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ABSTRACT

McGee, Reginald L. PhD, Purdue University, December 2015. Modeling, analysis,
and control of Syk-mediated signaling events for B cells and associated cellular re-
sponse for B cells. Major Professor: Dr. Gregery T. Buzzard.

Understanding the immune system and its responses to foreign threats (antigens)

is a matter of understanding the immune cells involved, their individual responses,

and chemicals responsible for intracellular and intercellular communication. The over-

all immune response is driven by individual actions of neutrophils, antigen-presenting

cells, and lymphocytes (T cells and B cells), among other cells. Intercellular com-

munication is the means by which immune cells develop coordinated response while

intracellular signals determine responses within a cell; both depend on systems of

chemical reactions at their respective scales. The perspective taken in this disser-

tation is that of understanding B cells at the intracellular scale and the signaling

molecules responsible for its responses.

B cells, a type of white blood cell in the immune system, identify antigens by bind-

ing to them via B cell receptors (BCRs). After identifying an antigen, mechanisms in

the B cell membrane initiate a system of chemical interactions that propagate an in-

tracellular signal and thereby determining the cell’s response. In the first part of this

thesis, we present a model for B cell signaling using dynamical systems and motivated

by the desire to understand the role of the protein Syk. Syk is intricately involved

in the early signaling events and is required for proper response to an antigen. The

importance of this protein has led to mutant variants being genetically engineered to

manipulate its impact. This mutant variant is one of the primary novelties of our

model, and allows us to investigate the role of feedback loops involving Syk in produc-
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ing responses. This mutant model is used to develop testable hypothesis regarding

the B cell mutant kinase known as Syk-AQL.

It is often di�cult to resolve questions regarding complicated biological systems

through experimentation alone; this has led to the rise in the use of mathematical

modeling in systems biology. Experimentation is still important, however, as data is

needed to refine models, and designing experiments to most e�ciently refine models

is an important topic of research. This is a motivation for an interest in model-

based experimental design, where experiments can be systematically chosen to reduce

dynamic uncertainty in a given model. In the second part of this thesis, we provide

background on methods of experiment design and discuss the Maximal Informative

Next Experiment (MINE) method in greater detail. In particular, we provide a

theoretical foundation for this method and prove a convergence result for MINE

with nonlinear models. Design criteria have been developed to sequentially provide

maximal reduction in uncertainty and one criterion has been rigorously justified.

We will extend this analysis to other design criteria and in more general contexts.

Experimental design results will be useful for work on B cell modeling as well as other

applications. This project is a step towards better understanding cellular response

and creating tools useful modeling biological systems.
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1. INTRODUCTION

1.1 OBJECTIVES

This dissertation presents a model of B cell receptor signaling pathways and in-

troduces results regarding criteria for experimental design that are chosen to reduce

dynamic uncertainty. Dynamical systems and numerical analysis were utilized for de-

velopment of the model and its subsequent analysis. Due to the the limited amount of

experimental data available while determining model parameters, the design of exper-

iments became of interest. The work on experimental design was primarily theoretical

analysis.

The aim of this work is investigating cell response, and in particular to investigate

the role of the kinase Syk in B cell response. In the case of B cells, there has been

a growing amount of experimentation with genetically engineering mutant proteins,

but there was no model which featured the mutant protein. A reliable computational

model can be useful for in silico experimentation, which can be done expediently

and inexpensively. Furthermore, pairing models with experiments is powerful as

e↵ectively designed experiments can help refine models and predictive models can

produce testable hypotheses.

1.2 BACKGROUND

In this section, we provide background on the biological and mathematical mate-

rial presented throughout this thesis.
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1.2.1 LYMPHOCYTE BIOLOGY

A lymphocyte is a type of white blood cell and is a part of the adaptive immune

system. Lymphocytes are divided into two types of cells, known as T cells and B

cells. T cells appear in several di↵erent forms (helper, cytotoxic, memory, regulatory,

and natural killer); they coordinate many aspects of the immune response. B cells are

distinct from T cells in their ability to bind to specific antigens (substances foreign

to the body). Also, while T cells are generated in the thymus, B cells are generated

inside bone marrow and can work either together with T cells or independent of T

cells to combat antigens (foreign threats).

Antigens are recognized through the B cell receptor (BCR). Once an antigen is

bound, signaling mechanisms on and around the B cell membrane are activated,

mostly through tyrosine phosphorylation. Tyrosine phosphorylation is the process of

a protein gaining or losing a phosphate group at one of the protein’s tyrosine amino

acids. Due to the the negative charge of a phosphate group, its presence or removal

leads to a conformational shift in the protein, the various conformations are the

activated and inactivated states for signaling components and they lead to a intricate

system of molecular interactions initiates. There are many kinases involved in this

process; two kinases which govern early signaling events in B cells are Lyn and Syk.

Syk plays a central role in the response of a B cell. In particular, there are at least

three pathways from Syk to the enzyme PLC2�, which acts as a second messenger.

Further downstream events lead to the production of molecules such as Erk, NFAT,

NF-B, their translocation into the cell nucleus and then transcription begins. These

events regulate whether the final cell response is activation (proliferation), apoptosis

(cell death), or anergy (chronic unresponsiveness).

T cells and B cells share similarities in their signaling, particularly in their down-

stream pathways. Since there are many existing T cells models but few B cell models,

the most natural course is to modify a T cell model to reflect B cell dynamics. This

project builds on an existing T cell model by Zheng [1] for B cell study. We describe
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the structure of this model, give preliminary simulation results, and discuss future

aims for tuning of the model and analysis of dominant interactions.

1.2.2 MASS ACTION KINETIC MODELING

The models considered herein are formulated with the Law of Mass Action [2],

a kinetic scheme used frequently to model chemical reactions. Mass action kinetics

provide mathematical relationships between reactants, catalysts, and byproducts, and

applies to many chemical and biological processes. Reactions in the lymphocyte

antigen receptor signaling pathway include conversions in proteins, binding events,

and localization and movement of proteins. These processes can be represented with

several mass action kinetic schemes which we will now discuss.

A standard conversion reaction where A converts to B is written as A ! B

and the Law of Mass Action tells us that the concentration of B changes at a rate

d[B]

dt
= k[A]. When reactants are involved in multiple reactions the rate of change

can be decomposed into terms according to the reactions. For instance, the reaction

A $ B $ C implies that the concentration of B changes at rate d[B]

dt
= k

1

[A] �

k

2

[B] + k

3

[C] � k

4

[B] = vAB + vAC . Here vAB = k

1

[A] � k

2

[B], vBC = k

3

[C] � k

4

[B]

are terms corresponding to the reactions A $ B and B $ C, respectively.

Many processes can be represented by the same or similar kinetic schemes. The

degradation of a reactant A with byproduct B is modeled by the standard conversion

scheme described above, and the concentration of B changes at a rate vstandard = k[A].

The degradation process is observed in the B cell model after receptors are internal-

ized; there the reactant A represents the internalized receptors and the byproduct B

represents the receptors marked for degradation by lysosomes.

A ubiquitous reaction is the combination of reactants A and B that results in a

byproduct C. A combination reaction is written as A+B $ C and the concentration

of C changes at a rate vcombination = k

1

[A][B]�k

2

[C]. Binding is the first combination

to occur in the model, when the signaling receptor is engaged by a ligand. In the
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case of receptor engagement, the free receptor is viewed as a reactant A and the

ligand is viewed as a reactant B. Similarly, this scheme can be used to represent the

combination of reactants. The binding of ligand to the B cell receptor (BCR) and

the binding of BTK to the linker protein BLNK are modeled in this fashion as well.

For instance in the latter, A =BLNK, B =Btk, and C =Btk-bound.

Tyrosine phosphorylation is one of the more prevalent processes in intracellular

signaling in lymphocytes and can be modeled as a reaction acted on by a catalyst.

The removal and addition of phosphates at specific tyrosines can promote or inhibit

conversions and activate or inactivate proteins. A catalyzed reaction is written as

A

C!$ B and the concentration of B also changes at a rate vcatalyzed = k

1

[A][C] �

k

2

[B]. An example of promotion and inhibition of a conversions in the model is the

phosphatase SHP1* removing phosphate groups from other signaling components.

Activation and inactivation of proteins like Syk and Lyn occur when other enzymes

phosphorylate particular tyrosine sites on these proteins. These processes are viewed,

and thus modeled, as catalyzed reactions. The catalyzed reaction framework also

extends to other reactions like the localization of clathrin to the cell membrane, here

A =Clathrin, B =Clathrin-localized, and C =Syk-catalytically-active.

Each model state is a distinct form of a protein in the signaling network and

the grouping of reaction terms and the conservation of mass allow the di↵erential

equations for each model state to be constructed compactly. For a reaction A $ B

the di↵erential equation for A and B will contain associated reaction terms vAB =

k

1

[A] � k

2

[B] and �vAB, respectively. The appearance of negated reaction terms is

due to a need for conservation of mass in the system. Thus, di↵erences of reaction

terms are used to construct the overall di↵erential equation for each model state.

1.2.3 T CELL ANTIGEN RECEPTOR SIGNALING MODEL

The discovery of a feedback from the kinase Erk impacting early events in T cell

receptor signaling motivated the development of the original Zheng T cell receptor
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signaling model [1]. The Zheng model, formulated with mass action kinetics, captures

events from initial receptor engagement through nuclear transcription. Developed in

phases, the original Zheng model was a 17 state system focused on signaling events

that occur near the cell membrane soon after receptor engagement. Despite an as-

sumption of a constant level of receptor phosphorylation, the initial model dynamics

suggested the possibility of previously unrecognized feedbacks.

This was confirmed by the immunoblotting experiments inspired by model pre-

dictions. These experiments revealed a new feedback downstream from Erk onto the

early signaling events. To include the Erk-mediated feedback in the model, the system

was expanded past the early signaling events to include the Erk-MAPK pathway that

extends to the nucleus. Extending the model required a determination of parameters

associated with the added downstream dynamics, which in turn required experimen-

tal data. To discern the degree of Erk’s mediation of early signaling, the enzyme was

suppressed in certain experiments by targeting and inhibiting the preceding enzyme

MEK; normal cells and cells responsive to the MEK inhibitor were used to collect

data.

Time-dependent and dose-dependent T cell signaling responses were measured in

vitro and this diverse data was used to fit model parameters. To understand the levels

of uncertainty underlying the choice of parameters several local and global sensitivity

analysis methods were performed [1]. This comparative study of the analyses yielded

information on key reactions and lead to further hypotheses on feedbacks. Gradually

refined to 19 and finally 22 states, the Zheng model is an example promoting the

power of the interplay between computational models and experimentation.

In order to study gain more understanding of regulatory T cells, Perley revised

the model [3] to include the NFAT and NF-B pathways and has since expanded

it further [4] to include features such as the MTOR pathway. The assumption of

constant receptor phosphorylation was relaxed in Perley’s revision of the Zheng model

and has allowed for the study of the impact on signal strength on the system. Due

to its predictive abilities and success with open-loop control the model shown in [3]
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served as the starting point for development of B cell model. One notable revision

that was required for the B cell model was the removal of the Erk-mediated feedback,

a feedback which is not present in B cells. The ERK-MAPK and NF-B pathways

are presented with the B cell model in this thesis, though a NFAT pathway has not

been released due to a lack of data.

1.2.4 MODEL-BASED EXPERIMENTAL DESIGN

The interplay between models and data in system biology makes the design of

e↵ective experiments of extreme importance. Mathematically, an e↵ective design

allows modelers to circumvent tedium during model refinement and focuses attention

on how to make the most impact. An e↵ective design can save experimentalists both

monetary and time expenses.

We consider a model f✓ for a physical process, depending on parameters ✓. Due to

limits on the dynamics that can be included in the model and a lack of parameter in-

formation, there is often epistemic uncertainty of whether f✓ is the best representation

for the process. This is uncertainty that can be reduced by additional measurements

to gain more understanding of the underlying process. In cases where parameters

can be determined, there is aleatoric uncertainty underlying the choice of parame-

ters. This is uncertainty that is due to the randomness of measurements. These

uncertainties are further discussed in [5] and its references.

Classical model-based experimental design is commonly used to reduce the un-

certainty in the choice of model parameters. In the classical case, we assume we

can conduct an experiment any time point, or more generally any multidimensional

control point, and we assume independent identically distributed Gaussian errors in

measurement. These ideas are discussed more fully in these texts [6, 7].

In the classical scenario, it is often assumed that f✓ is linear in the parameters ✓.

Linearity of parameters implies that f✓ can be expressed as a linear combination of

specified, possibly nonlinear, basis functions with coe�cients that are the components
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of ✓. Basis functions evaluated at the multiple points yield a Vandermonde-type ma-

trix. Using this matrix together with the measured data we can estimate parameters

✓ via the method of Generalized Least Squares.

This Vandermonde matrix leads to di↵erent assessments for the estimate ✓̂ is for

the true parameters ✓, corresponding to distinct objectives in a convex optimization

problem. The assumptions above imply that ✓̂ is a multidimensional Gaussian ran-

dom variable, so the assessments for ✓̂ focus its covariance matrix. One common

assessment the D-optimality criterion is the determinant of the covariance matrix for

✓̂, which is related to the volume of the 95% confidence ellipsoid for ✓̂. The goal of

D-optimal experimental design is to choose experiments that minimize the volume of

this confidence ellipsoid. These ideas are also explored more in [6, 7].

Recent model-based experimental design techniques are less reliant on the linear-

ity assumption and focus on reducing dynamic uncertainty in the model. Intuitively,

if one is to reduce dynamic uncertainty it is reasonable to seek experiments at time

points where there is the most variance in the model. More formally, the Maximally

Informative Next Experiment (MINE) criteria, introduced originally in [8] and stud-

ied further in [9, 10], consider objectives that are functions of the model variance, as

opposed to parameter variance in the classical setting. The experiments suggested by

the MINE criteria induce a probability distribution on parameter space through a like-

lihood function. When considering a probability distribution on parameter space, one

can use a Bayesian framework where the probability distribution is updated follow-

ing each set of experiments. Given the sequential reductions of dynamic uncertainty,

it is natural to ask whether the series of experiments will give convergence to true

biological dynamics.

Again a key contrast between MINE and classical experimental designs is the lack

of an assumption of linear dependence on parameters in the former. An additional

distinction is the sequential determination of experiments with MINE, while in the

classical framework the collection of experiments is produced through a single opti-
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mization problem. Chapter 3 is presents the MINE framework in more detail and

gives conditions under which the estimated dynamics converge to the true dynamics.

1.3 ORGANIZATION

Chapter 2 presents the B cell antigen receptor signaling model and demonstrates

some of its abilities for generating hypotheses. Chapter 3 culminates in a convergence

result using a recent experimental design criteria. Additionally, there are numerical

results for the validity of this result using a toy model.
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2. B CELL ANTIGEN RECEPTOR SIGNALING MODEL

2.1 PREFACE

The work presented in this chapter was originally published in the Processes:

(with Mariya Krisenko, Robert Geahlen, Ann Rundell, and Gregery Buzzard) A Com-

putational Study of the E↵ects of Syk Activity on B Cell Receptor Signaling Dynamics,

Processes 3 (2015), no. 1, pp. 75-97. doi:10.3390/pr3010075

This article has been modified to conform to the format required.

2.2 INTRODUCTION

Signaling through the B cell receptor (BCR) involves an intricate network of molec-

ular reactions necessary for B cells to generate an immune response. The signaling

network involves a variety of proteins including kinases and phosphatases and is par-

ticularly dependent on the protein-tyrosine kinase (PTK) Syk. To better understand

the network, it is imperative to examine the roles of key signaling components like

Syk and their most influential interactions. We will employ a computational approach

to quantify the impact of Syk and other key enzymes and factors such as the e↵ect

of the amount of antigen on the B cell response.

Catalytically active Syk has been shown experimentally to play a central role in

BCR signaling, but questions regarding its behavior still exist and the time frames in

which critical interactions must occur have yet to be completely characterized. Ex-

perimentally, a mutated version of Syk called analog-sensitive Syk or Syk-AQL has

been engineered to accept orthogonal inhibitors, i.e., inhibitors that have been syn-



10

thesized to render the mutant kinase inactive almost immediately [11]. Furthermore,

by replacing wild-type Syk with Syk-AQL creates B cells whose signaling capacity

can be reduced or interrupted completely by the addition of the orthogonal inhibitor,

experimentalists could then control the time that Syk remains active following recep-

tor engagement, which helped to confirm how BCR signaling is modulated by the

actions of Syk. Recently, a Syk-deficient B cell line was generated in which Syk-AQL

expression can be induced in response to the drug tetracycline. Thus, in addition to

being able to turn Syk o↵ when desired, its expression level before activation can be

adjusted if needed.

Computational modeling allows us to gain insight into Syk’s impact that was not

previously possible with experimentation alone. We have developed a model built on

a T cell receptor (TCR) signaling model originally created by Zheng et al. [1] and later

expanded and used by Perley et al. [3] for cellular level control. Perley’s success in

using Zheng’s model for prediction and open-loop control made it an ideal candidate

to adapt for our B cell study. The signaling of B cell and of T cell can be divided

into early interactions, which occur proximal to the membrane, and downstream

interactions, which occur in the cytoplasm and ultimately lead to the nucleus. The

dynamics of the downstream signaling are nearly identical between the cells, and thus

this part of the Zheng model remained largely unchanged. The signaling dynamics

of T cell and of B cell di↵er the most in their early signaling, which is where most

model revisions were required.

In the past decade there have been a number of computational models, both

stochastic and deterministic varieties, focusing on various aspects of B cell signal-

ing, but none have considered impairment to Syk and the resulting e↵ect on cell

response. Stochastic simulations have been used by Tsourkas et al. [12] and Mukher-

jee et al. [13] while considering spatial dynamics of BCR signaling. The impact of

a�nity discrimination was considered by Tsourkas in their study, while Mukherjee

investigated the roles of Syk and Lyn in immunoreceptor tyrosine-based activation

motif (ITAM) phosphorylation. A deterministic model by Chaudhri et al. [14] consid-
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ers a scope similar to Zheng’s T cell model, with the model covering both membrane

proximal, early signaling events and downstream signaling events. This model pays

particular interest to the role of phosphatases in the signal transduction. In 2012,

Barua et al. [15] developed a deterministic model of B cell early signaling in order

to study the feedback loops involving Lyn and how varying stimulation to the BCR

leads to a range of dynamics in Syk. Impressively, the model incorporates every

phosphorylation event for all six signaling components considered.

Our model is novel in its incorporation of Syk-AQL dynamics and given its scope,

the inclusion of both early and downstream signaling, this allows us to investigate

the impact of Syk modulation on a large number of signaling components. Instead of

considering all possible phosphorylations for our 32 signaling components, our model

considers only the most critical events in order to represent relevant physiological

behavior and minimize model complexity. Understanding the means by which cell

responses are determined is also of particular interest and the model will allow us to

investigate the impact of both the amount of antigen and the level of Syk activity on

the response. In this initial study we are particularly interested in the regulation of

Erk and NF-B activity since both contribute to determining cell fate.

We will study how Erk and NF-B phosphorylation change with modulation of re-

ceptor a�nity. Using parameter values derived largely by fitting the Perley model [3]

to T cell data as nominal points, we use B cell data from Healy et al. [16] to then

determine points in parameter space that allow us to reproduce data from cellular

assays. Then, using the di↵erence of Erkp, the sum of singly and doubly phospho-

rylated Erk, and NF-B as our metrics, we consider how cell response changes with

receptor characteristics in both wild-type and mutant cells.

One interesting prediction of our model is that activation of Erkp and NF-B

depend on ligand binding rates in a way that is nearly independent of the reverse

rate for low values of the reverse rate and in a way that depends on a fixed ratio of

powers of forward and reverse binding rates for higher values of the reverse binding

rate. This is illustrated and discussed in Section 4.3 and is one indication that a�nity
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(the ratio of forward and reverse binding rates) alone is not su�cient to characterize

the response of a B cell to a given antibody.

The cell line used and experimental procedures are described in the experimental

section. In the model section, we describe model construction and explicitly show

equations and a diagram for the signaling dynamics. In the methods section, we

discuss the sensitivity analysis used and criteria used to screen the parameter space.

The discussion section includes biological background for the model and findings of

the sensitivity analysis, parameter screening, and contour analysis. We also present a

comparison of our model output with a dataset from Chaudhri et al. [14], and finish

with some discussion of future direction and limitations.

2.3 MODEL DEVELOPMENT

2.3.1 BIOLOGICAL BACKGROUND

Since our B cell model is derived from an existing T cell model, we note here

some of the primary components of B cell signaling, with a focus on aspects that

are unique to B cells. Conventional T cells bind peptide antigens presented by ma-

jor histocompatibility molecules whereas B cells can bind multiple molecular species

through polymorphic cell surface immunoglobulins that serve as antigen receptors.

The B cells work collaboratively with T cells to respond to monomeric antigens or

independently of T cells to respond to polymeric antigens that cluster the BCR.

Once an antigen is bound and the BCR is aggregated, the signaling mechanisms at

the B cell membrane are activated and an intricate system of molecular interactions

initiates [17]. There are many kinases involved in this process; two connected with

events proximal to the receptor in B cells are the Src-family PTK Lyn and the PTK

Syk [18]. Syk plays a central role in the overall response of a B cell [19]. Unlike

signaling in T cells, which depends on the Src-family PTK Lck to phosphorylate

the first tyrosine of the ITAM of the TCR, the first ITAM tyrosine in B cells can

be phosphorylated by Syk when Lyn, which is homologous to Lck in T cells, is not
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present [20]. Furthermore, if Syk is not expressed, BCR signaling cannot proceed.

Following the initiation of BCR signaling, the regulation of BCR, Syk, and Lyn

activity is orchestrated by feedback loops involving the aforementioned PTKs and a

collection of regulatory enzymes.

The regulatory enzymes considered are the tyrosine-phosphatase SHP1, the C-

terminal Src kinase Csk and its binding protein Cbp, and the phosphatase CD45

[21, 22]. In addition to regulating fully activated Lyn along with CD45, SHP1 also

dephosphorylates the ITAMs of the BCR and tyrosines Y342 and Y346 of Syk, thus

reducing their activity. Note that SHP1 does not complete these actions until it has

been activated itself by a Lyn, which has been dephosphorylated at its inhibitory site

by CD45. After binding with a phosphorylated Cbp, activated Csk counteracts the

dephosphorylation of Lyn promoted by CD45. The phosphorylation of Cbp is also

promoted by CD45 activity. Gaining a better grasp of the timing of the interplay in

these feedback loops is an important task as it provides insight into exactly how the

BCR and primary PTKs are regulated and thus illuminates the overall sequence of

events for signal transduction.

Once active, Syk phosphorylates several substrates and the resulting signals prop-

agate into several downstream pathways that lead to the activation of downstream

targets such as Erk, NFAT, and NF-B [17–19]. Following the translocation of these

molecules into the nucleus, transcription begins and cell fate activation (prolifera-

tion), apoptosis (cell death), or anergy (chronic unresponsiveness) are determined.

Interestingly, these cell responses have been found by Healy et al. [16] to correspond

to characteristic combinations of the aforementioned targets. For example, anergic B

cells exhibit signaling activity in the Erk and NFAT pathways, but not in the NF-B

pathway [16]. Again, Erk and NF-B are of particular interest in this study due

to their role in cell fate determination. The a�nity of a receptor for an antibody

K

a�nity

= k
forward

k
reverse

is a measure of how tightly a ligand binds to a receptor. However,

for a given a�nity, larger forward and reverse rates can allow the ligand to bind and

unbind repeatedly and rapidly. Allowing this association and disassociation with the
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receptor to occur over prolonged periods of times and in the proper concentrations

could be su�cient to simulate the low, chronic exposure of the BCR to antigen, which

has been seen to induce anergy [23]. The causes for anergy have not been completely

characterized, and we hope to use the model to gain a better understanding of the

molecular triggers leading to anergy and the associated nonresponsiveness of B cells.

2.3.2 MODEL

Fig. 2.1.: A depiction of the early signaling events induced by binding between B

cell receptor and ligand, as described in the biological background section. Jagged

arrows denote stimulations, curved arrows denote binding, straight arrows denote

conversions, and color denotes species to appear repeatedly in the diagram. [24]

The model we present was developed based on the deterministic model for the

TCR MAPK pathway created by Zheng [1] and extended by Perley [3]. Due to

similarities in the signaling network, much of the model structure for the medial and

downstream pathways required little modification. In particular, the model structure

and equations for the MAPK pathway, which contains Erk, and the NF-B pathway,
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Fig. 2.2.: A depiction of the medial and downstream signaling events induced by

binding between B cell receptor and ligand, as described in the biological background

section. Jagged arrows denote stimulations, curved arrows denote binding, straight

arrows denote conversions, and color denotes species to appear repeatedly in the

diagram. The plus and minus marks near the IB-NF-B disassociation reaction

indicate which are positive feedbacks and which are negative feedbacks. [24]



16

are analogous to those found in [4]. A diagram focusing on the signaling dynamics

for our system is shown in Figure 2.1 and Figure 2.2.

The model tracks the concentrations of 22 distinct species with the di↵erent forms

of these species represented by individual variables. The model equations were for-

mulated with mass action kinetics; conservation laws were used to reduce the number

of variables in the system. The resulting model consists of 32 ordinary di↵erential

equations and has 114 parameters. Based on a sensitivity analysis described in the

methods section, there are 12 kinetic parameters whose impact we will investigate

in this study. Another important parameter is the ligand concentration, which is an

external input to the model. We present equations for the revised early signaling

dynamics only and refer to [3] for the remaining equations. We assume that there

is no downstream activity prior to receptor stimulation; hence, our model is struc-

tured to be at zero at steady state for downstream variables like Erkp and NF-B.

Additionally, we do not have any feedback between our downstream and upstream

components, so setting these variables to zero is more of a baseline value than an

absolute value.

2.3.3 MODEL EQUATIONS

BCR Activation: The receptor dynamics considered here include engagement of

the BCR, ITAM tyrosine phosphorylation, Syk binding to the BCR, and BCR inter-

nalization, recycling and degradation. The key variables include free BCR xBCRfree,

BCR bound by ligand xBCRb, singly-phosphorylated BCR xBCRp1, and

doubly-phosphorylated BCR xBCRp2. The model formulation reflects how the kinase

Syk can bind to either form of the phosphorylated BCR. Due to the positive promo-

tion of ITAM tyrosine phosphorylation by membrane proximal PTKs [19], we assume

that if Syk binds to a singly-phosphorylated BCR, that receptor will become doubly-

phosphorylated before the kinase can unbind. Thus there is no term for unbinding
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from Sykb to BCRp1 in any of the model equations. Receptor internalization xBCRi

is promoted by clathrin, which is localized xClathrin
local

to the membrane by Syk.

dxBCRfree

dt

= [BCR recycling]� [BCR internalization]...

+ [Ligand disassociation]� [Ligand association]

= rRecycling · xBCRi � rInternalization · xClathrin
local

xBCR
Free

...

+ rdisassociation · xBCRb � rassociation · [Ligand] · xBCR
Free

dxBCRb

dt

= [Ligand binding]� [Ligand disassociation]...

+ [ITAM1 dephosphorylation]� [ITAM1 phosphorylation]

= rassociation · [Ligand] · xBCR
Free

� rdisassociation · xBCRb...

+ (rBCRp1dephosphorylation · xSHP1⇤...

+ rBCRp1dephosphorylation by phosphatases)xBCRp1...

� (rBCRp1phosphorylation1 · xLyn⇤ + rBCRp1phosphorylation2 · xSyk342)xBCRb



18

dxBCRp1

dt

= [ITAM1 phosphorylation]� [ITAM1 dephosphorylation]...

+ [ITAM2 dephosphorylation]� [ITAM2 phosphorylation]

� [Syk-BCR binding1]

= (rBCRp1phosphorylation1 · xLyn⇤ + rBCRp1phosphorylation2 · xSyk342)xBCRb...

� (rBCRp1dephosphorylation · xSHP1⇤...

+ rBCRp1dephosphorylation by phosphatases)xBCRp1...

+ (rBCRp2dephosphorylation · xSHP1⇤...

+ rBCRp2dephosphorylation by phosphatases) · xBCRp2...

� rBCRp2 phosphorylation · xSyk342xBCRp1...

� rSyk�BCR binding1 · xSykxBCRp1

dxBCRp2

dt

= [ITAM2 phosphorylation]� [ITAM2 dephosphorylation]

+ [Syk-BCR unbinding]� [Syk-BCR binding2]

= rBCRp2 phosphorylation · xSyk342xBCRp1...

� (rBCRp2dephosphorylation · xSHP1⇤...

+ rBCRp2dephosphorylation by phosphatases) · xBCRp2...

+ rSyk�BCR unbinding · xSykb � rSyk�BCR binding2 · xSykxBCRp2

dxBCRi

dt

= [BCR internalization]� [BCR recycling]� [BCR degradation]

= rInternalization · xClathrin
local

xBCR
Free

...

� rRecycling · xBCRi � rDegradation · xBCRi

dxClathrin
local

dt

= [Clathrin localization via Syk342]� [Clathrin delocalization]

= rClathrin localization · xSyk342xClathrin � rClathrin delocalization · xClathrin
local

Syk Activation: We consider four forms of Syk, three of which have been modi-

fied through binding or phosphorylation. The variable xSyk represents the amount of

kinase that has not been activated and is unbound. The variable xSykb is the basally

active form of the kinase that has been bound to the BCR. The catalytically active
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form of Syk that has been phosphorylated at tyrosine Y342 and Y346 is denoted by

xSyk342 and is responsible for enhancing signaling propagation. If either active form

of the kinase becomes phosphorylated at tyrosine Y317 it is rendered inactive. This

inactive form is denoted by xSyk317. The forms represented by xSyk342 and xSyk317 are

still assumed to be bound to the BCR.As discussed below, each of these four forms

of Syk can bind to an orthogonal inhibitor; this binding also renders Syk inactive.

dxSykb

dt

= [Syk-BCR binding]� [Syk-BCR unbinding]...

+ [Syk dephosphorylation at Y342]� [Syk phosphorylation at Y342]...

+ [Syk dephosphorylation at Y317]� [Syk phosphorylation at Y317]

= (rSyk�BCR binding1 · xBCRp1 + rSyk�BCR binding2 · xBCRp2)xSyk...

� rSyk�BCR unbinding · xSykb...

+ (rSyk342 dephosphorylation · xSHP1⇤...

+ rSyk342 dephosphorylation by phosphatases)xSyk342...

� (rSyk342 via Lyn⇤ · xLyn⇤ + rSyk342 autophosphorylation · xSyk342)xSykb...

+ rSyk317 dephosphorylation · xSyk317 � rSyk317 phosphorylation1xLyn⇤xSykb

dxSyk342

dt

= [Syk phosphorylation at Y342]� [Syk dephosphorylation at Y342]...

+ [Syk dephosphorylation at Y317]� [Syk phosphorylation at Y317]

= (rSyk342 via Lyn⇤ · xLyn⇤ + rSyk342 autophosphorylation · xSyk342)xSykb...

� (rSyk342 dephosphorylation · xSHP1⇤...

+ rSyk342 dephosphorylation by phosphatases)xSyk342...

+ rSyk317 dephosphorylation · xSyk317 � rSyk317 phosphorylation2 · xLyn⇤xSyk342

dxSyk317

dt

= [Syk phosphorylation at Y317]� [Syk dephosphorylation at Y317]

= (rSyk317 phosphorylation1 · xSykb + rSyk317 phosphorylation2 · xSyk342)xLyn⇤...

� 2rSyk317 dephosphorylation · xSyk317
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Syk-AQL dynamics: As discussed in the Introduction, Syk-AQL allows for Syk

activity to be modulated through the addition of the orthogonal inhibitor (OI). The

binding of the OI to the mutant Syk-AQL is also modeled using mass action kinetics

and can be seen in Figure 2.3.

Fig. 2.3.: Orthogonal Inhibitor (OI) binding kinetics. Sykj denotes any of the modeled

forms of Syk. [24]

This binding results in the term rInhibitor association · [OI] · xSyk
j

where j denotes

any one of the forms of Syk modeled. These terms are subtracted from each of the

equations for their respective forms of Syk. By conservation of mass, we have the

following equation for orthogonally inhibited Syk:

dxSyk�inh

dt

= [Inhibitor association - Syk bound]...

+ [Inhibitor association - Syk Y342]...

+ [Inhibitor association - Syk Y317]...

+ [Inhibitor association - free Syk]

= rInhibitor association · [OI] · xSykb + rInhibitor association · [OI] · xSyk342...

+ rInhibitor association · [OI] · xSyk317 + rInhibitor association · [OI] · xfreeSyk.

Lyn Activation: For the Src-family PTK Lyn (xLyn) to become fully activated

(xLyn⇤), it must be dephosphorylated at Y508 (xLyndp) and then go through an au-

tophosphorylation reaction. We consider both events with the following equations:
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dxLyndp

dt

= [Lyn dephosphorylation]� [Lyn phosphorylation]...

+ [Lyn de-autophosphorylation]� [Lyn autophosphorylation]

= rLyn dephosphorylationxCD45

xLyn � rLyn phosphorylationxCsk⇤xLyndp...

+ rLyn de�autophosphorylationxLyn⇤...

� (rLyn⇤ phosphorylation + rLyn⇤ autophosphorylationxLyn⇤)xLyndp

dxLyn⇤

dt

= [Lyn autophosphorylation]� [Lyn de-autophosphorylation]

= (rLyn⇤ phosphorylation + rLyn⇤ autophosphorylationxLyn⇤)xLyndp...

� (rLyn de�autophosphorylation1 · xCD45

...

+ rLyn de�autophosphorylation2 · xSHP1⇤)xLyn⇤...

� rLyn de�autophosphorylation by phosphatases · xLyn⇤

Regulatory Enzyme Dynamics: Following the initiation of BCR signaling, the

regulation of BCR, Syk, and Lyn activity is orchestrated by feedback loops involving

the aforementioned PTKs and a collection of regulatory enzymes. The dynamic

members of the regulatory subsystem are SHP1, Csk and Cbp, with their dynamics

being driven by the amount of CD45. The activated forms of SHP1, Csk and Cbp

are denoted by the variables xSHP1⇤, xCsk⇤ and xCbpp⇤, respectively, and are modeled

with the following equations:
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dxSHP1⇤

dt

= [SHP1 activation]� [SHP1 inactivation]

= rSHP1 activation · xLyndpxSHP1

� rSHP1 inactivation · xSHP1⇤

dxCsk⇤

dt

= [Csk activation]� [Csk disassociation]

= rCsk activation · xCbppxCsk � rCsk disassociation · xCsk⇤

dxCbpp⇤

dt

= [Cbp phosphorylation]� [Cbp dephosphorylation]

= rCbp phosphorylation · xLyndpxCbp � rCbp dephosphorylation · xCD45

xCbpp

Medial Signaling Dynamics (BLNK, BTK, PLC2�): The second messenger

PLC2� is critical for transducing a signal downstream following Syk activation. Before

becoming fully activated, PLC2� must bind to the linker protein BLNK and be

phosphorylated by Syk and the Bruton’s tyrosine kinase (BTK). Here BTK must

also bind to BLNK, and it is phosphorylated by Syk and Lyn before it becomes fully

activated. These events are modeled by the following equations:
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dxBLNKp

dt

= [BLNK phosphorylation]� [BLNK dephosphorylation]

= rBLNK phosphorylation · xSyk342xBLNK ...

� (rBLNK dephosphorylation · xSHP1⇤...

+ rBLNKdephosphorylation by phosphotases)xBLNKp

dxBTKb

dt

= [BLNK-BTK binding]� [BLNK-BTK unbinding]

= rBLNK�BTK binding · xBTKxBLNKp � rBLNK�BTK unbinding · xBTKb

dxBTKp

dt

= [BTK phosphorylation by Syk342]...

+ [BTK phosphorylation by Lyn*]...

� [BTK dephosphorylation]

= (rBTK phosphorylation by Syk342 · xSyk342...

+ rBTK phosphorylation by Lyn⇤ · xLyn⇤)xBTKb...

� rBTK dephosphorylation · xBTKp

dxPLC2�b

dt

= [BLNK-PLC2� binding]� [BLNK-PLC2� unbinding]

= rBLNK�PLC2� binding · xPLC2�xBLNKp � rBLNK�PLC2� unbinding · xPLC2�b

dxPLC2�p

dt

= [PLC2� phosphorylation by Syk342]...

+ [PLC2� phosphorylation by BTK*]� [PLC2� dephosphorylation]

= (rPLC2� phosphorylation by Syk342 · xSyk342...

+ rPLC2� phosphorylation by BTK⇤ · xBTK⇤)xBTKb...

� rPLC2� dephosphorylation · xPLC2�p

Described in [3,4] are the remaining equations not shown here, i.e., equations for

Erkp, IB and NF-B, which are referenced below.
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2.4 MATERIALS AND METHODS

In this section we describe the experimental methods used to obtain Erk phospho-

rylation data and the algorithmic methods used for sensitivity analysis and parameter

screening.

2.4.1 EXPERIMENTAL PROTOCOLS

CELL LINES

Chicken DT40 B-cells lacking Syk were obtained from Dr. Tomohiro Kurosaki.

Cells were cultured in RPMI 1640 media supplemented with 10% fetal calf serum,

1% chicken serum, 50 µM 2-mercaptoethanol, 1 mM sodium pyruvate, 100 IU/mL

penicillin G, and 100 µg/mL streptomycin. Stable DT40 cell lines expressing ana-

log sensitive Syk-AQL-EGFP (R428Q/M429L/M442A, referred to as Syk-AQL) were

constructed using the Lenti-X Tet-On Advanced Inducible 105 Expression System

(Clontech, Mountain View, CA, USA). To constitutively express the tetracycline-

controlled transactivator, rtTA, in the Tet-On inducible system, the HEK293 cells

were first infected with viral particles containing the pLVX Tet-On Advanced Regula-

tor. Lentiviral particles were generated by co-transfecting HEK293T cells with 4 µg of

pLVX-Tet-On, 4 µg of pHR’-CMV-�R8.20 vpr, and 2 µg of pHR’-CMV-VSVG using

Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). The supernatants containing

viral particles were harvested 48 h post-transfection and used to infect Syk-deficient

DT40 cells. Two days after infection, cells were selected with 500 µg/mL G418 and

screened for rtTA expression. Cells constitutively expressing rtTA protein were in-

fected with lentiviral particles packaged with pLVX-Tight-Puro-Syk-AQL-EGFP as

described above. After 48 h, cells were selected with 1 µg/mL puromycin and these

cells were treated with 1 µg/mL doxycycline to induce Syk-AQL expression followed

by screening for expression by Western blotting.
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CELLULAR ACTIVATION ASSAY

For the analysis of Erk phosphorylation, DT40 Syk-AQL-EGFP cells were treated

with or without goat-anti-mouse IgM (10 µg/mL) for the indicated periods of time

at 37 �C and then lysed in bu↵er containing 25% sucrose, 2.5% SDS, 25 mM Tris/2.5

mM EDTA, 2.5 mg pyronin Y, and 2% 2-mercaptoethanol. The DNA in lysates

was sheared by passing through a 26 G ⇥ 1/2 in needle. Proteins in the lysate

were separated by SDS-PAGE, transferred to polyvinylidene difluoride membrane,

and analyzed by Western blotting with anti-pERK (Cell Signaling p44/p42 MAPK

(T202/Y204) rabbit 4370S), and anti-Syk (Santa Cruz N-19 rabbit) antibodies. The

results of these assays were used for parameter screening and will be referenced in the

results section.

2.4.2 SENSITIVITY ANALYSIS

Our first objective was to identify parameters that produce behavior that fits B

cell data. This is important as our nominal parameters largely came from parameters

estimated by fitting to T cell data. In order to obtain a computationally tractable

search, we first conducted a sensitivity analysis to identify the parameters with the

greatest influence on model output associated with our available data.

We were concerned with fitting the model output to Erkp and IB data reported

by Healy et al. in [16], Erkp data obtained as described in the previous section, and

NF-B data reported by Oh et al. in [11]. Recall that Erkp denotes the sum of

singly and doubly phosphorylated Erk. The experimental conditions we sought to

simulate were administrations of ligand at time t = 0 in doses ranging from 5.5 to

150 µg/mL. The data from Healy et al. was used for model fitting through parameter

screening, and so the form of this data was taken into consideration during sensitivity

analysis. The measurements taken by Healy et al. were reported relative to the basal

or unstimulated phosphorylation of a species. Thus, to evaluate the fitness of a set

of parameters, we ran the model to steady state and recorded the value of xBasal
out ,
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where out = Erkp or IB throughout all subsequent sections, before continuing the

simulation with the addition of ligand.

Fitness was quantified using the objective

Jout = (yobs � ysimulated)/�out (2.1)

Given that the basal and simulated values both depend on parameters, for our

initial sensitivity analysis we chose to compute the sensitivity of

ysim =
x

Stimulation
out (tobs, pk)

x

Basal
out (pk)

(2.2)

with respect to variations in parameters pk. Note that pk is the k

th point in our

parameter screening. To estimate the uncertainty in the data �out for Equation (2.1),

we assumed a linear dependence of �out on yobs and conducted a linear regression using

the information in Figure 2C of [16] . We found that the error in the measurements

could be reasonably approximated by

�out = 0.0127 + 0.3084 · yobs (2.3)

where yobs is an observed measurement. Given the total number of model parame-

ters and the cost associated with varying them, we partitioned parameters into seven

distinct groups and conducted a sensitivity analysis with respect to each group when

determining which parameters to screen initially. These groups of parameters were

detrained using natural divisions such as BCR dynamics, Syk dynamics, regulatory

enzyme and Lyn dynamics, Erk pathway dynamics, etc. A study by Zheng [1] com-

paring local derivative-based sensitivity methods and global variance-based methods

found that global parameter sensitivities were necessary to capture model behavior

when considering a large parameter space, but that there were no significant di↵er-

ence between Sobol analysis and the other variance based methods considered. Given

the relative independence of these groups, we calculated only primary Sobol sensitiv-

ities [25] to estimate the sensitivity of the outputs, normalized as in Equation (2.2),

to each specified parameter. The sensitivity, Sp
k

(t) =
V ar

p

k

(E
p 6=p

k

[xStimulation

out

| p
k

])

V ar(xStimulation

out

)

, for
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a given parameter was computed at integer values t = 0, . . . , 30 using the method

based on sparse-grid interpolation as described in [26]. This expression is designed to

capture the relative sensitivity of the output as a function of one particular param-

eter pk, averaged over the other parameters. That is, if we fix pk, we can determine

the average behavior as we vary the remaining parameters, and then determine how

this average changes as a function of pk. These calculations were carried out in log

space in each parameter, with a range of one order of magnitude above and below

the nominal value for each parameter.

To match the conditions in much of that in [16], we used 20 µg/mL for the

stimulation amount at time t = 0. For each parameter considered, we calculated the

median of the sensitivities for that parameter over the times considered. The value

0.15 was found to be a natural threshold for each group, and if the median was less

than 0.15, we concluded the parameter was insensitive and excluded it from future

parameter screening. This criterion left us with 12 parameters to consider for the

parameter screening. Plots of these sensitivity values are included in Supplementary

Materials.

2.4.3 PARAMETER SCREENING

Using Latin Hypercube Sampling (LHS), we screened parameter space for points

that we consider acceptable if they produce simulations satisfying |Jout|  ⌘ or equiv-

alently

yobs � ⌘�  ysim  yobs + ⌘� (2.4)

The first screening used the following data from Healy et al.: an Erk measurement

at time t = 5 minutes and dose responses for IB all measured at time t = 15

minutes. The doses provided in the dose response experiment were 5.5, 16.5, 50, and

150 µg/mL.

The second screening was with respect to our data and also used the condition

Equation (2.4) to determine acceptability. However, in the acceptability condition for
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this screening, we modified the calculation of ysim in that we calculate phosphorylation

relative to the ending value rather than the basal value. That is, the signal intensities

for the Western blots from our data were normalized by their ending phosphorylation

levels to avoid the magnification of errors that would result from a small initial value.

Applying the same normalization procedure to simulated data gives the form

ysim =
x

Stimulation
out (tobs, pk)

x

Stimulation
out (tfinal, pk)

(2.5)

In this case the uncertainty in our experimental measurements was determined by

calculating the standard deviation of the three replicates.

The data from Oh et al. [11] consisted of data for wild-type and mutant B cells,

which featured Syk-AQL. The mutant data was reported relative to wild-type activity.

The wild-type data was used to ensure that we achieved reasonable behavior in NF-

B after using data from Healy et al. to fit IB, the model variable that directly

preceded NF-B. Using sensitive parameters relating to Syk dynamics as a guide to

select a small subset of parameters to tune manually, the mutant data was used to

determine a separate parameter set to reproduces this mutant (Syk-AQL) behavior.

2.4.4 CONTOUR ANALYSIS

In order to investigate the dependence of Erk and NF-B activation on ligand–

receptor binding rates, we simulated the model at a dose of 20 µg/mL anti-BCR over a

product grid of forward and reverse binding rates. This was done for each of wild-type,

mutant with no orthogonal inhibitor, and mutant with a dose of 1 µM orthogonal

inhibitor. The parameter grid was constructed using evenly spaced points in log scale

over ranges for forward and reverse binding rates found in literature [12, 14].

In order to avoid numerical inaccuracies associated with overly sti↵ parameters,

we halted any simulation that took longer than fifteen minutes during the contour

analysis. For these grid points, we used the built-in MATLAB function griddata in

order to interpolate the corresponding values.
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Table 2.1.: Sensitive reaction parameters

Reactions Parameters

Group 1 BCR dynamics rw0kf

Group 2 Syk activation rw7kr, rw9kf

Group 3 Regulatory enzyme dynamics N/A

Group 4 Medial signaling rw15kf , rw16kf , rw16kr

Group 5 Medial signaling r12skf , r13kf , r13kr

Group 6 Erk pathway dynamics r18kf , r19kf

Group 7 NF-B pathway dynamics r38kf

The parameter screening, sensitivity analysis, and contour analysis scripts were

implemented in MATLAB 2012a. The script was parallelized to run on a Sun Server

X3-2 server with two Intel Xeon E5-2690 processors and 160 GB RAM. For the

parameter screening and sensitivity analyses, parameter ranges were set to two orders

of magnitude on either side of the nominal parameters for each group except the fourth

group (see Section 4.2 and Table 2.1).

2.5 RESULTS

2.5.1 SENSITIVE PARAMETERS

Primary Sobol sensitivities [25] were calculated for each output and we analyzed

the distribution of the sensitivities over time. The following parameters were consid-

ered during the parameter screening. Inclusion in the parameter screening meant that

the parameter did not violate the criterion that median S(t) < 0.15. The box and

whisker plots for parameter sensitivities leading to this criterion are included in the

supplementary information figure S1. We ultimately sought for the model to produce

a graded response to increasing dosages of anti-BCR stimulation in Syk342 and then
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let that gradation propagate downstream; thus, the results of the sensitivity analysis

match what one would expect as they correspond to key signaling reactions.

The parameters in group one correspond to BCR dynamics, and rw0kf specifi-

cally represents the forward rate of the ligand binding reaction to the BCR. Group

two contains parameters related to Syk activation, and rw7kr is the reverse rate of

the phosphorylation reaction for the Y342 tyrosine on Syk. Parameter rw9kf is the

forward rate in the phosphorylation reaction for the Y317 tyrosine on Syk that has

already been phosphorylated at Y342. Group three is comprised of parameters from

the regulatory enzyme subsystem. A sensitivity analysis was not conducted with re-

spect to this group due to issues with sti↵ness. We describe next steps to examine

this sti↵ness and future plans to expand the regulatory enzyme subsystem to become

fully dynamic in Section 2.6.

Groups four and five consisted of parameters relating to rates for reactions involv-

ing medial signaling components BLNK, PLC�, Bruton’s Tyrosine Kinase (BTK).

For group four, parameter rw15kf is the rate at which BLNK is phosphorylated by

Syk342, while rw16kf and rw16kr are the forward and backward rates for the binding

of PLC� to the linker protein BLNK. In group five, r12skf is the forward rate at

which Syk342 phosphorylates bound PLC�. Parameters r13kf and r13kr represent

the rate at which PLC� phosphorylates the phospholipid PIP
2

and the correspond-

ing rate of dephosphorylation. Finally, group six is made up of medial signaling

parameters for reactions involving the kinase PKC and also the downstream MAPK

pathway leading to Erk. Parameter r18kf is the rate at which Erk is phosphorylated

by MEK. Parameter r19kf is the rate at which the enzyme SOS binds to phosphory-

lated BLNK. Finally, Group seven consists of parameters for reactions related to the

NFB pathways. Here r38kf is the rate of phosphorylation of IB by the kinase IKK.



31

2.5.2 PARAMETER SCREENING AND FITTING

To find a set of parameters that qualitatively match a variety of data, we first

screened with respect to the data from Healy et al. [16] and required |JErkp|  1

and |JIB(dose1)|  2. We found seven parameter vectors that met the criteria among

the 1800 candidates considered. Due to large per-simulation time requirements, large

objective values for doses #3 and #4 of the dose response experiments, and tradeo↵s

between Erk costs and IB costs, we determined we would need to manually tune

parameters related to IB to achieve reasonable fits at all four doses.

We next screened the seven accepted parameter vectors for fitness to the Erkp data

obtained as in Section 3.1.2 and normalized as in Equation (2.5) with a threshold of

⌘ = 1. From this screening, we selected one parameter vector p based upon the

smoothness of its Erkp time course, time to full Erkp activation, agreement with

intermediate Erkp data points, and smoothness of non-degraded IB time courses.

Simulations using p are shown in Figure 2.4. For this Erkp data, we did not do any

local optimization, but rather focused on the qualitative response. The right panel

in Figure 2.4 indicates both the variability in experimental data and good qualitative

agreement between these data and simulation.

From the vector p, we improved our fits for IB by manually tuning parameters in

the IB pathway. The parameters that were adjusted were the rate of IB production

and the rate of NF-B production. This final manual tuning led us to the parameter

vector we call p⇤WT . The final fits for IB can be seen in Figure 2.5. We were able to

achieve qualitative agreement to the wild-type NF-B data of Oh et al. [11] without

any further changes to parameters, as seen in the left panel of Figure 2.6.
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Fig. 2.4.: Simulations using p

⇤
WT compared with experimental data. On the left, a

simulation for the Erkp time course (normalized by total Erk) with 20 µg/mL anti-

BCR is shown with the mean from Healy et al. [16] at time t = 5 and one standard

deviation interval of uncertainty. On the right, simulations using p

⇤
WT and 10 µg/mL

anti-BCR (normalized by Erk at time t = 15) are compared with Erkp triplicate data

from Section 3.1.2. [24]
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Fig. 2.5.: Simulations using p

⇤
WT compared with IB data from Healy et al. [16].

Simulations for non-degraded IB (normalized by total IB) are shown (left to right,

top to bottom) for 5.5, 16.5, 50 and 150 µg/mL anti-BCR, with all measurements

taken at time t = 15 and one standard deviation interval of uncertainty. [24]
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Since mutant Syk-AQL has experimentally di↵erent NF-B response compared

with WT, we manually tuned the sensitive parameters associated with Syk dynamics.

We found that increasing the rate of Y317 phosphorylation rw9kf allowed us to fit

two of the three nonzero data points. The agreement to the mutant data with this

new parameter vector p⇤Mutant can be seen in the right panel of Figure 2.6. Intuitively,

this corresponds to inhibiting a larger fraction of Syk, and thus there is less Syk

available to propagate a signal. Interestingly, we could also achieve the same fits to

mutant data by lowering the total amount of Syk in the cell. This was reminiscent

of the e↵ects of the drug tetracycline, which can regulate the amount of kinase prior

to stimulation. Note that the measurements used from Oh et al. were reported

relative to phosphorylation levels observed following an experiment where cells were

stimulated using PMA and ionomyocin. We do not simulate the e↵ects of ionomyocin

in this work since calcium is not modeled, so our simulated activity in the right

panel of Figure 2.6 is relative to the final phosphorylation level observed in simulated

wild-type activity.
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Fig. 2.6.: Anti-BCR dose response curves compared with experimental data from

Oh et al. [11]. On the left, a simulation using p

⇤
WT (normalized by WT activity at

the maximum dose) is shown to qualitatively agree with the wild-type NF-B data

(·). On the right, a simulation with the parameter vector p

⇤
Mutant (also normalized

by WT activity at the maximum dose) is shown with NF-B data (·) from B cells

with Syk-AQL activity. [24]
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Fig. 2.7.: Anti-BCR dose response curves for baseline Syk-AQL activity and inhibited

activities. The curves show simulated relative activity for Erkp measured at t = 5

after applying ligand and orthogonal inhibitor (µM) simultaneously. All curves have

been normalized by Erk activity at the maximum dose with no orthogonal inhibitor

added. The color of the curve corresponds to the amount of orthogonal inhibitor

specified in the legend. [24]

In Figure 2.7, we plot predicted dose response curves associated with the param-

eter vector p

⇤
Mutant as a function of ligand dose, one curve for each of several doses

of orthogonal inhibitor (the OI doses are specified in µM in the legend). The sim-

ulation values are given at t = 5 minutes. To investigate the qualitative response,

we express the ligand dose in each case as a percentage of saturating dose. As seen

in Figure 2.7, our model exhibits a clear dose response to antigen. Additionally, it

is clear in the figure that the orthogonal inhibitor limits the Erkp response; activity

level is reduced as the amount of inhibitor increases, suggesting that active Syk is

critical to propagate the signal and may be a limiting quantity.

2.5.3 CONTOUR ANALYSIS

As shown by Healy et al. in [16], there is full signaling activity through the Erk

pathway and limited activity in the NF-B pathway during an anergic response. To

investigate a variety of a�nities that could induce anergy, we vary the forward and
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reverse kinetic rates for BCR binding and consider the cell activity as a function of

the binding rates. We seek to find areas of the grid of binding rates that lead to

high Erkp activity and low NF-B activity. We have constructed contour plots for

normalized Erkp activity minus normalized NF-B activity for several scenarios: WT

B cells, mutant B cells without OI added, mutant B cells with 1 µM of OI added. The

contour plots allow us to ascertain relationships between the binding rates associated

with the responses we found.

As seen in Figure 2.8, for each scenario the response at low values of the reverse

binding rate is qualitatively di↵erent from the response at higher values of reverse

binding rate. At low values, the response depends only on the forward binding rate,

while at higher values the response depends more or less linearly in log space on both

binding rates. The slope for this linear relationship is not 1, however, which would be

the case if the response depended on the standard a�nity, Ka = rw0

kf

rw0

kr

. As seen in

the contour plots, the response above the value rw0kr > �0.5 is reasonably described

as a function of log rw0kf � ↵ log rw0kr. This leads to a kind of power law a�nity,

Ka,↵ = rw0

kf

(rw0

kr

)

↵

, where the multiplier ↵ = 3/4 is the reciprocal of the slope of the

linear relationship in the contour plot. The origin of the power law a�nity will be

investigated in future analysis of the dynamical system.
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Fig. 2.8.: Contour plots for wild-type (WT), mutant without orthogonal inhibitor

and mutant with 1 µM orthogonal inhibitor. The diagonal black line has a slope

equal to 4/3. Regions with high values correspond to large Erkp response and small

NF-B response (both responses normalized by their maximum WT activity), and

hence possible regions of anergy. Both rates are shown in log scale. [24]

To illustrate these dependencies, we plot in Figure 2.9 the responses in the low

reverse rate region against the forward rate rw0kf and the responses in the high

reverse rate region against the power law a�nity. As expected from the contour

plots, the plots in Figure 2.9 show a clear dependence on forward rate alone in the

region of low reverse rate and a reasonably clear dependence on the power law a�nity

in the region of high reverse rate.

There are higher plateaus of Erkp-NF-B present in the mutant plots (middle

and right) of Figure 2.9. Plots of each quantity separately (not shown) demonstrate

that plateau levels of Erkp are relatively unchanged while NF-B is suppressed in

these mutants. These higher plateaus lead to the question of whether it is easier to

induce and observe anergy in B cells with Syk-AQL than in WT. If so, this could

have important implications for attempts to produce mice with these mutant B cells.

In order to further understand the e↵ect of Syk-AQL and OI on Syk, we consider

the allocation of Syk in each scenario. Using the power law a�nity, we find that the

variables xSykb, xSyk342, and x

317

all follow a sigmoidal course. Note that a percentage
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Fig. 2.9.: Plots of normalized Erkp minus normalized NF-B (each normalized by

their maximum WT activity) over a product grid of forward and reverse binding rates

as in the contour plots above, but separated into regions of high and low reverse rates.

The first column is wild-type simulation, the second column is mutant simulation

without orthogonal inhibitor, and the third column is mutant simulation with 1 µM

orthogonal inhibitor. Rates are shown in log scale. [24]
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of total Syk is also allocated to other variables, such as free, unbound Syk, and to Syk

bound to clathrin; since our focus is on the active forms of Syk, we omit these other

forms. We find that Syk-AQL with no orthogonal inhibitor mimics fairly closely the

response of wild-type, except that Syk342 is somewhat reduced. As expected, Syk-

AQL with orthogonal inhibitor shows a marked decrease in these three forms of Syk,

with the balance migrating to inhibited Syk.
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Fig. 2.10.: Plots for three forms of Syk in the model as a function of the power law

a�nity constant for wild-type and mutant behavior. We notice lower phosphorylation

levels at both tyrosine Y317 and Y342 in the mutant cells. After the addition of 1

µM orthogonal inhibitor to the mutant cell there is the expected decrease in overall

activity; the balance is accounted for by inactive forms of Syk. [24]

The analysis in this section has several possible biological implications. The mod-

erate reduction in Syk-AQL activity compared with wild-type suggests that the level

of NF-B activation, which is reduced in Syk-AQL cells relative to wild-type, is more

sensitive to small reductions in kinase activity than Erkp activation, which is essen-

tially unchanged. Since this profile of high Erkp and reduced NF-B is consistent

with anergy, this implies that anergy is particularly sensitive to small changes in cat-

alytic activity. A second possible implication derives from the observed dependence of

Erkp and NF-B on the power law a�nity. This implies that B cells may respond to

certain details of binding and unbinding rates for ligands rather than simple a�nity
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alone. These observations provide a platform upon which to plan future experimental

approaches and to predict experimental outcomes to further evaluate the role of Syk

and changes in its catalytic activity in determining cell fate decisions following BCR

engagement.

2.5.4 INDEPENDENT DATASET COMPARISON

We compared the model to an independent dataset from Chaudhri et al. [14].

These data were not used in screening the parameters; the comparison is presented in

Figure 2.11. The Chaudhri data include ligand concentrations that are much smaller

than those available in our training data and indicate a relatively large activation

even at very small ligand concentrations. Our model displays significantly smaller ac-

tivity levels than those seen in the Chaudhri data at these low ligand concentrations.

We believe that further parameter screening could produce better agreement to these

data, but the underlying question is somewhat deeper in view of the phenomenon of

anergy, in which B cells display reduced response to higher levels of ligand concen-

tration. Experiments have shown that a low constant signal [23] can drive a B cell

to become anergic and thus relatively unresponsive to the presence of antigen. Hence

the question is not only what is the e↵ective level of phosphorylation of Erk at low

doses of ligand but also what is the e↵ect of such low doses over extended periods of

time. This is consistent with our model predictions of relatively high levels of Erkp

activity and low levels of NF-B activity in response to small amounts of active Syk.

However, our model also suggests that the details of forward and reverse binding rates

may also play a role in anergy.
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Fig. 2.11.: Anti-BCR dose response curves resulting from p

⇤
WT ; the figure shows ligand

dose response for Erkp resulting from p

⇤
WT as compared with data from Chaudhri et

al. [14]. As with the data, the simulation curve is normalized by the simulated value

at the maximum dose 0.5 µg/mL. [24]

2.6 CONCLUSIONS AND FUTURE DIRECTIONS

We have constructed a deterministic model of B cell signaling, with a focus on the

role of Syk in modulating the activity of Erk and NF-B. In particular, we include

dynamics for the mutant kinase Syk-AQL, which experimentally displays dynamics

that are qualitatively similar to wild-type dynamics in the absence of orthogonal

inhibitor but can be modulated through the addition of orthogonal inhibitor. With

the correct choice of parameters, our model reproduces data from recent cellular

assays and qualitatively matches trends from datasets in the literature.

We sought to explore the kinetic rate constants associated with ligand binding

that produced high relative activation of Erkp and low relative activation of NF-B.

These signaling conditions have been previously associated with anergy. We found

that at di↵erent levels of rw0kr our responses actually depended on quantities other

than the standard a�nity constant. For low levels of rw0kr, the model predicts that

the response depends only on the forward rate of BCR binding rw0kf . At higher

levels of rw0kr, the model predicts that the response depends on a power law form

of the a�nity constant, Ka,↵ = rw0

kf

(rw0

kr

)

↵

. These predictions were robust for WT
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and mutant simulations. Given the complexity of the dynamical system, a model

reduction will likely be necessary in order to analytically investigate the origin of the

power law a�nity underlying the model response.

Insight into the model prediction that NF-B is more sensitive than Erkp to

changes in signaling activity is found when considering the relative amplification in

each pathway. For both Erkp and NF-B, we considered the relative change in re-

sponse between wild-type and mutant with orthogonal inhibitor simulations. The

relative changes were both with respect to the signaling component DAG, the last

signaling component to influence both pathways. We calculated the di↵erence be-

tween Erkp in wild-type and mutant+OI simulations and then divided by wild-type

Erkp simulation to get the normalized change in Erkp. We made a similar calcula-

tion using DAG, normalized by wild-type DAG simulation, and then took the ratio

of the normalized change in Erkp to the normalized change in DAG. This gives us a

measure of the amplification of the DAG signal in the response of Erkp. We likewise

calculated the simulated amplification of DAG in the response of NF-B. We found

the amplification for Erkp to be ⇡0.28 and the amplification for NF-B to be ⇡0.99.

That is, the response of NF-B to DAG is nearly 1:1, while the response of Erkp

to DAG is reduced to roughly one-fourth of the incoming signal. These estimates

agree with the findings in contour analysis that if there is a reduction in signaling

activity to Syk, and thus DAG, then NF-B will be more a↵ected than Erkp. The

mechanisms and parameters in these two pathways are structurally distinct: the Erkp

pathway is based on mass-action kinetics, while the NF-B pathway includes promo-

tion of PKC⇥⇤ by DAG and a feedback loop involving NF-B. Further experiments

are needed to validate these predictions. One approach to this might be to use the

DAG analog PMA as a means of e↵ectively altering the level of DAG and investigate

the resulting changes in Erkp and NF-B experimentally.

Planned expansions to the model include stimulation by ionomycin, the addition

of Ca2+ dynamics, and the addition of the NFAT pathway. We plan also to restructure

the dynamics of CD45, which is constant in the current version of the model; this
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modification will impact the regulatory enzyme dynamics as they are driven by CD45

activity.

One of the di�culties with this model is the sti↵ness of the di↵erential equations;

for a large subset of parameter space the model takes one to tens of minutes for a

simulation of 30 minutes. This sti↵ness limits our ability to explore the parameter

space fully. Model sti↵ness prevented sensitivity analysis with respect to the pa-

rameters for regulatory enzyme dynamics, which made up group three of Table 2.1.

Sti↵ness also presented issues during other sensitivity analysis trials and during the

parameter screening and so we will seek to address this issue in future studies. We

believe the improvements to CD45 dynamics will alleviate at least some of the issues

with sti↵ness.

As seen in the right panel of Figure 2.7, there is a discrepancy between our model

and the activity observed by Chaudhri et al. [14]. It is not clear whether this limitation

can be resolved via the tuning of ligand binding parameters or if there are additional

mechanisms needed to capture the response to lower levels of ligand.

In general, the ways in which the modulation of Syk changes the response of Erk,

NFAT, and NF-B is an important question of interest for our group. Our model is an

early attempt to disentangle the behavior of Syk from these downstream responses.

While there is much left to be improved in our model, we believe that it will be an

important tool in our search to understand the mechanisms underlying the onset of

anergy in B cells. Beyond that, we believe that our model may be used as in [3] as

the basis for model-informed control strategies to achieve desired cellular responses.
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3. EXPERIMENTAL DESIGN USING MAXIMALLY

INFORMATIVE NEXT EXPERIMENT (MINE)

3.1 INTRODUCTION

A common problem in systems biology is determining the appropriate parameters

and structure for a model of a biological process. One method for reducing the

uncertainty associated with model development is model-based experimental design.

Model-based experimental design is an approach by which a collection of time points

for measurements is produced to and the points are the best in some given sense.

We consider a more standard approach to model-based design of experiments

(MBDOE) in subsection 3.1.1. In subsection 3.1.2, we consider a MBDOE approach

developed more recently and that will be used for the work in this chapter.

3.1.1 EXPERIMENT DESIGN AND INFORMATION MATRICES

The idea behind classical experimental design is to find a set of experiments via

an optimization problem that reduces uncertainty in parameters ✓ for a model f✓. In

this setting, the optimal solution is the collection of experiments that provides the

best insight, in some sense, into the true value of ✓. When considering these problems

it is often assumed that f✓ is linear in ✓; so f✓ can be expressed as a linear combi-

nation of chosen basis functions { 
0

(û), 
1

(û), ..., d
p

(û)} and with the parameters

{✓(0), ..., ✓(dp)} as coe�cients. Note that there is no assumption that restricts  i from

being nonlinear functions.

Assume that we can measure m times and that at any point in our interval of con-

sideration [a, b] our measurements at û are taken with independent error ✏û ⇠ N(0, �2).

In order to reduce measurement error, it may be advantageous to measure certain
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points more than once. To allow for multiple measurements we introduce weights

!û � 0 at any point of measurement û. Hence, for any û 2 [a, b] we have that

✏û ⇠ N(0,!û�
2), where

P
!û = 1 and !û can be interpreted as the fraction of the m

total measurements that are conducted at û.

Intuitively, the goal is to reduce some measure of the variance-covariance matrix

D for the parameters ✓, but the analysis operates more naturally when consider-

ing the information matrix. Instead of minimizing the variance in parameters, one

considers the dual problem of maximizing the information. The information matrix

is defined as M(⇠) =
P

û2supp⇠ !û T
û û, where  û = [ 

0

(û), 
1

(û), ..., d
p

(û)]T and

⇠ is the particular collection of experiments. The information matrix is related to

the variance-covariance matrix through the Cramer-Rao lower bound, a result of sta-

tistical theory which states D � M

�1

, in the sense that their di↵erence is positive

semidefinite. For linear models, we have D = M

�1. There is a version of this idea

that extends to nonlinear models and more general probability of data as a function

of parameters known as the Fisher Information Matrix.

An experimental design ⇠ is specified by the number of points m, the points

themselves ûi, and the weights !û
i

. In classical theory, ⇠ is allowed to be a probability

measure which implies that an optimal design is supported on a finite number of

points. An objective for the optimization problem is generally a convex, monotone

function R of the parameter variance-covariance matrix D = Cov(✓). The notion

of the best insight into the true value of ✓ varies, as each R specifies a di↵erent

optimization problem argminC R(D). In general the solution to this optimization

gives a parallel design, i.e., specifying all measurements and respective weights to

be used, and is deemed to be best or optimal in some sense. Several optimality

conditions are A-Optimality, D-optimality, and E-Optimality and their respective

objective functions are presented in Table 3.1.
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Table 3.1.: Selected Optimality Conditions

Condition Objective R

A-optimal Tr Cov(✓̂)

D-optimal detCov(✓̂)

E-optimal �

max

(Cov(✓̂))

There are many classic results in the field of experimental design. For each of

these criteria and others one has an upper bound on the number of measurements m

required in an optimal design [6]. We state the theorem precisely below.

Theorem 3.1.1 [6] For any admissible information matrix M there exists a design

⇠ that contains m  n(n+1)

2

measurement points with non-zero weight and M(⇠) = M .

We define the regression range � to be the image of  û over all possible û. The

regression range can be used in an alternate check for optimality and is described in

an equivalence theorem by Kiefer-Wolfowitz. In the case of D-optimality, the Kiefer-

Wolfowitz theorem is stated as follows.

Theorem 3.1.2 (Kiefer-Wolfowitz, [7]) Assume that the regression range � ⇢ Rk

contains k linearly independent vectors. Then for every admissible information matrix

M that is positive definite we have that the following are equivalent:

i. M is D-optimal for ✓.

ii. xM

�1

x

T  k for all x 2 �.

Condition (ii) is often used to give an iterative algorithm for experiment design.

With a given design, the algorithm looks for a regression vector for which (ii) is

violated. The corresponding control point is added to the design. One problem

with this algorithm is the di�culty in specifying the appropriate weight for the new

point and adjusting the weights of the previous points accordingly. In essence, this
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algorithm is a gradient-descent algorithm, and determining the appropriate step size

can be di�cult. For additional equivalent criteria see Section 9.4 in [7]. An analogous

version of this theorem can be shown for each of the other optimality conditions.

One of the more common examples of linear regression is polynomial regres-

sion. When doing regression with polynomial one has that their basis functions are

{1, û, ..., ûd
p} and the parameters to be estimated are the coe�cients {✓(0), ..., ✓(dp)}.

In the following example we illustrate how D-optimality can be used to determine the

best points at which to measure when doing linear regression.

Example 3.1.1 (D-optimality in linear regression) In the case of linear regres-

sion we have p(û) = ✓

(0) + ✓

(1)

û on û 2 [�1, 1] = I with ✓ = [✓(0) ✓(1)]T 2 R⇥ R and

let �(û) = [1 û]T . The goal of linear regression is to determine points to measure in

our interval of interest I that help to improve our estimates of model parameters.

We seek measurement points u = {a, b}, where a, b 2 I, then we define the mea-

surement matrix  u =

2

41 a

1 b

3

5.

Now let !a,!b � 0 s.t. !a + !b = 1 and Wu =

2

4!a 0

0 !b

3

5 then the information

matrix is defined as

M! =  T
uWu u

=

2

41 1

a b

3

5

2

4!a 0

0 !b

3

5

2

41 a

1 b

3

5

=

2

4 1 !aa+ !bb

!aa+ !bb !aa
2 + !bb

2

3

5

=
X

x2u
!x�(x)�

T (x).
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Recall that the D-optimality criterion requires we maximize the Moment Matrix

and in the classical case of linear regression this corresponds to

max
u

M! = max
u

������

1 !aa+ !bb

!aa+ !bb !aa
2 + !bb

2

������
= max

u

!a!b

2
(b� a)2 =) a = �1, b = 1.

Thus, D-optimality suggests that in order to best determine parameters for p we should

measure at the endpoints of our interval I. Additionally, this shows that even weight

should be given to both of the points since !a = !b.

The result in Example 3.1.1 is extended in Section 9.5 of [7] to give the D-optimal

design for degree d polynomial regression over the interval [�1, 1]. In this design, there

are d + 1 points: the roots of the derivative of the dth degree Legendre polynomial

together with the endpoints 1 and �1. In this design, the weights of the optimal

design are all 1/(d+1). The example above is the case when d = 1 so the end points

are the only points suggested for measurement.

The mathematical and statistical theory underlying these optimality conditions

can be read in [6]. More on FIM-based design of experiments is described in [27].

3.1.2 MINE CRITERIA

An alternative to classical experimental design techniques like those in described

in [6,27] are the Maximally Informative Next Experiment (MINE) criteria [8,28]. The

MINE criteria focus on identifying points of large uncertainty in the model over the

interval considered. The criteria are again model-based, but are distinct from the

convex objectives in the last subsection; MINE criteria consider metrics related to

di↵erences in the model output. The objectives for this consideration lie in what we

call the di↵erence space, which we define more formally in Section 3.2.

The criteria use the following related, but distinct metrics:

1. Maximal distance in di↵erence space

2. Maximal volume in di↵erence space
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3. Maximal observational independence

The first MINE criterion is considered in [10] and identifies the time point of

largest dynamic uncertainty over all possible measurement times. That is, with a

given probability distribution on parameters, the model output varies more at some

time points than others, and we choose the measurement time corresponding to the

maximum variance.

The second criterion is a higher dimensional extension of the first and is the

object of interest for this study. In this case we look for multiple measurement

points to be identified simultaneously. The problem here is that we cannot rely solely

on the variance at a single time point to determine multiple measurement points

because we would end up measuring the same point multiple times. Instead we use

the covariance matrix of multiple measurements, which allows us to identify points

with large variance that are relatively uncorrelated. The volume in this criterion

arises when one considers the covariance in di↵erence space, or, as we demonstrate,

the covariance of di↵erences in model values at particular time points. The time

points corresponding to the maximal volume encompass uncorrelated points with

large dynamic uncertainty in the model. The second criterion has also been studied

in [28] for the linear case. In that paper, they show that the second MINE criterion

is equivalent to D-optimality, but with some assumptions regarding orthonormality

of the rows or columns of the design matrix  u. However, for a given model, this

assumption often does not apply, so we cannot generally directly apply results of D-

optimality directly to MINE designs. The third criterion is essentially a normalization

of the second criterion.

In contrast to the classical optimal design of experiments, the MINE criteria do

not generally produce a fully parallel design. Instead, the MINE framework can

be used to produce a sequential design, in which the distribution on parameters is

updated at every step according to the experiments chosen. For instance, the first

MINE criterion chooses a single experiment at each step. Dinh et al. [10] used this

sequential approach and proved a convergence result that, with appropriate hypothe-
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ses, ensures convergence of model dynamics to true dynamics. The convergence here

is with respect to the Expected Dynamics Estimator (EDE). After the n

th round

of experiments, we have a probability distribution pn depending on those choice of

experiments. The expectation of the model output Ep
n

(f✓) is defined as the EDE. If

we know the true dynamics to be g then we seek a reduction in dynamic uncertainty

such that Ep
n

(f✓) ! g as n ! 1.

We begin by presenting the mathematical framework for MINE. In the third sec-

tion we provide rigorous justification for results on the parameters for the probability

distribution present on the di↵erence space considered in MINE. In the fourth section,

we prove the necessary lemmas for the main results on convergence when choosing

design points according to the second MINE criterion. We then present some the

numerical illustrations of the convergence result and finally present some limitations

of the MINE criterion in the linear case.

3.2 MATHEMATICAL FRAMEWORK

Let ⌦ be a bounded, connected subset of Rd
p and U ⇢ Rc. We define a model,

depending on parameters from ⌦, to be a map f : ⌦ ⇥ U ! R. For a given set of

parameters ⇥ 2 ⌦, we can also write the model as f
⇥

: U ! R. We think of U as the

part of the model that we can control, such as the time points we can measure or a

point in space in a PDE model. Moreover, we extend this map to allow for a vector

of control points by f : ⌦⇥ Ud ! Rd
.

The MINE framework operates from a Bayesian point of view, in which the pa-

rameters ⇥ are fixed, but our knowledge of them is incomplete and expressed as a

probability distribution on ⌦. We typically have some physical process in mind when

considering these systems. In particular, we are interested in systems that describe

biological processes. We simply require f
⇥

2 Cb(U), the space of continuous bounded

functions. For dynamical systems applications one might assume more, namely that
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df
⇥

dt
is C1(U) and U is compact in Rc. In this case we regard f

⇥

as the vector of state

variables as a function of time.

When f

⇥

represents a physical process it is advantageous to conduct experiments

to constrain model dynamics and reduce uncertainty. This motivates the need for the

experimental design framework where the aim is to determine measurements points

v 2 U to reduce epistemic uncertainty in f

⇥

.

Let ⇥ be a random variable that represents the model parameters. We assume

that there is an existing probability distribution for ⇥ which may be an imposed prior

or one arising after some prior measurements v 2 U . We denote the probability den-

sity as Qµ,⌃(✓) on ⌦, with distribution parameters EQ(⇥) = µ and CovQ(⇥) = ⌃.

The subscripts for Qµ,⌃(✓) are suppressed in some places for brevity. Often one

assumes the stronger condition that ⇥ ⇠ N(µ,⌃), and in this case Qµ,⌃ is the

multivariate Gaussian. Experimental design methods are used to reduce the un-

certainty underlying a choice of ⇥. Formally, we define the control vector u =

(u(1)

, · · · , u(d)) 2 Ud. If d > 1, the model evaluated at the control vector is f(⇥, u) =

[f(⇥, u(1)) f(⇥, u(2)) · · · f(⇥, u(d))]T .

Due to uncertainty in model dynamics, our objective is to identify points u 2 U

that allow us to most accurately estimate the dynamics of f(⇥, u). In the MINE

framework, after ⇥ and ⇥0 are independently selected from ⌦ the models f(⇥, ·)

and f(⇥0
, ·) are evaluated at points in U and di↵erences are considered to create a

di↵erence space consisting of points

�u = �F (⇥,⇥0
, u) = [f(⇥, u(1))� f(⇥0

, u

(1)), · · · , f(⇥, u(d))� f(⇥0
, u

(d))]T .

As⇥ and⇥0 are random variables, we have that �u is also a random variable. Dong

et al. [8] use the function Q

�

(�, u) =
R
⌦

R
⌦

�(���F (✓, ✓0, u))Qµ,⌃(✓)Qµ,⌃(✓0)d✓0d✓ as

the probability density on the di↵erence space.

In Section 3.3.1 we rigorously justify the fact that function Q

�

(�, u) is the prob-

ability distribution for �u and also give results pertaining to parameters for the

distribution on di↵erence space. An explicit form for the covariance on di↵erence
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space is given in Section 3.3.2. Finally, in Section 3.3.3 we demonstrate convergence

when sequentially choosing un 2 Ud according to the second MINE criterion under

the appropriate hypotheses.

3.3 RESULTS

3.3.1 ENSEMBLE DISTRIBUTION FOR THE DIFFERENCE SPACE

AND ASSOCIATED PARAMETERS

In this section we show that function Q

�

defined above is the probability density

for the random variable �u, compute EQ
�

[�u], and connect CovQ
�

[�u] to CovQ[f(⇥, u)].

We begin with lemmas regarding the density before the main proposition on the dis-

tribution parameters.

Lemma 3.3.1 Let u = (u(1)

, · · · , u(d)) 2 Ud be a control vector for the model f :

⌦⇥ U ! R. If Qµ,⌃(✓) is the probability density on ⌦ then

Q

�

(�, u) =

Z

⌦

Z

⌦

�(���F (✓, ✓0, u))Qµ,⌃(✓)Qµ,⌃(✓
0)d✓0d✓,

is the probability distribution for

�u = �F (⇥,⇥0
, u) = [f(⇥, u(1))� f(⇥0

, u

(1)), · · · , f(⇥, u(d))� f(⇥0
, u

(d))]T .

We require a general probabilistic result in order to prove Lemma 3.3.1, which

asserts that Q
�

is the density for the di↵erence space. The Dirac generalized function

� can be utilized for an alternate method of computing densities for transformed

random variables Y = h(X). To derive the new density the density defined on the

domain is integrated against �(y� h(x)), ensuring that only probabilities of points x

where y = h(x) contribute to the probability of y. The result is known [29], but the

proof is often omitted. We give the complete proof now.
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Lemma 3.3.2 Let X 2 Rn be a random variable on ⌦X with probability density f(x).

Let h : Rn ! Rm be measurable, and let Y = h(X). Then Y has probability density

g(y) =

Z

Rn

�(y � h(x))f(x) dx.

Proof Let A ⇢ Rm be Borel, and note that

P (Y 2 A) = P (h(X) 2 A)

= P (X 2 h

�1(A))

=

Z

h�1

(A)

f(x) dx

=

Z

Rn

h�1

(A)

f(x) dx.

Note also that for any x 2 Rn,

Z

A

�(y � h(x))dy =

8
><

>:

1 if x 2 h

�1(A)

0 if x 62 h

�1(A)

= h�1

(A)

.

Now combining this result with Tonelli’s Theorem we have

P (Y 2 A) =

Z

Rn

(

Z

A

�(y � h(x)) dy)f(x) dx

=

Z

A

Z

Rn

�(y � h(x))f(x) dxdy.

Since this is true for any Borel set A, this gives the desired conclusion.

Proof [For Lemma 3.3.1] Let Y = �u, X = (⇥,⇥0),⌦X = ⌦⇥ ⌦, f(x) = Q(✓)Q(✓0)

and h(X) = �F (⇥,⇥0
, u) = f(⇥, u)� f(⇥0

, u). We apply Lemma 3.3.2 and find that

�u has probability density g(�) =
R
⌦

R
⌦

�(� � �F (⇥,⇥0
, u))Qµ,⌃(✓)Qµ,⌃(✓0)d✓0d✓,

which is exactly Q

�

.
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The MINE criteria were first presented in [8] and were studied recently in [28].

Several results regarding the mean and covariance of �u are stated in these works.

We rigorously derive the results in the following proposition as it is needed to gain a

convergence result in Section 3.3.3.

Proposition 3.3.3 If �u = �F (⇥,⇥0
, u) then

EQ
�

[�u] = 0

and

CovQ
�

[�u] = 2CovQ[f(⇥, u)].

Proof We first note that

�F (⇥,⇥0
, u) = �(f(⇥0

, u)� f(⇥, u))

= ��F (⇥0
,⇥, u).

Now since ⇥ and ⇥0 are arbitrary, and �u = �F (⇥,⇥0
, u) we can deduce that

Q

�

(�, u) =

Z

⌦

Z

⌦

�(���F (✓, ✓0, u))Qµ,⌃(✓)Qµ,⌃(✓
0)d✓0d✓

=

Z

⌦

Z

⌦

�(��+�F (✓, ✓0, u))Qµ,⌃(✓)Qµ,⌃(✓
0)d✓0d✓

=

Z

⌦

Z

⌦

�(����F (✓0, ✓, u))Qµ,⌃(✓)Qµ,⌃(✓
0)d✓0d✓

= Q

�

(��, u).

Since the probability of �u and ��u are weighted with equal probability, we can

deduce that EQ
�

[�u] = 0.
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We now show the second result. Again �u = �F (⇥,⇥0
, u) and the variance-

covariance matrix CovQ
�

[�u] = CovQ
�

(�(i)
,�

(j)) on h(⌦⇥ ⌦) is defined as

CovQ
�

(�(i)
,�

(j)) = EQ
�

[�(i)
�

(j)]

=

Z

h(⌦⇥⌦)

�

(i)
�

(j)
Q

�

(�, u) d�

=

Z

h(⌦⇥⌦)

�

(i)
�

(j)

✓Z

⌦

Z

⌦

�(���F (✓, ✓0, u))Qµ,⌃(✓)Qµ,⌃(✓
0)d✓0d✓

◆
d�

=

Z

h(⌦⇥⌦)

Z

⌦

Z

⌦

�

(i)
�

(j)
�(���F (✓, ✓0, u))Qµ,⌃(✓)Qµ,⌃(✓

0)d✓0d✓ d�.

Now by Fubini’s Theorem we have

CovQ
�

(�(i)
,�

(j)) =

Z

⌦

Z

⌦

Z

h(⌦⇥⌦)

�

(i)
�

(j)
�(���F (✓, ✓0, u))Qµ,⌃(✓)Qµ,⌃(✓

0) d�d✓0d✓.

Since �(i) = f(✓, u(i))� f(✓0, u(i)),�(j) = f(✓, u(j))� f(✓0, u(j)) it follows that

CovQ
�

(�(i)
,�

(j)) =

Z

⌦

Z

⌦

Z

h(⌦⇥⌦)

[f(✓, u(i))f(✓, u(j)) + f(✓0, u(i))f(✓0, u(j))

� f(✓0, u(i))f(✓, u(j))� f(✓, u(i))f(✓0, u(j))]

�(���F (✓, ✓0, u))Qµ,⌃(✓)Qµ,⌃(✓
0) d�d✓0d✓.

Integrating with respect to � while ✓, ✓0 are fixed we find that

CovQ
�

(�(i)
,�

(j)) =

Z

⌦

Z

⌦

[f(✓, u(i))f(✓, u(j)) + f(✓0, u(i))f(✓0, u(j))

� f(✓0, u(i))f(✓, u(j))� f(✓, u(i))f(✓0, u(j))]Qµ,⌃(✓)Qµ,⌃(✓
0) d✓0d✓

=

Z

⌦

Z

⌦

f(✓, u(i))f(✓, u(j))Qµ,⌃(✓)Qµ,⌃(✓
0) d✓0d✓

+

Z

⌦

Z

⌦

f(✓0, u(i))f(✓0, u(j))Qµ,⌃(✓)Qµ,⌃(✓
0) d✓0d✓

�
Z

⌦

Z

⌦

f(✓0, u(i))f(✓, u(j))Qµ,⌃(✓)Qµ,⌃(✓
0) d✓0d✓

�
Z

⌦

Z

⌦

f(✓, u(i))f(✓0, u(j))Qµ,⌃(✓)Qµ,⌃(✓
0) d✓0d✓

= EQ[f(⇥, u
(i))f(⇥, u(j))] + EQ[f(⇥, u

(i))f(⇥, u(j))]

�EQ[f(⇥, u
(i))]EQ[f(⇥, u

(j))]� EQ[f(⇥, u
(i))]EQ[f(⇥, u

(j))]

= 2CovQ[f(⇥, u
(i)), f(⇥, u(j))].
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Thus, CovQ
�

[�u] is exactly twice the variance-covariance matrix for the model output.

In [8] Dong et al. integrate with respect to the measure 1

2

Q

�

. This adjustment

to the definition of CovQ
�

[�u] is to compensate for the factor of 2 appearing in the

covariance result above.

The second MINE criterion specifies that u 2 Ud should be chosen such that the

determinant of CovQ
�

[�u], the volume CovQ
�

[�u] induces, is maximized. Proposition

3.3.3 relates CovQ
�

[�u] and CovQ[f(⇥, u(i)), f(⇥, u(j))], and will be the basis of a

correspondence between the determinant of CovQ
�

[�u] and variances in the model

output.

3.3.2 MINE IN LINEAR EXPERIMENTAL DESIGN

Now we consider the case of linear experimental design. Let û 2 U be an arbitrary

time point. We define the measurement matrix  u = { j(u(i))}, where each row of

 u consists of the basis elements { j(û)}dpj=1

evaluated at a particular component of

u = (u(1)

, · · · , u(d)) 2 Ud. The basis elements are also called the regression functions in

classical experimental design. Additionally, we define the reflected density Q

�
µ,⌃(✓) =

Qµ,⌃(2µ� ✓) on ⌦.

In the case of a linear mapping we have f(⇥, u) =
Pd

p

j=1

⇥(j)
 j(u) and the elements

of our di↵erence space are of the form �F (⇥,⇥0
, u) =  u(⇥� ⇥0). When f(⇥, u) is

linear we are able to compute an explicit form for the covariance in terms of  u. We

begin with a lemma that will assist in proving the covariance proposition.

Lemma 3.3.4 The random variable ⇥ � ⇥0 has probability density function Qµ,⌃ ⇤

Q

�
µ,⌃.
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Proof Probability densities for sums and di↵erences of random variables can be

constructed using convolution [30]. First, we note that �⇥0 has density Q�µ,⌃(�✓).

After translation by 2µ we find that �⇥ has density

Q�µ,⌃(�✓) = Qµ,⌃(2µ� ✓)

= Q

�
µ,⌃(✓).

Hence, the random variable ⇥�⇥0 = ⇥+ (�⇥0) has the desired probability density

Qµ,⌃ ⇤Q�
µ,⌃.

Proposition 3.3.5 If �u = �F (⇥,⇥0
, u) =  u(⇥�⇥0) then

CovQ
�

(�u) = 2 u⌃ 
T
u .

Proof By the independence and identical distribution of ⇥ and ⇥0 we have EQ[⇥�

⇥0] = 0 and CovQ(⇥�⇥0) = 2⌃.

The first result of Proposition 3.3.3 gives EQ
�

[�u] = 0 and when considering

CovQ
�

(�u) we find

CovQ
�

(�u) = EQ
�

[�u�
T
u ]

= EQ
�

[ u(⇥�⇥0)(⇥�⇥0)T T
u ]

=  uEQ
�

[(⇥�⇥0)(⇥�⇥0)T ] T
u .

When considering EQ
�

[(⇥�⇥0)(⇥�⇥0)T ] we find that

EQ
�

[(⇥�⇥0)(⇥�⇥0)T ] =

Z

h(⌦⇥⌦)

(✓ � ✓

0)(✓ � ✓

0)TQ
�

(�)d�

=

Z

h(⌦⇥⌦)

(✓ � ✓

0)(✓ � ✓

0)T (

Z

⌦

Z

⌦

�(���F (✓, ✓0, u))Qµ,⌃(✓)Qµ,⌃(✓
0) d✓0d✓)d�

and employing Fubini’s Theorem we have

EQ
�

[(⇥�⇥0)(⇥�⇥0)T ] =

Z

⌦

Z

⌦

Z

h(⌦⇥⌦)

(✓ � ✓

0)(✓ � ✓

0)T

�(���F (✓, ✓0, u))Qµ,⌃(✓)Qµ,⌃(✓
0) d�d✓0d✓

=

Z

⌦

Z

⌦

(✓ � ✓

0)(✓ � ✓

0)TQµ,⌃(✓)Qµ,⌃(✓
0) d✓0d✓

= EQ[(⇥�⇥0)(⇥�⇥0)T ].
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and hence

CovQ
�

(�u) =  uEQ[(⇥�⇥0)(⇥�⇥0)T ] T
u

= 2 u⌃ 
T
u .

Thus, for a linear model we have that the covariance in di↵erence space can be

found by conjugating the covariance on ⌦ with the measurement matrix  u. In

applications linear dependence on parameters is often assumed and this form for

CovQ
�

(�u) is more amenable to implementation. Moreover, this result illustrates

a connection to classical experimental design through the prior and measurement

matrix. The result also illustrates a limitation of the method, however. Recall that

the  u is a d⇥ dp matrix with d  dp; the method leads to di↵erent analyses for the

case d < dp and d = dp. We discuss the case d = dp in Section 3.3.5 and show that

the measurement points are independent of the prior.

3.3.3 CONVERGENCE OF THE EXPECTED DYNAMICS ESTIMA-

TOR

We consider the variance-covariance matrix found in Section 3.3.1 and demon-

strate convergence of expected model dynamics when choosing control points that

maximize its determinant. In Dinh et al. [10] it is shown that if a single measurement

point un = (u(1)

n ) is chosen sequentially according to where the maximum variance in

the model occurs, and that if the probability density on parameter space is updated

at every selection of un then the expected model dynamics will converge to the true

system dynamics.

Stated formally, the theorem says the following.

Theorem 3.3.6 (Dinh et al. 2014) Let ⌦ have finite cardinality. Suppose there

exists ⇥
0

2 ⌦ such that f(⇥
0

, u) = g(u) for all u 2 U and that 1  r < 1. Let

Qn(✓) = cn exp(�
Pn

k=1

|f(✓, uk) � g(uk)|r) where cn is the normalizing constant to
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ensure that Qn is a probability density on ⌦. Suppose also that there exists a C > 0

and that {un}1n=1

are chosen such that for all u 2 U

C · V arQ
n

(f(⇥, u))  V arQ
n

(f(⇥, un+1

)).

Then for all u 2 U

lim
n!1

EQ
n

[f(⇥, u)] = g(u).

In the above theorem and the main theorem later this section we notice that there

is an added assumption that our parameter space ⌦ is finite. This assumption is

necessary to rule out convergence to incorrect dynamics that can occur when ⌦ is an

open set, our probability distribution is continuous, and the model is not robust in

parameters. The necessity of this assumption is discussed in more detail in [10].

In preparation for extending this result to the second MINE criterion, recall that

 u = { j(u(i))} is a d ⇥ dp matrix; ⌃, the variance-covariance matrix on ⌦ with

respect to Q, is a dp ⇥ dp matrix; and V (u) = detCovQ
�

(�u). Finally, for û 2 U we

denote V arQ(f(⇥, û)) = �

2

û.

In our setting we have a vector of measurements at every step of the sequen-

tial design. We use the same probability distribution as in Theorem 3.3.6, but to

account for the vector of measurements we sum the d components of the control

vector, which leads to a double sum. Our probability distribution is then Qn(✓) =

cn exp(�
Pn

k=1

Pd
i=1

|f(✓, u(i)
k )�g(u(i)

k )|r). Our first lemma shows that variances with

respect to the probability density Qn(✓) are uniformly bounded.

Lemma 3.3.7 Let f 2 Cb(⌦,U). If Qn(✓) = cn exp(�
Pn

k=1

Pd
i=1

|f(✓, u(i)
k )�g(u(i)

k )|r)

where 1  r < 1 then there exists M > 0 such that

V arQ
n

(f(⇥, u))  M,

for all n and u 2 U .
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Proof To bound V arQ
n

(f(⇥, u)) we first bound EQ
n

(f(⇥, u)) and then EQ
n

(f(⇥, u)2).

Since f is continuous and bounded we know that kf(✓, u)kL1
(⌦,U)

< 1. Bounding

the integrands of EQ
n

(f(⇥, u)) and EQ
n

(f(⇥, u)2) by the L

1 norm we find

|EQ
n

(f(⇥, u))|  kfkL1
(⌦,U)

and

EQ
n

(f(⇥, u)2)  kfk2L1
(⌦,U)

,

respectively.

Combining these bounds with the triangle inequality we find that

V arQ
n

(f(⇥, u)) = |EQ
n

(f(⇥, u)2)� EQ
n

(f(⇥, u))2|

 2kfk2L1
(⌦,U)

.

We define M = 2kfk2L1
(⌦,U)

and we have our desired uniform bound.

In the case d = 1, V (u) corresponds to the maximal variance case considered by

Dinh et al. Notice first that for d = 1 we have

�u = f(⇥, u(1))� f(⇥0
, u

(1)),

and by Proposition 3.3.3 we have

CovQ
�

(�u) = 2CovQ(f(⇥, u
(1)), f(⇥, u(1)))

= 2V ar(f(⇥, u(1))),

which is the objective function used by Dinh et al.

We now consider the case 2  d < dp. This case corresponds to choosing multiple

measurement points at the n

th step in the limiting process; we write the measure-

ment points as a control vector un = (u(1)

n , u

(2)

n , ..., u

(d)
n ). We prove a proposition by

contradiction which will guarantee that at every sequential step at least one diago-

nal element of CovQ
�

(�u), a model variance, satisfies Theorem 3.3.6 from Dinh et



60

al. That is, one of our measurements with the second MINE criterion will be within

some fixed constant factor of the maximum model variance and thus the expected

model dynamics will still converge to the true system dynamics.

Formally, the lemma is stated as follows.

Lemma 3.3.8 Let 2  d < dp. Let Q be the probability density function on ⌦

and define V arQ(f(⇥, û)) = �

2

û, û 2 U . There exists C > 0 such that if for all

u

⇤ = (u(1)

, u

(2)

, ..., u

(d)) 2 Ud such that detCovQ
�

(�u⇤) = maxu detCovQ
�

(�u) > 0

and for all y 2 U satisfying �2

y � �

2

û for all û 2 U then maxi �2

u(i)

� C · �2

y .

Proof We assume for the sake of contradiction that the hypothesis does not hold,

i.e., for all C > 0, there exists u⇤
C = (u(1)

C , u

(2)

C , ..., u

(d)
C ) such that detCovQ

�

(�u⇤
C

) =

maxu CovQ
�

(�u) = � > 0 and there exists yC 2 U satisfying �2

y
C

� �

2

û, for all û 2 U

we have maxi �2

u
(i)

C

 C · �2

y
C

. Furthermore, we choose Cn = 1

n
.

By Lemma 3.3.7 we have the uniform bound �

2

y
n

 M and by choice of Cn we

know max{�2

u
(1)

C

n

, �

2

u
(2)

C

n

, ·, �2

u
(d)

C

n

}  1

n
�

2

y
n

. Now we employ Hadamard’s Inequality for

positive semi-definite matrices. The inequality states that for a positive semi-definite

matrix A its determinant satisfies the bound det(A) 
Q

aii. Since the variance-

covariance matrix is always positive semi-definite and by Proposition 3.3.3 we have

{CovQ
�

(�u)}ii = 2�2

u(i)

and so

detCovQ
�

(�u
C

⇤
n

)  2d
dY

i=1

�

2

u
(i)

C

n


✓
2

n

�y
n

◆d


✓
2

n

M

◆d

! 0 as n ! 1,

which is a contradiction.

Theorem 3.3.9 Let 1  d < dp and ⌦ have finite cardinality. Suppose there ex-

ists ⇥
0

2 ⌦ such that f(⇥
0

, û) = g(û) for all û 2 U and that 1  r < 1. Let

Qn(✓) = cn exp(�
Pn

k=1

Pd
i=1

|f(✓, u(i)
k ) � g(u(i)

k )|r) where cn is the normalizing con-

stant to ensure that Qn is a probability density on ⌦ and ⌃n is the variance-covariance
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matrix on ⌦ with respect to Qn. Suppose also that un+1

= (u(1)

n+1

, u

(2)

n+1

, ..., u

(d)
n+1

) 2 Ud

are chosen such that

detCovQ
�

(�u)  detCovQ
�

(�u
n+1

), for all u 2 U .

Then for all û 2 U

lim
n!1

EQ
n

[f(⇥, û)] = g(û).

Proof Under the hypotheses, the d = 1 case corresponds to exactly to Theorem

3.3.6.

For the case 2  d < dp, we choose un+1

= (u(1)

n+1

, u

(2)

n+1

, ..., u

(d)
n+1

) such that

detCovQ
�

(�u
n+1

) is maximal at the (n + 1)st step. Again by Proposition 3.3.3, we

have {CovQ
�

(�u)}ii = 2�2

u(i)

. Substituting Qn+1

(✓) for Q(✓), by Lemma 3.3.8 there

exists u(j
n+1

)

n+1

2 un+1

such that �2

u
(j

n+1

)

n+1

� C · �2

u for all u. Now the points {u(j
n

)

n }1n=1

form a sequence that satisfy Theorem 3.3.6 and thus, EQ
n

[f(⇥, û)] ! g(û) as n ! 1.

3.3.4 NUMERICAL ILLUSTRATION OF THE METHOD.

We illustrate an implementation of the second MINE criterion in the case of re-

gression with Chebyshev polynomials. The regression problem is linear in parameters,

so we proceed to maximize the objective function described in Proposition 3.3.5 in

order to find points to measure and therefore reduce uncertainty. Recall that the first

five Chebyshev Polynomials on I = [�1, 1] [31] are {cos((j�1) cos�1

û)}5j=1

and these

will serve as the basis { j(û)}5j=1

for regression, note here that dp = 5. We seek to

take d = 2 measurements at every step in our sequential design.

Let � > 0 and ⌃
0

be symmetric positive definite and conditional probability of ⇥

given �2 is p(✓|�2) = N (µ
0

, �

2⌃�1

0

). Our linear model is of the form y =  u⇥ + ✏,

where each component of of ✏ has distribution N (0, �2). We assume that the prior dis-

tribution on ⌦ is the multivariate normal distribution. Combining this prior with the

probability distribution induced on parameters with r = 2, as defined in Section 3.3.3,
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we obtain the posterior distribution Qn(✓) = cnp(✓|�2) exp(�
Pn

k=1

Pd
i=1

| 
u
(i)

k

✓ �

g(u(i)
k )|2) defined in Section 3.3.3 with r = 2 is then our posterior distribution. Using

the results found in [31] we find that our posterior distribution Qn has parameters

µn = ( T
u u + ⌃0

)�1(⌃
0

µ

0

+ T
uy)

⌃n = ( T
u u + ⌃0

).

These parameters are necessary to specify the distribution from which we sample

at every step in the sequential design. Note that � is fixed throughout this updating

scheme; there is a version of the scheme where � can be updated as well.

Before beginning the scheme, we choose true parameters ✓true so that we have

true dynamics ytrueu =  u✓
true. In the script, we sample from the current distribution

on parameter space, take di↵erences of the parameters, and map the di↵erences for-

ward to the di↵erence space under the transformation  u = { j(u(i))}i=2,j=5

i=1,j=1

. Each

di↵erence space depends on a choice of point u.

We used the built-in MATLAB function fmincon to find a minimum to the objec-

tive function � T
u⌃ u. To find initial measurement points to start the optimization,

the interval of consideration I was subdivided and the points from the subdivision

with the best evaluation in the objective were chosen. The optimization procedure

was used iteratively and found measurement points that improved upon the initial

estimates at every step n.

For n = 1, the di↵erence spaces at the initial and optimal point is shown in the

right panel of Figure 3.1. When moving to the optimal measurement point for n = 1

there is a visible increase in the volume (area, for d = 2) of the di↵erence space. This

increase corresponds to greater uncertainty at the optimal points u

⇤
1

, which will be

resolved by measuring the dynamics at these points.
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Fig. 3.1.: Plots of the di↵erence space given a random sample of ⌦ and a choice of

measurement points u. On the left, the di↵erence space with initial measurement

points is plotted in red. On the right, the di↵erence space with optimal measurement

u

⇤
1

points is plotted in blue.

In Figures 3.2-3.7, we indicate how the regression functions evolve as we apply

the sequential design. The dynamic uncertainty, or model variance, in the regression

functions has been significantly reduced at the 5th iteration. There is not much

noticeable improvement between the 6th and 10tth iteration. In each of the plots the

true dynamics are represented by a solid green curve and the optimal points are solid

blue vertical lines. We sample by adding Gaussian noise with standard deviation

� = 0.1 to y

true
u .

At step n = 1, there is wide variation throughout the entire interval. The end-

points are found to be the place where experimentation will yield the most reduction

in the dynamic uncertainty.
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Fig. 3.2.: Regression functions at step n = 1. The optimal points for measurement

u

⇤
1

were found the be the endpoints.

By step n = 2, the variation at the endpoints has been resolved due to the

measurements. The next measurement points u

⇤
2

are found to be about the origin

and slightly above 0.8, and thereby focusing on uncertainty in the top half of the

interval.
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Optimal pts

Fig. 3.3.: Regression functions at step n = 2. The optimal points for measurement

u

⇤
2

⇡ (0.02, 0.82).
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In the plot for n = 3 we see that the trajectories have all significantly contracted

at the origin and above 0.8. The next measurement points are chosen to be ⇡ 0.5

⇡ �0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

8
Regression functions

 

 
Optimal pts

Fig. 3.4.: Regression functions at step n = 3. The optimal points for measurement

are u

⇤
3

⇡ (�0.82, .5).

At step n = 4, the variation outside of the interval (-0.8, 0) has been largely

constrained. The choice of measurements at this step is interesting. The measurement

point at ⇡ �0.48 is an obvious candidate since the maximum model variance occurs

in this region. The choice of point at ⇡ �0.02. is surprising, since there are other

points of higher uncertainty and it is not apparent how this point is less correlated

to the first chosen point.
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Fig. 3.5.: Regression functions at step n = 4. The optimal points for measurement

u

⇤
4

⇡ (�0.48,�0.02).

By step n = 5, most areas of large model variance have been reduced by the

experiments. The optimal points are chosen to be the endpoints.
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Fig. 3.6.: Regression functions at step n = 5. The optimal points for measurement

u

⇤
5

were found the be the endpoints.
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Between n = 6 and n = 10 there is not a large gain in convergence to y

True,

but the method continues to find points that improve the regression. The choice of

measurements at step n = 5 are at û = 0 and û = �0.8.
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Fig. 3.7.: Regression functions at step n = 10. The optimal points for measurement

u

⇤
10

= (�0.8, 0).

The numerical implementation shows that points chosen according the second

MINE criterion are e↵ective in reducing uncertainty in this case of linear regression.

The points chosen are not necessarily the points of largest uncertainty at each step

and reasonable convergence is still acquired after a small number of iterations.

3.3.5 LIMITATIONS IN THE MINE CRITERION

The MINE method generally relies on the prior distribution on ⌦ in order to

make decisions in di↵erence space; we present how the number of measurements can

adversely a↵ect the influence of the prior. We consider two potential cases when

choosing two measurement points for a model that has parameters in a two dimen-

sional space. We assume linearity of parameters for the model. We summarize the

section with a corollary regarding the arbitrary case d = dp.
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Let I ⇢ R be an interval that contains the origin, though not necessarily symmetric

about the origin. We consider the model f(⇥, û) = ⇥(0) + ⇥(1)

û on I with ⇥ =

[⇥(0) ⇥(1)]T 2 ⌦ = [0, 1]2. Note that ⇥(0) determines the vertical intercept and ⇥(1)

determines the slope. Given measurement points u = {a, b}, where a, b 2 I, we define

the measurement matrix  u =

2

41 a

1 b

3

5.

Considering narrow ellipsoids in ⌦ reveals one limitation of the MINE criteria.

A narrow ellipsoid parallel to the ⇥(0) axis produces high variability in the intercept

f(⇥, û)|û=0

while leaving the slope relatively unchanged. This is illustrated in Figure

3.8. This also corresponds to the variance-covariance matrix ⌃ =

2

41 0

0 ✏

3

5 on ⌦. In

�F -space the trajectories become flat due to the narrow range for ⇥(1) and the high

variability in the vertical intercept persists.

⌦ Di↵erence space

Fig. 3.8.: On the left, the confidence ellipsoid in ⌦ parallel to the ⇥(0) axis. On the

right, the trajectories produced in di↵erence space when sampling from the ellipsoid,

demonstrating high intercept variability and low variability in the slopes.

On the other hand, we see in Figure 3.9 that a narrow ellipsoid parallel to the

⇥(1) axis produces high variability in the slope of f(⇥, û) while leaving the vertical

intercept f(⇥, û)|û=0

relatively unchanged. Here the variance-covariance matrix is

⌃ =

2

4✏ 0

0 1

3

5 on ⌦. The trajectories translate into trajectories in �F -space still
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with high variability in their slope but all are centered around the origin since the

range for ⇥(0) was so narrow.

⌦ Di↵erence space

Fig. 3.9.: On the left, a thin confidence ellipsoid in ⌦ parallel to the ⇥(1) axis. On the

right, the trajectories produced in di↵erence space when sampling from the ellipsoid,

demonstrating high slope variability and low variability in the intercepts.

For an arbitrary diagonal variance-covariance matrix ⌃ =

2

4c 0

0 d

3

5 we find that the

variance in the �F -space is  u⌃ T
u =

2

41 a

1 b

3

5

2

4c 0

0 d

3

5

2

41 1

a b

3

5 =

2

4c+ a

2

d c+ abd

c+ abd c+ b

2

d

3

5

In the case when c = 1, d = ✏ we have  u⌃ T
u =

2

41 + a

2

✏ 1 + ab✏

1 + ab✏ 1 + b

2

✏

3

5
.

Now V (u) = det u⌃ T
u = (1 + a

2

✏)(1 + b

2

✏)� (1 + ab✏)2 = (b� a)2✏.

In the case when c = ✏, d = 1 we have  u⌃ T
u =

2

4✏+ a

2

✏+ ab

✏+ ab ✏+ b

2

3

5
, and here

V (u) = det u⌃ T
u = (✏+ a

2)(✏+ b

2)� (✏+ ab)2 = (b� a)2✏.

In both cases, the implication is that the volume V (u) is maximized when the

distance between a and b is maximized. This is problematic since the resolution in

the model dynamics may not be improved depending on the interval I and also since

there is no dependence on the prior distribution ⌃.

For instance, we know that if we have a narrow ellipsoid parallel to the ⇥(1) axis

then our intercepts f(⇥, û)|û=0

are all about the origin. If we chose I = [0, T ] then
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the maximal volume suggests we should take measures at a = 0 and b = T . Since

the trajectories in this case are about the origin the choice a = 0 will not produce

information useful in constraining our model trajectories.

In general, if d = dp we have that  u is square and our objective becomes

det u⌃ T
u = (det u)2 det⌃. The peculiarity here is that our next choice of u

which results from maximizing det u⌃ T
u is independent of our prior information ⌃.

We now state the corollary formally.

Corollary 3.3.10 If �u = �F (⇥,⇥0
, u) =  u(⇥ � ⇥0) and d = dp, then the maxi-

mization problem

max
u

V (u) = max
u

det u⌃ 
T
u ,

is independent of the prior distribution ⌃ on ⌦.

Moreover, the case d > dp is not considered as this would lead to a measurement

matrix  u with dependent rows. Thus, there would be no new information gained at

that step of sequential rows from at least d� dp of the measurements.

3.3.6 DISCUSSION

When dealing with epistemic uncertainty modelers often call on experimentalists

to gain a better understanding of biological process under consideration. Experi-

ments can often provide more insight into what are reasonable dynamics for a given

model. The Maximally Informative Next Experiment criteria specifies when an ex-

periment should be conducted to gain the largest resolution of dynamic uncertainty.

An advantage to the MINE criteria is their applicability to nonlinear models; this is

appealing for systems biology where the processes and mechanisms often necessitate

complicated descriptions.

The second MINE criterion can be used to specify a number of experiments fewer

than the dimension of the parameter space. Choosing multiple points for experi-

mentation is a problem of finding points of large uncertainty, but also finding points
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with minimal correlation. This problem is solved by considering determinants of co-

variance matrices; the determinant is an ideal objective as it will promote a lack of

correlation during maximization. We have given a theoretical validation for using the

second MINE criterion. Our main result in this chapter shows that the method can

be used to generate a sequential design of experiments that will, in the limit, lead to

convergence of the expected dynamics to the true dynamics. This convergence result

applies generally to nonlinear models. Additionally, we have explored limitations of

the method and have found that it is useful for a parallel design only when the num-

ber of experiments is less than the dimension of the parameter space. This is not true

in general for the classic D-optimality condition.

Again, the second MINE criterion was considered by Bou�er et al. in [28] for the

linear case. Bou�er et al. give a su�cient condition for maximization of det u⌃ T
u ,

but still seek a necessary condition for maximization. Results like Lemma 3.3.8 could

possibly be used to construct a partial converse to Theorem 1 in [28], as it states that

when the determinant of the covariance matrix is maximized at least one diagonal

element of  u⌃ T
u must be within a fixed constant of the maximum model variance.

We have illustrated with numerical examples that it is practical to expect approx-

imations to true dynamics after a reasonable number of iterations in the case of linear

regression. Additionally, this method may provide a means for discovering underlying

correlations in the model response at di↵erent points and insight into model behavior.
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4. FUTURE WORK

Future work on this project includes further model development, using the theoretical

results on Maximally Informative Next Experiments (MINE) to aid in that develop-

ment, and extending the theoretical results to other MINE criterion.

4.1 MODEL DEVELOPMENT

The B cell receptor (BCR) signaling model presented in Chapter 2 currently con-

tains tuned Erk-MAPK and NF-B pathways. There is a structure in place for the

NFAT pathway, but the current model parameters have not been fit to B cell data.

The NFAT pathway contains five states and the Sobol sensitivity analysis conducted

in Section 2.4.2 found six sensitive parameters in the pathway. Identifying values

for these parameter that produce reasonable dynamics will be necessary before the

pathway can be used to generate testable hypotheses.

There is limited data available in [16] and more time points will be needed to

constrain the NFAT dynamics. Further experimentation is thus required and the

MINE Criteria can be used to identify time points that will have the most impact on

reducing dynamic uncertainty in this part of the model.

4.2 MODEL ANALYSIS

The contour analysis in Section 2.5.3 considered model response as a function of

ligand binding rates and found distinct dependencies in regions defined by the reverse

binding rate (see Figure 2.8). At higher levels of the reverse rate the responses follow

linear contours of slope ↵; biologically this corresponds to depending on a power

law a�nity Ka,↵ = rw0

kf

(rw0

kr

)

↵

. To trace the mechanism behind the dependencies, we
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are constructing motifs that represent characteristic features of the BCR signaling

model. The motifs translate into lower dimensional models that are more amenable

to analysis.

Motifs have been constructed to reflect features between the receptor and Syk.

Each motif focuses on a specific feature, such as Syk’s autophosphorylation, binding

events, and inhibition. Thus far, the motifs produce similar types contours to those

seen in Figure 2.8 and there is interest in proving a limiting result that approximates

↵, the slope of the linear function at high reverse rate.

4.3 THEORETICAL RESULTS

As mentioned in Section 3.1.2, the third MINE criterion is related to the second

criterion; the volume in this case is maximized by increasing the independence be-

tween the measurement points. Using a Hilbert Space formulation, the authors view

each model output as a vector and the respective vector norms then normalize the

determinant from the second criterion. This normalization ensures that increases in

volume are due to increases in independence between measurement points and not

the magnitude of the outputs. Extending the results in Chapter 3 will be considered

in a future works.
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