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ABSTRACT 

Parekh, Atish A. Ph.D., Purdue University, August 2016. Exploring the Mechanistic 

Landscape of Nitric Oxide Oxidation and Ammonia Selective Catalytic Reduction of Nitric 

Oxide on Cu-Zeolites via Kinetic and Spectroscopic Characterization. Major Professors: 

Fabio H. Ribeiro and W. Nicholas Delgass

Increasingly stringent regulations to reduce emissions of nitrogen oxides (NOx) 

from exhausts of heavy-duty diesel engines has set the stage to delve into a detailed 

investigation of engine after-treatment catalysts in order to understand the chemistry during 

their operation and design the next generation of catalytic formulations to meet future 

requirements. Small-pore Cu- and Fe-exchanged SSZ-13 catalysts with chabazite (CHA) 

topology are able to sustain high catalytic rates for selective catalytic reduction (SCR) even 

after exposure to harsh hydrothermal conditions present in diesel exhaust. Probing the 

redox behavior and the active site requirements for standard SCR on Cu-SSZ-13 catalysts 

using a combination of infrared (FTIR) and x-ray absorption (XAS) spectroscopies, kinetic 

measurements and density functional theory (DFT) calculations forms the basis for this 

dissertation. 

The effect of each standard SCR reactant (NO, NH3 and O2) on the Cu(I)-Cu(II) 

redox chemistry and the reaction rates was studied via steady state operando XAS 

experiments. Systematically changing the feed concentration of one of the NO, NH3 and 

O2 reactants at a time showed that while NH3 and O2 participated in the reduction of Cu(II) 
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to Cu(I) and re-oxidation of Cu(I) to Cu(II), respectively, NO was involved in both parts 

of the redox cycle. Together, NO and NH3 acted as the co-reductants (473 K) for Cu(II) to 

Cu(I) reduction via the NO assisted dissociation of a N-H bond in a Cu-bound NH3 

molecule, while the combination of NO and O2 (473 K) completed the catalytic cycle re-

oxidizing Cu(I) to Cu(II).  

We studied the re-oxidation of Cu(I) to Cu(II) in the standard SCR mechanism by 

O2 and NO2 titration experiments. Two Cu-SSZ-13 catalysts with the same Cu:Al ratio 

(0.08-0.09) and structurally equivalent exchanged Cu2+ ions charge-compensated by a pair 

of framework Al atoms but different Si:Al ratio (4.5, 15) were reduced with NO and NH3 

(473 K) to Cu(I). Following this reduction, both catalysts were oxidized either in 10% O2 

or 90 ppm NO2 under isothermal conditions. Oxidation with O2 followed second order 

kinetics in the instantaneous Cu(I) fraction for both catalysts, suggesting the involvement 

of two Cu(I) moieties for O2 oxidation. Further, a smaller second order rate constant (1.79 

min-1) and a greater final Cu(I) fraction (0.26) for the low Al (Si:Al = 15) catalyst compared 

to the corresponding values (8.16 min-1
 and 0.15) for the high Al (Si:Al = 4.5) catalyst 

implied an underlying dependence of the Cu(I) oxidation with O2 on the Al distribution 

and hence, the proximity of Cu ions. In contrast, oxidation with NO2 was a first order 

process with identical rate constants of 0.8 min-1 for both catalysts, demonstrating that NO2 

oxidation was independent of the Al distribution or Cu proximity, and occurred on isolated 

Cu(I) ions. Thus, standard SCR, which involves oxidation with O2, is limited by the pairing 

ability of Cu ions at dilute Cu or Al contents and hence, controlled by the oxidation half-

cycle. Fast SCR, on the other hand, proceeds via oxidation with NO2, engaging all the Cu 

ions in the catalyst independent of its location or concentration within the zeolite. 
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Additionally, a second type of isolated Cu species, [CuOH]+ ions charge-

compensated at isolated Al sites, are exchanged in catalysts with dilute Al contents (i.e. 

high Si:Al) following the saturation of paired Al sites with Cu2+ ions, which are 

thermodynamically preferred over isolated Al sites during Cu ion exchange. NH3 titration 

differentiated between the two sites and showed that two protons were replaced per 

exchanged Cu2+, whereas one proton was replaced per exchanged [CuOH]+ ion. Further, 

reduction of each Cu2+ generated an additional proton, whereas [CuOH]+ ions did not 

generate extra protons. FTIR spectra on a series of samples with Si:Al = 15 detected the 

O-H vibration associated with [CuOH]+ ions at 3651 cm-1, and showed a quantitative 

increase in its peak area with Cu loading beyond the saturation limit of Cu2+ (Cu:Al = 0.1, 

Si:Al = 15). In situ oxidizing (20% O2, 673 K) or reducing (He, 673 K or 3.5% H2, 523 K) 

treatments for two representative samples consisting of exclusively Cu2+ or predominantly 

[CuOH]+ (i.e. 80% of the total exchanged Cu) ions exposed differences in their chemical 

behavior and showed that [CuOH]+ ions are more reducible compared to Cu2+. The two Cu 

species, however, are indistinguishable for low temperature (473 K) standard SCR catalysis 

based on the measured apparent kinetics (Eapp, apparent orders for NO, NH3, O2 and 

turnover rates per Cu), steady state Cu(I)-Cu(II) fractions from operando XAS spectra and 

DFT energetics for the standard SCR pathway on both sites when operating in a kinetic 

regime that is not limited by the re-oxidation of Cu(I) to Cu(II). DFT calculations 

rationalized these observations by showing that solvation of Cu by NH3 under reaction 

conditions nullified the differences between the two types of Cu species. 

The importance of nitrates for the oxidation of NO by O2 on Cu-ZSM-5 under dry 

conditions was determined in a separate study using steady state isotope transient kinetic 
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experiments in a custom-designed operando FTIR reactor. Three different nitrate peaks at 

1626 cm-1, 1601 cm-1 and 1567 cm-1 were observed under steady state dry NO oxidation 

conditions. Simultaneous monitoring of the surface nitrates using FTIR and the reactor 

effluent using mass spectrometer (MS) showed that NO2 was produced from the 

decomposition of surface nitrates by NO. 15NO labeling experiments confirmed that NO 

and NO2 were in quasi-equilibrium through nitrates on the catalyst surface, and suggested 

that the bridged/bidentate nitrate at 1626 cm-1 is a likely intermediate for dry NO oxidation 

on Cu-ZSM-5. 
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CHAPTER 1. INTRODUCTION

1.1 NOx Emissions and Control Strategies 

The environmental protection agency (EPA) introduced national air quality 

standards for NOx, SOx, CO, unburnt hydrocarbons, photochemical oxidants and 

particulate matter for the first time in 1971 [1]. The regulatory requirements for each of 

these classes of pollutants have become more stringent since then in an effort to limit the 

pollution levels and protect public health and the environment from smog and acid rain [2-

4]. Diesel is used for long distance transportation mainly because of the fuel economy 

advantage it offers over gasoline – powered vehicles [5, 6], especially under lean 

conditions. i.e. greater than air to fuel stoichiometric ratio. However, the combustion 

process leads to NOx emissions from exhausts of lean burn diesel – powered engines on 

highways, which are a major concern. Figure 1.1.1 shows that combustion of fossil fuels 

in automobiles contribute to more than half of the total NOx pollution [7, 8]. Figure 1.1.2 

shows the NOx emission requirements set by the EPA over the past few decades to mitigate 

this problem. Several strategies such as engine management and combustion control that 

have been employed in the past are inadequate to comply with the regulations expected in 

the future [4, 7, 9]. This highlights the importance of implementing after – treatment lean 

NOx systems on automobiles. 
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Figure 1.1.1 Sources of NOx Pollution [3] 

 
 

Figure 1.1.2 Current highway diesel NOx emission standards [10] 
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Three way catalysts (TWC) are used to meet the current emission standards, and 

accomplish the combined task of oxidizing CO as well as unburnt hydrocarbons while 

simultaneously reducing NOx to N2. But TWC do not deliver the expected performance 

under lean operating conditions that are used to improve the overall fuel economy [6]. 

Consequently, several other technologies such as NO decomposition, lean NOx traps and 

selective catalytic reduction (SCR) using both hydrocarbons and ammonia have been 

explored [6-8, 11-13]. NO decomposition to N2 and O2 is the cleanest way of reducing NOx 

without any byproduct formation or the need for additives. However, it is kinetically a slow 

process even though it is thermodynamically favored, and the catalyst is poisoned by the 

O2 produced from the decomposition of NO itself. Hence no catalyst with an appreciable 

NO conversion under the conditions prevalent in a diesel exhaust has been found to date 

[7, 11, 13]. NOx storage traps, developed by Toyota [8, 14], consist of a basic oxide like 

BaO supported on alumina that stores NOx during lean cycles of operation while Pt 

oxidizes CO and unburnt hydrocarbons. Periodic regeneration under rich conditions 

releases the stored NOx and reduces the hydrocarbons. Hydrocarbon SCR is an alternative 

way of reducing NOx emissions using the onboard fuel but it lowers the overall fuel 

economy because a portion of it is used for after-treatment control. Hydrocarbon 

combustion in the presence of excess oxygen prevalent under lean conditions is a 

competing side reaction and reduces selectivity towards NOx reduction [15]. Ammonia 

SCR, however, does not suffer from these drawbacks and has been used for stationary 

applications such as power plants, boilers and turbines in Japan since the 1970’s [16]. 

Titania supported vanadia formulations, which were sulfur resistant because the anatase 

phase of titania is only weakly and reversibly sulfated, were originally used for this purpose 
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[8]. However, the instability of vanadia based catalysts for mobile applications [5] raised 

concerns due to their toxicity and volatility at the thermal regeneration temperatures used 

to regenerate particulate filters [17].  

Copper (Cu) exchanged zeolites are safer and more viable alternative catalysts for 

ammonia SCR [13, 18-22]. Cu-ZSM-5 has been the subject of several investigations over 

the past two decades [7, 11, 23] after it was first reported to be active for NO decomposition 

by Iwamoto et al [24]. Zeolites are a class of solid acid catalysts wherein a portion of the 

tetravalent Si4+ sites in its framework structure are replaced by trivalent Al3+ sites, 

consequently, causing a deficiency of positive charge that can be compensated by a variety 

of extra-framework ions (H+, Cu2+, Fe2+, Fe3+, Co2+, etc.). Cu-ZSM-5, however, suffer from 

severe degradation in structure and performance under the harsh hydrothermal conditions 

present in a diesel exhaust. Small pore SSZ-13 and SAPO-34 zeolites show exceptional 

hydrothermal stability even after aging and exposure to several high temperature 

regenerative cycles compared to the medium pore ZSM-5 and large pore BEA zeolites [21, 

25]. Thermal degradation in medium and large pore zeolites is proposed to occur by 

dealumination that leads to the formation of octahedrally coordinated, extra – framework 

aluminum oxides or copper aluminates. However, these species cannot exit the small pores 

of the SSZ-13 structure because of the inherent size limitations and hence, are proposed to 

re – attach to the zeolite framework upon cooling, thus imparting these small pore zeolites 

their hydrothermal stability [25]. 

 

 



5 

 

5
 

1.2 Ammonia SCR 

The three types of ammonia SCR reactions, depending on the NO/NO2 ratio are described 

below: 

4NH3 + 4NO + O2 →4N2 + 6H2O……1.1 

4NH3 + 2NO + 2NO2 → 4N2 + 6H2O……1.2 

8NH3 +  6NO2 → 7N2 + 12H2O……1.3 

Since a typical diesel exhaust stream contains NOx mainly in the form of NO [2, 7, 9, 26], 

standard SCR (equation 1.1) is directly relevant to such mobile applications. However, if 

some of the NO is pre – oxidized to NO2 such that equimolar amounts of NO and NO2 are 

present, then the resulting fast SCR reaction (equation 1.2) has a higher reaction rate 

compared to that for standard SCR [9, 22] while simultaneously broadening the 

temperature window of operation for catalysts to lower temperatures [22, 27], and obviates 

the need for participation of O2 in the SCR reaction. A typical disadvantage when 

significant amount of NO2 is fed to the SCR catalyst is the formation of ammonium nitrate, 

which is an unwanted side product, can accumulate and block the active sites for SCR at 

low temperatures as shown by infrared spectroscopy, and decomposes to N2O, which is an 

undesirable greenhouse gas [9, 22]. In the presence of excess NO2, slow SCR (equation 

1.3) takes over and NO2 reacts directly with NH3 to produce N2 and H2O. 

1.2.1 Mechanistic Aspects of Standard SCR 

Isolated Cu(II) sites are now accepted as the active site for the standard SCR 

reaction on Cu-SSZ-13 catalysts [18-20, 28]. Deka et al. [19] argued that mononuclear 

Cu(II) species was the active species for standard SCR because they did not observe Cu(I) 
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during their in situ x-ray absorption spectroscopy (XAS) experiments. However, operando 

XAS experiments performed by Ribeiro and co – workers [20, 28-30] showed a mixture of 

Cu(I) and Cu(II) during low temperature (473 K) standard SCR while neither the Cu(I) or 

Cu(II) fraction correlated with the standard SCR reaction rate. Further, two types of ion 

exchanged, isolated Cu(II) species, namely Cu2+ ions that are charge-compensated by a 

pair of framework Al atoms and [CuOH]+ ions that are charge-compensated by isolated Al 

atoms in the zeolite, are suggested to be present in zeolites depending on their composition 

(Si/Al and Cu/Al ratios) ([31, 32]) but it is not clear how these two isolated Cu(II) species 

behave under SCR conditions. 

Paolucci et al. [30] demonstrated via O2 cutoff experiments that the reduction of 

Cu(II) to Cu(I) during standard SCR (473 K) required both NO and NH3 as the co-

reductants, and occurred via the NO assisted N-H bond dissociation of a Cu-bound NH3 

ligand while simultaneously generating a proximal Brønsted acid site per Cu2+ reduced. 

The authors speculated that the re-oxidation of Cu(I) to Cu(II) to close the catalytic cycle 

occurred via the in situ reaction of NO and O2 to the form a nitrite (NO2
-) anion that 

subsequently reacted with the NH4
+ ions to produce N2 and H2O. The proposed redox 

mechanism for standard SCR to account for the experimental observations is shown in 

Figure 1.2.1.  
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Figure 1.2.1 Proposed standard SCR redox mechanism on isolated Cu2+ ions at paired Al 

sites [30].  

 

 
Figure 1.2.2 Coupled standard (black) and fast (blue) standard SCR redox pathways 

proposed on [CuOH]+ ions at isolated Al sites [33]. 
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Janssens et al. [33], expanded on the proposed reaction mechanism by suggesting 

that the re-oxidation of Cu(I) to Cu(II) occurred via the initial formation of a nitrate (NO3
-) 

anion from the in situ reaction of NO and O2, which is further reduced by another NO 

molecule to a nitrite (NO2
-) anion and a free NO2 molecule, thus coupling standard and fast 

SCR reactions (Figure 1.2.2). The entire redox cycle was proposed to occur on a single, 

isolated, ion-exchange Cu site, which is consistent with the linear correlation obtained for 

the standard SCR reaction rate (Cu/Al = 0-0.2, Si/Al = 4.5) with the Cu content in catalysts 

[28]. At low Cu loadings (Cu/Al < 0.02, Si/Al = 6), however, Gao et al. [34] showed that 

this linear correlation breaks down and in fact, the standard SCR rate (473 K) varies as 

squared of the total Cu content. The authors reconciled this observation by proposing that 

Cu exchanged as [Cu-O-Cu]2+ dimers was the active site at low Cu loadings (Cu/Al < 0.02, 

Si/Al = 6) while isolated Cu2+ ions exchanged at a pair of framework Al atoms in the D6R 

and became the predominant active sites at higher Cu loadings (Cu/Al > 0.02, Si/Al = 6). 

However, isolated Cu2+ ions at a pair of framework Al atoms is the energetically preferred 

exchange site [28, 31] and secondly, the preferential formation of Cu dimers at low Cu 

loadings seems unreasonable because of low Cu contents in those samples. This shows that 

despite of all the advances, there are gaps in our understanding of the reaction mechanism 

and the active sites involved in low temperature (473 K) standard SCR catalysis that need 

further elucidation. 

 

 

 



9 

 

9
 

1.3 NO Oxidation 

NO oxidation is simply the oxidation of NO by O2 to produce NO2 as follows: 

2NO + O2 → 2NO2……1.4 

Metkar et al. [35] and several others [7, 23, 36-40] have suggested that NO oxidation is the 

rate limiting step for low temperature (473 K) ammonia standard SCR. This was proposed 

because the SCR reaction rate increases with an increase in the NO2:NO ratio in the feed. 

Further, H-ZSM-5 and H-SSZ-13 do not show measurable low temperature (473 K) 

standard SCR rates whereas the reaction is observed to proceed on the same zeolites upon 

addition of transition metals such as Cu and Fe [2, 5, 37, 40]. Based on these observations, 

and similar kinetics for ammonia standard SCR and NO oxidation reactions studied 

separately [35] [39], the proposed role of the transition metal was to oxidize NO to NO2. 

Ribeiro and co-workers have shown that the active sites for dry NO oxidation are CuxOy 

clusters [41] whereas those for ammonia standard SCR are isolated ion-exchanged Cu 

species [28], and even their apparent kinetics are different. However, the prime difficulty 

in ascertaining the role of NO oxidation during standard SCR is the inability to study the 

reaction under SCR conditions. 

 Nonetheless, Verma et al. [41] showed that the utility of dry NO oxidation lies in 

the fact that it can be used a probe reaction to detect clustering of Cu that usually occurs 

due to sintering upon aging Cu-zeolites. Additionally, the efficiency of NOx removal is 

greatly enhanced by the fast SCR reaction if some of the NO fed to the SCR catalyst can 

be pre-oxidized to NO2. 
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1.4 The Importance of Spectroscopy in Catalysis 

Kinetic studies measure reaction orders for each reactant, based on the coverage of 

various species on the catalyst surface and heats of adsorption, can be estimated. However, 

the reactor is like a black box, for which only the inlet and outlet concentrations of the 

different gases are known, while the adsorbates on the catalyst surface cannot be observed 

directly. Spectroscopy, both in situ and operando are indispensable techniques to probe the 

state of the catalyst and the adsorbates under catalytic conditions. This can be likened to 

Figure 1.4.1, similar to taking a photograph of the catalyst surface during operation, and 

provides useful insights into the possible reaction intermediates and the reaction 

mechanisms and pathways.  

 
Figure 1.4.1 Analogy of a catalyst with a chessboard, and the utility of spectroscopy [42]. 

This report uses x-ray absorption (XAS) and infrared (FTIR) spectroscopies to 

study ammonia SCR and dry NO oxidation reactions. XAS directly probes the oxidation 

state and the local environment of Cu and hence, is a useful tool to understand the response 
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of the Cu active site under varying gas conditions. Infrared (FTIR) spectroscopy, on the 

other hand, is useful to identify various types of intermediate species adsorbed on a catalyst 

surface during reaction. Both in situ and operando techniques have been used for the 

purposes of this report with an emphasis on operando because spectroscopic information 

about the catalyst is obtained in real time while monitoring the products formed by the 

reaction. This is useful for determining structure-activity relationships where changes in 

certain spectroscopic features can be related to changes in the catalytic performance.  

Furthermore, additional mechanistic information is furnished by steady-state 

isotope transient experiments wherein, at steady state, one reactant is replaced with its 

isotopically labeled analog. Assuming that the transport and thermodynamic properties of 

the isotope and the unlabeled gas are the same, these experiments provide a way to keep 

the catalyst surface at a kinetic steady state while giving us the ability to monitor the 

isotopic label on the catalyst surface using FTIR and in the final product using a mass 

spectrometer (MS) as the reactant molecule passes through surface intermediates to form 

products. Several reports that involve isotopic labeling of one reactant species exist in 

literature [43-47], where the shapes of the product curves obtained as a function of time 

are modeled to extract quantitative information about the number of pools of reactive 

intermediates, their average lifetime on the catalyst surface and the turnover frequency. For 

example, isotopic labeling experiments have proven that N2 produced in the standard SCR 

reaction on V2O5/TiO2 catalysts contains one atom nitrogen from NO and the other from 

NH3 [45]. However, a majority of these studies monitor the various isotopic species only 

in the reactor effluent and not on the catalyst surface. The added advantage in the study of 

hydrocarbon SCR by Chansai et al. [47], compared to the other studies is that the isotopic 
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label was followed on the catalyst surface using FTIR, and in the reactor outlet using an 

online MS, thus providing direct evidence for the active intermediates participating in the 

reaction. Keeping this in mind, a reactor setup capable of performing steady state isotope 

switching experiments was designed to identify potential intermediates involved in the 

reaction pathway to form NO2 by the oxidation of NO. 

1.5 Research Objectives 

The first objective of this study was to ascertain the effect of each reactant on the 

state of Cu in Cu-SSZ-13 catalyst during low temperature (473 K) standard SCR. Transient 

cutoff experiments [30] elucidated the redox behavior of Cu during standard SCR. 

However, because of the inherent transient nature of these experiments, it was difficult to 

ascertain whether the changes in Cu oxidation state were catalytic or because of the absence 

of one reactant in the feed mixture. Further, because a combination of two reactants was 

always present after cutting off one reactant in the feed, it was unclear as to what role each 

of the individual reactant molecules played in the standard SCR mechanism. Thus, steady 

state operando experiments were performed in chapter 3 by systematically varying the 

partial pressure of one reactant at a time while simultaneously measuring the standard SCR 

reaction rates and collecting x-ray absorption near edge structure (XANES) spectra to 

observe the change in the Cu(I)-Cu(II) surface coverages, and relate that to the role of each 

reactant in the standard SCR mechanism. 

Even though NO and O2 are proposed to be involved in the oxidation half-cycle in 

the standard SCR mechanism, how the 4-electron oxidation with O2 occurs during standard 

SCR is not well understood. On the other hand, NO2 is considered as the oxidant during 
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fast SCR. Consequently, we probed the oxidation half-cycle in the SCR mechanism by 

reducing and trapping two Cu-SSZ-13 catalysts, which contained structurally equivalent, 

isolated Cu2+ ions charge balanced by a pair of framework Al atoms but with diffeingt 

Si/Al ratios, in their Cu(I) state, and then followed the rate of Cu(I) re-oxidation by XANES 

upon flowing either 10% O2  or 90 ppm NO2 to elucidate whether there were any 

differences or similarities between the oxidation behavior of Cu(I) during the two SCR 

reactions. A secondary objective was also to determine the effects of the zeolite 

composition i.e. Si/Al ratio and the proximity of exchanged Cu ions on the oxidation 

reactions with O2 and NO2, if any. 

Furthermore, two types of isolated Cu(II) species – Cu2+ and [CuOH]+ – are 

proposed (section 1.2.1) to be active for standard SCR. Hence, it was of interest to first 

detect and quantify their relative amounts in our catalysts. Subsequently, differences in 

their chemical behavior were investigated under a variety of ex situ oxidizing and reducing 

environments using XANES, extended x-ray absorption fine structure (EXAFS) and first-

principles density functional theory (DFT) calculations in chapter 2. The goal was 

understand whether these ex situ characterizations correlated with and could be 

extrapolated to the behavior of these two species during standard SCR reaction conditions.  

Finally, the relevance of nitrates for dry NO oxidation was probed in chapter 4 

using a custom-built operando FTIR reactor and a unit capable of performing isotope 

labeling experiments. These experiments demonstrate that steady-state isotope transient 

kinetic analysis is a powerful technique to identify potential reactive intermediates for the 

reaction being investigated. 
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CHAPTER 2. CATALYSIS IN A CAGE: CONDITION – DEPENDENT SPECIATION 

AND DYNAMICS OF EXCHANGED CU CATIONS IN SSZ-13 ZEOLITES 

“Reprinted (adapted) with permission from Catalysis in a Cage: Condition-Dependent 

Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites, Chrisopher 

Paolucci, Atish A. Parekh, Ishant Khurana, John R. Di Iorio, Hui Li, Jonatan D. Albarracin 

Caballero, Arthur J. Shih, Trunojoyo Anggara, W. Nicholas Delgass, Jeffrey T. Miller, 

Fabio H. Ribeiro, Rajamani Gounder, William F. Schneider, Journal of the American 

Chemical Society, doi: 10.1021/jacs.6b02651. Copyright (2016) American Chemical 

Society.” (http://pubsdc3.acs.org/articlesonrequest/AOR-RJXD4RdZNiXNX7anz7hE) 

The computational work in this chapter has been performed by Christopher Paolucci and 

Hui Li from Prof. William F. Schneider’s group at the University of Notre Dame. 

2.1 Abstract

The relationships among the macroscopic compositional parameters of a Cu-

exchanged SSZ-13 zeolite, the types and numbers of Cu active sites, and activity for the 

selective catalytic reduction (SCR) of NOx by NH3 are established through experimental 

interrogation and computational analysis of materials across the catalyst composition 

space. Density functional theory, stochastic models, and experimental characterizations 

demonstrate that under the synthetic conditions applied here, Al randomly distribute on the 

SSZ-13 lattice subject to Löwenstein’s rule and that exchanged Cu(II) ions first populate 2 

http://pubsdc3.acs.org/articlesonrequest/AOR-RJXD4RdZNiXNX7anz7hE
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Al sites within six-membered-rings before populating remaining 1 Al sites as Cu(II)OH. 

These sites are distinguished and enumerated ex situ through vibrational and x-ray 

absorption spectroscopies (XAS) and chemical titrations. In situ and operando XAS follow 

Cu oxidation state and coordination environment as a function of environmental conditions 

including low temperature (473 K) SCR catalysis and are rationalized through first-

principles thermodynamics and ab initio molecular dynamics. Experiment and theory 

together reveal that the Cu sites respond sensitively to exposure conditions, and in 

particular that Cu species are solvated and mobilized by NH3 under SCR conditions. While 

Cu sites are spectroscopically and chemically distinct away from these conditions, they 

exhibit the same turnover rates, apparent activation energies and apparent reaction orders 

at the SCR conditions, even on zeolite frameworks other than SSZ-13. 

2.2 Introduction 

In 1925 [48], Hugh Scott Taylor theorized that specific groups of atoms were responsible 

for the rate enhancing capacity of heterogeneous catalyst surfaces, from the he coined the 

phrase “active site”. This concept has become ubiquitous in modern catalysis science and 

has proven indispensable to the emergence of rational catalyst design. Most heterogeneous 

catalysts, however, are structurally heterogeneous at the molecular scale. They contain a 

distribution of active sites of different catalytic activity [49-51], reflecting non – 

uniformities in active site coordination and local environment [52, 53], response to external 

stimuli [54, 55], and interactions with reacting molecules [56-59]. The integration of 

density functional theory (DFT) computational models and experimental operando 

spectroscopies that interrogate active sites during catalysis can provide powerful insights 
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into the coupling between active site composition, reaction environment, and the reaction 

mechanism [60, 61]. In this work, we demonstrate how this approach enables the 

identification, quantification, and characterization of distinctly different active sites in a 

macro- and microscopically heterogeneous zeolite catalyst. We show through operando 

characterization that the composition and structure of active sites changes dynamically 

during reaction, differs from their ex situ states, and that such reaction-environment-

induced modifications are integral to observed catalytic performance. 

We demonstrate this capability in the context of Cu-exchanged zeolite catalysts. 

Zeolites are crystalline, nanoporous aluminosilicates constructed of corner-sharing SiO4 

and AlO4 tetrahedra, or T-sites. Framework substitution of Si4+ by Al3+ introduces an 

anionic charge into the oxide lattice that must be charge-compensated by extralattice 

cations. The Al sites are in general not ordered, so that at a given Si:Al ratio a zeolite 

presents a distribution of local Al environments [62-66]. The common oxidation states of 

Cu are 1+ and 2+, and thus, a single Cu ion can in principle charge-compensate one or two 

Al T-sites [67-74]. The exact form of this exchange and charge compensation can depend 

on Cu oxidation state, overall framework structure, and local Al siting. In addition, Cu is 

observed to form multinuclear oxo-complexes and oxide clusters that further enrich its 

exchange chemistry and catalysis [41, 75-79]. 

Cu-exchanged zeolites have been explored for a variety of partial oxidations [77, 

78, 80-90] and NOx chemistries [91-93]. Cu-zeolites have long been known to be active 

for the selective catalytic reduction (SCR) of NOx with NH3 [5, 7, 22, 24, 60, 94-98]. SCR 

catalysts promote the reduction of NOx by NH3: 

4NH3 + 4NO + O2 → 6H2O + 4N2…….2.1 
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over the competing and undesired oxidation of NH3: 

4NH3 + 3O2 → 6H2O + 2N2……2.2 

Small pore Cu-exchanged SSZ-13, in particular, is able to satisfy all the practical 

requirements of an SCR catalyst and is now in commercial use [99-102]. However, the 

relationships between zeolite composition, reaction conditions, active site(s), and 

mechanism remain to be elucidated. 

 
Figure 2.2.1 (left) side view of the chabazite cage. (right) HSE06-optimized structures of 

(A, B) dehydrated oxidized and reduced Cu sites and (C) hydrated oxidized sites. Label 

indicates location of Cu ion within the chabazite cage. 

SSZ-13 has the chabazite topology. The single symmetry-distinct T-site organizes into 4-, 

6- and 8-membered rings (Figure 2.2.1, right) that form a cage ≈8 Å in diameter [103]. 

SSZ-13 can be prepared in elemental compositions from highly enriched (Si:Al = 2) to 

infinitely dilute (Su:Al = ∞) in Al sites. The H-form (i.e. Al charge-compensated by H+) 

can be exchanged to various Cu:Al ratios, and the locations and forms of these exchanged 

Cu ions have received considerable attention [19, 25, 28, 32, 33, 41, 104-116]. X-ray 

absorption (XAS), UV-visible (UV-Vis), and infrared (IR) spectra of zeolites [28, 32, 34, 
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41, 88, 110, 117] all suggest that exchanged Cu ions are present as hydrated and oxidized 

[Cu(II)(H2O)6] [118] at ambient conditions regardless of zeolite composition and topology. 

 The homogeneity of Cu sites under ambient conditions gives way to a rich variety 

of Cu species after high temperature and oxidative removal of H2O. X-ray diffraction 

(XRD) reveals monomeric Cu ions in SSZ-13 that occupy either 6MR A sites [19, 109], or 

both A and B sites [104, 113] (Figure 2.2.1). We have reported that high Al content Cu-

SSZ-13 zeolites (Si:Al = 5) contain exclusively Cu(II) in the (A) site under dry oxidizing 

conditions up to Cu:Al = 0.2 [28, 30], as demonstrated through the 4-fold coordination of 

Cu with the zeolitic oxygen in extended x-ray absorption fine structure (EXAFS) spectra 

and titrations of residual Brønsted acid sites that reveal a 2:1 H+:Cu2+ exchange 

stoichiometry. In contrast, Borfecchia et al. [105] report 3-fold Cu coordination under 

similar conditions on their Si/Al = 13, Cu/Al = 0.4 sample. Giordanino et al. [32, 105] 

report IR features attributable to Cu hydroxyl ([Cu(II)OH]+) on Si:Al = 13, Cu:Al = 0.4, 

whereas Gao et al. [114] only observe this band on a subset of Si:Al = 6 samples. DFT 

calculations generally indicate that isolated, unligated Cu(I) and Cu(II) ions prefer the A 

site (Figure 2.2.1, left) regardless of the location of Al [20, 28, 30, 105, 108, 119-122]. 

 H2 temperature programmed reduction (TPR) [114, 123] experiments are consistent 

with the existence of at least two types of exchanged Cu(II) with differing susceptibility to 

reduction. Borfecchia et al. [105] similarly observe only a fraction of Cu(II) ions to reduce 

in He at 673 K. Chemical probes including NO, NO2 and CO [33, 123-128] will thus see a 

different mixture of Cu sites depending on sample history. For instance, NO adsorbs 

strongly with vacuum-reduced Cu(II) → Cu(I) sites [123, 124] but more weakly and 
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dynamically on Cu(II) sites [30, 106]. The relevance of the ex situ probes to catalytic 

conditions has yet to be established.  

 Standard SCR is a redox reaction, as evidenced by the observation of both Cu(I) 

and Cu(II) in operando experiments [20, 33, 129] and thus the ex situ reducibility of 

catalysts might be expected to correlate with observed activity. However, catalysts with 

different ex situ properties exhibit similar SCR characteristics. Reactant cutoff experiments 

demonstrate that both NO and NH3 are necessary for the Cu(II) → Cu(I) half-cycle across 

samples of various compositions [30, 33]. Apparent activation energies are the same (≈ 70 

kJ mol-1) and 473 K SCR turnover rates are linear in Cu content (Cu:Al = 0.08 – 0.2) on 

Si:Al = 5 samples [28, 30, 130]. Samples with compositions nearer to those studied by 

Borfechhia et al. present the same Cu(I)/Cu(II) fractions in operando XAS [33] and similar 

apparent activation energies [114] as the Si:Al = 5 samples but different susceptibilities to 

Cu reduction in H2 TPR [114].  

 Thus, while there is general agreement that various isolated, exchanged Cu ions are 

present and contribute to the SCR catalysis, the precise nature, number and reactivity of 

different cationic species, their dependence on zeolite composition (Si:Al and Cu:Al ratios) 

and framework topology, sample treatment history and environment, and their 

spectroscopic signatures under ex situ vs. in situ conditions, remain unknown. Here, we 

report a coordinated computational (stochastic simulation, ab initio dynamics and free 

energy) and experimental (synthetic, spectroscopic and titrimetric) analysis of Cu 

speciation under ex situ conditions, and in situ and operando SCR conditions as a function 

of catalyst composition over a wide range of zeolite chemical composition space. We 

demonstrate that the types, numbers and chemical characteristics of Cu sites depend on 
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bulk composition of the zeolite, can be predicted through first-principles-based models, 

can be distinguished in the laboratory, and depend strongly on the environmental 

conditions. Environmental conditions have a profound impact on Cu ion siting, 

coordination and mobility, resulting in SCR turnover rates (473 K) that are independent of 

the initial Cu cation site and the zeolite framework type. The results rationalize a large 

body of literature, resolve contradictory findings regarding the active sites for NOx SCR, 

and consolidate the understanding of Cu cation speciation in zeolite. 

2.3 Results 

2.3.1 Cu Cation Speciation in Cu-SSZ-13 

2.3.1.1 First-principles Speciation of Cationic 

We first created molecular models for isolated Cu exchange sites in SSZ-13 and 

established their relative free energies under hydrothermal conditions relevant to Cu 

exchange and catalyst treatment; computational details can be found in appendix A. We 

used a 12 T-site supercell [20, 28, 30] with a single Al substitution to represent an isolated 

Al atoms in the CHA framework. Charge compensating Cu(I) ions prefer to sit in the plane 

of the 6MR [20, 28, 120], and we label this structure as [ZCu(I)] in Figure 2.2.1a to denote 

charge-compensation of a single Al (Z) by Cu. This notation also emphasizes the formal 

1+ oxidation state of Cu, and this structure is used as the Cu(I) reference in relating 

computed Bader charges to effective Cu oxidation states. An oxidized form of the Cu sites 

compensating a single framework Al atoms has been proposed [33, 105, 111] to be formed 

by the addition of an extra-lattice OH ligand, which redirects the Cu into the 8MR 

according to optimized [ZCu(II)OH] structure shown in Figure 2.2.1b. 
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Similarly, two proximal framework Al atoms (2Al sites) can be charge 

compensated by a single Cu(II) ion. The exchange energies of Cu(II) at different potential 

2Al sites were previously computed using a 2 x 1 x 1 supercell containing 4 Al atoms 

distributed to place 2Al sites in each of the 4, 6, and 8MR [28]: 

Z4H4 + Cu(II)(aq) → Z4H2Cu(II) + 2H(aq)
+ ……2.3 

Cu(II) exchange at 2Al sites in the 6MR ring is 108 and 145 kJ mol-1 more exothermic than 

exchange at 2Al sites in the 4MR and 8MR, respectively. We adopt a model with 2Al at 

third-nearest-neighbor (3NN) positions in a 6MR for Cu near 2Al. Cu exchange at the 2NN 

Al 6MR is coordinatively similar and the exchange energy more endothermic by 22 kJ mol-

1. The 3NN Al 6MR structure is labeled [Z2Cu(II)] in Figure 2.2.1a and is taken as the 

Bader charge standard for the Cu(II) oxidation state. We previously found that this 

[Z2Cu(II)] site can be reduced by addition of H+ to an Al site proximal to Cu [30], which 

is the [ZH]/[ZCu(I)] species shown in Figure 2.2.1a. The forward slash emphasizes that 

these two sites are proximal. Reduction to Cu(I) decreases Cu coordination to the lattice 

but preserves Cu location within the 6MR.  

 Motivated by XAS [28, 67, 110], and molecular dynamics [131] evidence that 

exchanged Cu(II) ions are hydrated under ambient conditions, we first explored H2O 

coordination to the [Z2Cu(II)] and [ZCu(II)OH] ions by computing the structures and 

successive adsorption energies of H2O ligands (x = 1 to 6): 

1Al: ZCu(II)(OH)(H2O)x-1 + H2O 
ΔEads
→   ZCu(II)(OH)(H2O)x……2.4.1 

2Al: Z2Cu(II)(H2O)x-1 + H2O 
ΔEads
→   ZCu(II)(H2O)x……2.4.2 
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In each simulation, we started from the equilibrated (x-1) H2O structure, added another 

H2O molecule, annealed for 140 ps at 473 K using NVT ab initio molecular dynamics 

(AIMD) at the GGA level, quenched and evaluated the energy with HSE06 functional 

including Tkatchenko Scheffier van der Waals (TSvdw) corrections (section 2.6.1). Energy 

and Cu coordination number results are summarized in Table 2.3.1, where CN is defined 

as the number of heavy atoms within 2.3 Å of Cu. H2O adsorption energies are on the order 

of -70 kJ to -90 kJ mol-1 and are generally more exothermic on [Z2Cu(II)] than on 

[ZCu(II)OH] sites. The computed Cu oxidation state is insensitive to added H2O. On 

[Z2Cu(II)], successive H2O ligands generally displace framework oxygen (Of) from the 

first coordination sphere, until at x = 4 the Cu(II) ion is fully coordinate by H2O; additional 

H2O molecules form a second coordination sphere through hydrogen bonds to first shell 

H2O. With hydration, the Cu ion moves from within the 6MR (site A, Figure 2.2.1) to the 

8MR (site B) to the cage center (site C). The final optimized x = 6 structure is shown in 

Figure 2.2.1c. The [Z2Cu(II)OH] site behaves similarly with added H2O; the fully hydrated 

complex is shown in Figure 2.2.1c. 

Table 2.3.1 H2O adsorption energies (ΔEads) on Cu sites computed using HSE06-TSvdw. 

Cage location referenced to Figure 2.2.1. CN and Of indicate total Cu coordination number 

and number of close framework O contacts, respectively. 

 +x H2O 1 2 3 4 5 6 

Z2Cu 

ΔEads (kJ mol-1) -84 -94 -108 -84 -90 -73 

Cage Location A A B C C C 

Of/total CN 3/4 3/4 2/4 0/4 0/4 0/4 

ZCuOH 

ΔEads (kJ mol-1) -75 -67 -76 -63 -95 -56 

Cage Location B C C C C C 

Of/total CN 2/4 0/3 0/3 0/4 0/4 0/4 
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Exchanged Cu may lose waters of hydration and acquire other ligands during 

synthesis and after oxidation or reduction treatments. We computed the structures and 

energies of various combinations of O, OH, H2O and O2 ligands on both the 1Al and 2Al 

models in the nominally oxidized and reduced states. The list of candidate structures was 

guided by chemical plausibility and includes proposed intermediate species reported 

elsewhere (e.g. Cu(II)O, Cu(II)(OH)2) [20, 132]. Optimized structures and energies of all 

26 species are tabulated in appendix A. 

We applied a first-principles thermodynamic analysis to rank the stability of this 

library of Cu-bound HxOy species as a function of temperature, and hydrogen and oxygen 

potentials. We take O2 and H2O as the oxygen and hydrogen references, respectively: 

ZCu + 
x

2
(H2O - 

1

2
O2)  + 

y

2
O2

ΔGform
→     ZCuHxOy……2.5 

used the HSE06-TSvdw energies, and applied previously developed correlations [30], to 

estimate adsorbate entropies. The formation free energies (ΔGform) are computed according 

to section 2.6.2 and the µH2O and µO2 related to T and P through the ideal gas relation. 

Results for an ambient condition (Condition 1, 298 K, 2% H2O and 20% O2) representative 

of an air-exposed catalyst, and an elevated temperature condition (Condition 2, 673 K, 2% 

H2O and 20% O2) representative of an oxidation pretreatment are summarized in Fig. 2. 

For clarity, species with ΔGform > + 200 kJ mol-1 are not shown in condition 2. The relative 

energy alignment between Cu near 1Al and 2Al is described in section 2.1.1.2. 

 At high temperatures (673 K) and high oxygen potentials (20% O2) of Condition 2, 

the lowest free energy structure near the 2Al site is the isolated [Z2Cu(II)] ion. At these 

conditions, adsorption of a single H2O ligand is endergonic by 15 kJ mol-1.  Other 
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adsorbates on Cu sites near 2Al lead to complexes much higher in free energy, including 

adsorbed molecule O2. Similarly, on Cu sites near 1Al, the lowest free energy structure is 

oxidized [ZCu(II)OH] with normalized Bader charge (appendix A) of +1.8, slightly less 

than [Z2Cu(II)]. The reduced form of the site, [ZCu(I)], and its hydrated form, 

[ZCu(I)(H2O)], are very close in free energy to the oxidized [ZCu(II)OH] state. Molecular 

O2 adsorption on the [ZCu(I)] site is endergonic by 50 kJ mol-1 relative to [ZCu(II)OH], 

and even higher in free energy are other oxidized forms, including [ZCu(II)O] [132] and 

[ZCu(II)(OH)2] [20]. The primary effect of decreasing temperatures to ambient (Condition 

1) is a significant decrease in the free energies of all hydrated Cu states, which causes the 

most stable species to become the fully hydrated Z2[Cu(II)(H2O)4](H2O)2 and 

Z[Cu(II)(OH)(H2O)3](H2O)3 complexes at 2Al and 1Al sites, respectively. 

 
Figure 2.3.1 Formation free energies (ΔGform) CuHxOy species at (left) 298 K, 2% H2O, 

20% O2 and at (right) 673 K, 2% H2O, 20% O2 on the 2Al (Z2Cu) and 1Al (ZCu) sites. 

Common energy reference set through equation 2.6 
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 We generalize the analysis in Figure 2.3.1 to a range of temperatures and O2 

pressures at fixed H2O partial pressures (2%) and plot the lowest free energy species at 

each set of conditions in Figure 2.3.2 in the form of a phase diagram. For reference, 

Conditions 1 and 2 of Figure 2.3.1 are labeled with red boxes on Figure 2.3.2. The phase 

diagrams are insensitive to the H2O pressure over the range of experimental interest. For 

comparison, we report the corresponding T-PH2O diagram in appendix A. As discussed 

below, these diagrams indicate that the stable Cu state (CN, Of and oxidation state) depend 

sensitively on the environmental conditions over the ranges of experimental interest, and 

that the lowest free energy species differ for Cu complexes that charge compensate 1Al or 

2Al sites. 

 
Figure 2.3.2 Ex situ Cu speciation phase diagrams based on HSE06-TSvdw calculations on 

1Al (left) and 2Al (right) Cu exchange sites. Regions indicate site composition that 

minimizes free energy at 2% H2O and given T and PO2. Labeled on the phase diagram and 

illustrated below are the minimum free energy species at (1) ambient (298 K, 20% O2), (2) 

oxidizing (673 K, 20% O2) and (3) inert (673 K, 10-6 atm O2 in He). 
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2.3.1.2 1Al and 2Al Cu Exchange Populations 

To this point, we have treated the 1Al and 2Al sites independently. To place these 

two on a common energy scale, we computed the Cu exchange energy between the two 

sites: 

[Z2CuH2O] + [ZH] → [ZH]/[ZH] + [ZCuOH], ΔE =66 kJ mol
-1

……2.6 

We evaluated this energy in a large supercell containing separated Z2 and Z sites as well as 

in separate supercells constructed to conserve atomic numbers; results are in close 

agreement (66 vs. 69 kJ mol-1) and structures are given in appendix A. We used the 66 kJ 

mol-1 result to offset the 0 K energies of [Z2Cu(II)H2O] and [ZCu(II)OH], and thus, place 

the two site types on the same free energy y-axis shown in Figure 2.3.1. The zero of energy 

is defined as [ZCu(I)]. The free energy associated with Cu near 2Al is substantially lower 

than Cu near 1Al at both 298 K (-142 kJ mol-1) and at 673 K (-55 kJ mol-1). These results 

indicate that Cu ions prefer to segregate to 6MR 2Al exchange sites over a wide range of 

conditions. The relative density of Cu ions in 6MR 2Al sites and in 8MR 1Al sites will 

depend on the total Cu content and the number of such 2Al and 1Al sites present in a given 

SSZ-13 sample. We determined the Al distribution as a function of Si:Al ratio by numerical 

simulation [28, 64] assuming random Al distribution subject to Löwenstein’s rule [133], 

which prohibits 1NN Al pairs. We then assume that exchanged Cu ion populate all 

available 2NN and 3NN Al sites as [Z2Cu(II)] before occupying 1Al sites as [ZCu(II)OH]. 

Figure 2.3.3 reports the computed fraction of Cu present as [ZCu(II)OH] as a function of 

Si:Al and Cu:Al ratios. The region below the white line corresponds to a composition space 

containing exclusively Cu species near 2Al, while the region above the black line contains 

gradually increasing [ZCu(II)OH] fractions that become the dominant species in the upper 
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right red area. To ensure 2Al 6MR stay charge compensated by a single Cu past the 

saturation point, we computed the energy of two [ZCu(II)OH] in a 6MR (appendix A): 

[Z2CuH2O] + [ZCuOH] → [ZCuOH]/[ZCuOH] + [ZH], ΔE = 81 kJ mol
-1

……2.7 

Thus, these 6MR 2Al sites will remain populated by [Z2Cu(II)] as additional Cu is 

exchanged in the form of [ZCu(II)OH]. 

 To test these model predictions, we prepared and analyzed a series of SSZ-13 

catalysts of varying Si:Al and Cu:Al ratio (samples represented by while circles in Figure 

2.3.3). An Al-rich SSZ-13 sample (Si:Al = 5) was synthesized using high Al FAU zeolite 

as the Al source [134] and characterized as reported previously [28, 41, 135, 136], while 

lower Al content SSZ-13 samples (Si:Al = 15, 25) were synthesized using Al(OH)3 as the 

Al source [109]. Powder XRD patterns (appendix A) and Ar adsorption isotherms (87 K, 

appendix A) were consistent with the CHA topology on all H-form SSZ-13 samples. The 

number of H+ sites on each SSZ-13 sample was quantified from the NH3 evolved during 

TPD of NH4-form samples, and were 0.65, 1.02, and 0.98 H+:Al for the Si:Al ratios of 5, 

15 and 25, respectively. The high Al H-SSZ-13 sample (Si:Al = 5) contained fewer H+ sites 

than its number of framework Al atoms (H+:Alf = 0.76) [136], reflecting the imprecision 

with which ex situ methods such as 27Al MAS NMR spectroscopy may characterize 

structural surrogates for H+ sites. It also reflects the non-uniformity of SSZ-13 samples 

prepared using FAU to CHA interconversion methods [134], for which repeat synthesis 

experiments on crystallized samples that contained H+:Al ratios that varied between 0.45-

0.85 were observed (appendix A). 
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Figure 2.3.3 Predicted Cu site compositional phase diagram vs. Si:Al and Cu:Al ratios. 

Color scales indicate predicted fraction of CuOH. White line demarcates transition from 

[Z2Cu(II)]-only region to mixed [Z2Cu(II)]/[ZCu(II)OH] region. White circles indicated 

compositions of synthesized Cu-SSZ-13 samples. 

 Increasing amounts of Cu were exchanged into these three (Si:Al = 5, 15, 25) H-

SSZ-13 samples from aqueous-phase Cu(II)(NO3)2. The number of residual H+ sites was 

quantified using NH3 TPD, which was performed after samples were saturated with 

gaseous NH3 (433 K) and purged in wet helium (3% H2O, 433 K) to desorb Lewis acid-

bound NH3 and selectively retain NH4
+ species [135], as illustrated by equation 2.8: 

ZCuNH3 + H2O → ZCuH2O + NH3……2.8.1 

ZNH4 + H2O → ZNH4 + H2O……2.8.2 
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Figure 2.3.4 Residual H+ sites per parent sample H+ from NH3 titrations on oxidized M-

SSZ-13 samples vs. extent of M/Al exchange for Si:Al = 5 (blue diamonds), 15 (green 

circles) and 25 (orange squares). Open and filled symbols denote Cu2+ and saturated Co2+ 

exchange, respectively. Dashed lines are model predictions. 

Figure 2.3.4 shows the number of residual H+ sites present on each Cu-SSZ-13 

sample after oxidative treatment in flowing air (773 K), normalized by the number of H+ 

sites quantified on their respective H-SSZ-13 parent samples after the same oxidative 

treatment, as a function of Cu:Al ratio. The dashed lines in Figure 2.3.4 represent the 

number of residual H+ sites as a function of Cu:Al ratio predicted from the simulation 
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results in Figure 2.3.3. At a Si:Al ratio of 5, each exchanged Cu cation decreased the 

number of residual H+ sites by two (on average) up to a Cu:Al ratio of 0.2 (Figure 2.3.4) 

[135, 136], consistent with the exchange stoichiometry: 

Z2H2 + Cu(II) → Z2Cu + 2H+……2.9 

On samples with Si:Al ratios of 15 and 25, each exchanged Cu exchanged two H+ sites 

until Cu:Al ratios of 0.1 and 0.04, respectively, but only one additional H+ site beyond this 

limit (Figure 2.3.4), consistent with the exchange reaction: 

ZH + Cu(II)H2O → ZCuOH + 2H+……2.10 

These Cu:H+ exchange stoichiometries provide experimental evidence that cationic Cu 

species exchange sequentially as [Z2Cu(II)] sites until saturation and then [ZCu(II)(OH)] 

sites (Figure 2.3.1). 

 Figure 2.3.5 shows FTIR quantification of the disappearance of Brønsted ZH 

species and the appearance of [ZCu(II)OH] as a function of Cu density on the series of Cu-

SSZ-13 samples with Si:Al = 15. The H-SSZ-13 spectrum includes four features in the O-

H region, including modes at 3605 and 3580 cm-1 [137, 138] from Brønsted sites, at 3732 

cm-1 from isolated silanols, and at 3700 cm-1 from vicinal silanols [139]. The integrated 

area of the Brønsted ZH peaks of the Cu:Al = 0.12 sample, taking that of the H-SSZ-13 

sample as the baseline, decreased with a 2:1 H+:Cu ratio (appendix A), consistent with 

equation 2.9. A new, fifth feature appears at 3651 cm-1 in Cu:Al ≥ 0.21 samples, at a 

location consistent with previous assignment to [105], and the computed harmonic O-H 

stretch frequency of [ZCu(II)OH]. The integrated area of this 3651 cm-1 band increases 

linearly across the range Cu:Al = 0.21-0.44, (Figure 2.3.5 inset), and the integrated areas 

of the Brønsted OH stretches decrease concurrently in a 1:1 H+:Cu ratio, consistent with 
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equation 2.10. These vibrational data provide strong support for the sequential population 

of [Z2Cu(II)] followed by [ZCu(II)OH] sites. 

 

Figure 2.3.5 FTIR spectra of oxidized Cu-SSZ-13 samples (Cu:Al = 0-0.44, Si:Al = 15). 

Inset: Integrated 3651 cm-1 CuO-H area as a function of Cu:Al ratio. 

 Co(II) exchange provides a third independent enumeration of the number of 2Al 

6MR sites on each sample, because Co(II) does not exchange at single Al sites as 

[ZCo(II)OH] at the exchange pH used here (pH ≈ 3.2) [140]. Samples with Si:Al ratios 5, 
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15 and 25 were saturated with Co(II) and the Co:Al contents were determined by atomic 

absorption (appendix A) to be 0.19, 0.1 and 0.04, respectively. These values agree 

quantitatively with the maximum number of 2Al 6MR sites predicted for each Si:Al ratio 

in Figure 2.3.3 for a random Al distribution in SSZ-13. Furthermore, the number of residual 

H+ sites on Co-saturated H-SSZ-13 samples were quantified by NH3 titration, and are 

plotted on Figure 2.3.4 as filled symbols, and agree quantitatively with the transition Cu:Al 

ratios between exchange of [Z2Cu(II)] and [ZCu(II)OH] species. These results indicate that 

isolated Co(II) and Cu(II) exhibit identical preferences for 2Al 6MR sites, and that both 

cations replace two Brønsted sites via equation 2.9 when exchanged at these sites. 

 The Cu:Al values that demarcate the transition between formation of [Z2Cu(II)] 

sites and [ZCu(II)OH] sites are 0.2, 0.1 and 0.04 for the H-SSZ-13 samples with Si:Al 

ratios of 5, 15 and 25, respectively (Figure 2.3.4). These Cu:Al values are identical, within 

error, to the fraction of 2Al 6MR sites predicted from simulation of Al distribution in CHA 

frameworks at these Si:Al ratios (Figure 2.3.3). Taken together, the experimental and 

computational findings indicate that under conditions of synthesis applied here [141], Al 

are distributed randomly in SSZ-13 subject to Löwenstein’s rule, that 2Al 6MR are the 

preferred sites for Cu(II) exchange, and that these sites saturate before remaining 1Al sites 

are populated with [ZCu(II)OH]. This quantification allows us to identify and contrast the 

structures, properties and catalytic performance under low temperature (473 K) standard 

SCR conditions of samples that contain predominantly [Z2Cu(II)] or [ZCu(II)OH] sites. 

We chose a sample with Si:Al = 5 and Cu:Al = 0.08 to represent a [Z2Cu(II)] site and a 

sample with Si:Al = 15 and Cu:Al = 0.44 to represent [ZCu(II)OH], which we refer to as 

the “2Al” and “1Al” samples, respectively. 
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2.3.2 Copper Cation Structure under ex situ Conditions 

We next combine XAS and AIMD simulations to explore the molecular and the 

electronic structures of both the model 1Al and 2Al samples as a function of the 

hydrothermal conditions represented in Figure 2.3.2. Results are summarized in Figure 

2.3.6 and Figure 2.3.7, and in Table 2.3.2. 

 
Figure 2.3.6 Left: XANES spectra collected on the 1Al (teal dashes) and 2Al (black lines) 

Cu-SSZ-13 samples under treatment in 2% H2O, 20% O2 at 298 K. Middle: EXAFS spectra 

at same conditions. Right: 298 K AIMD RDFs and integrated RDFSs (inset). 

2.3.2.1 Condition 1: Ambient Atmosphere (XAS/AIMD) 

First, both 1Al and 2Al samples were subjected to high temperature oxidative 

treatments and then exposed to ambient atmosphere at 298 K, corresponding to Condition 

1 of Figure 2.3.2. The Cu K-edge X-ray absorption near edge spectra (XANES) collected 

on both samples were indistinguishable, as shown in Figure 2.3.6, left. A single edge at 

8.988 keV corresponds to the 1s → 4p transition of a Cu(II) ion in a distorted square-planar 

or octahedral coordination [118]. EXAFS spectra of both samples from the same energy 

scan (Figure 2.3.6, middle) exhibited a high intensity first coordination shell peak at ≈ 1.5 

Å (not phase-corrected). The spectra were fitted using a Cu2O(s) experimental reference to 
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estimate 4 Cu-O bonds (1.94 Å average distance) and 4.2 Cu-O bonds (1.93 Å average 

distance), respectively on the 2Al and 1Al samples, which are identical within the ±10% 

error of the fit (appendix A). Higher coordination shells beyond 2.0 Å appear with low 

intensity on both samples and indicate Cu-O bonds with extra-framework O species, as 

evidenced by the absence of scattering from Si or Al atoms bound to Of. The XANES and 

EXAFS spectra are indistinguishable from each other and that of aqueous Cu(II) complexes 

[118], which are also known to form a square-planar tetraaquo complex. These 

observations are in agreement with the phase diagram Condition 1 predictions shown in 

Figure 2.3.2. 

Table 2.3.2 Comparison of AIMD (blue, left) and EXAFS (black, right) characterization 

of 2Al and 1Al sites, including Cu-X (X = O, N) coordination number (CN), average Cu-

X distances and whether second-shell features appear 

 AIMD/EXAFS 

Gas 

Condition 
Sample CN 

Avg. Bond 

Dist. 
2nd Shell 

Cu 

mobilityc 

Condition 1 

(Ambient) 

1Al 

2Al 

4.0/4.2 

4.0/4.0 

1.96/1.93 

1.96/1.94 

N/N 

N/N 

1.38 

1.00 

Condition 2 

(O2) 

1Al 

2Al 

3.0/3.0 

3.9/3.8 

1.89/1.91 

2.02/1.94 

Y/Y 

Y/Y 

0.11 

0.14 

Condition 3 

(He) 

1Al 

2Al 

2.5a/2.4 

3.7a/3.6 

1.92a/1.92 

2.50a/2.4 

Y/Y 

Y/Y 

0.14a 

0.14a 

NO + NH3 

473 K 

1Al 

2Al 

2.0/2.2 

2.0/2.1 

1.89/1.88 

1.89/1.88 

N/N 

N/N 

3.26 

1.83 

O2 + NH3 

473 K 

1Al 

2Al 

3.3b/3.2 

3.6b/3.5 

1.97b/1.92 

2.00/1.92 

N/N 

N/N 

2.21b 

1.31b 
aXANES weighted average of Cu(I) (ZCu(I)) and Cu(II) (Z2Cu and ZCuOH) structures 

obtained from AIMD. 
bXANES weighted average of Cu(I) (ZCu(I)(NH3)2) and ZNH4/ZCu(I)(NH3)2 and Cu(II) 

(Z2Cu(NH3)4 and ZCu(OH)(NH3)3) structures obtained from AIMD. 
cVolume visited by the minimum free energy forms of Cu(I) and Cu(II) () during 90 ps 

AIMD, normalized to the volume of hydrated Z2Cu (1.00). 



35 

 

3
5
 

 
Figure 2.3.7 Cu positions (grey balls) visited during 90 ps of NVT AIMD at 298 K. Fixed 

zeolite framework shown for ease of visualization; framework was unconstrained during 

dynamics. Inset illustrates discretization used to compute relative Cu mobilities. 

The EXAFS provides an ensemble average of the Cu coordination environment. To 

extract comparable information from simulation, we performed 298 K AIMD simulations 

(50 ps of equilibration followed by 90 ps of sampling) on the lowest free energy hydrated 

forms of [Z2Cu(II)] and [ZCu(II)OH]. In both cases, Cu remained near the center of the 

cage (Figure 2.2.1c) and were dynamic. Figure 2.3.7 superimposes the Cu positions relative 

to the zeolite cage during the 90 ps sampling. To quantify Cu mobility, we discretized the 

supercell into 0.2 x 0.2 x 0.2 Å cubes, counted the cubes visited at least once during the 

simulation, scaled by the cube volume, and normalized to the volume visited by 

Z2[Cu(II)(H2O)4](H2O)2. Results are summarized in Table 2.3.2 and further detailed in 

appendix A. Z[Cu(II)OH(H2O)3](H2O)3 is estimated to be 1.38 times as mobile as 
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Z2[Cu(II)(H2O)4](H2O)2, consistent with the weaker electrostatic attraction to a single Al 

compared to two proximal Al atoms. Throughout the Z[Cu(II)OH(H2O)3](H2O)3 

simulation, H atoms are observed to hop between non-framework O with a barrier of ≈20 

kJ mol-1, causing O bound Cu to spend time as both OH and H2O. 

The right panel of Figure 2.3.6 shows the computed radial distribution functions 

(RDFs) between Cu and all heavy atoms. Both RDFs show a prominent peak near 2 Å 

corresponding to the first coordination shell with peak area corresponding to four O atoms. 

This first RDF peak corresponds with the first EXAFS peak (the RDF and EXAFS are 

offset due to the difference between electron scattering and interatomic distances). The 1Al 

RDF is broadened in comparison to the 2Al due to the presence of both shorted Cu-OH 

and longer Cu-H2O bonds that are not resolvable by EXAFS. The RDFs are near-zero 

between 2.2-3 Å; structure appears beyond 3 Å. The results are consistent with the 

observation of only low intensity peaks beyond the first major one in the EXAFS and H2O 

solvated Cu complexes. 

2.3.2.2 Condition 2: 20% O2, 673 K (XAS/AIMD) 

Next, we collected XANES spectra at 298 K on both samples after 1 hr treatment at 673 K 

in O2, corresponding to Condition 2 in Figure 2.3.2. The vessels were sealed before cooling 

to prevent rehydration of Cu. Resultant XANES and EXAFS are shown in Figure 2.3.8. In 

addition to the 8.988 keV Cu(II) edge feature observed in Figure 2.3.6, an additional feature 

appears at 8.987 keV that reflects Cu(II) present in a lower than octahedral coordination 

environment [67]. Further, on the 1Al sample a low intensity peak appears at 8.983 keV 

that we assign to 5% Cu(I) based on a fit using Cu(I) and Cu(II) references (appendix A). 
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 The EXAFS (Figure 2.3.8, middle) exhibit high intensity peaks at ≈1.5 Å that fit to 

3.0 Cu-O bonds at 1.91 Å and 3.8 Cu-O bonds at 1.94 Å on the 1Al and 2Al samples, 

respectively (Table 2.3.2). Consistent with the higher first-shell coordination and closer 

proximity to multiple Si:Al, the 2Al sample also exhibits a more distinct second shell peak 

at ≈2.4 Å than that on the 1Al sample. To ensure reversibility, we cycled samples between 

Condition 1 and Condition 2, and confirmed that XAS spectra were identical to those 

shown in Figure 2.3.6. 

 
Figure 2.3.8 Left: XANES spectra collected on the 1Al (top) and 2Al (bottom) samples 

after treatment in 20% O2 at 673 K (solid blue lines), He at 673 K(dashed teal lines) and in 

3% H2 at 523 K (dot-dashed red lines). Middle: Corresponding EXAFS spectra. Right: 

AIMD Cu-Si/O/Al RDFs for ZCuOH and ZCu (top) and Z2Cu (bottom). Insets show 

integrated RDFs.  

 These EXAFS features are consistent with those expected for the [Z2Cu(II)] and 

[ZCu(II)OH] species predicted to predominate at Condition 2. Cu remain bound to multiple 
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times less mobile than the Z2[Cu(II)(H2O)4](H2O)2 reference. The [Z2Cu(II)] site oscillates 

between three nearly isoenergetic minima (appendix A) that differ in the Of nearest-

neighbor to Cu. The 1st shell in RDF (Figure 2.3.8, bottom right) convolutes these three 

and integrates to a CN = 3.9. By deconvolution of the RDF, we assign the second feature 

at ≈2.8 Å to one Al and one Si atom nearest Cu (appendix A). The AIMD CN is consistent 

with the EXAFS fit. 

 In contrast, [ZCu(II)OH] only exhibits a “wagging” into and out of the 8MR plan 

during AIMD. The Cu-Of and Cu-OH pairs appear as sharp features in the RDF (Figure 

2.3.8, top right). The integrated RDF and fitted CN are identical. The slightly broad second 

shell feature at ≈2.75 Å arises from the Al nearest Cu (Figure 2.2.1b). This second shell 

feature is at 0.25 Å shorter distance and half the integrated area of the [Z2Cu(II)] second 

shell, consistent with both the location and magnitude of the EXAFS second shell features. 

2.3.2.3 Condition 3: He, 673 K (XAS/AIMD) 

As noted above, a small amount of Cu(I) appears in the XANES of the calcined 1Al sample. 

This auto-reduction feature [32, 105], becomes more prominent after treating the 1Al 

sample in flowing helium at 673 K for 1 hr following the calcining treatment (Figure 2.3.8, 

left panel). From spectral deconvolution and EXAFS fitting, we infer 55% of the Cu to be 

present as Cu(I) and the mean Cu-O coordination number to decrease to 2.4 (Table 2.3.2). 

In contrast, only 10% Cu(I) is observed on the 2Al sample following the same helium 

treatment, and the coordination number is unchanged. The Cu(I) feature becomes even 

more pronounced and the Cu(I) fraction increases to 65% on the 1Al sample treated in 3% 

H2 at 523 K [114, 115]; the 2Al sample is changed negligibly by H2 reduction. These 
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observations of auto-reduction in the 1Al but not the 2Al samples are consistent with the 

predictions for Condition 3 in Figure 2.3.2. That reduction is not complete on the 1Al 

sample suggests some kinetic as well as thermodynamic contribution to the auto-reduction 

process, possibly associated with the mobility of the [ZCu(II)OH]. Re-oxidation of samples 

after the He purge or H2 treatment returns the XANES and EXAFS spectra to their post-

calcination forms (additional details in appendix A), indicating that reduction and re-

oxidation are reversible.  

To interpret the observed EXAFS, we used 298 K AIMD to compute the dynamics 

of the reduced [ZCu(I)] site. The Cu ion stays within the 6MR and retains coordination to 

the same two Of atoms; the computed RDF (Figure 2.3.8) is dominated by a Cu-Of feature 

at 1.93 Å that integrates to CN 2.1. The Cu mobility is enhanced by about 20% compared 

to [ZCu(II)OH] and [Z2Cu(II)], but still roughly 8 times less than hydrated [Z2Cu(II)]. The 

second shell feature in EXAFS, spanning from roughly 2-3 Å, is echoed in the broad AIMD 

RDF past the first coordination shell, a consequence of [ZCu(I)] mobility within the 6MR. 

2.3.3 Copper Speciation at SCR Conditions 

The ex situ characterizations above show that Cu in the 1Al and 2Al samples are identical 

under ambient and hydrated conditions, exhibit different coordination after high 

temperature oxidation, and respond differently to high temperature reduction. We next 

explore the implications under catalytic conditions relevant to low-temperature NOx SCR. 
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2.3.3.1 Operando XAS Spectra and SCR Kinetics 

We used a custom-built reactor [29] designed to collect XAS spectra in operando to 

determine the Cu oxidation states of the 2Al and 1Al samples during steady-state SCR (300 

ppm NO, 300 ppm NH3, 10% O2, 2% H2O, 5% CO2) at 473 K under differential and plug-

flow conditions (< 20% NO conversion). Observed SCR turnover rates (TOR, mol NO 

(mol Cu-1) s-1), apparent NO, O2 and NH3 reaction orders, and apparent activation energies 

(Eapp) (Table 2.3.3) were identical on the 2Al and 1Al samples, within experimental error, 

and identical to values measured on these samples in a different plug-flow reactor (section 

2.6.5). Operando XANES spectra for the two samples (Figure 2.3.9, left, black traces) 

indicate the presence of 50% and 55% Cu(I) (8.983 keV peak), respectively, that are 

identical within fitting error (5%). Although the presence of both Cu(II) and Cu(I) species 

during standard SCR redox cycles is not surprising [20, 30, 33, 96, 129], the identical Cu(I) 

fractions and kinetic parameters (Table 2.3.3) are unexpected given the different structures, 

dynamics and reducibility of [Z2Cu(II)] and [ZCu(II)OH] species in He and H2. These 

operando characterization results suggest that cationic copper sites are functionally 

equivalent during low temperature standard SCR at 473 K. 

Table 2.3.3 Characterization of 2Al and 1Al Cu-SSZ-13 catalysts during low temperature 

(473 K) standard SCR: XANES Cu(I)/Cu(II) fraction, SCR rates (per Cu and mol NO) in 

the operando reactor/plug-flow reactor, apparent activation energies and apparent NO, O2 

and NH3 orders. 

 Cu(I)/Cu(II) TORa 
Eapp (kJ 

mol-1) 
NO order O2 order NH3 order 

2Al 50/50 ± 5 8.3/7.3 60 ± 10 0.8/0.8 0.3/0.3 -0.2/-0.1 

1Al 55/45 ± 5 9.9/8.0 74 ± 10 n.m./0.7b n.m./0.3b n.m./0.0b 
a(mol NO (mol Cu)-1 s-1) x 10-3  bn.m.= not measured, 1 Al orders were measured only in 

the PFR. 
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Figure 2.3.9 Left: XANES spectra of the 1Al (top) and 2Al (bottom) Cu-SSZ-13 samples 

under treatment in 2% H2O, 10% O2, 300 ppm NH3 at 473 K (O2 + NH3, blue traces), 2% 

H2O and 300 ppm NO/NH3 at 473 K (NO + NH3, red lines) and in 2% H2O, 10% O2, 300 

ppm NO/NH3 at 473 K (black traces). Middle: EXAFS collected under same conditions. 

Right: AIMD Cu-Si/O/Al RDFs for the most stable Cu(I) (red lines) and Cu(II) (blue 

traces) species on the 1Al and 2Al sites in the presence of NH3. Insets: Integrated RDFs. 

2.3.3.2 SCR gas species binding energies 

To understand Cu coordination in the SCR gas mixture (H2O, N2, NH3, NO, O2), we first 

computed adsorption energies of these species as well as NO2, which is often proposed as 

an SCR intermediate [33, 125-128], on the oxidized and reduced forms of the 1Al and 2Al 

Cu sites using the same AIMD and HSE06-TSvdw quenching protocol. The computed NH3 

binding energy to the [ZH]/[ZCu(I)] Brønsted site is -151 kJ mol-1, quantitatively consistent 

with NH3 differential heats observed via microcalorimetry on zeolitic H+ sites [142-146]: 

[ZH]/[ZCu(I)] + NH3 → [ZNH4]/[ZCu(I)]……2.11 

Thus, the NH4
+ form of this site prevails under SCR conditions, and we used the 

[ZNH4]/[ZCu(I)] structure shown in Figure 2.3.10 as the model for a reduced 2Al site. 
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F
T

k
2
χ

(k
)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

F
T

k
2
χ

(k
)

473 K NO + NH3

473 K O2 + NH3

R ( Å)
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Figure 2.3.10 Parity plot of HSE06-TSvdw-computed binding energies of gaseous species 

relevant to SCR on 2Al oxidized (Z2Cu, blue) and reduced (ZNH4/ZCu, red) vs. the 

corresponding oxidized (ZCuOH, blue) and reduced (ZCu, red) 1Al sites. 

 Computed 1Al site binding energies are plotted against 2Al sites in Figure 2.3.10. 

Binding energies without the TSvdw correction are approximately 20 kJ mol-1 more 

positive. Binding energies (appendix A) and structures on the [Z2Cu(II)] and [ZCu(II)OH] 

sites are generally consistent with those for H2O, NO and NH3 reported elsewhere [33, 107, 

120-122], although the inclusion of hybrid exchange significantly decreases the NO 

binding relative to the GGA values [33, 107, 120-122]. The 1Al and 2Al binding energies 
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are roughly linearly correlated, although deviations as large as 50 kJ mol-1 are evident. O2 

interacts weakly with all sites; H2O and NO exhibit intermediate binding strengths. NH3 

binds by -120 to -140 kJ mol-1 on all four Cu adsorption sites and does not significantly 

alter the Cu oxidation state. NO= binds strongly to reduced sites (oxidizing the Cu center 

to form a nitrite) but interacts weakly with oxidized Cu. NO is a notable outlier from the 

linear correlation: the HSE calculations predict NO to bind weakly to [Z2Cu(II)] (-25 kJ 

mol-1) but with intermediate strengths on [ZCu(II)OH] (-75 kJ mol-1). NO locates near the 

OH ligand rather than Cu, similar to structures for this species reported elsewhere [107], 

but does not form a HONO-like structure. N2 more strongly adsorbs to [ZCu(I)] than to 

other sites.  

 Because NH3 out-binds all other species, and is similar in its coordination behavior 

to H2O, we explored the sequential binding of additional NH3 on all four sites: 

*(NH3)x-1 + NH3 
ΔEads
→   *(NH3)x……2.12 

using an AIMD anneal at 473 K followed by HSE06-TSvdw optimization, where * 

represents the Cu site. Results are summarized in Table 2.3.4; structures and normalized 

Cu Bader charges are detailed in appendix A. Binding energies are roughly constant as 

NH3 displaces Of from the Cu coordination sphere. Cu(I) and Cu(II) retain 2-fold and 4-

fold coordination, respectively; additional NH3 beyond these limits are more weakly bound 

and not directly associated with Cu, instead forming hydrogen bonds with NH3 in the first 

coordination sphere. The only exception is ZCu(II)OH(NH3)2; this species adopts a square-

planar conformation including a single Of ligand at 0 K, but in the finite T dynamics adopts 

a trigonal-planar form, free from Of for ≈90% of the trajectory. Energy and entropy are 

evidently closely balanced between the two configurations. 
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Table 2.3.4 HSE06-TSvdw-computed sequential NH3 adsorption structures and energies. 

Cage location indicates optimized ion location referenced to Figure 2.2.1. CN and Of 

indicate total Cu coordination number and number of close framework O contacts, 

respectively. 

 + xNH3 1 2 3 4 

[Z2Cu(II)] 

ΔEads (kJ mol-1) 

Cage Location 

Of/total CN 

-132 -136 -123 -132 

A A B C 

3/4 2/4 1/4 0/4 

[ZNH4]/[ZCu(I)] 

ΔEads (kJ mol-1) 

Cage Location 

Of/total CN 

-134 -150 -72 -73 

B C C C 

1/2 0/2 0/2 0/2 

[ZCu(II)OH] 

ΔEads (kJ mol-1) 

Cage Location 

Of/total CN 

-117 -119 -116 -47 

B C, Ba C C 

2/4 0/3, 1/4a 0/4 0/4 

[ZCu(I)] 

ΔEads (kJ mol-1) 

Cage Location 

Of/total CN 

-137 -151 -75 -41 

B C C C 

1/2 0/2 0/2 0/2 
aTrigonal planar, square planar values. 

2.3.3.3 NH3 Phase Diagrams 

We used a first-principles thermodynamic analysis to rang the free energies of the 

NH3 species in Table 2.3.4 and HxOy structures from Figure 2.3.1, 42 species in total, taking 

O2, H2O and NH3 as oxygen, hydrogen and nitrogen references, respectively: 

ZCu + 
x

2
(H2O - 

1

2
O2)  + 

y

2
O2 + z (NH3 - 

3

2
H2O + 

3

4
O2)

ΔGform
→     ZCuHxOyNz……2.13 

Figure 2.3.11 reports the lowest free energy 1Al and 2Al species as a function of T and O2 

partial pressure at H2O and NH3 concentrations of 2% and 300 ppm, respectively, 

representative of the experimental conditions shown in Figure 2.3.9. We chose O2 pressure 

as an independent variable for direct comparison to the experimental results detailed in the 

preceding section. The resultant phase diagrams are substantially different from the HxOy 

ones in Figure 2.3.2; NH3-containing species dominate the diagrams up to 773 K, and H2O 

is an unimportant adsorbate. The most prominent species in the 1Al and 2Al diagrams are 
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reduced Cu(I) species and oxidized Cu(II) species, respectively, although both oxidized 

and reduced forms of Cu appear on both diagrams. Both sites are saturated with NH3 at 

473 K, and successively lose NH3 ligands with increasing temperature. At 473 K, the 2Al 

phase diagram (Figure 2.3.11, right) shows Cu preferring Cu(I)(NH3)2 as the O2 

concentration decreases, and Cu(II)(NH3)4 species as the O2 concentration increases. The 

Cu(I)(NH3)2 complex is the most stable 1Al species over the entire O2 range examined 

here. Sidebars in Figure 2.3.11 rank the relative free energies of intermediates at the 

condition indicated by the chrome spheres in the phase diagrams (473 K and 10% O2), 

equivalent to those in Figure 2.3.9. Species with ΔGform > 0 kJ mol-1 are excluded for 

clarity; full results are tabulated in appendix A. The analysis predicts a reduced and NH3-

saturated Cu(I) to be the most stable 1Al species at these conditions. Cu(I) complexes with 

one or three NH3 ligands are higher in free energy, and the first Cu(II) species to appear is 

Z[Cu(II)(OH)(NH3)3] at 50 kJ mol-1 higher free energy than the most stable species. Thus, 

these two NH3-saturated and Of-liberated complexes are the most likely dominant forms of 

Cu(I) and Cu(II) under SCR conditions in the 1Al catalyst. The Cu(I)/Cu(II) ordering is 

reversed at the 2Al site, where the most stable complex is an oxidized and NH3-saturated 

Z2[Cu(II)(NH3)4] at 16 kJ mol-1 below the reduced and NH3-saturated 

[ZNH4]/Z[Cu(I)(NH3)2]. The Cu(I)/Cu(II) fractions are the same in the operando XANES 

(Figure 2.3.9) on the 1Al and 2Al samples, and likely kinetically rather than 

thermodynamically controlled. The thermodynamic screening identifies the species most 

relevant to catalysis, and highlights the importance of NH3 coordination under SCR 

conditions. 
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Figure 2.3.11 Phase diagrams for 1Al (left) and 2Al (right) sites with varying T and PO2 at 

300 ppm NH3 and 2% H2O. Relative rankings for all species ΔGform < 0 at 473 K and 10% 

O2 (chrome spheres on the phase diagrams) are given to the right of each phase diagram. 

The structures shown on the bottom are the most stable Cu(I) (red) and Cu(II) (golden) 

under these conditions. 

2.3.3.4 XAS/AIMD for Cu(I)/Cu(II) with NH3 

To explore Cu structure and dynamics under SCR conditions, we collected XAS 

and AIMD information on both 1Al and 2Al samples prepared with subsets of SCR gas 

mixes that place them primarily in the Cu(I) and Cu(II) states. 

 Figure 2.3.9 shows the XANES and EXAFS at 473 K of 1Al and 2Al samples 

treated in 300 ppm NO plus NH3. Consistent with previous reports [30, 33, 129], this 

treatment reduces Cu. In fact, the XANES and EXAFS on both samples are 

indistinguishable and the XANES fit to a Cu(I) fraction of 100%. A prominent first shell 

peak at 1.88 Å in the EXAFS fits to 2.1 CN, which EXAFS cannot distinguish between O 

and N. The EXAFS is absent of longer-range structure. 
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 These XAS results are consistent with the reduced Cu forms highlighted in Figure 

2.3.11. We performed 473 K AIMD simulations on [ZNH4]/Z[Cu(I)(NH3)2] and 

[Z[Cu(I)(NH3)2] for the 2Al and 1Al sites, respectively. The linear Cu(I)(NH3)2 species are 

identical in structure and, as evidenced in the dynamics trajectory (Figure 2.3.12) and the 

volume visited (Table 2.3.2), highly mobile. Computed RDFs between Cu and other heavy 

atoms are shown in Figure 2.3.9. As in the EXAFS, the lone peak at 1.89 Å integrates to 

2.0 CN; the Cu location is completely disordered with respect to the zeolite lattice. To 

probe the ability of this NH3-mobilized Cu(I) to diffuse between cages, we used the 

climbing image nudged elastic band (CI-NEB, appendix A) method to compute the energy 

to thread a Cu(I)(NH3)2 ion through the 8MR. The path starts with one NH3 in the plane of 

the 8MR, passes over a 37 kJ mol-1 transition state in which the Cu is centered within the 

ring, and ends with the other NH3 in the 8MR. This modest barrier suggests rather facile 

transport of reduced NH3 within the SSZ-13 lattice, as has been inferred from the NH3-

facilitated exchange of Cu(I) [147]. 

 Figure 2.3.9 similarly shows XAS spectra collected on the same samples during 

exposure to an oxidizing mixture of NH3 (300 ppm) and O2 (10%) at 473 K. The XANES 

are again similar to one another but markedly different from those at the reducing 

condition. Both samples exhibit a peak at 8.983 keV corresponding to a Cu(I) species, 27% 

and 17% on the 1Al and 2Al samples, respectively, and a balance of Cu(II) species. EXAFS 

show prominent first coordination shells at 1.5 Å (not phase-corrected) that fit to 3.2 and 

3.5 O or N around Cu at 1.92 Å. Neither EXAFS exhibit second shell coordination in the 

2.5-3 Å range. RDFs and AIMD performed at 473 K on Z[Cu(II)(OH)(NH3)3] and 
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Z2[Cu(II)(NH3)4], corresponding to the oxidized 1Al and 2Al species at SCR conditions, 

are also shown in Figure 2.3.9.  

 
Figure 2.3.12 Cu positions (grey balls) sampled inside the zeolite cage during 90 ps of 

equilibrated NVT AIMD at 473 K for the most stable NH3 solvated Cu(I) and Cu(II) 

species. 

As with Cu(I), both are free from framework oxygen and remain fully coordinated 

to NH3 through the course of the dynamics. RDFs integrate to ≈3.9 CN; weighting the 

AIMD RDFs by the XANES-observed fractions of Cu(I) and Cu(II) recovers average 

coordination numbers of 3.2 and 3.6, close to the EXAFS-fitted values. These species were 
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roughly 50% less mobile than their Cu(I)(NH3)2 counterparts (Table 2.3.1), and 30% more 

mobile than their hydrated forms (Table 2.3.2). 

 Finally, to confirm the transferability of EXAFS spectra collected under the non-

catalytic NO + NH3 and O2 + NH3 conditions to catalytic ones, we obtained 473 K SCR 

operando EXAFS on the recently enhanced APS sector 10-ID beamline on a Si:Al = 25, 

Cu:Al = 0.41 sample similar to the 1Al catalyst (Figure 2.3.3), kinetic details and spectra 

are provided in appendix A. This catalyst has a 60/40 Cu(I)/Cu(II) ratio, a fit CN of 3.1, 

and no second shell structure. The CN is consistent with a 60/40 weighted average of 2CN 

Cu(I) and 4CN Cu(II). The lack of second shell character demonstrates all Cu are NH3 

solvated under the operando conditions. 

2.3.4 SCR Mechanism 

2.3.4.1 Cu(II) → Cu(I) half-cycle 

We previously proposed an NO-assisted NH3 dissociation as the rate-limiting step in Cu(II) 

to Cu(I) reduction during SCR [30]. We report in Figure 2.3.13 and appendix A the 

computed CI-NEB pathways for such a step starting from NH3-saturated Cu(II) identified 

in the XAS and DFT here. Both reactions proceed by attack of NO on a Cu-bound NH3 to 

form a N-N bond. In the process, a proton is transferred to an acceptor and an electron to 

Cu, leaving an H2NNO intermediate that can decompose via proton transfers to N2 and 

H2O [30, 148]. In the 1Al case, the Cu-OH ligand acts as the proton acceptor, to form 

water: 

Z[Cu(II)(OH)(NH3)3 + NO → Z[Cu(I)(NH3)2(H2NNO)] + H2O……2.14 

In the 2Al case, an Of plays the role of the acceptor, to form a new, proximal Brønsted site: 
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Z2[Cu(II)(NH3)4] + NO → [ZH]/Z[Cu(I)(NH3)3(H2NNO)]……2.15 

The first path is much more exothermic than the second (-267 vs. -68 kJ mol-1), reflecting 

the strong driving force for creating H2O. Nonetheless, the computed barriers for these two 

paths are a similar 71 and 74 kJ mol-1, respectively, within the HSE06 model. These 

similarities reflect an early transition state dominated primarily by the partial desorption of 

NH3 from Cu to accommodate the attacking NO. The N-N separations at the transition 

states are over 2 Å and N-H bonds only slightly elongated.  

 
Figure 2.3.13 HSE06 CI-NEB calculated activation (Ea) and reaction energies for NO 

assisted reduction of NH3 solvated Cu(II) 1Al (black) and 2Al (green) sites. Transition state 

structures are shown in boxes. For ease of visualization, most of the zeolite framework is 

hidden. 
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Figure 2.3.14 The number of extra H+ sites (per Al) formed after reduction of Cu(II) to 

Cu(I) in flowing NO and NH3 (473 K) as measured by NH3 titration and TPD. Dashed lines 

represent the predicted number of H+ formed based on the assumption that reduction of 

only Cu(II) at 2Al sites form a Cu(I)/H+ site pair. 

The key difference between the 1Al and 2Al paths is that NH3/NO reduction of 2Al 

Cu(II) should produce new Brønsted sites while 1Al Cu(II) should not. The number of 

NH4
+ species on samples treated in flowing NO and NH3 (473 K) were counted by TPD 

performed after purging physisorbed and Cu(I)-bound NH3 species in flowing wet helium 

(3% H2O, 433 K) [135]. On all Cu-SSZ-13 samples, a large number of NH4
+ species were 

present after reduction treatments than after oxidation treatments (appendix A). Figure 
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2.3.14 shows the number of additional H+ sites present after reduction of Cu sites to Cu(I) 

as a function of the Cu:Al ratio on the Si:Al = 5 (blue diamonds), 15 (green circles) and 25 

(orange squares) samples. The dashed lines indicate the excess H+ expected from the 

theoretical enumeration of 1Al and 2Al sites (Figure 2.3.3). In line with predictions, one 

additional H+ site is formed per Cu(I) formed until all the 2Al sites are filled, beyond which 

point no additional H+ sites were formed. Re-oxidation in NO and O2 (appendix A) returns 

the samples to the state shown in Figure 2.3.4. The catalytic cycle can thus be closed on 

both 2Al and 1Al sites. 

2.3.4.2 SCR Cycle Energetics 

The results above highlight the importance of NH3 coordination during 473 K SCR. We 

previously proposed an SCR cycle on [Z2Cu(II)] sites that accounts for the observed Cu 

redox [30]. Figure 2.3.15 shows an elaboration of that cycle that incorporates NH3-

solvation inferred from the thermodynamic analysis and EXAFS on 1Al and 2Al sites. The 

mechanism includes five primary steps, starting from the 12 o’clock position: (1) NH3 

adsorption on Cu(II); (2)NO-assisted NH3 dissociation concurrent with Cu(II) reduction to 

Cu(I); (3) N2 and H2O desorption from Cu(I); (4) Cu(I) re-oxidation to Cu(II) by NO and 

O2 (a non-elementary step); and (5) reaction of adsorbed NO2
- with NH3 or NH4

+ to desorb 

N2 and H2O. Figure 2.3.15 (right) compares the computed reaction energies for each step 

(details in appendix A). The similar energetics are consistent with the similar standard SCR 

turnover rates (473 K) measured on the two site types (Table 2.3.3). 
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Figure 2.3.15 (Left) Proposed parallel standard SCR cycles for NH3-solvated Cu ions near 

1Al (black) or 2Al (green). (Right) HSE06-TSvdw-computed reaction energies along each 

step of the proposed cycles. 1-5 correspond to the intermediates in the left panel. Listed are 

the molecules consumed (+) and generated (-) between each intermediate. 

2.3.5 SCR Rates on Other Cu-Zeolites 

All the cationic Cu species in these cycles are NH3-solvated and thus, not sensitive to the 

location of charge-compensating framework Al. To test the generality of this observation, 

standard SCR rates were measured on synthesized and commercial Cu-ZSM-5 and Cu-

BEA samples of compositions similar to the Si:Al = 15 SSZ-13 samples. Standard SCR 

rates (per g, 473 K) on Cu-exchanged MFI (Si:Al = 13), BEA (Si:Al = 13) (sample 

preparation and characterization described in appendix A), and Cu-CHA (Si:Al = 5, 15) 

are shown in Figure 2.3.16 as a function of the Cu density (per g). The error was calculated 

by replicate experiments under the same conditions. These SCR rates were measured in a 

regime uncorrupted by mass or heat transfer artifacts (Koros-Nowak test [130]) and in a 

kinetic regime characterized by the same apparent reaction orders and apparent activation 

energies (appendix A). Standard SCR rates (per gcat, 473 K) increased linearly with Cu 
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density (per gcat) on the Cu-CHA samples of different Si:Al ratio (5, 15), as expected from 

the similar turnover rate measured for Cu at 1Al and at 2Al sites (section 2.3.3.1), and also 

on C-ZSM-5 and Cu-BEA samples according to the same linear correlation. These data 

indicate that the catalytic SCR mechanism on Cu sites in these zeolites may be similar and, 

under the conditions in this kinetic regime, turnover at similar rates that are insensitive to 

the zeolite support. We surmise that this insensitivity reflects the undetectable bonds 

between Cu and Of atoms in the presence of NH3 at 473 K, which solvate both Cu(II) and 

Cu(I) species during conditions relevant to low temperature SCR catalysis. 

 
Figure 2.3.16 Standard SCR rates per gcat at 473 K on Cu-exchanged SSZ-13, ZSM-5 and 

BEA vs. Cu mass density. 
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2.4 Discussion 

2.4.1 Al distribution and Cu speciation ex situ 

While the apparent macroscopic composition of a heterogeneous catalyst is 

typically simple to determine, relating that composition to the molecular-scale, functional 

composition of an active site remains a major challenge. The relevant macroscopic 

composition variables for the Cu-SSZ-13 materials are the Si:Al and Cu:Al ratio. As 

reported in Figure 2.3.3 and the supporting experimental results, the two types of Cu sites 

are present over the composition ranges studied here, and the relative densities of each type 

of Cu site are a function of both composition variables. Figure 2.3.3 is based on two 

assumptions: first, that framework Al atoms are randomly sited during zeolite 

crystallization modulo Löwenstein’s rule, and second, that 6MR 2Al sites are populated by 

Cu(II) cations to saturation before 1Al sites are populated with Cu(II)OH. The close 

correspondence between these predictions and the experimental characterizations support 

the mode. 

 Synthesis conditions are well known to influence Al siting in zeolites [65, 66, 91, 

149-159], and specifically in SSZ-13 [141] and thus, the conclusions drawn from the 

synthetic conditions here cannot be extended to all Cu-zeolites or even to all Cu-SSZ-13 

materials. We can, however, compare our findings to SSZ-13 zeolites prepared via 

procedures equivalent to those used here [28, 109, 134, 160-164]. Fickel et al. [109] 

concluded, based on XRD and EXAFS, that an SSZ-13 sample with Si:Al = 9 and Cu:Al 

= 0.18 contained predominantly Cu in the 6MR, in agreement with the models here that 

predict 80% of [Z2Cu(II)] in such sites. Gao et al. [114, 115, 165] compared the H2 TPR of 

SSZ-13 zeolites with Si:Al = 6 and 12, and Cu:Al = 0.1-0.5. Samples we predict to contain 
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[Z2Cu(II)] shown only  a 653 K TPR feature, while samples in the range expected to contain 

[ZCu(II)OH] also exhibit a 503 K TPR feature, consistent with the easier reducibility of 

[ZCu(II)OH] sites demonstrated here (Figure 2.3.2 and Figure 2.3.8). FTIR similarly shows 

only a 895 cm-1 Cu-perturbed T-O-T vibration in the composition range dominated by 

[Z2Cu(II)], supplemented by a 940 cm-1 feature in the range containing [ZCu(II)OH] [165]. 

Davis and co-workers recently showed that these 2Al 6MR sites can be selectively 

protected against dealumination, and deactivated for methanol-to-olefins (MTO) activity 

by preferential exchange of Cu(II) ions [166, 167] and Gao et al. [166] used an analogous 

concept to exchange 2Al 6MR sites with alkaline earth cations. 

 While this partitioning and counting of [Z2Cu(II)] and [ZCu(II)OH] sites is 

successful, these sites themselves are not monolithic. A 6MR ring can have 2Al in 2NN 

and 3NN relative positions, and even for given positions, at finite temperature an 

exchanged ion is quite dynamic within the site, as illustrated by the AIMD simulations. 

Capturing these dynamics was important in developing a correspondence between the 

AIMD and EXAFS results, and are important effects to consider in any DFT models of 

these systems. 

2.4.2 Cu speciation in situ 

Once microscopic sites are identified and enumerated, a second key challenge is to 

determine how they respond to environmental, in situ conditions. We find from the first-

principle thermodynamics and spectroscopies that ambient conditions cause both 

[Z2Cu(II)] and [ZCu(II)OH] species to exist as hydrated ions, liberated from coordination 

to zeolite framework oxygens, differing in composition by only a single proton, and 
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differing only slightly in mobility (Figure 2.3.7). These observations are consistent with a 

large body of literature on Cu-zeolites. XAS and UV-vis spectroscopies of Cu(II)-

exchanged SSZ-13 [29, 32, 41, 117, 168], ZSM-5 and BEA zeolites under ambient 

conditions are identical to the corresponding spectra of aqueous Cu(II) complexes, 

demonstrating the insensitivity of zeolite topology to solvated ions [32, 118]. Similarly, 

the perturbed T-O-T vibrations in IR spectra due to the framework-bound Cu(II) disappear 

upon hydration of Cu(II) under ambient conditions [110]. Electron paramagnetic resonance 

(EPR) spectra at ambient conditions observed for predominantly [Z2Cu(II)] samples have 

been taken as evidence of hydrated and mobile Cu(II) [115]; broadening at 155 K is 

attributed to loss of that Cu(II) ion mobility [71, 169], and coalescence into a single sharp 

signal at 523 K to loss of the hydration sphere [34]. 

 The first-principles thermodynamics and XAS spectroscopies are consistent with 

the loss of water ligands at high temperature in O2. Similarly, Borfecchia et al. [105] infer 

this loss from observed changes in EXAFS to a 3CN Cu species, the same behavior the 

Si:Al = 15 Cu:Al = 0.44 catalyst exhibits (Figure 2.3.8) after dehydration. We and 

Borfecchia et al. [105] also observe the appearance of Cu(I) under more reducing 

conditions. We assign this reduced fraction to [ZCu(II)OH] species, based on the 

comparisons between the 1Al and 2Al samples. The auto-reduction is not complete on any 

sample, suggesting some kinetic in addition to thermodynamic control of the reduction 

process. The nominal auto-reduction stoichiometry: 

4[ZCu(II)OH] → 4[ZCu(I)] + 2H2O + O2……2.16 

implies a complicated, multi-step process likely involving Cu dimer or higher-order 

intermediates [41, 111, 115] and thus, a sensitivity to spatial Cu-Cu (and hence, Al-Al) 
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separations. Consistent with the inference, Gao et al. [114] report that the fraction of 

reducible [ZCu(II)OH] at constant Cu:Al ratio decreases with increasing Si:Al ratio, or 

equivalently, increasing the mean [ZCu(II)OH] separation. 

 Under standard SCR conditions at 473 K, Cu(I) and Cu(II) ions near 1Al or 2Al are 

all predicted and observed to be fully solvated by NH3, and further, all Brønsted sites are 

present as NH4
+. Both NH4

+ and Cu-NH3 are observed in DRIFTS spectra at similar 

conditions [21, 170, 171] on Cu-SSZ-13 samples. In fact, both vibrational and XAS spectra 

of NH3 dosed to a number of Cu-exchanged zeolites are similar to those of aqueous 

Cu(I)(NH3)2 and Cu(II)(NH3)4 [13, 28, 29, 33, 171-175]. The standard SCR active sites at 

473 K are NH3-solvated Cu ions. 

 NH3 solvation influences Cu mobility as well as structure, and this effect is 

insensitive to zeolite topology. NH3 is observed to promote the exchange of Cu(II) from 

CuO(s) into a number of zeolite frameworks, and this process is further promoted by in 

situ reduction of Cu(II) to Cu(I) by NH3 and NO mixtures [147]. 

2.4.3 Mechanistic Implications for SCR 

The SCR reaction is well established to involve Cu(I) ↔ Cu(II) redox cycles [30, 33, 96, 

129]. There has been some controversy regarding the species responsible for reduction [7, 

30, 33, 124, 128]. Exposure to NO alone at 473 K does not reduce either the 1Al [ZCuOH] 

(appendix A) or 2Al [Z2Cu] [30] samples, and the hybrid-exchange DFT results do not 

predict NO to strongly bind to or reduce either Cu(II) site. We thus find no evidence to 

support the elementary mechanistic steps:  

[Z2Cu(II)] + NO → [ZCu(I)NO
+]……2.17 
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[ZCu(II)OH] + NO → [ZCu(I)HONO]……2.18 

Rather, NO and NH3 together are necessary to reduce either of these sites. The reaction 

pathways and activation barriers for these reductions are computed to be quite similar on 

the [ZCu(II)OH] and [Z2Cu(II)] sites in the presence of solvating NH3. At the higher 

temperatures at which NH3 ligands are lost, the reduction rates on these two sites may 

differ. 

 While NO and NH3 are most effective at reducing Cu(II), we and others [129, 176], 

also observe a partial reduction of Cu(II) to Cu(I) in flowing NH3 and O2. DFT calculations 

identified an O2-assisted NH3 dissociation pathway that parallels but has much higher 

barrier than the NO-assisted one NH3 dissociation reaction [30]. This pathway is unlikely 

to be catalytically relevant but could be responsible for this reduction.  

 The results presented here provide indirect mechanistic information about the SCR 

oxidation half-cycle. We find adsorbed NO2 to oxidize Cu(I) to Cu(II) as a Cu-bound 

nitrite: 

Cu(I) + NO2 → Cu(II)O2N……2.19 

consistent with many proposals [7, 33, 125-128]. The source of NO2 and even its presence 

as a free intermediate during standard SCR is less clear. Janssens et al. [33] proposed NO 

oxidation to nitrite to occur on a single, isolated Cu site through the intermediacy of a 

nitrate with the initial step as rate-determining: 

[ZCu(O2)(NO)] → [ZCuNO3]
NO
→ [ZCuNO2] + NO2

NH3
→  [ZCuOH] + H2O + N2……2.20 

However, computed activation energies and the RDS assumption are inconsistent with 

experimental activation energies and the observed 50/50 mixture of Cu(I)/Cu(II) for SCR 

[28, 30, 114, 115]. Rather, as with auto-reduction, NO oxidation may involve participation 
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of more than one Cu species, facilitated by the solvation and high mobility of Cu(I)(NH3)= 

and its low diffusion barrier between CHA cages. Solvated Cu(I) ions are well known to 

participate in dimeric Cu oxidation chemistries [67, 177-179], and a second-order 

dependence of SCR rate on Cu concentration has been observed on Si:Al = 6 Cu-SSZ-13 

catalysts at Cu:Al ratios ≤ 0.03 [34]. At higher temperatures, Cu is expected to desolvate 

(Figure 2.3.11), consistent with the FTIR findings of Giordanino et al [170]. In sharp 

contrast to 473 K spectra (Figure 2.3.9), EXAFS collected at 673 K in NH3 and O2 

demonstrate similar second shell character (appendix A) to the dry-oxidized framework 

bound Cu (Figure 2.3.8). Concurrent with this desolvation, apparent activation energies 

from 70 kJ mol-1 at 473 K to 140 kJ mol-1 at 623 K [114], consistent with the dip in NO 

conversion observed [123] in non-differential measurements. Thus, NH3 (de)solvation 

likely has a large impact on SCR oxidation half cycle rates.  

2.4.4 Implications for partial methane oxidation 

The results and approach described here are useful for the interpretation of the 

recently observed [89] non-catalytic, stoichiometric partial oxidation of methane (PMO) 

on Cu-SSZ-13: 

2CH4 + O2 → 2CH3OH……2.21 

PMO is carried out in a three step sequence [84-87] that can be understood in part through 

reference to Figure 2.3.2. In a first step, the Cu-SSZ-13 material is brought to ≈673 K in 

O2 (≈20%) and balance inert, corresponding to Condition 2 in the figure. O2 is then purged 

by inert, bringing the material to Condition 3. We observe a subset of sites to reduce under 

these conditions, consistent with the participation of only a fraction of exchanged Cu in 
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PMO [85]. Subsequent introduction of CH4 at 473 K results in the production of methanol, 

which is liberated by returning to percent level H2O pressures, between Conditions 1 and 

2 of Figure 2.3.2. 

 Wulfers et al. [89] demonstrated PMO on Si:Al = 6 and 12, Cu:Al = 0.35 SSZ-13 

materials. The Si:Al = 12 sample has roughly double (mol methanol per mol Cu) the 

performance of the Si:Al = 6 sample, in precise correlation with the predicted increase in 

[ZCu(II)OH] sites (Figure 2.3.3). We conclude that [ZCu(II)OH] sites are likely precursors 

to ZCuOCuZ sites proposed to be responsible for PMO activity [78, 81, 82, 86, 88] and 

[Z2Cu(II)] sites are inactive. 

2ZCuOH → ZCuOCuZ + H2O……2.22 

2.5 Conclusions 

While the macroscopic composition of a heterogeneous catalyst is generally 

straightforward to measure and control, the relationship between this apparent composition 

and the number and type of catalytically relevant active sites is generally difficult to infer. 

We illustrate here an example of a non-trivial catalytic system in which it is possible to 

predict both the speciation and number density of active sites as a function of the relevant 

synthetic compositional variables. Further, we show that these distinct active sites can be 

tracked as they evolve under different exposure conditions, from ambient characterization, 

to dry and inert high temperature, to operando reaction conditions. This enumeration and 

tracking is enabled by site-sensitive spectroscopies that are able to interrogate the catalyst 

under working conditions and computational approaches that treat the catalyst in a 

“operando” fashion, incorporating reaction conditions and reliable estimates of free 
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energies beyond the standard harmonic approximations into the predictions of site structure 

and composition. 

 We show that exchanged, atomically dispersed and isolated Cu ions within the SSZ-

13 cages populate two distinct types of sites, distinguished by the number of charge-

compensating Al T-sites, and that the structure and dynamics of these two Cu types are 

strongly influenced by the environment they experience. H2O solvates both Cu types at 

ambient conditions, is lost at higher temperatures, and is replaced by NH3 reactant at 473 

K SCR conditions. This NH3 liberates Cu from the framework, greatly enhances Cu 

mobility, and masks some of the differences between the two site types. The sites remain 

distinct, however; while both Cu sites undergo similar redox cycles at similar rates under 

the conditions studied here, the mechanisms differ in detail, as illustrated by the 

intermediacy of transient Brønsted sites on one but not the other Cu site type (Figure 

2.3.14). 

 These findings underscore the need for caution in extrapolating from ex situ 

characterizations to catalytic conditions. Reaction conditions can and in this example do 

have a substantial influence on active site structure and properties. These environment-

induced modifications need not be limited to reactants. Surrogate “promoters” that modify 

active sites (e.g. by mobilizing at different conditions, or that modify redox properties) 

could provide an alternative to traditional catalytic material modifications for tuning 

catalytic activity. 
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2.6 Methods 

2.6.1 DFT and AIMD Details 

Plane-wave, supercell DFT supercell calculations employed a triclinic SSZ-13 

supercell containing 12 T-sites [20] and Si:Al ratios of either 11:1 or 10:2. The first 

Brillouin zone was sampled at the Γ point only, as appropriate for this insulator. Many of 

the adsorbate structures considered here have flat potential energy surfaces. To identify 

representative structures for subsequent optimizations, initial structures were first annealed 

non-spin-polarized at 473 K for a minimum of 140 ps using the Car-Parrinello molecular 

dynamics software [180](CPMD), version 3.17.1, the Perdew-Becke-Erzenhof [181] 

generalized gradient approximation (GGA) exchange-correlation functional, and ultrasoft 

psuedopotentials [182, 183]. These Born-Oppenheimer molecular dynamics simulations 

were run in the NVT ensemble using a Nose-Hoover thermostat with a timestep of 0.6 fs. 

RDFs from the final 90 of 140 ps simulations were constructed from the trajectories of a 

subset of these species for comparison to EXAFS results. Low energy structures visited 

during the AIMD simulations were subsequently optimized using the Vienna Ab initio 

Simulation Package (VASP) [184] version 5.3.5. Calculations were performed spin-

polarized using the projector augmented wave (PAW) treatment of core-valence 

interactions [185, 186] and a plane wave cut off of 400 eV. For computational efficiency, 

structures were first relaxed within the GGA of Perdew et al. [181] and subsequently 

relaxed using the hybrid screened-exchange method of Heyd-Scuseria-Ernzerhof (HSE06) 

[187][Heyd, 2004 #181][188, 189] and the Tkatchenko Scheffier method for van der Waals 

interactions (TS-vdW) [190]. We converged self-consistent-field (SCF) electronic energies 

to 10−6 eV and atomic forces to less than 0.03 eV/Å. Charge analysis was performed 



64 

 

6
4
 

through the method of Bader [191-195]. Cu charges are reported normalized to Cu(II) and 

Cu(I) references ([Z2Cu(II)] and [ZCu(I)], respectively), then rounded to I or II reported as 

a superscript on Cu. Harmonic vibrational frequencies of adsorbed species were calculated 

at the HSE06-TSvdW level by numerical differentiation of atomic forces with 0.01 Å 

displacements on the adsorbate atoms and used to compute zero-point vibrational energies 

(ZPE). All structures can be found in the sitesCONTCARS attachment SI file. 

2.6.2 Ab initio Free Energies 

To relate DFT-computed energies to reaction conditions, we write the formation 

energies of adsorbed intermediates [196, 197] containing O and H relative to O2 and H2O 

references: 

ΔGx,y
form (T, Δµ

O2
, Δµ

H2O
)  = ΔEx,y

form - TΔSx,y
ST(T) - 

x

2
(Δµ

H2O
 - 

1

2
Δµ

O2
)  - 

y

2
Δµ

O2
……A.1 

ΔEx,y
form = EZCuHxOy

 - EZCu - 
x

2
(EH2O - 

1

2
EO2
)  - 

y

2
EO2

……A.2 

The ∆μ are free parameters corresponding to the difference in chemical potential between 

0 K and the conditions of interest. They can be related to corresponding temperatures and 

pressures through the ideal gas chemical potential relation. ∆SST in entropy between a free 

and adsorbate-covered site. We have previously found that the harmonic oscillator 

approximation significantly underestimates actual entropies [30], consistent with 

observations made by others [106, 108, 198]. Comparisons with dynamics simulations 

suggest a simple heuristic in which the difference is approximated from the Sackur-Tetrode 

expression: 
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ΔSx,y
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2 Ve
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2

NA

]……A.3 

where Mx,y is the total mass of the adsorbed species and V is the supercell volume. This 

model roughly treats adsorbed species as retaining 2/3 of their gas-phase translational 

entropy, similar to that discovered for adsorbates at surfaces [199]. 

It is straightforward to extend these expressions to ones appropriate in the presence 

of NH3, conditions that present nitrogen as well as hydrogen and oxygen to the sites: 

ΔGx,y,z
form (T, Δµ

O2
, Δµ

H2O
, Δµ

NH3
)  = ΔEx,y,z
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2
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2
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- z (𝛥µ𝑁𝐻3 −

3

2
𝛥µ𝐻2𝑂 +

3

4
𝛥µ𝑂2)……A.4 

We retain O2 and H2O as oxygen and hydrogen references and adopt NH3 as nitrogen 

references. 

2.6.3 Zeolite Synthesis and Characterization 

Synthesis methods for all zeolites (SSZ-13, BEA, ZSM-5) can be found in appendix 

A. The crystal topologies of H-zeolites were confirmed from powder X-ray diffraction 

(XRD) patterns collected on a Rigaku Smartlab X-ray diffractometer equipped with a Cu 

K x-ray source (1.76 kW), and measured from 4-40◦ at a scan rate of 0.00833 ° s-1 with a 

step size of 0.01 ° (appendix A). Micropore volumes of H-SSZ-13 zeolites were determined 

from Ar adsorption isotherms (87 K), and for H-BEA and H-ZSM-5 zeolites were 

determined from N2 (77 K), using a Micromeritics ASAP 2020 Surface Area and Porosity 

Analyzer, and were in reasonable agreement with the values expected for the CHA, BEA, 

and MFI frameworks and can be found in appendix A. Solid-state 27Al magic angle 
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spinning nuclear magnetic resonance (27Al MAS NMR) spectroscopy was used to estimate 

the fraction of framework and extraframework Al on H-form zeolites. SS NMR spectra 

were collected using a Chemagnetics CMX400 400 MHz spectrometer in a wide-bore 9.4 

Tesla magnet at ambient conditions from 456 scans with 12.5 μs pulses and a 2 s delay and 

were measured at 104.24 MHz and MAS rate of 5 kHz. Prior to packing in a 4mm ZrO2 

rotor holding for > 48 h in a desiccator containing a saturated potassium chloride (KCl) 

solution. All 27Al MAS NMR spectra are referenced to an aqueous 1.0M Al(NO3)3 spectra 

and quantification of extraframework Al for all H-zeolite samples can be found in appendix 

A. 

Cu-zeolites were prepared by aqueous-phase Cu ion exchange of H-form zeolites 

with a CuII(NO3)2 solution (0.001-0.1 M, 100 cm3 gcat
-1; 99.999 wt.% , Sigma Aldrich) for 

4 h and 300 RPM at ambient conditions, during which the pH was controlled to 4.9 ± 0.1 

through dropwise addition of a 1.0M NH4OH solution (Sigma Aldrich). Co-SSZ-13 

zeolites were prepared by ion exchange of H-SSZ-13 with an aqueous 0.25M CoII(NO3)2 

solution (150 ml gcat
−1) for 4 h at ambient conditions, during which the pH was not 

controlled (pH stabilized between 3.2-3.6 after 4 h). Metal-exchanged zeolites were 

recovered by centrifugation and washed with deionized water six times (70 ml g catalyst−1 

per wash), dried at ambient temperature under flowing air, and then treated in flowing dry 

air (100 ml gcat
−1) to 773 K (0.0167 K s-1) for 4 h. Elemental composition (Si, Al, Cu, Co) 

was determined using atomic absorption spectroscopy (AAS) on a Perkin-Elmer AAnalyst 

300. 
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2.6.4 NH3 Temperature Programmed Desorption 

Residual H+ sites on H-zeolites, on Cu- and Co-exchanged zeolites after oxidation 

treatments in air (20% O2, balance N2, 773 K, 4 h), and on Cu-zeolites after reduction 

treatments (500 ppm NO + 500 ppm NH3, balance He, 473 K, 2 h) were titrated using the 

procedure described by Di Iorio et al [135]. This titration method involves saturation of 

zeolites (≈0.03-0.05 g) with NH3 at 433 K (500 ppm, balance He, 2 h, 350 ml min-1), 

followed by removal of physisorbed and Cu-bound NH3 by treatment in wet helium (2.5-

3.0% H2O/He, 8 h, 350 ml min−1), in order to selectively retain surface NH4
+ species [135, 

136]. NH3 was then evolved in a subsequent TPD in flowing He (350 ml min−1) to 823 K 

(0.083 K s-1), and quantified using on-board calibrations in a MKS Multigas 2030 gas-

phase FT-IR spectrometer. Further details can be found in appendix A. 

2.6.5 Kinetics 

Standard selective catalytic reduction (SCR) kinetics were measured on a bench-

top tubular glass reactor described elsewhere [28]. All samples were sieved to a nominal 

size of 125-250 μm and diluted with silica gel to obtain a bed height of ≈2.5 cm. Steady-

state kinetic data was collected at NO conversions below 20%, so that the entire bed was 

exposed to approximately the same gas concentrations, using a reactant gas mixture of 300 

ppm NO (3.6% NO/Ar, Praxair), 300 ppm NH3 (99.5%, Indiana Oxygen), 5% CO2 (liquid, 

Indiana Oxygen), 10% O2 (99.5%, Indiana Oxygen), 2.5% H2O (deionized, 18.2 MΩ, 

introduced through saturator), and balance N2 (99.999% UHP, Indiana Oxygen) at 473 K 

and 1 atm. The total gas flow rate was maintained at 1.5 l min−1. Outlet gas concentrations 

were analyzed using on-board gas calibrations on an MKS MultigasTM 2030 gas-phase 
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Fourier Transform Infrared (FTIR) spectrometer and NO, NO2, NH3, CO2 and H2O 

concentration data was recorded every 0.95s. 

2.6.6 Spectroscopic Methods (XAS, FTIR) 

XAS experiments were carried out on the insertion device (ID) and bending magnet 

(BM) beam lines of the Materials Research Collaborative Access Team (MRCAT, Sector 

10) at the Advanced Photon Source (APS) at Argonne National Laboratory. A 

cryogenically cooled double-crystal Si(111) monochromator was used with an uncoated 

glass mirror to minimize the presence of harmonics. Spectra were recorded in transmission 

mode with the ionization chambers optimized for the maximum current with linear 

response (≈1010 photons s−1) using gas mixtures to give 10% absorption in the incident X-

ray detector and 70% absorption in the transmission X-ray detector. A Cu metal foil 

spectrum were simultaneously collected while measuring sample spectra to calibrate the 

Cu K-edge to 8979 eV. Operando experiments were performed at the 10-ID line in a special 

glassy carbon tube reactor described by Kispersky et al. [29], in which XAS spectra were 

collected simultaneously with steady-state standard SCR rate measurements to verify that 

rates were identical to those measured in separate differential plug-flow reactor 

experiments. XAS spectra were collected in an energy range between 8700 and 9890 eV 

for samples held under different gas conditions, and between 8700 eV and 9780 eV for 

operando experiments (additional details in appendix A). Multiple energy scans were taken 

to ensure the absence of time-dependent change or beam damage to the sample. Spectra 

were collected under isothermal conditions and normalized using a first-order polynomial 

in the pre-edge region and a third-order polynomial in the post-edge region. XANES 
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spectra were fitted using a linear combination of Cu(I) and Cu(II) references [20, 28, 30] 

to determine the fractions of Cu(I) and Cu(II) in certain gas environments and under 

operando conditions. EXAFS data were fit from k = 2.7 to ≈11 Å−1 (details of the fitting 

procedure in appendix A). 

FTIR data were collected on zeolite samples using a Nicolet 6700 FTIR 

spectrometer equipped with a liquid nitrogen-cooled mercury cadmium telluride (MCT) 

detector. Catalyst samples (≈35-40 mg) were pressed into a self-supporting wafer (≈2 cm 

in diameter) and placed in a custom-built FTIR cell that has been described elsewhere 

[200]. Wafers were treated in flowing oxygen (10% O2, balance He) to 673 K for 30 min 

and then cooled to 473 K, prior to collecting spectra. Spectra were collected with a 

resolution of 4 cm−1 and averaged over 1000 scans, baseline corrected, and normalized to 

the framework Si-O-Si combination/overtone band between 2100-1750 cm−1 (Additional 

details can be found in appendix A). 
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CHAPTER 3. COPPER SITE PROXIMITY REQUIREMENTS FOR OXIDATION 

WITH DIOXYGEN OR NITROGEN DIOXIDE DURING AMMONIA 

SELECTIVE CATALYTIC REDUCTION ON CU-SSZ-13 

3.1 Abstract

This study is a two part investigation of low temperature selective catalytic 

reduction (SCR) on Cu-SSZ-13 zeolites. First, steady state operando XAS experiments 

were performed by systematically varying the concentrations of one reactant – NH3 (0-590 

ppm), O2 (0%-10%) and NO (0-600 ppm) – at a time to determine its effect on the Cu(I)-

Cu(II) surface coverages and their role in the standard SCR mechanism. These experiments 

showed that while O2 and NH3 participated in the oxidation and reduction half-cycles, 

respectively, NO was involved in both parts of the redox cycle. Second, titration 

experiments with O2 starting from the reduced, Cu(I) state for two catalysts with the same 

Cu/Al (0.08-0.09) but different Si/Al ratios (4.5 and 15) followed second order kinetics for 

Cu(I) re-oxidation but showed differences in the rates of oxidation (k = 1.79 min-1 for Si/Al 

= 15 vs. 8.16 min-1 for Si/Al = 4.5) and the final fraction of Cu unable to oxidize to Cu(II) 

(0.26 for Si/Al = 15 vs. 0.15 for Si/Al = 15), even when both samples contained structurally 

equivalent Cu2+ ions exchanged at paired Al sites. This suggested the involvement of two 

Cu(I) centers for oxidation with O2 and its underlying dependence on zeolite composition 

(Si/Al, Cu/Al) and proximity of Cu sites. The lower density of and longer average distances 

between Cu ions at Si/Al = 15 were used to rationalize differences in the low temperature 
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(473 K) standard SCR apparent kinetics and steady state XANES spectra between the two 

samples, which showed that re-oxidation of Cu(I) to Cu(II) was the slow step for the Si/Al 

= 15 catalyst. In sharp contrast, both samples showed identical rates of oxidation with NO2 

(k = 0.8 min-1) and oxidized completely to 100% Cu(II), implying that NO2 oxidation 

occurs on isolated Cu(I) sites, thus highlighting the differences between the oxidation half-

cycles for standard and fast SCR reactions. 

3.2 Introduction 

Nitrogen oxides (NOx, x = 1, 2) in automotive exhaust of lean-burn diesel-powered 

vehicles pose major environmental hazards, and increasingly stringent environmental 

regulations are enforced to reduce their emissions [113, 165, 174, 201]. Selective catalytic 

reduction (SCR) of NOx by NH3 (equation 3.1) is a commercial technology that is currently 

used to meet NOx emissions standards. Specifically, small-pore, eight-membered ring (8-

MR) aluminosilicate (SSZ-13) and silicoaluminophosphate (SAPO-34) molecular sieves 

of the chabazite (CHA) topology, after exchange with Cu and Fe species, are used in 

practice because of their resistance towards dealumination and poisoning by residual 

hydrocarbons. Their much higher hydrothermal stability, compared to metal-exchanged 

medium- and large-pore zeolites (e.g., Cu-ZSM-5, Cu-Beta) leads to stable catalytic 

performance in selectively reducing NOx to N2, even after experiencing high temperature 

(> 800 oC) excursions in the presence of water (7% (v/v)) [5, 25, 99, 109, 161, 171, 202].  

Consequently, a molecular-level understanding of the reactive intermediates and 

active sites involved in the mechanism of NOx SCR with ammonia on Cu-SSZ-13 catalysts 

is required to improve modeling of currently-used catalysts, and to develop and design 
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improved catalysts to meet more stringent emission requirements being proposed for the 

future [203]. Several literature reports have suggested that isolated Cu2+ ions in the double 

6-MR obtained after ion exchange are the active sites for this reaction [18, 19, 28, 31]. 

Operando XAS experiments have shown that isolated Cu is present as a mixture of Cu(I) 

and Cu(II) during standard SCR, suggesting that Cu redox chemistry is central to the SCR 

reaction mechanism [30, 32]. It is generally accepted that the combination of NO and NH3  

are co-reductants involved in the reduction of Cu(II) to Cu(I) during standard SCR (473 K) 

via the NO assisted dissociation of the N-H bond in a Cu-bound NH3 molecule [30, 204], 

and that this one electron reduction half-cycle can occur at each isolated Cu(II) site. This 

also illustrates the selective nature of NH3 in reducing NO instead of O2, even though the 

latter is present in large excess. It remains unclear how the re-oxidation of Cu(I) to Cu(II) 

occurs although O2 is typically considered to be the oxidant during standard SCR. The 

authors proposed a plausible pathway for the oxidation half-cycle that involved both NO 

and O2 via the reaction of a nitrite (NO2
-) anion with an ammonium cation (NH4

+) to form 

N2 and H2O so that the stoichiometry was consistent with the overall reaction while the 

electron balance was maintained for each step. Oxidation with O2, however, is a 4-electron 

process, and hence, cannot be accounted for by the oxidation of a single Cu(I) to Cu(II). 

However, in the case of NO2, which is a 1-electron oxidant, the oxidation of Cu(I) to Cu(II) 

can be accounted for by the concomitant formation of a nitrite (NO2
-) and the complete 

SCR cycle can occur on an isolated Cu site. This reaction that involves NO2 as the oxidant 

instead of O2 is called fast SCR with an equimolar mixture of NO and NO2, described by 

equation 3.2 below.  

                                       4NH3 + 4NO + O2 → 4N2 + 6H2O……3.1 
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                                      4NH3 + 2NO + NO2 → 4N2 + 6H2O……3.2 

Giordanino et al. [32] suggested the existence of two different isolated, cationic 

Cu(II) species, namely Cu2+ ions that are charge balanced by a pair of framework Al atoms 

and [CuOH]+ ions that are charged balanced by one framework Al atom. The type and 

amount of these two different isolated Cu(II) in catalyst samples is dependent on the Al 

distribution and the Si/Al and Cu/Al ratios [28, 31, 32, 111, 149, 151, 158]. The effect of 

Si/Al ratio on the speciation of Cu and ammonia standard SCR has also been investigated 

by Gao et al. [114]. Paolucci et al. [31] confirmed the presence of two isolated Cu(II) 

species by showing the difference in their chemical behavior when reduced with H2 or He. 

The authors used FTIR spectroscopy to detect and quantify the peak at ~3651 cm-1, 

assigned to the OH stretching vibration on [CuOH]+, and showed that all Cu exchanged as 

[CuOH]+ species for Cu/Al > 0.12 at Si/Al = 15,. Further, one extra Brønsted acid site is 

formed upon reduction for each Cu2+ ion whereas such additional Brønsted acid sites are 

not formed upon reduction of a [CuOH]+ ion.  Consequently, NH3 titrations were used to 

count the total number of Brønsted acid sites after reduction to differentiate between them 

and quantify the amounts of the two isolated Cu(II) ions present in their samples. .  

Apparent reaction orders for NO (75 – 600 ppm), NH3 (250 – 600 ppm) and O2 (2.5 

– 20%) at 473 K and apparent activation energy (433 – 473 K) measurements for two 

samples with either bare Cu(II) ions or [CuOH]+ ions were similar, as was the steady state 

distribution of Cu(I) and Cu(II) under operando standard SCR conditions [31]. The authors 

showed that both types of ion-exchanged Cu(II) reduced to a mobile diamminecopper(I) 

species with NO (300 ppm) and NH3 (300 ppm) at 473 K. DFT calculations showed similar 

energetics pathways for standard SCR (473 K) on both isolated Cu(II) sites, and that 
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solvation by NH3 nullified the differences between them. Based on these observations, they 

concluded that low temperature standard SCR (473 K) occurred via similar pathways on 

both isolated Cu(II) sites and proposed similar standard SCR mechanisms for the two sites 

At higher temperatures (> 623 K), however, where solvation due to NH3 is absent [34], 

differences between their behavior for standard SCR may be observed. A potential 

advantage of similar standard SCR (473 K) turnover rates on both isolated Cu(II) species 

is that a greater extent of Cu can be exchanged into the zeolite with [CuOH]+ as the ion 

exchange species compared to that with Cu2+ because charge balance requires two Al per 

Cu2+ ions, whereas only one Al is required per [CuOH]+ ion.  

This study explores the effect of Si/Al ratio by focusing on two Cu-SSZ-13 samples 

that contain predominantly Cu2+ ions, and shows that kinetic and spectroscopic differences 

are observed during standard SCR conditions, even when structurally-equivalent Cu2+ 

species cations are initially present in the two samples. Cu(I) re-oxidation to Cu(II) during 

standard and fast SCR  has been investigated using x-ray absorption spectroscopy (XAS) 

by in situ treatment of the reduced form of the two samples with O2 and NO2, and 

comparing the relative rates and extents of oxidation to Cu(II). The results presented in this 

study illustrate the effect of Cu proximity for oxidation with O2. Cu(I) oxidation with NO2, 

however, showed no such differences or the effect of Cu proximity. These results have 

been used as the basis for suggesting different oxidation pathways and actives sites for 

standard and fast SCR reactions.   
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3.3 Methods 

3.3.1 Catalyst Preparation 

H-SSZ-13 zeolites with Si/Al = 4.5 and 15 were synthesized in-house as described 

previously [31, 136] by following the synthesis procedure outlined by Fickel et al. [109] 

and Zones et al. [162, 163]. Cu(NO3)2 (Alfa-Aesar) was used as the precursor to exchange 

Cu into the zeolite using liquid phase ion exchange. A slurry consisting of ~1-2 g of H-

SSZ-13 in 180 ml DI water was heated to 313 K and stirred for 30 min. An aqueous solution 

of 0.01-0.02 M Cu(NO3)2 was added in a dropwise manner to the slurry containing H-SSZ-

13 during which the pH of the solution was controlled to 4.9 ± 0.1 by dropwise addition of 

0.1 M NH4OH (Sigma Aldrich) while the mixture was allowed to stir for 15 h. The resulting 

slurry was centrifuged and rinsed three times with deionized (D.I.) water, after which the 

supernatant liquid was discarded and the catalyst was vacuum dried at ambient temperature 

in vaccum (-29 in. Hg) for 12 h. After drying, the catalyst was calcined under 80 ml min-1 

flow of dry air (Commercial Grade, Indiana Oxygen) at 823 K for 6 h with a ramp rate of 

0.5 K min-1. Si, Al and Cu content of the samples was measured by atomic absorption 

spectroscopy (AAS) using the Perkin Elmer AAnalyst 300 spectrometer. ~20-30 mg of 

each sample was dissolved in 2-3 ml HF (48%, Fisher Scientific) and then diluted with D.I. 

water before actual measurements. The XRD patterns for both samples can be seen in 

figure B1 while the BET surface area and micropore volumes measured by Ar for the parent 

H-SSZ-13 are reported in Table 3.4.1 along with the corresponding Cu wt. %, Cu/Al and 

Si/Al ratios after Cu exchange. Co2+ ion exchange was used as a way to titrate the fraction 

of total Al present as Al pairs [141] since Co2+ exchanges only at Al pairs and not at isolated 

Al atoms within the zeolite framework. 
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3.3.2 Steady State X-ray Absorption Spectroscopy (XAS) Experiments 

XAS experiments were performed at sector 10 MR-CAT (Materials Research 

Collaborative Access Team) of the Advanced Photon Source, Argonne National 

Laboratory. The insertion device beamline at sector 10 (10-ID) was used for the operando 

and in situ oxidation experiments due to the high photon flux available at that beamline. 

Incident and transmitted x-ray intensities were measured in ion chambers filled with 20% 

He in N2 and 20% Ar in N2 respectively to obtain approximately 10% and 70% absorption 

of the beam before and after the sample respectively. A Cu metal foil reference spectrum 

(edge energy of 8979 eV), was measured simultaneously with each sample spectrum to 

calibrate the x-ray beam for spectral measurements at the Cu-K edge. All sample spectra 

were normalized using 1st and 3rd order polynomials for background subtraction of the pre- 

and post-edges respectively. Steady state spectra were collected in the quick scan mode 

with an edge step of 0.5 eV, a dwell time of 0.05 s at each step and an energy range between 

8700 and 10000 eV, each spectrum taking 2-3 min to complete. Steady state data were 

averaged over 3-5 scans depending on the data quality obtained under different 

experimental conditions. 

The Cu K-edge x-ray absorption near edge spectroscopy (XANES) consists of 

several distinct features indicative of the various electronic transitions for the Cu(I) and 

Cu(II) oxidation states. The peaks at 8977 eV and 8987 eV are representative of Cu(II), 

with the first peak centered at 8977 eV due to the symmetry forbidden 1s → 3d transition. 

It becomes allowed due to mixing of the 3d and 4p orbitals, and has been reported in several 

studies as a low intensity, pre-edge feature [170, 205-207], while the shoulder at 8987 eV 

is due to its 1s → 4p electronic transition [170, 208]. The presence of the sharp peak 



78 

 

7
8
 

centered around 8983 eV is characteristic of the 1s → 4p transition for a two coordinate 

Cu(I) complex. This peak has previously been reported in literature in a variety of 

environments including HC-SCR [209] and NO decomposition [210] on Cu-ZSM-5, 

thermal reduction of Cu-Mordenite [211], Cu-Y [212], various two coordinate Cu(I) model 

compound studies [213] and diamminecopper(I) complexes [172, 214, 215]. Since XAS is 

a bulk technique, each sample spectrum is a linear combination of the corresponding 

oxidation states. Therefore, a linear combination XANES fitting of the Cu(I) and Cu(II) 

references was used to obtain the relative amounts of each oxidation state under various 

conditions. Information about how the Cu(I) and Cu(II) references were generated is 

provided in our previous publication [30]. 

The details of the custom operando XAS reactor setup used for experiments in this 

work have been described elsewhere [20, 29, 30]. 7-13 mg of the high Al (Cu/Al = 0.08, 

Si/Al = 4.5) or 30 mg of the low Al (Cu/Al = 0.09, Si/Al = 15) sample was loaded in the 

operando reactor, after sieving to 125-250 µm, to maintain differential conditions (< 25% 

conversion). Gases were mixed and introduced into the reactor in a precise manner to avoid 

any side reactions. D.I. H2O was introduced into the feed stream by flowing He carrier gas 

through a heated shell type humidifier (Perma Pure MH-Series). All gas lines downstream 

of the humidifier were heated to above 373 K to prevent H2O condensation. After 

introducing H2O, NO (3000 ppm in N2, Matheson Tri-Gas) was introduced into the gas 

stream followed by the introduction of O2 (20% in He, Airgas, Inc.). The reaction mixture 

was then preheated to 473 K. Ammonia (3000 ppm in He, Airgas, Inc.) was introduced 

through a 1/16” stainless steel tube a few inches above the catalyst bed to minimize the 

chances of gas phase side reactions. Gas concentrations were measured using a MKS 
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Multi-Gas 2030 gas analyzer FTIR with a cell temperature of 464 K and based on factory 

provided calibration files. Standard SCR conditions of 300 ppm NO, 300 ppm NH3, 10% 

O2, 2% H2O, 5% CO2, a total flow rate of 500-600 ml min-1 and a temperature of 463-473 

K was used for all steady state experiments.  

3.3.3 Kinetic Order Measurements under Operando Conditions 

Co-existence of Cu(I) and Cu(II) at steady state during standard SCR [28, 29] and 

transient cutoff experiments [30] suggested that the reaction occurred via redox 

mechanism. If standard SCR is truly a redox reaction then changing the feed gas 

concentrations would be expected to change the steady state Cu(I) – Cu(II) fractions 

observed under standard conditions. The advantage of performing such operando 

experiments was that XAS spectra were simultaneously collected while measuring reaction 

orders to obtain correlations between the behavior of the catalyst under varying conditions 

and the oxidation states of Cu. Standard operating conditions were 300 ppm NO, 300 ppm 

NH3, 10% O2, 2% H2O, 5% CO2 and 463 K as mentioned above. For the reaction order 

measurements only the concentration of the particular gas whose effect was being explored 

on the catalyst was changed while keeping the same total flow rate, concentrations of other 

gases in the feed and catalyst temperature. Thus, O2 concentration was varied from 0% to 

10%, NH3 concentration was varied between 0 ppm to 600 ppm and NO concentration was 

changed from 0 ppm to 600 ppm, in separate sets of experiments. The resulting XANES 

spectra were fitted using a linear combination of references as explained in section 3.3.2. 
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3.3.4 In situ Oxidation Experiments with O2 or NO2 

The reactor setup described above was slightly modified and used to understand the 

oxidation behavior for the two catalyst samples used in this study, and to determine the 

link between standard and fast SCR reactions. This modification affected the measurement 

of sample temperature; determination of sample temperature is described in the appendix 

B. Both catalysts were first reduced to Cu(I) with 300 ppm NO and 300 ppm NH3 under a 

total flow of 500 ml min-1 at approximately 447 K. Following the reduction to Cu(I), the 

two samples were exposed to either 10% O2 or 90 ppm NO2 at the same temperature in 

separate experiments. The Cu(I)-Cu(II) fractions during these transient experiments were 

followed by collecting XANES spectra in quick scan mode from 8700 to 9700 eV. Each 

spectrum took 1 min 48 s to complete with a step size of 0.5 eV and a dwell time of 0.05 

s.  

Rate constants for oxidation of Cu(I) to Cu(II) for the NO2 experiments were 

extracted assuming a first order rate law (equation 3.3), solving the resulting equation as 

follows and fitting the final equation (equation 3.6) to the experimental data.  

roxidation= -
d[Cu(I)]

dt
= k[Cu(I)]……3.3 

∫
d[Cu(I)]

Cu(I)
 = -k∫ dt ……3.4 

ln[Cu(I)t] = a - kt……3.5 

at t = 0, Cu(I)t = Cu(I)o → a = ln[Cu(I)
o
] 

ln [
Cu(I)

t

Cu(I)
o

]= -kt……3.6 
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Rate constants for the oxidation of Cu(I) to Cu(II) for the O2 experiments were extracted 

by using a similar procedure as above, except this time a second order rate law (equation. 

3.7) was used for the low Al content sample. The corresponding equation was solved as 

follows  

roxidation = -
d[Cu(I)]

dt
 = k[Cu(I)]2……3.7 

∫
d[Cu(I)]

Cu(I)2
= -k∫dt……3.8 

Cu(I)t = 
1

a + kt
……3.9 

An offset term ‘b’ was added to equation 3.9 to account for the fraction of total Cu that 

was unable to oxidize to Cu(II) at the end of the experiment. These values were 0.26 and 

0.15 for the low and high Al content samples, respectively from Figure 3.4.8a. 

Cu(I)t = 
1

a + kt
 + b……3.10 

t = 0, Cu(I)
t
 = Cu(I)

o
 → 

1

a
 = Cu(I)

o
 - b 

1

Cu(I)t - b
 - 

1

Cu(I)o - b
 = kt……3.11 

Only those data points that were outside the 5% XANES fitting error of the final 

steady state value were considered to determine the value of the second order rate constant 

for the two samples. Since there was not enough time resolution to observe the transient 

behavior for oxidation with O2 for the high Al content sample, it was assumed that the 

oxidation process with O2 was the same as for the low Al content sample and hence, the 

same form of the rate law was used to fit the experimental data for the high Al content 

sample. 
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3.4 Results 

3.4.1 Synthesis of Cu-SSZ-13 zeolites with isolated Cu2+ species at different proximity 

XANES spectra of both Cu-SSZ-13 samples under ambient conditions were 

indistinguishable from that of an aqueous solution of Cu(NO3)2 (Figure 3.4.1), and did not 

show any evidence of Cu1+ (pre-edge peaks ~8983 eV+ [172, 209-215]) or of CuxOy 

clusters, as reported previously [28, 110, 111, 115].  

 

Figure 3.4.1 Comparison of XANES spectrum at ambient conditions with that for bulk 

CuO and aqueous solution of Cu(NO3)2 Samples: Cu/Al = 0.08, Si/Al = 4.5 and Cu/Al = 

0.09, Si/Al = 15. 

Second- and higher-coordination shells were also absent in the EXAFS region [31], 

indicating that all Cu sites were present as isolated hydrated Cu2+ complexes under ambient 

conditions. These ex-situ XAS characterization techniques indicate that both Cu-SSZ-13 
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samples contain predominantly isolated divalent cationic copper (Cu(II)), but do not 

provide further information about the speciation of Cu(II) between divalent Cu2+ and 

monovalent [CuOH]+ complexes. 

In CHA zeolites, Cu2+ cations exchanged at a paired Al site (6-MR containing 2 Al 

atoms) are thermodynamically more stable than [CuOH]+ complexes exchanged at isolated 

Al sites (1 Al per 6-MR) [28, 165]. Therefore, Cu2+ cations are preferentially exchanged to 

saturation prior to exchange of [CuOH]+ complexes, as has been demonstrated elsewhere 

on SSZ-13 zeolites of varying Si/Al ratio (4.5, 15, 25) [31]. The density of paired Al sites 

capable of exchanging Cu2+ cations decreases with increasing Si/Al ratio, assuming that Al 

atoms are randomly distributed in the framework according to Löwenstein’s rule [133]. 

The two samples in this study have bulk Si/Al ratios of 4.5 and 15 and were synthesized 

according to protocols that crystallize SSZ-13 zeolites with randomly distributed Al atoms 

[141], which should contain 0.25 and 0.09 Al pairs (per total Al) [28]. Saturation Co2+ 

cation exchange levels, which provide an independent quantification of the number of Al 

pairs in SSZ-13, were 0.21 and 0.09 for the Si/Al = 4.5 and 15 samples, respectively [141], 

and agreed quantitatively with the number of Al pairs predicted from stochastic 

simulations. In this study, the Cu/Al ratios on the high Al (Cu/Al = 0.08, Si/Al = 4.5) and 

low Al (Cu/Al = 0.09, Si/Al = 15) Cu-SSZ-13 samples were less than or equal to the 

maximum number of divalent cation exchange sites predicted by theory and measured 

experimentally by Co2+ exchange (0.21 and 0.09, respectively), and thus were expected to 

contain only isolated Cu2+ cations. 
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Table 3.4.1 Elemental analysis, Ar micropore volume and proton count for the parent H-

SSZ-13 and oxidized (Cu(II)) and reduced (Cu(I)) forms of the high Al (Cu/Al = 0.08, 

Si/Al = 4.5) and low Al  (Cu/Al = 0.09, Si/Al = 15) content samples. 

Si/Al Cu/Al Cu wt.% 

Ar micropore 

volume / cm3 

g-1 

H+/Al 

(H-

form) 

H+/Al 

(Cu(II) 

form) 

H+/Al 

(Cu(I) 

form) 

4.5 0.08 1.7 0.16 0.46 0.31 0.36 

15 0.09 0.5 0.17 0.98 0.81 0.88 

In order to verify the sole presence of isolated Cu2+ cations at paired Al sites in each 

Cu-SSZ-13 sample, the number of residual Brønsted acid sites was quantified by selective 

titration with NH3 [135, 136], in which NH3 saturation steps (433 K) were followed by 

purging in flowing helium containing 2-3% H2O (433 K, 8 hr) to desorb Cu-bound NH3 

species prior to temperature programmed desorption. Oxidized forms of the high Al (Cu/Al 

= 0.08, Si/Al = 4.5) and low Al (Cu/Al = 0.09, Si/Al = 15) content Cu(II)-SSZ-13 samples 

contained two fewer H+ sites per ion exchanged Cu(II) than their respective parent H-SSZ-

13 samples (by 0.15 and 0.17, respectively, Table 3.4.1). Treatment of both Cu(II)-SSZ-13 

samples in flowing NO (300 ppm) and NH3 (300 ppm) at 473 K caused reduction of all 

isolated Cu2+ ions to Cu1+, as monitored by  XANES spectra (figure B2), and as expected 

for samples containing isolated Cu2+ ions [28, 30]. Reduced forms of the high Al (Cu/Al = 

0.08, Si/Al = 4.5) and low Al (Cu/Al = 0.09, Si/Al = 15) content Cu(I)-SSZ-13 samples 

contained 0.05 and 0.07 additional protons relative to their oxidized Cu(II)-SSZ-13 forms 

(Table 3.4.1). These findings are consistent with the formation of a Cu+ and H+ site pair at 

two framework Al sites upon reduction of isolated Cu2+ cations, which occurs via NO-

assisted dissociation of an N-H bond in a Cu-coordinated NH3
 ligand [30]. These residual 

H+ titration data, which quantify a decrease in two protons per exchanged Cu2+ on oxidized 
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forms of Cu(II)-SSZ-13 and the subsequent formation of one new proton per Cu+ upon 

reduction to Cu(I)-SSZ-13 [30], confirm the sole presence of isolated Cu2+ cations at paired 

Al sites in both the high and low Al content Cu-SSZ-13 samples.   

3.4.2 Differential Standard SCR Kinetics on Cu-SSZ-13 samples 

Next, the kinetic details of low temperature (463-473 K) standard SCR were 

measured under differential conditions (< 25% conversion) on the high and low Al content 

Cu-SSZ-13 samples in a plug flow reactor (PFR). On the high Al content sample, the 

steady-state standard SCR rate (473 K) was 7.3 x 10-3 mol NO (mol Cu)-1 s-1, with apparent 

reaction orders of 0.8 for NO, -0.1 for NH3, 0.3 for O2 and an apparent activation energy 

of 60 kJ mol-1 (Table 3.4.2). Values of these kinetic parameters agree with those reported 

previously in the literature [28, 34, 115] for high Al content Cu-SSZ-13 samples with a 

similar composition (Si/Al = 4.5-6, Cu/Al = 0.03-0.2), for which the standard SCR rate 

(473 K) increased linearly with Cu2+ content with a turnover rate (473 K) of 6.5 x 10-3 mol 

NO (mol Cu)-1 s-1. Cu-SSZ-13 samples with lower Cu content studied by Bates et al. (Si/Al 

= 4.5, Cu/Al < 0.02) [28] and by Gao et al. (Si/Al = 6, Cu/Al < 0.03) [34], however, showed 

lower standard SCR turnover rates (2-4 x 10-3 mol NO (mol Cu)-1 s-1; 473 K) and subtle 

differences in apparent activation energies (40-43 kJ mol-1). Given that Cu cations 

exchange predominantly as isolated Cu2+ sites at paired Al at these low Cu/Al ratios, these 

differences in the kinetic parameters suggest different kinetically-relevant steps or 

intermediates during standard SCR conditions (473 K) at dilute Cu loadings on SSZ-13. 
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Table 3.4.2 Standard SCR reaction kinetics for the high Al (Cu/Al = 0.08, Si/Al = 4.5) and 

low Al (Cu/Al = 0.09, Si/Al = 15) content samples at 300 ppm NO, 300 ppm NH3, 10% 

O2, 5% CO2, 2% H2O, 473 K. 

Sample 
Standard SCR Rate 

(10-6 mol NO gcat
-1 s-1) 

NO order 

(±0.1) 

O2 order 

(±0.1) 

NH3 order 

(±0.1) 

Eapp (±5 

kJ mol-1) 

High Al 184 0.8 0.3 -0.1 60 

Low Al 18 0.4 0.7 -0.5 50 

On the low Al content Cu-SSZ-13 sample, the standard SCR turnover rate (473 K) 

was 2.3 x 10-3 mol NO (mol Cu) -1 s-1 (Table 3.4.1 and Table 3.4.2), which is 2.8x lower 

than the value expected (6.5 x 10-3 mol NO (mol Cu)-1 s-1) from the linear correlation 

between standard SCR rate and Cu2+ content for the high Al content Cu-SSZ-13 samples 

[28]. On this low Al content sample, the apparent reaction orders were 0.4 for NO, -0.5 for 

NH3, and 0.7 for O2, and the apparent activation energy was 50 kJ mol-1 (Table 3.4.2), 

which seem similar to the apparent kinetic parameters for the low Cu and high Al content 

SSZ-13 samples (Si/Al = 4.5, Cu/Al = 0.02) reported by Bates et al. [28]. Values of the 

apparent activation energy in this range (40 – 49 kJ mol-1) have been reported previously 

[34, 114], but reaction orders for these samples have not been measured previously. The 

different kinetic parameters measured on the high Al and low Al content Cu-SSZ-13 

catalysts under equivalent standard SCR reaction conditions (Table 3.4.2) suggest 

differences in the active states of their Cu cations, as we probe next with XANES 

characterization in operando. 
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3.4.3 Operando XANES during Steady-State SCR Catalysis 

3.4.3.1 Validation of the Operando Reactor 

The low and high Al content Cu-SSZ-13 samples were studied under operando 

conditions by collecting XANES spectra simultaneously with steady-state SCR rate 

measurements (463-473 K), in order to determine the origin of the difference in apparent 

reaction orders and apparent activation energies for the two Cu-SSZ-13 samples. 

Interpretation of these spectra and their connection to the working state of the catalysts first 

required establishing the equivalence of kinetic measurements in the operando reactor and 

in the PFR, with reaction rates in both reactors given in Table 3.4.3. Figure 3.4.2 shows an 

Arrhenius plot for the high Al content Cu-SSZ-13 sample measured in the PFR and in the 

operando reactor, demonstrating reproducibility of SCR rate measurements in the 

operando reactor across a period of several months and in agreement with the PFR rate 

measurements.  

Table 3.4.3 Comparison of standard SCR reaction rates measured in the PFR and the 

operando reactor for the high Al (Cu/Al = 0.08, Si/Al = 4.5) and low Al (Cu/Al = 0.09, 

Si/Al = 15) content samples and apparent reaction orders for the high Al (Cu/Al = 0.08, 

Si/Al = 4.5) content sample. Feed contained 5% CO2, 2% H2O for all measurements. 

Sample High Al Low Al 

 
Ratea / 10-8 mol 

NO (g cat)-1 s-1 

NO orderb 

(±0.1) 

O2 orderc
 

(±0.1) 

NH3 orderd 

(±0.1) 

Rateb / 10-8 

mol NO (g 

cat)-1 s-1 

PFR 184 0.8 0.8 -0.1 18 

Operando 

Reactor 
209 0.8 0.8 -0.2 15.3 

areaction rates measured at 300 ppm NO, 300 ppm NH3, 10% O2, 473 K 
bNO concentration varied between 120 and 600 ppm, apparent order measured at 463 K 
cO2 concentration varied between 2% and 10%,  apparent order measured at 463 K 
dNH3 concentration varied between 160 and 590 ppm, apparent order measured at 463 K 
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After performing these experimental validations, the high Al content Cu-SSZ-13 

sample was tested by systematically varying the concentration of each standard SCR 

reactant at a time to explore their role in the standard SCR reaction during steady state 

standard SCR catalysis.  

 
Figure 3.4.2 Activation energy plot (black squares) during standard SCR in the PFR 

overlayed with the rate measurements in the operando reactor (green triangles, yellow 

circles, maroon diamonds). Feed conditions: 300 ppm NO, 300 ppm NH3, 10% O2, 2% 

H2O, 5% CO2, 440 – 479 K. Sample Cu/Al = 0.08, Si/Al = 4.5. 

3.4.3.2 Changing Gas Conditions for the High Al (Cu/Al = 0.08, Si/Al = 4.5) Catalyst 

3.4.3.2.1 O2 

The first set of experiments involved varying O2 partial pressure between 0% and 

10% holding the partial pressures of other components in the feed constant while 

simultaneously collecting XANES spectra. Operando XANES spectra at standard 

conditions (300 ppm NO, 300 ppm NH3, 10% O2, 5% CO2, 2% H2O, 463 K) showed an 
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equimolar mixture of Cu(I) and Cu(II) (Table 3.4.1). Increasing the O2 concentration from 

2% to 10% resulted in an increase in the Cu(II) fraction from 36% to 50% (Table 3.4.4 and 

Figure 3.4.3a), as expected from the involvement of O2 only in Cu(I) – Cu(II) oxidation 

half-cycle of the SCR redox mechanism [30]. An apparent reaction order of 0.3 was 

measured in the operando reactor (Figure 3.4.3b), consistent with its value of 0.3 measured 

in the plug flow reactor (PFR) (Table 3.4.3). The increase in Cu(II) fraction with O2 

pressure during steady state SCR catalysis is also evident from an increase in the white line 

intensity at ~8995 eV that is representative of Cu(II). 96% Cu(I) was present when O2 was 

removed from the feed mixture, confirming that the combination of NO and NH3 behaved 

as the reductant during low temperature (463 – 473 K) SCR conditions. Moreover, the 

Cu(I) species obtained upon reduction with NO and NH3 is suggested to be 

diamminecopper(I) because the XANES spectrum for the reduced form of the sample at 

0% O2 resembled that for an aqueous diamminecopper(I) solution obtained at room 

temperature [214]. 
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Figure 3.4.3 (a) Operando XANES spectra under varying O2 partial pressures, (b) O2 

reaction order plot collected simultaneously while collecting XANES spectra. Feed 

conditions: 300 ppm NO, 300 ppm NH3, 0% – 10% O2, 2% H2O, 5% CO2, 463 K. Sample: 

Cu/Al = 0.08, Si/Al = 4.5. 

 
Figure 3.4.4 (a) Operando XANES spectra under varying NH3 partial pressures, (b) NH3 

reaction order plot collected simultaneously while collecting XANES spectra. Feed 

conditions: 300 ppm NO, 0 – 590 ppm NH3, 10% O2, 2% H2O, 5% CO2, 463 K. Sample: 

Cu/Al = 0.08, Si/Al = 4.5. 

Table 3.4.4 Quantification of isolated Cu(I) and isolated Cu(II) fractions from XANES 

spectra with varying O2 partial pressures. Feed conditions: 300 ppm NO, 300 ppm NH3, 

0% – 10% O2, 2% H2O, 5% CO2, 463 K. Sample: Cu/Al = 0.08, Si/Al = 4.5. 

O2 concentration / % Isolated Cu(I) (±0.05) Isolated Cu(II) (±0.05) 

0 0.96 0.04 

2.1 0.64 0.36 

5.1 0.58 0.42 

10 0.5 0.5 

3.4.3.2.2 NH3 

Next, the NH3 feed concentration was varied from 160 ppm 590 ppm to understand 

its effect on the SCR redox mechanism. Figure 3.4.4a showed that XANES spectra did not 
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change for the range of concentrations tested, and quantification showed that the Cu(I) – 

Cu(II) fractions were constant within the measurement error (Table 3.4.5). An apparent 

reaction order of -0.2 was measured (Figure 3.4.4b), close to the value of -0.1 obtained in 

the PFR (Table 3.4.3). 96% Cu(II) was observed in the absence of NH3 but with NO and 

O2 present in the feed, mimicking the end state in the NH3 cutoff experiment performed by 

Paolucci et al [30]. This showed that the Cu(I) – Cu(II) coverages on the catalyst surface 

were independent of the NH3 gas phase partial pressure, consistent with the measured 

apparent NH3 order of close to 0 and the catalyst surface being saturated with NH3 under 

reaction conditions. 

Table 3.4.5 Quantification of isolated Cu(I) and isolated Cu(II) fractions from XANES 

spectra with varying NH3 partial pressures. Feed conditions: 300 ppm NO, 0 – 590 ppm 

NH3, 10% O2, 2% H2O, 5% CO2, 463 K. Sample: Cu/Al = 0.08, Si/Al = 4.5. 

NH3 concentration / ppm Isolated Cu(I) (±0.05) Isolated Cu(II) (±0.05) 

0 0.04 0.96 

160 0.48 0.52 

310 0.5 0.5 

450 0.51 0.49 

590 0.52 0.48 

3.4.3.2.3 NO 

Changing the NO concentration between 0 and 600 ppm showed that the steady 

state Cu(I) fraction reached an asymptotic value of 0.5 at a concentration of 300 ppm, and 

was constant between 300 pm and 600 ppm (Figure 3.4.5a). If NO participated only in 

the reduction of Cu(II) to Cu(I) as proposed in section 3.4.3.2.1 then the Cu(I) fraction 

would be expected to increase monotonically with NO partial pressure. Further, a positive 

apparent reaction order of 0.8 (Figure 3.4.5b), consistent with that measured in the PFR 
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(Table 3.4.3), showed that the reaction rate increased throughout the entire NO 

concentration range. Thus, a non-monotonic change in the Cu(I) fraction coupled with an 

increase in the standard SCR suggested that NO was a participant not only in the 

reduction half-cycle but even in the re-oxidation of Cu(I) to Cu(II) to close the catalytic 

cycle. The steady state fractions of Cu(I) and Cu(II) at intermediate NO concentrations 

are shown in  

 

Table 3.4.6. 20% Cu(I) was observed in the absence of NO and with 300 ppm NH3 

and 10% O2 because of the partial delocalization of the electron density from the lone pair 

on the nitrogen atom of the NH3 molecules bound to Cu(II), thereby causing partial 

reduction [30]. 

 
Figure 3.4.5 (a) Operando XANES spectra under varying NO partial pressures, (b) NO 

reaction order plot collected simultaneously while collecting XANES spectra. Feed 

conditions: 0 – 600 ppm NO, 300 ppm NH3, 10% O2, 2% H2O, 5% CO2, 463 K. Sample: 

Cu/Al = 0.08, Si/Al = 4.5. 
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Table 3.4.6 Quantification of isolated Cu(I) and isolated Cu(II) fractions from XANES 

spectra with varying NO partial pressures. Feed conditions: 0 – 600 ppm NO, 300 ppm 

NH3, 10% O2, 2% H2O, 5% CO2, 463 K. Sample: Cu/Al = 0.08, Si/Al = 4.5. 

NO concentration / ppm Isolated Cu(I) (±0.05) Isolated Cu(II) (±0.05) 

0 0.2 0.8 

120 0.35 0.65 

200 0.4 0.6 

300 0.45 0.55 

400 0.45 0.55 

600 0.47 0.53 

 
Figure 3.4.6 Steady state operando XANES spectra for the high Al (Cu/Al = 0.08, Si/Al 

= 4.5, green) and low Al (Cu/Al = 0.09, Si/Al = 15, red) content samples during steady 

state standard SCR (300 ppm NO, 300 ppm NH3, 10% O2, 2% H2O, 5% CO2, 463 – 473 

K) overlayed with isolated Cu(I) (black) and isolated Cu(II) (blue) references. 

3.4.3.3 Steady State XANES for the Low Al (Cu/Al = 0.09, Si/Al = 15) Catalyst 

These findings shown above indicate that, on the high Al Cu-SSZ-13 sample, a 

mixture of Cu(I) and Cu(II) oxidation states persist during steady-state low temperature 

SCR catalysis, under standard conditions (300 ppm NO, 300 ppm NH3, 10% O2) [28-30]. 
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In sharp contrast, operando XANES spectra of the low Al Cu-SSZ-13 sample showed that 

Cu cations were exclusively present in their reduced form (96% Cu(I)) during steady state 

standard SCR conditions (Figure 3.4.6). Moreover, these operando XANES spectra were 

indistinguishable from those collected after stoichiometric reduction of both Cu-SSZ-13 

samples in flowing NO and NH3 (447-463 K), and resembled that of an aqueous 

diamminecopper(I) diammine solution (figure B2) [214]. Diamminecopper(I) was also 

proposed by Kieger et al. on Cu-FAU samples reduced in NO and NH3 [204]. These 

interpretations of operando XANES spectra indicate that the most abundant reaction 

intermediate during standard SCR on the low Al content Cu-SSZ-13 sample is 

diamminecopper(I) coordinated weakly to the zeolite [31].  

Taken together with the different apparent reaction orders and activation energies 

compared to the analogous parameters measured for high Al content sample (Table 3.4.2), 

these operando XAS data provide clear evidence that standard SCR turnover rates are 

limited by and reflect that the kinetics depend on Cu(I) → Cu(II) re-oxidation half cycle 

for the low Al content sample. This shows that the kinetics of Cu(I) re-oxidation with O2 

were sensitive to changes in the catalyst composition, evident in the presence of ~50% and 

~100% Cu(I) during standard SCR catalysis on the Si/Al = 4.5 and 15 samples, 

respectively. Despite the fact that both samples initially contained isolated Cu2+ cations at 

paired framework Al sites, the low Al content Cu-SSZ-13 sample was limited solely by 

Cu(I) re-oxidation with O2 while the high Al content Cu-SSZ-13 was not, indicating an 

influence of the underlying framework Al density and extraframework Cu proximity. 
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3.4.4 In situ Oxidation Experiments with O2 or NO2 as the Oxidant 

In order to understand the observed differences in Cu(I) re-oxidation behavior 

between the low Al and the high Al content Cu-SSZ-13 samples during steady-state, low 

temperature, standard SCR catalysis, stoichiometric oxidation half-reaction experiments 

were performed on each catalyst using NO2 and O2 as the oxidant.  

 
Figure 3.4.7 Transient XANES spectra at 447 K starting from Cu(I) for the (a), (b) high Al 

(Cu/Al = 0.08, Si/Al = 4.5) and (c), (d) low Al (Cu/Al = 0.09, Si/Al = 15) content samples 

during oxidation with (a), (c) 10% O2 and (b), (d) 90 ppm NO2. Colored numbers with 

arrows on all four plots correspond to the time stamp (in minutes) when each scan was 

started relative to when the flow of 10% O2 or 90 ppm NO2 began. 
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Each Cu-SSZ-13 sample was first treated in NO and NH3 (300 ppm each, 447 K) to fully 

reduce Cu species to their the Cu(I) state, and then held either in flowing 10% O2 or 90 

ppm NO2 while measuring the relative rates and extents of Cu(I) re-oxidation to Cu(II). 

The low and high Al content samples initially contained 97% and 90% Cu(I), respectively. 

Transient XANES spectra for the high Al and low Al content Cu-SSZ-13 samples 

during re-oxidation with O2 (10%, 447 K) are shown in Figure 3.4.7a and Figure 3.4.7c, 

respectively. The two samples showed significant differences, with faster re-oxidation of 

Cu(I) → Cu(II) for the high Al content sample (within 2 min), whereas it was more gradual 

for the low Al content sample (~10 min) (Figure 3.4.8a). The low Al sample had a Cu(I) 

fraction of 0.26, which was higher than 0.15 for the high Al content sample, in the final 

steady state. Biological literature suggests that oxidation of Cu(I) to Cu(II) with O2 in 

enzymes occurs via coupling of two Cu(I) centers to form a Cu-oxo-bridged dimer [216-

218]. This two electron-transfer process is describe as follows: 

2[Cu(I)(NH3)2] + O2 → [(NH3)2Cu(II)-(O2
2-)-Cu(II)(NH3)2]……(3.12) 

If the re-oxidation pathway indeed involved such dimer species, then the change in 

Cu(I) fraction with time would follow second order kinetics in the number of Cu(I) sites 

(equation 3.12) i.e. the change in the fraction of Cu(I) sites as a function of time in the 

stoichiometric oxidation half reaction with O2 is given by (derivation in section 3.3.4): 
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Figure 3.4.8 Variation of Cu(I) fraction with time (symbols) for the high Al (Cu/Al = 0.08, 

Si/Al = 4.5, red) and low Al (Cu/Al = 0.09, Si/Al = 15, black) content samples at 447 K 

starting from Cu(I) overlayed with the appropriate rate law fits (solid lines) during 

oxidation with (a) 10% O2 and (b) 90 ppm NO2. 

1

Cu(I)t-b
 - 

1

Cu(I)o-b
= kt……3.13 

Linear regression of the Cu(I) fraction on both Cu-SSZ-13 samples as a function of the 

reaction time to equation 3.13 (figure B3) gave second-order rate constants of 1.79 min-1 

and 8.16 min-1 (with b = 0.26 and 0.15) for the low Al and the high Al content samples, 

respectively. The slower rate of Cu(I) re-oxidation to Cu(II) with O2 and a greater fraction 

of Cu(I) in the final steady state for the low Al content sample compared to that for the 

high Al content sample, despite both catalysts containing Cu2+ exchanged at paired Al sites 

species in their fresh, dehydrated state, imply that Cu proximity and therefore, Al density 

is of paramount importance for oxidation of Cu(I) to Cu(II) with O2.   

 Figure 3.4.7b and Figure 3.4.7d show the time-dependent XANES spectra 
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flowing NO2 (90 ppm, 447 K). Exposure to flowing NO2 oxidized all of the Cu in both 

samples to Cu(II) at a similar rate (Figure 3.4.8a), consistent with the ability of NO2 to 

form nitrite (NO2
-) [30, 33] on single Cu(I) sites with concurrent re-oxidation to Cu(II) via 

a one electron-transfer process: 

[Cu(I)(NH3)2] + NO2 → [(NH3)2Cu(II)-NO2
- ]……3.14 

The fraction of Cu(I) sites on both Cu-SSZ-13 samples, plotted in Figure 3.4.8b as a 

function of time after exposure to flowing NO2, decreased at similar rates for the low and 

high Al content samples, consistent with single-site oxidation behavior. Assuming that the 

single-electron re-oxidation of isolated Cu(I) sites to Cu(II) with NO2 (equation 3.14) is a 

first-order reaction in the number of Cu(I) sites, then the fraction of Cu(I) present as a 

function of time in the stoichiometric oxidation half-reaction is given by (derivation in 

section 3.3.4): 

ln [
Cu(I)t

Cu(I)o

]= -kt……3.15 

The fractions of Cu(I) sites on both Cu-SSZ-13 samples as a function of reaction time were 

regressed linearly to the equation 3.15 (figure B4) and gave identical apparent first-order 

rate constants of 0.8 min-1 for NO2-mediated oxidation, providing quantitative evidence for 

single-site re-oxidation behavior of isolated Cu(I) complexes with NO2, irrespective of the 

Al or Cu density in the sample. 
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3.5 Discussion 

3.5.1 Influence of Cu proximity on oxidation of Cu(I) to Cu(II) with O2 or NO2 

Ex situ characterization of exchanged Cu cations by XANES spectra and titration 

of residual H+ sites by NH3, together with quantification of the number of paired Al by 

Co2+ exchange and stochastic calculations, demonstrated that both the high Al (Cu/Al = 

0.08, Si/Al = 4.5) and low Al (Cu/Al = 0.08, Si/Al = 15) content Cu-SSZ-13 samples 

studied here contained predominantly Cu2+ cations charge-balanced by framework Al 

pairs. On the high Al content sample, operando XANES spectra showed that a mixture of 

Cu(I) and Cu(II) oxidation states were present during standard SCR catalysis, in agreement 

with previous reports [28-30]. In sharp contrast, operando XANES spectra of the low Al 

content sample during standard SCR conditions showed ~100% Cu(I), which is the first 

reported direct observation of a Cu-SSZ-13 catalyst that does not contain a mixture of Cu(I) 

and Cu(II) oxidation states during steady-state low-temperature standard SCR. Although 

both the low Al and high Al content Cu-SSZ-13 samples initially contained structurally 

equivalent, isolated Cu2+ cations, they differ in framework Al density and Cu proximity, 

which influences the re-oxidation behavior of Cu(I) to Cu(II) when O2 is used as the 

oxidant in standard SCR redox cycles. 

The prevalence of Cu(I) species, which XAS characterization and DFT calculations 

indicate are linear diamminecopper(I) complexes [31], during low temperature (473 K) 

standard SCR on the low Al content Cu-SSZ-13 sample indicates that re-oxidation of Cu(I) 

to Cu(II) is the kinetically-relevant process that limits SCR turnover rates. Yet, 

diamminecopper(I) ions in solution need to be held under inert atmosphere to prevent their 

re-oxidation to Cu(II) ammines, which occurs upon exposure to air at ambient conditions 
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[172, 214]. Thus, the slow re-oxidation (473 K) of Cu(I) species in the low Al content Cu-

SSZ-13 sample cannot reflect an intrinsic inability of Cu(I) to oxidize in the presence of 

dioxygen but because of differences in the Cu distribution and proximity. Second order 

kinetics for stoichiometric re-oxidation of Cu(I) to Cu(II) with O2 (Figure 3.4.8, figure B3) 

suggest the involvement of two diamminecopper(I) complexes in the oxidation process. 

Since two Cu(I) centers are required for O2 activation, the rate of Cu(I) re-oxidation to 

Cu(II) with O2 would depend on the Cu density and therefore, the Si/Al ratio for each 

catalyst, consistent with the slower oxidation rate observed for the low Al content sample 

(k = 1.79 min-1) compared to that for the high Al content sample (k = 8.16 min-1) with the 

same Cu/Al ratio. 

Since O2 is a 4-electron oxidant, re-oxidation of a single Cu(I) site to Cu(II) would 

simultaneously be accompanied by the oxidation of an NO molecule to a nitrate (NO3
-) on 

the Cu(II) site, to account for the overall electron balance, as suggested by Janssens et al 

[33]. However, the calculated activation energy of 1.08 eV for the formation of a nitrate is 

greater than the range of measured apparent activation energies (60 – 70 kJ mol-1) for low 

temperature (473 K) standard SCR. Also, if the complete standard SCR cycle occurred on 

isolated Cu sites, then a linear correlation between the standard SCR reaction rate and the 

Cu content would be expected, which directly contradicts the non-linear dependence 

reported by Gao et al [34]. An alternate pathway for Cu(I) re-oxidation to Cu(II) with O2 

during standard SCR catalysis that is consistent with the overall electron balance, oxidation 

of Cu(I) to Cu(II) in enzymes [216-218] and second order kinetics in Cu(I) for oxidation 

with O2 is described by equations 3.16 and 3.17 below: 

2[Cu(I)(NH3)2] + O2 → [(NH3)2Cu(II)-(O2
2-)-Cu(II)(NH3)2]……3.16 
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[(NH3)2Cu(II)-(O2
2-)-Cu(II)(NH3)2] + 2NO → 2[(NH3)2Cu(II)-NO2

- ]……3.17 

The oxidation of two Cu(I) centers to Cu(II) accounts for the transfer of two electrons (one 

electron per Cu(I) oxidized to Cu(II)) and the remaining two electrons are accounted for 

by the oxidation of two NO molecules to a nitrite (NO2
-) each. The requirement of two 

Cu(I) centers for oxidation with O2 during standard SCR is in direct contradiction with the 

proposition by Janssens et al. [33] and others [124, 219] that the complete standard SCR 

cycle, including reduction of Cu(II) to Cu(I) and the re-oxidation of Cu(I) to Cu(II), occurs 

on a single Cu site.  

The different Al contents for the two samples used in this study meant that on 

average there would one Al per unit cell at Si/Al ratio of 15 and three Al per unit cell at a 

Si/Al of 4.5. Consequently, the Cu2+ ions would be farther apart for the low Al content 

sample compared to those in the high Al content sample, which may impose barriers in 

finding multiple diamminecopper(I) complexes in close proximity that effectively slows 

down the rate of oxidation during standard SCR for samples with low Al content. Gao et 

al. [34] and Bates et al. [28] showed that the effects of Cu proximity, evident from the 

lower apparent activation energy (≤ 473 K) in the range of 40 – 43 kJ mol-1, are observed 

even in high Al content (Si/Al = 4.5 – 6) samples with very low Cu content (Cu/Al < 0.02). 

Gao et al [34] also showed that there is a linear correlation of the low temperature (≤ 473 

K) standard SCR rate and the squared of the total Cu content (Cu/Al < 0.03), implying that 

the standard SCR reaction was limited by re-oxidation of Cu(I) to Cu(II) with O2 for these 

samples. 

This drawback due to the requirement of multiple Cu(I) centers in close proximity 

and its dependence on the Si/Al ratio can be overcome by using NO2 as the oxidant instead 
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of O2. NO2 being a 1-electron oxidant can oxidize isolated Cu(I) sites, regardless of their 

proximity as shown in this study, while concomitantly forming a nitrite (NO2
-) species as 

follows:  

[Cu(I)(NH3)2] + NO2 → [(NH3)2Cu(II)-NO2
- ]……3.18 

Because reduction with NO and NH3 also occurs on isolated Cu(II) sites [30, 31], the 

complete redox cycle for fast SCR can occur on isolated Cu sites, whereas standard SCR 

(473 K) requires one Cu(II) site for reduction with NO and NH3 and two Cu(I) sites for 

oxidation with O2. This suggests that there are two different pools of Cu(I) sites that are 

obtained after reduction of Cu(II) with NO and NH3. The first pool consists of sites that 

are in close proximity with each other and hence, participate in standard SCR by activating 

O2 with pairs of Cu(I) centers, while the second pool consists of isolated Cu(I) sites that 

can only participate in the SCR reaction via oxidation with NO2 and would otherwise not 

contribute towards standard SCR. Thus, NO2 co-feeding would engage all of the Cu sites 

in the catalyst and ensure optimal performance for maximum NOx removal rate. 

Consequently, fast SCR is independent of the density or proximity of Cu in the zeolite and 

hence, faster than standard SCR on catalysts limited by oxidation with O2 due to low Cu 

or Al contents. Thus, even though fast SCR and standard SCR differ stoichiometrically 

only by the NO oxidation reaction, the active sites and intermediates for the two reactions 

are different and there is no rigorous link between the two SCR reactions, in contrast to the 

proposition by Janssens et al [33] that standard and fast SCR reactions both occur on an 

isolated Cu sites and are linked by the NO oxidation reaction.  
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3.5.2 Implications of the Mobility of Diamminecopper(I) 

An important consequence of the mobility of diamminecopperCu(I) complexes 

[132, 147, 203] is that it is plausible that at least a fraction of the total Cu can form oxo-

bridged dimers by oxidation with O2 during standard SCR, which are different from the 

Cu-oxo dimers formed under dry conditions without solvation by NH3 [41, 75, 114]. DFT 

calculations show that it is energetically favorable to form such dimers from solvated 

diamminecopper(I) species. However, they are very reactive upon their formation because 

they are stabilized only at sub-ambient temperatures between 148 K and 195 K [203].  

This knowledge of diamminecopper(I) mobility has recently been used as an 

alternative to aqueous phase ion exchange of Cu into a variety of zeolites, including SSZ-

13, ZSM-5 and BEA, by physically mixing bulk Cu(II)O powder with the corresponding 

H-zeolite and reducing with NO and NH3 or by physically mixing bulk Cu(I)O powder 

with the H-zeolite and flowing NH3 over the mixture, both of which generate the mobile 

diamminecopper(I) species that migrate into the zeolite and replace the proton sites to give 

ion exchanged Cu-zeolites [147, 208]. Paolucci et al. [31] also showed that the mobility of 

Cu(I) within the zeolite cages is enhanced when coordinated with ammonia. 

The mobility of diamminecopper(I), however, does not cause sintering of all the Cu 

in the samples because these positively charged complexes are held by electrostatic 

attraction at the negatively charged framework Al sites. Thus, they cannot traverse 

infinitely far within the zeolite cages from the charge-compensating Al atom. These 

diamminecopper(I) complexes would, however, lose their mobility due to solvation by NH3 

at temperatures above 623 K and coordinate to the zeolite lattice [31]. Due to the loss of 

mobility, an O2 molecule can no longer be activated by two Cu(I) centers and the re-
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oxidation of Cu(I) to Cu(II) in the standard SCR cycle would necessarily occur on single 

Cu(I) sites. The standard SCR rate (≥ 623 K, gcat
-1) showed a linear correlation with the Cu 

content  (Cu/Al < 0.02, Si/Al = 6) regardless of the Cu proximity and a significantly higher 

apparent activation energy of 130 – 140 kJ mol-1 [34], in line with the higher barrier for O2 

activation on an isolated Cu(I) site calculated by Janssens et al. [33], instead of the squared 

dependence for the same samples at lower temperatures (<  473 K) and an activation energy 

in the range of 60 – 70 kJ mol-1. Thus, proximity of Cu(I) sites does not play an important 

role in the standard SCR mechanism at temperatures above 623 K. 

3.6 Conclusions 

We report, for the first time, a Cu/SSZ-13 catalyst with ~100% Cu(I) during steady 

state standard SCR (473 K), where re-oxidation of Cu(I) to Cu(II) is the kinetically relevant 

step in the standard SCR reaction mechanism. Complete kinetics, including reaction orders 

for NO, NH3 and O2 and the apparent activation energy, were reported for this sample in 

the oxidation limited kinetic regime, and were different from the corresponding parameters 

for the high Al content sample that was not limited by oxidation despite both samples 

containing structurally equivalent, exchanged Cu2+ ions charge balanced by a pair of 

framework Al atoms. Cu(I) stoichiometric re-oxidation to Cu(II) with O2 obeyed second 

order kinetics in the fraction of Cu(I) sites, consistent with the formation of a transient Cu 

dimer during oxidation with O2, and was dependent on the Cu proximity and therefore, the 

Si/Al ratio for the sample being tested. Stoichiometric re-oxidation of Cu(I) to Cu(II) with 

NO2 obeyed first order kinetics in the fraction of Cu(I) sites and was independent of the 

sample composition (Cu density and Si/Al ratio), showing that fast SCR occurs on single 
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Cu sites, unlike standard SCR (473 K) that requires two diamminecopper(I) centers for the 

oxidation half-reaction with O2. Thus, even though standard SCR and fast SCR differ 

stoichiometrically by the NO oxidation reaction, the active sites and the intermediates 

involved in the two reactions are different. An important implication of the mobility of 

diamminecopper(I) complexes at low temperatures (473 K) is that the location of the 

isolated Cu2+ ions upon dehydration is inconsequential, and that any modeling effort 

involving a static Cu2+ would not be an accurate description of the active site for low 

temperature (473 K) standard SCR. The existence of two different pools of Cu sites, ones 

that can be oxidized with O2 and thus, participate in standard SCR, while others that are 

isolated and can only be oxidized with NO2, has been proposed for the first time and 

suggests that NO2 , under fast SCR conditions, engages all of the Cu in the catalysts being 

tested.  

3.7 Acknowledgements 

We thank Viktor Cybulskis and Dr. Anuj A. Verma for their help with executing 

the x-ray absorption experiments at the Advanced Photon Source at Argonne National 

Laboratory. Financial support was provided by the National Science Foundation GOALI 

program under award number 1258715 – CBET. MRCAT operations are supported by the 

Department of Energy and the MRCAT member institutions. This research used resources 

of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science 

User Facility operated for the DOE Office of Science by Argonne National Laboratory 

under Contract No. DE-AC02-06CH11357.  

 

 



106 

 

1
0
6
 

CHAPTER 4. DETERMINING THE ACTIVE INTERMEDIATES FOR NO 

OXIDATION ON CU-ZSM-5 FROM 15NO LABELING EXPERIMENTS 

4.1 Abstract

The objective of this work was to identify the nature of the active intermediate for 

the NO oxidation reaction on copper (Cu) exchanged ZSM-5 zeolite. In situ FTIR 

experiments (150 ppm NO, 50 ppm NO2 and 5% O2, 573 K) revealed the presence of three 

types of nitrates at 1626 cm-1, 1601 cm-1 and 1567 cm-1.  NO2 was produced by reduction 

of surface nitrates with NO (573 K), demonstrating that nitrates are important intermediates 

for NO oxidation. Keeping this in mind, fast isotope switching experiments were 

performed at 543 K, 553 K, 563 K and 573 K in a custom-built, low internal volume 

operando FTIR reactor, where 14NO was replaced with 15NO in the feed stream, to identify 

the nitrate species responsible for NO2 production from the oxidation of NO. These 

experiments allowed us to follow the isotope label on the catalyst surface using FTIR, and 

in the reactor effluent using a mass spectrometer (MS), furnishing important information 

about the reaction mechanism for dry NO oxidation on Cu-ZSM-5, and showed that gas 

phase NO and NO2 in the reactor are in equilibrium with each other via surface nitrates 

while the bridged/bidentate nitrate at 1626 cm-1 is the likely active intermediate for the NO 

oxidation reaction. 
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4.2 Introduction 

NOx emissions from high temperature combustion of fossil fuels in diesel-powered 

vehicles has spurred interest to discover catalysts that assist in their removal to meet the 

emission standards set by the EPA [7, 8]. Ammonia selective catalytic reduction (SCR) on 

copper (Cu) exchanged zeolite catalysts is particularly useful in mitigating these emissions. 

Cu-ZSM-5 was studied for ammonia SCR [2, 36, 220] following the initial discovery of 

this catalyst by Iwamoto et al. [11]. However, an important mechanistic aspect still under 

debate is the relevance of NO oxidation for ammonia SCR.  

NO oxidation has been proposed as the rate determining step for standard SCR by 

various authors in literature [7, 35-37, 39, 221] because increasing the NO2/NOx ratio in 

the feed stream to SCR catalysts increases their efficiency for NOx removal. Luo et al. [39] 

proposed this based on similar reaction orders with respect to NO and O2 for NO oxidation 

and standard SCR. Devadas et al. [37] argued that H-ZSM-5, which is inactive for standard 

SCR, shows measurable activity upon introducing an equimolar mixture of NO and NO2 

in the feed. Thus, the authors proposed that the role of the transition metal i.e. Cu, was to 

oxidize NO to NO2 to facilitate the standard SCR reaction. Verma et al [41] showed the 

utility of NO oxidation as a probe reaction to identify clustering of Cu in catalyst samples. 

CuxOy species were suggested as the active sites for NO oxidation from the linear 

correlation between the measured dry NO oxidation reaction rates (573 K) and CuxOy 

quantified from in situ x-ray absorption spectroscopy (XAS). Besides, it would be useful 

to pre-oxidize some of the NO present in the engine exhaust of diesel-powered automobles 

to NO2 because fast SCR is more efficient for NOx removal compared to standard SCR. 

Hence, it is important to understand the reaction mechanism and the intermediates involved 
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in NO oxidation. Nitrogen oxides are reported to form various types of nitrates/nitrites on 

Cu/ZSM-5 [13, 36, 222-224] and may play an important role in both ammonia SCR and 

NO oxidation.  

In this work, we have utilized operando FTIR spectroscopy to identify whether 

nitrates are potential reaction intermediates in the NO oxidation pathway, and isotope 

labeling experiments to determine which of those surface nitrates are the active 

intermediates and their average lifetime on the catalyst surface. These results allowed us 

to further expand on the reaction mechanism for NO oxidation proposed by Verma et al 

[41].  

4.3 Experimental Methods 

4.3.1 Catalyst Preparation 

H-ZSM-5 was obtained by heating NH4
+-ZSM-5 (CBV3024E, Zeolyst 

International) to 823 K with a ramp rate of 0.5 K min-1 under a 100 ml min-1 flow of dry 

air (Commercial Grade, Indiana Oxygen), followed by a dwell time of 480 min at 823 K. 

Cu was ion exchanged by stirring 2 g of the H-ZSM-5 support in deionized (D.I.) water for 

30 min at 313 K followed by addition of 10 ml 0.1 M Cu(NO3)2 (Sigma Aldrich). The 

solution pH was maintained at 5 ± 0.2 by drop-wise addition of 0.1 M NH4OH (Fisher 

Chemicals) while the mixture was allowed to stir for 4 h. The resulting slurry was 

subsequently centrifuged and rinsed three times with D.I. water, and the supernatant liquid 

was discarded. Following this, the catalyst was vacuum dried overnight at -29 in. Hg and 

ambient temperature. After drying, the catalyst was calcined once again by heating to 823 

K under a 100 ml min-1 flow of dry air with a ramp rate of 0.5 K min-1, followed by a dwell 
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time of 360 min. Elemental analysis was performed by atomic absorption spectroscopy 

(AAS) using a Perkin AAnalyst 300 spectrometer. 20 mg of the sample was dissolved in 

2-3 ml HF (48%, Fisher Scientific) followed by dilution with D.I. water prior to the 

measurement of Cu, Si and Al contents. For the Cu-ZSM-5 sample reported in this study, 

Cu/Al = 0.3 (1.8 wt.% Cu) and Si/Al = 18. 

4.3.2 Operando Transmission FTIR – MS Setup 

A custom – designed FTIR reactor and aluminum heating block made by Research 

Machining Services at Purdue University was used for experiments in this work. Detailed 

CAD drawings are available from previous work in our group [200]. Four 125 W heating 

cartridges (Catalog No. 279312, Chromalox), 2” long and 0.25” in diameter, were used to 

heat the reactor to the desired temperature. 40 – 60 mg of the catalyst samples were pressed 

in the form of 20 mm diameter self – supported wafers using a commercial die (Catalog 

No. GS03165, Specac, Inc.). CaF2 windows (25.4 mm diameter, 10 mm thick, ISP Optics 

Corporation) along with graphite ferrules (Catalog No. SF30.0/25.4/6.0-4.2-G, 

Chromalytic Technology) were used to seal the reactor. The gas phase species in the reactor 

effluent stream were monitored using a mass spectrometer (5975C, Agilent) connected via 

a flexible fused silica capillary column (Catalog No. 2000017, Polymicro Technologies, 

LLC) and their concentrations measured via a MKS Multigas 2030 gas phas FTIR analyzer. 

Standard conditions of 150 ppm NO (0.5% in He), 50 ppm NO2 (1% in He), 5% O2 (UHP 

grade, Matheson Tri-Gas), 573 K balanced by He (UHP grade, Matheson Tri-Gas) to a 

total flow of 50 ml min-1 were used for rate measurements, while the temperature was 

varied between 543 K and 573 K for apparent activation energy measurements. Nicolet 
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6700 FTIR spectrometer was used to collect infrared spectra at a resolution of 4 cm-1. Rapid 

scan mode was used in the OMNIC software during the isotope switching experiments to 

obtain a time resolution of 0.16 min per scan. Each infrared spectrum during these 

experiments is a single scan. 

 

Figure 4.3.1 Flow diagram for the operando FTIR-MS isotope switching setup [225].  
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A flow diagram for the complete setup is shown in Figure 4.3.1. 150 ppm NO, 5% 

O2, 573 K at 50 ml min-1 total flow was used for isotope switching experiments without 

NO2 co – feeding. Ar (UHP grade, Matheson Tri-Gas) was used as the tracer with the 

unlabeled 14NO gas, whereas Ne (Research grade, Airgas) was the tracer used with the 

labeled 15NO (0.5% in Ne). A 4-port switching valve (Catalog No. A4C4WE, Vici Valco 

Instruments Co.) was used to replace 14NO with 15NO at steady state. While performing 

the switching experiments, the stream containing 14NO and Ar was replaced with that 

containing 15NO and Ne while keeping the same feed 14NO/15NO concentrations and the 

total flow rate to maintain kinetic steady state for the catalyst sample being tested. Two 

pressure transducers, one connected at the reactor outlet and the other at the vent line for 

the 4-port switching valve, were used to adjust the pressure difference and eliminate any 

pressure spikes upon switching from 14NO to 15NO in the feed stream. The signals at m/z 

= 46 and 47 were used for tracking 14NO2 and 15NO2, while the signals at m/z = 30 and m/z 

= 31 were used to monitor 14NO and 15NO after subtracting the contribution due to 

fragmentation of 14NO2 and 15NO2, respectively. Peak fitting of the FTIR spectra was 

performed using CasaXPS by constraining the full width at half maximum to the same 

value for the each 14N- and 15N-nitrate pair.  

4.4 Results and Discussion 

4.4.1 Steady State FTIR Spectra and Peak Assignments 

A typical FTIR spectrum obtained during steady state NO oxidation (150 ppm NO, 

50 ppm NO2, 5% O2, 573 K) shown in Figure 4.4.1 is similar to that obtained on Cu-ZSM-

5 catalysts by others [13, 223, 226]. Three distinct peaks at 1626 cm-1, 1601 cm-1 and 1567  
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Figure 4.4.1 Typical FTIR spectrum showing the nitrate stretching region with the peak 

assignments. Feed conditions: 150 ppm NO, 50 ppm NO2, 5% O2, 573 K. Sample: Cu/Al 

= 0.3, Si/Al = 18, Cu-ZSM-5. 

 
Figure 4.4.2 Overlaying the mass spectrometer trace for NO2 (m/z = 46) with the change 

in the total nitrate peak area starting from steady state NO oxidation conditions (150 ppm 

NO, 50 ppm NO2, 5% O2 and 573 K) during the subsequent purge with 150 ppm NO 

(started at 108 s). Sample: Cu/Al = 0.3, Si/Al = 18, Cu-ZSM-5. 
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cm-1 have been assigned to the various stretching modes of different types of nitrates on 

Cu [13, 36, 222-224, 227, 228] or weakly adsorbed NO2 on Cu [225, 229], while the peak 

at 2133 cm-1 is assigned to NO+ in cationic positions within the zeolite [230] based on 

isotope labeling experiments. Hadjiivanov et al. [224] assigned the peaks between 1700 

and 1500 cm-1 to nitrates because these species were thermally stable upon flushing with 

inert gas whereas weakly bound NO2 would desorb from the catalyst surface during the 

flush. The peaks at 1626 cm-1 and 1601 cm-1 are assigned to the free N-O stretching mode 

of bidentate/bridged nitrates [227, 231-233] whereas the peak at 1567 cm-1 has been 

assigned to the asymmetric O-N-O stretching of a monodentate nitrate [222, 234, 235]. 

These nitrate peaks were observed only for those samples that showed measurable NO 

oxidation rates [225]. Peaks due to adsorbed NO species that are expected to appear 

between 1700 cm-1 and 1900 cm-1 were not observed. The role of nitrates for NO oxidation 

was probed by flushing the sample with 300 ppm NO while monitoring the production of 

NO2 at the reactor outlet. Figure 4.4.2 shows that NO2 production continued until all 

nitrates present on the catalyst surface decomposed, proving that NO reduced the surface 

nitrates to produce NO2 and hence, nitrates participate in the NO oxidation reaction. 

4.4.2 14NO → 15NO Isotope Switch 

It was essential to ensure that the NO oxidation reaction rate measured in the 

operando FTIR reactor matched with that in the plug-flow reactor (PFR) for the Cu-ZSM-

5 sample with Cu/Al = 0.33 before performing any isotope labeling experiments and 

interpreting the results. The NO oxidation reaction rate measured at standard conditions of 

300 ppm NO, 150 ppm NO2, 10% O2, 573 K in the PFR setup described by Verma et al. 
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[41] was 3 x 10-4 mol NO (mol Cu)-1 s-1. Standard concentrations of 150 ppm NO, 50 ppm 

NO2, 5% O2, 573 K were used for the operando reactor to avoid contributions from gas 

phase NO oxidation reaction in the measurement of NO and NO2 concentrations, which is 

explained in more detail in appendix C. The measured NO oxidation rate was subsequently 

normalized to 300 ppm NO, 10% O2 and 150 ppm NO2 and compared with the 

corresponding value from the PFR by using the reaction orders of 1.7 for NO, -0.8 for NO2 

and 0.9 for O2, and gave a value of 2.6 x 10-4 mol NO (mol Cu)-1 s-1. A comparison of the 

activation energy plots in the two reactors (Figure 4.4.3) shows that the rate measurements 

in the two reactors were in quantitative agreement with each other across the temperature 

range tested (543-573 K).  

 
Figure 4.4.3 Comparison of the activation energy plots in (a) the operando IR reactor 

(black diamonds) and (b) PFR (red diamonds). Sample: Cu/Al = 0.33, Si/Al = 18, Cu-

ZSM-5. 
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Figure 4.4.4 (a) FTIR spectra after the 14NO → 15NO isotope switch show an immediate 

decrease in the 1626 cm-1 peak along with a concomitant increase in the 1592 cm-1 peak 

(b) Mass spectrometer traces for 15NO2 (m/z = 47) and 14NO2 (m/z = 46) are coincident 

with the areas for the 1592 cm-1 and 1626 cm-1 peaks, respectively. The corresponding Ar 

(m/z = 40) and Ne (m/z = 20) traces are also shown. Sample: Cu/Al = 0.3, Si/Al = 18, Cu-

ZSM-5. Feed conditions: 150 ppm NO/15NO, 5% O2, 553 K. 

 

Figure 4.4.5 Mass spectrometer traces during the isotope switching experiment overlap for 
15NO2 (m/z = 47) – 15NO (m/z = 31) and 14NO2 (m/z = 46) – 14NO (m/z = 30). Feed 

conditions: 150 ppm NO/15NO, 5% O2, 553 K. 
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Results from section 4.4.1 showed that nitrates are important intermediates for the 

NO oxidation reaction. However, three different nitrates were observed at steady state. 

Hence, it was of interest to identify which nitrate species were the active intermediates for 

NO2 production. Since the combination of NO and O2 or NO2 in the feed both led to nitrates 

on the catalyst, NO2 was excluded in the 14NO → 15NO isotope switching experiments 

because NO2 would cause scrambling of the 15N-labeled nitrate species with the unlabeled 

nitrates.  

Once the catalyst reached steady state (150 ppm NO, 5% O2 at 553 K), 14NO and 

Ar in the feed stream was replaced with 15NO and Ne at 3 min while simultaneously 

collecting FTIR spectra and monitoring the effluent gas species with a mass spectrometer 

(MS). It was important to ensure plug-flow behavior during these switching experiments 

in order to prevent back-mixing of the isotope gas, and to be able to interpret the product 

traces measured in the MS. The Ne and Ar inert tracers in Figure 4.4.4b reached 95% of 

their maximum and minimum signals within ~1.5 s of performing the 14NO → 15NO switch, 

thus confirming plug-flow behavior. Figure 4.4.4a shows that the peak at 1626 cm-1 

decreased in intensity immediately after performing the switch along with a concomitant 

increase in a new peak at 1592 cm-1, due to an isotopically labeled 15N-nitrate. Applying 

the two atom oscillator model for the peak at 1626 cm-1 because it represents the N-O 

stretching vibration of a bridged/bidentate nitrate, its vibrational frequency is inversely 

proportional to the square root of the reduced masses of the N and the O atoms [236]. Thus, 

the calculated position of the 15N-O stretching is 1595 cm-1, which gives a shift of 31 cm-1 

when a 14N atom is replaced by its isotope 15N in a N-O stretching vibrational mode. This 

is in agreement with the observed shift of 34 cm-1 and hence, the peak at 1592 cm-1 is due 
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to the 15N-bidentate/bridged nitrate species. The mass spectrometer signal showed that 

14NO2 decreased along with a simultaneous increase in 15NO2 after the isotope switch. 

Furthermore, the decrease in the 14N-nitrate peak area at 1626 cm-1 was coincident with the 

decreasing 14NO2 product in the reactor effluent, while the corresponding 15N-nitrate peak 

area at 1592 cm-1 coincided with the increasing 15NO2 product. Thus, the bridged/bidentate 

nitrate at 1626 cm-1 is the probable reaction intermediate producing NO2 during the 

oxidation of NO by O2.  

Additionally the average lifetime of the reactive intermediates on the catalyst 

surface can be obtained from the 15NO2 product trace in the MS as shown by Shannon et 

al. [237] and Wang et al [200]. The average lifetime (τ), calculated by integrating the 

difference between the normalized MS traces of Ne (FNe) and 15NO2 (F15NO2) (equation 

4.1), was 177.5 ± 7.5 s at 553 K.  

τ = ∫(FNe - F N
15

O2
) dt……4.1 

Further, it was observed that the MS traces in the reactor effluent for 15NO and 15NO2 

overlapped with each other as well as those for 14NO and 14NO2 (Figure 4.4.5) . This occurs 

due to the rapid equilibrium between NO and NO2 via surface nitrates [6, 220] according 

to equation 4.2. An important consequence of this result is that both 15NO and 15NO2 

contribute to the total pool of 15N intermediates on the catalyst surface. Thus, the total 

amount of 15N intermediates on the catalyst surface was calculated (Table 4.4.1) from the 

difference between the 15NO fed to the reactor and the sum of 15NO and 15NO2 

concentrations detected in the reactor effluent using the MS. 

NO + NO3
-
 → NO2 + NO2

-
……4.2 
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Equation 4.2 implies that the catalyst surface would have coverages of both nitrates and 

nitrites under reaction conditions. However, we were unable to observe nitrite species on 

the zeolite surface because strong zeolite framework vibrations mask the infrared spectrum 

below 1300 cm-1, which coincides with the vibrational modes of nitrites on transition metal 

oxides that are typically observed  in the range of 1200 – 1300 cm-1 for CuO [238], NiO 

and ZrO2 [239]. Further, repeating the isotope switching experiment at 543 K, 563 K and 

573 K yielded similar results where the peak areas for the 14N-nitrate peak at 1626 cm-1 

and the 15N-nitrate peak at 1592 cm-1 changed in unison with the corresponding 14NO2 and 

15NO2 product traces respectively (Figure C.4.1-Figure C.4.3). Values of the average 

residence time and amount of 15N surface reaction intermediates at each temperature are 

shown in Table 4.4.1.  

Table 4.4.1 Average residence times (τ) at various temperatures obtained from the 14NO 

→ 15NO switching experiment. Feed conditions: 150 ppm NO/15NO, 5% O2, 543 K – 573 

K. Sample: Cu/Al = 0.3, Si/Al = 18, Cu-ZSM-5. 

T / K 573 563 553 543 

τ / s 125.6 ± 1.7 149.2 ± 2.5 177.5 ± 7.5 214.1 ± 3.5 

θactive intermediates 0.034 0.039 0.047 0.061 

Based on the results presented here about the involvement of nitrates in NO 

oxidation, the kinetic model proposed by Verma et al. [41] has been modified to 

incorporate nitrate formation and account for the fast equilibrium between gas phase NO 

and NO2 via nitrates. The coverages the surface species are consistent with the predictions 

made by the authors in that study with O* being the most stable intermediate with a 

coverage of 0.5. 
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4.5 Conclusions 

Nitrates were observed only for those Cu-ZSM-5 samples that were active for NO 

oxidation , but no specificity with regards to the three types of nitrates at 1626 cm-1, 1601 

cm-1 and 1567 cm-1 was observed [225]. NO reduced nitrates to produce NO2, thus showing 

that nitrates were important participants in the NO oxidation reaction. 14NO → 15NO 

isotope switching experiments at 543 K, 553 K, 563 K and 573 K showed that the peak 

area for the 14N-nitrate at 1626 cm-1 tracked with the production of 14NO2, whereas the 

peak area for the corresponding 15N-bridged/bidentate nitrate at 1592 cm-1 tracked with 

15NO2. Thus, the bridged/bidentate nitrate at 1626 cm-1 is the likely intermediate for the 

NO oxidation reaction. The results also showed that NO and NO2 were in equilibrium with 

each other via nitrates on the catalyst surface. Average residence times (τ) for the reactive 

intermediates and the total pool of 15N containing species on the catalyst surface was 

calculated from the 15NO2 and 15NO traces in the mass spectrometer, and showed that less 

than 10% of the total Cu was covered with the 15N containing species between 543 K and 

573 K. 
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CHAPTER 5. RECOMMENDATIONS

Although NO and NH3 are commonly accepted as co-reductants for standard SCR 

redox chemistry [30, 33], re-oxidation of Cu(I) to Cu(II) is poorly understood till date, with 

the only suggestions being that NO and O2 participate in the oxidation half-cycle via 

formation of nitrates and nitrites [31, 33]. There is no clear consensus on what are the 

elementary steps for this step to occur. To probe the low temperature standard SCR (473 

K) oxidation half-cycle, XAS experiments were performed as elaborated in chapter 3, 

which show that the oxidation of Cu(I) to Cu(II) with O2 is a second order process in the 

amount of Cu(I) at any given instant. This suggests that multiple Cu moieties are required 

for the oxidation process during standard SCR catalysis, in agreement with the inference 

from the non-linear, squared dependence of the low temperature standard SCR (473 K) 

reaction rate on Cu content of the catalysts [34]. 

Chapter 2 shows that solvation by NH3 imparts mobility to the Cu(I) ions. Hence, 

it is conceivable that two Cu(I) ions can activate O2 to form Cu-oxo-dimer complexes. The 

enzyme literature cited in Chapter 3 shows the prevalence of a rich chemistry involving 

multiple types of Cu-oxo complexes. However, because of electrostatic attraction, the 

mobile Cu(I) ions can only move within a specific distance from the charge-compensating 

framework Al atoms. Hence, only Cu ions in close proximity would be able to form a 

paired Cu-oxo site to perform the oxidation half-cycle for standard SCR, and the fraction 
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of such Cu out of the total ion exchanged Cu in any sample will depend on the catalyst 

composition (Si:Al and Cu:Al ratios). Because the reduction event occurs on single, 

isolated Cu(II) ions but oxidation requires multiple proximal Cu(I) sites, there may be a 

fraction of the total Cu under standard SCR conditions that is stuck in the Cu(I) state 

because of the absence of other neighboring Cu(I) ions within its sphere of mobility and 

hence, is inactive for standard SCR. This suggests that two different pools of Cu sites exist 

during steady state standard SCR, one that participates in the reaction via pairing with 

proximal Cu sites and the other that is inactive because of its inability to find a proximal 

Cu within its sphere of mobility  

 
Figure 4.6.1 Standard SCR steady state operando XANES spectra at 10% O2 (black) and 

60% O2 (red) feed concentrations. Feed conditions: 300 ppm NO, 300 ppm NH3, 

10%/60% O2, 2% H2O, 5% CO2, 475 K. Sample: Cu/Al = 0.12, Si/Al = 15. Cu(I) fraction 

= 0.75 at 10% O2 and 0.69 at 60% O2. 
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This picture is consistent with our current and previous observations across multiple 

samples where we have not been able to obtain ~100% Cu(II) under any catalytic 

conditions, even with 60% feed O2 concentration (Figure 4.6.1) at which point the O2 order 

for this sample is 0, suggesting that not all Cu(I) can be oxidized. 

An upper bound for the number of active sites that are capable of participating in 

the standard SCR reaction can be obtained from the O2 titration experiment, similar to that 

performed in Chapter 3. This should be performed for several samples across the entire 

composition space with varying Si/Al and Cu/Al ratios and the SCR rates normalized to 

the amount of Cu(II) obtained at the end of this titration, which is the correct count for the 

number of active sites, rather than the total Cu content. This view of two pools of Cu sites 

is also consistent with previous studies in our group [28] on high Al (Si/al = 4.5) Cu-SSZ-

13 catalysts because high Cu and Al contents in those samples meant that a majority of the 

total Cu was within close proximity to each other and hence, the standard SCR reaction 

rates scaled linearly with the Cu content since it was not limited by pairing of Cu sites. 

This implies that our initial idea of all isolated Cu sites being active for standard SCR [28] 

may be an over-simplification compared to the more complex actual chemistry because 

single Cu(II) sites can reduce to Cu(I) but two Cu(I) sites are involved during the re-

oxidation to Cu(II). NO2, however, engages all the Cu(I) sites in an identical manner 

regardless of the density or proximity of Cu sites in the sample (chapter 3). Thus, all Cu 

sites participate in the fast SCR reaction, whereas only a fraction of the total Cu sites can 

participate in the standard SCR reaction. 

Although there is indirect evidence of Cu-oxo-dimers being responsible for 

oxidation of Cu(I) to Cu(II) from both the non-linear dependence of the standard SCR rate 
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(473 K) on the Cu content for samples that are limited by the oxidation half-cycle [34] and 

second order dependence of Cu(I) oxidation in the O2 titration experiments, we have no 

direct spectroscopic evidence for the existence of such Cu-dimer complexes. Since a 

variety of Cu-dimer complexes have been reported within enzymes, and these have 

different signatures in UV-Vis spectra depending on the type of the dimer species that is 

formed, this technique would be a good way to identify dimer formation during the 

oxidation process with O2. Another possible experiment to detect such dimers is to cool 

the samples to sub-ambient temperatures (between 148 K and 195 K) following reduction 

in flowing NO and NH3 (300 ppm each, 473 K), and subsequently introducing O2 while 

collecting EXAFS spectra to observe any possible Cu-Cu second shell feature as would be 

expected if Cu-dimers are formed. However, the absence of any such feature should not be 

taken as an indication that they are not formed because they are unstable and very reactive. 

After understanding the oxidation of Cu(I) with O2, the other missing piece in the 

standard SCR mechanism is to elucidate how the catalytic cycle closes following the 

oxidation of Cu(I) to Cu(II) with O2. A direct probe of this, and a follow up for the 

experiments in chapter 3, is to flow NO subsequent to the O2 titration step and monitor the 

time – dependent behavior of the Cu oxidation states using XANES. Preliminary 

calculations from Chris Paolucci at Notre Dame suggest that NO reacts with the Cu-dimers 

to form nitrates, and in the process half of the total Cu(II) present in the form of Cu-dimers 

is reduced to Cu(I) according to the following reaction: 

Cu(II)(O2
2-)Cu(II) + NO → Cu(II)NO3

-  + Cu(I)……5.1 

An increase in the Cu(I) fraction upon dosing NO to the O2 treated catalyst would confirm 

that the reaction indeed proceeds via a nitrate mechanism. Further, FTIR spectroscopy can 
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be employed to detect nitrate formation on the catalyst surface. Thus, these experiments 

are powerful tools in extending our understanding of the oxidation half-cycle in the 

standard SCR mechanism to close the catalytic cycle. 
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APPENDIX A . Supplementary Materials to Chapter 2: Catalysis in a Cage: Condition 

Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 

A.1 HSE06-TSvdw Values for Phase Diagram Species

Bader charges were normalized to ZCu(1.00) and Z2Cu(2.00). ΔZPE is defined as the ZPE 

difference between the adsorbate bound site and the bare site, e.g. 

ΔZPE(Z2CuH2O) = ZPE(Z2CuH2O) - ZPE(Z2Cu)……A.1 

Table A.1.1 Calculated total energies, ZPE’s of adsorbed species, and normalized Bader 

charges for the 2Al system. 
Species Total Energy ∆ZPE Bader 

Z2Cu -351.11 0.00 2.00 

Z2CuH2O -369.56 0.71 2.02 

Z2CuH2Ox2 -388.10 1.43 1.99 

Z2CuH2Ox3 -406.84 2.13 2.05 

Z2CuH2Ox4 -425.25 2.84 2.05 

Z2CuH2Ox5 -443.76 3.55 1.76 

Z2CuH2Ox6 -462.00 4.22 2.03 

Z2CuO2 -365.30 0.11 1.70 

Z2HCu -355.98 0.32 1.05 

Z2HCuH2O -374.17 1.01 1.06 

Z2HCuO -362.56 0.35 2.02 

Z2HCuO2 -370.45 0.44 1.70 

Z2HCu(OH)2 -378.17 1.00 2.07 

Z2CuNH3 -375.75 1.08 1.94 

Z2CuNH3x2 -400.41 2.15 1.87 

Z2CuNH3x3 -424.95 3.22 1.80 

Z2CuNH3x4 -449.59 4.31 1.72 

Z2CuNH4 -380.98 1.39 1.04 

Z2NH4CuNH3 -405.62 2.46 0.96 

Z2NH4CuNH3x2 -430.41 3.50 0.86 

Z2NH4CuNH3x3 -454.32 4.47 0.84 

Z2NH4CuNH3x4 -478.24 5.43 0.83 
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Table A.1.2 Calculated total energies, ZPE’s of adsorbed species, and normalized Bader 

charges for the 2Al system. 
Species Energy ZPE Bader 

ZCuOH -366.87 0.35 1.80 

ZCuOH-H2O -385.20 1.03 1.92 

ZCuOH-H2Ox2 -403.50 1.75 1.84 

ZCuOH-H2Ox3 -421.82 2.44 1.65 

ZCuOH-H2Ox4 -440.10 3.19 1.99 

ZCuOH-H2Ox5 -458.67 3.90 2.04 

ZCuOH-H2Ox6 -476.83 4.61 2.00 

ZCu(OH)O2 -380.90 0.48 1.84 

ZCu -353.94 0.00 1.00 

ZCuH2O -372.25 0.68 1.05 

ZCuO -360.31 0.04 1.73 

ZCuO2 -368.49 0.12 1.56 

ZCu(OH)2 -378.82 0.72 2.11 

ZCu(OH)NH3 -391.35 1.42 1.80 

ZCu(OH)NH3x2 -415.84 2.49 1.73 

ZCu(OH)NH3x3 -440.29 3.55 1.70 

ZCu(OH)NH3x4 -463.63 4.52 1.73 

ZCuNH3 -378.61 1.06 0.95 

ZCuNH3x2 -403.44 2.13 0.86 

ZCuNH3x3 -427.37 3.10 0.85 

ZCuNH3x4 -450.95 4.05 0.83 
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A.2 H2O Pressure Phase Diagrams 

 
Figure A.2.1 H2O partial pressure phase diagrams at fixed O2 pressures. 
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A.3 Z2Cu vs. ZCuOH Exchange Energetics 

 
Figure A.2.2 Z2CuH2O vs. ZH/ZCuOH energetics in a single supercell. 

 
Figure A.2.3 Z2CuH2O vs. ZH/ZCuOH energetics in a 2 x 1 x 1 supercell. 
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Figure A.2.4 Z2CuH2O/ZCuOH vs. ZH/ZCuOHx2 energetics in a 2 x 1 x 1 supercell. 

A.4 XRD Spectra 

Powder x-ray diffraction (XRD) data were collected on a SmartLab Rigaku 

diffractometer using a Cu Kα source. Approximately 0.6 g of sample were loaded in a 

sample holder with a depth of 2 mm. Patterns were obtained from 4 to 40° 2θ using a step 

size of 0.01° 2θ and a scan rate of 0.05° 2θ min-1 at ambient conditions. 

 
Figure A.4.1 XRD spectra on the H-form of the Si:Al = 5, 15 and 25 samples. 
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Figure A.4.2 XRD spectra on the H-form of BEA and ZSM-5 samples. 

A.5 Atomic Absorptiom 

Approximately 20 mg of samples were dissolved in 2 ml HF, then diluted with 50-

120 ml deionized water (Millipore, Synergy UV Water Purification System, 18.2 MΩ cm-

1 resistivity). Elemental analysis to measure the Si:Al, Co:Al and Cu:Al of the dissolved 

sample was performed using atomic absorption spectroscopy (AAS) on a Perkin-Elmer 

AAnalyst 300. Na:Al and K:Al were measured also, but not detected within error. 

Table A.5.1 AA obtained Si:Al and Co:Al values after Co saturation 
Si:Al Co:Al 

SSZ-13 (synthesized) 

4.5 0.19 

14.8 0.10 

24.1 0.04 
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Table A.5.2 AA obtained Si:Al and Cu:Al values on all zeolite samples 
Si:Al Cu:Al 

SSZ-13 (synthesized) 

4.5 0.00 

 0.02 

 0.04 

 0.09 

 0.12 

 0.16 

 0.20 

14.8 0.00 

 0.12 

 0.21 

 0.37 

 0.44 

24.1 0.00 

 0.06 

 0.37 

 0.44 

ZSM-5 (commercial) 

    12.5 0.24 

 0.27 

 0.35 

BEA (commercial) 

      13.0 0.25 

 0.34 

BEA (synthesized) 

      13.0 0.43 

A.6 FTIR Details 

The IR data were collected using a Nicolet 6700 FTIR spectrometer equipped with a liquid 

nitrogen cooled MCT detector. Experiments were performed in a custom designed 

transmission FTIR cell, a detailed description of which can be found in our previous 

publication [200]. About 35-40 mg of each catalyst sample was loaded in the form of a 

self-supported wafer, 2 cm in diameter. All samples were treated with 10% O2 (UHP grade 
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O2, Indiana Oxygen diluted with UHP grade He, Indiana Oxygen) at 673 K for 30 min and 

then cooled down in the same gas flow to 473 K. All reported spectra were collected at 473 

K with a resolution of 4 cm-1, averaged over 1000 scans and baseline corrected for direct 

comparison. The IR spectrum of the H-form was subtracted from the corresponding 

spectrum for each Cu-SSZ- 13 sample to obtain a difference spectrum. The peak area for 

the CuOH species at 3650 cm-1 [32, 170] as quantified as a function of Cu loading. 

All spectra were first normalized by their T-O-T vibrations between 2082 and 1589 cm-

1. Difference spectra were obtained by subtracting the spectrum of H/SSZ-13 from each of the 

individual Cu/SSZ-13 sample spectra. This clearly showed the growth of the CuOH peak at 

3651 cm-1 with Cu loading, while the associated peak area was quantified by using a baseline 

between 3670 and 3635 cm-1. The corresponding Brønsted OH peak area was calculated by 

drawing a baseline between 3627 and 3523 cm-1 for the difference spectra of each sample. 

Since both Brønsted hydroxyl peaks decreased with increasing Cu loading, the total Brønsted 

hydroxyl peak area was calculated rather than that for the individual peaks at 3580 or 3605 

cm-1. 
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A.7 Si:Al = 5 repeat synthesis with H:Al ratios between 0.45-0.85 

 
Figure A.6.1 (left) XRD spectra for Si:Al = 5 samples with H:Al ranging from 0.85 (A) to 

0.65 (B)  to 0.45 (C). (right) NH3 TPDs following a purge of physisorbed NH3 to determine 

H:Al 

 
Figure A.6.2 Residual H+ sites per parent sample H+ from NH3 titrations on oxidized M-

SSZ-13 samples vs. extent of M/Al exchange for Si:Al = 5 at pH = 5 (black shapes) and no 

pH control (green shapes). Open and filled symbols denote Cu2+ and saturated Co2+ 

exchange, respectively. Dashed lines are model predictions. 
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When low concentrations of Cu(II) and NH4
+ are present during aqueous-phase Cu 

exchange of H-SSZ-13 (Si:Al = 5) at ambient conditions, we observed a 40-80% decrease 

in th number of Brønsted acid sites relative to the parent SSZ-13 (Figure A.6.2), green 

diamonds). These observations suggest that significant structural changes occur to 

framework Al atoms (e.g. dealumination) in high Al content H-SSZ-13 zeolites synthesized 

by FAU-to-CHA conversion methods at low pH values and low concentrations of cations 

(80% loss in H+ sites when no Cu is present), consistent with reports that cation exchange 

H+ sites to stabilize framework Al against dealumination [166, 167]. The addition of 

NH4OH to maintain a pH of 5 during the exchange of low concentrations of Cu cations 

mitigated Al structure changes and only resulted in a decrease of 25% of the number of 

Brønsted acid sites (black diamonds). We have previously reported NH3 TPD data that 

quantified the loss of ≈0.25 H+:Al for this SSZ-13 sample (Si:Al = 5, Cu:Al = 0.02) [166], 

which is much larger than expected from the Cu(II):H+ 2:1 exchange stoichiometry (0.04 

H+:Al for a Cu:Al = 0.02). In this manuscript, we have removed this data point from the 

correlation in Figure 2.3.4, in light of this new evidence for the simultaneous structural 

changes to zeolite exchange sites (framework Al) that occur during Cu exchange procedure 

to prepare this sample. 

A.8 XAS Details 

XAS experiments were carried out at Sector 10 of the Advanced Photon Source at 

Argonne National Laboratory. Spectra were collected at both beamlines, 10-ID and 10-BM. 

The high photon flux at the ID line (approximately 100 times higher than that at the BM 

line) was required to perform experiments in the operando reactor to get enough transmitted 
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X-ray intensity through the catalyst bed. Cu metal foil spectrum was simultaneously 

collected while measuring sample spectra and its energy was calibrated to 8979 eV for the Cu 

K-edge. All spectra were collected under isothermal conditions and normalized using a 

1st order polynomial in the pre-edge region and a 3rd order polynomial in the post-edge 

region. EXAFS data was fit from k = 2.7 to 11 Å-1. Linear combination XANES fits to 

determine the Cu(I) and Cu(II) fractions under operando conditions were carried out using the 

appropriate references as explained in our previous publications [28-30]. 10-15 mg of each 

sample was loaded for in situ experiments. All spectra were collected in the step scan mode. 

Gas treatments were performed in the lab and the samples were transferred to the beamline and 

cooled down to room temperature before collecting spectra. The samples were oxidized in a 

20% O2/He (UHP grade, Airgas) flow, whereas the reducing treatments used either UHP He 

(Airgas) at 673 K, 3.5% H2/He (UHP, Airgas) at 523 K or 1500 ppm NH3 (3% NH3/Ar, 

Praxair) + 1500 ppm NO (0.3% NO/N2, Airgas) at 673 K. The total flow rate in each case 

was 100 ml min-1 and samples were exposed to the corresponding gas conditions for 45 

min. A wide range of catalysts with varying Si/Al and Cu/Al ratios was used to sample the 

different Cu configurations and identify the response of those species to the different gas 

treatments. The energy range for the data collected at the 10-BM line was 8700 eV to 9890 

eV. 

Operando experiments were performed at the 10-ID line in a special glassy carbon 

tube reactor as described by Kispersky et al [29]. During these experiments XAS spectra 

were simultaneously collected while measuring the reaction rates for each sample to ensure 

that the standard SCR rate per mole Cu measured at APS matched with that measured in 

the lab. Typical standard SCR conditions used were 300 ppm NO, 300 ppm NH3, 10% 
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O2, 2-2.5% H2O, 5% CO2 with a total flow rate of 500 ml min-1 at 458-463 K. 9-12 mg 

of each sample was loaded in the reactor to ensure differential conditions (< 20% conversion). 

Spectra under operando conditions were collected in the quick scan mode and averaged over 

3-5 scans. The in situ experiments with 300 ppm NH3+10% O2 were performed at the 10-ID 

line with 2.5-3% H2O and a total flow of 500 ml min-1 at 673 K. The energy range for the 

data collected at the 10-ID line was 8700 eV to 9780 eV. 

EXAFS data was fit from 2.7 to 10.5 Å-1 range with DWF’s of 0.001 at room 

temperature, 0.002 at 473 K and 0.0035 at 673 K. k2 weighting was used to convert the 

data into R-space, and obtain the coordination numbers and bond distances under the 

various gas conditions. 

A.9 Mobility Calculation Details 

Cu positions during the entire course of simulation are analyzed to find out its 

relative mobility when different ligands bind to Cu. Only Cu positions represented as 3D 

cartesian coordinates (x,y,z) after 60 ps of equilibration time are used for the study. To 

calculate the volume of space Cu traveled, the 3D cartesian space is discretized into 0.008 

Å3 cubes as illustrated in Figure 2.3.7. The number of cubes that Cu has visited at least 

once is counted and summed up to be the final volume. Absolute volumes Cu visited for 

different binding ligands are going to change according to the size of the cubes used, but 

relative ratio of this volume keeps the same for cube size 0.001 to 0.125 Å3. 
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A.10 XANES Fitting Details 

Since XAS is a bulk technique, each sample spectrum is a linear combination of 

the corresponding oxidation states. A mixture of Cu(I) and Cu(II) are present under 

standard SCR conditions and therefore, a linear combination XANES fitting of the Cu(I) 

and Cu(II) references was used to obtain the relative amounts of each oxidation state under 

various con- ditions. Information about how the Cu(I) and Cu(II) references were generated 

is provided in our previous publication [30]. EXAFS data was fit from 2.7 to 10.5 Å-1 

range with DWF’s of 0.001 at room temperature, 0.002 at 473 K and 0.0035 at 673 K. k2 

weighting was used to convert the data into R-space, and obtain the coordination numbers 

and bond distances under the various gas conditions. 

A.11 Z2Cu Modes 

The six oxygens in the 6MR are labeled from 1 through 6 clockwise to identify Cu-

O coordination. The ring structures just adjacent to the 6MR are shown in Figure A.11.1, 

where 4MR and 8MR alternates around the 6MR. In principle any four oxygens out of the 

six oxygens could be coordinated with Cu, however not all combinations are energetically 

stable at 0K. We found that at least two out of the four Cu-O bonds must come from the 

oxygen pair adjacent to the Al (i.e. O1/O6 pair, and O3/O4 pair). The rest of the two bonds 

must come from two other oxygens that’s in the neighboring 4MR. Alternatively the two 

oxygen pairs can all be coordinated with Cu. This is because in a 6MR without Cu 

interaction, the TOT angle in the neighboring 4MR prefers to be <180◦, while the TOT 

angle in the neighboring 8MR prefers to be >180◦. When Cu is introduced in the 6MR and 
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bonding with four of the oxygens, it is energetically more favorable to distort as less as TOT 

angles as possible. This can be illustrated in the three stable local minima that we found as 

detailed below. 

 
Figure A.11.1 Ring structures surrounding the 6MR, shown in perspective view for clarity. 

4MR and 8MR alternates around 6MR. 

In Figure A.11.2, dashed lines show Cu-O coordination and the numbering of 

oxygens is consistent with Figure A.11.1. In modes 1 and 2 only 8MR TOT angle is 

distorted and in mode 3 two 8MR TOT angles are distorted. Distortion of three 8MR TOT 

angles are strongly unfavorable and thus create structures high in energy. The three stable 

mode structures are optimized with the same computational method described in section 

xx. Mode 1 is slightly higher in energy than 2 and 3. But we can conclude the three modes 
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3 3 

are almost isoenergetic. Cu-O coordination information as well as relative energetics are 

summarized in Table A.11.1. 

 
Figure A.11.2 Pictures of Z2Cu modes. 

Table A.11.1 Summary of Cu-O coordination in para Z2Cu and relative energies for the 

three modes. 

Mode Cu-O coordination 
Relative energy 

(kJ mol-1) 
Avg Cu-O distance (Å) 

1 

O1 O3 

O4 O5 0 2.08 

2 O5 O6 -4.6 2.08 

3 O6 O6 -5.5 2.09 

A.12 RDF calculations 

Pair-wise radial distribution function (RDF) (gαβ(r)) between Cu and other atoms 

(Si/Al/O/N) defines the average number of framwork Si/Al/O/N atoms in a spherical shell 

of radius r distance away from the Cu: 

dnαβ(r) = 
Ntotal

V
g

αβ
(r)4πr2dr……A.2 

where R is the furthest distance away from the Cu we consider for the RDF; V is the volume 

of the model; Ntotal is the total number of atoms in a unit cell; dnαβ(r) is the number of atoms in 
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the shell volume averaged by number of MD trajectories; α is Cu and β is any atom from 

Si/Al/O/N. Hydrogens in the molecular structures are not considered in RDF calculation. To 

calculate the shell volume we use 4πr2dr = Vshell = (4/3)[(r + dr)3 – r3]. V = (4/3)πR3, where 

we consider R up to 4.5 Å, half of the supercell dimension, to avoid counting an atom in its 

periodic image. Substitute all into equation 2, 

g
αβ
(r) = 

dnαβ(r)

Ntotal x 
4
3

π[(r+dr)3-r3]/
4
3

πR3
……A.3 

We calculate gαβ(r) for all atoms except H to obtain the overall RDF, we also 

calculate gαβ(r) for each of the Cu-Si/Cu-Al/Cu-O/Cu-N combinations to obtained de-

convoluted RDF’s for each molecular structures (Figure A.12.1-Figure A.12.9). 

 
Figure A.12.1 RDF of Cu-x (x = Si, Al, O) in [Z2Cu(II)]. 
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Figure A.12.2 RDF of Cu-x (x = Si, Al, O) in [ZCu(I)]. 
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Figure A.12.3 RDF of Cu-x (x = Si, Al, O) in [ZCu(II)OH]. 
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Figure A.12.4 RDF of Cu-x (x = Si, Al, O) in Z2[Cu(II)(H2O)4](H2O)2. 



160 

 

 

1
6
0
 

 
Figure A.12.5 RDF of Cu-x (x = Si, Al, O) in Z[Cu(II)(OH)(H2O)3](H2O)3. 
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Figure A.12.6 RDF of Cu-x (x = Si, Al, O) in Z[Cu(I)(NH3)2]. 
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Figure A.12.7 RDF of Cu-x (x = Si, Al, O) in Z[Cu(I)(NH3)2]/[ZNH4]. 
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Figure A.12.8 RDF of Cu-x (x = Si, Al, O) in Z[Cu(II)(NH3)4]. 
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Figure A.12.9 RDF of Cu-x (x = Si, Al, O) in Z[Cu(II)(OH)(NH3)3]. 
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A.13 XANES reversibility data 

 
Figure A.13.1 XANES spectra collected after exposing Si:Al = 4.5 Cu:Al = 0.08 (2Al) 

sample and Si:Al = 15 Cu:Al = 0.44 (1Al) to 20% O2, balance He at 673 K following 

pretreatment in He at 673 K. 

A.14 Four-site Adsorbate Binding Energies 

Table A.14.1 Binding energies (kJ mol-1) for one of each of the SCR gas species on the 

four different adsorption site models. 

 NH3 H2O NO2 NO N2 O2 

Z2Cu -132 -84 -35 -17 -29 -19 

ZCuOH -117 -75 -44 -73 -8 -1 

ZCu -137 -74 -134 -90 -67 -52 

ZNH4/ZCu -134 -71 -122 -69 -17 -31 
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A.15 NH3 phase diagram results at exp. SCR conditions 

Table A.15.1 Full free energies of formation at SCR conditions for all NH3 2Al and 1Al 

phase diagram species. 
2Al ∆G (kJ/mol) 1Al ∆G (kJ/mol) 

H/(OH)2 391 OH-H2Ox6 107 

H/O 114 (OH)2 73 

H/O2 79 O 72 

H/H2O 59 OH-H2Ox5 67 

O2 42 OH-H2Ox4 67 

H 36 OH-O2 67 

2NH4CuNH3x4 7 OH-NH3x4 63 

Clean 0 OH-(H2O)x3 36 

H2Ox6 -1 NH3x4 21 

H2Ox3 -5 OH-H2Ox2 16 

H2Ox4 -13 O2 9 

Z2NH4Cu -20 Clean 0 

H2Ox5 -22 OH/H2O -12 

H2O -24 H2O -15 

H2Ox2 -25 OH -29 

Z2NH4Cu -26 OH-NH3 -33 

NH4/NH3x3 -36 OH-NH3x2 -35 

NH4/NH3 -44 OH-NH3x3 -36 

NH3 -52 NH3x3 -54 

NH3x2 -73 NH3 -57 

NH4/NH3x2 -80 NH3x2 -94 

NH3x3 -81 

NH3x4 -96 
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A.16 Cu diammine diffusion CI-NEB 

 
Figure A.16.1 CI-NEB for Cu diammine to traverse the 8MR. 
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A.17 Operando EXAFS 

Conditions: 2% H2O, 300 ppm NH3, 10% O2, 300 ppm NO Cu:Al = 0.41, Si:Al = 25, CN 

= 3.1. XANES: 60% Cu(I), 40% Cu(II). 

 
Figure A.17.1 EXAFS spectra collected at 473 K, 2% H2O, 300 ppm NH3, 10% O2, 300 

ppm NO on a Cu:Al = 0.41, Si:Al = 25 sample, Rate per gram catalyst is 81 x 10-8. 
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A.18 NO+NH3 NEBS 

 
Figure A.18.1 XANES spectra collected after exposing Si:Al = 4.5 Cu:Al = 0.08 (2Al) and 

Si:Al = 15 Cu:Al = 0.44 (1Al) to O2 balance He at 673 K following pretreatment in He at 

673 K. 
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A.19 Disappearance of Proximal Sites Upon re-oxidation 

 
Figure A.19.1 Titration of residual Brønsted sites on a Si:Al = 5 Cu:Al = 0.21 SSZ-13 

sample, before reduction in NO+NH3, after reduction, and after reduction followed by 

oxidation. 
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A.20 Mechanism Energies 

Table A.20.1 Energy for each step in the standard SCR mechanism for Z2Cu and ZCuOH. 
Step 

1 

ZCu 

ZCuOH-NH3+2NO+2NH3+1/2O2 

∆E(eV) 

0 

2 ZCuOH-NH3x3+2NO+1/2O2 -2.44 

3 ZCuNH3x2-H2N2O+NO+1/2O2 -3.63 

4 ZCuNH3x2+2H2O+N2+NO+1/2O2 -4.85 

5 ZCuNO2-NH3x2+2H2O+N2 -6.32 

6 ZCuOH-NH3+3H2O+2N2 -7.49 

Step 

1 

Z2Cu 

Z2Cu-NH3x2+2NO+2NH3+1/2O2 

∆E(eV) 

0 

2 Z2Cu-NH3x4+2NO+1/2O2 -2.64 

3 Z2Cu-NH3x2/NH4/N2H2O -3.28 

4 Z2Cu-NH3x2/NH4+H2O+N2+NO+1/2O2 -5.25 

5 Z2CuNO2-NH3x2/NH4+H2O+N2 -6.84 

6 Z2Cu-NH3x2+3H2O+2N2 -7.49 

A.21 Kinetic Data for BEA and ZSM-5 

Table A.21.1 Rates, apparent orders and apparent activation energies on BEA and ZSM-5 

samples (only the rate was measured on the 3.3 Cu wt.% BEA sample) 

ZSM-5 Si:Al = 13      

Cu wt.% Cu:Al Rate per g 

x 10-8 

Eapp (kJ 

mol-1) 

NO order NH3 order O2 order 

1.7 0.24 199 61±10 0.6 -0.3 0.5 

1.9 0.27 232 64±10 0.7 -0.4 0.4 

2.7 0.36 340 77±10 0.6 -0.5 0.4 

BEA Si:Al = 13      

Cu wt.% Cu:Al Rate per g 

x 10-8 

Eapp (kJ 

mol-1) 

NO order NH3 order O2 order 

1.9 0.25 314 48±15 0.6 0 0.3 

2.6 0.34 438 58±15 0.7 -0.1 0.3 
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A.22 Z2Cu 200C vs 400C EXAFS comparison 

 
Figure A.22.1 EXAFS spectra collected after exposing Si:Al = 4.5 Cu:Al = 0.08 (2Al) to 

either NO+NH3 (red) or O2+NH3 (orange), at (left) 200 °C and (right) 400 °C.  

A.23 200 °C XANES, ZCuOH NO only  

 
Figure A.23.1 XANES spectra collected after exposing Si:Al = 15 Cu:Al = 0.44 to 300 

ppm NO, balance He at 200 °C until steady state. 
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A.24 Synthesis Details 

CHA (SSZ-13) zeolites with a Si:Al ratio of 5 were synthesized as reported elsewhere 

[28, 161], which was based on a method to convert FAU to CHA using N,N,N-trimethyl-

1-adamantylammonium hydroxide (TMAdaOH) developed by Zones [161, 162] and 

modified by Fickel et al. [109, 134, 163, 164] with molar ratios of 1 SiO2 / 0.033 or 0.017 

Al2O3 / 0.20 TMAdaOH / 0.17 Na2O / 26 H2O.  A typical synthesis of SSZ-13 with Si:Al 

= 15 or 25 was performed by preparing an aqueous mixture of 28.4 g TMAdaOH (25 wt%, 

Sachem) with 77.4 g H2O (deionized; 18.2 MΩ) in a perfluoroalkoxy alkane (PFA) plastic 

vessel and stirring the solution for 15 minutes under ambient conditions. 0.87 or 0.43 g (Si:Al 

= 15 or 25, respectively) of aluminum hydroxide (SPI Pharma) and 34.6 g of a 1M NaOH 

solution (Alfa Aesar) were added and the mixture was stirred for 15 minutes at ambient 

conditions to homogenize the contents. 10 g of fumed silica (Cab-o-Sil) were added and the 

mixture was stirred at ambient conditions for 2h to homogenize the mixture. The synthesis 

gel was loaded into four identical 45 cm3 Teflon-lined stainless steel autoclaves (Parr 

Instruments) and heated under rotation at 433 K for 6 days at 60 RPM. 

BEA (Beta) zeolites were synthesized with a Si:Al ratio of 13 following a modified 

procedure originally reported by Rubin [240]. A typical synthesis of BEA with Si:Al = 

13 was prepared by dissolving 0.78 g of NaOH pellets (98%, Macron Fine Chemicals) in 92.1 

g of an aqueous tetraethylammonium hydroxide (TEAOH) solution (35 wt%, Sachem) in a 

perfluo- roalkoxy alkane (PFA) plastic vessel and stirring the solution for 15 minutes under 

ambient conditions. 139.0 g of colloidal silica (30 wt%, Ludox HS30, Sigma Aldrich) and 

11.6 g of aluminum isopropoxide (98 wt%, Sigma Aldrich) were added to the mixture and 

stirred for 2h at ambient conditions to homogenize the contents. The synthesis gel was 
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loaded into two 45 cm3 and one 300 cm3 Teflon-lined stainless steel autoclaves (Parr 

Instruments) and heated at 413 K for 8 days. BEA zeolites (Si:Al = 13, CP814E) and MFI 

(ZSM-5) zeolites (Si/Al = 13). After synthesis of CHA and BEA zeolites, crystalline 

solid products were washed by alternating deionized water and acetone (99.9 wt%, Sigma 

Aldrich) rinses (50 cm3 g solid-1) until the pH was constant between washes. Solids were 

recovered by centrifu- gation, dried under static air at 373 K for 24 h, and then treated in 

flowing dry air (100 cm3 min-1 g solids-1, 99.999% UHP, Indiana Oxygen) to 853 K 

(0.0167 K s-1) for 10 h. All zeolite samples were converted to the NH4-form by ion-exchange 

with a 1.0M aqueous NH4NO3 (99.9 wt.%, Sigma Aldrich) solution (100 cm3   solution g 

solids-1) for 10 h at 353 K, followed by washing the solid dix times with deionized water (50 

cm3 g solids-1), recovery via centrifugation, and drying the solids at 373 K for 24 h. NH4-

form zeolites were converted to their H-form by treating the solids in flowing air (100cm3 

min-1 g solids-1, 99.999% UHP, Indiana Oxygen) at 773K (0.0167 K s-1) for 4 h. 

Cu-zeolites were prepared by aqueous-phase Cu ion exchange of H-form zeolites 

with a Cu(II)(NO3)2 solution (0.001M-0.1M, 100 cm3 gcat
-1, 99.999wt.%, Sigma 

Aldrich) for 4 h and 300 rpm at ambient conditions, during which the pH was controlled 

to 4.9 ± 0.1 through dropwise addition of a 1 M NH4OH solution (Sigma Aldrich). Co-

SSZ-13 zeolites were prepared by ion exchange of H-SSZ-13 with an aqueous 0.25 M 

Co(II)(NO3)2 solution (150 ml gcat
-1) for 4 h at ambient conditions, during which the pH 

was not controlled (pH stabilized between 3.2-3.6 after 4 h). Metal-exchanged zeolites 

were recovered by centrifugation and washed with deionized water six times (70 ml gcat
-1 

per wash), dried at ambient temperature under flowing air, and then treated in flowing dry 

air (100 ml gcat
-1) to 773 K (0.0167 K s-1) for 4h. Elemental composition (Si, Al, Cu, 
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Co) was determined using atomic absorption spectroscopy (AAS) on a Perkin-Elmer 

AAnalyst 300. 

Commercial BEA and ZSM-5 samples with Si:Al = 13 were purchased from Zeolyst. 

A.25 Micropore Volume 

Zeolite samples were pelleted and sieved to obtain particles between 180-250 µm in diameter, 

degassed by heating 0.02-0.05 g of zeolite to 393 K (0.167 K s-1) and holding under high 

vacuum (≈5 µm Hg) for 2 h, and then further heating to 623 K ( (0.167 K s-1) and holding 

high vacuum (≈5 µm Hg) for 8 h. Micropore volumes (cm3 gsolid
-1 at STP) were measured by 

extrapolating the linear volumetric gas adsorption during mesopore filling (≈0.08-0.3 P/P0) 

to zero relative pressure. These estimates were in agreement with the micropore volumes 

derived from analyzing the semi-log derivative plot of the adsorption isotherm 

(dVads/dln(P/P0)) vs. ln(P/P0). This analysis requires determining the first maximum of 

(dVads/dln(P/P0)), which corresponds to the relative pressure when micropore filling occurs, 

and then identifying the subsequent minimum that corresponds to the end of the micropore 

filling [241, 242]. The micropore volumes were determined by converting adsorbed gas 

volumes (STP) to liquid volumes using a density conversion factor assuming the liquid 

density of N2 (77 K) or Ar (87 K) and can be found in Table A.25.1. 
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Figure A.25.1 Micropore Ar adsorption isotherms on H-SSZ-13 Si:Al = 5, 15 and 25 

samples. 

Table A.25.1 Micropore volumes for H-SSZ-13, H-BEA and H-ZSM-5. 

Si/Al Micropore Volume 

H-SSZ-13  

5 0.16 

15 0.18 

25 0.2 

H-BEA  

13 0.21 

H-ZSM-5  

13 0.14 

 

 
Figure A.25.2 Micropore N2 adsorption isotherms on H-BEA and H-ZSM-5. 
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A.26 27Al NMR 

Solid-state 27Al magic angle spinning nuclear magnetic resonance (27Al MAS NMR) 

spec- troscopy was used to estimate the fraction of framework and extraframework Al on H-

form zeolites. SS NMR spectra were collected using a Chemagnetics CMX400 400 MHz 

spec- trometer in a wide-bore 9.4 Tesla magnet at ambient conditions from 456 scans with 

12.5 µs pulses and a 2 s delay and were measured at 104.24 MHz and MAS rate of 5 kHz. 

Prior to packing in a 4mm ZrO2 rotor, zeolite samples were hydrated by holding for >48 h in 

a desic- cator containing a saturated potassium chloride (KCl) solution. All 27Al MAS NMR 

spectra are referenced to an aqueous 1.0M Al(NO3)3 solution. NMR spectra and 

quantification of extraframework Al for all H-zeolite samples can be found in Table A.26.1. 

 
Figure A.26.1 Al 27NMR spectra for SSZ-13 at Si:Al =5, 15, 25. 
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Table A.26.1 Fraction of extraframework Al estimated from Al 27NMR. 

Si/Al 5 15 25 

Fractional Tetrahedral 0.85 0.95 1.00 

Fractional Octahedral 0.15 0.05 0.00 

A.27 NH3 TPDs 

H+ sites on H-SSZ-13, and oxidized and reduced forms of Cu-SSZ-13 samples were 

measured using the NH3 titration procedure described by Di Iorio et al [135]. Oxidizing 

pre-treatment involved heating in synthetic air (commercial grade, Indiana Oxygen) at 773 

K while the reducing pre-treatment involved flowing 500 ppm NO (from 3.6% NO/Ar, 

Praxair) + 500 ppm NH3 (from 3% NH3 in Ar, Praxair) at 473 K for 2 hr. 30-50 mg of 

each sample, in either its oxidized or reduced forms, was saturated with 500 ppm NH3 

diluted with UHP He (99.999% , Indiana Oxygen) at 433 K for 2 h with a total flow rate 

of 350 ml min-1. Following this NH3 saturation step, the sample was flushed with 2.5-3.0% 

water in UHP He (wet purge) for 8 h while still keeping the same total flow rate to desorb 

NH3 bound to non-protonic sites [135]. Wet purge was followed by a temperature 

programmed desorption (TPD) in UHP He from 433 K to 820 K at a ramp rate of 

0.167 K s-1. NH3 titration on the reduced form of Cu-SSZ-13 samples showed that Cu2+ 

sites balancing two Al atoms formed a Cu+ cation and a proximal H+ site upon reduction, 

while [CuOH]+ sites formed a Cu+ cation and H2O without generating an additional H+ sites, 

as proposed in the reaction scheme shown above. Thus, NH3 titrations can be used in situ after 

oxidation and reduction treatments to distinguish between the Z2Cu and [CuOH]+ sites by 

counting the total acid sites which are equal to the sum of residual acid sites on the oxidized 

form of the sample and the excess acid sites generated after reduction [30]. 
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For Co-exchanged SSZ-13 samples, the number of H+ sites, after oxidative treatments 

in flowing air (773 K), were titrated in situ using a Micromeritics Autochem II 2920 

Chemisorption analyzer and required the use of a lower gas flow rate than that of the 

H- and Cu- exchanged SSZ-13 samples. The NH3 titration procedure involved saturating 

zeolite samples (30-50 mg) with 500 ppm NH3 (500 ppm NH3/He, Indiana Oxygen) at 433 

K for 5 h and a total flow rate of 150 ml min-1. Subsequently, NH3-saturated samples were 

wet purged at 433 K for 8 h prior to temperature programmed desorption (TPD) 

experiments. TPD experiments on H-SSZ-13 and Co-exchanged SSZ-13 were performed 

using a Micromeritics Autochem II 2920 Chemisorption analyzer equipped with an Agilent 

5975C mass selective detector (MSD) to identify the gaseous species desorbing from the 

catalyst samples. Catalyst samples were supported between two quartz wool plugs inside a 

U-shaped quartz cell held within a clam-shell furnace, held in 50 ml min-1 flowing UHP 

He at ambient temperature for 1 h, and heated to 873 K (0.167 K s-1). The effluent stream 

from the quartz cell passed through heated transfer lines held at 383 K to the MSD for 

analysis. The signal at m/z = 17 was quantified by developing a calibration curve using four 

NH4-exchanged ZSM-5 zeolites with varying Si/Al ratio [136] (Si/Al = 17-89). The total 

NH3 desorbed per gram of these zeolites were determined by performing TPD experiments 

on a gas-phase plug flow reactor, described in the subsequent paragraph. After each TPD 

experiment, a 0.5 cm3 sample loop was filled with Ar (UHP, 99.999%, Indiana Oxygen) and 

injected into 50 ml min-1 UHP He flow. The area of this Ar pulse was used as an internal 

standard to correct for the instrumental drift between TPD experiments. The total NH3 

desorbed per gram of catalyst was quantified from the area under the m/z = 17 signal, after 

subtracting the contribution from water at m/z = 17 due to fragmentation. 
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TPD experiments on Cu-exchanged samples were performed on a gas-phase plug 

flow reactor, as described by Bates et al [28]. The total moles of NH3 desorbed during 

these TPD experiments were measured using on-board calibrations in a MKS Multigas 2030 

gas-phase FT-IR spectrometer [136]. 
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APPENDIX B . Supplementary Materials to Chapter 3: Copper Site Proximity 

Requirements for Oxidation with Dioxygen or Nitrogen Dioxide during 

Ammonia Selective Catalytic Reduction on Cu-SSZ-13 

 
Figure B.1 X-ray diffraction (XRD) pattern for the high Al (Cu/Al = 0.08, Si/Al = 4.5) and 

low Al (Cu/Al = 0.09, Si/Al = 15) content samples. 
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Figure B.2 Comparison of XANES spectra for diamminecopper(I) solution at room 

temperature with the high Al (Cu/Al = 0.08, Si/Al = 4.5) and low Al (Cu/Al = 0.09, Si/Al 

= 15) content samples after reduction with NO + NH3. Feed conditions: 300 ppm NO + 

300 ppm NH3, 447 – 463 K. 

 
Figure B.3 A second order rate constant plot (according to equation 3.13) for the high Al 

(Cu/Al = 0.08, Si/Al = 4.5, b = 0.15) and low Al (Cu/Al = 0.09, Si/Al = 15, b = 0.26) 

content samples during oxidation with 10% O2 at 447 K starting from Cu(I). 
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Figure B.4 A first order rate constant plot (according to equation 3.15) for the high Al 

(Cu/Al=0.08, Si/Al=4.5, Cu(I)o=0.9) and low Al (Cu/Al=0.09, Si/Al=15, Cu(I)o=0.97) 

content samples during oxidation with 90 ppm NO2 at 447 K starting from Cu(I). 

 

Determination of Sample Temperature for in situ oxidation experiments with O2 

and NO2 

Due to hardware changes at the beamline, the catalyst bed in the reactor tube was moved 

to the lower end of the reactor to ensure it was still in the x-ray beam path for XAS 

measurements. Also, the aluminum heating block used for heating the sample in the 

operando reactor setup was replaced by a heating tape instead. The section of the reactor 

tube that had the sample was left unwrapped and exposed so that the x-ray beam was not 

blocked by the heating tape or the insulation (as shown in the picture below). Consequently, 

there was an offset in the temperature measured by the thermocouple (not in the catalyst 
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Figure B.5 Picture of the modified operando reactor setup in operation, with the heating 

tape to heat the sample to the desired temperature. 

exposed to the atmosphere. The temperature controller had a setpoint of 477 K. The 

temperature offset was determined by measuring the reaction rate at that setpoint and using 

the Arrhenius plot for the same sample to match the sample temperature corresponding to 

the measured reaction rate. The reaction rate for the dilute Al (Cu/Al=0.09, Si/Al=15) 

Reactor tube 

Location of 
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sample was measured as 7.9 x 10-8 mol NO (g cat)-1 s-1, instead of the expected value of 18 

x 10-8 mol NO (g cat)-1 s-1 from Table 3.4.2. With an Eapp of 50 kJ mol-1 (Table 3.4.2), the 

actual catalyst temperature would be 447 K. 
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APPENDIX C . Supplementary Materials to Chapter 4: Determining the Active 

Intermediates for NO Oxidation on Cu-ZSM-5 from 15NO Labeling 

Experiments 

C.1 Gas Phase NO Oxidation Reaction

The extents of gas phase NO oxidation in the 200 ml measurement cell of the 

2030 Multigas FTIR analyzer at the chosen NO and O2 concentrations and a total flow of 

50 ml min-1 were calculated from the kinetic parameters obtained reported by Tsukahara 

et al. [243] shown in  

 

Table C.1 below. 10% O2 and 345 ppm NO produced 35 – 36 ppm NO2, whereas 

5% O2 and 125 ppm NO or 150 ppm NO produced 2 – 3 ppm NO2 from the gas phase NO 

oxidation reaction. To maximize the amount of surface intermediates while simultaneously 

minimizing the gas phase reaction, 150 ppm NO and 5% O2 were chosen as the standard 

concentrations for the operando FTIR measurements. Furthermore, the value of β, which 

is the dimensionless equilibrium constant for the NO oxidation reaction [41] used to ensure 

that the reaction is not close to equilibrium and that the rates were measured in a kinetically 

controlled regime, is less than 0.1 in all cases at the conditions of operation chosen for the 

operando reactor. 
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Table C.1 Observed and calculated extents of NO oxidation inside the 200 ml measurement 

cell of the MKS 2030 Multigas FTIR analyzer at the appropriate concentrations. 

O2 / % NO / ppm Observed gas phase NO 

oxidation / ppm 

Calculated gas phase NO 

oxidation / ppm 

5 125 2 2.4 

5 150 3 3.4 

5 200 7 6 

10 345 35 36 

C.2 Test for External Mass Transfer Limitations 

The presence of external mass transfer limitations were tested in two separate sets 

of experiments. Using a CSTR formulation gives: 

(Co-C)*v = r*w……C.1 

where Co is the reactor inlet concentration, C is the reactor outlet concentration, v is the 

total volumetric flow rate, r is the reaction rate on the catalyst and w is the weight of the 

catalyst sample loaded. Since C = Co*(1 – X), where X is the measured conversion 

Co*X*v = r*w……C.2 

Equation C.2 shows that the conversion, X, is directly proportional to the weight of the 

catalyst, w, loaded in the reactor or inversely proportional to the total flow rate, v. 

Consequently, two separate tests by varying the amount of sample loaded (Cu/Al = 0.41, 

Si/Al = 18, Cu-ZSM-5) and changing the total flow rate were used to identify if external 

mass transfer limitations were present under the conditions being tested. 

First the amount of catalyst sample loaded in the reactor was varied by diluting the 

sample pellet loaded in the operando reactor with inert SiO2 (Fisher Scientific). Pure 

sample, 1:1 and 1:3 ratios of sample:SiO2 on weight basis were used for this test. A plot of 
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the corrected conversion by normalizing to 300 ppm NO, 150 ppm NO2, 10% O2 versus 

the weight of the catalyst loaded showed a linear correlation (Figure C.2.1a). Secondly, 

four different total flow rates of 27 ml min-1, 45 ml min-1, 92 ml min-1 and 136 ml min-1 

were used keeping the same NO, NO2 and O2 concentrations. A plot of the corrected 

conversion versus the inverse of the total flow rate once again showed a linear correlation 

(Figure C.2.1b). 

 
Figure C.2.1 Plots of corrected conversion versus (a) amount of sample loaded (black 

diamonds) in the operando reactor (b) inverse of the total flow rate (red diamonds) through 

the operando reactor. Sample: Cu/Al = 0.41, Si/Al = 18, Cu-ZSM-5. 

C.3 NO Adsorption Capacity of the Catalyst 

Since the 15NO trace coincided with the 15NO2 trace in each of the 14NO → 15NO 

switching experiments performed in this study, it was of interest to identify the storage 

capacity of the bare catalyst surface for NO only. Since the 15NO trace coincided with the 

inert Ne trace (Figure C.3.1), it showed that the surface did not have any capacity for NO 
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storage by itself at 573 K, similar to the results reported by others [6, 244]. This meant that 

the lag in the 15NO trace compared to the Ne tracer during NO oxidation occurred because 

of its involvement in the surface reaction with 15NO2 via nitrates as suggested by equation 

4.2. The initial spikes in the mass spectrometer traces are observed due to adjustment of 

15NO concentration after its flow was started. 

 
Figure C.3.1 Probing the NO storage capacity of the catalyst by flowing 15NO only on the 

clean, calcined catalyst sample. Mass spectrometer traces for 15NO2 (m/z = 47) and Ne 

(m/z = 20) are coincident with each other. Feed conditions: 300 ppm 15NO, 573 K. 

Sample: Cu/Al = 0.33, Si/Al = 18, Cu-ZSM-5. 
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C.4 14NO → 15NO Isotope Switch at Different Temperatures 

 
Figure C.4.1 (a) FTIR spectra after the 14NO → 15NO isotope switch show an immediate 

decrease in the 1626 cm-1 peak along with a concomitant increase in the 1592 cm-1 peak 

(b) Mass spectrometer traces for 15NO2 (m/z = 47) and 14NO2 (m/z = 46) are coincident 

with the areas for the 1592 cm-1 and 1626 cm-1 peaks, respectively. The corresponding Ar 

(m/z = 40) and Ne (m/z = 20) traces are also shown. Sample: Cu/Al = 0.3, Si/Al = 18, Cu-

ZSM-5. Feed conditions: 150 ppm NO/15NO, 5% O2, 543 K. 

 
Figure C.4.2 (a) FTIR spectra after the 14NO → 15NO isotope switch show an immediate 

decrease in the 1626 cm-1 peak along with a concomitant increase in the 1592 cm-1 peak 

(b) Mass spectrometer traces for 15NO2 (m/z = 47) and 14NO2 (m/z = 46) are coincident 

with the areas for the 1592 cm-1 and 1626 cm-1 peaks, respectively. The corresponding Ar 

(m/z = 40) and Ne (m/z = 20) traces are also shown. Sample: Cu/Al = 0.3, Si/Al = 18, Cu-

ZSM-5. Feed conditions: 150 ppm NO/15NO, 5% O2, 573 K. 
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Figure C.4.3 (a) FTIR spectra after the 14NO → 15NO isotope switch show an immediate 

decrease in the 1626 cm-1 peak along with a concomitant increase in the 1592 cm-1 peak 

(b) Mass spectrometer traces for 15NO2 (m/z = 47) and 14NO2 (m/z = 46) are coincident 

with the areas for the 1592 cm-1 and 1626 cm-1 peaks, respectively. The corresponding Ar 

(m/z = 40) and Ne (m/z = 20) traces are also shown. Sample: Cu/Al = 0.3, Si/Al = 18, Cu-

ZSM-5. Feed conditions: 150 ppm NO/15NO, 5% O2, 563 K. 

C.5 Kinetic Model for NO Oxidation 

The model proposed by Verma et al. [41] has been modified to account for the participation 

of nitrates in the NO oxidation reaction as well as to account for the NO – NO2 equilibrium 

via nitrates. The new kinetic model, consistent with their observations as well as the current 

study, is as follows: 

* + O2 
K1
↔  O2*……C.3 

O2* + NO 
k2
→  NO2 + O*……C.4 

NO2 + O* 
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↔  NO3*……C.5 

NO3* + NO 
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Overall NO Oxidation Reaction: 2NO + O2 → 2NO2……C.8 

where * = a Cu-Cu pair without adsorbed oxygen i.e reduced Cu-Cu site. Assuming that 

equation C.4 is the rate determining step [41] while all other steps are in equilibrium, the 

rate for the NO oxidation reaction is: 

r = k2[NO][O2*]……C.9 

Using equilibrium for steps C.3 and C.5 – C.7, the individual surface species can be 

expressed as a function of the gas phase NO, NO2 and O2 concentrations as follows 

[O2*] = K1[O2][*]……C.10 

[NO2*] = 
[NO2][*]

K5

……C.11 

[NO3*] = 
[NO2]

2[*]

K5K4[NO]
……C.12 

[O*] = 
[NO2][*]

K3K4K5[NO]
……C.13 

Equation C.6 accounts for the fast equilibrium between gas phase NO and NO2 via nitrates. 

The total site balance, taking [L] as the total number of available Cu-Cu pairs for NO 

oxidation 

[L] = [*] + [O*] + [O2*] + [NO2*] + [NO3*]……C.14 

[*] = 
[L]

1 + K1[O2] + 
[NO2]

K5
 + 

[NO2]2

K4K5[NO]
 + 

[NO2]
K3K4K5[NO]

……C.15 

r = 
k2K1[O2][NO]2[L]

[NO] + K1[O2][NO] + 
[NO2][NO]

K5
 + 
[NO2]2

K4K5
 + 

[NO2]
K3K4K5

……C.16 
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Thus, 

nO2
 = 1 -  θO2*……C.17 

nNO2
 = -θNO2* - 2θNO3* - θO*……C.18 

nNO = 2 - θ* - θO2* - θNO2*……C.19 

where θi is the coverage of the ith species on the catalyst surface.  

Using the experimentally measured reaction orders of 0.9 for O2, -0.8 for NO2 and 1.7 for 

NO the following surface coverages for each of the intermediates is obtained 

θO2* = 0.1, θO* = 0.5, θNO3* = 0.1, θNO2* = 0.1, θ* = 0.1 
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APPENDIX D . Copyright and Legal Matters 

All the legal matters with permission to reproduce figures and texts from the published 

papers are covered in this appendix. 

D.1 Chapter 2 

“Reprinted (adapted) with permission from Catalysis in a Cage: Condition-Dependent 

Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites, Chrisopher 

Paolucci, Atish A. Parekh, Ishant Khurana, John R. Di Iorio, Hui Li, Jonatan D. Albarracin 

Caballero, Arthur J. Shih, Trunojoyo Anggara, W. Nicholas Delgass, Jeffrey T. Miller, 

Fabio H. Ribeiro, Rajamani Gounder, William F. Schneider, Journal of the American 

Chemical Society, doi: 10.1021/jacs.6b02651. Copyright (2016) American Chemical 

Society.” 
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