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ABSTRACT 

Salari, Mohammad Wali . Ph.D., Purdue University, August 2016. Nested Association 

Mapping to Identify Seed Composition QTL in Diverse Soybean Lines: Major Professor: 

Katy Martin Rainey. 

 

 

Soybeans are economically the most important legume grown worldwide. It 

provides quality protein and oil to food and feed markets in addition to being used for 

industrial products. The value of soybean could be enhanced by increasing protein, oil, 

and sucrose contents, while lowering anti-nutritional compounds such as oligosaccharides. 

Understanding the genetic and environmental factors controlling soybean seed 

composition is an essential prerequisite for such an endeavor. Three separate studies were 

initiated to understand the underlying genetics governing soybean seed compositional 

traits.  

The first study was conducted to identify Quantitative Trait Loci (QTL) 

controlling seed protein and oil contents in the SoyNAM multi-parent population through 

a Genome-Wide Association Study (GWAS). The SoyNAM population was created by 

generating recombinant inbred lines from crossing the hub parent IA3023 to forty other 

parents representing elite public germplasm. Over 40,000 seed samples from 5486 

recombinant inbred lines were evaluated in eight environments for seed protein and oil 

concentrations using NIR spectroscopy. Using GWAS, we identified thirteen QTL highly 

associated with seed protein content distributed over nine different chromosomes 
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and marked by 49 SNPs. Twenty-two out of 49 SNPs were located within the 39.6-40.2 

Mbp region of chromosome 9, a region previously reported to be associated with seed 

protein content. We refined the seed protein QTL region to 0.56 Mbp compared to a 

previously reported 5-8 Mbp. Of the thirteen seed protein QTL, six were novel and were 

located on chromosomes 11, 13, 14, 15, and 18. GWAS also identified twelve QTL 

significantly associated with seed oil content on eight different chromosomes tagged by 

109 SNPs. Six of the twelve seed oil QTL were new and were situated on chromosomes 2, 

11, 15, 18, and 20. The QTL detected for protein and oil explained 15% and 23% of the 

phenotypic variations, respectively.  

The second study was performed to identify quantitative trait loci (QTL) 

controlling seed sucrose, raffinose, and stachyose content in a set of 140 SoyNAM 

recombinant inbred lines (RILs), developed from the cross of  two elite soybeans lines 

IA3023 and LD02-4485. Composite interval mapping (CIM) identified three QTL for 

sucrose content: one on chromosome 1 and two on chromosome 3. The QTL on 

chromosome 1 explained 10% of the phenotypic variation while the two QTL on 

chromosome 3 each explained 22% phenotypic variation in the sucrose content. The CIM 

also displayed a QTL for raffinose content on chromosome 6 and it explained 6% of 

phenotypic variation. This study identified novel QTL that can be validated for use in 

developing soybean lines with higher concentrations of sucrose and reduced levels of 

raffinose and stachyose. 

The last study focused on Multi-Environment Trial (MET) analyses for both seed 

protein and oil contents. The result from the GGE-biplot analyses revealed that selection 

based on mean and stability was appropriate for the SoyNAM parental genotypes. The 
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most stable and desirable genotypes for seed protein content were LG92-1255, CL0J173-

6-8, PI398881, PI561370, Prohio, PI427136, LG03-3191, PI507681B and genotypes 

LG03-2979, U03-100612, Prohio, LD02-4485, IA3023, LG04-4717, LG92-1255 were 

most desirable for seed oil content. LG94-1128 and 5M20-2-5-2 for seed protein content 

and NE3001 and LG05-4317 for seed oil content were unstable even though high 

yielding.
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CHAPTER 1. GENERAL INTRODUCTION 

1.1 Introduction  

Soybean [Glycine max (L.) Merrill] is one of the oldest cultivated crops. 

Economically and agriculturally, it is the most important legume in the world, providing 

quality protein, and oil to the food and animal feed industry (Hedley 2000; Clevinger 

2006). It is the second most important economic crops in the United States. It ranks third 

in grain production after corn (Zea mays) and wheat (Triticum aestivum), and second to 

corn in value (Dierking 2009). In the crop year 2015, the United States produced 

approximately 3.94 billion bushels of soybeans (U.S. Department of Agriculture, 2015).   

About 10% of the total produced soybeans were used directly for human consumption.  

Protein, oil, and carbohydrates of soybean seed are the most important determinant of 

soybeans end use. Soy protein ingredients have been gaining popularity because research 

showed that soy protein has health benefits. Research also found that soy oil is important 

for an animal meal since it produces high energy due to the presence of quality fatty acids 

(Dierking 2009). Due to these health benefits, soybean meal has become the most 

important ingredient of both humans and animal diet. The nutritional value of this quality 

soy meal is determined by carbohydrates components such as sucrose and Raffinose 

Family Oligosaccharides (RFOs). Among them, sucrose content of soybean seed is 

critical in soyfood industry because it adds sweetness and is easily digested by 
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monogastric animals. In contrast, the raffinose family oligosaccharides, which include 

raffinose and stachyose, are the non-desired carbohydrates because the monogastric 

animal cannot digest them. Considering its economic importance, soybeans has received 

a high priority and attention has focused on the improvement of the nutritional quality of 

soybeans’ protein, oil and carbohydrates through genetics and as results hundreds of 

cultivars have been developed. These desired soybeans cultivars have been developed 

through research programs in which the researchers have conducted a number of genetic 

studies to identify and map QTL that control these traits using different mapping methods 

such as QTL mapping and GWAS. The research presented in this dissertation also 

focuses on identifying genomic regions involved in controlling protein, oil, and 

carbohydrates contents of soybeans seeds using both GWAS and QTL mapping methods.  

 

1.2 Organization of the Dissertation 

This dissertation is organized into five chapters. The current chapter presents a 

general introduction to the chapters that follow and provides an outline for the 

organization of the dissertation. The second chapter provides background information 

about soybean seed composition and the different statistical procedures that can be used 

to map genes/QTL controlling traits of interest. The third chapter includes genotypic and 

phenotypic analyses for protein and oil content of soybeans using the SoyNAM multi-

parent mapping population. The RILs in this study were evaluated for protein and oil 

concentration using the Nested Association Mapping (NAM) technique. This technique 

was designed by Edward Buckler labs at Cornell University to identify and dissect the 

genetic architecture of complex traits in Maize. This technique combines the advantages 
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of high resolution from association mapping and high power to detect broad chromosome 

region from linkage analysis in a single unified mapping method. This method promises 

to identify numerous QTL that control yield and seed composition traits. NAM approach 

is expected to show high power to detect QTL in genome-wide association mapping 

approach (Holland 2007; Buckler, Holland et al. 2009; Stich 2009) and has been 

successfully used for genetic dissection of many complex traits in Maize (Wilson, Whitt 

et al. 2004; Holland 2007; Salvi, Corneti et al. 2011; Cook, McMullen et al. 2012; Meade 

2012; Prado, López et al. 2014; Xiao, Tong et al. 2015; Zhang, Wu et al. 2015). The 

genotypic analysis of this chapter was based on Genome-Wide Association Study 

(GWAS). The fourth chapter contains bi-parental QTL analysis for sucrose and the 

Raffinose Family Oligosaccharides (RFOs) that play a key role in determining the 

nutritional value of soybeans in the markets. The QTL analyses for sucrose and the RFOs 

were conducted with QTL cartographer using the composite interval mapping method. 

The fifth chapter includes genotype by environment interaction analysis for protein and 

oil content using the parents that were used to create the Soybean Nested Association 

Mapping (SoyNAM) populations. 



4 

 

  

4
 

CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction  

Soybean [Glycine max (L.) Merrill, 2n=40] is an important leguminous seed crop 

that has been grown across the world for its exceptional health and industrial benefits 

(Singh and Hymowitz 1999; Ghosh, Ghosh et al. 2014). It is an annual legume which 

typically grows 12 to 36 inches tall with dense or fewer branches depending on cultivar 

and growing conditions (Panthee, Pantalone et al. 2005). Soybean has a taproot system, a 

central root system from which other roots sprout laterally. The first root nodule appears 

8-10 days after planting, depending on cultivar and growing condition (Carlson and 

Lersten 2004). The nodule formation, which supplies soybean plant with nitrogen, 

continues throughout the plant’s growth stages (Panthee, Pantalone et al. 2005).  

Soybean growth is divided into two stages, vegetative and reproductive. The 

vegetative stage begins with emergence followed by the development of four different 

types of leaves. The first pair of leaves is simple cotyledons which are also called seed 

leaves. The second pair of leaves is primary leaves. The third is called trifoliate foliage 

leaves and the fourth are prophylls (Carlson and Lersten 2004). The reproductive stage 

starts when axillary buds develop into flowers in clusters of 2 to 35 depending upon 

cultivar and environmental conditions such as daylength and temperature 
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(Carlson and Lersten 2004).  Several studies reported that soybeans produce more 

flowers than they can develop into pods. Research reported that from 20 to 80% flowers 

abscise for many cultivars (Carlson and Lersten 2004). Soybean flowers are 

papilionaceous, white or pale purple, with a tubular calyx of five unequal sepal lobes and 

a five parted corolla consisting of a posterior banner petal, two lateral wing petals, and 

two anterior keel petals (Panthee, Pantalone et al. 2005).  

Soybeans have two distinct growth habits, determinant, and indeterminate. 

Soybeans with a determinant growth habit stop vegetative growth on the main stem soon 

after flowering begins while indeterminate soybeans continue producing nodes on the 

main stem and branches until the start of seed filling stage (Pedersen and Elbert 2004).  

It is believed that soybeans have been originated from China and its domestication 

began in northeastern part of China in the 11
th

 century (Hymowitz 1990; Shurtleff and 

Aoyagi 2010; Dwevedi and Kayastha 2011). In the early period of domestication, 

soybeans were not as important part of Chinese diet as it is now (Dwevedi and Kayastha 

2011). They were grown primarily for fertilizers purposes, plowing them back into the 

soil to make it enrich for the production of other crops such as wheat and millet. Soon it 

became the foundation of some Asian cuisine. Soybeans were first introduced to Europe 

in 1712 by Englebert Kaempfer, a botanist who lived in Japan (Hymowitz 1990). 

Soybeans were brought to the US from China by Samuel Bowen, who worked for East 

India company seaman (Hymowitz 1990). In 1896, a dramatic development happened for 

soybean in America when a well-known American chemist, George Washington Carver, 

became head of the department of agriculture at Tuskegee institute in Alabama. Mr. 

Carver encouraged farmers to rotate their crops with soybeans and other nitrogen-fixing 
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legumes that would replenish the depleted soil with nitrogen and minerals (SoyStats 

2012). The first scientific study of the soybean in the west was conducted by Swedish 

botanist Carl von Linne and named it Glycine max because of the unusually large 

nitrogen-producing nodules on its roots. Unfortunately, soybean production in the west 

was limited due to adverse climatic conditions (Hymowitz 1990). These days, soybean is 

one of the most important legume crops in research due to providing quality protein for 

food, livestock feed, edible oil and addition to being used for a variety of industrial 

products. Because of it multipurpose end use and commercial interest, attention have 

been paid to the improvement in genetic, agricultural engineering, pest management, 

agronomic practices, which lead to a drastic increase in area under soybean production 

across the globe. Today, the United States is the leading world soybeans commercial 

producer followed by Brazil, Argentina, China, India, Paraguay, and Canada (Baize 2013) 

Figure 2.1.  

http://www.statista.com/statistics/267270/production-of-soybeans-by-countries 

 

  Figure 2.1. Global soybeans production by country. 
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2.2 Soybean Seed Composition 

On average soybean seed composition comprise approximately 40% protein, 20% 

oil, 10% ash and other and 30% carbohydrate (Hou, Chen et al. 2008) of which about 15% 

is soluble carbohydrate (Figure 2.2). Soybean seed carbohydrates are divided into two 

main groups based on their physical and chemical properties. The first group is 

nonstructural carbohydrates which include oligosaccharides and polysaccharides while 

the second group contains structural polysaccharides that comprise dietary fiber 

components (Middelbos and  Fahey Jr 2008; Murphy 2008). The dietary fiber consists of 

cell wall polysaccharide, noncellulose and structural polysaccharides such as lignin and 

phenolic compound (Middelbos and  Fahey Jr 2008; Murphy 2008). The first group 

carbohydrates are also called soluble while the second group is insoluble carbohydrates. 

 

Figure 2.2. Seed composition of typical North American commodity soybean. 
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Soluble carbohydrates of a typical soybean seed include five major sugars such as 

glucose, fructose, sucrose, raffinose, and stachyose (Hou, Chen et al. 2009). Among them, 

the major sugars are sucrose, raffinose, and stachyose. The amount of sugars in soybean 

seed differs depending on soybean cultivar and growing conditions. The amount of 

sucrose in soybean seeds ranges from 41.3-67.5% while raffinose and stachyose make up 

5.2-15.8%, 12.1-35.2%, of the total soluble sugar in soybean seed, respectively (Hou, 

Chen et al. 2008). Reports have confirmed trace amount of other sugars such a pinitol, 

myo-inositol, verbascose, galactose, in soybean seeds (Hou, Chen et al. 2008). Results 

from researches conducted on soybean seed carbohydrates found that sucrose, raffinose, 

and stachyose are important for viability and germinability of soybean seed (Middelbos 

and  Fahey Jr 2008; Murphy 2008).   

 

2.3 Nutritional Value of Soybeans 

2.4 Soy Protein 

Soybeans is commonly consumed by humans in the form of soymilk, soy protein, 

tofu, infant formula, miso, natto, soy flour and soy sauce (Stats 2001). They are a popular 

protein-rich food source in most Asian countries (Latham 1997). In the US soybean is 

used as feed for livestock and rarely as food for human consumption. Soybeans have 

been extensively used as major ingredients of non-ruminant diets throughout the world 

due to their high-quality protein content. Worldwide, approximately 85% of soybeans 

produce have been processed into soyfood. Soybean is considered an excellent source of 

food because it contains nine essential amino acids for humans and animal nutrition 

(Kwon 2009). Soybean is also known to be an excellent source of dietary fiber, and is 



9 

 

  

9
 

rich in micronutrients such as iron (Fe), zinc (Zn), and calcium (Ca) of which Ca is 

known to be beneficial for bone health (Messina 1999). Soybean is a good source of food 

for vegetarians, and a perfect protein source for children born to low-income families 

who often suffer from malnutrition (Kwon 2009). Soybeans seed contains a considerable 

amount of linolenic acid, omega-6 fatty acid, and isoflavones. Isoflavones have been 

implicated to play a key role in reducing diseases among humans such as a breast cancer-

reducing factor (Messina 1999). It has also been known to reduce risk of developing 

other kinds of disease such as cervical, ovarian, lung and colon, more interestingly it is 

lowering a cholesterol level which reduces risk of heart related diseases (Coward, Barnes 

et al. 1993; Kennedy and Szuhaj 1994; Kennedy 1995; Kwon 2009).  

Although soybeans have been grown mainly for protein and oil components for 

humans consumptions, its byproduct has been an important source of protein-rich feed 

for livestock, mostly for poultry and swine (Keshun 1997; Fageria, Baligar et al. 2011). 

Approximately 85% of the soybean produced worldwide is processed into soybean meal. 

Almost 98% of the soybean meal is further processed into animal feed (Hou, Chen et al. 

2009; Choung 2010; Zeng, Chen et al. 2014). In addition to being used as a source of 

food and feed for both humans and animals, soybeans can be used for biodiesel 

production and are considered to be one of the most potential crops for bioenergy 

industry (Stats 2001).  

In addition to being used as a source of food and feed for humans and animals, soy 

proteins with distinctive properties play important roles in plant biological function such 

as seed germination (Murphy 2008). Soybean seed protein exists largely in the form of 

storage proteins such as glycinin (primarily 11S) and β-conglycinin (primarily 7S), and 



10 

 

  

1
0
 

their function is to provide germinating seed with nitrogen in the form of amino nitrogen 

(Murphy 2008).  Based on their solubility, soy protein can be classified into water soluble 

albumins and salt soluble globulins (Nazareth 2009). The relative proportions of these 

storage proteins in soybean seed depend upon genotype and the environmental conditions 

in which they are grown (Nazareth 2009).  

Even though soybean has been considered an excellent source of food and feed for 

both humans and animals, it’s nutritional value to monogastric animals is not optimized 

due to the presence of numerous naturally occurring compounds such as raffinose and 

stachyose which interfere with nutrient digestion and absorption (Clarke and Wiseman 

2000). Raffinose and stachyose are not nutritionally available to monogastric animals 

because unlike in ruminants, these oligosaccharides are not hydrolyzed in the upper gut 

due to the absence of the α-galactosidase enzyme. In the lower intestine, the RFO’s are 

metabolized by bacterial action leading to the production of gasses like methane, 

hydrogen and carbon dioxide that cause discomfort and in many cases flatulence and 

diarrhea. Therefore, development of soybean lines with reduced stachyose and raffinose 

content would improve digestibility and hence, supplying a more efficient feed source for 

non-ruminant.   

 

2.5 Soy Oil 

The major economic products of soybeans are protein and oil (Piper and Boote 

1999; Singh and Hymowitz 1999). Soybeans have long been recognized as world’s major 

source of edible oil for humans (Dei 2011). It represents a huge part of the vegetable oil 

in the market, accounting for approximately 57% of edible oil consumption globally 
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(SoyStats 2012). It has been used as an oilseed crop for edible oil production, which 

represents a large proportion of the vegetable oil in the market (SoyStats 2012). Soybean 

oil production has increased from 32% in mid-1960 to 56% in 2011 (SoyStats 2012). In 

2010, only the United States produced over 19 billion pounds of oil and in the same year, 

soybean oil accounted for 68% of the U.S. edible fats and oil consumption (SoyStats 

2012). Soybean oil is a useful source of feed-grade fat for animals. It has been used as 

high energy diets for modern breeds particularly for poultry because of its high 

metabolisable energy content compared with other vegetable oils (Dei 2011). Soy oil 

produces high energy mainly due to the high percentage of unsaturated fatty acids, which 

are well absorbed by the animals. The oil quality of soybean depends on its fatty acid 

composition that plays an important role in nutritional value, flavor and stability of the 

soybeans oil (Akond, Liu et al. 2014). The five fatty acids include palmitic acid, stearic 

acid, oleic, linolic and lino-lenic acids of which lower palmitic acid content are desirable 

for edible oil (Moongkanna, Nakasathien et al. 2011; Akond, Liu et al. 2014).   

The correlation between seed protein and oil content is known to be negative; 

therefore, an increase in seed protein tends to decrease oil concentration, attributable to 

both environment and genotypic variation (Piper and Boote 1999). It has also been noted 

that temperature changes during seed filling influences seed composition and maximum 

seed oil content occurs when the temperature is in the range of 25-29°C and decreases 

when the temperature increases. Conversely, as the temperature increases seed protein 

content increases (Dornbos Jr and Mullen 1992; Piper and Boote 1999). Environmental 

stress conditions such drought during soybean seed filling can change the soybean seed 

chemical composition and result in increase in seed oil content (Specht, Chase et al. 
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2001). Considering the economic importance of the soybean seed oil and protein content, 

researchers have attempted to increase both constituents; however, the strong negative 

correlation between these two traits has made it challenging to improve both traits 

simultaneously (Wilcox and Cavins 1995; Cober and D Voldeng 2000; Chung, Babka et 

al. 2003; Panthee, Pantalone et al. 2005; Phansak 2010). 

 

2.6 Sucrose 

Sucrose also called the common table sugar, is a disaccharide made of two 

monosaccharide: alpha-D-glucopyranose and beta-D-fructofuranose (Dey and Dixon 

1985). The two monosaccharide, alpha-D-glucopyranose and beta-D-fructofuranose, are 

bound through a glycosidic bond between the Carbon-1 (alpha) of glucose and the 

Carbon-2 (beta) of fructose (Figure 2.3) (Dey and Dixon 1985).  

Sucrose has been considered a critical quality trait in soy food production (Cicek 

1997), and it is the most abundant disaccharides in legumes plants (Hedley 2001). 

Sucrose, the primary storage form of glucose, fructose, and carbon, plays an important 

role in developing soybean embryos by being transported to the seed from green parts of 

the plant during seed development (Dey and Dixon 1985; Lowell and Kuo 1989). Studies 

conducted on soybean sugar contents have found a positive correlation between sucrose 

and oil but a negative association of each with protein. 
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Figure 2.3. Chemical structure of sucrose. 

 http://wpage.unina.it/petrilli/organic/carbo.htm?html 

 

Invertase enzyme causes sucrose to decrease rapidly after germination. It cleaves 

and digests sucrose to release glucose and fructose utilized in the creation of new cell in 

the growing embryo (Dey and Dixon 1985). Three enzymes, sucrose phosphate synthase, 

sucrose phosphatase and sucrose synthase are associated with sucrose synthesis in green 

plants (Clevinger 2006). The sucrose phosphate synthase enzyme made up of UDP-

glucose and fructose 6-P, plays an important role in the regulatory control of sucrose 

synthesis (Dey and Dixon 1985; Clevinger 2006). Sucrose phosphatase hinders sucrose 

synthesis. The third enzyme, sucrose synthase, that synthesizes sucrose is abundant in 

higher plants and is found in nearly all plant tissues (Clevinger 2006). The most 

important function of sucrose synthase enzyme is the breakdown of sucrose into glucose 

and fructose (Dey and Dixon 1985). Sucrose synthase and alkaline invertase are the two 

enzymes that correspond to the accumulation of 90% total dry matter in soybean seed 

(Dey and Dixon 1985). Sucrose contributes to the soybeans derived food sweetness and 

making it a desirable food for humans and animals (Abe, Ujiie et al. 2004). High sucrose 

http://wpage.unina.it/petrilli/organic/carbo.htm?html
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soybean-derived food and feed is desired for monogastric animals because they can 

digest sucrose. This is possible because monogastric animals have an enzyme that 

breakdown sucrose into its bio-available components.   

 

2.7 Raffinose Family Oligosaccharides (RFOs) 

Raffinose family oligosaccharides (RFOs) are complex sugar compounds that are 

formed by adding D-galactose units to the D-glucose moiety of a sucrose molecule 

through α-(1, 6) bonds (Obendorf 1997; Tahir, Båga et al. 2012). Raffinose family 

oligosaccharides have been known by various names and acronyms such as RFO 

(Raffinose Family Oligosaccharides), RSO (Raffinose Series Oligosaccharides), and 

Raffinose Saccharides (Huhn 2003). RFOs include the trisaccharide raffinose, the 

tetrasaccharide stachyose, and the pentasaccharide verbascose (Figure 2.4.). 

A typical soybean seed contains approximately 1% raffinose, and 3 to 4% 

stachyose (Skoneczka, Maroof et al. 2009). It is believed that the biosynthesis of 

raffinose family oligosaccharides in soybeans starts with initial reaction catalyzed by 

galactinol synthase to produce galactinol from UDP (uridine diphosphate galactose and 

myoinositol (Clarke and Wiseman 2000). High RFOs such as raffinose, and stachyose, 

are produced as a result of using galactinol to add galactosyl residues to sucrose. The 

RFOs biosynthesis steps are explained in the following chemical reactions and Figure 2.4. 

  UDP-galactose + myo-inositol 

→galactinol + UDP (1) 

Galactinol + sucrose 

→ raffinose + myo-inositol (2) 
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Galactinol + raffinose 

→stachyose + myo-inositol (3) 

 

 

 

Figure 2.4. Sucrose, raffinose, and stachyose biosynthesis.  

http://users.bergen.org/dondew/bio/AnP/Anp1/AnP1Tri1/AnP1_Tri1_raffinose.htm.  

 

Raffonse, [β -D-fructofuranosyl-O-α-D-galactopyranosyl- (1→6)-α-D-glucopyranoside], 

and stachyose ,[O-α-D-galactopyranosyl- (1→6)-O-α-Dgalactopyranosyl- 

(1→6)-α-D-glucopyranosyl-β-D-fructofuranoside], are the two RFOs that exist at 

relatively high level in grain legumes seed (Jones, DuPont et al. 1999). They have also 
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been detected in various parts of plants such as leaves, rhizomes, roots, seeds, stem, 

cotyledons, seed coats, and hypocotyls (Obendorf 1997; Bentsink, Alonso-Blanco et al. 

2000). Raffinose family oligosaccharides perform a variety of function in plants (Karner, 

Peterbauer et al. 2004). They transport carbohydrates in the phloem, serve as storage 

reserves and cryoprotectants in frost-hardy plant organs (Sprenger and Keller 2000; 

Pennycooke, Jones et al. 2003). They are accumulated in maturing seed and play a key 

role in the acquisition of desiccation tolerance, storability and cold tolerance in many 

plant species (Horbowicz and Obendorf 1994; Pennycooke, Jones et al. 2003).  

Increased demands for healthier food encouraged plant scientists to develop 

soybeans cultivars with higher nutritional value through research. Development of 

soybeans cultivars with low RFOs, high sucrose, high protein and high oil is the goal of 

most plant breeding programs. One possible way to develop such cultivars is to conduct 

genetic analysis (QTL mapping/GWAS) through which the researcher will be able to 

identify Quantitative Trait Loci (QTL) controlling these traits. The identified QTL then 

can be validated for use in developing soybean lines with higher concentration of protein, 

oil, sucrose and reduced levels of raffinose and stachyose.  

 

2.8 Quantitative Trait Loci (QTL) Mapping 

Mapping in terms of molecular genetics is the process in which genetic markers are 

arranged in order on chromosomes based on their relative genetic distance as determined 

by recombination frequency. The goal of genetic mapping is to identify the location of 

genomic regions controlling traits of interest (Bernardo 2002; Collard, Jahufer et al. 2005; 

Myles, Peiffer et al. 2009). The term of QTL was first used by Gelderman in 1975. 
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Conceptually, QTL can be a single gene or a cluster of genes that control the trait of 

interest. The genomic region that affects the trait of interest and the magnitude of its 

effect on the trait can be identified with the help of molecular markers (Bernardo 2002; 

Collard, Jahufer et al. 2005; Myles, Peiffer et al. 2009).  

Genetic mapping is accomplished through two main approaches; (1) linkage 

mapping which is also called biparental mapping or family based QTL mapping , and (2) 

association mapping or linkage disequilibrium mapping (LD-mapping). Association 

mapping does not require the development of biparental mapping populations; instead it 

uses diverse lines from natural populations or germplasm (Abdurakhmonov and 

Abdukarimov 2008).  

 

2.9 Linkage Mapping  

Linkage mapping is the most common method for identifying the genetic basis of 

quantitative traits in plants and a useful process to study the phenotypic variation that is 

due to changes in DNA sequence (Myles, Peiffer et al. 2009; Soto-Cerda and Cloutier 

2012). Most plant geneticists and breeders try to explain the phenotypic variation in 

plants in term of changes in DNA sequence (Myles, Peiffer et al. 2009; Soto-Cerda and 

Cloutier 2012). Family-based QTL mapping makes use of well-characterized pedigrees 

structure in which the mapping population is generated from the cross of individuals with 

known relatedness (Kloth, Thoen et al. 2012). The cross from which the mapping 

population is generated is called biparental cross (Kloth, Thoen et al. 2012). 

Abdurakhmonov et al. (2008) and Semagn, et al. (2010) provided a detailed review of the 

procedure and the mapping populations needed for family based QTL mapping. First of 
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all the researcher needs to develop experimental populations such as F2, backcross (BC), 

double haploid (DH), recombinant inbred line (RILs), and near-isogenic line (NIL) that 

are derived  from hybridization of two parental genotypes carrying trait of interest 

(Abdurakhmonov and Abdukarimov 2008; Semagn, Bjørnstad et al. 2010). Second, the 

progeny of the large experimental populations is measured for segregation of the trait of 

interest in different environments. Third, a number of polymorphic DNA markers, that 

distinguish parental genotypes from segregating genotypes in a mapping population, is 

identified and then the parental genotypes are screened with these markers 

(Abdurakhmonov and Abdukarimov 2008; Semagn, Bjørnstad et al. 2010). If the markers 

are identified polymorphic over the parental genotypes then all individuals of the 

mapping population are genotyped with these markers (Abdurakhmonov and 

Abdukarimov 2008; Semagn, Bjørnstad et al. 2010). Once the  genotypic data collected 

from the mapping population is ready, marker data can be used to construct linkage map 

by arranging genetic markers in order on the chromosome based on their relative genetic 

distances between them (Abdurakhmonov and Abdukarimov 2008; Semagn, Bjørnstad et 

al. 2010). A linkage map is tabular or graphical depiction of marker positions on 

chromosomes within a linkage group. One major problem often encountered in 

constructing linkage map is interference. This occurs when two adjacent crossover events 

are not independent. This implies that the occurrence of one crossover event influences 

the other, making the detection of double crossover difficult. There are two commonly 

used map functions namely Kosambi and Haldane. Of the two map functions, the 

Kosambi accounts for the interference, making it the best mapping function for genetic 

map construction (Huehn 2011).  
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The construction of linkage map can be achieved through commonly used software 

program including Rqtl and Mapmaker (Lander, Green et al. 1987). As a result, the 

markers arranged along the linkage map are statistically correlated with the phenotype of 

individuals of a mapping population and QTL affecting the trait of interest along with the 

markers linked to that QTL are identified (Abdurakhmonov and Abdukarimov 2008).   

Advantages of bi-parental populations mapping or family based QTL mapping is 

that it requires relatively fewer markers for genome coverage; no population structure; 

the ability to detect the effect of rare allele and high statistical power per allele (Sorrells 

and Yu 2009; Semagn, Bjørnstad et al. 2010). So far most of the plant QTL mapping 

studies have been conducted based on linkage or family based QTL mapping. This 

approach has some limitations. For example, occurrence of few recombination events 

within family, poor resolution in detecting rare QTL, only two alleles per locus can be 

studied simultaneously, and it requires evenly distributed markers at spacing of 10-20cm 

due to limited number of recombination event occurred within family (Flint‐Garcia, 

Thuillet et al. 2005; Sorrells and Yu 2009; Semagn, Bjørnstad et al. 2010). This method 

is further limited by the cost associated with the longer time required to develop mapping 

population and evaluate a large number of genotypes (Holland 2007). 

 

2.10 Association Mapping 

The constraint posed by family based QTL mapping can be overcome with the use 

of population-based association study in which the gene-tagging efforts are turned from 

biparental crosses to natural population and from family based QTL mapping to linkage 

disequilibrium (Flint‐Garcia, Thuillet et al. 2005; Abdurakhmonov and Abdukarimov 
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2008). In association mapping approach genotypic and phenotypic data are collected 

from a panel of mapping population in which the relatedness is not controlled by the 

researcher and correlation between marker and phenotype are sought within the 

population (Myles, Peiffer et al. 2009). Association mapping and linkage based 

disequilibrium association mapping are often used interchangeably in literature but they 

present slight differences. According to Gupta et al. (2005) association mapping refers to 

the significant association of a molecular marker with the phenotypic trait of interest 

while LD refers to a non-random association between two markers or two gene/QTL or 

between a QTL and a gene (Semagn, Bjørnstad et al. 2010). As a result, association 

mapping is one of the several applications of LD (Gupta, Rustgi et al. 2005). From 

statistical point of view, association refers to the covariance of the polymorphic marker 

and the trait of interest while LD represent the covariance of polymorphism expressed by 

two markers/QTL (Gupta, Rustgi et al. 2005). Association mapping is rapidly emerging 

as a new science being utilized as a tool to dissect complex trait in plant and offers a 

unique opportunity to seek complex trait variation to the sequence level by exploiting 

historical and recombination events at the population level (Zhu, Gore et al. 2008). This 

method has received special attention in the past several years because it can potentially 

identify a single polymorphism within a gene that causes the phenotypic differences. 

(Soto-Cerda and Cloutier 2012).   

Abdurakhmonov and Abdukarimov (2010) have provided a general population-based 

mapping approach.  

The overall approach for conducting association mapping in plant might be different due 

to different methodology chosen, but generally, it requires the following steps: 
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1.    selection of  a group of individuals or germplasm with wide coverage of 

genetic diversity; 

1.    genotyping the mapping population with available markers; 

2.    quantifying the extent  of LD of a chosen population genome using a molecular 

marker data; 

3.    evaluating the population structure and kinship (coefficient of relatedness 

between pairs of each individual within a sample); 

         4.    correlating phenotypic and genotypic/haplotypic data using an appropriate 

statistical approach that discloses genomic region (marker tags) positioned within 

close proximity of targeted trait of interest. As a result, a specific gene(s)  

controlling a QTL of  interest can be cloned using the marker tags and annotated for 

an exact biological function (Abdurakhmonov and Abdukarimov 2008). 

 

2.11 Type of Association Mapping 

Association mapping broadly falls into two categories; Genome-Wide Association 

mapping (GWA) and Candidate Gene Association mapping (CGA) (Zhu, Gore et al. 

2008). In the candidate gene association mapping approach, few genetic markers that are 

believed to be involved in controlling the trait of interest are genotyped and correlated 

with the phenotype (Zhu, Gore et al. 2008; Myles, Peiffer et al. 2009). Candidate gene 

mapping approach was widely used for disease–gene association in humans but has been 

considered inadequate approach due to failing to detect most confirmed disease genes 

(Risch and Merikangas 1996; Myles, Peiffer et al. 2009). This approach may work in 

plants but only for candidate genes whose pathways are known as well as for genes 
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whose role is already known in controlling the phenotype of interest (Risch and 

Merikangas 1996; Myles, Peiffer et al. 2009). 

Due to limitations in the choice of candidate genes that are identified, the candidate 

gene association mapping approach always runs the risk of missing underlying 

nucleotides that are located in non-identified candidate genes (Hall, Tegström et al. 2010). 

However, candidate gene mapping approach is thought to be statistically powerful 

because a small genomic region is saturated with dense markers, thereby increasing the 

mapping resolution (Kwon and Goate 2000).  

 In addition, candidate genes are mainly discovered from the loss-of-function 

mutations in inbred lab strains; therefore, it is not clear how well such mutations describe 

the variation that actually underlie quantitative trait variation in natural populations (Hall, 

Tegström et al. 2010). Identification of SNPs between and within lines are required for 

candidate gene association mapping because SNPs offer the highest resolution for 

mapping QTL and are potentially in LD with the causative polymorphism (Semagn, 

Bjørnstad et al. 2010). 

Due to limitations associated with candidate gene association mapping approach, 

one can use Genome-Wide Association mapping approach (GWA) in which the entire 

genome is scanned for marker-trait association with a large number of markers. In the 

GWA approach, the entire genome is covered with markers and a sufficient number of 

markers are genotyped across the genome such that functional alleles will likely be with 

at least one of the genotyped markers (Myles, Peiffer et al. 2009). Scanning whole 

genome requires high capacity DNA instruments or high oligonucleotide (oligo) arrays to 



23 

 

  

2
3
 

efficiently identify SNPs at a density that accurately reflects genome-wide LD structure 

and haplotype diversity (Semagn, Bjørnstad et al. 2010).  

The association mapping approach has been used for several crops to identify QTL 

controlling traits of interest. The continued decrease in sequencing and genotyping costs, 

GWA mapping is increasingly becoming more feasible and applicable (Semagn, 

Bjørnstad et al. 2010). Since GWA is less dependent on prior information about the 

candidate genes compared to QTL mapping and candidate association mapping, it is a 

promising method to identify novel loci involved in complex phenotypic traits (Kloth, 

Thoen et al. 2012). GWA mapping is not a replacement of traditional QTL mapping; in 

fact, these two methods of mapping have complementary advantages and disadvantages 

which lead to a better understanding of causal genetic polymorphisms when they both are 

combined (Kloth, Thoen et al. 2012). 

 

2.12 Population Structure Issue Associated with Association Mapping 

Until recently, plant breeders were skeptical about using the association mapping 

approach for mapping QTL underlying quantitative traits mainly due to the false 

associations as a result of the confounding effects from population structure. Population 

structure occurs when genetically different groups in the population under study are not 

mating at random for at least several generations. Random mating population may not 

exist except in population genetic theory (Myles, Peiffer et al. 2009). Nonrandom mating 

generates a complex pattern of population structure and relatedness in crops and wild 

plants which often led to a genome-wide LD between unlinked loci (Flint‐Garcia, 

Thuillet et al. 2005; Myles, Peiffer et al. 2009; Sneller, Mather et al. 2009). 
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 In association mapping, mapping a trait will be problematic due to the complex 

structure of genetic relatedness among individuals because many genetic markers across 

genome will emerge associated with the phenotype when actually the markers only 

capture the genetic relatedness (Myles, Peiffer et al. 2009). This could be a big problem 

with trying to map traits subjected to local adaptation such as flowering time because 

variation in these phenotypes between populations is highly correlated with allele 

frequency differences between populations (Aranzana, Kim et al. 2005; Flint‐Garcia, 

Thuillet et al. 2005; Buckler, Holland et al. 2009; Myles, Peiffer et al. 2009). Even for a 

set of common traits of agronomic interest in maize, such allele frequency differences 

account for an average of 9.3% of the phenotypic variation across all traits (Flint‐Garcia, 

Thuillet et al. 2005; Myles, Peiffer et al. 2009). Populations with complex structure may 

show significant differences in allele frequency which might be due to genetic drift; 

therefore, genetic loci identified will be falsely associated with the trait of interest when 

there is not a real association because the markers only tag genetic relatedness. The 

development of a statistical model which allows accounting for population structure 

during association analysis has improved the application of association mapping for QTL 

detection in crop plants. There are two steps to account for population structure using a 

model-based approach; the first is to calculate the percentage of the membership of each 

individual to population groups using unlinked random markers. The second is to use the 

percentage of membership as a covariate in the model of testing associations of markers 

with phenotypic traits (Ersoz, Yu et al. 2009). In the unified mixed model of Yu et al. 

(2006), both population structure (Q) and family relatedness (K) are simultaneously 
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considered as covariates in the model. This model accommodates both fixed and random 

effects. 

 

2.13 Nested Association Mapping 

Association mapping and linkage analysis are two approaches that have been often 

used to dissect the genetic architecture of complex traits (Center 1995; Risch and 

Merikangas 1996; Holland 2007). These two methods are complementary to each other 

such that linkage analysis identifies broad chromosomal region of interest with low 

markers coverage and has high power in detecting rare QTL while association mapping 

uses dense markers and offers high resolution either using the candidate gene approach or 

the genome-wide association mapping approach (Risch and Merikangas 1996; Holland 

2007). An integrated mapping approach is necessary to combine the advantages of the 

two mapping methods to improve mapping resolution without requiring dense marker 

maps (Holland 2007). 

 To develop such method, Yu et al. (2008) proposed Nested Association Mapping 

(NAM) approach which combines the advantages of the two mapping strategies in a 

single unified mapping population. The NAM strategy dissects complex traits at a 

fundamental level through creating mapping resources that enable researchers to take 

advantages of genetic, genomic and system biology tools (Holland 2007). This method 

promises to identify numerous QTL that control yield and seed composition traits. The 

NAM approach uses recombinant inbred lines (RILs) population derived from several 

crosses of parental inbreds (Holland 2007). The genome of the RILs are mosaics of 

chromosomal segments of their parents mainly due to diminishing chances of 
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recombination over short genetic distance thereby within the chromosomal segments, the 

linkage disequilibrium (LD) information across the parental inbreds is maintained for a 

given number of generation. If the parental inbreds are diverse LD will decay rapidly 

within the chromosomal segments of the RILs.  

The Nested Association Mapping approach allows utilization of both historic and 

recent recombination and provides high mapping resolution (Holland 2007). In addition, 

using the balanced design underlying the proposed mapping strategy and systematic 

reshuffling of the genomes of the parental inbreds during RIL development, NAM 

populations are expected to show a high power to detect QTL in genome-wide 

association mapping approach (Holland 2007; Buckler, Holland et al. 2009; Stich 2009). 

According to Yu et al. (2008) and Holland et al. (2007) development of Nested 

Association Mapping approach requires the following steps: 

1.    select diverse parents and cross them to an elite line of interest; 

2.    develop a large set of recombinant inbred lines; 

3.    either sequence completely or densely genotypes the parents; 

4.    genotype a smaller number of tagging markers on both the parents and the RILs to 

define the inheritance of chromosome segments and to project high-density marker 

information from the parents to the RILs; 

5.    phenotype RILs for complex traits, and  

6.    conducting genome-wide association analysis relating phenotypic traits with 

projected high-density markers of the RILs.  
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Nested association mapping has been successfully used for genetic dissection of 

many complex traits in Maize (Wilson, Whitt et al. 2004; Holland 2007; Salvi, Corneti et 

al. 2011; Cook, McMullen et al. 2012; Meade 2012; Prado, López et al. 2014).  
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CHAPTER 3.  GENOME-WIDE ASSOCIATION STUDY OF SEED PROTEIN AND 

OIL CONTENT IN A SOYBEAN NESTED ASSOCIATION MAPPING 

POPULATION  

3.1 Abstract 

The objectives of this study were to determine genotypic differences in soybean 

for protein and oil concentration, and to identify Quantitative Trait Loci (QTL) 

controlling these two traits in SoyNAM mapping population. A total of 5486 genotype 

were evaluated for seed protein and oil concentrations in 4 locations; Indiana, Iowa, 

Illinois, and Nebraska, for two years (2012 and 2013) in a Modified Augmented Design 

(MAD). Protein and oil contents in soybean seeds were estimated using NIR 

spectroscopy Perten DA7200 diode array instrument. The Genotype, Location and 

interaction sources of variation were all highly significant for both protein and oil. 

Locations explained the highest proportion of variation in protein (38.17%) and oil 

(35.33%) contents, and this was followed by genotypes, which accounted for 33.88% and 

29.35% variation in the two traits respectively. Heritability estimates on a line mean basis 

for protein and oil concentration were 0.85, and 0.84, respectively. The phenotypic 

correlation between these two traits was -0.61, indicating a negative association between 

the two traits. GWAS identified 13 QTL highly associated with seed protein contents 

distributed over 9 different chromosomes and marked by 49 SNPs. Twenty two out of 49 

SNPs were located in the 39.6-40.2 Mbp region of chromosome 9, a region previously
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 reported to be associated with seed protein content. We further refined the seed protein 

QTL region to 0.56 Mbp compared to a previously reported 5-8Mbp. Of the 13 seed 

protein QTL 6 were novel and were located on chromosomes 11 , 13, 14, 15, and 18,  and 

the rest were previously reported QTL. GWAS also identified 12 QTL on 8 different 

chromosomes tagged by 109 SNPs highly significant with seed oil content. Six of the 12 

seed oil QTL were novel and were situated on chromosomes 2, 11, 15, 18, and 20, and 

the remaining 6 were known QTL. Among the QTL detected for oil content a highly 

significant QTL was detected on chromosome 10 that comprised more than 90 SNPs. The 

QTL detected for protein and oil explained 15% and 23% of the phenotypic variations, 

respectively. The markers closely linked to the novel QTL could be used for marker-

assisted breeding of these two traits. 

 

3.2 Introduction 

Soybean [Glycine max (L) Merrill] is an important leguminous seed crop that has 

been grown across the globe for its high protein and oil concentrations. It is one of the 

world’s largest sources of edible oil and protein for humans and livestock, respectively 

(Panthee, Pantalone et al. 2005). The protein content of soybean seed has been used for 

both livestock and human consumption. In the US, it has been used only as livestock feed 

while in some Asian countries, it has been used for both human and livestock 

consumption (Hymowitz and Newell 1981).  

Seed protein and oil content in soybean are known to be polygenic traits and is 

quantitatively inherited, with large effects of genotype × environment interactions 

(Chung, Babka et al. 2003; Phansak 2010; Hu, Liu et al. 2011; Akond, Liu et al. 2014; 
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Hwang, Song et al. 2014). Improving protein and oil content of soybean therefore, 

requires elaborate evaluation of breeding populations in several environments. This 

multi-environment assessment allows for quantification of the magnitude of variances 

that are genetic in nature compared that due to environments. Understanding genotypic 

variation, heritability and the interactions between genotypes and environments is critical 

in deciding breeding strategies for quantitative traits like protein and oil.  

Past studies reported significant genotype by environment interactions (GEI) for 

oil and protein (Sogut 2006; Phansak 2010). Heritability estimates for protein ranging 

from 0.57 to 0.91 and for oil ranging from 0.51 to 0.93 have also been reported for these 

traits (Lee, Bailey et al. 1996). These studies asserted that effective utilization of any 

newly developed breeding population for trait improvement requires dissection genetic 

variances across environments.  

Complex traits are challenging to breed for conventionally, which explains the 

slow progress in improving seed protein and oil in soybean. With the recent advances in 

genomic approaches, molecular tools are frequently being applied to elucidate such traits. 

For protein and oil, researchers have found several genomic regions controlling seed 

protein and oil concentration (Diers, Keim et al. 1992; Lee, Bailey et al. 1996; Panthee, 

Pantalone et al. 2005). Qiu et. al (1999) found two restriction fragment length 

polymorphism markers(RLFP) linked to QTL controlling protein content and one marker 

associated with QTL controlling oil content in a population derived from a cross of 

Peking and Essex on linkage group H and F (Qiu, Arelli et al. 1999). Diers et al. (1992) 

evaluated F2 population derived from a cross of G. max and G. soja and found three 

RLFP markers linked to QTL on linkage group E, F, and I controlling seed protein of 
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which two makers on linkage group E and I were identified to be consistent with QTL for 

protein. Mansur et al. (1993) analyzed F2 derived population from a cross between, 

Minsoy,(PI 27.890) and ,Noir 1, (PI 290.136) for QTL controlling seed protein and oil 

content and found an unlinked RFLP marker, L48, associated with seed protein content. 

Csanádi et. al (2001) evaluated 82 individuals of an F2 population derived from a cross 

between Ma. Belle and Proto for QTL controlling protein and oil content and found four 

markers linked to genomic region controlling seed protein and three markers associated 

with oil content located on linkage group A1, B2, L, and B1. These QTL are candidates 

for deployment in MAS but must first be validated  in different population grown in 

diverse locations (Panthee, Pantalone et al. 2005). To date, over 140 QTL for each seed 

protein and oil have been reported in a number of studies (SoyBase, the USDA, ARS 

Soybean Genetics and Genomics Database) (Hwang, Song et al. 2014). These QTL have 

been identified on many different genomic regions throughout all 20 chromosomes, 

however, most of them are yet to be confirmed (Hyten, Pantalone et al. 2004; Hwang, 

Song et al. 2014). Additionally, the population used in many studies for identifying QTL 

for agronomic and seed composition traits share parents that are closely related, therefore, 

it is important to use new and diverse parent to develop mapping population and test 

these populations in different environments for stable QTL that control these traits.  

The main objectives of this study were to: 1), to conduct genome wide association studies 

to identify quantitative trait loci (QTL), particularly rare QTL associated with seed 

protein and seed oil concentrations in the SoyNAM mapping population; 2), to determine 

genetic variation for seed protein and seed oil contents; 3) and to study the magnitude of 

GEI and stability for the two traits across environments. 
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 Material and Methods 

3.2.1 Plant Material, SoyNAM Structure, and Experimental Design 

Soybean Nested Association Mapping (SoyNAM), a technique that combines the 

advantages of both linkage and association mapping, were used for this experiment. The 

mapping populations was developed by mating IA3023, a high yielding Iowa State 

variety, with 40 different high yielding elite and exotic soybean lines namely, 4J105-3-4, 

5M20-2-5-2, CL0J095-4-6, CL0J173-6-8, HS6-3976, LD00-3309, LD01-5907, LD02-

4485, LD02-9050, LG03-2979, LG03-3191, LG00-3372, LG04-4717, LG04-6000, LG05-

4292, LG05-4317, LG05-4464, LG05-4832, LG90-2550, LG92-1255, LG94-1128, LG94-

1906, LG97-7012, LG98-1605, Magellan, Maverick, NE3001, Prohio, S06-13640, Skylla, 

TN05-3027, U03-100612, PI 398881, PI 427136, PI 437169B, PI 438164B, PI 518751, 

PI 561370, PI 404188A, and PI 574486, (Figure 3.1).  

 

            Figure 3.1. Schematic presentation of the SoyNAM structure.  

            (From Ben hall 2015) 
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The 40 elite lines included seventeen high yielding lines from eight states, fifteen 

lines from diverse ancestry and eight plant introductions. From each of these crosses at 

least 1000 F2 lines with maturity as similar as possible to the parent IA3023 were selected 

and advanced up to F5 generation, using single seed decent method. At generation F5 each 

NAM family include 140 lines which were split into four sets each set having 35 

recombinant inbred lines, one standard parent, two founders and three other checks. 

Therefore, during field planting, each set had 40 lines x 40 families which giving rise to 

1600 lines per set. In each set only the checks were replicated, while the RILs were not 

replicated. The total number of lines planted in the field was 6400 lines (4 sets x 1600 

lines). The four sets were randomly planted in two rows plots of 80 cm length. The 

aforementioned described field layout is a Modified Augmented Design (MAD). The 

experiment was replicated at four different locations; Indiana, Illinois, Nebraska, and 

Iowa for two years 2012 and 2013.  

 

3.3 Data Collection and Analysis 

3.3.1 Phenotypic Data Collection 

In this study, we evaluated the SoyNAM population (5486 RILs of maturity group 

III) for variation in protein and oil contents. The phenotypic data for these two traits, 

which includes approximately 44,000 observations, were collected in four states, Indiana, 

Illinois, Nebraska, and Iowa for two years, 2012 and 2013. Approximately 300 g of seed 

samples were analyzed as whole grain per plot for protein and oil contents on a dry 

weight basis by NIR spectroscopy using a Perten DA7200 diode array instrument 
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equipped with collaboration equation, developed by a Perten with the assistance of the 

University of Minnesota (http://www.perten.com/). 

 Overall summary statistics for the two traits across environments were calculated 

using proc mixed procedure in SAS 9.4 (SAS Institute, 2014), (Table 3.1). Broad sense 

heritability was estimated for each trait across environments on line mean basis (Table 

3.1). HSAUR2 (Hothorn and Everitt 2014) R package was used to analyze the phenotypic 

data for the two traits, seed protein and oil content, by environment and by populations. 

The phenotypic data for the two traits were also analyzed on a g/kg basis for each 

environment. Proc mixed model in SAS.9.4 was used to generate summary statistics for 

the two traits (SAS Institute, 2014), (Table 3.2; and Figure 3.7 and 3.8).  

 

3.4 Phenotypic Data Analysis 

3.4.1 Variance and Stability Analyses 

The stability analysis for the two traits, seed protein and seed oil contents, were 

performed with the additive main effect and multiplication interaction (AMMI) in 

Genstat edition12
th

 (https://kb.vsni.co.uk/Genstat/). In the AMMI model the phenotypic 

data were analyzed as RCBD with years considered as blocks. This is because the 

location data were not replicated. Generally, there were four locations; Indiana, Iowa, 

Illinois, and Nebraska. Each location had two years data.  

Several statistical packages are available to analyze multi-environment trail data, 

but the most widely used one in plant breeding programs is AMMI (Agyeman, Parkes et 

al. 2015). AMMI model has been shown  to be a powerful tool for investigating GEI 

analysis (Hagos and Abay 2013), since it fit in both additive (linear) and multiplicative 

http://www.perten.com/
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(bilinear) components that efficiently account for the underlying interaction (Shafii and 

Price 1998; Farshadfar, Poursiahbidi et al. 2012). The AMMI model combines the effect 

of genotype and environment from the ANOVA with  principle components analysis of 

GEI (Ding, Tier et al. 2007).  

 

3.4.2 AMMI Analysis of GEI 

The following AMMI model was used to conduct the genotype by environment 

interaction (GEI).  In the AMMI model, the additive portion of the variance is separated 

from the multiplicative variance ( interaction)  by analysis of variance (ANOVA)  and 

then Principal Component Analysis (PCA),  is applied to the to the interaction (residual) 

portion from the ANOVA to extract a new set of coordinate axes which account more 

effectively for the interaction patterns (Shafii and Price 1992). 

yij= μ + Gi + βj + Σδnγjnαjn  + eij 

where yij is the response mean of i
th

 genotype in j
th

 environment; μ is the grand mean, Gi 

is the main effect of i
th

 genotype, ßj is the main effect of j
th

 environment, δn represents the 

singular value for IPCA axis n, γjn is the genotype i eigenvector value for IPCA axis n, αjn 

is the environment j eigenvector value for IPCA axis n, and eij is the error. 

 

3.4.3 Estimation of Heritability and Correlation by Families 

The estimation of heritability and  correlation is necessary for understanding the 

response to selection (van Kleunen and Ritland 2005). Heritability was estimated on a 

line mean basis for each trait across environments and for each of the 39 families using 

the following formula: 
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where H
2
 represents broad sense heritability;     is the genetic variance for lines;      is 

the genetic by year variance,      is the genetic by location variance;     the residual 

variance; y and I represent year and location, respectively. The R package lme4 was used 

to estimate the variance components based on REML algorithm. The result of the 

heritability estimates is provided for each family in (Table 3.3).  

Phenotypic correlation among the two traits protein and oil was calculated across 

environments using Pearson’s correlation coefficients (r) with psych R package (Figure 

3.8).  

3.5 Linkage Disequilibrium (LD) Analysis 

Linkage disequilibrium (LD), a non random association between various loci, is the 

basis of genetic association analysis for detection of gene or QTL (Hyten, Choi et al. 

2007). Since GWAS measures the correlation between genotype and phenotype, LD 

plays key role in detecting significant association (Hyten, Choi et al. 2007).  

The LD in this study was measured using correlation coefficients (r
2
) between 

SNPs located at different physical distances. A total of 4118 SNPs spread across the 20 

soybeans chromosome were first filtered in Tassel allowing minor allele frequency of 0.1 

and missing data of less than 5% (Figure 3.10). Linkage disequilibrium (LD) heat map 

was generated for the entire genome, with heterozygous calls ignored and a default 

sliding window of 50 used (Figure 3.11). The filtered SNPs were used to establish LD 

and the LD decay rate was estimated on a genome wide and chromosome by 

chromosome basis (Figure 3.12 and Figure 3.13). For LD decay analysis, we generated 
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correlation coefficients (r
2
) and pairwise distances in TASSEL and generated LD decay 

plots in “R version 3.0.3” (R Core Team 2014). Mean LD decay rate was calculated after 

every 500kb interval across all chromosomes. A line graph was used to display the mean 

genome-wide LD decay rates (Figure 3.12). 

 

3.6 Population Structure 

Population structure is the major factor that leads to false positive in association 

study. To investigate the presence of population stratification in the SoyNAM population, 

we conducted principal component analysis (PCA) in TASSEL using the 4118 SNPs. The 

number of PCs that capture the most variation in the population was determined using a 

scree plot, utilizing PCs and eigenvalues generated by TASSEL.  

 

3.7 Genome Wide Association Study (GWAS) 

3.7.1 Genotype and Phenotype Data 

A subset of 4118 SNP markers from the Illumina SoyNAM BeadChip SNP array 

was used. A threshold of 0.10 for minor allele frequency (MAF) was used during SNP 

calling to avoid false-positives (Tabagin et al. 2009). A quality control function 

embedded within the NAM package was used to check for repeated markers and markers 

with minor allele frequency below threshold of 0.10. Imputation of missing values for 

markers was accomplished using a forward algorithm. This method is filling missing loci 

with the most likely genotype based on the previous marker, as a Markov model (Xavier 

2015). 
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Protein and oil data for 5240 lines were used. Best linear unbiased predictors 

(BLUPs) were estimated for protein and oil for all entries across locations and for each 

location using R package Lme4 embedded in the SoyNAM package, developed by 

Xavier et. al (2015)(Bates 2010; Xavier 2015). The BLUP values were calculated using 

the following model:  

            

where y is the vector of observed phenotype, µ is grand mean; Z is incident matrix for 

environment and u is a vector of random effect for environment;   is the incident matrix 

of genotype;   is vector of random genetic value associated with each genotype; and    is 

vector of the residual. The model was developed based on the assumption that 

         
             

 ), and           
    

 

3.7.2 Association Analysis 

The genome scan analysis for QTL associated to protein and oil was conducted in 

R package NAM, which is designed for association studies in nested association mapping 

(NAM) panels as implemented by Xavier et al. (2015). Subpopulations were used to 

define the stratification factor to allow different linkage phase between marker and QTL 

in each family. Marker effects were treated as a random to decrease the background noise 

(Xu and Atchley 1995). The statistical model used by this method for GWAS is: 

y = µ + Zu + Wg + e 

where y is the vector of observed phenotypes; µ is mean value of protein/oil across 

environment; Z is the incident matrix of marker effect, u is the vector of random effects 
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for marker; W incident matrix of genotype and g is the polygenetic term (estimated from 

the kinship matrix (K), and e is the error variance. 

Prior to GWAS analysis additional quality control was accomplished for removal 

of repeated genotypes that could happen by genotyping error. Using this quality control 

function we were able to find 128 repeated lines and they were excluded from the GWAS 

analysis. 

 

3.8 Result  

3.8.1 Mean Differences in Soybean Protein and Oil Content 

Frequency distribution of the seed protein and oil content  across environments 

showed  that the two traits were normally distributed, indicating that the seed contents of  

these traits are controlled by many genes (Figure 3.2) (Kang and Gauch 1996). 

 

Figure 3.2. Frequency distribution of seed protein and oil content across environments; 

the dashed blue line represents average seed protein and seed oil content. 
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 Protein and oil contents for the RILs varied across environments and families 

(Figure 3.3, 3.4, 3.5, and 3.6). The percent seed protein content in environment Nebraska 

2013 was the  highest followed by Indiana 2012 and Nebraska 2012, while the seed oil 

content in these environments was the lowest,  indicating a reverse relationship among 

them (Figure 3.3, 3.4, 3.5, and 3.6). The negative relationship between these two traits 

makes it challenging to improve both traits simultaneously. 

 
      Figure 3.3. Distribution of seed protein content by environment. 

 

 
         Figure 3.4. Distribution of seed protein content by populations (families). 
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Figure 3.5. Distribution of seed oil content by environment. 

 

Figure 3.6. Distribution of seed oil content by populations (families). 

 

Percent protein across environments ranged from 28.5-43.5 with a mean of 33.8 

and standard deviation of 1.7 while % of oil across environments ranged from 13.0 to 

23.4 with a mean of 19.7 and standard deviation of 0.97. The coefficient of variation for 

protein (4.3%) and oil (5%) was small, implying low experimental error (Table 3.1).  

Table  3.1. Summary statistics and heritability estimates across environments for seed 

protein and oil. 

Traits Mean ± Std Minimum Maximum CV% Skew Kurt H
2
 

Protein (%) 33.8 ± 1.7 28.5 43.5 4.3 -0.02 -0.05 0.85 

Oil (%) 19.7 ± 0.97   13.0 23.4 5.0  0.36   0.16 0.84 

Std= standard deviation; H
2
, implies broad sense heritability; CV, implies Coefficient of 

Variation. 



42 

 

  

4
2
 

 

The data were also analyzed based on a g/kg basis for both traits for each 

environment. The concentration of protein ranged from 286 Kg
-1

 to 435 Kg
-1,

 with a 

mean 338 Kg
-1

 and standard deviation of 14.6 Kg
-1

 (Table 3.2 and Figure 3.7). 

Environment Nebraska 2013 has the highest seed protein content while the seed protein 

content for environment Illinois 2013 was the lowest (Figure 3.7). The concentration of 

oil ranged from 130 Kg
-1

 to 234 Kg
-1

 with a mean of 197 Kg
-1

 and standard deviation of 

6.99 Kg
-1 

(Table 3.2). The seed oil content for environment Illinois 2013 was the highest 

whereas seed oil content for environment Nebraska 2012 was the smallest (Figure 3.8). 

The two traits indicated inverse relationship such that increase in seed protein content 

results in decreased seed oil content or vice versa. The analysis revealed that few lines 

performed well above the parents and RILs for protein concentration. 

Table 3.2. Summary statistics for protein and oil for each environment. 

IA, IL, IN, and NE, indicate, Iowa, Illinois, Indiana, and Nebraska, respectively. 

Std=standard deviation, N= number of observation; Min=minimum, Max=maximum. 

 

Protein g/kg Oil g/kg 

Environment Mean Std 

 

Min Max Mean Std 

 

Min Max 

2012_IA 330.3 10.3 295.4 426.9 191.7 7.5 129.9 215.6 

2012_IL 328.9 11.8 285.9 413.5 201.4 7.8 150.1 227.8 

2012_IN 344.9 13.8 293.7 434.2 193.5 8.3 142.1 223.5 

2012_NE 347.1 10.8 309.0 419.0 188.7 6.3 149.0 212.0 

2013_IA 331.8 11.0 293.2 400.7 191.9 6.5 151.5 216.0 

2013_IL 324.8 11.1 285.4 408.4 211.3 6.6 156.6 234.4 

2013_IN 341.3 10.6 288.5 434.6 199.1 6.2 146.6 222.8 

2013_NE 351.3 10.4 309.6 424.3 196.7 6.8 153.0 221.7 
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Figure 3.7. Seed protein content g/kg by environment on mean basis. 

 IA, IN, NE, and IL imply Iowa, Indiana, Nebraska, and Illinois, respectively. 

 

 
Figure 3.8. Seed oil content g/kg by environment on mean basis.  

IA, IN, NE, and IL imply Iowa, Indiana, Nebraska, and Illinois, respectively. 
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3.8.2 Heritability Estimates and Correlations 

Heritability for protein and oil, estimated based on line mean basis, was 85% and 

84%, respectively (Table 3.1). The heritability seems high for both traits indicating that 

much of the variation in the population for these traits are due to genetic. The heritability 

of protein and oil were also estimated for each of the 39 SoyNAM families, which ranged 

from 64% to 90% and 58% to 80%, respectively (Table 3.3).  

Table 3.3. Descriptive statistics for protein and oil, estimates of heritability and 

phenotypic correlation on family basis across environments. 
Protein Oil Protein and Oil 

Family Mean Std Min Max h
2
 Mean Std Min Max H

2
 Pheno Corr 

2 337.9 9.5 310.0 359.9 0.8 196.0 5.8 181.8 209.8 0.78 -0.73 

3 336.2 9.6 312.4 359.6 0.9 198.4 5.9 184.1 214.2 0.84 -0.61 

4 339.8 9.9 314.0 368.1 0.8 194.8 5.6 178.7 208.2 0.85 -0.68 

5 341.9 10.1 316.3 368.2 0.8 195.7 6.0 178.1 210.4 0.86 -0.69 

6 340.8 9.2 315.3 364.1 0.8 195.9 5.6 181.0 210.3 0.96 -0.65 

8 341.5 8.4 320.0 361.8 0.7 194.9 4.6 181.6 206.8 0.67 -0.56 

9 345.6 8.8 319.4 367.4 0.8 198.1 5.7 183.2 212.4 0.74 -0.54 

10 333.9 9.4 307.7 360.6 0.7 197.4 6.6 181.2 215.3 0.80 -0.61 

11 326.4 10.9 297.0 356.6 0.7 200.6 6.8 184.4 218.8 0.80 -0.64 

12 330.2 9.5 267.0 310.8 0.9 201.9 5.8 186.6 217.2 0.87 -0.56 

13 335.1 9.2 310.3 356.8 0.8 196.2 5.8 181.5 211.0 0.87 -0.57 

14 339.0 9.6 315.1 362.0 0.8 194.5 6.1 177.0 210.7 0.82 -0.59 

15 337.1 9.4 312.3 359.8 0.8 194.9 6.1 178.5 209.7 0.85 -0.59 

17 336.9 8.9 312.8 357.5 0.8 196.2 6.2 181.2 212.4 0.84 -0.51 

18 334.4 9.1 311.0 357.2 0.8 198.4 5.8 185.0 213.3 0.78 -0.57 

22 328.9 10.0 303.5 352.5 0.9 200.3 5.8 184.4 213.6 0.89 -0.59 

23 329.2 10.2 264.4 312.9 0.8 203.5 5.7 188.4 218.8 0.81 -0.67 

24 336.7 10.6 307.3 363.9 0.8 199.9 6.5 182.3 218.2 0.88 -0.65 

25 339.4 11.4 315.0 420.2 0.9 196.2 7.9 147.4 213.0 0.92 -0.64 

26 339.1 8.9 313.3 364.5 0.8 198.5 5.8 184.1 214.2 0.64 -0.63 

27 339.1 9.8 313.0 366.4 0.8 196.1 6.2 181.4 210.6 0.85 -0.52 

28 334.6 9.4 312.7 361.5 0.8 200.4 6.4 183.1 216.1 0.76 -0.63 

29 333.5 10.3 307.0 359.3 0.8 202.4 6.0 187.3 218.2 0.71 -0.62 

30 336.2 9.5 312.2 362.0 0.8 195.8 6.0 177.3 209.7 0.74 -0.73 
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Table 3.3 continued 

31 336.1 10.3 308.2 363.5 0.8 194.6 7.1 177.2 213.0 0.78 -0.64 

32 341.6 8.7 318.7 363.8 0.8 199.6 5.1 181.8 211.7 0.69 -0.59 

33 345.6 12.2 313.3 375.4 0.9 192.2 7.8 172.7 211.7 0.82 -0.69 

34 337.6 10.0 311.4 361.8 0.8 195.6 6.5 180.1 213.4 0.79 -0.60 

36 336.9 10.1 311.9 362.6 0.6 195.2 6.6 176.5 210.4 0.77 -0.43 

37 339.4 11.1 310.5 367.6 0.8 193.4 6.7 175.8 207.3 0.70 -0.59 

38 334.2 8.6 313.6 357.1 0.7 196.3 5.3 182.0 209.3 0.58 -0.64 

39 333.5 8.8 311.6 356.6 0.8 194.1 5.4 179.9 208.0 0.68 -0.67 

40 338.9 10.9 308.5 367.6 0.8 197.2 5.7 182.5 212.7 0.65 -0.55 

41 339.6 10.7 315.2 372.0 0.9 196.2 5.7 180.1 209.8 0.66 -0.63 

42 345.6 10.9 316.2 374.8 0.8 194.4 7.3 175.8 211.9 0.68 -0.64 

48 340.9 10.7 312.3 320.3 0.7 195.4 7.3 177.3 215.4 0.76 -0.60 

50 342.7 11.9 313.4 370.9 0.8 195.7 7.2 175.8 212.2 0.78 -0.58 

54 339.3 9.6 315.8 362.5 0.8 196.7 5.9 181.8 210.7 0.75 -0.69 

64 337.7 10.6 308.7 364.2 0.7 194.8 7.4 173.3 213.8 0.80 -0.50 

Pheno Corr implies phenotypic correlation.  

Overall, negative phenotypic (rg = -0.61**) was observed. The phenotypic 

correlation is depicted in Figure 3.9. The negative correlation values indicate that 

simultaneous improvement in both traits challenging, since improvement in one trait 

would result in a decrease in the other trait. On a family basis the phenotypic correlation 

ranged from -0.2 to -0.81 (Table 3.3). Weak correlation between the two traits implied 

that the families, 18, 36, 48 and 64 could be used for further genetic studies and there 

might be genes that act upon these traits independently.  
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Figure 3.9. Phenotypic correlation between protein and oil across environment using 

Pearson’s correlation coefficients (r). 

 

3.8.3 Multi-Environment Assessment 

The AMMI ANOVA revealed significant differences (P<0.001) among genotypes 

for both protein and oil, suggesting that the lines used were highly diverse and suitable 

for trait improvement (Table 3.4). Significant differences were also noticed among the 

four locations as well as between the two years, implying that each location and year had 

unique effect on genotype performance. The interaction between genotype and locations 

was also highly significant for both protein and oil, implying that genotype performances 

were specific to location (Table 3.4). Location explained the highest variation in seed 

protein content (38.17%) and in seed oil content (35.33%). This was followed by 

genotypes which accounted for 33.88% and 29.35% variation in the two traits 

respectively. The interaction term accounted for the least proportion of variation in 
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protein (13.2%) and seed oil (10.67%). The variation in seed protein content for year by 

location was much smaller (1.4%) compared to that of oil (12.92%), indicating that 

protein is more stable to seasonal variation than oil (Table 3.4).  

Table 3.4. AMMI analysis of variance for protein and oil across locations. 

               Protein                                  Oil  

Source         DF     SS       MS      R
2
      SS       MS R

2
 

Total 41887 92742   

 

40973 

  Genotypes 5485 31420    5.73*** 33.88 12026 2.19** 29.35 

Location 3 35398   11799.33**   38.17 14475    4825.00** 35.33 

Year/Location 4 1333   333.25** 1.44 5295 1323.75** 12.92 

Genotype*Location 16448 12245       0.74** 13.20 4370 0.27** 10.67 

IPCA1 5487 5296       0.97** 43.25 1913 0.35** 43.78 

IPCA2 5485 3558       0.65** 29.06 1311      0.24 30.00 

Residuals 5476 3391   0.62 

 

1146      0.21 

 
Error 19947 12346 

  

4806 

  *p<0.5, **p<0.01, ***p<0.001; R
2
 = Variation Explained (%) 

Result from the multiplicative part of the AMMI model revealed that both IPCAs 

for, seed protein and seed oil, were highly significant (P<0.001), indicating that they are 

helpful in explaining the residual multiplicative interaction (Table 3.4). Both interaction 

IPCAs together for protein and oil, accounted for a total of 72.31% and 73.78% of the 

interaction sum of square, respectively (Table 3.4). However, individually, the respective 

IPCA1 and IPCA2 explained 73.25% and 29.06% of the genotype by environment 

variation for protein, while, The IPCA1 and IPCA2 explained 73.78% and 30% of the 

GXE variation for oil, respectively (Table 3.4). The AMMI model selected 4 best high 

yielding and stable genotypes for each trait per location (Table 3.5). These genotypes are 

the ones that had stable and higher seed protein and seed oil contents across locations. 

These genotypes could be used as widely adapted genotypes with higher production of 
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protein and oil contents. Among the genotype for seed protein content genotype DS11-

25174 from family 25 had the highest seed protein content and was the most stable 

genotype across locations (Table 3.5).  

Table 3.5. AMMI selections of stable genotypes for protein and oil per location. 

  Indiana Nebraska Illinois Iowa 

AMMI selections Protein 
1 DS11-25174 DS11-25174 DS11-25174 DS11-25174 
2 DS11-50332 DS11-42133 DS11-50332 DS11-33026 
3 DS11-33051 DS11-41194 DS11-41194 DS11-42076 
4 DS11-42076 DS11-50332 DS11-42133 DS11-33198 

mean 34.32 34.92 32.67 33.14 
score    4.168   1.25     0.279    -5.696 

 
Oil 

1 DS11-24167 DS11-11215 DS11-11215 DS11-25025 
2 DS11-11230 DS11-29057 DS11-24141 DS11-29042 
3 DS11-11215 DS11-24141 DS11-29057 DS11-11139 
4 DS11-12038 DS11-24167 DS11-29042 DS11-25043 

Mean 19.27 19.63 20.64 19.2 
Score    1.992    1.844     0.928     -4.764 

 

3.8.4 Linkage Disequilibrium (LD) Analysis and Marker Distribution 

A subset of 4118 SNPs markers from the Illumina SoyNAM BeadChip SNP array 

with MAF >10% was used for LD analysis. The distribution of SNPs within each 

chromosome and across the 20 soybeans chromosomes was uneven (Figure 3.10). 

Chromosome 18 had the largest number of markers (290), while chromosome 9 harbored 

the lowest number of markers (148) (Figure 3.10).  



49 

 

  

4
9
 

 
Figure 3.10. Density and distribution of (SNPs) across the 20 chromosomes of the 

SoyNAM mapping populations 

 

Pattern of LD across the genome showed several haplotypes blocks anchoring 

SNPs that are in strong LD (Figure 3.11). The blocks in strong LD, are surrounded by 

genomic regions which are not in LD due to intensive recombination events. To find out 

the LD decay rate in SoyNAM population, r
2
 was plotted against the physical distance 

across genome and for each chromosome (Figure 3.12 and Figure 3.13). As expected, the 

r
2
 decreased as the distance between markers increased (Figure 3.12 and Figure 3.13). LD 

decay rate was different for each chromosome (Figure 3.13). The average LD decay 

across soybean genome was estimated between 2000-3000kb when the threshold r
2
 value 

was set to 0.2 (Figure 3.12). 
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Figure 3.11. TASSEL heat map for pairwise LD between marker sites of the SoyNAM 

mapping populations.  

LD measured using the r
2
 (above diagonal) D’ (below diagonal). Each cell represents the 

comparison of two pairs of marker sites with the color codes for the presence of 

significant LD. Colored bar code for the significance threshold levels in both diagonals is 

shown. 

  

 

Figure 3.12. Mean LD decay rate across the soybean genome.  

The LD decay rate was measured as r
2
 using all pairs of SNPs located across the soybean 

genome. The average LD decay across soybean genome was estimated between 2000-

3000kb when the threshold r
2
 value was set to 0.2.  
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Figure  3.13. Rate of Linkage disequilibrium decay across each of the 20 chromosomes. 

The LD decay rate is different for each chromosome.
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3.8.5 Population Structure 

Principal component analysis (PCA) based on the 4118 SNPs was conducted in 

TASSEL so as to analyze the structure of the SoyNAM population. We first used a scree 

plot to determine the number of PCs to be used in clustering of the SoyNAM population. 

In the scree plot, the proportion (eigenvalues) of an individual PC’s contribution to total 

variation was plotted against the number of PCs (Figure 3.14).   

 
Figure 3.14. Scree plot of the PCs (X-axis) and their contribution to variance (Y-axis).  

Arrow indicates the “elbow” point. 

 

The characteristic “elbow” point occurred at 4, and these first 4 PCs together 

accounted for 11% of total variation in the population. The 4 PCs portrayed in the scree 

plot indicated that they captured approximately the same amount of variation, signaling 

weak pattern of grouping within the population. Since each PC was approximately the 

same, we used the first 2 PCs which explained about 8% of total variation, defined three 

clusters (Figure 3.15). To account for the population stratification the NAM package, 
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which is based on MLM and EMMA algorithms, was used for association analysis of the 

two traits, protein and oil, in this study. 

 
Figure 3.15. Individual factor map PCAs plot for the SoyNAM mapping population.  

Plot shows moderate population structure. 

 

Stratification in the SoyNAM population might be due to growing the population 

in diverse environment under different growing environmental conditions, particularly 

due to photoperiod response. Photoperiod response is the major factor causing population 

stratification in soybean and it is well documented that soybean is photoperiod sensitive 

crop (Zhang, Singh et al. 2015).  

 

3.8.6 Genome-Wide Association Study 

The GWAS analyses were conducted for seed protein and seed oil contents, using 

NAM Package version (NAM 1.4.2) for each location as well as for the average data over 
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four locations. Using the average data over all 4 locations, a total of 49 SNPs distributed 

over 9 chromosomes were found to be highly associated (-logP> 4.92) with 13 QTL for 

seed protein (Figure 3.16).  

 
Figure 3.16. Manhattan plot for seed protein content.  

The horizontal dashed line represents significant threshold and the significant threshold 

was set based on bonferroni correction 0.05/#marker. In the Manhattan plot N indicates 

novel QTL and the asterisk (*) represents previously reported QTL.  

 

Using the Glyma.Wm82.a2 sequence browser and gene model Glyma.Wm82.a1.v1.1 at 

SoyBase we found that 6 out of the 13 QTL were novel and were located on chr11, chr13, 

chr14, chr15, and chr18. From the 49 SNPs associated with seed protein content, clusters 

of highly significant markers were present on chr9 and chr15 (Figure 3.16 and Figure 

3.17).  
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Figure 3.17. Manhattan plots show strong signal on chromosome 9 and 15. 

Significant markers tagging this region are all in strong LD as indicated by D’ and r
2
.  

 

Almost half (22 out of 49) of the SNPs had physical location with the 39.6-40.2 

Mbp genomic region on chr9 which were in complete LD as indicated by r
2
 and D’ 

(Figure 3.17 and Figure 3.18). Lu et al. 2012 and Eskandari et al. 2013 reported seed 

protein QTL within 35-41Mbp and 37.5-42 Mpb respectively of the chr9, which spans 

the same genomic region mapped in the current study. We however, refined this genomic 

region from 7.705 Mbp (Lu et al. 2012) and 4.851 Mbp (Eskandari et al. 2013) to 0.56 

Mbp (Figure 3.18).   
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Figure 3.18. Genomic region of the seed protein QTL on chromosome 9.  

Here we show the genomic region on chr9 that is believed to be associated with seed 

protein content. Panel a; show 7.705 and 4.851 Mbp genomic by Lu et al. 2012 and  

Eskandari et al. 2013 and the 0.56 Mbp genomic region identified in this study. In this 

study we were able to reduce the genomic region harboring QTL controlling seed protein 

content to a much narrow region; Panel b  and c show LD based on r
2
 and D’. 
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GWAS for oil content identified 12 QTL on 8 different chromosomes comprising 109 

SNPs (Figure 3.19).  

 

Figure 3.19. Manhattan plot for seed oil content.  

The horizontal dashed line represents significant threshold and the significant threshold 

was set based on bonferroni correction 0.05/#marker. In the Manhattan plot N indicates 

novel QTL and the asterisk (*) represents previously reported QTL. 

 

Of the total detected QTL for oil content, 6 QTL were novel and were located on 

chr2, chr11, chr15, chr18, and chr20. The remaining 6 QTL were known and previously 

reported by several different GWAS and bi-parental QTL studies. Among the QTL 

detected for oil content, two highly significant QTL were mapped on chr10 and 15. Of 

these, the QTL on chr10 comprised more than 90 SNPs (Figure 3.20).  
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Figure 3.20. Manhattan plots show strong signal on chromosome 10 and 15.  

Significant markers tagging this region are all in strong LD as indicated by D’ and r
2
.  

 

The SNPs identified for protein and oil explained the phenotypic variation in 

these two traits by 15% and 23%, respectively. Markers associated with seed protein and 

oil contents are presented in Table 3.6 and 3.7, respectively.  

A total of 158 SNPs were detected for both seed protein and seed oil contents. Out 

of these, 38 SNPs were protein specific, 98 were oil specific, and 11 located on chr6, 

chr15, and chr18 were shared between both (Table 3.8). Allele effects estimates for 

markers associated with both protein and oil were negative. This suggested that the allele 

responsible for increased seed protein had a negative effect on seed oil production. The 

SNPs associated with QTL that have opposite effect for both traits could be controlled by 

just one pleiotropic QTL, whose two alleles have inverse effects on both traits.  
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Table 3.6. SNP Markers associated with seed protein content QTL. 

 The first column of the below table present highly associated markers (based on a -logP>3.0) and are numbered consecutively. 

The second column presents the status of the markers whether a marker (s) is new or has been previously reported. The third 

column reports whether it is also associated with seed oil content.  

Protein QTL Status  
Associated 

trait 
Chromosome Marker Name 

Physical 

Position(bp) 
P-value 

Allele 

effect 
LOD 

score 

1 

known Oil 6 BARC1.01_Gm06_46292681_G_T 46,292,681 3.59E-12 -0.11 9.6 

known Oil 6 BARC1.01_Gm06_46386548_A_C 46,386,548 8.91E-12 0.11 9.2 

Known Oil 6 BARC1.01_Gm06_46978335_G_T 46,978,335 1.17E-05 -0.07 3.4 

2 known Oil 7 BARC1.01_Gm07_7832406_T_C 7,832,406 9.49E-18 -0.07 15.0 

3 
known Oil 8 BARC1.01_Gm08_45695835_C_T 45,695,835 5.42E-06 -0.06 3.7 

known Oil 8 BARC1.01_Gm08_45765326_A_G 45,765,326 4.02E-06 0.06 3.8 

4 

known Oil 9 BARC1.01_Gm09_39615772_A_G 39,615,772 8.20E-09 0.05 6.4 

known Oil 9 BARC1.01_Gm09_39747480_T_C 39,747,480 1.03E-05 0.05 3.5 

known Oil 9 BARC1.01_Gm09_39784505_T_C 39,784,505 5.42E-07 0.10 4.6 

known Oil 9 BARC1.01_Gm09_39785445_T_G 39,785,445 1.07E-06 0.09 4.4 

known Oil 9 BARC1.01_Gm09_40076300_A_G 40,076,300 7.39E-06 0.05 3.6 

known Oil 9 BARC1.01_Gm09_40076975_C_T 40,076,975 5.03E-07 -0.06 4.7 

known Oil 9 BARC1.01_Gm09_40077381_T_G 40,077,381 9.30E-06 0.05 3.5 

known Oil 9 BARC1.01_Gm09_40078893_C_A 40,078,893 1.21E-06 -0.05 4.3 

known Oil 9 BARC1.01_Gm09_40084116_C_T 40,084,116 8.80E-07 -0.06 4.4 

known Oil 9 BARC1.01_Gm09_40097214_A_G 40,097,214 1.03E-05 0.06 3.5 

known Oil 9 BARC1.01_Gm09_40099094_T_C 40,099,094 8.35E-06 0.06 3.5 
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known Oil 9 BARC1.01_Gm09_40100785_G_A 40,100,785 9.06E-07 -0.06 4.4 

known Oil 9 BARC1.01_Gm09_40102780_C_T 40,102,780 6.81E-07 -0.06 4.5 

known Oil 9 BARC1.01_Gm09_40103375_A_C 40,103,375 7.04E-06 0.06 3.6 

known Oil 9 BARC1.01_Gm09_40105073_A_G 40,105,073 1.03E-05 0.05 3.5 

known Oil 9 BARC1.01_Gm09_40105504_C_T 40,105,504 1.14E-06 -0.05 4.3 

known Oil 9 BARC1.01_Gm09_40105630_T_C 40,105,630 2.76E-06 0.07 4.0 

known Oil 9 BARC1.01_Gm09_40108960_G_A 40,108,960 4.29E-07 -0.05 4.7 

known Oil 9 BARC1.01_Gm09_40158696_G_A 40,158,696 3.74E-06 -0.04 3.9 

known Oil 9  BARC1.01_Gm09_40158739_G_T 40,158,739 5.08E-06 -0.04 3.7 

known Oil 9 BARC1.01_Gm09_40162228_C_T 40,162,228 5.89E-06 -0.04 3.7 

known Oil 9 BARC1.01_Gm09_40163316_G_T 40,163,316 2.85E-06 -0.05 4.0 

5 New 
 

11  BARC1.01_Gm11_3388809_T_C 3,388,809 3.36E-06 0.03 3.9 

6 New Oil 13  BARC1.01_Gm13_5435217_A_G 5,435,217 9.44E-06 0.07 3.5 

7 
New Oil 14 BARC1.01_Gm14_35353835_C_T 35,353,835 4.22E-07 -0.09 4.7 

New Oil 14 BARC1.01_Gm14_37947340_T_C 37,947,340 4.93E-06 0.08 3.7 

8 New Oil 15  BARC1.01_Gm15_1496570_T_G 1,496,570 1.40E-08 0.02 6.1 

9 New Oil 15 BARC1.01_Gm15_32915477_C_A 32,915,477 3.65E-09 0.09 6.7 

10 

known Oil 15 BARC1.01_Gm15_4170022_A_C 4,170,022 1.35E-15 0.06 12.9 

known Oil 15 BARC1.01_Gm15_4195169_A_G 4,195,169 4.35E-16 0.07 13.4 

known Oil 15 BARC1.01_Gm15_4202270_G_A 4,202,270 7.00E-17 -0.07 14.1 

known Oil 15 BARC1.01_Gm15_4612190_A_G 4,612,190 4.35E-13 0.05 10.5 

known Oil 15 BARC1.01_Gm15_4641448_G_A 4,641,448 1.53E-13 -0.05 10.9 
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known Oil 15 BARC1.01_Gm15_5428427_C_A 5,428,427 6.56E-07 0.00 4.6 

known Oil 15 BARC1.01_Gm15_5446785_A_C 5,446,785 1.04E-05 0.00 3.4 

known Oil 15  BARC1.01_Gm15_40030024_G_T 40,030,024 9.13E-09 0.08 6.3 

known Oil 15   BARC1.01_Gm15_40823560_G_A 40,823,560 2.98E-09 0.08 6.8 

11 New Oil 18   BARC1.01_Gm18_1685024_A_G 1,685,024 4.94E-15 -0.10 12.3 

12 
known 

 
18  BARC1.01_Gm18_2102506_C_T 2,102,506 1.32E-11 0.08 9.0 

known Oil 18  BARC1.01_Gm18_2396395_C_T 2,396,395 1.56E-07 -0.05 5.1 

13 

known Oil 18   BARC1.01_Gm18_59588751_T_C 59,588,751 1.21E-05 -0.04 3.4 

known Oil 18   BARC1.01_Gm18_59757800_G_T 59,757,800 5.63E-07 0.02 4.6 

known Oil 18   BARC1.01_Gm18_60631055_A_G 60,631,055 6.47E-06 0.05 3.6 

 

Table 3.7. SNP Markers associated with seed oil content QTL.  

The first column of the below table present highly associated markers (based on a -logP>3.0) and are numbered consecutively. 

The second column presents the status of the markers whether a marker (s) is new or has been previously reported. The third 

column reports whether it is also associated with seed protein content. 

Oil QTL Status  
Associated 

trait 
Chromosome Marker Name 

Physical 

Position 

(bp) 
P-value 

Allele 

effect 
LOD 

score 

1 New Protein 2 BARC1.01_Gm02_6011261_T_C 6,011,261 5.79E-06 -0.072 3.7 

2 Known Protein 6  BARC1.01_Gm06_46386548_A_C 46,386,548 7.02E-06 -0.048 3.6 

3 Known   9  BARC1.01_Gm09_7163703_A_C 7,163,703 5.76E-06 0.040 3.7 

4 
Known 

 
10  BARC1.01_Gm10_43599999_T_G 43,599,999 1.37E-08 0.009 6.1 

Known 
 

10 BARC1.01_Gm10_43603279_C_T 43,603,279 4.76E-09 -0.017 6.6 
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Known 
 

10 BARC1.01_Gm10_43606482_C_T 43,606,482 8.22E-09 0.010 6.3 

Known 
 

10 BARC1.01_Gm10_43608539_A_G 43,608,539 4.29E-10 0.017 7.6 

Known 
 

10 BARC1.01_Gm10_43613941_A_G 43,613,941 4.91E-09 0.006 6.6 

Known 
 

10 BARC1.01_Gm10_43621826_T_C 43,621,826 3.80E-09 0.000 6.7 

Known 
 

10 BARC1.01_Gm10_43630574_C_T 43,630,574 6.91E-09 -0.023 6.4 

Known 
 

10 BARC1.01_Gm10_43638272_A_G 43,638,272 4.09E-08 0.005 5.7 

Known 
 

10 BARC1.01_Gm10_43647982_C_T 43,647,982 1.55E-07 -0.010 5.1 

Known 
 

10 BARC1.01_Gm10_43658016_T_C 43,658,016 2.10E-08 0.004 6.0 

Known 
 

10 BARC1.01_Gm10_43662893_T_G 43,662,893 5.74E-08 -0.004 5.6 

Known 
 

10 BARC1.01_Gm10_43667560_G_T 43,667,560 2.18E-07 -0.014 5.0 

Known 
 

10 BARC1.01_Gm10_43671648_G_A 43,671,648 2.10E-08 -0.022 6.0 

Known 
 

10 BARC1.01_Gm10_43674304_T_C 43,674,304 6.12E-10 0.023 7.4 

Known 
 

10 BARC1.01_Gm10_43676955_T_C 43,676,955 1.03E-05 -0.019 3.5 

Known 
 

10 BARC1.01_Gm10_43679989_A_G 43,679,989 9.91E-06 -0.013 3.5 

Known 
 

10 BARC1.01_Gm10_43682273_C_A 43,682,273 4.54E-06 0.008 3.8 

Known 
 

10 BARC1.01_Gm10_43684506_C_T 43,684,506 6.01E-06 0.011 3.7 

Known 
 

10 BARC1.01_Gm10_43689676_A_C 43,689,676 6.13E-06 -0.011 3.7 

Known 
 

10 BARC1.01_Gm10_43692191_G_A 43,692,191 3.10E-08 -0.016 5.8 

Known 
 

10 BARC1.01_Gm10_43694296_A_G 43,694,296 3.10E-09 0.028 6.8 

Known 
 

10 BARC1.01_Gm10_43697533_C_T 43,697,533 7.99E-10 -0.031 7.3 

Known 
 

10 BARC1.01_Gm10_43714296_C_T 43,714,296 8.80E-10 -0.024 7.3 

Known 
 

10 BARC1.01_Gm10_43716784_A_G 43,716,784 1.94E-10 0.025 7.9 



 

  

6
3
 

Known 
 

10 BARC1.01_Gm10_43722532_G_A 43,722,532 9.86E-10 -0.030 7.2 

Known 
 

10 BARC1.01_Gm10_43725982_T_C 43,725,982 4.56E-10 0.016 7.5 

Known 
 

10 BARC1.01_Gm10_43729702_G_A 43,729,702 3.43E-10 -0.034 7.7 

Known 
 

10 BARC1.01_Gm10_43735348_A_C 43,735,348 5.09E-11 0.023 8.5 

Known 
 

10 BARC1.01_Gm10_43743280_G_A 43,743,280 1.94E-09 -0.024 6.9 

Known 
 

10 BARC1.01_Gm10_43755306_T_G 43,755,306 3.90E-09 0.023 6.7 

Known 
 

10 BARC1.01_Gm10_43757437_G_A 43,757,437 1.28E-08 -0.025 6.2 

Known 
 

10 BARC1.01_Gm10_43762210_C_T 43,762,210 2.19E-09 -0.038 6.9 

Known 
 

10 BARC1.01_Gm10_43767529_A_G 43,767,529 3.74E-10 0.036 7.6 

Known 
 

10 BARC1.01_Gm10_43773903_T_G 43,773,903 7.64E-10 0.028 7.3 

Known 
 

10 BARC1.01_Gm10_43776707_C_T 43,776,707 2.77E-10 -0.055 7.8 

Known 
 

10 BARC1.01_Gm10_43779401_G_A 43,779,401 3.09E-10 -0.055 7.7 

Known 
 

10 BARC1.01_Gm10_43783537_T_C 43,783,537 1.23E-10 0.045 8.1 

Known 
 

10 BARC1.01_Gm10_43790810_T_C 43,790,810 8.83E-07 0.015 4.4 

Known 
 

10 BARC1.01_Gm10_43793452_A_G 43,793,452 2.75E-07 0.020 4.9 

Known 
 

10 BARC1.01_Gm10_43799226_T_C 43,799,226 5.42E-07 0.031 4.6 

Known 
 

10 BARC1.01_Gm10_43808630_G_A 43,808,630 8.27E-12 -0.097 9.2 

Known 
 

10 BARC1.01_Gm10_43815883_G_A 43,815,883 3.63E-08 -0.059 5.7 

Known 
 

10 BARC1.01_Gm10_43818041_C_T 43,818,041 8.87E-13 -0.101 10.2 

Known 
 

10 BARC1.01_Gm10_43821942_T_C 43,821,942 2.77E-09 0.058 6.8 

Known 
 

10 BARC1.01_Gm10_43825392_A_G 43,825,392 3.32E-08 0.044 5.8 

Known 
 

10 BARC1.01_Gm10_43828130_A_C 43,828,130 2.52E-12 0.089 9.7 
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Known 
 

10 BARC1.01_Gm10_43833979_A_G 43,833,979 1.00E-07 0.050 5.3 

Known 
 

10 BARC1.01_Gm10_43838442_C_A 43,838,442 1.10E-09 -0.070 7.2 

Known 
 

10 BARC1.01_Gm10_43841675_A_G 43,841,675 4.42E-11 0.083 8.5 

Known 
 

10 BARC1.01_Gm10_43856969_C_T 43,856,969 2.69E-11 -0.079 8.7 

Known 
 

10 BARC1.01_Gm10_43859917_G_A 43,859,917 9.91E-13 -0.092 10.1 

Known 
 

10 BARC1.01_Gm10_43863467_A_G 43,863,467 2.34E-13 0.094 10.7 

Known 
 

10 BARC1.01_Gm10_43868983_C_T 43,868,983 2.40E-09 -0.057 6.9 

Known 
 

10 BARC1.01_Gm10_43872139_C_T 43,872,139 1.01E-11 -0.077 9.1 

Known 
 

10 BARC1.01_Gm10_43880346_C_T 43,880,346 2.28E-14 -0.103 11.7 

Known 
 

10 BARC1.01_Gm10_43882385_G_A 43,882,385 5.94E-11 -0.069 8.4 

Known 
 

10 BARC1.01_Gm10_43885571_C_T 43,885,571 1.30E-13 -0.085 11.0 

Known 
 

10 BARC1.01_Gm10_43890845_C_T 43,890,845 9.89E-10 -0.056 7.2 

Known 
 

10 BARC1.01_Gm10_43903647_C_T 43,903,647 3.06E-11 -0.059 8.7 

Known 
 

10 BARC1.01_Gm10_43908174_G_A 43,908,174 8.65E-13 -0.085 10.2 

Known 
 

10 BARC1.01_Gm10_43913576_T_C 43,913,576 6.20E-14 0.069 11.3 

Known 
 

10 BARC1.01_Gm10_43919402_G_T 43,919,402 1.48E-17 -0.097 14.8 

Known 
 

10 BARC1.01_Gm10_43921575_T_C 43,921,575 4.25E-16 0.079 13.4 

Known 
 

10  BARC1.01_Gm10_43929636_A_G 43,929,636 6.11E-17 0.075 14.2 

Known 
 

10  BARC1.01_Gm10_43934881_G_A 43,934,881 4.61E-18 -0.092 15.3 

Known 
 

10  BARC1.01_Gm10_44114545_T_C 44,114,545 3.54E-23 0.074 20.3 

Known 
 

10  BARC1.01_Gm10_44118289_G_T 44,118,289 5.39E-22 -0.080 19.2 

Known 
 

10  BARC1.01_Gm10_44120764_T_C 44,120,764 1.01E-19 0.064 16.9 
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Known 
 

10  BARC1.01_Gm10_44124696_G_A 44,124,696 3.57E-07 0.088 4.8 

Known 
 

10  BARC1.01_Gm10_44146333_A_C 44,146,333 1.07E-19 0.050 16.9 

Known 
 

10  BARC1.01_Gm10_44148529_C_T 44,148,529 5.89E-23 -0.088 20.1 

Known 
 

10  BARC1.01_Gm10_44151052_A_G 44,151,052 2.85E-24 0.088 21.4 

Known 
 

10  BARC1.01_Gm10_44155722_G_A 44,155,722 5.91E-22 -0.086 19.1 

Known 
 

10  BARC1.01_Gm10_44158333_C_A 44,158,333 1.32E-06 0.084 4.3 

Known 
 

10  BARC1.01_Gm10_44161160_C_T 44,161,160 2.78E-06 0.080 4.0 

Known 
 

10  BARC1.01_Gm10_44163504_G_A 44,163,504 1.83E-22 -0.083 19.6 

Known 
 

10  BARC1.01_Gm10_44166650_T_G 44,166,650 3.07E-22 0.079 19.4 

Known 
 

10  BARC1.01_Gm10_44169310_T_C 44,169,310 8.62E-22 0.071 19.0 

Known 
 

10  BARC1.01_Gm10_44172388_A_G 44,172,388 1.63E-23 0.091 20.7 

Known 
 

10  BARC1.01_Gm10_44176284_T_C 44,176,284 3.02E-23 0.082 20.4 

Known 
 

10  BARC1.01_Gm10_44182198_C_A 44,182,198 4.45E-23 -0.093 20.2 

Known 
 

10 BARC1.01_Gm10_44185202_T_C 44,185,202 3.85E-24 0.085 21.3 

Known 
 

10 BARC1.01_Gm10_44187665_C_A 44,187,665 4.00E-24 -0.101 21.3 

Known 
 

10 BARC1.01_Gm10_44189871_C_A 44,189,871 6.01E-24 -0.098 21.1 

Known 
 

10 BARC1.01_Gm10_44196956_T_C 44,196,956 1.44E-24 0.096 21.7 

Known 
 

10 BARC1.01_Gm10_44199135_T_C 44,199,135 1.39E-24 0.096 21.7 

Known 
 

10 BARC1.01_Gm10_44213424_A_C 44,213,424 7.51E-25 0.098 22.0 

Known 
 

10 BARC1.01_Gm10_44227168_A_C 44,227,168 1.12E-22 0.088 19.8 

Known 
 

10 BARC1.01_Gm10_44287415_G_A 44,287,415 2.82E-07 0.083 4.9 

Known 
 

10 BARC1.01_Gm10_44500915_T_C 44,500,915 8.09E-34 0.066 30.8 
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Known   10 BARC1.01_Gm10_44630777_C_A 44,630,777 4.58E-37 -0.065 34.0 

5 Known Protein 10 BARC1.01_Gm10_47987331_C_T 47,987,331 1.08E-05 -0.005 3.4 

6 New Protein 11 BARC1.01_Gm11_18651414_A_G 18,651,414 4.07E-06 0.027 3.8 

7 New   15 BARC1.01_Gm15_1496570_T_G 1,496,570 2.48E-06 -0.009 4.0 

8 

Known Protein 15 BARC1.01_Gm15_4170022_A_C 4,170,022 6.77E-15 -0.041 12.2 

Known Protein 15 BARC1.01_Gm15_4195169_A_G 4,195,169 3.30E-14 -0.041 11.5 

Known Protein 15 BARC1.01_Gm15_4202270_G_A 4,202,270 6.16E-15 0.039 12.3 

Known Protein 15 BARC1.01_Gm15_4612190_A_G 4,612,190 8.65E-10 -0.024 7.3 

Known Protein 15 BARC1.01_Gm15_4641448_G_A 4,641,448 6.79E-10 0.021 7.4 

Known Protein 15 BARC1.01_Gm15_5428427_C_A 5,428,427 8.33E-07 0.025 4.5 

Known Protein 15 BARC1.01_Gm15_5446785_A_C 5,446,785 1.01E-05 -0.024 3.5 

9 New Protein 18 BARC1.01_Gm18_1685024_A_G 1,685,024 3.71E-08 0.045 5.7 

10 New Protein 18 BARC1.01_Gm18_2102506_C_T 2,102,506 7.23E-07 -0.034 4.5 

11 
Known 

 
20 BARC1.01_Gm20_42993516_T_C 42,993,516 1.00E-12 0.049 10.1 

Known   20 BARC1.01_Gm20_42999237_C_A 42,999,237 1.59E-17 -0.062 14.8 

12 New   20 BARC1.01_Gm20_46120144_C_T 46,120,144 2.68E-06 0.018 4.0 

 

Table 3.8. SNP Markers shared between seed protein and oil contents QTL. 

Marker Name Chromosome 
Physical 

Position(bp) 

Seed Protein Content Seed Oil Content 

P-value 
Allele effect 

(%) 
LOD 

score 
P-value 

Allele effect 

(%) 
LOD 

score 
BARC1.01_Gm06_46386548_A_C 6 46386548 7.02E-06 -0.048 3.6 8.91E-12 0.109 9.2 

BARC1.01_Gm15_1496570_T_G 15 1496570 2.48E-06 -0.009 4.0 1.40E-08 0.015 6.1 
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BARC1.01_Gm15_4170022_A_C 15 4170022 6.77E-15 -0.041 12.2 1.35E-15 0.060 12.9 

BARC1.01_Gm15_4195169_A_G 15 4195169 3.3E-14 -0.041 11.5 4.35E-16 0.069 13.4 

BARC1.01_Gm15_4202270_G_A 15 4202270 6.16E-15 0.039 12.2 7.00E-17 -0.071 14.1 

BARC1.01_Gm15_4612190_A_G 15 4612190 8.65E-10 -0.024 7.3 4.35E-13 0.045 10.5 

BARC1.01_Gm15_4641448_G_A 15 4641448 6.79E-10 0.021 7.4 1.53E-13 -0.046 10.9 

BARC1.01_Gm15_5428427_C_A 15 5428427 8.33E-07 0.025 4.5 6.56E-07 0.000 4.6 

BARC1.01_Gm15_5446785_A_C 15 5446785 1.01E-05 -0.024 3.5 1.04E-05 -0.002 3.4 

BARC1.01_Gm18_1685024_A_G 18 1685024 3.71E-08 0.045 5.7 4.94E-15 -0.100 12.3 

BARC1.01_Gm18_2102506_C_T 18 2102506 7.23E-07 -0.034 4.5 1.32E-11 0.082 9.0 

 

GWAS analysis was also conducted for each environment to find the stability of the QTL across locations. Genome scan 

using NAM GWAS identified variable number of SNPs for both traits in each of the four locations (Table 3.9). Variability, in 

the number of detected QTL for each location and trait suggested that most of these QTL were location specific. Most of these 

QTL were identified in two or three locations but not all four locations. These results verified most of the seed protein and seed 

oil contents QTL reported at SoyBase. 

Table  3.9. SNPs identified for each location for controlling % seed protein and oil contents. 

Location Trait Number of SNPs indentified Chromosome Phenotypic variance explained (%) 

Iowa 
Protein 17 6,7,10,13,15 6 

Oil 83 10,11,13,15,20 11 

Illinois 
Protein 27 6,7,8,9,15,18 9 

Oil 102 2,6,7,9,10,15,18,20 21 
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Indiana 
Protein 26 6,7,8,9,10,14,15,18 13 

Oil 50 6,8,10,15,18,20 14 

Nebraska 
Protein 19 5,6,7,14,15,18 7 

Oil 100 6,10,15,16,18,20 16 

 

The GWAS scan conducted for each environment identified six SNPs for seed protein and thirty three SNPs for seed oil 

that were consistently identified in all the four locations and the combined data across locations (Table 3.10). The rest SNPs 

associated with genomic regions controlling seed protein and seed oil were expressed in some but not in all locations.  

 

Table 3.10. SNP Markers associated with both seed protein and oil contents QTL that were consistently identified in all the four 

locations and the combined data across locations. 

Trait Illinois Iowa Indiana Nebraska 

BARC1.01_Gm06_46292681_G_T BARC1.01_Gm06_46292681_G_T BARC1.01_Gm06_46292681_G_T BARC1.01_Gm06_46292681_G_T 

Protein 

BARC1.01_Gm06_46386548_A_C BARC1.01_Gm06_46386548_A_C BARC1.01_Gm06_46386548_A_C BARC1.01_Gm06_46386548_A_C 

BARC1.01_Gm07_7832406_T_C BARC1.01_Gm07_7832406_T_C BARC1.01_Gm07_7832406_T_C BARC1.01_Gm07_7832406_T_C 

BARC1.01_Gm15_4195169_A_G BARC1.01_Gm15_4195169_A_G BARC1.01_Gm15_4195169_A_G BARC1.01_Gm15_4195169_A_G 

BARC1.01_Gm15_4202270_G_A BARC1.01_Gm15_4202270_G_A BARC1.01_Gm15_4202270_G_A BARC1.01_Gm15_4202270_G_A 

Oil 

BARC1.01_Gm10_43818041_C_T BARC1.01_Gm10_43818041_C_T BARC1.01_Gm10_43818041_C_T BARC1.01_Gm10_43818041_C_T 

BARC1.01_Gm10_43828130_A_C BARC1.01_Gm10_43828130_A_C BARC1.01_Gm10_43828130_A_C BARC1.01_Gm10_43828130_A_C 

BARC1.01_Gm10_43841675_A_G BARC1.01_Gm10_43841675_A_G BARC1.01_Gm10_43841675_A_G BARC1.01_Gm10_43841675_A_G 

BARC1.01_Gm10_43859917_G_A BARC1.01_Gm10_43859917_G_A BARC1.01_Gm10_43859917_G_A BARC1.01_Gm10_43859917_G_A 
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BARC1.01_Gm10_43863467_A_G BARC1.01_Gm10_43863467_A_G BARC1.01_Gm10_43863467_A_G BARC1.01_Gm10_43863467_A_G 

BARC1.01_Gm10_43880346_C_T BARC1.01_Gm10_43880346_C_T BARC1.01_Gm10_43880346_C_T BARC1.01_Gm10_43880346_C_T 

BARC1.01_Gm10_43885571_C_T BARC1.01_Gm10_43885571_C_T BARC1.01_Gm10_43885571_C_T BARC1.01_Gm10_43885571_C_T 

BARC1.01_Gm10_43903647_C_T BARC1.01_Gm10_43903647_C_T BARC1.01_Gm10_43903647_C_T BARC1.01_Gm10_43903647_C_T 

BARC1.01_Gm10_43908174_G_A BARC1.01_Gm10_43908174_G_A BARC1.01_Gm10_43908174_G_A BARC1.01_Gm10_43908174_G_A 

BARC1.01_Gm10_43913576_T_C BARC1.01_Gm10_43913576_T_C BARC1.01_Gm10_43913576_T_C BARC1.01_Gm10_43913576_T_C 

BARC1.01_Gm10_43919402_G_T BARC1.01_Gm10_43919402_G_T BARC1.01_Gm10_43919402_G_T BARC1.01_Gm10_43919402_G_T 

BARC1.01_Gm10_43921575_T_C BARC1.01_Gm10_43921575_T_C BARC1.01_Gm10_43921575_T_C BARC1.01_Gm10_43921575_T_C 

BARC1.01_Gm10_43929636_A_G BARC1.01_Gm10_43929636_A_G BARC1.01_Gm10_43929636_A_G BARC1.01_Gm10_43929636_A_G 

BARC1.01_Gm10_43934881_G_A BARC1.01_Gm10_43934881_G_A BARC1.01_Gm10_43934881_G_A BARC1.01_Gm10_43934881_G_A 

BARC1.01_Gm10_44114545_T_C BARC1.01_Gm10_44114545_T_C BARC1.01_Gm10_44114545_T_C BARC1.01_Gm10_44114545_T_C 

BARC1.01_Gm10_44118289_G_T BARC1.01_Gm10_44118289_G_T BARC1.01_Gm10_44118289_G_T BARC1.01_Gm10_44118289_G_T 

BARC1.01_Gm10_44120764_T_C BARC1.01_Gm10_44120764_T_C BARC1.01_Gm10_44120764_T_C BARC1.01_Gm10_44120764_T_C 

BARC1.01_Gm10_44146333_A_C BARC1.01_Gm10_44146333_A_C BARC1.01_Gm10_44146333_A_C BARC1.01_Gm10_44146333_A_C 

BARC1.01_Gm10_44148529_C_T BARC1.01_Gm10_44148529_C_T BARC1.01_Gm10_44148529_C_T BARC1.01_Gm10_44148529_C_T 

BARC1.01_Gm10_44151052_A_G BARC1.01_Gm10_44151052_A_G BARC1.01_Gm10_44151052_A_G BARC1.01_Gm10_44151052_A_G 

BARC1.01_Gm10_44155722_G_A BARC1.01_Gm10_44155722_G_A BARC1.01_Gm10_44155722_G_A BARC1.01_Gm10_44155722_G_A 

BARC1.01_Gm10_44163504_G_A BARC1.01_Gm10_44163504_G_A BARC1.01_Gm10_44163504_G_A BARC1.01_Gm10_44163504_G_A 

BARC1.01_Gm10_44166650_T_G BARC1.01_Gm10_44166650_T_G BARC1.01_Gm10_44166650_T_G BARC1.01_Gm10_44166650_T_G 

BARC1.01_Gm10_44169310_T_C BARC1.01_Gm10_44169310_T_C BARC1.01_Gm10_44169310_T_C BARC1.01_Gm10_44169310_T_C 



 

  

7
0
 

BARC1.01_Gm10_44172388_A_G BARC1.01_Gm10_44172388_A_G BARC1.01_Gm10_44172388_A_G BARC1.01_Gm10_44172388_A_G 

BARC1.01_Gm10_44176284_T_C BARC1.01_Gm10_44176284_T_C BARC1.01_Gm10_44176284_T_C BARC1.01_Gm10_44176284_T_C 

BARC1.01_Gm10_44182198_C_A BARC1.01_Gm10_44182198_C_A BARC1.01_Gm10_44182198_C_A BARC1.01_Gm10_44182198_C_A 

BARC1.01_Gm10_44185202_T_C BARC1.01_Gm10_44185202_T_C BARC1.01_Gm10_44185202_T_C BARC1.01_Gm10_44185202_T_C 

BARC1.01_Gm10_44187665_C_A BARC1.01_Gm10_44187665_C_A BARC1.01_Gm10_44187665_C_A BARC1.01_Gm10_44187665_C_A 

BARC1.01_Gm10_44189871_C_A BARC1.01_Gm10_44189871_C_A BARC1.01_Gm10_44189871_C_A BARC1.01_Gm10_44189871_C_A 

BARC1.01_Gm10_44196956_T_C BARC1.01_Gm10_44196956_T_C BARC1.01_Gm10_44196956_T_C BARC1.01_Gm10_44196956_T_C 

BARC1.01_Gm10_44199135_T_C BARC1.01_Gm10_44199135_T_C BARC1.01_Gm10_44199135_T_C BARC1.01_Gm10_44199135_T_C 

BARC1.01_Gm10_44213424_A_C BARC1.01_Gm10_44213424_A_C BARC1.01_Gm10_44213424_A_C BARC1.01_Gm10_44213424_A_C 
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The results of our GWAS analysis using the NAM method confirmed most of the 

QTL that were reported by previous studies for the two traits (Diers, Keim et al. 1992; 

Shoemaker and Specht 1995; Csanadi, Vollmann et al. 2001; Zeng, Chen et al. 2014).  

 

3.8.7 Discussion 

Soybean Nested Association Mapping (SoyNAM) is the best approach for 

dissecting complex trait since it combines high power in detecting rare QTL from linkage 

and high resolution from association mapping. The diverse 40 elite parents used to 

develop SoyNAM mapping population represent an excellent source of genetic variation 

for the application of GWAS. 

3.8.8  Phenotypic Differences, Heritability, and Correlation 

The average protein and oil concentration in this study were 338 Kg
-1

 and 197 Kg
-1 

which is a little lower than the typical average protein and oil concentration 400 Kg
-1

, and 

200 Kg
-1

, respectively  (Panthee, Pantalone et al. 2005),  (Table 3.2).  

 

3.8.9 Multi-Environment Analysis 

The multi environment analysis of the seed protein and seed oil contents showed 

significant variation (P<0.001) among genotype across locations, which is consistent with 

most previous studies. Sudarić et al. (2006) performed AMMI analysis for seed protein 

and seed oil contents using combined data from 15 environments and found a significant 

GEI. These authors found that locations accounted for large proportion of the total 

variance for protein content. Lee et al. (2003) conducted GE interaction analysis for 

isoflvones in soybean and found that environment and GE had the highest effects on 
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genotype performance and accounted for most of the variation in isoflovens contents. Zhe 

et al. (2010) reported significant GE interaction for seed composition and other 

agronomic traits. Most studies attributed the GE interaction for seed composition, 

particularly for seed protein and seed oil, to the effects of fluctuating temperature. 

Research conducted by Schnebly and Fehr et al. (1993) on soybeans seed fatty acid 

concentration indicated that higher environmental temperature affects fatty acid 

composition. Gurmu et al. (2009) reported positive correlation between higher 

temperature and % oil. Results from a study conducted by Kumar et al. (2006) on seven 

Indian cultivars reported significant GE interaction for genotypes, and genotype by 

location interaction for seed protein and seed oil contents. These results largely agree 

with the findings of the present study.   

Heritability for protein and oil, estimated based on line mean basis, were 85% and 

84%, respectively which is in range reported by other studies. Lee et al. (1996) estimated 

heritability for seed protein contents ranging from 0.57 to 0.91 and for seed oil contents 

ranging from 0.51 to 0.93. The observed high heritability in this study suggests that 

selection for these traits would result in high genetic gain, and that means families with 

high heritability would play key role in increasing protein and oil concentration. 

Phenotypic correlation between protein and oil was -0.61. Past studies also found 

protein and oil to be negatively correlated (Hwang, Song et al. 2014; Bandillo, Jarquin et 

al. 2015). 
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3.8.10  Linkage Disequilibrium 

LD level mostly indicated by r
2
 is an important factor to consider while conducting 

GWAS. It plays key role in association analysis because the extent of LD can help 

determine the density of markers required for effective GWAS. In our study, using the 

SoyNAM population, the extent of LD declined to 0.2 within 2000-3000kb implying 

moderate LD decay rate (Figure 3.12). The extent of LD varies between different 

soybean mapping populations due to factors such as mating system, selection, 

domestication, funding event, genetic diversity, and population stratification (Hyten, 

Choi et al. 2007). LD decay rate in our study falls in the range of LD decay rates reported 

by other studies. LD decay rate in the study conducted by Hwang et al. (2014) for 

soybean seed protein and oil contents declined to 0.2 within 6000-8000kb much slower 

than the LD decay rate in our study. LD decay rate in the study conducted by Voung ea al. 

(2015) for soybean cyst nematode declined to 0.2 within 250kb, faster than the rate 

reported in the present study. LD decay rate in our study was in strong agreement with 

the LD decay rate reported by Zhang ea al. (2015) for sudden death syndrome trait in 

soybean. The moderate LD decay rate in the SoyNAM population implies that the 

population is genetically diversity and the number of SNPs (4118) used in this study are 

dense enough to capture the genetic variation in the SoyNAM population.  

 

3.8.11  Seed Protein and Oil Contents QTL 

The main objective of this analysis was to identify QTL controlling seed protein 

and oil contents in the SoyNAM population using GWAS. A number of seed protein and 

oil QTL have been reported at various positions across the soybean genome. Most of the 
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previously reported soybean seed protein and oil content QTL were identified via linkage 

analysis and therefore, their precise genomic regions could not be determined. The recent 

advances in soybean genetic map (release of genetic map version 4.0) made it possible to 

narrow the genomic region of the previously reported seed protein and oil QTL.  

Using information from the genetic map version 4 at SoyBase, we were able to 

compare the physical locations of the previously reported QTL with positions of the 

markers identified in this study. Consequently, we aligned the 13 genomic regions 

associated with seed protein content identified in this study with previously reported QTL 

positions. Based on the alignment, 7 of the13 genomic regions were previously known 

and the remaining 6 QTL were novel (Figure 3.16). Out of the 12 seed oil content QTL, 6 

were previously reported and the rest were novel (Figure 3.19). We were also able to 

detect a well known QTL for seed protein content on chromosome 15 which were 

identified in almost all previously conducted GWAS and QTL mapping studies (Hwang, 

Song et al. 2014; Vaughn, Nelson et al. 2014). Surprisingly, we did not detect the major 

seed protein QTL known to be located on chromosome 20 (Diers, Keim et al. 1992; 

Brummer, Graef et al. 1997; Chung, Babka et al. 2003). One possible reason could be 

that the parents used for creating the SoyNAM population may not carry the rare allele 

controlling the seed protein content on chromosome 20.  

 

3.8.12 Refining the Candidate Region for Protein on Chromosome 9 

 SoyNAM method which takes advantage of both QTL and association mapping, 

uses the power from QTL mapping and resolution from GWAS, generates more precise 

QTL position. Using this approach we identified 7 known and 6 novel QTL for seed 
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protein content and 6 known and 6 new QTL for seed oil content with high level of 

significance. From the known QTL, a QTL located on chromosome 9 was identified to be 

associated with seed protein content and co-located with previously reported QTL 

responsible for significant pleiotropic effects on protein and oil (Eskandari, Cober et al. 

2013; Lu, Wen et al. 2013).  

Previously, Lu et al. (2012) mapped this QTL within 35 Mbp to 41.7 Mbp region 

(Figure 3.18a).  Another study conducted by Eskandari et al. (2013) reported the same 

QTL within 37 Mbp to 42 Mbp region (Figure 3.18a). In the present study we narrowed 

down this genomic region to 0.56 Mbp (39.6 Mbp to 40.2 Mbp) (Figure 3.18a). The QTL 

identified in this study for seed protein content comprised large clusters of markers all in 

one large LD block as determined by r
2 

and D’(Figure 3.18b and 3.18c). We believe that 

the QTL identified in all three studies is the same QTL that controls seed protein content 

with significant effect on seed oil content. The genomic regions defined by Eskandari et 

al. (2013) and Lu et al. (2012), contained several putative model genes. Our refined 

genomic region contained only four candidate genes: Glyma09g31700, Glyma09g31730, 

Glyma09g31800, and Glyma09g31870 (Figure 3.18a). One of these genes may likely be 

the gene that control soybean seed protein content. The QTL identified in this study is 

believed to have one allele associated with higher seed protein and higher seed oil content 

and the alternative allele with lower seed protein and lower seed oil content (Hwang, 

Song et al. 2014). This might be an interesting QTL to those breeding for seed 

composition (Hwang, Song et al. 2014). 
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3.8.13 Conclusion 

The main objective of this study was to identify QTL controlling seed protein and 

seed oil contents in SoyNAM population using GWAS. SoyNAM has been the biggest 

mapping population ever created in the history of soybean breeding program. The aim of 

developing such big mapping population was to increase the number of recombination 

events and resolution to identify rare QTL associated with seed protein and oil contents. 

Using 4118 markers and 5240 RILs, we were able to identify many previously reported 

and novel QTL for both seed protein and oil contents. We further refined the previously 

reported genomic region for seed protein content on chromosome 9 and narrowed it down 

to a genomic region where the causative gene might be located. The novel QTL identified 

in this study for both seed protein and oil contents could be used by plant breeders as 

source of genetic variation for further improvement of the soybean seed protein and oil 

contents.
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CHAPTER 4. MAPPING QTL CONTROLLING SOYBEAN SEED SUCROSE AND 

OLIGOSACCHARIDES IN A SINGLE FAMILY OF SOYBEAN NESTED 

ASSOCIATION MAPPING (SOYNAM) POPULATION 

4.1 Abstract  

Soybean meal value of monogastric animals is determined, in part, by sucrose and 

raffinose family oligosaccharides (RFOs), which include raffinose and stachyose. Among 

them, only sucrose is desirable, while raffinose and stachyose are the non-digestive 

carbohydrates that cause flatulence and abdominal discomfort. Developing soybean lines 

with improved seed sucrose and reduced RFOs will enhance soybean meal value in the 

market. The objective of this study was to identify quantitative trait loci (QTL) 

controlling seed sucrose, raffinose, and stachyose content in a set of 140 SoyNAM 

recombinant inbred lines (RILs), developed from the cross of  two elite soybeans lines 

IA3023 and  LD02-4485. A total of 3038 SNP markers from the Illumina SoyNAM 

BeadChip SNP were used to map the QTL for sucrose and the RFOs, raffinose, and 

stachyose. ANOVA revealed significant genotypic differences (P<0.001) for sucrose, 

raffinose and stachyose contents across years. Composite interval mapping (CIM) 

identified three QTL for sucrose content one on chromosome 1 and two on chromosome 

3. The QTL on chromosome 1 explained 10% of the phenotypic variation while the two 

QTL on chromosome 3 each explained 22% phenotypic variation in the sucrose content. 

A QTL for raffinose content was detected on chromosome 6 and it explained 6% of
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phenotypic variation. CIM did not identify any significant QTL for stachyose content.   

This study identified novel QTL that can be validated for use in developing soybean lines 

with higher concentrations of sucrose and reduced levels of raffinose and stachyose. 

 

 Introduction  

Soybean [Glycine max (L.) Merrill] belonging to legume family is a miracle and 

versatile crop that has been widely grown across the world for food, feed, and industrial 

use. Over the past century, it has been recognized as world’s major source of vegetable 

oil and vegetable protein (Zeng, Chen et al. 2014). Saldivar et al. (2011) classified 

soybeans into two types: oil beans and food beans according to their end uses. Oil beans 

are used for vegetable oil and protein production such as defatted soy flour and soy 

protein concentrate while food beans are converted to various soy products. 

    Past studies have focused elucidating genetic control of protein and oil contents in 

soybeans seed but limited information exists for carbohydrates (Maughan, Maroof et al. 

2000). Genetic analysis of carbohydrates is challenging because the trait is polygenic and 

environmental factors like temperature confounds the expression of the trait. For instance, 

high temperature has been shown to reduce the seed sucrose content. Developments of 

soybean lines with improved digestibility are crucial to the livestock and broiler chickens 

that are intensively fed with soybeans. Development of soybean lines with decreased 

soybean seed stachyose level (< 1%) would result in increase sucrose level, and therefore, 

would create a more efficient feed source for non-ruminant (Skoneczka, Maroof et al. 

2009).     

So far a number of quantitative trait loci (QTL) associated with soybean seed 

soluble sugar have been identified. The first QTL controlling sucrose in soybeans seed 
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was identified by Maughan et al. (2000) on chromosomes 5, 7, 8, 13, 15, 19, and 20. Kim 

et al (2006) reported four QTL located on chromosomes 2, 11, and 19, highly associated 

with seed sucrose content in RILs population developed from the cross of ‘Keunolkong’ 9 

‘Shinpaldalkong’(Kim, Klein et al. 2005; Wang, Chen et al. 2014). Kim et al. (2006) also 

mapped two QTL associated with seed sucrose content on chromosomes 12 and 16. 

Stachyose and high sucrose QTL were also mapped on chromosome 6 in two separate 

QTL mapping studies conducted by Skoneczka et al (2009) in population derived from 

the cross of PI 87013 X PI 200508 and PI243545 × PI200508. Recently (Zeng, Chen et 

al. 2015) mapped two QTL for stachyose content on chromosome 10 and 11 in RILs 

population of the Osage cultivar derived from ‘Hartz 5545’ x ‘KS4895’. These literature 

surveys revealed multiple QTL, reaffirming the polygenic nature of these traits, and the 

need to for further dissection to give more insights into the underlying mechanisms. The 

present study utilized one family of SoyNAM population to identify QTL controlling 

sucrose and oligosaccharides. 

 

4.2 Materials and Methods 

4.2.1 Plant Material  

A total of 140 recombinant inbreed lines (RILs) from the cross between two elite 

soybean lines IA3023 and LD02-4485 were used in this study. This RILs population is 

subset of the 40 families of SoyNAM population. The SoyNAM mapping population was 

developed by mating IA3023, a high yielding Iowa State variety, with 40 different high 

yielding elite and exotic soybean lines, followed line derivations through single seed 

descent (SSD) method to generate F5 lines. The SoyNAM project was developed under a 
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collaborative umbrella of several universities with overall objectives of mapping 

genes/QTL and other genetic factors that controls yield potential, agronomic traits, and 

seed composition traits in soybeans. For Further information about SoyNAM project 

please refer to Soybase http://soybase.org/SoyNAM/. We selected family 12 of the 

SoyNAM for use in the present study based on results of a preliminary screen of the 40 

SoyNAM founders for sucrose, raffinose, and stachyose contents from two locations, 

Indiana, and Illinois using High Performance Liquid Chromatography (HPLC). The 

HPLC data showed that the two parents (D02-4485 and IA3023) of family 12 had the 

best contrast for high sucrose (Table 4.1), therefore, the 140 RILs developed from the 

cross of these parents were selected for QTL mapping.  

Table 4.1. SoyNAM parent screened for percent high sucrose content across two 

locations using HPLC. 

Genotype Indiana 2012 Indiana 2013 Illinois 2012 Illinois 2013  
#1

IA3023 5.1 4.4 6.2 5.6 5.3 

4J105-3-4 5.2 5.3 5.0 4.9 5.1 

5M20-2-5-2 6.4 5.3 5.2 5.2 5.5 

CL0J095-4-6 6.0 5.8 6.0 5.0 5.7 

CL0J173-6-8 7.9 6.1 7.8 6.8 7.2 

HS6-3976 6.6 4.3 7.7 6.2 6.2 

Prohio 5.8 5.1 5.3 4.8 5.3 

LD00-3309 6.6 6.0 6.7 5.7 6.3 

LD01-5907 8.5 7.7 6.8 7.3 7.6 
#2

LD02-4485 8.7 7.7 7.5 7.4 7.8 

LD02-9050 8.7 5.6 7.1 6.9 7.1 

Magellan 8.1 6.8 7.1 6.2 7.1 

Maverick 7.4 6.9 7.0 6.3 6.9 

S06-13640 8.6 7.3 7.3 6.0 7.3 

NE3001 7.4 7.7 7.3 7.5 7.5 

Skylla 7.6 8.2 6.3 6.9 7.3 

U03-100612 5.9 5.9 5.2 6.1 5.8 

LG03-2979 5.0 4.8 6.6 5.2 5.4 

LG03-3191 7.4 6.0 6.8 5.1 6.3 

LG04-4717 5.5 6.2 5.0 4.7 5.4 

http://soybase.org/SoyNAM/
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Table 4.1 continued 

LG05-4292 7.1 5.9 7.3 6.9 6.8 

LG05-4317 5.4 5.4 5.9 4.3 5.3 

LG05-4464 7.5 6.3 6.9 5.8 6.6 

LG05-4832 7.8 7.4 5.8 5.7 6.7 

LG90-2550 6.4 5.7 5.9 4.4 5.6 

LG92-1255 6.3 5.3 5.8 5.1 5.6 

LG94-1128 7.0 5.6 5.3 5.2 5.8 

LG94-1906 7.5 6.2 6.6 6.6 6.7 

LG97-7012 7.6 5.3 6.1 5.1 6.0 

LG98-1605 5.9 5.8 6.3 5.5 5.9 

LG00-3372 7.4 7.0 6.5 6.4 6.8 

LG04-6000 4.5 5.9 7.1 6.6 6.0 

PI398881 7.8 6.9 7.2 7.7 7.4 

PI427136 7.4 5.9 6.7 6.1 6.5 

PI437169B 5.7 4.4 5.5 4.7 5.1 

PI507681B 6.7 5.1 6.6 7.4 6.5 

PI518751 7.1 6.0 6.6 6.2 6.5 

PI561370 5.5 3.8 5.4 4.4 4.8 

PI404188A 7.4 6.0 7.4 6.6 6.9 

PI574486 7.5 5.7 6.9 7.5 6.9 
#1

 and 
#2

 were the two contrasting parents chosen for this study;  represents mean 

sucrose content  
 

4.2.2 Experimental Design  

The experiment followed a modified augmented design used in the larger 

SoyNAM population. The two years (2012 and 2013) trials included the 140 RILs 

planted in two rows plot of 80cm length at Purdue University Agronomy Center for 

Research and Education (ACRE). 

 

4.2.3 Phenotype Data 

4.2.3.1 Soluble Sugars Determination 

We sampled 10 healthy seeds per genotype from the two years’ trials and sent it 

to Molecular Genetics and Soybean Genomics Laboratory (Nguyen Laboratory) at the 
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University of Missouri for quantification of sucrose, raffinose, and stachyose. The sugar 

contents of sucrose, raffinose, and stachyose were determined for each sample using 

HPLC protocol described by Valliyodan and Shi et al. 2015. The HPLC method used in 

this study has been equipped with an evaporative light scattering detector (ELSD) that 

can separate, identify, and quantify several sugars, including  sucrose, raffinose, and 

stachyose. This method has been successfully used to quantify sucrose and 

oligosaccharides in soybeans (Valliyodan, Shi et al. 2015). 

 

4.2.4 Genotype Data 

A subset of 4118 SNP markers from the Illumina SoyNAM BeadChip SNP array 

were selected for the QTL mapping. The markers were initially tested for segregation 

distortion in “R/qtl package” (Broman, Wu et al. 2003) , with an adjustment for multiple 

testing using a Bonferroni correction at alpha=0.05. A total of 1080 SNPs were found to 

be distorted and were dropped from the analysis. Finally, 3038 SNP markers were used 

for QTL mapping.  

 

4.3 Statistical Analysis  

4.3.1 Phenotypic Assessment  

Best linear unbiased predictors (BLUPs) were estimated for sucrose, raffinose and 

stachyose using ‘lme4’ package in ‘R’(Bates, Maechler et al. 2014). The BLUP values 

were calculated using the following model:  
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where µ is the grand mean; b is random effect of lines; u is fixed effect of the year;   is 

the residual.  

Analysis of variance was conducted for each trait based on the following linear mixed 

model using ‘lme4’ package in ‘R’. 

Aij = µ+ Gi + Yj + eij,  

where Aij is the observed value of the i
th

 genotype in the j
th

 year, µ is the general mean, Gi 

and Yj are the effects of the genotype, and year, and eij is the residual effect. There were 

not enough degrees of freedom to estimate G x Y interaction because individual year trial 

was not replicated.  

 

4.3.2 Repeatability Estimation and Correlation Determination 

The estimation of repeatability is necessary for understanding the response to 

selection (van Kleunen and Ritland 2005). Repeatability of each trait was estimated on a 

line mean basis across years using the following equation: 

Repeatability = R =  
2
g / [( 

2
g + ( 

2
e)/r] 

where R represents repeatability;     is the genetic variance for lines;  
2
e is the residual 

variance; r is the year variance. The R package lme4 was used to estimate the variance 

components based on REML algorithm. 

  Correlations among the three carbohydrates sucrose, Raffinose, and Stachyose 

was calculated across years using Pearson’s correlation coefficients ® with following 

equation using psych R package. 

       = (Pearson’s) coefficient of correlation = COV(x,y) / [  2
 (x) ×  

2
(y)] 
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where        is the Pearson’s correlation coefficients; COV(x, y) is the covariance 

between the two traits x and y;  
2
 is the variance for traits x and y.  

 

4.3.3 QTL Analyses 

QTL analysis was conducted by composite interval mapping (CIM) for all three 

traits in QTL Cartographer v. 2.5 (Zeng 1994; Wang, Basten et al. 2006 ). The CIM was 

performed following a standard model 6. The five most significant background markers 

for inclusion in the CIM model were selected by backward stepwise regression. Walking 

speed was set at 2cM and a window size of 10 cM. A total of 1000 permutations were 

performed for each trait using average data across years to establish genome-wide LOD 

significance threshold at a 0.05 probability (Churchill and Doerge 1994). QTL were 

considered to exist only at positions where a LOD score exceeded the corresponding 

significance threshold (Churchill and Doerge 1994). The percentage of variation 

explained (R
2
) for all significant QTL were determined at their peak LOD values. 

 

4.4   Result 

4.4.1 ANOVA, Heritability Estimates, and Correlation 

Descriptive statistics for all three carbohydrates are presented in Table 4.2. Mean 

seed sucrose and raffinose content differed between the two years, while stachyose 

content remained nearly the same (Figure 4.1, Table 4.2). This observation suggested that 

seed sucrose and raffinose were more influenced by environmental variation than 

stachyose.  
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Figure 4.1. Distribution of sucrose, raffinose, and stachyose content by year in 140 RILs. 

Frequency distribution showed that all three traits are normally distributed across 

years, indicating that the seed contents of the three traits are controlled by many genes 

(Figure 4.2). The range of sucrose, raffinose and stachyose contents in the mapping 

population exceeded the mean values of the two parents, suggesting the presence of 

transgressive segregation for these traits. The mean seed sucrose content for parent 

LDO2-4485 was higher than the population mean, while that of parent IA3023 was below 

the population mean (Figure 4.2). For raffinose, the mean values were close together for 

the two parents, indicating less parental contrast for this trait. The distribution for 

stachyose on the other hand showed parent IA3023 to have a mean value nearer the 

population mean compared to parent LDO2-4485 (Figure 4.2). 
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Figure 4.2. Frequency distribution of seed sucrose, raffinose, and stachyose content in a 

population of 140 RILs derived from the cross of IA3023 and LD02-4485.  

The vertical red lines represent overall mean value for each trait.  

 

Percent of sucrose content in 2012 ranged from 5.2-8.6 with a mean of 7.2 and 

standard deviation of 0.7, while in 2013 it ranged from 4.9-8.7 with mean of 6.6 and 

standard deviation of 0.7. The coefficient of variation for sucrose was 11% in 2013, and 9% 

in 2012. These results revealed a higher variation for sucrose content in 2013 than in 

2012. Percent of raffinose content in 2012 ranged from 0.6-1.2 with mean of 0.9 and 

standard deviation of 0.1, whereas in 2013 it ranged from 0.7-1.6 with mean of 1.0 and 

standard deviation of 0.1. Coefficient of variation for raffinose content in 2013 was 

higher than that in 2012. Percent of stachyose content in 2012 ranged from 1.7-5.0 with 

mean of 4.0, standard deviation of 0.4, and a CV of 10, while in 2013 it ranged from 3.0-

5.2 with mean of 4.1, standard deviation of 0.5 and a CV of 12 consequently, variation in 

stachyose content in 2012 was higher compared to that in 2013 (Table 4.2). 

Table  4.2. Summary statistics for sucrose, raffinose and stachyose measured over two 

years at ACRE Indiana. 

Trait Year N Mean Std Range Difference CV% 

Sucrose 
(2012) 142 7.2 0.7 5.2-8.6 3.4 9 
(2013) 142 6.6 0.7 4.9-8.7 3.8 11 

Raffinose 
(2012) 142 0.9 0.1 0.6-1.2 0.6 11 

(2013) 142 1.0 0.1 0.7-1.6 0.9 10 
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CV= Coefficient of variation; N=number of observation, Std= standard deviation.   

Analysis of variance revealed significant differences for sucrose, raffinose and 

stachyose contents among the genotypes and the years (Table 4.3). The genetic 

component accounted for 50.3%, 49.8%, and 57.9% of total variation in sucrose, 

raffinose, and stachyose, respectively. This suggested that variability for these traits are 

largely under genetic control and are therefore amendable to selection. Variation in seed 

stachyose content for years was much smaller (1.3%) compared to that of sucrose 

(14.5%), and raffinose (19.6%) (Table 4.3), corroborating the earlier observation in 

Figure 4.1 which suggested that stachyose is more stable to environmental fluctuations.  

Repeatability, for sucrose, raffinose, and stachyose content were 30%, 38% and 30%, 

respectively (Table 4.3). Just as revealed by ANOVA, the observed moderate to high 

repeatability values suggested that genetic variation for the three traits are repeatable over 

time and can be exploited for improvement.  

Table 4.3. Analysis of variance for soybean seed sucrose, raffinose, and stachyose 

content of 142 genotypes grown in two Indiana environments for two years (2012 and 

2013). 

    Sucrose     Raffinose     Stachyose     

Source DF SS MS R
2 SS MS R

2 SS MS  R
2 

Genotypes 141 77.2   0.55** 50.3  3.27 0.024** 49.8 35.3 0.25* 57.9 

Year 1 22.3  22.3** 14.5  1.29 1.29*** 19.6   0.8 0.8*   1.3 

Residuals 141 53.7    0.38 
 

     2.0 0.014 
 

24.8 0.17 
 

Total 283  153.2      6.56     60.9     

LSD 
 

   1.24 
  

 0.23 
  

   0.82 
  

SED 
 

   0.62 
  

 0.11 
  

   0.41 
  

R         0.30      0.38        0.30     

 
2
G                                 0.082 

  
 0.005 

  
0.037 

 *
, 

**
, 

***
 represents the significant level of 0.05, 0.01 and 0.001, respectively; R = repeatability; 

R
2
= phenotypic variation explained (%). 

Table 4.2 continued 

Stachyose 
(2012) 142 4.0 0.4 1.7-5.0 3.3 10 
(2013) 142 4.1 0.5 3.0-5.2 2.2 12 
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Correlation analysis showed that stachyose was significantly and positively 

correlated with sucrose (r = 0.33, P        ) and raffinose (r = 0.28, P        ), yet 

sucrose and raffinose were positively but weakly correlated (r = 0.09, P          (Table 

4.4). The observed positive correlations among these traits suggested that these traits 

improving one of them may simultaneously enhance the others.  

Table 4.4. Correlation between the three carbohydrate contents in soybean seeds of the 

142 genotypes. 

Correlation r r
2
 P-value 

Sucrose vs. Raffinose   0.09ns 0.008 P         

Sucrose vs. Stachyose     0.33*** 0.108 P         

Raffinose vs. Stachyose     0.28***   0.078 P         
*
, 

**
, 

***
 represents the significant level of 0.05, 0.01 and 0.001, respectively; ns,  not significant. 

 

 

4.4.2 QTL Mapping 

 Composite interval mapping (CIM) identified four QTL affecting seed 

sucrose and raffinose content (Figures 4.3 and 4.4). A summary of significant QTL is 

presented in Table 4.5. Of  the QTL identified for sucrose, one was located on 

chromosome 1 at genomic position 22.8 cM and two were located on chromosome 3 at 

0.63 cM  and 8.15 cM positions, respectively (Table 4.5 and Figure 4.3). The QTL 

located on chromosome 1 accounted for 10% of the phenotypic variance and the two 

QTL on chromosome 3 each explained 22% of phenotypic variation in the sucrose 

content (Table 4.5 and Figure 4.3). These QTL also had large additive genetic effects 

(Table 4.5). We did not identify any significant QTL for stachyose content.   
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Figure 4.3. Linkage map and plots showing location of the putative sucrose QTL on 

chromosome 1 shown on left and chromosome 3 on the right. Highlighted in red are the 

locations of putative QTL controlling seed sucrose content. 

 Dashed vertical lines show threshold value based on 1000 permutation at probability of 

0.05.  

 

 For seed raffinose content, we identified a significant (P=0.05, threshold=3.2) 

QTL on chromosome 6 at 69.15 genomic position and explained 6% phenotypic variation 

in the raffinose content (Figure 4.4 and table 4.5).  
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Figure 4.4. Linkage map and plots showing location of the putative raffinose QTL on 

chromosome 6.  

Highlighted area in red in the linkage map is the locations of putative QTL controlling 

seed raffinose content. Dashed horizontal line shows threshold value based on 1000 

permutation at probability of 0.05.  

 

Table 4.5. Quantitative trait loci (QTL) associated with seed sucrose and raffinose 

contents. 

Trait QTL Chromosome 
Position 

(cM) 
Additive 

effect 
LOD R

2 

Sucrose 

Gm01_43979136_A_C 1 22.8 14 3.5 10 

  Gm03_192792_C_T 3    0.63 23 5.6 22 

  Gm03_1061417_T_C 3    8.15 17 3.9 22 

Raffinose   Gm06_17204660_T_G  6   69.51 -0.6 3.4 6 

R
2
, represents phenotypic variation explained (%). 

4.5 Discussion  

4.5.1 Phenotype Data 

ANOVA result revealed that genotypic difference for sucrose and raffinose were 

significant at P<0.001, while that for stachyose content was significant at P <0.05, 

indicating that variation within genotype and years for sucrose and raffinose contents 

were higher than that of stachyose (Table 4.3 and Figure 4.1). Most research conducted 
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on soybeans seed composition reported that variables such as temperature, drought stress, 

planting date, genetics, environment and the interaction of genetic and environment affect 

soybeans seed composition (Dornbos Jr and Mullen 1992; Piper and Boote 1999; Specht, 

Chase et al. 2001). Environmental variation often confounds true genotypic value, 

making it challenging to make selection based on mean values.  

 

4.5.2 Repeatability and Correlation  

Repeatability for raffinose and stachyose contents reported in this study fell in the 

range reported by other studies (Jaureguy, Chen et al. 2011). Jaureguy et al. (2011) 

reported heritability (79%), (46%), and (73%) for sucrose, raffinose and stachyose, 

respectively. Cicek et al. (2011) also reported heritability (72%), (42%), and (66%) for 

sucrose raffinose and stachyose. The low sucrose repeatability registered might be due to 

environmental factors since sucrose is quantitative traits and quantitative traits are easily 

affected by environment factors due the involvement of many genes/QTL in controlling 

these traits. Indiana, experienced severe drought in year 2012 and this extreme 

environmental anomaly could have affected the estimates of repeatability. Overall, the 

repeatability values were moderate and thus predictable, suggesting that genetic 

improvement for these traits are possible, but environmental variance must be taken in to 

consideration when making selection. That is, evaluations have to be conducted across 

multiple environments so as to obtain an accurate phenotypic assessment for effective 

selection. 

  Correlation coefficient observed for sucrose and raffinose in this study is partially 

in agreement with results from previous studies. Cicek et al. (2011) reported strong 
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positive correlation between sucrose and raffinose while the correlation between sucrose 

and stachyose was strong (r=-35) and negative. Another study conducted by Huhn et al. 

(2003) reported a positive correlation between raffinose and stachyose but significant 

inverse correlation of these two with sucrose content.  

It has been observed that there are variations in direction and magnitude of 

correlation coefficient among these three carbohydrate traits. These observations suggest 

that the relationships among these traits are population specific and environment 

dependent (Jaureguy, Chen et al. 2011).  

 

4.5.3 QTL Analyses of Three Carbohydrates Traits  

Previous studies have reported QTL for carbohydrate traits in soybean on multiple 

chromosomes (Maughan, Maroof et al. 2000; Kim, Kang et al. 2006). The present study, 

utilized the power of traditional CIM mapping methods to precisely map novel regions 

associated with sucrose, raffinose and stachyose. We identified a total of four QTL for 

sucrose and raffinose (Figure 4.3, 4.4 and Table 4.5). Among the four QTL detected, 

three QTL were for seed sucrose content and were located on chromosome 1 and 

chromosome 3 (Figure 4.3 and Table 4.5). These two QTL on chromosomes 1 and 3 

explained 10% and 22% of phenotypic variation, respectively. A QTL controlling seed 

sucrose content on chromosome 3 was reported by (Akond, Liu et al. 2015) but at 

different genomic position. Therefore, we have probably detected a new allele for sucrose 

content on chromosome 3. The other QTL located on chromosome 1 associated with seed 

sucrose content was also novel. Additionally, we mapped a new QTL for seed raffinose 
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content on chromosome 6, and this QTL accounted for less (7%) variation in the 

observed phenotype.  

 

4.6 Conclusion 

 The present study revealed significant variation among soybean genotypes 

for the three carbohydrate traits studied. Moderate repeatability was observed for these 

traits which indicated that the traits were predictable and that genetic improvement are 

possible. We uncovered four novel regions that were significantly associated with seed 

sucrose and raffinose content. Given the importance of these carbohydrate traits in 

soybean nutritional quality, our study provides more insight into the underlying genetics 

of these traits, and the opportunity for accelerated improvement through marker-assisted 

breeding. 
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CHAPTER 5. GENOTYPE BY ENVIRONMENT INTERACTION AND STABILITY 

ANALYSIS FOR PROTEIN AND OIL IN SOYNAM PARENTS 

 

5.1 Abstract 

Soybean [Glycine max (L.) Merrill], which has the highest protein content of all 

food crops, is the world’s leading source of protein and oil. The objectives of this study 

were to determine the stability, adaptability and the magnitude of GEI for seed protein 

and oil contents, in 40 genetically diverse SoyNAM parental genotypes grown across 

different environments. Multi-environment analysis for both seed protein and oil contents 

revealed significant (P<0.001) genotype (G), environment (E) and genotype by 

environment interactions (GEI). The genetic component of variation for seed protein and 

oil content was (40.1%) and (29.1 %) while the environments explained (28.21%) and 

(30. %), variation in the two traits, respectively. Phenotypic and genotypic correlation 

between protein and oil were -0.59, and -0.66, respectively. GGE-biplot analysis revealed 

that selection of the SoyNAM parents for seed protein and oil contents based on mean 

and stability across environments was appropriate. Genotypes LG92-1255, CL0J173-6-8, 

PI398881, PI561370, Prohio, PI427136, LG03-3191, PI507681B for seed protein content  

and genotypes LG03-2979, U03-100612, Prohio, LD02-4485, IA3023, LG04-4717, 

LG92-1255 for seed oil content were identified as the most stable  and desirable while 

LG94-1128 and 5M20-2-5-2 for seed protein content and NE3001 and LG05-4317 for 

seed oil content were unstable even though high yielding.
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5.2 Introduction 

Soybean [Glycine max (L.) Merrill, 2n=40] is an important field crop that has been 

grown worldwide not only for feed and food but also for industrial purposes. Protein and 

oil are the most important economic constituents of soybean seed composition (Piper and 

Boote 1999). The two traits play a key role in the economy of most soybean-growing 

countries.  

One of the goals of most plant breeding programs is to develop plant varieties that 

are adapted to a broad population of environments. To develop such plant varieties, plant 

breeders and agronomists usually conduct multi-environment trials (METs) to select lines 

with the greatest yield potential, widest adaptation, and stability over a wide array of 

environments. The interpretation of MET results is often confounded by significant 

genotype by environment interaction (GEI), which challenges effective selection of 

genotypes. GEI occurs since gene expression is subject to modification by environmental 

conditions; therefore, phenotypic response of genotypes differs with environments (Kang 

and Gauch 1996). The difference in phenotypic expression is mainly due to 

environmental factors such as temperature, planting date, soil type and precipitation, 

which may vary from location to location and year to year. The inconsistent phenotypic 

response of genotypes due to these factors is called genotype by environment interaction 

(Baker 1988). Baker et al. (1988) defined GEI as the failure of genotypes to achieve the 

same relative performance in different environments due to different environmental 

factors. 

Development of new soybeans cultivar with improved adaptation for the trait of 

interest requires the knowledge of GEI. GEI analysis can be used to understand genotypic 
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stability across environments; a genotype is considered stable if its variation among 

environment is small (Farshadfar, Poursiahbidi et al. 2012).  

Improving protein and oil content of soybean lines is facilitated by a detailed 

evaluation of breeding populations in several environments. This multi-environment 

assessment allows for quantification of the magnitude of variances that are genetic in 

nature compared to those due to environments. The presence of significant GEI for 

quantitative traits such as protein and oil can seriously limit the feasibility of selecting 

superior genotypes for wider environments (Gurmu, Mohammed et al. 2009). Several 

studies have reported a significant GEI in soybeans for seed protein and seed oil contents.  

 Miladinovic et al. (2006) reported that soybeans seed oil and protein contents 

grown at similar environments and latitudes had a significant difference. Sogut et al. 

(2006) reported a significant GEI for soybean seed protein and seed oil content between 

years and environments. It has been noted that the same soybean cultivar grown in 

different years and different locations could vary significantly in seed composition 

(Phansak 2010). Helms et al. (1998) found that the delay in planting date would increase 

soybeans seed protein concentration. 

Due to its economic importance, soybean breeders and agronomists have 

endeavored to improve seed protein and oil concentration simultaneously, however, their 

concurrent improvement is difficult because of their negative correlations (Wilcox and 

Cavins 1995; Cober and D Voldeng 2000; Chung, Babka et al. 2003; Panthee, Pantalone 

et al. 2005; Phansak 2010). 

Having the knowledge of the magnitude of GEI and stability analysis is important 

for understating the response of different genotypes to different environments (Gurmu, 
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Mohammed et al. 2009). This kind of knowledge help in identification of stable and 

widely adapted and unstable but specifically adapted genotypes (Gurmu, Mohammed et 

al. 2009). 

The objective of this study was to determine the stability, adaptability and   magnitude of 

Genotype by Environment Interaction (GEI) for seed protein and oil contents in the 

genetically diverse 40 NAM parents across environments. 

 

5.3 Material and Methods 

5.3.1 Plant Material  

Plant materials used in this study include 40 parental genotypes that were used to 

create the SoyNAM population. Information about agronomic features and pedigrees of 

the genotypes are present in Table 5.1. Detailed information about the SoyNAM project 

can be accessed through the link http://soybase.org/SoyNAM/.  

Table 5.1. Agronomic feature of the 40 genotypes (SoyNAM parents) used in this study. 

http://soybase.org/SoyNAM/. 

Cultivar Pedigree Agronomic feature Origin 

IA3023 Dairyland DSR365 X Pioneer P9381 High yielding  Iowa 

4J105-3-4 CLOJ173-6-2 X WW115926 High yielding Purdue University  

5M20-2-5-2 CLOJ173-6-8 X ( OD032-3118 x LG00-6293 ) High yielding Purdue University  

CL0J095-4-6 CX1705R-108 X Dwight High yielding Purdue University 

CL0J173-6-8 Kottman X Dwight High yielding Purdue University 

HS6-3976 HS98-7826 (2) X PI 399073 High yielding Ohio State  

Prohio HC94-81PR X Asgrow A2506 High yielding Ohio State University 

LD00-3309 Maverick X Dwight High yielding University of Illinois  

LD01-5907 Ina X IA3010 High yielding University of Illinois  

LD02-4485 M90-184111 X IA3010 High yielding University of Illinois  

LD02-9050 Macon X LS93-0375 High yielding University of Illinois  

Magellan Sherman X Harper High yielding University of Missouri  

Maverick LN86-4668 X Resnik High yielding University of Missouri  

S06-13640 LG99-11986 X S38-T8 High yielding University of Missouri  

NE3001 Colfax X A91-701035 High yielding University of Nebraska  

http://soybase.org/SoyNAM/
http://soybase.org/SoyNAM/
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Table 5. 1 continued 

Skylla Dairyland DSR217 X Northrup King S19-90 High yielding Michigan State University  

U03-100612 MSPB6S4 X Pioneer P93B82 High yielding University of Nebraska  

LG03-2979 Rend X LG95-258 Diverse ancestry USDA-ARS  

LG03-3191 LG96-1854 X LG96-3159 Diverse ancestry USDA-ARS  

LG04-4717 LG98-5579 X A98-980047 Diverse ancestry USDA-ARS  

LG05-4292 LG94-4667 X LG97-9226 Diverse ancestry USDA-ARS  

LG05-4317 LG94-4667 X LG98-1445 Diverse ancestry USDA-ARS  

LG05-4464 LG97-8984 X A98-884037 Diverse ancestry USDA-ARS  

LG05-4832 LG98-5579 X A98-980047 Diverse ancestry USDA-ARS  

LG90-2550 LG82-8224 X LG82-8195 Diverse ancestry USDA-ARS  

LG92-1255 LG84-1291 X Asgrow A3127 Diverse ancestry USDA-ARS  

LG94-1128 LG85-3343 X LG87-1991 Diverse ancestry USDA-ARS  

LG94-1906 PI 468377 X Asgrow A3205 Diverse ancestry USDA-ARS  

LG97-7012 LG89-1525 X Asgrow A3322 Diverse ancestry USDA-ARS  

LG98-1605 LG88-8958 X LG89-771 Diverse ancestry USDA-ARS  

LG00-3372 PI 561319 X PI 574477 Diverse ancestry USDA-ARS  

LG04-6000 HS93-4118 X LG97-9912 Diverse ancestry USDA-ARS  

PI 398881 Introduction Drought tolerance South Korea  

PI 427136 Introduction Drought tolerance South Korea  

PI 437169B Introduction Drought tolerance Russia  

PI 507681 B Introduction Drought tolerance China  

PI 518751 Ns-Kasna X Beeson Drought tolerance Serbia  

PI 561370 Introduction Drought tolerance China  

PI 404188A Introduction Drought tolerance China  

PI 574486 Introduction Drought tolerance China  

 

 

5.3.2 Experimental Design 

The SoyNAM experiment was grown at four locations (Iowa, Nebraska, Indiana, 

and Illinois) in 2012 and 2013. The forty parental lines were used as replicated checks 

within the blocks of a Modified Augmented Design. Because the lines were replicated 

four times in each environment, this study extracted the seed protein and oil content data 

of the 40 parent lines from the overall SoyNAM experiment and analyzed the data as 

randomized complete block design. 
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5.3.3 Phenotypic Data  

Seed content of protein and oil were determined from 300 g samples of whole grain 

per plot over the eight environments using near infrared spectroscopy (NIR) on a Perten 

DA7200 diode array instrument (http://www.perten.com/), conducted by Jim Specht at 

the University of Nebraska. 

 

5.3.4 Multi-Environment Trial Assessment of Seed Protein and Oil Content 

The purpose of the MET analysis was to determine the response of the 40 parental 

lines to varying environments and to determine the magnitude of genotype by 

environment interaction (GEI) for seed protein and oil. Year in each location was 

considered as a different environment with a total of eight environments (two years x four 

locations). Detailed environmental information for the testing environment is provided in 

Table 5.2.  

Table 5.2. Characteristic features of study environments. 

www.usclimatedata.com/climate/ 

IA, IL, IN, and NE, indicate, Iowa, Illinois, Indiana, and Nebraska, respectively; AAR=Average Annual 

Rainfall; AT=Average Temperature; AEL=Altitude Elevation; mm=millimeter, 
o
C= Celsius.  

 

Prior to stability and adaptation assessment, it is essential to perform a combined 

analysis of variance to determine the presence of GEI from the replicated genotypes at 

Environments AT (
o
C) AAR (mm) Soil type EL(meter) Coordinate 

  
IA-Ames-2012(E1) 17.3 617 Loam 334 42° 1' 50.8'' N, 93° 37' 54.8'' W 

IA-Ames-2013(E2) 16.2 681 Loam 334 42° 1' 50.8'' N, 93° 37' 54.8'' W 

IL-Flannagan-2012(E3) 17.7 813 Silt loam 219 40° 6' 38.1'' N, 88° 12' 26.1'' W 

IL-Blackberry-2013(E4) 17.0 867 Silt loam 219 40° 6' 38.1'' N, 88° 12' 26.1'' W 

IN-ACRE-2012(E5) 17.3 775 Silt clay-loam 217 40° 25' 33.1'' N, 86° 54' 29.0'' W 

IN-ACRE-2013(E6) 16.5 908 Silt clay-loam 217 40° 25' 33.1'' N, 86° 54' 29.0'' W 

NE-Clay center-2012(E7) 17.7 632 Silt loam 533 40° 31' 18.0'' N, 98° 3' 19.1'' W 

NE-Clay center-2013(E8) 16.9 766 Silt loam 533 40° 31' 18.0'' N, 98° 3' 19.1'' W 

http://www.perten.com/
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various environments. A signifiant F-test implies that GEI exists and the mean 

performance of lines across environments varies from location to location. 

 

5.4 Statistical Analyses 

5.4.1 Analysis of Variance  

 Analyses of variance (ANOVA) were conducted for seed protein and 

oil composition using combined data from all locations and years. The ANOVA was 

performed with linear mixed model using GLM procedure in SAS 9.4 (SAS Institute, 

2014). In the mixed model genotype and location were considered fixed effects while 

replication and year were random. The mixed model used to estimate variance 

components was as follows: 

Ailjk = µ + Gi +Yl+ Ej + Rk + (Gi x Yl)+ (Gi x Ej) + GYEilj  + eijlk 

where Ailjk is the observed value of the i genotype in Y
th

 year in the in k
th

 block in 

j
th

 location; µ is the grand mean; G is the genotypic effect; Y is the year effect, E is the 

location effect, Rk is the block effect; (Gi x Yl), (Gi x Ej), GYEilj, represent interaction 

between genotype and year, interaction between genotypes and location, and interaction 

between genotype year and location, respectively. eiljk is the residual effect.  

 

5.4.2 Correlation Determination  

The estimation of correlation is fundamental to the success of any plant breeding 

program since it provides information regarding response to selection (van Kleunen and 

Ritland 2005). Phenotypic correlation between protein and oil was calculated across 
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location using Pearson’s correlation coefficients (r) with the following equation using the 

psych R package. 

       = (Pearson's) coefficient of correlation = COV(x,y) / [  2
 (x) ×  

2
(y)] 

Where        is the Pearson’s phenotypic correlation coefficients; COV(x,y) is the  

phenotypic covariance between the two traits x and y;  
2
 is the phenotypic variance for  

traits x and y.  

The genetic correlation represents the additive genetic effect that is shared 

between a pair of traits. We determined genotypic correlations for each trait across 

environment. The genotypic correlation was determined based on line mean basis using 

REML in R software using the following formula: 

   
       

           
 

where    represents genetic correlation;     represents covariance of the two 

traits; x represents the first trait and y represent the second trait;     represents variance.  

The dispersion of phenotypic variation (coefficient of variation) in the two traits was 

estimated with the following formula proposed by (Johnson, Robinson et al. 1955) as; 

CV = [ ( 2
P /   ))] ×100. 

where      is the grand mean and  
2

P is phenotypic variance.  

  

5.4.3 MET Analyses   

Prior to GEI assessment, combined analysis of variance (ANOVA) was conducted 

to determine the existence and magnitude of the GEIs for seed protein and oil contents. 

Significant F-test indicated the presence of GEIs and thus additional statistics was 
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calculated to determine the stability of each of the 40 genotypes over the eight 

environments (two years x four locations). 

Stability analysis is important, particularly when the objective of a breeding program is to 

select genotypes for a wider array of environments. 

The SoyNAM project developed from the parental genotypes evaluated in this 

study was conducted in four states, Iowa, Nebraska, Indiana, and Illinois, for two years 

(2012 and 2013) for seed protein and oil contents under various environmental conditions. 

Since seed protein and oil contents of soybeans are quantitatively inherited traits, 

therefore their evaluation under diverse environmental conditions maximize the chance of 

the interaction of genotypes with environment (Balestre, Santos et al. 2010). To evaluate 

the genotype by environment interaction, breeders must use a tool that can efficiently and 

accurately measure the response of these genotypes under different environments 

(WeiKai, Hunt et al. 2001).  

Best linear unbiased predictor (BLUPs) for protein and oil contents was computed 

using the lme4 ‘R’ package based on the mixed model: 

          

where y is the phenotypic value (protein/oil),   is the fixed effects (block),   is the 

random effects (genotype and environment),   is the residual, while          are the 

incidence matrices.  The BLUPs were estimated for each trait and were used to rank the 

40 SoyNAM parental genotypes. The ranked genotyped based on BLUPs were then 

subjected to GGE analysis.  

Several statistical packages are available to analyze multi-environment trial data, 

however, the stability analyses for seed protein and oil contents in this study were 
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performed with genotype plus genotype by environment interaction (GGE) biplot using 

‘R’ statistical package, ‘GGEBiplotGUI’(Frutos, Galindo et al. 2014; Lian and de los 

Campos 2015).  

To visually examine genotype by environment interaction (GEI), the GGE biplot 

was constructed from the first two principal components (PC1 and PC2) derived from 

subjecting environment centered seed protein and oil contents data using the equation  

yij =   +   +           
 
    

embedded in the (GGE) biplot ‘R’ statistical package, ‘GGEBiplotGUI’(Rakshit, 

Ganapathy et al. 2012). Where yij is the response mean of i-
th

 genotype in j-
th

 

environment,  μ is the grand mean, ß is the main effect of j-
th

 environment, k is the  

number  of principal components (PC) required for appropriate depiction of GGE,    is 

the singular value of the k
th

 PC (PCk); and     and     are the scores of i
th

 genotype and 

j
th

 environment, respectively for PCk (Rakshit, Ganapathy et al. 2012).   

The MET data for the two traits were analyzed with the biplots tools option of 

GGEbiplotGUI R package with scaling set to one standard deviation, the tester centered 

model set to (G+GE),  and  singular value decomposition of position matrix (SVP) was 

different depending on the type of analysis. The SVP for the different types of analyses 

was as follows: for viewing genotype patterns or locations it was set to JK- (Row Metric 

Preserving), for examining relations among environments it was set to HJ-(Dual Metric 

Preserving), for  which–won-where pattern it was set to HJ-(Dual Metric Preserving), and 

for the genotype mean vs stability the SVP was set to JK- (Row Metric Preserving), and 

ranking with reference to ideal genotype it was set to JK-(Row Metric Preserving) 

(Greenacre 2010).  
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5.5 Results 

5.5.1 Variability in Seed Protein and Oil Contents  

 Summary statistics for the two traits were calculated using proc mixed procedure 

in SAS 9.4 (Table 5.3). Percent of protein and oil contents varied from location to 

location and years to years (Table 5.3). Detail information about the extent of the 

variation in seed protein and oil contents is provided in (Table 5.3). Overall, percent of 

mean protein content across locations and years ranged from 30.11-38.99 with the overall 

mean of 34.74 and standard deviation of 1.55, while the percent of mean oil content 

across locations and years ranged from 16.80-22.93 with the overall mean of 19.36 and 

standard deviation of 0.97 (Table 5.3). High standard deviation in the protein content 

indicates that the variation in protein content across locations and years is larger than the 

variation in oil content. 

Table 5.3. Summary statistics for protein and oil by environment and across 

environments. 

  

Protein 

 

Oil 

Environment N Mean Std Min Max 
 

Mean Std Min Max 

Overall 1222 34.74 1.55 30.11 38.99 
 

19.36 0.97 16.80 22.93 

2012_IA 106 34.13 1.20 31.68 37.41 
 

18.68 0.80 16.80 20.32 

2012_IL 160 34.03 1.30 30.93 37.19 
 

19.72 0.82 17.61 21.73 

2012_IN 157 35.59 1.49 31.56 38.99 
 

18.99 0.90 16.94 21.45 

2012_NE 160 35.42 1.30 31.60 37.90 
 

18.66 0.68 17.10 20.30 

2013_IA 160 33.89 1.21 30.80 36.47 
 

18.90 0.60 17.44 20.87 

2013_IL 160 33.58 1.22 30.11 36.85 
 

20.72 0.68 18.16 22.93 

2013_IN 159 35.07 1.22 31.28 37.65 
 

19.63 0.58 17.75 21.74 

2013_NE 160 36.04 1.30 32.31 38.96 
 

19.34 0.72 17.62 20.91 

IA, IL, IN, and NE, indicate, Iowa, Illinois, Indiana, and Nebraska, respectively. 

Std=standard deviation, N= number of observation; Min=minimum, Max=maximum. 

Frequency distribution showed that the two traits were normally distributed across 

location and years, indicating that the seed protein and oil contents were controlled by 

many genes (Figure 5.1). 
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Figure 5.1. Frequency distribution of seed protein and seed oil content in SoyNAM 

parental genotypes vertical red lines represent overall mean value for each trait.  

 

 Combined analysis of variance (ANOVA) revealed significant differences 

(P<0.001) for seed protein content among genotypes, location, year and their respective 

interactions as well as the threefold interactions among genotypes, locations, and years 

(Table 5.4). The sum of squares due to genotypes and the environments were high, 

indicating that the mean seed protein and oil contents of the genotypes were different 

across environments and the selected environments were diverse. In term of total 

variation explained, genotypes accounted for 40.1% variation in protein content and 29.1% 

in the oil content while location explained 28.21% and 30% variation in the two traits, 

respectively (Table 5.4). Variation due to year, genotypes x year, genotypes x location 

and genotypes x location x year was significant and they explained small amount of 

phenotypic variation in the seed protein and oil contents compared to genotypes and 

locations. 
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Table 5.4. Analysis of variance for protein and oil across environment using the 

SoyNAM parents. 

    Protein   Oil 

Source DF SS MS R
2
   SS MS R

2
 

Genotype (G) 39  1175.2   30.1*** 40.10 

 
335     8.60*** 29.10 

Location (L) 3   825.9 275.3*** 28.21 

 
345.8 115.27*** 30.00 

Year (Y) 1      6.5    6.5***   0.22 

 
112.8 112.8***   9.82 

Replication (R) 3      1.5     0.5
ns

   0.05 

 
     0.2      0.07

 ns
   0.02 

G x L 117  161.2     1.38***   5.50 

 
   61.1      0.52***   5.31 

G x Y 39    84.3     2.16***   2.87 

 
39.1      1.00***   3.40 

G x L x Y 117  166.5     1.42***   5.68 

 
    62.7      0.54***   5.45 

Residuals 902  414.9     0.46 
  

  145.4 0.16 
 

Total 1221 2836.0         1102.1          

Mean 

 

   34.74 
   

    19.36 

  Max 

 
   38.99 

   
    22.93 

  Min 

 
   30.11 

   
    16.80 

  LSD 

 
   0.33 

   
  0.19 

  SED 

 
   0.68 

   
      0.40 

  CV 

 
   2.00 

   
      2.10 

  *, **, *** represents the significant level of 0.05, 0.01 and 0.001, respectively; 

Min=minimum, Max=maximum, LSD=least significant differences, SED= standard error 

of difference; CV= coefficient of variation. R
2
 = phenotypic variation explained (%).  

 

 

5.5.2 Correlation between Oil and Protein   

 The phenotypic and genotypic correlations between protein and oil were -

0.59, and -0.66, respectively, reflecting that simultaneous improvement in both traits 

would be challenging since improvement in one trait would result in decrease in the other 

trait. The negative correlation between protein and oil in soybean seed could be due to a 

pair of tightly linked protein and oil QTL whose individual allele might increase one trait 

but result in decrease in the other. Or the two traits could be controlled by just one 

pleiotropic QTL, whose two alleles have inverse effects.  
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5.5.3 Stability Analysis for Protein and Oil Content Across Multiple Environments 

Growing same genotypes in different environments under highly variable weather 

conditions often results in a mix of crossover and non-crossover types of genotype by 

environment interaction (GEI) (Nzuve, Githiri et al. 2013). The crossover GEI 

complicates breeding and selection for important traits and is a main concern to plant 

breeders (Lynch and Walsh 1998; WeiKai, Hunt et al. 2001; Lyimo, Pratt et al. 2012; 

MITROVIÃ, TRESKI et al. 2012).  

To evaluate the extent of GEI, we grouped the 40 SoyNAM parental genotypes 

into three categories (15 top yielding, 15 moderate yielding, and 10 poor yielding), based 

on BLUP data (Table 5.5 and 5.6), and subjected them to GGE analysis. Genotypes in all 

the three categories for both, seed protein and oil contents, showed variable performance 

across environments, indicating presence of crossover GEI (Kaya, Akçura et al. 2006). 

The line graphs embedded in Tables 5.5 and 5.6 provide a clear view of GEI, showing 

genotypic seed protein and oil contents fluctuations due to environmental variation.  
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Table 5.5. Mean seed protein content of 40 SoyNAM parental lines, selected based on 

BLUP; seed protein content fluctuations of the parental genotypes across eight 

environments are displayed in the line graph.  
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Table 5.6. Mean seed oil content of 40 SoyNAM parental lines, selected based on BLUP; 

seed oil content fluctuations of the parental genotypes across eight environments are 

shown in the line graph. 
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5.5.4 Stability Analysis for Seed Protein Content 

The GGE-biplot, based on genotype focused scaling, revealed that the first two 

principal components PC1 (Axis 1) and PC2 (Axis2) accounted for a total of 85.79% 

variation in the protein mean content (Figure 5.2). All of the 15 top genotypes with high 

seed protein content and some of the intermediate genotypes had PC1 scores > 0 and 

were grouped by the biplot as adaptable or genotypes with high seed protein content 

(Figure 5.2).  

 
Figure 5.2. GGE-biplot for seed protein content based on genotype-focused scaling for 

genotypes. 

G stand for genotypes. Codes of genotypes are given in Table 5.5. Genotypes G1-G15 are 

the top highest yielders, G16-30 intermediate, G31-G40 bottom 10 lowest yielders.  

 

The result from the biplot analysis is in strong agreement with our BLUP 

selection. Although the two methods provided same results, the GGE-biplot method is 

preferred over BLUPs since it supplies further information on the stability of the selected 

genotypes. In the biplot, any genotype that has PC2 scores near or equal to zero are 

considered stable and those located further away from zero are considered unstable. 
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Accordingly, genotypes G14, G10, G12, G3, G2, G7, G9, and G1 were the most stable 

genotypes among the top 15 high yielding seed protein content, whereas G5 and G8 were 

unstable (Figure 5.2). Genotypes G25, G29, G28, and G38 were the most stable among 

the intermediary and poor seed protein content categories, respectively (Figure 5.2). 

Similar stability pattern was provided by the average environment coordination (AEC) 

view of the GGE-biplot (WeiKai, Hunt et al. 2001; Yan 2002) (Figure 5.3). In this 

method, the average PC1 and PC2 scores of all environments, shown by a small circle, 

defines an average environment (Figure 5.3).  

 

Figure 5.3. Average environment coordination (AEC) views of the GGE-biplot for seed 

protein content based on environment-focused scaling for the means performance and 

stability of genotypes. 

Details of genotypes and environments are provided in Tables 5.1 and 5.2. IA, IL, IN, 

and NE, indicate, Iowa, Illinois, Indiana, and Nebraska, respectively; 12 and 13 represent 

the year 2012 and 2013.  

 

A line passing through the average environment and the biplot origin is called the 

average environment axis (AEA) and serves as the value of the AEC on the horizontal 

axis (Kaya, Akçura et al. 2006). Genotypes closer to the AEA are considered stable while 

genotypes located away from AEA, are regarded unstable. In other words, as the distance 
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of the genotypes from the AEA increase, the chance of GEI increase and stability is 

reduced. The distance between the average environment marker (circle in Figure 5.3) and 

the biplot origin provides an estimate of the relative importance of genotype main effect 

vs. GEI. In this study, average environment marker (circle in Figure 5.3) is sufficient 

away from the biplot origin, indicating that genotypes could be selected based on seed 

protein content mean performance. Considering this, genotypes with mean seed protein 

content above average means, which include all the top 15 and some intermediate 

category, would be selected and the rest discarded. However, stability is important and 

with the GGE-biplot analysis we were able to identify and select desired genotypes based 

on both mean and stability. For instance, genotypes G14, G10, G12, G3, G2, G7, G9, and 

G1 were both stable and had higher seed protein content, while genotype G5 and G8 had 

higher seed protein content but unstable (Figure 5.3). We conducted environment-focused 

GGE-biplot analysis aiming to examine the patterns of environments (Figure 5.4).  

 
Figure 5.4.  Seed protein content GGE-biplot based on environment-focused scaling for 

environments. 

PC and E stand for principal component and environments, respectively.  
Details of environments are given in Table 5.2. IA, IL, IN, and NE, indicate, Iowa, Illinois, Indiana, and 

Nebraska, respectively; 12 and 13 represent the year 2012 and 2013. 
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An environment with only positive PC1 scores, suggests that PC1signify 

comparative genotype-trait differences across environments, and crossover GEI is not 

going to happen. In contrast, PC2 with  positive and negative scores represents a typical 

feature of crossover GEI (Yan, Hunt et al. 2000). A genotype may have large positive 

interactions with some environments, but at the same time, it may have large negative 

interactions with some other environments. In this study the environments IN.13, and 

IL.13 were similar; since they had similar genotype means seed protein performance 

(Figure 5.4). On the other hand, PC2 scores of the other six environments IN.12, IL.12, 

NE.12, NE.13, IA.12, and IA.13 were absolutely greater than zero, indicating large 

crossover interaction effects, and therefore they were considered non-representative 

(Figure 5.4). The PC2 scores of the two environments IN.13, and IL.13 were near zero, 

indicating that there will be less crossover interaction effect, and for that reason, they 

were considered more discriminative and representative (Figure 5.4).   

The which-won-where pattern of MET data, which display polygon view of the 

GGE-biplot, provides visual summary of the GEI pattern of a MET data set (Yan, Hunt et 

al. 2000; WeiKai, Hunt et al. 2001; Gauch 2006). The polygon is formed by connecting 

the markers of the genotypes that are located far away from the biplot origin such that all 

other genotypes are kept inside the polygon. In the polygon, lines perpendicular to the 

sides of the polygon divide the biplot into sectors. In this study, the polygon was divided 

into 7 sectors and the entire environments fell in the first sector (Figure 5.5), with G1 

being the vertex genotype, indicating that G1 was the highest seed protein content 

genotype in all environments. Genotype G1 would be preferred since it out yielded all 

others in all environments. 
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Figure 5.5. Polygon view of seed protein content GGE-biplot of the which-won where 

pattern for genotypes and environments. 

G stand for genotype; IA, IL, IN, and NE, indicate, Iowa, Illinois, Indiana, and Nebraska, 

respectively; 12 and 13 represent the year 2012 and 2013. Details of genotype and the 

environments are provided in Tables 5.1 and 5.2. 

 

Genotype-focused scaling GGE-biplot which compares genotypes with ideal 

genotype was used to identify the most desirable lines (Figure 5.6). The desired 

genotypes should out yield all other genotypes and should have the highest mean 

performance across environments with higher stability and no GEI and it is shown in the 

plot by an arrow in the central concentric center (Figure 5.6). The genotype focused 

scaling biplot, which is based on both stability and mean performance, revealed that G1 

and G2 fell into the center of concentric circle. On the other hand, G3, G4, G6, and G7 

were located on the next concentric circle (Figure 5.6). The genotypes in these two circles 

are considered the most desirable genotypes compared to the rest of the genotypes 

studied.   
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Figure 5.6. GGE-biplot for seed protein based on genotype-focused scaling for 

comparison of the genotypes with ideal genotype. 

G stand for genotype; IA, IL, IN, and NE, indicate, Iowa, Illinois, Indiana, and Nebraska, 

respectively; 12 and 13 represents year 2012 and 2013. Details of genotype and the 

environments are provided in Tables 5.1 and 5.2. 

 

5.5.5 Stability Analysis for Seed oil Content 

The GGE-biplot, based on genotype focused scaling, revealed that the first two 

principal components PC1 (Axis 1) and PC2 (Axis2) explained a total of 79.51% 

phenotypic variation in the seed oil mean content (Figure 5.7). The PC1 scores for all top 

15 high seed oil content genotype were greater than zero (PC1 > 0) therefore they were 

grouped by the biplot as adaptable or genotypes with the highest seed protein content 

(Figure5.7).  
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Figure 5.7. GGE-biplot for seed oil content based on genotype-focused scaling for 

genotypes.  

G stand for genotypes. Codes of genotypes are given in Table 5.6. Genotypes G1-G15 are 

the top highest yielders, G16-30 intermediate, G31-G40 bottom 10 lowest yielders. 

 

The biplot analysis result for seed oil content is consistent with our BLUP 

selection. In the biplot, genotypes with PC2 scores close or equal to zero are considered 

stable and those situated further away from zero are considered unstable, therefore, 

genotypes G12, G1, G14, G3, G6, G9, and G7 were the most stable genotypes among the 

top 15 high yielding seed oil content, while G8 and G10 were the most unstable 

genotypes (Figure 5.7). Genotypes G20, G30, G22, G28, G23, and G38 were stable 

among the intermediary and poor seed oil content categories, respectively (Figure 5.7). 

The average environment coordination (AEC) view of the GGE-biplot (WeiKai, Hunt et 

al. 2001; Yan 2002) presented similar stability patterns (Figure 5.8). In this method, the 

average environment, shown by a small circle in the plot, is defined by the average 

PC1and PC2 scores of all environments (Figure 5.8).  
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Figure 5.8. Average environment coordination (AEC) views of the GGE-biplot for seed 

oil content based on environment-focused scaling for the means performance and 

stability of genotypes. 

Details of genotypes and environments are provided in Tables 5.1 and 5.2. IA, IL, IN, 

and NE, indicate, Iowa, Illinois, Indiana, and Nebraska, respectively; 2012 and 2013 are 

the years in which the experiment was conducted. 

 

In the average environment coordination (AEC) view of the GGE-biplot 

genotypes closer to the average environment axis (AEA) are considered stable but as you 

move away from AEA, the chance of GEI increases and stability is reduced. The average 

environment marker is sufficiently far from the biplot origin (Figure 5.8), indicating that 

genotypes selection can be done based on seed oil content mean performance. In this case, 

all the top 15 high seed oil content genotypes, which had above-average means, would be 

selected and the rest would be discarded. Nevertheless, high yielding genotypes without 

stability are not desired. Conducting the GGE-biplot analysis, we were able to select 

desired genotypes based on both mean and stability. Using the GGE-biplot, we were able 

to identify genotypes G12, G1, G14, G3, G6, G9, and G7 both stable and high yielding, 

while genotypes G8, and G10 were high yielding but unstable (Figure 5.8).  
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The environment-focused GGE-biplot analysis was conducted to examine the 

environment pattern for the seed oil content (Figure 5.9). According to the plot, 

environments NE.2012, and NE.2013 were similar due to their genotype means 

performance similarity (Figure 5.9). However, the PC2 scores of the six environments 

IN.2012, IL.2013, IN.2013, IA.2012 and IA.2013 were absolutely greater than zero, 

indicating that the effect of crossover interaction would be high, and therefore they were 

considered unrepresentative (Figure 5.9). The PC2 scores of the two environments 

NE.2012, and NE.2013 were near zero, suggesting less or no crossover interaction effect, 

and thereby, they were considered representative (Figure 5.9).   

 
Figure 5.9.  Seed oil content GGE-biplot based on environment-focused scaling for 

environments. 

Details of environments are given in Table 5.2. IA, IL, IN, and NE, indicate, Iowa, 

Illinois, Indiana, and Nebraska, respectively; 2012 and 2013 are the years in which the 

experiment was conducted. 

 

The which-won-where pattern revealed that the polygon was divided into 7 

sectors and the entire environments fell in the first sector (Figure 5.10), with G1 being the 
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vertex genotype. This indicates that G1 was the highest and foremost seed oil content 

genotype in all environments. Genotype G1 and G2 would be desired since they 

performed well in all environments. 

 
Figure 5.10. Polygon view of seed oil content GGE-biplot of the which-won where 

pattern for genotypes and environments. 

G stand for genotype; IA, IL, IN, and NE, indicate, Iowa, Illinois, Indiana, and Nebraska, 

respectively; 2012 and 2013 are the years in which the experiment was implement. 

Details of genotype and the environments are provided in Tables 5.1 and 5.2. 

 

The genotype-focused scaling GGE-biplot, which compares genotypes with ideal 

genotype and is based on both stability and mean performance, revealed that G1 and G2 

fell into the center of concentric circles (Figure 5.11). These genotypes are considered the 

most preferred genotypes compared to the rest since they are not only high yielder but 

stable too.   
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Figure 5.11. GGE-biplot for seed oil content based on genotype-focused scaling for 

comparison of the genotypes with ideal genotype. 

 G stand for genotype; IA, IL, IN, and NE, indicate, Iowa, Illinois, Indiana, and Nebraska, 

respectively; 2012 and 2013 are the years in which the experiment was conducted. 

Details of genotype and the environments are provided in Tables 5.1 and 5.2. 

 

 

5.6 Discussion  

Multi-environment trials (MET) analysis is important for evaluating adaptability of 

genotypes in a wider array of environments. In this analysis the phenotypic variations is 

partitioned into components that are genetic, environmental and interactions. An 

understanding the relative importance of the G and E help breeders make more informed 

breeding decisions. In this study, the means squares for G, E and GEI were all significant, 

with much of the contribution to the phenotypic variations was due to genotypes. 

Significant G and E indicated that the genotypes were genetically diverse and 

environmental conditions were distinctive for both traits. This suggests that genetic 

improvement can be obtained, but the effect of the environment on genotype performance 
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should be considered as well. Significant GEI happens when ranking of genotypes 

change from an environment to environment (Mohammadi and Amri 2013). GEI for  

seed protein and seed oil contents of soybean have been reported in earlier studies. 

Sudarić et al. (2006) reported a significant GEI for both protein and oil contents using 

combined data from 15 environments. He found that locations explained the largest 

proportion of the total variance for protein content. Zhe et al. (2010) conducted GEI 

analysis for seed composition and other agronomic traits and reported a significant GE 

interaction. Kumar et al. (2006) reported a significant GE interaction for genotypes, 

environment and their interaction for seed protein and oil contents using seven Indian 

cultivars. These results strongly agree with findings of the present study.  

 In the presence of  GEI, selection based on the genotype mean performance alone 

may not be useful because  in such scenario genotype response are specific to the 

environment. In such situation, genotypes may be selected only for a specific 

environment, if interest is to select for wider array of environments then more detailed 

assessment of stability should be conducted (Lynch and Walsh 1998). Large GEI may 

decrease the heritability of quantitative traits , for that reason, it may have negative 

impact on genetic advance from selection. To obatin  reliable results in the presence of 

GEI, a cultivar of interest should be tested in several environments (Lynch and Walsh 

1998; WeiKai, Hunt et al. 2001). The GGE bioplot analysis is effective in dissecting all 

portions of MET data, providing  a powerful visual image of  stability, mean performance, 

and ideal environments for specific genotypes.    

Evaluation of phenotypic and genotypic correlations revealed strong and significant 

correlation coefficients among the two traits, seed protein, and oil contents indicating that 
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simultaneous improvement of these two traits is not possible. This kind of relationship 

can be noticed in the GGE-biplot analysis and BLUPs selection as well. Genotype ranked 

number one in BLUPs selection for seed protein content is ranked the last for seed oil 

content and vice versa. Also, genotypes identified the highest yielding and the most 

stable for seed protein content were the poor yielding and most unstable genotypes in the 

seed oil content or vice versa. This type of relationship between the two traits, seed 

protein and oil contents, is due to the negative correlation between them. The opposite 

effect for both traits could be controlled by just one pleiotropic QTL, whose two alleles 

have inverse effects on both traits.  

 

5.7 Conclusion  

The present study showed that SoyNAM parental genotypes are genetically diverse 

for both traits. The multi-environment trial analysis (MET)  revealed that variation in 

seed protein and oil contents performance of the SoyNAM parental genotypes was 

largely genetic but still influenced by the environment. Dissection of the major 

component sources of aviation (G+GE) for both traits using GGE-biplot depicted the 

possibility of identifying SoyNAM parental genotypes with broad adatapation and those 

that are suited for specific environments. Genotypes G14, G10, G12, G3, G2, G7, G9 and 

G1for seed protein content  and genotypes G12, G1, G14, G3, G6, G9 and G7 for seed oil 

content were  identified as the most stable  and desired compared to the rest. 
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APPENDIX 

 

 

 

R codes for chapter 3 

P&O<-read.table("FILEANOVAPOF46Removed.csv ",fill=T,header=T,sep=",", ) 

head(P&O) 

library(HSAUR2) 

str(PO) 

 

# Basic summary  

summary (P&O[8:12]) 

par(mfrow=c(1,1)) 

boxplot(P&O$Protein~P&O$Env,main="Distribution of Protein by 

Environment",cex=0.9,cex.main=2,cex.lab=1.5,cex.axis=1.3,ylab="%Protein",ylim=c(29

,39),las=1, xlab="Environment",col="gold",notch=TRUE,outline = FALSE) 

 

boxplot(P&O$Protein~P&O$FamNo,main="Distribution of Protein by 

Population",cex=0.9,cex.main=2,cex.lab=1.5,cex.axis=0.8,ylab="%Protein",ylim=c(29,3

9),las=1, xlab="Family",col="gold",notch=TRUE,outline = FALSE) 

 

boxplot(P&O$Oil~P&O$Env,main="Distribution of Oil by 

Environment",cex=0.9,cex.main=2,cex.lab=1.5,cex.axis=1.4,ylab="%Oil",ylim=c(16,23),

las=1, xlab="Environment",col="gold",notch=TRUE,outline = FALSE) 

 

boxplot(P&O$Oil~P&O$FamNo,main="Distribution of Oil by 

Population",cex=0.9,cex.main=2,cex.lab=1.5,cex.axis=0.8,ylab="%Oil",ylim=c(16,23),la

s=1, xlab="Family",col="gold",notch=TRUE,outline = FALSE) 

 

par(mfrow=c(2,3)) 

hist(P&O$Protein,main="Distribution of Individual Plot 

Data",cex=1,cex.main=1.7,cex.lab=1.6,cex.axis=1,las=1, 

xlab="Protein%",col="gold",notch=TRUE,use="pairwise.complete.obs") 

mx <- mean(33.79) 

abline(v = mx, col = "red", lwd = 2)



148 

  

1
4
8
 

hist(P&O$Oil,main="Distribution of Individual Plot 

Data",cex=1,cex.main=1.7,cex.lab=1.6,cex.axis=1,las=1, 

xlab="Oil%",col="Gold",notch=TRUE,use="pairwise.complete.obs") 

mx <- mean(19.70) 

abline(v = mx, col = "blue", lwd = 2) 

 

# Correlation analysis  

Overall correlation between protein and oil 

library (psych) 

pairs.panels(P&O[8:12]) 

 

# Correlation on family basis 

require(plyr) 

func <- function(xx) 

{ 

  return(data.frame(COR = cor(xx$Protein, xx$FamNO,use="pairwise.complete.obs" ))) 

} 

ddply(P&O, .(FamNo), func) 

 

func <- function(xx) 

{ 

  return(data.frame(COR = cor(xx$Oil, xx$FamNO,use="pairwise.complete.obs" ))) 

} 

ddply(P&O, .(FamNo), func) 

  

# Variance estimates 

P&O = read.csv("", header=T, sep=",", ) 

attach(P&O) 

# Rename variables for ease of use 

Protein = as.numeric(Protein) 

Oil = as.numeric(Oil) 

LINE = as.factor(Line) 

LOC = as.factor(Loc) 

YEAR = as.factor(Year) 

REP = as.factor(Rep) 

Family = as.factor(Family) 

 

## Calculate variance components 
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# requires lme4 package 

library(lme4) 

# Linear Model with random effects for variance components 

y = lmer(Protein ~ (1|LINE) + (1|YEAR) + (1|LOC) + (1|LINE:YEAR)) 

# Extract variance components 

Summary (y) 

 

# calculate coefficient of variation (CV) 

CV=sqrt(residual)/(grand mean)*100 

 

#R code for GWAS using the SoyNAM and NAM R packages 

install.packages("NAM", repos=c("http://rstudio.org/_packages", 

"http://cran.rstudio.com")) 

library(SoyNAM) 

data(soynam) 

head(ENV(trait = "protein/oil")) 

P=BLUP(trait = "oil",family="all",env = c(1,2,3,4,5,6,7,13,14), 

MAF=0.1,use.check=F,impute="FM",rm.rep=TRUE) 

 

# all the required files for GWAS was extracted from SoyNAM package and then the 

NAM package was used to conduct GWAS. 

 

#Load NAM package 

library(NAM) 

# Set folder 

setwd("C:/Users/Wali Salari/Desktop/GWAS/GWAS-NEWGENODATA") 

# loading phenotypes  

Protein = as.vector (data.matrix (read.delim ("NAM-Protein/NEWPhenoProtein.csv", 

header=F))) 

Oil = as.vector (data.matrix (read.delim ("NAM-Oil/NEWPhenoOil.csv", header=F))) 

Pheno = cbind(Protein,Oil) 

 

# Loading chromosome, family and genotype  

chr = as.vector(data.matrix(read.delim("NAM-Protein/chrNEWGENO.csv",header=F))) 

fam = as.vector(data.matrix(read.delim("NAM-Protein/NEWDATAfam.csv",header=F))) 

gen = read.delim("NAM-Protein/NewGENOTYPIC.csv",header=T,sep=","); 

gen=data.matrix(gen) 
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# Remove replicated observations  

cleaned = cleanREP(y = Pheno,fam = fam,gen = gen) 

 

# Quality control 

gen=snpQC(gen=cleaned$gen,psy=1,MAF=0.2,remove=TRUE,impute=FALSE) 

Prot = cleaned$y[,1] 

Oil = cleaned$y[,2] 

fam = cleaned$fam   

 

# GWAS 

testP=gwas2(Prot,gen,fam,chr) 

testO=gwas2(Oil,gen,fam,chr) 

 

#plot GWAS result 

plot(x=testP,colA=2,colB=3,pch=20,alpha=0.05/4118,main="Oil/Protein",cex.main=1.8,

cex.lab=1.3,cex.axis=1.3, cex = 1,lwd=6) 

#Find the lrt threshold 

optim(1,fn=function(x)abs(-dchisq(x,df=0.5,log=T)+log(0.05/4119)),method="CG")$par 

#Identify marker significant at lrt 15.59 

w = which( testP$PolyTest$lrt > 15.59 ) 

colnames(gen)[w] 

as.data.frame(colnames(gen)[w]) 

#phenotypic variation explained by the significant markers 

j = lm(Protein~gen[,w]) 

aov(j) 

plot(j) 

Return 

summary(j)$r.squared 

 

# Saving GWAS result  

write.csv(TestP,'output.csv') 

 

# Statistical Analysis System (SAS) code  

ods rtf file="P&O.csv.rtf" style= minimal bodytitle; 

title 'Summary statistics FAM46 removed P&O'; 

 

data P&O; 

  infile 'P&O.csv' dsd firstobs=2 missover; 
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  length Env $ 10 Strain $20 ; max=60000; 

  input  Protein Oil Proteingrkg Oilgrkg; 

 

  if Env='' then delete; 

  run; 

proc sort data= AllPomostupdated; 

  by Env; 

proc means data= AllPomostupdated noprint; 

  class Env Family; 

  var Protein Oil Proteingrkg Oilgrkg; 

  output out=Means(rename=(_type_=Type)) N= Mean= StdDev= Min= Max= /autoname; 

  run; 

 

proc print data=Means noobs uniform split='_'; 

  format HtIn_Mean--Oil_Max 7.2; 

  where Type in (2,3); 

  var Env Family Type Proteingrkg_N Proteingrkg_Mean Proteingrkg_StdDev 

Proteingrkg_Min Proteingrkg_Max 

Oilgrkg_N Oilgrkg_Mean Oilgrkg_StdDev Oilgrkg_Min Oilgrkg_Max; 

  run; 

 

proc print data=Means noobs uniform split='_'; 

  where Type in (2,3); 

  format HtIn_Mean--Oil_Max 7.2; 

  var Env Family Type   Protein_N Protein_Mean Protein_StdDev Protein_Min 

Protein_Max 

  Oil_N Oil_Mean Oil_StdDev Oil_Min Oil_Max; 

  run; 

 

ods rtf close; 

 

# R code for chapter 4 

Carbo<-read.table("Soycabohydrates.csv",header=TRUE,sep=",",) 

summary(Carbo) 

library(multcomp) 

 

#ANOVA and distribution  

aov.out1 <- aov(Carbo$Sucrose ~ Carbo$Strain + Carbo$Year, data=Carbo) 

options(show.signif.stars=T) 
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summary(aov.out1) 

 

boxplot(Carbo$Sucrose~Carbo$Year,main="Distribution of %Sucrose by 

Year",cex=0.5,cex.main=2,cex.lab=1.7,cex.axis=1.4,ylab="%Sucrose",ylim=c(4,9),las=1, 

xlab="Year",col="gold",notch=TRUE, outline = T) 

 

hist(Carbo$Sucrose,main="Sucroes",cex=1,cex.main=1.7,cex.lab=1.6,cex.axis=1,las=1,x

lab="Sucrose%",col="cyan",notch=TRUE,use="pairwise.complete.obs",breaks=25) 

mx <- mean(6.873) 

abline(v = mx, col = "red", lwd = 2) 

 

aov.out2 = aov(Carbo$Stachyose ~ Carbo$Strain * Carbo$Year, data=Carbo) 

options(show.signif.stars=T) 

summary(aov.out2) 

 

boxplot(Carbo$Stachyose~Carbo$Year,main="Distribution of %Stachyose by 

Year",cex=0.5,cex.main=2,cex.lab=1.7,cex.axis=1.4,ylab="%Stachyose",ylim=c(1.5,5.5),

las=1, xlab="Year",col="gold",notch=TRUE, outline = T) 

 

hist(Carbo$Stachyose,main="Stachyose",cex=1,cex.main=1.7,cex.lab=1.6,cex.axis=1,las

=1,xlab="Stachyose%",col="yellow",notch=TRUE,use="pairwise.complete.obs",breaks=

25) 

mx <- mean(4.05) 

abline(v = mx, col = "black", lwd = 2) 

 

aov.out3 = aov(Carbo$Raffinose ~ Carbo$Strain * Carbo$Year, data=Carbo) 

options(show.signif.stars=T) 

summary(aov.out3) 

 

boxplot(Carbo$Raffinose~Carbo$Year,main="Distribution of %Raffinose by 

Year",cex=0.5,cex.main=2,cex.lab=1.7,cex.axis=1.4,ylab="%Raffinose",ylim=c(0.5,1.6),

las=1, xlab="Year",col="gold",notch=TRUE, outline = T) 

hist(Carbo$Raffinose,main="Raffinose",cex=1,cex.main=1.7,cex.lab=1.6,cex.axis=1,las=

1,xlab="Raffinose%",col="gold",notch=TRUE,use="pairwise.complete.obs",breaks=25) 

mx <- mean(0.9723) 

abline(v = mx, col = "black", lwd = 2) 

 

# R code for chapter 5 
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POParent = read.csv("ProandOil.csv", header=T) 

## Check to ensure data imported correctly 

str(POParent) 

head(POParent) 

tail(POParent) 

## Attach dataset 

attach(POParent) 

 

boxplot(Protein~Loc, xlab="%Protein", ", main=" Protein ", col="gray") 

# Rename variables for ease of use 

Protein=as.numeric(Protein) 

Oil = as.numeric(Oil) 

Strain= as.factor(Strain) 

LOC = as.factor(Location) 

YEAR = as.factor(Year) 

REP = as.factor(Rep) 

# Distribution  

hist(Protein, col="gray") 

hist(Oil, col="gray") 

 

 

##gge bioplots        

bioplot<-read.table("GGEProtParent1.txt", header=T) 

bioplot<-read.table("GGEOilParent1.txt", header=T) 

head(bioplot)       

#GGE    

library(GGEBiplotGUI) 

GGEBiplot(bioplot) 

 

# SAS code  

title 'MIXED analysis of variance for Soybean Protein and Oil'; 

options ps=73 ls=120 nocenter nonumber; 

data one; 

  infile 'POParent.GGE-biplot.csv' dsd firstobs=2 missover; 

  Length Loc $ 12 Env $ 10 Strain $ 16 Family $ 8; 

  input Loc Year Env Strain Family Block Environment Location Protein Oil; 

  if Loc ='' then delete; 

  run; 
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proc means data=one noprint; 

  class Loc Year Strain ;* Block ; 

  var Protein Oil; 

  format Protein Oil 6.2; 

  output out=Means(rename=(_type_=Type)) N= Mean= Std= Min= Max= / autoname; 

  run; 

title2 'SImple statistics for Main effects'; 

proc print data=Means noobs split='_'; 

  where Type in (0,1,2,4); 

  var Loc Year Strain Type Protein_N Protein_Mean  Protein_StdDev  Protein_Min  

Protein_Max 

                           Oil_N Oil_Mean  Oil_StdDev  Oil_Min  Oil_Max; 

  run; 

title1 'GLM analysis of variance for Soybean Oil and Protein'; 

Year Loc*Year Block Year*Strain Loc*Year*Strain / test; 

  quit; 

 

title1 'GLM analysis of variance for Soybean Oil and Protein'; 

proc glm data=one; 

  class Loc Year Strain Block; 

  model Protein Oil = Loc Year Block Strain Loc*Strain Year*Strain Loc*Year*Strain / 

ss3;* / ddfm=Satterth; 

  random Year Block Year*Strain Loc*Year*Strain / test; 

  quit; 
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