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ABSTRACT 

Liu, Xiaohui. Ph.D., Purdue University, May 2016. Analysis of A Next Generation 

Energy System Based on the Integration of Transportation Subsystem Details. Major 

Professor: Joseph Pekny and James Dietz. 

 

As the economy continues to grow, the current energy system will need to meet the 

increasing demand, especially in the developing countries. The depletion of fossil fuels, 

the surge in energy use, and the growing threat of climate change require rapid 

development of next-generation energy system. Renewable energy, such as wind, solar, 

and biomass, will undoubtedly play an important role, as a result of improved technology 

and enhanced capability in energy storage. For example, the closer integration of 

transportation to the energy system through vehicle electrification will have an increasing 

effect on the trajectory of the energy system. In order to gain a deeper understanding of 

the future energy system, anticipate potential problems during the evolution, and provide 

constructive suggestions for policy makers, a systematic analysis of the next generation 

energy system is highly desirable.  

In general, the energy system consists of an energy demand sector and an energy supply 

sector. In this study, both supply and demand sectors are analyzed. For the energy 

demand sector, Electric Vehicle (EV) battery lifespan is quantified through an integrated 

battery aging model and a microscopic traffic network simulation model. Beyond EV 

battery lifespan, solar photovoltaic (PV) systems have also been studied in this research. 



xiv 

A distributed solar PV system model has been built for both research and educational 

purposes. Using this model, a benefit-cost analysis is applied to evaluate the impacts of 

combined tax breaks from depreciation and interest paid on home-equity loans on 

competitiveness under different purchase options for a 4 kW solar PV system in 

California. For the energy supply sector, this study sets out to investigate the effects of 

high penetration of renewable generators (wind and solar) on the supply-side of 

electricity market, particularly on electricity prices and carbon emissions.  
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CHAPTER 1. INTRODUCTION 

With the depletion of fossil fuels, the surge in energy use, associated unpredictable 

market effects, and the increasing threat of climate change, developing a next generation 

energy system becomes much more significant than ever. Renewable energy, 

undoubtedly, will play a significant role in the next generation energy system, since it 

involves far less pollution compared with fossil fuels, and it is unexhausted with diverse 

sources. Many governments have made policies to promote the development of 

renewable energy. For example, California is committed to provide 33% of its electricity 

by 2020 from qualifying resource such as wind, solar, geothermal, biomass, and small 

hydroelectric facilities[1]. Germany sets its targets for renewable energy by 27% of 

electricity by 2020 and at least 45% by 2030[2]. Japan has set renewable targets of 

between 25%-35% of total power generation by 2030[3]. 

The transportation sector is an important part of energy system which demands the 

majority of fossil fuels. It counts for about 70% of the total oil consumption in the 

US[4][5]. With petroleum prices fluctuated, oil dependency, and large CO2 contribution 

of conventional vehicles, Electrical Vehicles (EVs) have been introduced to the 

commercial marketplace to provide alternative [6][7]. Electric drive vehicle technology 

has been available for several decades [8]. With the advances of material science and 

continued engineering of rechargeable batteries, and the commercialization of combined 
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hybrid electric-combustion drive vehicles, electric drive vehicle technology will play an 

important role in powering the light vehicle transportation system. Currently, the electric 

drive vehicle is in two main configurations, pure electric vehicles (EVs) and plug-in 

hybrid electric vehicles (PHEVs). The main difference is that PHEVs contain a backup 

power source, typically gasoline that can help provide propulsion, while EVs only use 

electricity as power source [9]. The market share of EVs/PHEVs is increasing in recent 

years. According to ORNL’s (Oak Ridge National Laboratory) study, PHEVs would 

account for 2.5% of all new vehicles sales in 2015 in the US[10].  

However, there are still many challenges for the adoption of both renewable energy and 

EVs. Take renewable energy as an example, the electricity generated from solar and wind 

is highly variable related to weather changes. This variability will affect the stability of 

the existing power grid if integrating solar and wind directly. Large scale energy storage 

device is one possible solution to the variability of renewable electricity [11]–[13], but 

the high cost of battery is still one main obstacle for this solution. As for EVs, driving 

distance per charge, charging time, battery life, and charging infrastructures are all big 

concerns that affect EV adoption. These challenges are interdisciplinary problems, which 

involve the area of chemical engineering, civil engineering, mechanical engineering, 

industrial engineering, and even computer science. The analysis of these problems should 

not only focus on one area, but integrate all these areas and make an interdisciplinary 

study with different departments’ collaboration.   

Therefore, the objective of this thesis is to conduct an interdisciplinary study on the 

potential problems during energy system evolution using model-based method. Model-

based investigation enables efficient and economical studies on these solutions. The 
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collaboration with different departments will provide better understanding of the 

identified problems and the proposed solutions, and also provides constructive 

suggestions for policy makers to develop proper strategies to apply these solutions.  

 

1.1 Energy Demand Sector 

In general, the energy system consists of an energy demand sector and an energy supply 

sector. In this study, both supply and demand sectors are analyzed. For the energy 

demand sector, electric vehicles (EVs) are considered as a promising alternative to the 

conventional vehicles. Several commercialized EVs have already been in the market for a 

few years now. However, greater adoption of EVs still faces several challenges, among 

which is the concern about lifetime of EV batteries due to degradation. Lifespan 

information of populations of EV batteries is still scarce. Understanding the lifespan 

characteristics of EV batteries is significant for EV adoption, vehicle resale, and battery 

warranty strategy design. This study quantifies how different EV usage patterns affect 

EV battery lifespans with the collaboration of research groups from chemical engineering, 

civil engineering, and mechanical engineering. Real world household vehicle travel 

information is extracted from the National Household Travel Survey (NHTS) database. A 

micro-level transportation model based on the Indianapolis network is built to generate 

realistic drive cycle data. The household vehicle usage pattern information is then 

obtained by matching the travel information with drive cycles. A semi-empirical battery 

aging model is used to predict battery lifespan for a large simulated population of vehicle 

usage patterns. The simulated results show that both temperature and driving behaviors 

have great impacts on battery life. As temperature increases, battery life decreases, and 
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the variation of battery life also decreases. As travel distance increases, battery life 

decreases, but eventually approaches a constant after certain distance point.  This study 

can provide a good reference for battery warranty strategies to EV companies.  

Beyond EV battery lifespan, solar photovoltaic (PV) system has also been studied in this 

research. The residential use of small-scale solar generators in the U.S. has been steadily 

rising in recent years, which will potentially affect the electricity demand profiles. In this 

study, a distributed solar PV system model has been built for both research and 

educational purposes. The model can simulate household’s electricity demands for solar 

PV and energy storage device all over the world. To maximize applicability and interest, 

the simulation tool allows users to customize electricity demand to match household’s 

characteristics, change weather assumptions, select system location, and vary the solar 

module area and energy storage capacity. The model has been applied to one graduate 

course and two undergraduate courses to teach students about solar PV systems. In order 

to expand availability and potential use, a refined user interface has been created and the 

tool has been published online on NanoHub. The tool is named as “SolarPV” and can be 

accessed at: https://nanohub.org/tools/solarpv [14]. To date, the tool has already been 

used in 10 different countries or regions across the world since published. Moreover, by 

using this model, a benefit-cost analysis is applied to evaluate the impacts of combined 

tax breaks from depreciation and interest paid on home-equity loans on competitiveness 

under different purchase options for a 4 kW solar PV system in California. The results 

indicated that the additional tax breaks from depreciation in conjunction with those from 

interest paid on home-equity loans can make purchasing much more competitive.  

 

https://nanohub.org/tools/solarpv
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1.2 Energy Supply Sector 

For the energy supply sector, many countries have instituted various policies and targets 

for the adoption of renewable generators. However, these policies, while effective in 

increasing renewable penetration, may distort market forces or even disrupt the stability 

of the energy market. In order to systematically evaluate renewable energy effects, a 

detailed energy system model based on the city of Singapore is developed to investigate 

the effects of high penetration of renewable generators (wind and solar) on the supply-

side of electricity market. Both marginal electricity prices and carbon emissions are 

quantified for three different penetration scenarios of wind and solar: a scenario of only 

wind capacity, a scenario of only solar, and a balanced mix of wind and solar energy 

sources. It was assumed that the effect of generators’ capacity factor (the ratio of its 

actual output over a period of time, to its maximum possible output if it were operated at 

full nameplate capacity) was considered when calculating bid prices. When low capacity 

factors for generators force units to bid at prices that are above the allowed price caps, the 

generators are assumed to be retired from the system. The loss of some of these dispatch-

able generators could amplify market effects during exceptional events. The simulation 

results reveal that the wind and solar generation affect the assumed electricity system 

very differently. In general, wind generation would reduce carbon emissions more than 

solar energy sources with similar effective capacity. However, wind energy increases 

marginal electricity prices more than equivalent solar capacities, because wind energy 

contributes a higher degree of uncertainty. It was interesting to note that from a system 

perspective, renewable energy resources should be favored differently for different 

system objectives.    
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CHAPTER 2.  QUANTIFYING EV BATTERY LIFESPAN AND ITS IMPACT ON 

BATTERY WARRANTY STRATEGY THROUGH AN INTEGRATED 

BATTERY AGING MODEL AND A MICROSCOPIC TRAFFIC NETWORK 

SIMULATION MODEL 

This chapter is based on a manuscript that has been submitted to the Journal of Power 

Sources. This paper is done in collaboration with the school of Civil Engineering and the 

school of Mechanical Engineering at Purdue University. The coauthors on this 

manuscript are Shubham Agrawal, Xing Jin, Ashish Vora, Gregory Shaver, Srinivas 

Peeta, James Dietz and Joseph Pekny. This chapter quantifies how different EV usage 

patterns affect EV battery lifespan. Real world household vehicle travel information is 

extracted from the National Household Travel Survey (NHTS) database. A microscopic 

traffic simulation model for the Indianapolis road network is built to generate realistic 

drive cycle data. Then the household vehicle usage pattern information is obtained by 

matching the travel information with drive cycles. A semi-empirical battery aging model 

is used to predict battery lifespan for a simulated population of vehicle usage patterns 

based upon the NHTS data. 

 

2.1 Introduction 

The transportation sector is an important component of energy consumption. It 

accounts for about 70% of the total oil consumption in the US[15] [16]. Conventional 

vehicles use liquid fossil fuels as their energy sources, and become the largest 
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contributors to urban air pollution as well as to anthropogenic greenhouse gas 

emissions [17]. In 2013, greenhouse gas emissions from transportation accounted for 

about 27% of total U.S. greenhouse gas emissions, making it the second largest 

contributor of U.S. greenhouse gas emissions after the electricity sector [18]. With the 

fluctuation of petroleum prices and the large CO2 contribution of conventional 

vehicles, Electric Vehicles (EVs) have been introduced to the commercial 

marketplace to provide an alternative. Because EVs have no tailpipe emissions, they 

use electricity for propulsion, and electricity can be generated from renewable energy, 

a population of EVs can become non-CO2 emitting as the generation mix evolve. 

Significantly EVs provide large scale experience in electric energy storage which 

drives innovation.  However, the greater adoption of EV still faces several substantial 

challenges. These include range anxiety/short range between charges, availability of 

charging infrastructure, the potential impact on power grid stability, higher vehicle 

price, and concerns about useful battery life due to degradation [19][20]. This paper is 

focused on predicting useful battery life under realistic use conditions.  

The majority of EVs in the market use a Li-ion battery pack with an energy capacity 

of around 20 kWh. For example, the battery pack energy capacity for the Nissan leaf 

is 24 kWh, Honda Fit EV is 20 kWh, Ford Focus Electric is 23 kWh, and Smart EV is 

17.6 kWh. The energy capacity of a battery peak degrades with time and usage [21]–

[26]. As the energy capacity decreases, the vehicle range drops. An often stated 

common criteria is that the battery should be retired from the vehicle application if its 

capacity has depleted to 70-80% of its original capacity [19][24]–[26]. The 

replacement of a battery pack poses significant cost to vehicle owners, though 
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batteries can be resold and utilized for other applications such as renewable energy 

storage[27]–[29]. Under this common replacement criterion, a well-designed battery 

warranty strategy is very important for EV adoption. However, for the current 

commercialized EVs in the market, only the Nissan Leaf has a battery capacity 

warranty. Under this warranty, Nissan will repair or replace a Leaf's battery within 

five years or 60,000 miles if it loses more than 30 percent of its energy capacity [30]. 

Other EV battery warranties do not include regular capacity degradation. Therefore, 

quantifying EV battery lifespan for a large population of EVs is very important for 

vehicle manufacturers, car owners, and battery researchers seeking to support 

practical applications.  

Battery degradation mechanisms are an important consideration to explore EV battery 

lifespan. Two types of degradation/aging mechanisms are significant: during storage 

(calendar aging) and during use (cycle aging). Calendar aging is due to side reactions 

resulting from thermodynamic instability of active materials, while cycle aging 

results from kinetic effects, such as structural disordering, or concentration gradients 

[25]. In past work, the total aging effect is considered as the summation of calendar 

aging and cycle aging, but interactions may occur [25], [31], [32]. Battery aging 

mainly happens at the two electrodes: anode (e.g. graphite) and cathode (e.g. lithium 

metal oxide). Aging mechanisms occurring at anodes and cathodes are significantly 

different. Most researchers believe that changes to the Solid Electrolyte Interphase 

(SEI) due to reactions of the anode with the electrolyte are the major source for aging 

at the anode [24], [33]. Unlike the anode, the cathode can be made using different 

types of metal oxide materials. Different materials have quite different effects on 
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battery life, and the mechanisms of capacity fade at the cathode are not completely 

understood. Moreover, battery aging is induced by various processes and their 

interactions, and most of them cannot be studied independently [24]. Due to the 

complexity of the Lithium-ion battery system, some researchers have created semi-

empirical battery life models for specific Li-ion battery chemistries based on 

experimental data. For example, Wang et al. developed a cycle-life model for 

graphite-LiFePO4 cells based on a cell test experimental matrix [23]. Using similar 

method, Wang et al. created another refined battery life estimation model for 

graphite-LiMn1/3Ni1/3Co1/3+LiMn2O4 (graphite-NCM+LMO) battery cell [22]. This 

model successfully represents both calendar life and cycle life. They also developed a 

chemical-mechanical degradation model at the micro-level [21]. Lee et al. did similar 

work for graphite-LiNi0.6Co0.2Mn0.2O2 cell and created a semi-empirical model [34]. 

Thomas et al. built a degradation model and an error model using a statistical method 

based on experimental data [35].  

Using the aforementioned battery life estimation models, some researchers have 

studied the battery lifespan for EVs/PHEVs (Plug-in Hybrid Electric Vehicle). For 

example, Guenther et al. studied the EV battery lifespan for different charging 

behaviors and drive cycles scenarios [36]. Marano et al. explored the battery life for 

PHEV under different drive cycles [37]. However none of these studies use realistic 

drive cycles for a population of vehicles for a given metropolitan region. Guenther et 

al. use three fixed drive cycles. Marano et al. combines three standard drive cycles 

(UDDS, US06, and HWFET) in four scenarios. Other researchers applied standard 

drive cycles by either repetition or combination. As shown in our study results, 
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driving behavior has a significant impact on battery life. Using standard drive cycles 

is useful under a variety of considerations, but does not represent the variation in 

driving behavior and traffic conditions. Hence realistic drive cycles are required for 

studying EV battery lifespan, insight on the economics of batteries, and to provide 

targets for researchers seeking to improve battery technology.  

This study quantifies EV battery lifespan for a significant population of EVs through 

a semi-empirical battery aging model [22] and a microscopic traffic simulation model.  

Realistic drive cycles are generated from the Indianapolis road transportation network 

because there is good data for Indianapolis. Five different temperature scenarios are 

examined. The results provide a foundation for EV battery warranty design.  

 

2.2 Methodology  

A multi-paradigm modeling approach provides the flexibility to study the lifespan 

characteristics of a population of EVs. It enables different systems to be simulated 

with the most suitable modeling methods. Population behavior for a transportation 

network is addressed using building blocks, each of which represents a relevant set of 

phenomena. By building up theses blocks together, the whole system can be 

simulated and investigated in a holistic manner. This paper considers four different 

building blocks: a microscopic traffic network simulation model which provides 

realistic drive cycles for thousands of vehicles, an EV energy consumption model 

which provides power demand results under different drive cycle conditions, a battery 

circuit model which converts power demands to current flows, and a semi-empirical 
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battery degradation model which simulates battery lifespan based on current flows 

and temperature. 

In the microscopic traffic network simulation model, vehicle trips from the National 

Household Transportation Survey 2009 (NHTS) database are combined to provide 

drive cycles that reflect traffic conditions. The drive cycle data is then fed into the EV 

energy consumption model to simulate power profiles. The simulated power profiles 

are then fed as inputs to the battery circuit model to obtain current data. In the end, 

the current data is fed into the battery aging model to simulate EV battery life. Figure 

2.1 shows a simplified flowchart of the methodology framework. 

 

2.2.1 Household Vehicle Usage Patterns 

Usage patterns affect vehicle health. For EVs, travel distance, travel speed, and 

vehicle acceleration and deceleration all impact battery health. In this study, real 

household vehicle daily travel information is extracted from the NHTS database to 

represent household vehicle usage patterns. This information records trip start time, 

end time, trip distance, etc., however there is no detailed drive cycle information (i.e. 

speed vs. time data) for each trip. In order to get speed vs. time data, a microscopic 

traffic network simulation model has been built based on the city of Indianapolis. 

This model can generate realistic drive cycles for all the vehicles traveling in the 

network. Specifically, the drive cycles are matched with each vehicle trip from the 

NHTS database to obtain the whole household vehicle daily usage patterns.  
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Figure 2.1 Flowchart of framework used in this study 

 

2.2.1.1 Household Vehicle Travel Information 

The NHTS 2009 provides a survey of daily trip profiles of 150,147 random 

households across the United States[38]. The database includes car type, trip start and 
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end time, trip distance, trip origin, trip destination, household location, etc. Among 

the 150,147 households, 4,350 are from the state of Indiana. This study extracts all of 

the 2,832 samples which are from Indianapolis urban and suburban areas to represent 

Indianapolis households. Considering the range of EVs, only samples with daily 

travel distance less than or equal to 80 miles are selected, resulting in 2,306 (about 81% 

of 2,832) representative samples of household vehicles. Table 2.1 provides an 

example of the extracted vehicle travel information from the NHTS database. Each 

row in Table 2.1 represents a single trip for the example vehicle. The daily travel 

distance for this vehicle (30 miles) is the summation of all four trips. Figure 2.2 

shows the histogram of daily travel distance for the 2,306 selected samples.  

Table 2.1 Example of vehicle travel information for a randomly selected vehicle 

extracted from the NHTS 2009 database.  

Vehicle ID Start time End time  Distance Trip from Trip to Freeway 

26469456_01 16:15 16:35 8 home buy services N 

26469456_01 16:45 17:00 8 buy services home N 

26469456_01 17:25 17:42 7 
home religious 

activity 
N 

26469456_01 18:42 19:00 7 
religious 

activity 

home 
N 

 

Since only samples with daily travel distance less than or equal to 80 miles are 

selected, the maximum daily travel distance is 80 miles. About 70% are below 30 

miles and 90% are below 50 miles. By comparison, for the 150,147 household 

samples in the NHTS, about 90% of the samples’ daily travel distance is below 80 

miles. For all the samples below 80 miles, 65% are below 30 miles and 86% are 

below 50 miles. Compared with the total data sample, the selected Indianapolis 

sample is consistent.  
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Figure 2.2  Daily travel distance histogram of the selected 2306 vehicle samples 

2.2.1.2 Microscopic Traffic Network Simulation Model   

Traffic simulation techniques are commonly used to capture the interactions between 

vehicles as well as between vehicles and infrastructure at a microscopic level. A 

microscopic simulation model uses various models such as car-following, lane-

changing, route choice, etc. to mimic real-world conditions. In this study, detailed 

drive cycles of vehicles are required to compute the battery life of EVs. The traffic 

network simulation software AIMSUN is used to generate realistic drive-cycles of the 

vehicles at the microscopic level. A detailed road network of Indianapolis is 

developed in AIMSUN. The network contains all the freeways, most of the urban 

roads and some minor roads as shown in Figure 2.3. The traffic is simulated in 

AIMSUN for a 24-hour period with a discrete origin-destination (O-D) demand 

aggregated at 15-minute intervals.  The traffic demand level is calibrated based on the 

NHTS data of the city of Indianapolis in 2009.  
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In AIMSUN, vehicles are assigned to specific routes based on distance and road-type. 

The trip data for each vehicle from the 2306 samples is obtained by matching to a 

specific trip in the network based on the trip departure time, distance, trip purpose, 

and freeway route indicator. The trip departure time and trip distance are the primary 

parameters used for matching. From these, the trip end time will be determined 

automatically as the drive cycle is generated by the network. The trip purpose is used 

to assign route towards the downtown area or the sub-urban area, and the freeway 

route indicator is used to check whether the trip uses the freeway. A Python program 

is developed to gather the drive-cycle data from AIMSUN for specific vehicles that 

match the 2306 samples of trip profiles based on the above criteria. Therefore, each 

trip has a unique drive cycle generated from the Indianapolis network. The first plot 

in Figure 2.4 shows an example of the vehicle drive cycle information.  
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Figure 2.3 Indianapolis road network  
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Figure 2.4 Drive cycle profile of the vehicle sample in Table 2.1 and its 

corresponding power profile and battery pack current profile  

 

2.2.2 EV Energy Consumption Model   

Vehicles consume energy differently when following different drive cycles. There are 

several models or simulation tools that can simulate EV energy consumptions based 

on the drive cycle data. For example, ADVISOR and Autonomie [39], [40] can 

simulate an EV’s power profile, MPGe (mile per gasoline equivalent), state of charge 

(SOC) profile, etc. for any given drive cycle. These tools simulate the detailed 

performance of the power train/propulsion systems, and hence are computationally 

expensive. A physical model focused on energy demand presented by Tesla Motor’s 

CTO, JB Straubel is used in this study[41][42]. This approach is used because (1) the 

model illustrates the relationship between EV energy consumption and drive cycle, 
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and (2) the runtime is significantly less compared with using a package like 

ADVISOR that simulates vehicle behavior details not needed for the objectives of 

this study.  

In the physical model, the total energy consumption is composed of two parts. One is 

the energy loss that the vehicle needs to overcome to travel at any given constant 

speed. The other is the kinetic energy loss (or gain) during acceleration or braking. 

The first part can be further divided into 4 parts: power loss due to aerodynamics, 

𝑃𝑎𝑒𝑟 , power loss for drive-train, 𝑃𝑑𝑟 , power loss for tires, 𝑃𝑟𝑟 , and power loss for 

ancillary systems, 𝑃𝑎𝑛𝑐.  These power losses can be expressed as equation (1-4). The 

definitions and values of the parameters are listed in Table 2.2.    

𝑃𝑎𝑒𝑟 =
1

2
𝜌𝐴𝐶𝑑𝑉3                                                                                                    (1) 

𝑃𝑑𝑟 = 𝛼𝑑𝑟𝑉3 + 𝛽𝑑𝑟𝑉2 + 𝛾𝑑𝑟𝑉 + 𝑐𝑑𝑟                                                                (2) 

𝑃𝑟𝑟 = 𝑐𝑟𝑟𝑚𝑔𝑉                                                                                                         (3) 

𝑃𝑎𝑛𝑐 = 0.2 𝑡𝑜 2.2 kW                                                                                            (4) 

Kinetic energy in the vehicle includes linear kinetic energy 𝐸𝑙𝑖𝑛 and rotational kinetic 

energy𝐸𝑟𝑜𝑡 . Typically, rotational kinetic energy is only 5-10% of the total kinetic 

energy stored in a car. It is assumed that the total kinetic energy 𝐸𝑘𝑖𝑛 is 1.05 times the 

linear kinetic energy[41][42].  

𝐸𝑘𝑖𝑛 = 𝐸𝑙𝑖𝑛 + 𝐸𝑟𝑜𝑡 ≈ 1.05 ∗ 𝐸𝑙𝑖𝑛                                                                         (5) 

𝐸𝑙𝑖𝑛 =
1

2
𝑚𝑉2                                                                                                             (6) 

The energy loss during acceleration 𝐸𝑎𝑐𝑐  and energy recuperation 𝐸𝑑𝑒𝑐 during 

braking are: 

𝐸𝑎𝑐𝑐 =
∆𝐸𝑘𝑖𝑛

𝛽𝑒𝑓𝑓
                                                                                                               (7) 

𝐸𝑑𝑒𝑐 = 𝛽𝑟𝑏𝑠 ∗ ∆𝐸𝑘𝑖𝑛                                                                                                 (8) 
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𝛽𝑒𝑓𝑓 is the motor efficiency and 𝛽𝑟𝑏𝑠 is the efficiency of power transfer from regeneration 

system to battery. Therefore, the total energy consumption for a drive cycle is: 

𝐸𝑡𝑜𝑡 = ∑ 𝐸𝑎𝑐𝑐 + ∑ 𝐸𝑑𝑒𝑐 + ∫ 𝑃𝑎𝑒𝑟𝑑𝑡 + ∫ 𝑃𝑑𝑟𝑑𝑡 + ∫ 𝑃𝑟𝑟𝑑𝑡 + ∫ 𝑃𝑎𝑛𝑐𝑑𝑡        (9) 

The definition and the value used for each parameter are listed in Table 2.2. Using 

this model, the power versus time profiles for the 2306 vehicles are computationally 

cheaper to simulate because only what is needed is computed for the next step of the 

framework in Figure 2.1. The second plot in Figure 2.4 shows an example of the 

power profile generated using this model.  

Table 2.2 Parameter definitions and values for EV energy consumption model [41][42] 

Parameter Definition  Value 

𝐶𝑑 Drag coefficient  0.29 

ρ Air density (kg/m3) 1.2 

A Vehicle front area (m2) 2.27 

𝛼𝑑𝑟 Drivetrain coefficient 1 4*10-6 

𝛽𝑑𝑟 Drivetrain coefficient 2 5*10-4 

𝛾𝑑𝑟 Drivetrain coefficient 3 0.0293 

𝑐𝑑𝑟 Drivetrain coefficient 4 0.375 

𝑐𝑟𝑟 Rolling resistance coefficient 0.0075 

𝑚 Vehicle mass (kg) 1520 

𝑔 Gravity (m/s2) 9.81 

𝛽𝑒𝑓𝑓 Battery to motor efficiency 0.85 

𝛽𝑟𝑏𝑠 Regeneration efficiency  0.4 

 

2.2.3 Battery Model  

Battery degradation rate is different at different C-rates1, so the current profile is 

needed to simulate battery life. In this study, an equivalent-circuit model is used to 

represent the Li-ion battery cell as shown Figure 2.5 . This model enables the 

                                                 
1 The C-rate is a measure of the rate at which a battery is being discharged. It is defined as the 

discharge current divided by the theoretical current draw under which the battery would deliver its 

nominal rated capacity in one hour. A 1C discharge rate would deliver the battery's rated capacity in 1 

hour. A 2C discharge rate means it will discharge twice as fast (30 minutes) “A Guide to 

Understanding Battery Specifications, MIT Electric Vehicle Team, December 2008” 
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extraction of a cell current profile from each unique power profile. The internal 

resistance and open-circuit voltage of the cell are implemented as 1-d lookup tables 

based on instantaneous cell state-of-charge (SOC). The model is implemented as a 

Simulink block diagram representing equations (10-14). The definition and value 

used for each parameter are shown in Table 2.3. The third plot in Figure 2.4 shows an 

example of the battery pack current generated using this model. 

𝑉𝑐𝑒𝑙𝑙(𝑡) =  𝑉𝑂𝐶(𝑡) − 𝐼𝑐𝑒𝑙𝑙(𝑡) ∗ 𝑅𝑖𝑛𝑡(𝑡)                                                        (10) 

𝑃𝑐𝑒𝑙𝑙(𝑡) =
 𝑃𝑏𝑎𝑡𝑡(𝑡)

𝑁𝑐𝑒𝑙𝑙
= 𝑉𝑐𝑒𝑙𝑙(𝑡) ∗ 𝐼𝑐𝑒𝑙𝑙(𝑡)                                                        (11)  

𝑉𝑂𝐶(𝑡) =  𝑓(𝑆𝑂𝐶(𝑡))                                                                                   (12) 

𝑅𝑖𝑛𝑡(𝑡) = 𝑔(𝑆𝑂𝐶(𝑡))                                                                                   (13) 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(0) +  
1

𝐴ℎ𝐶𝑎𝑝
∗  ∫

𝐼𝑐𝑒𝑙𝑙(𝑡)

3600

𝑡

0
𝑑𝑡                                                   (14) 

 

 

Figure 2.5 Schematic diagram of the equivalent-circuit model used in this study  
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Table 2.3 Parameter definitions and values for equivalent-circuit battery model  

Parameter Definition  

𝑉𝑐𝑒𝑙𝑙 cell terminal voltage 

 𝑉𝑂𝐶 cell open-circuit voltage 

𝐼𝑐𝑒𝑙𝑙 cell current 

𝑅𝑖𝑛𝑡 cell internal resistance 

𝑃𝑐𝑒𝑙𝑙 electrical power out of the cell 

𝑃𝑏𝑎𝑡𝑡 electrical power out of the battery pack 

𝑁𝑐𝑒𝑙𝑙 number of cells in the battery pack 

𝑆𝑂𝐶(0) initial state-of-charge 

 𝑓 , 𝑔 1-d lookup tables 

𝐴ℎ𝐶𝑎𝑝 nominal ampere-hour capacity of the cell 

 

2.2.4 Battery Degradation Model  

Battery degradation causes capacity loss and impedance growth during operation and 

is also a result of storage. Operational degradation is called cycle aging, and storage 

degradation is called calendar aging. Calendar aging happens regardless of whether 

the battery is operated or not. It is mainly caused by the Li-ion loss during SEI 

formation at the graphite anode [22], and is strongly affected by two parameters: time 

and temperature. Cycle aging only happens when the battery is operating and there is 

current flow. The total battery energy capacity loss is the summation of these two 

effects. 

Wang et al developed a semi-empirical model which includes three important 

experimental parameters: time, temperature, and discharge rate [22]. They performed 

experiments for 1.5 Ah, 18650 cylindrical cells and created a test matrix to measure 

each cell. The cell has a LiMn1/3Ni1/3Co1/3 + LiMn2O4 (NCM+LMO) cathode and a 

graphite anode. They modeled both calendar aging and cycle aging using substantial 

experimental data. According to the results in their published paper in the Journal of 
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Power Sources, they suggest that under most conditions, the predicted values are 

within ±5% capacity loss of the measured values [22].  

The model developed by Wang et al [22] used in this study is listed in equations (15-

17). The coefficient values and units are listed in Table 2.4. 

𝑄𝑙𝑜𝑠𝑠,% = 𝑄𝑙𝑜𝑠𝑠,𝑐𝑦𝑐𝑙𝑒 + 𝑄𝑙𝑜𝑠𝑠,𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟                                                        (15) 

𝑄𝑙𝑜𝑠𝑠,𝑐𝑦𝑐𝑙𝑒 = (𝑎𝑇2 + 𝑏𝑇 + 𝑐) ∙ exp [(𝑑𝑇 + 𝑒) ∙ 𝐼𝑟𝑎𝑡𝑒] ∙ 𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡     (16) 

𝑄𝑙𝑜𝑠𝑠,𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 = 𝑓 ∙ 𝑡0.5 ∙ exp (
−𝐸𝑎

𝑅𝑇
)                                                           (17) 

The cycle aging model is for a given constant C-rate. In reality, it is not possible for 

an EV to operate at a constant battery C-rate, so the drive cycle is divided into small 

time windows, and the degradation in each window is calculated independently. The 

calculation is discussed in section 2.2.5.2.  

Table 2.4 Coefficient values and units of the battery degradation model used in this 

study [22] 

Coefficient values and units 

a 8.61E-6,1/Ah-K2 𝐼𝑟𝑎𝑡𝑒 C-rate 

b -5.125E-3,1/Ah-K t Days 

c 0.7629,1/Ah 𝐸𝑎 24500,J/mole 

d -6.7E-3,1/K-(C-rate) R 8.314,J/(mole K) 

e 2.35,1/(C-rate) T K 

f 14876,1/day0.5   

 

2.2.5 Assumptions and Simulation  

In this study, one type of EV is assumed to be used by all of the households. This EV, 

closely resembling a Nissan Leaf, has a 24kWh Li-ion battery. The battery is 

composed of 44 modules in parallel, where each module has 96 cells in serial, and 

each cell is 1.5Ah and 3.75 V. The cell has a NCM+LMO cathode and a graphite 

anode. Because a NCM+LMO composite cathode presents a good balance of both 
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energy density and power density [22], [43], [44], it has been considered as a 

promising candidate for vehicle applications.  The EV specifications are listed in 

Table 2.5. 

Table 2.5 Specifications of simulated vehicles  

Parameter  Value 

Vehicle mass (kg) 1520 

Total battery energy capacity (kWh) 24 

Drag coefficient  0.29 

Front area (m2) 2.27 

Ancillary load (kW) 1 

Battery module No. 44 

Battery cell No. 96*44 

Battery chemistry  Li-ion with NCM+LMO cathode and C 

anode 

  

2.2.5.1 Assumptions  

The simulation of battery life in this study is based on the following assumptions:  

First, the battery is considered unusable in vehicle applications when it has depleted 

to 70% of its original energy storage capacity. This is a common criterion in nearly all 

studies that EV batteries must be retired once they have reached 70-80% of their 

original energy storage capacity [19][24]–[26].  

Second, the degradation model is applied to the entire temperature range experienced 

in Indianapolis (monthly average temperature from -2.2 oC to 24.1 oC). J. Wang et al 

performed experiments at 4 temperatures: 10oC, 22 oC, 34 oC, 46 oC. This study 

assumes the model still applies at lower (but not extreme) temperatures.   

Third, this study assumes that EVs are only charged at home with a level 1 (120V) or 

level 2 (240V) charger.   
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Fourth, the effects of home charging on battery energy capacity loss can be ignored. 

Level 1 and level 2 charging are both relatively slow. A 24kWh EV battery takes 

about 12-13 hours for a full charge on a level 1 charger, and 7-8 hours on a level 2 

charger [45], which is equivalent to a 1/13 C-rate or 1/8 C-rate during charging. At 

such low C-rates, calendar aging is the dominant element that causes energy capacity 

loss. The energy capacity loss results from cycle aging at 1/8 C-rate at 20 oC for 8 

hours is: 0.00066 %, while the capacity loss results from calendar aging at 20 oC for 8 

hours is 0.37% for a new battery, and 0.0056% for a one-year battery2. In reality, a 

full charge barely happens. Most household vehicle daily trips are within 30 miles, 

and the energy consumption is less than half of the battery energy capacity. So most 

home charging events are less than 4 hours. Therefore, it is safe to ignore cycle aging 

effects on battery energy capacity loss during home charging.  

Fifth, when the EV is running, regeneration has the same effects on battery energy 

capacity loss as discharging at the same C-rate.  

2.2.5.2 Simulation 

This study simulates 2306 household vehicle samples in Indianapolis. Each vehicle 

sample follows its unique usage pattern day by day. Five temperature scenarios are 

analyzed in this study: four constant temperature scenarios (10oC, 15oC, 20oC, 25oC) 

and one variable temperature scenario. The monthly average temperatures for 

Indianapolis are used in variable temperature scenario. Figure 2.6 shows the 

temperature profile of Indianapolis used in this study.  

                                                 
2 Since capacity loss due to calendar aging, 𝑄𝑙𝑜𝑠𝑠,𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 = 𝑓 ∙ 𝑡0.5 ∙ exp (

−𝐸𝑎

𝑅𝑇
) , is a non-linear function 

of time t, the calendar aging rate decreases as time passed, and becomes almost linear after one year.  
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Figure 2.6  Indianapolis monthly average temperature  

 

In simulation, battery energy capacity loss caused by cycle aging is calculated every 

second. For each second, the current is assumed to be constant, and the energy 

capacity loss can be expressed as the differential of 𝑄𝑙𝑜𝑠𝑠,𝑐𝑦𝑐𝑙𝑒 at that time point. The 

total energy capacity loss of cycle aging is the summation of all the losses in each 

second.  

𝐷𝑄𝑙𝑜𝑠𝑠,𝑐𝑦𝑐𝑙𝑒
= (𝑎𝑇2 + 𝑏𝑇 + 𝑐) ∙ exp [(𝑑𝑇 + 𝑒) ∙ 𝐼𝑟𝑎𝑡𝑒]𝐷𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

          (18) 

𝑄𝑙𝑜𝑠𝑠,𝑐𝑦𝑐𝑙𝑒 = ∑ 𝐷𝑄𝑙𝑜𝑠𝑠,𝑐𝑦𝑐𝑙𝑒
                                                                           (19) 

Similarly, at variable temperature, capacity loss results from calendar aging can be 

expressed as:  

𝐷𝑄𝑙𝑜𝑠𝑠,𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟
= 0.5𝑓 ∙ exp (−

𝐸𝑎

𝑅𝑇
) ∙ 𝑡−0.5𝐷𝑡                                                (20) 

𝑄𝑙𝑜𝑠𝑠,𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 = ∑ 𝐷𝑄𝑙𝑜𝑠𝑠,𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟
                                                                 (21) 

The total battery energy capacity loss is the sum of cycle aging loss and calendar 

aging loss, which is updated every day until it is greater than 30%. The final time (in 

days) is the battery life.   
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2.3 Results and Discussions  

The simulation results of EV battery lifespan of the 2306 samples for different 

temperature scenarios are presented and discussed in the following paragraphs. 

 

2.3.1 Battery Life Distribution  

In this study, each EV follows its unique drive cycles every day. Some EVs may have 

6 trips every day, and others only have one trip per day. Both travel distance and 

driving behavior affect battery lifespan. A distribution functions provide a global 

picture of the battery lifespan.  

 

2.3.1.1 Battery Life Distribution at Four Constant Temperature  

Temperature affects both calendar aging and cycle aging. Figure 2.7 shows the 

simulated battery life histogram at 4 constant temperatures. The results indicate that 

the EV battery lifespan is (8.58±1.80) years at 10oC, (7.33±0.73) years at 15oC, 

(5.73±0.19) years at 20oC, and (4.20±0.06) years at 25oC. The EV battery life 

decreases as temperature increases. At higher temperatures, the battery degrades 

faster than at lower temperatures. The variation of EV battery life also decreases as 

temperature increases. The reason is that at higher temperatures, calendar aging is the 

dominant element that affects battery life, and all EVs are at the same environmental 

temperature. So at higher temperatures, the variation is smaller.  
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Figure 2.7 Simulated battery lifespan distribution at constant temperatures  

 

Figure 2.8 shows the cumulative distribution function (CDF) of the simulated EV 

battery lifespan at the four constant temperatures. It is clear that as temperature 

increases, battery lifespan decreases and the variation of battery lifespan also 

decreases. Table 2.6 shows detailed percentile of battery lifespan and EV total travel 

distance for the five temperature scenarios. It shows that at 10oC, 90% of the EV 

batteries can last for more than 6 years and travel for more than 15,937 miles. 50% of 

the EV batteries can last for 8.6 years and travel for more than 58,141 miles. Only 10% 

can last for 10.9 years and travel for 108,763 miles. The percentile at different 

temperatures can be read from Table 2.6. 
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Figure 2.8 Simulated battery life CDF at constant temperature  

 

2.3.1.2 Battery Life Distribution in Indianapolis  

In reality, temperature will not be constant all year long. The average monthly 

temperature profile in Indianapolis is used to simulate the EV battery lifespan in the 

city of Indianapolis. The annual average temperature in Indianapolis is 11.7oC. The 

simulated EV battery lifespan is (7.54±1.68) years.  Figure 2.9 shows the histogram 

of battery life in Indianapolis, and Figure 2.10 shows the CDF of battery life in 

Indianapolis. Although the temperature profile of Indianapolis varies between -2.2oC 

to 24.1oC, the simulated result is similar to the scenario of 10oC, and lies between the 
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10 oC and 15 oC scenarios. Therefore, the average annual temperature is reasonable to 

use as an estimate in computing degradation due to temperature effects.  

 

Figure 2.9 Simulated battery life distribution in Indianapolis temperature  

 

According to Table 2.6, in Indianapolis, 90% of the EV batteries have a life more 

than 5.15 years, and can travel more than 14,080 miles. 50% have a life more than 

7.57 years, and can travel more than 50,940 miles. And 10% have a life more than 

9.65 years, and can travel more than 94,144 miles.  Considering 100,000 miles as a 

vehicle lifetime milestone, the results indicate that battery replacement is unavoidable 

for more than 90% of the vehicles in Indianapolis.  Thus economic use of EVs seems 

to depend on secondary use of vehicle batteries whereby owners receive a significant 

trade-in value for batteries with capacity fading.  Over time the population of batteries 
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in societal service will increase and a substantial market will exist for improved 

battery technologies replacing older ones taken out of service.  This used battery 

market thus has potential to drive battery innovation. 

 

Figure 2.10 Simulated battery lifespan CDF in Indianapolis  
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Table 2.6 The percentile of battery lifespan and total travel distances for different 

temperature scenarios  

% 

Indianapolis 10oC 15 oC 20 oC 25 oC 

Value 

(yr) 

Value 

(mi) 

Value 

(yr) 

Value 

(mi) 

Value 

(yr) 

Value 

(mi) 

Value 

(yr) 

Value 

(mi) 

Value 

(yr) 

Value 

(mi) 

0 0.30 1653 1.42 1845 3.01 1346 4.38 967 3.88 693 

5 4.88 7612 5.62 8557 5.98 6128 5.34 4368 4.08 3126 

10 5.15 14080 6.05 15937 6.23 11960 5.42 8676 4.11 6232 

15 5.67 20522 6.52 23167 6.49 17738 5.51 12966 4.13 9336 

20 5.96 24057 6.86 27517 6.66 21846 5.56 16210 4.15 11722 

25 6.24 28160 7.20 32299 6.83 26037 5.61 19341 4.17 13968 

30 6.57 33104 7.52 37529 6.98 29413 5.65 21909 4.18 15884 

35 6.84 37303 7.79 42370 7.09 34320 5.68 25692 4.19 18600 

40 7.03 41468 8.05 47277 7.21 39438 5.71 29845 4.20 21658 

45 7.33 45874 8.34 52302 7.32 44586 5.74 34051 4.21 24739 

50 7.57 50940 8.62 58141 7.44 49936 5.77 38548 4.22 28198 

55 7.83 55766 8.89 63756 7.54 55476 5.79 43793 4.22 32193 

60 8.04 59556 9.15 68126 7.63 60685 5.82 48672 4.23 35902 

65 8.39 63527 9.51 72704 7.75 66484 5.84 53664 4.24 39676 

70 8.57 68782 9.71 78730 7.82 72842 5.86 58531 4.24 43029 

75 8.88 74111 10.04 85170 7.93 80160 5.88 65792 4.25 48768 

80 9.23 79197 10.37 91204 8.03 88416 5.91 73454 4.26 54756 

85 9.44 85882 10.64 98854 8.11 97524 5.92 81784 4.26 60833 

90 9.65 94144 10.90 108763 8.18 111200 5.94 96430 4.27 73250 

95 10.29 107729 11.49 124828 8.34 131553 5.97 116933 4.28 89239 

100 10.68 146400 12.00 169360 8.46 177280 6.00 156720 4.28 119280 

 

 

2.3.2 Travel Distance versus Battery Life 

In order to gain insight into the relationship between total travel distance and battery 

lifespan, the simulated battery life is plotted against the total travel distance. The 

negative slope indicates that as the EV travels longer, the battery life becomes shorter. 

The width of the strip shows the variation of battery life resulting from driving 

behavior such as travel speed and acceleration/deceleration speed.  
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2.3.2.1 Travel Distance versus Battery Life for Four Constant Temperatures  

Figure 2.11 shows total travel distance versus battery life at the four constant 

temperatures. The figures illustrates that at lower temperatures, the effect of total 

travel distance is greater than that at higher temperatures. It means that at higher 

temperatures, battery life is less sensitive to total travel distance. As temperature 

increases, the strip starts shrinking to almost a line, which indicates that at lower 

temperature, the effect of driving behavior is greater than that at higher temperature. 

Another interesting finding is that after a certain point, the strip becomes almost 

horizontal, parallel to the x-axis. The horizontal part provides intuitive information of 

minimum battery life at regular conditions, which is consistent with Table 2.6. For 

example, at 10oC, the horizontal part intersects the y-axis at about 5.6 years. 

According to Table 2.6, 95% of the EV batteries can last for more than 5.62 years.  
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Figure 2.11 Simulated battery lifespan vs total travel distance at constant 

temperatures 

 

2.3.2.2 Travel Distance versus Battery life in Indianapolis  

Figure 2.12 shows the battery life versus total travel distance in Indianapolis. The 

shape is similar to the constant temperature ones. The horizontal line intersects y-axis 

at about 4.8 years. The outlier data points which are not inside the strip show more 

variation than the constant temperature cases. Those outlier points will cause 

warranty cost for vehicle companies. 
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Figure 2.12 Battery life VS total travel distance in Indianapolis  

  

2.4  Conclusion  

This study explored battery life characteristics of a large population of EVs through 

microscopic traffic network simulation model and a semi-empirical battery 

degradation model. Interpretation of the results leads to the following conclusions:  

1. Battery life has a large variation due to vehicle usage patterns and driving 

behaviors. Generally speaking, the longer an EV travels, the shorter the 

battery life. 

2. Temperature has a substantial impact on battery life. As temperature increases, 

battery life decreases, and the variation of battery life also decreases. EV 

companies may need to design different warranty plans for different 

geographical areas. Future research should be targeted at improving battery 

life at a given temperature. 
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3. As travel distance increases, EV battery lifetime decreases and eventually 

approaches a constant.  

4. Battery life percentile data provides detailed information for EV companies to 

design warranty strategies. 

As the results show warranty strategy design is a complex economic problem. The 

data presented in this paper provides a realistic foundation for future work aimed at 

warranty strategy design and provides insight into the types of battery research that 

will impact real world battery lifespan.  
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CHAPTER 3. A LABORATORY TOOL FOR DISTRIBUTED SOLAR PV 

SYSTEMS EDUCATION 

This paper is based on a manuscript that will be submitted to the Journal of 

Engineering Education. This paper is done in collaboration with the department of 

Computer and Information Technology from Purdue University, Information 

Technology at Purdue (ITaP), and the department of Chemistry and Life Science 

from United Sates Military Academy. The coauthors on this manuscript are James 

Dietz, Russell Lachance, Andrew Biaglow, Derrick Kearney, Sudheera Fernando, 

Ann Catlin, and Joseph Pekny. This chapter presents a developed laboratory 

simulation tool for distributed solar PV systems, and how this tool is applied to 

educate university students about solar energy. 

 

3.1 Introduction 

With the rapid decrease in solar PV module costs, increasing expense of extracting 

liquid hydrocarbon fuel stocks, associated unpredictable market effects of fossil fuels, 

the need to advance billions more people out of poverty, and the desire to reduce CO2 

emissions, there are an array of forces shaping the evolution of the next generation 

energy system. Renewable energy will play a significant role in the next generation 

energy system.  Solar Photovoltaic (PV) systems, made up of PV panels, inverters, 

racking, and support elements, use PV cells to convert sunlight directly into 

electricity. Solar electricity is a promising option for sustainably providing future 
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energy, since it constitutes a renewable energy resource and involves far less 

pollution, including emission of CO2, than other power sources (the only pollution 

arises upstream and downstream, from production and disposal of PV equipment)[46]. 

With the rapid development of PV technology and the support from governments, 

solar PV systems are one of the fastest growing applications of solar energy. 

According to the literature[47]–[49], the global solar PV cells production increased 

very little from 1975 to 2000, but rose very rapidly from 2000 till present with a 

dramatic reduction in solar PV module cost. The global solar PV cell production had 

grown from 277 MW in 2000 to 38.5 GW in 2012.  There are also some programs 

that promote the installation of solar PV systems in the US, such as the California 

Solar Initiative (CSI) program which provides cash back for solar energy systems for 

existing homes[50]; The New York State Energy Research and Development 

Authority (NYSERDA) provides cash incentives for the installation by Eligible 

Installers of small scale solar PV systems [51]; Southwestern Electric Power 

Company (SWEPCO) offers rebates to customers that install photovoltaic (PV) 

systems on homes [52]. As a result, educators have an opportunity to provide a broad 

based understanding of solar PV systems to promote great awareness of the 

technology. Some universities are providing master’s degree courses in solar energy. 

However at the undergraduate level, solar energy is mainly the subject of curriculum 

of engineering and energy courses[53]–[62]. We seek to augment available education 

material with a practical hands-on experience in the nature and design of solar PV 

systems. We believe hands-on education is critical to the evolution of energy systems, 

so that a broad base of people can understand the basics of how energy systems work. 
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Widespread understanding is important to developing rational policy and the 

consensus needed for the large capital expenditures required for energy systems.  We 

developed a solar PV laboratory education module to help students and the public 

understand the fundamental driving phenomena and take advantage of the research 

findings. The objective of the work underlying this paper is to apply long standing 

modeling research results to educate university students about solar PV systems and 

promote public awareness of solar energy. The laboratory simulation tool was 

developed using AnyLogic. The simulation tool was applied to one graduate course 

and two undergraduate courses as a lab project. All the undergraduate students were 

asked to take a survey both before and after the lab project. The comparison of the 

survey results before and after the lab project demonstrated that the tool helped 

students learn about solar PV systems. 65% of the students believe that their current 

knowledge of solar PV systems is equal or above a “medium level” on a self-

assessment scale relative to before using the tool. In order to greatly increase 

availability and potential use, a refined user interface has been created based on the 

feedbacks from the courses, and the tool has been published online at: 

https://nanohub.org/tools/solarpv .  

 

3.2 Methodology  

A laboratory simulation tool for distributed solar PV systems has been applied on 

both graduate and undergraduate courses as a lab project. A questionnaire was 

distributed to undergraduate students at Purdue University and the United States 

Military Academy at West Point before and after the lab assignment.  

https://nanohub.org/tools/solarpv
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3.2.1 The Laboratory Tool 

An agent-based model of distributed solar PV systems was developed to help students 

learn about solar energy. The model is based on Shisheng Huang’s Ph. D. work on the 

dynamic model of household electricity demand [27]. In his study, a discrete event 

based residential model and an agent-based distributed solar and energy storage 

model are coupled with historical industrial and commercial demand data. For the 

laboratory tool, only residential electricity demand is considered, industrial and 

commercial demands are not taken into account. Therefore, some adjustment and 

changes were necessary, and the simplified flow diagram of the lab tool model is 

shown in Figure 3.1. In this model, the residential electricity demand is broken down 

into its individual households. Each household is then further assumed to be 

composed of a set of electrical appliances. The appliances form the basic units of 

electricity demand [27]. The total electricity demand for one household is obtained by 

summing all the appliances’ electricity demand. In this model, the electricity demand 

is supplied by two sources: one is the solar PV system of households, and the other is 

power grid. The solar PV system includes a battery or other energy storage device. 

Solar PV panel generates electricity according to solar radiation and weather 

conditions. If there is extra solar electricity, it will be stored in battery first and then 

be utilized when there is no solar electricity generated. Appliances will first use 

electricity from the solar PV system, and then use electricity from power grid if there 

is no solar electricity generated and no battery electricity.    
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Figure 3.1 Simplified flow diagram of the lab tool model 

 

The model is built using AnyLogic, a software environment which supports multi-

method simulation. In order to apply the model to education purposes, it has been 

compiled and exported as a JAVA application. With the application, students can run 

the simulation directly, and they do not need to install the AnyLogic environment. 

The lab assignment is divided into four steps: (1) learning electricity usage patterns; 

(2) studying the features of solar energy; (3) designing solar PV systems; and (4) 

comparing different business cases. In the first step, students are asked to obtain the 

residential electricity demand curve for a specific region. From this step, they will 

learn that the electricity demand varies at different hours during a day, and weather 

will also affect the demand of electricity via heating and air conditioning. In the 

second step, students are able to predict the residential electricity demand on the 

power grid after installing solar PV systems, so that they can intuitively see the effect 

of solar PV systems on electricity demand. The third and fourth steps are more 

difficult as measured by student performance on graded laboratory exercises. 

Students need to design a solar PV system and compare different business cases 
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based on what they have learned from step one and step two. To conduct the lab 

assignment, students needs to choose a model set of household appliances or collect 

data for their own custom appliances, input parameters to control the number of 

households, capacity of solar systems, weather, and season for the simulation, run 

simulations, and analyze results. Students develop an intuitive understanding of the 

variable nature of solar energy, effect of weather on both supply and demand, and the 

need to complement solar PV systems with energy storage or other forms of 

electricity generation.  After the lab assignment, students self-assess as having a 

better understanding of electricity usage patterns as well as distributed solar PV 

systems. 

The tool was first introduced to a graduate level course at Purdue University as the 

final project. The goal of the student project was to provide detailed feedback for both 

the tool and the design of the assignment. Following the feedback, the tool was 

updated so that it is more intuitive for undergraduate usage, and a manual book was 

edited to provide a reference for students. 

 

3.2.2 Questionnaire 

The updated tool was applied to two undergraduate level courses from Purdue 

University and United States Military Academy at West Point. In order to measure 

students’ understanding about solar PV systems, a questionnaire was designed 

(Appendix A) and distributed to students both before and after the lab assignment. 

The questionnaire used in this study focused on five main points: 1) the 

understanding of distributed solar PV systems, 2) the understanding of battery or 
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energy storage device for solar PV system, 3) the willingness to accept solar PV 

systems, 4) the interest in pursuing further studies or conducting research in an area 

related to solar PV systems, and 5) other attitudes towards solar PV systems. 

 

3.3 Results and Discussion   

There are 7 graduate students, 29 undergraduate students from Purdue University, and 

14 undergraduate students from United States Military Academy at West Point 

undertook the lab assignment. 23 undergraduate students from Purdue University and 

3 undergraduate students from West Point finished both the voluntary pre and post 

questionnaire. The following results are obtained from the questionnaire. The 

statistical data is calculated from the results of Purdue undergraduate students. The 

results from West Point are consistent with that from Purdue (Note that question 20-

22 are not listed in West Point survey). Since there are only 3 samples in West Point, 

detailed data analysis is not conducted for it. Only the comparison of pre and post 

results is shown in Appendix. The detailed survey results from Purdue are also in 

Appendix A. 

 

3.3.1 The Understanding of Distributed Solar PV Systems 

Using this tool, we aimed to facilitate student learning about the characteristics of 

solar electricity. Questions 1-4, question 8 and 9, and question 23 address the 

understanding of the characteristics of solar electricity. According to the survey 

results, most students self-assessed their post-understanding well about solar PV 

systems after undertaking the lab project. 65% of the students state that their 
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knowledge of solar PV systems is equal or above medium level after the lab project, 

while only 17% of students claim that their knowledge of solar PV systems is on 

medium or above level before the lab project (Table 3.1 & Figure 3.2). 

Table 3.1 The results of “how would you describe your current 

knowledge/understanding of solar PV systems” 

       High Medium Low NA 

Before 0 4 17 2 

After 2 13 8 0 

  

  

Figure 3.2 The results of “how would you describe your current 

knowledge/understanding of solar PV systems” before (left) and after (right) the lab 

project 

 

The results from question 1-4 and question 8 and 9 also demonstrate that from this lab 

project (Appendix A), students improve their knowledge about solar PV systems.  

Question 5-7 present the safety of solar PV systems. Almost all the students believe 

that solar PV system is safe to use no matter before or after the lab project. 70% of 

the students agree or strongly agree that solar PV systems are reliable to use after the 

project, while 52% of the students agree or strongly agree with the statement before 
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the project. 48% of the students agree or strongly agree that solar PV systems are easy 

to maintain after the project, while only 30% of the students agree with this statement 

before the project. The results also suggest that the coverage of maintenance is 

currently insufficient with our tool.   

 

3.3.2 The Effect of Battery or Other Energy Storage Devices on Solar PV Systems 

The solar PV system studied in this lab tool can be used off-grid since it can be 

coupled with batteries or other types of energy storage devices. Question 10 and 11 

present the understanding of the role of a battery in solar PV systems. According to 

Table 3.2 and Table 3.3, students with knowledge of batteries confirmed their 

thoughts after the lab project. 74% of students “strongly agree” with the statement 

that “Batteries can help to improve the efficiency of solar PV systems” after the lab 

project, while only 17% of students “strongly agree” with this statement before the 

project. Similarly, 57% of students “strong agree” with the statement that “Batteries 

can help to reduce the peak demand of electricity for households” after the lab project, 

while only 13% of students “strongly agree” with this statement before the project. 

Most of the students in this study are senior engineering students. As such they may 

have some knowledge about renewable energy from other courses, and they are also 

able to analyze the problem based on what they have learned. Based upon the survey 

results and discussions with the students the laboratory exercise greatly reinforced 

their intuition about solar PV systems.  With the lab project, students learn solar PV 

systems systematically, and they design a solar PV system for a specific region using 
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the simulation tool. This design and analysis component seem to provide students a 

clearer and deeper understanding of the behavior and application of solar PV systems.  

Table 3.2 The results of “Batteries can help to improve the efficiency of solar PV 

systems” 

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 0 4 15 4 0 

After 0 0 6 17 0 

 

Table 3.3 The results of “Batteries can help to reduce the peak demand of electricity 

for households” 

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 1 4 15 3 0 

After 1 1 8 13 0 

 

3.3.3 The Acceptance of Solar PV Systems 

Question 16-18, and question 24 present students’ willing to accept solar PV systems. 

The results demonstrate that after the lab project, more students are willing to accept 

solar PV systems. There are 39% of the students would like to install solar PV system 

in their houses even if solar electricity is expensive than grid electricity. 91% of the 

students claimed that they are more likely to accept solar PV systems based on what 

they have learned in this project. The results illustrate that people are more likely to 

accept a new technology when they understand it. This supports our conjecture that 

broad based understanding of the energy system is a strong basis for policy consensus.   
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3.3.4 The Interested in Learning and Study Solar Energy Related Topics  

Question 12-15 poll students’ interest in learning and studying solar energy related 

topics. The results reveal that after the lab project, students’ interest in solar PV 

systems does not increase, but more students are open to pursuing further studies in 

an area related to solar PV systems. Interestingly the number of students who are 

interested in conducting research on solar PV systems is the same before and after the 

lab project.    

 

3.3.5 Other Attitudes toward Solar PV Systems 

The survey also covers some other questions about solar PV systems, which include 

the future of solar PV systems (question 19 and 20), and should government support 

solar energy (question 21 and 22). The results demonstrate that with this lab project, 

more students (43% after the project and 22% before the project) firmly believe that 

solar PV systems will become one of the most popular electricity sources in the future. 

The results for “should government support solar energy” are overwhelming. More 

students (70% after compared with 57% before) believe that government should 

subsidize solar PV systems, and more than 90% students (91% after compared with 

96% before) think that governments should support solar energy related research.  

 

3.4 Online Simulation Tool 

In order to greatly increase availability and potential use, a refined user interface has 

been created using Rappture [63] based on the feedbacks from the courses reported 

above, and the tool has been published online using Purdue University Hub 
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Technology as part of the NanoHub [64]. The tool is named as “Solar PV” and can be 

accessed at: https://nanohub.org/tools/solarpv . Up until now, the tool has been used 

in 10 countries or regions all over the world since it published. The users are from 

university, industry, national lab and some other undefined.  

 

3.4.1 Online Tool Introduction  

The online simulation tool is much easier for users to learn distributed solar PV 

systems by running simulation.  Anyone with internet accessed can use it. The tool’s 

user interface is divided into six graphical user interface screens (shown in Figure 

3.3-Figure 3.7, the first screen is an introduction of the solar PV model, which is not 

shown here). First, users choose the region they would like to simulate, and input the 

number of households of the region by either selecting from the list of all 50 states’ 

data or inputting manually. Then users need to select a month to simulate from the list. 

After the region is determined, uses move to the region profile screen where they 

select profiles for appliances, temperature, cloud cover, and solar irradiation for the 

region. Users can also create their own profiles and upload them to the tool database. 

After users’ profiles uploaded to the database, they will appear in the profiles lists and 

be accessible to any users. The last step is to define the percentage of households that 

have solar PV system, the capacity of solar PV, whether the system includes a battery, 

and the capacity of battery. After running the simulation, users can automatically 

view the projected hourly average electricity demand for all the households and the 

total daily electricity demand over a one month period for the selected region.  

https://nanohub.org/tools/solarpv
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Figure 3.3 Describe the region screen 

 

 

Figure 3.4 Choose region profile screen 
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Figure 3.5 Describe the system screen 

 

 

Figure 3.6 Describe the battery screen 
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Figure 3.7 Simulation result screen 

 

The online simulation tool has several characteristics including: 

1) It is easy to use. Users do not need to install any software. As long as users 

have a nanoHUB account/google account/facebook account, they can use it.  

2) It can be applied to any regions. Users can either select the profiles for a 

specific region from the existing list, or create their own profiles and upload 

them to the tool database. After users’ profiles uploaded to the tool database, 

they will be shown in the profiles lists and accessible to any users.  

3) The result is shown intuitively. After simulation, the tool will automatically 

conduct data processing and show the projected hourly average electricity 

demand for all the households in the selected region. Users can change 

parameters for solar PV system and run different simulations to compare 



51 

results. The tool will maintain all the results for different runs and can show 

them in one figure.  Users can also download the results data to do their own 

analysis.  

4) It is flexible for different purposes. As discussed in section 3.2.1, the tool can 

simulate households’ electricity demand in different regions, under different 

weather conditions, and with/without solar PV systems.  The assignment 

discussed above is just one possible application of this tool. Users can also use 

the tool to compare the electricity demand for different regions in different 

seasons, study the effect of certain appliance on household electricity demand, 

and etc.   

 

3.4.2 Solar PV Database 

Another extended function of the online simulation tool is the solar PV database. 

There are two databases that users can access to. One is the profile database which 

includes the profiles of appliances, temperature, clear skies, and solar irradiation for 

different regions. Users can browse, search and explore the profile data to be familiar 

with the profiles before they have to make selections to run the simulation as shown 

in Figure 3.4.  

The other one is the “National Solar Radiation Hourly Statistics Viewer”.  The viewer 

displays solar irradiation data for all 50 states in 2010. All the data is from National 

Solar Radiation Database (NSRDB) [65]. Users can use this viewer to: 1) get the 

solar irradiation data for their own profiles, 2) view the positions of solar irradiation 

data collection stations on map, and 3) compare the solar irradiation data in different 
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months for one station.  The screens of the viewer are shown in Figure 3.8-Figure 

3.10.  

 

Figure 3.8 Basic functions of the national solar radiation hourly statistics viewer 

 



53 

 

Figure 3.9 Maps in the national solar radiation hourly statistics viewer  
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Figure 3.10 Graphs view in the national solar radiation hourly statistics viewer 

 

3.5 Conclusion  

Advances in energy system evolution depend greatly on building a sophisticated 

consensus among the public and leaders. Education plays an important role in 

promoting public awareness. The simulation lab tool developed for this effort 

successfully helped students learn solar PV systems systematically. The survey 

results reveal that students are more likely to accept solar PV system when they are 

familiar with it. Therefore, we believe that hands on education tools are necessary to 

provide a broad based understanding of the implications of energy system advances 

are essential to developing a policy consensus. 
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CHAPTER 4. PURCHASING VS. LEASING: A BENEFIT-COST ANALYSIS OF 

RESIDENTIAL SOLAR PV PANEL USE IN CALIFORNIA 

This chapter is based on a paper that is published in volume 66, 2014 of Renewable 

Energy with Eric O’Rear, Wallace Tyner and Joseph Pekny. This work uses a benefit-

cost analysis to evaluate the impacts of combined tax breaks from depreciation and 

interest paid on home-equity loans on competitiveness under different purchase 

options for a 4kW solar PV system in California. The results suggest that the 

additional tax breaks from depreciation in conjunction with those from interest paid 

on home-equity loans can make purchasing much more competitive.  Sensitivity 

analysis is conducted for key parameters, and all sensitivity tests yielded the expected 

results. 

 

4.1 Introduction  

Small-scale solar electric generation in the U.S. has been on a steady increase in 

recent years. Solar photovoltaic (PV) cell micro-generation has been used extensively 

in residential applications [66].  The primary benefit of such a system is that it allows 

some of the residential electricity usage to be derived from the system – offsetting 

portions of the demand from grid-based sources.  Often times, surplus electricity 

created by the system can be sold back to the grid to the owners’ benefit.   

From the perspective of the electricity generation and distribution system, one 

obstacle is the variability in production related to changes in weather patterns.  This 
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can be problematic because scheduled generation may fail to meet anticipated 

residential demands.  Another major obstacle is the incongruity that exists between 

the timing of electricity generated from the PV system and peak demand hours.  

Greatest solar PV generation occurs close to the middle of the day when solar 

irradiance is at its highest.  Peak electricity demand for households, however, occurs 

usually in the evening.  This creates incongruity between PV supply and household 

demands and inefficient use of the overall system.  

Residential solar PV systems can be installed in one of two ways: (1) electricity 

production with distributed storage systems; and (2) connection to a major grid where 

excess electricity is exported back to the grid through net-metering. In this study, the 

household participates in net-metering.  Residential systems can be purchased by the 

homeowner or leased through a licensed distributor.  With leasing the homeowner 

enters into an agreement in which they are obligated by a lessor to make monthly 

payments over a period of time.  While under contract they are able to consume an 

unlimited amount of electricity from the PV system.  Most leased systems are 

connected to the power grid and do not have an energy storage system in place.  

Because leasing does not require substantial upfront costs and scheduled maintenance 

is typically handled by the lessor, it has become the more popular option.  

Deployment of leased PV systems has increased in the U.S. relative to system 

purchases.  Homeowners currently are unable to depreciate solar capital under 

existing U.S. tax law.  But a lessor can depreciate the equipment it leases.  Inability to 

depreciate continues to give lessors the competitive edge in the PV market.  

Homeowners can benefit from tax deductions based on interest paid on a home-equity 
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loan if the loan were used to finance the system, but they cannot deduct interest on 

any other form of loan used to finance the system. Our study evaluates the effects of 

tax breaks related to depreciation and interest payments on the competitiveness of 

different purchase options within the residential solar PV market in California. 

 

4.2 Leasing versus purchasing  

Leasing allows residents to finance capital equipment for the solar PV system over a 

set contractual period.  The lessee enters into a contract with a lessor that establishes 

monthly payments for the PV system.  During this period the lessee consumes 

electricity from both the PV system and the grid.  Leasing is economical for the 

lessees as long as the combination of monthly leasing fees and the costs of grid 

electricity consumption are lower than the costs if all electricity demands were being 

completely met by the grid.  Different companies offer different forms of leasing 

agreements.  Lessors usually provide an option to the lessee to extend contracts 

beyond initial agreement periods.  The option to purchase the system at the end of the 

contracted period at a reduced value is also offered.  Leasing payments often include 

any operation and maintenance (O&M) costs associated with the upkeep of the solar 

PV system.  These O&M costs include cleaning costs, repair costs, and inverter 

replacement every ten years.  With improving inverter technologies, O&M costs 

along with regular replacement is sure to change [67].   Households that choose to 

purchase the systems are responsible for covering this burden – making the purchase 

of a system less appealing.   
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There are tax credits and incentive-based programs that help to make residential solar 

PV generation more economical.  By selecting the leasing option, homeowners forgo 

all of these benefits, and the lessor becomes the recipient of these incentives instead.  

The Energy Policy Act of 2005 (EPAct), for example, established a 30% tax credit for 

the purchase and installation of home solar electricity and solar water heating systems.  

It was initially capped at $2,000 until the Emergency Economic Stabilization Act of 

2008 removed the cap.  The California Solar Initiative (CSI) Program offers rebates 

for solar PV electricity generation, which varies according to system size and 

capacity, performance, utility territory, etc.  Incentives are based on system 

performance.  Consumers can benefit from two major incentive programs through 

CSI.  The Expected Performance-Based Buydown (EPBB) option provides an upfront 

lump-sum rebate based on performance expectations.  The other, the Performance 

Based Incentive (PBI), is a monthly payment for which payment size is based on 

actual system performance over the course of five years.  EPBB is available for small 

systems only and is an up-front incentive.  The program uses an EPBB calculator to 

determine the size of the rebate based on a number of system characteristics [68].  

Our analysis considers only the EPBB rebate in our assessment of the benefits tied to 

purchasing and leasing a solar system. 

 

4.3 Materials and Methods 

Each of the following sections breaks down the different data components that go into 

completing our benefit-cost analysis.  We first summarize the costs of owning/leasing 

a residential PV system, followed by a summary of financing methods.  We then 
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explain our approach to depreciating capital equipment, simulating electricity 

demands, and our assessment using benefit-cost analysis. 

 

4.3.1 Solar PV System Cost  

A solar PV system is made up of one or more solar PV panels, an inverter, energy 

storage system/batteries (optional), and other components. Our study considers a 

system that does not use batteries for storage since customers in California can sell 

additional electricity back to the power grid at full retail price under net-metering [69].  

The most popular installation size in California is 4 kilowatts (kW) [70] – therefore, 

we assume that the capacity of our reference solar PV panel will be 4kW.  The 

lifetime for a solar PV panel on average is 25 years, with an inverter that should be 

replaced in years 11 and 21 (every ten years) [67], [71], [72].  Inverter replacement 

costs including labor are estimated to be approximately $3600 [73].   Purchase and 

leasing options will be analyzed over a 25 year policy horizon.  It is assumed at the 

end of the 25 year contract period residential systems will be retired. 

The costs for purchasing a home PV system include capital costs, installation costs, 

O&M costs, and the costs for the replacement of parts.  The residential solar PV 

system in general needs little maintenance. Maintenance requires basic panel 

cleanings which residents can often do on their own to save on costs.  According to 

Go Solar California (2013), the average cost of a small scale solar PV system (less 

than 10 kW) in California is $6.73/W in 2012, which includes both the equipment and 

installation costs [74].  Average installation prices have declined annually by 5-7% 

from 1998-2011 – indicating a growing affordability for residential systems [75].  



60 

This analysis assumes system purchase costs of $6.73/W. Operation and maintenance 

costs used in the analysis ($32.80/kW-year) are based on the Department of Energy’s 

Energy Efficiency and Renewable Energy (EERE) SunShot study [73].  

 

 
Figure 4.1 Installed price of residential and commercial PV systems over time [75]   

 

4.3.2 Financing and Incentives  

Financing solar PV systems can be done through a home equity loan, leasing, or a 

cash purchase.  This analysis assumes that the household has the option to either 

finance the system using a home equity loan with a 10-year financing period or a 

lease with a contract period spanning over the lifetime of the solar panel (25 years).  

Regarding the loan option we assume that the bank will finance at most 80% of the 

initial capital costs at an interest rate of 6%.  Based on our conversations with an 

associate of Sungevity – a solar electric company based out of Oakland, California – 

a 4kW residential PV system in San Diego would on average be leased for $100 a 

month.  The rental cost in our evaluation will be $1200 to reflect yearly leasing costs.  
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Because leasing security deposit amounts are negligible, we will not consider them in 

the study. Yearly rental costs increase annually by 3% to keep up with the rate of 

inflation which is typical of many leasing agreements.   

Households that choose to purchase solar PV systems as either a cash purchase or 

with home-equity financing can directly benefit from both federal and state-wide 

subsidies and tax credits.  Residential solar PV users in California benefit from 

incentive-based programs like the EPBB program as a part of the California Solar 

Initiative.  Lump-sum payments under the EPBB program are payable to households 

who own smaller systems and are available for systems under 30kW after 2010. 

According to EPBB system, the current (December 2012) rate for residential systems 

is $0.20/W for Pacific Gas & Electric (PGE) and California Center for Sustainable 

Energy (CCSE) and $0.25/W for Southern California Edison (SCE).  We selected the 

$0.20/W subsidy rate given the system size assumed in the study [68].  The EPAct of 

2005 establishes a 30% federal tax credit for the purchase and installation of 

residential solar electricity and water heating.  We incorporate this tax credit in our 

study as well.  There are other local incentive programs that exist for residential PV 

purchasers.  Since we are basing our assessment on the entire state of California, we 

have chosen to ignore local rebate programs.   

 

4.3.3 Depreciation 

The inability by households to capture some of the benefits of depreciating solar 

equipment continues to make the leasing option much more competitive.  In this 

study we test the importance of the depreciation rules. We allow for households to 
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earn tax savings from depreciating using the Modified Accelerated Cost Recovery 

System (MACRS) depreciation system. MACRS is the current tax depreciation 

system in the U.S. It allows for capital costs to be recovered through annual 

deductions of depreciation. The IRS classifies solar electric and solar thermal 

technologies as solar energy related personal property having a five-year class life.  

This is the period over which the property can recoup any depreciation. Therefore, we 

will refer to the five-year property general depreciation system (GDS). This method 

uses declining balance depreciation before switching to straight-line depreciation at 

the point at which straight line exceeds declining balance. Table 4.1 shows the 

MACRS applicable percentages used in the study [76]. 

Table 4.1 Applicable MACRS depreciation percentages 

Recovery year 5-year depreciation rates 

1 35.00% 

2 26.00% 

3 15.60% 

4 11.01%* 

5 11.01% 

6 1.38% 

Note: The * signals that the depreciation schedule has switched to straight-line. 

 

4.3.4 Electricity Demand  

An agent-based residential electricity demand model is applied to obtain the 

electricity demand from the power grid in conjunction with a residential solar PV 

system.  This equals the difference between electricity demand without the solar PV 

system and total electricity generated by the solar PV system. The model was 

constructed by Shisheng Huang, and further details concerning the framework has 

been described in [27].  In simulating the electricity generation by a 4kW solar PV 
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system, weather information for San Diego, California was used to generalize the 

overall weather conditions for the state of California.  Other parameters such as solar 

radiation and electricity usage patterns are default data for California in the model. 

The simulation shows that a 4kW solar PV system in San Diego will generate around 

4500 kWh of electricity yearly.  This is comparable to a real case in which a 4kW 

solar PV system generated close to 4405 kWh for the city of Los Angeles, 

California[77]. Total electricity demanded by the household for this study is 

approximately 7272 kWh/year [78], [79]. 

 

4.3.5 Benefit-cost Analysis  

We conduct the study using a benefit-cost approach to assess the net benefits 

associated with each of the different financing options.  Three primary financing 

options a residential solar PV system are evaluated in this study: (1) a cash purchase; 

(2) a home-equity loan purchase; and (3) the leasing a 4kW system.  In the case of a 

purchase using a home-equity loan, we consider cases where capital equipment can 

and cannot be depreciated.   

The benefit-cost analysis produces two forms of metric that we use in our evaluation 

of each of the three financing options. We look at the net price of electricity on a 

$/kWh basis.  A net electricity price exploits the savings in annual utility bills caused 

by displacement of grid-based electricity due to solar generation.  We also look at the 

total annualized cost incurred by the purchaser.  Both metrics consider subsidies, tax 

credits, and any cost savings stemming from depreciation, tax savings from interest 

paid on home-equity loans, and the grid-based electricity displaced by solar 
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generation.  Utility electricity prices are assumed to increase yearly with inflation.  

Table 4.2  reveals all of the data assumptions used in the analysis: 

Table 4.2 Benefit-cost analysis assumptions 

California solar PV analysis assumptions 

Policy horizon/lifetime of solar panel (years) 25 

Solar PV panel capacity (W) 4000 

Installed PV system cost ($/W) 6.73 

Cost of inverter $3000 

Costs of inverter replacement (labor) $600 

EPAct 2005 tax credit 30.00% 

EPBB subsidy ($/W) 0.2 

Real decline in inverter costs 4.00% 

Inflation rate 3.00% 

Solar PV panel life (years) 25 

Lifetime of system inverter (years) 10 

Real electricity price ($/kWh) $.167 

Home-equity loan financing percentage 80.00% 

Loan financing period 10 

Loan interest rate 6.00% 

Real discount rate 10.00% 

Leasing charge per year (in real dollars) $1200 

Total household electricity demand (kWh/year) 7272 

Solar PV electricity generation (kWh/year) 4500 

O&M cost ($/kW-yr) $32.80 

 

4.4 Results and Conclusion  

Table 4.3 and Table 4.4 illustrate the net electricity prices and the annual electricity 

costs for each of the financing options.  Purchasing a system with cash results in a 

higher net electricity price relative to all other cases.  The higher net price underlines 

the failure to reap the benefits of equipment depreciation and other tax breaks. On the 

other hand, financing a system through a home equity loan becomes a lot more 

competitive as long as the homeowner is capable of capturing the combined tax 
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breaks from depreciation and interest paid on the home-equity loan. Tax savings from 

interest paid are not enough to make purchasing a more economical route as 

witnessed in current solar PV markets.  The inability to capture the tax savings as a 

result of depreciation is what is creating this gap in net electricity prices between 

leasing and a home-equity loan purchase.  Permitting depreciation allows much of 

this gap to shrink as shown in Table 4.4.  With a net electricity price of $0.24 per 

kWh, leasing remains only slightly more competitive than loan financing.  

Table 4.4 reflects the changes in annual electricity costs over the different business 

cases – highlighting differences in net electricity costs after accounting for rebates, 

tax credits, and savings in electricity costs.  There is less than a $100 difference in 

annual costs between the leasing option and the home-equity loan purchase with 

depreciation.  The results in the table once again illustrate the importance of tax 

breaks from capital depreciation and loan interest payments in making the purchase of 

a residential system more competitive.  Without these savings, leasing will remain 

substantially more economical as lessors continue to earn the benefits of depreciation 

and interest deductions. 

Table 4.3 Net electricity prices  

Financing cases 
Net electricity price ($/kWh) 

Consider O&M costs 

Cash purchase $0.37 

Home-equity loan purchase w/o depreciation $0.30 

Home-equity loan purchase w/depreciation $0.24 

4kW solar PV leasing $0.23 
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Table 4.4 Annualized costs for each case 

Financing cases Annual electricity costs ($/year) 

Cash purchase $2,684 

Home-equity loan w/o depreciation $2,153 

Home-equity loan purchase w/depreciation $1,712 

Leasing a 4kW system $1,663 

 

Regular system maintenance is necessary to keep residential PV systems fully 

functional.  Leasing agreements usually include regularly scheduled maintenance 

with the costs of upkeep already built into monthly leasing prices.  For residential 

system buyers, regular maintenance may be performed by the owner themselves or an 

outside company.  Because the costs of system upkeep are small, many owners are 

willing to pay for external services.  Our study reveals that electricity prices fall by 

$0.02 in each of the buyer cases if the homeowner personally maintains the system 

themselves (not shown). Personal maintenance makes purchasing slightly more 

competitive.             

Our analysis indicates that the option to buy will only prove to be more economical 

for the homeowner if s/he is able to access tax breaks from depreciating capital 

equipment and interest paid on the loan used to purchase the system.  Residential 

solar PV lessors and commercial generators currently reap both depreciation and 

interest deductions.  Homeowners can deduct interest only if the PV system is bought 

with a home equity loan.  Unless households have similar tax deductions available to 

lessors, the option to lease will continue to be the less costly approach to residential 

electricity generation. 

In another sense, this is about leveling the playing field. All other forms of electricity 

generation are entitled to deduction of depreciation and interest on the capital 
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equipment.  If homeowners could deduct depreciation and interest on solar equipment, 

it would have the same tax advantages afforded other means of supplying electricity.  

The results of this analysis suggest that providing these tax incentives for solar capital 

equipment should stimulate interest in homeowner purchase of the equipment. 

4.5 Sensitivity Analysis  

The primary driver behind our results is the underlying parameter assumptions.  We 

conduct a sensitivity analysis to observe how changes in these assumptions can 

potentially affect the robustness of our results. Three cases are considered: (1) 

discount rates of 5% and 15% are tested compared to the base case value of 10%; (2) 

initial PV system costs fall by 15%; and (3) PV system panels are replaced every 10 

years assuming a 10% failure rate 3 [80]. All other parameters values remain 

unchanged. The findings from the sensitivity analysis are shown in Table 4.5 and 

Table 4.6.     

Table 4.5 Net electricity price for sensitivity analysis 

Financing cases 

Net electricity price 

($/kWh) 

Original 

Result 

(10% real 

discount 

rate) 

5% real 

discount 

rate 

15% real 

discount 

rate 

Installed 

PV system 

cost 

decrease 

15% 

Replace 

10% of 

panels 

every 10 

years 

Cash purchase $0.37 $0.27 $0.48 $0.33 $0.38 

Home-equity 

loan purchase 

w/o depreciation 

$0.30 $0.25 $0.34 $0.26 $0.30 

Home-equity 

loan purchase 

w/depreciation 

$0.24 $0.20 $0.26 $0.21 $0.24 

4kW solar PV 

leasing 
$0.23 $0.23 $0.23 $0.23 $0.23 

                                                 
3 National Renewable Energy Laboratory (NREL) has found that system performance will degrade less 

than 1%/year.  This translates to 10% of panels being replaced every 10 years. 



68 

Table 4.6 The resulting annualized electricity costs under sensitivity analysis 

Financing cases 

Annual electricity costs ($/year) 

Original 

Result 

(10% real 

discount 

rate) 

5% real 

discount 

rate 

15% real 

discount 

rate 

Installed 

PV system 

cost 

decrease 

15% 

Replace 

10% of 

panels 

every 10 

years 

Cash purchase $2,684 $1,986 $3,473 $2,373 $2,729 

Home-equity loan 

w/o depreciation 
$2,153 $1,814 $2,461 $1,925 $2,198 

Home-equity loan 

purchase 

w/depreciation 

$1,712 $1,486 $1,910 $1,549 $1,747 

Leasing a 4kW 

system 
$1,663 $1,663 $1,663 $1,663 $1,663 

 

Our original analysis uses a discount rate of 10%.  Higher discount rates suggest that 

consumers become even less willing to invest today for any future cash flows.  With a 

discount rate of 15%, buying a solar PV system (i.e. home-equity loan) is no longer a 

competitive alternative to leasing.  It only becomes more competitive once discount 

rates are lower (5%).  Alternatively, relying on a loan to purchase a system with the 

ability to depreciate capital equipment becomes an even more viable option if initial 

start-up costs are reduced by 15%.  Evidence of this can be seen by the 9.5% 

reduction in annualized electricity costs, and a net electricity price that is about 

$0.02/kWh lower than prices tied to leasing.  These sensitivity results are related to 

the importance of the initial capital cost in the overall cost for a solar system.    

Assuming a tenth of the panels are replaced every 10 years, annual costs will only 

increase slightly whenever cash or a home-loan is used to purchase residential 

systems.  However, we do not witness similar increases with leasing as these 

agreements generally have the costs of regularly scheduled maintenance and upkeep 
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built into their monthly leasing fees.  The increases in annual electricity costs we do 

see are relatively small (less than $50), so it is safe to say that 10% failure rate will 

ultimately not harm the competitiveness of purchasing PV systems with depreciation. 
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CHAPTER 5. HIGH PENETRATION EFFECTS OF SOLAR PHOTOVOLTAIC 

AND WIND ON ELECTRICITY PRICES AND CARBON EMISSIONS 

This chapter is based on a paper that has been submitted to the journal of Renewable 

Energy. This paper is done in collaboration with Singapore University of Technology 

and Design.  The coauthors on this paper are Shisheng Huang, Lynette Cheah, Joseph 

Pekny, James Dietz and Kristin Wood. In this chapter, a detailed energy system 

model based on the city of Singapore is presented to examine the effects of high 

renewable penetration on the system. Both marginal electricity prices and carbon 

emissions were quantified for three different penetration scenarios of wind and solar 

energy: a balanced mix of wind and solar energy sources (WS), a scenario of only 

wind capacity (W) and just solar (S). 

 

5.1 Introduction  

Globally there has been a significant push for renewable energy adoption. Some of 

the reasons for this drive include the need for carbon reduction in energy sources, 

energy security in light of increasing political tensions in energy producing regions 

and increasing cost of fossil fuel reserves. Many countries have instituted various 

policies and targets for the reduction of carbon in the energy system. These include 

subsidies like feed-in tariffs or tax incentives for renewable energy sources, priority 

dispatch in the merit order in the electricity market and even carbon emission caps or 

taxes on fossil fuel plants.  
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However, these policies, while effective in increasing renewable penetration, may 

distort market forces or even disrupt the stability of the energy market. Although it 

has been shown that the presence of renewables in the electricity system decreases the 

price of electricity by a certain percentage, known as the merit order effect, there 

could also be negative effects on the system. Recent articles have highlighted the 

increased electricity prices in Germany and the increasing opposition to current 

renewable policies [81]. In the last few years, the number of instances of negative 

prices, where generators must pay to provide electricity to the grid instead of 

receiving compensation, in the market has increased significantly with the increased 

penetration of wind farms[82]. This phenomenon in part results from the fact that 

renewable energy sources are non-dispatch energy sources and in part because 

existing energy sources may not be able to adjust production fast enough and would 

rather pay money to maintain constant energy production. This also highlights effects 

such as the uncertainty in renewable electricity sources and its inability to be used for 

on-demand purposes.  

This study sets out to investigate the effects of high penetration of renewables in the 

electricity market, particularly on the stability of the system and price volatility. 

Concurrently, the temporal effects on carbon emissions are also quantified and 

analyzed. It is hypothesized that with the increase of renewable generators in the 

system, traditional fossil fuel generators may be displaced from the electricity market. 

Low marginal cost of electricity production, coupled with priority dispatch could 

reduce or eliminate profit avenues for these traditional generators. If the generators do 

not foresee profitable operations in the electricity market, the generators could reduce 
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their presence in the market and retire certain generators. The resultant loss of some 

of these dispatch-able generators could amplify market effects during exceptional 

events. Also, the effects of renewable generation on the diurnal profile and quantity 

of carbon emissions will also differ with different renewable mix and penetration 

levels. 

 

5.2 Background 

5.2.1 Variable Energy Systems Effects 

The effect of variable renewable energy sources on the energy system has been an 

important topic of research recently. There have been multiple publications analyzing 

possible scenarios where the level of variable energy sources becomes significant. 

Earlier research [83], [84] found that increasing levels of wind power will reduce the 

overall systems operation costs. However, as the operation costs in these studies are 

assumed as only fuel costs; then the investment costs, fixed costs and all the other 

costs related to electricity prices are not taken into account.  

Some groups have studied the impact of variable renewable energy on the Australian 

electricity market [85], [86]. Forrest and MacGill applied econometric techniques to 

quantify the impact of high wind generation on electricity price, and concluded that 

wind energy will reduce the electricity wholesale market price in the short-term [85]. 

McConnell et al. modeled the impact of solar energy and showed that solar energy 

reduces electricity price, especially during summer peaks [86]. However, both of 

these studies do not consider the effect of large-scale penetration of renewable energy 
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on the reliability of the power system and the effect of reduced generation on the 

capacity factor of existing generators.  

Other groups have shown that the increase in variable energy sources will increase 

system reliability costs. Woo et al. found that increasing wind capacity tends to 

reduce electricity spot prices and enlarge the spot price variance. This increase in 

variance points to a lower system reliability, which would require increased costs to 

improve reliability [87]. Mount et al. report that the effect of wind farms on the total 

annual system costs is very sensitive to the installed capacity of wind farms [88].  

Increasing levels of renewables will impact other players in the electricity market. 

Hirth studied the effect of solar and wind on their market value (a relative price: the 

ratio of the hourly wind-weighted average electricity price and its time-weighted 

average (base price)), and found that the market value (or benefit) of variable 

renewables falls with higher penetration [89]. Cutler et al. applied statistical 

techniques to analyze market data over 2 recent (2008-2010) years and found that 

wind generation and electricity price have a negative correlation. That is although 

wind does decrease electricity market spot prices (merit order effect), it also pushes 

up electricity prices when wind production is low. They also noted the increased 

occurrence of extreme price events (negative and high electricity prices)[90] .  

 

5.3 Methodology  

This study sets out to determine the effects of high levels of penetration of variable 

renewable energy sources (solar photovoltaic and wind) in the electricity market. We 

look at the potential effects on electricity prices as a measure of electricity costs. This 
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is done through first establishing a reference electricity market and developing 

scenarios where increasing levels of renewables are examined. The scenarios are 

examined first assuming that the electricity mix of the reference electricity market 

remains unchanged, and then subsequently adjusting the electricity mix by retiring 

electricity generators that become uncompetitive. As a basic case to study these 

effects, the Singapore electricity system is used as the reference case for this analysis. 

An electricity system based on the Singapore system is first modeled and validated 

and subsequently what-if scenarios with different levels of renewable energy are 

analyzed. Although Singapore does not possess enough renewable resources to 

achieve the penetration levels in these scenarios, the analysis still serves as reference 

cases for systems that have approximate electricity generating profiles similar to the 

Singapore system.      

The approach used is an agent-based modeling approach to represent the electricity 

market [91], [92]. The basic approach is then to model key players in this market as 

agents that are capable of interacting and making critical decisions while observing 

emergent trends and effects. The agents as defined in this model are then the 

Independent System Operator (ISO), traditional electricity generators, renewable 

electricity providers and a balancing ancillary market. The ISO is responsible for 

managing the electricity market, ensuring that electricity supply matches electricity 

demand. Electricity demand is assumed to be inelastic and in this study modeled 

through historical data. Electricity supply is assumed to be provided by both 

traditional and renewable electricity generators. A final balancing ancillary market is 
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modeled as to provide the remaining balance of electricity demand to maintain 

equilibrium. Figure 5.1 shows a simplified flowchart of the system.  

 

Figure 5.1 Simplified flowchart of model used in study 

 

5.3.1 ISO 

The ISO’s primary responsibility is to manage the whole power system; making sure 

that the supply and demand remains in equilibrium. The main process is through the 

provision and support of electricity markets where electricity users can procure 

electricity from competitive electricity suppliers in an open market. In the modeled 

energy system, the demand is assumed to be inelastic, hence the ISO’s main role is to 
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procure enough electricity supply to meet this demand. We assume that this 

procurement is done through two different electricity markets, a day-ahead electricity 

market and a real time regulation market.  A third simplified ancillary market serves 

as a balancing market for model mismatch.  

 

5.3.2 Generators  

Generating units are assumed to be classified as either conventional fossil fuel units 

or renewable units. Both classes of generators are allowed to participate in the 

wholesale energy market but only conventional units are assumed to be dispatch-able 

and allowed to participate in both up and down regulation markets (Renewable units 

can opt to curtail production to participate in the down regulation market). Individual 

generators formulate their day-ahead energy bids according to their own 

characteristics and through the market process receive day-ahead production 

schedules. These characteristics can be classified into technical and economic 

parameters. Technical parameters include generation technology such as Combined 

Cycle Gas Turbines (CCGT), Open Cycle Gas Turbines (OCGT) and Steam Turbines 

(ST), fuel types (nature gas, coal, fuel oil, etc.), nameplate capacity, generator age, 

thermodynamic efficiency, load factor, etc. Economic parameters include investment 

costs and operating and maintenance costs (O&M). O&M costs are further divided 

into fixed and variable costs. A full list of the parameters can be found in Table 5.1. 
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Table 5.1 The list of parameters for generators 

Technical Parameters Economic Parameters 

Generation Technology Annual Investment cost, 𝐶𝑖𝑛 

Fuel Type Fuel Unit Cost, 𝐶𝑓𝑢𝑒𝑙 

Nameplate Capacity Annual Fixed O&M Cost, 𝐶𝑓𝑂𝑀 

Generator Age Variable O&M Cost, 𝐶𝑣𝑂𝑀 

Load Factor, 𝒇𝒍𝒐𝒂𝒅  

Base Thermal Efficiency, 𝜼𝟎  

Thermal Efficiency, 𝜼  

Lower Limit of Operational Thermal Efficiency  

Cooling Water Factor Temperature  

Forced Outage Rate  

Planned Outage Rate  

Forced Outage Hour  

Planned Outage Hour  

 

It is worth noting that the investment costs and fixed O&M costs are incurred no 

matter if the generators produce electricity or not. That implies that if a generator 

generates more electricity, the investment costs and fixed O&M costs can be 

amortized over a larger pool of electricity, resulting in lower per unit electricity costs. 

In this study, it is assumed that the generators do not receive additional payments 

from the market and must recover costs through the market process. Therefore, the 

capacity factor (the ratio of its actual output over a period of time, to its potential 

output if it were possible for it to operate at full nameplate capacity indefinitely) is a 

significant factor that affects electricity cost. 

5.3.2.1 Conventional Generators  

The Singapore electricity system is assumed to be the system on which the study will 

be based. In the Singapore system, the dominant fossil fuel used is natural gas 

followed by fuel oil and waste. This system is characterized by 32 units with 
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nameplate capacities ranging from 22 MW to 600 MW [93] . A general summary of 

this capacity is shown in Table 5.3 with more details in a later section. 

 

5.3.2.2 Renewable Generators  

Renewable units are mainly characterized by parameters included in Table 5.1, except 

that these generators do not consume fuel.  The generation data is assumed to be 

similar to published information available online and from models used in previous 

studies. Wind generation data is obtained from the NREL wind integration datasets 

adapted from a previous study [94][95], [96]. Solar generation data has been derived 

from a variety of databases using the model developed in a previous publication [27], 

the same data is used in this study.  

 

5.3.3 Electricity Market 

In this study, the electricity system is assumed to be a fully deregulated electricity 

market that is similar to the Singapore electricity market. Singapore operates a 

deregulated wholesale electricity market through the Energy Market Company. 

Generators are able to bid into three markets which are cleared either half-hourly. The 

markets are the Energy Market, Reserve and Regulation Market [97]. The Energy 

Market provides a wholesale environment where consumers procure electricity to 

fulfill load demands. The Reserve Market provides for backup generation to support 

the electricity system in exceptional events. There are three types of reserves in the 

Singapore market, primary, secondary and contingency reserve which defer in the 

required response time in exceptional events. The Regulation Market provides 
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regulation services that cover the immediate temporal variations in load from 

forecasted load so as to ensure supply demand equilibrium.  Other ancillary services 

such as reliability must-run services and black-start capabilities are secured on a 

procurement basis.  

In this paper, only the main energy market and regulation market are modeled while 

the reserve market is assumed to be part of a simplified ancillary market. A 24 hour 

day-ahead market is cleared one day in advance together with solicited bids for the 

regulation market, producing the day-ahead wholesale price. During actual realization 

of demand, the regulation market clears in real time for determination of regulation 

price.    

 

5.3.3.1 Day-ahead Energy Market 

At the start of the day-ahead market, the ISO generates a forecasted electricity 

demand for the next day and invites market participants to submit electricity 

generation bids. This forecast is usually a function of historical electricity demand, 

predicted weather conditions, and other predictive parameters. In this study, historical 

data for forecasted demand is used from the Singapore electricity market. This data is 

available from the online database maintained by the local ISO, the Energy Market 

Company [98] and represents the day ahead forecasts that the ISO provides to 

generators. 

All the generators then bid for the next day’s hourly electricity generation according 

to their own nameplate capacity, forecasted generation and costs. The generators 

produce a series of production, marginal price bid pairs for different generating 
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capacities. The generating units would have varying thermal efficiencies at different 

loading capacities, hence, the marginal price for electricity production at different 

loads would be different. The thermal efficiency of the units can thus be determined 

by equation 1 below, where the impact of load factor (𝑓𝑙𝑜𝑎𝑑) is a quadratic function of 

load factor, and efficiency is highly affected by generation technology. For the 

parameters considered in this study and over the range of load factors considered, the 

function is an increasing function. Therefore, a high load factor indicates a higher 

thermal efficiency. The exact functions and assumptions are detailed in another work 

[99], and the general equations are as follows.   

 𝜂 =  𝜂0 × 𝑓𝑎𝑔𝑒 × 𝑓𝑠𝑖𝑧𝑒 ×  𝑓𝑤𝑎𝑡𝑒𝑟 × 𝐹(𝑓𝑙𝑜𝑎𝑑)                            (1) 

𝜂0: Base thermal efficiency  

𝑓𝑎𝑔𝑒: Age factor, function of generator age 

𝑓𝑠𝑖𝑧𝑒: Size factor, function of nameplate capacity 

𝑓𝑤𝑎𝑡𝑒𝑟 : Cooling water factor, function of cooling water  

𝐹(𝑓𝑙𝑜𝑎𝑑) : Impact of load factor, function of load factor  

This thermal efficiency can then be translated to the amount of fuel needed per unit of 

electricity produced, and by extension, the cost of fuel. The marginal bid prices can 

then be determined by equation 2. As discussed in an earlier section, fuel cost and 

variable O&M costs are only incurred when generators produce electricity, while 

fixed O&M costs and financial payments occur no matter if the generators produce 

electricity or not. Since generators are assumed to recover costs and profits only from 

market participation, the marginal bid price is then modified by the capacity factor for 

the generator. 
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𝑃𝑏𝑖𝑑 = 𝐶𝑡𝑜𝑡𝑎𝑙 × 𝑓𝑚𝑎𝑟𝑘𝑢𝑝  

        = (𝐶𝑓𝑢𝑒𝑙 + 𝐶𝑣𝑂𝑀 +
1

Cf
×

𝐶𝑓𝑂𝑀+𝐶𝑖𝑛

Cname×8760 hours
) × 𝑓𝑚𝑎𝑟𝑘𝑢𝑝         (2) 

𝑃𝑏𝑖𝑑: Generator bid price  

𝐶𝑡𝑜𝑡𝑎𝑙: Total per unit cost of electricity generation    

𝑓𝑚𝑎𝑟𝑘𝑢𝑝: Markup Factor  

𝐶𝑓𝑢𝑒𝑙: Fuel unit cost 

𝐶𝑣𝑂𝑀: Variable O&M cost  

𝐶𝑓: Capacity factor 

𝐶𝑓𝑂𝑀: Annual fixed O&M cost 

𝐶𝑖𝑛: Annual investment cost 

Cname: Nameplate capacity  

In this study, it is also assumed that energy generated from renewable energy sources 

do not incur marginal variable generation costs since solar and wind energy sources 

do not consume fuel during electricity generation. Hence it can be assumed that 

renewable energy generators would be willing to sell any amount of electricity as 

long as the electricity price is positive. For the purpose of this study then, in order to 

maximize renewable electricity production, the bid price of electricity is assumed to 

be zero.  

Once the ISO consolidates the bids from the generators, it will generate a merit order 

stack of the bids, listing the bids from lowest bid price to highest bid price for every 

hour. It will then schedule the day-ahead hourly electricity production according to 

the forecasted demand. The bid that just fulfills the demand in the market becomes 
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the marginal price for the hour. The schedule is done for each hour, resulting in 24 

marginal prices.  

 

5.3.3.2 Regulation Market  

The regulation market acts as the avenue for load balancing in the electricity market. 

In this study, the regulation market is only cleared once the actual electricity demand 

is realized. After the market clears for the day-ahead electricity market, generators are 

invited to submit bids for regulation power for each hour. There are two possible 

scenarios for regulation – up regulation and down regulation. Up regulation power is 

required when the realized demand is greater than scheduled production, while down 

regulation occurs when demand is smaller. The modeled bidding process is similar to 

the wholesale electricity market, with capacity price pairs submitted by each 

generator for each time period. The main differences are that the market clears only 

when the actual electricity demand is realized and the time periods are half-hourly. 

Up regulation bid pairs are determined using the same set of equations in the previous 

section and are dispatched through their merit order in the stack. Down regulation is 

treated slightly different. Since generators can only down regulate if they are already 

producing electricity, down regulation bids are only available to generators that have 

been scheduled in the day-ahead market. The down-regulation bid price is determined 

in equation 3, with a key assumption that the total income for a generator after doing 

down-regulation should be the same as if it does not participate in down-regulation.  

𝑃𝑑𝑜𝑤𝑛 =
(𝑃𝑚−𝐶𝑏𝑒𝑓𝑜𝑟𝑒)×𝐸𝑙𝑒𝑏𝑒𝑓𝑜𝑟𝑒−(𝑃𝑚−𝐶𝑎𝑓𝑡𝑒𝑟)×𝐸𝑙𝑒𝑎𝑓𝑡𝑒𝑟

𝐸𝑙𝑒𝑑𝑜𝑤𝑛
        (3)  
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𝑃𝑑𝑜𝑤𝑛: Down-regulation bid price  

𝑃𝑚: Marginal price of electricity 

𝐶𝑏𝑒𝑓𝑜𝑟𝑒:  Cost per MWh of electricity generated before down-regulation 

𝐶𝑎𝑓𝑡𝑒𝑟 : Cost per MWh of electricity generated after down-regulation  

𝐸𝑙𝑒𝑏𝑒𝑓𝑜𝑟𝑒 : Electricity production amount before down-regulation 

𝐸𝑙𝑒𝑎𝑓𝑡𝑒𝑟 : Electricity production amount after down-regulation  

𝐸𝑙𝑒𝑑𝑜𝑤𝑛 : Down-regulation bid amount  

Wind and solar generators can also participate in the down-regulation market, and it 

is assumed that they can curtail generation if needed. Since renewable generators do 

not have fuel considerations, it is assumed that they would always produce at their 

capacity; correspondingly, the down-regulation price for wind and solar would be the 

same as the marginal price of electricity in the market. 

 

5.3.4 Carbon Emissions 

Typically, carbon emission calculations have been done through an aggregated 

manner through aggregating overall electricity generation by generating technology, 

assuming all generators within the group are equally efficient and applying a standard 

emissions factor to them. In this study, each individual generating resource is tracked 

over the course of the simulation through the agent-based model, allowing for more 

accurate accounting of carbon emissions per generating plant. 

For the purpose of this paper, only carbon emissions from the combustion stage in 

generators are considered. Emissions from upstream processes like fuel processing 

and power plant construction are not taken into account, therefore, wind and solar 
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resources are considered carbon free. From literature [100], the amount of CO2 

emitted is a function of both the carbon content of fuel and the operational thermal 

efficiencies of combusting units. Hence, assuming that all the carbon content is 

oxidized to CO2, the CO2 emission per electricity generated is given as: 

𝐸𝐶𝑂2
=  

𝐶𝐶 

 𝜂
 ×  

44

12
                                       (4)  

𝐸𝐶𝑂2
: CO2 emission by fuel type and technology (g/kWh) 

Cc: Carbon content of fuel (g carbon/kWh) 

44

12
 : Ratio of molecular weight of CO2 and carbon atoms 

 

5.3.4.1 Carbon Content of Fuel  

The values of carbon content for the fuels used in this study are listed in Table 5.2 

[100]. The carbon content of waste is complicated due to the fact that waste is a 

heterogeneous mixture where single components have different carbon amounts and 

heat properties. Since waste only accounts for a very small proportion as an energy 

source in Singapore, we assume that the carbon content of waste is the same as fuel 

oil. 

Table 5.2 Carbon content of the fuels 

 Natural Gas Fuel Oil Waste 

Carbon Content (g Carbon / kWh) 52.6 74.3 74.3 

 

5.3.4.2 Thermal Efficiency 

In this study, each individual generating resource is tracked over the course of the 

simulation through the agent-based model. The operational thermal efficiencies 
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(Equation 1) of every generator are recorded every fifteen minutes.  In order to 

improve simulation speed, we use the average thermal efficiency (
1

2
(ƞ𝑚𝑎𝑥 + ƞ𝑚𝑖𝑛)) 

for each generator over the course of the simulation to calculate CO2 emissions.  

 

5.4 Model Validation  

As with any simulation study, one of the most important steps in model building is to 

ensure that this agent-based model can accurately represent the characteristics of the 

supply side of power system. In this work, we have used the Singapore data from 

2012 from the Energy Market Company, Singapore [98], [101] to do validation.  

Singapore has slightly over 30 generators, with a combination of CCGT, ST and 

OCGT generators. The fuel mix for Singapore is predominantly natural gas followed 

by fuel oil and waste. Table 5.3 gives a summary of the total capacity of each type of 

generator together with published statistics on electricity generation mix. As can be 

seen, 92% of electricity consumed in Singapore is generated by CCGT generators, 

with 8% from ST generators with minimal capacity from OCGT. In order to validate 

the electricity supply model, generator characteristics and historical forecasted data 

from 2012 are fed into the agent-based model which generates simulated electricity 

prices. These simulated electricity prices are then compared to historical data from 

2012.  

Table 5.3  Generator capacity information for Singapore in 2012 

 
CCGT ST OCGT 

Generation Capacity / MW 7874 2215 210 

Capacity Ratio / % 73.33 21.76 0.16 

Generation Ratio / % 92.29 7.70 0.01 

Generation Ratio (Model) / % 91.52 8.41 0.07 
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Table 5.3 also gives a summary of results obtained from various simulation runs.  The 

averaged simulated energy generation ratios are 91.52%, 8.41% and 0.07% for CCGT, 

ST and OCGT respectively. These are similar to historical data seen in Table 5.3. The 

generated price data is also summarized and given in Table 5.4. The historical price 

information was obtained from the online database [98]. Once again, the model 

results tracked closely to historical data. Electricity prices are highly temporal in 

nature and Figure 5.2 shows the average price variation within a day for the 

Singapore electricity market, showing the two marginal price peaks in a day. 

Table 5.4 Average marginal and regulation price for 2012 and model results 

 Historical data Model Results 

Average Marginal Price 222.49 221.68 

Average Regulation Price 91.50 91.69 

 

 

Figure 5.2 Average electricity marginal price across a day 
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5.5 Results and Discussion  

The main thrust of this study is the investigation of a large scale penetration of 

renewable energy sources in an electricity system. A deregulated electricity system 

represented by the Singapore electricity market is used as a reference case for the 

idealized scenarios. We examined different penetration levels of wind and solar 

energy and determine the effects on the electricity price and carbon emission.  

Different combinations of wind and solar are examined, equal contributions from 

wind and solar, pure solar investment and pure wind energy investment. Starting from 

a base case with no renewables, increasing levels of renewable energy sources are 

added. In this study, the added renewable energy capacity is the effective capacity, 

which is the nameplate capacity divided by a capacity factor. The effective capacity 

of both wind and solar is less than their nameplate capacity. It is assumed that this 

factor is 0.35 [102]. For example, when adding 200MW effective wind energy, the 

nameplate capacity needed is 200/0.35=571MW. In the renewable scenarios 

examined, several permutations of renewable capacities are added. Initially, the same 

capacity of wind and solar (WS) energy are added into the power system gradually, 

from (200+200) MW to (1000+1000) MW. Then wind (W) and solar (S) energy are 

added into the power system separately, both from 400MW to 2000MW. The daily 

peak electricity demand in Singapore is between 4000 MW to 6500MW [98], [101], 

so 2000MW is around 30% to 50% of the peak electricity demand in Singapore. 
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5.5.1 Marginal Price 

The effect of renewable energy on electricity marginal price is of great interest to 

both utilities and customers and throughout this study, the currency of analysis will be 

the Singapore Dollar (SGD). The average historical marginal price for Singapore in 

2012 is 222.49 SGD/MWh, while the marginal price from the energy market model is 

221.84 SGD/MWh. As mentioned in the previous section, in order to observe the 

change of marginal price affected by renewable energy, different scenarios are 

simulated with multiple levels of renewables. The results are shown in Figure 5.3. A 

direct observation is that marginal prices seem to be directly correlated with 

renewable generation capacity increase. In the examined scenarios, the average 

marginal prices come to 502.80 SGD/MWh, 500.93 SGD/MWh, and 339.97 

SGD/MWh, for WS, W and S scenarios respectively for cumulative capacities of 

2000 MW. These prices, however, could be influenced by very low utilization units 

which drive up marginal prices significantly. 

As mentioned earlier, the bid price for renewables is assumed to be 0. Intuitively, as 

the merit order stack becomes populated with more renewables, the marginal price 

should decrease, as determined in other publications [90]. As discussed in the earlier 

section, this study assumes that the bid prices are tied to the capacity factors, as the 

capacity factors of electricity generators get reduced, the bid prices increase. 

Correspondingly, if we assume that all the generators remain as participants in the 

electricity market, the marginal price of electricity generation should also increase. 

Although the price of electricity does increase across all scenarios, the effect of wind 

is more pronounced than that of solar. This effect can be attributed to the fact that 
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solar power tracks peak usage much better than wind, hence the effect of solar is to 

displace more marginal generators which already have low capacity factors.  

 

Figure 5.3 Marginal price for electricity for different renewable scenarios 
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The generators that are first removed are the OCGT generators and the small capacity 

ST. When the added renewable energy sources reach 2000MW, the small scale 

CCGT generators are also retired, while the biggest ST generators (600MW) remain 

in the market.  The summary of retired capacities is shown in Table 5.5.  

Table 5.5 The summary of retired capacities when adding renewable energy  

Renewable Capacity (MW) 400 800 1200 1600 2000 

Add Wind & 

Solar (WS) 

Retired 

Capacity 

(MW) 

676 908 908 1158 1408 

Type 
OCG

T, ST 

OCG

T, ST 

OCG

T, ST 

OCGT, 

ST, CCGT 

OCGT, 

ST, CCGT 

Add Wind (W) 

Retired 

Capacity 

(MW) 

676 908 908 908 1408 

Type 
OCG

T, ST 

OCG

T, ST 

OCG

T, ST 
OCGT, ST 

OCGT, 

ST, CCGT 

Add Solar (S) 

Retired 

Capacity 

(MW) 

0 676 676 676 908 

Type 
 

OCG

T, ST 

OCG

T, ST 
OCGT, ST OCGT, ST 

 

The results for marginal prices are shown in Figure 5.4 to Figure 5.7. When compared 

to the previous scenarios where generators are not retired, the marginal prices for the 

various scenarios tend to be lower. However, significant amounts of renewable 

energy sources still tend to increase the marginal cost of electricity when compared to 

the base case. Comparing across the different scenarios, at installed capacity of 

2000MW, the marginal price of electricity is 369.41 SGD/MWh, 393.89 SGD/MWh, 

and 303.08 SGD/MWh, respectively.  
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It can also be seen that for the different renewable energy source scenarios, the rate of 

increase of marginal prices are significantly different. In fact, when only solar 

capacity is added to the system, the marginal price increase is almost negligible.  

Conversely, wind energy contributes a high degree of uncertainty and affects 

electricity generation costs much more drastically. This reinforces the short term 

empirical observations and arguments with regards wind energy effects on energy 

system stability [87]. A complementary argument can be made that a relatively high 

penetration of solar resource can be added to the energy system and not significantly 

impact marginal electricity prices. However, even then, the model results do not 

indicate a decrease in marginal prices, just the effect of maintaining status quo in the 

electricity market.  

 

Figure 5.4 Marginal price profile before and after removing retired generators when 

adding wind & solar 
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Figure 5.5  Marginal price profile before and after removing retired generators when 

only adding wind 

 

 

Figure 5.6  Marginal price profile before and after removing retired generators when 

only adding solar 
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Figure 5.7 Marginal price profile after removing retired generators 
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Another observation is that the effects of the different renewable sources on the 

magnitude of decrease of carbon emissions are different.  It can be seen then that for a 

same effective capacity, wind power decreases carbon emissions to a bigger extent 

when compared to solar energy. The average CO2 emissions per day for different 

levels of renewable generation are given in Table 5.6. At a penetration level of 2000 

MW, pure wind investments result in an average reduction of 21930 metric tons of 

CO2 per day, corresponding to a reduction of 43% of CO2 emissions; while pure solar 

investments result in only a 21% in emissions or 10811 metric tons of CO2 per day. 

This serves as an interesting counter point to the previous section where solar 

generation has a less significant effect on marginal electricity prices. 

Table 5.6  CO2 emission with the increase of renewable and retired generators 

(metric tons/day) 

Capacity of Renewable (MW) 0 400 800 1200 1600 2000 

Add Wind & Solar (WS) 50636 46345 42214 38989 40584 32713 

Add Wind (W) 50636 45428 40205 36424 32737 28716 

Add Solar (S) 50636 47866 45265 43576 41643 39825 
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Figure 5.8: CO2 emission with the increase of renewable after removing retired 

generators 
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generators that only operate during peak demand. These generators may not have 

much influence over the production of carbon emissions, but in a system where these 

generators are marginal generators, they are still significant factors on marginal 

electricity prices. Similarly, wind generators generate throughout the day, while the 

displacement of marginal generators still occur, they do not exclusively displace these, 

hence the effect on the marginal electricity prices would then be lower than solar 

energy sources.  

 

Figure 5.9 Daily electricity generation by fuel sources and CO2 emission without 

renewables 
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Figure 5.10 Daily electricity generation by fuel sources and CO2 emission when 

adding 2000 MW solar & wind 

 

 

Figure 5.11 Daily electricity generation by fuel sources and CO2 emission when 

adding 2000 MW wind 
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Figure 5.12 Daily electricity generation by fuel sources and CO2 emission when 

adding 2000 MW solar 

 

5.6 Conclusion 
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However, in terms of marginal costs of electricity generation in the Energy Market, 

wind energy increases marginal electricity prices more than equivalent solar 

capacities. It is then interesting to note that from a system perspective, different 

renewable energy resources should be favored differently for different system 

objectives.   
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CHAPTER 6. CONCLUSION AND FUTURE WORK  

6.1 Conclusion 

In this thesis, both energy demand sector and energy supply sector are analyzed based 

on several subsystems. On demand sector, both transportation system and solar PV 

micro-generation system are studied. For transportation system, a model-based 

methodology is developed to quantify EV battery lifespan. Using this methodology, 

battery life distributions arising from various driving behaviors are generated based 

on realistic drive cycles in Indianapolis. Besides Indianapolis, this methodology can 

be applied to any regions for battery life studies, and provide insights for EV 

companies to design battery warranties. For solar PV micro-generation system, a 

laboratory simulation tool is developed for solar PV systems for both research and 

education purposes. This tool has been published on line, and is free for everyone to 

use. On supply sector, an agent-based model is developed and validated to simulate 

the Singapore power system. Using this model, in-depth understanding was gained 

for wind and solar energy associated with electricity prices and CO2 emission. 

Besides Singapore, this model can be applied to any power systems and to provide 

detailed information for policy makers to develop strategies for utilizing various types 

of renewable energy. 
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6.2 Future work  

This work can be extended or improved in several ways. 

 

6.2.1 Public Charging Effects 

In this study, charging effects are neglected in the EV battery lifespan investigation. It 

is reasonable to ignore charging effects if EV only charges at home with level 1 or 

level 2 chargers. With the development of EVs and related infrastructures, public 

charging stations are going to be a significant part of transportation system. Therefore, 

this work can be extended to integrate public charging effects on battery lifespan on 

the one hand. On the other hand, public charging effects on electricity demand and 

transmission should also be studied in future work.  

 

6.2.2 Integration of Solar PV System with EV  

In this study, EV and solar PV micro-generation system are analyzed as two separated 

systems. Actually, both EV and solar PV can be considered as household appliances. 

EV is an electricity consumer and energy storage device, while solar PV is an 

electricity generator. A model which combines EV, solar PV, and household energy 

demand should be developed to answer various types of what-if questions.  

 

6.2.3 Integration of Demand Sector with Supply Sector  

In this study, both energy demand sector and energy supply sector are analyzed. 

Energy system is an integrated system which includes energy demand and supply. 

Energy supply sector provides energy through transmission system to match total 
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energy demand. Both sectors’ behaviors will affect each other. In this study, for the 

sake of simplicity one sector is assumed to be ideal when the other sector is studied. 

In future work, a model which combines both energy demand sector and supply 

sector should be developed. This proposed model can simulate the whole energy 

system more accurately. It can provide detailed information for policy makers to 

develop strategies for making various policy portfolios.  

 



 

REFERENCES 

 

 



103 

REFERENCES 

[1] “California Renewable Energy Overview and Programs,” ca.gov. [Online]. 

Available: http://www.energy.ca.gov/renewables/. 

[2] “Germany Leads Way on Renewables, Sets 45% Target by 2030,” Worldwatch 

Institute. [Online]. Available: http://www.worldwatch.org/node/5430. 

[3] “Renewable Energy for Japan: A Post-Fukushima Quest,” Wharton University of 

Pennsylvania, 2013. [Online]. Available: 

http://knowledge.wharton.upenn.edu/article/renewable-energy-japan-post-

fukushima-quest/. 

[4] EIA, “U.S. Energy Information Administration / Monthly Energy Review January 

2016,” 2016. 

[5] “Petroleum Products: Consumption.,” Energy Information Sheets, 2008. . 

[6] S. Huang, B. M. S. Hodge, F. Taheripour, J. F. Pekny, G. V. Reklaitis, and W. E. 

Tyner, “The effects of electricity pricing on PHEV competitiveness,” Energy 

Policy, vol. 39, no. 3, pp. 1552–1561, 2011. 

[7] A. Vyas, D. Santini, M. Duoba, and M. Alexander, “Plug-in hybrid electric 

vehicles: How does one determine their potential for reducing U.S. oil 

dependence?,” World Electr. Veh. J., vol. 2, no. 1, pp. 1–19, 2008. 

[8] K. David, The electric vehicle and the burden of history. 2000. 



104 

[9] S. Huang, “Policy Portfolio Analysis for Energy Systems Based on a Multi-

Paradigm Modeling Framework,” Purdue University, 2011. 

[10] Oak Ridge National Laboratory, “Plug-In Hybrid Vehicle Value Proposition 

Study,” 2010. 

[11] J. K. Kaldellis and D. Zafirakis, “Optimum energy storage techniques for the 

improvement of renewable energy sources-based electricity generation economic 

efficiency,” Energy, vol. 32, no. 12, pp. 2295–2305, 2007. 

[12] M. Perrin, Y. M. Saint-Drenan, F. Mattera, and P. Malbranche, “Lead-acid 

batteries in stationary applications: Competitors and new markets for large 

penetration of renewable energies,” in Journal of Power Sources, 2005, vol. 144, 

no. 2, pp. 402–410. 

[13] C. Fabjan, J. Garche, B. Harrer, L. J??rissen, C. Kolbeck, F. Philippi, G. Tomazic, 

and F. Wagner, “The vanadium redox-battery: An efficient storage unit for 

photovoltaic systems,” Electrochim. Acta, vol. 47, no. 5, pp. 825–831, 2001. 

[14] L. Xiaohui, K. Derrick, F. S. Ruwanthaka, C. A. Christine, and P. J. F., “Solar PV.” 

Jan-2016. 

[15] EPA, “Inventory of US greenhouse gas emissions and sinks: 1990-2013. EPA.,” 

2015. 

[16] EIA, “Annual Energy Review 2009,” 2010. 

[17] K. Funk and A. Rabl, “Electric versus conventional vehicles : social costs and 

benefits in France,” Transp. Res. Part D, vol. 4, pp. 397–411, 1999. 

[18] “Sources of Greenhouse Gas Emissions,” EPA, 2015. [Online]. Available: 

http://www3.epa.gov/climatechange/ghgemissions/sources/transportation.html. 



105 

[19] S. Saxena, C. Le, J. Macdonald, and S. Moura, “Quantifying EV battery end-of-

life through analysis of travel needs with vehicle powertrain models,” J. Power 

Sources, vol. 282, pp. 265–276, 2015. 

[20] C. C. Chan, “An Overview of Electric Vehicle Technology,” Proc. IEEE, vol. 81, 

no. 9, pp. 1202–1213, 1993. 

[21] J. Purewal, J. Wang, J. Graetz, S. Soukiazian, H. Tataria, and M. W. Verbrugge, 

“Degradation of lithium ion batteries employing graphite negatives and nickel-

cobalt-manganeseoxide+spinel manganese oxide positives: Part 2, chemical-

mechanical degradation model,” J. Power Sources, vol. 272, pp. 1154–1161, 2014. 

[22] J. Wang, J. Purewal, P. Liu, J. Hicks-Garner, S. Soukazian, E. Sherman, A. 

Sorenson, L. Vu, H. Tataria, and M. W. Verbrugge, “Degradation of lithium ion 

batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel 

manganese oxide positives: Part 1, aging mechanisms and life estimation,” J. 

Power Sources, vol. 269, pp. 937–948, 2014. 

[23] J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. 

Tataria, J. Musser, and P. Finamore, “Cycle-life model for graphite-LiFePO4 cells,” 

J. Power Sources, vol. 196, no. 8, pp. 3942–3948, 2011. 

[24] J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. C. Möller, J. O. Besenhard, M. 

Winter, M. Wohlfahrt-Mehrens, C. Vogler, and  a. Hammouche, “Ageing 

mechanisms in lithium-ion batteries,” J. Power Sources, vol. 147, no. 1–2, pp. 

269–281, 2005. 

 

 



106 

[25] M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre, K. Nechev, 

and R. J. Staniewicz, “Main aging mechanisms in Li ion batteries,” J. Power 

Sources, vol. 146, no. 1–2, pp. 90–96, 2005. 

[26] Z. Li, J. Huang, B. Yann Liaw, V. Metzler, and J. Zhang, “A review of lithium 

deposition in lithium-ion and lithium metal secondary batteries,” J. Power Sources, 

vol. 254, pp. 168–182, 2014. 

[27] S. Huang, J. Xiao, J. F. Pekny, G. V. Reklaitis, and A. L. Liu, “Quantifying 

System-Level Benefits from Distributed Solar and Energy Storage,” J. Energy 

Eng., vol. 138, no. 2, pp. 33–42, 2012. 

[28] E. Wood, M. Alexander, and T. H. Bradley, “Investigation of battery end-of-life 

conditions for plug-in hybrid electric vehicles,” J. Power Sources, vol. 196, no. 11, 

pp. 5147–5154, 2011. 

[29] J. Neubauer and A. Pesaran, “The ability of battery second use strategies to impact 

plug-in electric vehicle prices and serve utility energy storage applications,” J. 

Power Sources, vol. 196, no. 23, pp. 10351–10358, 2011. 

[30] D. Demuro, “2013 Nissan Leaf Gets New Battery Warranty,” 2013. [Online]. 

Available: http://www.autotrader.com/car-news/2013-nissan-leaf-gets-new-

battery-warranty-201645. 

[31] M. Broussely, S. Herreyre, P. Biensan, P. Kasztejna, K. Nechev, and R. J. 

Staniewicz, “Aging mechanism in Li ion cells and calendar life predictions,” J. 

Power Sources, vol. 97–98, pp. 13–21, 2001. 

 

 



107 

[32] R. B. Wright, C. G. Motloch, J. R. Belt, J. P. Christophersen, C. D. Ho, R. a. 

Richardson, I. Bloom, S. a. Jones, V. S. Battaglia, G. L. Henriksen, T. 

Unkelhaeuser, D. Ingersoll, H. L. Case, S. a. Rogers, and R. a. Sutula, “Calendar- 

and cycle-life studies of advanced technology development program generation 1 

lithium-ion batteries,” J. Power Sources, vol. 110, no. 2, pp. 445–470, 2002. 

[33] D. Aurbach, E. Zinigrad, Y. Cohen, and H. Teller, “A short review of failure 

mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte 

solutions,” in Solid State Ionics, 2002, vol. 148, no. 3–4, pp. 405–416. 

[34] Y.-J. Lee, H.-Y. Choi, C.-W. Ha, J.-H. Yu, M.-J. Hwang, C.-H. Doh, and J.-H. 

Choi, “Cycle life modeling and the capacity fading mechanisms in a 

graphite/LiNi0.6Co0.2Mn0.2O2 cell,” J. Appl. Electrochem., pp. 419–426, 2015. 

[35] E. V. Thomas, I. Bloom, J. P. Christophersen, and V. S. Battaglia, “Statistical 

methodology for predicting the life of lithium-ion cells via accelerated degradation 

testing,” J. Power Sources, vol. 184, no. 1, pp. 312–317, 2008. 

[36] C. Guenther, B. Schott, W. Hennings, P. Waldowski, and M. a. Danzer, “Model-

based investigation of electric vehicle battery aging by means of vehicle-to-grid 

scenario simulations,” J. Power Sources, vol. 239, pp. 604–610, 2013. 

[37] V. Marano, S. Onori, Y. Guezennec, G. Rizzoni, and N. Madella, “Lithium-ion 

batteries life estimation for plug-in hybrid electric vehicles,” Veh. Power Propuls. 

Conf. 2009. VPPC ’09. IEEE, pp. 536–543, 2009. 

[38] U.S. Department of Transportation, “National Household Travel Survey,” 2009. 

[Online]. Available: http://nhts.ornl.gov/2009. 

 



108 

[39] T. Markel,  a Brooker, T. Hendricks, V. Johnson, K. Kelly, B. Kramer, M. 

O’Keefe, S. Sprik, and K. Wipke, “ADVISOR: a Systems Analysis Tool for 

Advanced Vehicle Modelling,” J. Power Sources, vol. 110, no. 2, pp. 255–266, 

2002. 

[40] “Autonomie.” [Online]. Available: http://www.autonomie.net/. 

[41] J. Straubel, “Roadster Efficiency and Range,” 2008. [Online]. Available: 

http://www.teslamotors.com/blog/roadster-efficiency-and-range. 

[42] R. Van Haaren, “Assessment of Electric Cars ’ Range Requirements and Usage 

Patterns based on Driving Behavior recorded in the National Household Travel 

Survey of 2009,” vol. 1, no. 917, 2012. 

[43] J. W. Fergus, “Recent developments in cathode materials for lithium ion batteries,” 

Journal of Power Sources, vol. 195, no. 4. pp. 939–954, 2010. 

[44] A. J. Smith, J. C. Burns, D. Xiong, and J. R. Dahn, “Interpreting High Precision 

Coulometry Results on Li-ion Cells,” Journal of The Electrochemical Society, vol. 

158, no. 10. p. A1136, 2011. 

[45] K. Morrow, “Plug-in hybrid electric vehicle charging infrastructure review,” 2008. 

[46] B. van der Zwaan and A. Rabl, “Prospects for PV: A learning curve analysis,” Sol. 

Energy, vol. 74, no. 1, pp. 19–31, 2003. 

[47] P. D. Maycock, “PV News,” PV News, 2007. 

[48] PV News, “Mehta 27th Annual Data Collection Results,” 2011. 

[49] A. Jäger-Waldau, “PV Status Report 2013,” 2013. 

[50] California Public Utilities Commission, “California Solar Initiative Program 

Handbook,” 2014. 



109 

[51] New York State Energy Research and Development Authorigy, “Pon 2112-NY-

Sun Solar Electric Incentive Program,” 2010. [Online]. Available: 

http://www.nyserda.ny.gov/Funding-Opportunities/Current-Funding-

Opportunities/PON-2112-Solar-PV-Program-Financial-Incentives. 

[52] AEP Texas North Company, “Smart Source Solar PV Rebate Program.” [Online]. 

Available: http://programs.dsireusa.org/system/program/detail/3669. 

[53] R. W. Buckley and E. Kuetz, “European photovoltaic education initiative,” Renew. 

energy, vol. 5, no. 1–4 pt 1, pp. 345–347, 1994. 

[54] L. Broman, “On the didactics of renewable energy education - drawing on twenty 

years experience,” Renew. Energy, vol. 5, no. 5–8, pp. 1398–1405, 1994. 

[55] H. P. Garg and T. C. Kandpal, “Energy engineering education at postgraduate 

level: Issues involved, course structure and its proposed adaptation,” Renew. 

Energy, vol. 5, no. 5–8, pp. 1406–1412, 1994. 

[56] H. P. Garg and T. C. Kandpal, “Renewable energy education: Challenges and 

problems in developing countries,” Renew. Energy, vol. 9, pp. 1188–1193, 1996. 

[57] M. Ružinsky, A. Smola, J. Takács, V. Šály, D. Ružinská, I. Darul’a, V. Horník, J. 

Kuma, and D. Gašparovsky, “Renewable energy R & D, education and training at 

the Slovak Technical University,” Renew. Energy, vol. 9, no. 1–4, pp. 1199–1202, 

Sep. 1996. 

[58] K. L. O’Mara and P. J. Jennings, “Innovative renewable energy education using 

the World Wide Web,” Renew. Energy, vol. 22, no. 1–3, pp. 135–141, 2001. 

[59] S. . Bhattacharya, “Renewable energy education at the university level,” Renew. 

Energy, vol. 22, no. 1–3, pp. 91–97, 2001. 



110 

[60] N. Zografakis, A. N. Menegaki, and K. P. Tsagarakis, “Effective education for 

energy efficiency,” Energy Policy, vol. 36, no. 8, pp. 3216–3222, 2008. 

[61] P. Jennings, “New directions in renewable energy education,” Renew. Energy, vol. 

34, no. 2, pp. 435–439, 2009. 

[62] A. Karabulut, E. Gedik, A. Ke??eba??, and M. A. Alkan, “An investigation on 

renewable energy education at the university level in Turkey,” Renew. Energy, vol. 

36, no. 4, pp. 1293–1297, 2011. 

[63] K. Gerhard and M. Michael, “Nanoelectronic Modeling Lecture 06: nanoHUB.org 

- Rappture Toolkit.” Jan-2016. 

[64] G. Klimeck, M. Mclennan, S. B. Brophy, G. B. Adams, and M. S. Lundstrom, 

“NanoHUB.org: Advancing education and research in nanotechnology,” Comput. 

Sci. Eng., vol. 10, no. 5, pp. 17–23, 2008. 

[65] NREL, “National Solar Radiation Database,” National Renewable Energy 

Laboratory. [Online]. Available: http://rredc.nrel.gov/solar/old_data/nsrdb/. 

[66] Go Solar California, “Installed Residential Capacity - Monthly Statistics,” 2011. 

[67] NREL, “A Review of PV inverter technology cost and performance projections,” 

2006. 

[68] Go Solar California, “California Solar Initiative Rebates,” 2012. . 

[69] Go Solar California, “Net Energy Metering in California,” 2012. . 

[70] Go Solar California, “Monthly Statistics,” 2011. . 

[71] GreenZu, “Solar Inverters explained: how solar inverters work,” 2012. 

[72] SolarCost, “Solar Inverter,” 2012. 

[73] EERE, “SunShot vision study,” Washington, DC, 2012. 



111 

[74] Go Solar California, “California Solar Statistics,” 2013. 

[75] SunShot, “Photovoltaic (PV) pricing trends: historical, recent, and near-term 

projections,” Golden, CO, 2012. 

[76] Internal Revenue Service, “How to depreciate property,” 2011. 

[77] Sonic.net, “A description of our residential, 4 kilowatt, grid-tied, photovoltaic 

power generation system,” 2012. 

[78] Energy Information Agency, “Electric sales, revenue, and average price,” 2010. 

[79] U.S. Census Bureau, “2010 Census interactive population search,” 2010. 

[80] D. C. Jordan and S. R. Kurtz, “Photovoltaic degradation rates - An Analytical 

Review,” Progress in Photovoltaics: Research and Applications, vol. 21, no. 1. pp. 

12–29, 2013. 

[81] SPIEGEL Staff, “Germany’s Energy Poverty: How Electricity Became a Luxury 

Good,” 2013. 

[82] M. Nicolosi, “Wind power integration and power system flexibility-An empirical 

analysis of extreme events in Germany under the new negative price regime,” 

Energy Policy, vol. 38, no. 11, pp. 7257–7268, 2010. 

[83] E. D. Delarue, P. J. Luickx, and W. D. D’haeseleer, “The actual effect of wind 

power on overall electricity generation costs and CO2 emissions,” Energy Convers. 

Manag., vol. 50, no. 6, pp. 1450–1456, 2009. 

[84] P. J. Luickx, E. D. Delarue, and W. D. D’Haeseleer, “Impact of large amounts of 

wind power on the operation of an electricity generation system: Belgian case 

study,” Renew. Sustain. Energy Rev., vol. 14, no. 7, pp. 2019–2028, 2010. 

 



112 

[85] L. Hirth, T. Mount, A. Lamadrid, S. Maneevitjit, B. Thomas, B. Zimmerman, U. S. 

E. P. Agency, C. Heat, P. P. Chp, D. McConnell, P. Hearps, D. Eales, M. 

Sandiford, R. Dunn, M. Wright, L. Bateman, E. S. Rubin, A. B. Rao, C. Chen, N. J. 

Cutler, N. D. Boerema, I. F. MacGill, H. R. Outhred, S. Forrest, I. F. MacGill, P. J. 

Luickx, E. D. Delarue, W. D. D’haeseleer, P. J. Luickx, W. D. D’haeseleer, C. K. 

Woo, I. Horowitz, J. Moore, and A. Pacheco, “Assessing the impact of wind 

generation on wholesale prices and generator dispatch in the Australian National 

Electricity Market,” Energy Policy, vol. 39, no. 7, pp. 3939–3944, 2013. 

[86] D. McConnell, P. Hearps, D. Eales, M. Sandiford, R. Dunn, M. Wright, and L. 

Bateman, “Retrospective modeling of the merit-order effect on wholesale 

electricity prices from distributed photovoltaic generation in the Australian 

National Electricity Market,” Energy Policy, vol. 58, pp. 17–27, 2013. 

[87] C. K. Woo, I. Horowitz, J. Moore, and A. Pacheco, “The impact of wind 

generation on the electricity spot-market price level and variance: The Texas 

experience,” Energy Policy, vol. 39, no. 7, pp. 3939–3944, 2011. 

[88] T. Mount, A. Lamadrid, S. Maneevijit, B. Thomas, R. Zimmerman, S. Maneevitjit, 

B. Thomas, and R. Zimmerman, “The Hidden System Costs of Wind Generation in 

a Deregulated Electricity Market,” in 2010 43rd Hawaii International Conference 

on System Sciences, 2010, no. May 2008, pp. 1–10. 

[89] L. Hirth, “The market value of variable renewables. The effect of solar wind power 

variability on their relative price,” Energy Econ., vol. 38, pp. 218–236, 2013. 

 

 



113 

[90] N. J. Cutler, N. D. Boerema, I. F. MacGill, and H. R. Outhred, “High penetration 

wind generation impacts on spot prices in the Australian national electricity 

market,” Energy Policy, vol. 39, no. 10, pp. 5939–5949, 2011. 

[91] B. M. Hodge, A. Shukla, S. Huang, G. Reklaitis, V. Venkatasubramanian, and J. 

Pekny, “Multi-paradigm modeling of the effects of PHEV adoption on electric 

utility usage levels and emissions,” Ind. Eng. Chem. Res., vol. 50, no. 9, pp. 5191–

5203, 2011. 

[92] B.-M. S. Hodge, S. Huang, J. D. Siirola, J. F. Pekny, and G. V. Reklaitis, “A 

multi-paradigm modeling framework for energy systems simulation and analysis,” 

Comput. Chem. Eng., vol. 35, no. 9, pp. 1725–1737, 2011. 

[93] Energy Market Authority, “Licences & Exemption Orders,” 2014. [Online]. 

Available: https://www.ema.gov.sg/page/115/id:129/#generation. 

[94] B.-M. S. Hodge, S. Huang, A. Shukla, J. F. Pekny, V. Venkatasubramanian, and G. 

V Reklaitis, “The effects of vehicle-to-grid systems on wind power integration,” 

Wind Energy, vol. 15, no. 7, pp. 903–914, 2012. 

[95] J. Xiao, B. M. S. Hodge, A. L. Liu, J. F. Pekny, and G. V. Reklaitis, Long-Term 

Planning of Wind Farm Siting in the Electricity Grid, vol. 29. 2011. 

[96] J. Xiao, B.-M. S. Hodge, A. L. Liu, J. F. Pekny, and G. V. Reklaitis, 21st 

European Symposium on Computer Aided Process Engineering, vol. 29. 2011. 

[97] Energy Market Company, “Nems Market Report 2012,” Singapore, 2013. 

[98] Energy Market Company, “Price Information,” Singapore, 2013. 

[99] L. Cheah and A. Finenko, “Temporal emissions associated with electricity 

generation: case study of Singapore,” Singapore, 2014. 



114 

[100] EIA, “Annual Energy Outlook 2008,” 2008. 

[101] Energy Market Company, “Market Surveillance & Compliance Panel Annual 

Report 2012,” Singapore, 2012. 

[102] EIA, “Electricity Power Annual 2012,” 2013. 

[103] C. K. Woo, “What went wrong in California’s electricity market?,” Energy, vol. 26, 

no. 8, pp. 747–758, 2001. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

APPENDICES



115 

 

Appendix A Solar PV System Survey Results from Purdue University 

Total participants: 23  

Gender: Female: 8     Male: 15 

Statistics for each question: 

1. Using Solar PV systems would reduce electricity consumption. 

 
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 3 6 8 6 0 

After 2 2 4 15 0 

 

2. Solar PV system would reduce the peak demand of electricity for household. 

 
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 3 2 14 4 0 

After 3 1 7 2 0 

 

3. Individual consumers will benefit from the installation of solar PV systems. 

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 0 3 14 5 1 

After 0 2 16 4 1 

 

4.   Local utility companies will benefit from the installation of solar PV system. 

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 1 7 9 5 1 

After 2 6 10 5 0 
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5.   Solar PV system is safe to use. 

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 0 0 18 4 1 

After 0 0 10 12 1 

 

6.   Solar PV system is reliable to use. 

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 2 8 12 0 1 

After 1 5 10 6 1 

 

7.   Solar PV system is easy to maintain.  

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 1 13 7 0 2 

After 1 9 8 3 2 

 

8.   Solar PV system can help to reduce CO2 emission. 

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 0 1 7 15 0 

After 0 0 12 11 0 

 

9.   Solar PV system would be too expensive for the average household.  

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 0 2 13 7 1 

After 0 9 8 5 1 

 

10. Batteries can help to improve the efficiency of solar PV systems. 

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 0 4 15 4 0 

After 0 0 6 17 0 
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11. Batteries can help to reduce the peak demand of electricity for households.  

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 1 4 15 3 0 

After 1 1 8 13 0 

 

 

12. I am interested in learning about solar PV systems. 

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 0 1 15 7 0 

After 0 2 10 10 1 

 

13. I have access to adequate amount of information about solar PV systems.  

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 0 6 15 1 1 

After 0 3 12 8 0 

 

14. I am interested in pursuing further studies in an area related to solar PV systems. 

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 2 8 12 1 0 

After 2 6 10 5 0 

 

15. I am interested in conducting research on solar PV systems.  

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 4 7 10 2 0 

After 3 8 10 2 0 
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16. If given the opportunity, I would use solar PV systems.  

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 0 1 13 5 4 

After 1 0 14 8 0 

 

17. I would still use solar PV systems in my house even if solar electricity is expensive 

than the electricity from power grid.  

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 2 14 4 3 0 

After 3 10 5 4 1 

 

18. I am willing to use solar PV systems in the future.  

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 0 1 13 9 0 

After 0 1 11 11 0 

 

19. I think solar PV systems will become one of the most popular electricity sources in 

the future.  

       
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 

Not 

Applicable 

Before 1 4 13 5 0 

After 1 4 8 10 0 

 

20. In how many years do you think solar PV systems will become one of the most 

popular electricity sources?  

       10years 20years 30years 50years 
Not 

Applicable 

Before 0 14 6 3 0 

After 3 10 7 1 2 
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21. Do you think governments should subsidize solar PV systems? Why?  

       Yes No NA   

Before 13 8 2   

After 16 5 2   

 

22. Do you think governments should support solar energy related research? Why? 

       Yes No NA   

Before 22 1 0   

After 21 2 0   

 

23. How would you describe your current knowledge/understanding of solar PV systems? 

       High Medium Low NA  

Before 0 4 17 2  

After 2 13 8 0  

 

 

24. Based on what you have learned in this project, are you more likely to accept solar 

PV systems? 

       Yes No NA   

Before      

After 21 2 0   
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Appendix B Solar PV System Survey Results from United States Military Academy 

Total participants: 3  

Gender: Female: 0     Male: 1 

Comparison of the average results before and after the project: 

 

Figure B1 Results comparison from United States Military Academy at West Point 
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