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ABSTRACT

Magner, Abram N. PhD, Purdue University, December 2015. Profiles of PATRICIA
Tries. Major Professor: Wojciech Szpankowski.

Digital trees are data structures that represent sets of strings according to their

shared prefix structure. In the most fundamental of such trees, a trie, each string

in the set is represented by a sequence of edges, each representing a single letter

of the string, starting at the root of the tree and ending at a leaf, the parent edge

of which corresponds to the last letter of the longest prefix that the string shares

with any other string in the set. A PATRICIA trie is a trie in which each non-

branching path is compressed into a single edge. The external profile Bn,k, defined to

be the number of leaves at level k of a PATRICIA trie on n strings, is an important

“summarizing” parameter, in terms of which several other parameters of interest can

be formulated. Here we derive precise asymptotics for the expected value and variance

of Bn,k, as well as a central limit theorem with error bound on the characteristic

function, for PATRICIA tries on n infinite binary strings generated by a memoryless

source with bias p > 1/2 for k ∼ α log n with α ∈ (1/ log(1/q) + ε, 1/ log(1/p) − ε)

for any fixed ε > 0. In this range, E[Bn,k] = Θ(Var[Bn,k]), and both are of the

form Θ(nβ(α)/
√

log n), where the Θ hides bounded, periodic functions of log n whose

Fourier series we explicitly determine. The compression property leads to extra terms

in the Poisson functional equations for the profile which are not seen in tries or digital

search trees, resulting in Mellin transforms which are only implicitly given in terms

of the moments of Bm,j for various m and j. Thus, the proofs require information

about the profile outside the main range of interest. We then extend our results to the

boundaries of the central region, allowing analyses of the typical height and fillup level,

both of which exhibit a surprising phase transition with respect to p. Our derivations
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rely on analytic techniques, including Mellin transforms, analytic de-Poissonization,

the saddle point method, and careful bounding of complex functions.
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1 INTRODUCTION

A digital tree is a fundamental data structure on words in which the storage and

retrieval of a word is based on its prefixes. Digital trees enjoy a plethora of impor-

tant applications, including data compression, distributed hashing, pattern matching,

Internet routing, leader election algorithms, etc [1–5]. There are several variations,

three of the most important being tries, digital search trees (DSTs), and PATRICIA

tries (the main objects of study in this dissertation). In addition to their use as

data structures, PATRICIA tries also arise as combinatorial structures which cap-

ture the behavior of various processes of interest in computer science and information

theory (e.g., in leader election processes without trivial splits [6] and in the solu-

tion to Rényi’s problem on distinguishing members of a set [7, 8]). This diversity of

applications motivates the probabilistic study of these structures.

We next explain in detail the construction of tries, then the modifications intro-

duced by PATRICIA tries. For details on the definition of DSTs, see [1].

All digital trees are defined on sets of distinct and infinitely long strings from a

fixed finite alphabet A (in our case the alphabet is {0, 1}). A trie is defined as follows:

the trie of the empty set is ∅; for a single string, the corresponding trie is a single

node representing that string. Finally, for S a set of two or more strings, we consider

the partition of S into equivalence classes Sa, a ∈ A, where two strings are equivalent

if and only if they have the same initial symbol. Then the trie corresponding to S

is a node with child subtrees, each one corresponding to a distinct nonempty equiv-

alence class in the partition (i.e., to an element of the alphabet). The child subtree

corresponding to a ∈ A is then the trie generated by the strings in Sa with their

initial symbol deleted. Note that because all strings in S are distinct, the base case

is reached eventually in every subtree, so that the trie so constructed is guaranteed

to be finite.
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PATRICIA tries address an inefficiency in the standard trie construction just

described [9]. In particular, in a standard trie, if many strings share long prefixes,

the result is a tree having many non-branching paths, which is a waste of space

and traversal time. In a PATRICIA trie, non-branching paths are compressed ; that

is, a non-branching path corresponding to symbols x1 . . . xm is replaced by a single

node whose parent edge is labeled with the string x1 . . . xm. (See Figure 1.1 for an

illustration.)

0 1

01 1

0

0 1

1

Figure 1.1.: A PATRICIA trie on n = 5 strings (s1 = 0010 . . . , s2 = 0011 . . . ,
s3 = 01 . . . , s4 = 10 . . . , s5 = 11 . . . ). Note the path compression involved in the
representation of s1 and s2. The external profile is given by B5,0 = B5,1 = 0, B5,2 = 3,
B5,3 = 2.

In more detail, the base cases for the PATRICIA construction are the same, but the

inductive construction differs. In particular, for a set S of more than one string, let

lcp(S) denote the longest common prefix of all of the strings in S. Furthermore,

for j ∈ Z ≥ 0, let suff(S, j) denote the set of strings obtained by removing the

initial j characters of all strings in S (so, e.g., suff(S, 0) = S). We then consider

a partition of the set S ′ = suff(S, lcp(S)) according to the initial symbol of each

string (the same sort of partition arising in the case of tries, but on S ′ instead of

S). For a ∈ A, the partition element corresponding to the strings beginning with a

is denoted by S ′a. Then the PATRICIA trie PAT(S) is given by a node with a child

subtree corresponding to each nonempty partition element S ′a. The child subtree

corresponding to S ′a is given by PAT(suff(S ′a, 1)); that is, the initial a is removed, and
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a PATRICIA trie is constructed on the resulting set of strings. Note that the initial

removal of the longest common prefix of S gives rise to the compression property

explained above.

Motivated by applications in the analysis of algorithms and in information theory,

various parameters of random digital trees have been defined and studied extensively,

including height, size, fillup level, and several others [1, 8–11]. Many of these can be

rephrased in terms of external and internal profiles. The external profile of a digital

tree on n strings at level k, denoted by Bn,k, is the number of leaves at distance k from

the root. Study of profiles is motivated by the fact that distributional information

about them implies information about many other parameters. For instance, the

height Hn of a digital tree is the maximum level k such that Bn,k > 0, and studying

the distribution of Bn,k can give precise asymptotics for the typical height. Moreover,

the typical depth Dn, defined to be depth of a randomly chosen leaf, has a distribution

whose mass at any given level is exactly determined by the expected value of the

external profile at that level. Many other parameters can similiarly be studied in

terms of Bn,k.

This dissertation makes a large step in the completion of the project of analyzing

the profiles of digital trees under a Bernoulli source model; trie profiles were fully

treated in [12], and the expected value and variance of digital search tree profiles were

studied in [13, 14]. We are concerned here with the external profiles of PATRICIA

tries.

Precisely, we study the expected value E[Bn,k] = µn,k, variance Var[Bn,k] = Vn,k =

σ2
n,k, and limiting distributional behavior of the external profile of PATRICIA tries

built from n strings generated by a memoryless source with probability of a “1” equal

to p > 1/2 and probability of a “0” equal to q := 1− p (extension of the analysis to

any fixed alphabet size is relatively easy). At a very high level, the derivations follow

lines well trodden in the analyses of profiles of tries and digital search trees: from

the recurrence for the expected value, we derive a functional equation on its Poisson



4

transform, solve this using the Mellin transform, then invert using the saddle point

method and analytic de-Poissonization.

The mathematical novelty of the challenges arising in the PATRICIA case, which

we solve here, is the fact that, in order to solve the problem for the range of polynomial

growth (where k grows logarithmically with n), we must provide estimates for µm,j

both to the left and to the right of that range. This comes initially from the peculiar

recurrence satisfied by the probability-generating function Qn,k(u) = E[uBn,k ] of the

external profile at level k:

Qn,k(u) = (pn + qn)Qn,k(u) +
n−1∑
j=1

(
n

j

)
pjqn−jQj,k−1(u)Qn−j,k−1(u), (1.1)

with appropriate initial conditions. The added term (pn + qn)Qn,k(u) and the incom-

pleteness of the binomial sum are complications that do not arise in the analyses of

tries and digital search trees (see [15]). They lead to Mellin transforms that can only

be written implicitly in terms of an infinite series involving µm,j for m, j outside the

range where the profile grows polynomially. Moreover, in the Mellin inversion via

the saddle point method, we find that we must handle infinitely many saddle points

along the line of integration. Both of these phenomena significantly complicate the

inversion of the Mellin transform in the expected value and variance cases and the

bounding of the remainder term in the expansion of the characteristic function in the

proof of the limiting distribution result.

More precisely, the Poisson transform G̃k(z) =
∑

m≥0 µm,k
zm

m!
e−m of the expected

value sequence (µn,k)n≥0 satisfies the functional equation

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + e−pz(G̃k − G̃k−1)(qz) + e−qz(G̃k − G̃k−1)(pz),

and the last two terms present the main challenge, since they do not have closed-

form Mellin transforms. We manage to derive a non-explicit formula for the Mellin

transform G∗k(s) of G̃k(z):

G∗k(s) = (p−s + q−s)kΓ(s+ 1)Ak(s),
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where Ak(s) is an infinite series given in terms of µm,j:

Ak(s) = 1 +
k∑
j=1

(p−s + q−s)−j
∑
m≥j

(pm + qm)(µm,j − µm,j−1)
Γ(m+ s)

Γ(s+ 1)Γ(m+ 1)
.

Thus, elucidating the analytic properties of G∗k(s) requires us to study the asymptotics

of µm,j in several ranges.

In contrast, the Poisson functional equations for the expected value in tries and

digital search trees, respectively, are

G̃k(z) = G̃k−1(pz) + G̃k−1(qz)

(see [12]) and

G̃k(z) + G̃′k(z) = G̃k−1(pz) + G̃k−1(qz)

(see [13]). Both of these result in (more or less) explicitly given Mellin transforms:

for tries,

G∗k(s) = (p−s + q−s)kΓ(s+ 1)G∗0(s),

and for DSTs,

G∗k(s) = Γ(s)Fk(s),

where Fk(s) is a finite linear combination of functions of the form p−`1sq−`2s. Though

the Mellin transform in the case of DSTs is still quite complicated, it does not present

the same challenges as does the PATRICIA case.

The peculiarities of the recurrence (1.1) also result in significant challenges in the

derivation of the limiting distribution (wherein we appeal to the Lévy continuity the-

orem): considering the exponential generating function Qk(u, z) =
∑∞

m=0Qm,k(u) z
m

m!

of Qn,k(u), then taking its logarithm l̃k(u, z) = logQk(u, z), we study the asymptotic

behavior of the Taylor expansion of l̃k(u, z) around u = 1, with z → ∞. We require

precise estimates of the first moments of Bn,k, and we further need to show that the

remainder term is negligible with respect to the first three; to do this, we derive for

it an integral representation which again involves quite complicated expressions in
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terms of µm,j for various m and j. In this representation of the remainder term, we

encounter a function

Qj(w, px)−Qj−1(w, px) +Qj(w, qx)−Qj−1(w, qx)

Qj−1(w, px)Qj−1(w, qx)
,

and in order to bound this, we find that we need to take into account the extensive

cancellation that occurs in the numerator, and we must derive precise lower bounds

on |Qj−1(w, cx)| to handle the denominator. In order to account for the cancellation

in the numerator, we again need good bounds for µm,j outside the range of polynomial

growth.

In the end, we are able to derive precise asymptotic expansions for the expected

value and variance of Bn,k in the range of polynomial growth: n → ∞ with k ∼

α log n, where, for any fixed ε > 0, α ∈ (1/ log(1/q) + ε, 1/ log(1/p) − ε) (the left

and right endpoints of this interval are associated with the fillup level and height,

respectively). Specifically, we show that both the mean and the variance are of

the same (explicit) polynomial order of growth (with respect to n), multiplied by

subpolynomial factors and bounded, oscillating functions whose Fourier series we can

determine in terms of the function Ak(s). The oscillations (which also arise in trie

and DST profiles) come from infinitely many regularly spaced saddle points that

we observe when inverting the Mellin transform. Moreover, we again find that the

Fourier series are phrased in terms of µm,j−µm,j−1, which is a result of the boundary

conditions on the recurrences, structurally caused by the compression property of

PATRICIA tries. Finally, for the same range, we show that a central limit theorem

(with error bound on the characteristic function) holds for the normalized profile

(Bn,k−G̃k(n))/
√
Ṽk(n), where Vk(z) is the Poisson variance of Bn,k. As a byproduct of

our analyses, we get estimates for µn,k and Var[Bn,k] outside the range of polynomial

growth and analytic information about G∗k(s) and the Mellin transform V ∗k (s) of

Ṽk(z), all of which will play a key role in the precise analysis of the height and other

parameters. We then extend our analysis to the boundaries of the central region,

which gives us new results on the height and fillup level.
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We do not consider in this dissertation the analysis of the internal profile, because

it is a rather trivial extension of that of the external case (one need only consider the

residue associated with a simple pole of the relevant Mellin transforms). We also do

not handle the symmetric case analysis, for a different reason: since the “saddle point

range” which appears in the asymmetric case collapses to the empty set, we expect

qualitatively different challenges. We save this discussion for future work.

We now discuss the relevant literature about digital trees and their profiles, as

well as related parameters. Profiles of tries in both the asymmetric and symmetric

cases were studied extensively in [12]. The expected profiles of digital search trees

in both cases were analyzed in [13], and the variance for the asymmetric case was

treated in [14]. Some aspects of trie and PATRICIA trie profiles (in particular,

the concentration of their distributions) were studied using probabilistic methods

in [16,17].

The analyses in [6] and [18] feature trie recurrences involving incomplete binomial

sums with extra terms with similarly complicated Mellin transforms. In the former,

the authors analyze the distribution of the number of rounds in an asymmetric leader

election algorithm. At the beginning of the procedure, there are n candidates. In each

round, the remaining candidates for the leader each generate an independent Bernoulli

random variable with bias p. This generates a split of the candidates into two subsets.

If the subsets are nontrivial, then only those candidates that generated a 1 participate

in subsequent rounds. On the other hand, if all candidates are eliminated in a given

round (i.e., all generate a 0), then the round is not counted, and the experiment is

repeated with the same candidate set. The procedure ends when there is only one

candidate left. Note the similarity of the nontrivial splitting mechanism to the path

compression property in PATRICIA tries. The number of rounds with nontrivial

splits then yields, e.g., the following functional equation for the Poisson transform

X̃(z) of its expected value:

X̃(z) = X̃(pz) + X̃(qz)e−pz + 1− (1 + z)e−z. (1.2)
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In [18], a recurrence arising from the analysis of the Davis-Putnam procedure for

determining satisfiability of a boolean formula is solved: in particular, it is another

recurrence of the form

f(z) = f(pz) + f(qz)e−pz + a(z), (1.3)

for some explicit function a(z).

Note that, in both cases, and in the case of PATRICIA profiles, terms of the

form f(cz)e−(1−c)z (in all three cases, for different functions f) are present in the

Poisson functional equation. The Mellin transform of such terms does not have a

simple, closed form, but the authors of [6] and [18] still manage to show that it exists

and is analytic in an appropriate region of the complex plane. We must similarly

overcome this hurdle, with additional complications: our recurrence, in contrast with

(1.2) and (1.3) is bivariate and features different additional terms, which complicates

the analysis.

For other parameters of interest in the analysis of digital trees, see, e.g., [1,5,19].

Regarding the methods used here and elsewhere, [20] provides extensive back-

ground on complex asymptotics. The book [1] contains a chapter on analytic de-

Poissonization. The survey [21] gives properties of the Mellin transform and its ap-

plication to the analysis of harmonic sums.

Finally, we note that [22] gives some preliminary analysis of the expected profile

in the setting that we consider here.

The plan of this dissertation is as follows. In Chapter 2, we introduce some

notation, give a precise formulation of the problem, present the main results in detail,

and give the high-level ideas behind the proofs. In Chapters 3, 4, 5, and 6 we prove

the main results.
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2 MAIN RESULTS

Here we give some notation that is used in the rest of this work, present in detail

the basic setup, and then give our main theorems and some of the intuition behind

their proofs. We then discuss consequences and compare with similar results for other

digital tree models. Throughout, the function T (s) is given by

T (s) = p−s + q−s. (2.1)

For the sake of brevity, we will define two linear operators on sequences of functions:

for any sequence {gj(z) : C→ C}j≥0, we define

L[g]j(z) = gj(pz) + gj(qz) (2.2)

For j ≥ 1, we also define

T [g]j(z) = e−pz(gj(qz)− gj−1(qz)) + e−qz(gj(pz)− gj−1(pz)). (2.3)

Both are trivially seen to be linear (where addition and scalar multiplication of se-

quences of functions are defined componentwise), which is helpful in the calculations

that follow.

For θ ∈ [0, π), we denote by C(θ) the cone around the positive real axis with angle

θ; that is

C(θ) = {z ∈ C : | arg(z)| ≤ θ},

and for any R > 0,

C(θ, R) = C(θ) ∩ {z ∈ C : |z| ≤ R};

i.e., C(θ, R) is the truncated cone with angle θ and radius R.

All asymptotic notation is defined with n→∞ unless explicitly indicated other-

wise.
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2.1 Setup

Throughout, we consider a random PATRICIA trie over n independently gen-

erated strings, each an infinite sequence of i.i.d. Bernoulli random variables with

probability p of taking the value “1” and q = 1 − p of taking the value “0”, with

p > q. Define Bn,k to be the number of external nodes at level k of such a tree.

The fundamental recurrence for Qn,k(u) = E[uBn,k ], the probability-generating

function (PGF) of the external profile, is

Qn,k(u) = (pn + qn)Qn,k(u) +
n−1∑
j=1

(
n

j

)
pjqn−jQj,k−1(u)Qn−j,k−1(u), (2.4)

for n ≥ 2 and k ≥ 1. This recurrence arises from conditioning on the number j of

strings that begin with a “1”. If 1 ≤ j ≤ n− 1 strings start with “1”, then Qn,k(u) is

a product of contributions from the left and right subtrees. If, on the other hand, all

strings start with the same symbol (which happens with probability pn + qn), then

the path compression property applies, and the contribution is Qn,k(u).

The initial and boundary conditions are as follows:

Qn,k(u) =



1 n = 0

uδ[n=1] k = 0

uδ[k=0] n = 1

1 k ≥ n.

2.2 Main theorems

Theorem 2.2.1 below gives asymptotics for the expected value of Bn,k in the range

of polynomial growth (which is contained in the range where k = Θ(log n)). In

particular, it says that the expected external profile grows polynomially with respect

to n (with subpolynomial factors), multiplied by a bounded function which is 1-

periodic in log n. We can give a somewhat explicit expression (in terms of µm,j,
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which can be computed using the recurrence) for the Fourier series of this oscillating

function.

We start by deriving a recurrence for µn,k: taking a derivative of Qn,k(u) and

setting u = 1, we get

µn,k = (pn + qn)µn,k +
n−1∑
j=1

(
n

j

)
pjqn−j(µj,k−1 + µn−j,k−1) (2.5)

for n ≥ 2 and k ≥ 1, with initial/boundary conditions conditions

µn,k =



0 n = 0

δ[n = 1] k = 0

δ[k = 0] n = 1

0 k ≥ n.

To solve the recurrence, we first derive a functional equation for the Poisson

transform G̃k(z) =
∑

m≥0 µm,k
zm

m!
e−z of µn,k, which gives

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + e−pz(G̃k − G̃k−1)(qz) + e−qz(G̃k − G̃k−1)(pz),

which we will write as

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + W̃k,G(z),

and at this point the goal is to determine asymptotics for G̃k(z) as z →∞ in a cone

around the positive real axis; later, de-Poissonization will allow us to directly transfer

this asymptotic expansion back to one for µn,k.

To convert this to an algebraic equation for which we can give a more explicit

(though analytically complicated) solution, we use the Mellin transform [21], which,

for a function f : R→ R is given by

f ∗(s) =

∫ ∞
0

zs−1f(z) dz.

Using the Mellin transform identities, we end up with an expression for the Mellin

transform G∗k(s) of G̃k(z) of the form

G∗k(s) = Γ(s+ 1)Ak(s)T (s)k,
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where Ak(s) is an infinite series whose terms involve µm,j − µm,j−1 for various m and

j, and we recall that T (s) = p−s + q−s. Locating and characterizing the singularities

of G∗k(s) then becomes important. We find that, for any k, Ak(s) is entire, with zeros

at s ∈ Z∩ [−k,−1], so that G∗k(s) is meromorphic, with possible simple poles arising

from the Γ function at the negative integers less than −k. The fundamental strip of

G̃k(z) then contains (−k − 1,∞).

We then must asymptotically invert the Mellin transform to recover G̃k(z). The

Mellin inversion formula for G∗k(s) is given by

G̃k(z) =
1

2πi

∫ ρ+i∞

ρ−i∞
z−sG∗k(s) ds =

1

2πi

∫ ρ+i∞

ρ−i∞
z−sΓ(s+ 1)Ak(s)T (s)k ds,

where ρ is any real number inside the fundamental strip associated with G̃k(z). We

evaluate this integral via the saddle point method [1]. Examining z−sT (s)k and

solving the associated saddle point equation

d

ds
[k log T (s)− s log z] = 0,

we find an explicit formula (2.7) for ρ(α), the real-valued saddle point of our integrand.

The multivaluedness of the logarithm then implies that there are infinitely many

regularly spaced saddle points on this vertical line, for which we must account (these

lead directly to oscillations in the Θ(1) factor in the final asymptotics for µn,k).

The main challenge in completing the saddle point analysis is then to elucidate the

behavior of Γ(s + 1)Ak(s) for s → ∞ along vertical lines: it turns out that this

function inherits the exponential decay of Γ(s+ 1) along vertical lines, and we prove

it by splitting the sum defining Ak(s) into two pieces, which decay exponentially for

different reasons (the first sum decays as a result of the superexponential decay of

µm,j for m = Θ(j), which is outside the main range of interest). We end up with an

asymptotic expansion for G̃k(z) as z →∞ in terms of Ak(s).

Finally, we must analyze the convergence properties of Ak(s) as k →∞. We find

that it converges uniformly on compact sets to a function A(s) (which is, because of

the uniformity, entire). We then apply Lebesgue’s dominated convergence theorem
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to conclude that we can replace Ak(s) with A(s) in the final asymptotic expansion of

G̃k(z). All of this yields the following theorem (the proof is in Chapter 3).

Theorem 2.2.1 (Expected external profile for k ∼ α log n) Let ε > 0 be inde-

pendent of n and k, and fix α ∈
(

1
log(1/q)

+ ε, 1
log(1/p)

− ε
)

. Then for k = kα,n ∼ α log n,

E[Bn,k] = H(ρ(α), logp/q(p
kn)) · nβ(α)√

2πκ∗(ρ(α))k

(
1 +O(k−1/2)

)
, (2.6)

where

ρ(α) = − 1

log(p/q)
log

(
α log(1/q)− 1

1− α log(1/p)

)
, (2.7)

β(α) = α log(T (ρ(α)))− ρ(α), (2.8)

κ∗(ρ) =
p−ρq−ρ(log(p/q))2

T (ρ)2
, (2.9)

and H(ρ, x) (see Figure 2.1) is a positive, periodic function with period 1 in x given

by

H(ρ, x) =
∑
j∈Z

A(ρ+ itj)Γ(ρ+ 1 + itj)e
−2jπix, (2.10)

where tj = 2πj/ log(p/q), and

A(s) = 1 +
∞∑
j=1

T (s)−j
∞∑
n=j

T (−n)(µn,j − µn,j−1)
φn(s)

n!
, (2.11)

where φn(s) =
∏n−1

j=1 (s + j) for n > 1 and φn(s) = 1 for n ≤ 1. Here, A(s) is an

entire function which is zero at the negative integers.

Moreover, we have the following superexponentially decaying upper bound on µn,k

when k = Θ(n): for any C > 0, there exist c1, c2 > 0 such that, for n large enough,

whenever m ≥ Cn,

µn,m ≤ c1n!e−c2m
2

m = Θ(n). (2.12)

Moving to the variance Vn,k = σ2
n,k of the external profile, we start with the

recurrence for the second factorial moment cn,k = E[Bn,k(Bn,k − 1)], which is easily

derived from that for Qn,k(u):

cn,k = (pn + qn)cn,k +
n−1∑
j=1

(
n

j

)
pjqn−j(cj,k−1 + cn−j,k−1 + 2µj,k−1µn−j,k−1), (2.13)
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Figure 2.1.: Plots of H(ρ, x) for ρ = −0.5, 0, 0.5.

for n ≥ 2, k ≥ 1, with initial/boundary conditions

cn,k = 0 n < 2, k < 1, or k ≥ n.

To solve this, we define the Poisson variance Ṽk(z) as

Ṽk(z) = C̃k(z) + G̃k(z)− G̃k(z)2,

where C̃k(z) =
∑

m≥0 cm,k
zm

m!
e−z is the Poisson transform of cn,k. It turns out that

Ṽk(z) satisfies a recurrence reminiscent of that of G̃k(z):

Ṽk(z) = Ṽk−1(pz) + Ṽk−1(qz) + W̃k,V (z),

where W̃k,V (z) is analogous to W̃k,G(z) appearing in the expected value case (see (4.1)

for its definition).

The subsequent steps (Mellin transform, Mellin inversion via saddle point method,

and de-Poissonization) are very similar to those in the expected value case. The ana-

lytic challenges are essentially the same (except for a detail in the de-Poissonization

step, in which we must estimate nG̃′k(n)2), and we have formulated the lemmas in

the analysis of the expected value so that they are readily applicable to the variance

case. This results in the following theorem (the proof is given in Chapter 4).

Theorem 2.2.2 (Variance) Let k be as in Theorem 2.2.1. Then

Var[Bn,k] = M(ρ(α), logp/q(p
kn)) · nβ(α)√

2πκ∗(ρ(α))k

(
1 +O(k−1/2)

)
= Θ(E[Bn,k]),

(2.14)
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where β(α) is as defined in (2.8), and, for every fixed ρ, M(ρ, x) is a positive, periodic

function with period 1 in x, given by the Fourier series

M(ρ, x) =
∑
j∈Z

B(ρ+ itj)Γ(ρ+ 1 + itj)e
−2jπix, (2.15)

where

B(s) = 1− (s+ 1)2−(s+2) +
∞∑
j=1

T (s)−j
W ∗
j,V (s)

Γ(s+ 1)
. (2.16)

Here, W ∗
j,V (s) is given by the expression (4.2). Note that B(s) shares many of the

properties of A(s): it is entire, with zeros at the negative integers.

Moreover, we have the following superexponentially decaying bound on the second

factorial moment cn,k (and hence Vn,k) when k = Θ(n): for all C ∈ (0, 1], there exist

positive constants C1, C2 such that, for all n and k ≥ Cn,

cn,k ≤ C1n!e−C2k2 k = Θ(n). (2.17)

Finally, we show that the normalized external profile satisfies a central limit the-

orem. The proof uses the Lévy continuity theorem. Since this entails estimating

the characteristic function of (Bn,k − µn,k)/σn,k as n → ∞, we naturally find our-

selves studying Q̃k(u, z), the Poisson transform of the probability-generating function

Qn,k(u) of Bn,k. In fact, we take the logarithm and study l̃k(u, z) = log(Qk(u, z)).

We find, using the Taylor series expansion of l̃k(u, z) with respect to u → 1 (we set

u = eτ/σn,k , for τ = it, t ∈ R), that it is given by

l̃k(u, z) = z + G̃k(z)(u− 1) +
Ṽk(z)− G̃k(z)

2
(u− 1)2 +

(u− 1)3

3!
R[l̃]k(u, z), (2.18)

where R[l̃]k(u, z) is a remainder term which we must show to be negligible with respect

to the other two terms whenever u→ 1 quickly enough.

Everything said so far regarding the proof of the limiting distribution result is

fairly standard in the world of digital tree analysis. The new, challenging part of our
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analysis is showing that the remainder term in the expansion of l̃k(u, z) is negligible.

Using Cauchy’s integral formula, we are able to give an exact formula for it:

1

3!
R[l̃]k(u, z) =

k∑
j=0

(
k

j

)
1

2πi

∮
C

log(1 + (w − 1)pjqk−jze−p
jqk−jz)

(w − 1)3(w − u)
dw

+
k∑
j=0

k−j∑
m=0

(
k − j
m

)
1

2πi

∮
C

h̃j(w, p
mqk−j−mz)

(w − 1)3(w − u)
dw,

where h̃k(u, z) is a function given in terms of Qk(u, z) and Qk−1(u, z) and C is a

contour enclosing both 1 and u. The first sum we bound by writing the jth summand

as eν(j), for an explicitly determined function ν, then taking derivatives to find the

term which contributes maximally. As a result, we find that the contribution of the

first sum is O(nβ(α)). We bound the second, more complicated summation by proving

precise estimates of the asymptotics of Qj(u, x) and (Qj−Qj−1)(w, x) (which exhibits

a significant amount of cancellation) for various ranges of x and j. We then split the

summations appropriately and apply the asymptotic estimates to conclude that the

second sum is also O(nβ(α)). This establishes a central limit theorem in the Poisson

model. We finally transfer the result to the Bernoulli model via a “bare-hands” de-

Poissonization (i.e., a saddle point evaluation of the Cauchy integral which gives the

inverse Poisson transform of G̃k(z)) to conclude the following (the proof is given in

Chapter 5).

Theorem 2.2.3 (Limiting distribution) For k as in Theorem 2.2.1 and σ2
n,k =

Vn,k,
Bn,k − µn,k

σn,k

D−→ N (0, 1).

More precisely,

E

[
exp

(
τ
Bn,k − G̃k(n)

σn,k

)]
= exp

(
τ 2

2
(1 +O(V

−1/2
n,k ))

)
,

uniformly for τ = it, t ∈ R.

Note that, although G̃k(n) ∼ µn,k by de-Poissonization, the chosen normalization

results in a better relative error than if we had subtracted µn,k.
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Comparing with the limiting distribution derivation for tries, we remark that the

main difference lies in the bounding of the error term in (2.18), where, again, we

must work with the non-explicitly known functions Qj(w, x) and their differences. A

limiting distribution analysis for DST profiles remains an open problem.

2.3 Application: Height and fillup level

As mentioned in Chapter 1, the motivation for studying the profile is to allow a

unified analysis of the parameters of digital trees. The next result illustrates this by

giving new insights on the behavior of the height Hn and fillup level Fn.

Theorem 2.3.1 (Height and fillup level) With high probability,

Hn ≤ log1/p n+ logp/q log n+ o(log log n) (2.19)

and

Fn ≥ log1/q n− log1/q log log n+ o(log log log n) (2.20)

for large n.

The results above are for the asymmetric case, and it is interesting to compare with

the scenario in the symmetric case (p = q = 1/2): it is known that

Hn = log2 n+
√

2 log2 n+ o(
√

log n), Fn = log2 n− log2 log n+ o(log log n).

See [7] and [8]. Note that, in both parameters, there is a phase transition in the

second-order term with respect to p at p = 1/2.

To prove Theorem 2.3.1, we start by expressing Hn and Fn in terms of the external

profile:

Hn = max{k : Bn,k > 0} Fn = min{k : Bn,k > 0} − 1.

Using the first and second moment methods, we can then obtain upper and lower

bounds on Hn and Fn in terms of the moments of Bn,k:

Pr[Hn > k] ≤
∑
j>k

E[Bn,j], Pr[Hn < k] ≤ Var[Bn,k]

E[Bn,k]2
,
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and

Pr[Fn > k] ≤ Var[Bn,k]

E[Bn,k]2
, Pr[Fn < k] ≤ E[Bn,k].

An upper bound on Hn and a lower bound on Fn thus require that we extend the

analysis of E[Bn,k] to the boundaries of the range considered in Theorem 2.2.1. We

give the proof in Chapter 6.
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3 ANALYSIS OF THE EXPECTED EXTERNAL PROFILE

In this chapter, we prove the estimate (2.6) of Theorem 2.2.1. We relegate the proof

of (2.12) to Section 3.4.

Our starting point is the Poisson transform G̃k(z) = e−z
∑

n≥0 µn,k
zn

n!
, which sat-

isfies the recurrence

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + W̃k,G(z), (3.1)

where

W̃k,G(z) = T [G̃]k(z), (3.2)

with initial condition G̃0(z) = ze−z. We then apply the Mellin transform [21]

G∗k(s) =

∫ ∞
0

zs−1G̃k(z) dz

to G̃k(z) to get a functional equation for G∗k(s):

G∗k(s) = T (s)G∗k−1(s) +W ∗
k,G(s), (3.3)

with G∗0(s) = Γ(s + 1). The fundamental strip associated with G̃0(z) is <(s) ∈

(−1,∞).

We define the vertical strip Ij = {s : <(s) ∈ (−j−1,∞)}, so that the fundamental

strip of G̃0(z) becomes I0. In fact, we will show that the fundamental strip of each

G̃k(z) contains Ik. It suffices to analyze the growth of G̃k(z) as z → 0 and z →∞ on

the real axis. For z → 0, using the property that µm,j = 0 for m ≤ j,

G̃k(z) = e−z(µk+1,k
zk+1

(k + 1)!
+O(zk+2)) = O(zk+1).

In order to bound the growth of G̃k(z) as z → ∞ for each k, we use the following

lemma.
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Lemma 1 (Growth of G̃k(z) as z →∞, upper bounds) Fix any θ ∈ (0, π/2).

(i) For any ε > 0, there exist some R ∈ R+ and positive C = C(R) such that, for

z ∈ C(θ) with |z| > R,

|G̃k(z)| ≤ C|z|1+ε,

for any k ≥ 0.

(ii) For any fixed C > 0, there exists C ′ > 0 such that, for all j ≤ C, z ∈ C(θ), and

ε > 0,

|G̃j(z)| ≤ C ′|z|1+εe−q
C |z| cos(θ).

Proof Proof of (i)

We proceed by induction on k, then on increasing domains.

Base case for induction on k

For k = 0, we have G̃0(z) = ze−z, so that

|G̃0(z)| = |z||e−z| = |z|e−<(z), (3.4)

which, for large enough |z| in the cone, is less than C|z|1+ε (and, in fact, any C|z|),

for any choice of C > 0.

Inductive step for k

We now assume that the claimed bound is true for 0 ≤ j < k, and we prove the claim

for k via induction on increasing domains.

Increasing domains base case

For the base case, observe that an upper bound on |G̃k(z)| that is uniform in k holds:

G̃k(z) = e−z
∑
n≥k+1

µn,k
zn

n!

= ze−z
∑
n≥k+1

µn,k
zn−1

n!

=⇒ |G̃k(z)| ≤ |z|e|z|−<(z),
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for any z, where we’ve used the fact that µn,k ≤ n. In particular, this applies in

the truncated cone C(θ, R). Since C(θ, R) is compact, and both the upper bound on

|G̃k(z)| and |z|1+ε are continuous, it has a maximum value in C(θ, R), so that there

is some C = C(R) for which

|G̃k(z)| ≤ C|z|1+ε,

which establishes the base case.

Inductive step for increasing domains induction

For the inductive step, we start with the recurrence for G̃k(z):

|G̃k(z)| ≤ |e−qz||G̃k(zp)|+ |e−pz||G̃k(zq)|

+ |G̃k−1(pz)||1− e−qz|+ |G̃k−1(qz)||1− e−pz|

≤ (|e−qz|+ |1− e−qz|)Cp1+ε|z|1+ε + (|e−pz|+ |1− e−pz|)Cq1+ε|z|1+ε

Now, for any positive c,

|e−cz|+ |1− e−cz| z→∞−−−→ 1

with z in the cone. Thus, we can choose |z| large enough (depending on ε) so that,

simultaneously,

(|e−qz|+ |1− e−qz|)p1+ε < p

and

(|e−pz|+ |1− e−pz|)q1+ε < q,

which gives

|G̃k(z)| ≤ Cp|z|1+ε + Cq|z|1+ε ≤ C|z|1+ε.

Proof of (ii)

Recall the functional equation for G̃j(z).

G̃j(z) = L[G̃]j−1(z) + T [G̃]j(z).
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Iterating this recurrence, we get

G̃j(z) = Lj[G̃]0(z) +

j−1∑
`=0

L`T [G̃]j−`(z), (3.5)

where, recall, G̃0(x) = xe−x. Applying the definition of L, the first term becomes

j∑
`=0

(
j

`

)
G̃0(p`qj−`z) =

j∑
`=0

(
j

`

)
p`qj−`ze−p

`qj−`z.

Now, for positive real z, we have

p`qj−`z ≥ qjz,

so that

e−p
`qj−`z ≤ e−q

jz.

Taking the absolute value of the first sum, applying the triangle inequality and the

observation just made, and pulling the resulting exponential factor and |z| out of the

summation gives an upper bound of

|z|e−qj |z| cos(arg(z))

j∑
`=0

(
j

`

)
p`qj−` = |z|e−qj |z| cos(arg(z)).

Turning to the second summation, we consider the `th term:

L`T [G̃]j−`(z) =
∑̀
r=0

(
`

r

)
T [G̃]j−`(p

rq`−rz). (3.6)

Now, we upper bound G̃j−`(x) and G̃j−`−1(x) by C ′|x|1+ε, for some C ′ independent

of C, and an arbitrarily small ε > 0. This we can do by part (i). This implies that

|T [G̃]j−`(x)| = |e−px(G̃j−`(qx)− G̃j−`−1(qx)) + e−qx(G̃j−`(px)− G̃j−`−1(px))|

≤ 4C ′pe−q|x| cos(arg(x))|x|1+ε.

Plugging this into (3.6) gives an upper bound of

4C ′p
∑̀
r=0

(
`

r

)
prq`−r|z|1+εe−p

rq`−r+1|z| cos(arg(z)) ≤ 4C ′p|z|1+εe−q
`+1|z| cos(arg(z)).
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Here, we’ve used the fact that prq−r = (p/q)r ≥ 1r = 1 to upper bound the exponent.

After this, the only factor of the above expression which contain r is

∑̀
r=0

(
`

r

)
prq`−r = 1.

The resulting upper bound is maximized when ` = j − 1, so that the second sum of

(3.5) is upper bounded by

4C ′p|z|1+εje−q
j |z| cos(arg(z)).

Thus, we have an upper bound of

|G̃j(z)| ≤ |z|1+εe−q
j |z| cos(θ)(1 + 4C ′pj).

Now, since j ≤ C, we finally have

|G̃j(z)| ≤ |z|1+εe−q
C |z| cos(θ)(1 + 4CC ′p).

Part (ii) implies that the right endpoint of the fundamental strip of each G̃k(z) is ∞,

so that each G∗k(s) is analytic at least in Ik, as claimed.

Now, in order to derive a formula for G∗k(s), we note that, for any s ∈
⋂∞
j=0 Ij = I0,

we can iterate the recurrence (3.3) to get

G∗k(s) = T (s)k

(
G∗0(s) +

k∑
j=1

T (s)−jW ∗
j,G(s)

)
.

It remains to determine W ∗
j,G(s), which we do, for arbitrary j, by expressing

e−(1−c)zG̃j(cz) as

e−(1−c)zG̃j(cz) =
∑

m≥j+1

e−zµm,j
(cz)m

m!
,

then applying the Mellin transform to each term (the interchange of integrals may be

justified by, e.g., Tonelli’s theorem). Factoring out Γ(s+ 1) results in the expression

G∗k(s) = T (s)kAk(s)Γ(s+ 1),
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where

Ak(s) = 1 +
k∑
j=1

T (s)−j
∞∑
n=j

T (−n)(µn,j − µn,j−1)
φn(s)

n!
,

with φn(s) as in the statement of Theorem 2.2.1:

φn(s) =


∏n−1

j=1 (s+ j) n > 1

1 n ≤ 1.

Provided that we can show that this expression is analytic for any s ∈ Ik, we can

then extend this equality to Ik by analytic continuation.

In order to do this, we need a lemma to the effect that certain series (which appear

in the expression for Ak(s)) converge absolutely and are entire. This lemma will be

stated in greater generality than might appear immediately necessary; this is so that

we can apply it later in a similar situation in the variance analysis.

Lemma 2 (Convergence and analyticity of a class of series) Let Fj(s) be

given by

Fj(s) =
∞∑
n=j

e−g(n)φn(s)

n!
,

with g(n) = Ω(n). Then

(i) the sum defining Fj(s) converges absolutely for all s ∈ C, and

(ii) Fj(s) is entire.

Proof Proof of (i): Without loss of generality, we can assume that g(n) = Cn,

for some positive constant C, because the assumption g(n) = Ω(n) implies that, for

large enough n, g(n) ≥ Cn. Next, we apply the ratio test, which gives∣∣∣∣e−(g(n+1))−g(n)) φn+1(s)n!

(n+ 1)!φn(s)

∣∣∣∣ =

∣∣∣∣n+ s

n+ 1

∣∣∣∣ e−(g(n+1)−g(n)) ∼ e−(g(n+1)−g(n)).

Now, using the assumption about the growth of g(n), we have that the ratio is

asymptotically less than 1, so that the series converges absolutely.
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Proof of (ii): If we can show that Fj(s) is analytic at s = 0, then the result follows,

since a function defined by a power series at a given point is analytic at all points

inside its disc of convergence. We’ll start by looking at [sm]φn(s). Toward that end,

define Sm to be the set of all subsets of size n− 1−m of the set [n− 1]. Then, noting

that φn(s) is a product of n− 1 monomials, so that each choice of m such monomials

gives a contribution to [sm]φn(s), we have

[sm]φn(s) =
∑
X∈Sm

∏
x∈X

x. (3.7)

Since |Sm| =
(

n−1
n−1−m

)
=
(
n−1
m

)
and

∏
x∈X x ≤

(n−1)!
m!

,

[sm]φn(s) ≤ (n− 1)!

m!(n− 1−m)!
· (n− 1)!

m!
=

((n− 1)!)2

m!2(n− 1−m)!
. (3.8)

Now,

[sm]Fj(s) =
∑
n≥j

e−Ω(n)[sm]φn(s)
1

n!
, (3.9)

and ∣∣∣∣e−Ω(n)[sm]φn(s)
1

n!

∣∣∣∣ ≤ e−Ω(n) 1

n!

(n− 1)!2

m!2(n− 1−m)!
(3.10)

= e−Ω(n) (n− 1)!

nm!2(n− 1−m)!

n→∞∼ e−Ω(n)nm−1

m!2
. (3.11)

The series with these terms converges because of the exponential decay of e−Ω(n) as

n → ∞. This implies that the series defining [sm]Fj(s) converges, so that Fj(s) is

analytic at 0.

We now demonstrate the existence and analyticity of Ak(s). Since the outer sum

of Ak(s) has a finite number of terms for any given k, showing existence boils down

to showing that the inner sum converges absolutely for all s ∈ C. For this, we can

use Lemma 2, part (i). In the case of Ak(s), we note that T (−n) ≤ pn + pn = 2pn,

and µn,j − µn,j−1 ≤ n − 0 = n. This yields T (−n)(µn,j − µn,j−1) = e−Θ(n), so that

we can take g(n) = Θ(n), which satisfies the condition required by Lemma 2. This

establishes existence of Ak(s).
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To show that Ak(s) is entire, it suffices to apply Lemma 2, part (ii). Then, since

G∗k(s) and T (s)kAk(s) are analytic at s = {−k,−k+ 1, · · · − 1} while Γ(s+ 1) is not,

and T (s)k 6= 0, Ak(s) = 0 for these points.

We summarize the above derivation in the following theorem.

Theorem 3.0.2 (Exact formula, fundamental strip for G∗k(s)) For all k ≥ 1

and all s for which G∗k(s) is holomorphic,

G∗k(s) = T (s)kAk(s)Γ(s+ 1), (3.12)

where Ak(s) is an entire function given by

Ak(s) = 1 +
k∑
j=1

T (s)−j
∞∑
n=j

T (−n)(µn,j − µn,j−1)
φn(s)

n!
,

with φn(s) as in the statement of Theorem 2.2.1:

φn(s) =


∏n−1

j=1 (s+ j) n > 1

1 n ≤ 1.

Furthermore, Ak(s) = 0 for s = −1, . . . ,−k, so that G∗k(s) is analytically continuable

everywhere, except possibly at the negative integers less than −k. Thus, the funda-

mental strip of G∗k(s) contains the strip <(s) ∈ (−k − 1,∞).

3.1 Further properties of Ak(s)

Here we prove some technical lemmas about Ak(s) that will play a role in the

inversion of the Mellin transform. For convenience, we write Xk(s) = Ak(s)Γ(s+ 1).

We will prove that Xk(s) converges as k → ∞ to a function X(s) = A(s)Γ(s + 1)

pointwise and uniformly on compact sets (so that X(s) is entire). Then we will show

that Xk(s) inherits the exponential decay of Γ(s+ 1) along vertical lines.

3.1.1 Pointwise convergence of Xk(s) and related series

In the next lemma, we prove pointwise convergence of a class of series related

to Ak(s). Combining this with the upper bound (2.12) will give us a pointwise
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convergence result for Ak(s). In fact, the convergence will turn out to be uniform for

s in any compact set, which implies that Ak(s) converges to a function A(s) which is

entire.

Lemma 3 (Pointwise convergence of a class of series) Let

Uk(s) =
k∑

m=0

T (s)−m
∞∑

n′=m

e−Θ(n′)ηn′,m
Γ(n′ + s)

Γ(n′ + 1)
, (3.13)

for any ηn′,m which satisfies

• Superexponential decay for n′ ≤ Cm: for any C > 0, there exists some function

g(m) ≥ 0 satisfying g(m) � m such that, if n′ ≤ Cm and m is sufficiently

large, then

|ηn′,m| ≤ e−g(m).

• Polynomial uniform upper bound: |ηn′,m| ≤ c1n
′c2 for some constants c1, c2 > 0

and all n′,m.

Let U(s) = U∞(s). Then U(s) is absolutely convergent for any fixed s = ρ + it ∈ C

for which |Uk(s)| <∞ for k large enough.

Proof Define

bm(s) = T (s)−m
∞∑

n′=m

e−Θ(n′)ηn′,m
Γ(n′ + s)

Γ(n′ + 1)
.

I.e., bm(s) is the mth term of the series defining U(s). The plan is to show that

|bm(s)| is upper bounded by the tail of a convergent geometric series. Intuitively, for

m = Θ(n′), the terms of the sum are small because ηn′,m is. For larger n′, the same

is true as a result of the smallness of e−Θ(n′). More precisely, we have the following,

for some c > 1 which we will choose later:

|bm(s)| ≤ |T (s)|−m
cm∑
n′=m

e−Θ(n′)|ηn′,m|
∣∣∣∣Γ(n′ + s)

Γ(n′ + 1)

∣∣∣∣ (3.14)

+ |T (s)|−m
∞∑

n′=cm+1

e−Θ(n′)|ηn′,m|
∣∣∣∣Γ(n′ + s)

Γ(n′ + 1)

∣∣∣∣ . (3.15)
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Since s is fixed,
∣∣∣Γ(n′+s)

Γ(n′+1)

∣∣∣ ∼ n′ρ as n′ →∞ (which is the case when m→∞ [23]).

Upper bounding the first sum: Since c > 1, n′ ≤ cm implies m ≥ Cn′, with

0 < C < 1, so that we can apply the superexponential decay of |ηn′,m|, which yields

the following upper bound for the first sum:

|T (s)|−me−Θ(m)e−g(m)Θ(mρ+1).

Since g(m)� m, provided m is sufficiently large, this can be upper bounded by e−c∗m

for any c∗ > 0.

Upper bounding the second sum: For the second sum (3.15), by the uniform

upper bound on |ηn′,m|, we can upper bound

e−Θ(n′)

∣∣∣∣ηn′,mΓ(n′ + s)

Γ(n′ + 1)

∣∣∣∣
by e−Θ(n′)n′Θ(1) = e−Θ(n′). Then the sum is upper bounded by e−cΘ(m), which gives a

bound of

e−m log |T (s)|−cΘ(m)

for (3.15), where the Θ(·) hides constants depending only on the uniform bound on

|ηn′,m| and <(s). Since |T (s)| is fixed, so long as c is sufficiently large (dependent only

on <(s)), this is exponentially decaying to 0. Thus, |bm(s)| can be bounded by the

mth tail of a convergent geometric series, so that it is at least exponentially decaying

in m, which implies absolute convergence of |U(s)| by the ratio test.

In fact, for any compact domain Ω ⊂ C, the convergence is uniform for s ∈ Ω

(this is a trivial modification of the above proof). We also have the following classical

fact about uniform convergence of analytic functions [24]:

Theorem 3.1.1 (Uniform convergence of analytic functions)

Let S be an open subset of C, and let {fn}∞n=1 be a sequence of functions from S → C.

If there is a function f : S → C such that, for each compact subset D ⊆ S, {fn}

converges uniformly for s ∈ D to f , then f is analytic on S.
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Applying Theorem 3.1.1 and Lemma 3 to Ak(s)Γ(s + 1) (justified by the super-

exponential decay property of µm,j when j = Θ(m), the upper bound µm,j ≤ m for

all m, and the fact that Ak(s)Γ(s + 1) is analytic everywhere except possibly at the

integers less than −k), we have the following corollary.

Corollary 1 (Convergence of Ak(s)Γ(s+ 1)) Recall that Xk(s) = Ak(s)Γ(s + 1).

Then the sequence {Xk} converges pointwise to an entire function X(s), uniformly

on any compact set. Moreover, for any s ∈ C,

|Xk(s)| ≤ |Γ(s+ 1)|+
∞∑
m=1

|T (s)|−m
∞∑
n=m

T (−n)|ηn,m|
∣∣∣∣Γ(n+ s)

Γ(n+ 1)

∣∣∣∣ .
3.1.2 Decay of Xk(s) along vertical lines

In this section, we analyze the decay of Xk(s) = Ak(s)Γ(s+ 1) along vertical lines

(that is, for s = ρ + it, where ρ is fixed and |t| → ∞). This is a key ingredient in

the justification of the application of the saddle point method to the inverse Mellin

integral.

It turns out that the decay is exponential. We will show this by proving a more

general lemma, from which the exponential decay of Xk(s) follows as a special case.

Lemma 4 (Decay of Uk(s), Xk(s) along vertical lines) Let Uk(s) be as in

Lemma 3, with an additional condition on ηn′,m: for any n′ and m with m ≥ n′, we

stipulate that

ηn′,m = 0, m ≥ n′. (3.16)

Then for any ρ ∈ R, there exist constants γ, r > 0 such that, for s = ρ + it with |t|

sufficiently large, and for any k,

|Uk(s)| ≤ e−γ|t|
r

.

The same holds for U(s) in place of Uk(s).
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Proof We first recall a standard fact about the Γ function: there exists some positive

constant C such that, as z = ρ + it → ∞ in a cone |arg(z)| ≤ π − ε, for any fixed

ε > 0,

|Γ(ρ+ it)| ≤ C|t|ρ−1/2e−π|t|/2. (3.17)

We start by upper bounding (3.13) via the triangle inequality. Then we upper

bound |T (s)|−m: noting that, for any s = ρ+ it, T (s) 6= 0 and∣∣∣∣T (s+ i
2π

log(p/q)

)∣∣∣∣ = |T (s)|,

there exists some L(ρ) such that

|T (s)|−m ≤ |L(ρ)|−m.

The formula (3.17) immediately gives an exponentially decaying upper bound on

Γ(s+ 1) which holds for sufficiently large |t|.

In order to bound, for each m, the n′ sum, we split it into two pieces: an initial

part, to be bounded using (3.17), and a tail part, which we bound using the expo-

nential decay of e−Θ(n′)ηn′,m. More specifically, provided m ≤ d
√
|t|e, we split the n′

sum as follows:

∞∑
n′=m

e−Θ(n′)ηn′,m
Γ(n′ + s)

Γ(n′ + 1)
=

d
√
|t|e∑

n′=m

e−Θ(n′)ηn′,m
Γ(n′ + s)

Γ(n′ + 1)
(3.18)

+
∞∑

n′=d
√
|t|e+1

e−Θ(n′)ηn′,m
Γ(n′ + s)

Γ(n′ + 1)
. (3.19)

Bounding the initial sum: To upper bound the initial sum of (3.18), we apply

(3.17), which gives us an upper bound of

C|t|d
√
|t|e+ρ−1/2e−π|t|/2

d
√
|t|e∑

n′=m

e−Θ(n′)|ηn′,m|
Γ(n′ + 1)

.

Since |ηn′,m| ≤ c1n
′c2 , we have that

d
√
|t|e∑

n′=m

e−Θ(n′)|ηn′,m|
Γ(n′ + 1)

≤
∞∑
n′=0

e−Θ(n′)

n′!
= Θ(1).
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Furthermore,

|t|d
√
|t|e = ed

√
|t|e log |t| = eo(|t|),

so that, clearly, for sufficiently large |t|, the initial sum can be upper bounded by

some e−γ1|t| whenever m ≤ d
√
|t|e. For larger m, the initial sum is 0, by the property

(3.16) of ηn′,m.

Bounding the tail sum: To upper bound the tail sum of (3.18), we note that

e−Θ(n′)|ηn′,m| can be upper bounded by e−g(n
′), for some g(n′) which is monotone

increasing and which satisfies g(n′) = Ω(n′). Then

e−g(n
′)/2 ≤ e−g(d

√
|t|e+1)/2,

by the fact that e−g(n
′) is monotone decreasing with respect to n′. Furthermore,

|Γ(n′ + s)| ≤ |Γ(n′ + ρ)|,

noting that n′ is larger than −ρ provided that |t| is sufficiently large, so that |Γ(n′ +

ρ)| <∞. Thus, we can upper bound the tail sum of (3.18) by

e−g(d
√
|t|e+1)/2 ·

∞∑
n′=d
√
|t|e+1

e−g(n
′)/2|ηn′,m|

∣∣∣∣Γ(n′ + ρ)

Γ(n′ + 1)

∣∣∣∣ .
Collecting the contribution of the tail sum over all m gives and upper bound of

e−g(d
√
|t|e+1)/2

∞∑
m=0

|T (s)|−m
∞∑

n′=d
√
|t|e+1

e−g(n
′)/2|ηn′,m|

∣∣∣∣Γ(n′ + ρ)

Γ(n′ + 1)

∣∣∣∣ .
As noted earlier, we can upper bound |T (s)|−m by |L(ρ)|−m. Furthermore, since

ηn′,m = 0 when m ≥ n′, we can replace the lower index of the n′ sum by m to get an

upper bound, yielding
∞∑
m=0

|L(ρ)|−m
∞∑

n′=m

e−g(n
′)/2|ηn′,m|

∣∣∣∣Γ(n′ + ρ)

Γ(n′ + 1)

∣∣∣∣ ,
and by Lemma 3, this is less than ∞, so O(1) with respect to |t|. Thus, the total

contribution of the tail sum is at most

O(e−g(d
√
|t|e+1)/2).
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As an immediate consequence (in particular because µm,j = 0 for j ≥ m), we see that

there is some r > 0 for which

|Xk(s)| ≤ e−γ|t|
r

(3.20)

as |t| → ∞ with s = ρ+ it.

3.2 Inverting the Mellin transform

To extract asymptotics for z → ∞ of G̃k(z), we next evaluate the inverse Mellin

transform of G∗k(s):

G̃k(z) =
1

2πi

∫ c+i∞

c−i∞
G∗k(s)z

−s ds =
1

2πi

∫ c+i∞

c−i∞
z−sΓ(s+ 1)Ak(s)T (s)k ds, (3.21)

where −k − 1 < c < ∞. When k is in the range specified by the theorem, the

asymptotics of this integral are dictated by the saddle points of the function s 7→

z−sT (s)k (note that both factors are tending to infinity as |z| = n → ∞). Thus, we

choose the line of integration to coincide with the real solution ρ = ρ(α) of the saddle

point equation
d

ds
[k log T (s)− s log z] = 0.

Solving this, we get s = ρ as defined in the statement of the theorem:

ρ(α) = − 1

log(p/q)
log

(
α log(1/q)− 1

1− α log(1/p)

)
.

Furthermore, since |T (ρ+ itj)| = |T (ρ)| for all j ∈ Z, we find that the integrand has

infinitely many regularly spaced saddle points ρj with real part equal to ρ, which will

turn out to lead to a fluctuating factor in G̃k(z). A fact about ρ should be noted here:

as we vary α from 1
log(1/q)

to 1
log(1/p)

, ρ goes from∞ to −∞, which corresponds to the

boundaries for the range we consider: at the left endpoint, the numerator inside the

logarithm is 0, while at the right, the denominator is.

Our evaluation of (3.21) then proceeds as follows: we split the contour into two

parts: the outer tails, which we will show to be negligible, and the central region.
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By the negligibility of the outer tails, we then need only consider the contribution of

the finitely many saddle points in the central region. Around each such saddle point,

we consider a small region in which the tails are negligible, and the central part is

approximable by a Gaussian integral. Summing the contributions gives the desired

result. We note that we follow the high-level plan of [12], but the bounding of the

tails and the evaluation of the central regions crucially relies on the information that

we have derived about the behavior of Ak(s)Γ(s+ 1).

In what follows, we define

Jk(n, s) = n−sT (s)kAk(s)Γ(s+ 1).

Furthermore, we define the outer tails, the inner tails, and the central parts as,

respectively,

CO = CO
n,k =

1

2π

∫
|t|≥
√

logn

Jk(n, ρ+ it) dt

CIO
j = CIO

n,k,j =
1

2π

∫
k−2/5≤|t−tj |≤ π

log(p/q)

Jk(n, ρ+ it) dt

CII
j = CII

n,k,j =
1

2π

∫
|t−tj |≤k−2/5

Jk(n, ρ+ it) dt.

We let j0 = Θ(
√

log n) denote the index of the furthest saddle point from the real

axis in the central region. Finally, we denote by CI
j the contribution of the region

around the jth saddle point, including its center and tails:

CI
j = CIO

j + CII
j .

The choice of Θ(k−2/5) for the central region lengths is a result of the following

heuristic: for the application of the saddle point method to evaluating the contri-

butions of the integral on the central regions, in writing n−sT (s)k in the form edk(t)

and applying the Taylor expansion of dk(t) around t = tj, we want to ensure that

the remainder term, which is O(k(t − tj)
3), is negligible, while the previous term,

d′′k(t)

2
(t− tj)2 = Θ(k(t− tj)2), is not. That is, if we assume that |t− tj| = O(k−δ), for

some δ, then it is natural to enforce the constraint that 1 − 2δ > 0 and 1 − 3δ < 0;

that is, δ ∈ (1/3, 1/2), and it is easy to check that δ = 2/5 satisfies these constraints.
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Outer tails

First, we bound the outer tails. To be precise, we have the following claim.

Lemma 5 (Bound on CO) There exist positive constants γ, r such that

CO = O(n−ρT (ρ)ke−γ(logn)r/2),

uniformly in n and k.

In the proof, we will need the following elementary lemma about T (s) near the saddle

points.

Lemma 6 For |t− tj| ≤ π
log(p/q)

,

|T (ρ+ it)| ≤ T (ρ)e−c0(t−tj)2 , (3.22)

where c0 is given by

c0 =
2p−ρq−ρ log(p/q)2

π2(T (ρ))2
. (3.23)

We omit the proof, which can be found in [12].

Proof [Proof of Lemma 5] To bound |n−sT (s)k|, we apply Lemma 6 to conclude

that

|n−sT (s)k| ≤ n−ρT (ρ)k.

Thus, we are left with the task of upper bounding∫
|t|≥
√

logn

|Xk(ρ+ it)| dt,

which we write as ∑
j:|tj |≥

√
logn

∫
|t−tj |≤ π

log(p/q)

|Xk(ρ+ it)| dt. (3.24)

Next, we apply (3.20) and the assumption that n → ∞ to conclude that (3.24)

can be upper bounded, for some positive constants γ and r, by

O

 ∑
j:|tj |≥

√
logn

e−γ|tj |
r

 = O(e−γ(logn)r/2).
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Thus, ∫
|t|≥
√

logn

Jk(n, ρ+ it) dt = O(n−ρT (ρ)ke−γ(logn)r/2).

This completes the proof of Lemma 5 that the outer tails are negligible.

Inner tails

Now we move to the central region. We first show that the tails in the central region

are negligible.

Lemma 7 (Inner tails are negligible) The total contribution of the inner tails is∑
|j|≤j0

CIO
j = O(n−ρT (ρ)kk−1/10e−c0k

1/5

),

which is negligible compared to G̃k(n).

First, we recall a simple fact [1] bounding incomplete Gaussian integrals, which will

be useful when we apply Lemma 6 to handle the contribution of T (ρ+ it).

x ≥ 0 =⇒
∫ ∞
x

e−ct
2

dt ≤ 1

2cx
e−cx

2

. (3.25)

Proof [Proof of Lemma 7]

We will start by bounding the contribution of CIO
j for an arbitrary j. Since

Xk(ρ + it) is uniformly bounded above by a constant whenever |t| ≤
√

log(n) as a

consequence of (3.20), we can pull it out of the integral defining CIO
j . Next, we use

the equality |n−(ρ+it)| = n−ρ and Lemma 6 to conclude that

CIO
j = O

(
n−ρT (ρ)k

∫
k−2/5≤|t−tj |≤ π

log(p/q)

e−c0(t−tj)2k dt

)
.

Applying the substitution t 7→ t−tj in the above integral and extending the domain of

integration from [k−2/5, π
log(p/q)

] to [k−2/5,∞), we are left with the incomplete Gaussian

integral ∫ ∞
k−2/5

e−c0kt
2

dt.

Applying the inequality (3.25) then yields

CIO
j = O(n−ρT (ρ)kk−3/5e−c0k

1/5

).
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Since this bound is uniform in j for |j| ≤ j0, the total contribution of the inner tails

is then given by

O(n−ρT (ρ)kk−1/10e−c0k
1/5

);

that is, we multiplied by k1/2. Now, the factor k−1/10e−c0k
1/5

= o(k−1/2), so that the

inner tails are negligible compared to the entire integral.

Central region

We now show that a quadratic approximation to the integrand holds in the central

region around each saddle point.

Lemma 8 (Central region) We have, for each |j| ≤ j0,

CII
j = Γ(ρ+ 1 + itj)Ak(ρ+ itj)e

−itj log(pkn) n−ρT (ρ)k√
2πκ∗(ρ)k

(
1 +O(k−1/2)

)
.

Proof Suppose that, for some j, |t− tj| ≤ k−2/5, and let s = ρ+ it and sj = ρ+ itj.

First, we develop the quadratic approximation to n−sT (s)k. Noting that

n−ρ−itT (ρ+ it)k = e(−ρ−it) logn+k log(T (ρ+it)),

we define

dk(t) = −(ρ+ it) log n+ k log T (ρ+ it).

We note that

n−ρ−it = n−ρ−i(t−tj)−itj = e−itj lognn−ρ−i(t−tj)

and

T (ρ+ it)k = T (ρ+ i(t− tj) + itj)
k

= (p−(ρ+i(t−tj))p−itj + q−(ρ+i(t−tj))q−itj)k

= p−itjk

(
p−(ρ+i(t−tj)) + q−(ρ+i(t−tj))

(
p

q

)itj)k

= p−itjkT (ρ+ i(t− tj))k,
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so that

dk(t) = −(ρ+ i(t− tj)) log n+ k log T (ρ+ i(t− tj))− itj log n(1 + α log p).

Then we have, by Taylor expanding dk(t) around tj,

dk(t) = dk(tj) +
d′′k(tj)

2
(t− tj)2 + r

(3)
k (tj).

where we note that d′k(tj) = 0, since tj is a saddle point of dk(t), and r
(3)
k (tj) is the

remainder corresponding to the Taylor polynomial of degree 2. Taking derivatives,

we have

d′′k(t) = k · T
′(ρ+ i(t− tj))2 − T (ρ+ i(t− tj))T ′′(ρ+ i(t− tj))

T (ρ+ i(t− tj))2
.

We also need d
(3)
k (t) for the analysis of the remainder term, and it can be similarly

explicitly computed, but it suffices to note that, since it is a function of t − tj,

evaluating it at t = tj gives a function which is a constant with respect to j and

t. Thus, considering the Lagrange form of r
(3)
k (tj) shows that it is O(k(t − tj)3) =

O(k5/5−6/5) = O(k−1/5), so the remainder is negligible in comparison to the first and

second terms. Evaluating dk(tj) and d′′k(tj) gives

dk(tj) = −ρ log n+ k log T (ρ)− itj log(pkn)

and

d′′k(tj) = k
T ′(ρ)2 − T (ρ)T ′′(ρ)

T (ρ)2
,

which we will denote by kκ∗(ρ).

We consider separately the cases where |j| → ∞ arbitrarily slowly and where |j|

remains bounded.

j tending to ∞: First, we need to show that Γ(s + 1)Ak(s) = Xk(s) ∼ Xk(sj) for

s in this range (recalling that tj = O(
√

log n) and |s − sj| = O(k−2/5)). Recall that

Xk(s) is a double sum of the form

k∑
m=0

T (s)−m
∑
n′≥m

T (−n′)(µn′,m − µn′,m−1)
Γ(n′ + s)

Γ(n′ + 1)
.
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By the analysis in Lemma 3, we have that the mth term of this sum is O(e−Θ(m)),

so that if m � log k = Θ(log log n), then these terms are negligible (i.e., they decay

superpolynomially in k).

It remains to handle the terms with m = O(log k). First, we note that, by the

Taylor expansion for T (s),

T (s)−m = T (sj)
−m(1 +O(T ′(sj)/T (sj)k

−2/5))−m

= T (sj)
−m(1 +O(k−2/5))−m

= T (sj)
−m(1 +O(k−2/5 log k))

∼ T (sj)
−m.

Now we must determine the contribution of the inner sum, indexed by n′. We split

it into initial and final parts:

n′′∑
n′=m

T (−n′)(µn′,m − µn′,m−1)
Γ(n′ + s)

Γ(n′ + 1)
+
∑
n′>n′′

T (−n′)(µn′,m − µn′,m−1)
Γ(n′ + s)

Γ(n′ + 1)
,

where n′′ is to be determined. We will handle the initial part using the Taylor expan-

sion for the Γ function, and the latter we show to be negligible thanks to the T (−n′)

factor.

For the initial sum, we recall that the first-order Taylor polynomial for Γ(n′ + s)

around n′ + sj is given by

Γ(n′ + s) = Γ(n′ + sj) + Γ′(n′ + sj)(s− sj). (3.26)

Now, recall that, for any x for which Γ(x) is analytic,

Γ′(x) = Γ(x)ψ(x),

where ψ(x) is the digamma function (see [23]). Continuing the derivation in (3.26),

Γ(n′ + s) = Γ(n′ + sj)(1 + ψ(n′ + sj)(s− sj)),

and the second term in parentheses is o(1) if ψ(n′ + sj) = o(k2/5). We have that, as

x → ∞ with x bounded away from the negative real axis, ψ(x) ∼ log x, so that it

suffices to note that (since sj = O(
√

log n))

n′ = o(ek
2/5

) =⇒ |n′ + sj| = o(ek
2/5

).
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Thus, we choose, say, n′′ = ek
1/5

to split the sum, and for the initial sum, we have

Γ(n′ + s) = Γ(n′ + sj)(1 +O(k−1/5)).

Because of the presence of T (−n), the final sum is O(e−Θ(ek
1/5

)). Putting all of this

together, we get that

Xk(s) ∼ Xk(sj),

as claimed.

Then we have

CII
j =

1

2πi

∫
|t−tj |≤k−2/5

Xk(ρ+ it)n−ρ−itT (ρ+ it)k dt

= (1 + o(1))Xk(ρ+ itj)
1

2πi

∫
|t−tj |≤k−2/5

edk(tj)+
d′′k (tj)

2
(t−tj)2+O(k−1/5) dt,

and invoking the saddle point method on the remaining integral gives a contribution

of

CII
j = e−itj log(pkn)Xk(ρ+ itj)

n−ρT (ρ)k√
2πkκ∗(ρ)

(
1 +O(k−1/2)

)
(3.27)

for j tending to ∞ with j ≤ j0 = O(
√

log n).

|j| bounded: Meanwhile, for |j| bounded above by any fixed C, we have that Xk(s) ∼

Xk(sj), by continuity. Invoking the saddle point method again on this integral gives

the same contribution as (3.27).

Collecting estimates

To complete the computation, we add all of the contributions of the saddle points:

G̃k(n) =
∑
|j|≤j0

CI
j +O(n−ρT (ρ)ke−

√
logn)

=
∑
|j|≤j0

Γ(ρ+ 1 + itj)Ak(ρ+ itj)e
−itj log(pkn) n−ρT (ρ)k√

2πκ∗(ρ)k

(
1 +O(k−1/2)

)
+O(n−ρT (ρ)ke−γ

√
logn)

= Hk(ρ, logp/q(p
kn))

n−ρT (ρ)k√
2πκ∗(ρn,k)k

(
1 +O(k−1/2)

)
,
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where Hk(ρ, x) is given by

Hk(ρ, x) =
∑
j∈Z

Ak(ρ+ itj)Γ(ρ+ 1 + itj)e
−2jπix.

Note that we extended the limits of the j sum to ±∞ by virtue of the exponential

decay of Xk(s) on vertical lines.

The dependence of Hk(ρ, x) on k must now be analyzed. This is the content of

the following claim.

Lemma 9 (Convergence of Hk(ρ, x)) The limit

lim
k→∞

Hk(ρ, x)

exists and is equal to H(ρ, x). Furthermore, the convergence is uniform for (ρ, x) in

any compact set.

Proof We can write

lim
k→∞

Hk(ρ, x) = lim
k→∞

lim
j′→∞

j′∑
j=−j′

Ak(ρ+ itj)Γ(ρ+ 1 + itj)e
−2πjix,

and our task is to show that the limits exist and can be interchanged. It suffices, by

the dominated convergence theorem (which holds when the functions to be dominated

take values in a Banach space), to show that Ak(s) converges pointwise for all s, and

then that the sum ∑
j∈Z

A(sj)Γ(sj + 1)e−2πijx (3.28)

converges absolutely for all ρ, x. Pointwise convergence of Ak(s) was already estab-

lished in Corollary 1. The absolute convergence of (3.28) is a simple consequence of

(3.20) and the ratio test. Note that, implicitly, we’ve used∑
j∈Z

|A(sj)Γ(sj + 1)|

as our bounding function.
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3.3 De-Poissonization of G̃k(z)

To complete the derivation, we must recover asymptotics of µn,k from G̃k(z). For

this, we apply Theorem 1 of [25]. The inner condition follows immediately from

Lemma 1. The outer condition we capture in the following claim.

Lemma 10 Let θ ∈ (0, π/2). Then there exist some φ < 1 and C > 0 such that, for

z outside C(θ) and any k ≥ 0,

|G̃k(z)ez| ≤ Ceφ|z|.

Proof We start by recalling the uniform upper bound on |G̃k(z)|: for any k ≥ 0 and

z ∈ C,

|G̃k(z)| ≤ |z|e|z|−<(z).

This implies that, for any fixed R > 0, we can choose a C > 0 such that the claimed

inequality holds whenever |z| ≤ R, for every k ≥ 0. It thus remains to check that it

holds for |z| > R, z /∈ C(θ). This we do by induction on k.

Base case

For k = 0, ezG̃0(z) = z, and, for any positive φ, an appropriate R can be chosen such

that the claimed inequality holds for |z| > R, z /∈ C(θ). More specifically, given φ, we

choose R large enough so that

|z| ≤ eφ|z|

whenever |z| > R. Next, we choose C > 1 and such that |z|e|z|−<(z) ≤ Ceφ|z| for

|z| ≤ R. This implies that |ezG̃0(z)| ≤ Ceφ|z| for any |z|, as required.

Inductive step

Now, assuming that the claimed inequality is true for 0 ≤ j < k, we demonstrate

that it holds for k. In fact, since the recurrence for G̃k(z) can be put in the form

G̃k(z) = γ1(z)G̃k(pz) + γ2(z)G̃k(qz) + t(z),

with

γ1(z) = e−qz, γ2(z) = e−pz, t(z) = G̃k−1(pz)(1− e−qz) + G̃k−1(qz)(1− e−pz),
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it is sufficient to check the outer conditions required by Theorem 10 of [25]: in par-

ticular, we need to show that, for |z| sufficiently large and some φ < 1,

|γ1(z)|eq<(z) ≤ 1

3
eφq|z|, |γ2(z)|ep<(z) ≤ 1

3
eφp|z|, |t(z)|e<(z) ≤ 1

3
eφ|z|. (3.29)

The first two inequalities easily hold: for c ∈ {p, q},

|e−cz|ec<(z) = e−c<(z)+c<(z) = 1,

and the claimed inequalities hold for any positive φ and sufficiently large z (in par-

ticular, any |z| ≥ log 3
qφ

suffices).

For the third inequality, we apply the induction hypothesis:

|t(z)|e<(z) ≤ Ceφp|z||eqz − 1|+ Ceφq|z||epz − 1|.

Choosing φ = cos(θ) + ε, for any positive constant ε, we have, for any positive c,

|ecz| = ec<(z) = ec|z| cos(arg(z)) ≤ ec|z|(φ−ε),

since z /∈ C(θ). This implies that

|t(z)|e<(z) ≤ C
[
eφp|z|+φq|z|−q|z|ε + eφq|z|+φp|z|−p|z|ε + eφp|z| + eφq|z|

]
= Ce(φ−qε)|z|(1 + o(1)),

so that, for sufficiently large |z| (depending only on φ, p),

|t(z)|e<(z) ≤ 1

3
eφ|z|,

which completes the proof.

3.4 Proof of (2.12)

We now aim to prove (2.12) of Theorem 2.2.1. The natural way to do this is

by induction on m and using the recurrence for µm,j, but the inductive hypothesis

cannot then be applied for all h < m: there appear terms of the form µh,j−1 in the

recurrence, and it is sometimes the case that

Ch > (j − 1),
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which happens precisely when h > m − 1/C. Thus, we must first prove a similar

lemma which bounds µm,j whenever m− j < `, for any fixed ` ≥ 0.

Lemma 11 For any C > 1, there exist c1, c2 > 0 such that, for n large enough,

µn,m ≤ c1n!e−c2m
2

whenever m ≥ n− C.

Proof This is by induction on n.

Base case

For the base case, we show that, for any M ≥ 0, we can find c1 and c2 such that the

claimed inequality is satisfied whenever n ≤ M . Given any M ≥ 0 and c2 > 0, we

have, for n ≤M ,

µn,m ≤M,

and, provided that we take

c1 ≥Mec2M
2

,

this implies that

µn,m ≤ c1n!e−c2m
2

,

for all n,m ≤M .

Inductive step

For the inductive step, we assume that, for appropriately chosen c1, c2, the claimed

inequality holds for µn′,m′ for any n′ < n with n > M , and for any m′. In what

follows, we will derive a condition on c2 which must (and can) be satisfied in order for

the induction to work. Now, by the recurrence for µn,m and the fact that m ≥ n−C,

(1− T (−n))µn,m =
n−1∑

j=n−C

(
n

j

)
pjqn−jµj,m−1,

and, since j ≤ n− 1, we have

m− 1 ≥ (n− 1)− C ≥ j − C,
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so that the inductive hypothesis can be applied to each term in the sum:

(1− T (−n))µn,m ≤
n−1∑

j=n−C

(
n

j

)
pn · c1j!e

−c2(m−1)2 = c1n!pn
n−1∑

j=n−C

e−c2(m−1)2

(n− j)!

We can further upper bound this by

c1Cn!pne−c2(m−1)2 ,

and our goal is now to choose c2 such that

Cpne2c2m−c2/(1− T (−n)) ≤ 1− ε,

for some positive constant ε. We need

ec2(2m−1) ≤ (1− ε)(1− T (−n))

Cpn
.

Taking logarithms and dividing both sides by 2m− 1, we must have, equivalently,

c2 ≤
log(1− ε)− logC + n log(1/p) + log(1− T (−n))

2m− 1
.

The required upper bound is lower bounded by

log(1− ε)− logC + n log(1/p) + log(1− T (−n))

2n− 1
,

which tends to log(1/p)/2 as n→∞. Thus, provided n is sufficiently large (depending

only on C and ε; this can be enforced by choosing a sufficiently large M), the required

upper bound is clearly positive, so that a c2 which satisfies it can be chosen. Then c1

can be chosen as dictated by the base case, and we have

µn,m ≤ c1n!e−c2m
2

,

as desired.

We can now prove (2.12).

Proof [Proof of (2.12)] Throughout, we suppress floor and ceiling functions, which

are insignificant to the analysis.
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The proof is again by induction on n.

Base case

By the same argument as in the proof of Lemma 11, for any M and c2, c1 can be

chosen appropriately so as to ensure that the claimed inequality holds for n,m ≤M .

Inductive step

We now proceed with the induction. Again using the recurrence and the fact that

m ≥ Cn, we have

(1− T (−n))µn,m ≤
n−1∑
j=Cn

(
n

j

)
pn(µj,m−1 + µn−j,m−1).

Now, we only know that m−1 ≥ Cn−1 = C(n−1/C). That is, for some of the terms

in the sum, we cannot apply the induction hypothesis. To circumvent this problem,

we split the sum into two parts, one of which we handle by the induction hypothesis,

and the other by Lemma 11. That is, we will upper bound by

n−1/C∑
j=Cn

(
n

j

)
pn(µj,m−1 + µn−j,m−1) +

n−1∑
j=n−1/C+1

(
n

j

)
pn(µj,m−1 + µn−j,m−1).

We now upper bound the first sum: applying the induction hypothesis, we can upper

bound it by

n!pnc1e
−c2(m−1)2

n−1/C∑
j=Cn

[
1

(n− j)!
+

1

j!

]
≤ c1n!pne−c2(m−1)2

·
[

1

(1/C)!
+

1

(Cn)!

]
n(1− C).

We thus require that

Dnpnec2(2m−1)/(1− T (−n)) ≤ 1− ε,

where D is some positive constant, and ε is any positive constant less than 1. Just as

in the proof of Lemma 11, we can choose c2 small enough so that this holds for any

n sufficiently large.

The second sum is handled analogously, and we choose the minimum of the two

resulting constants for c2. We then choose c1 sufficiently large, and this completes

the proof.
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4 ANALYSIS OF THE VARIANCE

Here we prove (2.14) of Theorem 2.2.2. The proof of the superexponentially decaying

bound (2.17) can be found in Section 4.3. The derivation of asymptotics for the

variance runs along lines very similar to that of the expected value, and the technical

machinery developed in the proof of Theorem 2.2.1 is applicable here. The main

difference lies in the de-Poissonization step, where we use Theorem 6 of [25]. The

resulting expansion for Vn,k involves nG̃′k(n)2, which we must show to be negligible in

order to get the claimed result. This we can do via the Cauchy integral formula for

derivatives and our knowledge of the asymptotics of G̃k(n).

The Poisson variance is given by Ṽk(z) = C̃k(z) + G̃k(z)− (G̃k(z))2, where C̃k(z)

is the Poisson transform of cn,k, the second factorial moment of Bn,k. Our first task is

to derive functional equations for C̃k(z) and Ṽk(z). We recall the recurrence for cn,k,

which holds for n ≥ 2 and k ≥ 1:

cn,k = T (−n)cn,k +
n−1∑
j=1

(
n

j

)
pjqn−j(cj,k−1 + cn−j,k−1 + 2µj,k−1µn−j,k−1),

with cn,k = 0 whenever n < 2, k < 1, or k ≥ n. Introducing the exponential generating

function Ck(z) for the sequence cn,k, we get a functional equation:

Ck(z) =Ck−1(pz)eqz + Ck−1(qz)epz + 2Gk−1(pz)Gk−1(qz)

+ [Ck(pz)− Ck−1(pz)] + [Ck(qz)− Ck−1(qz)],

valid for k ≥ 1, with initial condition C0(z) = 0.

Multiplying by e−z on both sides to form the Poisson transform C̃k(z) of the

sequence cn,k and abbreviating using the linear operators L[·] and T [·], we get the

following functional equation:

C̃k(z) = L[C̃]k−1(z) + T [C̃]k(z) + 2G̃k−1(pz)G̃k−1(qz),
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with C̃0(z) = 0.

Now we derive a functional equation for Ṽk(z). Applying the equations for G̃k(z)

and C̃k(z) to the definition of Ṽk(z), we have

Ṽk(z) =L[C̃]k−1(z) + T [C̃]k(z) + 2G̃k−1(pz)G̃k−1(qz)

+ L[G̃]k−1(z) + T [G̃]k(z)− (L[G̃]k−1(z) + T [G̃]k(z))2.

To handle the squared term in the previous equation, we need the following identity

on L[·]:

(L[f ]k(z))2 = L[f 2]k(z) + 2fk(pz)fk(qz).

Now, expanding the squared term, we get

(L[G̃]k−1(z) + T [G̃]k(z))2 = L[G̃]k−1(z)2 + 2L[G̃]k−1(z)T [G̃]k(z) + T [G̃]k(z)2

= L[G̃2]k−1(z) + 2G̃k−1(pz)G̃k−1(qz)

+ 2L[G̃]k−1(z)T [G̃]k(z) + T [G̃]k(z)2.

Substituting this last expression into the derivation of Ṽk(z) above gives, after noting

the cancellation of terms and applying linearity of L[·] and the definition of Ṽk−1(z),

Ṽk(z) = L[Ṽ ]k−1(z) + T [C̃ + G̃]k(z)− T [G]k(z)2 − 2L[G̃]k−1(z)T [G̃]k(z).

Adding and subtracting L[G̃]k−1(z)2 and applying the functional equation for G̃k(z),

this reduces to

Ṽk(z) = L[Ṽ ]k−1(z) + T [C̃ + G̃]k(x) + L[G̃]k−1(z)2 − G̃k(z)2 = L[Ṽ ]k−1(z) + W̃k,V (z),

where W̃k,V (z) is given by

W̃k,V (z) = T [C̃ + G̃]k(z) + L[G̃]k−1(z)2 − G̃k(z)2. (4.1)

The above recurrence holds for k ≥ 1. To derive the initial condition, we write

Ṽ0(z) = C̃0(z) + G̃0(z)− (G̃0(z))2 = ze−z − z2e−2z.
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Now, to solve this equation, the plan is again to apply the Mellin transform and

invert using the saddle point method. We have, by the same derivation as in the

expected value case, V ∗k (s) = T (s)kΓ(s+ 1)Bk(s), where we define

Bk(s) = 1− (s+ 1)2−(s+2) +
k∑
j=1

T (s)−j
W ∗
j,V (s)

Γ(s+ 1)
,

with W ∗
k,V (s), the Mellin transform of W̃k,V (z), given by

W ∗
j,V (s) =

∑
n′≥j

Γ(s+ n′)

n′!
[(cn′,j − cn′,j−1 + µn′,j − µn′,j−1)T (−n′) (4.2)

+T (s)2−(s+n′)
n′∑
m=0

µm,j−1µn′−m,j−1

+2
n′∑
m=0

µm,j−1µn′−m,j−1p
mqn

′−m

−2−(n′+s)
n′∑
m=0

µm,jµn′−m,j

]
.

We have the following information about the singularities and zeros of V ∗k (s).

Theorem 4.0.1 (Special points of V ∗k (s)) The function Bk(s) is entire, with zeros

at s = −1, . . . ,−k. The function V ∗k (s) is analytic except possibly at the integers less

than −k, so that the fundamental strip of Ṽk(z) contains Ik = {s ∈ C : <(s) ∈

(−k − 1,∞)}.

This is analogous to Theorem 3.0.2, and the proof is along similar lines. In particular,

we can demonstrate the claim about the fundamental strip corresponding to Ṽk(z) by

estimates of Ṽk(z) at z → 0 and z →∞, and the formula for V ∗k (s) throughout Ik is

demonstrated, as in the expected value case, by an analytic continuation argument.

We first need some bounds on C̃k(z) and Ṽk(z) as z → ∞ inside a cone around

the positive real axis. The exponentially decaying upper bound on |Ṽk(z)| as z →∞

is analogous to Lemma 1, part (ii).

Lemma 12 (Bounds on C̃k(z) and Ṽk(z) as z →∞) Let θ be as in Lemma 1.

Then
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(i) For every ε > 0, there are some R > 0 and C = C(R) > 0 such that, for |z| > R

with z ∈ C(θ),

|C̃k(z)| ≤ C|z|2+ε,

for any k ≥ 0.

(ii) For any fixed C > 0, there exists a constant C ′ > 0 such that, for all j ≤ C and

z ∈ C(θ),

|Ṽj(z)| ≤ C ′|z|3e−qC |z| cos(θ).

Proof Proof of (i)

We will prove a slightly stronger claim, because it will help in the implementation of

the induction. In particular, we claim that the inequality holds for any z in the cone,

regardless of magnitude.

To establish the claim for z in a compact region of the cone including the origin,

we prove the following: the upper bound (uniform in k) of

|C̃k(z)| ≤ |z|2e|z|−<(z),

which holds for any z ∈ C, shows that there is some positive constant C for which

the inequality holds for any k whenever |z| ≤ R. The proof is as follows:

|e−z|

∣∣∣∣∣∑
m≥0

cm,k
zm

m!

∣∣∣∣∣ ≤ e−|z| cos(arg(z))
∑
m≥0

|cm,k|
|z|m

m!

≤ e−|z| cos(arg(z))
∑
m≥0

m(m− 1)
|z|m

m!

≤ |z|2e|z|−|z| cos(arg(z)),

where we’ve used the fact that cm,k ≤ m(m− 1), itself a consequence of the bound

Bm,k ≤ m,

which holds for all m. The remaining task is to demonstrate the polynomial upper

bound for |z| > R.
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Base case

For the base case, C0(z) = 0, and the inequality is trivially true throughout the cone.

Inductive step

We now assume that the claimed inequality holds for k − 1, and we demonstrate it

for k. We have, by the recurrence for C̃k(z) and the inductive hypothesis,

|C̃k(z)| ≤(|e−qz + |1− e−qz|)Cp2+ε|z|2+ε

+ (|e−pz|+ |1− e−pz|)Cq2+ε|z|2+ε + C2p
2+ε|z|2+ε,

where C2 > 0 and we’ve used the fact that we can make R large enough so that

|G̃k−1(z)| ≤ C3|z|1+ε/2,

for some constant C3, by Lemma 1.

Provided that we choose C large enough, we have C2p
2+ε ≤ ε′C, for any positive

ε′. The rest of the proof is as in the expected value case, so we omit it.

Proof of (ii)

This follows from an easy modification of the proof of Lemma 1, part (ii), so we only

sketch the proof.

We note that, as a result of part (i), which gives a polynomial upper bound (in

|z|) on the growth of |C̃`(z)| for all ` ≤ C, and Lemma 1, part (ii), we can write, for

some constants C ′, C ′′ > 0,

Ṽj(z) = L[Ṽ ]j−1(z) + C ′e−C
′′|z|,

and iterating the recurrence shows that Ṽj(z) is a sum of terms which are exponentially

decaying in |z|.

We now have enough to prove Theorem 4.0.1.

Proof [Proof of Theorem 4.0.1] Existence and entireness of Bk(s) follow easily from

Lemma 2: we simply note that the inequalities µm,j ≤ m for all m and cm,j ≤ m2 for

all m imply the necessary bound on the growth of the terms of the series.
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Now we estimate the growth of Ṽk(z) as z → 0 and z → ∞ in order to establish

the existence of the Mellin transform in a nonempty strip. Applying Lemma 12, part

(ii) gives a sufficient bound as z →∞. Next, recalling the definition of Ṽk(z) in terms

of C̃k(z) and G̃k(z), it is sufficient to determine the behavior of C̃k(z) as z → 0. By

the initial conditions, cn,k = 0 for k ≥ n, so that C̃k(z) = O(zk+1) as z → 0. This,

in turn, implies the same estimate for Ṽk(z), since G̃k(z) − (G̃k(z))2 = O(zk+1). We

have thus established the existence and analyticity of V ∗k (s), for any k ≥ 0, in the

strip Ik.

The rest of the proof is very similar to that in the expected value case, so we omit

it.

4.1 Mellin inversion

The inversion of the Mellin transform V ∗k (s) runs along lines very similar to those

in the expected value case. In fact, the saddle point computation used to recover

G̃k(z) generalizes in a straightforward manner to the variance case, provided that we

can show that Lemma 4 applies with Bk(s) in place of Ak(s). Finally, the application

of the dominated convergence theorem is justified if we can apply Lemma 3, with

U(s) in the lemma corresponding to the sum in the definition of Γ(s + 1)B(s). All

of this boils down to showing that each term inside the brackets in the definition of

W ∗
j,V (s) can be written as a product of a function which is bounded along vertical

lines, e−Ω(n′), and a number ηn′,j satisfying the conditions required by Lemma 3, with

ηn′,j = 0 when j ≥ n′. The uniform boundedness condition on |ηn′,j| is easily verified

using the fact that cn′,j ≤ n′2 and µn′,j ≤ n′ for all n′ and j, and factors of the form

ecs, for any constant c, are uniformly bounded on vertical lines:

(cn′,j − cn′,j−1 + µn′,j − µn′,j−1)T (−n) ≤ (n′2 + n′)e−Ω(n′)

2−n
′
n′∑
m=0

µm,j−1µn′−m,j−1 ≤ 2−n
′
(n′ + 1)n′2
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n′∑
m=0

µm,j−1µn′−m,j−1p
mqn

′−m ≤ (n′ + 1)n′2pn
′
.

Moreover, ηn′,j = 0 for j ≥ n′ because of the same property for cn′,j and µn′,j.

In order to verify the superexponential decay condition required of ηn′,j, we apply

(2.17) and the analogous bound for µn,k. By the same analysis as in the expected

value case, (2.17) then implies that

Ṽk(n) = M(ρ(α), logp/q(p
kn)) · n

−ρ(α)T (ρ(α))k√
2πκ∗(ρ(α))k

(1 +O(k−1/2)).

4.2 De-Poissonization for the variance

We now de-Poissonize using the following theorem from [25] (rephrased in our

notation and simplified):

Theorem 4.2.1 (De-Poissonization of variance) Suppose that there is some θ ∈

(0, π/2) such that the following conditions hold:

• There is some φ ∈ (0, 1) such that, for z outside the cone C(θ), ezG̃k(z) and

ez(Ṽk(z) + G̃k(z)2) are both O(eφ|z|).

• There is some β ≤ 1 such that, for z inside C(θ), G̃k(z) and Ṽk(z) are both

O(zβ).

Then

Vn,k = Ṽk(n)− n[G̃′k(n)]2 +O(max{nβ−1, n2β−2}).

Next we check that the hypotheses of this theorem are satisfied.

Conditions on G̃k(z)

The inner and outer conditions on G̃k(z) were already verified in the de-Poissonization

in the expected value case.

Outer condition on Ṽk(z) + G̃k(z)2

We now demonstrate that the outer condition holds for

Ṽk(z) + G̃k(z)2 = C̃k(z) + G̃k(z).
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For this, it is sufficient to show that the same outer condition holds for C̃k(z). We

prove it by induction on k.

Base case for outer condition on Ṽk(z) + G̃k(z)2

The base case, k = 0, is trivial, since C̃0(z) = 0.

Inductive step for outer condition on Ṽk(z) + G̃k(z)2

Now we assume that the claim holds for k − 1, and we prove it for k. A bound for

ezC̃j(z) which is uniform in j holds: in the proof of Lemma 12, we proved that, for

all j ≥ 0 and z ∈ C,

|C̃j(z)| ≤ |z|2e|z|−<(z),

which immediately implies that

|ezC̃j(z)| ≤ |z|2e|z|.

Thus, for a given R and φ ∈ (0, 1), there is some C > 0 such that, whenever |z| ≤ R,

for any j ≥ 0,

|ezC̃j(z)| ≤ Ceφ|z|.

Now we demonstrate that the same bound holds for |z| > R. Recall that φ in the

case of G̃k(z) is given by cos(θ) + ε, for any small enough fixed positive ε > 0. We

define φ̂ to be slightly smaller:

φ̂ = cos(θ) + ε/2,

and we note that the de-Poissonization result for G̃k(z) implies that there is some

R̂ > 0 such that, whenever z /∈ C(θ) and |z| > R̂, for any j ≥ 0,

|ezG̃j(z)| ≤ eφ̂|z|. (4.3)

We will use this fact in the induction step for Ck(z) as follows: we adopt the same

approach as in the expected value case, this time defining

γ1(z) = e−qz,

γ2(z) = e−pz,

t(z) = C̃k−1(pz)(1− e−qz) + C̃k−1(qz)(1− e−pz) + 2G̃k−1(pz)G̃k−1(qz).
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The conditions required of γ1(z) and γ2(z) were already verified, so we proceed to

show that

e<(z)|t(z)| ≤ 1

3
eφ|z|,

for |z| > R, for some R > 0 independent of k. We again choose φ = cos(θ) + ε, and

applying the induction hypothesis and inequality (4.3) gives

|ezt(z)| ≤ C
[
eφp|z||eqz − 1|+ eφq|z||epz − 1|+ C2e

φ̂|z|
]
.

The rest of the induction step goes exactly as in the expected value case, so we omit

it.

Inner condition on Ṽk(z)

As for the inner conditions, both follow from the asymptotic expansions for G̃k(z)

and Ṽk(z) derived by inverting their respective Mellin transforms. Both derivations

are readily extended to z →∞ inside the cone.

Since all conditions of the theorem are satisfied, the remaining task is to show that

n[G̃′k(n)]2 = o(Ṽk(n)). This we do using the Cauchy integral formula for derivatives,

followed by upper bounding of the resulting integral expression (the main task will

then be to choose an appropriate radius for the integration contour): for a circle C of

any radius R enclosing n,

G̃′k(n) =
1

2πi

∮
C

G̃k(ξ)

(ξ − n)2
dξ,

which implies

|G̃′k(n)| ≤ 2πR

2π

|G̃k(ξ∗)|
R2

≤ |G̃k(ξ∗)|/R,

where ξ∗ = argmaxx∈C|G̃k(x)|. Now, since G̃k(n) = O(nβ(α)/
√

log n), and ξ∗ is not

too different from n, we expect that G̃k(ξ∗) = O(nβ(α)/
√

log n) as well. Provided that

we can show this, if we choose

R = n∆/Ψ(n)

for some ∆ > 0 and slowly growing function Ψ(n) which we will determine later, our

bound becomes

nG̃′k(n)2 = O(n1+2β(α)−2∆Ψ(n)2/ log n),
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and we would like to enforce the conditions

1 + 2β(α)− 2∆ ≤ β(α)

and

∆ ≤ 1,

along with

Ψ(n)2/ log n = o(1/
√

log n)

and Ψ(n)
n→∞−−−→ ∞ (so that, for any ∆, R = o(n)). Choosing Ψ(n) to satisfy these

conditions is easy: we simply require that

Ψ(n)2 = o(
√

log n) =⇒ Ψ(n) = o((log n)1/4),

so that we can choose, say, Ψ(n) = log log n. It is easy to see that, for any α, there

exists some ∆ which satisfies both conditions simultaneously:

1 + 2β(α)− 2∆ ≤ β(α) ⇐⇒ 1 + β(α)

2
≤ ∆,

and
1 + β(α)

2
≤ 1 ⇐⇒ β(α) ≤ 1.

This last inequality is true for any α within the range under consideration. With

these choices,

nG̃′k(n)2 = o(nβ(α)/
√

log n),

so nG̃′k(n)2 = o(Ṽk(n)), provided that we can show that G̃k(ξ∗) = O(G̃k(n)). To do

this, the plan is to show that we can apply Theorem 2.2.1 to derive asymptotics for

G̃k(ξ∗). First, we verify that ξ∗ remains within a cone around the positive real axis.

Fixing some θ ∈ (0, π/2) for the angle made with respect to the positive real axis, let

A denote the point of the form n + it, for some t ∈ R+, which lies on the boundary

of the cone. Furthermore, let B denote the point on the boundary of the cone which

lies above the real axis and is nearest to n. Then we have

|A− n| = t,
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and
t

n
= tan(θ) =⇒ t = tan(θ)n = Θ(n).

Next, we note that the angle made between the line segment connecting n and B

and that connecting 0 and B must be π/2, and we denote by φ the angle between

the segments connecting 0 and n and n and B. We have, easily, φ = π/2− θ, and it

is trivial to see that the angle between the segments n to B and n to A is θ. Thus,

we have that the length of the segment connecting n and B (i.e., the radius of a ball

centered at n with maximum volume contained in the cone) is given by

cos(θ) =
|B − n|
|A− n|

=⇒ |B − n| = |A− n| cos(θ) = Θ(n) cos(θ) = Θ(n),

so that, since R = o(n), ξ∗ must be inside the cone. We then examine the relationship

between k and ξ∗. Since n = ξ∗(1 + o(1)),

k ∼ α log n = α log(ξ∗(1 + o(1))) = α log ξ∗ + o(1),

so that k ∼ α log ξ∗. Applying Theorem 2.2.1 then shows that G̃k(ξ∗) = O(G̃k(n)).

This completes the proof.

4.3 Proof of (2.17)

We start with the recurrence

cn,k(1− T (−n)) =
n−1∑
j=k

(
n

j

)
pjqn−j(cj,k−1 + cn−j,k−1 + 2µj,k−1µn−j,k−1)

≤
n−1∑
j=k

(
n

j

)
pjqn−j(cj,k−1 + cn−j,k−1)

+ n

n−1∑
j=k

(
n

j

)
pjqn−j(µj,k−1 + µn−j,k−1

=
n−1∑
j=k

(
n

j

)
cj,k−1(pjqn−j + pn−jqj) + nµn,k(1− T (−n)),

so that

cn,k ≤
2pn

∑n−1
j=k

(
n
j

)
cj,k−1

1− T (−n)
+ nµn,k. (4.4)
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When n ≥ 2, we can upper bound T (−n) by

T (−n) ≤ 2p−n ≤ 2p−2 ≤ 21−2 = 1/2,

so that
1

1− T (−n)
≤ 2.

First, we will need a simpler lemma.

Lemma 13 For all fixed ` ∈ Z≥0, there exist positive constants C1, C2 such that, for

all n and k ≥ n− `,

cn,k ≤ C1n!e−C2k2 .

To prove this, we need another bound on µn,k.

Lemma 14 There exist positive constants C∗1 , C
∗
2 such that, for all fixed ` ∈ Z≥0, all

n, and k ≥ n− `,

nµn,k ≤ C∗1n!e−C
∗
2k

2

.

Proof This is an easy consequence of (2.12).

Proof [Proof of Lemma 13] The proof is by induction on n.

Base case

By the initial conditions, cn,k ≤ n2 for any n, k. Thus, fixing some particular n∗ and

considering k < n∗, we can fix a sufficiently large C1 and a C2 > 0 for which the

claimed inequality holds for cn′,k, n
′ ≤ n∗.

Induction

Here we assume that the claim is true for n′ < n, with n ≥ n∗. We have

cn,k ≤ 4pn
n−1∑
j=k

n!

j!(n− j)!
C1j!e

−C2(k−1)2 + nµn,k (4.5)

≤ 4pn
n−1∑
j=k

n!

(n− j)!
C1e

−C2(k−1)2 + nµn,k. (4.6)
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We were able to apply the induction hypothesis because j−(k−1) ≤ (n−1)−(k−1) ≤

` for all j over which the sum is taken.

To handle nµn,k, we apply Lemma 14. Now,

−C2(k − 1)2 = −C2k
2 + 2C2k − C2,

so we require that
4pn

(n− k)!
e2C2k−C2 +

1

2
≤ 1.

It is easy to see that C2 can be chosen to satisfy this inequality for all n, k ≥ n− `:

eC2(2k−1) ≤ (n− k)!

8pn
⇐⇒ C2 ≤

n log 1
p
− log 8 + log((n− k)!)

2k − 1
. (4.7)

The first term of the numerator and the denominator are both Θ(n) as n→∞, while

the rest are bounded above and below by constants, so that, at least asymptotically

(i.e., provided we’ve chosen n∗ large enough), they are the only two that matter. It

is thus sufficient to have

C2 ≤
1

2
log(1/p) > 0.

Furthermore, if we choose C1 > 2C∗1 , we have the claimed inequality.

Now we begin the proof of (2.17) of Theorem 2.2.2.

Proof [Proof of (2.17) of Theorem 2.2.2] The proof is similar to that of the lemma.

It is by induction on n.

Base case

The base case is exactly as in the proof of Lemma 13.

Inductive step

We now assume that the claim is true for n′ < n, with n ≥ n∗ ≥ 2, with n∗ as in the

proof of Lemma 13. Let k ≥ Cn. Then, by the inequality (4.4),

cn,k ≤ 4pn
n−1∑
j=k

(
n

j

)
cj,k−1 + nµn,k.
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To upper bound the terms of the sum, we note that we can apply the inductive

hypothesis for any j such that k − 1 ≥ Cj. Since k ≥ Cn, this means that any j

satisfying j ≤ n− 1/C is amenable to this approach. This gives, for such j,

cj,k−1 ≤ C1j!e
−C2(k−1)2 .

For j ∈ {n − 1/C, . . . , n − 1}, we apply Lemma 13 to conclude that there exist C∗1

and C∗2 such that

cj,k−1 ≤ C∗1j!e
−C∗2 (k−1)2 .

Provided that we choose C1 ≥ C∗1 and C2 ≤ C∗2 , we can replace C∗1 and C∗2 by C1 and

C2 in the above, so that the first sum is upper bounded by

4pn
n−1∑
j=k

(
n

j

)
C1j!e

−C2(k−1)2 .

Next, to upper bound nµn,k, we appeal to the superexponentially decaying bound

(2.12), and the rest of the proof proceeds as in that of Lemma 13.
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5 PROOF OF THE NORMAL LIMITING DISTRIBUTION

To prove the normal limit law, we apply Lévy’s continuity theorem:

Theorem 5.0.1 (Lévy) Let Xn be a sequence of discrete random variables with

probability-generating functions Gn(u) = E[uXn ], mean µn, and variance σ2
n > 0.

If

lim
n→∞

eτµn/σnGn(eτ/σn) = eτ
2/2

for all τ = it and −∞ < t <∞ then

Xn − µn
σn

D−→ N (0, 1).

The goal, then, is to determine the behavior of Qn,k(u) for large n and u close to 1

(i.e., u = eτ/σn,k , where τ is any fixed imaginary number). To do this, we again use

the Poisson transform, defining

Qk(u, z) =
∑
m≥0

Qm,k(u)
zm

m!
, Q̃k(u, z) = e−zQk(u, z).

We then have the functional equation

Qj(u, x) = Qj−1(u, px)Qj−1(u, qx) + (Qj −Qj−1)(u, px) + (Qj −Qj−1)(u, qx),

with initial condition Q0(u, x) = ex − x(1− u).

Defining l̃k(u, z) = logQk(u, z) induces the functional equation (for j ≥ 1)

l̃j(u, x) = l̃j−1(u, px) + l̃j−1(u, qx) + h̃j(u, x), (5.1)

where

h̃j(u, x) = log

(
1 +

T [Q̃]j(u, x)

Q̃j−1(u, px)Q̃j−1(u, qx)

)
,

with initial condition l̃0(u, x) = x+log(1+(u−1)xe−x). Regarding well definedness of

l̃k(u, z), we must demonstrate that the logarithm which constitutes it is well defined
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for u in a bounded neighborhood of 1 and z in a small enough cone around the positive

real axis, for any k ≥ 0. It is sufficient to show that Qk(u, z) is bounded away from

0. This follows easily from the argument of Lemma 16 below (we note that, though

this is stated and proven later, there is no circular logic here, as the lemma’s proof

does not depend on the existence of l̃k(u, z)), which can be extended to require only

that w be close enough to 1 but fixed (since we assume that w − 1 → 0 arbitrarily

slowly).

Now, since we are going to take u
n→∞−−−→ 1, we Taylor expand l̃k(u, z) with respect

to u around 1, which gives

l̃k(u, z) = z + G̃k(z)(u− 1) +
Ṽk(z)− G̃k(z)

2
(u− 1)2 +

(u− 1)3

3!
R[l̃]k(u, z),

and the task now is to show that the last term is negligible with respect to the second

two. Setting u = eτ/σn,k with τ = it, with t ∈ R, we have

u− 1 =
τ

σn,k
+

τ 2

2σ2
n,k

+O(σ−3
n,k),

and after substituting this into the Taylor expansion for l̃k(u, z) and using the fact

that G̃k(z) = Θ(σ2
n,k) (valid for z → ∞ inside a cone around the positive real axis),

we get

l̃k(u, z) = z +
τ

σn,k
G̃k(z) +

τ 2

2σ2
n,k

Ṽk(z) +O(σ−1
n,k) +

τ 3

3!σ3
n,k

R[l̃]k(u, z). (5.2)

Since Vk(z) = Θ(σ2
n,k), the third term is Θ(1). Thus, the goal is to show that the last

term is o(1) (in fact, we prove that |R[l̃]k(u, z)| = O(nβ(α)) = O(σ2
n,k), so that the last

term is O(σ−1
n,k) = o(1)).

In order to do this, the plan is to apply an exact formula for the remainder of a

truncated Taylor series, derived via Cauchy’s integral formula.

Lemma 15 (Integral representation of Taylor remainder formula) Suppose

f(z) is a function which is analytic in some region Ω containing the point ξ, and let

j be some non-negative integer. Define fj(z) to be the Taylor polynomial of degree

j around ξ, and define (z − ξ)j+1Rξ,j(z) = f(z) − fj(z) to be the corresponding



62

remainder. Then, for any z inside the disc of convergence of the Taylor series of f

at ξ,

Rξ,j(z) =
1

2πi

∮
C

f(w)

(w − ξ)j+1(w − z)
dw,

where C is any circle inside Ω centered at ξ surrounding z.

Applying this to the Taylor series of l̃k(u, z) with j and ξ in the lemma set to 2 and

1, respectively, we get

1

3!
R[l̃]k(u, z) =

1

2πi

∮
C

l̃k(w, z)

(w − 1)3(w − u)
dw. (5.3)

Here, we choose C to be a circle centered around 1 and such that |w − 1| � |u− 1|,

so that, in particular, u remains inside the region enclosed by C. We will require

that |w − 1| tends to 0 sufficiently slowly. We next derive a useful representation for

l̃k(w, z) in order to bound this integral. Iterating the functional equation (5.1), we

get

l̃k(w, z) =
k∑
j=0

(
k

j

)
(pjqk−jz + log(1 + (w − 1)pjqk−jze−p

jqk−jz))

+
k∑
j=1

k−j∑
m=0

(
k − j
m

)
h̃j(w, p

mqk−j−mz),

and plugging this into (5.3) finally gives 1
3!
R[l̃]k(u, z) = R1,k(u, z) +R2,k(u, z), where

we’ve defined

R1,k(u, z) =
k∑
j=0

(
k

j

)
1

2πi

∮
C

pjqk−jz + log(1 + (w − 1)pjqk−jze−p
jqk−jz)

(w − 1)3(w − u)
dw

R2,k(u, z) =
k∑
j=0

k−j∑
m=0

(
k − j
m

)
1

2πi

∮
C

h̃j(w, p
mqk−j−mz)

(w − 1)3(w − u)
dw.

We define

Sj(w, x) =
(Qj −Qj−1)(w, px) + (Qj −Qj−1)(w, qx)

Qj−1(w, px)Qj−1(w, qx)
,

so that we can write

h̃j(w, x) = log(1 + Sj(w, x)).
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We will show below that both R1,k(u, z) and R2,k(u, z) are O(nβ(α)), so that (u −

1)3R[l̃]k(u, z)/3! = O(σ−1
n,k), which is negligible with respect to the first three terms in

the expansion (5.2) of l̃k(u, z). This is sufficient to establish the central limit theorem

in the Poisson model. In the subsections corresponding to R1,k(u, z) and R2,k(u, z),

respectively, we first give roadmaps of the proofs of the bounds and then delve into

the details of the derivations.

5.1 Bounding R1,k(u, z)

Roadmap of the bound on R1,k(u, z)

To bound R1,k(u, z), the idea is first to observe that the logarithm in the integrand of

each term of the summation is given by log(1+g(w, x)), where g(w, x) = o(1), so that

a natural idea to evaluate the integral is to use the residue theorem, and computing

residues can by done via a Laurent expansion around w = 1 (the contribution of the

term outside the logarithm vanishes). This leaves us with the task of bounding

k∑
j=0

(
k

j

)
(pjqk−jz)3e−3pjqk−jz.

We do this by writing the summand as eν(j), for some function ν, and using elementary

calculus to determine the maximum of ν(j) in the interval [0, k]. This tells us that

the largest term is β(α) log n(1 + o(1)), which concludes the bounding of R1,k(u, z).

Details of the derivation

First, the residue theorem tells us that the term∮
C

pjqk−jz

(w − 1)3(w − u)
dw

vanishes, and we need not consider it for the rest of the derivation. Now, note that

the logarithm in the jth term can be written as

log(1 + (w − 1)xk,j(z)e−xk,j(z)), (5.4)
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where we’ve defined xk,j(z) = pjqk−jz. Then

|w − 1||xk,j(z)e−xk,j(z)| = |w − 1|xk,j(|z|)e−xk,j(|z|) cos(arg(z)),

Since the function x 7→ xe−cx is bounded for real x, c ≥ 0 (which can be seen by

elementary calculus), and since |w− 1| n→∞−−−→ 0 and | arg(z)| is less than and bounded

away from π/2, we have that the above expression is O(|w − 1|) = o(1), so that we

can expand (5.4) as a Taylor series around w = 1, which gives

log(1 + (w − 1)xk,je
−xk,j(z)) =

∞∑
`=1

(−1)`+1(w − 1)`(pjqk−jz)`e−`p
jqk−jz

Plugging this into the integral corresponding to the jth term of R1,k(u, z) and defining

r(n) to be the radius of C (and, hence, equal to |w − 1|) gives

(1 + r(n)−1(u− 1))
1

2πi

∮
C

∞∑
`=1

(−1)`+1(w − 1)`(pjqk−jz)`e−`p
jqk−jz

(w − 1)4
dw.

Here, the (1 + r(n)−1(u − 1)) = 1 + o(1) outside comes from approximating w − u

in the denominator of the integrand by w − 1, which is valid since we’ve chosen

u − 1 = o(w − 1). Applying the Cauchy residue theorem to evaluate this integral

gives

(1 + (u− 1)r(n)−1)(pjqk−jz)3e−3pjqk−jz.

Plugging this in as the jth term of R1,k(u, z) reduces the problem to bounding

k∑
j=0

(
k

j

)
(pjqk−jz)3e−3pjqk−jz.

Using Stirling’s formula for the binomial coefficient, we write the jth term as eν(j),

where we define

ν(j) = k log k − j log j − (k − j) log(k − j)

+
1

2
(log k − log j − log(k − j)) + 3j log p

+ 3(k − j) log q + 3 log z − 3pjqk−jz +O(1).
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Our goal is to find j which maximizes this expression. We first observe that the

terms for which j = o(log n) or j = k(1 − o(1)) contribute negligibly: in such cases,(
k
j

)
≤ kj

j!
and

(
k
j

)
≤ kk−j

(k−j)! . This results in an upper bound of eo(logn) = no(1) for
(
k
j

)
,

and the factor (pjqk−jz)3e−3pjqk−jz is, as previously mentioned, bounded. Thus, the

contribution of such factors is no(1), so that it remains to handle terms for which

j = Θ(log n). Taking the derivative of ν with respect to j, we get

ν ′(j) = −1− log j − 1

2j
+

1

2(k − j)
+

k

k − j
+ log(k − j)− j

k − j

+ 3 log(p/q)− 3qkn log(p/q)(p/q)j

= log

(
k − j
j

)
+ 3 log(p/q)− 3qkn(p/q)j log(p/q) +O((log n)−1).

Setting j = K(α)k for K(α) ∈ (0, 1) to be determined under the conditions that

ν ′(j) = 0 and K(α) as a function of n remains bounded away from 0 and 1 (since

j = Θ(k)), we find that the first two terms of ν ′(j) are O(1), so that ν ′(j) = 0 only

if the third term is also O(1). This boils down to requiring

qkn(p/q)j = ek log q+logn+K(α)k log(p/q) = O(1).

Equivalently,

k log q + log n+K(α)k log(p/q) = log n(α log q + 1 +K(α)α log(p/q)) = O(1),

so that, in particular, we require

α log q + 1 +K(α)α log(p/q) = 0.

This gives

K(α) =
α log(1/q)− 1

α log(p/q)
.

It is easily checked by taking another derivative of ν that this gives a global maximum.

We then have that the maximum term in R1,k(u, z) is given by nχ(α), where χ(α) =

α · h(K(α)), with, again, h(x) = x log(1/x) + (1 − x) log(1/(1 − x)). After some

algebra, we see that χ(α) = β(α), so that R1,k(u, z) = O(nβ(α)), which is negligible

when multiplied by (u− 1)3.
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5.2 Bounding R2,k(u, z)

Roadmap of the bound on R2,k(u, z)

Handling R2,k(u, z) is more difficult. For this, we need good upper and lower bounds,

respectively, on the numerator and denominator of Sj(w, x). The plan is as follows.

We split the outer sum into three ranges, corresponding to j = o(log n), j = Ω(log n)

and k − j = Ω(log n), and j ∼ k. The first and third range can be handled via a

somewhat crude (though still technically difficult) upper bound (Corollary 2 below)

on the terms of the m sum which reduces the analysis of the j sum in those ranges to

that of a sum similar to R1,k(u, z). The middle range, on the other hand, requires more

finesse. We split the inner sum into two parts: those terms for which pmqk−j−mz =

O(log n) and those for which it is� log n. For the former range, we find that we must

refine the crude upper bound on |Sj(w, x)| to account for the cancellation inherent

in its definition, which requires that we take advantage of the fact that j = Ω(log n)

and that we have a superexponentially decaying upper bound on µm,j for m = Θ(j).

For the latter range, we can use the coarser upper bound.

Details of the derivation: Estimates on Qj(w, x) and Sj(w, x)

We first proceed to prove several facts about the growth of Qj(w, x), which will

be useful in the handling of the first and third ranges mentioned above. We start

by giving a precise estimate of |Qj(w, x)| which is uniform in j, in the case where

|x| = O(1).

Lemma 16 (Uniform estimate of |Qj(w, x)| for bounded |x|) Suppose |x| ≤ C

for some fixed positive C, and w ∼ eit/g(n), where g(n)
n→∞−−−→ ∞ and t ∈ R. Then,

uniformly for j ≤ k,

Qj(w, x) ∼ ex.

Proof We split the series defining Qj(w, x) into two parts: for any function f(n) =

o(g(n)) which is also � 1,

Qj(w, x) =

f(n)∑
m=0

E[wBm,j ]
xm

m!
+
∑

m>f(n)

E[wBm,j ]
xm

m!
.
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We will show that E[wBm,j ] = 1 + o(1) in the first sum and that the second sum

is negligible. To see the claim for the first sum, we note that since m ≤ f(n) and

Bm,j ∈ [0,m],

wBm,j ∼ eitBm,j/g(n) = 1 +
itBm,j

g(n)
+O((f(n)/g(n))2) = 1 +O(f(n)/g(n)) = 1 + o(1),

where the o(·) is uniform in j.

To show the claim for the second sum, we upper bound its absolute value using

the triangle inequality, giving ∑
m>f(n)

E[|w|Bm,j ] |x|
m

m!
.

Next, we define ξ = 1 + |w − 1| > 1 and note that, since Bm,j ≤ m,

ξBm,j ≤ ξm.

Since |x| is bounded above by C, we get that this is the tail of a convergent series,

and f(n)→ 0, so that the second sum is o(1), so negligible with respect to the first,

and this completes the proof.

Next we upper bound the differences |Qj(w, x)−Qj−1(w, x)|.

Lemma 17 (Uniform upper bound on differences) Suppose |x| ≤ C for some

fixed positive C, and w ∼ eit/g(n), where g(n)
n→∞−−−→ ∞ and t ∈ R. Then, uniformly

for j ≤ k,

(Qj −Qj−1)(w, x) = O(|x|e|x|/g(n)).

Proof The idea of this proof is very similar to that of Lemma 16. We choose an

appropriate function f(n) such that 1� f(n)� g(n) (for reasons to be seen below,

we will also require that g(n) = o(eΘ(f(n) log f(n)))), and we split the series defining

(Qj −Qj−1)(w, x) into an initial and final part:

(Qj −Qj−1)(w, x) =

f(n)∑
m=0

E[wBm,j − wBm,j−1 ]
xm

m!
+
∑

m>f(n)

E[wBm,j − wBm,j−1 ]
xm

m!
.
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Bounding the initial sum: Again using the fact that 0 ≤ m ≤ f(n) = o(g(n)) as

in the previous lemma, we find that

E[wBm,j − wBm,j−1 ] = O(m/g(n)),

uniformly in j. Plugging this into the first sum, we get an upper bound of

O(g(n)−1)

f(n)∑
m=0

m
xm

m!
= O(g(n)−1|x|e|x|),

and, since |x| ≤ C, this is O(g(n)−1).

Bounding the final sum: It remains to bound the final sum. Recalling the def-

inition of ξ in the proof of the previous lemma, the second sum is upper bounded

by

2
∑

m>f(n)

ξm|x|m

m!
.

Factoring out (ξ|x|)f(n)+1/(f(n) + 1)!, we get the expression

2
(ξ|x|)f(n)+1

(f(n) + 1)!

∑
m≥f(n)+1

(ξ|x|)m−f(n)−1

m(m− 1) · · · (f(n) + 2)
.

Noting that the denominator consists of m− (f(n) + 2) + 1 = m− f(n)− 1 factors

greater than f(n) + 1, we can lower bound it (thereby upper bounding the whole

expression) by (m − f(n) − 1)!, so that the sum is upper bounded by eξ|x|. Thus,

applying the assumed bound on |x|, the second sum is upper bounded by

2(Cξ)f(n)+1

(f(n) + 1)!
eξC ,

which we note is upper bounded by

e−Θ(f(n) log f(n)),

due to the factorial in the denominator. Choosing f(n) to be, say, f(n) =
√
g(n), we

see that this is

o(e−Θ(
√
g(n) log g(n))),

so that the second sum is negligible compared to the first.
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Finally, we extend Lemma 16 to the case where x
n→∞−−−→ ∞. For the purposes of

this lemma, we restrict our attention to a cone around the positive real axis.

Lemma 18 (Uniform estimate of |Qj(w, x)| for unbounded |x| in a cone)

Let w ∼ eit/g(n) for some g(n)
n→∞−−−→ ∞ and t ∈ R. Then there exists some θ0 ∈

(0, π/2) such that, for any θ ∈ (0, θ0), uniformly for j ≤ k,

|Qj(w, x)| = e|x| cos(arg(x))(1+o(1)),

as x→∞ inside C(θ).

Proof We will approach this by proving an upper and a lower bound on |Q̃j(w, x)|;

that is, for some functions a(x) and b(x) satisfying certain growth properties (to be

explained), we will prove that, for all sufficiently small positive constants ε, for large

enough |x|,

eεb(|x|) ≤ |Q̃j(w, x)| ≤ eεa(|x|). (5.5)

Provided that a(|x|) and b(|x|) = O(|x|) as x→∞, we will then have

|Qj(w, x)| = |ex||Q̃j(w, x)| = e|x| cos(arg(x))|Q̃j(w, x)|,

e|x| cos(arg(x))+εb(|x|) ≤ |Qj(u, x)| ≤ e|x| cos(arg(x))+εa(|x|),

so that

|Qj(u, x)| = e|x| cos(arg(x))+o(|x|).

We propose

a(x) = x− 1 b(x) = −a(x),

As before, we derive a useful bound on |Q̃j(w, x)| by setting ξ = 1 + |w − 1|, so

that E[|w|Bm,j ] ≤ ξm, and plugging this into the definition of Q̃j(w, x) gives

|Q̃j(w, x)| ≤ e|x|(ξ−cos θ). (5.6)

We will use this inequality in what follows.
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We now prove the claimed bounds on |Q̃j(w, x)|, for arbitrarily small fixed ε. We

do this by induction on j. The idea is as follows: we have, by Lemma 16, that

Qj(w, x) ∼ ex, uniformly for all j ≤ k, when x = O(1). This particularly implies that

there is some large enough fixed x∗ in the cone for which the claimed inequalities on

Q̃j(w, x∗) hold. In particular, they hold for x inside the cone with |x| ∈ (|x∗|, |x∗|/q],

again for all j ≤ k. In order to prove the inequalities for the rest of the cone (i.e.,

|x| ∈ (|x∗|/q,∞)), we then apply the recurrence and the inductive hypothesis.

Base case

Recall that Q̃0(w, x) = 1 − xe−x(1 − w) = 1 + o(1), where the o is with respect to

x → ∞. The claimed decay of the second term is because |xe−x| remains bounded

inside the cone, while 1 − w
n→∞−−−→ 0. Then, eεa(|x|) = eε(|x|−1) → ∞. Furthermore,

eεb(|x|) = e−ε(|x|−1) → 0. Thus, for sufficiently large |x| (depending on ε), the claimed

inequality holds.

Inductive step

For the induction, we assume that the claim is true for all h < j, and we prove it for j.

By the observation above, the inequalities hold for Q̃j(w, x) when |x| ∈ (|x∗|, |x∗|/q],

and it remains to establish that they hold for larger |x|, so we assume from here

onward that |x| ∈ (|x∗|/q,∞).

Recall the recurrence for Q̃j(w, x), which holds for all j ≥ 1:

Q̃j(w, x) = Q̃j−1(w, px)Q̃j−1(w, qx)

+ e−qx(Q̃j − Q̃j−1)(w, px) + e−px(Q̃j − Q̃j−1)(w, qx).

Upper bound inductive step

We first handle the induction step for the upper bound. The first step is to upper

bound |Q̃j(w, x)| using the triangle inequality. Next, we handle the product: by the

inductive hypothesis (applicable here because |x∗| < |qx| < |px|), we have

|Q̃j−1(w, px)Q̃j−1(w, qx)| ≤ eε(a(p|x|)+a(q|x|)) = eεa(|x|)−ε,



71

where the equality is easy algebra based on the definition of a(x). To handle the

terms of the form

|e−(1−c)x|(|Q̃j(w, cx)|+ |Q̃j−1(w, cx)|),

we apply the bound (5.6) to both terms. This gives

|e−(1−c)x|(|Q̃j(w, cx)|+ |Q̃j−1(w, cx)|) ≤ 2e|cx|(ξ−cos θ)−(1−c)|x| cos θ

= 2e|x|(cξ−cos θ)

≤ 2e|x|(pξ−cos θ).

Provided |ξ − 1| is sufficiently small (with respect to cos θ) and |θ| sufficiently small

with respect to p, the quantity in the exponent is negative and bounded away from

0. This can be done by making n sufficiently large.

Then,

|Q̃j(w, x)| ≤ eε(a(p|x|)+a(q|x|)) (1 + 4e|x|(pξ−cos θ)−ε(a(p|x|)−a(q|x|)))
≤ eε(a(p|x|)+a(q|x|)) (1 + 4e|x|(pξ−cos θ)

)
,

where the second inequality is because a(c|x|) > 0 when |x| is large enough (depending

only on c). The factor in parentheses can be written as

elog(1+4e|x|(pξ−cos θ)) = e4e|x|(pξ−cos θ)(1+o(1))

,

since, by a previous observation, pξ − cos θ < 0. Thus, the upper bound becomes

eεa(|x|)−ε+4e|x|(pξ−cos θ)

.

Since the second term is a constant and the third term decays exponentially with

respect to |x| → ∞, we can further upper bound by eεa(|x|), provided |x| is sufficiently

large. This concludes the proof of the upper bound.

Lower bound inductive step

We now give the inductive step of the lower bound. First, we use the lower bound

version of the triangle inequality (and we note that, for c > 0, e−c|x| cos(arg(x)) ≤
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e−c|x| cos θ, since cos θ ≤ cos(arg(x)) and the function y 7→ ey is monotone increasing

with respect to y):

|Q̃j(w, x)| ≥ |Q̃j−1(w, px)Q̃j−1(w, qx)|

− e−p|x| cos θ|Q̃j − Q̃j−1|(w, qx)− e−q|x| cos θ|Q̃j − Q̃j−1|(w, px).

We apply the inductive hypothesis to the product (justified by the same reasoning as

in the upper bound proof) to get

|Q̃j−1(w, px)Q̃j−1(w, qx)| ≥ eε(b(p|x|)+b(q|x|)).

For the other two terms, we require an upper bound on expressions of the form

e−(1−c)|x| cos θ|Q̃j − Q̃j−1|(w, cx).

Applying the triangle inequality and then the bound (5.6), we get that the above

expression is upper bounded by

2e−(1−c)|x| cos θec|x|(ξ−cos θ) = 2e|x|(cξ−cos θ) ≤ 2e|x|(pξ−cos θ).

Thus, we get

|Q̃j(w, x)| ≥ eε(b(p|x|)+b(q|x|))(1− 4e|x|(pξ−cos θ)−ε(b(p|x|)+b(q|x|))).

Provided 0 < ε < cos θ − pξ (which can hold if we choose θ close enough to 0), we

can see by substituting in the definition of b(x) that there exists a positive number τ

(depending only on ε, θ, p, ξ) such that

|Q̃j(w, x)| ≥ eε(b(p|x|)+b(q|x|)(1− 4e−τ |x|).

As in the inductive step for the upper bound, we rewrite the second factor:

(1− 4e−τ |x|) = e−4e−τ |x|(1+o(1)).

Then the bound becomes

|Q̃j(w, x)| ≥ eε(b(p|x|)+b(q|x|))−4e−τ |x|(1+o(1)). (5.7)
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Now, by definition of b(x), b(p|x|) + b(q|x|) = −a(|x|) + 1. As in the upper bound

proof, the second term (i.e., ε) in the exponent of the right-hand side of (5.7) after

applying this identity is a constant, while the third term decays exponentially, so that

the exponent can be lower bounded by −a(|x|) = b(|x|). This concludes the proof.

These lemmas give us enough tools to bound |Sj(w, x)|:

Corollary 2 (Uniform bound on |Sj(w, x)| inside a cone) There exist some

θ0 ∈ (0, π/2), x0, and positive constants C and D such that, for sufficiently large n

and for x ∈ C(θ) with |x| ≥ x0 and |θ| ≤ θ0, for any j ≤ k,

|Sj(w, x)| ≤ D|x|e−C|x|.

Moreover, for |x| < x0,

|Sj(w, x)| ≤ D|w − 1||x|e−C|x|.

Proof This is a combination of Lemmas 16, 17, and 18. We will first show that

the claimed inequality holds for sufficiently large x. We write, using the triangle

inequality,

|Sj(w, x)| ≤ |Qj(w, px)|+ |Qj−1(w, px)|+ |Qj(w, qx)|+ |Qj−1(w, qx)|
|Qj−1(w, px)Qj−1(w, qx)|

.

Note that, by using the triangle inequality on the numerator, we have completely

ignored the cancellations in the differences Qj(w, cx) − Qj−1(w, cx). We will rectify

this later.

Next, since we are assuming that x → ∞, we apply Lemma 18 to conclude that

the numerator of the above upper bound is equal to

ep|x| cos(arg(x))(1+o(1)),

while the denominator becomes

ep|x| cos(arg(x))(1+o(1))+q|x| cos(arg(x))(1+o(1)) = e|x| cos(arg(x))(1+o(1)).
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This gives an asymptotic upper bound of

e−q|x| cos(arg(x))(1+o(1)),

which can certainly be upper bounded by

|x|e−q|x| cos(arg(x))(1+o(1)).

This implies that there is some specific x0 such that, provided |x| ≥ x0,

|Sj(w, x)| ≤ |x|e−C|x|,

for some positive C (here we have used the fact that x ∈ C(θ), which ensures that

cos(arg(x)) is not too small).

Now, we assume that |x| < x0. In this case, instead of applying the triangle

inequality to the differences to bound the numerator of |Sj(w, x)|, we apply Lemma 17,

which gives an upper bound of

O

(
|x|ep|x|

g(n)

)
= O(|w − 1||x|ep|x|)

for the numerator. For the denominator, we apply Lemma 16, which tells us that

Qj−1(w, px)Qj−1(w, qx) ∼ ex,

so that

|Qj−1(w, px)Qj−1(w, qx)| ∼ |ex| = e|x| cos(arg(x)).

Combining these estimates shows that

|Sj(w, x)| = O(|w − 1||x|ep|x|−|x| cos(arg(x))),

and, using the fact that |x| < x0, so that e|x|(p−cos(arg(x))) = O(1),

|Sj(w, x)| = O(|w − 1||x|e−C|x|),

for some positive C.
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Now, provided that we choose w− 1 tending to 0 slowly enough with n (i.e., w− 1 =

no(1)), instead of evaluating the integrals in the definition of R2,k(u, z) via the residue

theorem, we can upper bound them trivially by the product of the maximum of the

modulus of the integrand on C and the length of C. Recalling that r(n) denotes the

radius of the circle C, this gives∣∣∣∣∮
C

log(1 + Sj(w, x))

(w − 1)3(w − u)
dw

∣∣∣∣ ∼ ∣∣∣∣∮
C

Sj(w, x)

(w − 1)4
dw

∣∣∣∣ ≤ r(n)−O(1)D|x|e−C|x|, (5.8)

where we’ve applied Corollary 2 to establish the asymptotic equivalence and the

inequality, and we’ve used the fact that w−1� u−1, which implies that w−u ∼ w−1.

Bounding the terms where j = o(log n) and j ∼ k

With this inequality in hand, we can start to bound R2,k(u, z). We first bound the

contributions of the ranges j = o(log n) and j ∼ k. We start by applying the bound

(5.8) on the absolute value of the integral, which gives, for any j, a contribution of

r(n)−O(1)D

k−j∑
m=0

(
k − j
m

)
pmqk−j−mne−Cp

mqk−j−mn

to the outer sum of R2,k(u, z). Since the factor r(n)−O(1)D is insignificant to the

analysis, we focus on bounding the sum. For j = o(log n), the analysis is essentially

the same as that of R1,k(u, z), and we conclude that the sum is O(nβ(α)).

In the range where j ∼ k, we note that k − j = o(log n). This implies that, for

any m, (
k − j
m

)
≤ eΘ(k−j) = eo(logn) = no(1),

where the inequality follows from the fact that the maximum value of a binomial

coefficient
(
y
·

)
is exponential in y. Combining this with the fact that

pmqk−j−mne−Cp
mqk−j−mn = O(1), we get that the contribution of j in this range is

subpolynomial in n, so negligible.

Bounding the terms in the middle range: j, k − j = Θ(log n)

We now turn to the bounding of the middle range, where j, k − j = Θ(log n). We

define xm,j = x = pmqk−j−mz, for any j in the range under consideration, and we
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split the m sum into two parts: those terms for which x � log n, where we can use

the coarse upper bound on Sj(w, x) which does not take into account cancellation,

and those for which x = O(log n), which requires a more refined estimate of Sj(w, x).

Bounding the terms where x = O(log n)

The first task is to more precisely bound Sj(w, x) by taking into account the significant

cancellations inherent in its definition. Writing Qj(w, x) and Qj−1(w, x) as power

series and applying the initial condition Q`,j(u) = 1 for ` ≤ j, we have

Qj(w, x)−Qj−1(w, x) =
∑
`≥j

E[wB`,j − wB`,j−1 ]
x`

`!
. (5.9)

Since j = Θ(log n), we have already identified a significant source of cancellation, but

this is not yet sufficient. Recalling that (2.12) of Theorem 2.2.1 gives a superexpo-

nentially decaying upper bound on µ`,j for ` ≤ Cj, for any fixed C, we can get a

tight bound on the remaining sum. The idea is to determine a bound on E[wB`,j ] by

conditioning on the value of B`,j, then using Markov’s inequality and the bound on

µ`,j to get a bound on the probabilities and conditional expectations that arise.

In what follows, we first restrict our attention to the initial terms of the sum (5.9);

i.e., we assume that ` ≤ Cj for some fixed C. Letting c1, c2 be the constants in (2.12)

(which we can apply because j = Θ(log n)→∞ and ` = Θ(j)), we have the bound

µ`,j ≤ c1`!e
−c2`2 .

Now, as promised, we compute E[wB`,j ] by conditioning on whether or not B`,j ≤ tµ`,t,

for t which we will pick later. This results in

E[wB`,j ] = E[wB`,j |B`,j ≤ tµ`,j] Pr[B`,j ≤ tµ`,j] (5.10)

+ E[wB`,j |B`,j > tµ`,j] Pr[B`,j > tµ`,j]. (5.11)

Now, we claim that, for an appropriate choice of t, the first term is 1+o(1), while the

second is o(1) (in fact, superexponentially decaying in `). Fix c3 ∈ (0, c2) and choose

t = ec3`
2

(this choice of t is motivated by the requirements that it should not be too

small (or lower/upper bounding the first/second probability becomes difficult) or too
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large (otherwise, upper bounding the second expectation becomes difficult)). Then,

by Markov’s inequality,

Pr[B`,j ≤ tµ`,j] ≥ 1− e−c3`2 = 1− o(1).

Conditioning on the event that B`,j ≤ tµ`,j = e−(c2−c3)`2 = o(1) and writing w =

1 + g(n), where g(n) = o(1) (recall that this follows from our choice of integration

contour such that |w − 1| = o(1)), gives

wB`,j = (1 + g(n))B`,j ∼ 1 + g(n)B`,j = 1 +O(g(n)e−Θ(`2)).

Noting that the last expression does not depend on B`,j, this implies

E[wB`,j |B`,j ≤ tµ`,j] = 1 +O(g(n)e−Θ(`2)).

Thus, the first term of E[wB`,j ] (i.e., (5.10)) is 1 + o(1), as desired. Turning to the

second term, the probability is bounded above by e−Θ(`2), by Markov’s inequality,

and we use the a priori upper bound on the expectation; that is, we define ξ(w) =

1+|w−1| ≥ 1, and then the expectation is bounded above by ξ(w)` (see the derivation

of the inequality (5.6)). The entire term is then upper bounded by e−Θ(`2), so that it

is negligible with respect to the first. Thus, we have shown that E[wB`,j ] = 1+e−Θ(`2),

where the Θ is uniform in j, but dependent on the C for which ` ≤ Cj. This implies

that

E[wB`,j − wB`,j−1 ] = e−Θ(`2).

Applying this estimate to the difference appearing in Sj(w, x), we get (suppressing

ceiling functions in the indices for convenience)

Qj(w, x)−Qj−1(w, x) =

Cj∑
`=j

e−Θ(`2)x
`

`!
+
∑
`>Cj

E[wB`,j − wB`,j−1 ]
x`

`!
.

Since x = O(log n), we can bound the first sum as follows:∣∣∣∣∣
Cj∑
`=j

e−Θ(`2)x
`

`!

∣∣∣∣∣ ≤ e−Θ((logn)2)+O(logn log logn) = e−Θ((logn)2),
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using the fact that j = Θ(log n). Here, the `! in the denominator gives rise to

e−Θ(logn log logn), and the x` is upper bounded by eO(logn log logn), where the log log n

comes from the fact that x = O(log n), while the log n results from ` ≤ Cj = Θ(log n).

The second sum can be bounded using the a priori bound (again, see the derivation

of the inequality (5.6)) to get

2
(ξ(w)|x|)Cj

(Cj)!
· e
|x|
Cj ,

and, again when x = O(log n), this becomes

eo(logn log logn)−Θ(logn log logn) = e−Θ(logn log logn).

Thus, overall, we have that

|Qj(w, x)−Qj−1(w, x)| ≤ e−Θ(logn log logn).

With these bounds in hand, we are ready to handle the relevant terms of R2,k(u, z).

Our refined upper bound on |Qj(w, x)−Qj−1(w, x)| implies

|Sj(w, x)| ≤ e−Θ(logn log logn)

|Qj−1(w, px)Qj−1(w, qx)|
,

and, since Qj−1(w, cx) ∼ ecx, and |x| is at least e−O(logn), this shows that

|Sj(w, x)| ≤ e−Θ(logn log logn).

Then (
k − j
m

) ∣∣∣∣∮
C

log(1 + Sj(w, x))

(w − 1)4
dw

∣∣∣∣ ≤ r(n)−O(1)eO(logn)−Θ(logn log logn)

= r(n)−O(1)e−Θ(logn log logn)

= o(1).

Here, r(n)−O(1) comes from (w−1)4 in the denominator of the integrand. The eO(logn)

is a result of upper bounding the binomial coefficient, since k−j = O(log n) and the bi-

nomial coefficient is at most exponential in its top number. Finally, the e−Θ(logn log logn)

comes from the bound on |Sj(w, x)| and the Taylor expansion for the log.
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Bounding the terms where x� log n

For x� log n, using the coarse upper bound on |Sj(w, x)| gives

(1 + o(1))

(
k − j
m

) ∣∣∣∣∮
C

log(1 + Sj(w, x))

(w − 1)4
dw

∣∣∣∣ ≤ (k − jm

)
r(n)−O(1)e−Θ(x)

≤ r(n)−O(1)eO(logn)−Θ(x)

= r(n)−O(1)e−Θ(x) = o(1),

so that these terms are negligible. Note that the eO(logn) comes from upper bounding

the binomial coefficient: it is at most eΘ(k) = eΘ(logn).

Since the contributions of all ranges have been shown to be either negligible or

O(nβ(α)), this completes the proof that R2,k(u, z) = O(nβ(α)). Having shown the

remainder term 1
3!
R[l̃]k(u, z) to be negligible, we have thus established a central limit

theorem for the (normalized) external profile in the Poisson model.

5.3 De-Poissonization

The final step of the proof is inversion of the Poisson transform to recover a central

limit theorem for the Bernoulli model. That is, knowing asymptotic information about

Q̃k(u, z), our goal is to recover Qn,k(u). The Cauchy integral formula gives

Qn,k(u) =
n!

2πi

∮
|z|=n

ezQ̃k(u, z)z
−n−1 dz, (5.12)

where the integration contour (we denote it by C) is the circle centered at 0 with

radius n. The evaluation of this integral will proceed in two stages. We expect that

the main contribution will come from a small arc around the positive real axis, so we

fix a cone around the positive real axis, and we show that the contribution outside

the cone is negligible (by a lemma which we will soon state). Next, we break the

remaining part of the contour into inner tails and a central region. The inner tails we

show to be negligible using Lemma 18, the Taylor expansion for the cosine function

around 0, and a careful choice of the split into the inner tails and the central region.
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Finally, the central region is evaluated using the expansion for Q̃k(u, z) derived above,

as well as the fact that
1√
2π

∫ ∞
−∞

e−x
2

dx = 1.

Let θ be an angle in (0, π/2) for which

l̃k(u, z) = z + G̃k(z)
τ

σn,k
+ Ṽk(z)

τ 2

2σ2
n,k

+R[l̃]k(u, z)
τ 3

3!σ3
n,k

+O(σ−1
n,k),

with R[l̃]k(u, z) = O(nβ(α)). This θ is guaranteed to exist by the analysis in Section 5.

We require a final estimate on the growth of Qj(u, x) in order to upper bound the

outer tails of (5.12):

Lemma 19 (Growth of Qj(u, x) outside a cone) Let θ ∈ (0, π/2). Then there is

some α ∈ (0, 1) and x0 > 0 such that, provided x /∈ C(θ) and |x| ≥ x0,

|Qj(u, x)| ≤ eα|x|,

uniformly in j ≤ k.

Proof We prove a slightly different claim: that, for each θ with |θ| ∈ (0, π/2), there

is some α < 1 and x0 > 0 such that, for all j ≤ k, if x /∈ C(θ) and |x| ≥ x0, then

|Qj(u, x)| ≤ eα|x|−1.

Note the additional term of −1 in the exponent. This we prove by induction in j. To

accomplish this, for each j, we prove that the inequality holds for |x| ∈ [x′0, x0) with

x′0 = qx0, and we then use this and induction on increasing domains to prove that it

holds for |x| ≥ x0.

Base case for j induction

For the base case, recall that Q0(u, x) = ex − x(1− u), so that

|Q0(u, x)| ≤ e|x| cos(arg(x)) + |x||1− u|.

For appropriately chosen α (say, cos(θ) + ε, for any small enough positive ε), |x| can

be made large enough so that this satisfies the claimed property. That is, there is
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some x′0 for which the stated inequality holds whenever |x| ≥ x′0. We define x0 to be

x′0/q.

Induction on j, base case for increasing domains induction

For the induction on j, we assume that the claim holds for j−1, and we aim to prove

it for j. To do this, we use induction on increasing domains. To verify the claim for

|x| ∈ [x′0, x0), we apply Lemma 16, which is justified because |x| < x0, to conclude

that

Qj(u, x) ∼ ex,

so that

|Qj(u, x)| ∼ |ex| = e|x| cos(θ),

and, provided x0 is sufficiently large,

|Qj(u, x)| ≤ eα|x|−1,

which gives us the base case of the increasing domains induction.

Increasing domains inductive step

We now proceed to the inductive step. Applying the functional equation and the

triangle inequality, then the inductive hypotheses,

|Qj(u, x)| ≤ eα|x|−2 + 4eαp|x|−1 = eα|x|−2
(
1 + 4e−αq|x|+1

)
Next, note that, since e−αq|x|+1 = o(1) as |x| → ∞, the second factor in the above

product satisfies

1 + 4e−αq|x|+1 ∼ e4e−αq|x|+1

= eo(1),

so that, provided we choose |x| large enough,

|Qj(u, x)| ≤ eα|x|−1,

which completes the proof.
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Bounding the outer tails

The outer tails of (5.12) then become

n!

2πi

∫
| arg(z)|>θ

ezQ̃k(u, z)z
−n−1 dz ∼

√
2πnnne−n

2πi

∫
| arg(z)|>θ

ezQ̃k(u, z)z
−n−1 dz

=
nn+1/2e−n√

2πi

∫
| arg(z)|>θ

ezQ̃k(u, z)z
−n−1 dz,

where we used Stirling’s formula. Taking absolute values and applying Lemma 19

gives an upper bound of

nn+1/2e−n+αn

√
2π

2πnn−n−1 = nO(1)e−n(1−α),

which is exponentially decaying in n, since α < 1.

Bounding the inner tails

Now we bound the inner tails. Specifically, we let ψ = n−δ, for some δ > 0 to be

determined, and the inner tails consist of that part of the contour where | arg(z)| ∈

(ψ, θ]. The choice of ψ is dictated by two opposing forces: it must be large enough

that the inner tails are negligible but small enough so that the central part is easy to

estimate precisely. In the range of integration of the inner tails, we have the estimate

|ezQ̃k(u, z)| = en cos(arg(z))(1+o(1)) ≤ en cos(ψ),

by Lemma 18. Taylor expanding cos(ψ) around 0 gives

exp

(
n(1− ψ2

2!
+O(ψ4))

)
.

We will require that nψ2 = n1−2δ n→∞−−−→∞, which translates to

1− 2δ > 0 =⇒ δ < 1/2.

Then we can upper bound the inner tails by

nn+1/2e−n√
2π

2πn|ezQ̃k(u, z)|n−n−1 ≤ nO(1)e−n+n(1−ψ
2

2!
+O(ψ4)) = nO(1)e−n

1−2δ(1+o(1)),

which is exponentially decaying in n, so negligible.
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Estimating the central region

Now we estimate the central part. Inside the integral, letting φ denote arg(z), we can

expand ezz−n−1 as

ezz−n−1 = ene
iφ−(n+1) log(neiφ) = en(1+iφ−φ

2

2
+O(φ3))−(n+1) logn−iφ = enn−n−1e−

nφ2

2
(1+o(1)).

Multiplying by the e−nnn+1/2 outside the integral gives

1√
n
e−

nφ2

2
(1+o(1)).

Applying the analysis of Q̃k(u, z),

Q̃k(u, z) = exp

(
G̃k(z)

τ

σn,k
+
τ 2

2
+O(σ−1

n,k)

)
= exp

(
G̃k(n)

τ

σn,k
+
τ 2

2
+O(G̃′k(n)(z − n))

τ

σn,k
+O(σ−1

n,k)

)
,

where we note that G̃k(n) = Θ(nβ(α)/
√

log(n)), while G̃′k(n) = Õ(nβ(α)−1). Since

β(α)− 1 ≤ 0 and z − n = O(ψ) = n−Ω(1), the third term is o(σ−1
n,k). That is,

Q̃k(u, z) = exp

(
G̃k(n)

τ

σn,k
+
τ 2

2
+O(σ−1

n,k)

)
.

Putting these estimates together, we see that the contribution of the central region

is given by

exp
(
G̃k(n) τ

σn,k
+ τ2

2
+O(σ−1

n,k)
)

√
2πn

∫ ψ

−ψ
e−

nφ2

2
(1+o(1)) dφ.

It is easy to see that we can complete the tails, and then we make the substitution

x = n−1/2φ, which gives

exp
(
G̃k(n) τ

σn,k
+ τ2

2
+O(σ−1

n,k)
)

√
2π

∫ ∞
−∞

e−x
2

dx.

Since the integral, along with the factor 1√
2π

, becomes 1, we have, finally,

E[e
Bn,k

τ
σn,k ] = exp

(
G̃k(n)

τ

σn,k
+
τ 2

2
+O(σ−1

n,k)

)
,

and applying the Lévy continuity theorem shows that the claimed central limit the-

orem holds for properly normalized Bn,k.
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6 ANALYSIS OF THE HEIGHT AND FILLUP LEVEL

6.1 Derivation of the height

Fixing any ε > 0, we write

kU = log1/p n+ (1 + ε)ψ(n),

for a function ψ(n) = o(log n) which we are to determine. In order for the first

moment method to succeed, we require that µn,kU
n→∞−−−→ 0. To identify the ψ(n) at

which the transition occurs, we define k = log1/p n+ψ(n), and the plan is to estimate

E[Bn,k] via the inverse Mellin integral representation (3.21) for G̃k(z). Specifically, we

consider the integrand for some s = ρ ∈ Z−+ 1/2 to be set later. This is sufficient for

the upper bound since, by the exponential decay of the Γ function, the entire integral

is at most of the same order of growth as the integrand on the real axis. We expand

the integrand in (3.21), that is,

Jk(n, s) :=
k∑
j=0

n−sT (s)k−j
∑
m≥j

T (−m)(µm,j − µm,j−1)
Γ(m+ s)

Γ(m+ 1)
. (6.1)

The first task is to evaluate the m sum for each j. When j →∞, we start by upper

bounding by ∑
m≥j

T (−m)µm,j,

where we’ve used the fact that µm,j − µm,j−1 ≤ µm,j and, by our choice of ρ, Γ(m +

ρ)/Γ(m+ 1) ≤ 1. Next, we split the sum into two parts:

∑
m≥j

T (−m)µm,j =

j3∑
m=j

T (−m)µm,j +
∑
m>j3

T (−m)µm,j. (6.2)

The initial sum is estimable using an extension of the superexponential decay bound

presented in Theorem 2.2.1:
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Lemma 20 (Superexponential µn,k upper bound) Let p ≥ q. For any ε > 0,

there exists c1 such that, for any n and k,

µn,k ≤ c1
n!

(n− k − 1)!
pk

2/2(1−ε). (6.3)

Thus, as n→∞,

µn,k ≤
n!

(n− k − 1)!
pk

2/2+o(k2).

Proof We assume throughout that k < n, since µn,k = 0 otherwise.

The proof is by induction on n.

Base case: For the base case, we show that, for any M ≥ 0, we can find c1 to

satisfy the claimed hypothesis whenever k < n ≤M .

Since µn,k ≤ n ≤M for any n, in order for the claimed bound to hold, we require

that

M ≤ c1
n!

(n− k − 1)!
pn

2/2(1−ε)

for all n ≤M . This upper bound is greater than or equal to

c1p
M2/2(1−ε),

which is independent of n. Thus, it suffices to choose c1 so that

M ≤ c1p
M2/2(1−ε).

I.e.,

c1 ≥Mp−M
2/2(1−ε).

So

µn,k ≤M = Mp−M
2/2(1−ε)pM

2/2(1−ε) ≤ c1p
M2/2(1−ε) ≤ c1

n!

(n− k − 1)!
pk

2/2(1−ε),

where the second inequality is because k < n ≤M .

Inductive step: Now we assume that the claimed inequality holds (for some specific

choice of c1) for n′ < n, and we demonstrate it for n. The recurrence gives us

(1− T (−n))µn,k =
n−1∑
j=k

(
n

j

)
µj,k−1(pjqn−j + pn−jqj).
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Since j < n for every term in the sum, we apply the inductive hypothesis, which gives

(1− T (−n))µn,k ≤
n−1∑
j=k

(
n

j

)
c1j!p

(k−1)2/2(1−ε)(pjqn−j + pn−jqj),

and expanding the (k − 1)2 in the exponent of the p and dividing both sides by

1− T (−n) > 0,

µn,k ≤ c1n!pk
2/2(1−ε) ·

(
p(−k+1/2)(1−ε)

1− T (−n)

n−1∑
j=k

(pjqn−j + pn−jqj)

(n− j)!

)
.

The sum is at most

n−1∑
j=k

2pn

(n− k)!
=

2pn

(n− k)!
(n− k) =

2pn

(n− k − 1)!
.

So the factor in parentheses is upper bounded by

2p(−k+1/2)(1−ε)+n

(n− k − 1)!

Now, k − 1/2 < n− 1, so that

(−k + 1/2)(1− ε) + n > −(n− 1)(1− ε) + n ∼ εn,

so that, provided that n is large enough (which we can assume by taking M in the

base case large enough),
2pn

1− T (−n)
≤ 1.

Putting everything together yields the desired inequality.

Thus, the initial sum of (6.2) becomes

j3∑
m=j

T (−m)µm,j ≤
j3∑
m=j

pj
2/2+o(j2) ≤ j3pj

2/2+o(j2) = pj
2/2+o(j2).

Meanwhile, the final sum can by upper bounded using the exponential smallness of

T (−m) and the fact that µm,j ≤ m:∑
m>j3

T (−m)µm,j ≤
∑
m>j3

e−Θ(m)m =
∑
m>j3

e−Θ(m) = e−Θ(j3).
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Adding these together, we get that the m sum for j →∞ is pj
2/2+o(j2).

To bound those terms for which j < C, for any constant C, we trivially upper

bound the m sum by ∑
m≥j

T (−m)m = O(1),

and n−ρT (ρ)k−j is seen to be negligible because of the factor T (ρ)k−j.

The jth term of (6.1) is then of order pνj(n,s), where, defining ∆j = j − ψ(n), we

set

νj(n, s) = ∆2
j/2 + ∆j(s+ log1/p(1 + (p/q)s) + ψ(n) + 1)

− log1/p n log1/p(1 + (p/q)s) + ψ(n)2/2 + o(ψ(n)2).

By elementary calculus, we can find the j term which maximizes νj(n, s), and then

we minimize over all s, which gives

∆j = s+ log1/p(1 + (p/q)s) + ψ(n) + 1, s = −ψ(n) +O(1).

The optimal value for νj(n, s) then becomes

νj(n, s) = − log1/p n log1/p(1 + (p/q)s) + ψ(n)2/2 + o(ψ(n)2). (6.4)

Now, to find ψ(n) for which there is a phase transition, we set the exponent in the

above expression equal to zero and solve for ψ(n). When p = 1/2, the expression

log1/p(1 + (p/q)s) becomes 1, which gives

− log2 n+ ψ(n)2/2(1 + o(1)) = 0 =⇒ ψ(n) ∼
√

2 log2 n,

as expected. On the other hand, when p > 1/2, we cannot solve for ψ(n) directly,

owing to the fact that log1/p(1 + (p/q)s) now depends on s. We instead observe that

the asymptotics of the Lambert W function [23] play a key role: by our choice of s,

(p/q)s = o(1), so that

log1/p(1 + (p/q)s) ∼ (p/q)s/ log(1/p) = es log(p/q)/ log(1/p).
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Then we must solve the equation

log1/p ne
s log(p/q)/ log(1/p) = ψ(n)2/2.

Multiplying by log(p/q) and taking the square root of both sides gives√
2 log n log(p/q)/ log(1/p) = (log(p/q)/2)ψ(n)e−s log(p/q)/2,

and substituting in our choice of s gives

Θ(
√

log n) = (1 + o(1))
log(p/q)

2
ψ(n)eψ(n)(1+o(1)) log(p/q)/2.

Setting W = (1+o(1)) log(p/q)
2

ψ(n), this becomes WeW = Θ(
√

log n), which is precisely

in the form of the recurrence satisfied by the Lambert W function. This yields

ψ(n) = logp/q log n+O(log log log n).

Note that replacing ψ(n) in (6.4) with (1− ε)ψ(n) yields as a maximum contribution

to the sum

p−Θ((logn)ε) →∞. (6.5)

while replacing it with (1 + ε)ψ(n) gives

pΘ((log logn)2) → 0.

6.1.1 Bounding the integral in terms of the integrand

Having analyzed the integrand (6.1) on the real axis, we now bound the rest of

the integral. We set j∗ = j∗(n) = k − log1/p n and ρ = −j∗(n) + O(1), and we

note that, since G∗k(s) is analytic at least in the strip <(s) ∈ (−k − 1,∞), there are

no contributions from residues. We bound |G̃k(n)| as follows: letting C denote the

vertical line <(s) = ρ, we split it into a central region (near the real axis) CI and tails

(bounded away from the real axis) CO:

CI = {ρ+ it : |t| ≤ (log n)(log logn)1−δ}, CO = {ρ+ it : |t| > (log n)(log logn)1−δ},

(6.6)
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where δ < 1 is some fixed positive number. Intuitively, the tail integral is small

because of the exponential decay of the Γ function on vertical lines, and the central

region contribution is small by the analysis sketched in the height analysis. We start,

in both cases, with the triangle inequality:

|G̃k(n)| ≤ 1

2π

∫ ρ+i∞

ρ−i∞

k∑
j=0

n−ρ|T (s)k−j|
∑
m≥j

T (−m)|µm,j − µm,j−1|
∣∣∣∣Γ(m+ s)

Γ(m+ 1)

∣∣∣∣ ds.

(6.7)

Bounding the central region: In the central region, we can (essentially) control

the integrand by bounding above by its value on the real axis. Multiplying by the

length of the central region (which we’ve chosen to be not too large) gives a sufficient

upper bound.

More concretely, we start by noting that

|T (s)k−j| = |T (s)|k−j ≤ |T (ρ)|k−j, (6.8)

where the inequality follows from writing

|T (s)| = |p−s||1 + (p/q)s|

= p−ρ|1 + (p/q)s|

≤ p−ρ(1 + |(p/q)s|)

= p−ρ(1 + (p/q)ρ)

= T (ρ).

Here, we’ve applied the triangle inequality.

Furthermore, it can be checked that |Γ(m+ s)| ≤ |Γ(m+ ρ)| (which follows easily

using the integral representation of the Γ function; see [23]). Applying (6.8) and the

Γ function inequality to (6.7) gives an upper bound on the integrand of

k∑
j=0

n−ρT (ρ)k−j
∑
m≥j

T (−m)|µm,j − µm,j−1|
∣∣∣∣Γ(m+ ρ)

Γ(m+ 1)

∣∣∣∣ .
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From the analysis of the height, we get that the largest term of this sum is at most

pΘ((log logn)2), so bounding all terms uniformly by this gives an upper bound of

(k + 1)pΘ((log logn)2) = pΘ((log logn)2)−Θ(log logn) = pΘ((log logn)2).

Since this is a uniform upper bound on the integrand in the central region, to bound

the integral, we multiply by the length of the contour, which yields

|CI |pΘ(log logn)2 = pΘ(log logn)2 ,

since we chose |CI | to be eo(log logn)2 .

Bounding the tails: Here we again use the standard bound (3.17) on the Γ

function. This is applicable on CO, and we again use the fact that |T (s)| ≤ T (ρ) and

µm,j−µm,j−1 ≤ µm,j ≤ m (justified by the boundary conditions on µm,j), which yields

an upper bound for the integrand of

k∑
j=0

n−ρT (ρ)k−j
∑
m≥j

T (−m)m
Θ(|t|m+ρ−1/2e−π|t|/2)

Γ(m+ 1)
. (6.9)

Then the m sum becomes

C|t|ρ−1/2e−π|t|/2
∑
m≥j

m(p|t|)m

m!
≤ Cp|t|ρ+1/2e−π|t|/2ep|t|, (6.10)

where we’ve pulled out a factor of p|t|, extended the bottom index of the sum to 0,

and applied the Taylor series of the exponential function. Note that −pi/2 + p < 0,

so that we’re left with

e−Θ(|t|)+(ρ+1/2) log |t|.

By our choice of |t|, this is simply

e−Θ(|t|),

uniformly in j. Integrating this on CO gives

e−Θ((logn)(log logn)1−δ ).
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Plugging this upper bound on the integral of the m sum into (6.7) gives

e−Θ((logn)(log logn)1−δ )

k∑
j=0

n−ρT (ρ)k−j,

and, since ρ < 0, T (ρ)k−j = o(1), so that the j sum is upper bounded by

kn−ρ = eΘ(log logn logn),

so that the entire integral on the outer tails is at most

e−Θ((logn)(log logn)1−δ ).

Summing the contributions on CO and CI: Thus, we have shown that

µn,k ∼ G̃k(n) ≤ pΘ(log logn)2 + e−Θ((logn)(log logn)1−δ ) = e−Θ(log logn)2 . (6.11)

Now, our original goal was to bound the sum∑
k≥kU

µn,k,

and the above upper bound is applicable for all terms, but it is too coarse on most

of the range. Thus, we split the sum into two parts:

n∑
k=kU

µn,k =

d(logn)2e∑
k=kU

µn,k +
n∑

k=d(logn)2e+1

µn,k.

The initial part can be bounded using (6.11), and the final part we handle using

Lemma 20. The location of the split is dictated by two opposing forces: it must be

small enough that uniformly upper bounding the initial part by (6.11) is sufficient

and large enough that we can apply Lemma 20 to the tail sum.

The initial sum is then at most

e−Θ(log logn)2Θ(log n)2 = e−Θ(log logn)2+Θ(log logn) = e−Θ(log logn)2 .

The final sum is at most

ne−Θ(logn)2 = n1−Θ(logn).

Adding these upper bounds together shows that

Pr[Hn > kU ]
n→∞−−−→ 0,

as desired.
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6.2 Derivation of the fillup level

To derive the result for the fillup level, we now set k = log1/q n+ ψ(n) and

kL = log1/q n+ (1 + ε)ψ(n) (6.12)

Here, ψ(n) = o(log n) is to be determined so as to satisfy µn,kL → 0. We use a

technique similar to that used in the height proof to determine ψ(n), except now the

Γ function asymptotics play a role, since we will choose ρ ∈ R tending to ∞. Our

first task is to upper bound (as tightly as possible), for each j, the magnitude of the

jth term of (6.1). First, we upper bound

T (−m)(µm,j − µm,j−1) ≤ 2pmµm,j ≤ 2pmm, (6.13)

using the boundary conditions on µm,j. Next, we apply Stirling’s formula to get

Γ(m+ ρ)

Γ(m+ 1)
∼
√

1 + ρ/m

(
m+ ρ

e

)m+ρ(
m+ 1

e

)−(m+1)

(6.14)

= e(m+ρ) log(m+ρ)−(m+ρ)+m+1−(m+1) log(m+1)+O(log ρ) (6.15)

= exp((m+ ρ) log(m+ ρ)− (m+ 1) log(m+ 1) +O(ρ)) (6.16)

= exp(m log(m(1 + ρ/m)) + ρ log(ρ(1 +m/ρ))−m logm− logm+O(ρ))

(6.17)

= exp(m log(1 + ρ/m) + ρ log(ρ) + ρ log(1 +m/ρ)− logm+O(ρ)).

(6.18)

Multiplying (6.13) and (6.18), then optimizing over all m ≥ j, we find that the

maximum term of the m sum occurs at m = ρp/q and has a value of

exp(ρ log ρ+O(ρ)). (6.19)

Now, observe that when logm� log ρ, the contribution of the mth term is pm+o(m) =

e−Θ(m). Thus, setting j′ = ρlog ρ (note that log j′ = (log ρ)2 � log ρ), we split the m

sum into two parts:

∑
m≥j

2pmm
Γ(m+ ρ)

Γ(m+ 1)
=

j′∑
m=j

2pmm
Γ(m+ ρ)

Γ(m+ 1)
+

∞∑
m=j′+1

2pmm
Γ(m+ ρ)

Γ(m+ 1)
.



93

The terms of the initial part can be upper bounded by (6.19), while those of the final

part are upper bounded by e−Θ(m) (so that the final part is the tail of a geometric

series). This gives an upper bound of

j′eρ log ρ+O(ρ) + e−Θ(j′) = e(log ρ)2+ρ log ρ+O(ρ) = eρ log ρ+O(ρ),

which holds for any j.

Multiplying this by n−ρT (ρ)k−j = qρ∆j+(∆j−log1/q n) log1/q(1+(q/p)ρ) gives

qρ∆j+(∆j−log1/q n) log1/q(1+(q/p)ρ)−ρ log1/q ρ+O(ρ), (6.20)

where ∆j is again j − ψ(n). Maximizing over the j terms, we find that the largest

contribution comes from j = 0 (i.e., ∆j = −ψ(n)). Then, just as in the height

upper bound, the behavior with respect to ρ depends on whether or not p = q,

because log1/q(1 + (q/p)ρ) = 1 when p = q and is dependent on ρ otherwise. Taking

this into account and minimizing over ρ gives that the maximum contribution to

the j sum is minimized by setting ρ = 2−ψ(n)− 1
log 2 when p = q and ρ ∼ logp/q log n

otherwise. Plugging these choices for ρ into the exponent of (6.20), setting it equal

to 0, and solving for ψ(n) gives ψ(n) = − log2 log n + O(1) when p = q and ψ(n) ∼

− log1/q log log n when p > q. The evaluation of the inverse Mellin integral with

k = kL as defined in (6.12) and the integration contour given by <(s) = ρ proceeds

along lines similar to the height proof, and this yields the desired result.

We remark that the lower bound for Fn may also be derived by relating it to

the analogous quantity in regular tries: by definition of the fillup level, there are

no unary paths above the fillup level in a standard trie. Thus, when converting the

corresponding PATRICIA trie, no path compression occurs above this level, which

implies that Fn for PATRICIA is lower bounded by that of tries (and the typical value

for tries is the same as in our theorem for PATRICIA). We include the lower bound

for Fn via the bounding of the inverse Mellin integral because it is likely similar in

flavor to the corresponding proof of the upper bound (for which no short proof seems

to exist).
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7 SUMMARY AND CONCLUSIONS

Motivated by its role as a unifying structural characteristic of digital trees, we studied

the distribution of the external profile Bn,k of PATRICIA tries generated by a biased

memoryless source. We gave precise asymptotics for the mean and variance in the

range of polynomial growth, revealing interesting first-order fluctuations. We then

derived a central limit theorem in that range. Finally, as applications of the study of

profiles, we extended our analysis to the boundaries of the central range to discover

unexpected second-order phase transitions in the fillup level and height.

In the broader context of digital trees, this analysis allows us to compare the

behavior of the parameters of PATRICIA tries with their analogues in other models,

such as tries and digital search trees. Moreover, due to the similarity in behavior

of PATRICIA tries and digital search trees, whose profiles are (at the time of this

writing) less well studied in the asymmetric setting, our results may provide intuition

to guide further developments in the latter case.

Regarding future directions, interesting work remains to be done. For example, in

the analysis of the height of PATRICIA tries, much more is known in the symmetric

case than in the asymmetric: [26] shows that the limiting behavior of the distribution

of the height when p = 1/2 is quite curious. In particular, Hn, properly normalized,

only concentrates on three possible points, which are known up to o(1) error terms.

Similarly precise knowledge would be of interest in the asymmetric case and would

be quite challenging to derive.

Regarding other digital trees, as mentioned above, the profile analysis for the

asymmetric case of digital search trees is incomplete and quite challenging. More

generally, there is significant motivation to generalize the sources considered in the

analysis of digital trees. While the analyses of many parameters are already quite

difficult for memoryless sources, many sources of data in applications have a more
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complicated dependency structure. Thus, generalizations to, e.g., Markov or dynam-

ical sources are of both practical and theoretical interest. Indeed, there exist such

analyses (e.g., [27, 28]), though not for the profiles considered here.

Finally, we note that the analytical tools used here are not limited in applicability

to the analysis of digital trees. Indeed, they may be (and have been) used to at-

tack numerous problems in asymptotic enumerative combinatorics, probability, and

analysis of algorithms where some sort of iterative or recursive structure plays a role.
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