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ABSTRACT 

Larrick, Brienna M. Ph.D., Purdue University, May 2016. 1,25-Dihydroxyvitamin 
D Regulation of Triacylglycerol Accumulation in Differentiated Adipocytes. Major 
Professor: Dorothy Teegarden. 
 
 

Obesity is a major public health concern, both in the United States and 

worldwide. Therefore, identification of measures by which obesity may be 

prevented and reversed is of high priority. Epidemiological studies consistently 

demonstrate an inverse relationship between serum 25(OH)D levels, an indicator 

of vitamin D status, and measures of adiposity. These data suggest that vitamin 

D may play a role in the prevention of excessive adiposity. However, whether 

vitamin D impacts lipid storage and metabolism in terminally differentiated 

adipocytes is not yet known. The purpose of this work was to determine the 

impact of 1,25-dihydroxyvitamin D (1,25(OH)2D), the bioactive vitamin D 

metabolite, on triacylglycerol accumulation and lipid and glucose metabolism in 

differentiated adipocytes. To study this, 3T3-L1 adipocytes were differentiated for 

9 days, followed by stimulation with 1,25(OH)2D (10 nM) or vehicle for 1-7 days. 

Results indicate that 1,25(OH)2D stimulates a 21% reduction in TAG 

accumulation in differentiated 3T3-L1 adipocytes after 4 days (P=0.01). This 

occurs despite a significant increase in fatty acid uptake (P<0.01), assessed 

using BODIPY FL C16, and with concomitant stimulation of PKA-dependent 
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glycerol release (P<0.01), which is typically indicative of lipolysis. Additionally, we 

demonstrate that 1,25(OH)2D stimulates a 2.5-fold increase in complete fatty acid 

oxidation (P<0.01), assessed by quantifying the production of 14CO2 from [1-14C] 

palmitic acid. These results suggest a novel mechanism by which 1,25(OH)2D 

may be protective against excessive adiposity. In addition to its impact on fatty 

acid metabolism, the impact of 1,25(OH)2D on glucose metabolism was also 

examined. Glucose contributes significantly to the intracellular TAG pool, serving 

as a substrate for both fatty acid synthesis as well as glycerol production to 

support TAG synthesis. The results indicate that 1,25(OH)2D reduces the 

incorporation of D-[U-13C]glucose incorporation into palmitic, palmitoleic, stearic, 

and oleic acids (P=0.03), determined by liquid chromatography-mass 

spectrometry (LC-MS). Interestingly, [13C2]acetate incorporation into these fatty 

acids was reduced by only 10% (p<0.01), suggesting that while de 

novo lipogenesis is slightly inhibited in response to 1,25(OH)2D, the contribution 

of glucose specifically as a substrate for fatty acid synthesis is reduced. Study of 

glucose uptake and disposal as lactate revealed that these two processes are 

not impacted by 1,25(OH)2D, suggesting that glucose may instead be used for 

the synthesis of glycerol. Indeed, inhibition of glycolysis to reduce substrate 

availability for glycerol synthesis completely prevented 1,25(OH)2D-stimulation of 

glycerol release. These data suggest that rather than stimulating TAG hydrolysis, 

1,25(OH)2D stimulates disposal of glucose as glycerol, while reducing its 

utilization as a substrate for fatty acid synthesis. While the mRNA expression of 

pyruvate carboxylase (PC) is reduced by 40% in response to 1,25(OH)2D 
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(P<0.01), suggesting that 1,25(OH)2D may limit pyruvate entry into the TCA 

cycle, at this time it is not clear whether this underlies the 1,25(OH)2D-stimulated 

changes in glucose metabolism and TAG storage. In conclusion, 1,25(OH)2D 

stimulates fatty acid oxidation in 3T3-L1 adipocytes, and reduces the contribution 

of glucose to the fatty acid pool, likely by stimulating glucose disposal as glycerol. 

These results demonstrate that 1,25(OH)2D regulates both fatty acid and glucose 

metabolism in differentiated 3T3-L1 adipocytes to reduce TAG storage. These 

novel findings demonstrate a mechanism by with 1,25(OH)2D may protect 

against excessive fat mass accumulation, and provide support for the inverse 

relationship between vitamin D and obesity.
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CHAPTER 1. LITERATURE REVIEW 

1.1 Obesity and Associated Metabolic Disorders 

Obesity has become a major public health concern, with over 36% of 

adults and 17% of children and adolescents in the United States considered 

obese (1). Individuals who are obese are at increased risk for developing chronic 

diseases and metabolic disorders, as well as certain types of cancer (2).  

Additionally, it is estimated that medical costs associated with obesity account for 

over 20% of all annual health care spending in the United States, and that direct 

and indirect costs from obesity exceed $275 billion annually (3). Because of 

these devastating physical, psychological, and financial costs of obesity, it is 

imperative that effective measures to prevent and reverse obesity are identified. 

Several measures exist by which individuals may be classified according 

to their weight status and associated disease risk. Body mass index (BMI) is a 

quick and inexpensive method of weight assessment, and is positively correlated 

with metabolic disorders that are associated with obesity. Therefore, BMI is often 

used as a screening tool for categorizing individuals by weight. Body mass index 

is calculated by dividing an individual’s weight in kilograms by the square of 

height in meters. While BMI is not a direct measure of adiposity, BMI does 

correlate with direct measures of body fat, including dual energy x-ray 
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absorptiometry (DEXA), bioelectrical impedance, densitometry, and skinfold 

thickness measurements (4, 5). For adults 20 years and older, BMI is used to 

categorize individuals as underweight (BMI < 18.5), normal weight (BMI 18.5-

24.9), overweight (BMI 25.0-29.9), or obese (BMI >30.0) (2). Epidemiological 

data show a modest increased risk of mortality when BMI reaches above 25 

kg/m2 (6-8), and a 50-100% risk of all-cause mortality when BMI reaches 30 

kg/m2 (7, 8). 

While BMI serves as a convenient and inexpensive measure of weight 

assessment, it does not distinguish between excessive adipose and muscle 

mass, and is therefore not diagnostic individual of health risk (9). A more 

accurate representation of an individual’s health risk may be obtained by 

assessing percent body fat. The “gold standard” for measuring body fat is DEXA, 

but this method is expensive and not always accessible. Estimates of percent 

body fat may also be obtained using handheld or scale instruments that measure 

bioimpedance, or by measurements of skinfold (10). To avoid elevated weight-

associated health risks, the recommended body fat percentage ranges for men 

and women are 12-20% and 20-30%, respectively (11).  

There are many diseases and health conditions associated with obesity. 

Individuals who are obese are more likely than lean individuals to experience 

sleep apnea, depression, anxiety, and osteoarthritis (2, 12, 13).  Further, 

metabolic disorders such as hypertension, dyslipidemia, coronary artery disease, 

and type 2 diabetes are more prevalent among those who are obese, as are 

certain types of cancer such as that of the breast, colon, kidney, gallbladder, and 
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liver (2, 14).  Adipose tissue dysfunction often underlies obesity-associated 

metabolic disorders, and modulation of adipose tissue metabolism has become a 

target for combating obesity and associated chronic diseases. 

1.1.1 Adipose Tissue Physiology 

1.1.1.1 Characteristics of Adipose Tissue 

For the vast majority of individuals, adipose tissue is the largest energy 

reservoir in the body (15). In animals, approximately one-third of the cells found 

in adipose tissue are adipocytes, while the remaining two-thirds are a 

combination of fibroblasts, preadipocytes, stem cells, as well as nerve tissue and 

vasculature (16). Historically, adipose tissue was considered to be an organ 

devoted mainly to energy storage and thermal regulation, while serving as a 

source of cushioning to protect internal organs (17). However, the complexity of 

this tissue has been identified in recent years, and it is now known that functions 

of adipose tissue also include regulation of appetite, insulin sensitivity and 

glucose homeostasis, lipid metabolism, inflammation and immunity, as well as 

angiogenesis and blood pressure (17, 18).  

In humans, adipose tissue is organized in discrete anatomical depots: 

subcutaneous and visceral.  Adipose tissue ranges from 5-60% of total body 

mass, with subcutaneous adipose tissue (SAT) accounting for 80% or more of 

the total fat mass (19). The subcutaneous adipose tissue lies under the skin and 

includes abdominal, gluteal, and femoral adipose depots (19). Accumulation of 
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subcutaneous fat mass, or peripheral obesity, is thought to be protective against 

metabolic disease (20-26).  

On the other hand, visceral adipose tissue (VAT) is associated with 

digestive organs, and represents 10-20% of the total fat mass in men, and 5-10% 

of that in women. Visceral adipose depots include the omental, which associates 

with the stomach, the intestine-associated mesenteric, and the epiploic, which 

can be found along the colon (19).  Excessive accumulation of visceral adipose 

tissue, termed “central obesity,” is associated with risk of metabolic disorders 

(20-24, 26). It is thought that VAT confers elevated risk of metabolic disorders 

because of its direct access to the portal vein; hepatocytes are exposed to high 

levels of fatty acids freed by lipolysis from VAT, which may lead to hepatic insulin 

resistance, hepatic glucose production and fasting hyperglycemia (27). Further, 

production of proinflammatory cytokines has been found to be higher in VAT than 

in SAT depots (28), contributing to the increased metabolic disease risk with 

excessive VAT accumulation. 

1.1.1.2 Functions of Adipose Tissue 

One of the longest-known functions of adipose tissue is maintenance of 

energy homeostasis. Adipocytes can store excess energy in cytoplasmic lipid 

droplets, in the form of triacylglycerol (TAG). Postprandially, or in response to 

overnutrition, this function prevents ectopic lipid deposition in tissues such as the 

liver, heart, and skeletal muscle, and prevents lipotoxicity in these organs (29). 

Conversely, during fasting, or when energy demand exceeds energy intake, TAG 
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stores may be hydrolyzed to release fatty acids from the cell for use by other 

tissues. The storage and hydrolysis of TAG in adipocytes prevents excess 

circulating energy substrates when food is plentiful, and ensures constant energy 

availability during prolonged periods of fasting (30).  

While adipose tissue was originally considered an inert energy storage 

reservoir that also provides temperature and mechanical insulation, adipose 

tissue has recently  recognized as an active endocrine organ (31). Adipose tissue 

secretes a variety of bioactive peptides, called adipokines, which participate in 

the regulation of feeding behavior, glucose and lipid metabolism, energy 

homeostasis, immunity, inflammation, adipogenesis and vascular function (32). 

Adipokines secreted by adipose tissue include adiponectin, leptin, resistin, 

adipsin, and visfatin, as well as cytokines such as IL-6 and TNFα. These factors 

that are secreted by adipocytes act locally, peripherally, and centrally to impact 

tissue metabolism and cross-talk (15). 

1.1.1.3 Adipocyte Biology 

While adipocytes account for approximately one-third of the cells found in 

adipose tissue, adipocytes constitute approximately 90% of the total tissue 

volume due to their large size. Three distinct types of adipocytes exist: white, 

brown, and beige. Phenotypically, white adipocytes are large, round, and 

unilocular (i.e. they contain one large lipid droplet).  White adipocytes do not 

express uncoupling protein-1 (UCP-1), and they have a low mitochondrial 

density. Their main functions are to act as an energy reservoir and as an 
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endocrine organ. Brown adipocytes are multilocular, exhibit high levels of UCP-1 

expression, and have a high mitochondrial density, which confers their brown 

color. Brown adipocytes also function as a source of thermogenesis. Beige, or 

brite, adipocytes exhibit characteristics that are intermediate to brown and white 

adipocytes. Beige adipocytes exhibit UCP-1 expression, and have multiple lipid 

droplets. The major functions and characteristics of these different types of 

adipocytes are still under investigation (33).  

1.1.1.3.1 White Adipocytes 

 The white adipocyte is the most abundant type of adipocyte in the adipose 

tissue. Its major functions are to store and release fuel during times of energy 

excess and deprivation, and to contribute to the endocrine functions of adipose 

tissue. Lipogenesis and lipolysis within the adipocyte are regulated in the short 

term by hormonal signals in circulation. However, long-term maintenance of 

adipose tissue and changes in energy storage require changes in both size and 

number of adipocytes. An increase in cell number, or hyperplasia, is achieved by 

stimulating the differentiation of preadipocytes, which are also found in adipose 

tissue. 

Much of what is known about adipocyte differentiation was determined 

using the murine 3T3-L1 preadipocyte cell line. This cell line is one of the most 

common, and best characterized, models used to investigate adipocyte 

development and function. When injected into mice, 3T3-L1 preadipocytes 

differentiate and form fat pads that are indistinguishable from the mouse adipose 
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tissue (34). Differentiation of 3T3-L1 post-confluent preadipocytes can be 

achieved using a differentiation cocktail consisting of insulin, a glucocorticoid, an 

agent that stimulates intracellular cyclic AMP (cAMP) formation, and fetal bovine 

serum (35). Typically, a cocktail of insulin, dexamethasone (DEX), a synthetic 

glucocorticoid agonist, and isomethylbutylxanthine (IBMX), a phosphodiesterase 

inhibitor used to stimulate intracellular cAMP accumulation, is used to stimulate 

adipogenesis in 3T3-L1 adipocytes (36).  

Preadipocyte differentiation occurs following a temporal cascade of 

transcriptional events (Figure 1.1) (37). Cell-to-cell contact at confluence 

stimulates the expression of lipoprotein lipase (LPL) and type IV collagen, early 

markers of adipocyte differentiation (38, 39). Within one hour after addition of the 

differentiation cocktail, transient expression (lasting 2-6 hours) of c-fos, c-jun, and 

c-myc is observed, as well as the expression of CCAAT/enhancer binding protein 

(C/EBP) β and δ (40). Within 24 hours after administration of the differentiation 

cocktail, postconfluent mitosis and subsequent growth arrest occur, after which 

cells are committed to becoming adipocytes (41). Upon removal of the 

differentiation cocktail, expression of C/EBPβ and δ dissipate within 2-8 days 

(42). However, their transient expression and activity are needed for the 

expression of peroxisome proliferator-activated receptor γ (PPARγ) (43, 44) and 

C/EBPα (45, 46), which are induced 2 days after initiation of differentiation and 

are maximally expressed by 3-5 days following initiation of differentiation. The 

sustained expression of both PPARγ and C/EBPα are necessary for the 

subsequent expression of adipocyte- specific genes, such as those involved in  
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Figure 1.1. Adipocyte differentiation transcriptional cascade.  C/EBP: CCAAT-
enhancer-binding protein; DEX: dexamethasone; IBMX: 3-isobutyl-1-
methylxanthine. Adapted from “Adipocyte differentiation and gene expression,” 
by Ntambi JM and Young-Cheul K., The Journal of Nutrition 2000; 130: 3122S-
3126S. Adapted with permission from the American Society for Nutrition. 
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lipid and glucose metabolism, and for development of the mature adipocyte 

phenotype (47). 

1.1.1.3.2 Brown Adipocytes 

 There are many characteristics that distinguish brown from white 

adipocytes, namely, high mitochondrial density, UCP-1 expression, and the 

presence of many small lipid droplets (33). The high levels of mitochondrial UCP-

1 expression in brown adipocytes cause uncoupling of the mitochondrial 

respiratory chain from ATP production, allowing energy to dissipate as heat by a 

process called non-shivering thermogenesis (48). This process is stimulated in 

response to β-adrenergic receptor stimulation, such as that which occurs when 

noradrenaline is released upon cold exposure (49, 50). In mice, brown 

adipocytes are found in inter-scapular, sub-scapular, and cervical regions (51). 

While originally thought to be only present in infant humans, recent studies 

employing 18F-fluorodeoxyglucose (FDG) positron emission 

tomography/computed tomography (PET-CT) analysis of glucose uptake have 

identified BAT in adult humans (52). Further, it has been demonstrated that the 

abundance of BAT is inversely correlated with BMI and total adipose mass, 

highlighting the therapeutic potential of targeting BAT to combat obesity (52-57). 

Several studies suggest independent lineages for the developmental origins of 

white and brown adipocytes; specifically, that brown adipocytes share a common 

lineage with myogenic cells (58-62). However, the origins of brown and white 

adipocytes remain incompletely understood, and whether selectively increasing 
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BAT mass and/or activity in humans is achievable, in order to combat obesity, is 

under current investigation (33).  

1.1.1.3.3 Beige Adipocytes 

  A third type of adipocyte is the beige, or “brite” (brown-in-white) adipocyte. 

These adipocytes resemble brown adipocytes in that they express UCP-1, are 

multilocular, and have higher mitochondrial density than white adipocytes (63, 

64). Under basal conditions, beige adipocytes exhibit a phenotype similar to 

white adipocytes. However, in response to cold stimulation, these adipocytes are 

“browned,” and display characteristics similar to the brown adipocyte (33). While 

the primary function of beige adipocytes appears to be thermogenesis, the 

characterization of this cell type is under investigation. 

1.1.1.4 Adipocyte Lipid Metabolism 

 Fatty acids serve a variety of functions within all cells, including as an 

energy source, as a precursor for cellular membranes, and as precursors for 

signaling molecules. In adipocytes, fatty acids are also stored in the form of TAG, 

so that during times of energy deficit they may be released for use by other 

tissues. As such, the adipocyte must maintain tight regulation over the processes 

used to take up, synthesize, store, and release fatty acids.  
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1.1.1.4.1 Fatty Acid Uptake 

 Fatty acids can be taken up as free fatty acids (FFA), which circulate 

bound to serum albumin, or can be obtained through the hydrolysis of TAG, 

which are carried in circulation by lipoproteins such as chylomicrons or very low-

density lipoproteins (VLDL). Postprandially, or after a meal, fatty acids obtained 

from the diet are packaged by enterocytes into chylomicrons, which first enter 

circulation within the lymphatic system, followed by entry into the bloodstream.  

These chylomicrons, along with very low density lipoproteins (VLDL) secreted by 

the liver, transport fatty acids in the form of TAG to peripheral tissues such as 

adipose tissue, skeletal muscle, and the heart. Chylomicrons and VLDLs are 

spherical particles featuring a hydrophobic lipid core containing neutral lipids 

such as TAG, cholesterol esters, and sterol esters, surrounded by a polar lipid 

surface layer that contains phospholipids and free cholesterol, as well as 

apolipoproteins that collectively provide a hydrophilic interface with the aqueous 

surroundings in circulation (65, 66). 

 Chylomicrons and VLDL are relatively large in size, having diameters of 

100-1200 nm and 30-80 nm, respectively (66). In order to enter the cell, TAG 

must be hydrolyzed to fatty acids intravascularly by lipoprotein lipase (LPL). 

Intravascular lipolysis removes up to 90% of TAG from the circulating lipoprotein, 

allowing fatty acids to be taken up by peripheral tissues. The apolipoprotein 

remnant is taken up by hepatocytes, for use in VLDL synthesis (67). 



12 

 

Uptake of fatty acids by cells can occur by several mechanisms (68). 

While long chain fatty acids may diffuse passively across phospholipid bilayers 

(69), a variety of facilitated transport mechanisms by integral or membrane-

associated proteins have been identified (70). To enter the cell, the fatty acid 

must first dissociate from the lipoprotein or serum albumin, diffuse through the 

outer aqueous phase and insert into the outer plasma membrane, translocate or 

“flip-flop” from the outer to the inner plasma membrane, and dissociate from the 

inner membrane to the aqueous cytosolic phase of the cell (71). Proteins at the 

plasma membrane such as fatty acid transport protein (FATP), fatty acid binding 

protein (FABP), caveolin-1, and CD36 have been implicated in the uptake and 

utilization of fatty acids (68, 71). However, the precise mechanisms of FA 

transport across cell membranes, and the relative contributions of diffusion- and 

protein-mediated uptake, remain a source of interest and controversy (71, 72).  

1.1.1.4.2 Fatty Acid Synthesis 

 In addition to the uptake of exogenous fatty acids, the adipocyte may 

synthesize fatty acids de novo from non-lipid precursors such as glucose (Figure 

1.2). The key transcription factor regulating expression of genes involved in 

lipogenesis is sterol regulatory element-binding protein-1c (SREBP-1c), and the 

primary enzymes involved in fatty acid synthesis are fatty acid synthase (FAS) 

and acetyl-CoA carboxylase (ACC) (73). When glucose is abundant, increased 

flux through glycolysis leads to excess citrate in the tricarboxylic acid (TCA) 

cycle, which is then redirected to the cytosol and converted to acetyl-CoA for 
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Figure 1.2. Summary of fatty acid and triacylglycerol synthesis in adipocytes. 
ACC: acetyl-CoA carboxylase; ACL: ATP-citrate lyase; AGPAT: 1-acylglycerol-3-
phosphate acyltransferase; DGAT: diacylglycerol acyltransferase; FAS: fatty acid 
synthase; GPAT: glycerol-3-phosphate acyltransferase; GPDH: glycerol-3-
phosphate dehydrogenase; MDH: malate dehydrogenase; ME: malic enzyme; 
OAA: oxaloacetate; PC: pyruvate carboxylase; PDH; pyruvate dehydrogenase; 
PEPCK: phosphoenolpyruvate carboxykinase. 
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fatty acid synthesis (74). Cytosolic acetyl-CoA is carboxylated by ACC to form 

malonyl-CoA. Malonyl-CoA joined to acetyl-CoA by FAS, and this hydrocarbon 

chain is elongated to form palmitic acid, which may then be further elongated or 

desaturated, and esterified with G3P to form TAG (15). In humans, de novo 

lipogenesis accounts for approximately 20% of newly formed TAG-palmitate (75), 

highlighting the significance of adipose tissue DNL contribution to total fat mass 

stores. 

1.1.1.4.3 Triacylglycerol Synthesis 

Whether obtained from circulation or synthesized de novo, intracellular 

fatty acids are esterified to glycerol-3-phosphate (G3P) for storage in lipid 

droplets as TAG. In lipogenic tissues such as adipose tissue and the liver, 

glycerol-3-phosphate may be derived from three sources: glycolysis, 

glyceroneogenesis, and glycerol kinase activity (76). During glycolysis, glucose 

that has been taken up into the cell is phosphorylated and through a series of 

reactions converted to G3P and dihydroxyacetone phosphate (DHAP). The 

DHAP may be converted to G3P by glycerol phosphate dehydrogenase (GPDH) 

to form G3P, which may then be used for TAG synthesis. In humans, 

approximately 20-25% of glucose taken up by adipocytes following an overnight 

fast is used for G3P synthesis and incorporation into TAG (77). 

Alternatively, G3P may be synthesized from non-glucose precursors such 

as pyruvate, lactate, and amino acids by a process called glyceroneogenesis. 

Pyruvate is carboxylated to oxaloacetate (OAA), which then exits the 
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mitochondria and is decarboxylated by cytoplasmic phosphoenolpyruvate 

carboxykinase (PEPCK) to form phosphoenolpyruvate (PEP), the rate-limiting 

step of glyceroneogenesis (78). Phosphoenolpyruvate is then converted 

glyceraldehyde-3-phosphate followed by DHAP, which can then be converted to 

G3P by GPDH. While hepatocytes may use glycerol secreted by adipose during 

lipolysis for G3P and TAG synthesis, the activity of glycerol kinase, which 

phosphorylates glycerol to G3P, is negligible in adipose tissue, and 

glyceroneogenesis is quantitatively the largest contributor of adipocyte G3P 

synthesis (79). 

In adipocytes, TAG is synthesized by esterification of alcoholic residues of 

G3P by a series of enzymes including glycerol-3-phosphate acyltransferase 

(GPAT), 1-acylglycerol-3-phosphate acyltransferase (AGPAT), phosphatidic acid 

phosphatase, and diacylglycerol acyltransferase (DGAT), found on the smooth 

endoplasmic reticulum (15). TAG that is synthesized in adipocytes is stored in 

cytosolic lipids droplets. In humans, de novo lipogenesis may account for up to 

40% of whole-body lipogenesis (80). 

1.1.1.4.4 Lipolysis 

 When energy demand exceeds energy intake, adipose TAG maybe 

hydrolyzed by a process called lipolysis, so that fatty acids and glycerol moieties 

may be utilized by other tissues (66) (Figure 1.3). The initial step of TAG 

hydrolysis is catalyzed by adipose triglyceride lipase (ATGL) (81). ATGL activity 

is regulated transcriptionally (65), by vesicular delivery to lipid droplets (82-84),
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Figure 1.3. Summary of adipocyte lipolysis. AC: adenylate cyclase; ATGL: 
adipocyte triglyceride lipase 1; AQP7: aquaglyceroporin 7; CGI-58: comparative 
gene identification-58; HSL: hormone sensitive lipase; IRS-1: insulin receptor 
substrate-1; MAGL: monoacylglycerol lipase; PDE: phosphodiesterase E; PDK: 
pyruvate dehydrogenase kinase; PKA: protein kinase A. 
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and by activation by cofactor comparative gene identification-58 (CGI-58) (85). In 

the basal state, CGI-58 is associated with perilipin on the surface of the lipid 

droplet. In response to a lipolytic stimulus, such as β-adrenergic stimulation by a 

catecholamine, perilipin is phosphorylated by protein kinase A (PKA). This 

stimulates the dissociation of CGI-58 from perilipin, and its translocation to 

ATGL, stimulating ATGL hydrolase activity (86, 87). ATGL is rate-limiting for TAG 

hydrolysis (66). 

 Activation of PKA also results in the phosphorylation of hormone-sensitive 

lipase (HSL), the rate-limiting enzyme for diacylglycerol (DAG) hydrolysis (88). In 

addition to DAG, HSL can also hydrolyze fatty acids from TAG, monoacylglycerol 

(MAG), and cholesterol esters (66), and phosphorylation of HSL at serine 660 

(Ser660) regulates HSL enzymatic activity (89). The monocylglycerol that is 

produced by the combined activities of ATGL and HSL is hydrolyzed to glycerol 

and free fatty acid by the enzyme monoglyceride lipase (MGL). MGL is 

expressed ubiquitously, with highest levels of expression found in adipose tissue 

and the kidney (66). 

 Hormone-stimulated lipolysis occurs when a hormone such as a 

catecholamine binds to the G-protein-coupled β-adrenergic receptor. This 

stimulates adenylate cyclase to produce cyclic-AMP (cAMP), the accumulation of 

which activates PKA. PKA phosphorylates perilipin and HSL, and these two 

phosphorylation events stimulate the translocation of CGI-58 from perilipin to 

ATGL, and the activation and translocation of cytoplasmic HSL to the lipid 

droplet, respectively. These phosphorylation and translocation events trigger the 
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complete hydrolysis of TAG to three fatty acids and free glycerol. The fatty acids 

freed by lipolysis can exit the cell to be used by other tissues, or a portion of 

them may be oxidized through a process called β-oxidation in the adipocyte (66). 

A small amount of fatty acids hydrolyzed in response to hormone-stimulated 

lipolysis, approximately 10-20%, are reesterified as TAG (73, 90-92). 

 In addition to hormone-stimulated lipolysis, adipocytes also undergo basal 

lipolysis. In this state, 30-100% of fatty acids hydrolyzed from the lipid droplet are 

reesterified in situ as TAG in a process termed futile TAG/FA cycling (73, 90-92). 

This TAG/FA cycling is essential for buffering plasma fatty acid levels and 

maintaining tight control over opposing metabolic fluxes (93). This cycling also 

plays a role in the synthesis of lipolytic signaling molecules, e.g. fatty acids and 

diacylglycerols (73).  

1.1.1.4.5 Fatty Acid Oxidation  

 While the oxidation of fatty acids, or β-oxidation, has been most 

extensively studied in oxidative tissue such as skeletal muscle and the liver, β-

oxidation plays a significant role in white adipocyte metabolism (74). During 

differentiation, adipocytes exhibit increased expression of mitochondrial 

biogenesis marker PGC1α, and increased mitochondrial oxidative capacity (73). 

Prior to entry into the mitochondria for oxidation, fatty acids are activated to form 

fatty acyl-CoAs. Following activation, these fatty acyl-CoAs, and are then 

transported through the outer mitochondrial membrane by carnitine palmitoyl 
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transferase-1 (CPT-1). This transport of fatty acyl-CoAs across the mitochondrial 

membrane byCPT-1 is the rate-limiting step of β-oxidation.  

The coordinate regulation of lipolysis, β-oxidation, and TAG synthesis are 

modulated hormonally, in response to food intake and thus substrate availability 

(74). The purpose of lipolysis is to provide energy in the form of fatty acids, for 

adipose and other tissues. As glucose is the preferred energy substrate of these 

tissues, there is no need for lipolysis or β-oxidation when glucose is present. 

Insulin, released from the pancreas in response to feeding, blunts lipolysis in 

adipose tissue through Akt-mediated phosphorylation of phosphodiesterase 3B 

(PDE3B) (94). Activation of PDE3B reduces the intracellular cAMP pool, and 

consequently, PKA-mediated activation of ATGL and HSL. Additionally, indirect 

suppression of lipolysis occurs in response to insulin-stimulated glucose uptake 

and flux through glycolysis. Adipocytes dispose of a portion of glucose as lactate 

(95, 96). Once lactate exits the cell, it can bind to the G protein-coupled GPR81 

receptor to inhibit cAMP synthesis, and downstream lipolytic signaling via an 

autocrine lactate loop (97). In the presence of glucose, the cytosolic acetyl-CoA 

pool that is derived from TCA cycle intermediates is converted to malonyl-CoA by 

ACC during de novo lipogenesis. ACC activity is regulated via phosphorylation by 

cellular energy sensory AMPK. Malonyl-CoA is a potent inhibitor of CPT-1, and 

prevents β-oxidation in a lipogenic state (74). Conversely, when cellular energy 

demands exceed substrate availability, AMPK-stimulation of cAMP synthesis by 

adenylate cyclase activates PKA, and consequently, stimulates hydrolysis of 

TAG (74). 
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1.1.1.5 Glucose Metabolism 

 While skeletal muscle is considered the primary “sink” for glucose 

disposal, adipose tissue plays a critical role in regulating glucose homeostasis 

(98). A study by Abel et al. demonstrated that relative to control mice, those with 

adipose-specific ablation of the GLUT4 glucose transporter exhibit reduced 

glucose utilization in adipose tissue and glucose intolerance, as well as impaired 

insulin signaling in the liver and skeletal mice (99). Further, glucose homeostasis 

in mice lacking GLUT4 in skeletal muscle can be restored by overexpressing 

GLUT4 in adipose tissue (100). This beneficial effect of adipose glucose disposal 

is dependent on the ability of adipose tissue to utilize glucose for the synthesis of 

fatty acids (101).  

 Glucose may be taken up into the adipocyte via glucose transporter type 1 

(GLUT), under basal conditions, or via the GLUT4 glucose transporter in 

response to insulin stimulation after a meal (102). While GLUT1 is constitutively 

expressed on the plasma membrane of adipocytes, insulin-stimulated GLUT4 is 

considered the predominant glucose transporter in adipocytes (74). Under basal 

conditions, GLUT4 is stored in small intracellular vesicles (103). In response to 

insulin, the PI3K-Akt signaling cascade is triggered, stimulation the exocytosis of 

GLUT4-containing vesicles to the cell membrane, and within minutes increasing 

flux of glucose into the cell 10- to 30-fold (103, 104). 

 Once inside the cell, glucose is utilized in multiple cell processes. In 

addition to serving as a source of ATP, glucose also serves as a substrate for the 
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synthesis of fatty acids. Additionally, as adipocytes are unable to recycle glycerol 

freed by lipolysis, glucose also serves as a substrate for G3P synthesis. It is 

estimated that 20-25% of glucose consumed by adipocytes is used for synthesis 

of TAG (77).  

1.1.2 Changes in Adipose Tissue During Obesity 

In a lean individual, adipose tissue works with other tissues to maintain 

normal metabolic, inflammatory, and vascular function. In response to 

overnutrition, the adipocyte can store excess energy in lipid droplets by 

esterifying fatty acids, obtained directly from the diet or synthesized de novo from 

glucose, into triacylglycerol. This partitioning of excess energy into adipose tissue 

prevent ectopic lipid deposition and lipotoxicity in organs such as the liver, heart, 

and skeletal muscle, and preserves normal metabolic functioning in these tissues 

(29). However, during the development of obesity, several changes occur in 

adipose tissue that disrupt normal functioning.  

In response to chronic overnutrition, adipose tissue must expand in order 

to accommodate the increased need for energy storage. To do so, the adipose 

tissue must increase in cell number, by a process called hyperplasia, or in cell 

size, by a process called hypertrophy (74). While both of these processes 

contribute to the maintenance of body fat mass, a study by Spalding et al. 

demonstrate that changes in cell size, rather than in cell number, underlie 

changes in adipose mass during weight loss or gain (105). In this study, it was 

found that adipocytes exhibit an annual turnover rate of 10%, regardless of age 
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and body mass index. Enlargement of adipocytes stimulates changes in 

adipocyte metabolism and secretory profile, and this adipocyte dysfunction plays 

a central role in the development of obesity-associated comorbidities, including 

insulin resistance, type 2 diabetes, and cardiovascular disease (32). 

The expansion of adipose mass triggers a series of inflammatory events. 

As the adipocyte expands, a state of hypoxia develops as interstitial oxygen 

tension decreases within the adipose tissue (106, 107). This stimulates 

stabilization of HIF1α, which is rapidly degraded under normoxic conditions, and 

upregulation of genes containing HIF1α response elements, such as those 

required for angiogenesis (108).  In lean individuals, macrophages found in 

adipose tissue express markers of the M2, or alternatively activated, state. M2 

macrophages are characterized by secretion of anti-inflammatory cytokines, such 

as interleukin-10 (IL-10) (31). During obesity, recruitment and accumulation of 

M1, or classically activated, macrophages occurs. M1 macrophages 

characterized by increased production of pro-inflammatory cytokines tumor 

necrosis factor alpha (TNFα) and interleukin-6 (IL-6), which promote insulin 

resistance and low-grade systemic inflammation (18, 31).  

As the white adipose tissue further expands, necrosis occurs, stimulating 

the development of “crown-like structures” composed of the dead adipocyte 

surrounded by macrophages (109). The rate of cell death is positively correlated 

with adipocyte size in mice and in humans, and is increased up to 30-fold in 

obese compared to lean individuals (110). This inflammatory response is 

implicated in the metabolic disturbances associated with obesity.  
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In addition to elevated local and systemic inflammation, dysregulation of 

lipolysis occurs during the development of obesity (111). In obese and insulin-

resistant individuals, catecholamine-induced lipolysis is blunted in subcutaneous 

adipose tissue, but increased in visceral adipose depots (112, 113). Further, 

basal (unstimulated) lipolysis is increased in obese compared to individuals (112, 

114), and this uncontrolled release of fatty acids is closely associated with 

obesity-associated insulin resistance, independent of age or BMI (115). These 

obesity-induced metabolic consequences have a devastating impact on overall 

health and quality of life. The need to identify safe, effective measures by which 

the burden of obesity can be prevented and reversed is critical. This dissertation 

discusses the potential impact of vitamin D on obesity and obesity-associated 

metabolic disorders. 

1.2 Role of Vitamin D in Human Health  

1.2.1 Sources of Vitamin D 

Vitamin D is a 9, 10 secosteroid that was first discovered by Dr. E.V. 

McCollum in 1922 as the factor present in cod liver oil that cured rickets in 

experimental beagles (116). Of the many forms of vitamin D that have been 

identified, only vitamins D2 (ergocalciferol; fungal origin) and D3 (cholecalciferol; 

animal origin) (Figure 1.4) are relevant to human health (117). Vitamin D3 is a 

biologically inert prohormone made endogenously from 7-dehydrocholesterol in 

the skin upon exposure to ultraviolet light (Figure 1.5) (118).  Upon irradiation, 
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Figure 1.4. Chemical structures of vitamins D2 and D3. 
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Figure 1.5. Vitamin D3 biosynthesis and metabolism. 
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7-dehydrocholesterol is converted to pre-vitamin D3 which is then converted to 

vitamin D3 upon the temperature-sensitive rearrangement of three double bonds 

(119). Modest amounts of vitamin D3 may also be obtained in the diet through 

consumption of vitamin D-fortified dairy products and fatty fish. While reports of 

superiority of vitamin D3 have been made when supplemented at high doses 

(120), at low doses, vitamins D2 and D3 are nutritionally equivalent (121). 

1.2.1.1 Vitamin D Metabolism 

 Whether obtained through the diet or synthesized endogenously, vitamin 

D circulates in the blood bound to vitamin D binding protein (DBP).  While vitamin 

D itself does not have biological activity, it becomes active upon hydroxylation at 

two distinct sites. In the liver, vitamin D is hydroxylated C-25 by the 25-

hydroxylase CYP2R1 to produce 25-hydroxyvitamin D (25(OH)D).  25-

hydroxylation in the liver is not a highly regulated step (122), and serum 

concentrations of 25(OH)D are a universally accepted biomarker of vitamin D 

status (123-125).   

Though 25(OH)D is the major circulating metabolite of vitamin D, 

conversion to the active metabolite 1,25-dihydroxyvitamin D (1α,25(OH)2D; 

calcitriol) requires an additional hydroxylation at C-1, which occurs in the kidney. 

When DBP-bound 25(OH)D reaches the kidney, it is filtered by the glomerulus. 

Megalin, a transmembrane protein found in tubular epithelial cells, acts as a cell 

surface receptor for DPB, and catalyzes the uptake of 25(OH)D by endocytic 

internalization (126). In the proximal renal tubule, conversion of 25(OH)D to 
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1α,25(OH)2D is mediated by the renal 1α-hydroxylase CYP27B1.  This enzyme is 

under tight regulation in the kidney; it is activated by serum PTH and suppressed 

by 1,25(OH)2D, calcium and phosphorus (127, 128). While the kidney is the main 

site of 25(OH)D activation under periods of low calcium or low phosphorus 

stress, CYP27B1 expression and 1α-hydroxylase activity have now been 

identified in several extra-renal tissues, including skin, colon, lung, bone, 

prostate, intestine, pancreatic islets, vasculature, liver, brain, muscle and adipose 

tissue (129-131).  The extra-renal 1α-hydroxylase is not regulated by PTH (132, 

133), suggesting that elevated 25(OH)D status may lead to local production of 

1α,25(OH)2D independent of calcium status to yield autocrine and paracrine 

responses. In response to elevated circulating 1,25(OH)2D levels, the renal 

CYP27B1 hydroxylates 1,25(OH)2D, and also 25(OH)2D, at C-24 to signal for its 

degradation and excretion (134, 135). While concentrations vary widely based on 

dietary intake, studies have demonstrated that both vitamin D and 25(OH)D may 

be found in adipose tissue, skeletal muscle and liver, though the largest pool of 

25(OH)D is found in serum (125, 136).  

1.2.1.2 Classical Signaling of 1,25(OH)2D through the Vitamin D Receptor 

Like other steroid hormones, 1,25(OH)2D functions through a nuclear 

receptor, in this case, the vitamin D receptor (VDR).  The VDR belongs to the 

class II of steroid receptors, and is closely related to the thyroid hormone and 

retinoic acid receptors (128, 137), and is evolutionarily conserved among 

mammals, birds, and fish (138). Like other nuclear receptors, the VDR has a 
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ligand-binding domain called the E-domain, a DNA-binding domain called the C-

domain, and an activating domain called the F-domain (116). The human VDR 

protein contains 427 amino acids, and acts by binding to vitamin D response 

elements (VDREs), which are typically found within 1 kilobase of the transcription 

start site of the vitamin D target gene. The VDREs are repeat sequences of 6 

nucleotides separated by 3 nonspecific bases (116).  

Upon entry into the cell, 1,25(OH)2D binds to the VDR, causing a 

conformational change in the VDR that allows it to interact and form a 

heterodimer with the retinoid X receptor (RXR).  This heterodimer binds to the 

VDRE to regulate transcription of vitamin D target genes (139). Binding of the 

VDR-RXR heterodimer to VDREs stimulates recruitment of transcriptional 

coactivators such as p160 coactivator and steroid receptor activator (SRC) (119). 

Once this complex forms, transcription is either stimulated or repressed, 

depending on the gene (116). 1,25(OH)2D regulation of transcriptional events 

through the VDR is responsible for the regulation of calcium homeostasis (137, 

140). In addition to its identification in tissues controlling calcium homeostasis, 

the VDR has now been identified in virtually all other tissues (141-143), as well 

as a variety of cancer cells including those from the breast, colon, and prostate 

(144-147).  This broad distribution of VDR supports the existence of extraskeletal 

effects for 1,25(OH)2D (139, 148, 149).  
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1.2.1.3 Rapid Signaling through the Membrane Vitamin D Receptor  

 Though the most well-established mechanisms of calcitriol action are through the 

nuclear VDR to modulate gene expression, strong evidence exists proving non-

genomic actions of 1,25(OH)2D as well.  First documentation of rapid 1,25(OH)2D 

action was in a 1984 study by Nemere (150), in which addition of 120 pM 

1,25(OH)2D to perfused deuodena of normal, vitamin D-replete chicks resulted in 

a significant increase of 45Ca transport from the lumen to the vascular effluent 

within 14 minutes.  This rapid response, within minutes, contrasts with genomic 

responses which may take hours to several days, and can be blocked by 

inhibitors of transcription and translation.  Since this discovery, many studies 

have emerged supporting the existence of non-genomic actions of calcitriol in 

regulation of calcium transport in several cell types, including hepatocytes, the 

promyelocytic HC-60 cell line, renal tissue and mammary glands, among others 

(151). 

 Investigation of the mechanisms of 1,25(OH)2D-stimulation of rapid 

signaling events have revealed a novel role for the vitamin D receptor.  Many 

ligand structure-function studies have been done to elucidate rapid responses of 

1,25(OH)2D bound to the classic VDR, including rapid stimulation of: calcium 

absorption in chick enterocytes (152, 153), insulin secretion from rat pancreatic β 

cells (89), rate of human endothelial cell migration (154), and MAPK and 

PI3K/Akt signaling cascades to regulate proliferation and differentiation in 

skeletal muscle (155-157). In these studies, the 1α,25(OH)2D agonist could be 
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inhibited by the rapid response antagonist 1β,25(OH)2D, but not by the genomic 

response antagonist (23S)-25-dehydro-1α-OH-D3-26,23-lactone (158).  Further, 

these rapid responses were also induced by 6-s-cis locked 1α,25(OH)2-

lumisterol, which binds to the VDR (153). Together, these data demonstrate that 

the rapid responses initiated by 1,25(OH)2D do in fact occur through the classical 

VDR, but also that rapid responses require a different ligand structure (6-s-cis) 

than that required for a 1,25(OH)2D-induced genomic response (6-s-trans) (159).  

1.2.1.4 A Non-VDR Membrane-Associated Binding Protein is Involved in Rapid 

1,25(OH)2D Signaling 

 Though there are a data to support a direct role for the VDR in non-

genomic 1,25(OH)2D actions, initial studies in enterocytes, chondrocytes, and 

osteoblasts suggested that a different 1,25(OH)2D binding protein controlled rapid 

calcitriol-induced signal transduction pathways.  Indirect evidence for a putative 

membrane receptor for 1,25(OH)2D was obtained during the initial discovery of 

calcitriol rapid signaling in the intestine.  In these studies, treatment of the 

basolateral membrane with exogenous 1,25(OH)2D rapidly enhanced calcium 

transport, whereas exposure of the brush border failed to have this effect (150).  

This suggested that 1,25(OH)2D receptor exists on the basolateral membrane.   

Isolation and full characterization and identification of this basolateral 

membrane receptor in chick intestinal epithelial cells was achieved several years 

later, and was termed the 1,25(OH)2D-membrane-associated, rapid-response 

steroid-binding (MARRS) protein (160).  The transcript for the 1,25(OH)2D-
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MARRS includes a 5’-unstranslated region, a signal peptide, no transmembrane 

domain and two thioredoxin motifs.  Analysis of the cloned chicken cDNA for the 

1,25(OH)2D-MARRS revealed that it is identical to the multifunctional protein 

ERp57 protein (also called p57/GRp58/Pdia3).  The ERp57 is a thiol:protein 

disulphide oxidoreductase, and is a member of the protein disulfide isomerase 

(PDI) family (161). First identified as a luminal chaperone protein of the 

endoplasmic reticulum to facilitate oxidative folding of glycoproteins, ERp57 

exists also in the cytoplasm and nucleus, and functions as a scaffolding protein 

on the cell surface (162).  

 1,25(OH)2D-MARRS mediates several 1,25(OH)2D-induced effects in 

various cell types, including rapid (seconds to minutes) phosphate (163, 164) and 

calcium (165, 166) uptake in intestinal epithelial cells and perfused duodena, 

modulation of growth inhibitory activity of 1,25(OH)2D in breast cancer cells 

(167), regulation of growth plate physiology in chondrocytes and matrix vesicle 

models (168), and initiation of 1,25(OH)2D signaling pathways in osteoblast 

differentiation (169).   

1.2.1.5 Classical Roles of Vitamin D in Calcium Metabolism and Bone Health 

Historically, the chief functions of vitamin D are those related to bone 

mineralization (170).  It is well established that the rachitic skeleton can be 

mineralized by infusion of calcium and phosphorus to raise their serum levels into 

normal ranges (171), indicating that a direct role for vitamin D in bone 

mineralization is not likely.  However, vitamin D does contribute to bone health by 
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maintaining serum calcium and phosphorus concentrations within ranges 

necessary to support bone mineralization.  The control of serum calcium occurs 

through events occurring at a three-tissue axis of bone, intestine, and kidney.  

When dietary calcium is insufficient, vitamin D is converted to its hormonal form 

1,25(OH)2D, that acts on the enterocyte to activate active transport of calcium 

and also phosphorus, on the osteoclast to mediate bone resorption, and on the 

kidney to increase renal reabsorption of calcium in the distal tubule.  All of these 

events contribute to maintaining plasma calcium concentrations within a very 

narrow range (116, 123).   

1.2.1.6 Extraskeletal Functions of Vitamin D 

In addition to those related to maintaining serum calcium and bone 

mineralization, several extraskeletal functions of vitamin D have been identified. 

Meta-analysis of randomized clinical trials have demonstrated that vitamin D 

status is inversely correlated with cancer-related mortality, suggesting that 

vitamin D may act to inhibit the progression of certain cancers (119). In particular, 

evidence exists demonstrating vitamin D inhibition of prostate, breast, and colon 

cancer progression. Additionally, observational studies demonstrate an inverse 

relationship between vitamin D status and risk of cardiovascular disease, and in 

vitro studies have demonstrated 1,25(OH)2D regulation of cell proliferation and 

differentiation, as well as regulation of immune function (119, 172). 
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1.2.1.7 Recommendations for Dietary Intake of Vitamin D 

Current recommendations for serum 25(OH)D are made based on the 

impact that vitamin D has on skeletal health (173) (Table 1.1). Serum 25(OH)D 

levels of 50 nmol/L (20 ng/mL) are considered adequate to normalize bone and 

calcium metabolism in at least 97.5% of the population.  The Institute of Medicine 

(IOM) defines “insufficiency” as any serum 25(OH)D concentration < 50 nmol/L, 

and “deficiency” as levels of serum 25(OH)D levels at which bone health is 

compromised, i.e. <30 nmol/L (12 ng/mL) (173). The Recommended Dietary 

Allowances (RDAs) for vitamin D, the average daily level of intake sufficient to 

meet vitamin D requirements of 97%-98% of healthy individuals, are listed in 

Table 1.2 (121).  

While rare, it is possible to achieve vitamin D toxicity, particularly with 

long-term use of extreme vitamin D supplementation. Symptoms of vitamin D 

toxicity include anorexia leading to weight loss, heart arrhythmias, and polyuria. 

In more serious cases, vitamin D toxicity may lead to elevated blood calcium 

levels, resulting in vascular and tissue calcification, and consequently, cardiac, 

renal, and vascular damage (121). The occurrence of vitamin D toxicity is rare,  

however, and it is not possible to achieve toxicity from foods or sunlight exposure 

(124).The Tolerable Upper Intake Levels (ULs) for vitamin D, or the highest 

average daily intake level likely to pose no risk of adverse health outcomes, are 

listed in Table 1.3 (121).
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Table 1.1 Recommended serum 25-hydroxyvitamin D [25(OH)D] concentrations 

 

 

 

 

 

 

nmol/L* ng/mL Health Outcome 

<30 <12 
Vitamin D deficiency, leading to rickets and 
osteomalacia in children and adults 

30 to <50 12 to <20 
Generally considered adequate for bone 
health in healthy individuals 

≥50 ≥20 
Generally considered adequate for bone 
health in healthy individuals 

>125 >50 
Risk of adverse effects is increased when 
serum 25(OH)D reaches >125 nmol/L 

*1 nmol/L = 0.4 ng/mL 
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Table 1.2 Recommended Dietary Allowances (RDAs) for vitamin D 

 

 

 

 

 

 

 

 

 

  

Age Male Female Pregnancy Lactation 
0-12 months* 400 IU 400 IU     
  (10 µg) (10 µg)     
1-13 years 600 IU 600 IU     
  (15 µg) (15 µg)     
14-18 years 600 IU 600 IU 600 IU 600 IU 
  (15 µg) (15 µg) (15 µg) (15 µg) 
19-50 years 600 IU 600 IU 600 IU 600 IU 
  (15 µg) (15 µg) (15 µg) (15 µg) 
51-70 years 600 IU 600 IU     
  (15 µg) (15 µg)     
>70 years 800 IU 800 IU     
  (20 µg) (20 µg)     
*Adequate Intake (AI)       
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Table 1.3 Tolerable Upper Intake Levels (ULs) for vitamin D 

 

 

  

Age Male Female Pregnancy Lactation 
0-6 months 1,000 IU 1,000 IU     
  (25 µg) (25 µg)     
7-12 months 1,500 IU 1,500 IU     
  (38 µg) (38 µg)     
1-3 years 2,500 IU 2,500 IU     
  (63 µg) (63 µg)     
4-8 years 3,000 IU 3,000 IU     
  (75 µg) (75 µg)     
≥9 years 4,000 IU 4,000 IU 4,000 IU 4,000 IU 
  (100 µg) (100 µg) (100 µg) (100 µg) 
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However, the above described definitions of vitamin D adequacy, 

insufficiency, and deficiency are not universally used, and some strongly oppose 

these current IOM recommendations (174).  Recent evidence from some studies 

evaluating thresholds for serum 25(OH)D concentrations in relation to bone as 

well as several extraskeletal endpoints suggest that the most advantageous 

serum 25(OH)D concentrations begin at 75 nmol/L (30 ng/mL), and are optimal 

between 90 and 100 nmol/L (36-40 ng/mL) (175). Whether there is sufficient 

evidence to conclude that optimal serum 25(OH)D levels are higher than current 

IOM  levels remains a matter of debate. 

The prevalence of vitamin D deficiency is widespread, both in the U.S. 

(176) and worldwide (177). It is estimated that approximately one-third of the 

U.S. population is vitamin D deficient or insufficient, with certain ethnic groups at 

particularly high risk of low vitamin D status, including non-Hispanic blacks 

(>70%) and Hispanics/Mexicans (>40%) (178). This raises concern, as mounting 

evidence demonstrates the existence of many biological functions of vitamin D, in 

addition to the classical functions of vitamin D related to regulation of calcium 

and phosphate homeostasis and bone metabolism.  

Additionally, vitamin D status has been implicated in the development of 

obesity-associated metabolic disorders (179). Human cross-sectional studies  

demonstrate that vitamin D deficiency is association with hyperglycemia (180, 

181), hyperinsulinemia (182), reduced pancreatic beta-cell function (183), and 

measures of insulin resistance (183). Further, early studies utilizing vitamin D-

deficient rats found that pancreatic insulin secretion was impaired compared to 
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that of vitamin D-replete rats (184, 185). The relationship between vitamin D 

supplementation and glycemic control remains controversial. In vitro studies 

demonstrate that 1,25(OH)2D enhances insulin sensitivity in skeletal muscle 

(186), a major contributor to global insulin sensitivity. However, recent meta-

analyses of randomized controlled trials designed to assess the impact of vitamin 

D supplementation on insulin sensitivity failed to show a positive effect of vitamin 

D supplementation on homeostatic model assessment of insulin resistance 

(HOMA-IR), or on 2-hour plasma glucose following an oral glucose tolerance test 

(OGTT) (187, 188). One meta-analysis did find small yet statistically significant 

reductions in fasting blood glucose and HbA1c levels in individuals with 

prediabetes who received vitamin D supplementation (187). The relationship 

between vitamin D and insulin sensitivity remains incompletely understood 

1.3 Vitamin D Plays a Role in Adipose Tissue Physiology 

1.3.1 Relationship between Vitamin D Status and Obesity 

The inverse relationship between vitamin D status and adiposity is well-

established: serum 25-hydrovyvitamin D [25(OH)D] levels are inversely 

correlated with measures of adiposity including fat mass, body mass index (BMI), 

and waist circumference (189-194). Several hypotheses have been studied 

regarding the nature of this relationship. One such hypothesis is that vitamin D 

deficiency plays a causative role in the development of obesity, which resulted in 

the execution of studies designed to determine the impact of vitamin D 
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supplementation on weight loss and obesity-associated comorbidities. The 

existing evidence however does not support this causal relationship (179).  

Analysis of intervention studies having a duration of 1 year and achieving serum 

25(OH)D of >85 nmol/L found no significant changes in BMI (195, 196). 

Consistent with these findings, participants given 2,000 IU/day vitamin D in a 

short randomized controlled trial experienced significant increases in serum 

25(OH)D and 1,25(OH)2D with no changes in energy expenditure or adipose 

tissue gene expression (197). Taken together, these studies indicate that vitamin 

D supplementation alone is not an effective means by which to induce weight 

loss. 

The inverse relationship between vitamin D deficiency and adiposity may 

be attributed to lifestyle factors that promote both of these conditions.  Examples 

would include a diet poor in vitamin D, and little outdoor exercise (and thus 

reduced solar ultraviolet radiation and endogenous production of vitamin D) (191, 

198). Alternatively, it has been postulated that obese individuals may have 

reduced circulating 25(OH)D due to sequestration of vitamin D and its 

metabolites in adipose tissue. The evidence is most compelling for the latter of 

these hypotheses.   

1.3.1.1 Sequestration of Vitamin D in Adipose Tissue 

It has been established that adipose tissue is a storage site of vitamin D 

(199-201). In rats, adipose tissue accounts or the majority of vitamin D storage, 

half stored as unmetabolized vitamin D and the other half stored as vitamin D 
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metabolites, esters, and other unidentified compounds (200). The inverse 

relationship between vitamin D status and adiposity may be explained by 

sequestration of the nutrient in adipose tissue. An investigation led by Wortsman 

et al. demonstrated that the increase in serum vitamin D3 following whole-body 

irradiation was 57% lower in obese than in age-matched lean controls (202). This 

occurred despite no significant difference in the cutaneous vitamin D precursor 7-

dehydrocholesterol between these two groups, and no difference in the 

conversion of 7-dehydrocholesterol to previtamin D3. Further, an inverse 

correlation was found between BMI and peak serum vitamin D2 concentrations 

following oral administration of 50,000 IU vitamin D2, suggesting that obesity-

associated vitamin D deficiency is likely due to its reduced bioavailability resulting 

from sequestration in adipose tissue depots (202). A study by Vimaleswaran et 

al. arrived at a similar conclusion upon employing a Mendelian randomization 

approach for determining directionality and causation of the association between 

vitamin D status and BMI (203). The results from this study reveal that a higher 

BMI was causally linked to reduced serum 25(OH)D levels, but the findings did 

not suggest that raising serum 25(OH)D levels will have a BMI lowering effect. 

While these studies clearly demonstrate that excessive adiposity underlies 

obesity-associated vitamin D deficiency, it is not yet known whether direct action 

of vitamin D on adipose tissue plays a role in this relationship. 
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1.3.1.2 Role of 1,25(OH)2D and the VDR in Adipogenesis 

Expansion of adipose tissue occurs as a result of the enlargement of 

adipocyte size (hypertrophy) and an increase in adipocyte number (hyperplasia). 

Both of these processes occur during adipocyte differentiation, in a process 

called adipogenesis. The vitamin D receptor, a nuclear receptor that 

heterodimerizes with RXR, is expressed in adipose tissue and is acutely 

upregulated during adipogenesis in vitro (204). Many in vitro studies using 

established cell lines have demonstrated 1,25(OH)2D regulation of preadipocyte 

differentiation.  

In mouse 3T3-L1 preadipocytes, differentiation is inhibited by 1,25(OH)2D 

via downregulation of C/EBPα and PPARγ expression and sequestration of RXR, 

resulting in downregulation of C/EBPβ (205-208). Further, upregulation of 

C/EBPβ corepressor eight twenty-one (ETO) by 1,25(OH)2D further reduces 

C/EBPβ activity and inhibits adipogenesis. More recently, Lee et al. demonstrate 

that in 3T3-L1 preadipocytes, 1,25(OH)2D promotes maintenance of WNT10B 

and nuclear β-catenin expression, suppressing PPARγ activity and preserving 

the preadipocyte phenotype (207). Additionally, it has been demonstrated that 

VDR knockdown inhibits adipogenesis in 3T3-L1 preadipocytes (206), and that 

VDR null mice exhibit an extremely lean phenotype with resistance to diet 

induced obesity (209-211).   

However, 1,25(OH)2D regulation of preadipocyte differentiation appears to 

be species-dependent. In porcine mesenchymal stem cells,1,25(OH)2D 
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stimulates differentiation towards an adipocyte phenotype by stimulating PPARγ, 

lipoprotein lipase (LPL), and aP2 expression (212). In human subcutaneous 

preadipocytes, differentiation is stimulated by 1,25(OH)2D, resulting in increased 

expression of FABP4 and LPL (213). Narvaez et al. conducted genomic profiling 

of primary cultures of human adipose-derived mesenchymal progenitor cells to 

define the role of 1,25(OH)2D and its VDR in adipogenesis, and found that 

1,25(OH)2D promoted lipid accumulation and enhanced expression of FABP4, 

FASN, and PPARγ (214).  The discrepancies observed between studies utilizing 

human versus mouse 3T3-L1 preadipocytes may be due to methodological 

differences, or due to differences in the roles of adipose tissue in energy balance 

between the two species. Regardless, 1,25(OH)2D appears to play a multifaceted 

role in the regulation of adipose tissue physiology. 

1.3.1.3 Regulation of Inflammation by 1,25(OH)2D 

During obesity, expansion of adipose tissue results in insufficient blood 

flow to the hypertrophic tissue, stimulating hypoxia, macrophage infiltration, and 

inflammation. In this state, secretion of adiponectin and other anti-inflammatory 

adipokines are reduced, while secretion of pro-inflammatory cytokines such as 

interleukin-6 (IL-6), TNFα, resistin, and MCP-1 are increased (215). While vitamin 

D regulation of adipose tissue inflammation remains incompletely defined, 

several in vitro studies have demonstrated that 1,25(OH)2D does act at several 

levels to modulate this system.  Studies by Zemel et al. utilizing 3T3-L1 and 

human adipocytes have found that 1,25(OH)2D exerts a pro-inflammatory effect, 
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inhibiting anti-inflammatory cytokine expression while stimulating expression of 

pro-inflammatory cytokines. In these studies, treatment of adipocytes with 

1,25(OH)2D increased expression of TNFα, IL-6, IL-8, macrophage colony-

stimulating factor (M-CSF), and macrophage inflammatory factor (MIF) (216-

218). Expression of M-CSF and MIF were ameliorated by calcium-channel 

antagonism with nifedipine, indicating that 1,25(OH)2D operates via a calcium-

dependent mechanism (218). 

However, not all studies have revealed consistent findings. In contrast to 

the pro-inflammatory properties identified by Zemel and colleagues, several 

recent investigations utilizing human preadipocytes and mature human 

adipocytes have identified an anti-inflammatory role of 1,25(OH)2D in adipocyte 

physiology. An investigation of the effects of high vitamin D and calcium intake in 

a Western diet on energy metabolism and inflammation revealed that mice on a 

Western diet, as expected, experienced reduced energy expenditure and excess 

fat accumulation compared to mice fed a control diet. Interestingly, mice fed a 

Western diet plus vitamin D and calcium experienced significantly higher fat 

deposition in AT and in the liver compared to mice fed a Western diet low in 

these nutrients. However, the Western diet-induced increase in circulating 

inflammatory markers IL-1β and  MCP-1 were ameliorated by high vitamin D and 

calcium (219). In vitro studies have yielded similar findings.  Investigations by 

Marcotorchino et al. found reductions in protein and mRNA expression of TNFα, 

IL-6, MCP-1, and IL-1β with 1,25(OH)2D treatment of human and 3T3-L1 

adipocytes (220). In human preadipocytes, 1,25(OH)2D reduced MCP-1, IL-6 and 
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IL-8 secretion under basal and proinflammatory conditions (221). These and 

additional studies provide evidence to support that the anti-inflammatory effects 

of 1,25(OH)2D on adipose tissue are via inhibition of the NFκB signaling pathway 

(220-223). 

Though many studies do demonstrate vitamin D regulation of adipose 

tissue inflammation in vitro and in vivo, this system does not appear to be as 

highly regulated by vitamin D in humans. Clinical intervention studies designed to 

examine the effect of vitamin D supplementation on markers of inflammation 

have failed to see improvements in systemic and AT inflammation. A double-

blind intervention study of 52 obese (BMI > 30 kg/m2), vitamin D-deficient 

(plasma 25(OH)D <50 nM) individuals failed to see an effect of 26 weeks of 

7,000 IU vitamin D3/day on any of the examined circulating inflammatory 

markers, including Hs-CRP, IL-6, MCP-1, adiponectin, leptin, MMP-9, and PAI-1, 

despite achieving plasma 25(OH)D concentrations of 110.2 ± 21.2 nM by the end 

of the intervention period (224). Further analysis by the same group also 

confirmed no change in AT markers of inflammation in these subjects following 

oral vitamin D supplementation (225). While 1,25(OH)2D appears to have largely 

anti-inflammatory effects in vitro and in vivo, more studies are needed in order to 

determine the physiological relevance of these findings in humans. 

1.3.1.4 Vitamin D Regulation of Energy Metabolism 

Vitamin D, or more specifically the vitamin D receptor, also appears to 

modulate energy metabolism. Recent investigations utilizing VDR knockout 
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(VDR-/-) mice have revealed that ablation of the VDR leads to reduced body 

weight, hyperphagia with resistance to diet-induced obesity, hypolipidemia, and 

hypoleptinemia (209-211). VDR null mice also exhibit increased UCP-1 

expression, energy expenditure, oxygen consumption and basal metabolism 

compared to wild-type (WT) mice (210). These findings of increased energy 

expenditure and resistance of VDR-null mice to diet-induced obesity has led to 

investigations of the role of the VDR in adipocyte energy and lipid metabolism 

(210, 226).   

An additional study by Wong et al. utilized the aP2 gene promoter to target 

the expression of human (h) VDR in adipocytes in mice (227).  In contrast to the 

VDR-null mice, aP2-hVDR Tg mice exhibited reduced locomotive activity and 

energy expenditure, and increased accumulation of fat mass compared to WT 

mice.  Adipose tissue of the transgenic mice exhibited reduced fatty acid β-

oxidation and expression of genes involved in the regulation of fatty acid 

transport, thermogenesis, and lipolysis. Collectively, these findings suggest a role 

for VDR regulation of energy metabolism in adipocytes, and it has been 

speculated that vitamin D storage within adipose tissue increases local vitamin D 

concentration and thus activation of the VDR, negatively affecting energy 

expenditure and exacerbating fat mass accumulation. However, the applicability 

of these findings in humans has yet to be determined. 
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1.3.1.5 1,25(OH)2D May Regulate Adipocyte Lipid Metabolism  

While limited data exist regarding direct effects of 1,25(OH)2D on 

adipocyte lipid metabolism, the hormone may modulate lipid metabolism 

indirectly via its relationship with calcium metabolism. It was previously noted that 

a high calcium diet suppressed renal 1,25(OH)2D production in aP2-agouti 

transgenic mice, leading to decreased intracellular Ca2+ ([Ca2+]i), stimulation of 

lipolysis, inhibition of lipogenesis, and reduced adiposity (228, 229). To 

determine whether this modulation of adipocyte lipid metabolism is a direct effect 

of inhibition of 1,25(OH)2D-induced [Ca2+]i, differentiated adipocytes from a 

human adipocyte cell line and primary-cultured human adipocytes were treated 

with 1,25(OH)2D for 48 hours, and intracellular [Ca2+]i, rate of lipolysis, and 

expression and activities of lipid metabolism enzymes examined.  Adipocytes 

exhibited a 1,25(OH)2D dose-responsive (1-50 nM) increase in [Ca2+]i (P<0.01), 

a 50-100% increase in FAS expression and activity (P<0.02), a 61% increase in 

GPDH activity (P<0.01), and 80% inhibition of isoproterenol-stimulated lipolysis 

(P<0.001) (230). Using an agonist (1α,25-dihydroxylumisterol3)  and antagonist 

(1β,25-(OH)2D3)  of the putative membrane vitamin D receptor (mVDR), the 

authors demonstrated that 1,25(OH)2D elicits a nongenomic response in 

adipocytes, resulting in stimulation of [Ca2+]i and corresponding modulation of 

lipid metabolism. Further study by the same group demonstrated that treatment 

of human adipocytes for 48 hrs with 1 nM 1,25(OH)2D simulated a 50% reduction 

in UCP2 mRNA and protein levels (P<0.002), and blocked isoproterenol- or fatty 
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acid-stimulated increases in UCP2 expression (231).  Collectively, the authors 

conclude that the anti-obesity effects of dietary calcium are, at least in part, via 

inhibition of 1,25(OH)2D production.   

Some investigations have been conducted to examine this relationship 

between calcium, vitamin D, and lipolysis in humans. Four studies have reported 

that obese individuals have high serum concentrations of 1,25(OH)2D compared 

to non-obese individuals (189, 190, 232, 233), and it has been suggested that 

1,25(OH)2D, via its ability to increase intracellular Ca2+ concentrations particularly 

in adipocytes, may exacerbate fat mass accumulation in those predisposed to 

obesity (228, 234).  However, these studies employed very small cohorts of 

obese subjects, all of whom appeared to have been Caucasian. To address this, 

a subsequent study was conducted by Parikh et al., in which the relationships 

between calciotropic hormones and body adiposity were examined in 154 healthy 

obese (BMI = 37.3 ± 5.8 kg/m2) and 148 healthy non-obese (BMI 25.6 ± 2.9 

kg/m2) individuals of Caucasian (62.9%), African-American (27.8%), and other 

(9.3%) race/ethnicities (235). In both Caucasian and African-American adults, it 

was found that serum 1,25(OH)2D was significantly lower in obese subjects 

relative to nonobese subjects (105.7 ± 41.1 vs. 124.8 ± 36.7pmol/liter; P < 

0.0001). Serum intact PTH was positively correlated with both BMI (r = 0.42; 

P<0.0001) and body fat mass (r = 0.37; P < 0.0001), while serum 25(OH)D and 

1,25(OH)2D were negatively correlated with BMI (25(OH)D: r = 0.4, P < 0.0001; 

1,25(OH)2D: r = 0.26; P < 0.0001) and body fat mass (25(OH)D: r  = 0.41; P < 

0.0001; 1,25(OH)2D: r = 0.25; P < 0.0001). These relationships existed 
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independent of age, sex, or race, and do not support the hypothesis that 

1,25(OH)2D exacerbates fat mass accumulation in the obese. 

While the effect of vitamin D on adipocyte differentiation, inflammation, 

and energy metabolism have been studied, the impact of vitamin D on lipid 

metabolism in adipocytes that have completed terminal differentiation is 

incompletely understood. The studies described within aim to address this 

knowledge gap. 
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CHAPTER 2.  MATERIALS AND METHODS 

2.1 Chemicals and Reagents 

Dulbecco's Modification of Eagle's Medium (DMEM) was obtained from 

Corning (Manassas, VA).  Bovine calf serum was obtained from Thermo Fisher 

Scientific (Pittsburgh, PA). 1,25(OH)2D was obtained from Enzo Life Sciences 

(East Farmingdale, NY). Fetal bovine serum, trypsin, and penicillin/streptomycin 

were obtained from Life Technologies, Gibco-BRL (Rockville, MD). Protease 

inhibitors cocktail, essentially fatty acid-free bovine serum albumin (FA-Free 

BSA),trypan blue solution (0.4%), insulin (bovine), dexamethasone, 3-Isobutyl-1-

methylxanthine were obtained from Sigma-Aldrich (St. Louis, MO). Rosiglitazone 

was obtained from Cayman Chemical (Ann Arbor, MI). PKA inhibitor H-89 

dihydrochloride was purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, 

CA). Antibodies for HSL, phospho-HSL (Ser565 and Ser660), perilipin, and 

GAPDH were purchased from Cell Signaling Technology, Inc. (Danvers, MA).  

2.2 Cell Culture 

3T3-L1 fibroblasts were obtained from American Type Culture Collection 

(ATCC CL-173; Manassas, VA), and cultured in DMEM containing 10% (vol:vol) 

FCS with 100 U/mL penicillin and 100 µg/mL streptomycin at 37⁰C and 5% CO2. 
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Adipocyte differentiation was initiated 2 days post-confluence (referred to as day 

0) using DMEMcontaining 10% (vol:vol) FBS, antibiotics, and a differentiation 

cocktail consisting of 1.0 µg/mL insulin, 0.5 mM isobutylmethylxanthine, 1.0 µM 

dexamethasone, and 2.0 µM rosiglitazone (236).  On day 2, this medium was 

replaced with DMEM containing 10% FBS, antibiotics, and 1.0 µg/mL insulin. 

Beginning on day 4, cells were maintained in DMEM containing 10% (vol:vol) 

FCS and antibiotics, and the medium was changed every 2 days.  Adipocytes 

were differentiated for 9 days, to allow for complete differentiation, and lipid 

accumulation (Figure 2.1). On day 9, 1,25(OH)2D (10 nM) was delivered to cells 

for the times indicated in 100% ethanol at a final ethanol concentration of <0.1%. 

For experiments lasting longer than 24 hours, cell medium containing 

1,25(OH)2D or vehicle was refreshed every 24 hours. Cell viability was assessed 

using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 

trypan blue exclusion assays, according to manufacturer protocol. 

2.3 Triacylglycerol Quantification 

Following 1,25(OH)2D treatment, neutral lipids were extracted using a 3:1 

hexane:isopropanol solution, and dried under nitrogen gas. Neutral lipids were 

resuspended in chloroform containing 1% (vol:vol) triton X-100. Lipids were again 

dried under nitrogen gas, and resuspended in dH2O containing 2% (vol:vol) triton 

X-100. Triacylglycerol accumulation was assessed using a spectrophotometric 

assay kit from Wako Diagnostics (Richmond, VA), according to manufacturer 
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Figure 2.1. BODIPY staining of neutral lipids in differentiated 3T3-L1 adipocytes. 
Differentiated adipocytes were fixed with paraformaldehyde, and stained with 
BODIPY 493/503 (green) and DAPI (blue) to stain neutral lipids and nuclei, 
respectively. Imaging was performed using a Nikon A1R_MP confocal 
microscope. 
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protocol.  Results are normalized against quantity of protein per well, which was 

quantified using the bicinchoninic acid assay (BCA assay: Pierce; Rockford, IL).  

2.4 Glycerol, Non-Esterified Fatty Acid, and Lactate Release  

Spent medium samples were collected after 24 hours of treatment and 

used for analysis of glycerol, NEFA, and lactate.  Glycerol and NEFA were 

quantified using spectrophotometric assay kits from Sigma-Aldrich (St. Louis, 

MO) and Wako Diagnostics (Richmond, VA), respectively. For PKA inhibition 

studies, following 48 hours of treatment with 1,25(OH)2D (10 nM) or vehicle, cells 

were pre-treated for two hours with PKA inhibitor H-89 (75 µM), with 1,25(OH)2D 

as indicated. Following pre-treatment, the medium was replaced with serum-free 

DMEM containing vehicle or 1,25(OH)2D and H-89 as indicated for an additional 

4 hours, after which the medium was collected for determination of glycerol 

release. Lactate secretion was determined using a spectrophotometric method 

based on the principle that in the presence of NAD+, lactate in spent media 

samples can be converted to pyruvate by lactate dehydrogenase. Hydrazine is 

added to destroy the pyruvate produced, allowing the reaction to run to the 

complete oxidation of all lactate molecules. The amount of NADH formed by the 

reaction is proportionate to the amount of lactate in the media, and is measured 

spectrophotometrically at 340 nm. All results are normalized against quantity of 

protein per well, which was quantified using the bicinchoninic acid assay (BCA 

assay: Pierce; Rockford, IL).  
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2.5 Intracellular Cyclic AMP Accumulation 

Cells were harvested into lysis buffer as described above. Intracellular 

cyclic AMP accumulation was determined using a commercially available kit from 

Enzo Life Sciences (East Farmingdale, NY), according to the manufacturer’s 

protocol. 

2.6 Fatty Acid Uptake 

Cells were washed with calcium/magnesium-free phosphate buffered saline 

(CMF-PBS, pH=7.4), incubated with 10 µM BODIPY® FL C16 (4,4-Difluoro-5,7-

Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Hexadecanoic Acid; Life 

Technologies, Carlsbad, CA) in 0.1% FA-Free BSA in Hanks’ balanced salt 

solution (HBSS; Gibco – Life Technologies, Carlsbad, CA) for 1 minute, and then 

washed twice with an ice-cold solution of 0.2% FA-Free BSA in HBSS. 

Fluorescence was measured using a Synergy H1 Multi-Mode Reader (BioTek 

Instruments, Inc.; Winooski, VT), and analyzed using Gen5™ Data Analysis 

Software (BioTek Instruments, Inc.).  The relative BODIPY FL C16 uptake is 

expressed as fluorescence intensity per well normalized to the total amount of 

protein per well. In separate experiments, cells were incubated in serum-free 

DMEM containing 1 mM palmitic acid (500,000 DPM/mL) in 3% BSA for 1 

minute, and then washed twice with an ice-cold solution of 0.2% FA-Free BSA in 

HBSS. Cells were lysed by incubating with lysis buffer (0.1 M NaOH, 0.2% (w:v) 

SDS) at 37°C for two hours. Cell lysates were transferred to a scintillation vial, 
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and assessed for radioactivity in a liquid scintillation counter (Tri-Carb 1600 TR 

Liquid Scintillation Analyzer, PerkinElmer, Waltham, MA). 

2.7 Fatty Acid Oxidation 

Fatty acid oxidation (FAO) was assessed by quantifying the production of 

14CO2 from [1-14C] palmitic acid as previously described (237). Cells were plated 

in 35 mm dishes, differentiated as described above, and incubated with 10 nM 

1,25(OH)2D for 4 days. To measure FAO, dishes were placed and sealed in 

wide-mouth jars with screw-top lids, and cells were incubated in serum-free 

DMEM containing 1 mM palmitic acid (500,000 DPM/mL) in 3% BSA for 3 hours 

at 37ᵒC and 5% CO2. After 3 hours, the reaction was terminated by injection of 5 

N perchloric acid to the cell culture dish. To trap 14CO2, 2-phenethylamine was 

injected into well inserts containing Whatman 1 filter papers located inside the 

jar. After 1 hour, filter papers were placed in vials with scintillation fluid and 

assessed for radioactivity in a liquid scintillation counter (Tri-Carb 1600 TR Liquid 

Scintillation Analyzer, PerkinElmer, Waltham, MA). Oxidation values were 

normalized to the protein content of treatment-matched control dishes. 

2.8 De Novo Lipogenesis:  

Cells were differentiated in 6-well tissue culture dishes as described 

above, and incubated with 10 nM 1,25(OH)2D for 4 days During the last 24 hours 

of treatment, 3T3-L1 adipocytes were incubated with 10 mM [13C2]acetate 

(Sigma-Aldrich, St. Louis, MO). Cells were harvested into 300 uL lysis buffer 
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containing 25 mM HEPES, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100. Lipid 

hydrolysis, extraction, derivatization and analysis by high pressure liquid 

chromatography/electrospray ionization-mass spectrometry (HPLC/ESI-MS/MS) 

were performed as previously described (238). Briefly, cell lysates were heated 

at 90ᵒC in a solution of acetonitrile:HCl (37%) (4:1, v/v) to hydrolyze fatty acids. 

After cooling to room temperature, fatty acids were extracted with hexane and 

dried under nitrogen gas. Fatty acids were resuspended in acetone, derivatized 

with 2-bromo-1-methylpyridinium iodide and 3-carbinol-1-methylpyridinium iodide 

to form 3-acyloxymethyl-1-methylpyridinium iodide (AMMP), and subjected to 

HPLC/ESI-MS/MS analysis. Substrate incorporation into 16:0, 16:1, 18:0, and 

18:1 fatty acids was assessed, and data are expressed percent of fatty acid with 

13C label, relative to vehicle. To determine the contribution of glucose as a 

substrate for de novo lipogenesis, in separate experiments, 3T3-L1 adipocytes 

were incubated in glucose-free DMEM containing a 1:1 mixture of D-[U-

13C]glucose (Sigma-Aldrich, St. Louis, MO) and non-labeled D-glucose, at a final 

glucose concentration of 4.5 g/L.  Incorporation of [U-13C]glucose into fatty acids 

during the last 24 hours of treatment was assessed as described above.  

2.9 Glucose Uptake and Consumption 

Basal and insulin-stimulated glucose uptake were assessed using the 2-

[1,2-3H(N)]-deoxy-D-glucose uptake assay. Cells were washed with 

calcium/magnesium free phosphate buffered saline (CMF-PBS, pH=7.4), and 

incubated with serum- and glucose-free DMEM for 2 hours at 37°C and 5% CO2. 
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Subsequently, cells were incubated in the presence or absence of insulin (100 

nM) for an additional 20 minutes at 37°C, before the 2-[1,2-3H(N)]-deoxy-D-

glucose uptake assay was initiated by the addition of serum- and glucose-free 

DMEM containing insulin (or vehicle), 2-deoxyglucose (100 µM, Sigma-Aldrich, 

St. Louis, MO) and 2-[1,2-3H(N)]-deoxy-D-glucose (1.0 µCi/mL, Perkin Elmer, 

Oak Brook, IL). Cells were incubated for a further 10 minutes, and the reaction 

was terminated by washing 3 times with ice-cold CMF-PBS containing phloretin 

(0.2 mM). Nonspecific uptake, determined in the presence of phloretin (0.2 mM, 

Sigma-Aldrich, St. Louis, MO), was subtracted from all values (239). Cells were 

lysed by incubating with lysis buffer (0.1 M NaOH, 0.2% (w:v) SDS) at 37°C for 

two hours. Cell lysates were transferred to a scintillation vial, and assessed for 

radioactivity in a liquid scintillation counter (Tri-Carb 1600 TR Liquid Scintillation 

Analyzer, PerkinElmer, Waltham, MA). Glucose uptake values were normalized 

to the protein content of treatment-matched control dishes. Glucose 

concentrations in spent media samples were measured using a commercially 

available kit (Cayman Chemicals, Ann Arbor, MI), utilizing the glucose oxidase-

peroxide reaction.  Glucose consumption was calculated using the difference 

between spent and fresh media samples, and data normalized to total protein. 

2.10 Western Blotting 

Cells were washed with calcium/magnesium free phosphate buffered 

saline (CMF-PBS, pH=7.4) and harvested on ice into lysis buffer containing 25 

mM HEPES, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, and 1% each of 
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protease and phosphatase inhibitor cocktails (Sigma-Aldrich, St. Louis, MO). 

Cells were briefly sonicated and cell debris was removed by centrifugation at 

12,000 RPM for 15 min at 4°C. Protein concentration was determined using the 

BCA assay. Proteins (20–30 μg) were resolved by SDS-PAGE on 7.5%, 10% or 

12% polyacrylamide gels (Bio-Rad Laboratories, Hercules, CA). Resolved 

proteins were transferred onto nitrocellulose membranes (Bio-Rad Laboratories, 

Inc.), and probed with specific antibodies against proteins as indicated. Antigen-

antibody complexes were detected using the Lumiglo Reagent (Cell Signaling 

Technology, Inc.). Densities of immunoreactive bands were assessed using UN-

SCAN-IT gel analysis software (Silk Scientific, Orem, UT). Densities of the bands 

were in the linear range of detectability. Results are expressed as fold change of 

respective protein/GAPDH, or phosphorylated protein over total. 

2.11 RNA Isolation and Analysis 

 RNA was isolated using TriReagent (Molecular Research Center, 

Cincinnati, OH) according to the manufacturer’s protocol. Reverse transcription 

of total RNA was performed using MMLV reverse transcriptase (Promega, 

Madison, WI). Real-time quantitative PCR was performed using the Ultra-Fast 

SYBR® Green QPCR Master Mix (Agilent Technologies, Santa Clara, CA). The 

mRNA abundance of target genes were determined using the threshold cycle 

(Ct) value. Data are normalized to 18S expression, and expressed as fold 

change relative to vehicle. Primers used are shown in Table 4. 
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2.12 Transfection of 3T3-L1 Adipocytes 

 The pyruvate carboxylase (PC) plasmid was synthesized and obtained 

through OriGene Technologies (Rockville, MD). The PC transcript variant 1 clone 

was synthesized, and inserted into the pCMV6-Neo vector downstream of the 

cytomegalovirus (CMV) immediate-early promoter. The plasmid was transiently 

transfected into differentiated 3T3-L1 adipocytes using Lipofectamine 3000 

(Invitrogen, Carlsbad, CA), according to manufacturer protocol.   

2.13 Statistical Analysis 

Values are presented as mean ± SEM. Results are expressed compared 

to vehicle by the Student’s t-test (LSD) or by analysis of variance (ANOVA), with 

P<0.05 considered statistically significant. All experiments were performed at 

least three times. 
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Table 2.1 Primers used in the QPCR analysis of gene expression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Primer information 

ACC1 Forward: 5'- GCGTCGGGTAGATCCAGTT-3' 

 Reverse: 5'- CTCAGTGGGGCTTAGCTCTG-3' 

ACC2 Forward: 5'- ACTGTCCTGAGATCCCCCTC-3' 

  Reverse: 5'- GGACCCAGTCCTTCAGCTTC-3' 

AQP7 Forward: 5'- TGTCGCTAGGCATGAACTCC-3' 

 Reverse: 5'- CAGGAGATCCCAAGGAGTGG-3' 

CPT-1α Forward: 5'- CTGCAGACTCGGTCACCACT-3' 

  Reverse: 5'- ACACCCACCACCACGATAAG-3' 

FAS Forward: 5'- ACCACTGCATTGACGGCCGG-3' 

 Reverse: 5'- GGGTCAGGCGGGAGACCGAT-3' 

GLUT1 Forward: 5'- GTGACGATCTGAGCTACGGG-3' 

  Reverse: 5'- GAGAGACCAAAGCGTGGTGA-3' 

GLUT4 Forward: 5'- GTGACTGGAACACTGGTCCTA-3' 

 Reverse: 5'- CCAGCCACGTTGCATTGTAG-3' 

hPC Forward: 5'- ATGTTGCCCACAACTTCAGCAAGC-3' 

  Reverse: 5'- AGTTGAGGGAGTCAAACACACGGA-3' 

PC Forward: 5'- TCCTCTATCACGTCCTCTGTGT-3' 

 Reverse: 5'- ACATTTGGGGAGGCAACAGG-3' 
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CHAPTER 3. 1,25-DIHYDROXYVITAMIN D REGULATES TRIACYLGLYCEROL 
ACCUMULATION IN 3T3-L1 ADIPOCYTES 

3.1 1,25(OH)2D Regulates Lipid Metabolism in 3T3-L1 Adipocytes 

3.1.1 1,25(OH)2D Reduces Triacylglycerol Accumulation in 3T3-L1 Adipocytes 

Previous studies have demonstrated the ability of 1,25(OH)2D to inhibit the 

onset of adipogenic gene expression, and consequent lipid accumulation, during 

3T3-L1 preadipocyte differentiation (206, 208, 240). However, whether 

1,25(OH)2D impacts lipid metabolism in adipocytes that have completed terminal 

differentiation is not known. To determine the impact of 1,25(OH)2D on lipid 

metabolism in mature adipocytes that have completed terminal differentiation, 

3T3-L1 preadipocytes were first differentiated for 9 days. By Day 9, cells had 

achieved complete differentiation, and cells contained large lipid droplets.  To 

determine whether 1,25(OH)2D modulates triacylglycerol (TAG) accumulation in 

mature adipocytes, differentiated cells were stimulated with 1,25(OH)2D (10 nM) 

for 4 or 7 days, and total triacylglycerol levels assessed. Following 4 days of 

treatment, triacylglycerol accumulation was 21% lower in 1,25(OH)2D-treated 

cells compared to vehicle (p=0.01) when normalized to protein content (Figure 

3.1).  The TAG-lowering effect of 1,25(OH)2D persisted following 7 days of 

treatment, demonstrating achievement of a stable state of reduced lipid storage 
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(Figure 3.1). Cell viability, assessed using the MTT (Figure 3.2A) and trypan blue 

exclusion assays (Figure 3.2B), was not affected following 4 days of 1,25(OH)2D 

treatment. These data indicate that 1,25(OH)2D acts on mature adipocytes to 

stimulate a reduction in lipid storage in the absence of cytotoxicity. 

3.1.2 1,25(OH)2D Stimulates Glycerol Release in 3T3-L1 Adipocytes 

Triacylglycerol accumulation in adipocyte lipid droplets is a balance 

between storage of fatty acids that are taken up by the cell or synthesized de 

novo, and release of fatty acids that are hydrolyzed from TAG by lipolysis. 

Hydrolysis of stored TAG in adipocytes by lipolysis allows for the release of fatty 

acids from the cell, so that they may be used as an energy source for other 

tissues such cardiac and skeletal muscle. Lipolysis is a highly regulated process, 

and disturbances in the regulation of this process underlie several metabolic 

disorders, including dyslipidemia and insulin resistance (74). To determine 

whether 1,25(OH)2D enhances rates of basal lipolysis, glycerol and non-

esterified fatty acid (NEFA) release in response to 1,25(OH)2D were assessed. 

When triacylglycerol stores are completely hydrolyzed to provide energy 

substrates for use by other tissues, glycerol and non-esterified fatty acid moieties 

are released from the lipid droplet at a 3:1 molar ratio. While fatty acids may be 

re-esterified, oxidized, or released from the cell upon hydrolysis from the lipid 

droplet, glycerol kinase activity is negligible in white adipose tissue, meaning that 

glycerol released during lipolysis cannot be phosphorylated and used for TAG 
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synthesis (76).  Therefore, release of glycerol from the cell is frequently used as 

an indicator of lipolysis.  

Glycerol release was stimulated by 1,25(OH)2D following 1-4 days of 

treatment, with a maximal increase of 66% occurring after 2 days (p<0.001) 

(Figure 3.3). No change in glycerol release was observed within 1-8 hours of 

treatment (data not shown), suggesting genomic or indirect action of 1,25(OH)2D 

rather than activation of a rapid signaling pathway. Consistent with an increase in 

glycerol release, mRNA expression of the glycerol transporter aquaporin 7 

(AQP7) was increased by 27% by 1,25(OH)2D after 2 days (P<0.05) (Figure 3.4).  

However, despite a 66% increase in glycerol release with 1,25(OH)2D 

treatment, NEFA accumulation in the cell medium was below the limit of 

detection in both vehicle- and 1,25(OH)2D-treated cells, and did not change 

dramatically with 1,25(OH)2D (data not shown). High rates of fatty acid re-

esterification occur during lipolysis in WAT; 30-100% of fatty acids in the basal 

state, and 10-20% of those freed in response to lipolytic stimuli may be re-

esterified to TAG in a process termed futile TAG/FA cycling (73, 90-92). These 

data suggest that under basal and 1,25(OH)2D-stimulated conditions, either the 

majority of fatty acids that are released are either being re-esterified as TAG or 

the glycerol that is being released in response to 1,25(OH)2D is not of lipolytic 

origin.  

To explore the potential impact of 1,25(OH)2D on TAG hydrolysis, 

regulators of lipolytic action were investigated.  Chemical inhibition of protein 

kinase A (PKA) with H-89 dihydrochloride completely prevented 1,25(OH)2D 
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stimulation of glycerol release (Figure 3.5A), demonstrating that PKA activity is 

necessary for 1,25(OH)2D-stimulated lipolysis or release of glycerol. Additionally, 

phosphorylation of hormone sensitive lipase (HSL) at PKA phosphorylation site 

Ser660 was significantly increased with 1,25(OH)2D treatment (Figure 3.5B), 

while no change in phosphorylation level was observed at the AMPK 

phosphorylation site Ser565 (data not shown). Further, despite a reduction in 

ATGL protein expression, the protein expression of ATGL cofactor CGI-58 is 

significantly increased in response to 1,25(OH)2D treatment (Figure 3.5C).  

Given these 1,25(OH)2D-induced changes in the lipolysis signaling 

pathway, that the glycerol released in response to 1,25(OH)2D is due to 

hydrolysis of TAG remains a possibility.  However, not all data are consistent with 

1,25(OH)2D stimulation of TAG hydrolysis. First, the reduction in TAG 

accumulation after 4 days in response to 1,25(OH)2D cannot quantitatively 

sustain the increase in glycerol release that is stimulated by 1,25(OH)2D. As 

described above, no increase in NEFA release was observed with 1,25(OH)2D 

stimulation. Further, after two days of treatment, during maximal 1,25(OH)2D-

stimulated glycerol release, intracellular accumulation of cAMP was not altered 

by 1,25(OH)2D (Figure 3.6). PKA activation, which occurs during TAG hydrolysis, 

is stimulated by intracellular accumulation of cyclic AMP (cAMP) (241). Lack of 

intracellular cAMP accumulation and NEFA release are not consistent with PKA-

mediated TAG hydrolysis, and collectively, these data suggest that the glycerol 

released in response to 1,25(OH)2D is not primarily due to hydrolysis of TAG.  
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There are two alternate potential sources of glycerol that could be 

contributing to the pool of free glycerol released from the adipocytes. First, 

glycerol may be synthesized from glucose during glycolysis. Second, glycerol 

may be synthesized from glucose-derived pyruvate or lactate, by a process 

called glyceroneogenesis (76). In response to 1,25(OH)2D, whether the released 

glycerol is of lipolytic or of glycolytic/glyceroneogenic origin is not yet clear. The 

possibility of 1,25(OH)2D stimulation of glycerol release that is of 

glycolytic/glyceroneogenic origin is explored further in Chapter 3.2. 

3.1.3 1,25(OH)2D Stimulates Fatty Acid Uptake and Oxidation in 3T3-L1 

Adipocytes 

Another mechanism that can influence TAG accumulation is uptake of 

fatty acids.  To determine whether 1,25(OH)2D impacts the cells’ ability to take up 

exogenous fatty acids, uptake of BODIPY FL C16, a fluorescent C16:0 fatty acid, 

was assessed following 1, 2, 3, and 4 days of 1,25(OH)2D stimulation. 

Interestingly, despite a net reduction in TAG storage achieved following 4 days of 

1,25(OH)2D stimulation, BODIPY fatty acid uptake was significantly increased in 

response to 1,25(OH)2D at 24 hours (P<0.05), and remained elevated throughout 

the 4 days of treatment (Figure 3.7). These data indicate that 1,25(OH)2D does 

not impair the cells’ ability to take up exogenous fatty acids. 

In addition, fatty acid balance and changes in TAG accumulation are 

influenced by fatty acid oxidation.  To determine whether 1,25(OH)2D alters fatty 

acid oxidation in 3T3-L1 adipocytes, rates of β-oxidation were measured in 
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vehicle- and 1,25(OH)2D-treated cells. To quantify complete oxidation of fatty 

acids, 14CO2 production was assessed in response to stimulation by 1 mM 

palmitic acid, as described in Materials and Methods. Compared to vehicle-

treated cells, which exhibited a 14CO2 production rate of 0.624 nmol·hr-1·mg 

protein-1, those stimulated with 1,25(OH)2D for four days exhibited a 14CO2 

production rate of 1.55 nmol·hr-1·mg protein-1, an increase of 148% (p=0.002) 

(Figure 3.8A). This 2.5-fold increase in FAO is interesting, as 1,25(OH)2D 

reduces the mRNA expression of the FAO rate-limiting enzyme carnitine 

palmitoyltransferase I (CPT-1) by 56% after 4 days (p<0.01), while increasing the 

mRNA expression of acetyl-CoA carboxylase 2 (ACC2) by 48% (p=0.02) (Figure 

3.8B). When glucose is available, this isoform of ACC is responsible for the 

production of malonyl-CoA from glucose-derived acetyl-CoA. Production of 

malonyl-CoA inhibits CPT-1, and consequently, oxidation of fatty acids.  

Expression of FAO-related genes in response to 1,25(OH)2D are therefore not 

indicative of FAO activity in 3T3-L1 adipocytes. 

After 4 days of treatment, BODIPY FL C16 uptake was increased by 

approximately 1.8-fold in 1,25(OH)2D- vs vehicle-treated cells. At this same time 

point, oxidation of exogenously supplied palmitic acid was increased 

approximately 2.5-fold by 1,25(OH)2D. To determine if the increase in FAO is a 

consequence of increased ability to take up fatty acids, measurement of fatty 

acid uptake under the same conditions as those used for FAO experiments was 

assessed. In response to 1 mM palmitic acid, [1-14C] palmitic acid uptake was not 

significantly different in 1,25(OH)2D- compared to vehicle-treated cells (Figure 
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3.8C). A possible explanation for the discrepancy between the impact of 

1,25(OH)2D on the uptake of palmitic acid vs. that of BODIPY FL C16 is that 

1,25(OH)2D may alter the Km of fatty acid transporters, allowing regulation of 

fatty acid uptake to be observed under conditions where fatty acid uptake in 

response to increasing extracellular fatty acids is linear. If this is the case, such 

regulation may not be observed in response to relatively high fatty acid 

concentrations such has the 1 mm palmitic acid used to measure fatty acid 

oxidation. Regardless, these data demonstrated that 1,25(OH)2D stimulates fatty 

acid oxidation in 3T3-L1 adipocytes, independently of its effect on fatty acid 

uptake. This increase in fatty acid oxidation may contribute to the reduction in 

TAG accumulation that is observed with 1,25(OH)2D stimulation.   
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Figure 3.1. 1,25(OH)2D reduces triacylglycerol accumulation in 3T3-L1 
adipocytes.  Differentiated 3T3-L1 adipocytes were treated with vehicle or 
1,25(OH)2D (10 nM) for 4 or 7 days before analysis as indicated. Triacylglycerol 
accumulation in adipocytes was assessed using a commercially available kit. 
*P<0.05 compared to vehicle at the same time point (n=3-6/group).  
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Figure 3.2. 1,25(OH)2D does not affect cell viability.  3T3-L1 adipocytes were 
treated with 1,25(OH)2D (10 nM) for 4 days, and cell viability was assessed using 
the MTT (A) and Trypan Blue Exclusion (B) assays (n=6-8/group). No significant 
difference in cell viability was observed between vehicle- and 1,25(OH)2D-treated 
cells. 
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Figure 3.3. 1,25(OH)2D stimulates glycerol release in 3T3-L1 adipocytes. 
Differentiated 3T3-L1 adipocytes were treated with vehicle or 1,25(OH)2D (10 
nM) for 1-4 days as indicated.  Glycerol release was assessed in spent media 
samples by quantitative enzymatic determination of free glycerol using a 
commercially available kit. *P<0.05 compared to vehicle at the same time point 
(n=3-6/group). 
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Figure 3.4. Aquaglyceroporin mRNA expression is upregulated by 1,25(OH)2D . 
Differentiated 3T3-L1 adipocytes were treated with vehicle or 1,25(OH)2D (10 
nM) for 2 days.  The mRNA expression of glycerol transporter AQP7 is 
expressed relative to vehicle. *P<0.05 compared to vehicle (n=3/group). 
 
 
 
 
 
 
 
 
 
 



71 

 

 
 
 

Figure 3.5. 1,25(OH)2D-induced glycerol release is PKA-dependent. 
Differentiated adipocytes were treated with 1,25(OH)2D (10 nM) or vehicle for 2 
days, and then harvested in lysis buffer. A) Inhibition of PKA prevents 
1,25(OH)2D-induced glycerol release (n=3/group). B) 1,25(OH)2D stimulates 
phosphorylation of HSL at PKA phosphorylation site Serine 660. Phosphorylation 
of HSL at the residues indicated was determined by Western blot as described in 
Materials and Methods. Data are expressed relative to total HSL protein 
expression (n=3/group). C) 1,25(OH)2D regulates CGI-58 and ATGL protein 
expression. Data are normalized to expression of actin (n=3/group). *P<0.05 
compared to vehicle.  
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Figure 3.6. 1,25(OH)2D does not stimulate intracellular cAMP accumulation.  
Differentiated 3T3-L1 adipocytes were treated with 1,25(OH)2D (10 nM) or 
vehicle for 48 hours. As a positive control, some cells were stimulated with 
isoproterenol (10 µM) for two hours prior to harvest. Intracellular cAMP 
accumulation was determined as described in Materials and Methods. Data are 
normalized to total protein. *P<0.05 compared to vehicle (n=3-6/group). 
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Figure 3.7. 1,25(OH)2D stimulates fatty acid uptake in 3T3-L1 adipocytes. 
Differentiated 3T3-L1 adipocytes were treated with 1,25(OH)2D (10 nM) or 
vehicle for 1-4 days as indicated. Fatty acid uptake was determined following a 1-
minute incubation with BODIPY FL C16 (10 µM) as described in Materials and 
Methods. The relative BODIPY FL C16 uptake is expressed as fluorescence 
intensity per well, normalized to the total amount of protein. *P<0.05 compared to 
vehicle at the same time point (n=4/group). 
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Figure 3.8. 1,25(OH)2D stimulates fatty acid oxidation in 3T3-L1 adipocytes. 
 Differentiated 3T3-L1 adipocytes were stimulated with 1,25(OH)2D (10 nM) or 
vehicle for 4 days. A) Complete oxidation of [1-14C] palmitic acid. Fatty acid 
oxidation was assessed as described in Materials and Methods (n=4/group). B) 
1,25(OH)2D regulates carnitine palmitoyltransferase I (CPT-1) and acetyl-CoA 
carboxylase 2 (ACC2) mRNA expression (n=3/group).  C) Uptake of [1-14C] 
palmitic acid. *P<0.05 compared to vehicle (n=3/group). 
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3.2 1,25(OH)2D Regulates Glucose Metabolism and Utilization in 3T3-L1 

Adipocytes 

3.2.1 1,25(OH)2D Reduces Glucose and Acetate Incorporation into Fatty Acids 

in 3T3-L1 Adipocytes: 

The previously described studies demonstrate that 1,25(OH)2D stimulates 

PKA-dependent glycerol release and oxidation of fatty acids. While it remains 

unclear whether the observed glycerol release is of TAG or glyceroneogenic 

origin, it is likely that these alterations in lipid metabolism, particularly the 

elevated fatty acid oxidation, increase cellular energy expenditure and contribute 

to the reduction in TAG accumulation that is stimulated by 1,25(OH)2D. The 

studies described within examine the impact of 1,25(OH)2D on glucose 

metabolism and utilization in 3T3-L1 adipocytes.   

Glucose uptake by adipocytes plays a critical role in the maintenance of 

glucose homeostasis (74). In addition to glucose being a source of ATP for the 

adipocyte, it is estimated that 20-25% of the glucose consumed by adipocytes is 

used for the synthesis of fatty acids (77). To determine whether 1,25(OH)2D 

reduces glucose utilization for the synthesis of fatty acids, differentiated 3T3-L1 

adipocytes were stimulated with 1,25(OH)2D or vehicle for four days. During the 

final 24 hours of 1,25(OH)2D treatment, cell medium was replaced with 
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glucose-free DMEM, with D-glucose and D-[U-13C]glucose added at a 1:1 ratio to 

a final glucose concentration of 4.5 g/L. Lipid extraction and hydrolysis of fatty 

acids were performed as described in Materials andMethods, and incorporation 

of the 13C isotope into palmitic, palmitoleic, stearic, and oleic acids was assessed 

using HPLC/ESI-MS/MS. These four fatty acids comprise approximately 80% of 

the cellular fatty acid pool (242). Compared to vehicle-treated cells, 1,25(OH)2D 

stimulated a 28% reduction in 13C incorporation into these fatty acids (p<0.001) 

(Figure 3.9), demonstrating a reduced contribution of glucose as a substrate for 

de novo lipogenesis. This shift away from glucose utilization for de novo 

lipogenesis may contribute to the reduction in TAG that is stimulated by 

1,25(OH)2D. 

To determine whether 1,25(OH)2D reduces glucose incorporation into fatty 

acids by decreasing the rate of fatty acid synthesis in adipocytes, differentiated 

3T3-L1 adipocytes were treated as described above, and during the last 24 hours 

of treatment cells were incubated with 10 mM [13C2]acetate was added to the cell 

culture medium.  Cytosolic acetate serves as a substrate for fatty acid synthesis, 

and its incorporation into fatty acids serves as an indicator of lipogenesis. Lipid 

extraction and hydrolysis of fatty acids were performed as described above, and 

[13C2]acetate incorporation into palmitic, palmitoleic, stearic, and oleic acids was 

assessed using HPLC/ESI-MS/MS. Compared to vehicle-treated cells, those 

stimulated with 1,25(OH)2D exhibited a 9% reduction in acetate incorporation into 

fatty acids (p=0.026) (Figure 3.10). This reduction in acetate incorporation into 

fatty acids suggests that the enzymatic activity of acetyl CoA carboxylase 1 
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(ACC1), the rate-limiting step of lipogenesis, or of fatty acid synthase (FAS), is 

inhibited by 1,25(OH)2D. While the mRNA expression of acetyl-CoA carboxylase 

1 (ACC1), the ACC isoform responsible for supplying the malonyl-CoA pool for 

the synthesis of fatty acids, is not significantly different in vehicle- compared to 

1,25(OH)2D-treated adipocytes (Figure 3.11). However, fatty acid synthase (FAS) 

mRNA expression is significantly reduced by 1,25(OH)2D (Figure 3.11). 

Regardless, the relatively small magnitude of change in acetate compared to 

glucose incorporation into fatty acids suggests additional regulation of processes 

upstream of fatty acid synthesis by 1,25(OH)2D, at the level of glucose uptake or 

oxidation.  

3.2.2 1,25(OH)2D Impacts Basal and Insulin-Stimulated 2-deoxglucose Uptake 

in 3T3-L1 Adipocytes: 

 To determine whether 1,25(OH)2D reduces glucose incorporation into fatty 

acids by altering glucose uptake in 3T3-L1 adipocytes, glucose uptake was 

assessed after 4 days of 1,25(OH)2D treatment using the 2-deoxyglucose uptake 

assay as described in Chapter 2 (Materials and Methods). Compared to vehicle-

treated cells, those stimulated with 1,25(OH)2D exhibited a 62% increase in basal 

2-deoxyglucose uptake (p<0.01) (Figure 3.12A). Basal glucose uptake is under 

the control of the facilitated diffusion glucose transporter 1 (GLUT1), which is 

encoded by the SLC2A1 gene. While the highest levels of GLUT1 expression are 

observed in the brain, blood-brain barrier, erythrocytes, and fetal tissues, it is 



78 

 

expressed ubiquitously in tissues and cell cultures (102, 243). The mRNA 

expression of GLUT1 was not changed with 1,25(OH)2D treatment (Figure 3.13).  

While basal glucose uptake was significantly higher in 1,25(OH)2D- 

compared to vehicle-treated cells, insulin-stimulated 2-deoxyglucose uptake was 

not changed with 1,25(OH)2D treatment (Figure 3.12A). Thus, the fold increase in 

2-deoxyglucose uptake with acute insulin stimulation, a measure of insulin 

sensitivity, was significantly reduced by 28% in response to 1,25(OH)2D (p=0.04) 

(Figure 3.12B). Insulin-stimulated glucose uptake in skeletal muscle and adipose 

tissue is under the control of the GLUT4 glucose transporter, encoded by the 

SLC2A4 gene (102, 243). Consistent with a reduction in insulin sensitivity, mRNA 

expression of the insulin-responsive GLUT4 glucose transporter was reduced by 

36% in response to 1,25(OH)2D (p=0.01) (Figure 3.13). 

 In addition to acute basal and insulin-stimulated 2-deoxyglucose uptake, 

consumption of glucose and lactate secretion over a 24-hour period were also 

assessed. Though rates of basal 2-deoxyglucose uptake were elevated in 

response to 1,25(OH)2D, glucose consumption (Figure 3.14A) and lactate 

secretion (Figure 3.14B) over 24 hours was not affected. The discrepancy 

between the acute 2-deoxyglucose uptake and 24-hour glucose consumption 

data may be explained by the substrate concentrations used in each of these two 

studies. Under experimental conditions where substrate availability is less than 

the saturation concentration for a transporter, such as the 100 µM 2-

deoxyglucose used for glucose uptake experiments, alterations in the transporter 

Km (half-saturation concentration) may be observed. However, under 
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experimental conditions where substrate availability exceeds the saturation 

concentration for a transporter, such as the 25 mM D-glucose used in glucose 

consumption studies, facilitated diffusion of glucose across the membrane is at 

maximal capacity under basal conditions. In this case, alterations in GLUT1 Km, 

if applicable, would not be detected.  

3.2.3 1,25(OH)2D Reduces Pyruvate Carboxylase mRNA Expression  

Our data indicate that 1,25(OH)2D reduces the utilization of glucose as a 

substrate for de novo lipogenesis, without altering 24-hour glucose consumption. 

Previous studies from our laboratory demonstrate that 1,25(OH)2D reduces 

glycolysis and glucose flux into the TCA cycle in Harvey-ras oncogene 

transfected MCF10A cells, a model of early breast cancer progression, via 

negative regulation of the pyruvate carboxylase (PC) gene (unpublished data).  

In these transformed breast epithelial cells, the mRNA expression of PC was 

reduced by 24% as early as 24 hours, and protein expression was reduced by 

25% following 48 hours of 1,25(OH)2D stimulation.  Mutation analysis of the PC 

promoter suggested the presence and functionality of a negative VDRE, 

suggesting that 1,25(OH)2D regulates glucose metabolism via regulation of the 

PC gene. These data, along with the those obtained from our current studies, 

raised the question of whether 1,25(OH)2D regulates pyruvate carboxylase 

metabolism, and thus lipid accumulation, in 3T3-L1 adipocytes. 

It has previously been demonstrated that perturbed pyruvate metabolism 

impacts triacylglycerol accumulation in 3T3-L1 adipocytes (244). In these studies, 
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chemical inhibition of pyruvate carboxylase by 5 and 10 mM phenylacetate 

reduced TAG accumulation by 21 and 34%, respectively, after 8 days. Consistent 

with inhibition of glycolysis, release of glycerol and lactate were significantly 

increased by PC inhibition. Flux estimates indicated that reduced de novo fatty 

acid synthesis contributed to the reduction in TAG accumulation. Cytosolic 

acetyl-CoA, derived from cleavage of citrate that is exported from the 

mitochondria, is required for the synthesis of fatty acids. When de novo fatty acid 

synthesis is occurring, the mitochondrial citrate pool becomes drained. The 

anaplerotic function of PC is to supply oxaloacetate to the mitochondria TCA 

cycle intermediate pool. Therefore, inhibition of PC reduces the amount of 

substrate availability for the synthesis of fatty acids. These studies support the 

critical role of PC in regulating TAG accumulation. 

In our studies, 1,25(OH)2D reduces glucose utilization as a substrate for 

fatty acid synthesis. Additionally, 1,25(OH)2D stimulates a 41% reduction in 

pyruvate carboxylase mRNA expression in 3T3-L1 adipocytes after 2 days 

(p<0.01) (Figure 3.15). It has been demonstrated that PC enzymatic activity 

directly correlates with mRNA expression (245). We therefore hypothesized that 

1,25(OH)2D reduces glucose incorporation into fatty acids by reducing flux into 

the TCA cycle via inhibition of PC enzymatic activity. 

To test this hypothesis, the human PC gene was overexpressed in 

differentiated 3T3-L1 adipocytes, and glucose incorporation into fatty acids was 

assessed. A 6.6-fold increase in PC mRNA abundance was achieved with 

transfection of the PC plasmid (Figure 3.16). As expected, overexpression of PC 
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significantly increased glucose incorporation into the cellular pool of palmitic, 

palmitoleic, stearic, and oleic acids (Figure 3.17), while reducing secretion of 

glycerol (Figure 3.18A) and lactate (Figure 3.18B). If 1,25(OH)2D reduces 

glucose incorporation into fatty acids by reducing PC enzymatic activity, there 

would be no effect of 1,25(OH)2D in PC-overexpressing cells. However, in cells 

overexpressing PC, 1,25(OH)2D significantly reduced glucose incorporation into 

fatty acids, to levels similar to those in control 1,25(OH)2D-treated cells (Figure 

3.17). Moreover, in PC-overexpressing cells, 1,25(OH)2D significantly increased 

glycerol (Figure 3.18A) and  lactate (Figure 3.18B) secretion, to levels similar of 

those observed in control cells. Collectively, these data suggest that 1,25(OH)2D 

does not regulate glucose metabolism and subsequent triacylglycerol 

accumulation by altering PC enzymatic activity. 

3.2.4 Inhibition of Glycolysis Blunts 1,25(OH)2D-Stimulation of Glycerol Release 

Previous studies have demonstrated that in the presence of high glucose 

concentrations, adipocytes dispose of glucose as lactate and glycerol, potentially 

as a defense mechanism against excess energy substrate availability (95, 96). 

To determine whether 1,25(OH)2D induces glycerol release by stimulating 

hydrolysis of TAG or by stimulating synthesis of glycerol through 

glycolysis/glyceroneogenesis, 3T3-L1 adipocytes were stimulated with 

1,25(OH)2D in the presence or absence of 2-deoxyglucose (2-DG, 20 mM), an 

inhibitor of glycolysis (246, 247). By inhibiting glycolysis, the substrate availability 

for synthesis of glycerol via glycolysis and glyceroneogenesis becomes limited.  
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Observation of the impact of 1,25(OH)2D under these conditions will help 

elucidate whether 1,25(OH)2D stimulates hydrolysis of TAG, or synthesis of 

glycerol via glycolysis/glyceroneogenesis. 

In vehicle-treated cells, 2-DG stimulated a 3.4-fold increase in glycerol 

release within 24 hours (p<0.01) (Figure 3.19). This glycerol is likely derived from 

TAG hydrolysis in response to limited ATP availability from glucose. If 

1,25(OH)2D stimulates glycerol release by stimulating hydrolysis of TAG, an 

additive effect of 1,25(OH)2D on glycerol release would be observed. However, 

1,25(OH)2D has no further effect on 2-DG-stimulatd glycerol release after 24 

hours, and similar patterns of glycerol release were observed following 2-4 days 

of 2-DG and 1,25(OH)2D treatment (Figure 3.19). Collectively, these data are 

consistent with 1,25(OH)2D stimulation of glycerol synthesis via glycolysis and/or 

glyceroneogenesis, rather than stimulation of TAG hydrolysis. 
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Figure 3.9. 1,25(OH)2D reduces glucose incorporation into fatty acids.  
Differentiated 3T3-L1 adipocytes were stimulated with 1,25(OH)2D (10 nM) or 
vehicle for 4 days. Cells were incubated with D-[U-13C]glucose during the last 24 
hours of treatment as described in Materials and Methods, and substrate 
incorporation into the cellular pool of palmitic, palmitoleic, stearic, and oleic acids 
was assessed using HPLC/ESI-MS/MS. Data are as the percent of labeled fatty 
acids containing 13C, relative to vehicle. *P<0.05 compared to vehicle 
(n=6/group). 
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Figure 3.10. 1,25(OH)2D reduces acetate incorporation into fatty acids. 
Differentiated 3T3-L1 adipocytes were stimulated with 1,25(OH)2D (10 nM) or 
vehicle for 4 days. Cells were incubated with [13C2]acetate during the last 24 
hours of treatment as described in Materials and Methods, and substrate 
incorporation into the cellular pool of palmitic, palmitoleic, stearic, and oleic acids 
was assessed using HPLC/ESI-MS/MS. Data are as the percent of labeled fatty 
acids containing 13C, relative to vehicle. *P<0.05 compared to vehicle 
(n=6/group). 
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Figure 3.11. Effect of 1,25(OH)2D on lipogenic gene expression.  Differentiated 
3T3-L1 adipocytes were treated with vehicle or 1,25(OH)2D (10 nM) for 4 days. 
A) The mRNA expression of acetyl CoA carboxylase 1 (ACC1) is not significantly 
changed by 1,25(OH)2D. B) 1,25(OH)2D significantly reduces fatty acid synthase 
(FAS) mRNA expression. *P<0.05 compared to vehicle (n=3/group). 
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Figure 3.12. 1,25(OH)2D stimulates 2-deoxyglucose uptake in 3T3-L1 
adipocytes.  Differentiated 3T3-L1 adipocytes were treated with 1,25(OH)2D (10 
nM) or vehicle for 4 days. A) 2-deoxyglucose uptake was determined following a 
20-minute incubation with 2-[1,2-3H(N)]-deoxy-D-glucose (100 µM) as described 
in Materials and Methods. 2-deoxyglucose uptake is expressed as nmol•min-1•mg 
protein-1, and is normalized to total protein (n=4/group). B) 1,25(OH)2D reduces 
insulin sensitivity in 3T3-L1 adipocytes. Data are expressed as fold increase in 2-
deoxyglucose uptake with acute insulin stimulation, and are normalized to total 
protein (n=4/group). *P<0.05 compared to vehicle.  
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Figure 3.13. Effect of 1,25(OH)2D on glucose transporter mRNA expression. 
Differentiated 3T3-L1 adipocytes were treated with vehicle or 1,25(OH)2D (10 
nM) for 4 days. GLUT1 and GLUT4 mRNA are expressed relative to vehicle. 
*P<0.05 compared to vehicle (n=3/group). 
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Figure 3.14. 1,25(OH)2D does not affect glucose consumption or lactate 
secretion in 3T3-L1 adipocytes.  Differentiated 3T3-L1 adipocytes were treated 
with vehicle or 1,25(OH)2D (10 nM) for 1-4 days as indicated.  Glucose 
concentrations were assessed in spent media samples using a commercially 
available kit. Glucose consumption was calculated from the difference between 
glucose concentrations in spent and in fresh media samples. Data are expressed 
as nmol•min-1•mg protein-1, and are normalized to total protein.  No effect of 
1,25(OH)2D is observed on glucose consumption at any of the time points tested 
(n=3/group).  
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Figure 3.15. 1,25(OH)2D reduces pyruvate carboxylase mRNA expression in 
3T3-L1 adipocytes.  Differentiated 3T3-L1 adipocytes were treated with vehicle or 
1,25(OH)2D (10 nM) for 2 days.  The mRNA expression of pyruvate carboxylase 
is expressed relative to vehicle. *P<0.05 compared to vehicle (n=3/group). 
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Figure 3.16. Human PC mRNA abundance with PC overexpression.  
Differentiated 3T3-L1 adipocytes were transfected with a plasmid containing the 
human PC gene as described in Materials and Methods. The mRNA expression 
of hPC is expressed relative to control cells. *P<0.05 compared to control 
(n=3/group).  
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Figure 3.17. Overexpression of pyruvate carboxylase increases glucose 
incorporation into fatty acids.  Differentiated 3T3-L1 adipocytes were transfected 
as described in Materials and Methods. 24 hours following transfection with the 
PC or control plasmid, cells were stimulated with 1,25(OH)2D (10 nM) or vehicle 
for 4 days. Cells were incubated with D-[U-13C]glucose during the last 48 hours of 
treatment as described in Materials and Methods, and substrate incorporation 
into the cellular pool of palmitic, palmitoleic, stearic, and oleic acids was 
assessed using HPLC/ESI-MS/MS. Data are as the percent of labeled fatty acids 
containing 13C, relative to vehicle. *P<0.05 compared to vehicle (n=3/group). 
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Figure 3.18. Overexpression of pyruvate carboxylase reduces glycerol and 
lactate secretion.  Differentiated 3T3-L1 adipocytes were transfected as 
described in Materials and Methods. 24 hours following transfection with the PC 
or control plasmid, cells were stimulated with 1,25(OH)2D (10 nM) or vehicle for 2 
days. Glycerol (A) and lactate (B) release were assessed in spent media 
samples as described in Materials and Methods. Bars with different letters are 
significantly different (P<0.05) (n=3/group). 
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Figure 3.19. Inhibition of glycolysis blunts 1,25(OH)2D-stimulation of glycerol 
release in 3T3-L1 adipocytes.  Differentiated 3T3-L1 adipocytes were co-treated 
with 1,25(OH)2D (10 nM) and 2-deoxyglucose (20 mM) for 2 days.  Glycerol 
release was assessed in spent media samples by quantitative enzymatic 
determination of free glycerol using a commercially available kit. *P<0.05 
compared to vehicle at the same time point (n=3/group). 
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CHAPTER 4. DISCUSSION 

 As the prevalence of obesity across age, ethnic, and socioeconomic 

groups increase, so does the need to identify safe and effective measures by 

which we can prevent and reverse the disease. Both hypertrophy (increase in cell 

size) and hyperplasia (increase in cell number) have been targeted as pathways 

that might be modulated in an attempt to ameliorate the progression of obesity 

and associated metabolic disorders. While both of these pathways contribute to 

the maintenance of white adipose tissue, a study by Spalding et al. demonstrate 

that changes in fat mass, even in cases of significant weight gain or loss, are due 

to changes in adipocyte size rather than alterations in adipose cell number (105). 

In this study, Spalding et al. observed an annual adipocyte turnover rate of 10%, 

independent of age and BMI, yielding an average adipocyte lifespan of 

approximately 10 years. These data highlight the significance that regulation of 

lipid accumulation in existing adipocytes plays in the modulation of adipose 

mass.  

 Observation of the inverse relationship between vitamin D status and 

measures of adiposity in humans has triggered a high level of interest in the 

relationship between vitamin D and obesity. Many studies have been conducted 

to determine the impact of vitamin D on adipogenesis, or differentiation of 
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adipocytes; however, there is little knowledge of the impact of vitamin D on lipid 

storage and metabolism in differentiated adipocytes. In the present studies, 

1,25(OH)2D stimulated a significant reduction in TAG accumulation in 

differentiated 3T3-L1 adipocytes. We demonstrate that mitochondrial β-oxidation 

is stimulated by 1,25(OH)2D in these adipocytes, and the data suggest that 

1,25(OH)2D stimulates a reduction in the utilization of glucose for fatty acid 

synthesis, while increasing glucose utilization for the synthesis and secretion of 

glycerol. To our knowledge, these results are the first to demonstrate directly that 

1,25(OH)2D alters fatty acid synthesis and oxidation in differentiated adipocytes. 

 It is well-established that vitamin D is stored in adipose tissue, and as a 

result, many studies have been performed to determine the impact of vitamin D 

on adipogenesis, or hyperplasia. Studies utilizing the 3T3-L1 preadipocyte cell 

line found that 1,25(OH)2D inhibits differentiation of these cells, and subsequent 

lipid accumulation, by downregulating differentiation “master regulator” PPARγ 

and C/EBPα (205-208). Downregulation of these genes inhibits the subsequent 

expression of genes necessary for lipid and glucose metabolism, and 

consequently, preservation of the preadipocyte phenotype. However, the impact 

of vitamin D on adipocyte differentiation remains controversial. While 1,25(OH)2D 

inhibits the differentiation of murine 3T3-L1 adipocytes, 1,25(OH)2D stimulates 

maturation and lipid accumulation during the adipogenic differentiation of porcine 

mesenchymal stem cells (212) and human subcutaneous preadipocytes (213). 

The discrepancy between these different cell lines, while not fully understood, 

may be attributed to the different roles that adipose tissue plays with regard to 
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energy balance in these species, or due to the stage of differentiation that 

isolated human subcutaneous adipocytes are in compared to the 3T3-L1 

preadipocyte cell line.  

 Reports of vitamin D regulation of lipid metabolism and accumulation in 

differentiated adipocytes are limited. One study performed by Zoico et al. (248) 

examined the impact 1,25(OH)2D on the lipopolysaccharide (LPS)- induced 

inflammatory response in 3T3-L1 adipocytes that had been differentiated for 5 

days. In this study, stimulation with LPS (1.0 µg/mL) for 24 hours triggered a 

significant increase in the secretion of pro-inflammatory adipokines IL-6 and 

TNFα, with a concomitant increase in lipid accumulation, measured by Oil Red-O 

staining. However, when differentiated 3T3-L1 adipocytes were pre-treated with 

1,25(OH)2D (100 nM) for 24 hours, the LPS-induced increases in cytokine 

secretion and lipid accumulation were attenuated. These data suggest a role for 

vitamin D in the regulation of inflammation-mediated lipid metabolism; however, 

no impact of 1,25(OH)2D was observed on lipid accumulation in the absence of 

LPS-induced inflammation. 

 In contrast to the null results described by Zoico et al. with regard to the 

impact of 1,25(OH)2D on lipid accumulation in a non-inflammatory state, a recent 

study published by Chang and Kim documented a reduction in lipid accumulation 

in 3T3-L1 adipocytes with 1,25(OH)2D stimulation (249). In these studies, 3T3-L1 

adipocytes that had been differentiated for 6 or 7 days were stimulated for 24 

hours with 1-100 nM 1,25(OH)2D (249). An approximate 15% reduction in lipid 

accumulation, measured by Oil Red O staining, was observed following 24 hours 
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of 1 nM 1,25(OH)2D stimulation, with similar reductions in lipid accumulation 

occurring with 10 and 100 nM 1,25(OH)2D treatment. Consistent with the studies 

described in this dissertation, Chang and Kim observed a significant increase in 

basal glycerol release with 24 hours of 1,25(OH)2D treatment, and the authors 

report 1,25(OH)2D enhancement of isoproterenol-induced glycerol release. 

Further, the mRNA expression of lipogenic genes (C/EBPα, FAS, PPARγ, SCD-

1) were significantly reduced by 1,25(OH)2D, while lipid oxidizing genes (CPT-1, 

PGC-1α, PPARα, UCP-1) were significantly increased following 1,25(OH)2D 

stimulation.  These 1,25(OH)2D-induced changes in lipid accumulation and lipid 

metabolizing gene expression occurred with a concomitant increase in sirtuin-1 

(SIRT1) mRNA expression and activity. SIRT1 promotes fatty acid mobilization 

from adipose tissue (250), and these data suggest that 1,25(OH)2D may reduce 

lipid accumulation in 3T3-L1 adipocytes by activating this metabolic pathway. 

However, 1,25(OH)2D regulation of adipocyte lipid accumulation remains far from 

fully understood. 

 While the studies described by Chang and Kim provide some insight into 

the actions of 1,25(OH)2D in adipocytes, the role of 1,25(OH)2D in regulating 

adipose function and pathophysiology remain incompletely defined. The authors 

report an increase in NAD/NADH ratio and SIRT1 activity with 1,25(OH)2D 

treatment (249). SIRT1 acts as a metabolic sensor, acting in coordination with 

AMPK to increase oxidative capacity in tissues such as skeletal muscle (251), 

and promote lipid mobilization from adipose tissue to support fatty acid oxidation 

in peripheral tissues (250). As AMPK is known to activate SIRT1 by increasing 
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the NAD/NADH ratio (252), it would have been interesting to know if 1,25(OH)2D 

stimulates activation of AMPK in these cells as well. Further, given the extensive 

history of discrepancies between 1,25(OH)2D action in vitro and the impact of 

dietary vitamin D on adipose tissue in vivo (215), it would have been valuable if 

functional outcomes such as fatty acid oxidation and fatty acid synthesis had 

been measured in these studies directly, rather than relying on the mRNA 

expression of genes related to FA metabolism alone to determine the impact of 

1,25(OH)2D on adipose tissue physiology.  

 As the available evidence regarding the impact of vitamin D on 

differentiated adipocytes remains limited, the collective aim of the present studies 

was to determine the impact of 1,25(OH)2D on lipid metabolism and storage in 

3T3-L1 adipocytes. In these studies, we observed a 21% reduction in TAG 

accumulation after 4 days of stimulation with 10 nM 1,25(OH)2D (Figure 3.1). 

This reduction in TAG accumulation persisted for up to 7 days, and was achieved 

without negatively impacting cell viability (Figure 3.2). In addition to the reduction 

in TAG accumulation, we found that 1,25(OH)2D stimulates glycerol release after 

1-4 days, with a maximal increase in glycerol release following 48 hours of 

treatment (Figure 3.3). These data are consistent with the recently published 

study by Chang and Kim, who demonstrate a significant increase in glycerol 

release and reduction in lipid accumulation following 24 hours of 10 nM 

1,25(OH)2D treatment (249).  

 Typically, glycerol release is indicative of lipolysis. However, while several 

changes in the lipolysis signaling pathway were observed in response to 



99 

 

1,25(OH)2D, collectively, the data obtained from the current studies do not 

suggest that 1,25(OH)2D stimulates TAG hydrolysis. Consistent with TAG 

hydrolysis, 1,25(OH)2D-induced glycerol release is abolished upon chemical 

inhibition of PKA (Figure 3.5A). Further, 1,25(OH)2D stimulates increased 

phosphorylation of HSL at PKA phosphorylation site Ser660 (Figure 3.5B), and 

interestingly, an increase and decrease in ATGL and CGI-58 protein expression, 

respectively (Figure 3.5C).  Previous studies have demonstrated that retroviral-

mediated overexpression of ATGL increases basal glycerol and NEFA release in 

3T3-L1 adipocytes, while siRNA-mediated knockdown of ATGL has the opposite 

effect (253). Given the increase in basal glycerol release by 1,25(OH)2D, 

downregulation of ATGL protein expression is contrary to what might be 

expected. However, ATGL requires activation by CGI-58 to hydrolyze TAG, and it 

has been demonstrated that the molar ratio of CGI-58:ATGL is positively 

associated with ATGL hydrolase activity (85). Therefore, the increase in CGI-58 

protein expression in concert with downregulation of ATGL protein expression 

results in an elevated CGI-58:ATGL molar ratio, and consequently, is consistent 

with elevated glycerol release. 

 While these changes in the lipolysis signaling pathway suggest that 

1,25(OH)2D may stimulate glycerol release by hydrolyzing TAG, not all data are 

consistent with this hypothesis. First, the reduction in TAG accumulation that is 

achieved following 4 days of 1,25(OH)2D treatment (-0.514 µmols, based on an 

average TAG mw of 846.09 g/mol) does not quantitatively account for the 

increase in the number of moles of glycerol that are secreted following 1-4 days 
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of 1,25(OH)2D stimulation (+29.68 µmols). Further, while glycerol release is 

typically indicative of lipolysis, as complete TAG hydrolysis yields NEFA and 

glycerol moieties in a 3:1 molar ratio, no increase in NEFA release was observed 

with 1,25(OH)2D (data not shown). Finally, intracellular cAMP levels, which 

become elevated in response to lipolytic stimuli in order to activate PKA, were 

not changed following 1,25(OH)2D treatment (Figure 3.6). These data suggest 

that 1,25(OH)2D may stimulate stimulates glycerol synthesis from glycolytic or 

glyceroneogenic precursors, rather than hydrolysis of TAG. Previous studies 

have demonstrated that adipocytes dispose of glucose as glycerol, particularly in 

response to high glucose concentrations (95) such as the standard culture 

medium used in these studies. 

 To test the hypothesis that 1,25(OH)2D stimulates synthesis of glycerol 

from glycolytic/glyceroneogenic precursors, adipocytes were co-treated with 

1,25(OH)2D and 2-deoxyglucose, a known inhibitor of glycolysis. Inhibition of 

glycolysis completely prevented 1,25(OH)2D stimulation of glycerol release in 

3T3-L1 adipocytes (Figure 3.19). Since lactate, the primary substrate for 

glyceroneogenesis in adipocytes, is produced from pyruvate obtained through 

glycolysis, this assay is not capable of distinguishing between glycerol produced 

from non-glucose precursors (glyceroneogenesis) or directly from glucose 

(glycolysis). However, these data do suggest that 1,25(OH)2D stimulates 

synthesis of glycerol via one of these pathways, rather than hydrolysis of TAG. 

These data also highlight the possibility of altered glucose metabolism in 
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response to 1,25(OH)2D, and the potential contribution of de novo lipogenesis to 

the 1,25(OH)2D-induced reduction in TAG accumulation. 

 In the current studies, 1,25(OH)2D reduced glucose incorporation into fatty 

acids by 30% compared to vehicle-treated cells (Figure 3.9), without altering the 

rate of glucose consumption (Figure 3.14A). To determine whether the reduction 

in glucose incorporation into fatty acids was a consequence of an impaired ability 

to synthesize fatty acids, in separate experiments, acetate incorporation into fatty 

acids was also measured. Acetate incorporation into fatty acids, a measure of 

fatty acid synthesis, was reduced by only 10% in response to 1,25(OH)2D (Figure 

3.10). These data suggest that while fatty acid synthesis is slightly inhibited in 

response to 1,25(OH)2D, possibly via reduced enzymatic activity of fatty acid 

synthase and/or acetyl-CoA carboxylase, 1,25(OH)2D stimulates a reduction in 

the utilization of glucose specifically for the synthesis of fatty acids. As glucose 

consumption (Figure 3.14A) and lactate secretion (Figure 3.14B) were not 

impacted following 1-4 days of treatment, the reduction of glucose incorporation 

into fatty acids is consistent with adipocytes disposing of excess glucose as 

glycerol. The possibility that 1,25(OH)2D stimulates glucose disposal as glycerol 

as a consequence of reduced glucose flux into the TCA cycle was explored. 

As 1,25(OH)2D reduced the utilization of glucose for fatty acid synthesis, it 

is possible that 1,25(OH)2D reduces flux of glucose into the TCA cycle. By 

entering into the TCA cycle, glucose-derived pyruvate serves as a source of 

ATP. Additionally, by replenishing TCA cycle intermediates, pyruvate supplies 

carbon substrate in the form of acetyl-CoA for fatty acid synthesis. Previous 
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studies by our laboratory demonstrate that 1,25(OH)2D reduces pyruvate 

carboxylase expression and enzymatic activity in human breast epithelial cells, 

leading to reduced glycolysis and glucose flux into the TCA cycle (unpublished 

data). Consistent with these studies, results from the current studies demonstrate 

that 1,25(OH)2D reduces PC mRNA expression in 3T3-L1 adipocytes (Figure 

3.15). To determine whether 1,25(OH)2D reduces glucose utilization as a 

substrate for fatty acid synthesis, and consequently TAG accumulation, by 

reducing pyruvate carboxylase activity, human PC (hPC) was overexpressed in 

differentiated 3T3-L1 adipocytes. Despite a 6.5-fold increase in PC mRNA 

expression, PC overexpression failed to inhibit 1,25(OH)2D-induced changes in 

glycerol release (Figure 3.18A) and glucose incorporation into fatty acids (Figure 

3.17), suggesting that PC does not mediate the 1,25(OH)2D-induced changes in 

fatty acid synthesis and accumulation. Whether 1,25(OH)2D stimulates reduced 

glucose flux into the TCA cycle remains to be determined. Collectively, the 

available data do suggest that 1,25(OH)2D does stimulate glucose disposal as 

glycerol. 

 The impact of elevated glycerol release may have implications in hepatic 

gluconeogenesis and systemic glucose homeostasis. Glycerol and lactate are 

the major substrates for hepatic gluconeogenesis, and under fasted conditions, 

glycerol release from adipocytes by lipolysis is a major contributor to hepatic 

glucose synthesis (254). Previous studies have demonstrated that glycerol 

delivery to the liver can stimulate hepatic glucose production by a substrate-

dependent push mechanism, independent of insulin signaling (255-257). Since 
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hepatic gluconeogenesis is a major contributor to the hyperglycemia that is 

observed in type 2 diabetes (258), this raises the concern about the impact of 

1,25(OH)2D-stimulated glycerol release in adipocytes in vivo. However, many 

cross-sectional studies have reported a positive relationship between vitamin D 

status and insulin sensitivity (259), as well as a positive impact of vitamin D on 

hepatic glucose and lipid metabolism (260). While overall the existing evidence 

does not support that vitamin D supplementation improves insulin sensitivity in an 

insulin-resistance state (187), the available evidence does suggest that it unlikely 

that vitamin D action in adipocytes disrupts global glucose homeostasis in 

humans. 

 In the current studies, FA oxidation was increased approximately 2.5-fold 

by 1,25(OH)2D in 3T3-L1 adipocytes (Figure 3.8A). This is, to our knowledge, the 

first report of increased fatty acid oxidation in response to 1,25(OH)2D in white 

adipocytes. While no reports of vitamin D stimulation of fatty acid oxidation in 

white adipocytes have been made, a few studies have documented evidence that 

vitamin D may play a role in fatty acid oxidation in other tissues, and contribute 

positively to the maintenance of energy homeostasis. A study by Marcotorchino 

et al. examined the effect of dietary vitamin D on high fat diet-induced weight 

gain and glucose homeostasis in C57BL/6 mice (261). In this study, despite no 

difference in energy intake between mice given a high fat diet with standard 

vitamin D (1,500 IU/kg food, HF) and those given a high fat diet with high vitamin 

D (15,000 IU/kg food, HFVD), HFVD mice gained significantly less body and 

adipose mass than HF mice after 10 weeks. The authors found that HFVD mice 
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had a significantly lower respiratory quotient, and increased energy expenditure 

and lipid oxidation compared to HF mice, reflecting the preferential use of lipids 

vs. carbohydrates as an energy source. Gene expression of enzymes related to 

fatty acid oxidation were elevated in BAT, liver, and skeletal muscle of HFVD 

compared to HF mice. While fatty acid oxidation was not examined in white 

adipose tissue specifically, these data do demonstrate the ability of vitamin D to 

increase global energy expenditure, and consequently, protect against excessive 

accumulation of adipose tissue. The data obtained by Marcotorchino et al. and 

those described from the current studies both provide mechanistic support for the 

inverse relationship between vitamin D and obesity.   

 In addition to the global impact of dietary vitamin D on fatty acid oxidation 

described above, vitamin D has been reported to increase FAO and reduce FA 

synthesis specifically in hepatocytes (262). In this study, male Sprague-Dawley 

rats were fed a control diet, or a high fat diet plus intraperitoneal injection of 1, 

2.5, or 5 µg/kg 1,25(OH)2D. Administration of 1,25(OH)2D ameliorated HF diet-

induced body and liver weight gain, increased the hepatic mRNA expression of 

FAO-related genes (PPARα and CPT-1), and reduced the hepatic mRNA 

expression of genes involved in lipogenesis (SREBP-1c, ACC, FAS). These data 

suggest that 1,25(OH)2D protects against hepatic steatosis by stimulating FAO, 

while inhibiting lipogenesis in the liver. Again, these data highlight the role of 

vitamin D in the regulation of energy expenditure and lipid homeostasis, and 

provide mechanistic support of the inverse relationship between vitamin D and 

obesity. However, it must be noted that the studies described by Marcotorchino 
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et al. (261) and Yin et al. (262) examined only the impact of vitamin D (dietary or 

intraperitoneal injection of 1,25(OH)2D, respectively) on high fat diet-induced 

weight gain and metabolism, without including a control group to examine the 

impact of vitamin D on energy and lipid metabolism in the non-obese state. Such 

studies are essential in order to fully understand the impact of vitamin D on lipid 

oxidation and metabolism. 

 The studies described above demonstrate that vitamin D may impact lipid 

oxidation in oxidative tissues such as the liver, skeletal muscle, and BAT. 

However, very limited data exist regarding the impact of fatty acid oxidation in 

WAT. While β-oxidation is most well-studied in these oxidative tissues, oxidative 

capacity in adipocytes is reduced during obesity and in the diabetic state (263, 

264), and targeting oxidative metabolism in WAT is an effective treatment 

measure in type 2 diabetes (265, 266). Consistent with our observation of 

increased β-oxidation with 1,25(OH)2D stimulation, the recent report by Chang 

and Kim demonstrates that 1,25(OH)2D stimulates the mRNA expression of 

several genes related to fatty acid oxidation in 3T3-L1 adipocytes, including CPT-

1α, PGC1α, UCP-1, and PPARα, providing additional support that vitamin D may 

increases FAO in these cells (249).  

 This increase in fatty acid oxidation that was observed in the present 

studies is interesting, given the reduction in CPT-1 mRNA expression, and 

increase in ACC1 mRNA expression, in response to 1,25(OH)2D (Figure 3.8B). 

Flux of the β-oxidation pathway is determined primarily by CPT-1 (267, 268) and 

by substrate supply (267, 269). When cellular energy stores are low, AMPK 
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phosphorylates ACC, thereby inactivating it (270). This phosphorylation event 

inhibits ACC-mediated production of malonyl-CoA, a potent CPT-1 inhibitor, 

allowing ATP-yielding processes such as β-oxidation to occur, while limiting ATP-

consuming processes such as de novo lipogenesis. Conversely, during times of 

adequate cellular energy states, ACC1 remains in its active, unphosphorylated 

state, producing malonyl-CoA for the synthesis of fatty acids, and inhibiting the 

ATP-producing process of β-oxidation. As ACC1 is regulated primarily by 

phosphorylation rather than transcriptionally, its mRNA levels in the cell may not 

necessarily reflect its enzymatic activity. These findings are significant, given that 

many of the previously described studies of 1,25(OH)2D action on adipocytes 

report only changes in the mRNA expression of lipogenic and oxidative enzymes, 

without examining enzyme functionality or activity. For example, the impact of 

1,25(OH)2D on CPT-1 expression described herein is in contrast to the findings 

described by Chang and Kim, who report a significant increase in CPT-1 mRNA 

expression in 3T3-L1 adipocytes in response to 1,25(OH)2D (249). Nonetheless, 

the data from both the current studies and those described by Chang and Kim 

are consistent with 1,25(OH)2D stimulation of fatty acid oxidation in differentiated 

3T3-L1 adipocytes.  

 To determine if 1,25(OH)2D reduces TAG accumulation in 3T3-L1 

adipocytes by inhibiting the uptake of exogenous fatty acids, the impact of 

1,25(OH)2D on uptake of the fluorescent C16 BODIPY fatty acid was observed. 

Despite the observed reduction in TAG accumulation, uptake of the C16 BODIPY 

fatty acid was elevated in response to 1,25(OH)2D (Figure 3.7). These data 
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suggest that 1,25(OH)2D enhances the adipocyte’s ability to take up exogenous 

fatty acids. However, under the experimental conditions used for these studies, 

the contribution of exogenous fatty acids to the intracellular TAG pool remains 

limited. In these experiments, exogenous fatty acids were not directly supplied 

during or after differentiation. Rather, the contribution of exogenous lipids to the 

intracellular TAG pool was limited to the amount of fatty acids that were present 

in the cell culture sera, supplied in the culturing media in a 10% (vol:vol) ratio. In 

an environment where exogenous fatty acids are more freely or frequently 

available, such as those found in circulation in vivo postprandially, the 

contribution of exogenous lipids to intracellular TAG pool may be significantly 

larger, and may impact the overall effect of 1,25(OH)2D on TAG accumulation in 

vivo.  

It is established that long-chain fatty acids (LCFA) stimulate FAO by acting 

as PPAR ligands, stimulating the transcription of lipid-oxidizing genes (271). As 

1,25(OH)2D stimulates uptake of BODIPY FL16 in 3T3-L1 adipocytes, the 

possibility that FAO is increased indirectly by 1,25(OH)2D, as a result of 

increased uptake of 1-14C-palmitate, was raised. To address this question, 

uptake of 1-14C-palmitate was determined under conditions used for the FAO 

assay. Under these conditions, uptake of 1-14C-palmitate is not different between 

vehicle- and 1,25(OH)2D-treated cells (Figure 3.8C). The discrepancy between 

uptake of BODIPY fatty acid and 1-14C-palmitate may be due to the difference in 

substrate concentration used in each of these assays. As fatty acid uptake 

occurs via both diffusion and protein-mediated uptake (71), it is likely that at low 
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substrate concentrations, such as those used for the BODIPY FA uptake assay, 

differences in protein mediated uptake may be observed. Conversely, under 

conditions of high substrate availability, protein-mediated and passive diffusion of 

fatty acids across the cell membrane are maximized, and differences in protein-

mediated uptake may not be detected. Since no difference in 1-14C-palmitate 

uptake was observed between vehicle- and 1,25(OH)2D-treated cells, it is 

unlikely that indirect stimulation of FAO by increased FA uptake is the 

mechanism by which 1,25(OH)2D stimulates FAO in these cells.  

The data from these studies demonstrate that 1,25(OH)2D acts in 

differentiated adipocytes to regulate lipid and glucose metabolism, leading to 

reduced TAG accumulation. While the impact of vitamin D supplementation on 

weight loss remains controversial (272), these data provide mechanistic support 

for the inverse relationship between vitamin D status and measures of adiposity. 

However, studies to determine the clinical significance of these findings are 

needed. Many in vitro studies have been performed to determine the impact of 

vitamin D on adipose tissue physiology, specifically, on adipocyte differentiation, 

but the impact of 1,25(OH)2D on adipogenesis in humans is still unclear. 

1,25(OH)2D inhibits adipogenesis in murine 3T3-L1 preadipocytes, while 

promoting differentiation in human preadipocytes and primary mouse adipocytes 

at an advanced stage of differentiation (272). These data suggest that the impact 

of 1,25(OH)2D on adipogenesis is dependent on stage of differentiation. On the 

other hand, while limited in quantity and restricted to the 3T3-L1 cell line, the 

available evidence regarding 1,25(OH)2D regulation of already differentiated 



109 

 

adipocytes consistently demonstrate that 1,25(OH)2D reduces lipid accumulation 

in these cells, at least in part by regulating metabolic pathways that are 

independent of the signaling pathways that control early adipogenesis. Whether 

1,25(OH)2D has the same impact on differentiated human adipocytes remains to 

be determined. 

That 1,25(OH)2D modulates adipocyte metabolism and lipid storage 

independently from its effects on the adipogenic program highlights the potential 

for vitamin D to impact adipose tissue physiology through its effects on existing 

adipocytes, in addition to its potential effects on differentiation of preadipocytes 

and mesenchymal stem cells. This may have therapeutic potential, as significant 

changes in adipose mass are mainly due to alterations in cell size rather than cell 

number (105). It has been demonstrated that adipocyte size is positively 

correlated with serum insulin and leptin concentrations, insulin resistance, and 

risk of developing type 2 diabetes (273-281).  Obese individuals with few, large 

adipocytes are more glucose intolerant and hyperinsulinemic than those having 

the same degree of adiposity but in many small adipocytes (276-278, 282). 

Further, large adipocyte size may impair adipose function by promoting local 

inflammation and altered adipokine secretion (283-287). These data suggest that 

for a given state of adiposity, a higher number of smaller adipocytes is more 

metabolically favorable than fewer, larger adipocytes.  

Given that it is more metabolically favorable to distribute adipose mass 

over a larger number of smaller adipocytes, agents such as 1,25(OH)2D that 

reduce adipocyte size by reducing accumulation in existing (differentiated) 
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adipocytes, or possibly by distributing the existing fat mass over a larger number 

of adipocytes through stimulation of adipogenesis, may be beneficial in 

preserving metabolic function. In support of this, a study by Caron-John et al. 

demonstrated that in women undergoing abdominal gynecological surgery, intake 

of vitamin D was inversely correlated with omental adipocyte size, independent of 

calcium intake, BMI, total body fat mass, season, and physical activity.(288). In 

this study, Serum 25(OH)D was also negatively correlated with omental 

adipocyte size, and with total fat mass. Dietary intakes of vitamin D, calcium, and 

dairy products were assessed using a food frequency questionnaire, and mean 

adipocyte size was calculated by measuring the diameter of 250 adipocytes per 

patient. These data provide support for vitamin D regulation of adipose tissue 

physiology in humans, and highlight a potential mechanism by which dietary 

vitamin D may protect against obesity-associated metabolic disorders.  
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Conclusions  

In conclusion, 1,25(OH)2D impacts several processes related to fatty acid 

and glucose metabolism in differentiated 3T3-L1 adipocytes, leading to reduced 

TAG accumulation. 1,25(OH)2D stimulates glycerol release, likely due to 

stimulation of glycerol synthesis from glucose-derived substrates (e.g. during 

glycolysis, or from lactate or pyruvate). Fatty acid uptake and oxidation are 

stimulated by 1,25(OH)2D, while glucose utilization as a substrate for fatty acid 

synthesis is reduced. Collectively, these changes in adipocyte metabolism may 

contribute to the reduction in TAG accumulation that is stimulated by 1,25(OH)2D. 

The results of this study may aid in the identification of metabolic pathways 

targeted by 1,25(OH)2D, and in the development of in vivo studies designed to 

examine the impact of dietary vitamin D on obesity and related metabolic 

disorders.  

5.2 Future Directions 

While the studies described herein improve our understanding of vitamin D 

regulation of adipose tissue metabolism, several questions remain regarding 

vitamin D impact on adipose tissue metabolism and function.  
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First, the studies described in this dissertation utilized the murine 3T3-L1 

preadipocyte cell line to examine the impact of 1,25(OH)2D on glucose and lipid 

metabolism and TAG accumulation in adipocytes. Given the discrepancies in 

1,25(OH)2D action on preadipocyte differentiation between mouse and human 

preadipocytes, it will be essential to examine the impact of 1,25(OH)2D on energy 

substrate metabolism and TAG accumulation in differentiated human adipocytes. 

The discrepancy in 1,25(OH)2D action between mouse and human preadipocytes 

may be due to differing actions of 1,25(OH)2D on the adipogenic transcriptional 

cascade, and may be dependent on the stage of differentiation that the cell is in. 

Therefore, the impact of 1,25(OH)2D on human adipocyte metabolism after the 

differentiation program is complete will need to be studied directly. This 

knowledge is key in understanding the vitamin D regulation of adipose tissue in 

humans. 

Second, it will be useful to determine the minimum concentration of 

1,25(OH)2D necessary to elicit changes in glucose and lipid metabolism, and in 

TAG accumulation in adipocytes. The concentration of 1,25(OH)2D used in the 

current studies (10 nM) was chosen in order to ensure the ability to capture the 

cellular response to 1,25(OH)2D stimulation. While adipose tissue concentrations 

of 1,25(OH)2D and rate of local adipose production of 1,25(OH)2D are not known, 

serum 1,25(OH)2D concentrations are generally in the picomolar range. Chang 

and Lee demonstrated that 1,25(OH)2D reduces neutral lipid accumulation in 

concentrations as low as 1 nM (249), suggesting that the 1,25(OH)2D-induced 
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changes in glucose and lipid metabolism may also occur at lower 1,25(OH)2D 

concentrations.  

Finally, the impact of dietary vitamin D on adipocyte metabolism and 

substrate handling must be examined in vivo. A study designed to examine: 1) 

whether dietary vitamin D may elicit changes in adipose tissue metabolism and 

total fat mass that are consistent with the current in vitro studies (e.g. elevated 

glycerol release and fatty acid oxidation in adipose tissue); and 2) the impact of 

altered adipose metabolism on systemic energy balance, lipid profile, and 

glucose homeostasis. It is possible that chronically elevated glycerol supplied to 

the liver by adipose tissue would stimulate gluconeogenesis leading to elevated 

fasting blood glucose. However, this scenario is unlikely, given the positive 

association between vitamin D status and insulin sensitivity (259), and the 

favorable impact of high dietary vitamin D on liver glucose and lipid metabolism 

(260). While several questions remain to be answered, the studies described in 

this dissertation provide information that is critical to improve our understanding 

of the actions of 1,25(OH)2D on adipose tissue metabolism and function, and that 

provides mechanistic support for the inverse relationship between vitamin D 

status and obesity. 
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