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ABSTRACT 

Ponrajan, Amudhan. Ph.D., Purdue University, August 2016. Investigating Rheological 

Techniques to Model and Predict Operating Conditions of a Single Screw Extruder with 

Internal Restrictions. Major Professor: Martin Okos. 

 

 

Understanding rheology of raw materials and the numerous transformations they undergo 

is an essential aspect of modeling and predicting extrusion conditions. Both off-line 

capillary rheometry and in-line extruder fed rheometry techniques have been used to 

model rheology of materials during extrusion. Investigations on use of an off-line 

capillary rheometer to model apparent viscosity of full fat soy flours revealed inability of 

the capillary rheometer to handle food/biological materials high in oil content (20%) at 

high temperature (80oC) and low moisture content (15% wet basis). The lack shear 

degradation in the capillary rheometer also resulted in over-prediction of corn flour 

viscosities at high temperatures (80 to 120oC), shear rates (1 to 100 s-1) and low moisture 

contents (35 to 40%). A novel two-opening die attached to a small scale extruder 

operating at 100 to 300 rpm was used to measure in-line viscosities of cornmeal at 32.5 to 

37.5% moisture during extrusion. Comparison of off-line versus in-line cornmeal 

viscosities at similar conditions consistently indicated that for food/biological materials 

sensitive to shear degradation, in-line viscosities were lower. Pasting property 

measurement revealed differences in material transformation which could be used to 

explain differences between techniques. Mechanistic model for the small-scale 
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extruder with screw restrictions was built by considering a modified plane Couette flow 

setup with varying gaps and heat fluxes leaving at both plates, for one screw, one 

restriction and a die setup. The model successfully predicts the effect of screw restriction 

gap, extrusion pressure, viscous dissipation and heat fluxes. 

 

Keywords: Extrusion, rheology, modeling, grains 
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CHAPTER 1. INTRODUCTION 

Extrusion processing has become a versatile and valuable technology for polymer & 

plastics, food & feed, and paper milling industries. Since its introduction, the technology 

has evolved over time to adapt to various needs. Tremendous amount of research has 

been carried out in understanding and development of extruders from piston or ram-type 

extruders, to the most advanced twin screw extruders with precision control at every 

stage of the process. Understanding the rheology of raw materials and the numerous 

transformations they undergo during extrusion has been proven to be an essential aspect 

of understanding the process. It is necessary for modeling various components of the 

extrusion process, which in turn can help predict and optimize operating conditions, 

design and scale-up processes, define final product characteristics and reduce cost 

(Bouvier and Campanella, 2014; Harper, 1981; Mercier et al., 1989). 

1.1 Rheological techniques 

Both in-line and off-line rheometry techniques have been used to understand the rheology 

of a material during extrusion. Capillary rheometry is one of the most common off-line 

techniques used in polymer processing, mainly to measure viscosities at high shear rates. 

Compared to rotational rheometers which are limited to liquids, gels or pastes, capillary 

rheometers can be used to measure high viscosities of polymer melts at high 
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temperatures, similar to conditions during extrusion (Bird et al., 1987; Morrison, 2001). 

Capillary rheometers have also been used to quantify viscosities of different food 

materials/biopolymers, which exhibit a non-Newtonian pseudoplastic behavior, under a 

range of conditions similar to extrusion (Bagley et al., 1998; Dautant et al., 2007; Fraiha 

et al., 2011; Remsen and Clark, 1978; Sandoval and Barreiro, 2007; Singh and Smith, 

1999; Xie et al., 2012). 

The most common in-line technique involves a single-screw or a twin-screw extruder 

feeding directly into a slit die or a capillary die viscometer which is fitted with multiple 

pressure transducers along its length to measure pressure drop, flow rate and hence 

viscosity at different conditions. In the case of food materials/biopolymers, this technique 

has been used primarily in high temperature, shear and low moisture conditions (Fletcher 

et al., 1985; Harper et al., 1971; Li et al., 2004; Robin et al., 2010; Vergnes et al., 1993; 

Wang et al., 1990). As an alternate to in-line slit die or capillary die viscometer, which is 

challenging to operate especially with biopolymers, a dual orifice die has also been 

investigated (Drozdek and Faller, 2002). More recently, off-line capillary rheometer 

measurements and in-line extruder die pressure and flow rate measurements have been 

utilized in combination to quantify the viscosity of food doughs with varying composition 

at low temperature, high moisture conditions in pasta extrusion (de la Pena et al., 2014). 

Modeling of extruders began in the plastic/polymer industry, but have been adopted in 

food/biopolymer industry over the years. Single screw extruders have been modeled 

mechanistically and numerically, whereas twin screw extruders have primarily been 

modeled numerically due to the complex flow patterns between the screws. The basic 
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mechanistic model is of the metering section in a single screw extruder where the screw 

is considered as a long channel peeled off the screw root and approximating it to a two 

dimensional plane Couette flow. Velocity profiles in the channel, operating 

characteristics such as flow rate and pressure build-up at the die, leakage flow due to 

clearance between the barrel and screw channel, presence of barrel grooves and tapered 

channels in specialized extruders have been successfully accounted for by this approach, 

for Newtonian fluids. In the case of non-Newtonian fluids, complications arise in the 

solution of the equation of motion, hence often, they are carefully approximated as 

Newtonian within certain defined conditions (Harper, 1981). In the case of 

foods/biopolymers, during extrusion processing, they undergo a structural transformation 

in a short period of time. Hence, along with the non-Newtonian behavior, the raw 

material undergo various transformations such as starch gelatinization or melting or 

fragmentation, protein denaturation, binding of macromolecules and other such 

transformations which complicate modeling their behavior under various extrusion 

conditions. Various approaches to account for the aforementioned challenges with 

food/biopolymer extrusion modeling have been documented in several texts (Bouvier and 

Campanella, 2014; Harper, 1981; Kokini et al., 1992; Mercier et al., 1989). 

1.2 Small-scale single screw extruder development 

A 30 kg/hr small-scale single screw extruder, with restrictions on the screw was 

developed at Purdue University (West Lafayette, Indiana), in partnership with Insta-Pro 

International (Des Moines, Iowa), for the National Aeronautical and Space 

Administration (NASA; Figure 1.1). The design of the extruder was based on the scale-
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down of a 300 kg/hr extruder by Insta-Pro International. It was part of a small-scale 

multipurpose seed processor project to serve NASA in long duration Advance Life 

Support system missions beyond Low Earth Orbit. The temperature rise of raw materials 

is purely based on the viscous dissipation during extrusion and no external heat was 

provided (Insta-ProInternational, 2004).  

 

Figure 1.1. Schematic of the small-scale single-screw extruder with restrictions on the 

screw. 

The potential application of this small-scale extruder in developing countries is being 

investigated. One of the main interests is in producing pre-cooked flours from raw grains 

using this extruder. Through a project on process development for ready-to-use 

therapeutic foods (RUTF) for developing countries, nine different grains/grain blends, 

including cereals, legumes and oil seeds were extruded in the small-scale extruder, to 

produce pre-cooked flours. The key operating parameters of the extruder identified based 

on a trial and error approach through this work is tabulated in Table 1.1. 
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Table 1.1. Extrusion parameters for different grains extruded for the RUTF project 

Grain Moisture content  

(% wet basis) 

Screw speed 

(RPM) 

Die Temperature 

(oC) 

Full fat + defatted soybean 

meal (13% oil content) 

10 950 160 

Oats groats 35 700 115 

Whole grain yellow corn + 

Green peas 

30 300 115 

Whole grain teff 35 500 115 

Dehulled pearl millet 35 700 120 

Whole grain white corn 35 900 120 

Emmer wheat grits 35 600 115 

Garbanzo beans 35 750 120 

Lentils 35 550 115 
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1.3 Problem Statement 

The current challenge is the lack of a systematic method to predict operating conditions 

of the extruder, so a trial and error approach can be minimized and more informed 

decisions can be made when presented with a new grain to extrude.  

Capillary rheometry is an off-line technique that can be used to measure, model and 

predict viscosity of solid materials at high shear rates and temperatures, similar to 

conditions in the extruder. In-line techniques such as an extruder fed slit or capillary die 

viscometer could also be used to measure and model viscosity at various extrusion 

conditions. Viscosity models thus developed could be used to mechanistically model 

extruders and predict various operational and product parameters. 

The advantage of capillary rheometry technique is relatively low sample requirement and 

shorter experimentation times. As first objective, full fat soybeans, whole grain yellow 

corn and whole grain white corn, which operated at different conditions in the extruder, 

were chosen for measuring and modeling viscosity using a capillary rheometer at high 

shear rates, temperatures and low moisture contents. Preliminary results for soy beans 

showed the inability of the capillary rheometer to handle raw material with high oil 

content, due to pressure instability. In the case of corn, although consistent results were 

obtained with replications, viscosity models for the two types of corn failed to show 

significant differences between them, as evidenced in extruder operating conditions. The 

model was also over predicting the viscosity compared to other in-line models published 

in literature at similar extruder operating conditions (Li et al., 2004).  
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The lack of shear degradation in the capillary rheometer compared to the extruder was 

hypothesized to be the main reason for its inability to accurately measure the apparent 

viscosity of the material used. In-line techniques, such as a slit-die or capillary-die 

viscometer at the extruder die, on the other hand, have offered better resolution in 

measuring viscosity of various food materials and can also detect changes in shear history 

of the extrusion process (Li et al., 2004; Vergnes et al., 1993; Wang et al., 1990). Using 

in-line rheometers in conjunction with the small-scale extruder pose operational 

challenges in terms of maintaining a continuous flow through the rheometer and 

preventing the product from plugging the rheometer. Hence a different approach was 

needed for in-line viscosity measurement for the small-scale extruder. Use of specially 

designed dies with multiple openings was a possibility for this purpose (Drozdek and 

Faller, 2002). de la Pena et al. (2014) while comparing in-line extrusion measurements 

with  capillary rheometry, showed the possibility of using a capillary rheometer to predict 

process parameters during pasta extrusion process in a region of low temperature, low 

shear and high moisture content. Hence as second objective, the apparent viscosity of 

dehulled, degermed yellow corn was measured and modeled off-line in a capillary 

rheometer and in-line with a two opening die for the small scale extruder, in a region of 

high temperature, high shear and low moisture content. 

There has been no research investigating the differences in product transformation that 

the material goes through during apparent viscosity measurements between an off-line 

and an in-line technique. Hence as a part of the second objective, the difference in 

product transformation that occurs in the capillary rheometer versus the extruder 
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measurement was also investigated, to further understand the limitations of off-line 

measurements. Pasting properties, differential scanning calorimetry and size exclusion 

chromatography of the native and processed material could be used to quantify these 

differences (Moussa et al., 2011; Núñez et al., 2010). 

Mechanistic models that have been developed thus far for single screw extruders have 

looked at the screw as a continuous channel unwound from the screw root. Variations in 

the width and height of the channel have also been modeled (Harper, 1981). But there is a 

lack of literature in mechanistic models for single screw extruders with restrictions on the 

screw. Hence as a third objective, a one-dimensional modified plane Couette flow with 

varying widths was investigated as a basic mechanistic model for a single screw extruder 

with restrictions. 

1.4 Hypothesis 

The working hypothesis of this research is that, given the feed material properties, 

extruder process conditions can be predicted based on desired final product 

characteristics. 

1.5 Goal and objectives 

The overall goal of this proposal is to develop a methodology to model and predict 

operating conditions, such as raw material moisture content and extruder screw speed 

which influence die temperature, of the small-scale extruder with restrictions on the 

screw, based on the rheological properties of a given grain, which is measured by either 
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off-line or in-line rheometry techniques. This research goal will be achieved through the 

following three primary objectives: 

1. Develop rheological models for various grains using off-line capillary rheometry 

at high temperature, shear and low moisture extrusion conditions 

a. Study the effect of temperature, moisture content and shear rate on the 

viscosity of grains in an off-line capillary rheometer 

b. Develop master curve Power-law viscosity models that account for change 

in temperature, moisture content and shear rate for various grains 

2. Compare off-line capillary rheometer and in-line extruder-fed capillary rheometer 

at high temperature, shear and low moisture extrusion conditions 

a. Study the use of dies with two openings of different diameters, as an in-

line viscosity measurement technique for the small-scale extruder 

b. Compare in-line and off-line viscosity measurements 

c. Use pasting properties to quantify differences in product transformation 

during in-line and off-line viscosity measurements 

3. Build a fundamental mechanistic model for a small-scale single screw extruder 

with restrictions on the screw 

a. Develop an analytical model for one double flight screw section and shear 

bushing using one-dimensional plane Couette flow with varying width 

between the two plates 

b. Understand the effect of pressure, heat fluxes and viscous dissipation for a 

Newtonian fluid on velocity and temperature profiles 
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CHAPTER 2. RHEOLOGICAL MODELING OF VARIOUS GRAINS USING OFF-

LINE CAPILLARY RHEOMETRY AT HIGH TEMPERATURE, SHEAR AND LOW 

MOISTURE EXTRUSION CONDITIONS 

2.1 Introduction 

Rheological modeling of food materials is essential in understanding and modeling food 

extrusion processes, to predict operating conditions and define final product properties. A 

number of food materials, from pure starches and cereal grains to grain blends with 

multiple ingredients have been studied for their rheological behavior under high 

temperature and low moisture extrusion conditions. Based on the composition of the 

individual components such as starches, proteins, lipids and fiber, the behavior of these 

materials vary widely (Harper, 1981; Mercier et al., 1989). 

2.2 Literature review 

Both off-line and in-line techniques have been employed for this purpose. Off-line 

measurements were primarily made using capillary rheometers. Remsen and Clark (1978) 

were among the first to report a viscosity model at extrusion conditions for a soy flour 

dough system using a capillary rheometer. Since then, rheology of several different food 

materials have been studied and modeled using a capillary rheometer, including corn 

(maize) starch (Mackey and Ofoli, 1990; Sandoval and Barreiro, 2007; Vergnes and 

Villemaire, 1987), maize grits, potato powder (Senouci and Smith, 1988), potato granule 
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pastes (Halliday and Smith, 1995), wheat dough (Bagley et al., 1998), wheat meal, wheat 

starch, with or without added wheat germ oil and oat flour (Singh and Smith, 1999), rice 

flour (Dautant et al., 2007), complex starchy ready-to-eat formula (Núñez et al., 2010), 

corn and soy mix (Fraiha et al., 2011) and pasta dough (de la Pena et al., 2014). In most 

cases, there is no mechanical treatment in the capillary rheometer, as in the case of an 

extruder. Vergnes and Villemaire (1987) were the first to use a novel capillary rheometer 

with pre-shearing treatment called Rheoplast®, for modeling maize starch viscosity and 

the same was used by Núñez et al. (2010) for modeling viscosity of a complex starchy 

formula. 

In-line techniques have also been used to model viscosity of various food materials, in 

the form of an extruder fed slit-die or capillary-die rheometer mounted with pressure 

transducers and temperature control options. The use of in-line rheometers have evolved 

over a period time with better understanding of thermomechanical history the product has 

experienced in the extruder before in-line measurements (Harper et al., 1971; Lai and 

Kokini, 1990; Li et al., 2004; Robin et al., 2010; Senouci and Smith, 1988; Vergnes et al., 

1993). 

Regardless of the technique used, food melts at extrusions conditions have exhibited a 

non-Newtonian pseudoplastic behavior, which have been fitted to a Power law model. 

Temperature, moisture content and shear rate are among the most common critical 

parameters that are modeled to describe the viscosity of a food melt. The effect of 

temperature is expressed by an Arrhenius-type equation, whereas moisture content and 

shear rate can be fitted with exponential expressions, incorporated into the power law 
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model. Dautant et al. (2007) developed a Power law model for rice flour using a capillary 

rheometer which accounts for change in lipid content (3, 5 and 7%) through an 

exponential expression along with temperature (90, 100, 130 and 150oC), moisture 

content (21, 25 and 29 % wet basis) and shear rate (50 to 500 s-1) variations. Similarly, 

Sandoval and Barreiro (2007), reported the effect of temperature (85, 100 and 120oC), 

moisture content (27 to 30% wet basis) and shear rate (100 to 2000 s-1) on corn starch 

rheology using off-line capillary rheometry. More recently, Fraiha et al. (2011) modeled 

the viscosity of a blend of corn and soybean (70:30 weight basis) in a capillary rheometer 

at various temperatures (80, 120 and 160oC), moisture contents (26.5, 30.4 and 33.4 % 

wet basis) and shear rates (30.4, 72.9, 304.3 and 728.6 s-1). 

The application of a 60 lb/hr small-scale extruder (Insta-Pro International, now 

Technochem Inc., Boone, IA) to produce pre-cooked flours from various grains is 

currently being investigated. The grains cook in the extruder based on viscous dissipation 

of mechanical energy supplied through the extruder screw speed. Restrictions on the 

screw help enhance viscous dissipation and hence temperature of the material increases 

before it exits through the die. Preliminary studies on identifying extruder operating 

conditions for different grains showed that the full fat soy beans, whole grain yellow corn 

and whole grain white corn can be extruded at 900, 300 and 900 rpm, respectively to get 

a desired final product. Modeling the rheology of these grains would help understand and 

model the various extruder operating parameters, which in turn can be used to predict 

operating conditions for new grains. The continued interest in use of an off-line capillary 

rheometer in this study is because of the relatively low sample requirement compared to 
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in-line measurements. Measurements over a wide range of shear rates can also be made, 

in a relatively short time period. They are also versatile in terms of the type of material 

they can handle and they are relatively simple to operate and maintain compared to in-

line rheometers. The main objective of this study is to study the effect of temperature, 

moisture content and shear rate on the viscosity of full fat soy flour, whole grain yellow 

corn flour and whole grain white corn flour using the capillary rheometer and fit the data 

hence generated to Power law viscosity models which account for these three variables. 

2.3 Materials and Methods 

2.3.1 Raw materials 

Full fat soy flour (completely passes through US mesh size 40) was obtained by milling 

commercially available soybean grits (Soy Innovations International, Indianola, Iowa) in 

a pin mill (Alpine Augsburg 160Z, Augsburg, Germany). The initial moisture content and 

oil content of soy flour were determined to be 8.5% and 20% (wet basis), respectively. 

Whole grain yellow corn meal was obtained from Agricor Inc., (Marion, Indiana) and 

milled using the pin mill to make fine flour (completely passes through US mesh size 40). 

Whole grain white corn (Woodland foods Inc., Waukegan, Illinois) was first milled to 

coarse grits in a roller mill and then to fine flour in the pin mill. The initial moisture 

content of whole grain yellow corn and white corn flours was approximately 13%. 

2.3.2 Sample preparation 

For rheological studies, the moisture content of soy flour was adjusted to 15, 20 and 25% 

wet basis, while yellow and white corn flour moisture contents was adjusted to 35, 37.5 
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and 40% wet basis. The moisture addition was carried out by slow addition of distilled 

water during continuous mixing at a medium speed, in a benchtop laboratory mixer 

(KitchenAid Mixer, Benton Harbor, Michigan) at room temperature (21.7oC). The 

moisture adjusted samples were then packed in plastic bags (Ziploc bags, S.C. Johnson & 

son, Racine, Wisconsin) and kept in a cold room (7.2oC) overnight for equilibration. On 

the day of the experiment, the samples were removed from the cold room and allowed to 

equilibrate to room temperature before the experiment. The moisture content of the 

samples was verified after equilibration by standard hot-air oven method for moisture 

determination (103oC for 24hrs). 

2.3.3 Capillary rheometer measurements 

A twin-bore Rosand RH2000 capillary rheometer (Bohlin Instruments, now Malvern 

Instruments Ltd, Worcestershire, UK) was used in this study. The experiments were 

carried out at three different bore wall temperatures (80, 100 and 120oC) for all samples. 

The bores were fitted with 4 mm capillaries of two different length/diameter (L/D) ratios 

of 4 and 8, respectively, for all experiments. Approximately, 110 g of sample was loaded 

in each bore, after the bore wall reached testing temperature. Using the Flowmaster® 

software (Version 8.5, Malvern Instrments), samples were initially compressed at a piston 

speed of 10 mm/min until the pressure transducers in each bore read a constant maximum 

pressure, then the piston was stopped and samples were equilibrated for 10 minutes at the 

test temperature. After equilibration, samples were compressed again at 10 mm/min until 

a constant maximum pressure was reached in each bore (product was flowing out of the 

capillaries in both compression steps). Immediately following this, two sweeps (high to 
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low shear rate and vice versa) of viscosity measurements were made at pseudo wall shear 

rates of 100, 50, 20, 10, 5, 2 and 1 s-1. The pressure recorded from each bore at each shear 

rate was an average of 8 pressure readings (100 readings per minute) when variability 

was within 2%. All the experiments were done is triplicate. 

Shear stress at the capillary wall was determined using the pressure measurements as, 

𝜏𝑤 =
𝛥𝑃 .𝐷

4 .  𝐿
          (2.1) 

The data was analyzed with and without the Bagley correction, which corrects wall shear 

rate for entrance and exit pressure loss (Bagley, 1957). To apply Bagley correction, 

difference in pressure and L/D between the two bores was used in the above formula. 

The pseudo wall shear rate was calculated from, 

�̇�𝑜𝑤 =
4 .𝑄

𝜋 .  𝑅3
          (2.2) 

where, Q is the volumetric flow rate, calculated from piston speeds and bore dimensions 

and R is the radius of the capillary. The true wall shear rate was then obtained by 

applying the Rabinowitsch correction as, 

�̇�𝑤 = (
3𝑛+1

4𝑛
) . �̇�𝑜𝑤         (2.3) 

where, n = d(ln 𝜏𝑤)/d (ln �̇�𝑜𝑤).  

The apparent shear viscosity was calculated as, 
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𝜂 =
𝜏𝑤

�̇�𝑤
          (2.4) 

Power-law model was used to determine the rheological behavior of the different 

samples: 

𝜂 = 𝑘(�̇�𝑤)𝑛−1         (2.5) 

  where n is the power law or flow behavior index and k is the consistency coefficient in 

Pa.sn. 

2.3.4 Rheological modeling 

The effect of temperature, moisture content and shear rate on the viscosity of the different 

samples was modeled using two methods. The first approach is using the method of 

reduced variables or time-temperature superposition described by Bird et al. (1987) to 

build master curves, where shift factor for each variable and their interdependence is 

found by progressively shifting the curves. The final model is of the format: 

log viscosity = slope [log (shear rate) + log a1 + log a2 +…] + intercept  (2.6) 

where, log ai is the shift factor for parameter i. 

The second approach, more commonly reported in literature, is using the model (Eq. 2.7) 

proposed by Harper et al. (1971) where the combined effect of temperature (using an 

Arrhenius equation) and moisture content (by exponential equation) is calculated through 

multiple linear regression analysis. It was performed by the Data Analysis add-on in 

Excel 2013 (Microsoft Inc.). 
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𝜂 = 𝐾𝑜 exp (
𝐸𝑎

𝑅𝑇
) . exp(−𝑎𝑀𝐶) . (�̇�𝑤)𝑛−1     (2.7) 

where, Ko (Pa sn) and a (%-1) are constants, Ea is the activation energy for a molten 

sample to flow (J/g mol), R is the universal gas constant (J/g mol/K), T is the absolute 

temperature (K) and MC is the moisture content of the sample (% wet weight basis). 

2.4 Results and discussion 

2.4.1 Full fat soy flour 

Wall slip was a challenge in quantifying the apparent viscosity of full fat soy flour. Even 

at the lower limits of moisture content (15%) and temperature (80oC) tested, the pressure 

inside capillary rheometer bores did not stabilize, as shown in Figure 2.1. This is 

attributed to the high oil content (20%) of the soy flour, which separates from the flour 

and accumulates at the capillary wall at these high temperatures. 
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Figure 2.1. Pressure readings from two bores of the capillary rheometer while testing full 

fat soy flour at 80oC, 15% moisture and different shear rates. 

Wall slip in polymers has been reported by several researchers and have been 

summarized by (Hatzikiriakos, 2012). Food rheology studies using capillary rheometer 

have also reported wall slip over the years. Halliday and Smith (1995) attempted to 

quantify wall slip in capillary flow of potato granule pastes at temperatures up to 80oC 

using a modified Mooney (1931) method. A critical wall shear stress of the order of 0.1 

MPa, similar to some polymeric material, was determined to cause slip, but the 

heterogeneity of the food matrix and the interaction of various components at different 

conditions were also reported to complicate wall slip determination. Similar observations 

were made by Bagley et al. (1998) while attempting to characterize wheat dough 
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rheology in a constant pressure rheometer. At a constant pressure of 60 psi, using a 

capillary with radius 0.152 cm (L/R = 49.4), large variations in flow rate was recorded, 

which made it impossible to obtain precise pressure drop and hence dough properties. 

The change in wheat dough properties with time also interfered with consistent 

replication of measurements. Fluctuation in extrudate diameter as the filaments emerged 

from the die was also visually observed. In another study, during the measurement of 

power law index and consistency index for rheological modeling of wheat starch, wheat 

meal and oat flour, the capillary diameter had a significant effect on these parameters 

(Singh and Smith, 1999). Capillaries with smaller diameter gave lower viscosity values 

for the same material indicating the occurrence of wall slip. Rice flour with added lipids 

(7%) was qualitative shown to exhibit a very similar pressure fluctuation as the current 

study due to wall slip at moisture contents between 21 and 29% (Dautant et al., 2007). 

Fraiha et al. (2011) reported negative power law index (-0.05) during capillary rheometry 

measurements for a corn soy blend (70:30; mass) at 33.4% moisture and 120oC and 

hypothesized that wall slip may be one of the reasons behind this erroneous result. 

Viscosity measurements made using the same capillary rheometer used in this study for 

soy flour at different oil contents have been reported by Leung (2004). A 5% variability 

of pressure was allowed during measurements and samples were not equilibrated in the 

bores before measurements, which could explain how stable pressure readings were 

obtained. Based on the observations made in this study and evidences documented from 

previous literature, it was concluded that full fat soy flour viscosity cannot be 
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successfully measured at temperature and moisture conditions used in this study because 

of wall slip. 

2.4.2 Whole grain yellow and white corn flour 

For all the temperatures, moistures and shear rates, pressure stability was reached in both 

the bores for both the corn flour samples in the capillary rheometer. Figure 2.2 shows the 

pressure stability reached within the bores when testing 35% moisture content yellow 

corn at 80oC.  

 

 

Figure 2.2. Pressure readings from two bores of the capillary rheometer when testing 

yellow corn flour at 80oC, 35% moisture and different shear rates. 

Based on the bore pressure measurement and preset piston speeds in the capillary 

rheometer, shear stress and pseudo wall shear rate calculations were made using Eqs. 
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(2.1) and (2.2). Power law indicies (n) were calculated for each replicate from the slope 

of log-log plots of these values and actual wall shear rate was calculated by applying 

Rabinowitsch correction in Eq. (2.3). Bagley correction was not initially applied for the 

data analysis (data from L/D = 8 is first analyzed below). The impact of the Bagley 

correction is discussed later on. The data for each replicate was fit to a power law model 

described in Eq. (2.5), to calculate consistency index (k). 

Overall, both the corn flours displayed a pseudoplastic behavior at the shear rates, 

temperatures and moisture contents tested (Figures 2.3 and 2.4). Increase in moisture 

content and temperature led to a decrease in viscosity of both the corn flours, under the 

conditions tested, agreeing with conclusions reported by several others who studied 

similar food/biological systems at these extrusion conditions, using both off-line and in-

line rheometers (Dautant et al., 2007; de la Pena et al., 2014; Fraiha et al., 2011; Halliday 

and Smith, 1995; Harper et al., 1971; Lai and Kokini, 1990; Li et al., 2004; Núñez et al., 

2010; Sandoval and Barreiro, 2007; Senouci and Smith, 1988; Vergnes et al., 1993; 

Vergnes and Villemaire, 1987). 
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Figure 2.3. Viscosity vs shear rate (natural log) plots of whole grain yellow corn flour at 

temperature a) 80oC, b) 100oC and c) 120oC and 35%, 37.5% and 40% moisture contents. 
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Figure 2.4. Viscosity vs shear rate (natural log) plots of whole grain white corn flour at 

temperature a) 80oC, b) 100oC and c) 120oC and 35%, 37.5% and 40% moisture contents. 
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The consistency coefficient, k, also decreased with increasing temperature and moisture 

content whereas the power law index, n, did not follow a particular trend, as shown in 

Table 2.1. This is also in agreement with rheological studies conducted on food materials 

by several others (Dautant et al., 2007; Fraiha et al., 2011; Sandoval and Barreiro, 2007). 

On the contrary, while using a pre-shearing rheometer, Vergnes and Villemaire (1987) 

and while using a novel in-line rheometer, Vergnes et al. (1993) and DellaValle et al. 

(1996), reported and modeled dependence of n value on temperature, moisture content 

and specific mechanical energy. 
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Table 2.1. Power law indices (n) and consistency coefficients (k) for whole grain yellow 

and white corn flours, at different temperatures and moisture contents 

  

Yellow corn White corn 

Temperature 

(oC) 

Moisture content 

(% wet basis) 

n 

k 

(kPa.sn) 

n 

k 

(kPa.sn) 

80 35 0.23 76.6 0.26 57.9 

80 37.5 0.29 41.2 0.30 33.8 

80 40 0.30 30.0 0.31 24.4 

100 35 0.23 48.3 0.23 53.4 

100 37.5 0.25 34.5 0.23 36.5 

100 40 0.24 25.5 0.23 27.4 

120 35 0.21 27.6 0.23 23.4 

120 37.5 0.23 21.7 0.23 18.2 

120 40 0.26 13.1 0.25 15.3 
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2.4.3 Rheological Modeling 

2.4.3.1 Master curves 

In order to build master curves, the viscosity data from both the corn flours was modeled 

by the method of reduced variables to fit in Eq. 2.6 (Bird et al., 1987). The procedure to 

build the master curve and to calculate shift factors for temperature and moisture content 

is described in the next few sections by using the whole grain yellow corn flour data, 

without Bagley correction. The data at each temperature was first shifted for a reference 

moisture content of 35%. The values by which the shear rates had to be shifted, in order 

to superposition to the reference moisture content was calculated for the 37.5% and 40% 

moisture contents, at each temperature. These values are plotted to obtain curves for the 

moisture shift factors (aM) at each temperature (Figure 2.5). 
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Figure 2.5. Moisture shift factors (aM) for whole grain yellow corn flour at different 

temperatures (80, 100 and 120oC) plotted for the different moisture contents (35, 37.5 and 

40%, expressed as decimal moisture content) with 35% as the reference moisture content. 

A reference temperature of 80oC is chosen for the master curve. To determine the 

temperature dependence of aM, they are plotted against different temperatures for a 

reference aM value (Figure 2.6). From the plot, it can be inferred that aM is dependent on 

temperature (R2=0.87). Hence the equation for calculating aM, (linear fit equation at 

reference temperature) is written as, 

ln (aM) = 19.638 (M+b) – 6.8518, where b = -0.0002 (T) + 0.0153, M is decimal 

moisture content and T is the temperature in oC.     (2.8) 

y = 19.638x - 6.8518

R² = 0.9943

y = 15.732x - 5.5148

R² = 0.9985

y = 16.505x - 5.8284

R² = 0.955

0

0.2

0.4

0.6

0.8

1

1.2

0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41

ln
 a

M

Decimal moisture content

80 C

100 C

120 C



31 
 

 

Figure 2.6. Temperature dependence of moisture shift factor (aM) for whole grain yellow 

corn flour at different temperatures (80, 100 and 120oC). 

Using Eq. 2.8, all the shear rate data at different moisture contents are shifted to reference 

moisture content of 35%, at all temperatures. The moisture shifted curves at different 

temperatures are shown in Figure 2.7. 
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Figure 2.7. Moisture shifted curves for whole grain yellow corn flour at different 

temperatures (80, 100 and 120oC) with 35% reference moisture content. 

Temperature shift factors were calculated for 100oC and 120oC by shifting the curves to 

the reference temperature of 80oC, by using the linear fit equation obtained for each 

temperature from the moisture shifted curves (Figure 2.7). These shift factors were then 

plotted against temperature (Figure 2.8) to get the equation for temperature shift (aT) as, 

ln (aT) = 0.0355 (T) – 2.8868        (2.9) 

where T is temperature in oC. 

y = -0.7299x + 11.09

R² = 0.9946

y = -0.749x + 10.749

R² = 0.9957

y = -0.7561x + 10.128

R² = 0.9837

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7

ln
 V

is
co

si
ty

ln (shear rate * aM)

80 C

100 C

120 C



33 
 

 

Figure 2.8. Temperature shift factors plotted for whole grain yellow corn flour at 

different temperatures (80, 100 and 120oC) with 80oC as the reference temperature. 

Using Eq. 2.9, the moisture shifted shear rate data is shifted to the reference temperature 

of 80oC to get the master curve for whole grain yellow corn flour (Figure 2.9). 
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Figure 2.9. Master curve for whole grain yellow corn flour at a range of shear rates, 

temperatures (80, 100 and 120oC) and moisture contents (35, 37.5 and 40%) shifted 

against a reference temperature of 80oC and reference moisture content of 35%. 

In order to understand the importance of Bagley correction, the whole grain yellow corn 

flour data was re-analyzed (using data from both bores, at L/D = 8 and 4). The data was 

used to build a master curve following the same steps described above. A comparison of 

master curves with and without Bagley correction for entrance and exit effects is 

presented in Figure 2.10. From this figure, it can be inferred that, applying Bagley 

correction does not significantly impact the viscosity master curve for whole grain yellow 

corn in the range of conditions tested in the capillary rheometer, but the R2 value drops to 
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similar observation (data not shown). Hence for further analysis of data and modeling, 

Bagley correction was omitted. 

 

Figure 2.10. Comparison of whole grain yellow corn flour master curves with and 

without Bagley correction in the range of conditions tested. 

The viscosity data for whole grain white corn was modeled in the same approach 

described and the data is compared with whole grain yellow corn in Figure 2.11. The 

values of constants obtained by modeling both the corn data to build viscosity master 

curves is given in Table 2.2. 
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Figure 2.11. Comparison of whole grain yellow and white corn flour viscosity master 

curves in the range of conditions tested. 
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Table 2.2. Estimated values of constants in the viscosity master curve represented by Eq. 

2.6, for whole grain yellow and white corn flour. 

 Slope ln aM ln aT Intercept 

Whole grain 

yellow corn 

-0.7441 19.638 (M+b) – 6.8518, 

where, b = -0.0002 T) + 0.0153 

0.0355 (T) – 2.8868 11.147 

Whole grain 

white corn 

-0.733 20.066 (M+b) – 7.0007 

where, b = -0.0005 (T) + 0.0391 

0.0381 (T) – 3.156 10.951 

aM - moisture shift factor 

aT - temperature shift factor 

M - decimal moisture content (wet basis) 

T - temperature in oC 
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2.4.3.2 Multiple linear regression modeling 

The viscosity data for both corn flours was also fit in Harper’s model (Eq. 2.7) using 

multiple linear regression analysis. The parameter estimates for this model for both corn 

flours is shown in Table 2.3. 

Table 2.3. Estimated values of parameter using multiple linear regression for the power 

law viscosity model represented by Eq. 2.7, for whole grain yellow and white corn flours. 

 Ko Ea/R a n 

Whole grain yellow corn 6.60 3212 0.12999 0.25 

Whole grain white corn 7.30 2754 0.11775 0.26 

Ko in Pa. sn 

a in %-1 

Ea/R in K 

 

2.4.4 Challenges observed 

The key observation made from tables 2.2, 2.3 and fig. 2.11 is that there is no significant 

difference in viscosity between whole grain yellow and white corn flours in the range of 

conditions measured using the capillary rheometer. The whole grain yellow and white 

corn were extruded at 300 and 900 rpm, at 98 and 170 W.h/kg of specific mechanical 

energy respectively, in the small scale extruder, at a feed moisture of 35% to give die 

temperature rise of around 120oC to produce pre-cooked products. This is a clear 

indication of difference in rheology of these two types of corn which is the underlying 
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premise of this work. But the lack of difference in the viscosity models developed from 

the capillary rheometer led to a deeper investigation to explain these results. 

2.4.5 Raw material composition 

Starch is the major component of most cereal grains. Native starches occur in multilevel 

structures called granules, containing alternative amorphous and crystalline regions. 

Starch is a polysaccharide comprised of D-glucose units. The two major components of 

starch are – long chain unbranched amylose and short chain highly branched 

amylopectin. Amylose is sparsely branched where the glucose units are connected with 

α(1-4) bonds and can have a degree of polymerization as high as 600 with a molecular 

weight of 105 to 106 Da. Amylopectin on the other hand, is highly branched because of 

the presence of 5% α(1-6) bonds between the glucose molecules which also gives it a 

high molecular weight of 107 to 109 Da and the degree of polymerization is around 15 in 

each branched chain (Xie et al., 2012). 

One of the initial hypotheses is that the corn flours used in this study could have different 

composition of amylose and amylopection. Waxy corn is rich in amylopectin and has 

very little amylose (~3%), whereas dent corn has a relatively higher amylose content 

(~25%). This difference in starch composition can have a significant impact on their 

behavior under various processing conditions, since amylopectin is relatively more 

sensitive to processing compared to amylose (Xie et al., 2012). Han et al. (2002) 

documented the effect of starch damage by ball milling on its rheological behavior. A 

significant decrease in shear stress and viscosity was observed in both waxy and normal 

maize starch, but waxy starch underwent more pronounced changes than normal starch. 
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Both the corn flours used in the study were analyzed for amylose content 

(Amylose/Amylopectin assay procedure, Megazyme, Ireland). The assay revealed that 

amylose content of the yellow (29.1%) and white (27.2%) corn flour were not 

significantly different. This eliminates the difference in starch composition as a possible 

reason for difference in their rheological behavior. 

2.4.6 Effect of particle size 

Both the whole grain yellow corn and white corn were milled to fine flour before use in 

the capillary rheometer. But the whole grain yellow corn was obtained as a corn meal 

from the corn milling company (Agricor Inc.) and extruded as a meal. The particle size of 

the meal, including the individual components – endosperm, germ and bran or pericarp 

was uniform since it was industrially milled. Whereas the whole grain white corn was 

obtained as corn kernels and milled in the laboratory. Milling all the components white 

corn to a uniform particle size was a challenge since the appropriate equipments were not 

available. The pericarp or bran particles were challenging to mill and were larger 

compared to the endosperm. This variation in particle size of the components can have a 

significant effect on the material rheology within the extruder. This is possibly 

hypothesized as one of the reasons behind the difference in operating extrusion operating 

condition between the two corns. 

2.4.7 Shear fragmentation of starch during extrusion 

As extrusion cooking is primarily carried out at relatively low moisture content, 

compared to the amount of moisture required for completely gelatinization (60%), 
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majority of the starch in the feed material is not gelatinized but melted.  From 

experiments performed on a Brabender single screw extruder and a capillary rheometer, 

shear activation energies calculated for starch conversion were found to be orders of 

magnitude smaller compared to thermal activation energies. This increased efficiency of 

shear energy is a very important factor in making extrusion an efficient cooking method 

(Wang, 1993; Zheng and Wang, 1994). Lai and Kokini (1991) have compiled the various 

physiochemical changes that starch undergo during the extrusion process, such as 

gelatinization, melting and fragmentation. Among these main changes, fragmentation is 

primarily caused by shear, which is directly co-related to the operating conditions of the 

extruder namely, screw speed, temperature and feed moisture content. The fragmentation 

also varies based on the type of starch used. The larger size and hyper branched 

connectivity of amylopectin reduces its ability to withstand deformation without breaking 

hence making it more susceptible to shear degradation. Selective scission and maximum 

stable size concept were proposed as possible mechanisms of shear degradation of starch. 

Size exclusion chromatography was used to show the fragmentation mechanism of 

amylose and amylopectin starches in twin screw extruder (Liu et al., 2010). While 

studying extrusion cooking of wheat starch, Colonna et al. (1984) reported the 

degradation of amylose and amylopectin by random chain splitting which was quantified 

by intrinsic viscosity, gel-permeation chromatography and average molecular weight 

measurements. Wen et al. (1990) reported maximal fragmentation at low moisture 

content (20%), low temperature (100oC) and high screw speed (300 rpm), when the 

mechanical energy was at its peak, during twin screw extrusion of corn meal. Measuring 

specific mechanical energy (SME) has been used as a method to quantify the amount 
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shear energy that has been supplied to the material during extrusion (Lai and Kokini, 

1991). 

2.4.8 Shear degradation during in-line vs. off-line rheological measurements 

In off-line rheological measurements using capillary rheometers, the sample is not subject 

to shear degradation prior to viscosity measurements; hence they cannot reproduce the 

shear history experienced by a material in an extruder fed in-line rheometer. Senouci and 

Smith (1988) compared shear viscosity measurements of maize grits, potato powder and 

low density polyethylene made using an extruder-fed slit die viscometer and a capillary 

rheometer. A strong dependence of viscosity on extrusion processing history for maize 

grits and potato powder was reported which was associated with the macromolecular 

degradation of the food material inside the extruder. A comparison of the maize grits 

viscosity data with model developed in the current study is shown in Figure 2.12. There 

is a reasonable agreement in the capillary rheometer measurements made between the 

two studies. But the in-line measurements made by Senouci and Smith (1988) is clearly 

much lower than compared to either of the capillary rheometry measurement. This is a 

clear indication of the impact of the shear degradation/history experienced by the material 

or the lack of, on its viscosity. 
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Figure 2.12. Comparison of viscosity model built for whole grain yellow corn flour in 

the current study with in-line and capillary rheometer models built for maize grits by 

Senouci and Smith (1988) at a reference temperature (120oC) and moisture content 

(35%). 

In special off-line rheometers like a pre-shearing rheometer (Rheoplast), a material could 

be subject to a specific, defined pre-shearing treatment before viscosity measurement in 

the Couette zone of the rheometer after the material is melted, but there are challenges 

associated even in this approach especially when working with foods/biopolymers 

(Martin et al., 2003; Núñez et al., 2010; Vergnes and Villemaire, 1987; Vergnes et al., 

1987). During the pre-shearing process inside the Rheoplast, the moisture content of the 

material might change when water is used as a plasticizer, at high temperature. Also 
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during discontinuous runs, material from the previous trial may continue to cook/melt 

and form a plug in the capillary or the convergent entrance of the injection pot. These 

issues make it challenging to get perfectly reproducible results; hence the experiments 

were repeated several times to get good results. Comparison of the Power law viscosity 

model built by Vergnes and Villemaire (1987) for maize starch with yellow corn flour 

model in the current study (Figure 2.13), showed that the pre-shearing rheometer model 

was predicting a higher viscosity. This could be because the measurements were made on 

pure maize starch whereas in the current study whole grain flour was used instead. The 

challenges with material from previous runs plugging in the pre-shearing rheometer could 

also result in higher viscosities reported. 
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Figure 2.13. Comparison of viscosity model built for whole grain yellow corn flour in 

the current study with pre-shearing off-line rheometer (Rheoplast) model built for maize 

starch by Vergnes and Villemaire (1987) at a reference temperature (120oC) and moisture 

content (35%). 

The viscosity of the same maize starch used by Vergnes and Villemaire (1987) was 

measured by Vergnes et al. (1993) in a specific slit die rheometer (Rheopac) which 

maintains a constant thermomechanical history for the material at a given condition. The 

in-line viscosity measurements (Rheopac) were lower compared to the off-line 

measurement (Rheoplast) and this was attributed to the higher specific mechanical energy 

received by the maize starch during the in-line measurement. When comparing Rheopac 

and Rheoplast viscosity measurements for wheat starch, Martin et al. (2003) also reported 
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discrepancies between the two measurement techniques and attributed it to differences in 

specific mechanical energy and temperature. 

The effect of amylose content (70, 47, 23 and 0%) on the viscous behavior of maize 

starch blends at low moisture contents (20 to 36%, wet basis) and high temperatures (100 

to 190oC) was studied using the Rheopac (DellaValle et al., 1996). From the data 

collected, viscosity models for each amylose content was developed. A comparison of 

these models with the yellow corn flour from the current study is shown in Figure 2.14. It 

indicates that the capillary rheometer model for whole grain yellow corn flour in the 

current study is over predicting viscosity. From Figure 2.14, it can also be seen that 0% 

amylose starch has the lowest viscosity among all the maize starch blends and a 

correlation between increase in amylose and increase in viscosity can be noted. 
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Figure 2.14. Comparison of viscosity model built for whole grain yellow corn flour in 

the current study with in-line rheometer (Rheopac) model built for maize starch blends 

with varying amylose content (70, 47, 23 and 0%) by DellaValle et al. (1996) at a 

reference temperature (120oC), moisture content (35%) and specific mechanical energy 

(150 W.h/kg). 

Li et al. (2004), measured viscosity of corn grits in another type of in-line slit die 

rheometer with a bypass which also ensures that the thermomechanical history 

experienced by the product remains constant during the measurement. The effects of 

moisture content, barrel temperature, screw speed, feed rate and degree of fill of the 

Clextral BC21 extruder have been reported in this study. The n and K values calculated 

from the slit-die rheometer measurements, reported for feed moisture of 35%, barrel 
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temperature of 120oC, screw speed of 400 rpm and feed rate of 7.5 kg/hr, was used to 

compare with the yellow corn in the current study (Figure 2.15). Once again, viscosity 

measurements made in-line were lower compared to the off-line measurements in the 

current study, similar to the comparison with the in-line model by Senouci and Smith 

(1988).  

 

Figure 2.15. Comparison of viscosity model built for whole grain yellow corn flour in 

the current study with in-line rheometer models built for maize grits by Li et al. (2004) 

and Senouci and Smith (1988) at a reference temperature (120oC) and moisture content 

(35%). 

From these comparisons made thus far, it is clear that the lack of shear degradation in the 

capillary rheometer leads to higher viscosity measurements compared to those made in an 
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extruder fed in-line rheometer. Hence, the application of off-line capillary rheometry for 

measuring viscosities of food/biopolymers needs to be further investigated for its 

applications and limitations, by more detailed studies comparing them with in-line 

rheometers in a range of extrusion conditions. 

2.5 Conclusion 

Challenges with pressure instability in off-line capillary rheometer during viscosity 

measurements of full fat soy bean flour at high temperature, shear rate and low moisture 

condition has been documented. Wall slip due to the accumulation of oil separated from 

the flour is hypothesized to lead to this pressure instability. Viscosity measurements for 

whole grain yellow and white corn flours have been successfully made with an off-line 

capillary rheometer. Power-law master curves were built for both the flours using the 

method of reduced variable. Multiple linear regression has also been used to fit the data 

in a mechanistic power law model reported in the literature. Comparison of the viscosity 

models of the two types of corn indicated that there was very little to no difference 

between them, which is in contradiction with their behavior in the extruder. But there is a 

possibility that the difference in extrusion condition is possible because of the raw 

material particle size and uniformity of particle size of the various components. Hence 

the effect of particle size on extrusion conditions also needs to be investigated. The lack 

of shear degradation in the off-line capillary rheometer compared to that of an extruder 

fed in-line rheometer is believed to result in higher viscosity measurements. Hence 

comparison of off-line and in-line viscosity measurement technique is needed for 
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food/biological materials at high temperature, shear and low moisture extrusion 

conditions. 
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CHAPTER 3. COMPARISON OF OFF-LINE CAPILLARY RHEOMETER AND IN-

LINE EXTRUDER-FED CAPILLARY RHEOMETER AT HIGH TEMPERATURE, 

SHEAR AND LOW MOISTURE EXTRUSION CONDITIONS 

3.1. Introduction 

Various methods for understanding and quantifying the rheology of a raw material and 

the numerous transformations it undergoes during extrusion, originated from the polymer 

and plastics industry, similar to much of the advancements in extrusion processing 

technology itself. In most cases for plastics, viscosity is a simple and unique function of 

temperature and shear, hence off-line capillary rheometry can be successfully used to 

measure viscosity. But in the case of food/biopolymers, beside from the instantaneous 

temperature and shear, viscosity also becomes a function of temperature and shear history 

that the material has experienced, because of the physical and chemical changes that the 

macromolecules experience at extrusion conditions (Mercier et al., 1989). 

Off-line capillary rheometry has been used successfully over the years in the 

polymers/plastics industry to understand the rheological behavior of various materials in 

a range of extrusion conditions (Bird et al., 1987; Morrison, 2001; Xie et al., 2012). 

Adaptation of this rheological method to the food/biopolymers industry is still in its early 

stages. Fundamental research is needed to validate and successfully adopt this technique 

from the polymer industry to the food industry. On the other hand, for food/biopolymers, 
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in-line rheometry techniques will allow to account for the temperature and shear history 

experience by a given material in an extruder before measuring viscosity.  

3.2 Literature review 

During polymer extrusion, the main objective is to melt the material which will facilitate 

its shaping with minimal degradation to the native structure of the material. Whereas in 

food extrusion, the complex biopolymer macromolecules undergo various levels of 

degradation, depending on the processing condition and desired final product. In high 

temperature extrusion, for example to produce puffed products or pre-cooked flours, the 

macromolecules are degraded by a combination of thermal and mechanical energy inputs. 

This can be further understood by analyzing the energy inputs for extrusion processing of 

different materials as shown in Figure 3.1.  

The ineffectiveness of off-line capillary rheometry in predicting viscosities of 

food/biopolymers during extrusion at conditions similar to that described in Figure 3.1.(c) 

can be understood, since in a capillary rheometer, thermal degradation is the primary 

degradation, with minimal shear degradation at the die. While measuring the shear 

viscosity of commercial maize grits, potato powder and low density polyethylene using 

an extruder-fed in-line slit die viscometer and an off-line capillary rheometer, Senouci 

and Smith (1988) reported the strong dependence of viscosity of maize grits and potato 

powder on the processing history during extrusion.
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Figure 3.1. Different approaches used for the extrusion of plastic polymers and 

biomaterials in terms of thermal and mechanical energies profiles in the process. (a) 

Energy profile used for extruding plastic polymers. (b) Energy profile used for extruding 

biopolymers with minimum molecular degradation, e.g. extrusion of protein-based 

formulations. (c) Energy profile for extruding polymers where molecular degradation is 

sought, e.g. starch-based products with enhanced design. Reproduced from Bouvier and 

Campanella (2014). 
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Whereas, de la Pena et al. (2014) reported viscosity measurements for pasta dough with 

varying composition of semolina, whole wheat and flaxseed flour in a capillary 

rheometer and successfully used these measurements to calculate viscosity in a semi-

commercial pasta extruder. 

3.2.1 In-line rheometry techniques 

Harper et al. (1971) were among the first to report the use of an in-line rheometer a for 

food material (cooked cereal dough – 80% corn grits and 20% oat flour at 30% moisture) 

viscosity modeling (Fig 3.2). They used a straight tube (capillary) viscometer with two 

pressure transducers and electric heaters (Fig 3.3) and the flow rate through the extruder 

was varied to measure viscosity at various shear rates. The data was modeled to account 

for the combined effect of temperature and moisture content on apparent viscosity (η) and 

fitted to Eq. 3.1 using multiple linear regression, to estimate the parameters for the 

different variables. 

𝜂 = 𝐾𝑜 exp (
𝐸𝑎

𝑅𝑇
) . exp(−𝑎𝑀𝐶) . (�̇�𝑤)𝑛−1       (3.1) 

where, Ko (Pa sn) and a (%-1) are constants, Ea is the activation energy for a molten 

sample to flow (J/g mol), R is the universal gas constant (J/g mol/K), T is the absolute 

temperature (K) and MC is the moisture content of the sample (% wet weight basis). 

Others have reported similar in-line viscosity measurement models without accounting 

for the variability in thermomechanical history using capillary viscometer (Cervone and 

Harper, 1978; Jao et al., 1978) and slit-die viscometer (Fletcher et al., 1985). 
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Figure 3.2. Experimental setup for in-line viscosity measurement of food dough by 

Harper et al. (1971). 

 

Figure 3.3. Schematic of the straight tube viscometer for in-line viscosity measurement 

of food dough by Harper et al. (1971). 
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With further understanding of the importance of thermomechanical history and product 

transformation in in-line viscosity measurements, few attempted to model for these 

changes. Senouci and Smith (1988) used a twin-screw extruder fed in-line slit die 

viscometer with multiple pressure transducers flush mounted along the length of the slit, 

which allows for accurate calculation of entrance and exit effects correction (Fig. 3.4). 

Along the effect of temperature and moisture content, the extruder screw speed was used 

to model the viscosity of maize grits and potato powder. Similarly, specific energy 

(Wang et al., 1990) and degree of gelatinization (Lai and Kokini, 1990) were used as 

parameters in addition to temperature and moisture content to model viscosity, to account 

for the thermomechanical history of the material. 

 

Figure 3.4. Schematic of the in-line slit die viscometer used in conjunction with a twin 

screw extruder by Senouci and Smith (1988). 
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The importance of the extrusion processing history and its impact on viscosity 

measurement and modeling was reported by Padmanabhan and Bhattacharya (1993) for 

corn meal who showed that changing extruder screw speed to vary shear rate through the 

die can result in erroneous viscosity curves, mainly in a single screw extruder. They 

demonstrated the use of a side stream valve near the extruder exit fitted with a slit die 

viscometer (Fig. 3.5) to measure viscosity at different shear rates instead of varying the 

extruder screw speed. In this approach even though the extruder screw speed was not 

changed, the level of opening of the side stream valve while measuring different shear 

rates, could cause changes in pressure in the extruder and the viscometer hence causing 

erroneous results. 

 

Figure 3.5. Schematic of the slit die rheometer attached to a single screw extruder with a 

side stream valve used by Padmanabhan and Bhattacharya (1993) for measuring corn 

meal rheology. 
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Similarly, Vergnes et al. (1993) developed a specific slit-die rheometer (Rheopac; Fig 

3.6), which would allow to keep a constant flow conditions in the extruder while still 

allowing to vary the flow rate in the rheometer by using two flow channels (slits). But the 

extrusion die pressure was not monitored and the relationship between the slits had to be 

calculated to maintain same operating conditions (Li et al., 2004). Hence they were able 

to model the viscosity of molten melts for maize. The influence of amylose content on the 

viscosity of low moisture maize starch blends was also studied using this rheometer 

(DellaValle et al., 1996). Both these studies using the Rheopac in-line rheometer used 

specific mechanical energy as an additional parameter to model viscosity. They have also 

reported the dependence of the power law index (n) on temperature, moisture content and 

specific mechanical energy for certain materials. 

 

Figure 3.6. Schematic of the twin channel slit die Rheopac rheometer with balanced feed 

rate used by Vergnes et al. (1993) and DellaValle et al. (1996). 
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Another novel in-line slit-die rheometer system (Fig. 3.7) was developed by Li et al. 

(2004) which allowed for variation of shear rate in the in-line rheometer without 

changing the extruder operating conditions. The adapter section of the rheometer had an 

option to divert part of the flow from the extruder to the rheometer and discard the rest 

while maintaining a constant extruder back pressure and temperature which was 

monitored continuously, hence maintain a constant thermomechanical history at a given 

extrusion condition. The effect of various extrusion parameters on corn melt rheology 

was reported using this technique. 

 

Figure 3.7. Schematic of the in-line slit-die viscometer used by Li et al. (2004). 

More recently, Robin et al. (2010) reported the development of an innovative in-line 

twin-slit die rheometer with adjustable slit height, to vary flow rate and independent 

temperature controlled slits.  The effect addition of bran to wheat flour and its impact on 

in-line viscosity was studied using this twin-slit rheometer (Robin et al., 2011; Robin et 

al., 2010). 
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Figure 3.8. Schematic of twin-slit adjustable rheometer (a) and the principle of the 

rheometer’s adjustable slits (b) used by (Robin et al., 2011); Robin et al. (2010). 

Drozdek and Faller (2002) took a different approach to in-line viscosity measurement by 

using a dual orifice die (Figure 3.9) to quantify power law index for starchy foods by 

measuring only the flow rate at each die. This is a simpler approach to understanding the 

rheology of materials, but it has limitations, as the power law index is based only on two 

flow rates and any attempt to change the flow rates can be done only by changing the 

extruder screw speed, which changes the thermomechanical history of the product. Also 

extrusion pressure was not measured, so apparent viscosity of the material at different 

conditions cannot be calculated; only the effect of extrusion condition on power law 

index was reported. In another approach, while studying the behavior of pasta dough, de 

la Pena et al. (2014) measured the extrusion pressure before the die to calculate the shear 

stress at the die of the extruder and calculated shear rate from the volumetric flow rate of 

the pasta. These approaches offer new insights in to simpler techniques for in-line 

viscosity measurements. 
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Figure 3.9. Schematic of bifurcated flow, dual orifice die used by Drozdek and Faller 

(2002). 

3.2.2 Starch transformation during extrusion 

Starch goes through several physicochemical and rheological changes during extrusion 

including gelatinization, melting and fragmentation (Lai and Kokini, 1991). Several 

analytical methods have been employed in understanding starch transformation during 

the extrusion process, including, pasting properties to understand change in pasting 

viscosities of starch (Al-Rabadi et al., 2011; Bouvier and Campanella, 2014; Doublier et 

al., 1986; Guha et al., 1998; Moussa et al., 2011), size exclusion chromatography to 

understand changes in molecular weight (Colonna et al., 1984; Liu et al., 2010; Moussa et 

al., 2011; Wen et al., 1990), intrinsic viscosity measurements which is affected by 

changes in molecular weight (Colonna et al., 1984), enzymatic methods to determine 

change in percentage of α-1,6 linkages in native and extruded starches (Colonna et al., 

1984), iodine binding capacity to determine degree of gelatinization (Colonna et al., 

1984; Lai and Kokini, 1990), differential scanning calorimetry (DSC) to quantify changes 

in enthalpy requirements (Donovan, 1979; Wang et al., 2010) and several types of 
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microscopy for qualitative observation of changes occurring in starch (Al-Rabadi et al., 

2011; Colonna et al., 1984; Moussa et al., 2011; Wang et al., 2010). 

Measuring the pasting properties of starch is a simple and effective method to quantify 

starch transformation during extrusion and has been proven to detect differences in 

thermomechanical processing variations. Bouvier and Campanella (2014) have 

documented the use of a Rapid Visco Analyzer which is typically used to study the 

pasting properties, to show effect of thermomechanical processing during extrusion. They 

have reported the use of pasting property to understand the effect of specific mechanical 

energy during the extrusion process and the effect of different screw profiles of the 

extruder. 

3.3 Objective 

The main goal of this study is to build viscosity models that will accurately predict the 

apparent viscosity of a material in a 60 lb/hr small-scale extruder (Insta-Pro International, 

now Technochem Inc., Boone, IA) with restrictions on screws and operates solely based 

on viscous dissipation of mechanical energy. The viscosity model built using an off-line 

capillary rheometer in the previous study over predicted apparent viscosity compared to 

models reported in literature. An appropriate in-line measurement technique is needed to 

compare and understand the differences between off-line capillary rheometer and in-line 

extruder-fed rheometer. The objective of this study is to measure viscosity off-line in a 

capillary rheometer and in-line in the small-scale extruder fed viscometer at high 

temperature, shear and low moisture extrusion conditions. These measurements are then 

compared to draw conclusions regarding the effect of thermomechanical history on the 
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viscosity of the material. In addition, to better understand the physicochemical changes 

experienced by the material in the small-scale extruder versus the capillary rheometer, 

pasting properties of the extrudates from both techniques is quantified. 

3.4 Materials and methods 

3.4.1 Raw material 

Dehulled, degermed yellow corn meal (Degerminated fine yellow cornmeal M77) 

provided by Agricor Inc., (Marion, Indiana) was used for both in-line and off-line 

measurements in this study. The proximate composition and particle size of the cornmeal 

per the specifications provided are tabulated below (Table 3.1 and 3.2). 

Table 3.1. Proximate composition of dehulled, degermed yellow cornmeal used in this 

study. 

Component Range 

Moisture 11.0 – 13.5% 

Protein 4.5 – 8.5% 

Fat 1.25% maximum 

Crude fiber 1.0% maximum 

Ash 1.0% maximum 
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Table 3.2. Particle size of dehulled, degermed yellow cornmeal used in this study. 

Held/Through US sieve size Percentage 

Held US #30 Screen 1% maximum 

Held US #40 Screen 20-50% 

Held US #80 Screen 45-75% 

Through US #80 Screen 5% maximum 

For in-line extruder viscosity measurement, the cornmeal was used at the same particle 

size provided (Table 3.2). For off-line capillary rheometer measurement, the cornmeal 

was milled to fine flour using a pin mill (Alpine Augsburg 160Z, Augsburg, Germany). 

3.4.2 Sample preparation 

For in-line extruder fed viscosity measurement, the corn meal moisture was adjusted to 

32.5, 35 and 37.5% wet basis by mixing a known amount of water initially at slow speed 

for 1 minute then at medium speed for 2 minutes, in a Hobart mixer (H-600T, Hobart 

Corporation, Troy, OH). For each extrusion run 18.1 kg (40lb) of corn meal was 

prepared, by mixing water in four 4.5 kg (10lb) batches individually at room temperature 

(21.7oC). Then the moisture adjusted meals were stored in separate plastic buckets with a 

plastic liner (Open-top bags, 24” x 30”, 2 mils thick, FDA compliant polyethylene resin, 

McMaster-Carr, Elmhurst, IL) and kept in a cold room (7.2oC) overnight for 

equilibration. On the day of the experiment, the samples were removed from the cold 

room and allowed to equilibrate to room temperature before the extrusion run. 

For the off-line capillary rheometer measurement, the fine corn flour moisture was 

adjusted to the same levels (32.5, 35 and 37.5%) as the in-line measurement in benchtop 



69 

 

laboratory mixer (KitchenAid Mixer, Benton Harbor, Michigan) at room temperature 

(21.7oC). The moisture adjusted samples were then packed in plastic bags (Ziploc bags, 

S.C. Johnson & son, Racine, Wisconsin) and kept in a cold room (7.2oC) overnight for 

equilibration. On the day of the experiment, the samples were removed from the cold 

room and allowed to equilibrate to room temperature before the experiment. The 

moisture content of the samples was verified after equilibration by standard hot-air oven 

method for moisture determination (103oC for 24hrs). 

3.4.3 Off-line capillary rheometer measurements 

A twin-bore Rosand RH2000 capillary rheometer (Bohlin Instruments, now Malvern 

Instruments Ltd., Worcestershire, UK) was used in this study. The experiments were 

carried out at three different bore wall temperatures (100, 110 and 120oC). The bores 

were fitted with 4 mm capillaries of two different length/diameter (L/D) ratios of 4 and 8, 

respectively, for all experiments. Approximately, 110 g of sample was loaded in each 

bore, after the bore wall reached testing temperature. Using the Flowmaster® software 

(Version 8.5, Malvern Instrments), samples were initially compressed at a piston speed of 

10 mm/min until the pressure transducers in each bore read a constant maximum 

pressure, then the piston was stopped and samples were equilibrated for 10 minutes at the 

test temperature. After equilibration, samples were compressed again at 10 mm/min until 

a constant maximum pressure was reached in each bore (product was flowing out of the 

capillaries in both compression steps). Immediately following this, two sweeps (high to 

low shear rate and vice versa) of viscosity measurements were made at pseudo wall shear 

rates of 100, 50, 20, 10, 5, 2 and 1 s-1. The pressure recorded from each bore at each shear 
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rate was an average of 8 pressure readings (100 readings per minute) when variability 

was within 2%. All the experiments were done is triplicate. 

Shear stress at the capillary wall was determined using the pressure measurements as, 

𝜏𝑤 =
𝛥𝑃 .𝐷

4 .  𝐿
           (3.2) 

The pseudo wall shear rate was calculated from, 

�̇�𝑜𝑤 =
4 .𝑄

𝜋 .  𝑅3
           (3.3) 

where, Q is the volumetric flow rate, calculated from piston speeds and bore dimensions 

and R is the radius of the capillary. The true wall shear rate was then obtained by 

applying the Rabinowitsch correction as, 

�̇�𝑤 = (
3𝑛+1

4𝑛
) . �̇�𝑜𝑤          (3.4) 

where, n = d(ln 𝜏𝑤)/d (ln �̇�𝑜𝑤).  

The apparent shear viscosity was calculated as, 

𝜂 =
𝜏𝑤

�̇�𝑤
           (3.5) 

Power-law model was used to determine the rheological behavior of the different 

samples: 

𝜂 = 𝑘(�̇�𝑤)𝑛−1          (3.6) 
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  where n is the power law or flow behavior index and k is the consistency coefficient in 

Pa.sn. 

3.4.4 In-line extruder fed viscometer measurements 

For in-line viscosity measurement at the exit of the small-scale extruder (Technochem 

Inc.), combining the ideas of Drozdek and Faller (2002) and de la Pena et al. (2014), a 

novel die with two capillary openings of different diameters (5mm and 3.4mm) and 17 

mm length (same length as normal die used in the extruder) was used (Figure 3.10 (B)).  

 

Figure 3.10. Schematic showing (A) Normal die used in the extruder; (B) Two capillary 

opening die used for in-line viscosity measurement in the extruder; (C) Experimental 

setup during in-line viscosity measurement. 

The diameter of the two openings was initially calculated by matching their total cross 

sectional area with that of the normal die (Figure 3.10 (A)), then after preliminary 
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experiments it was adjusted based on flow ability of the material through the two 

openings. The entrance angle for each opening was designed to be 100 degrees, to avoid 

issues with uneven flow and to allow for fully developed flow through the two openings. 

In-line viscosity was measured at three extruder speeds (100, 200 and 300 rpm) at each of 

three moisture contents of cornmeal (32.5, 35 and 37.5% wet basis; total 9 treatments). 

The extruder speed was measured using the non-contact (laser) option of a tachometer 

(HHT13, contact/non-contact pocket laser tachometer, Omega Engineering Inc., 

Stamford, CT) by fixing a laser reflective tape on a pulley attached to the extruder shaft 

behind the feeding section of the extruder. The extruder was starve-fed using a 

volumetric feeder (Dry materials feeder, serial no. 44126-01A-302, Accu-Rate Inc., 

Whitewater, WI); hence the mass flow rate was different at every treatment condition. 

From an operational standpoint, the extruder was run at one specific moisture content and 

the three screw speeds (100, 200 and 300 rpm), in that specific order, on each 

experimental day. Since temperature rise in the extruder is solely based on viscous 

dissipation of mechanical energy, randomizing the screw speeds was not an option, 

because there was no way to cool the barrels if switching from high to low speed. The 

extruder was allowed to equilibrate at each speed for at least 30 minutes before collecting 

data. Equilibrium was determined by stable pressure, temperature and motor current draw 

measurements at a given condition. Extrusion run at each treatment was replicated three 

times. 

A digital ammeter attached to the 7.5hp motor (P21G6793B, Reliance motors, now 

Baldor, Fort Smith, AR) of the extruder was used to measure current drawn by the motor 
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at no load and when operating at a given condition. The current draw (ampere) readings 

were then converted power (watt) using the motor curves provided by Reliance motors 

(Table 3.3), using Eq. 3.7. 

Table 3.3. Motor performance curve for 7.5hp motor (P21G6793B) by Reliance motors. 

Current 

(A) 

Power 

(hp) 

5.38 0 

5.8 1.88 

6.9 3.76 

8.15 5.62 

10.5 7.51 

12.8 9.37 

 

Power (watt) = 0.4234 (I)2 + 7.6474 (I) – 28.639     (3.7) 

where I is current in ampere. Eq. 3.7 is a second degree polynomial fit of motor 

performance data from 5.38 to 8.15 amperes, since the current draw in the experiments in 

this study did not exceed 8 amperes. The power consumption, along with throughput was 

used to calculate specific mechanical energy at each treatment. 

Temperature was measured using thermocouples at ports (1.6mm openings perpendicular 

to the direction of product flow) just before the exit on both the die openings. 

Temperature was recorded once equilibrium extrusion conditions were reached using a 
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data logger (HH309A 4-channel data logger thermometer, Omega Engineering Inc.) and 

transferred from the data logger to a spreadsheet using the software provided (SE309 

V36). Thermocouples were removed after temperature was recorded, so it does not 

interfere with product flow rate and extrusion pressure measurements. 

A 500 psi pressure transducer (Model PT462E, flexible stem melt pressure transducer, 

Dynisco, Franklin, MA) was flush mounted to the inner wall on the end plate just before 

the die openings. It was in direct contact with the material flowing through to measure 

extrusion pressure. The pressure transducer was connected to a digital display meter 

(TD502T, Transducers direct LLC, Cincinnati, OH). The digital meter had an Ethernet 

output port which was used to connect it to a desktop computer. An IP was assigned to 

the digital meter by the Device Installer software (Lantronix Inc., Irvine, CA) so the 

computer can communicate with the digital meter. Data logger software (Texmate Data 

Viewer 4.2.5.0, Tiger Controller Software, Texmate Inc., Escondido, CA) installed in the 

computer was used to collect the pressure data from the digital meter. The connection 

between the data logger software and the digital meter was setup using the IP address 

assigned to the digital meter. The pressure transducer was calibrated by two point 

calibration (0 and 400 psi) using a dead weight tester (Chandler engineering company, 

Tulsa, OK). The configuration utility software for the digital meter (Texmater Tiger 

Configurate Utility 2009.09.08, Texamte Inc.) was used to set the two point calibration. 

The live graphing option in the data logger software was used to monitor the extrusion 

pressure at the stages where the extruder was not equilibrium (at start-up and between 

two operation conditions). Once equilibrium was reached and in-line viscosity was ready 
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to be measured, the “batch test” option in the data logger software was used to save the 

pressure readings from the digital meter every 2 seconds. The time of each viscosity 

measurement was kept track and this was later used to calculate the extrusion pressure 

accurately from the saved data. The extrusion pressure was assumed to be equal across 

the two die openings. This was then used to calculate the wall shear stress at the two L/D 

using Eq. 3.2. 

Mass flow rate was measured manually (five measurements in each replication) at 

equilibrium at each treatment condition. For each measurement, extrudate from the two 

openings were collected simultaneously for 30 seconds. They were allowed to cool down 

at room temperature before weighing. The cooled extrudate samples were immediately 

packed in plastic bags (Ziploc bags, S.C. Johnson & son, Racine, Wisconsin) to avoid 

further moisture loss. The moisture content of the weighed extrudate was measured by 

standard hot-air oven method at 103oC for 72hrs. Dry matter content of the extrudate was 

then used to back calculate true mass flow rate through the extruder at the specific 

cornmeal moisture tested during that run. Volumetric metric flow rate was calculated by 

assuming a true density of 1250 kg/m3 for corn. 

 The volumetric flow rate through the two die openings was used to calculate pseudo wall 

shear rate by using Eq. 3.3. The power law index (n) was calculated using this data which 

in turn was used to apply Rabinowitsch correction using Eq. 3.4. 

Power law viscosity models were built at each operating condition of the extruder. These 

were then compared to the viscosity models built using the capillary rheometer to draw 

inferences. Temperature measured and specific mechanical energy calculated using the 
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power consumption based on current drawn by the motor (using Eq. 3.7) at each 

condition were also used to draw inferences. 

3.4.5 Rheological modeling 

Capillary rheometer data for the degermed dehulled corn flour was modeled using that 

proposed by Harper et al. (1971) in Eq. 3.1. Temperature effects were expressed using an 

Arrhenius relationship and moisture content effects were expressed using an exponential 

relationship. 

For the in-line viscosity measurements, for the purpose of comparison of data in current 

study with data from literature, the data is fit in the model in Eq. 3.8 which is a slightly 

modified model from previous studies which used specific mechanical energy to account 

for thermomechanical history (DellaValle et al., 1996; Martin et al., 2003). In this model 

the specific mechanical energy effect is expressed using an exponential relationship, 

along with temperature and moisture content effects. 

𝜂 = 𝐾𝑜 exp (
𝐸𝑎

𝑅𝑇
) . exp(−𝑎𝑀𝐶) . exp (−𝑏𝑆𝑀𝐸). (�̇�𝑤)𝑛−1     (3.8) 

where, Ko (Pa sn), a (%-1), b (kg/kJ) are constants, Ea is the activation energy for a molten 

sample to flow (J/g mol), R is the universal gas constant (J/g mol/K), T is the absolute 

temperature (K), MC is the moisture content of the sample (% wet weight basis) and 

SME is the specific mechanical energy (kJ/kg). 

 

 



77 

 

3.4.6 Pasting property measurement 

Extrudate collected from the two die openings at equilibrium during in-line viscosity 

measurement for different treatments were dried overnight at 50oC. The dried samples 

were milled in a cyclone mill (CT 193 CyclotecTM sample mill, Foss, Hillerod, Denmark) 

fitted with a 0.5mm mesh screen. Then the samples were sieved through a 70 mesh 

screen (210μm). The moisture content of the material that passed through the screen was 

analyzed (103oC for 24 hrs). 

In case of the off-line viscosity measurement, since the capillary rheometer was operated 

at several shear rates within each run during the actual viscosity measurement, separate 

runs were carried out to generate samples for analyzing the pasting properties. Samples 

were generated at all the moisture contents tested (32.5, 35 and 37.5%) but only at the 

maximum bore temperature tested (120oC) using only one bore fitted with the 16mm 

long, 4mm diameter die (since the L/D was closest to the L/D used in the in-line 

measurement). The capillary rheometer was operated at a maximum constant shear rate 

of 100s-1, to create a uniform product. The samples were then dried, milled, sieved and 

analyzed for moisture content as before. 

A Rapid Visco Analyzer (RVA; Perten Instruments, Hagersten, Sweden) was used to 

measure the pasting property of sample following the method described by Bouvier and 

Campanella (2014). All the measurements were performed with 29 g sample (dried 

sample + water) in the canister at a solid concentration of 11.86%. The moisture content 

measure for the individual sample, was used to determine accurately the amount of water 

to be added in order to maintain a constant solid concentration for all the RVA runs. 
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A standard temperature-time protocol was followed for all the runs. The run starts with 

an initial holding time of 6 minutes at 25oC. The temperature is then raised to 95oC over 

the next 4 minutes. The sample is held at that temperature for 6.5 minutes, then cooled 

down to 25oC over the next 4.5 minutes. Finally the sample is held at 25oC for 5 minutes. 

The sample is stirred at 960 rpm for the first 10 seconds and then stirred at 160 rpm 

throughout the rest of the test. 

Peak, final and cold swell viscosity measurements and corresponding time and 

temperatures were calculated from the data collected and comparison between the in-line 

and off-line samples were made. 

3.5 Results and discussion 

3.5.1 Off-line capillary rheometer measurements 

For all the temperature, moisture content, and shear rate combinations tested, pressure 

stability was reached in both bores of the capillary rheometer for the degermed, dehulled 

yellow corn flour. Based on the bore pressure measurements and preset piston speeds in 

the capillary rheometer, shear stress and pseudo wall shear rate calculations were made 

using Eqns. (3.2) and (3.3). Power law indicies (n) were calculated for each replicate 

from the slope of log-log plots of these values and actual wall shear rate was calculated 

by applying Rabinowitsch correction in Eq. (3.4). Bagley correction (Bagley, 1957) was 

not applied for the data analysis (only data from L/D = 4 is analyzed), in order to allow 

for comparison of data with in-line measurements where there was no provision for 



79 

 

Bagley correction. The data for each replicate was fit to a power law model described in 

Eq. (3.6), to calculate consistency index (k). 

As expected the corn flour displayed a psedoplastic behavior at all the conditions tested 

(Figure 3.11). Increase in moisture content and temperature led to a decrease in viscosity, 

under the conditions tested, agreeing with conclusions reported by several others who 

studied similar food/biological systems at these extrusion conditions, using off-line and 

in-line rheometers (Dautant et al., 2007; de la Pena et al., 2014; Fraiha et al., 2011; 

Halliday and Smith, 1995; Harper et al., 1971; Lai and Kokini, 1990; Li et al., 2004; 

Núñez et al., 2010; Sandoval and Barreiro, 2007; Senouci and Smith, 1988; Vergnes and 

Villemaire, 1987).  
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Figure 3.11. Off-line viscosity vs shear rate (natural log) plots of degermed, dehulled 

yellow corn flour at temperature a) 100oC, b) 110oC and c) 120oC and 32.5%, 35% and 

37.5% moisture contents. 
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Table 3.4. Power law indices (n) and consistency coefficients (k) for degermed, dehulled 

yellow corn flour, at different temperatures and moisture contents measured in an off-line 

capillary rheometer. 

Temperature 

(oC) 

Moisture content 

(% wet basis) 

n 

k 

(kPa.sn) 

100 32.5 0.22 79.7 

100 35 0.22 61.5 

100 37.5 0.24 44.5 

110 32.5 0.21 60.2 

110 35 0.21 47.8 

110 37.5 0.23 35.8 

120 32.5 0.21 49.4 

120 35 0.22 42.0 

120 37.5 0.23 30.3 

 

The consistency coefficient, k, also decreased with increasing temperature and moisture 

content whereas the power law index, n, did not follow a particular trend, as shown in 

Table 3.4. This is also in agreement with rheological studies conducted on food materials 

by several others (Dautant et al., 2007; Fraiha et al., 2011; Sandoval and Barreiro, 2007). 

The viscosity data for was also fit in Harper’s model (Eq. 3.1) using multiple linear 

regression analysis. The parameter estimates for this model is shown in Table 3.5 for the 

degermed, dehulled corn flour. 
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Table 3.5. Estimated values of parameters using multiple linear regression for the power 

law viscosity model represented by Eq. 3.1 for degermed dehulled yellow corn flour. 

 Ko Ea/R a n 

Degermed dehulled 

yellow corn 

5.70 3218 0.09497 0.23 

Ko in Pa. sn 

a in %-1 

Ea/R in K 

 

3.5.2 In-line extruder-fed viscometer measurements 

Extrusion pressure and volumetric flow rate measurement from the two openings of the 

die attached to the extruder were used to calculate shear stress and pseudo wall shear rate 

respectively, using Eqns 3.2 and 3.3. Power law indicies (n) were calculated from the 

individual set of shear stress and pseudo wall shear rate values calculated for the large 

and small die. The actual wall shear was then calculated by applying Rabinowitsch 

correction in Eq. 3.4. All the data from each extrusion condition was then fit to a power 

law model described in Eq. 3.6, to calculate consistency index (k). 

Similar to the off-line measurement, during the in-line measurement, the corn meal 

displayed a pseudoplastic behavior at all the extrusion conditions tested which can be 

inferred from the power law indicies (n) in Table 3.6. The power law index (n) did not 

seem to be depend on the extrusion conditions since there was no specific trend observed, 
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which is in agreement with the study by Li et al. (2004), but contrary with the study  by 

Vergnes et al. (1993). The consistency coefficient on the other hand decreased with 

increasing screw speed at specific moisture content and showed interaction effects with 

increasing moisture contents at a specific screw speed (explained further under the 

section “effect of moisture content” later in this discussion), which is in agreement with 

previous literature (Li et al., 2004; Padmanabhan and Bhattacharya, 1993; Vergnes et al., 

1993).  

Table 3.6. Power law indices (n) and consistency coefficients (k) for degermed, dehulled 

yellow corn flour, at various moisture contents and extruder screw speeds measured in an 

in-line extruder fed two-opening die viscometer. 

Moisture content 

(% wet basis) 

Screw speed 

(rpm) 

n 

k 

(kPa.sn) 

32.5 100 0.17 33.5 

32.5 200 0.19 10.6 

32.5 300 0.20 8.9 

35 100 0.19 38.9 

35 200 0.21 28.0 

35 300 0.21 22.6 

37.5 100 0.16 33.4 

37.5 200 0.17 23.7 

37.5 300 0.19 18.4 
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Temperature recorded at die exit for both the large and small die openings have been 

tabulated in Table 3.7. Temperature recorded at the small die exit was consistently lower 

compared to the large die at all extrusion conditions. A maximum difference in 

temperature of 8oC between the two dies was recorded at 32.5% moisture content and 

extruder speeds of 200 and 300 rpm. The lack of a heating system at the die is believed to 

cause this product cool down in the small die. The temperature recorded at the large die 

exit is used as the actual material temperature for further analysis in this study. 

Table 3.7. Die exit temperature at the large and small dies for degermed, dehulled yellow 

corn flour, at various moisture contents and extruder screw speeds measured in an in-line 

extruder fed two-opening die viscometer. 

  Temperature (oC) 

Moisture content 

(% wet basis) 

Screw speed 

(rpm) 

Large die Small die 

32.5 100 123 116 

32.5 200 139 131 

32.5 300 145 137 

35 100 112 105 

35 200 123 118 

35 300 128 125 

37.5 100 105 100 

37.5 200 119 115 

37.5 300 127 123 
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Specific mechanical energy (SME) and total throughput (combined throughput from the 

two openings) recorded during in-line viscosity measurements are reported in Table 3.8. 

Since the extruder was starve-fed in a manner to fill the barrel to the point where there 

was no material backing in to the feed section during the measurement, the throughput 

was varied at each extrusion condition. At 32.5% moisture content, there was 

significantly higher back flow near the feed section because the material was too dry and 

it was easily being pushed back thorough the barrel grooves at the screw restriction 

closest to the feed section. In order to prevent this back flow the throughput at 32.5% had 

to be dropped significantly lower to get stable flow and pressure readings at the die. This 

in turn is reflected as higher SME at all screw speeds compared to other moisture 

contents tested. SME increased with increase in screw speed at a given moisture content, 

similar to observations made in literature (Li et al., 2004). Although it must be noted that 

since the flow rate was different at each extrusion condition, inferences drawn using SME 

must be considered cautiously. 

3.5.2.1 Effect of screw speed 

At a specific moisture content, the viscosity of cornmeal decreased with increasing 

extruder screw speed. This was consistent across all the moisture contents tested (Figures 

3.12, 3.13 and 3.14) and in agreement with previous studies (Li et al., 2004; 

Padmanabhan and Bhattacharya, 1993; Vergnes et al., 1993). Increase in screw speed 

leads to increased conversion of mechanical energy to thermal energy, hence the product 

temperature increases which in turn lowers viscosity. The increased conversion of 

mechanical energy is also indicated by the increase in SME with increase in screw speed 
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at specific moisture content (Table 3.8), but it should also be noted that the throughput 

was different at each condition so the inference with regard to SME should be considered 

cautiously.  

Table 3.8. Specific mechanical energy (SME) and total throughput for degermed, 

dehulled yellow corn flour, at various moisture contents and extruder screw speeds 

measured in an in-line extruder fed two-opening die viscometer. 

Moisture content 

(% wet basis) 

Screw speed 

(rpm) 

SME 

(kJ/kg) 

Total 

throughput 

(kg/hr) 

32.5 100 86 4.1 

32.5 200 149 4.7 

32.5 300 225 6.6 

35 100 67 5.5 

35 200 95 11.0 

35 300 180 15.7 

37.5 100 82 4.5 

37.5 200 140 7.8 

37.5 300 165 10.9 
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Figure 3.12. In-line viscosity vs shear rate (natural log) plots of degermed, dehulled 

yellow cornmeal at extruder screw speeds of 100, 200 and 300 rpm and moisture content 

of 32.5% (wet basis). 
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Figure 3.13. In-line viscosity vs shear rate (natural log) plots of degermed, dehulled 

yellow cornmeal at extruder screw speeds of 100, 200 and 300 rpm and moisture content 

of 35% (wet basis). 
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Figure 3.14. In-line viscosity vs shear rate (natural log) plots of degermed, dehulled 

yellow cornmeal at extruder screw speeds of 100, 200 and 300 rpm and moisture content 

of 37.5% (wet basis). 
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3.5.2.2 Effect of moisture content 

The same data is plotted to see the effect of moisture content at different screw speeds in 

Figures 3.15, 3.16 and 3.17. Due to the differences in throughput and hence die 

temperature and SME, interaction effects arise in explaining the effect of moisture 

content. Theoretically, one would expect at a set extruder speed (and throughput), 

viscosity decreases with increasing moisture content, as reported by other studies (Li et 

al., 2004; Vergnes et al., 1993). But in this study, at 100 rpm, 32.5% moisture cornmeal 

has a lower viscosity compared to 35% moisture cornmeal, this can be attributed to the 

high die temperature (123oC vs 112oC) which was likely caused by low throughput (4.1 

vs 5.5 kg/hr) and high SME (85 vs 67 kJ/kg) at 32.5% vs 35% moisture content. 

At 200 rpm and 300 rpm, 32.5% moisture cornmeal has a lower viscosity compared to 

both 35% and 37.5% moisture cornmeal. Here again, the 32.5% moisture cornmeal is at 

higher temperature (Table 3.7), SME and lower throughput (Table 3.8) compared to the 

other moisture contents. Hence the interaction between moisture content and temperature 

terms arise in the use of a single screw extruder fed viscometer because of the variability 

in throughput at different moisture contents and extruder screw speeds.  
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Figure 3.15. In-line viscosity vs shear rate (natural log) plots of degermed, dehulled 

yellow cornmeal at moisture contents of 32.5, 35 and 37.5% (wet basis) and extruder 

screw speed of 100 rpm. 
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Figure 3.16. In-line viscosity vs shear rate (natural log) plots of degermed, dehulled 

yellow cornmeal at moisture contents of 32.5, 35 and 37.5% (wet basis) and extruder 

screw speed of 200 rpm. 
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Figure 3.17. In-line viscosity vs shear rate (natural log) plots of degermed, dehulled 

yellow cornmeal at moisture contents of 32.5, 35 and 37.5% (wet basis) and extruder 

screw speed of 300 rpm. 
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3.5.3 Comparison of in-line versus off-line measurements 

Plots comparing in-line versus off-line viscosity measurements show that in-line 

measurements are consistently lower compared to off-line measurements at specific 

moisture contents and comparable temperatures (Figures 3.18, 3.19 and 3.20). The effect 

of shear degradation on the viscosity of cornmeal extruded at high temperature, shear and 

low moisture conditions has been shown by this comparison of off-line and in-line 

viscosity measurements. This is in agreement with past research comparing off-line 

versus in-line measurements on food/biopolymers at similar extrusion conditions – high 

temperature, shear and low moisture conditions (Mackey and Ofoli, 1990; Senouci and 

Smith, 1988; Vergnes et al., 1993; Vergnes and Villemaire, 1987). Senouci and Smith 

(1988) compared in-line and off-line viscosity of LDPE, maize grits and potato powder at 

high temperature, shear and low moisture conditions. They found that viscosity data for 

LDPE at 200oC from in-line extruder fed slit die viscometer at different screw speeds and 

off-line capillary rheometer at similar shear rates were in good agreement. But in the case 

of the maize grits (31.5% moisture wet basis) and potato powder (39.2% moisture wet 

basis), at 80oC to 140oC, the melt viscosities decreased with increasing extruder speeds, 

at the same temperature and moisture contents compared to the off-line capillary 

rheometer. This clearly showed that food/biopolymers such as maize grits and potato 

powder are susceptible to shear/mechanical degradation at the conditions tested and off-

line techniques cannot predict (will over predict) melt viscosities in an extruder at these 

conditions. The current study is added evidence to these conclusions. These extrusion 

conditions can also be thought of as the conditions where the sum of the thermal and 
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mechanical energy supplied to the food/biopolymer is greater than the degradation energy 

of the material as visualized by Bouvier and Campanella (2014) in Figure 3.1(c). 

On the contrary, de la Pena et al. (2014) while studying the effect of moisture content and 

formulation on pasta dough during pasta extrusion made a similar comparison of off-line 

capillary rheometer measurements and in-line extruder viscosity measurements and 

concluded that at the conditions tested in their study, there is a possibility of using a 

capillary rheometer to determine moisture content of a formulation before extruding 

pasta. The extrusion temperature in this study was 45oC, at 30 to 34% moisture contents 

and at wall shear rates ranging between 41.6 to 90.8 s-1. Pasta extrusion is a forming 

process where the sum of the thermal and mechanical energy supplied is lower than the 

degradation energy of a material and hence there is minimal degradation experienced by 

the material, which can be compared to the visualization by Bouvier and Campanella 

(2014) in Figure 3.1(a). 

The results from this study show that the lack of shear degradation in a capillary 

rheometer, in the moisture content and temperature ranges tested, will lead to higher 

viscosity measurements and hence are not representative of the viscosity of a 

food/biopolymer material which is sensitive to shear degradation at these extrusion 

conditions. This research challenges the reports of several other researchers who have 

suggested the use of capillary rheometer as an effective off-line technique at high 

temperature/shear extrusion conditions for food/biopolymers (Dautant et al., 2007; Fraiha 

et al., 2011; Sandoval and Barreiro, 2007; Singh and Smith, 1999). 
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Figure 3.18. In-line vs off-line viscosity vs shear rate (natural log) plots of degermed, 

dehulled yellow cornmeal at extruder screw speeds of 100, 200 and 300 rpm and 

capillary bore wall temperatures 100, 110 and 120oC at moisture content of 32.5% (wet 

basis). 
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Figure 3.19. In-line vs off-line viscosity vs shear rate (natural log) plots of degermed, 

dehulled yellow cornmeal at extruder screw speeds of 100, 200 and 300 rpm and 

capillary bore wall temperatures 100, 110 and 120oC at moisture content of 35% (wet 

basis). 
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Figure 3.20. In-line vs off-line viscosity vs shear rate (natural log) plots of degermed, 

dehulled yellow cornmeal at extruder screw speeds of 100, 200 and 300 rpm and 

capillary bore wall temperatures 100, 110 and 120oC at moisture content of 37.5% (wet 

basis). 
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3.5.4 Comparison of material transformation using pasting property 

RVA pasting profiles of samples collected in-line and off-line provide additional 

evidence to the inferences made from the viscosity data collected. But they also raise new 

questions which help further the understanding of the in-line and off-line techniques. 

First, looking at the effect of the extrusion conditions on the in-line viscosity 

measurements, similar to the inference made on the effect of screw speed, at a given 

moisture content, with increase in screw speed (and therefore temperature and SME), the 

final viscosity of the paste decreases (Figures 3.21, 3.22 and 3.23). This is in agreement 

with results reported in literature studying the effect of extrusion conditions using pasting 

property (Al-Rabadi et al., 2011; Bouvier and Campanella, 2014; Moussa et al., 2011) or 

other techniques such as, size exclusion chromatography (DellaValle et al., 1996; Liu et 

al., 2010; Moussa et al., 2011), intrinsic viscosity (Vergnes et al., 1993) and microscopy 

(Al-Rabadi et al., 2011; Moussa et al., 2011). 

Second, no research has been reported on comparing the material transformation between 

in-line and off-line viscosity measurement techniques. In this study based on literature, 

the initial hypothesis for the pasting property study was that the off-line capillary 

rheometer samples would have higher final viscosities compared to the in-line samples, 

because the off-line samples did not have any mechanical degradation. But from figures 

3.21, 3.22 and 3.23, it can be seen that the pasting profiles of the off-line samples 

collected at the different moisture contents (at 120oC and 100 s-1 pseudo wall shear rate) 

consistently have the lowest final viscosity. This can be attributed to difference in the 

amount of thermal energy received by the samples during in-line versus off-line 
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measurements. The residence time in an extruder is typically under a minute (Harper, 

1981; Mercier et al., 1989), whereas in the case of the capillary rheometer there was a 3 

minute sample loading time and an added 10 minute equilibration time at the temperature 

at which viscosity measurements were made. Hence, the off-line samples received 

significantly higher thermal energy due to the increased residence time in the capillary 

rheometer and this can explain low final viscosities in the RVA pasting profiles. 

However, the off-line melt viscosities of corn meal were higher than in-line 

measurements (figures 3.18, 3.19 and 3.20). While measuring viscosities of corn starch 

with an off-line pre-shearing rheometer called a Rheoplast, Vergnes and Villemaire 

(1987) noted that the disruption of starch granules increases the melt viscosity whereas 

the depolymerization of the molecules decreases it. This observation can be used to 

interpret the results from the current study. In the capillary rheometer, the material is 

receiving excessive thermal energy which only disrupts the starch granule and not 

depolymerize it, hence the higher melt viscosities. Whereas, in the extruder, there is 

higher mechanical energy which depolymerizes the starch molecules and hence result in a 

lower melt viscosity. 

This inference however must be confirmed with an appropriate analytical method to 

quantify molecular weight change, such as size exclusion chromatography, between the 

two techniques to validate it. 
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Figure 3.21. RVA pasting profiles of dried, sieved extrudate of degermed, dehulled 

yellow cornmeal, raw, collected in-line at extruder screw speeds of 100, 200 and 300 rpm 

and collected off-line at 120oC capillary bore wall temperature and 100 s-1 pseudo wall 

shear rate, at 32.5% moisture content. 
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Figure 3.22. RVA pasting profiles of dried, sieved extrudate of degermed, dehulled 

yellow cornmeal, raw, collected in-line at extruder screw speeds of 100, 200 and 300 rpm 

and collected off-line at 120oC capillary bore wall temperature and 100 s-1 pseudo wall 

shear rate, at 35% moisture content. 
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Figure 3.23. RVA pasting profiles of dried, sieved extrudate of degermed, dehulled 

yellow cornmeal, raw, collected in-line at extruder screw speeds of 100, 200 and 300 rpm 

and collected off-line at 120oC capillary bore wall temperature and 100 s-1 pseudo wall 

shear rate, at 37.5% moisture content. 
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3.5.5 Challenges observed 

Even though this study successfully showed that off-line measurements are over-

predicting melt viscosities due to the lack of shear degradation, by comparing with a 

unique two-opening die in-line viscosity measurement technique for a small-scale 

extruder, there are some challenges observed with the in-line measurement technique. 

In order to explain these challenges and solely for the purpose of comparison with 

viscosity models for corn meals/maize grits from the literature, the in-line data from the 

current study is modeled using Eq. 3.8 which uses SME to account for shear history in 

the extruder. The model parameters by fitting the data in Eq. 3.8 are listed in table 3.9. 

Table 3.9. Estimated values of parameters using multiple linear regression for the power 

law viscosity model represented by Eq. 3.8 for in-line viscosity of degermed dehulled 

yellow corn flour. 

 Ko Ea/R a b n 

Degermed dehulled 

yellow corn 

-0.888 4942 0.0406 0.0023 

 

0.23 

Ko in Pa. sn 

Ea/R in K 

a in %-1 

b in kg/kJ 
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Figure 3.24. Comparison of off-line and in-line power law viscosity models of cornmeal 

from current study with in-line models reported for corn meal and grits by Padmanabhan 

and Bhattacharya (1993) and Li et al. (2004), respectively, at a reference temperature of 

120oC, 35% moisture content and 100 kJ/kg SME (where applicable). 

On comparing the in-line power law viscosity model which accounts for the effect of 

temperature, moisture content, and SME on the consistency index from the current study 

with similar in-line models reported in literature (Li et al., 2004; Padmanabhan and 

Bhattacharya, 1993), it can be noted that model in the current study is over predicting 

viscosity by almost an order of magnitude, provided the difference in raw material and 

test conditions used in these studies. This is important to understand, because the melt 
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viscosity is a key parameter to quantify viscous dissipation in a mechanistic model for the 

extruder and if the melt viscosity is over predicted then this would lead to erroneous 

viscous dissipation calculations. 

On further analyzing the technique used for measuring in-line viscosity in this study, two 

key observations were made. First, the consistent temperature difference between the 

large and small die measurements indicate that there is significant product cooling at the 

die and this will certainly influence flow rate and hence viscosity calculation. Secondly, 

using the two-opening die setup, there is no way to account for Bagley correction to 

correct for entrance and exit effects and this can have also have a significant effect on 

viscosity calculations. In order to address these challenges a new setup has to be designed 

to correct for both these challenges observed for in-line viscosity measurement on the 

small-scale extruder. 

3.6 Conclusion 

Melt viscosity of degermed, dehulled yellow corn meal was quantified using an off-line 

capillary rheometer technique and a novel in-line technique where a two-opening die was 

used in the small-scale single screw extruder. Corn meal melt followed a pseudoplactic 

behavior at all the conditions test and viscosity decreased with increase in temperature 

and moisture content in both the techniques as reported in literature. Increased screw 

speed reduced viscosity due to increase in temperature at given moisture content in the 

in-line technique. Whereas interaction effects arose while inferring the effect of moisture 

content at a given screw speed, which was attributed to the variation in throughput and 

specific mechanical energy between the different conditions tested. Comparison of off-
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line versus in-line measurements consistently revealed that off-line measurements were 

over predicting viscosity, as reported in literature. Hence this challenges the use of an off-

line capillary rheometer technique to quantify melt viscosity of a food/biopolymer 

material which is sensitive to shear degradation at the high temperature, shear and low 

moisture conditions tested. Pasting properties of extrudates were successfully used to 

show the effect of extrusion conditions on the material during in-line viscosity 

measurements. But comparison of pasting properties of in-line versus off-line technique 

samples revealed interesting observations, which needs to be followed up with further 

analysis of samples. Furthermore, comparison of power law viscosity model built from 

in-line measurements in the current study with models reported in literature reveals that 

the model in the current study is over predicting viscosity by almost an order of 

magnitude and this need to be addressed by taking appropriate measures in future studies. 
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CHAPTER 4. MECHANISTIC MODEL FOR A SMALL-SCALE SINGLE SCREW 

EXTRUDER WITH RESTRICTIONS ON THE SCREW 

4.1 Introduction 

Modeling extrusion process is critical in understanding the fundamental operation and 

behavior of the process using basic engineering and scientific principles. It also allows 

for improving productivity, making modifications to the process based on change in raw 

material formulation, designing optimal equipment for specific purposes and scaling-up 

or scaling-down processes (Harper, 1981). 

4.2 Literature review 

Modeling the food extrusion process, similar to rheological techniques, was based on the 

models developed from the plastic industry (Carley et al., 1953; Carley and Strub, 1953). 

Although there are similarities between food and polymer extrusion, there are also vast 

differences in terms of material behavior. The heterogeneity of the food/biopolymer 

matrix creates complications in accurately quantifying their rheological properties during 

extrusion conditions since their components go through various physiochemical and 

biochemical changes such as starch gelatinization and protein degradation. Hence 

modeling food extrusion is much more complex compared to plastics extrusion (Harper, 

1981). 
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The basic mechanistic model for a single screw extruder is that of the metering section 

where the screw is considered as a long continuous channel peeled off the screw root and 

approximating it to a two dimensional plane Couette flow (Figure 4.1). 

 

Figure 4.1. Unwound channel of a single screw extruder indicating main geometric 

characteristics and velocity components from Bouvier and Campanella (2014) originally 

reported by Tadmor and Klein (1970). 

Velocity profiles in the screw channel, operating characteristics of the extruder such as 

flow rate and pressure build-up at the die, leakage flow due to clearance between the 

barrel and screw channel, presence of barrel grooves and tapered channels in specialized 

extruders have been accounted for by this approach, for Newtonian fluids. In the case of 

non-Newtonian fluids, complications arise in the solution of the equation of motion, 

hence often, they are carefully approximated as Newtonian within certain defined 

conditions and assumptions (Harmann and Harper, 1974; Harper, 1981; Li and Hsieh, 

1996; Tsao et al., 1978). In the case of foods/biopolymers, during extrusion processing, 
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they undergo a structural transformation in a short period of time. Hence, along with the 

non-Newtonian behavior, the raw material undergo various transformations such as 

starch gelatinization or melting, protein degradation, binding of macromolecules and 

other such transformations which complicate modeling their behavior under various 

extrusion conditions. Advanced modeling techniques such as finite element methods have 

been used to model single screw extruders to account for some these material 

transformations (Wang et al., 2004). LeRoux et al. (1995) modeled pasta extrusion in a 

single screw extruder by using a combination of a modified analytical single screw 

extruder model and finite element methods. Numerous other approaches to account for 

the aforementioned challenges with food/biopolymer extrusion modeling have been 

documented in several texts (Bouvier and Campanella, 2014; Kokini et al., 1992; Mercier 

et al., 1989). 

4.3 Objective 

Harper (1979) documented the several designs of the screws used in single screw 

extruders (Figure 4.2). In the first four designs, the screw is a continuous channels 

whereas in the last design (Figure 4.2, 5) the screw channel is interrupted by multiple 

restrictions perpendicular the direction of flow. 

All the models built thus far for single screw extruders consider the screw as a continuous 

channel. But there is a lack of literature in analytical modelling for single screw extruders 

with restrictions on the screw, such as the small scale extruder being currently studied 

(Figure 1.1). Hence the objective of this study is to develop a simple analytical model to 

simulate the flow through such an extruder. 
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Figure 4.2. Various configurations of screw and barrel to achieve compression in single 

screw extruders from Harper (1979). 

 The small scale extruder in the current study was designed to be a high shear extruder. 

Hence the depth to width ratio of the double flight screw sections is high comparable to 

most single screw extruder models that have been developed. Couette flow of a fluid, 

where a fluid flows between two plates - one moving and one stationary, has been the 
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most simple and common setup that has been used for developing mechanistic models for 

single screw extruders. In the past, researchers have looked at several cases of Couette 

flow, for Newtonian and non-Newtonian fluids. But there is limited research on viscous 

dissipation in Couette flow of Newtonian and non-Newtonian fluid with and without heat 

fluxes at either one of the plates (Aydin and Avci, 2006; Mondal and Mukherjee, 2014; 

Sheela-Francisca and Tso, 2012; Sheela-Francisca et al., 2012). All the researchers have 

also considered a simple geometry of infinitely long parallel plates with a uniform gap 

between the plates. This study looks at a special geometry to account for the restrictions 

on the screw of the small scale extruder being studied, by considering two different gaps 

between the plates. Also, constant but different heat fluxes are considered at both the 

plates. The mass, momentum and energy equations are solved to find expressions for 

velocity and temperature profiles for the flow of a Newtonian fluid. 

4.4 Analysis 

For developing a simple analytical model for one screw section followed by a restriction 

(shear bushing) and a die in the extruder, a one-dimensional Couette flow of a Newtonian 

fluid between parallel plates consisting of two regions with two different gaps (step 

change in gap) between the plates, with back pressure from the die, is considered, as 

shown in Figure 4.3. 
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Figure 4.3. Couette flow setup between parallel plates with a step change in gap. 

The distance between the parallel plates is B1 and B2 in region I and region II respectively 

with lengths L1 and L2, in an x-z coordinate system chosen as shown. The variation in 

gap is based only on the geometry of the bottom plate (screw), which is fixed. The top 

plate (barrel) is considered as infinitely long and moving at a constant velocity V. 

The flow through the plates is assumed to be fully developed both hydro-dynamically and 

thermally, with a negligible transition region at the entrance of region I. The temperature 

of the fluid entering region I is assumed to be To. The apparent viscosity of the fluid is 

assumed to be constant within the region but not between the regions. Fluid properties 

including thermal conductivity, specific heat and density are assumed to be constant 

between the two regions. Both the top and bottom plates are kept at constant but different 

heat fluxes, q1 and q2, respectively. 
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In order to understand the effect of viscous dissipation on the flow through this setup, the 

momentum and energy equations are solved individually for the two regions, using 

dimensionless analysis. Mass and energy balance at the interface of the two regions and 

overall mass and energy balance for the system is used to find unknowns and hence the 

velocity and temperature profiles. 

4.4.1 Velocity profile 

In region I, considering one dimensional flow, the equation of continuity simplifies to: 

    (4.1) 

Based on the assumptions made and equation (4.1), the momentum equation in the z-

direction simplifies to, 

   (4.2) 

Using the dimensionless terms, 

   

and defining, , where ΔP1 is positive since P1 > Po, due to back 

pressure from the die 

Equation (4.2) simplifies to,  
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    (4.3) 

 

Now, introducing a dimensionless term, 

 

and applying the boundary conditions, at x* = 0; Vz
*I = 0 and at x* = 1; Vz

*I = 1, the 

velocity profile (Vz
*I) for region I is solved from equation (4.3) as, 

   (4.4) 

Similarly for region II, introducing the dimensionless terms, 

 and  

defining,  where ΔP2 is positive since P2 > P1, due to back 

pressure from the die and applying the boundary conditions, at x* = 0; Vz
*II = 0 and at x* = 

B2/B1; Vz
*II = 1, the velocity profile (Vz

*II) for region II is solved as, 

  (4.5) 

To solve for the velocity profile, Λ1 and Λ2 are needed. The relationship between Λ1 and 

Λ2 is given by, 
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, where μ1 and μ2 are the apparent viscosities in region I and II 

respectively 

To solve for Λ1 and Λ2, two conditions are imposed, 

a. Total pressure difference across the two regions (ΔP = P2 - Po) is equal to the sum 

of the pressure differences (ΔP1 and ΔP2) across the individual regions. 

Substituting the dimensionless terms, we get, 

    (4.6) 

where,  

b. Mass balance at the interface of region I and II, indicating an equal volumetric 

flow through the two regions gives, 

   (4.7) 

With known die characteristics, volumetric flow rate and fluid viscosity at the die, the 

total ΔP can be determined and hence Λ. From equations 4.6 & 4.7 Λ1 and Λ2 are 

calculated. And the velocity profiles of the individual regions are obtained from 

equations 4.4 & 4.5. 

4.4.2 Temperature profile 

Based on the one-dimensional flow assumption made, the energy equation with the 

viscous dissipation term for a Newtonian fluid in region I simplifies to, 
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  (4.8) 

Due the inclusion of the viscous dissipation term, the temperature gradient in the z 

direction is included in the energy equation, but assumed to be an unknown constant 

within the individual regions. 

Defining generalized dimensionless temperature as, 

   (4.9) 

where To is the mean fluid temperature entering region I 

Substituting the various dimensionless terms, equation (4.8) becomes, 

 (4.10) 

Now introducing new dimensionless terms, 

 and  

where β1 is a dimensionless constant and Br1 is Brinkman number 

and defining temperature gradient in the z directions as, 

 

Equation (4.10) simplifies to, 
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   (4.11) 

Now substituting for Vz
*I from equation (4.4) and applying the boundary conditions, at x* 

= 0; dΘI/dx* = q2
* and at x* = 1; dΘI/dx* = -q1

*, where dimensionless heat flux is defined 

as,  

The constant temperature gradient in the z-direction, a1 is determined as, 

 (4.12) 

And the temperature profile in the x-direction for region I is determined as, 

(4.13) 

where c1 is an unknown constant of integration. 

Similarly, the temperature profile for region II is determined by applying the boundary 

conditions, at x* = 0; dΘI/dx* = q2
*.(k2/k1) and at x* = B2/B1; dΘI/dx* = -q1

*, and defining 

the terms, 

    

The constant temperature gradient in the z-direction, a2 for region II is determined as, 
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 (4.14) 

And the temperature profile in the x-direction for region II is determined as, 

  (4.15) 

where c2 is an unknown constant of integration. 

To determine c1 and c2, two conditions are imposed: 

a. Overall energy balance for the system: 

Energy generated in Region I and II – Energy leaving through the top and bottom plates 

in Region I and Region II = Energy leaving the system at the end of Region II – Energy 

entering the system at the entrance of Region I. This is represented by equation 4.16. 

   (4.16) 
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b. Temperature continuity at the interface: 

       (4.17) 

In equation 4.17, TI is calculated at z=L1, and TII is calculated at z=0, which represent the 

interface in terms of length for the two regions based on how they are defined earlier. 

Using the dimensionless terms defined earlier and substituting for known terms, c2 is 

obtained from equation 4.16 as, 

  (4.18) 
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And c1 is obtained from equation 4.17 as, 

  (4.19) 

Hence the various components of temperature profiles for region I and II have been 

determined. These values are then substituted in equations 4.13 and 4.15 to plot 

temperature profiles. 

4.5 Results and discussion 

For analysis of the velocity and temperature profiles at various conditions, for simplicity, 

the following conditions/assumptions are made: 

1. L2/L1 = 0.1, based on the dimensions of the extruder in the current study. 

2. Dimensionless terms, β1 and β2 are assumed to be equal to 1. 

3. Dimensionless heat fluxes leaving the top and bottom plate, q1
* and q2

* are 

considered equal. 

4. Dimensionless heat flux leaving the top plate is defined as a fraction of Brinkman 

number (which represents heat generated) in region I, q1
*= x* Br1. 
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4.5.1 Effect of screw restriction 

In order to show the effect of screw restriction, two cases of the original Couette flow 

setup are considered: 

Case 1: The gap between the top and bottom plates in Region I and Region II are equal, 

therefore B2/B1 = 1. This is represented in Figure 4.4. The viscosity between the two 

regions is also considered equal, therefore μ2/μ1 = 1. 

Case 2: The gap between the plates in Region II is half of the gap between the plates in 

Region I, therefore B2/B1 = 0.5. This is similar to the original representation of the setup, 

as in Figure 4.3. The viscosity ratio between the two regions is assumed to be 

independent of the consistency index, for the sake of simplicity and just dependent on the 

power law index (n=0.23) from the corn meal model in the previous study is used, 

therefore, μ2/μ1 = (B1/B2)^0.77. 

 

Figure 4.4. Couette flow setup between parallel plates with equal gap between Region I 

and Region II to represent Case 1. 
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Based on the assumptions made thus far, the parameter that influences velocity profile is 

overall pressure difference across the two regions which is directly related to the 

dimensionless term Λ. The parameters that influence temperature profile are a) overall 

pressure difference (related to Λ), b) viscous dissipation (related to Brinkman number) 

and c) heat fluxes leaving the system (q1
* and q2

*
). To see the effect of these parameters 

on velocity and temperature profiles, one parameter will be changed at a time while the 

others are kept constant. Temperature profiles are plotted at the end of region I and end of 

region II. 

4.5.1.1 Effect of overall pressure difference  

To show the effect of overall pressure difference across the two regions, Λ is set to three 

levels (0.05, 0.5 and 1), while viscous dissipation (Br1=1) and heat flux (q1
*=0.1*Br1) are 

kept constant. The effect of Λ on velocity profile in Region I and Region II of the two 

setups, case 1 and case 2, are shown in figures 4.5 and 4.6, respectively. 

When the gaps between the plates in the two regions are equal, it can be seen that the 

velocity profile in the two regions are identical (Figure 4.5 a & b). As Λ increases, the 

non-linearity of the drag flow increases, indicating the effect of increase in pressure 

difference. Whereas when the gap in region II is reduced, the non-linearity further 

increases in region I (Figure 4.6 a), but in region II, the peak velocity is not at the top 

plate but at a region slightly below it and the velocity itself is higher than the top plate 

velocity (Figure 4.6 b). A closer look at the analysis reveals that this is due to the mass 

balance condition imposed at the interface of the two regions. 
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Figure 4.5. Dimensionless velocity profiles in a) Region I and b) Region II for case 1 

(B2/B1 = 1) at different overall pressure difference across the two regions (Λ). 
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Figure 4.6. Dimensionless velocity profiles in a) Region I and b) Region II for case 2 

(B2/B1 = 0.5) for different overall pressure difference across the two regions (Λ). 
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Now looking at the effect of Λ on temperature profile in Region I and Region II of the 

two setups, case 1 and case 2, are shown in figures 4.7 and 4.8, respectively. 

Similar to the velocity profiles, the temperature profiles between region I and II are 

identical in case 1 where the gaps are equal (Figure 4.7). But on comparing the 

dimensionless temperatures at the end of regions, region II has a higher temperature than 

region I because of the added viscous dissipation along the z-direction as the product 

flows through region II. And as Λ increases dimensionless temperature increases 

accordingly at the exit of both the regions, indicating that as extrusion pressure increases, 

the temperature also increases. 

In case 2, due to presence of a smaller gap in region II, the temperature rise is much 

higher for the same Λ compared to case 1 (Figure 4.8), indicating the effect of the 

presence of screw restriction. Also in region II (Figure 4.8 b), the temperature profile 

near the bottom plate is higher than the top plate. This can be explained by looking at the 

velocity profile at the same conditions in Figure 4.6 b. Since viscous dissipation is 

directly related to the square of the slope of velocity profile, the higher slope in velocity 

profile near the bottom place leads to higher viscous dissipation, hence the temperature 

rise near the bottom plate is much higher compared to the top plate.  
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Figure 4.7. Dimensionless temperature profiles at the end of a) Region I and b) Region II 

for case 1 (B2/B1 = 1) at different overall pressure difference across the two regions (Λ). 
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Figure 4.8. Dimensionless temperature profiles at the end of a) Region I and b) Region II 

for case 2 (B2/B1 = 0.5) for different overall pressure difference across the two regions 

(Λ). 
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4.5.1.2 Effect of viscous dissipation 

To show the effect of viscous dissipation, Br1 is set to three levels (0.1, 0.5 and 1), while 

the overall pressure difference (Λ =0.05) and heat flux (q1
*=0.1*Br1) are kept constant. 

The effect of Br1 on temperature profile in region I and region II of the two setups, case 1 

and case 2, are shown in figures 4.9 and 4.10, respectively. 

In both cases, as Br1 increases, dimensionless temperature at the end of a region 

increases, indicating that viscous dissipation is higher for a fluid with a higher viscosity, 

as expected. Region II has a higher temperature than region I at the end, because of the 

additional viscous dissipation generated in region II as the product flows through it. 

Comparing the temperature rise between the two cases, the presence of a screw restriction 

clearly indicates a higher rise in temperature (Figure 4.9 and 4.10). 
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Figure 4.9. Dimensionless temperature profiles at the end of a) Region I and b) Region II 

for case 1 (B2/B1 = 1) at different viscous dissipation (Br1). 
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Figure 4.10. Dimensionless temperature profiles at the end of a) Region I and b) Region 

II for case 2 (B2/B1 = 0.5) at different viscous dissipation (Br1). 
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4.5.1.3 Effect of heat flux leaving the system 

To show the effect of heat flux leaving the system, q1
* is set to three levels (0.1, 0.2 and 

0.3*Br1), while the overall pressure difference (Λ =0.05) and viscous dissipation (Br1=1) 

are kept constant. The effect of q1
*
 on temperature profile in region I and region II of the 

two setups, case 1 and case 2, are shown in figures 4.11 and 4.12, respectively. 

Heat flux in this model is setup as a fraction of Brinkman number which indicates the 

level of viscous dissipation. As the heat flux leaving the system increases, the 

dimensionless temperature at the end of a region decreases as expected, in both the setups 

(Figure 4.11 and 4.12). In the presence of a screw restriction, the overall temperature rise 

is much higher compared to having an equal gap between the plates. 

The interaction between the various parameters used to show their effect on velocity and 

temperature profile plays a crucial role in understanding the application of this 

mechanistic model to a single screw extruder with screw restrictions. 
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Figure 4.11. Dimensionless temperature profiles at the end of a) Region I and b) Region 

II for case 1 (B2/B1 = 1) at different heat fluxes (q1
*). 
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Figure 4.12. Dimensionless temperature profiles at the end of a) Region I and b) Region 

II for case 2 (B2/B1 = 0.5) at different heat fluxes (q1
*). 
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4.5.2. Quantitative analysis 

In order to give an example of how quantitative results can be generated from the current 

model, one of the conditions used in in-line viscosity measurement of corn meal from the 

previous study is used here. 35% moisture content corn meal was extruded at 300rpm to 

give a die temperature rise of 128oC.  

Only the last screw, screw restriction and die are considered for this example. The 

physical dimensions of the screw, shear bushing and die were used to calculate the 

various dimensions of the setup. The extruder screw speed (300 rpm) was used to 

calculate the velocity of the top moving plate and hence the shear rate experienced in 

region I and II.  

The power-law viscosity model developed for the corn meal in the previous study was 

used to calculate viscosity of the fluid in the individual regions. Since it is known that the 

viscosity model is over predicting the viscosity of the fluid, it was adjusted by a factor of 

10. For viscosity calculations, an average temperature at the entrance of region I was 

assumed and to be 90oC. Based on these parameters, Λ was calculated to be 0.028. 

In order to determine temperature rise, Brinkman number was calculated based on 

extruder data and viscosity calculated from the power-law model to be 0.75. Then the 

heat flux leaving the system was adjusted as an unknown variable to match the actual 

temperature rise in the extruder (128oC). Since heat flux was defined as a fraction of 

Brinkman, the multiplying factor of 0.45 gave the required temperature rise at the exit of 

region II in the model. But this needs to be further validated with experimental data. 
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4.6 Conclusion 

A mechanistic model for one screw, one restriction and die, of a single screw extruder 

with restrictions on its screw was built using a modified Couette flow between two 

parallel plates with two regions or varying gaps. In order to understand the effect of 

viscous dissipation on the flow through this setup, the momentum and energy equations 

are solved individually for the two regions, using dimensionless analysis. Mass and 

energy balance at the interface of the two regions and overall mass and energy balance 

for the system is used to find unknowns and hence the velocity and temperature profiles 

in the two regions. To show the effect of the presence of a screw restriction on velocity 

and temperature profiles, two setups, one with and without screw restriction are 

compared. The effect of overall pressure difference across the two regions, viscous 

dissipation and heat fluxes leaving the system were documented. In all the cases, the 

presence of a screw restriction leads to a larger temperature rise in the system. The 

proposed model could be used to calculate unknown variables to fit experimental data 

and predict operating conditions of an extruder but still needs to be validated with 

experimental data. 
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CHAPTER 5. FUTURE WORK 

Based on the conclusions made from the current work, the following future work are 

proposed/recommended: 

 Accurate in-line measurement of melt viscosity: Based on the observations made 

from the current study, lack of temperature control and inability to correct for 

entrance and exit effects (Bagley correction) at the capillary die could possibly 

result in over-prediction of viscosity during in-line viscosity measurement. To 

address these challenges, a new in-line viscometer to match the scale of the small-

scale extruder should be designed with temperature control and ability to make 

measurements for Bagley correction. Although such rheometers already exist on a 

larger scale, designing one to work with the small scale extruder will be a 

challenge. 

 Further understanding of material transformation during in-line versus off-line 

measurements and extrusion (for food/biopolymers sensitive to 

thermal/mechanical degradation): Pasting property measurements made on 

extrudates from the current study clearly show the difference in material 

transformation between in-line and off-line viscosity measurement techniques. It 

is essential to utilize additional analytical techniques such as size exclusion  
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chromatography to further the understanding of material transformation. This is 

could also help understand and explain the difference in transformation based on 

the amount of thermal versus mechanical energy supplied to a material during 

different extrusion processes. 

 Validation of mechanistic model for single screw extruders with screw 

restrictions: In order to validate the basic one-dimensional model proposed in this 

study, it has to be tested with experimental data collected at a range of extrusions 

conditions and with a range of raw materials. Since the model is based for one 

screw and restriction, possibilities of using multiple such sections in series should 

be explored. For example, the small-scale extruder used in the current study has 

three such sections in series (excluding the feed section) before the die. Methods 

to quantify melt viscosities, temperature rises and heat fluxes within each section 

should also be explored in order to build a robust model. 
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