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ABSTRACT

Dong, Jing Ph.D., Purdue University, December 2015. Low-Cost Structured-Light
3D Capture System Design. Major Professor: Jan P. Allebach.

Currently, three-dimensional measurement is a very important and popular topic

in computer vision. Most of the 3D capture products currently in the market are high-

end and pricey. They are not targeted for consumers, but rather for research, medical,

or industrial usage. Very few aim to provide a solution for home and small business

applications. Our goal is to fill in this gap by only using low-cost components to build

a 3D capture system that can satisfy the needs of this market segment. In this paper,

we present a low-cost 3D capture system based on the structured-light method. The

system is built around the HP TopShot LaserJet Pro M275. For our capture device,

we use the 8.0 Mpixel camera that is part of the M275. We augment this hardware

with two 3M MPro 150 VGA (640 × 480) pocket projectors. We also describe an

analytical approach to predicting the achievable resolution of the reconstructed 3D

object based on differentials and small signal theory, and an experimental procedure

for validating that the system under test meets the specifications for reconstructed

object resolution that are predicted by our analytical model. By comparing our

experimental measurements from the camera-projector system with the simulation

results based on the model for this system, we conclude that our prototype system

has been correctly configured and calibrated and that with the analytical models, we

have an effective means for specifying system parameters to achieve a given target

resolution for the reconstructed object.
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1. INTRODUCTION

To date, three-dimensional measurement is a very important and popular topic in

computer vision [1] [2]. Due to its accuracy and time-efficiency, 3D capture is broadly

applied in a number of areas, such as object recognition for quality control and inspec-

tion [3], dental [4] and facial imaging [5, 6], 3D map building [7], and customization

in apparel [8] and footwear [9]. 3D capture techniques may be divided according to

contact [10–14] and non-contact methods [15–32]. The problem with contact meth-

ods is the slowness and high cost of the probing process. In addition, the probe may

cause damage to the surface of the object. Non-contact methods can be classified

into passive [18, 23–26, 28] and active methods [15–17, 19, 20, 22, 27, 29–32]. The pas-

sive methods completely rely on ambient light, while the active methods emit certain

controlled radiation or light and detect its reflection. The most widely used passive

3D imaging system is the stereo vision [25,28]. And Time-of-Flight (ToF) [29,30,33],

laser triangulation [15, 17, 19, 20, 27], structured light [16, 22, 31, 32] are typical active

3D imaging systems which employ different radiation sources or measurement meth-

ods. For passive method, two or more views are captured by the cameras and the

correspondences between the images need to be found to reconstruct the 3D surface.

Thus, passive method is limited to reconstruct dense 3D surfaces due to the com-

plexity of finding correspondences. To solve this, structured-light method is more

widely used nowadays. It substitutes one of the cameras as a projector, and project

a coded pattern. By decoding the captured encoded image, we could easily find the

correspondence between the projected image and the captured image; thus, we could

reconstruct the 3D point using triangulation.

Structured-light system employs a variety of coding strategies based on the sys-

tem constraints; for example, number of projected patterns, number of cameras, pixel

depth or whether it is a moving scene or a static scene [34]. The existing pattern
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coding strategies in structured light system can be classified into three categories [35]:

time-multiplexing [36], direct codification and spatial neighborhood. Spatial neigh-

borhood is the coding strategy that uses surrounding pixels to create the codeword for

the center pixel. It includes non-formal coding [37], De Brujin patterns [38] and M-

arrays [39,40], which is a relative new coding strategy that is time-efficient, accurate

and robust against color and occlusion.

Lanman and Taubin [41] provide a tutorial course for beginners to build their

own 3D capture system. They explain the mathematics of the triangulation, camera

and projector calibration, and develop a classic structured light scanning system and

a laser line scanning system. Geng [42] presents a review of the recent advances in

3D surface imaging technologies. He focuses on non-contact surface measurement

techniques based on structured light and categorizes and compares different coding

strategies. He also discusses the calibration techniques and numerous applications of

3D surface imaging techniques.

Most of the 3D capture products currently in the market are high-end and pricey.

They are not targeted for consumers, but rather for research, medical, or industrial

usage. Unlike research, medical or industrial object capture, object capture for the

home hobbyist or small business does not require very high accuracy. It is a challenge

to balance the trade-off between accuracy and system cost. We can sacrifice part of

the accuracy to lower the cost of the 3D capture system, on the one hand. On the

other hand, we do not want to lose so much accuracy that the object cannot even be

recognized. Therefore, our goal is to maintain sufficient accuracy while keeping the

system cost within a range that is suitable for home or small business use. A number

of factors need to be considered when choosing the system components. The first

group of these includes the resolution, light-level output, geometric distortion, and

working distance for the projector. The working distance must be chosen such that

the whole object station is completely included in the field of view of the camera.

Another issue with the projector is the throw ratio. The throw ratio is the ratio

between the throw distance and the width of the screen, where the throw distance is
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the distance from the screen to the projector. Most projectors on the market have

a relatively large throw ratio. Therefore, given a desired projected image size, the

large throw ratio requires a large throw distance, which causes the whole 3D capture

system not to be compact. The second group of factors is related to the camera.

These include resolution, sensitivity, geometric distortion, and color fidelity [43]. The

latter is important if a second frame is to be captured under normal illumination

without the structured light pattern, to provide the surface reflectance information

that is to go with the object shape.

In Chapter 1, we first review the background of the structured light based 3D

capture system, and discuss the limitation of the one projector system based on our

requirement. We introduce the novel design and layout of our dual-projector system in

Chapter 2. The camera and projector modeling, calibration procedure and verification

of the calibration results are discussed respectively in Chapter 3 and 4. The world

coordinates calculation is also presented in Chapter 4. In Chapter 5, we use the small

signal theory to analyze the sensitivity of the system by comparing the theoretical

analysis results with the experimental results, to establish the resolution relationship

between the camera and projector, as well as the design tolerance. Chapter 6 is

an application we developed using the 3D depth map we get from our 3D capture

system to change the perspective of an image. Chapter 7 is a separate project which

aims to correct the lens distortion and perspective distortion of a 2D image. No

3D information is involved and required. We discuss the model and method for

the image correction, and the results are presented at the end. In Chapter 8, we

present the detailed theory, procedure and result using straight line pattern based 3D

capture method and our low-cost dual projector system. In Chapter 9, we analyze the

reconstruction accuracy of our system based on the straight line 3D capture method.

Last but not least, we present in Chapter 10 an application using the 3D depth map

we generated in Chapter 8 to change the perspective of the object, which is similar

to Chapter 6.



4

2. BASIC SYSTEM LAYOUT AND DESIGN

In this section, we introduce our newly designed dual-projector 3D structured light

capture system. Structured light method is widely used nowadays due to its time-

efficiency and accuracy. In general, the system consists of one projector and one or

more cameras. We first project the structured light pattern to the object and use the

camera to capture this. By decoding the pattern, we can find the correspondence be-

tween the projected pattern and the captured pattern. Then we use the triangulation

to find the depth of the object.

Several issues for the components we need to consider will be discussed as fol-

lowing. First is the resolution of the projector. Almost any digital projector can

be used in the 3D structured light system. At least a VGA projector (640× 480) is

recommended. The resolution of the camera should be higher than the projector; oth-

erwise, the reconstruction resolution will be restricted by the cameras resolution. The

working distance is chosen such that the whole object station is completely included

in the field of view of the camera.

Another issue with the projector is the throw ratio. Throw ratio is a ratio between

the throw distance and the width of the screen (Fig. 2.1), where throw distance is

the distance from the screen to the projector. Given the dimensions of the Topshot

(Fig. 2.2), we need a projector has throw ratio = 8.5′′

13.5′′
≈ 0.63 and image size could

achieve 16.2′′ or project distance could achieve 8.5′′. Most projectors on the market

are designed to have relatively large throw ratio. Therefore, given a desired projection

image size, the large throw ratio requires a large throw distance, which makes the

whole 3D capture system not compact. To solve this issue, we introduce the dual

projector system, which uses two relatively short-throw-ratio projectors to cover each

half of the platen. Therefore, the projector screen size is reduced by half, and the
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Fig. 2.1. Illustration of the throw ratio and throw distance (image from web)

Fig. 2.2. Required throw ratio if use one projector given the dimension of Topshot

required throw distance is reduced as well. The model of this design is plotted using

Google Sketchup and showed in Fig.2.3.
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Fig. 2.3. Design of the dual-projector system built around Topshot
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Fig. 2.4 shows our newly designed dual-projector 3D capture system. The system

is built around the HP TopShot LaserJet Pro M275. For our capture device, we use

the 8.0 Mpixel camera that is part of the M275. We augment this hardware with two

3M MPro 150 VGA (640× 480) pocket projectors which are the smallest-throw-ratio

projectors we find on the market. Both the M275 and the MPro 150 are low-cost

products.

By calculating the throw distance using the desired projection image size and

throw ratio of the projector, we still need to hang the projectors 5-6 inches above

the camera. Therefore, we also design two heavy-duty posts to hold and control the

movement of the projectors. Fig. 2.5 is the engineering graph of the post Dr.Barrett

Robinson design and build for us. As shown in Fig. 2.4 there are three micrometers to

control the projector moving up/down, left/right, and backward/forward accurately.

One addition micrometer can control the tilting of the projector and read the degrees

as well. The screws on the tower and on the arm of the tower give us extra freedom

to adjust the projector to the desired position. More views of the system are shown

in Fig. 2.6.
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Fig. 2.4. Visualization of the calibration result for the dual-projector
3D capture system (left) and set-up (right)
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Fig. 2.5. Design of heavy-duty posts to hold and control the movement
of the projector
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Fig. 2.6. Dual-projector 3D capture system front view, top view and zoom-in view
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3. CAMERA MODELING,CALIBRATION AND

VERIFICATION

In this section, we introduce the commonly used camera and projector model and

calibration method for the 3D capture system. In order to use triangulation to re-

cover the 3D object, we first need to calibrate the camera and projectors. The goal

of calibration is to get the intrinsic parameters (focal length, principal point, skew

coefficient, distortions) and extrinsic parameters (rotation, translation matrix) of the

camera and the projectors.

3.1 Camera Model

The camera model with lens distortion [44] is shown in Fig. 3.1, and we will discuss

the model in detail as follows:

Fig. 3.1. Pinhole camera model with lens distortion
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Given a 3D object point in the world coordinate system Pw =











Xw

Yw

Zw











, we first

convert it to the camera coordinate system Pc =











Xc

Yc

Zc











using Eqn. 3.1,

Pc = Rc × Pw +Tc (3.1)

where Rc is the 3 × 3 rotation matrix and Tc is the 3 × 1 translation matrix which

relates the world coordinate system to the camera coordinate system. Then the 2D

point on the camera’s image plane using pinhole camera prediction is pcph =





xc
ph

ycph



,

and the 2D point on the image plane considering lens distortion is pcld =





xc
ld

ycld





Consider if we project the object point Pc =











Xc

Yc

Zc











to the normalized image plane

using Pinhole camera model, we get the 2D image coordinate pcphn =





xc
phn

ycphn



 =





Xc/Zc

Yc/Zc



. By adding the radial and tangential lens distortion to pcphn, we get the

distorted projection on the camera’s normalized image plane is:

pcldn =





xc
ldn

ycldn



 =





ϕ1(x
c
phn, y

c
phn)

ϕ2(x
c
phn, y

c
phn)



 (3.2)

where




ϕ1(x
c
phn, y

c
phn)

ϕ2(x
c
phn, y

c
phn)



 =





xc
phn

ycphn



+ (kc
1r

2 + kc
2r

4 + kc
5r

6)





xc
phn

ycphn





+





2k3x
c
phny

c
phn + k4(r

2 + 2xc2
phn)

k3(r
2 + 2yc2phn) + 2k4x

c
phny

c
phn





(3.3)
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and r2 = xc2
phn + yc2phn, K

c =
[

kc
1, k

c
2, k

c
3, k

c
4, k

c
5

]

is the camera’s lens distortion coeffi-

cient.

Then the coordinates on the camera’s image plane considering pinhole camera

model with lens distortion are:










xc
ld

ycld

1











= KKc











xc
ldn

ycldn

1











(3.4)

where

KKc =











f c
x f c

sθ uc
o

0 f c
y vco

0 0 1











(3.5)

KKc is called the camera intrinsic parameter matrix. Here f c
x and f c

y are the camera’s

focal length in the x and y direction; uc
o and vco are the coordinates of the principal

point on the camera’s image plane; and f c
sθ is the camera’s skew coefficient.

3.2 Camera Calibration Procedure

The camera calibration procedure we use comes from Zhang’s method [45]. We

first print a checkerboard pattern composed of 20mm×20mm squares and attach it

to the platen board, which is a white board on the top of the Topshot. Then we

vary the positions of the platen and capture a sequence of 12 views of it. We next

apply edge detection to extract the grids of the checkerboard pattern. Calibration is

done in two steps. In the initialization step, we compute a closed-form solution for

the calibration parameters regardless of any lens distortion. Next we use iterative

gradient descent method to minimize the total reprojection error over all the calibra-

tion parameters. We use an open-source camera calibration toolbox to implement the

camera calibration [46].
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Fig. 3.2. Centimeter-step block

3.3 Verification of the Camera Calibration Results

The object we use for the verification is a centimeter-step block (Fig. 3.2), which

is 10cm ×10cm×10cm, each step size is 1cm. The verification procedure is designed

as following:

1. Place the centimeter-step block on the platen, and use the camera embedded

in Topshot to capture the image.

2. Measure the world coordinates of one corner point, and calculate the rest feature

points’ world coordinates.

3. Open the image in Matlab and record the camera image coordinates of the

feature points.

4. Estimate the model-predicted image coordinates, and compare with the actual

image coordinates. The results for two configurations of the block are shown in

Fig. 3.3.
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Fig. 3.3. Two examples of the verification results
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4. PROJECTOR MODELING, CALIBRATION AND

VERIFICATION

In this section, we introduce the commonly used camera and projector model and

calibration method for the 3D capture system. In order to use triangulation to re-

cover the 3D object, we first need to calibrate the camera and projectors. The goal

of calibration is to get the intrinsic parameters (focal length, principal point, skew

coefficient, distortions) and extrinsic parameters (rotation, translation matrix) of the

camera and the projectors.

4.1 Projector Model

Projector can be modeled as an inverse camera. Therefore, we will have a similar

relationship between the 3D point coordinates and the 2D point coordinates on the

image plane.

Consider a point on the projector’s 3D coordinates Pp =











Xp

Yp

Zp











. Pp can be

calculated from

Pp = Rp × Pc +Tp (4.1)

where Rp is the 3 × 3 rotation matrix and Tp is the 3 × 1 translation matrix which

relates the camera coordinate system to the projector coordinate system. Then the

2D image point on the projector’s normalized image plane is ppphn =





xp
phn

ypphn



 =
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Xp/Zp

Yp/Zp



. By adding the radial and tangential lens distortion to ppphn, we get the

distorted projection

ppldn =





xp
ldn

ypldn



 =





ϕ1(x
p
phn, y

p
phn)

ϕ2(x
p
phn, y

p
phn)



 (4.2)

where ϕ1, ϕ2 are defined in Eqn. 3.3

Then the coordinates on the projector’s image plane considering pinhole camera

model with lens distortion are:










xp
ld

ypld

1











= KKp











xp
ldn

ypldn

1











(4.3)

where

KKp =











f p
x f p

sθ up
o

0 f p
y vpo

0 0 1











(4.4)

KKp is called the projector’s intrinsic parameter matrix. Here f p
x and f p

y are the

projector’s focal length in the x and y direction; up
o and vpo are the coordinates of

the principal point on the projector’s image plane; and f p
sθ is the projector’s skew

coefficient.

4.2 Projector Calibration Procedure

The basic idea to calibrate a projector is to consider the projector as an inverse

camera. As we mentioned in the Sec. 3.1, the function of camera is to capture

the object points in 3D world coordinate and convert it to the 2D image plane;

while the function of the projector is to project points on the image plane to the

3D world coordinates. Thus, after obtaining the corresponding 3D and 2D points,

the calibration procedures are similar for the camera and projector. The detailed

procedure is stated as follows [41]:
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1. Calibrate the camera using the procedure we described in Section 2.1 and get

the intrinsic and extrinsic parameters.

2. Attach a small portions of the checkerboard pattern to the platen.

3. Recover calibration plane in camera coordinate system

4. Project a checkerboard to the calibration board and detect corners

5. Apply ray-plane intersection to recover 3D positions for each projected corner

6. Calibrate the projector using the correspondences between the 2D points of the

image that is projected and the 3D projected points.

After we finish the projector calibration, we will also get the intrinsic and extrinsic

parameters for each projector. Use the calibration results we get, along with the

correspondence between the projected image and the captured image from the coded

pattern, we could recover the depth information of our object.

4.3 Verification of the Projector Calibration Results

We use the same centimeter-step block(Fig. 3.2) for the projector calibration ver-

ification as we use for the camera calibration verification. The procedure is designed

as following:

1. Place the centimeter-step block on the platen, project a designed dotted pattern

(Fig. 4.1) to it (Fig. 4.2(a)).

2. Measure the world coordinates of one dot on the block, and calculate the rest

dots’ world coordinates.

3. Estimate the model-predicted dots’ coordinates on the projector’s image plane,

and compare with the actual digital image (Fig. 4.2(c)).
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Fig. 4.1. Designed dot pattern for projection

4. Remove the centimeter-step block, and project the pattern directly on the

platen (Fig. 4.2(b)). Repeat the above procedure. The results are shown in

(Fig. 4.2(d)).

4.4 World Coordinates

4.4.1 World Coordinate Calculation

To calculate the world coordinates of a 3D point, we need to known the corre-

spondence between the 2D point coordinate on camera and projector image plane.

Suppose we know the coordinate on camera image plane is





xc
ld

ycld



, use the camera

calibration results and Eqn. 3.4, we can get





xc
ldn

ycldn



. And by solving Eqn. 3.2, we

can get the result for





xc
phn

ycphn



 =





Xc/Zc

Yc/Zc



. Similarly, suppose the correspondence
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image point of





xc
ld

ycld



 is





xp
ld

ypld



, we can use the inverse of Eqn. 4.2 and 4.3 to solve





xp
phn

ypphn



 =





Xp/Zp

Yp/Zp





Last, we use the rotation and translation relationship (Eqn. 4.1) to get the world

coordinates:





Zp

Zc



 = AT (AAT )−1Tp (4.5)

where first column of A is











Xp/Zp

Yp/Zp

1











and second column of A is −Rp











Xc/Zc

Yc/Zc

1











.

Therefore, use the value of





Xc/Zc

Yc/Zc



, Zc and Eqn. 3.1, we get the result for











Xw

Yw

Zw











.

4.4.2 Experiment and Results

The experiment for world coordinates calculation and comparison is designed as

following:

1. Place the centimeter-step block on the platen, project the same dot pattern

(Fig. 4.1) as for projector verification to it (Fig. 4.2(a)).

2. Capture the block with the dot pattern on it using the camera embedded in

Topshot (Fig. 4.3), and record the dots’ coordinates on camera image plane

(Fig. 4.4). Since we design the project dot pattern, the dots’ coordinates on

projector image plane is known (Fig. 4.5).
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3. Measure the world coordinates of one dot on the block, and calculate the rest

dots’ world coordinates.

4. Estimate the model-predicted dots’ world coordinates using the method we dis-

cussed in Sec. 4.4.1,along with the known correspondence of the dots on camera

and projector image plane (Fig. 4.4 and Fig. 4.5). Compare the predicted

value with the actual recorded world coordinates (Fig. 4.6). The differences in

Xw, Yw, Zw and the overall Euclidean distance difference are plot in Fig. 4.7.
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(a) Project the dot pattern on the block (b) Project the dot pattern on the

platen
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Fig. 4.3. Captured block with dot pattern projected on it
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Fig. 4.4. Recorded dots’ coordinates on camera image plane
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Fig. 4.5. Dots’ coordinates on designed pattern is known
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5. SENSITIVITY ANALYSIS FOR ESTABLISHING

DESIGN TOLERANCES

The sensitivity analysis is to evaluate the amount of shifting on the camera image

plane given a certain shifting on the projector image plane. In this section, we first

give out the analytical sensitivity analysis, following by the experimental sensitiv-

ity measurement of the system, and last the comparison of the simulation and the

experiment results.

5.1 Theoretical Sensitivity Analysis

Based on Eqn. 3.3 and 4.2, we can write the 2D point coordinates on the projector’s

normalized image plane considering lens distortion before shifting is:

ppldn =





xp
ldn

ypldn



 =





xp
phn

ypphn



+ Td(Xp, Yp, Zp;K
p) (5.1)

where Td(Xp, Yp, Zp;K
p) is the lens distortion before shifting andKp =

[

kp
1, k

p
2, k

p
3, k

p
4, k

p
5

]

is the projector’s lens distortion coefficient vector.

Considering a small shift in the 3D coordinates, say











∆Xw

∆Yw

∆Zw











in the world’s

coordinate system. Then the shifting in other coordinates can be easily calculated

using:










∆Xc

∆Yc

∆Zc











= Rc











∆Xw

∆Yw

∆Zw











(5.2)
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∆Xp

∆Yp

∆Zp











= Rp











∆Xc

∆Yc

∆Zc











(5.3)

Therefore, the 2D coordinates on the projector’s normalized image plane consid-

ering lens distortion after shifting is:

pp′ldn =





xp′
ldn

yp′ldn



 =





ϕ1(x
p′
phn, y

p′
phn)

ϕ2(x
p′
phn, y

p′
phn)



 (5.4)

where ϕ1, ϕ2 are defined in Eqn. 3.3 and pp′phn =





xp′
phn

yp′phn



 =





Xp+∆Xp

Zp+∆Zp

Yp+∆Yp

Zp+∆Zp





Then we can write

pp′ldn =





xp′
ldn

yp′ldn



 =





xp′
phn

yp′phn



+ T ′
d(Xp, Yp, Zp; ∆Xp,∆Yp,∆Zp;K

p) (5.5)

where T ′
d(Xp, Yp, Zp; ∆Xp,∆Yp,∆Zp;K

p) is the lens distortion after shifting.

Ignore the change of lens distortion caused by shifting:

T ′
d(Xp, Yp, Zp; ∆Xp,∆Yp,∆Zp;K

p) ≈ Td(Xp, Yp, Zp;K
p) (5.6)

we get

pp′ldn ≈ pp′phn + Td(Xp, Yp, Zp;K
p) (5.7)

Then the shifting on the projector’s image plane is:




∆xp

∆yp



 =





f p
x f p

sθ

0 f p
y



 (pp′ldn − ppldn) =





f p
x f p

sθ

0 f p
y



 (pp′phn − ppphn)

=





f p
x f p

sθ

0 f p
y













Xp+∆Xp

Zp+∆Zp

Yp+∆Yp

Zp+∆Zp



−





Xp

Zp

Yp

Zp









(5.8)

which can be write as:

f p
xZp∆Xp + f p

sθZp∆Yp + (−f p
xXp + f p

sθYp − Zp∆xp)∆Zp = Z2
p∆xp (5.9)

f p
yZp∆Yp +

(

−f p
yYp − Zp∆yp

)

∆Zp = Z2
p∆yp (5.10)
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Since the sensitivity analysis is not spatial invariant, assume we know position in

3D world coordinate system, i.e.











Xw

Yw

Zw











is given and we only consider the projection

on the calibration board, i.e. ∆Zw = 0.

Then we have:










∆Xp

∆Yp

∆Zp











= RpRc











∆Xw

∆Yw

0











(5.11)

which can be write as:

(RpRc)
−1
31 ∆Xp + (RpRc)

−1
32 ∆Yp + (RpRc)

−1
33 ∆Zp = 0 (5.12)

where (RpRc)
−1
ij is the ithrow jthcolumn element of the inverse matrix of RpRc.

Write Eqn. 5.9, 5.10 and 5.12 in the matrix form to solve











∆Xp

∆Yp

∆Zp











, we get:











∆Xp

∆Yp

∆Zp











=











f p
xZp f p

sθZp −f p
xXp + f p

sθYp − Zp∆xp

0 f p
yZp −f p

yYp − Zp∆yp

(RpRc)
−1
31 (RpRc)

−1
32 (RpRc)

−1
33











−1 









Z2
p∆xp

Z2
p∆yp

0











(5.13)

Thus, the shifting on the camera’s image plane is:





∆xc

∆yc



 =





f c
x f c

sθ

0 f c
y



 (pc′ldn − pcldn) =





f c
x f c

sθ

0 f c
y



 (pc′phn − pcphn)

=





f c
x f c

sθ

0 f c
y













Xc+∆Xc

Zc+∆Zc

Yc+∆Yc

Zc+∆Zc



−





Xc

Zc

Yc

Zc









(5.14)
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where










∆Xc

∆Yc

∆Zc











= R−1
p











∆Xp

∆Yp

∆Zp











= R−1
p











f p
xZp f p

sθZp −f p
xXp + f p

sθZp − Zp∆xp

0 f p
yZp −f p

yYp − Zp∆yp

(RpRc)
−1
31 (RpRc)

−1
32 (RpRc)

−1
33











−1









Z2
p∆xp

Z2
p∆yp

0











(5.15)

and











Xc

Yc

Zc











can be calculated from Eqn. 3.1.

5.2 Experimental Sensitivity Analysis

Our goal of the experimental sensitivity analysis is to evaluate the shifting on cam-

era image plane ∆xc,∆yc caused by 1 pixel shifting on projector image plane(∆xp =

1,∆yp = 1). The experimental procedure is designed as follows:

1. Design a checkerboard pattern. Our checkerboard pattern has size 64 pixel ×64

pixel for each square.

2. Project the designed checkerboard pattern to the platen using one projector

and using the camera to capture the projected pattern.

3. Detect the corners of the checkerboard on the captured image using Harris

corner detection and calculate the distance of each pair of adjacent corners

∆D64. Fig. 5.1 shows the detected corners when projecting using the front

projector.

4. Since each adjacent corners are 64 pixels apart on the projector image plane,

simply divide ∆D64 by 64, we will get the shifting on camera’s image plane

caused by 1 pixel shifting on projector image plane.
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Fig. 5.1. Harris corner detected checkerboard corners used for sensitivity analysis

5. Repeat for the other projector.

5.3 Comparison of Simulation and Experiment Results

Our simulation result is based on differentials and small signal theory which we

discuss in Sec. 5.1. We give out an analytical representation of ∆xc,∆yc in terms of

∆xp,∆yp in Eqn. 5.14. For the experiment result, we follow the procedure we design

in Sec. 5.2. And Fig. 5.2 and Fig. 5.3 show the visualization of the experiment result

on camera image plane and a comparison of the simulation and experiment result.
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Fig. 5.2. Sensitivity analysis comparison for front projector, ∆xp = 1 pixel
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5.4 Design Tolerance

During the design process of the 3D capture system, not only do we want to know

the resolution we can get from the camera image in terms of projector’s resolution, we

also want to know the system tolerance with respect to the movement of the camera

and projector.

5.4.1 Camera Tolerance

Camera tolerance is to determine the amount of shifting a camera can tolerant

without shifting too much on the image plane, for a fixed point in space. Suppose in

the camera coordinate system, the camera’s center is at the origin











0

0

0











. Considering

a fixed 3D point in space, the coordinates are











Xc

Yc

Zc











. If we shift the camera center

by











∆Xc

∆Yc

∆Zc











, then the 3D point’s coordinates become











Xc −∆Xc

Yc −∆Yc

Zc −∆Zc











. Since the arm

of the Topshot, where the camera is embedded, can only be folded up or down, we

assume ∆Xc = 0.

Using the Eqn. 5.14, and considering the tolerance on the camera’s image plane

is within 1 pixel, we have:





∆xc

∆yc



 =





f c
x f c

sθ

0 f c
y









Xc−∆Xc

Zc−∆Zc
− Xc

Zc

Yc−∆Yc

Zc−∆Zc
− Yc

Zc



 <





1√
2

1√
2



 (5.16)

Solve Eqn. 5.16, we get the camera position tolerance is:

∆Xc = 0
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∆Yc

∆Zc



 <





−f c
sθZc f c

xXc + f c
sθYc +

1√
2
Zc

−f c
yZc f c

yYc +
1√
2
Zc





−1 



1√
2
Z2

c

1√
2
Z2

c



 (5.17)

5.4.2 Projector Tolerance

Projector tolerance is similar to camera tolerance, which is to determine the

amount of shifting a projector can tolerant without shifting too much on the im-

age plane, for a fixed point in space. Suppose in the projector coordinate system, the

projector’s center is at the origin











0

0

0











. Considering a fixed 3D point in space, the

coordinates are











Xp

Yp

Zp











. If we shift the projector center by











∆Xp

∆Yp

∆Zp











, then the 3D

point’s coordinates become











Xp −∆Xp

Yp −∆Yp

Zp −∆Zp











. Considering our fixture which hold the

project can only rotate in the Yc − Zc plane, we assume ∆Xp = 0.

Using the Eqn. 5.8, and considering the tolerance on the projector’s image plane

is within 1 pixel, we have:





∆xp

∆yp



 =





f p
x f p

sθ

0 f p
y









Xp−∆Xp

Zp−∆Zp
− Xp

Zp

Yp−∆Yp

Zp−∆Zp
− Yp

Zp



 <





1√
2

1√
2



 (5.18)

Solve Eqn. 5.18, we get the projector tolerance is:

∆Xp = 0





∆Yp

∆Zp



 <





−f p
sθZp f p

xXp + f p
sθYp +

1√
2
Zp

−f p
yZp f p

yYp +
1√
2
Zp





−1



1√
2
Z2

p

1√
2
Z2

p



 (5.19)
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Fig. 5.4. The working region of the dual-projector system, X =
240mm, Y = 160mm, Z = 60mm

5.4.3 Simulation Results for Camera and Projector Tolerance

Considering the working region of the dual-projector system is a rectangular par-

allelepiped. The dimension is X = 240mm, Y = 160mm, Z = 60mm, as shown in

Fig. 5.4.

To simulation the camera tolerance, considering inside the working region, sample

one point in every 25mm in X,Y,Z direction. Then use Eqn. 5.17 to calculate the

tolerated shifting camera could bear for each sample point. The shifting is converted

from camera coordinates to world coordinates using Eqn.5.2 and plotted in Fig. 5.5.

As we can see from the plot, camera tolerance is larger for the points close to camera

optic axis, and decreases for points away from camera optic axis.

Similarly, to simulation the front projector tolerance, we only consider half of the

working region,since one projector only covers half of the platen. Then, we sample one
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point in every 25mm in X,Y,Z direction and use Eqn. 5.19 to calculate the tolerated

shifting projector could bear for each sample point. The shifting is converted from

projector coordinates to world coordinates using Eqn.5.2, 5.3 and plotted in Fig. 5.6.

As we can see from the plot, projector tolerance is larger for the points close to

projector optic axis, and decreases for points away from projector optic axis.
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6. CHANGE PERSPECTIVE FOR AN IMAGE USING 3D

DEPTH MAP

In this chapter, we discuss the change of perspective for an image using 3D depth

map our structured light system generates.

6.1 Perspective Change

Perspective is caused by different object-lens distance. It includes wide-angle

distortion and telephoto distortion. The former one is also called the extension dis-

tortion, which is caused by the closeness to object and result in the extension of

distance. That means closer object appears abnormally large, and distant object ap-

pears abnormally small. The latter one is also called compression distortion, which

is due to the largeness of the object-lens distance and result in the compressing of

distance. In this situation, closer object appears abnormally small, and distant object

appears abnormally large. There is a common misunderstanding that the perspective

of an object is changed by focal length of the camera. Fig. 6.1 shows an example of

using different focal lengths, same object-lens distance, we can crop the image to have

exactly the same view, with different depth of views. And Fig. 6.2 illustrates that it

is the object-lens distance changes the perspective of an object , not focal length.

Perspective can be controlled by perspective control lens, or corrected in post-

processing. It requires 3D information to change the perspective.



39

Fig. 6.1. An example of different focal lengths, same object-lens dis-
tance maintains the same view (image from web)

Fig. 6.2. An example of same focal length, different object-lens dis-
tances change the views
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6.2 The Mathematics of Lens

The lens equation establishes the relationship between the focal length fc, the

object-lens distance do and the image-lens distance di, which is expressed as:

1

fc
=

1

do
+

1

di
(6.1)

As we discussed in Sec. 6.1, in order to change the perspective of an object, we

need to change the object-lens distance do. As we increase do, since fc is fixed, di

decreases. This means the object becomes smaller and flatter, which would change

the perspective.

Fig. 6.3 illustrates this principle. The red star on the left-hand side of the lens

represents the original object. The red star on the right-hand side of the lens is the

image of the object. If we increase do to d′o,the image of the object appears smaller

and flatter on the image plane, which is shown on the lower-right corner, where xi, yi

are the original image coordinates and x′
i, y

′
i are the reconstructed image coordinates

of one particular point.

6.3 Perspective Change

The flowchart of perspective change is showed in Fig. 6.4. First, we need to capture

our object use focal length fc and object-lens distance do. do varies by positions on

our object, which is called a depth map. The 3D depth map is generated by our 3D

capture system prototype. The depth map has 36×27 points. We need to interpolate

these points to all the pixels of the image, which are 1600 × 1200 points using the

Shepard Interpolation [47]. And we also increase do to d
′
o by a certain ratio. Therefore,

by solving the equations
1

fc
=

1

do
+

1

di
(6.2)

1

fc
=

1

d′o
+

1

d′i
(6.3)
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Fig. 6.3. Lens optics
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Fig. 6.4. Flowchart for perspective change using 3D depth map
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we get

d′i
di

=
y′i
yi

=
x′
i

xi

=
d′o(do − fc)

do(d′o − fc)

(6.4)

Now, we can calculate the output pixel locations using Eqn. 6.4 for a given pixel

on the input image. This is an input-driven mapping, which will cause missing pixel

on the output image. We use local neighborhood averaging to fill in the missing pixels

and generate the final output image, in which the perspective has been changed.

Fig. 6.5 is a plot of Eqn. 6.4. We can conclude from the plot that, first, for a given

focal length, increase the lens-object distance changes the perspective , especially from

do to 2do. Second, as focal length increases, the change mentioned above becomes

more dramatically. For this reason, when we remapping the image, we use a larger

fc as well, since the original fc ≈ 3mm, which is too small that even large change in

do fails to show change in perspective views. Our results are shown in Fig. 6.6.

6.4 Shepard Interpolation

In this section, we introduce the Shepard Interpolation [47], which is also known

as inverse distance weighted interpolation we used in Sec. 6.3.

f(x, y) =

N
∑

i=1

wif(xi, yi) (6.5)

wi =











D−2

i∑N
j=1

D−2

j

if Di 6= 0

1 if Di = 0

(6.6)

where f(x, y) is the value to be interpolated, f(xi, yi) is the value at known data point

(xi, yi), and D−2
i = 1

|(x−xi)2+(y−yi)2|
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(a) Original image fc = 100mm, object-lens distance do

(b) Corrected image fc = 100mm, change object-lens distance to

d′o = 2do

Fig. 6.6. An example of perspective change

The shortcoming of Shepard Interpolation is when the number of data points is

large, the calculation of f(x, y) becomes proportionately longer.
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7. LENS DISTORTION AND PERSPECTIVE

DISTORTION CORRECTION FOR IMAGE

The goal of this project is to correct the lens distortion and the perspective distortion

that an iPhone5 camera may introduce. The corrected grid pattern image will be

used as an orthophoto to measure the size of the coffee grinds.

7.1 Blue Grid Pattern

The blue grid pattern (Fig. 7.1) is designed to be a calibration target both for the

calibration process and the distortion correction process. We choose the color blue

because we can easily extract it from the brownish coffee grind particles. Instead of

using solid blue squares, which may experience more glaring when imaging, only use

squares with blue outlines.

7.2 Lens Distortion Correction

The captured image has noticeable lens distortion (mainly radial distortion, may

include Barrel, Pincushion, or a mixture of these two). Straight lines are not cap-

tured as straight lines. This is caused by the failure of a lens to be rectilinear. See

Fig. 7.2. First we calibrate camera using our blue grid pattern (Fig. 7.1) and Zhang’s

camera calibration method [45]. The calibration result will include the lens distortion

parameters k1 and k2. Barrel distortion typically will have a positive term for k1 and

pincushion distortion will have a negative value.

Let (xcorrect, ycorrect) be the correct location without radial distortion:

xdistorted = xcorrect + (xcorrect − u0)(k1r
2 + k2r

4) (7.1)
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Fig. 7.1. Blue grid pattern used for calibration and orthophoto generation
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Fig. 7.2. Example of an original image suffers from lens distortion
and perspective distortion
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Fig. 7.3. Illustration of perspective distortion (image from web)

ydistorted = ycorrect + (ycorrect − v0)(k1r
2 + k2r

4) (7.2)

Where r2 = (xcorrect−u0)
2+(ycorrect−v0)

2, u0 and v0 are principal points (intersection

of camera optical axis and image plane).

Then we can correct the radial distortion by warping the captured image with a

reverse distortion. For each pixel in the correct image, map its corresponding location

in the distorted image using Eqn.7.1 and 7.2, and apply bilinear interpolation in the

distorted image to get the RGB value.

7.3 Perspective Distortion Correction

Perspective distortion occurs when the camera optical axis is not perpendicular

to the center of the object (Fig. 7.3). The parallel lines in the scene are not parallel

in the image (Fig. 7.2).

When capture the image of particles, use blue grid pattern as background refer-

ence. By using the following method, we can use four corner points of a rectangle in

the scene to find the homography to correct the perspective distortion, i.e. make all

parallel lines in the scene also parallel in the image, all lines orthogonal in the scene
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are orthogonal in the image, squares in scene have unit aspect ratio in the image, and

circles in the scene are circular in the image.

Suppose we have a point in world coordinates





xworld

yworld



 and we write this in

homogeneous coordinates as











kxworld

kyworld

k











.

Similary, the corresponding point in image coordinates is





ximg

yimg



, and we write this

in homogeneous coordinates as











k′ximg

k′yimg

k′











.

The relationship between these two can be expressed in the following equation:
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k′yimg
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= H
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where H =











H11 H12 H13

H21 H22 H23

H31 H32 1











is the Homography we want to solve.

Expanding both sides of the equation using matrix multiplication, we get:

k′ximg = k(H11x
world +H12y

world +H13)

k′yimg = k(H21x
world +H22y

world +H23)

k′ = k(H31x
world +H32y

world + 1)
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Plug in the third equation to the first two, we get two equations from this pair of

points:

ximg = H11x
world +H12y

world +H13 −H31x
imgxworld −H32x

imgyworld

yimg = H21x
world +H22y

world +H23 −H31y
imgxworld −H32y

imgyworld

Since there are eight unknowns in H, we need 4 pairs of points to solve H.

We write the eight equations in matrix form:
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Thus, for each image suffers from the projective distortion, we pick four points in this

image, and given the world coordinates of these four points, we are able to solve H.

7.4 Corner Detection Algorithm

Corner detection plays an important role during both the camera calibration pro-

cess and perspective distortion correction process. In the camera calibration process,

we need to extract all the corner points, and use their world coordinates and image

coordinates to get the intrinsic parameters and extrinsic parameters of the camera.

And in the perspective distortion correction process, we need at least four corners,

the upper left, upper right, lower left, lower right corners to find the homography.

The idea of this algorithm is to transect each side of each square to find the outer

boundary points, and fit straight lines to these points to get the outer boundaries.
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Fig. 7.4. Flowchart for corner detection algorithm

And then intersect these boundaries to get the corners. The detailed flow chart is

presented in Fig.7.4. Fig.7.5 shows how to find one outer boundary point by searching

a single transect of the left boundary. Fig. 7.6 illustrates the line fitting of the outer

boundaries and the red crosses represent the four corners.

7.5 Method and Flowchart

1. Acquire and set up capture device and system. (Fig.7.8) Use a box as a camera

stand to keep the distance between the pattern and the camera lens constant.

2. First Stage: model based correction (Scientific Approach)

(a) Correct lens distortion

i. Capture a set of blue grid pattern images for camera calibration.

ii. Extract the all the corner points of the squares in the grid pattern

iii. Use OpenCV library to do camera calibration, get the lens distortion

parameters for the camera.
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Fig. 7.5. Illustration of finding outer boundary point for a single
transect of the left boundary
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Fig. 7.6. Fitting lines to find the boundaries. The intersections of lines are corners
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iv. Use OpenCV library and the lens distortion parameters to correct the

distorted image.

(b) Correct projective distortion

i. Sprinkle some coffee grind particles on the pattern, and capture the

image.

ii. Use the corner detection algorithm to detect the upper left, upper

right, bottom left, bottom right corners of the grid.

Use the method discussed in previous section to solve the homography H be-

tween the four pairs of points in world coordinate system and image coordinate

system. Correct the image using the homography H to get the perspective-

distortion-free image.

3. Second Stage: measurement based correction (Engineering Approach) For every

blue square, generate a re-mapping factor α =
size of the corrected square
size of the distorted square

, use

Shepard Interpolation [47] to generate a scalar map for every pixel in the image.

Given a particle position, easily apply the corresponding scalar to the size of

the distorted particle to get the correct size for the particle.

Fig. 7.9 shows the flowchart of the algorithm.

7.6 Results

Fig. 7.10 shows the image after lens distortion correction based on the original

image Fig. 7.2, and Fig. 7.11 shows the bounding box corners for preliminary per-

spective distortion correction. Fig. 7.12 is the final corrected image with detected

corner points on it.
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(a) Blue grid extracted binary image
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Fig. 7.8. System set-up
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Fig. 7.9. Flowchart of the algorithm
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Fig. 7.10. Lens distortion corrected image
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Fig. 7.11. Bounding box corners for preliminary perspective distortion correction
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Fig. 7.12. Final corrected image with detected corners
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8. 3D RECONSTRUCTION USING STRAIGHT LINE

PATTERNS

In this chapter, we present one possible structured light coding strategy using our

dual-projector system to capture 3D data. We first introduce the depth map acqui-

sition theory, followed by the experiment set-up and finally the experimental result.

8.1 3D Depth Map Acquisition Theory

Use the pinhole camera model with lens distortion we discussed in Sec. 3.1, we form

the forward mapping of a 3D point from world coordinate system to camera image

plane and projector image plane respectively. Take the camera as example in Fig. 8.1,

we first map the point in world coordinate system to camera coordinate system using

camera extrinsic parameters, followed by normalization and lens distortion. Last but

not least, we multiply the camera intrinsic matrix to get the 2D coordinates of the 3D

point on camera image plane. The projector has a similar forward mapping, except

we need to convert the world coordinates to camera coordinates first and then to

projector coordinate system.

This whole process is invertible expect the normalization. Therefore, given a point

on camera image plane





xc
ld

ycld



 and the corresponding point on projector image plane





xp
ld

ypld



, we can calculate the reverse mapping up to normalization, where we get





Xc/Zc

Yc/Zc



 for camera and





Xp/Zp

Yp/Zp



 for projector.
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Fig. 8.1. Mapping relationship between 3D world coordinates, cam-
era image plane and projector image plane. This whole process is
invertible expect the normalization.
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Next, we use the rotation and translation relationship to get the world coordinates.

First by using Eqn. 4.1, we have
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+Tp (8.1)

which is equivalent to

Zp











Xp

Zp

Yp

Zp

1











= RpZc











Xc

Zc

Yc

Zc

1











+Tp (8.2)

By solving Eqn. 8.2, which is an overdetermined system with two unknowns, we

get Zc and Zp simultaneously. Use
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, we get the

corresponding world coordinates
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.

8.2 Reconstruction Using Straight Line Patterns

In this section, we introduce a 3D capture procedure by projecting a series of

vertical and horizontal line patterns, and detecting the captured distorted lines. By

decoding the positions of the intersections of horizontal and vertical lines, we are able

to reconstruct the depth information. We will introduce the straight line pattern

design first and discuss the procedure of experiment.

8.2.1 Pattern Design

We first design 30 images that each contains a black background and a horizontal

line, and 40 images that each contains a black background and a vertical line. The
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Fig. 8.2. The straight line patterns includes 30 images that each
contains a black background and a horizontal line, and 40 images that
each contains a black background and a vertical line. The lines are
in different positions in different images. Horizontal lines are shifted
3 pixels for each consecutive image, and vertical lines are shifted 5
pixels. The width for each line is 10 pixel.

lines are in different positions in different images. Horizontal lines are shifted 3 pixels

for each consecutive image, and vertical lines are shifted 5 pixels. The width for each

line is 10 pixel. The pattern series are shown in Fig. 8.2.

8.2.2 Experiment Procedure

The experiment procedure is shown in Fig. 8.3. We first project all the line

patterns sequentially, and capture the series of distorted lines on the object using the

camera. By extracting the position of all detectable distorted lines, we obtain the

intersection of one horizontal line and one vertical line as one data point on camera

image plane. Since the data point’s location are given in the projector image plane
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Fig. 8.3. 3D reconstruction procedure using straight line patterns.

using the line design we mentioned above, we have the corresponding data point in

both camera and projector image plane, hence we can extract the 3D information for

this point using the method from Sec. 8.1.

8.3 Data Fusing Procedure and 3D Reconstruction Result

Use the above approach, we are able to generate the 3D model for our object.

However, due to shadow and obliqueness, we are not capable of getting a complete

model use single capture angle. To solve this, we introduced a simple data fusing

procedure shown in Fig. 8.4.

First, we tape the object on a piece of 8.5′′ × 8.5′′ cardboard, and place the

cardboard on the platen for 3D capture. Rotate the cardboard every 90◦ around the
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Fig. 8.4. Rotate object 90◦ and fuse the 4 sets of data together



68

Fig. 8.5. Four sets of generated 3D data points and corresponding 3D
reconstruction results before fusing.
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Fig. 8.6. 3D reconstruction result by fusing four views together

center of the cardboard and capture total 4 sets of data. The generated four sets of

3D data points and the corresponding 3D reconstruction results are shown in Fig. 8.5.

By rotating 3 sets of data to match the remaining set of data using the following

2D rotation transformation, we can merge them all together:





Xw

′

Yw

′



 =





cos θ − sin θ

sin θ cos θ









Xw

Yw



 (8.3)
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Fig. 8.7. The dimension of the wedge and how we use it to capture
the oblique edge around the object.

Figure. 8.7 shows the design of a wedge we use to increase the degree of freedom

of the rotation, in order to capture the oblique edge around the object that we are

not able to get using the above procedure. Therefore, we use the wedge to capture

the forehead and chin of the mask separately. The results are shown in Fig. 8.8.

To merge the data captured using the wedge with the original four sets of data,

we need to apply the following 3D rotation transformation:
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(8.4)

The complete data point after fusing all six sets of data together is shown in

Fig. 8.9. To fill in any missing area remaining, we use Shepard interpolation and local

averaging to smooth the surface. Figure. 8.10 shows the generated surface result after

applying Shepard interpolation to original data points and final surface result after
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Fig. 8.8. Captured 3D data for forehead and chin using wedge.
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Fig. 8.9. Complete data points after fusing all six sets of data together

applying local smoothing to Shepard interpolated result. This way, we get a nearly

complete object model shown in Fig. 8.11.
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(a) Generated surface result after applying Shepard interpolation to orig-

inal data points

(b) Final surface result after applying local smoothing to Shepard inter-

polated result

Fig. 8.10. Surface reconstructed result after Shepard interpolation
and local smoothing
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Fig. 8.11. Final 3D reconstructed result
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9. SYSTEM RECONSTRUCTION ACCURACY

ANALYSIS

In this chapter, we present the system accuracy analysis [31] using a new staircase

by comparing the a set of points’ manually measured coordinates on the staircase

and the reconstructed coordinates using the straight line pattern 3D reconstruction

procedure.

9.1 Experiment Set-up

Figure 9.1 shows our newly designed staircase specifically for the accuracy analysis.

The dimension of the staircase is 24cm(L) × 16cm(W ) × 6cm(H). There are total

six steps, and each step is 16cm(L)× 4cm(W )× 1cm(H). Figure 9.2 is the flowchart

for the accuracy experiment. We first place the staircase on the platen, and project

a grid pattern(Fig. 9.3) on the staircase and mark the position of the intersections

on the staircase. Figure 9.4 shows the marker positions on the staircase. The grid

pattern is actually the superposition of a subsample of the vertical and horizontal

lines we introduced in Sec. 8.2.1. This way, it guarantees that we get 3D information

of all the markers. Next, we run the 3D capture procedure using straight line patterns

described in Sec. 8.2.2, and get the markers’ reconstructed 3D coordinates Xr, Yr, Zr.

Last but not least, we use a caliper to manually measure all the markers’ actual 3D

coordinates Xo, Yo, Zo and compare with the reconstructed ones.

9.2 System Accuracy Result and Analysis

In this section, we first present the result for the accuracy analysis. Then we

analyze the possible causes for these errors and validate our hypothesis.
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Fig. 9.1. Dimensions of the staircase used for accuracy analysis

Fig. 9.2. Flowchart for the accuracy analysis
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Fig. 9.3. Superimposed grid pattern projected by rear (left) and front
(right) projector to determine the position of the markers used for
accuracy analysis
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Fig. 9.4. Markers on staircase that used for measuring accuracy of
the system and the order of indexing
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Fig. 9.5. Comparison of the measured and reconstructed coordinates
of the markers on the staircase. The blue dots represent the actual
3D coordinates Xo, Yo, Zo we measured manually using a caliper and
the red dots are the reconstructed 3D coordinates Xr, Yr, Zr using our
3D capture system. The magenta arrows represent the error vectors.

9.2.1 System Accuracy Result

Figure. 9.5 is the comparison of the measured and reconstructed coordinates of the

markers on the staircase. The blue dots represent the actual 3D coordinatesXo, Yo, Zo

we measured manually using a caliper and the red dots are the reconstructed 3D

coordinates Xr, Yr, Zr using our 3D capture system. The magenta arrow represent

the error vector.

Figure9.6 compares the absolute differences between the measured and recon-

structed coordinates of the markers in X Y and Z axis. The red line represents

the error in X axis (|Xo −Xr| = 2.17 ± 0.61). The blue line shows the error in Y
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Fig. 9.6. Comparison of the absolute differences between the measured
and reconstructed coordinates of the markers in X Y and Z axis, where
|Xo −Xr| = 2.17 ± 0.61, |Yo − Yr| = 1.95 ± 0.92 and |Zo − Zr| =
1.92± 1.4.

axis (|Yo − Yr| = 1.95 ± 0.92) and the green line is the error in Z axis (|Zo − Zr| =

1.92± 1.4). The X axis is the point index. All the points are indexed in raster order

from upper right corner as shown in Fig. 9.4. Points 1 to 30 are the data from right

projector and points 31 to 66 are the data from left projector.
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9.2.2 Z Direction Error Analysis

As shown in Fig. 9.6, points 1 to 40 are the points on the top 3 steps of the

staircase, and points 41 to 66 are the points on the lower 3 steps. Based on the

sensitivity analysis in Chap. 5, displacement on projector image plane ∆xp = 1 pixel

and ∆yp = 1 pixel cause approximately ∆xc = 2 pixel and ∆yc = 2 pixel on camera

image plane on Z = 0 plane. Since the intersection size of vertical line and horizontal

line on projector image plane is 10 pixel × 10 pixel by design. Then the intersection

size on camera image plane is 20 pixel × 20 pixel according to the sensitivity analysis.

If we consider an error on camera image plane ∆xc = 5 pixel and ∆yc = 5 pixel in the

detection process, this causes an average error in Z direction ∆Z = 1.36mm. Since the

intersection size on camera image increases on higher floors, the error in Z direction

∆Z = |Zo − Zr| increases as well. Therefore, we conclude that the reconstruction

performs better on the lower levels than the higher levels.

9.2.3 X, Y Direction Error Analysis

As shown in Fig. 9.6, both X and Y direction error is increasing as the point index

increases. Our hypothesis for this is when we measure the points’ X and Y coordinates

Xo and Yo, the measurement is locally, instead of globally. The reference point we use

is point No.1, and the coordinates of the reference point is measured globally. Next

we measure the rest of the points’ coordinates with regard to the reference point and

combine with the reference’s coordinates to get all points’ coordinates. Based on our

measuring process, the points closer to the reference point have smaller errors, while

the points further away from the reference point have larger errors, which is consistent

with the experiment result.

To further validate this hypothesis, we choose the last point No. 66 as our reference

point and measure all the other points’ coordinates with regard to the new reference

point. The measurement result is show in Fig. 9.7. As we expect, the X and Y

direction error decreases as the point index increases, since the last point is our
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Fig. 9.7. Comparison of the absolute differences between the measured
and reconstructed coordinates of the markers in X Y and Z axis, using
point No.66 as reference point.

reference point.Therefore, we conclude that the point closer to the reference point

has smaller error in X and Y direction and the point further away from the reference

point has larger error due to our measurement procedure.
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10. PERSPECTIVE CHANGE: AN APPLICATION

USING 3D DEPTH MAP

3D projection can be cataloged into orthographic projection, weak perspective projec-

tion and perspective projection. 3D objects are captured by camera, or observed by

human eyes in the form of perspective projection, where points further away from the

image plane appears smaller, while points closer to the image plane appears larger.

One example of the perspective model is the pinhole camera model. The origin of

camera coordinate system is the center of projection. The ray that connects each point

on the 3D object to the center of projection intersects with the image plane. The

intersection of the ray and the image plane is the projection of that point from the ob-

ject. Orthographic projection, in another way, does not have a center of projection.

Orthographic projection only has a viewing direction instead. The ray that starts

from the point on the 3D object and is parallel to the viewing direction intersects

with image plane to form the projection of that 3D point. Therefore, orthographic

preserves the actual dimensions of the object regardless the viewing distance, which

is widely used among construction and engineering. Weak perspective projection is

a limiting form of the perspective projection, which occurs when the depth of the

object along viewing direction is small (< 10%) compared to the viewing distance.

In this case, perspective projection can be modeled as orthographic projection with a

scalar that ensures that objects closer to the image plane appears smaller and objects

further away from the image plane appears larger [48,49]. In this chapter, we mainly

use perspective projection and pinhole camera model.

In Chap. 6 we already introduced an application of 3D depth map which can

change the perspective of an object using our first generation 3D capture system

that contains one projector. In this section, we discuss a similar application for the

dual-projector system.
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10.1 Problem Definition and Theory

As shown in Fig. 10.1, a series of photos illustrate how different object-lens dis-

tances change the perspective of the face. Left and center column shows the per-

spective change and the corresponding focal length used. Varies focal lengths are

only used to frame the person the same way. The right column shows exactly how

the photographer capture the center column images, and how object-lens distance

actually impact the perspective.

From Sec. 6.1, we already explain that the perspective is changed due to the object-

lens distance. Figure. 10.2 illustrates how object-lens distance impact perspective

of the object. Suppose green and red squares represent two points on the object.

The original distances from lens to green square and red square are dgo and dro,

respectively. Decrease the distances from lens to green square and red square to dgo
′

and dro
′

, the corresponding points on the image plane are becoming larger and more

distorted, comparing to the points on the original image plane, which are smaller and

flatter.

10.2 Flowchart and Results

Figure. 10.3 shows the flowchart of perspective change using the 3D depth map

we obtained from Sec. 8.3. After we get the 3D depth map of the object, we first

convert the depth map to the object-lens (do)map. Then we interpolate the object-

lens map (do) to the whole image use Shepard interpolation, and modified to a new

object-lens map (do
′ = kdo). The ratio k could be any positive number. If k < 1,

then the object-lens distance decreases, the object become more distorted than the

original. Otherwise, the object become flatter than the original. Use the new object-

lens map (do
′),we can map each pixel on the original 2D image to the new image

using Eq. 6.4. Last but not least, we fill in the missing pixels on the output image by

locally averaging the neighbor pixels.
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Fig. 10.1. A series of photos illustrate that different object lens dis-
tances change the perspective of the face. Left and center column
shows the perspective change and the corresponding focal length used.
Varies focal lengths are only used to frame the person the same way.
The right column shows exactly how the photographer capture the
center column images, and how object-lens distance actually impact
the perspective. (photo from web)



86

(a) Green and red squares represent two points on the object. The original distances

from lens to green square and red square are dgo and dro, respectively.

(b) Decrease the distances from lens to green square and red square to dgo
′

and dro
′

,

the corresponding points on the image plane are becoming larger and distorted

Fig. 10.2. Optics of how object-lens distance impact perspective of the object

The results of perspective change by decreasing the object-lens distance are shown

in Fig. 10.4. As k decreases from 1(original image) to 0.85 and 0.55, we can see the

object become more distorted and bigger. Similarly, the results of perspective change

by increasing the object-lens distance are shown in Fig. 10.5. As k increases from

1(original image) to 10 and 100, we can see the object become flatter and smaller.
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Fig. 10.3. First, we capture the 2D reference image and 3D depth map
of the object using 3D capture system. Convert the depth map to the
object-lens (do) map. Then we interpolate the object-lens map (do)
to the whole image use Shepard interpolation, and modified to a new
object-lens map (do

′ = kdo). Use the new object-lens map (do
′),we

can map each pixel on the original 2D image to the new image and
fill in the missing pixels on the output image by locally averaging the
neighbor pixels.
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(a) Original image (b) do

′

do

= 0.85 (c) do

′

do

= 0.55

Fig. 10.4. Decrease the object-lens distance, the object on the image
plane becomes distorted and larger

(a) Original image (b) do

′

do

= 10 (c) do

′

do

= 100

Fig. 10.5. Decrease the object-lens distance, the object on the image
plane becomes flatter and smaller
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11. SUMMARY

We present a novel design [50] using low-cost, readily available components to build

a 3D capture system that has sufficient resolution for home and small business use.

Compare to the state of art, the image capture and reconstruction processes are also

time efficient since only a single shot of the projected M-array pattern is requires.

The design and analysis of the dual-projector 3D capture system we present is the

fundamental for next step including decoding the M-array pattern (Fig. 11.1) and

reconstruction the surface [51] as well as the application using 3D depth information

for paper flattening and shading correction [52]. The paper flattening results are

shown in Fig. 11.2.

We describe an analytical approach to predicting the achievable resolution of the

reconstructed 3D object based on differentials and small signal theory, and an exper-

imental procedure for validating that the system under test meets the specification

for reconstructed object resolution that are predicted by our analytical model. The

experimental procedure is based on comparing results from the analytical sensitiv-

ity analysis, the results from the simulation codes, and analysis of the image data

captured by our system.

We also present a complete reconstruction example using straight line pattern to

demonstrate the functionality of our system. We introduce the pattern design, world

coordinates calculation and data collecting and fusing procedure in detail. We also

analyze the achievable reconstruction accuracy and explain the possible reasons for

the errors. Last but not least, we show an application that can change the perspective

of the object by altering the object-lens distance, which is not achievable without the

3D reconstruction data.
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Fig. 11.1. M-array pattern designed by Yang Lei [51],is used for estab-
lish the correspondence between projector image and camera image
to reconstruct the 3D surface
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(a) Original distorted book page

(b) Flattened left page (c) Flattened right page

Fig. 11.2. Paper flattening results using our first generation 3D capture prototype
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