ( [152];

data not shown). We conclude that the APC-independent G1 degradation of Acm1

is dependent on a functional ubiquitin conjugation system.

Fig. 2.3.: Acm1 proteolysis requires a functional ubiquitin conjugation path-
way. Expression of 3HA-Acm1 or Fin1-myc was induced with galactose in G1-
arrested wild-type (RJD3268) or uba1-204 (RJD3269) cells at room temperature.
Culture temperature was increased to 37 ◦C prior to addition of glucose and cyclo-
heximide. Cells were harvested at the indicated times after terminating expression
and protein levels monitored by immunoblotting with anti-HA or anti-myc antibodies.
G6PD is a loading control.

2.2.4 Acm1 proteolysis does not require individual E3 ligases or E2 con-

jugating enzymes

To identify the proteins directly responsible for Acm1 ubiquitination and prote-

olysis, we systematically screened a collection of yeast strains individually lacking

non-essential yeast E2 ubiquitin conjugating enzymes and E3 ubiquitin ligases (Table

2-1) for effects on Acm1 stability. We used the Acm15A mutant because it is con-

stitutively unstable and does not require cell cycle arrest in G1 to monitor effects
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on stability. First, steady-state levels of 3HA-Acm15A expressed from the natural

ACM1 promoter in exponentially growing E2 and E3 mutant cultures were measured

by immunoblotting and compared to the level of wild-type 3HA-Acm1 in the parent

strain. Surprisingly, the level of Acm15A fluctuated widely in the mutant strains, and

in several cases was significantly elevated, suggesting that Acm1 stability might be

increased in the absence of these ubiquitin system components (Figure 2.8). However,

subsequent direct testing of stability using our inducible promoter and cycloheximide

chase system failed to reveal any strong effects of these gene deletions on Acm1 half-

life (Figure 2.9). We suspect that the differences in steady-state expression from the

natural promoter were likely due to effects on transcription or cell cycle distribu-

tion since the ACM1 promoter is strictly cell cycle regulated [147]. Consistent with

this, analysis of wild-type Acm1 and Acm15A levels in G1-arrested cultures of these

deletion strains cells failed to reveal evidence of stabilization (data not shown).

To avoid problems with expression from the highly regulated ACM1 promoter

we re-screened the entire collection of E2 and E3 deletion strains using the GAL1

promoter stability assay and directly monitored stability of untagged Acm15A with

our Acm1 antibody. We also added strains lacking genes encoding predicted RING

domains without known E3 activity and other recently verified E3 ligases (Table 2-1).

Since inhibition of either the proteasome or Uba1 resulted in strongly stabilized Acm1

over the course of at least one hour in this assay, we compared the level of Acm1 at

0 and 60 minutes in each strain after addition of glucose and cycloheximide. In 47

known or putative E3 deletion strains and 10 E2 deletion strains we did not find a

single case where Acm1 was stabilized comparable to MG-132 addition (Figure 2.10

and data not shown). We also found no effect of the essential E3 enzymes Rsp5 and

Prp19 on Acm1 stability using strains from the tetracycline-repressible essential gene

library (data not shown). The essential E3 SCF was tested previously with negative

results [92] and we confirmed these results using conditional cdc4 and cdc53 alleles

(data not shown). We conclude that Acm1 proteolysis by the APC-independent

mechanism does not require any single E2-E3 modules, although we cannot rule out
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the possibility that multiple redundant E3 enzymes are capable of promoting Acm1

degradation or that an unknown E3 exists that was not tested.

2.2.5 Acm1 proteolysis does not require assembly of ubiquitin chains

In parallel with the uba1-204 experiment described above, we analyzed Acm1 sta-

bility after overexpressing a mutant ubiquitin in which all lysines have been replaced

with arginine (Ub-K7R, a gift from L. Hicke, Northwestern University). This mutant

blocks polyubiquitin chain extension when conjugated to a protein [153] and thereby

stabilizes ubiquitin proteasome substrates. The stabilities of Acm1 and the APC

substrates Fin1 and Clb2 were monitored in G1-arrested cells overexpressing either

mutant or wild-type ubiquitin. As expected, Fin1 and Clb2 were highly stabilized by

overexpression of Ub-K7R (Figure 2.4A). Their steady-state levels were also notice-

ably higher at time 0 in the presence of Ub-K7R compared to wild-type ubiquitin. In

contrast, the stability of Acm1 was unaffected by the overexpressed chain-terminating

Ub-K7R and the steady state level of Acm1 was similar at time 0 in both strains.

Similar results were observed with 3HA-Acm1 in a doa4∆ strain, which has a defect in

processing of ubiquitin precursors and therefore a lower level of endogenous ubiquitin

for Ub-K7R to compete with (Figure 2.4B). In this case, we terminated transcription

from the GAL1 promoter with glucose but did not add cycloheximide, allowing con-

tinuous synthesis and accumulation of Ub-K7R and wild-type ubiquitin. Surprisingly,

these experiments reveal that Acm1 proteolysis in G1 shows no apparent dependence

on assembly of poly-ubiquitin chains, a general requirement for ubiquitin-mediated

proteolysis.

2.2.6 Ubiquitin conjugation sites on Acm1 are not required for its pro-

teolysis

To independently test the dependence of Acm1 proteolysis on ubiquitination, we

constructed a mutant ACM1 allele in which all 20 lysine codons were replaced with
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arginine codons. The mutant protein, 3HA-Acm1K0, lacks all internal sites for ubiqui-

tin conjugation and we added a 3HA epitope tag lacking lysines to block the native

N-terminus as a potential ubiquitin conjugation site. Despite the extensive muta-

genesis, 3HA-Acm1K0 is fully functional as a Cdh1 inhibitor in vivo (Figure 2.5A)

because 3HAAcm1K0 overexpression suppressed the toxic effect of Cdh1 overexpres-

sion like wild-type 3HA-Acm1 [88–90,92]. Thus, the mutant is biologically functional

and does not suffer from global misfolding or severe structural differences compared

to wild-type Acm1. We compared the stability of galactose-induced pulses of 3HA-

Acm1K0 and 3HA-Acm1 in α-factor arrested G1 cells (Figure 2.5B). The absence of

lysines had no effect on the stability of Acm1 (Figure 2.5B), suggesting that ubiquitin

conjugation to Acm1 is not required for its proteolysis. Acm1 stability is dramati-

cally increased by cyclin-dependent kinase phosphorylation [91,92,94] and as a result,

Acm1 is stable in S and M phase cells. To determine if the Acm1K0 mutant is still

regulated by phosphorylation like wild-type Acm1, we repeated the stability assay in

S phase cells. Both wild-type 3HA-Acm1 and 3HA-Acm1K0 were comparably stable

in hydroxyurea-arrested S phase cells compared to G1 (Figure 2.5C), suggesting that

the mutagenesis did not perturb normal phospho-regulation of Acm1 stability.
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Fig. 2.4.: Acm1 proteolysis does not require assembly of polyubiquitin
chains. A) YKA247 cells containing PGAL1-driven plasmids pHLP391 (for Acm1),
pESCW-Fin1-Myc, or pHLP309 (for Clb2) and PCUP1-driven ubiquitin (Ub) overex-
pression plasmids LHP306 (for Ub-K7R mutant) or LHP308 (for wild-type Ub) were
grown to early exponential phase. Cells were arrested at G1 before expression of wild-
type or mutant Ub was induced with 100 mM CuSO4 and Acm1, Fin1-myc, and Clb2
with galactose. Stability of Acm1, Fin1-Myc, and Clb2 were monitored with anti-
Acm1, anti-Myc, and anti-Clb2 antibodies, respectively. G6PD is a loading control.
NC, negative control without galactose induction. B) The same experiment described
in panel A was performed in doa4∆ cells to limit the abundance of endogenous ubiqui-
tin, and only glucose was used to terminate expression, allowing continuous synthesis
of mutant or wild-type Ub. In this experiment pHLP212 was used to express 3HA-
Acm1, which was detected with an anti-HA antibody and Fin1-3HA was used as a
control.
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Since in rare cases proteins can undergo ubiquitination at nonlysine sites, we next

directly tested for ubiquitin conjugates on Acm1 in G1-arrested cells. Wild-type

3HA-Acm1 and 3HAAcm1K0 were compared in our stability assay with and without

proteasome inhibition. Consistent with results presented above, both proteins were

highly unstable in the absence of MG-132 but strongly stabilized in the presence of

MG-132 (Figure 2.5D). Acm1 has been proposed to undergo weak ubiquitination and

subsequent degradation mediated by APCCdh1, the enzyme it inhibits [91]. Consistent

with this, we detected ubiquitin conjugates on wild-type 3HA-Acm1 in the presence

of MG-132 (Figure 2.5D). Under identical conditions, ubiquitin conjugates were un-

detectable on 3HA-Acm1K0. Since these proteins have indistinguishable halflives in

G1 cells, the ubiquitin conjugates detected on wild-type Acm1 are not likely to con-

tribute significantly to its proteolysis under normal conditions. Importantly, these

results argue that Acm1K0 is not targeted to the proteasome via unconventional ubi-

quitin linkages to non-lysine amino acids, or to the N-terminus.

Finally, we compared the levels of 3HA-Acm1 and 3HAAcm1K0 expressed from

the natural ACM1 promoter as a function of cell cycle stage in cdc15-2 cells (Figure

2.5E). Cells were arrested in G1 with α-factor, S with hydroxyurea, early M with

nocodazole, and late M by temperature shift to 37 ◦C and Acm1 levels compared by

immunoblotting. In cycling cells and S and early M arrested cells the abundance of

3HA-Acm1 and 3HA-Acm1K0 was equivalent. In late M arrested cells, the abundance

of 3HAAcm1K0 was higher than 3HA-Acm1 and was equivalent to the level in early

M cells, consistent with the anaphase ubiquitin dependent proteolytic mechanism

mediated by APCCdc20 [91]. In support of our results from Figure 2.1, a portion of

the wild-type 3HA-Acm1 was still present in these late anaphase cells, demonstrating

that Acm1 is not completely eliminated by APCCdc20. Importantly, 3HA-Acm1K0 was

undetected in G1 cells, similar to wild-type 3HA-Acm1. This strongly implies that the

APC-independent proteolytic mechanism that clears Acm1 completely during mitotic

exit and G1 does not involve conjugation of ubiquitin chains to Acm1.
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Fig. 2.5.: Acm1 proteolysis does not require ubiquitin acceptor sites on
Acm1. A) YKA247 cells carrying PGAL1 expression plasmids for 3FLAG-Cdh1, 3HA-
Acm1, HA-Acm1-ken, and 3HA-Acm1K0 in the indicated combinations were grown
until mid-exponential phase. 10-fold serial dilutions were spotted on selective media
containing either glucose or galactose. Plates were incubated at 30 ◦C for 23 days. B)
and C) YKA247 cells carrying PGAL1 expression plasmids for 3HA-Acm1 (pHLP117)
or lysine-less 3HA-Acm1K0 mutant (pHLP330) were grown in YP-raffinose to early
exponential phase. Cells were arrested at G1 (panel B) or S phase (panel C). Sta-
bility of 3HA-Acm1 and 3HA-Acm1K0 was monitored over the indicated time period
by immunoblotting with anti-HA antibody. G6PDH is a loading control. D) Same
as panels B and C, except pdr5∆ cells were used and stability was monitored in the
presence and absence of MG-132 as indicated. Longer immunoblot exposures were
obtained for detection of ubiquitin (Ub) conjugates. E) cdc15-2 cells carrying cen-
tromeric plasmids expressing either wild-type 3HA-Acm1 or 3HA-Acm1K0 from the
natural ACM1 promoter were arrested at the indicated cell cycle stages as described
in Materials and Methods. The level of each protein was then compared by anti-HA
immunoblotting with G6PD as a loading control.
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2.2.7 An N-terminal putative disordered region of Acm1 contributes to

APC-independent degradation

To probe the biological significance of Acm1 degradation we needed a stable Acm1

mutant. We therefore sought truncated Acm1 variants that exhibited increased half-

life in our G1 stability assay. We fused the ZZ domain of Protein A (ProtA) to

the Acm1 C-terminus (for equivalent immunoblot detection of all Acm1 constructs).

Full length Acm1-ProtA was highly unstable. Removal of 42 amino acids or less had

little effect on the rate of Acm1-ProtA degradation (Figure 2.6A). Strikingly, removal

of the 52 N-terminal amino acids strongly stabilized Acm1-ProtA in this assay and

longer truncations from the N-terminus were also stable.

Although clearly required for efficient Acm1 degradation in G1, the first 52 amino

acids of Acm1 were not sufficient to destabilize Protein A when fused to its N-terminus

(Figure 2.6B). This suggested that other regions of Acm1 might be important as well.

We found that the Acm1N∆52 protein was unstable in the absence of the C-terminal

Protein A fusion (Figure 2.6C). Thus, stabilization of Acm1 in G1 required both loss

of the amino terminus and modification of the C-terminus. The N-terminal region

of Acm1 is predicted to be highly disordered using several secondary structure pre-

diction algorithms (data not shown). The proteasome can directly recognize some

disordered proteins and catalyze their proteolysis in the absence of ubiquitin conju-

gation. We purified active 20S and 26S proteasomes from yeast but found no evidence

that a variety of recombinant Acm1 proteins purified from E. coli could be directly

recognized and degraded (Figure 2.11).
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Fig. 2.6.: Proteolysis of an Acm1-ProtA fusion protein in G1 requires
the N-terminal 52 amino acids of Acm1. A) YKA247 cells transformed with
PGAL1 constructs expressing ACM1, acm1N∆42, acm1N∆52, acm1N∆60, acm1N∆72

or acm1N∆80 fused to the ZZ domain of Protein A were arrested in G1 and protein
stability assayed over time by immunoblotting with anti-Protein A antibody. B) The
same assay as panel A with cells expressing Acm1 amino acids 152 fused to Protein A.
C) The stability of Acm1 and Acm1N∆52 without the Protein A fusion were compared
using the same assay as in panel A, but with anti-Acm1 antibody for immunoblot
detection. G6PD is a loading control. G6PD loading controls were performed for all
blots in panels A and B as well (not shown).

2.2.8 Acm1N∆52 is still cleared from cells at mitotic exit

We next used the stabilized Acm1N∆52 protein to study the biological significance

of Acm1 proteolysis at mitotic exit. It is important to note that the N-terminus

of Acm1 also contains the Cdc20-specific D-box responsible for Acm1 recognition

by APCCdc20 [91]. Thus, the Acm1N∆52 protein should be resistant to both known

proteolytic mechanisms. We predicted that failure to degrade Acm1 would prevent

or delay activation of APCCdh1. To test this, strains harboring a PMET3-CDC20

allele and expressing either Acm1 or Acm1N∆52-ProtA from the ACM1 promoter

were blocked at metaphase by methionine addition and then released in the absence

of methionine to undergo synchronous mitotic exit. The levels of Acm1 and the Cdh1

substrate Clb2 were monitored over time by immunoblotting (Figure 2.7A and 2.7B).

Surprisingly, there was little difference in the decay profiles of Acm1 and Acm1N∆52-
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ProtA. Moreover, we did not observe significant differences in degradation of Clb2.

Similar results were observed with another Cdh1 target, Kip1 (data not shown).

Thus, although Acm1N∆52-ProtA is highly stabilized in G1-arrested cells, it is still

effectively cleared by cells during mitotic exit. Possible explanations for this are

discussed below.

2.2.9 Constitutive expression of stabilized Acm1N∆52 impairs growth of

sic1∆ cells

Since the ACM1 promoter is cell cycle-regulated, loss of Acm1N∆52 as cells exit

mitosis could be in part due to termination of ACM1 transcription. To test for defects

in APCCdh1 function in cells expressing stabilized Acm1N∆52 we expressed ACM1 and

acm1N∆52 alleles from the constitutive ADH promoter in a sic1∆ background. Either

Sic1 or Cdh1 is sufficient for Cdk inactivation and mitotic exit in budding yeast, how-

ever loss of both is lethal. Therefore, activation of Cdh1 becomes critically important

in sic1∆ cells. We observed a significant growth delay in sic1∆ cells constitutively

expressing Acm1N∆52 compared to wild-type Acm1, both in liquid culture and on

agar plates (Figure 2.7C and 2.7D). This experiment supports the idea that clearance

of Acm1 from cells is required for timely and full activation of APCCdh1 at mitotic

exit and in G1.
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Fig. 2.7.: (Caption on next page)
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Fig. 2.7.: (Previous page)
Acm1N∆52 is still cleared at mitotic exit, but constitutive expression im-
pairs growth of sic1∆ cells. A) YKA859 cells carrying either pHLP117 (for
expression of 3HA-Acm1) or pHLP505 (for expression of Acm1N∆52-ProtA) were ar-
rested at metaphase by methionine repression of PMET3-CDC20 and then released in
the absence of methionine. Cells were collected at regular intervals and analyzed by
immunoblotting using antibodies against Acm1, Clb2, or G6PD (loading control). B)
Quantitation of chemiluminescent immunoblots from panel A. Data are the average
of 4 independent experiments. C) Growth of sic1∆ cells transformed with either an
empty vector, pHLP361 (PADH-Acm1-ProtA) or pHLP363 (PADH-acm1N∆52-ProtA)
were compared using a plate reader to measure absorbance at 600 nm. Data are the
average of three independent experiments with standard deviation error bars. D)
Serial 10-fold dilutions of the strains from panel C as well as isogenic wild-type and
cdh1∆ strains were spotted and grown on selective agar plates.
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Fig. 2.8.: Screening of non-essential E2 conjugases and E3 ligases for effects
on 3HA-Acm15A expression level. 3HA-Acm15A was expressed from the natural
ACM1 promoter on a centromeric plasmid in BY4741 (WT) and deletion strains
lacking the genes indicated above each lane. The steady state level of 3HA-Acm15A

in asynchronous log phase cultures of each strain was compared to that of wild-
type 3HA-Acm1 (labeled Reference) expressed from the same plasmid in BY4741 by
immunoblotting with anti-HA antibody. G6PDH is a loading control.
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Fig. 2.9.: Measurements of HA-Acm15A stability in selected strains lack-
ing nonessential E2 conjugases and E3 ligases. Stability of HA-Acm15A was
monitored by GAL1 promoter stability assay as described in Materials and Methods
in asynchronous mid-log phase cultures of the indicated gene deletion strains harbor-
ing pHLP110. Anti-HA immunoblot profiles were compared to those from MG-132
treated cells and conditional proteasome mutant strains (not shown, see Figure 2.2).
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Fig. 2.10.: Screening of non-essential E2 conjugases and known and putative
E3 ligases for effects on Acm15A stability. Experiments performed as in Figure
2.9 but using an untagged Acm15A variant expressed from PGAL1 in pHLP392 in
an acm1∆ background. Only timepoints 0 and 60 minutes following glucose and
cycloheximide addition were compared. MG-132 treatment was used as a positive
control for Acm1 stabilization. Anti-Acm1 antibody was used to detect the Acm15A.
Only representative E3 deletion strains are shown in panel A, but all strains listed in
Table 2-1 were analyzed with similar results. Panel B shows E2 deletion strains
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Fig. 2.11.: Acm1 is not degraded by purified 20S or 26S proteasomes. A)
SDS-PAGE analysis of purified 20S (left) and 26S (right) proteasome preparations
visualized with Coomassie blue. M, molecular weight markers. Components of the
proteasomes were confirmed by mass spectrometry. B) Proteasome activities were
measured using the fluorogenic substrate, Suc-LLVY-AMC. The proteasome inhibitor
epoxomycin (Epox) was used to demonstrate specificity. Similar results were observed
with MG-132 (not shown). A standard curve of free AMC was used to convert
fluorescence signal to moles of product formed. 20S Ref is the specific activity value
reported previously for budding yeast 20S proteasome in reference 55 from the main
text. C) Immunoblot of recombinant purified GST-Acm1 incubated with purified 26S
proteasome over time. D) Immunoblot of recombinant 6His-Acm1 alone and after
incubation with purified proteasome (20S or 26S) with and without the inhibitor
epoxomicin. E) GST-Acm1 and free Acm1 generated by treatment of GST-Acm1
with 3C protease were incubated with purified 26S proteasome and analyzed by SDS-
PAGE and Coomassie blue staining.
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2.3 Discussion

2.3.1 Acm1 may be a novel ubiquitin-independent proteasome substrate

The 26S proteasome is a large ATP-dependent protease complex consisting of a

20S core particle with a 19S regulatory particle at both ends [154, 155]. It is the

primary enzymatic activity responsible for protein turnover in eukaryotic cells [156].

Although the vast majority of known proteasome substrates require ubiquitination for

proteolysis, proteins can also be recognized by the proteasome without ubiquitin con-

jugation [157–159]. The 20S core particle alone, which is likely the predominant form

of the proteasome in vivo, can recognize mis-folded or damaged proteins directly and

catalyze their proteolysis independent of ubiquitin conjugation and ATP hydrolysis.

In addition, the 26S holoenzyme can also recognize some proteins independent of ubi-

quitin. One recent study estimated that 20% of human proteins are subject to prote-

olysis by the proteasome independent of ubiquitin conjugation [160]. However, the ex-

tent to which any of this proteolysis is regulated is unclear and ubiquitin-independent

proteolysis is thought to largely constitute a basal protein turnover pathway and/or

a route to eliminate damaged or mis-folded proteins [158,161].

The best-characterized ubiquitin-independent substrate of the 26S proteasome

is ornithine decarboxylase (ODC), which catalyzes the rate-limiting first step in

polyamine biosynthesis [162, 163]. ODC is targeted to the proteasome by a protein,

termed antizyme, in response to high polyamine levels. This regulated ubiquitin-

independent proteolysis serves to maintain polyamine homeostasis in cells [164]. Antizyme

binding to ODC results in a conformational change that exposes a C-terminal degron

in ODC recognized by the 26S proteasome [165, 166]. Antizyme itself also enhances

recognition of ODC by the proteasome. The C-terminal tail of ODC may act as a

structural ubiquitin mimic since it competes with ubiquitin chains for binding to the

proteasome [166]. Interestingly, antizyme has also been linked to the ubiquitin inde-

pendent proteasomal degradation of other proteins, including the cell cycle regulators

cyclin D1 [167] and Aurora A kinase [52]. Other proteins involved in aspects of cell
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cycle control with reported ubiquitin-independent proteolytic mechanisms include

p53 [168], p21Cip1 [169–172], and Rb [173, 174]. These proteins are also destroyed

by the conventional ubiquitin-proteasome pathway and it is often difficult to dis-

sect the relative physiological contributions of ubiquitin-dependent and independent

mechanisms. In addition, for all of these cases it is unclear if, and how, ubiquitin-

independent proteolytic mechanisms are regulated during cell division. One possible

exception to this may be human c-Fos, a proto-oncoprotein that functions as part

of the AP-1 transcription factor complex involved in control of cell proliferation and

other processes. c-Fos is sensitive to ubiquitin independent proteolysis and one re-

port suggests that phosphorylation of a C-terminal degron sequence by MAP kinases

specifically at the G0/G1 transition inhibits this mechanism [175]. The importance

of this mechanism and its relevance in cycling cells is unclear, but it is reminiscent

of what we observe with Acm1, which is also stabilized at the G1/S transition by

phospho-dependent inhibition of seemingly ubiquitin-independent proteolysis.

Several features of Acm1s proteolytic mechanism reported here are reminiscent of

ubiquitin-independent proteolysis. First, Acm1 degradation is insensitive to inhibi-

tion of ubiquitin chain assembly (Figure 2.4). Second, Acm1 degradation does not

require acceptor lysines and does not appear to involve direct ubiquitin conjugation

(Figure 2.5). Third, no individual E3 ligase or E2 conjugating enzyme is required for

Acm1 proteolysis. The one notable exception is that Acm1 proteolysis does require a

functional E1, suggesting that the ubiquitin conjugation system is at least indirectly

required. Thus, Acm1 meets most, but not all, criteria for an ubiquitin-independent

proteasome substrate [158].

2.3.2 How is Acm1 recognized by the proteasome and what is the role of

the Acm1 N-terminus?

Additional work will be required to illuminate the biochemical mechanism by

which Acm1 is specifically targeted to the proteasome in its dephosphorylated state.
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Many ubiquitin independent proteasomal targets are thought to possess unstruc-

tured regions that mediate their direct recognition by the proteasome, much like a

mis-folded protein [158, 176]. The N-terminus of Acm1 is predicted to be largely

disordered (our unpublished observations) and contributes to its APC-independent

proteolysis (Figure 2.6). Phosphorylation at Cdk sites in and around the Acm1 N-

terminus may promote a more structured conformation that prevents degradation.

Alternatively, Acm1 may interact with a proteasome targeting factor analogous to

the ODC-antizyme interaction that has high affinity for dephosphorylated Acm1 but

not for phosphorylated Acm1. This factor could itself be regulated by ubiquitination,

thereby explaining the E1 result and general requirement for the ubiquitin system.

The E1 requirement could also reflect a general role for ubiquitinated proteins in

activating the 26S proteasome, a phenomenon that has some recent support [177].

Another possibility is that the Acm1 N- and/ or C-terminus contain sequences that

are directly recognized by a component of the proteasome. Such a sequence could act

by mimicking ubiquitin as proposed for ODC, or interact with a completely distinct

proteasome structure.

Despite the strong stabilization of Acm1N∆52-ProtA in our GAL1 promoter sta-

bility assay (Figure 2.6, half-life .1 hour), it was still effectively cleared during mitotic

exit when expressed from the ACM1 promoter, with kinetics similar to wild-type

Acm1-ProtA. There are several possible explanations for this surprising result. Al-

though the Cdc20-specific D-box is absent from Acm1N∆52 it is possible that removal

of the N-terminal 52 amino acids makes the central D-box and/or KEN box that

inhibit Cdh1 accessible to Cdc20. Cdh1 was also proposed to catalyze a slow ubiq-

uitination and proteolysis of Acm1 [91] that, coupled with the termination of ACM1

transcription, may contribute to clearance of endogenous protein. We confirmed

that the slow turnover of Acm1N∆52-ProtA in G1 cells is Cdh1-dependent (data not

shown). Finally, there may be some difference in conditions present in an α-factor

arrest compared to mitotic exit that affect the turnover rate of Acm1 by the APC-

independent mechanism.



53

2.3.3 Biological significance of Acm1 proteolytic mechanisms

Our results have confirmed the existence of two independent proteolytic mecha-

nisms acting on Acm1. Acm1 is recognized by APCCdc20 in anaphase as described pre-

viously [91] and degraded via the conventional ubiquitin pathway. However, APCCdc20

is not sufficient to completely eliminate Acm1 and is not actually required for Acm1

levels to oscillate during the cell cycle (Figure 2.1). Consistent with this conclusion,

mutation of the D-box in Acm1 that is recognized by Cdc20 had no noticeable ef-

fect on Acm1 stability or cell cycle expression profile [89,92]. The APC-independent

mechanism, which exhibits features of ubiquitin-independent proteolysis, is sufficient

to establish Acm1s cell cycle expression profile.

Why is APCCdc20 insufficient for complete Acm1 degradation and why is it nec-

essary to have two independent proteolytic mechanisms? One possibility is that two

distinct cellular pools of Acm1 exist, one in the nucleus and one in the cytoplasm,

and Cdc20 can only access nuclear Acm1. Although admittedly speculative, a fair

amount of circumstantial evidence exists to support this possibility. Cdc20 is re-

stricted primarily to the nucleus [178]. Cdh1, on the other hand, is restricted to

the cytoplasm by Cdk phosphorylation until the end of anaphase [178]. Since Acm1

binds tightly to Cdh1 in cells arrested in late anaphase [88], it is likely that at least

a portion of Acm1 remains cytoplasmic. Moreover, nuclear import of Acm1 is also

negatively regulated by Cdk phosphorylation [91]. Since Acm1 levels are much higher

than Cdh1 [88] a substantial pool of free Acm1 must exist that could be subject to

rapid nucleocytoplasmic shuttling. When Cdc14 is first activated by the FEAR net-

work in early anaphase, dephosphorylation of the pool of free Acm1 could trap it in

the nucleus where it is recognized and targeted for degradation by APCCdc20. The

Cdh1-bound pool of Acm1 would be resistant to APCCdc20 by virtue of its cytoplas-

mic localization. This pool of Acm1 could require the second ubiquitin-independent

proteolytic mechanism activated when Cdc14, released by the mitotic exit network,

reaches the cytoplasm and dephosphorylates both Cdh1 and Acm1. The complexity
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of Acm1 regulation in late mitosis strongly implies that timely and complete removal

of Acm1 is essential for proper activation of APCCdh1, completion of mitotic cyclin

degradation, and exit from mitosis. Our observation of a growth delay caused by

Acm1N∆52 expression in sic1∆ cells supports this.

A related question is why APCCdc20 action on Acm1 is required at all, especially

considering that in the absence of APC activity Acm1 levels still cycle apparently nor-

mally (Figure 2.1). The N-terminal D-box recognized by Cdc20 is highly conserved in

Acm1 orthologs, suggesting that APCCdc20-mediated degradation must be important.

It may be that initial depletion of the abundance of free Acm1 by APCCdc20 precon-

ditions Cdh1 for rapid activation at the appropriate time in late mitosis, maximizing

the efficiency, coordination, and robustness of the mitotic exit process.

Recently, Acm1 was proposed to act as a physiological buffer for Cdh1, precisely

controlling Cdh1 activity in combination with inhibitory Cdk phosphorylation to

allow proper multi-step assembly of a mitotic spindle [62]. In cells expressing a

Cdh1 mutant lacking inhibitory Cdk phosphorylation sites, bipolar spindle assembly

was ultra-sensitive to ACM1 gene dosage. In this context, very fine control of Acm1

level by the phosphorylation sensitive and constitutively active ubiquitin-independent

proteolytic mechanism could precisely control Acm1 abundance at a level representing

the maximal capacity for Cdk phosphorylation. Acm1 expressed above this level

would begin to exceed the capacity of Cdk to maintain it in a phosphorylated state

and result in rapid proteolysis of hypophosphorylated protein. This is consistent with

our unpublished observations that over-expression of Acm1 from the ADH and GAL1

promoters leads to only modest changes in steady-state level.

2.4 Conclusion

The APC-independent proteolysis of Acm1 appears to represent a unique example

of highly cell cycle-regulated proteasomal degradation independent of the canonical

polyubiquitin targeting system. This mechanism also reflects the existence of alter-
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native ways to establish cell cycle expression profiles other than via the SCF and

APC E3 ligases. Our work reinforces the cooperative interplay of transcriptional and

proteolytic control in establishing strict expression windows of cell cycle regulators

during cell division. Future research on this topic should reveal if the unique cell cy-

cle proteolysis of Acm1 represents a general mechanism complementing the ubiquitin

proteasome system in governing cell cycle-dependent protein levels.

2.5 Materials and Methods

2.5.1 Strain and plasmid construction, and mutagenesis

All yeast strains used in this study, except those for screening ubiquitin system

mutants, are listed in Table 2. Ubiquitin system mutant strains are listed in Table 2-1.

All plasmids used in this study are listed in Table S3. Strain YKA468 was constructed

by recombinational insertion of a PCR product containing a 3HA epitope tag with

klTRP1 selectable marker at the 3’ end of CLB5 and a 9MYC tag with HIS3MX6 se-

lectable marker at the 39 end of PDS1 in the dbf2-2 strain using plasmids pYM22 and

pYM19 as templates as described [179]. Strain YKA469 was constructed by standard

recombinational replacement of the ACM1 coding sequence with a PCR-generated

KanMX4 selectable marker. YKA859 was constructed from FM1175 by deleting

ACM1 using PCR-mediated integration of the KanMX4 marker and then inserting a

6HA:NatNT2 tag at the 39 end of KIP1 using pYM17 [179]. YKA404 was generated

from Y7092 [180] by PCR-based deletion of ACM1 with the Nat1 nourseothricin resis-

tance cassette. E3 and E2 deletion strains for screening stability of untagged Acm15A

were generated by crossing YKA404 to the appropriate MATa KanMX4 gene dele-

tion strains from Open Biosystems as described [180]. Plasmid pHLP317 expressing

3HA-Fin1 from the GAL1 promoter was constructed by subcloning the BamHI-SalI

fragment from pESCW-Fin1-Myc into pESCLeu-3HA (both gifts from H. Charbon-

neau, Purdue University). The acm1K0 mutant allele was created in pBluescript by

site-directed mutagenesis using the QuikChange Multi kit (Stratagene) and, amplified
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Table 2.1: Yeast deletion strains screened for effects on Acm1 stabilization

Non-essential E3s Non-essential E2s Essential E3s
ASI3 PEX12 UBC2 RSP5
ASR1 PIB1 UBC4 PRP19
BRE1 PSH1 UBC5 SCF*
CUL3 RAD5 UBC6 APC*
CUL8 RAD16 UBC7
DMA1 RAD18 UBC8
DMA2 RCO1 UBC10
ETP1 RKR1 UBC11
FAP1 RTC1 UBC12
FAR1 SAN1 UBC13
HEL1 SLX5
HEL2 SLX8

HRD1 SNT2
HUL4 SSM4
HUL5 TOM1
IRC20 TUL1
ITT1 UBR1

MAG2 UBR2
MOT2(NOT4) UFD2

NFI1 UFD4
PEP3 ULS1
PEP5 VPS8
PEX2 YBR062C
PEX10

For all non-essential genes, deletion strains were obtained from the Open Biosystems gene deletion
library and crossed to YKA404 to generate combined deletions with acm1∆::KanMX4.
For essential genes RSP5 and PRP19, tetracycline-repressible strains were obtained from the Open
Biosystems Tet-promoter collection.
*Effects of SCF on Acm1 stability were tested using conditional cdc34 and cdc53 mutant strains
(not shown and [162]). No effect was found. Lack of dependence on APC can be found in Figure
2.1 and [161].

Strains in bold were tested in both Figure 2.8 and Figure 2.10 screens. Non-essential E3 and E2

strains not in bold were only tested in the Figure 2.10 screen.
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by PCR, and subcloned into the XhoI sites of pHLP117 [88] to create pHLP328 or

subcloned into the SacII and XhoI sites of p415GAL1 to create pHLP329. The one

lysine codon in the 3HA sequence of pHLP329 was altered to an arginine codon to

create pHLP330. The 3HA-acm1K0 alleles in pHLP328 and pHLP330 were confirmed

by DNA sequencing. pHLP298 was constructed by sub-cloning the 3HA-ACM15A

sequence from pHLP209 into p415GAL1. Plasmids for Acm1 stability experiments

were constructed by first ligating the PCR-amplified ZZ domain of Protein-A into the

HindIII and XhoI sites of p415GAL1 and then ligating the appropriate ACM1 PCR

fragments into the PstI and HindIII sites. All plasmid constructs were confirmed by

DNA sequencing.

2.5.2 Cell growth and cell cycle arrest

Standard yeast growth conditions and media were used. For G1 arrest, α-factor

peptide (GenScript) was added to cultures at a final concentration of 5 mg/ml for

BAR1 or 50 mg/l for bar1∆ strains. For S phase arrest, solid hydroxyurea (Sigma

Aldrich) was added directly to cultures at 10 mg/ml. For G2/M arrest, nocodazole

(Sigma Aldrich) was added at a final concentration of 15 mg/ml from a 1.5 mg/ml

stock in DMSO. For telophase arrest, strains harboring temperature-sensitive MEN

mutants cdc15-2 or dbf2-2 were grown initially at 23 ◦C and then shifted to 37 ◦C. For

all temperature sensitive strains, 23 ◦C was used as permissive and 37 ◦C as restrictive

temperatures. For synchronous growth from G1 to telophase, α-factor treated cdc15-

2 or dbf2-2 cells were released from arrest by extensive washing using a vacuum

filtration device and resuspension in fresh medium pre-warmed to 37 ◦C. Growth was

continued at 37 ◦C and samples were removed at the indicated times for analysis.

Extracts of synchronized yBR135 and yBR159 cultures for analyzing Acm1 levels

in the absence of APC activity [148] were generously provided by David Toczyski

(U. California San Francisco). For metaphase block and release, FM1175 and its

derivatives were grown in SD-Met-Leu media (50 mL) then transferred to YPD (120
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mL) supplemented with 5 mM methionine and grown for 4 hours at 30uC. Cells

were then released into 120 mL of selective media (SD-Met-Leu) following vacuum

filtration onto a membrane disk (0.8 mm) and washing with 100 mL of SD-Met-Leu

media. Cell cycle arrests were confirmed by microscopic analysis of cell morphology

and flow cytometry. Flow cytometry analysis was performed exactly as described

[88] using an Accuri C6 flow cytometer (BD Biosciences). Cell cycle stage in the

synchronous growth experiments was determined by 49,6-diamidino-2-phenylindole

(DAPI) staining of formaldehyde-fixed cells and fluorescence microscopy to monitor

nuclear division. Images were captured on an Olympus BX51 fluorescence microscope

using Metamorph software (Molecular Devices, Inc.) and percentage of cells with

segregated DNA masses quantified (minimum 100 cells per timepoint).

2.5.3 Immunoblotting

The following antibodies were used. Monoclonal anti-HA 12CA5 and anti-Myc

9E10 were from Roche Applied Science (catalog numbers 11666606001 and 11667149001,

respectively) and were used at concentrations of 0.5 mg/ml (1:10,000 dilution) and 1

mg/ml (1:5,000 dilution), respectively. Rabbit anti-glucose-6-phosphate-dehydrogenase

(G6PD) and rabbit anti-Protein A were from Sigma (catalog numbers A9521 and

P3775, respectively) and were used at concentrations of 3 ng/ml (1:10,000 dilu-

tion) and 0.6 ng/ml (1:50,000 dilution), respectively. Rabbit anti-Clb2, used at 40

ng/ml (1:5,000 dilution) was from Santa Cruz Biotechnology (catalog numbers sc-

9071). Horseradish peroxidase-conjugated donkey anti-rabbit and anti-mouse were

from Jackson Immuno Research (catalog numbers 111-035-003 and 115-035-003, re-

spectively) and were used at concentrations of 80 ng/ml each. Immunoblots were de-

veloped using ECL plus (GE Healthcare) or Luminata (Millipore) detection reagents.

For Acm1 polyclonal antibody production and purification, the complete ACM1

open reading frame was cloned into pGEX6P-1 (GE Healthcare) for overexpression

in E. coli as an N-terminal GST-fusion protein. The majority of GST-Acm1 is found



59

in the insoluble fraction of bacterial cell extracts. Insoluble proteins were pelleted by

centrifugation and resolubilized in 8 M urea, separated by SDS-PAGE and stained

with Coomassie blue. The predominant band was GST-Acm1 and was excised and

submitted to Pacific Immunology for polyclonal antibody production. Total Rabbit

IgG was purified from serum using Protein A-agarose resin (Sigma Aldrich). Subse-

quently, anti-Acm1 antibodies were affinity purified using a GST-Acm1 affinity col-

umn generated by crosslinking recombinant GST-Acm1 to glutathione-agarose with

disuccinimidyl suberate (Thermo Scientific). Acm1 antibody was eluted from the

affinity column with 50 mM glycine pH 1.9 and immediately neutralized by addition

of Tris-HCl pH 8.0 to 100 mM. Antibody specificity was tested by immunoblotting

of yeast whole cell extracts using acm1D cells as a control. 1:5,000 dilutions of the

affinity purified antibody were used for all immunoblots. Quantification of chemilumi-

nescent immunoblots was performed using a Bio-Rad Laboratories ChemiDoc XRS+

digital imager and ImageLab software. Images obtained following incubation of blots

with chemiluminescent reagent were analyzed using the Image Lab software. Signals

were normalized to the G6PD load control signal and then to the 0 min timpoint.

2.5.4 Protein stability assays

Measurements of protein stability were performed by GAL1 promoter shutoff/

cycloheximide chase assays as described [94]. Unless stated otherwise, expression

was induced with 2% galactose and terminated by addition of 2% glucose and 0.5

mg/ml cycloheximide. For experiments in proteasome mutants (cim3-1 and pre1-1

pre2-2 ), cells were first arrested with α-factor at 23 ◦C and then protein expression

induced for 30 min prior to shift to 37 ◦C. For ubiquitin mutant overexpression

experiments, actively growing cells were arrested with α-factor in early exponential

phase (OD600=0.4) and then CuSO4 was added to 100 mM to induce overexpression

of mutant or wild-type ubiquitin from the CUP1 promoter. After 30 min 2% galactose

was added to induce expression of the Acm1 or control proteins. To measure stability
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of endogenous Acm1, mid-exponential phase cells were treated only with 0.5 mg/ml

cycloheximide to terminate expression. For MG-132 treatment, a pdr5∆ strain was

used to maximize efficacy [181] and cultures were treated with 50 µM MG-132 (from

10 mM stock in DMSO) for 30 min prior to terminating expression.

For synchronized mitotic exit experiments, Acm1 or Acm1N52-ProtA were ex-

pressed from the natural Acm1 promoter on CEN plasmids (pHLP117 or pHLP505,

respectively) in a PMET3-CDC20 background. Cultures were arrested in mitosis by

Cdc20 depletion as described above and protein levels monitored over time by quan-

titative immunoblotting.

Screening of ubiquitin system mutant strains Yeast strains individually lacking

all known non-essential E2 ubiquitin conjugating enzymes, E3 ubiquitin ligases, and

proteasome components were obtained from the Open Biosystems yeast deletion li-

brary (Table 2-1). Relative levels and stability of wild type Acm1 and the Acm15A

mutant [94] were measured by immunoblotting as described above. For screening

of essential E3 genes, strains from the Tet-repressible essential gene library (Table

2-1) containing pHLP209 expressing 3HA-Acm15A from the ACM1 promoter were

grown until mid-exponential phase and then treated with 2µg/ml doxycycline for 2

hrs before processing for immunoblotting.

2.5.5 In vivo APC inhibition assay

Inhibition of APCCdh1 in vivo was measured exactly as described previously [88].

Spotting growth assay.

Cultures of sic1∆ cells transformed with either p415ADH, pHLP361 (PADH-Acm1-

ProtA) or pHLP363 (PADH-acm1N∆52-ProtA) as well as isogenic wild-type and cdh1∆

strains transformed with p415ADH were grown to mid-exponential phase selective
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Table 2.2: Yeast strains used in this study.

Strain Genotype Source
BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 Open Biosystems
W303 MATa ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1-100
doa4∆ (BY4741) MATa doa4::KanMX4 Open Biosystems
MHY753 MATa his3-∆200 leu2∆1 ura3-52 lys2-801 trp1-63 ade2-101 [150]
MHY754 MATa his3-∆200 leu2∆1 ura3-52 lys2-801 trp1-63 ade2-101

cim3-1
[150]

YKA247 (W303) bar1 ::URA3 acm1 ::KanMX4 [88]
YKA404 MAT acm1 ::Nat1 can1 ::STE2pr-his5 lyp1∆ his3∆1 leu2∆0

ura3∆0 met15∆0
This study

YKA407 (BY4741) MATa bar1::hisG acm1 ::KanMX4 pdr5 ::URA3 [94]
YWO0607 MATa ura3 leu2-3,112 his3-11,15 CanS Gal+ Dieter H. Wolf
YWO0612 MATa ura3 leu2-3,112 his3-11,15 CanS Gal+ pre1-1 pre2-2 Dieter H. Wolf
YKA468 MATa ura3∆ leu2∆ ade2∆ his3∆ trp1∆ dbf2-2 CLB5-

3HA:TRP1 PDS1-9MYC:HIS3
This study

YKA469 (W303) MATa cdc15-2 GFP-TUB1:URA3 acm1 ::KanMX4 This study
yBR135 (W303) MATa pds1 ::LEU2 clb5 ::HIS3 trp1-1 ::SIC1:TRP110x [148]
yBR159 (W303) MATa pds1 ::LEU2 clb5 ::HIS3 trp1-1 ::SIC1:TRP110x

apc2∆ apc11∆ cdc20∆ cdh1∆
[148]

RJD3268 (W303) MATa uba1 ::KanMX pRS313-UBA1 Ray Deshaies
RJD3269 (W303) MATa uba1 ::KanMX pRS313-uba1-204 Ray Deshaies
FM1175 (W303) MATa PMET3-CDC20-HA::TRP1 Foong May Yeong
YKA859 (FM1175) acm1 ::KanMX4 KIP1-6HA:NatNT2 This study
sic1∆ (BY4741) MATa sic1 ::KanMX4 Open Biosystems
cdh1∆ (BY4741) MATa cdh1 ::KanMX4 Open Biosystems
RPN11-TAP (BY4741) MATa RPN11-TAP:HIS3MX Open Biosystems
SDL135 MATa lys2-801 leu2-3,112 ura3-52 his3-∆200 trp1-1

pre1 ::PRE1-TEVProA:HIS3
Daniel Finley
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Table 2.3: Yeast plasmids used in this study.

Name Expressed Protein Backbone Marker Origin Promoter Source
LHP306 Ub-K7R YEp352 URA3 2µm CUP1 [153]
LHP308 Ubiquitin YEp352 URA3 2µm CUP1 [153]

pESCTrp-Fin1 Fin1-Myc pESC-Trp TRP1 2µm GAL1 [94]
pHLP110 HA-Acm15A p415GAL1 LEU2 CEN/ARS GAL1 [94]
pHLP117 3HA-Acm1 p415ADH LEU2 CEN/ARS ACM1 [88]
pHLP123 HA-Acm1ken p415GAL1 LEU2 CEN/ARS GAL1 [89]
pHLP209 3HA-Acm15A p415ADH LEU2 CEN/ARS ACM1 [94]
pHLP212 3HA-Acm1 p415GAL1 LEU2 CEN/ARS GAL1 [94]
pHLP231 3FLAG-Cdh1 pNC219 TRP1 CEN/ARS GAL1 [94]
pHLP298 3HA-Acm15A p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP309 Clb2 P415GALL LEU2 CEN/ARS GALL This study
pHLP317 Fin1-3HA pESC-Leu LEU2 2µm GAL1 This study
pHLP328 3HA-Acm1K0 p415ADH LEU2 CEN/ARS ACM1 This study
pHLP330 3HA-Acm1K0 p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP391 Acm1 P415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP392 Acm15A p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP397 Acm1-ProtA p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP399 Acm1N∆42-ProtA p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP400 Acm1N∆52-ProtA p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP401 Acm1N∆60-ProtA p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP402 Acm1N∆72-ProtA p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP403 Acm1N∆80-ProtA p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP413 Acm11−18-ProtA p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP414 Acm113−30-ProtA p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP415 Acm125−42-ProtA p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP416 Acm137−54-ProtA p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP417 Acm149−66-ProtA p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP503 Acm11−52-ProtA p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP504 Acm112−52-ProtA p415GAL1 LEU2 CEN/ARS GAL1 This study
pHLP505 Acm1N∆52-ProtA p415GAL1 LEU2 CEN/ARS ACM1 This study
pHLP361 Acm1-ProtA p415ADH LEU2 CEN/ARS ADH1 This study
pHLP363 Acm1N∆52-ProtA p415ADH LEU2 CEN/ARS ADH1 This study
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media, then washed and resuspended in sterile TE to OD600 of 1.0. Serial 10-fold

dilutions were spotted onto SD-Leu agar plates and grown at 37 ◦C for 2 days.

Growth rate measurements.

Growth rates were measured by diluting exponentially growing cultures to an OD600

of 0.05 in selective media and growing in 96-well plates at 30 ◦C with shaking in a

BioTek Synergy 2 plate reader. Absorbance measurements at 600 nm were taken

every 60 minutes.

Proteasome activity assays.

Proteasomes were purified from yeast soluble whole cell extracts by IgG-agarose

(Sigma-Aldrich) affinity chromatography using a protocol described previously. For

26S proteasomes, a strain expressing an RPN11-TAP fusion was used and for 20S

proteasomes a strain expressing a PRE1-TEVProA fusion was used. To assay general

activity of proteasome preparations, the fluorogenic substrate Suc-LLVY-AMC (Pep-

tides International, Inc.) was used as described [55] at 100 mM in reaction buffer (50

mM Tris-HCl pH 7.4, 5 mM MgCl2, 10% glycerol, and 1 mMATP). Fluorescence of

the hydrolyzed AMC moiety was measured at excitation and emission wavelengths of

380 and 440 nm, respectively. Specific activities of purified 26S proteasome and 20S

proteasomes were measured as described [55]. Values for the 20S proteasome were

comparable to that observed in other studies [55]. We did not find reports of specific

activities for the budding yeast 26S proteasome on the Suc-LLVY-AMC substrate

under similar conditions.

GST-Acm1 and 6His-Acm1 were purified from E. coli as described previously

[89, 129]. The GST tag was cleaved off Acm1 with PreScission (3C) protease (GE

Life Sciences). To assay degradation of purified GST-Acm1 by the 26S proteasome

preparation, 200 mg of GST-Acm1 and 500 mg proteasome were mixed in 500 ml of

reaction buffer with 100 mM NaCl at 30 ◦C and samples were collected over time and

analyzed by western blot using anti-Acm1 antibody. Degradation of 6His-Acm1 by

26S and 30 ◦C20S proteasomes was assayed similarly for 30 min at 30 ◦C. Free Acm1

was generated by pre-treatment of GST-Acm1 with 3C protease before mixing with
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26S proteasome and proceeding as above. 5 mM epoxomicin (Peptides International,

Inc.) was used where indicated to specifically inhibit the proteasome.
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3. CDC14 PHOSPHATASE SUBSTRATE SELECTIVITY

IS BROADLY CONSERVED DURING EVOLUTION

3.1 Introduction

Cdc14 is somewhat unique among phosphatases involved in the regulation of the

cell cycle. Unlike mitotic serine/threonine phosphoprotein phosphatases (PPPs), it

does not function as part of a large protein complex [95]. It is currently unclear

if Cdc14 has conserved functions in evolutionarily distant species. As discussed in

Chapter 1, there is little conservation of Cdc14’s role in regulating the cell cycle. One

method to address this current lack of knowledge is to biochemically characterize

the enzyme to attempt to identify protein substrates. If one is able to define a

substrate sequence preference for the enzyme in vitro, it would be possible to predict

likely physiological substrates as has been demonstrated in budding yeast [110]. The

extent to which the structural conservation of the active site results in conservation

of substrates is also currently not understood.

Budding yeast Cdc14 possesses strict selectivity for phosphoserine Cdk phospho-

rylation sites (Ser/Thr-Pro) [110, 129]. Furthermore, substrates with multiple basic

residues C-terminal to the phosphoserine are preferred. The features that determine

this substrate selectivity appear to be present near the enzyme active site, in con-

trast to other multisubunit mitotic PSPs, whose selectivity is a product of regulatory

subunit association [95]. Alanine (A285) in the active site confers selectivity for phos-

phoserine over phosphothreonine by steric clash with the methyl group on the phos-

phothreonine side chain of substrates [129]. In silico molecular dynamics modeling

of peptide binding to hCDC14B also suggests that the preference for substrates with

a +3 basic residue is a result of a cation-π interaction with solvent exposed aromatic

residues proximal to the active site [110]. While several key determinants of Cdc14
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specificity are well-defined, specificity has not yet been comprehensively defined. For

example, possible contributions of residues N-terminal to the phosphoamino acid to-

wards substrate recognition have not been explored. The experiments in this study

aim to improve the understanding of Cdc14 substrate selectivity, mostly by defining

its conservation across diverse eukaryotic species. This understanding will elucidate

the extent of substrate and functional conservation across these species. Differences

in substrate selectivity can also be explored in investigating divergence in function as

well as in the development of inhibitors that are selective among Cdc14 enzymes.

The main goal of this project were to compare the substrate sequence selectivity

of Cdc14 protein phosphatases from a diverse set of organisms and to search for

additional substrate specificity determinants. The basis of this line of experiments

was the discovery that budding yeast Cdc14 demonstrates preference for a subset of

Cdk substrates characterized by utilizing phosphopeptide as well as whole protein

substrates [129, 130, 182]. In the experiments presented below, I have expanded on

the amino acid sequences that constitute optimal Cdc14 substrates. Furthermore, I

have investigated the extent to which substrate selectivity observed in budding yeast

Cdc14 is conserved among Cdc14 enzymes from various organisms. To this end,

the substrate selectivity of Cdc14 from the fission yeast Schizosaccharomyces pombe

(Clp1, Flp1), the plant pathogenic fungus Fusarium graminearum (FgCdc14) and the

two paralogs of human CDC14 (hCDC14A and B) were investigated and compared

to budding yeast Cdc14 using phosphopeptide substrates.

This chapter aims to investigate ScCdc14 substrate selectivity in more detail by

analyzing the effects of changes in sequence on the kinetics of phosphopeptide sub-

strate dephosphorylation. The extent to which Cdc14 selectivity is conserved across

an evolutionarily diverse set of organisms is also explored. Given the Cdc14 active

site conservation, I hypothesize that Cdc14 substrate selectivity is conserved among

enzymes from evolutionarily distant species.



68

3.2 Results

3.2.1 Determination of kinetic parameters of Saccharomyces cerevisiae

Cdc14

This study built on these previous results. Phosphopeptide variants based on the

sequences of known Cdc14 substrates (Acm1pS3 and Acm1pS31 listed in Table 3.7)

were used to perform steady state kinetic measurements. Unsurprisingly, the strict

preference of Cdc14 for phosphoserine containing peptides was observed by the lack

of catalytic activity towards phosphothreonine containing substrates in the context

of both phosphopeptide sequences (Figure 3.1, Table 3.1). ScCdc14 was also highly

sensitive to mutations at the +1 position C-terminal to the phosphoserine (Figure

3.1) confirming that Cdc14 was selective for proline-directed phosphorylation sites.

Removal of all C-terminal basic residues (+3 to +5 positions) resulted in a drastic

reduction of catalytic efficiency of ScCdc14 (Figure 3.1).

Figure 3.3, panel A and Table 3.1 demonstrated that, in the case of the Acm1pS31

phosphopeptide, Cdc14 was not sensitive to single mutations to basic residues at po-

sitions +4 and +5 C-terminal to the site of phosphorylation given that the substrate

contains a lysine at +3. The requirement of a +3 basic residue was strongly demon-

strated by the reduction in activity towards substrates lacking any basic residue at

+3 (Figure 3.2 and Table 3.1). The data also demonstrated that the identity of the

basic residue at +3 had a significant effect on Cdc14 activity, Arg being significantly

less favorable to Lys. Simultaneous mutation of the +4 and +5 basic residues sig-

nificantly reduced Cdc14 catalytic efficiency (Figure 3.3 panel B, Table 3.1). This

reduction in activity resulted from the increase in Km.

These observations were in agreement with Cdc14 substrate selectivity previously

observed [129, 130] and provided a basis for comparing any deviations in selectivity

of Cdc14 from other organisms.
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Table 3.1: Steady-state kinetic parameters for phosphopeptide substrates
dephosphorylated by S. cerevisiae Cdc14. Steady state kinetic parameters,
kcat and Km, were determined by measuring initial velocity as a function of peptide
substrate concentration and fitting the Michaelis-Menten equation to the data using
nonlinear regression. The mean ± standard deviation from three independent trials
are presented. The sequence variation column shows the nomenclature for each pep-
tide variant of the peptide provided in the sequence column (full sequences given in
Table 3.7).

Sequence Sequence kcat Km kcat/Km

variation (s−1) (µM) (M−1/s−1)

VKGNELRpSPSKRRSQI

0.06 ± 0.015 14 ± 34 4699

pT 0.009 ± 0.003 615 ± 535 15.3

+3A 1.0 ± 0.05 1285 ± 133 781

+4A 0.078 ± 0.006 16 ± 12 4951

+5A 0.12 ± 0.02 20 ± 9.8 4512

+3R 0.82 ± 0.03 388 ± 209 325

+4A,+5A 0.1 ± 0.01 121 ± 48 882

+3R,+4A,+5A 0.16 ± 0.03 600 ± 224 266

+3A,+4A,+5A 0.018 ± 0.001 1376 ± 240 12.9

MIpSPSKKRTI

0.12 ± 0.04 193 ± 74 624

pT 0.005 ± 0.0003 234 ± 69 23

+1A 0.03 ± 0.002 2293 ± 355 13

+3A 0.057 ± 0.003 1250 ± 159 45
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Fig. 3.1.: Budding yeast Cdc14 was highly selective for phosphoserine con-
taining phosphopeptide substrates An in vitro dephosphorylation reaction was
performed as described in the experimental procedures section. Rate of phosphopep-
tide dephosphorylation was plotted as a function of peptide concentration. The data
were fit to the Michaelis-Menten equation using GraphPad Prism and steady-state ki-
netic parameters, kcat and Km, were obtained. For assays where substrate saturation
was not achieved, a linear fit was generated and kcat/Km was estimated as described
in the experimental procedures section. These values are reported in Table 3.1. Data
represent the mean of 3 independent experiments and error bars show standard devi-
ation of the mean. Mutations of pSer to pThr, +1 Pro and removal of all C-terminal
basic residues led to a significant reduction of Cdc14 activity against phosphopeptide
substrates derived from known Cdc14 substrates.
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Fig. 3.2.: Loss of lysine three residues C-terminal to Ser(P) drastically
reduced budding yeast Cdc14 activity. Mutation of the +3 lysine in two previ-
ously characterized substrates led to a significant reduction in Cdc14 activity. Rate
of phosphopeptide dephosphorylation was plotted as a function of peptide concentra-
tion. The data were analyzed as described in Figure 3.1 and the kinetic parameters
are reported in Table 3.1
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Fig. 3.3.: Budding yeast Cdc14 efficiently dephosphoryalted phosphopep-
tides substrates containing a single basic residue C-terminal to phosphoSer
Individual mutation of basic residues at +4 and +5 residues C-terminal to the phos-
phoserine (Panel A) or changing +3 lysine to Arginine (Panel B) had a major effect
on the activity of Cdc14. Rate of phosphopeptide dephosphorylation was plotted as
a function of peptide concentration. The data were analyzed as described in Figure
3.1 and the kinetic parameters are reported in Table 3.1
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3.2.2 The Fusarium graminearum Cdc14 (FgCdc14) Substrate selecti-

vity was similar to S. cerevisiae Cdc14

F. graminearum Cdc14 (FgCdc14) shares the sequences that define the Cdc14 sub-

strate binding site with S. cerevisiae Cdc14 (Figure 1.5, [102]) predicted to contribute

to substrate selection based on modeling studies [110, 129]. Hence, the substrate se-

lectivity observed in budding yeast was hypothesized to be conserved for FgCdc14

As expected, FgCdc14 demonstrated a high degree of selectivity for phosphoserine

containing phosphopeptides over those with either phosphothreonine or phosphoty-

rosine (Figures 3.4 (panels B and C) and 3.5, Tables 3.3 and 3.2). FgCdc14 was also

very sensitive to the absence of a lysine at the +3 position and mutations at the +1

proline (Figures 3.4 (panel C) and 3.5 ). Complete lack of a C-terminal basic residue

(between +3 and +5) led to a drastic reduction in catalytic efficiency. Lysine was also

the preferred basic residue at +3 both in the context of the original peptide sequence

and when it was the sole basic residue between positions +3 and +5. Changes to the

sequence N-terminal to phosphoserine (-1 and -2 positions) have very little effect. The

effects of peptide sequence mutations described above were observed with all the pep-

tides substrates tested. The F. graminearum Cdc14 catalytic domain (FgCdc14cat)

had reduced overall enzymatic activity but the trends in substrate selectivity observed

with the full length protein also apply (Figure 3.6, Table 3.3).
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Fig. 3.4.: FgCdc14 enzyme displays substrate selctivity similar to S. cere-
visiae Cdc14. Mutations of the +4 and +5 basic residues (Panel A), +3 lysine
(Panel B), +1 proline and phosphoserine (Panel C) lowered FgCdc14 activity to-
wards phosphopeptide substrates. Rate of phosphopeptide dephosphorylation was
plotted as a function of peptide concentration. The data were analyzed as described
in Figure 3.1 and the kinetic parameters are reported in Table 3.2
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Table 3.2: Steady-state kinetic parameters for FgCdc14 catalyzed dephos-
phorylation of phosphopeptides. Steady state kinetic parameters, kcat and Km,
were determined by measuring initial velocity as a function of peptide substrate con-
centration and fitting the Michaelis-Menten equation to the data presented in figure
3.4 using nonlinear regression. The mean ± standard deviation from three indepen-
dent trials are presented. The sequence variation column shows the nomenclature for
each peptide variant of the peptide provided in the sequence column (full sequences
given in Table 3.7).

Sequence Sequence kcat Km kcat/Km

variation (s−1) (µM) (M−1/s−1)

VKGNELRpSPSKRRSQI

0.76 ± 0.04 107 ± 23 6542

pT N/A N/A 4.1a

+3A N/A N/A 56a

+3R N/A N/A 98a

+3R, +4A,+5A N/A N/A 71a

+4A 0.46 ± 0.05 359 ± 93 1950

+5A 0.31 ± 0.03 219 ± 56 3196

+4A,+5A 0.3 ± 0.04 815 ± 196 859

+3A,+4A,+5A N/A N/A 19a

MIpSPSKKRTI

0.7 ± 0.04 122 ± 25 5737

pT N/A N/A 9.9a

+1A N/A N/A 21.6a

+3A N/A N/A 36.2a

a Steady state parameters could not be calculated for these peptides because Vmax was not reached at the [s] used.

The slope of the line fit to the V vs. [S] curve was applied to equation 3.4.
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Fig. 3.5.: Estimated kcat/Km values for F. graminearum Cdc14 obtained
from initial velocity measurements Initial reaction velocity measurements at
low concentrations (below Km, 100µM) phosphopeptides series of Acm1pS3 (panel
A) and Cdh1pS239 (panel B) and 75nM of FgCdc14 were used to estimate appar-
ent kcat/Km by applying equation 3.4. The first bar in each panel represents the
phosphopeptide whose sequence was shown. The labels on the x axis represent the
substitutions made at the positions (relative to the pSer). Data are the average of
three independent experiments and error bars represent standard deviation of the
mean. Apparent kcat/Km are reported in Table 3.3
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Fig. 3.6.: Estimated kcat/Km values for the catalytic domain of F. gramin-
earum Cdc14 obtained from initial velocity measurements Initial reaction
velocity measurements at low concentrations (below Km, 100µM) using phospho-
peptide series of Acm1pS3 (panel A) and Cdh1pS239 (panel B) and 600nM of
FgCdc14catwere used to estimate apparent kcat/Km by applying equation 3.4. The
first bar in each panel represents the phosphopeptide whose sequence was shown.
The labels on the x axis represent the substitutions made at the positions (relative
to the pSer). Data are the average of three independent experiments and error bars
represent standard deviation of the mean. Apparent kcat/Km are reported in Table
3.3
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Table 3.3: Catalytic efficiency (kcat/Km) estimates of purified FgCdc14. Cat-
alytic efficiency was estimated from initial velocity measurements at low substrate
concentration (Figures 3.5 and 3.6) by applying equation 3.4. The mean ± standard
deviation of three independent trials are presented. The sequence variation column
shows the nomenclature for each peptide variant of the peptide provided in the se-
quence column (full sequences given in Table 3.7).

Sequence Sequence

variation

FgCdc14

Estimated

kcat/Km

(M−1S−1)

FgCdc14cat

Estimated

kcat/Km

(M−1S−1)

MIpSPSKKRTI

3674 ± 189 214 ± 7

pT 5 ± 1 0.29 ± 0.03

pY 74 ± 2 18.2 ± 0.6

+1A 21 ± 2 12.4 ± 0.2

+3A 48 ± 19 11.5 ± 0.4

+3R 524 ± 9 150 ± 8

-2G,-1D 2313 ± 92 165 ± 10

+4A,+5A 920 ± 17 183 ± 4

+3R,+4A,+5A 115 ± 5 22 ± 1

+3N,+4A,+5A 8 ± 1 2.5 ± 0.3

LLpSPGKQFRQ

219 ± 6 73 ± 2

pT 4.4 ± 0.4 1.1 ± 0.1

+1A 4.5 ± 0.3 0.97 ± 0.02

+2K 2414 ± 75 311 ± 12

+3A 9.9 ± 0.4 2.9 ± 0.1

+3R 17 ± 1 7.4 ± 0.2

-2G,-1D 174 ± 3 65 ± 1

+4K 1007 ± 37 208 ± 8

+5R 213 ± 8 74 ± 3



79

3.2.3 Human Cdc14A (hCDC14A) displayed substrate selectivity similar

to S. cerevisiae Cdc14

The substrate selectivity observed in to ScCdc14 and FgCdc14 was similar for

hCDC14A. The selectivity for phosphoserine over phosphothreonine containing phos-

phopeptide substrate, the necessity of a basic residue at +3 position and the require-

ment of a +1 proline are conserved (Figures 3.7, Table 3.4). Although Arg at +3,

as the sole basic C-terminal residue was able to support Cdc14 activity, the catalytic

efficiency observed was significantly attenuated (Figure 3.7).
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Table 3.4: Steady-state kinetic parameters for hCDC14A catalyzed dephos-
phorylation of phosphopeptides. Steady state kinetic parameters, kcat and Km,
were determined by measuring initial velocity as a function of peptide substrate con-
centration and fitting the Michaelis-Menten equation to the data using nonlinear
regression. The mean ± standard deviation from three independent trials are pre-
sented. The sequence variation column shows the nomenclature for each peptide
variant of the peptide provided in the sequence column (full sequences given in Table
3.7).

Sequence Sequence kcat Km kcat/Km

variation (s−1) (µM) (M−1/s−1)

VKGNELRpSPSKRRSQI

0.08 ± 0.01 51.2 ± 5.1 1616.7

pT N/A N/A 4.3a

+3A 0.06 ± 0.01 1500 ± 538 39.3

+4A 0.11± 0.02 113 ± 10 934.8

+5A 0.09 ± 0.03 167 ± 25.3 566.3

+3R 0.82 ± 0.05 142 ± 30 720.5

+3R,+4A,+5A 0.148 ± 0.007 398 ± 65 372.3

+3A,+4A,+5A N/A N/A 7.3a

MIpSPSKKRTI

0.098 ± 0.003 93.86 ± 13.73 1046

pT N/A N/A 3.4a

+1A N/A N/A 11a

+3A 0.032 ± 0.003 353 ± 121 90.1

a Steady state parameters could not be calculated for these peptides because Vmax was not reached at the [s] used.

The slope of the line fit to the V vs. [S] curve was applied to equation 3.4.
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Fig. 3.7.: hCDC14A displayed substrate selectivity similar to Sc. Cdc14
A. Mutation of pSer to pThr, mutation of +1 pro, and B. +3 Lys led to reduction
in hCDC14A activity. Rate of phosphopeptide dephosphorylation was plotted as a
function of peptide concentration. The data were analyzed as described in Figure 3.1
and the kinetic parameters are reported in Table 3.4
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Fig. 3.8.: Mutations of +4 and +5 basic residues had an intermediate ef-
fect on hCDC14A activity Individual mutations of +4 and +5 basic residues and
change of the +3 Lys to Arg lead to a reduction in hCDC14A activity but the effect
was not as severe as complete loss of +3 basic residue. Rate of phosphopeptide de-
phosphorylation was plotted as a function of peptide concentration. The data were
analyzed as described in Figure 3.1 and the kinetic parameters are reported in Table
3.4

3.2.4 Schizosaccharomyces pombe Cdc14 (Clp1) displayed substrate se-

lectivity similar to ScCdc14

In initial velocity assays performed using Clp1, the S. pombe orthologue of Sc-

Cdc14, similar substrate selectivity features were observed. There was a strict prefer-

ence for phosphoserine residues over phosphothreonine (Figure 3.9, Table 3.5). Loss

of the +3 Lys and +1 Pro drastically reduced catalytic efficiency. Mutation of basic
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residues C-terminal to the site of phosphorylation negatively impacts Clp1 activity

towards both phosphopeptide substrates tested (Figure 3.9). As was the case for the

other Cdc14 enzymes tested thus far, Lys was preferred at the +3 position over Arg.

Table 3.5: Catalytic efficiency (kcat/Km) estimates of purified Clp1. Cat-
alytic efficiency was estimated from initial velocity measurements at low substrate
concentration by applying equation 3.4. The mean ± standard deviation of three
independent trials are presented. The sequence variation column shows the nomen-
clature for each peptide variant of the peptide provided in the sequence column (full
sequences given in Table 3.7).

Sequence Sequence

variation

Clp1 estimated kcat/Km

(M−1S−1)

VKGNELRpSPSKRRSQI

374 ± 44

pT 14.5 ± 17

+3A 6.5 ± 14

+4A 125 ± 43

+5A 160 ± 24

+3R 108 ± 18

+4A,+5A 60 ± 10

+3R,+4A,+5A 38 ± 26

MIpSPSKKRTI

163 ± 24

pT 17 ± 7

+1A 6.2 ± 5.2

+3A 10 ± 7

3.2.5 There are no major variations in Cdc14 substrate selectivity be-

tween species

The data presented in previous sections were generated using phosphopeptides

that contained a limited number of changes, based on previous observations about

Cdc14 selectivity. While this revealed major determinants for specificity, it is possible

that other amino acids and other positions near the phosphoamino acid could influence
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substrate recognition as well. Hence, an unbiased positional scanning approach was

undertaken to identify substrate positions and residues that influence dephosphory-

lation of the phosphopeptide substrate Cdh1pS239 (LLpSPGKQFR). This substrate

has previously been shown to yield intermediate Cdc14 activity [129] and was ideal

for observing increases as well as reductions in activity that result from changes in

the peptide sequence. The quality of the phosphopeptide array was assayed by use

of the Mn2+-dependent λ protein phosphatase with activity towards phosphorylated

serine, threonine and tyrosine residues (New England Biolabs). All peptides in the

array are efficiently dephosphorylated by λ phosphatase (Figure 3.10).

The phosphopeptide array results using ScCdc14 reconfirm the observations pre-

sented in the previous section that +1 Pro was essential for high activity. Mutations

of the +3 position also led to a significant drop in activity (Figure 3.11). One substan-

tial observation was that most mutations of the +2 Gly to other amino acids led to a

slight increase in activity but Pro and Val were poorly tolerated at this position. In

agreement with previous results, introduction of additional Lys at +4 and +5 raised

activity, a trend not observed for Arg. An interesting observation was that there were

mutations in the N-terminal positions that slightly enhanced activity. Val introduc-

tion at both -1 and -2 was favorable. Tyr at position -2 led to the highest increase

in activity. The reasons for the observed increases for mutations at positions -1 and

-2 could be that the original amino acids at those positions are disfavored because

there were multiple mutations that led to an increase in activity. This suggests that

sequence immediately upstream of pSer-Pro could modulate substrate recognition to

some degree. Identifying other trends in substrate selectivity was a challenge because

there were no common amino acid properties, like R group charge, length, or aro-

maticity, that indicate a particular feature was preferred at any given position. This

is an indication that there were no other major determinants of substrate selectivity

that were not previously observed.

The phosphopeptide array results using Clp1 also illustrated the preference of +1

Pro and +3 Lys (Figure 3.12). However, there was activity, higher than the original
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sequence, observed for changes at both +1 and +3 positions. Notably, changes to Gly

and Trp at +1 and Gly at +3 led to a greater than four-fold and two-fold increase,

respectively, over the starting sequence. As was observed with ScCdc14, Pro and Val

at +2 were disfavored and most mutations away from the original sequence at this

position led to increased activity. In agreement with previous results, introduction of

additional Lys at +4 raised activity by more than three-fold as did the introduction

of Gly, with Arg not being particularly favored. However, unlike ScCdc14, Arg in-

troduction at +5 led to a greater than five-fold increase in activity whereas Lys had

a relatively small effect. Changes in the N-terminal positions also enhance activity.

Gly and Pro at -2 and Gln and Val at -1 resulted in a greater than five-fold increase

in activity over the original sequence.

Assays with FgCdc14 also illustrated the requirement of +1 Pro and +3 Lys

(Figure 3.13). Surprisingly, Gly at +1 was actually preferred over the original Pro.

Pro and Val at +2 are disfavored and all mutations away from the original sequence led

to more than a doubling in activity. In agreement with previous results, introduction

of additional Lys at +4 raises activity, but unlike ScCdc14, Arg at this position also

led to an increase. As observed with Clp1, Arg introduction at +5 also led to a

greater than doubling in activity whereas Lys has a relatively small effect. Changes

in the N-terminal positions also enhanced activity. Pro, Thr, and Tyr at -2 and Val

and Gln at -1 resulted in a greater than four-fold increase in activity over the original

sequence.
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Fig. 3.9.: Estimated kcat/Km values of Clp1 from initial velocity measure-
ment assays Initial reaction velocity measurements at low concentrations (below
Km) using phosphopeptide series of Acm1pS31 (panel A) and Acm1pS3 (panel B)
were used to estimate apparent kcat/Km by applying equation 3.4. The first bar in
each panel represents the phosphopeptide whose sequence is shown. The labels on the
x axis represent the substitutions made at the positions (relative to the pSer). Data
are the average of three independent experiments and error bars represent standard
deviation from the mean.
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There was generally low enzyme activity observed with the human Cdc14A par-

alog (hCDC14A) which limits the ability to make conclusions about mutations that

lowered enzyme activity. Assays with hCDC14A showed that Gly and Trp at +1

position resulted in activity greater than four-fold over the original sequence, and 8

of the 18 residue changes supported as much activity as the original sequence (Figure

3.14). Lys and Ser at +2 are highly favorable, greater than four-fold, over the orig-

inal sequence. In agreement with previous results, introduction of additional Lys at

+4 raised activity, but unlike ScCdc14, Arg at this position also led to an increase.

Introduction of Lys at +5 had little effect on hCDC14A activity. Changes in the

N-terminal positions also enhanced activity; Pro and Gly at -2 and Gln at -1 resulted

in a greater than four-fold increase in activity over the original sequence.

Similar to hCDC14A, enzyme activity was very low for hCDC14B. Mutation at

the +1 position to Gly and Trp resulted in an increase of hCDC14B activity greater

than eight-fold over the original sequence, and 8 of the 18 residue changes supported

at least as much activity as the original sequence (Figure 3.15). Changes in the +3

Lys are also less detrimental, as changes to ala, Gly, Met, Pro, and Trp result in an,

at least, 85% increase in activity, relative to the original sequence. This is a relatively

small effect and is unlikely to be a true preference for these residues over Lys at +3.

The increase in activity observed for mutation of +3 Lys to Ala is surprising because

loss of the +3 Lys has been shown to drastically reduce activity of hCDC14B in an

end point assay [129]. The Pro at +2 was unfavorable but all other mutations raised

activity, with Asp, Glu, and Lys resulting in a greater than ten-fold increase over the

original sequence. In agreement with previous results, Lys was the most favorable

residue at +4. Arg at +5 also led to an increase in activity and its effect was greater

than that of Lys. Pro at -2 and Gln at -1 were the most favorable residues at each

position and led to an increase in activity greater than 13 and 20-fold, respectively,

relative to the original sequence.
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3.3 Discussion

The main contribution of this work is the demonstration that Cdc14 substrate

selectivity is conserved across multiple diverse species. The hypothesis that conser-

vation of the active site and residues thought to contribute to substrate selectivity

would result in similar substrate preference was supported by the results. The data

presented in this section further expand the understanding of Cdc14’s kinetic char-

acteristics. The existence of several major determinants for substrate selectivity first

observed in budding yeast Cdc14 was conserved in all the Cdc14 enzymes tested. I

repeatedly observed a strong preference for phosphoserine over phosphothreonine or

phosphotyrosine containing substrates. The requirement for a +1 proline as well as

a +3 lysine was also observed in all enzymes. The data presented in this chapter

analyzing budding yeast Cdc14 also build on the work previously performed in the

Hall and Charbonneau labs characterizing substrate selectivity [129, 130]. The re-

sults strengthen the observation by demonstrating selectivity was independent of the

source of the sequence chosen to design the phosphopeptide substrates. The kinetic

data reveal that the substrate preference is driven both by changes in kcat and Km.

Substrates that do not contain a +3 Lys show a very large increase in Km suggesting

a large role for this Lys in substrate binding.

There were some subtle differences in the effects observed for changes in the C-

terminal basic residues in the dephosphorylation of Acm1pS31. Clp1 and hCDC14A

were much less sensitive to mutations of the +3 Lys to Arg in contrast to FgCdc14

and ScCdc14. These differences were observed both when the mutation is made in the

context of the starting sequence (Acm1pS31) or when Arg was the sole basic reside

in the +3 to +5 region. ScCdc14 activity was less sensitive to mutations of the +4

and +5 Arg residues than the FgCdc14, Clp1 or hCDC14A, although this difference

is not very significant(Table 3.6).
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Table 3.6: Comparison of catalytic efficiency of Cdc14 enzymes reveals that
substrate selectivity is conserved. Catalytic efficiency (kcat/Km) of Sc. Cdc14,
FgCdc14 and hCDC14A towards each peptide variant of the peptide provided in the
sequence column (full sequences given in Table 3.7) are compared.

Sc. Cdc14 FgCdc14 hCDC14A

Sequence Sequence kcat/Km kcat/Km kcat/Km

variation (M−1/s−1) (M−1/s−1) (M−1/s−1)

VKGNELRpSPSKRRSQI

4699 6542 1616.7

pT 15.3 4.1 4.3

+3A 781 56 39.3

+4A 4951 1950 934.8

+5A 4512 3196 566.3

+3R 325 98 720.5

+3R,+4A,+5A 266 71 372.3

+3A,+4A,+5A 12.9 19 7.3

MIpSPSKKRTI

624 5737 1046

pT 23 9.9 3.4

+1A 13 21.6 11

+3A 45 36.2 90.1

The data obtained from the phosphopeptide positional scanning library experi-

ment presented revealed that there are novel negative determinants of substrate se-

lectivity. Introduction of proline and valine at +2 and glycine at +4 is not tolerated.

A summary of Cdc14 enzyme selectivity features conserved across multiple species is

summarized in Figure 3.16. Beyond the major determinants of selectivity, there are

some residues like proline at -2, valine at -1 and tryptophan at +6 that could be minor

contributers to selectivity. Arginine at -2 is disfavored for a majority of the enzymes

tested. There are also some subtle differences in selectivity observed. Mutations of
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the +2 position show that there are differences in Cdc14 response. For instance, Ala-

nine at +2 is favored for most of the enzymes tested except for hCDC14A. FgCdc14

and Clp1 have a preference for His at +2 whereas the other Cdc14 enzyme do not.

Thr at this position also results in enhancement of activity except for ScCdc14 and

hCDC14A. Histidine preference at position +5 also varies as Clp1 and FgCdc14 don’t

tolerate this mutation where as other enzymes do not show an effect. The effects of

these mutations need to be investigated in more detail before any firm conclusions

can be made.

Fig. 3.16.: Updated optimal substrate motif for Cdc14. An improved substrate
sequence motif based on the summary of Cdc14 dephosphorylation activity towards
phosphopeptide substrates. Residues in Red are essential. Residues in blue enhance
activity and those in black dashes are novel negative determinants of Cdc14 activity.
Residues in gray have minor enhancing effects.

The data obtained from the phosphopeptide positional scanning library experi-

ment does not allow for a complete determination of sequence preference of all the

Cdc14 enzymes tested. One significant issue is that the amount of enzyme used for

the assays was not normalized to yield equal activity towards the original peptide
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(Cdh1pS239). This led to a low general enzyme activity against the starting phos-

phopeptide for all enzymes used, except ScCdc14 and FgCdc14. This error limits

the ability to identify amino acids that are unfavorable. A solution is to utilize more

enzyme in the assay or a more sensitive experimental approach with a larger dynamic

range, like quantitative mass spectrometry, which could help alleviate the issue.

The extent to which the physiological Cdc14 substrates are conserved across the

species tested is not yet clearly understood. The improved understanding of substrate

selectivity presented here raises the possibility of predicting optimal substrates. This

approach was applied to the F. graminearum Cdc14, which is important for patho-

genesis, and proposed a set of potential substrates that could play a role in plant

infection [183]. A similar approach can be applied to identify potential Cdc14 sub-

strates for multiple organisms. This analysis could shed light on cellular processes in

which Cdc14 might play a role.

3.4 Experimental Procedure

3.4.1 Cdc14 purification

His6-tagged Saccharomyces cerevisiae Cdc14 and the catalytic domain of Fusarium

graminearum Cdc14 (FgCdc14cat, residues 1-433) were expressed in Escherichia coli

and affinity-purified using HisPur nickel-NTA resin (Life Technologies). Schizosac-

charomyces pombe Cdc14 (Clp1, kind gift from Dr. Kathy Gould), Fusarium gramin-

earum Cdc14 (FgCdc14) and the catalytic domains of human CDC14 (hCDC14A,

residues 1-379 and hCDC14B, residues 1-418) were expressed as N-terminally tagged

glutathione S-transferase (GST) fusion proteins. The FgCdc14 ORF and it’s catalytic

domain (FgCDC14cat) were amplified from the first-strand cDNA by PCR, cloned into

the Gateway entry vector pENTR/D-TOPO (Life Technologies), verified by DNA se-

quencing, and then transferred to the Gateway destination vectors (Life Technologies).

pDEST15 (FgCDC14) and pDEST17 (FgCDC14cat) were used to introduce an N-

terminal glutathione S-transferase (GST) fusion or an N-terminal 6x histidine fusion,
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respectively. GST-FgCDC14 expression was performed by transformation of BL21

(DE3) cells followed by induction with 0.4 mM isopropyl -D-thiogalactopyranoside

(IPTG) for 16 hours at 25 ◦C. The His6-FgCdc14cat fusion was induced in BL21

AI cells (Life Technologies) with 0.2% L-arabinose. Sources of expression constructs

are listed in Table 3.8 and expression of ScCdc14, Clp1 and hCDC14 A/B were as

previously described [129].

Purification of all His6-tagged proteins was performed as follows. Bacteria were

lysed on ice for 30 minutes in 10 cell pellet volumes of buffer A (25 mM Tris-HCl

pH 7.5, 500 mM NaCl) supplemented with 0.1% Triton X-100, 10 mM imidazole,

1 mM phenylmethylsulfonyl fluoride (PMSF), 1 µM pepstatin, 10 µM leupeptin, 1

mg/ml lysozyme, and incubated for 30 minutes. Lysate was then sonicated to reduce

viscosity. For His6FgCdc14cat, in place of sonication, 25 Units/ml Universal Nuclease

(Thermo Fisher) were added to the lysis mixture at the same time lysozyme was

added. Lysate was then clarified as described above, and the soluble extract was

incubated with 1 ml HisPur nickel-NTA resin for 1 hour at 4 ◦C with agitation. After

batch washing sequentially with 15 ml buffer A containing 10 mM, 25 mM, and finally

40 mM imidazole, protein was eluted with 5 1 ml aliquots of buffer B containing 250

mM imidazole, collecting 1 ml fractions. Elution fractions containing high protein

concentration, as determined by using a Bradford assay, were combined and dialyzed

into 1L of storage buffer (25 mM Tris-HCl pH 7.5, 300 mM NaCl, 2 mM EDTA,

0.1% 2-mercaptoethanol, 40% glycerol) overnight at 4 ◦C. The resulting recombinant

proteins were analyzed by SDS-PAGE and stored in small aliquots at -80 ◦C.

Purification of all GST-tagged proteins was performed as follows. Bacteria were

lysed in 5 cell pellet volumes of buffer B (25 mM Tris-HCl pH 7.5, 500 mM NaCl, 2

mM EDTA, 0.1% Triton X-100, and 0.1% 2-mercaptoethanol) supplemented with 1

mM PMSF, 1 µM pepstatin, and 10 µM leupeptin. Cells were lysed for 30 minutes

on ice with 1 mg/ml lysozyme and PMSF was added to lysate to 1mM. Lysate was

then sonicated to reduce viscosity. Soluble extract was prepared by centrifugation at

35,000 x g for 30 minutes at 4 ◦C. Meanwhile, 1 ml glutathione agarose resin (EMD
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Biosciences) was pre-equilibrated with buffer A. The resulting soluble extract was

then incubated with glutathione resin for 1 hour at 4 ◦C on a rocking platform. Resin

was collected by centrifugation (700 x g, 2 minutes, 4 ◦C) and then washed three times

with 10 ml buffer A with rocking for 5 minutes at 4 ◦C. GST-tagged proteins were

eluted by incubating the resin several times with 1 mL lysis buffer A supplemented

with 10 mM reduced glutathione at 4 ◦C for 5 minutes followed by centrifugation.

Elution fractions containing high protein concentration were pooled and dialyzed as

described above. The resulting recombinant proteins were analyzed by SDS-PAGE

and stored in small aliquots at -80 ◦C.

3.4.2 Phosphopeptide synthesis

Phosphopeptides (Table 3.7) were synthesized using CLEAR-Amide resin (Pep-

tides International) at 50 µmol scale by solid-phase Fluorenylmethyloxycarbonyl chlo-

ride (Fmoc) chemistry on a Prelude peptide synthesizer (Protein Technologies, Inc.).

Fmoc-protected amino acids and other peptide synthesis reagents were obtained from

AnaSpec Inc. (Fremont, CA, USA). Fmoc-protected amino acid monomers dissolved

at 100µM in dimethylformamide (DMF) were added to CLEAR-Amide resin being

mixed with glass beads under bubbling of N2 gas. Each amino acid was coupled to

the growing peptide for 30 minutes followed by two rounds of deprotection (2 minutes

each) with a mix of 2-(6-chloro-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium

hexafluorophosphate (95mM)/N-methylmorpholine (200mM)(HCTU/NMM). The cou-

pling time was increased to the C-terminal Fmoc-protected amino acid monomers as

described previously [184]. The only modification was that coupling times for phos-

phorylated amino acids was increased to 3 hours to improve incorporation. Upon

completion of synthesis, peptides were cleaved from resin and resuspended in 5%

acetonitrile(ACN)/0.1% Trifluoroacetic acid(TFA).

Phosphopeptide substrates (Table 3.7) were also obtained from a commercial

source in crude form from Genscript Inc.
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3.4.3 Phosphopeptide Substrate Purification

Crude peptides were desalted using Sep-Pak C18 cartridges (Waters Corporation)

as described [185]. The concentrations of phosphopeptide stocks were measured with

an ashing procedure and malachite green-ammonium molybdate dye as described

previously [186].

Phosphopeptides in the peptide library were obtained from Genscript as desalted

lyophilized aliquots. Each peptide was resuspended in water with a target concen-

tration of 20mM, based on molecular weight, and phosphopeptide concentration was

quantified using an alkali hydrolysis procedure adopted from [187]. A 10 µl aliquot

of a 100-fold dilution of each peptide stock was mixed with 100 µl of 2M NaOH and

heated at 100 ◦C for 30 minutes. The mixture was allowed to cool to room tempe-

rature then neutralized with 100 µl of 4.7N HCl. Hydrolyzed inorganic phosphate

was quantified by adding 400 µl of the malachite green based phosphate detection

reagent, BIOMOL greenTM (Enzo Life Sciences), incubating for 30 minutes at room

temperature and measuring the absorbance (A620). Inorganic phosphate in each well

was quantified by using a standard curve prepared using sodium hydrogen phosphate

(Na2HPO4) and processed identically as above. The standard curve was found to be

linear up to 250 µM Na2HPO4.

3.4.4 In vitro dephosphorylation assays

Phosphopeptide dephosphorylation reactions (50 or 20 µl) were performed in 25

mM HEPES pH7.5, 0.1% 2-mercaptoethanol, 1mM EDTA, 150mM NaCl. For most

reactions Cdc14 concentrations used were 50 nM (ScCdc14), 75 nM (FgCdc14, Clp1,

hCDC14A and hCDC14B), and 600nM (FgCdc14cat). These concentrations were in-

creased for poor phosphopeptide substrates. Reactions were incubated for 30 minutes

at 24 ◦C (FgCdc14 and FgCdc14cat), 30 ◦C (ScCdc14 and Clp1), or 37 ◦C (hCDC14A

and hCDC14B). Reactions were stopped and dephosphorylation of substrates was

measured by detecting the release of inorganic phosphate by adding 2 times reac-
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tion volume of BIOMOL GreenTM reagent (ENZO Life Sciences). Absorbance at 620

nm was measured on a microplate reader and the amount of phosphate released was

calculated from a standard curve generated with Na2HPO4 under identical solution

conditions (Standard curve was linear upto 200 µM of phosphate).

3.4.5 An unbiased in vitro analysis of sequences affecting Cdc14 selecti-

vity

In order to identify phosphopeptide sequences affecting Cdc14 activity, a test of

Cdc14 activity was performed on a positional scanning phosphopeptide series. The

phosphopeptide series was generated based on a shortened version of a known Cdc14

substrate (Cdh1pS239, LLpSPGKQFR, phosphorylated residue shown in bold) by

individual mutation of each position (excluding pSer) to all possible amino acids

(except cysteine). This resulted in a panel of 145 phosphopeptides.

λ phosphatase (New England Biolabs) was used to test the quality of each phos-

phopeptide in the phosphopeptide array. 4 Units of λ phosphatase was used to de-

phosphorylate 1 nmol of each peptide. The reactions were performed in 20 µl volume

with buffer (25 mM HEPES pH7.2, 0.1% BME, 1 mM EDTA, 0.01% BSA, 100 mM

NaCl, 1 mM MnCl2) and incubated at 30 ◦C for 1 hour. Reactions were then termi-

nated by adding 40 µl of BIOMOL GreenTM reagent (ENZO Life Sciences). Release

of inorganic phosphate was then determined by measuring absorbance at 620 nm

(A620) and utilizing a standard curve generated with sodium phosphate.

The panel of phosphopeptides was then used for in vitro assays to measure the

activity of all available Cdc14 enzymes. The reactions were performed in 20 µl volume

with buffer (25 mM HEPES pH7.2, 0.1% BME, 1 mM EDTA, 0.01% BSA, 100 mM

NaCl), 100 µM of each phosphopeptide and Cdc14 (50 nM of ScCdc14 or Clp1 or

75 nM of hCDC14A, hCDC14B or FgCdc14). Reactions were then incubated either

at 30 ◦C (ScCdc14, FgCdc14 and Clp1) or 37 ◦C (hCDC14A and hCDC14B). Reac-

tions were then terminated by adding 40 µl of BIOMOL GreenTM reagent (ENZO
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Life Sciences). Release of inorganic phosphate was then determined by measuring

absorbance at 620 nm (A620) and utilizing a standard curve generated with sodium

phosphate.

3.4.6 Determination of steady state kinetic parameters (kcat/Km)

To establish the assay conditions, the response of the enzyme activity to changes

in reaction time was tested. The assay was found to be linear over a 1 hour period

and 30 minutes was selected as an appropriate reaction time. All assays were also

performed such that enzyme concentration was kept at least a 100-fold lower than

that of substrate and substrate consumption was kept below 10% which allowed us

to make steady-state assumptions.

Two approaches were employed to determine kinetic parameters for the assayed en-

zymes. The enzyme was assumed to obey Michaelis-Menten kinetics. When possible,

peptide substrate was varied to establish a full substrate saturation curve. The out-

come of these experiments was fit with a standard Michaelis-Menten curve (Equation

3.1, using GraphPad 3) to determine Vmax and Km values. kcat was calculated using

Equation 3.2. These results were used to calculate the catalytic efficiency (kcat/Km)

of the enzyme.

Equation 3.1

v = Vmax
[S]

Km+[S] (3.1)

Equation 3.2

Vmax = [E]t kcat i.e. kcat = Vmax

[E]t
(3.2)

where v represents the reaction velocity at a given substrate concentration ([S]).

For cases when a full Michaelis-Menten curve could not be generated, assays were

performed such that the substrate concentration was well below the Km. The equation

below was utilized to determine the kcat/Km from the best fit line plot.

Under conditions in which [S] � Km, equation 3.2 simplifies to
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Equation 3.3

v ≈ Vmax
[S]
Km
→Vmax

1
Km
≈ v

[S] (3.3)

Equation 3.3 can then be combined with Equation 3.2 to give Equation 3.4, which

can be used to determine kcat/Km.

Equation 3.4

kcat
Km

= Vmax

[E]t
1
Km
≈ v

[S]
1

[E]t
(3.4)



104

Table 3.7: Phosphopeptide sequences utilized in phosphatase assays for analyzing
Cdc14 substrate selectivity

Peptide Name Sequence variation Sequence
Acm1pS3 MIpSPSKKRTI

Acm1pS3-pS3pT pT MIpTPSKKRTI
Acm1pS3-pS3pY pY MIpYPSKKRTI
Acm1pS3-P4A +1A MIpSASKKRTI
Acm1pS3-K6A +3A MIpSPSAKRTI
Acm1pS3-K6R +3R MIpSPSRKRTI
Acm1pS3-NT -2G,-1D GDpSPSKKRTI

Acm1pS3-KAA +4A,+5A MIpSPSKAATI
Acm1pS3-RAA +3R,+4A,+5A MIpSPSRAATI
Acm1pS3-NAA +3N,+4A,+5A MIpSPSNAATI

Acm1pS31 VKGNELRpSPSKRRSQI
Acm1pS31-pS31pT pT VKGNELRpTPSKRRSQI
Acm1pS31-K34A +3A VKGNELRpSPSARRSQI
Acm1pS31-R35A +4A VKGNELRpSPSKARSQI
Acm1pS31-R36A +5A VKGNELRpSPSKRASQI
Acm1pS31-K34R +3R VKGNELRpSPSRRRSQI

Acm1pS31-35A36A +4A,+5A VKGNELRpSPSKAASQI
Acm1pS31-RAA +3R,+4A,+5A VKGNELRpSPSRAASQI
Acm1pS31-AAA +3A,+4A,+5A VKGNELRpSPSAAASQI

Cdh1pS239 LLpSPGKQFRQ
Cdh1pS239-pS239pT pT LLpTPGKQFRQ

Cdh1pS239-P4A +1A LLpSAGKQFRQ
Cdh1pS239-G5K +2A LLpSPKKQFRQ
Cdh1pS239-K6A +3A LLpSPGAQFRQ
Cdh1pS239-K6R +3R LLpSPGRQFRQ
Cdh1pS239-Q7K +4K LLpSPGKKFRQ
Cdh1pS239-F8R +5R LLpSPGKQRRQ
Cdh1pS239-NT -2G,-1D GDpSPGKQFRQ

Bold letters indicate a phosphoryalted residue. Residues mutated from the

parental sequence at the top of each group of peptides are underlined
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Table 3.8: Plasmids used in this study

Name Expressed Protein Backbone Marker Promoter Source
SB021 His6-ScCdc14 pET15b Amp T7 [129]
pHLP486 GST-FgCdc14 pDEST15 Amp T7 This study
pHLP524 His6-FgCdc14cat pDEST17 Amp T7 This study
KG2333 GST-Clp1 pGEX4T-

1
Amp tac Gift from

Dr. Kathy
Gould

pGST-
HCA379

GST-hCDC14A(1-
379)

pET-
GST

Amp T7 [129]

pGST-
HCB418

GST-hCDC14B(1-
418)

pET-
GST

Amp T7 [129]
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4. CDC14 PHOSPHATASE INHIBITOR DEVELOPMENT

4.1 Introduction

4.1.1 Phosphatases are targets for inhibition

Protein phosphatases are categorized based on their substrate specificity into ser-

ine/threonine phosphatases (STPs), protein histidine phosphatases (PHPs), protein

tyrosine phosphatases (PTPs), and dual specific phosphatases (DSPs) [188]. These

categories of phosphatases have characteristic mechanisms of catalysis and active site

structures which can be exploited during the design of class specific inhibitors [189].

The major difference in the catalytic mechanism between STPs and PTP/DSPs is

that STPs utilize an activated water to directly hydrolyze the substrate phospho-

ester bond whereas PTPs/DSPs use a cysteine as the initial nucleophile to form a

thiophosphate intermediate which is then hydrolyzed by water in a subsequent step.

The active sites also differ in that PTP/DSPs have a deeper active site pocket to

accommodate the large aromatic phosphotyrosine [190]. The invariable active site

cysteine also has a very low pKα which means it is predominantly in the thiolate ion

form at neutral pH, which allows it to be an effective nucleophile but also exposes it

to oxidation.

Strategies to design clinically relevant PTP/DSP phosphatase inhibitors have been

much more successful than those for STPs. Most strategies use non-hydrolyzable

phosphotyrosine analogs like difluorophosphono-methylphenylalanine (F2Pmp) groups

[189]. One study was able to incorporate F2Pmp into a hexameric peptide and de-

velop a potent inhibitor of the insulin receptor [191]. Based on the peptide sequence

of optimal PTP 1B substrates, this study was able to achieve IC50 values of 100µM

by replacing the phosphotyrosine with the non-hydrolyzable mimic F2Pmp.
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Cdc25, a potent regulator of the cell cycle, is the prototypical phosphatase target

for pharmacologically relevant inhibitor design. Cdc25 is a dual specificity phos-

phatase (DSP) responsible for removing the inhibitory phosphorylation to activate

Cdk1 [192]. Cdc25 enzymes are inactivated by the DNA damage checkpoint which

leads to inactivation of Cdk1 [192]. Cdc25 phosphatases are found in all eukaryotic

organisms, except in plants, and there are three paralogs of Cdc25 (A, B and C) in

mammals. These paralogs are largely conserved except for their regulatory subunits.

Cdc25 over-expression is also strongly associated with poor prognosis in various can-

cers [193]. The search for Cdc25 inhibitors has identified a wide variety of classes

of molecules including quinonoids which are likely irreversible inhibitors of Cdc25

and result in cell cycle arrest [194]. Large molecules containing phosphate mimetic

moieties have also been identified as potent Cdc25 inhibitors [194].

High throughput screening (HTS) strategies have been employed to identify phos-

phatase inhibitors. One such effort is the identification of a specific inhibitor of the

STP phosphoserine phosphatase from Mycobacterium tuberculosis [195]; the causative

pathogen of tuberculosis (TB). In an effort to combat the multi-drug resistance be-

ing observed, attempts to target essential bacterial metabolic pathways have led to

identification of inhibitors required of L-serine biosynthesis [195]. A similar approach

for identifying Cdc14 inhibitors could yield potent inhibitors.

4.1.2 Cdc14 is an ideal candidate for active site binding inhibitors

Ser/Thr protein phosphatases usually have highly generic active sites with little

intrinsic substrate selectivity [95]. Their substrate selectivity is usually a function of

regulatory subunits that define their substrate association as well as their sub-cellular

localization [95]. Cdc14, a member of the dual specificity phosphatase (DSP) family

of phosphatases, is unique in this respect. The determinants of substrate interaction

appear to be contained within or near the active site of the enzyme [102].
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Although the role of the Cdc14 phosphatase in the cell cycle has been studied

extensively, it is only recently that studies into its mechanism and substrate speci-

ficity have been conducted [103, 129, 130]. S. cerevisiae Cdc14 has been shown to

prefer multicyclic aryl phosphates when provided non-physiological small molecule

substrates [103]. The catalytic efficiency difference observed among these substrates

appears to be a function of differences in Km rather than kcat which indicates the ac-

tive site can discriminate among substrates based on substrate affinity [103]. Cdc14

has also been shown to have a strict preference for phosphoserine containing pep-

tide and protein substrates over those with either phosphotyrosine or phosphothre-

onine [129, 130]. Phosphopeptide substrates containing multiple basic residues C-

terminal to the phosphoserine, particular Lys at +3 are also preferred. Taken to-

gether, Cdc14 enzymes are ideal candidates for the development of small molecule

inhibitors that take advantage of the active site selectivity. And given the conser-

vation of the enzyme structure, inhibitors developed against ScCdc14 will likely be

effective against Cdc14 enzymes in multiple species.

Selective Cdc14 inhibitors have a variety of potential applications. One such ap-

plication would be in the study of Cdc14 function in cells. The ability to inhibit

Cdc14 function in cells would make studying Cdc14’s role in organisms with mul-

tiple paralogs of the enzyme more feasible. The effort to study Cdc14 function in

higher eukaryotes has been limited due to the challenges in genetically eliminating all

Cdc14 function. We have also recently shown that Cdc14 function is essential for the

pathogenicity of the plant pathogenic fungus F. graminearum [196]. Cdc14 inhibitors

are potential fungistatic agents that could be used to combat crop loss.

In an attempt to identify specific Cdc14 inhibitors, a high throughput screen

(HTS) was carried out.
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4.1.3 Choice of Chemical library for HTS

The HTS for Cdc14 inhibitors was carried out using commercially available small

molecule libraries on hand at the Drug Discovery Center at the Bindley Biosciences

Facility (Purdue University, West Lafayette, IN).

The LOPAC chemical library

The LOPAC chemical library, available from Sigma Life Science, is a collection of

1,280 pharmacologically active compounds.

ChemBridge DIVERSetTM collection

This library is a collection of 20,000 molecules intended to cover a wide variety of

chemical classes.

A custom Cherry-pick chemical library from Life Chemicals curated for biological

activity was also used.

4.2 Results

4.2.1 Cdc14 demonstrates product inhibition

As presented in the previous chapter, Cdc14 is highly selective for substrates con-

taining a phosphoserine, a +1 proline, and a +3 basic residue. Cdc14 steady-state

kinetic profiles using an optimal peptide substrate exhibit substrate inhibition [129].

These observations raised the possibility that Cdc14 activity could be inhibited by

molecules that mimic high affinity substrate features. To explore this, I first used a

non-phosphorylated peptide (Acm1pS3) that contains an optimal substrate sequence

and tested its ability to inhibit the dephosphorylation of the phosphorylated form of

the same sequence (Acm1pS3). This peptide is able to inhibit Cdc14 activity (Figure

4.1) with an IC50 of 183 (±23)µM and ki of 120µM. This result suggests that an un-
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phosphorylated peptide containing an optimal substrate sequence is able to effectively

compete with substrate for Cdc14 binding. The peptide is a less effective inhibitor

of Cdc14 when compared to sodium tungstate, a general inhibitor of phosphatases,

which has an IC50 of 1.24 (±0.4)µM and ki of 0.82µM (Figure 4.2).

The observation that Cdc14 activity can be inhibited by a product peptide raised

the question about which sequence elements are important for inhibition. Any changes

to the unphosphorylated Acm1S3 peptide sequence away from on optimal substrate

sequence eliminate its ability to inhibit Cdc14 (Figure 4.3). Peptides with mutation

of the serine to threonine, +1 proline, +3 lysine or downstream basic residues are

severely compromised as inhibitors compared to Acm1S3. Effective inhibition, at

least in the case of Acm1S3, is only achieved when the inhibitor peptide is in excess

of the substrate and contains optimal substrate sequences.

4.2.2 Small molecule inhibitors of Cdc14 were identified

The substrate selectivity of Cdc14 and the ability to inhibit its activity with pep-

tides that contain the optimal substrate sequence raised the possibility of identifying

small molecule inhibitors of Cdc14 that are competitive inhibitors. The ideal in-

hibitor would be able to take advantage of the same enzyme features that result in

Cdc14 selectivity to specifically bind to the enzyme active site and/or the substrate

interaction interface. A high throughput screen with ∼50,000 small molecules, was

performed via an endpoint assay, using a photometric readout, at fixed concentrations

of substrate (100µM, Acm1pS3) and inhibitor (40µM). The screen identified a total

of 116 inhibitors that were able to inhibit >70% of Cdc14 activity and some of the

identified inhibitors have been characterized in more detail (Table 4.1, Figure 4.4). A

detailed list of molecules identified by the HTS not yet manually confirmed are also

listed in the Appendix.
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Fig. 4.1.: Acm1S3 is an effective Cdc14 inhibitor An unphosphorylated peptide
containing an optimal substrate sequence inhibits Cdc14 activity with an IC50 of 183
µM and ki of 120 µM. Rate of phosphopeptide (Acm1pS3, 100µM) dephosphoryla-
tion is plotted as a function of inhibitor peptide concentration. Each bar represents
activity observed and data are an average of three independent trials and error bars
show standard deviation of the mean. Data were fit with a sigmoidal dose response
curve using GraphPad Prism, as described in the methods section, to obtain IC50
values.
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Fig. 4.2.: Sodium tungstate inhibits Cdc14 activity with a ki of 0.82µM
A general phosphatase inhibitor (sodium tungstate) inhibits Cdc14 activity with an
IC50 of 5 ±1.7µM and ki of 3.3µM. Rate of phosphopeptide (Acm1pS3, 100µM)
dephosphorylation is plotted as a function of inhibitor peptide concentration. Each
point represents activity observed and data are an average of three independent trials
and error bars show standard deviation of the mean. Data were fit to a sigmoidal
dose response curve (Equation 4.1) using GraphPad Prism to obtain IC50 values.
The Hill slope for this fit is -0.12. Observing complete inhibition of Cdc14 activity is
a challenge in this photometric assay.
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Fig. 4.3.: Mutations away from the ideal substrate sequence abolish ability
of peptides to inhibit Cdc14 activity Mutations that change serine to threonine
(panel A), +1 Proline (panel B), or basic residues (+3 to 5, Panels C-E) eliminate
the ability of the unphosphorylated peptide to inhibit Cdc14 activity. Each point
represents activity observed and data are an average of three independent trials and
error bars show standard deviation of the mean.
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Fig. 4.4.: A likely significant number of the molecules identified as Cdc14
inhibitors are pan assay interference compounds (PAINS). The Kekulé struc-
tures of small molecule inhibitors of Cdc14 activity are presented. These molecules
belong to classes of compounds like alkylidene barbituates and quinones known to be
non specific protein modifiers [197]. The number below each structure is the molecule
identification number and the number in parentheses is the % inhibition of Cdc14
activity at 40µM of inhibitor.
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Table 4.1: Small molecule Cdc14 inhibitors have been identified. The chem-
ical formulae, IUPAC names and % inhibition observed for inhibitors selected for
further analysis are listed

Numbera Formula Name % inhibition
5117227 C10H5O5S.Na Sodium-3,4-dioxo-3,4-dihydro-1-

naphthalenesulfonate

97.7

5130983 C10H6N6O2 1H-indene-1,2,3-trione 2-(1H-

tetrazol-5-ylhydrazone)

97.37

5175170 C20H12O3 2’-hydroxy-1,1’-binaphthalene-3,4-

dione

90.15

5174626 C18H14N2O3 1-benzyl-5-benzylidene-

2,4,6(1H,3H,5H)-pyrimidinetrione

75.83

5224815 C14H14N2O3 5-(4-isopropylbenzylidene)-

2,4,6(1H,3H,5H)-pyrimidinetrione

75.2

5256251 C14H10N4O4 N-(6-anilino-4,7-dioxo-4,7-

dihydro-2,1,3-benzoxadiazol-5-

yl)acetamide

74

a numbers represent the identification number used by the commercial source (Chem-
Bridge)

Small molecule inhibitors have ki values in the low µM range

The subset of the small molecule inhibitors identified were analyzed to determine

their IC50 values. It was found that four of the small molecules significantly inhibited

Cdc14 activity at low µM concentrations. Activity of Cdc14 at a fixed [S] and varying

[I] were plotted for these four inhibitors (Figures 4.5, 4.6, 4.7, and 4.8). The IC50s

for each of the characterized inhibitors are listed in table 4.2. These inhibitors had ki

values in the low µM range. Two of the six potential inhibitors identified in the HTS

were not effective during the confirmatory tests.
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Table 4.2: Determination of ki for Cdc14 inhibitors. IC50 values were deter-
mined by fitting data as described in Figures 4.5-4.9. ki was calculated using the
equation

ki =
IC50

1 + [S]
km

where [S] = 100 µM and km = 193 µM (from Chapter 3).

Numbera IC50(µM) ki(µM)
5224815 3 ± 1.9 1.9
5175170 6.5 ± 1.3 4.2
5117227 3.3 ± 0.8 2.1
5256251 8 ± 12 3.3

a numbers represent the identification number used by the com-

mercial source. Standard deviation of IC50 is indicated.

A large number of pan assay interference compounds (PAINS) were ob-

served to inhibit Cdc14 activity

A large proportion of the inhibitors identified by the high throughput screen are

molecules that have been reported as non-specific covalent protein modifiers [198].

These compounds, which include alkylidene barbiturates and quinones represented in

Figure 4.4, can non-specifically react with nucleophiles found on the substrate peptide

or Cdc14 to lead to the observed inhibition. It is very unlikely that these compounds

can serve as the basis for developing specific Cdc14 inhibitors. In an initial attempt

to investigate the mechanism of inhibition, assays were performed at a fixed inhibitor

concentration and with increasing substrate concentration. ScCdc14 was first incu-

bated with inhibitor for 5 minutes prior to substrate addition. It was expected that if

the inhibitors were reversible, a higher substrate concentration would lead to higher

enzyme activity. Although all four inhibitors were competed with increasing substrate

concentration (Figure 4.9), it is unlikely that they are true reversible inhibitors. It

is not yet possible to determine the mechanism of inhibition based on the results

observed.
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Small molecule inhibitors are less effective against other Cdc14s

The ability of small molecule inhibitors of ScCdc14 were tested for activity against

FgCdc14. IC50 values could not be determined because data could not be fit to a

sigmoidal dose response curve (Figures 4.10 4.11). Given the conservation of substrate

selectivity, specific Cdc14 inhibitors would be expected to be similarly effective against

multiple Cdc14 enzymes. The inconsistent effect of these inhibitors against FgCdc14

and hCDC14A is a strong indication that the tested inhibitors are in fact non specific

PAINS because the observed conservation of substrate selectivity would suggest a

true competitive inhibitor should affect all enzymes equivalently.

Fig. 4.5.: Molecule #5224815 inhibits Cdc14 activity with a ki of 1.3µM.
Phosphopeptide dephosphorylation at a fixed substrate concentration is plotted as a
function of inhibitor concentration. Activity observed without inhibitor is normalized
to 100%. Data presented are an average of three independent trials and error bars
shows standard deviation of the mean. Data were fit to a sigmoidal dose response
curve (Equation 4.1) using GraphPad Prism to obtain IC50 values. The Hill slope
for this fit is -0.13.
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Fig. 4.6.: Molecule #5175170 inhibits Cdc14 activity with a ki of 5.6µM.
Phosphopeptide dephosphorylation at a fixed substrate concentration is plotted as a
function of inhibitor concentration. Activity observed without inhibitor is normalized
to 100%. Data presented are an average of three independent trials and error bars
shows standard deviation of the mean. Data were fit to a sigmoidal dose response
curve (Equation 4.1) using GraphPad Prism to obtain IC50 values. The Hill slope
for this fit is -0.34.

Fig. 4.7.: Molecule #5117227 inhibits Cdc14 activity with a ki of 5.6µM.
Phosphopeptide dephosphorylation at a fixed substrate concentration is plotted as a
function of inhibitor concentration. Activity observed without inhibitor is normalized
to 100%. Data presented are an average of three independent trials and error bars
shows standard deviation of the mean. Data were fit to a sigmoidal dose response
curve (Equation 4.1) using GraphPad Prism to obtain IC50 values. The Hill slope
for this fit is -0.74.
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Fig. 4.8.: Molecule #5256251 inhibits Cdc14 activity with a ki of 12.5µM.
Phosphopeptide dephosphorylation at a fixed substrate concentration is plotted as a
function of inhibitor concentration. Activity observed without inhibitor is normalized
to 100%. Data presented are an average of three independent trials and error bars
shows standard deviation of the mean. Data were fit to a sigmoidal dose response
curve (Equation 4.1) using GraphPad Prism to obtain IC50 values. The Hill slope
for this fit is -0.08.



120

F
ig

.
4.

9.
:

C
d
c1

4
in

h
ib

it
o
rs

d
is

p
la

y
a
n

in
d
e
te

rm
in

a
te

in
h
ib

it
o
ry

m
e
ch

a
n
is

m
.

C
d
c1

4
in

h
ib

it
or

s
ca

n
b

e
co

m
p

et
ed

w
it

h
in

cr
ea

si
n
g

su
b
st

ra
te

ac
ti

v
it

y
A

.5
22

48
15

B
.5

11
72

27
C

.5
17

51
70

D
.5

25
62

51
.

P
h
os

p
h
op

ep
ti

d
e

d
ep

h
os

p
h
or

y
la

ti
on

at
a

fi
x
ed

in
h
ib

it
or

co
n
ce

n
tr

at
io

n
is

p
lo

tt
ed

as
a

fu
n
ct

io
n

of
su

b
st

ra
te

co
n
ce

n
tr

at
io

n
.

A
ct

iv
it

y
ob

se
rv

ed
w

it
h
ou

t
in

h
ib

it
or

is
n
or

m
al

iz
ed

to
10

0%
.

D
at

a
p
re

se
n
te

d
ar

e
an

av
er

ag
e

of
th

re
e

in
d
ep

en
d
en

t
tr

ia
ls

an
d

er
ro

r
b
ar

s
sh

ow
s

st
an

d
ar

d
d
ev

ia
ti

on
of

th
e

m
ea

n
.



121

F
ig

.
4.

10
.:

S
m

a
ll

m
o
le

cu
le

in
h
ib

it
o
rs

a
re

le
ss

p
o
te

n
t

in
h
ib

it
o
rs

o
f
F
.
g
ra

m
in

ea
ru

m
C

d
c1

4
A

.5
11

72
27

B
.5

17
51

70
C

.5
22

48
15

D
.5

25
62

51
.

P
h
os

p
h
op

ep
ti

d
e

d
ep

h
os

p
h
or

y
la

ti
on

at
a

fi
x
ed

su
b
st

ra
te

co
n
ce

n
tr

at
io

n
is

p
lo

tt
ed

as
a

fu
n
ct

io
n

of
in

h
ib

it
or

co
n
ce

n
tr

at
io

n
.

A
ct

iv
it

y
ob

se
rv

ed
w

it
h
ou

t
in

h
ib

it
or

is
n
or

m
al

iz
ed

to
10

0%
.

D
at

a
p
re

se
n
te

d
ar

e
an

av
er

ag
e

of
th

re
e

in
d
ep

en
d
en

t
tr

ia
ls

an
d

er
ro

r
b
ar

s
sh

ow
s

st
an

d
ar

d
d
ev

ia
ti

on
of

th
e

m
ea

n
.

IC
50

va
lu

es
co

u
ld

n
ot

b
e

d
et

er
m

in
ed

b
ec

au
se

d
at

a
co

u
ld

n
ot

b
e

fi
t

a
si

gm
oi

d
al

d
os

e
re

sp
on

se
cu

rv
e.



122

F
ig

.
4.

11
.:

S
m

a
ll

m
o
le

cu
le

in
h
ib

it
o
rs

a
re

le
ss

p
o
te

n
t

in
h
ib

it
o
rs

o
f

h
C

D
C

1
4
A

A
.5

11
72

27
B

.5
17

51
70

C
.5

22
48

15
an

d
D

.
52

56
25

1.
P

h
os

p
h
op

ep
ti

d
e

d
ep

h
os

p
h
or

y
la

ti
on

at
a

fi
x
ed

su
b
st

ra
te

co
n
ce

n
tr

at
io

n
is

p
lo

tt
ed

as
a

fu
n
ct

io
n

of
in

h
ib

it
or

co
n
-

ce
n
tr

at
io

n
.

A
ct

iv
it

y
ob

se
rv

ed
w

it
h
ou

t
in

h
ib

it
or

is
n
or

m
al

iz
ed

to
10

0%
.

D
at

a
p
re

se
n
te

d
ar

e
an

av
er

ag
e

of
th

re
e

in
d
ep

en
d
en

t
tr

ia
ls

an
d

er
ro

r
b
ar

s
sh

ow
s

st
an

d
ar

d
d
ev

ia
ti

on
of

th
e

m
ea

n
.

IC
50

va
lu

es
co

u
ld

n
ot

b
e

d
et

er
m

in
ed

b
ec

au
se

d
at

a
co

u
ld

n
ot

b
e

fi
t

a
si

gm
oi

d
al

d
os

e
re

sp
on

se
cu

rv
e.



123

4.3 Discussion

Observations that the area around the Cdc14 active site contains multiple docking

sites for substrate features which provide specificity raised the possibility of identifying

or developing selective small molecule inhibitors. Ideally, an initial Cdc14 inhibitor

lead compound would be a competitive active site binder. This lead compound could

be optimized by adding functional groups with features that interact with the adjacent

substrate docking sites to create a high affinity, high specificity inhibitor. A peptide

containing optimal Cdc14 substrate sequence was shown to be an effective Cdc14

inhibitor demonstrating in principal that one can use substrate docking features in

the inhibitor design process. A high throughput screen using portions of two chemical

libraries (50,000 compounds) was also employed to identify Cdc14 inhibitors. A small

number of molecules (116) were found to inhibit >70% of Cdc14 activity. This HTS

approach is yet to result in the identification of specific Cdc14 inhibitors. Many of

the inhibitors are likely non-specific, belonging to classes of pan assay interference

compounds (PAINS) [197].

Efforts to identify specific Cdc14 inhibitors will require removal of known PAINS

from the list of inhibitors. Utilization of a virtual screening approach, in combina-

tion with a PAINS eliminating step might increase the likelihood of identifying true

inhibitors. This strategy would involve only pursuing molecules that do not have

chemical groups that are known to inhibit enzyme activity in a non specific man-

ner [197]. A recent study employed such an approach to discover selective inhibitors

of the histone methyltransferase SET7 [199]. If molecules that bind in the Cdc14

active site can be identified, additional functional groups could be added onto these

molecules to fit either in the proline binding site or the acidic groove near the active

site, thus improving affinity. This approach will most likely involve molecular combi-

nation methods that add functional groups to the lead compound in order to improve

inhibitor binding to the Cdc14 substrate binding pocket.
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Selective Cdc14 inhibitors have the potential to be useful in multiple applications.

One major use for these molecules would be in understanding Cdc14 function in

humans. The effort to study Cdc14 function in higher eukaryotes has been limited

due to the challenges in genetically eliminating all Cdc14 function. The effects of

inhibitors in live cells can be tested in budding yeast because elimination of Cdc14

activity has a clear observable phenotype, in which cells arrest during late mitosis in

a telophase like state with large buds and segregated DNA. This phenotype can easily

be assayed with microscopy techniques and would allow for efficient identification of

inhibitors selective for Cdc14. The ability to inhibit Cdc14 in cultured human cells

with a rapidly acting small molecule would make studies into Cdc14 function much

more feasible.

Cdc14 inhibitors could have applications beyond the study of Cdc14 function.

We recently showed that Cdc14 function is essential for pathogenicity of the wheat

blight fungus F. graminearum [183]. The development of effective Cdc14 inhibitors

could prove useful in the search for fungistatic agents. This possibility is made much

more attractive because plants do not have Cdc14 orthologs and fungistatic agents

would only be effective against the fungus. There is also a potential for using Cdc14

inhibitors in cancer therapy as supplements to DNA damaging drugs. Inhibiting

Cdc14, previously demonstrated to play a role in DNA damage repair [200, 201],

would impair the ability of tumor cells to recover following treatment with DNA

damaging chemotherapeutics, potentially making the treatments more effective.

4.4 Experimental Procedure

4.4.1 Purification of Cdc14

Recombinant His6-Cdc14 was purified as described in chapter 3 with modifica-

tions. An additional anion exchange purification step was added prior to dialysis into

the storage buffer. Following pooling of 250 mM imidazole elution fractions, the pool

was applied manually, using a syringe, to a 5 ml HiTrap desalting column (GE Life
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Sciences) pre-equlibrated with desalting buffer (25 mM HEPES pH 7.4, 25 mM NaCl,

0.1% BME) and 1.7 ml fractions were collected. The column was washed with ad-

ditional desalting buffer and fractions collected until protein was undetectable using

a bradford assay. Desalted fractions with highest protein concentration were then

pooled and applied to a 1 ml HiTrap Q Anion exchange column (GE Life Sciences)

pre-equlibrated with desalting buffer. The column was then washed with 10 ml of

desalting buffer. Protein was then eluted with 10 ml stepwise increases of salt concen-

tration to 224.5 mM, 248.25 mM, 262.5 mM, 272 mM, and 500 mM of NaCl. Elution

was collected in 1.5 mL fractions and assayed for protein concentration. Fractions

with highest protein content were pooled and dialyzed into storage buffer (25 mM

Tris-HCl pH 7.5, 300 mM NaCl, 2 mM EDTA, 0.1% 2-mercaptoethanol, 40% glycerol)

overnight at 4 ◦C. The resulting recombinant proteins were analyzed by SDS-PAGE

and stored in small aliquots at -80 ◦C.

4.4.2 Peptide substrate preparation

Acm1pS3 (MIpSPSKKRTI) was synthesized by Genscript Inc. in crude form and

purified using Sep-Pak C18 cartridges (Waters Corporation) as described in chapter

3 [185]. The concentrations of phosphopeptide stocks were measured with an ashing

procedure and malachite green-ammonium molybdate dye as described previously

[186].

4.4.3 Unphosphorylated peptide inhibitors

The ability of unphosphorylated peptides to inhibit Cdc14 activity was tested

using a standard 20 µl enzyme assay described in the Experimental Procedure section

of Chapter 3. The peptides listed in Table 4.3 were added at defined concentrations

before the addition of peptide substrate (Acm1pS3). In one set of experiments, the

effects of increasing Acm1S3 concentration was investigated. The effects of changing
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the sequence of Acm1S3 was also investigated by comparing the effects of peptides

at a fixed concentration.

Table 4.3: Unphosphorylated peptides tested as inhibitors

Peptide Name Sequence variation Sequence
Acm1S3 MISPSKKRTI
Acm1T3 0T MITPSKKRTI

Acm1S3 P4A +1A MISASKKRTI
Acm1S3 K6A +3A MISPSAKRTI
Acm1S3 K6R +3R MISPSRKRTI
Acm1S3 7A8A +4A, +5A MISPSKAATI
Acm1S3 AAN +3A, +4A, +5N MISPSAANTI

Mutations are underlined.

4.4.4 High-throughput inhibitor screen

The following protocol was performed by utilizing purified ScCdc14 and Acm1pS3

in an in vitro reaction in which candidate inhibitors were included. The release of

phosphate was quantified using a colorimetric assay. The screen was performed in

two microplate formats (384 or 1536 well).

384 well format: These assays contained 75 nM ScCdc14, 100 µM Acm1pS3

substrate and screened compounds at 40 µM in a reaction volume of 50 µl. Reac-

tions were set up by dispensing 40 µl of the enzyme mix in reaction buffer (25 mM

HEPES pH7.5, 0.1 % BME, 1mM EDTA, 150mM NaCl) into wells of a 384 well

plate. Candidate chemical inhibitors were dispensed at a volume of 200 nl/well from

a stock at 10 mM in DMSO, using a pinning tool, for a final concentration of 40 µM.
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Reactions were then initiated by adding 10 µl of Acm1pS3 at 500 µM, diluted using

reaction buffer, into each well and incubated for 30 minutes at room temperature.

Reactions were terminated by adding 10 µl of the Malachite Green Phosphate Assay

mix (BioAssay Systems) prepared as directed by the manufacturer. Following incu-

bation for 30 minutes, the release of inorganic phosphate was calculated by using a

standard curve generated with sodium phosphate under identical solution conditions.

1536 well format: These assays contained 75 nM ScCdc14, 100 µM Acm1pS3

substrate and screened compounds at 40 µM in a reaction volume of 5 µl. Reactions

were set up by dispensing 4 µl of the enzyme mix in reaction buffer (25 mM HEPES

pH7.2, 0.1% BME, 1mM EDTA, 100mM NaCl, 0.01% BSA) at 93.75 nM into wells

of a 1536 well plate. Candidate chemical inhibitors were dispensed at a volume of 20

nl/well from a stock at 10 mM, using a pinning tool, for a final concentration of 40

µM. Reactions were then initiated by adding 1 µl of Acm1pS3 at 500 µM, diluted

using reaction buffer, into each well and incubated for 1 hour at 4 ◦C. Reactions were

terminated by adding 1 µl of the Malachite Green Phosphate Assay mix (BioAssay

Systems) prepared as directed by the manufacturer. Following incubation for 30

minutes, the release of inorganic phosphate was calculated by using a standard curve

generated with sodium phosphate under identical solution conditions.

4.4.5 Determination of small molecule inhibitor IC50

Before a more stringent analysis of inhibitor IC50 values, the ability of the molecules

to inhibit Cdc14 activity was confirmed with a manual enzyme assay in which 50nM

Cdc14 and 40 µM of each inhibitor were first combined and incubated for 5 minutes.

Then 100 µM phosphopeptide substrate was added in a final reaction volume of 20µl.

Compounds confirmed to be inhibitors were then analyzed to determine IC50 values.

Cdc14 enzyme assays with 50nM Cdc14 and 100 µM Acm1pS3 substrate were set up

with varying concentrations of Cdc14 inhibitors from 0.1 to 100 µM. Reactions were

set up to a final volume of 20µl and incubated at 30 ◦C for 30 minutes. IC50 values
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were estimated by comparing the observed enzymatic activity to that of an uninhib-

ited reaction and fitting the data with a sigmoidal response curve, with a variable

slope (Equation 4.1), using GraphPad Prism.

Eq.4.1

Y = B+(T−B)
1+10((log(IC50)−X)∗h) (4.1)

where X is log[inhibitor]; Y is % activity at log[inhibitor]; B is lowest % activity

(initially set to 0%) ; T is highest % activity (initially set to 100%) and h is the Hill

slope
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5. SUMMARY AND FUTURE DIRECTIONS

5.1 Summary

The experimental results presented in this thesis address two mechanisms that

regulate mitotic exit. One process is that of proteasomal degradation and the other

is dephosphorylation of proteins by mitotic phosphatases. I have presented the re-

sults investigating the non-canonical mechanism by which the budding yeast protein,

Acm1, is degraded by the proteasome, in a cell cycle regulated manner. I have also

presented results of experiments characterizing the substrate selectivity of the mitotic

phosphatase Cdc14 from an evolutionarily diverse set of organisms. In addition I have

presented progress in the development of Cdc14 inhibitors. Below I will summarize

the major findings and will discuss follow-up experiments.

5.1.1 Non-canonical mechanism for proteasomal degradation

When starting this project, work in the Hall lab and by others had shown that

Acm1 degradation during G1 is independent of the APC and requires the proteasome

[92, 94]. At the time, it was not clear how Acm1 gets targeted for proteasomal

degradation and if polyubiquitination is required. My work has shown that Acm1

degradation in G1 does not require Acm1 polyubiquitination but the activity of the

ubiquitin activating E1 enzyme is necessary. However, no single E2 or E3 ligase

has been identified as an essential factor for Acm1 degradation. Acm1 degradation

also requires the N-terminal, putative disordered region (Figure 5.2). Removal of

this region leads to stabilization of Acm1 in G1. This N-terminal sequence is not a

sufficient degron suggesting the requirement for additional factors. I have also shown

that failure to effectively degrade Acm1 has a negative effect on cell growth. It is not
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yet clear how Acm1 is targeted for degradation but the mechanism is not consistent

with canonical mechanisms of proteasomal degradation. A proposed model for Acm1

degradation is given in Figure 5.1.

Fig. 5.1.: Updated model for Acm1 degradation. The model proposed for Acm1
degradation based on the current experimental evidence. This model accounts for E1
and 26S proteasome requirement for degradation. No individual E2 or E3 enzymes
are required. Therefore, the model accounts for the possibility of redundant E2s or
E3s that could be involved downstream of the E1 enzyme. General lysine linked
ubiquitin chain attachment is not required and Acm1 lacking all ubiquitin accepter
lysines is degraded normally. This observation, however, does not rule out the unlikely
possibility that Acm1 can be monoubiquitinated at unconventional residues. The
herpevirus E3 ligase, mK3, has been reported to mediate the degradation of the
major histocompatibility complex I heavy chain (MCH1) by attaching ubiquitin at
cysteine, serine or threonine residues [202, 203] although such an E3 is yet to be
described in yeast. There is also the possibility that an adapter protein, reminiscent
of Antizyme, could target Acm1 for degradation when monoubiquitinated.

5.1.2 Conservation of Cdc14 substrate selectivity

Phosphopeptide substrate-based characterization of Cdc14 substrate selectivity

has been an effective tool in understanding the substrate sequence preference of Cdc14

and in predicting physiological protein substrates [129, 130]. In chapter 3, I have

presented my work on investigating the extent to which the selectivity observed in

S. cerevisiae is conserved in other species, including S. pombe, F. graminearum, and
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humans. These analyses show that there is a high degree of conservation in Cdc14

substrate selectivity among this diverse set of organisms. All tested enzymes have a

strict preference for phosphoserine containing substrates with +1 proline and basic

residues C-terminal to the phosphorylation site. These analyses also identified novel

determinants of selectivity previously not observed (Figure 3.16). Introduction of

proline and valine at +2 and glycine at +3 is not tolerated.

5.1.3 Development of Cdc14 inhibitors

The substrate selectivity observed for Cdc14 enzymes raised the possibility that

specific inhibitors can be identified. Chapter 4 presented the progress made towards

identifying Cdc14 inhibitors. One major observation made is that a peptide contain-

ing optimal substrate sequence is able to inhibit Cdc14 activity. This observation

indicated the possibility that inhibitors can be designed to take advantage of the ac-

tive site features to yield selective and high affinity competitive inhibitors. A high

throughput screen employed to discover such inhibitors led to the identification of

inhibitors which show ki values in the µM range. The majority of the most effec-

tive inhibitors are likely non-specific, belonging to classes of pan assay interference

compounds (PAINS) [197].

5.2 Future Directions

5.2.1 Understanding Acm1 degradation

The observations made about Acm1 degradation in G1 make it an interesting

case study of an unconventional proteasomal degradation mechanism. As proposed

in the model for Acm1 degradation (Figure 5.1), the possibility exists that an adapter

protein, analogous to antizyme, binds to Acm1 and targets it to the proteasome.

Identification of this adapter protein would require stabilization of the complex by

inhibiting the proteasome in G1 cells and immunopurifying the complex. A mass
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spectrometric analysis of this complex could reveal any copurifying proteins. This

would be followed by investigating the requirement of the adapter, by deleting the

gene. The possibility of this new binding factor mediating the degradation of other

proteins can also be investigated by purifying any complexes containing this protein

that are enriched when the proteasome is inhibited. The effects of the gene deletion on

the degradation of copurifying proteins can also elucidate if this mechanism is utilized

for the degradation of other proteins. The possibility of unconventional ubiquitin

attachment to Acm1 can be investigated by mutating the single Cysteine (C107),

each Serine (23 in total) or Theronine (11 in total) .

The requirement of the N-terminal region of Acm1 could be due to the requirement

of a disordered region to promote translocation into the proteasome active site. This

possibility can be explored by replacing this region with another disordered protein

sequence of similar length. The PONDR R© algorithm also predicted the C-terminal

region of Acm1 is disordered (Figure 5.2). The effects of removing this region could

also be investigated to shed light on the contribution of this region to degradation, if

any such effect exists.

5.2.2 Utility of degradation resistant Acm1 in understanding APCCdh1

Questions about what exactly distinguishes an APCCdh1 substrate from a pseudo-

substrate inhibitor remain to be answered. There is clear evidence that the sequence

motifs that allow substrates to bind Cdh1 are also necessary for Acm1 binding [89].

However, there is a divergence of the fate of proteins that interact with Cdh1. One

of the hypotheses put forward is that Acm1 contains additional sequence elements

that result in higher binding affinity, compared to substrates, which interfere with the

ability of APCCdh1 to ubiquitinate Acm1. There is also a possibility that there are

sequences within Acm1 that prevent ubiquitination, independent of binding affinity.

In addition, the effects of mutations in Acm1N∆52, the degradation resistant mutant,

that destabilize the protein can be investigated in the full length protein.
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The list of APCCdh1 substrates is by no means exhaustive. Currently the presence

of the degron sequences (D and KEN boxes) in a protein is used as an indicator that

the protein is an APC substrate. This definition seems incomplete, because the like-

lihood of any given protein containing a D or KEN box (RXXL or KEN) sequence

is fairly high and clearly not all proteins that contain these sequences are APCCdh1

substrates. There are also APCCdh1 substrates that contain no clearly recognizable

degron. Taken together, these observations point to, as of yet, unidentified pro-

tein features characteristic of an APC substrate. Being able to identify additional

APCCdh1 substrates would improve the likelihood of finding new sequences that de-

fine a substrate. A degradation resistant Acm1 that is stable in G1, when APCCdh1

is active, is beneficial in identifying substrates, regardless of recognition mechanism.

Ability to inhibit the degradation of said protein by overexpressing Acm1N∆52 will be

a strong indication that the protein is an APCCdh1 substrate.

5.2.3 Cdc14 substrate selectivity

The results from the positional scanning peptide library assay have identified new

phosphopeptide positions that influence substrate selectivity (Figure 3.16). Addi-

tional experiments are required to further investigate these effects. Determination of

steady state kinetic parameters, by measuring dephosphorylation rates as a function

of substrate concentration, for peptides listed in Table 5.1 would serve to more clearly

characterize the influence of changes at these positions (-2,-1, and +6). Any differ-

ences in the magnitude of effects at each position could reveal variations in substrate

preferences that exist among the Cdc14 enzymes tested. The effect of these muta-

tions should also be investigated by using different phosphopeptide substrates. The

effects of residues further N-terminal to the phosphoserine can also be investigated

using another positional scanning library approach with a longer Cdh1pS239 pep-

tide (DSKQLLLpSPGKQFRQ) and mutating individual residues between positions
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-6 and -4. Mutations that enhance activity could then be followed up by experiments

to determine the effects on kinetic parameters.

Table 5.1: Phosphopeptide sequences for testing effects of novel substrate
determinants.

Sequence variation Sequence

LLpSPGKQFRQ

-2P PLpSPGKQFRQ

-2G GLpSPGKQFRQ

-1V LVpSPGKQFRQ

-1Q LQpSPGKQFRQ

+2P LLpSPPKQFRQ

+2V LLpSPVKQFRQ

+4G LLpSPGKGFRQ

+6W LLpSPGKQFWQ

Residues in bold are phosphorylated and changes in sequence are

underlined.

As previous work and the data presented in Chapter 3 demonstrate, Cdc14 has

a very strict selectivity. Bremmer et al. have been able to demonstrate that the

Alanine 285 in the Cdc14 active site is a significant driver of phosphoserine over

phosphothreonine selectivity [129]. In addition, a hypothesis has been put forward,

based on the crystal structure of hCDC14B, that an acidic groove adjacent to the

active site and solvent exposed aromatic amino acids are responsible for the preference

for downstream basic residues and +3 lys, respectively [102, 130]. This hypothesis

could be tested by mutation studies and the effects of mutating the residues that

make up the acidic groove on substrate selectivity could help identify Cdc14 sequence

features that drive selectivity. The effects of mutant Cdc14 with altered selectivity

on cell cycle progress can also be investigated in vivo. This could further reveal the

role for Cdc14 selectivity in defining the order of substrate dephosphorylation during
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mitosis. Perturbing this order may result in the premature dephosphorylation of

substrates that are normally dephosphorylated in late mitosis. An example would be

Orc6 which could lead to premature origin relicensing or Iqg1 which could result in

cytokinesis defects.

The improved understanding of Cdc14 substrate sequence preference from mul-

tiple organisms presents the possibility of identifying novel protein substrates for

Cdc14, both in budding yeast as well as in organisms in which Cdc14 function is not

well studied. The substrate selectivity can be applied to predict potential protein

substrates using in silico searches of the organism proteome for proteins that contain

matching sequences. This would make efforts to identify physiologically relevant sub-

strates more efficient and would shed light on the role of Cdc14 in these organisms.

As a demonstration of this, Yen1, a holiday junction resolvase in budding yeast was

identified using a similar approach [130]. Potential substrates that could shed light on

F. graminearum Cdc14 requirement for pathogenicity have also been compiled [183].

This same approach can be taken to elucidate hCDC14 function.

5.2.4 Development of Cdc14 inhibitors

The small molecules identified in the HTS as being Cdc14 inhibitors require care-

ful analysis. Inhibitors that are likely non-specific, belonging to classes of pan assay

interference compounds (PAINS) need to be removed from compounds selected for

further development. Software tools like Pipeline Pilot (Pipeline Pilot; Accelrys Soft-

ware Inc., San Diego, CA) will prove useful in streamlining this process [199]. An

alternate approach would be to perform HTS with multiple Cdc14 enzymes and only

pursue molecules that are effective against multiple enzymes. A structure-activity

relationship analysis will help identify common molecular structures that are repre-

sented among the inhibitors. This analysis could identify a structure that can be used

as a starting point for designing inhibitors that bind with higher affinity. This ap-
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proach would most likely involve synthesis of derivative molecules that add functional

groups that may improve inhibitor binding.

Given the challenges of using HTS with commercially available libraries that con-

tain a large number of PAINS, an alternate approach for developing Cdc14 inhibitors

might be the preferred strategy. One option is to employ a structure guided design

of inhibitors that can make substrate like interactions with the enzyme active site.

Peptidomimetics that contain side-chains similar to optimal substrates and altered

sequences where the phosphoSer is mutated to Glu could prove useful. Main-chain

substituted peptidomimetics might be better suited for use in live cells as natural pep-

tides have issues with stability against proteolysis and poor bioavailability [204]. An

alternative strategy for exploring molecules that can make multiple contacts with an

enzyme active site is to start with a molecule known to bind in a phosphatase active

site, like sulfonates, and explore molecule fragments that can improve binding [205].

The effects of Cdc14 inhibitors on other protein tyrosine phosphatases (PTPs) is

an important indicator of inhibitor selectivity since PTPs share an oxidizable active

site Cysteine, as part of the CX5R domain. Testing inhibitor effect on PTPs like

Cdc25 (Mih1) or PTP1 would help exclude inhibitors that are general oxidizers. Some

human PTPs have been purified from bacteria (Figure 5.3) (expression constructs

were a kind gift from Dr. Zhong-Yin Zhang).

5.2.5 Application of Cdc14 inhibitors

If any selective Cdc14 inhibitors can be identified, they might have multiple appli-

cations. One major use for these molecules would be the study of Cdc14 function in

organisms that have previously been difficult to study. The challenge of accounting

for multiple paralogs of the enzyme and the lack of knowledge in their functional

redundancy has limited the success of efforts to study Cdc14 in higher eukaryotes.

The ability to inhibit all Cdc14 activity in human cells would allow a significant

progress in the understanding of Cdc14 function. The effects of inhibitors in vivo can



137

be tested in budding yeast because loss of Cdc14 leads to arrest in a telophase like

state with cells having large buds which can easily be observed under a microscope.

One challenge with using yeast in such an assay is the yeast cell wall, which creates a

physical barrier for inhibitor entry into cells. This might require zymolyase treatment

to improve inhibitor permeability. If a cell permeable Cdc14 inhibitor is identified, it

would allow for a new method of arresting yeast cells in late mitosis. This would be

an alternative method to the shifting of cultures to 37 ◦C to arrest cdc14-1 cells.

Cdc14 inhibitors could have applications beyond the study of Cdc14 function. It

has recently been demonstrated that Cdc14 function is essential for pathogenicity

of the wheat blight fungus F. graminearum [183]. Identification of Cdc14 inhibitors

has the potential to lead to the development of fungistatic agents that would be

selective for the fungus because plants do not have Cdc14. The ability of an identified

Cdc14 inhibitor that is also effective against purified FgCdc14 can be tested for its

ability to prevent plant infection by F. graminearum. This application may have some

limitations because use of these molecules in food crops might result in unintended

exposure for those consuming the crops.

There is also a therapeutic potential for using Cdc14 inhibitors in cancer treat-

ment as supplements to DNA damaging drugs. hCDC14A and B have previously

been demonstrated to play redundant roles in DNA damage repair [201]. Employing

a therapeutic approach that causes DNA damage and simultaneously inhibits the

recovery mechanism, would impair the ability of tumor cells to survive treatment.
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Fig. 5.2.: Prediction of Acm1 disordered regions. In silico prediction of Acm1
structural disorder using PONDR R©. The VL3 algorithm is used for the prediction
and the application is available via the Internet at http://pondr.com/.
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Fig. 5.3.: Purification of PTPs. Human protein tyrosine phosphatases were puri-
fied from bacteria and will be useful in determining selectivity of inhibitors for Cdc14.
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Appendix: Comparison of Cdc14 catalytic efficiencies

Fig. A.1.: Comparison of catalytic efficiencies of Cdc14 enzymes. Catalytic
efficiencies of Cdc14 enzymes are normalized to that observed for the starting sequence
(Green box) for each enzyme. Each box contains the activity observed (in order from
left to right) for Sc.Cdc14, FgCdc14, Clp1, hCDC14A and hCDC14B and each value
is shaded to reflect activity (dark,high-white,low).
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Appendix: Cdc14 inhibitors

A list of Cdc14 inhibitors identified by a high throughput screen is provided below.

There are two sets of inhibitors organized by the chemical library in which they are

found. The inhibitors are also ranked based on the observed % inhibition of Cdc14

activity. Molecules selected for manual confirmation and detailed characterization

are indicated by green shading.

The first set of molecules are from the DIVERSet commercial chemical library

available from ChemBridge.
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The molecules below are from a custom library of small molecules.
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