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ABSTRACT 

Aslam Kiran. Ph.D., Purdue University, August 2016. Deciphering the Role of Hsp31 as 
a Multitasking Chaperone Protein Major Professor: Tony Hazbun. 
 

Among different type of protein aggregation, amyloids are biochemically well 

characterized state of protein aggregation that is commonly associated with a large 

number of neurodegenerative diseases in mammals and cause heritable traits in 

Saccharomyces cerevisiae. Among many other neurodegenerative diseases linked with 

amyloids, Parkinson’s disease is the second most common disorder that is caused by 

progressive deterioration of dopaminergic neurons in substantia nigra.  Cellular stresses 

such as accumulation of high level of reactive oxygen species, mitochondrial dysfunction 

and α-syn aggregation lead to toxicity and neuronal cell death in Parkinson’s disease 

patients. Mutations in certain genes are also involved in the development of a familial 

form of PD including PARK7 that encodes DJ-1. DJ-1 is a member of ThiJ/DJ-1/PfpI 

protein superfamily that are the quintessential multitasking or moonlighting protein 

family as evidenced by their involvement in multiple cellular functions including 

oxidative stress sensing, protein folding, proteasome degradation, mitochondrial complex 

stabilization, methylglyoxalase and deglycation enzyme activities. The members of the 

ThiJ/DJ-1/Pfp1 superfamily appear to have evolved to numerous mechanisms to manage 

cellular stress. The protein superfamily members are present across the evolutionary
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 spectrum including prokaryotes and the budding yeast, S. cerevisiae, that has four 

paralogs Hsp31, Hsp32, Hsp33, and Hsp34. Hsp31 consists of 237 amino acids with a 

MW of 25.5 kDa and forms a homodimer in solution. It possesses the Cys-His-Glu 

catalytic triad common to ThiJ/DJ-1/PfpI superfamily proteins. Previously, we have 

shown that Hsp31 possesses chaperone properties with protective effects against α-syn 

toxicity in yeast. Recently, it is shown that Hsp31 has a methylglyoxalase activity that 

converts the toxic metabolite methylglyoxal into lactate. Here, we confirmed that Hsp31 

is a robust methylglyoxalse that is more potent in activity than its human homolog DJ-1. 

We demonstrated that Hsp31 chaperone activity to protect the cells from α-syn toxicity is 

not under the influence of its enzymatic activity or autophagy pathway. Moreover, we 

confirmed that Hsp31 expression is induced by H2O2 mediated oxidative stress and 

further showed an increased expression of Hsp31 under α-syn mediated proteotoxic stress. 

These results establish that Hsp31 molecular chaperone activity is self-sufficient to 

protect the cells from stress conditions without requiring its enzymatic activities. 

Another associated class of amyloid aggregation state includes prions, which are self-

replicating, misfolded proteins capable of adopting amyloid aggregates in cells. In yeast, 

[PSI+] prion is the aggregated form of translation termination factor Sup35. Sup35, a 

translation-termination factor, is one of the original and best-studied prions in yeast. In 

the present study, we established the role of Hsp31 in preventing Sup35 aggregation both 

in vivo and in vitro using fluorescence microscopy, flow cytometry and SDD-AGE 

respectively. In addition, we provide evidence that Hsp31 act early on in the process of 

protein aggregation, as we didn't observe any co-localization of Hsp31 with larger Sup35 

prion aggregates. Moreover, Hsp31 transiently prevents prion induction with no 
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significant reduction over a prolonged induction of Sup35 aggregation indicating that 

Hsp31 acts prior to the formation of larger aggregates. This was further confirmed, as an 

elevated level of Hsp31 by itself was unable to cure [PSI+] prion with formerly present 

large aggregates. We established that Hsp31 inhibit Sup35 [PSI+] prion formation in 

collaboration with a well-known disaggregase, Hsp104. Hsp31 inhibits Sup35 aggregates 

formation and potentiates [PSI+] prion curing by overexpression of Hsp104. Absence of 

Hsp31 reduce the rate of [PSI+] prion curing by Hsp104 without influencing its ability to 

rescue the cell by thermotolerance. We also showed that Hsp31 physically interact with 

Hsp104 and together they prevent Sup35 prion toxicity to greater extends than if they 

were expressed individually in the yeast. These results elucidate a mechanism of Hsp31 

on prion modulation that could have implication in many neurodegenerative diseases. 

Taken together, the results show that Hsp31 is a stress-inducible protein with chaperone 

and glyoxylase activity that acts on a wide spectrum of misfolded proteins including α-

syn and Sup35.  These studies set the stage for further mechanistic insight in the 

biological roles of the Hsp31/DJ-1 chaperone family. 
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CHAPTER 1. INTRODUCTION 

1.1 High-fidelity protein quality control 

Biogenesis of protein is carefully monitored by protein quality control (PQC) process to 

avoid sporadic errors or damage ring during the synthesis or life times of cellular proteins. 

In order to maintained protein homeostasis, damaged proteins must be corrected or 

degraded after synthesis (1-5). These two types of defense mechanisms are mediated by a 

complex network of chaperones, the ubiquitin–proteasome system (UPS) and autophagy 

mediated-lysosomal proteolysis (2,4,6). Chaperones bind newly synthesized proteins as 

well as unfolded proteins to assist them in reaching a mature protein conformation at the 

expense of ATP hydrolysis (2,7,8). Moreover, ubiquitin ligases that are recruited by 

chaperones, will themselves degrade damaged proteins that are beyond repair (2,6,8,9). In 

addition, PQC monitors the cell to ensure proper folding of mature proteins that have the 

tendency to revert into native conformation under oxidative or proteotoxic stress (3,10). 

Similarly, additional quality control systems will ensure the proper synthesis of other 

macromolecules such as DNA and RNA (1,3,11,12). The PQC process occurs throughout 

the cell and is classified according to the location of the misfolded substrate in different 

cellular compartments (7). Therefore, the PQC system plays a vital role in maintaining 

the proper folding of proteins and it has significance in  
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the pathophysiology of diseases associated with protein misfolding and aggregation 

(13,14).  

1.1.1 Consequences of Protein Misfolding 

Virtually all aspect of biological life processes is determined by highly diverse enzymatic 

and the structural characteristics of proteins. On the other hand, protein can be a 

vulnerable entity for living cells if there is extensive change in their structural 

conformation (15-18). The alpha helical spiral coils are the most common secondary 

structure in proteins that must be maintained to their native conformation, in order to be 

biochemically functional. Although, many functional native proteins contain beta sheets, 

a protein becomes toxic if it acquires an abnormal conformational transition from alpha 

helix to beta sheet (19-22).  Partially folded or misfolded proteins expose their 

hydrophobic amino acids and unstructured polypeptide to promote protein aggregation in 

a concentration dependent manner. Such misfolding or partial folding leads to association 

of proteins with each other to form protein aggregates that further accumulate together to 

form larger aggregates (23,24). While, hydrophobic forces driving the formation of 

smaller aggregates primarily leads to larger amorphous aggregates, it can also guide to 

the formation of highly structured protofibrils known as amyloids that possess distinct 

cross β-strands and are thermodynamically stable (16,21,25).  

1.1.2 Role of chaperone in protein homeostasis 

Amino acid sequences of any protein encoded by DNA, contains all the fundamental 

information required to fold a protein into a three-dimensional structure, as small proteins 

can refold in vitro from a denatured state without needing other components or energy 

sources (3). However, research over the past 20 years has revealed that many proteins 
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particularly large proteins require molecular chaperones to fold effectively and in a 

timely manner in vivo (26,27). Chaperones can be defined as a protein that binds and 

stabilizes another protein to achieve its functionally active conformation. Chaperones 

form a complex network of many different classes of structurally unrelated proteins that 

cooperate together in cells to maintain protein homeostasis (28). Members of these 

families are often up regulated under conditions of stress in which the concentration of 

partially folded protein intermediates are increased. They are often known as heat shock 

proteins (HSPs) or stress proteins and named after their molecular weights such as Hsp40, 

Hsp60, Hsp70, Hsp90, Hsp100 and small HSPs (27,29-33). They are involved in multiple 

functions of protein homeostasis including de novo protein folding, oligomeric assembly, 

protein trafficking, refolding of denatured proteins as well as help in proteolytic 

degradation and disaggregation of larger aggregates (26,33-40). The classes of chaperone, 

such as Hsp70 and Hsp90 that are involved in the de novo folding of protein require ATP 

hydrolysis and multiple binding and release of co-chaperones. They also cooperate with 

ATP-independent chaperones, such as small HSPs to facilitate protein disaggregation 

(33,34,36,37). In the de novo folding of proteins, ATP-dependent chaperones usually 

bind to exposed or accessible hydrophobic amino acids of a non-native protein to 

transiently prevent aggregation driven by ATP hydrolysis. ATP hydrolysis is facilitated 

by co-chaperones such as Hsp40, that mediate Hsp70 recruitment to substrate proteins, 

Hsp40 also interacts with partially folded protein substrate to unfolded peptides. After 

release of the substrate protein from co-chaperones, Hsp70 rebinds to the peptides until 

they achieve their functional folded state and therefore prevent them from aggregation 

(26).  
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Another role of chaperones in maintaining protein homeostasis is to regulate protein 

concentration in the cells. During the folding process, chaperones stabilize protein 

molecules and ultimately increase their concentration to achieve the cells need and 

similarly, when a particular protein is not in demand chaperones diminish the folding 

process with the help of regulator proteins to decrease its concentration. Although the 

primary role of the chaperone machinery is during the initial protein folding process, it is 

now being accepted that many proteins depend on molecular chaperones assistance to 

maintain or regain their functionally active conformations throughout their cellular life 

(26,41). 

1.1.2.1 Heat Shock Proteins 

Italian geneticist Ferruccio Ritossa first discovered the first evidence of heat shock 

proteins in 1962. He reported that heat shock treatment of Drosophila larvae induces a 

puff pattern in the polytene chromosomes that was later was identified and associated 

with the synthesis of heat-shock proteins that are now commonly known as molecular 

chaperones (42,43). These proteins are highly upregulated under stress conditions such as 

environmental, metabolic or pathophysiological stress and play a vital role in the survival 

of cells under such conditions. These proteins are highly conserved across species and 

generally classified according to their molecular masses into six major families i.e. 

Hsp100, Hsp90, Hsp70, Hsp60, Hsp40 and small heat shock proteins (sHSPs) (44-46). A 

list of major HSPs along with their cellular location and brief description of primary 

functions is outlined in Table 1.1. 
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Table 1.1 Major heat shock proteins: subcellular location and functions. 

Heat-shock protein Subcellular 

localization 

Known functions 

Hsc70 Cytosol/nucleus Protein folding, clathrin uncoating, 

peptide binding 

Hsc74 Mitochondria Involved in antigen presentation and 

radioresistance. Also oncogenic 

(overexpression of Mot-2 leads to p53 

inactivation and cell transformation). 

Hsp110 Cytosol/nucleus Binds to Hsc70 to form high-

molecular-weight complex; involved in 

protein folding, thermotolerance, and 

embryogenesis 

Hsp27 Cytosol Antiapoptotic, cytoprotection 

Hsp40 Cytosol Repair denatured proteins, together 

with Hsp70/Hsc70 

Hsp60 Mitochondria Cytoprotection; macrophage activator 

possibly through Toll-like receptors 

Hsp70 Cytosol/nucleus Cytoprotection and anti-apoptotic, 

Hsp70-2 implicated in spermatogenesis 

Hsp90α Cytosol Protein folding, peptide chaperone, 

cytoprotection, intracellular signaling 

(e.g., steroid receptor), cell-cycle 

control and buffering of harmful 

mutations 

Hsp90β Cytosol Major cytosol chaperone; protein 

folding; cytoprotection; intracellular 

signaling (e.g., steroid receptor); cell- 

cycle control; and buffering of harmful 

mutations 
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1.1.2.2 Small heat shock proteins 

The sHSPs are phylogenetically widespread and have been found in almost all organisms 

ranging from archaebacteria, prokaryotes and eukaryotes. Within cells, they are found in 

multiple subcellular locations where they bind to wide range of unfolded proteins 

substrates to prevent their aggregation (44,47-49). Proteins in this family possess 12-43 

kDa weights with the ability to form dynamic oligomers. Monomers of many sHSPs are 

composed of a conserved 80-100 amino acid α-crystallin domain, accompanied with 

beta-strands responsible for dimerization. The N-terminal domain is responsible for 

oligomerization, phosphorylation and chaperone activity but it is not a highly conserved 

domain, while the C-terminal domain is accountable for client protein interaction, 

nucleotide binding and homodimerization (48). In vitro studies revealed that quaternary 

structures of sHSPs are very stable and can binds to large number of unfolded protein 

substrates compared to other major chaperones. sHSPs are consider as having ‘holdase’ 

activity because of their unusually high tendency to bind unfolded client proteins and to 

assist subsequent refolding of substrates by ATP-dependent chaperone networks (44,48). 

Structural and in vitro studies have led to a proposed model that under stress conditions, 

oligomers of sHSPs undergo structural rearrangement and breakdown into monomers to 

be functionally active. Although the exact mechanism is poorly understood, it is thought 

that the hydrophobic regions of sHSPs may bind with hydrophobic surfaces of partially 

misfolded proteins to make larger soluble complexes that inhibit further aggregation of 

the misfolded proteins (50-52). 



 

 

7 

7 

The sHSP family displays a functional diversity such as protecting the cells from stressful 

conditions, involvement in stress tolerance, protein folding, protein degradation, 

maintaining cytoskeletal integrity, cell cycle, signal transduction, cell differentiation and 

cell death. Moreover, many members of sHSP family interact with their substrates to 

display potent anti-apoptotic activity and anti-inflammatory property as well as exhibit 

cardio and neuroprotection (44,47,53). Therefore, sHSP family members have important 

implications in a broad range of health and disease conditions. However, many 

unanswered questions remain regarding the underlying mechanisms of sHsps pleiotropic 

functions and their promiscuous interactions. 

1.2 Neurodegenerative diseases 

Several common pathways have been proposed to cause the underlying etiology and 

pathology of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s 

disease (PD), Fronto-temporal dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), 

and Prion diseases (54). Multiple factors have been implicated in causing 

neurodegeneration such as protein misfolding leading to aggregation, mitochondrial 

dysfunction, free radical formation caused by oxidative stress and environmental 

exposure of metals and pesticides associated with age (20,22,55,56). Although there is a 

partial overlap in the general mechanism of these neurodegenerative diseases, each 

disease has its own distinct molecular mechanism and pathological manifestation 

including degradation of specific brain regions and deposits of protein aggregates in 

neurons (55,57). The most common characteristic of this group of diseases is the 

accumulation and deposition of aggregated or misfolded proteins including α-synuclein 

(α-syn) in PD, amyloid-β in AD, huntingtin protein in HD and transactive response 



 

 

8 

8 

DNA-binding protein 43 (TDP-43) in ALS (54,56-61). A list of aggregation associated 

neurodegenerative diseases are outlined in Table 1.2.  
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Table 1.2 Aggregation associated neurodegenerative diseases. 

Disease Associated 

protein/gene 

Protein deposits Most affected 

regions 

Alzheimer’s disease Amyloid beta, 

APP 

Tau, ApoE, 

PSEN1, 

PSEN2 

Extracellular 

Plaques 

Intracellular tangles 

Cortex, 

Hippocampus, basal 

forebrain, brain stem 

Parkinson’s disease αSyn, Parkin, 

DJ-1, UCHL-

1, LRRK2 

Lewy bodies Substantia nigra, 

cortex, locus 

ceruleus 

Huntington’s 

disease 

Huntington Huntington with poly 

glutamine expansion 

Striatum, other basal 

ganglia, cortex 

Prion disease CJD, 

fatal familial 

insomnia) 

Sporadic, 

genetic and 

infectious, 

PrPSc, PRNP 

Prion amyloid 

plaques, Spongiform 

degeneration 

Cortex, thalamus, 

brain stem, 

cerebellum 

Polyglutamine 

diseases (DRPLA, 

GSS, SCA1-3, 

SBMA etc) 

PolyQ 

containing 

proteins, Genes 

with CAG 

repeat 

expansion 

Nuclear and 

cytoplasmic 

inclusions 

Basal ganglia, brain 

stem, cerebellum 

and spinal cord 
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Table 1.2 continued 

Familial 

amyotrophic lateral 

sclerosis (ALS) 

SOD1 Bunina body tangles Spinal motor 

neurons and motor 

cortex 

Tauopathy Tau Cytoplasmic 

inclusions 

Cortex, brain stem 

and other areas 

 
APP, amyloid precursor protein; ApoE, Apolipoprotein; PSEN1/2, Presenilin 1/2; PRNP, prion protein; 

CJD, Creutzfeldt-Jakob disease; DRPLA, dentato-rubral and pallido-Luysian atrophy; GSS, Gerstmann-

Straussler-Scheinker; SBMA, spinal and bulbar muscular atrophy; SCA, spino-cerebellar ataxia. 
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1.2.1 Mitochondrial dysfunction in neurodegenerative disease 

The mitochondria, most often known as powerhouses of the cells, are responsible for 

most of the energy supply in eukaryotic cells. They play critical roles in regulating cell 

processes including signaling pathways, calcium balances, reactive oxygen species (ROS) 

formation, cell cycle regulation, thermogenesis and cell death. The loss of mitochondrial 

function is associated with increased ROS production and oxidative stress that are 

responsible for development of numerous neurodegenerative disorders. Mitochondria 

generate adenosine triphosphate (ATP) during oxidative phosphorylation using metabolic 

intermediates in tricarboxylic acid (TCA) cycle. Superoxide anion radicals (O-2) that are 

produced during electron transport chain (ETC) activity are converted into hydrogen 

peroxide by enzymatic action of superoxide dismutase in the mitochondria. Hydrogen 

peroxide further detoxifies by the action of glutathione peroxidase into water in the 

mitochondria. Defects in enzymes involved in the ETC leads to increased production of 

ROS resulting in a decrease in the mitochondrial membrane potential, energy crisis and 

finally cell death. In addition to antioxidant activity of mitochondrial enzymes mentioned 

above, cells also possess glutathione (GSH), Vitamin E, Vitamin C and ubiquinone as 

antioxidant agents that protect the cell from oxidative stress. An imbalance in the 

antioxidant homeostasis leads to oxidative stress in cells (62-64). In the CNS, neurons are 

particularly prone to oxidative stress resulting in accumulation of ROS that potentially 

leads to the initiation of free radical chain reactions and finally cell death. Many classes 

of macromolecules ranging from lipids to DNA and proteins are found to be oxidatively 

damage in neurodegenerative diseases such as PD, AD, HD and ALS (56,65-67). Thus 

mitochondrial dysfunction and defects in mitochondrial activity parameters including 
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alteration in mitochondrial dynamics, increase in ROS production and loss of energy 

leads to neuronal death and are an important contributor in the manifestation of 

neurodegenerative disorders (66). Therapeutic approaches to target mitochondrial 

functions could certainly be useful however, using antioxidants, as sole therapy to treat 

neurodegeneration appears to be not sufficient. In fact, several clinical studies have 

demonstrated only little success with antioxidants in the treatment of neurodegeneration 

(68). Targeting mitochondrial proteins to alter abnormal mitochondrial dynamics may 

provide a potential therapeutic strategy against neurodegenerative diseases (64). 

1.2.2 Amyloidogenesis 

The term ‘amyloid’ has been used to describe the highly ordered cross beta proteinaceous 

structures found in various pathological conditions. Amyloids are formed when a soluble 

and innocuous protein transforms into insoluble protein aggregates that might not be 

directly invasive but are associated with neuropathology. The tendency of amyloid 

formation is multifactorial including amino acid composition, protein sequences and 

concentration, posttranslational modification and environmental factors (16,19). Several 

studies now clearly show that protein aggregation is a complex process that occurs in 

several different steps, making different kinds of intermediates and finally turned into 

larger aggregates that could be either amorphous or amyloids (69). However, there is 

much to be learned as most of these studies are done in vitro and hence may not simulate 

in vivo behavior in human diseases (70). Initiation of the multi-step pathway of protein 

aggregation begins with modification of protein to an abnormal conformation that may be 

a covalent modification such as cleavage or phosphorylation of the disease protein. These 

modifications of proteins facilitate the conversion of monomers into smaller oligomers 
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that further assemble into protofibrils. Association of these protofibril intermediates can 

form larger amyloid aggregates that can be visualized under the microscope (71-76). It is 

hypothesized that intermediate species are more toxic than the precursor protein or final 

amyloids (73,77,78) (Figure 1.1). Therefore, it would maybe beneficial to inhibit 

aggregation formation at early stages of the pathway, as it may prevent the formation of 

toxic oligomeric species.  
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Figure 1.1 Hypothetical pathway in the formation of amyloid. 

Amyloidogenesis is considered to be a legitimate pathological reason for neuronal 

degeneration although the exact mechanism behind this degeneration remains 

unidentified (14,79). Several models of amyloid-associated toxicity have been proposed. 
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First, amyloids occupy the extracellular space that damages the normal architecture and 

function of cells and thus leads to neuronal toxicity. It is also proposed that smaller 

oligomers formed at initial stages of amyloidogenesis are more toxic to cells as they 

destabilize cellular membranes (16,74,80,81). These intermediate oligomers assemble 

into final amyloid fibrils that have been hypothesized as a non-invasive product of the 

toxic intermediates that might rather be a detoxification mechanism. Another group of 

studies suggest that generation of ROS by the incorporation of redox metals into 

amyloids could affect cell viability (74). On the other hand, the larger aggregates could 

recruit and thus diminish some essential proteins for cell survival (82).  

1.3 Parkinson’s disease 

PD is an idiopathic disease of the nervous system characterized by two neuropathological 

hallmarks, the preferential loss of dopaminergic neurons in the substnatia nigra pars 

compacta region of the brain and the presence of cytosolic inclusions called Lewy bodies 

(LBs) in various brain regions (56,58,83). It is a chronic progressive disease that affects 

the older population but can also occurs in much younger patients and is the second most 

common neurodegenerative disorder after AD (84,85). Dr. James Parkinson, after whom 

the disease is named, first recognized PD in the early 1800’s. PD affects 10 million 

people worldwide and it is expected that its prevalence in America will increase 

dramatically over the next 20 years as the proportion of the population ages (86,87). In 

developing nations, the life expectancy is rising and cases of such age related 

neurological disorders is also increasing resulting in a strong impact on the healthcare 

system and economy due to direct and indirect costs associated with care of PD patients 

(84,88,89). Therefore, it is critical to understand the molecular mechanisms of PD to 
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develop better therapeutic strategies, early detection of the disease and identify causative 

genetic and environmental factors. 

1.3.1 Risk factors 

Age is the major risk factor for PD with an average age of disease onset of 60 years and 

risk of diagnosis greatly increases after 85 years of age (90,91). Other risk factors include 

family history and environmental stress such as exposure to pesticide toxins. Men are 

more susceptible than women to develop the disease but the causative risk factor is still 

unclear (92-94). Numerous other risk factors have been associated with PD though the 

epidemiologic evidence is not robust. These include drinking of well water, excess milk 

consumption, obesity, living in rural areas with exposure to copper, manganese, lead and 

hydrocarbon solvents such as industrialized, farming or agricultural work (94-96). On the 

other hand, cigarette smoking and caffeine intake have been linked with reduced risk of 

PD (97). Table 1.3 describes the etiology of PD. 
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Table 1.3 Etiology of Parkinson’s disease 

Feature Details 

Age of onset 65 

Men:women 1.5:1 

Idiopathic:hereditary,% 90:10 

Frequency/1000persons 

Patients aged 55-65 y 

Patients >85 y 

 

0.3 

4.4 

Percentage prevalence 

Total population 

People >60 y 

 

0.3 

1 

Life expectancy Varies with the age of the onset and 

occurrence of dementia 

Risk factors Age, family history, pesticide exposure and 

head injury 

Motor symptoms Tremor, rigidity, bradykinesia, postural 

instability, impaired speech and gait 

Non motor symptoms Constipation, autonomic dysfunction, 

dementia, depression, sleep disorder and 

psychosis 
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1.3.2 Genetic factors  

Although the majority of PD cases are sporadic, about 5-10% PD cases are familial as 

they are associated with gene mutation. The number of genes associated with the onset of 

early or advanced PD have steadily increased over the last 15 years including mutations 

or amplification in the LRRK2, PARK2, PARK7, PINK1, or SNCA (PARK1) gene and 

possibly additional unidentified genes (92,94,98). Even though most cases of PD are 

sporadic, examining the genes associated with PD is valuable as there is evidence to 

show a strong correlation between sporadic and familial forms of PD. PARK1 encodes α-

syn consists of autosomal dominant gene, mutation or multiplication of this can lead to 

PD (99,100). The α-syn protein is a 140 amino acid protein that exclusively expressed in 

the CNS. Natively it is present mostly as membrane-bound α-helices in the neurons. 

(101,102). In the disease form, α-syn mainly presents as an aggregated protein 

component found in LBs (103). Several α-syn mutants including A53T, A30P, E46K and 

H50Q have been shown to increase the aggregation formation that leads to form 

potentially toxic protofibrils. High level of α-syn also sequestered several cytoskeletal 

proteins, such as tubulin, that prevent the conversion of α-syn into fibrils leading to 

increase in toxic protofibril species (99,100,104-107).  

1.3.3 Diagnosis 

Despite extensive research done on the pathophysiology of PD, its diagnosis is still 

restricted to suboptimal methods for detection and prognosis.  There is a critical need for 

the development of highly sensitive and specific biomarkers as they are lacking currently 

(108). The PD diagnostic decision in a clinic relies on the presence or manifestations of 

symptoms associated with the disease such as bradykinesia, rest tremor, rigidity, postural 
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instability and impaired gait (93,109-111). If patient response to dopaminergic agents 

such as levodopa and patient history reveals gradual progression of symptoms there is 

likelihood of accurate diagnosis of PD. However, responsiveness to levodopa has been 

seen in other parkinsonian syndromes and unrelated dystonias (108,112,113). To confirm 

PD, presence of Lewy bodies (LBs), protein deposits in substantia nigra and loss of 

neurons is a required diagnostic criteria upon examination of a deceased patient’s brain 

section (110,113). As this approach is a post mortem examination, it has no implications 

in clinical diagnosis.  

There are several biomarkers currently being analyzed that can correlate with PD 

prognosis with high accuracy and can be used as next generation diagnostic tools (114-

117). Among them the major constituent of PD such as oligomeric forms of α-syn and 

DJ-1 protein level have been analyzed in the blood of PD patients with no success 

(107,118,119). Several other biomarkers such as uric acid level, iron level in the 

substantia nigra region of brains as well as epidermal growth factor (EGF) and 

Apolipoprotein A1 (ApoA1) are under investigation (120-123). Currently there is no 

single biomarker available to predict PD progression with reliability and validity 

(114,124). 

Neurologic imaging tools such as positron emission tomography (PET) scan, magnetic 

resonance imaging (MRI), ultrasonography and others play small role in diagnosis and 

are presently not accepted as diagnostic tool for PD (125-127).  
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1.3.4 Clinical presentation 

There are four cardinal components of symptoms associated with PD: motor symptoms, 

cognitive changes, behavioral/neuropsychiatry symptoms, and autonomic nervous system 

failures. These can be divided into motor and non-motor symptoms.  

1.3.4.1 Motor symptoms 

The major motor features of PD are sometime represents by a mnemonic TRAP. It stands 

for Tremors, Rigidity, Akinesia (or bradykinesia) and Postural instability. According to 

pathological and neuroimaging studies, onset of motor symptoms occurs only after about 

50-70% of neurodegeneration of substantia nigra (89,128). Rate of motor symptoms are 

highly variable among patients. Bradykinesia is the most characteristic clinical 

manifestation of PD that refers to slowness of movement. Patients often describe 

bradykinesia as tiredness or weakness and commonly report difficulty from getting up 

from a chair and opening packages or containers (129). Rigidity of idiopathic PD referred 

to as ‘cogwheel’ phenomenon is when patients experience difficulty to initiate a 

movement. At the beginning, it is unilateral but can move to other sides in the later stages 

of the disease. Tremors at rest are the most easily recognizable symptom of PD that are 

always prominent at the distal part in the extremities and occur at frequency between 4 to 

6 Hz. At the late stages of PD usually after onset of other clinical features postural 

instability develops due to loss of postural reflexes. Postural instability along with 

freezing of gait significantly increases the risk of hip fracture due to sudden fall (130-

133).  
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In addition to classic motor features, other motor symptoms are also observed including 

dysarthria, masked facial expression (hypomimia), dysphagia, blurred vision, decrease 

eye blink, dystonia and difficulty turning in bed (93). 

1.3.4.2 Non-motor symptoms 

Along with the motor symptoms of PD, the non-motor symptoms (NMS) are major cause 

of disability for PD patients but unfortunately unlike motor symptoms NMS are not well 

recognized and undertreated (109,134-136). Recognition and treatment of NMS is an 

important and fundamental aspect to consider in order to delivering a comprehensive 

healthcare for PD patients. NMS arise with the progression of disease and are diverse 

including neuropsychiatric symptom, sleep disorder, autonomic symptom, 

gastrointestinal symptom and sensory symptom (Table 1.4). Sometime treatment of PD 

leads to development or exacerbation of NMS in PD patients therefore it is important to 

recognize, monitor and treat these symptoms (135-138). 
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Table 1.4 Non-motor Symptoms of Parkinson’s disease 

Neuropsychiatric 

symptoms 

Sleep disorders Autonomic 

symptoms 

Gastrointestinal 

symptoms 

Depression Restless legs Bladder 

disturbances 

Urgency Nocturia 

Dribbling of 

saliva 

Apathy, anxiety 

Obsessional behavior 

Periodic limb 

movements 

Sweating Dysphagia/choki

ng 

Anhedonia REM behavior 

disorder 

Orthostatic 

hypotension (OH) 

Reflux 

Attention deficit Excessive daytime 

somnolence 

Sexual 

dysfunction 

Vomiting 

Nausea 

 

Hallucinations Vivid dreaming Erectile 

impotence 

Constipation 

Fecal 

incontinence 

Delusions Dementia Non-REM sleep-

related movement 

disorders Insomnia 

Hypotestosterone 

state 

Unsatisfactory 

voiding of bowel 
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1.3.5 Management of Parkinson’s disease 

Currently, there are only symptomatic treatments available with no proven 

neuroprotective agents. For earlier stages of disease after diagnosis, it is important to take 

time and educate the patient and relative about the condition and its implications. The 

decision to start the treatment especially at earlier stages of disease when there is little 

functional deficit is difficult. This decision should be made based on the age of the 

patient, the consents of the patient, the presence of cognitive impairment, the likelihood 

of complications associated with treatment and additional health problems (89,139,140). 

The current gold standard regimen for managing symptoms is precursor of Dopamine i.e. 

L-3,4- dihydroxyphenylalanine (L-Dopa or levodopa). Levodopa can cross the blood 

brain barrier (BBB) easily to enter the central nervous system where it converts into 

dopamine in the presence of an enzyme L-aromatic decarboxylase (133). Although L-

Dopa reduced the symptoms of PD and decreased the mortality rate associated with PD, 

it is responsible for wide range of side effects due to peripheral conversion into dopamine. 

To avoid these side-affects, dopa decarboxylase inhibitors, Carbidopa and Benserazide 

are co-administered that cannot cross BBB and only inhibit peripheral dopamine 

conversion. However, chronic use of L-dopa is associated with induction of dyskinesia 

that is particularly problematic at later stages of disease with loss of large number of 

dopaminergic neurons (141).  

Another strategy to treat symptoms of PD is the use of dopamine agonists including ergot 

derivatives such as bromocriptine, pergolide, cabergoline and lisuride; and non-ergot 

derivatives as ropinirole and pramipexole. Dopamine agonists produced fewer of motor 
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complication compared with L-dopa but efficacy is much lower when used as mono-

therapy (142-144).  

One more class of drug, the monoamine oxidase B (MAO-B) inhibitors, Selegiline and 

Rasagiline, have demonstrated efficacy in PD disease and have potential to use as mono-

therapy in both early and advanced disease. An N-methyl-D- aspartate (NMDA) receptor 

antagonist, amantadine, and anticholinergics such as benztropine have also been proven 

efficacious in a small sub-population of PD patients (112,139,143,145). After few years 

of consistent and effective response to L-dopa, the effect of a single L-dopa dose in most 

patients fluctuates in terms of motor performance leading to wearing-off phenomenon. 

Several catechol-O-methyl transferase (COMT) inhibitors and amantadine have been 

used in combination with L-dopa for the treatment of dyskinesias and other motor 

symptoms (144,146). A surgical procedure called deep brain stimulation has been 

reserved for patients who are unresponsive to pharmacological treatment and have a high 

degree of motor fluctuation and dyskinesias (147).  

1.3.6 Yeast Model of Parkinson’s disease 

Saccharomyces cerevisiae is a compatible cell model to understand the molecular 

mechanisms of several human diseases including PD, for which many α-syn toxicity 

models have been developed (148,149). This unicellular eukaryote is a well-suited model 

for studying the disease related phenotypes, for instance, stress response, mitochondrial 

and vesicular trafficking defects as well as oxidative stress response. In addition, this 

simple genetic model has been extensively used for large-scale screening of drugs and 

genes to uncover the underlying mechanism of disease (17,148-157). In this study we 

used a budding yeast (Saccharomyces cerevisiae) model of PD that evaluates α-syn 
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misfolding, aggregation, and toxicity. In this model, at relatively low concentration of α-

syn localizes to membrane and is not toxic to cells. When two gene copies of α-syn are 

expressed, an increase in the concentration of α-syn forms prominent intracellular 

cytoplasmic inclusions or foci that are associated with toxicity to the cells. This 

Saccharomyces cerevisiae model throws light on α-syn's role in PD pathogenesis (158). 

This simple experimental model is very useful to dissect and understand the biochemical 

mechanisms of many diseases, as there is high mechanistic similarity of many 

physiological processes with human cells. 

1.4 Prion disease 

Prions are self-replicating proteins that are responsible for fatal neurodegenerative 

disorder known as prion diseases or transmissible spongiform encephalopathies affecting 

multiple mammalian species such as Kuru, bovine spongiform encephalopathy (BSE) and 

scrapie, in human, cattle and sheep respectively (159-161). They are generally considered 

a transmissible disease within and between different mammalian species as transfer of 

brain extracts from affected persons into host species can spread the disease (162-164). 

Transmission among humans could occur during surgical procedures or pituitary 

hormone treatment, for example, 450 cases of iatrogenic Creutzfeldt–Jakob disease (iCJD) 

have been reported during such treatments. Blood donors with undetected subclinical 

symptoms could be a reason for variant CJD (vCJD) in humans. Cannibalistic rituals in 

Papua New Guinea were also historically linked with transmission of Kuru (165-173).  

Normal cellular prion protein (PrPC) is a 253 amino acid long protein encoded by a gene 

PRNP on chromosome 20 mutations of which is associated to genetic prion disease. The 

scrapie prion protein (PrPSc), is a pathological form of prion protein present in the brain 
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tissue of patients with transmissible spongiform encephalopathy (TSE). PrPSc differs with 

normal cellular prion protein (PrPC) by translational modification and is formed by 

recruiting PrPC conformers, which later perpetuate into larger aggregates that trigger 

neurotoxic signals (162,163,174-177). These are the characteristics of typical spongiform 

that are seen in the patient’s brain. A list of major prion diseases is provided in the table 

1.5.  
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Table 1.3 List of prion diseases. 

Disease Natural host 

species 

Rout of transmission or disease-induction 

mechanism 

Sporadic CJD Humans Unknown 

Iatrogenic CJD Humans Accidental medical exposure to CJD-

contaminated tissues, hormones or blood 

derivatives 

Familial CJD Humans Genetic (germline PRNP mutations) 

Variant CJD Humans Genetic (germline PRNP mutations) 

Kuru Humans Ritualistic cannibalism 

Fatal familial 

insomnia 

Humans Genetic (germline PRNP mutations) 

Sporadic fatal 

insomnia 

Humans Unknown 

Gerstmann–

Sträussler–

Scheinker 

syndrome 

Humans Genetic (germline PRNP mutations) 

Scrapie Sheep and goat  Horizontal and possibly vertical 

Atypical 

scrapie 

Sheep and goat Unknown 
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Table 1.5 continued 

Chronic 

wasting disease 

Mule deer, white-

tailed deer, Rocky 

Mountain elk and 

moose 

Horizontal and possibly vertical 

BSE Cattle Ingestion of BSE-contaminated food 

Atypical BSE Cattle Unknown 

Feline 

spongiform 

encephalopathy 

Zoological and 

domestic felids 

Ingestion of BSE-contaminated food 

Transmissible 

mink 

encephalopathy 

Farmed mink Ingestion of BSE-contaminated food 

Spongiform 

encephalopathy 

of zoo animals 

Zoological 

ungulates and 

bovids 

Ingestion of BSE-contaminated food 

BSE, bovine spongiform encephalopathy; CJD, Creutzfeldt–Jakob disease; PRNP, gene encoding prion 

protein; PrPC, cellular prion protein 

Adopted from Adriano Aguzzi et. al. (2013) Nature Reviews Immunology 13, 888–902 (178) 
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Like other neurodegeneration-associated amyloid proteins, PrPSc protein is rich in β-sheet 

content and is protease resistant, thus it not easily degraded by cellular enzymes. These 

protease resistant amyloids of PrPSc are then deposited in the brain tissue during 

progression of the disease. Prion aggregation can occur both intracellularly and 

extracellularly. Specific prion antibodies can detect amyloid plaques caused by prion 

protein that appear similar to those of AD (162,164,179). On the other hand, how prions 

destroy the neurons in CNS is still enigmatic. Numerous studies investigating the 

mechanism of prion aggregate formation and propagation are performed in yeast and 

many of the findings from these studies are applicable to human prion diseases.  

1.4.1 Prions in yeast 

Although no homologue of PrPC exists in yeast, many proteins have been discovered that 

are present in different conformations including normal soluble or amyloid aggregated 

forms. Different conformations of the same protein are linked with distinct phenotypes in 

yeast. In yeast, prions act as epigenetic cytoplasmic elements that provide phenotypic 

diversity in a heritable manner that operates at the level of protein conformation without 

the need of nucleotide sequences (180-185).  

Reed Wickner in 1994 proposed that the previously known yeast non-Mendelian 

heritable elements [URE3] and [PSI+] are prions of Ure2 and Sup35 proteins 

respectively(186,187). Prion are often linked with a loss of function phenotype in yeast. 

Sup35 is a translational termination factor that loses its function in a way that translation 

termination efficiency is compromised in the presence of the prion form of Sup35 

(98,188-191). Similarly, the normal function of Ure2 is to regulate nitrogen catabolism, 

preventing uptake of an intermediate, ureidosuccinate (USA), involved in the uracil 
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biosynthesis pathway. Thus the [URE3] prion form of Ure2, loses its normal function in 

ura2 mutant cells and can grow on –Ura media by taking up USA (186,188,192-196). 

Prion traits are dominant since aggregated forms of a prion can recruit the identical 

soluble prion protein and convert it into the prion conformation. [PSI+] prion exists in 

different variants similar to the observation in mammals that are genetically identical 

showed different characteristics of prion in isolates of disease that can be stably 

reproduced (164,197). Variation in the ratio of aggregated vs. soluble Sup35 protein is 

linked with different variants of [PSI+] prion, known as weak or strong forms of the prion. 

[PSI+] prion variants lead to different degree of loss of function for example, in the 

presence of ade1-14 nonsense stop codon, strong variants will cause greater degrees of 

translational read-through compared with weak variants resulting in accumulation of 

characteristic red pigments indicating the absence of ADE1 (198-202).  

1.4.2 Structural organization 

1.4.2.1 Prion forming domain 

Most of the yeast prion proteins contain a region that is required for the formation and 

propagation of the prion without requiring the remaining portions of the protein (203). 

Such regions are known as prion-forming domains or PrDs. Sup35 PrD or Sup35N 

domain is also involved in other cellular functions other than its role in prion formation 

(204). A middle domain (Sup35M) links PrD to the C-terminal domain. Sup35M domain 

is composed of highly charged amino acids residues that help to maintain prion 

aggregation possibly by interaction with HSPs (205). Yeast PrDs are Q and N rich 

domain, that when artificially recombined to different proteins may confer a prion state. 
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Sup35 prion forming domain (PrD) can be divided into two segments, the QNR stretch 

and the OPR element based on the observation that the fragment of PrD required for 

protein aggregation is shorter than segments needed for efficient propagation of prion 

(Figure 1.2) (161,180,206,207).  
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Figure 1.2. Sup35 structural domains organization. 

The Sup35 protein is divided into three domains based on the position of Met residues. 
The first domain N (amino-terminal) Met1 to residue 123, the M (middle) domain 
between Met 124 and residue 253, and C (craboxy-terminal) region from Met 254 to 
residue 685. The N-terminal domain is known as the PrD and is enriched in uncharged 
polar residues that are required for the formation of prions. The C-terminal domain is an 
essential region that functions as translation termination release factor. The minimal PrD 
domain consists of 1-97 amino acids that are composed of two distinct regions within it; 
QN rich region (QNR) and the oligopeptide repeat region (OPR). 
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1.4.2.2 De novo prion formation 

The frequency of prion de novo appearance is considerably low unless prions or their 

PrDs are transiently overexpressed resulting in the dramatic increase in the rate of prion 

formation by up to 3000-fold. Interestingly, overexpression of just the PrD is more 

efficient than transient overexpression of full-length protein (181,191,201,208). Still 

elevated levels of PrD as such, is not sufficient for prion formation and requires the 

presence of another QN rich prion, [PIN+] in aggregated state, for de novo prion 

formation (209). [PIN+] is a prion form of the Rnq1 protein that was first discovered as a 

non-Mendelian factor with prion like properties (181,201,208,210-212). The amino acid 

composition of Rnq1 is similar to the PrD of Sup35 and it is proposed that [PIN+] acts as 

an initial nucleus for de novo Sup35 prion aggregation formation. The de novo [PSI+] 

prion formation in the presence of [PIN+] by transient overexpression of Sup35 or its PrD 

is a multi-step process initiated by accumulation of misfolded protein in insoluble protein 

deposits (IPODs) quality control (213,214). Fusing of Sup35 to GFP, allows the 

visualization of formation of in vivo prion behavior, in which the fluorescent signal 

appears as a ring-like and long filamentous structures at the periphery of cells. These 

rings later collapse together to form internalized smaller rings that enclose the vacuoles. 

After cell division the daughter cells appeared with dot-like foci of [PSI+] (213).  

Aside from the presence of [PIN+], several other cellular components have been reported 

to control de novo prion formation and propagation. Most of these components are 

involved in stress response pathways such as chaperones, ubiquitin-proteasome system, 

intracellular trafficking networks and members of actin cytoskeleton (215-221). 
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1.4.3 Effect of heat shock proteins on prion propagation 

Although prion proteins require no cofactor to generate and propagate amyloid 

aggregation in vitro, de novo prion propagation is modulated by chaperones such as 

Hsp104, Hsp70, Hsp40 and sHSPs such as Hsp26 and Hsp42 (36,39,53,222-225). 

Hsp104 is a member of the AAA ATPase chaperone family with homohexameric 

structure and required for prion propagation in vivo. Hsp104 and its bacterial homolog, 

ClpB, possess potent disaggregase activity against stress damage protein aggregates (226-

228). Deletion or overexpression of Hsp104 eliminates [PSI+] prion, thus an intermediate 

level of Hsp104 is required for prion propagation (222,223,229,230). It was proposed that 

Hsp104 generates smaller seeds by promoting fragmentation of larger prion fibers that 

initiate propagation. It was also hypothesized that elevated Hsp104 cures [PSI+] prion by 

monomerization of large aggregates but evidence for this hypothesis are based on the 

indirect observation that overexpression of Sup35, leading to an increase in aggregate 

size, partially compromises the curing effect of excess Hsp104 (231). Another model 

proposes that elevated levels of Hsp104 cures [PSI+] by dissolution of the prion seeds, 

the evidence for this model came from observation that Hsp104 overexpression induces a 

diffuse localization signal for Sup35 tagged with GFP and a large fraction of soluble 

Sup35 was observed in cell lysate (226,232,233). Recent studies also suggest that 

dissolution of prion seed might be due to the trimming activity of Hsp104 in which 

Sup35 dissociates from the seed terminus, hence that reducing its size without generating 

new seeds. Trimming activity of Hsp104 is still present even when severing activity is 

inhibited by treatment of guanidine (223). The effects of Hsp104 on prion curing are 

strongly influenced by other chaperones or co-chaperones including the Hsp70 chaperone 
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system consisting of Ssa and its co-chaperones, Ydj1 or Sis1 and the Sse proteins 

(38,40,208,234,235).  The Hsp70 co-chaperone system has an essential role at the initial 

steps of the disaggregation processes possibly by facilitating Hsp104 to recognize and 

extract single polypeptide from aggregates at later stages (225). Remarkably, different 

families of Hsp70 i.e. Ssa and Ssb shows contrary effects on [PSI+] prion. Ssb 

overexpression enhances curing of [PSI+] prion by Hsp104 while Ssa protects [PSI+] 

from curing by Hsp104. Ssa overexpression and Ssb deletion also increase de novo [PSI+] 

prion formation. At the molecular level Ssa interacts with Sup35 and overexpression of 

Ssa increases the polymer size of Sup35 (225,236-239).  Altered expression of Hsp40 

(Sis1 or Ydj1) by mutation, transient depletion or internal deletion, also influences the 

dynamics of [PSI+] prion propagation. Sis1 overexpression promotes [PSI+] prion curing 

by Hsp104. It is also proposed that Sis1 is responsible for recruiting Ssa and Hsp104 to 

prion aggregates. Unlike Sis1, Ydj1 is non-essential and is shown to cure weak variants 

of [PSI+] prion, but only when Ssa1 is also co-expressed (225,234). The exact mechanism 

of action of Hsp70 and Hsp40 family members in prion propagation is still under 

investigation but it is clear that they collaborate with Hsp104 and play crucial roles in 

prion propagation. Deletion of co-chaperones of Hsp70/90 such as Sti1 or Cpr7, also 

inhibit [PSI+] curing by Hsp104 over-expression (40). 

In addition to Hsp104 and its assistant chaperones, sHSPs such as Hsp31, Hsp26 and 

Hsp42 also play a role in disaggregation of misfolded proteins in yeast (53,240-242). 

These proteins are highly expressed under moderate stress and during late growth phase 

for transition to stationary phase. Hsp42 and Hsp26 work synergistically to inhibit prion 

formation and potentiate dissolution of Sup35 prion aggregates by distinct mechanisms 
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(53). Furthermore, Hsp26 or Hsp42 collaborate with Hsp70 and or Hsp104 to reduce the 

SDS-resistant polyglutamine aggregation (243). The diverse effects of chaperones on 

prion propagation is summarized in table 1.6.  
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Table 1.6 Effect of chaperones on [PSI+] prion curing 

Chaperone Effect on [PSI+] 

Family Protein/Subfamily Excess Inactivation/deletion 

Hsp100 Hsp104 Cures Cures 

Hsp70 Ssa (1-4) Destabilizes 

Protects from 

elevated Hsp104 

Destabilizes 

Ssb (1-2) Destabilizes 

Helps cure by 

elevated Hsp104 

Protects from 

elevated Hsp104 

Hsp40 Sis1 Helps cure by 

elevated Hsp104 

Antagonizes 

Ydj1 ND Does not cure 

Hsp90 Hsp82 No effect Protects from 

elevated Hsp104 

SHSPs Hsp42, Hsp26 Cures ND 

Co-70/90 Sti1 ND Protects from 

elevated Hsp104 

Cpr7 ND Same as above  
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1.4.4 Prion associated toxicity  

The unusual conformations of normal proteins into self-assembly leads to formation of 

amyloid aggregates that has been implicated in both the acquisition of new traits and in 

the emergence and progression of disease. In yeast, the presence of [PSI+] prion itself is 

not toxic but overexpression of Sup35 or its PrD in such a strain is lethal (215,221,244). 

It is proposed that toxicity is caused by recruitment of essential protein(s) including 

another translational release factor Sup45 (245-247). Also, the combination of [PSI+] 

prion together with tRNA suppressor induces the stress response (248,249). Some 

variants of [PSI+] that are toxic can be rescued by overexpression of Sup35 derivative 

that lack PrD and cannot be recruited by aggregates (250). Specific mutations in Hsp104 

leads to [PSI+]-dependent cytotoxicity in yeast cells (251). Some variants of [PSI+] 

prions that are not toxic per se may become toxic when combined with other factors such 

as a polyQ stretch from human Huntingtin protein in [PIN+] or [PSI+] strains that are 

otherwise non-toxic (245,252).  

1.5 DJ-1/ThiJ/Pfp1 superfamily 

The members of DJ-1 superfamily are large number of proteins with conserved three-

dimensional structure distributed across eukaryotes and prokaryotes (253-259). Members 

of the family such as DJ-1, hchA and Hsp31 possess similar primary, secondary and 

tertiary structures with the difference in the presence of main domains (P and A domains). 

In addition, they also differ in the formation of homo-dimerization such as DJ-1 

monomer interacts through α-helices while Hsp31 dimerization is stabilizes by β-sheets. 

Another prominent feature of these family members is the presence of a conserved 

cysteine catalytic triad (Figure 1.3).  
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Figure 1.3. Ribbon structure of Hsp31 and dimerization. 

(A) Crystal structure of yeast Hsp31 monomer depicting catalytic triad. The core is in 
color blue and cap is in red. The catalytic triad (Cys138, His139, and Glu170) are shown 
as sticks in yellow color (Adopted from M Graille et. al. 2004 with permission) (B) 
Ribbon structure of homodimerization of yeast Hsp31. (C) Homodimer of human DJ-1 
protein. (Adopted from W Ying et. al. (2007) Open access Journal PLoS computational 
biology.  
  

Yeast Hsp31 

Yeast Hsp31 homodimer Human DJ-1 homodimer 
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Despite highly conserved structure, members of this family are diverse in functions 

including catalases, glyoxalases, proteases, transcriptional regulators and chaperones. 

However, they are all involved in cellular stress response (158,260-266). Special 

attention has been drawn to this family because of human member of the family, DJ-1, 

that has a well-characterized involvement in two major diseases, cancer and PD (267-

270). A large number of studies have investigated the cellular function of DJ-1 and its 

role in modulating disease pathogenesis. Other members of the family include E.coli 

Hsp31, archeal Pyrococcus horikoshii proteins (PH1704, YajL and Yhbo) and Hsp31 in 

the yeast Saccharomyces cerevisiae that has three other paralogs (Hsp32-34) 

(255,258,271-274).  

1.5.1 Human DJ-1 

Human DJ-1 is a small protein of 189 amino acids that is expressed ubiquitously in 

several tissues of body including brain and is mainly localized in the cytoplasm but also 

present in mitochondria and the nucleus. It was first identified as an oncogene that is 

elevated in several types of cancers such as leukemia, breast cancer, primary lung cancer, 

prostate cancer, cervical cancer and pancreatic cancer (270,275-279). The oncogenic 

potential of DJ-1 is thought to be related to its interaction with tumor suppressor 

phosphate and tension homolog (PTEN) in the PI3K-Akt pathway that regulates cell 

proliferation and transformation (280). Later studies showed its implication in 

neurodegenerative disease such as mutations in the gene PARK7 cause early onset of 

autosomal recessive PD (267,281-285). Mutations in DJ-1 that destabilize 

homodimerization show the quaternary structure is critical for cellular function. The 

conserved cysteine residue, C106, is also important to regulate cellular function and 
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localization of DJ-1. C106 is highly susceptible to oxidation and mutations affect its 

function, oligomerization and localization(286-289). Interestingly, oxidatively damaged 

proteins are found in the brains of patients with idiopathic PD, AD and HD. Like other 

members of the family DJ-1 also function as methylglyoxalase and deglycase of glycated 

proteins in the cell (290-292). In addition, DJ-1 positively regulates the antioxidant 

transcription factor, erythroid 2-related factor 2 (Nrf2) (293). The multiple cellular roles 

of DJ-1 and the different biochemical activity contributions to its overall role are under 

investigation but compelling evidence indicates that it is a multifunctional chaperone that 

protects cells from oxidative and associated stress similar to the yeast Hsp31 protein.  

Interestingly, our understanding of DJ-1 function has been more advanced than the yeast 

counterpart but new studies including ours are elucidating the function of yeast Hsp31 

that will be applicable to DJ-1. 

1.5.2 The yeast Hsp31 mini family 

The yeast Saccharomyces cerevisiae Hsp31 mini-family consists of four paralogs, HSP31 

(YDR533C), HSP32 (YMR322C), HSP33 (YOR391C), and HSP34 (YPL280W) (272). 

Among the four members, HSP31 is the most divergent and is proposed to have been 

duplicated during yeast evolution resulting in the paralogous genes. After resolving the 

crystal structure of yeast Hsp31, the name was given because of structural similarity with 

E. coli Hsp31. Hsp32, Hsp33 and Hsp34 share over 90% sequence homology. While, 

Hsp31 is only about 70% similar to other members (271,272).  

1.6 Role of Hsp31 in cellular stress response 

Consistent with the main role of cellular stress response, Hsp31 expression is strongly 

induced during late phases of growth and required for survival under conditions of 
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nutrient limitation (294). Hsp31 expression is also induced when yeast cells are treated 

with H2O2 to produce oxidative stress and this up-regulation of Hsp31 is under the 

control of stress responsive transcription factor, Yap1 (158,295). In addition, Hsp31 

possesses robust glutathione independent glyoxalase activity that converts the toxic 

metabolite, methylglyoxal (MGO), into D-lactate (158,260,261). The catalytic triad Cys-

His-Glu of Hsp31 is vital for this enzymatic activity and critical for suppressing the 

elevated level of ROS by MGO (158,260). An overall view has emerged indicating 

Hsp31 has important metabolic and regulatory roles in cytoprotective pathways (296). 

In addition to the enzyme activity, we also demonstrated that Hsp31 has broad chaperone 

activity in several classic protein aggregation assays indicating its ability to manage 

misfolded proteins that initiate proteotoxic stress in the cell. We also demonstrated that 

the yeast-purified protein was more active in preventing aggregation of several substrate 

proteins including α-syn (158). The increased activity may be due to the difference in the 

affinity tags used but may be a result of posttranslational modification(s) that occur in the 

cell. Several reports have indicated that post-translational modifications or differing 

levels of oxidation of the cysteine residue can alter activity of DJ-1 (297,298). In addition, 

we showed that yeast Hsp31 is more active in preventing protein aggregation compared 

to DJ-1.  Interestingly, it has also been observed that Hsp31 rescues α-syn and huntingtin 

toxicity to a greater extent than DJ-1 in vivo using yeast as a model system (106,299).  

These results raise the intriguing possibility that Hsp31 is constitutively active whereas 

DJ-1 must undergo an activation event to increase its activity although more studies must 

be performed to confirm the mechanism for these differences. 
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Hsp31 inhibits the formation of aggregates of a wide range of proteins including insulin, 

citrate synthase, α-syn and the Sup35 prion (158). The recombinant soluble α-syn and 

Sup35 proteins can readily polymerize into amyloidogenic fibrils in vitro (300). Hsp31 

inhibits protein aggregation formation in vitro and foci formation of GFP-tagged proteins 

in vivo.  In addition, over-expression of Hsp31 can rescue cells from toxicity associated 

with overexpression of α-syn. The rescue phenotype could be mediated by several 

different mechanisms including Hsp31’s methylglyoxalase or deglycation activities.  

However, a Hsp31 mutant deficient in methylglyoxalase activity is still very active in 

preventing α-syn in vitro aggregation and prevention of toxicity from overexpressed α-

syn (158). Another possible rescue mechanism could be the autophagy pathway, 

particularly because deletion of Hsp31 impairs autophagy under carbon starvation 

conditions (294).  Autophagy does alleviate toxicity from α-syn overexpression because 

we show a synthetic lethal relationship between α-syn overexpression and deletion of 

ATG8. However, we demonstrated that overexpression of Hsp31 in the atg8Δ strain can 

rescue α-syn-mediated toxicity (158).  These data show that despite the multitasking 

abilities and roles of Hsp31, the chaperone activity appears to have the ability to prevent 

α-syn toxicity independent of other activities. In support of our finding, another study 

found the autophagy pathway was not crucial in preventing the Hsp31 chaperone activity 

against a cytoplasmic aggregation prone protein. The same study also demonstrated that 

Hsp31 chaperone activity overlaps with the Ubr-dependent degradation pathway but is 

independent of its function in the oxidative stress response (262). Further exploration of 

this model would need to utilize mutants that abrogate chaperone function without 

affecting enzyme activity and other biological functions. 
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The typical model of protein aggregation proposes that unfolded monomers as an 

initiating event that progresses to unstable oligomeric intermediates, and finally elongates 

to larger oligomers. The observed anti-aggregation activity of Hsp31 raises the question 

of what stage Hsp31 intervenes in the protein aggregation process. On the bases of our in 

vitro studies, Hsp31 likely interacts with early oligomeric intermediates of α-syn and 

therefore prevents higher oligomer formation. For example, when soluble α-syn was 

mixed with Hsp31, formation of precipitated SDS-resistant oligomers was markedly 

reduced. Likewise, the soluble fraction of α-syn, which included SDS-resistant oligomers 

in the size range of 25-50 KDa, was almost completely abolished in the presence of 

Hsp31 indicating that Hsp31 likely interacts with the monomeric or early oligomers in 

preventing the formation of higher order oligomers. We observed similar results with the 

in vitro ThioT assay, in which incubating the Hsp31 with α-syn completely prevented the 

increase in fluorescence intensity associated with increasing fibril formation again 

supporting our model that Hsp31 acts at early stages of protein aggregation (158). Of 

particular interest is that DJ-1 has been shown to interact with monomeric and oligomeric 

form of α-syn as determined by pull-down assays (106). This same study also showed 

that DJ-1 interacts with α-syn in vivo as well. Along with α-syn aggregation formation, 

we also demonstrated the inhibitory effect of Hsp31 on the Sup35 prion based on 

reduction of aggregates observed in cell lysates.  These results support the notion that 

Hsp31 acts at the early stages of oligomerization to prevent further protein 

oligomerization.  Interestingly, we previously showed that the overexpression of Hsp31 

reduces the level of Sup35 aggregation but we also show that it is unable to cure prions 

from a [PSI+] strain. [PSI+] strains contain Sup35 prion aggregates that can be cured by 



 

 

45 

45 

chaperones such as Hsp104, but the lack of curing by Hsp31 suggests that it lacks 

disaggregase activity and cannot intervene in an established prion cycle. Moreover, our 

study showed no co-localization of Hsp31 and Sup35 aggregates as observed under 

fluorescence microscope, rather Hsp31 is occluded from Sup35 prion aggregates, 

indicating that Hsp31 acts on its substrates prior to the formation of large aggregates. The 

strong chaperone activity of Hsp31 suggests that it may modulate prion aggregates but 

might need to cooperate with other chaperones similar to what has been demonstrated 

with other small HSPs such as Hsp26 and Hsp42 (53).  

1.7 Comparison of Hsp31 paralogs 

The paralog genes of the Hsp31 mini-family are located at the subtelomeric region of the 

genome in Saccharomyces cerevisiae (272). All the members of Hsp31 family contain 

the same Cys-His-Glu catalytic triad as present in the E. coli ortholog but interestingly no 

protease activity has been detected so far for Hsp31 or other paralogs. Previously, it was 

shown that mutation in the catalytic triad largely abolishes glyoxalase activity, but this 

catalytic triad is not required for chaperone activity of Hsp31 (158). These results 

indicate that the anti-aggregation activity of Hsp31 is not under the influence of its 

enzymatic activity rather, it has a direct chaperone activity against misfolded proteins. 

Intriguingly, all the paralogs of the Hsp31 minifamily possess comparable activity against 

α-syn aggregation and toxicity when they are overexpressed from the GAL promoter 

(106). Furthermore, the chaperone activity of Hsp31, Hsp32 and Hsp33 against a 

cytoplasmic aggregation-prone protein is independent of their role in oxidative stress 

response and the vacuolar degradation pathway (262). However, unlike Hsp31, the other 

paralogs possess very little methylglyoxalase activity and are unable to protect the cells 
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from glyoxal toxicity (260). These results again support the notion that anti-aggregation 

activity of Hsp31 mini-family is independent of its enzymatic activity. In addition, the 

lack of methylglyoxalase activity in the paralogs is evidence that the paralogs are 

diverging but additional studies dissecting the roles within this paralog group are needed 

to further uncover these diverging functions. The Hsp31 protein family is broadly spread 

across fungal species with varying levels of paralog duplications and additional evidence 

of divergence including differences in localization in the Schizosaccharomyces pombe 

Hsp31 family members (264). A functional comparison of Hsp31 and its paralogs are 

summarized in Table 1.7 highlighting the similarities and differences among these 

proteins. 
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Table 1.7 Summary of Hsp31 and paralog functions 

Function/Attribute Hsp31 Hsp32 Hsp33 Hsp34 

Catalytic triad Yes Yes Yes Yes 

Chromosome Position Interstitial Telomeric Telomeric Telomeric 

Sequence homology ~70% >90% >90% >90% 

Chaperone activity +++ +++ +++ +++ 

Methylglyoxalase +++ +/- +/- +/- 

Deglycase +++ ND ND ND 

Role in Autophagy + + + + 

Peak mRNA level Early SP DS Early SP ND 

Stress granule and P body 

localization 

Yes Yes ND ND 

Mitochondrial localization Yes ND ND ND 

ND = Not determined 
SP = Stationary Phase 
DS = Diauxic shif
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1.8 Hsp31 role in redox homeostasis 

Oxidative stress occurs when intra-cellular ROS overwhelms the anti-oxidative defense 

system in the cell present during normal aerobic metabolism or by exposure to external 

radical generating agents. ROS triggers damage to macromolecules in the form of 

oxidative modifications and misfolding of proteins, associated with the development of 

diseases and pathological conditions such as PD and prions (62,184,301,302). Hsp31 has 

an important role in maintenance of redox homeostasis in yeast under oxidative stress 

generated by MGO or H2O2 (260,303). Like many other heat-shock genes HSP26, HSP12, 

HSP82, and SSA3, expression of HSP31 is strongly induced at diauxic shift when the 

cells are stressed by nutrient limitation and by accumulation of oxidative metabolites 

(158,294,303). Others and we also reported an elevated level of Hsp31 under oxidative 

stress when cells were treated with H2O2 (158,303). Similarly, Hsp31 also plays a role in 

the survival of cells during stationary phase and protects cells from oxidative stress 

caused by MGO and H2O2 accumulation (158,303). In addition, we demonstrated that 

Hsp31 expression was induced under proteotoxic stress such as overexpression of α-syn 

(158). In support of the role of Hsp31 in managing this proteotoxic stress, we found that 

deletion of HSP31 synergizes with α-syn expression to increasing toxicity. We reported 

an increase in ROS level in the hsp31Δ strain that correlates with increased toxicity by α-

syn expression compared to wild type (WT) strain, indicating that the presence of Hsp31 

is important in reducing ROS to basal levels. In agreement with our study, 

overexpression of Hsp31 robustly suppresses both cytosolic and mitochondrial ROS 

levels instigated by MGO and H2O2 and therefore provide cytoprotection (158,260). In 

addition, Hsp31 localizes to mitochondria and preserves mitochondrial integrity by 
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redistributing glutathione to the cytoplasm under oxidative stress (260). Another study 

examined the deglycase activity of Hsp31 and showed that it may efficiently deglycate 

proteins with glycated Cys, Arg and Lys amino acid residues (265). Taken together, these 

results suggest that Hsp31 is an integral part of the heat shock protein system and plays a 

vital role in maintaining cellular homeostasis.
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CHAPTER 2. HSP31 IS A STRESS-RESPONSE CHAPERONE THAT INTERVENES 
IN THE PROTEIN MISFOLDING PROCESS 

This chapter contains parts of following publications:   

Chia-Jui Tsai*, Kiran Aslam*, Holli M Drendel, Josephat M Asiago, Kourtney M 

Goode, Lake N Paul, Jean-Christophe Rochet, Tony R Hazbun Hsp31 is a Stress-

Response Chaperone that Intervenes in the Protein Misfolding Process. The Journal of 

biological chemistry, 290(41):24816-34, 2015 

Kiran Aslam, Tony Hazbun Hsp31, a member of the DJ-1 superfamily, is a multitasking 

stress responder with chaperone activity. Prion Apr 2016 

2.1 Abstract 

The Saccharomyces cerevisiae Hsp31 is a homodimeric protein that is highly induced 

under stressful situations and involved in diauxic shift reprogramming. It is a protein with 

multifunctional roles including functions as a chaperone, methylglyoxalase, deglycase 

and is involved in the autophagy pathway. Hsp31 is homolog of human DJ-1 that has 

implications in the pathophysiology of PD. We verified that Hsp31 are highly induced 

under oxidative stress. Furthermore, we showed its induction under proteotoxic stress 

condition. We confirmed that Hsp31 is a robust methylglyoxalase that is more potent in 

activity than its human homolog DJ-1. We demonstrated that Hsp31 chaperone activity to 

protect the cells from α-syn toxicity is not under the influence of its enzymatic activity or 

autophagy pathway. We also showed that Hsp31 inhibit Sup35 PrD aggregations as 
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observed under fluorescence microscopy and flow cytometry. In addition, we provide 

evidence that Hsp31 act early in the process of protein aggregation because Hsp31 does 

not co-localize with larger Sup35 prion aggregates. These results establish that Hsp31 

molecular chaperone activity is self-sufficient to protect the cells from stress conditions 

without requiring its enzymatic activities. 

2.2 Introduction 

Yeast Hsp31 is encoded in the Saccharomyces cerevisiae genome and has drawn 

attention after its structure was solved in 2003 indicating that it has structural similarity 

with an evolutionarily conserved protein family the DJ-1/PfpI (ThiJ/PfpI) protein family 

that includes human DJ-1 and E. coli Hsp31 proteins (271,272). The DJ-1/PfpI protein 

family members including human DJ-1 and E. coli Hsp31 are moderately characterized 

for their biological functions and role in pathologies but have many unanswered 

questions with regards to their multifunctional roles and biochemical activities. Most 

studies indicate an important role in response to stressed biological processes (303). 

Mutated forms of DJ-1 are involved in early onset PD and DJ-1 is implicated to function 

as a chaperone in response to oxidative stress by preventing α-syn fibrillation, a process 

involved in PD pathogenesis (304). E. coli Hsp31 is a stress-inducible molecular 

chaperone that plays an important role in protein misfolding and helps survival under 

acidic stress (305). Initial characterization the yeast Hsp31 function showed that deletion 

of HSP31 gene sensitized cells to ROS, suggesting a role for Hsp31 in protecting cells 

against oxidative stress (303). Another study showed that yeast Hsp31 is important in 

diauxic-shift where its expression is strongly induced and it has a survival role in 
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stationary phase of growth. In addition, deletion of HSP31 leads to impaired autophagy 

under carbon starvation (294).  

Furthermore, DJ-1 family proteins including human DJ-1, E. coli Hsp31 and yeast Hsp31 

have been characterized as methylglyoxalases that detoxify by converting MGO into D-

lactate independent of GSH (261,264,290). MGO is a toxic metabolite that is mainly 

produced as a byproduct of glycolysis. MGO is highly reactive with various amino acids 

in proteins, nucleic acids and lipids to yield toxic AGE linked to several diseases. Cells 

mainly catabolize MGO by two major enzymes including glutathione dependent GLO I 

and GLO II (306,307). DJ-1 and its homologue proteins are characterized as GLO III that 

do not require GSH as co-factor to convert MGO into D-lactate. Another study examined 

the deglycase activity of DJ-1 and Hsp31 by showing that they efficiently deglycate 

proteins with glycated Cys, Arg and Lys amino acid residues (265,292). Investigation of 

the yeast Hsp31 is an excellent model to delineate and investigate the specific 

biochemical activities of these proteins. 

Previously in our lab, it was shown that Hsp31 protect cells against α-syn toxicity 

associated with the formation of α-syn foci in a yeast model of PD. It also has been 

shown that Hsp31 possesses a chaperone-like response against α-syn aggregation as 

observed by an in vitro fibrillization assay as well as insulin and citrate synthase 

aggregation assays (158). In the present study, we demonstrate that the protective effect 

of Hsp31 against α-syn toxicity in yeast cells is independent of its methylglyoxalase 

activity.  DJ-1 and Hsp31 possess a conserved catalytic triad Glu-Cys-His, the first two 

amino acids of this triad are important for GLOIII activity in DJ-1 (290). Here we tested 

a mutation in Hsp31 C138D for methylglyoxalse activity and its activity against α-syn 
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toxicity in yeast cells. We also observed the role of Hsp31 in maintaining redox 

homeostasis by using an α-syn model of toxicity. In addition, we investigated the effect 

of Hsp31 on Sup35 prion aggregation considering that it is potentially a natural substrate 

in yeast. Together these findings reinforce the concept that studying the function of 

Hsp31 in the context of stress conditions in a yeast model provides new insight about its 

functions and it is likely applicable to higher eukaryotes. 

2.3 Results 

2.3.1 Hsp31 is an integral part of the yeast cellular stress response 

Several studies have shown that environmental stresses, such as oxidative stress and 

elevated temperature, increased the expression of HSPs. A recent study showed increased 

Hsp31 expression upon treatment with H2O2 and another study demonstrated an 

increased HSP31 mRNA levels during the diauxic shift growth phase and stationary 

phase (294,303). However, the Hsp31 protein level was not characterized under these 

conditions. We integrated a 9myc epitope at the C-terminus of the HSP31 genomic locus 

to generate a yeast strain that can be used to quantify endogenous protein expression. To 

assess whether Hsp31 expression increases under stress conditions, we treated cells with 

H2O2 and observed an increased protein expression within an hour of exposure. This was 

consistent with previous studies in which increased expression of Hsp31 was observed in 

response to a ROS inducing agent. We also examined the expression profile of Hsp31 

under proteotoxic stress by overexpressing α-syn and the results indicated that increased 

expression of α-syn decreases cell viability, and concomitantly increases the expression 

of Hsp31 compared to a strain not expressing α-syn. Our data demonstrate that Hsp31 
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expression is rapidly elevated at the protein level in the event of stress associated with 

oxidative stress or proteotoxicity (Figure 2.1). 
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Figure 2.1 Expression of Hsp31 increases under stress.  

(A) H2O2 treatment increases the expression of Hsp31. The Hsp31- 9myc strain was 
exposed to 1 mM H2O2 treatment for 30 min and 60 min and increased Hsp31 
expression was determined by immunoblot. Samples were normalized to OD600 for 
cellular density and β-actin was used as a loading control. This data is representative of 
three independent experiments. (B) Quantification of Hsp31 expression with or without 1 
mM H2O2 treatment obtained by densitometric analysis and normalized with β-actin 
western blot. (n=3, ***p< 0.0001 by two way ANOVA test). (C) Hsp31-9myc expression 
increased in the presence of induced expression of GAL-α-syn. The immunoblot was 
probed with anti-myc and anti-β-actin antibodies.  
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The expression of α-syn has been linked to an increase in the level of ROS in yeast. The 

in vivo suppression of α-syn foci by Hsp31 and increased toxicity of one copy α-syn in 

the hsp31Δ strain prompted us to investigate the level of ROS in these different genetic 

contexts. We found that wild-type yeast did not have detectable superoxide radicals when 

treated with dihydroethidium (DHE) using microscopy and a fluorescence level of 0.5 

A.U. by flow cytometry. ROS levels were detectable in a fraction of cells in the hsp31Δ 

strain (6 A.U.) indicating that the presence of Hsp31 in the cell can decrease ROS levels 

of normal cells not expressing α-syn. The remaining strains had increased ROS levels in 

the following order: α-syn-YFP strain (23 A.U), α-syn-YFP hsp31Δ (41 A.U), α-syn-YFP 

α-syn-CFP (64 A.U) and α-syn-YFP α-syn-CFP hsp31Δ (133 A.U). The latter three 

strains with the most ROS levels exhibit reduced viability when α-syn is expressed and 

formed increase foci demonstrating a correlation between these phenotypes (Figure 2.2). 
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Figure 2.2. Hsp31 decreases the ROS generated by α-syn.  
(A) Superoxide ions increase when HSP31 is deleted and when α-syn is expressed. In 
vivo presence of superoxide ions is detected by treatment with DHE and visualization by 
fluorescence microscopy. Representative fields of view are presented. (B) Quantification 
of superoxide ion increase in hsp31Δ and GAL-α-syn expressing strains. Flow cytometry 
was performed on three biological replicates. n=3 **** P ≤ 0.0001 based on the one-way 
ANOVA with multiple comparison t-test. Error bars = 1 SD. 
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2.3.2 Hsp31 methylglyoxalase activity is not required for rescue of α-syn-mediated 

toxicity 

Recent studies have shown that DJ-1 and Hsp31 are methylglyoxalases that convert 

MGO into D-lactate in a single step independent of GSH. Hsp31, like other members of 

the DJ-1 superfamily, possesses the conserved Glu-Cys-His catalytic triad. The first two 

residues of this triad are critical for MGO activity of DJ-1 as well as Hsp31 in S. pombe 

(260,261). We determined the methylglyoxalase activity for recombinant Hsp31 (purified 

from E. coli with the GST tag removed on the C-terminus) and a catalytic triad mutant, 

Hsp31 C138D, using a commercially available D-lactate assay kit. As expected, Hsp31 

could convert MGO into D-lactate with a calculated specific activity of 28.4 

µmol/min/mg enzyme (using a saturating substrate concentration of MGO at 6 mM). 

These enzymatic parameters indicate a more efficient enzyme activity than the previously 

reported Hsp31 specific activity of 10.5 D-lactate µmol/min/mg. Interestingly, the Hsp31 

purified directly from a yeast expression system, the GAL promoter induced movable 

ORF tag system (MORF), had increased enzymatic activity compared to Hsp31 purified 

from recombinant E. coli. We also showed that Hsp31 is a more potent methylglyoxalase 

compared to DJ-1, this observation is consistent with several other studies (260,261). 

Enzymatic parameters were calculated by measuring the time dependent production of D-

lactate with varying substrate concentrations and fitting to a Michaelis-Menten kinetics 

model resulting in a Vmax of 0.0356 µmoles D-lactic acid/min (Standard error=0.0016) 

and Km was 247.4 µM (standard error=31.5). Specific activity for the mutant could not 

be determined because low levels of D-lactate were produced despite using five times the 

amount of protein (detection limit of 0.4 µmol/min/mg). The reaction products of these 
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assays were examined by GC-MS and a peak identical to the lactic acid standard (6.09 

min elution time) was identified, confirming the production of lactic acid by Hsp31. 

Lactic acid was undetectable by GC-MS analysis in the Hsp31 C138D sample (Figure 

2.3). 
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Figure 2.3. Hsp31 is a methylglyoxalase that produces D-lactic acid.  

(A) The plot of substrate concentration versus rate of D-lactate production by Hsp31 is 
depicted and the michaelis-menten best fit model is represented by the solid line and was 
the Vmax and Km were determined based on this model. Mean values of triplicate 
experiments are plotted. Error bar = 1 SD. (B) GC-MS trace demonstrates a peak (6.09 
min) consistent with the production of D-lactic acid by Hsp31 in the enzymatic reaction. 
(C) The hyperbolic plot of substrate concentration versus rate of D-lactate production by 
Hsp31 (circles), MORF Hsp31 (squares) and DJ-1 (triangles) are shown and the solid line 
represents the Michaelis-Menten best-fit model. The Vmax parameters were determined 
based on this model. 
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We next determined if methylglyoxalase activity is required for rescue of α-syn toxicity. 

One copy of α-syn-YFP decreases fitness in the hsp31Δ strain but GPD driven expression 

of Hsp31 rescues that toxicity. The expression of GPD driven Hsp31 C138D restored the 

α-syn expressing strain to full viability comparable to expression of the wild-type Hsp31. 

The lack of enzyme activity for this mutant and ability to rescue α-syn toxicity indicated 

that the in vivo mechanism of rescue is not dependent on methylglyoxalase activity 

(Figure 2.4). 
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Figure 2.4. The enzyme activity of Hsp31 is not necessary for rescuing α-syn toxicity. 

Overexpression of pGPD HSP31 or the C138D mutant rescues toxicity from α-syn 
expressing strains.  
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MGO is a toxic metabolite produced during glycolysis that reacts with proteins to yield 

toxic AGE and has been associated with increased α-syn cross-linking and formation of 

intracellular foci formation in neuroblastoma cells (261,264,290,306-308). We examined 

if increased levels of MGO could increase the α-syn foci or toxicity by treating cells with 

exogenous MGO and found no increased foci formation in wild-type yeast indicating that 

foci formation is likely not influenced by MGO. In addition, the hsp31Δ strain also did 

not have increased foci suggesting that lack of Hsp31 is not sufficient to increase foci 

formation due to MGO treatment. We determined that MGO was toxic to wild-type yeast 

at 10 and 20 mM MGO and viability in the hsp31Δ strains was similar to WT suggesting 

that Hsp31 is not sufficient for detoxification. The concomitant expression of α-syn (one 

or two copies) and treatment with MGO did not have differential effects on viability 

(Figure 2.5). Consistent with these results is that cell lysates of the hsp31Δ strain had 

equivalent levels of overall methylglyoxalase activity as wild-type because other yeast 

methylgloxalase enzymes, Glo1 and Glo2, are present in yeast and have been shown to 

detoxify MGO.  
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Figure 2.5 MGO does not increase α-syn foci or toxicity.  
(A) Representative fluorescence microscopy images of α-syn expressing cells treated 
with 2 mM and 20 mM MGO. (B) The level of α-syn foci does not increase with MGO 
treatment. Percentage of cells with α-syn foci formation was quantified for the two strains 
(α-syn-YFP and α-syn-YFP/hsp31Δ) in the presence of 2 mM and 20 mM MGO. Cells in 
three or more fields of view were counted and the mean values plotted (Error bar = 1 SD) 
ns= one-way ANOVA with multiple comparison t test indicates no significant difference. 
(C) MGO treatment does not differentially increase toxicity of α-syn expressing strains 
compared to non-expressing counterparts. Strains were serially diluted on agar plates 
containing 10 mM and 20 mM MGO. 
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2.3.3 D-lactate supplementation suppresses the steady state level of α-syn 

Since, Hsp31 is a methylglyoxalase that converts MGO into D-lactate we further 

investigated the possibility that deletion of HSP31 causes the toxicity in α-syn expressing 

strains due to compromise in the glutathione-independent methylglyoxalase activity of 

Hsp31. We explored if the lack of enzyme activity leads to a build up toxic cellular MGO 

or if the altered phenotype of the strain results from the lack in enzymatic product i.e. D-

lactate. More recently, it was shown that supplementing the cell with D-lactate restores 

the mitochondrial membrane potential in DJ-1 deficient (RNAi-treated) HeLa cells (291). 

We tested if external lactate supplementation could cure the α-syn toxicity similar to 

Hsp31. First, we performed dilution growth assays on media containing lactic acid to 

observe any rescue effect in α-syn expressing cells. Surprisingly, there was improved 

growth of cells even in the presence of low levels of 0.2% lactic acid compared to cells 

grown without lactic acid supplementation. In parallel to the dilution growth assay, we 

performed microscopy on cells grown in liquid media containing lactic acid along with 

galactose to induce α-syn expression and observed these cells under microscope. Cells 

that were grown in media containing lactic acid showed reduced expression of α-syn 

compared to non-treated cells. We further confirmed the reduced expression level of α-

syn protein in cells treated with lactic acid through western blot analysis using α-syn 

specific antibody. These results showed that although supplementation with lactic acid 

reduces α-syn toxicity the mechanism is due to a decreased expression of α-syn, which 

has been demonstrated to be concentration dependent (1 copy of pGAL-α-syn is not as 

toxic as 2 copies of pGAL-α-syn). It is not clear how lactate supplementation affected the 

steady state level of α-syn. Further studies would be needed to determine if transcription 
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of α-syn was reduced or if post-translational regulation events affected the overall level 

of α-syn (Figure 2.6). 
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Figure 2.6 Effect of D-lactate on α-syn toxicity.  

(A) Effect of D-Lactate on α-syn toxicity as analyzed by dilution growth assay. Fivefold 
serial dilution of indicated yeast strain was spotted onto plates. Cells were grown for 3 
days at 30 °C. (B) α-syn expression was induced for 24hrs in the presence and absence of 
D-Lactate. Cell lysate were subjected to 10%SDS-PAGE and probe with α-syn specific 
antibody. (C) Fluorescence microscopy of yeast cells expressing α-syn -YFP. Cells were 
supplemented with 0.2% D-lactate for 12hrs with α-syn expression turned on. Cells that 
were treated with D-lactate showed a suppressed α-syn expression (upper panel).  
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2.3.4 Hsp31 prevents formation of large prion aggregates 

The demonstration that Hsp31 possesses chaperone activity in a variety of anti- 

aggregation assays prompted us to investigate if Hsp31 could also modulate the 

oligomeric state of yeast prion proteins, such as the Sup35 prion. The aggregation state of 

prions in living cells can be monitored by fusion of fluorescent protein tags to Sup35 PrD, 

so we overexpressed Hsp31 to determine if it modulated the aggregation of Sup35 PrD. 

Consistent with previous findings, cells overexpressing PrD in the presence of 

endogenous Sup35 showed characteristic ribbon- like or punctate aggregates, which are 

localized around the vacuoles or/and adjacent to plasma membranes. The cells co-

expressing pAG415-GPD-HSP31-DsRed and pAG424-GAL-PrD- Sup35-EYFP had 

approximately 3 fold less Sup35 fluorescent aggregates compared with cells harboring 

pAG424-GAL-PrD-Sup35-EYFP plus vector control, indicating that Hsp31 can inhibit 

the formation of microscopically visible Sup35 prion aggregates (figure 2.7A-B). The 

intrinsic fluorescence of Sup35-EYFP appears to increase upon aggregation, which 

allowed us to utilize flow cytometry as an alternative method to quantitatively measure 

and show decreased Sup35 aggregation. This phenomenon has not been exploited widely 

but was noted in at least one previous study investigating the aggregation of a 

Huntington-GFP fusion protein (309). Cell cultures co-expressing Sup35 and Hsp31 used 

in the microscopy experiments were prepared for flow cytometry and analyzed for EYFP 

fluorescence intensity. The flow cytometry results were similar to the microscopy results 

because Hsp31 expressing cells consistently exhibited lower median Sup35-EYFP 

fluorescence intensity when compared with cells containing Sup35-EYFP expression 

plasmid and empty vector. Individual traces depicting the number of counting events for 
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each yeast strain also showed the decrease in cellular fluorescence intensity when Hsp31 

is expressed (Figure 2.7).  
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Figure 2.7. Fluorescence microscopy demonstrating Hsp31 suppression of Sup35 
aggregation 
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(A) PrD-Sup35 produced ribbon-like and punctate aggregates that are decreased when 
Hsp31 is overexpressed. PrD-Sup35-EYFP was overexpressed for 48 h at 30° C in 
control W303 cells or W303 cells expressing elevated levels of Hsp31. Hsp31 was 
diffuse in the cytoplasm and decreased the presence of Sup35 aggregates. The diffuse 
cytoplasmic localization of Hsp31 did not appear to be altered as a result of Sup35 
expression. (B) Quantitation of cells with one or more Sup35-EYFP foci. A smaller 
proportion of cells with Sup35 aggregates were evident in Hsp31 overexpressing cells 
compared to vector control (pGPD). Values represent mean ±SEM (n = 3). (*** two-
tailed Student's t-test; p≤0.001). (C) Tracing of fluorescence obtained by flow cytometry 
(D) Quantitation of Sup35-EYFP fluorescence suppression by Hsp31 using flow 
cytometry. Hsp31 overexpression lowers the median fluorescence intensity (FI – arbitrary 
units) of Sup35 compared to empty vector control. (* two-tailed Student's t-test; p≤0.05) 
(±SEM error bars; n = 3 biological replicates). 
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Expression of Hsp31 with the GPD promoter was diffuse and cytoplasmic, and varied in 

intensity in individual cells across the total cell population. The cytoplasmic localization 

profile of Hsp31 was not altered when PrD-Sup35 was expressed. Interestingly, we 

observed overlapping localization in cells with Sup35 aggregates and relatively high 

levels of Hsp31 but the proteins do not appear to mutually co-localize. In some cells it 

was evident that the DsRed signal was decreased in the area where there was a Sup35 

aggregate suggesting that Hsp31 is not incorporated in aggregates. The aggregate appears 

to occlude Hsp31 and the diffuse overlapping signal observed in some cells is consistent 

with the presence of Hsp31 throughout the cytoplasm surrounding the aggregate (Figure 

2.8).  
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Figure 2.8 Hsp31 and Sup35 are not mutually co-localized.  

Most cells with high levels of expression of Hsp31 and Sup35 exhibited diffuse 
cytoplasmic localization for Hsp31 that overlapped with Sup35 (Top panel). Occlusion of 
Hsp31 from the Sup35 aggregate was also observed as evidenced by the decreased 
DsRed signal at aggregate sites (white arrows – bottom panel). 
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We also confirmed that Hsp31 overexpression reduces the formation of in vivo 

aggregates based on assessing cell lysates by SDD-AGE. We found that SDS-resistant 

Sup35 aggregates were greatly reduced when Hsp31 was over-expressed. The positive 

control, Hsp104, completely eliminated detectable Sup35 aggregates. These results are 

consistent with the ability of Hsp31 to inhibit the formation of large protein aggregates. 

We also ascertained if other chaperones are induced upon overexpression of Hsp31. We 

demonstrated Hsp70 and Hsp104 expression are not altered and hence elevated 

expression of these chaperones is not responsible for the observed suppression of prion 

aggregates (Figure 2.9). This is in agreement with our in vitro aggregation studies 

establishing that purified and recombinant Hsp31 protein is solely sufficient to prevent 

protein aggregation although we cannot exclude the possibility that Hsp31 could 

collaborate with other chaperones to prevent prion aggregation in the cell.  
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Figure 2.9. Hsp31 suppresses SDS resistant Sup35 aggregates  
(A) Cellular lysates were subjected to SDD-AGE and SDS-PAGE. Overexpression of 
Sup35-PrD-EYFP initiated the formation of Sup35 aggregates which were detected with 
anti-GFP antibody (B) Hsp31 overexpression does not alter the expression levels of 
Hsp104 and Hsp70. Immunoblots were probed with anti-Hsp104, anti-Hsp70, anti-DsRed 
and anti-actin antibodies. 
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2.3.5 Hsp31 rescue of α-syn -mediated toxicity is independent of the autophagy 

pathway 

In several recent studies, autophagy has been identified as one of the main mechanisms to 

clear and recycle misfolded proteins and aggregates in the cytosol (310,311). In addition 

to the ubiquitin proteasome system, autophagy is a major cellular function involved in 

clearance of misfolded and aggregated proteins including α-syn aggregates (310). 

Deletion of autophagy genes such as ATG5 or ATG7 leads to neurodegenerative disease 

in mice (312,313). In yeast, deletion of ATG1 gene that is required for induction of 

autophagy reduced the clearance of α-syn aggregates (314). Deletion of HSP31 was also 

demonstrated to impair autophagy under carbon starvation conditions (152). These 

studies raise the question that Hsp31 could be promoting autophagy of aggregated protein. 

In order to exclude the possibility that the Hsp31 rescue effect on α-syn toxicity depends 

on autophagy, we deleted the ATG8 gene in the α-syn strains and assessed the synthetic 

lethal effects of α-syn expression in these strains. As expected, expression of α-syn in the 

atg8Δ strain resulted in decreased viability compared to the wild-type strain. The atg8Δ 

hsp31Δ strain had similar viability to the atg8Δ strain when α-syn is expressed. These 

results confirm that autophagy is a protective mechanism against α-syn toxicity. The lack 

of synthetic lethal defect between ATG8 and HSP31 with and without α-syn expression is 

consistent with genes that are in the same pathway and hence do not buffer each other 

(Figure 2.9). 
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Figure 2.10 The autophagy pathway prevents α-syn toxicity but is not required for Hsp31 
mediated rescue.  

Yeast strains serially diluted on YEP agar plates (Glucose or Raffinose/Galactose) 
demonstrating the toxicity of GAL-α-syn in the atg8Δ, hsp31Δ and atg8Δ hsp31Δ strains.  
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Expression of Hsp31 and the C138D mutant in the autophagy strains, atg8Δ α-syn or 

atg8Δ hsp31Δ α-syn, increased viability in rich YEP media compared to vector controls. 

We found that the rescue effect in synthetic media was not easily observed because 

expression of α-syn was not toxic in the atg8Δ strain background but it was toxic in 

hsp31Δ indicating media conditions are an important factor in this complex relationship. 

These results demonstrate that Hsp31 can rescue α-syn toxicity in autophagy deficient 

cells (Figure 2.10). 
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Figure 2.11 Effect of Hsp31 overexpression on atg8Δ strains 
Overexpression of Hsp31 using pAG415-GPD-HSP31-DsRed or the C138D mutant 
partially rescued toxicity of α-syn expression on YEP media for the atg8Δ, hsp31Δ and 
atg8Δ hsp31Δ strains (right panel). Rescue by Hsp31 overexpression could not be 
assessed in synthetic media for strains with the atg8Δ genotype because GAL-α-syn 
expression not toxic in these strains (middle panel). Rescue of GAL-α-syn expression in 
the hsp31Δ strain was toxic and rescued by Hsp31 overexpression in synthetic and YEP 
media. 
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2.4 Methods 

2.4.1 Yeast cell growth conditions 

Yeast media were prepared according to Amberg D C. et al. (315). Liquid yeast 

extract/peptone dextrose (YPD) medium contained Bacto yeast extract (1%, Fisher 

Scientific), Bacto peptone (2% Fisher Scientific) and glucose (2% Fisher Scientific). 

Synthetic dextrose (SD) minimum liquid medium was made of 0.17% Difco yeast 

nitrogen base (without amino acids), 2% glucose, and supplemented with necessary 

amino acids for auxotrophic strains needed at concentrations described previously (315). 

Solid medium plates were made with the same components of liquid medium plus 2% 

agar (Fisher Scientific). To express galactose-inducible proteins, 2% raffinose 

(Affymetrix, Cleveland OH) and 2% galactose (Affymetrix, Cleveland OH) were used to 

replace glucose. Fractions of culture were obtained at designated times to monitor the cell 

fitness and protein levels by OD600 and immunoblotting, respectively. 

2.4.2 Spotting assay / Dilution growth assays 

All the yeast strains were grown at 30 °C in 2% glucose minimal media overnight. 

Strains were diluted to OD600 of 0.2 and grown in minimal media switching the carbon 

source with 2% raffinose for overnight. Cultures were normalized to OD600 of 0.8 and 5X 

serial dilutions were spotted onto the respected dropout plate containing 2% glucose or 

Yeast strains construction galactose. Plates were grown at 30 °C for 2-3 days before 

taking pictures. 

2.4.3 Yeast strains construction 

Yeast strains used in this study are listed in Table 2.1. The hsp31Δ and atg8Δ deletions 

were generated in W303-1A or in a strain expressing one or two copies α-syn fused to 
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fluorescent proteins (CFP and YFP) using the primers listed in Table 2.2. The 

nourseothricin N- acetyl-transferase (NAT) gene flanked by Hsp31 homology regions 

was obtained by PCR with 70 nucleotide long forward primer and reverse primer. The 

primers consisted of 20 nucleotides for amplifying the NAT gene from pFA6a-natNT2 

(Euroscarf), and 50 nucleotides immediately preceding the Hsp31 or Atg8 start codon or 

after the stop codon. The amplified product was integrated into W303 α-syn expressing 

strains at ChrIV:1502160 to 1501447 as described previously. For double knockout 

hsp31Δ atg8Δ strain KanMX4 resistance cassette was used to delete Hsp31 and than 

NATMX4 resistance cassette for deletion of ATG8. 

  



 
 

 

88 

88 

Table 2.1 List of strains used in this study 

 

  

Strain Genotype Source or reference 

BY4741 MATa his3, leu2, met15, ura3, ARL1, 

GCS1, ARL3, ARF3, YPT6, IMH1, 

SYS1, GAS1 

Invitrogen 

W303-1A MATa can1-100 his3-11, 15 leu2-3, 

112 trp1-1 ura3-1 ade2-1 

R. Rothstein 

W303-hsp31Δ W303-1A hsp31Δ::NATMx This study 

W303-HSP31-

9myc 

W303-1A HSP31-9myc::KanMX This study 

W303-1x  α-syn W303 GAL-α-syn-YFP at URA3 or 

TRP1 loci 

J-C. Rochet(316,317) 

 

W303-2x α-syn W303 GAL- α-syn-YFP at URA3 GAL- 

α-syn-CFP at TRP1 loci 

J-C. Rochet 

 

W303-1x α-syn 

HSP31-9myc 

W303 GAL- α-syn-YFP at URA3 or 

TRP1 loci HSP31-9myc::KanMX 

This study 

W303-2x α-syn 

HSP31-9myc 

W303 GAL- α-syn-YFP at URA3 GAL- 

α-syn-CFP at TRP1 loci  HSP31-

9myc::KanMX 

This Study 

W303-hsp31Δ W303-1A atg8Δ:: NATMx This study 

W303-hsp31Δ W303-1A atg8Δ:: NATMx hsp31Δ:: 

KanMx 

This study 
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Table.2.2 List of plasmids used in this study 

 

  

Plasmids Type of 

plasmid 

Source or reference 

pGEX6P-1 Hsp31 E. coli This study 

pAG415-GPD-Hsp31-dsRed Yeast, CEN This study 

pAG415-GPD-ccdB-dsRed Yeast, CEN Alberti et al.(318) 

pAG-425-GAL-PrD-Sup35-

EYFP 

Yeast, 2 µ Alberti et al.(318) 

p2HG Yeast Rochet’s lab 

p2HG-Hsp104 Yeast Rochet’s lab 

BG1805 HSP31-MORF Yeast, 2 µ Gelperin,D.M.,et al.(319) 
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Table 2.3. List of primers used in this study. 

Primer name Primer sequence (5’!  3’) 

HSP31_NAT_F AAGTACTTCCCACTGGCTAATTACACAGATAAAACTCA

AACAAATTTATAATGACATGGAGGCCCAGAATACCC 

HSP31_NAT_R CTTACATCTATATAGTAGTACAAAGGAAATTCTAATTA

TCAACCTTTGGCTCACAGTATAGCGACCAGCATTCAC 

Hsp31_9myc_F TCTGCGCACTCCACTGCCGTAAGATCCATCGACGCTTT

AAAAAACCGTACGCTGCAGGTCGAC 

Hsp31_9myc_R TCCTTACATCTATATAGTAGTACAAAGGAAATTCTAAT

TATCAACCTTTGGCTCAATCGATGAATTCGAGCTCG 

HSP31-9myc tag 

diagnostic-F 

ACAGAGAATTAACGTTACTC A TTCC  

HSP31-9myc tag 

diagnostic-R 

ATATTTGGATATTGGGGAAACAC AT  

Atg8-NAT_F AGTTGAGAAAATCATAATAAAATAATTACTAGAGACA
TGACATGGAGGCCCAGAATACCC  

Atg8-NAT_R CGATTTTAGATGTTAACGCTTCATTTCTTTTCATATAAA
AGACTACAGTATAGCGACCAGCATTCAC  

ATG8 diagnostic-F GGGAACCATTAAAGGTTGAG GAGG  

ATG8 diagnostic-R GTAAACATTCTTATACTGGAACA 
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2.4.4 HSP31 9myc tagging 

We endogenously tagged HSP31 with 9myc epitope using a PCR- based integration. The 

pYM20 plasmid was used as template and appropriate primer set to obtain PCR product 

with HSP31 genomic flanking sequence and the PCR product was transformed into 

W303 and W303 α-syn-CFP + α-syn-YFP strains. The transformants were selected on 

media containing hygromycin B (300mg/L) and correct integration was verified by PCR 

using primers spanning the integration junctions and by DNA sequence analysis. DNA 

manipulation - The plasmids used in this study are listed in Table 2.2. Hsp31 was shuttled 

into pAG415- GPD-ccdB-DsRed (Addgene Cambridge MA (318) from pDONR221 with 

LR clonase (Invitrogen, Grand Island, NY) to produce pAG415-GPD- HSP31-DsRed. 

Both DJ-1 and Hsp31 were cloned into BamHI/XhoI sites of pGEX 6p-1. pESC-Leu 

myc-HSP31 was constructed by cloning at the XhoI/NheI sites. The HSP31 gene was 

amplified from yeast genomic DNA. The Hsp31 C138D mutant was prepared by PCR 

amplification using pAG415-GPD-Hsp31-DsRed as template and set of primers listed in 

Table 2.3 Each successfully mutated insert was sequenced to confirm the mutation. 

2.4.5 Antibodies and immunoblotting 

To determine protein expression yeast cells were collected by centrifuging at 5000 rpm 

and pellets were resuspended in extraction buffer (50mM Tris-HCl pH 7.5, 1mM EDTA, 

4mM MgCl2; 5mM DTT). Glass beads (Sigma, St. Louis, MO) were added into the 

mixture, which was vortex 5 times for 10 s each, plus 1 min intervals on ice. Clear crude 

protein lysate was obtained by spinning down the cell debris at 1000 xg at 4 °C for 10 

min. The SDS- PAGE loading dye (4 % SDS, 40 % glycerol, 0.02% bromophenol blue, 

Tris-Cl, pH6.8) was added to supernatant and samples were boiled, followed by SDS-
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PAGE and immunoblotting with antibodies. Monoclonal anti-myc and anti-β-actin 

antibody were purchased from Sigma-Aldrich (St. Louis, MO). Monoclonal anti-α-syn 

was obtained from BD biosciences (San Jose, CA). The following antibodies were also 

used to detect expression of Hsp104 (Abcam; ab69549), Hsp70 (Stressgen; SPA-82); 

DsRed (Santa Cruz Biotechnology; Sc-33353) and GFP (Roche; anti- GFP). 

2.4.6 Protein purification 

BY4741 harboring yeast Hsp31 expression plasmid from the yeast moveable ORF 

collection (Thermo Fisher Scientific Open Biosystems, Huntsville, AL) was used to 

express and purify the protein. We did not see any evidence of co-purifying proteins on 

SDS-PAGE gels and observed similar high activity from protein purified under high salt 

conditions, which minimizes contaminant co-purifying proteins. Human DJ-1 was 

encoded in pGEX 6p-1 (GE Healthcare Life Sciences), hchA was encoded in pNT-hchA, 

and α-syn was expressed from the pT7 plasmid. The protein expression and purification 

was described previously. Briefly, constructs were transformed into BL21 (DE3) cells. 

The transformants were grown to an OD600 of 0.4 – 0.6 in LB medium supplemented with 

100 µg/ml ampicillin at 37 °C, and Isopropyl β-D-1- thiogalactopyranoside (IPTG) (1mM 

as final concentration) was added to induce protein expression. After 3 h of induction at 

37 °C, cells were harvested by centrifugation at 2,000xg, and re-suspended in lysis buffer 

(25 mM KPi pH 7.0, 200mM KCl) containing protease inhibitor cocktail set IV 

(Calbiochem, Billerica, MA). Crude protein was prepared by sonicating cells and 

clarifying the lysate by centrifugation at 10,000xg for 10 min. GST tagged DJ-1 was 

immobilized by Glutathione agarose resin (Thermo scientific) and DJ-1 was eluted by 

cleaving from the GST tag with PreScission Protease (GE Healthcare Life Sciences, 
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Pittsburgh, PA) (2 units of protease for every 100 µg of tagged DJ-1) leaving a linker 

amino acid sequence: (NPAFLYKVVDVSRHHHGRIFYPYDVPDYAG LEVLFQ) 

The protein was approximately 95% pure based on band intensity coomassie blue 

staining with SDS- PAGE.  

2.4.7 Dilution growth assays  

Plasmids pAG415-GPD- ccdB-DsRed and pAG415-GPD-HSP31-DsRed were 

transformed into W303 α-syn expressing strains with or without genomic copy of the 

HSP31 gene knocked out using the PEG/lithium acetate transformation method. Single 

colonies of transformants were grown in SD-Leu overnight, the cells were washed, 

normalized and grown in synthetic complete without leucine (SC-Leu) + raffinose (2%) 

to switch the carbon source. After incubating in the raffinose medium over night, the cell 

number was normalized, and spotted on SD-Leu (suppressed expression) plate and SC-

Leu with 2% raffinose and 2% galactose (induced expression) with five-fold serial 

dilutions. The plates were incubated at 30 °C for 3 days.  

2.4.8 Fluorescence imaging analysis α-syn localization 

pESC-Leu myc-Hsp31 and control empty vector were transformed into 2 copies of α-syn 

expressing strain. Transformants were inoculated and grown as described in the growth 

dilution assay. The α-syn expression was induced by growing the cells in synthetic 

minimum medium with 2% raffinose and galactose for 8 h. The live cells were visualized 

using Nikon TE2000-U inverted fluorescence microscope with Nikon Plan apochromat 

60X (NA 1.4) oil immersion objective and YFP filters plus 300X magnification. In order 

to differentiate the localization of protein, approximately 50 individual cells were 

randomly counted in multiple regions of interest for each set of experiment. The ratio of 
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membrane to cytoplasmic localization of α-syn fluorescent fusion protein was presented 

as the mean from three independent sets of experiments.  

2.4.9 MGO addition and microscopy 

α-syn expressing strains with or without the Hsp31 gene deleted were grown in YPD 

media and transferred into media containing 2% galactose and MGO (0.5mM-2mM) for 

6 h and 12 h. Cells were washed and subjected to confocal microscopy to observe α-syn 

foci formation. The presence of MGO inhibited the growth of cells for the initial 12 h and 

resulted in equal growth rate between strains regardless of the Hsp31 gene deletion. 

Strains could not be grown in the presence of high concentrations of MGO (20mM) so α-

syn was induced for 10 h and then MGO was added and incubated for another 2 h before 

confocal microscopy analysis. 

2.4.10 Assessment of intracellular ROS 

Cells were harvested after induction of α-syn expression for 12 h and 5 × 106 of cells 

were prepared to stain with dihydroethidium (DHE). Cells were suspended in 250 µl of 

2.5 µg/ml DHE in PBS, and incubated in the dark for 10 min. Cells were washed in the 

PBS and were subjected to fluorescence microscopy (excitation at 485 nm and emission 

at 520 nm) and flow cytometry with FL-2 channel. FlowJo software was used to calculate 

median fluorescence intensity. 

2.4.11 Prion expression experiments 

W303 WT strain was co-transformed with pAG424-GAL- PrD-Sup35-EYFP and 

pAG415-GPD-HSP31-DsRed. Single transformations were also performed using the 

same constructs and their corresponding control vector. Cells were grown at 30°C in 

appropriate medium overnight (SD-Trp for pAG424, SD-Leu for pAG415 and SD-Trp- 
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Leu for co-transformants) and protein expression was induced for 24 h in SC 2% 

Raffinose and 2% Galactose containing medium at 30 °C. After induction, cells were 

subjected to fluorescence microscopy using a Nikon A1 confocal microscope with a 

Nikon Plan apochromat 60X (NA 1.4) oil immersion objective to acquire fluorescence 

and DIC images and were analyzed using Image J. The identical cultures used in 

microscopy were used to prepare samples for flow cytometry, cells were washed and re-

suspended in PBS at a density of ~10x106 cells/ml. Cells were filtered and analyzed for 

EYFP fluorescence intensity using a flow cytometer with the FL-1 channel. A total of 

10,000 events were acquired for each sample and data was analyzed using FlowJo 

software to calculate median fluorescence intensity after three biological replicates. 

2.4.12 Glutathione-independent glyoxalase biochemical Assay 

Purified recombinant Hsp31 and Hsp31 C138D with GST tag removed were used to 

assay methylglyoxalase activities. The reaction was initiated by adding specified 

concentration of proteins (1 µM Hsp31 and 5 µM Hsp31C138D) in reaction buffer (100 

mM HEPES, pH 7.5, 50 mM KCl, 2 mM DTT) to 6 mM initial concentration of MGO 

(Sigma, 40% solution), followed by incubation at 30 °C. The assay was performed, by 

removing 50µl aliquots of the reaction at fixed time points (15, 30, 45, and 120 s) after 

addition of protein. The amount of D-lactic acid produced by Hsp31 as a result of MGO 

consumption was measured. The initial rate obtained was divided by amount of protein in 

the reaction mixture to calculate the specific activity. Samples were also subjected to Gas 

Chromatography-Mass Spectroscopy analysis (Agilent 5975C MSD) to identify the 

presence of D-lactic acid. Samples were derivatized with N, O-bis (trimethylsilyl) 

trifluoroacetamide) and trimethylchlorosilane and heated to 50 °C for 10 min and run in 
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the electron impact mode with scanning from 42-400 atomic mass units. A lactic acid 

standard displayed a peak at 6.09 min identical to the peak detected in the Hsp31-treated 

sample whereas Hsp31C138D did not display this peak. The spectral scan was visualized 

and displayed using the OpenChrom software (320). To obtain the enzymatic parameters, 

the reaction was initiated as described above by adding 1 µM Hsp31 or 5 µM 

Hsp31C138D protein into reaction buffer and reactions were stopped after 1 min by 

heating at 85 °C for 30 s. A range of MGO substrate from 50 µM to 2 mM and the 

EnzyFluo D-Lactate Assay kit (Bioassay System) was used to determine the amount of 

D-lactic acid produced in each reaction. Each rate was determined in triplicate and mean 

values were plotted to obtain enzymatic parameters (Vmax and Km) by fitting to 

michaelis-menten model using Graphpad prism. 

2.4.13 Semi-denaturing detergent-agarose gel electrophoresis (SDD-AGE) 

W303 cells harboring pAG424-GAL-cPrDSup35-EYFP and pAG415-GPD-HSP31-

DsRed plasmids were used and aggregates produced by inducing for 24 h in SC 2% 

raffinose + 2% galactose media. Prion aggregates were analyzed using SDD-AGE (321). 

Briefly, to prepare lysates, cells were harvested by centrifugation at 3,000'g for 2'min and 

re- suspended in spheroplast solution (1.2 M D-sorbitol, 0.5 mM MgCl2, 20 mM Tris (pH 

7.5), 50 mM β-mercaptoethanol and 0.5 mg/ml Zymolyase and incubated at 30 °C for 30 

min with shaking. After spheroplast formation the samples were centrifuged at 800 rpm 

for 5 min at room temperature and supernatant was removed. The pelleted spheroplasts 

were resuspended into 100 µL lysis buffer (100 mM Tris 7.5, 50 mM NaCl, 10 mM β-

mercaptoethanol and protease inhibitor and vortexed at high speed for 2 min. The lysates 

were collected and mixed with 4 x sample buffer (2 x TAE; 20 % glycerol; 4 % SDS; 
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0.01% bromophenol blue). The samples were incubated at room temperature for 15 min 

and loaded onto a 1.8 % agarose gel containing 1 x TAE and 0.1 % SDS and run at 50 V, 

followed by transfer onto nitrocellulose membrane using capillary transfer method. The 

nitrocellulose membrane was subjected to western blot analysis using anti-GFP antibody 

(Roche). A strain harboring p2HG-Hsp104 plasmid was included as a positive control. 

2.5 Discussion 

DJ-1/ThiJ/PfpI superfamily members composed of structurally similar proteins that are 

present in prokaryotes and eukaryotes. Often these proteins are associated with stress 

response. However, structural and biochemical studies have proven that they are diverse 

in functions with the ability to perform multiple activities that include chaperone, 

protease, methylglyoxalase, deglycase and role in autophagy. In this study we aimed to 

delineate the functions of Hsp31 by using yeast as a model. Recently, we established that 

Hsp31 is a potent chaperone that can inhibit the aggregate formation of large number of 

proteins such as insulin, citrate synthase as well as prevent α-syn fibrillization in vitro 

and α-syn toxicity in vivo. Because Hsp31 is a multifunctional protein, we sought to 

identify the interaction between different functional pathways of Hsp31 and define its 

role in protecting against cellular stress. We also obtained insight into the role of Hsp31 

in Sup35 prion aggregations.  

2.5.1 Role of Hsp31 in redox homeostasis  

Previous studies showed the protective effect of Hsp31 under oxidative and proteotoxic 

stress in that overexpression of Hsp31 protect yeast cell viability under these conditions 
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(260,303). In the past, our lab has shown that Hsp31 protects cells from α-syn mediated 

toxicity. These observations led us to explore the expression profile of Hsp31 in response 

to oxidative and proteotoxic stress. A genomically tagged strain shows an increase in 

Hsp31 expression under both oxidative and proteotoxic stress (Figure 2.1). Previous 

studies have shown that an increased level of Hsp31 at the diauxic shift and during 

stationary phase of growth cycle. These phases in the growth cycle are associated with 

stress due to accumulation of toxic metabolites and lack of nutrients (322). An elevated 

level of Hsp31 at later phases of growth indicates that it could possibly be due to the 

stress associated with these phases. HSP31 expression is also induced when yeast cells 

are treated with H2O2 to produce oxidative stress and this up-regulation of HSP31 in 

response to ROS has been reported to be under the control of stress responsive 

transcription factor Yap1, as removal of Yap1 binding site (-363 and -353 bp relative to 

the ATG) from HSP31 promoter has shown to reduce Hsp31 expression under oxidative 

stress (303). However, we observed that this shortened promoter also eliminates another 

stress response element (STRE, a CCCCT site at -379 to -383 from the ATG) in addition 

to the Yap1 binding site. STREs are the binding site for Msn2/4, and several other stress-

related yeast genes have been documented to be transcriptionally activated by these 

transcription factors, including genes up-regulated after the diauxic shift in stationary 

phase cells (303).  

Finally, we also reported an increase in ROS levels upon HSP31 deletion that correlates 

with increased toxicity by α-syn expression compared to WT strains, as level of 

superoxide was higher when we overexpressed α-syn indicating that the presence of 
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Hsp31 is important in reducing ROS to basal levels. A previous study has shown that α-

syn expression is associated with caspase-mediated ROS generation (323) (Figure 2.2). In 

agreement with our study, overexpression of HSP31 robustly suppresses both cytosolic 

and mitochondrial ROS levels instigated by MGO and H2O2 and therefore provide 

cytoprotection. In addition, Hsp31 localizes to mitochondria and preserves mitochondrial 

integrity by redistributing glutathione to the cytoplasm under oxidative stress (260). 

Another study examined the deglycase activity of Hsp31 and showed that it may 

efficiently deglycate proteins with glycated Cys, Arg and Lys amino acid residues (265). 

Taken together, these results suggest that Hsp31 is an integral part of the heat shock 

protein system and plays a vital role in maintaining cellular homeostasis. These results 

establish that Hsp31 has a role in response to ROS and its expression is induced in 

response to several types of stress. 

2.5.2 Hsp31 chaperone activity is independent of its methylglyoxalase activity 

Recently in our lab we demonstrated the robust chaperone activity of Hsp31 that can 

rescue the α-syn toxicity in vivo. A question was raised that the in vivo rescue effects 

could have been mediated by the Hsp31 methylglyoxalase activity or interaction with 

other biological pathways such as the metabolic or autophagy pathway. First we 

confirmed that Hsp31 does have methylglyoxalase activity and demonstrated that 

mutation of the catalytic triad residue, C138D, results in greatly reduced 

methylglyoxalase activity (Figure 2.3). However, this mutation did not inactivate the 

chaperone activity in terms of rescuing the cells from α-syn-mediated toxicity when 

expressed under GPD-HSP31 C138D system (Figure 2.4). Furthermore, we showed that 
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that exogenous MGO did not differentially affect viability suggesting that Hsp31 does not 

rescue by reducing accumulation of this toxic metabolite in α-syn expressing cells 

(Figure 2.5). Another study also reported that mutation in the catalytic triad largely 

abolishes glyoxalase activity but this catalytic triad is not required for chaperone activity 

of Hsp31 (260). These results indicate that the anti-aggregation activity of Hsp31 is not 

under the influence of its known enzymatic activity rather; it has a direct chaperone 

activity against misfolded proteins. Intriguingly, all the paralogs of the Hsp31 minifamily 

possess comparable activity against α-syn aggregation and toxicity when they are 

overexpressed from the GAL promoter (106). However, unlike Hsp31, the other paralogs 

possess very little methylglyoxalase activity and are unable to protect the cells from 

glyoxal toxicity (260). Furthermore, the chaperone activity of Hsp31, Hsp32 and Hsp33 

against a cytoplasmic aggregation-prone protein is independent of their role in oxidative 

stress response and the vacuolar degradation pathway (262). These results again support 

the notion that anti-aggregation activity of Hsp31 mini-family is independent of its 

enzymatic activity. 

2.5.3 Autophagy pathway is not essential for chaperone activity of Hsp31 

We also demonstrated the autophagy pathway is an important mediator in the α-syn 

toxicity because deletion of ATG8 resulted in synthetic lethal interaction with α-syn 

expression (Figure 2.10). This is consistent with atg1Δ or atg7Δ strains having synthetic 

lethal interactions with α-syn expression and having defects in clearing α-syn foci (324). 

However, we show that hsp31Δ atg8Δ strain does not have increased α-syn- mediated 

toxicity when compared to atg8Δ, consistent with these genes occurring within the same 
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synthetic lethal pathway. A recent result indicates that hsp31Δ strains are defective in 

autophagy (301) so the additional deletion of an autophagy gene should not increase 

toxicity. Interestingly, overexpression of Hsp31 in these autophagy deficient strains can 

rescue cells from α-syn toxicity indicating that autophagy pathway is not essential for 

chaperone rescue (Figure 2.11). Autophagy may be beneficial for controlling α-syn 

toxicity but it appears that chaperone activity of Hsp31 is also important.  

2.5.4 Hsp31 inhibits Sup35 prion aggregation 

Several orthologous experiments suggest that Hsp31 intervenes early in the misfolding 

process and prevents the formation of larger oligomeric species. Previously, we showed 

that the addition of Hsp31 to α-syn monomers in a fibrillization assay resulted in a 

baseline level of ThioT fluorescence signal indicating that the formation of larger 

oligomeric species was prevented. Analysis of the SDS-resistant oligomeric species by 

SDS-PAGE demonstrated that the presence of Hsp31 prevented the formation of higher 

order oligomeric α-syn species. Here, our studies demonstrate the ability of Hsp31 to 

prevent prion aggregation in vivo and in vitro. Our results indicate that Hsp31 inhibits 

prion assembly before the formation of visible subcellular YFP-tagged PrD aggregates 

and those detected by SDD-AGE (Figure 2.7, Figure 2.9). Furthermore, the Sup35 

aggregates occlude Hsp31, indicating that the anti-aggregation activity of Hsp31 

commences prior to the formation of the visible aggregate and probably does not act to 

remove or disassemble any preformed aggregates (Figure 2.8). This is in contrast to large 

chaperones, Hsp104, Ssa1/2, Sis1 and Sse1, which mutually co-localize with prion 

aggregates (325). A previous study has demonstrated that small HSPs can inhibit 
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formation of Sup35 aggregates and found that Hsp26 and Hsp42 inhibit rare transient 

oligomers at distinctly different steps in the prion formation process (53). Further studies 

are done to determine Hsp31 role in inhibiting prion aggregation. These results are listed 

in Chapter 3. Overall, we demonstrate that Hsp31 can inhibit oligomerization or 

aggregation of α-syn and Sup35 by intervening early in the process. 

2.5.5 Yeast purified MORF-Hsp31 is more potent than recombinant Hsp31 or DJ-1 

Intriguingly, Hsp31 purified directly from a yeast expression system, the GAL promoter 

induced movable ORF tag system (MORF) (319), had increased enzymatic activity 

compared to Hsp31 purified from recombinant E. coli (Figure 2.3).  We also 

demonstrated that the yeast-purified protein was more active in preventing aggregation of 

several substrate proteins including α-syn. The increased activity may be due to the 

difference in the affinity tags used or fusion tag orientation, that has been previously 

observed for E coli Hsp31 (256,271) but, it may be a result of posttranslational 

modification(s) that occur in the cell. Several reports have indicated that post-

translational modifications or differing levels of oxidation of the cysteine residue can 

alter activity of DJ-1 (297,326). We also show that Hsp31 is a more potent 

methylglyoxalase compared to DJ-1 consistent with several other studies (Figure 2.3) 

(260,261). In addition, we have shown that yeast Hsp31 is more active in preventing 

protein aggregation compared to DJ-1.  Interestingly, it has also been observed that 

Hsp31 rescues α-syn and Huntingtin’s toxicity to a greater extent than DJ-1 in vivo 

(106,299).  These results raise the intriguing possibility that Hsp31 is constitutively active 

whereas DJ-1 must undergo an activation event to increase its activity. 
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2.6 Conclusion and future directions 

Recent studies have demonstrated the facility of yeast to investigate pathogenic 

mechanisms underlying α-syn toxicity including the identification of novel biological 

pathways that impinge on α-syn biology and small molecule modulators of α-syn toxicity 

(314,327). In addition, the action of Hsp31 on α-syn may provide insight into the mode of 

toxicity of α-syn because recent evidence suggests that the α-syn toxic species is smaller 

than the visible aggregate (314). 

Our results together with other recent findings demonstrate the multitasking ability of 

Hsp31, which is particularly important during stressful situations. It functions as a stress 

response chaperone, glutathione independent methylglyoxalase, has a role in the 

autophagy pathway and acts as a deglycase. Other possible functions have been observed 

for this superfamily including a report of RNA binding for DJ-1 and protease activity for 

other family members (328-330). These multiple functions can modulate the protein 

misfolding and stress pathways at various points in the cellular network but our results 

also highlight that Hsp31 has the ability to inhibit protein aggregation distinct of its 

enzymatic activity (Figure 2.12). We believe that Hsp31 acts at the initial phases of 

protein misfolding process and prevents the formation of larger aggregates but does not 

possess disaggregase activity. 
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Figure 2.12 The homeostatic functions of Hsp31 associated with protecting cells from 
stress.  

Hsp31 is a methylglyoxalase that converts MGO into D-lactate independent of 
glutathione. Proteotoxic stress induced the expression of Hsp31, which exerts a protective 
function against toxic effect of oligomers in yeast cells. Oxidative stress induces the 
expression of Hsp31, re-localizes it to mitochondria resulting in reduced levels of ROS. 
Response to other stresses leads to Hsp31 localization to P bodies and stress granules. 
HSP31 deletion under carbon starvation compromises the autophagy pathway, which is a 
pathway used to clear oligomerized or aggregated proteins. Despite the role of Hsp31 in 
autophagy, it has a protective effect against α-syn oligomerization independent of its role 
in autophagy because of its inhibitory effect early in the oligomerization process. 
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We have established a framework that extends the yeast model for investigating 

mechanisms of α-syn toxicity in the context of the DJ-1/ThiJ/PfpI superfamily in yeast. 

Extension of this work will assist elucidating the chaperone-like mechanisms of Hsp31, 

and a comparison with DJ-1 may provide evolutionary insights into the activities of the 

DJ-1/PfpI/ThiJ superfamily family. Our model may also be used to further delineate the 

nature of oligomeric species in the pathogenesis of PD and possibly what species of α-

syn should be targeted therapeutically. 

Given the apparent functional diversity of Hsp31 revealed so far, it is likely that there 

might be other chaperone dependent and independent functions of this protein that may 

exist. Many HSPs work in collaboration with other chaperone in order to be fully active. 

The exploration and identification of protein-protein interaction partners of Hsp31 would 

provide insight on mechanism and roles of Hsp31. There is s dearth of protein-protein 

interaction information for Hsp31 although it was reported to interact with other 

chaperones according to a large-scale proteomic study (28). Deletion of HSP31 down-

regulates the Ssa3, a Hsp70 paralog, mRNA level at stationary phase suggesting a 

correlation between Hsp31 and Hsp70 activity (114). Human homolog DJ-1 is known to 

interact with many chaperones including Hsp70 and mitochondrial Hsp70 indicating that 

translocation of DJ-1 to mitochondria depends on these chaperones (304). A distinct 

possibility is that relocation of Hsp31 to mitochondria, P bodies or stress granules under 

oxidative stress is dependent on interactions with other chaperones. Our data support that 

Hsp31 acts at early stages of protein aggregation do not delineate the stage of 

intervention and therefore further investigation is needed. Hsp31 may interact with 
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unfolded monomers to sequester them from progressing to oligomers or alternatively, it 

might become active only after smaller oligomers are formed.
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CHAPTER 3. THE SMALL HEAT SHOCK PROTEIN HSP31 COOPERATES WITH 
HSP104 TO MODULATE THE SUP35 PRION 

3.1 Abstract 

The yeast homolog of DJ-1, Hsp31, is a multifunctional protein that is involved in several 

cellular pathways including detoxification of the toxic metabolite MGO and as a protein 

deglycase. Prior studies ascribed Hsp31 as a molecular chaperone that can inhibit α-syn 

aggregation in vitro and alleviate its toxicity in vivo. It was also shown that Hsp31 

inhibits Sup35 aggregate formation in yeast. However, it is unknown if Hsp31 can 

modulate [PSI+] phenotype and Sup35 prionogenesis. Other small heat shock proteins 

(sHSPs), Hsp26 and Hsp42 are known to be a part of a synergistic proteostasis network 

that inhibits Sup35 prion formation and promotes its disaggregation. Here, we establish 

that Hsp31 inhibits Sup35 [PSI+] prion formation in collaboration with a well-known 

disaggregase, Hsp104. Hsp31 transiently prevents prion induction but does not suppress 

induction upon prolonged expression of Sup35 indicating that Hsp31 can be overcome by 

larger aggregates. In addition, elevated levels of Hsp31 do not cure [PSI+] strains 

indicating that Hsp31 cannot intervene in a pre-existing prion oligomerization cycle. 

However, Hsp31 can modulate prion status in cooperation with Hsp104 because it 

inhibits Sup35 aggregate formation and potentiates [PSI+] prion curing upon 

overexpression of Hsp104. The absence of Hsp31 reduces [PSI+] prion curing by Hsp104 

without influencing its ability to rescue cellular thermotolerance. Hsp31 did not synergize



 
 

 

108 

108 

with Hsp42 to modulate the [PSI+] phenotype suggesting that both proteins act on similar 

stages of the prion cycle. We also showed that Hsp31 physically interacts with Hsp104 

and together they prevent Sup35 prion toxicity to greater extent than if they were 

expressed individually. These results elucidate a mechanism for Hsp31 on prion 

modulation that suggest it acts at a distinct step early in the Sup35 aggregation process 

that is different from Hsp104. This is the first demonstration of the modulation of [PSI+] 

status by the chaperone action of Hsp31. The delineation of Hsp31’s role in the 

chaperone cycle has implications for understanding the role of the DJ-1 superfamily in 

controlling misfolded proteins in neurodegenerative disease. 

3.2 Introduction 

Amyloids are highly ordered cross β-sheet protein polymers that are associated with a 

broad range of neurodegenerative diseases including PD, AD, HD and Prion diseases 

(16,331). Growth of amyloids occurs by the nucleated polymerization of soluble proteins 

of a particular sequence (69,332). Many proteins can polymerize to form amyloid when 

provided an appropriate environment in vitro, indicating this as inherent characteristic of 

polypeptides. Indeed, many recent studies have shown the existence of beneficial 

amyloids that are important for survival of a host organism (185). Furthermore, the 

highly rigid structure of self-propagating amyloids provides a possible tool in designing a 

unique nanomaterial (333). Therefore, it is important to study the process of amyloid 

formation as well as its modulation.  

The budding yeast Saccharomyces cerevisiae provides a useful model to understand the 

formation, modulation and disaggregation of amyloids including prions (182). One of the 

most extensively studied yeast prions is the translation termination factor Sup35, which 
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has the normal function of releasing polypeptide chains from the ribosome upon 

encountering a stop codon. The prion form of Sup35 involves a self-perpetuating 

conformational change that results in stop codon suppression and translational read-

through (180). This termination defect can be visualized easily in vivo by nonsense 

suppression of a designed premature stop codon in a gene that affects colony color, thus 

providing a convenient phenotypic assay to monitor [PSI+] prion (180). 

The propagation of [PSI+] prion in yeast is rigorously controlled by molecular chaperone 

machinery including, Hsp104, Hsp70, Hsp40 and their co-chaperones (40,232,334). 

Hsp104 is a member of AAA+ ATPase superfamily and its expression is induced under 

stress to facilitate refolding and dissociation of protein aggregates (228,335). A moderate 

level of Hsp104 is required for [PSI+] prion propagation as overproduction or deletion of 

Hsp104 cures the [PSI+] prion in yeast (45,222). Since Hsp104 disaggregates the 

misfolded protein after heat shock, it is postulated that Hsp104 generates “propagons” by 

fragmenting the prion polymers that are available for further polymerization and 

therefore maintain the prion propagation (182). Another model proposes that elevated 

levels of Hsp104 cure [PSI+] prion by dissolution of the prion seeds. The evidence for 

this model came from the observation of the diffuse expression of Sup35 tagged with 

GFP when Hsp104 was overexpressed in [PSI+] cells, (229) and a large fraction of 

soluble Sup35 was observed in the cell lysate of [PSI+] with excess of Hsp104 expression 

(187). Recent studies also suggests that dissolution of prion seed might be due to 

trimming activity of Hsp104 in which Sup35 dissociates from the end of the prion seed 

thus reduces its size without generating new seeds (223,233). Trimming activity of 

Hsp104 is still present even when severing activity is inhibited by treatment with 
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guanidine (233). Hsp104 collaborates with Hsp70 and Hsp40 families in dissolution of 

heat-damaged proteins as well as prion propagation (38,39,225,227,336,337). 

Interestingly, different Hsp70 homologues have opposing effects on [PSI+] in which the 

Ssa proteins antagonize while the Ssb proteins potentiate [PSI+] curing by elevated levels 

of Hsp104 (40,224,238). Deletion of co-chaperones of Hsp70/90, such as Sti1 or Cpr7, 

also inhibit [PSI+] curing by Hsp104 overexpression (40). 

In addition to Hsp104 and its assistant chaperones, sHSPs such as Hsp31, Hsp26 and 

Hsp42 also play a role in disaggregation of misfolded proteins in yeast 

(53,240,242,243,262,299,338). These proteins are highly expressed under moderate stress 

and during late growth phase for transition to stationary phase (262,294). Hsp42 and 

Hsp26 work synergistically to inhibit prion formation and potentiate dissolution of Sup35 

prion aggregates by distinct mechanisms (53). Furthermore, Hsp26 or Hsp42 collaborate 

with Hsp70 and or Hsp104 to reduce the SDS-resistant polyglutamine aggregation 

(234,243). Hsp31 inhibits the formation of α-syn aggregates in vitro and toxicity in vivo 

(106,158). It was also demonstrated that Hsp31 inhibits Sup35 aggregation formation in 

yeast (158) However, it is unknown whether Hsp31 interferes with [PSI+] prion induction 

and propagation and if like other sHSPs it can coordinate with Hsp104.   

In the present study, we aimed to explore the role of Hsp31 in prion propagation and 

induction using [PSI+] prion model. We investigated the ability of Hsp31 to inhibit 

Sup35 prion aggregation and induction by overexpression of the prion-forming domain 

(PrD) in [psi-] strain. In this study we have delineated the collaboration between Hsp31 

and Hsp104 on [PSI+] prion curing and prion associated toxicity. These results are the 
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first evidence that Hsp31 acts as a chaperone protein that coordinates with Hsp104 to 

rescue cells from prion toxicity. 

3.3 Results 

3.3.1 Hsp31 antagonizes the Sup35 aggregation formation in [psi- PIN+] strain 

background. 

We previously reported that Hsp31 has chaperone activity against Sup35 aggregates 

when tested in the wild-type (WT) W303 yeast strain. In this study, we validated the 

ability of Hsp31 to inhibit Sup35 fibril formation in the [psi- PIN+] strain background. 

[PIN+], an epigenetic element, is required to induce [PSI+] formation spontaneously or by 

overexpression of Sup35 or its PrD (181). The presence of [PIN+] is necessary at early 

stages of prion formation but is not needed for maintenance and propagation of [PSI+] 

(182). We overexpressed Hsp31-DsRed under the GPD promoter concomitantly with 

PrD-Sup35-EYFP under GAL expression in a [psi- PIN+] strain. When examined by 

confocal microscopy, PrD-Sup35 fluorescent foci were greatly reduced in cells co-

expressing pAG415-GPD-HSP31-DsRed and pAG424-GAL-PrD- Sup35-EYFP as 

compared to empty vector control (Figure 3.1 A-B). We further confirmed reduced foci 

formation by measuring fluorescence intensity using flow cytometry and obtained similar 

results as fluorescence microscopy (Figure 3.1C). We have previously observed and 

established that Sup35 aggregates are associated with increased fluorescence and can be 

quantified using flow cytometry (158). Finally, we performed semi-denaturing detergent 

agarose electrophoresis (SDD-AGE) to determine the level of SDS-resistant aggregate 

forms. Consistent with the previous results, elevated Hsp31 greatly reduced the level of 

Sup35 aggregates as measured by SDD-AGE but did not greatly reduce the overall 
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steady-state level of Sup35 in SDS-PAGE (Figure 3.1D). These results show that Hsp31 

can prevent de novo [PSI+] aggregate formation in the presence of the [PIN+] genetic 

element. 
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Figure 3.1. Hsp31 overexpression decreases the level of PrD-Sup35 aggregates.  
(A) GAL-driven PrD-Sup35-EYFP was overexpressed for 24 h at 30 °C in [psi- PIN+] 
cells with or without overexpression of DsRed tagged Hsp31. PrD-Sup35-EYFP 
aggregates appeared as ribbon-like vacuolar peripheral rings. Hsp31 remains 
cytoplasmically diffuse in these cells. Elevated levels of Hsp31 decreased the presence of 
Sup35 aggregates in individual cells. (B) Quantitation of the number of cells with one or 
more Sup35-EYFP foci. The average of at least three independent experiments was 
plotted; error bars represent mean ±SEM. (*** unpaired Student's t-test; p≤0.001). (C) 
Quantitation of the level of Sup35-EYFP fluorescence aggregates using flow cytometry. 
Aggregates are associated with higher fluorescence.  Elevated levels of Hsp31 lowered 
the median fluorescence intensity (FI – arbitrary units) of Sup35-EYFP compared to 
empty vector control.  Values represent mean ±SEM of three independent biological 
replicates (* unpaired Student's t-test; p≤0.01). (D) Cellular lysate of cells describe in A 
and B was analyzed by semi-denaturing agarose electrophoresis and SDS-PAGE. 
Overexpression of Hsp31 suppresses the level of SDS-resistant Sup35 aggregates as 
detected with anti-GFP antibody. Lower panel shows the expression of Hsp31 detected 
by anti-DsRed antibody. 
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3.3.2 Hsp31 transiently inhibits Sup35 prion induction in vivo 

The ability of Hsp31 to inhibit Sup35 aggregation in the [psi- PIN+] background led us to 

investigate its ability to inhibit [PSI+] induction. Spontaneous de novo [PSI+] induction 

frequency is extremely low unless Sup35 or its PrD is overexpressed (180,189). This 

system is widely used to investigate the process of prion induction in yeast. To determine 

whether Hsp31 can inhibit prion induction we used a [psi- PIN+] strain that forms red 

color colonies on ¼ YPD plates with limited adenine. This strain forms white colonies in 

the presence of [PSI+] because soluble Sup35 is depleted by aggregate formation 

resulting in suppression of a premature stop codon and restoration of adenine prototrophy. 

We observed that overexpression of Hsp31 antagonized [PSI+] prion induction triggered 

by overexpression of Sup35 PrD for 6 h (Figure 3.2A-B). However, when Sup35 PrD 

was expressed for 12 or 24 h, the [PSI+] prion induction rate between empty vector and 

Hsp31 was statistically similar (Figure 3.2C). These findings suggested that Hsp31 

antagonizes prion induction transiently but can be overcome by excess production of PrD 

or cannot intervene when cells have established a full and more mature prion cycle. 

These results are consistent with our previous proposal that Hsp31 intervenes early in the 

protein misfolding processes (158,339). 
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Figure 6: Effect of Hsp31 on prion induction. (A)!PrD/Sup35-YFP was overexpressed for 6 h 
at 30°C in [psi−] cells expressing elevated levels of Hsp30, Hsp42, or Hsp104. Cells were plated 
on ¼ YPD plate and cells were grown for 3 days. (B) Proportion of prion induction was 
determined by number of white color colonies. Compared to the vector control there was 
significantly less [PSI+] prion induction in cells expressing Hsp30 (*p = 0.0086, two-tailed 
Student's t test), Values are represented as mean ±SEM (n = 3).  
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Figure 3.2. Hsp31 transiently inhibits Sup35 prion induction.  
(A) To induce prion formation, a GAL-driven vector expressing PrD-Sup35-EYFP was 
expressed in the [psi- PIN+] strain containing the ade1-14 nonsense mutation. 
Constitutive expression of Hsp31 was driven by the GPD promoter and [PSI+] formation 
was scored by quantifying white color colonies on ¼ YPD plates. Plates were grown for 
2-3 days at 30 °C and incubated at 4 °C for increased color development. Plasmids 
expressing Hsp42 and Hsp104 were added as positive controls. (B) PrD-Sup35-EYFP 
was expressed for 6 h to transiently induce prion formation. Hsp31 overexpression 
decreased the prion induction rate. Error bars represent ±SEM (** unpaired Student's t-
test; p≤0.001, n=3). (C) Time course of prion formation by pAG424-GAL-PrD-Sup35-
EYFP with varied expression times in the presence of GPD-Hsp31. Error bars represent 
mean ±SEM (** unpaired Student's t-test; p≤0.001, n=3) ns= not significant. All 
experiments in this figure were biological replicates. 
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3.3.3 [PSI+] prion state is not affected by Hsp31 overexpression or deletion 

Transient overexpression of sHSPs such as Hsp26 and Hsp42 cure the [PSI+] prion, 

converting white colonies of [PSI+] into red colonies of [psi-] on ¼ YPD plates with 

limited adenine (53). First, we tested if overexpression of Hsp31 can cure the [PSI+] 

prion. Despite the fact that Hsp31 can prevent de novo prion aggregate formation in vivo 

as detected by SDD-AGE (Figure 3.1), overexpression of Hsp31 is not sufficient to cure 

the [PSI+] prion phenotype (Figure 3.3A). In addition, Hsp42 was used as a control and 

was able to cure [PSI+] as previously reported (53). However, we found that Hsp26 

overexpression using the identical plasmid vector from Duennwald et al. (53) could not 

cure [PSI+] in this strain and under these experimental conditions. Our results are more 

consistent with Wickner and colleagues (340) who reported lack of prion curing by 

Hsp26 for both [Ure3-1] and [PSI+] phenotypes, which could be explained by differences 

in strain genotypes and experimental conditions (340). We tested different plasmid 

systems to express Hsp31 including the GPD and GAL promoters and none of them were 

able to modulate the [PSI+] prion phenotype (data not shown). Next, we determined if 

deletion of HSP31 influences the [PSI+] prion status. We constructed a [PSI+ PIN+] 

hsp31Δ strain carrying the reporter nonsense allele ade1-14, so that the Sup35 read-

through caused by [PSI+] presence could be detected by development of white colonies. 

The phenotype of the [PSI+] prion was similar in the hsp31Δ strain compared to WT with 

no change in colony color (Figure 3.3B), suggesting that Hsp31 cannot intervene in an 

established prion cycle. 
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3.3.4 Hsp31 deletion impairs [PSI+] prion curing by Hsp104 overexpression 

A moderate level of Hsp104 is required for maintenance of [PSI+]; either deletion or 

overexpression of Hsp104 cures the [PSI+] prion. Numerous chaperones such as Hsp70, 

Hsp40 and Hsp90 along with its co-chaperones Sti1 and Cpr7 are known to modulate 

prion curing by Hsp104 (39,40). To determine if Hsp31 altered Hsp104-mediated [PSI+] 

prion curing, we transformed WT [PSI+] or hsp31Δ [PSI+] cells with p426-GPD-Hsp104 

(low level of overexpression), pAG425-GAL-Hsp104-DsRed (medium overexpression) or 

p2HG-Hsp104 (high overexpression GPD) plasmids (Figure 3.3C-E). The varied 

overexpression level of Hsp104 under these different plasmid systems was confirmed by 

western blotting (Figure 3.3F). The rate of [PSI+] prion curing was correlated to the level 

of Hsp104 expression in WT [PSI+] cells. The rate of [PSI+] prion curing was 

significantly reduced in hsp31Δ [PSI+] under the lowest overexpression condition of 

GPD-Hsp104 (2% compared to 7% in WT) (Figure 3.3C). Under high overexpression of 

Hsp104, a 100% curing rate was observed in the presence of HSP31 but the hsp31Δ strain 

never achieved 100% curing rates and clearly white colonies were observed at 3% 

frequency (Figure 3.3D). Induction of the GAL-Hsp104-DsRed construct for varied time 

points from 2 h to 72 h also showed consistently less efficient prion curing by the hsp31Δ 

strain (Figure 3.3E). The decreased prion curing in the hsp31Δ [PSI+] strain background 

was not due to decreased Hsp104 expression because we observed a similar expression 

level compared to WT (Figure 3.5B). These results demonstrate the presence of Hsp31 is 

required for optimal prion curing efficiency at varied Hsp104 expression conditions. 
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Figure 3.3. Hsp31 is required for optimal Hsp104-induced curing of the [PSI+] 
phenotype  

(A) To determine the effect of Hsp31 on [PSI+] prion curing, the WT and hsp31Δ [PSI+] 
strains harboring the GPD-Hsp31 expression vector (pAG415-GPD-Hsp31-DsRed) or 
the empty vector (pAG415-GPD-ccdB-DsRed) were grown for 12 h at 30 °C before 
plating on ¼ YPD plates. (B) The WT and hsp31Δ [PSI+] strains with no vector were also 
grown and treated in the same way. Plates were grown for 2-3 days at 30 °C and 
transferred at 4 °C for increased color development. No difference in colony color was 
observed in these strains. (C) Low-level overexpression of Hsp104 was used to induce 
prion curing in [PSI+] hsp31Δ and WT strains. Cells were grown in liquid media for 12 h 
at 30 °C before plating on ¼ YPD plates. Significantly less prion curing was observed in 
the [PSI+] hsp31Δ strain (**unpaired Student's t-test; p≤0.001, n=3). (D) High-level 
overexpression of Hsp104 was used to induce prion curing in [PSI+] hsp31Δ and WT 
strains. A 100% curing rate was observed in WT strain. In the [PSI+] hsp31Δ strain, 100% 
curing was never achieved. White color colonies were plotted for the WT and [PSI+] 
hsp31Δ strain (****unpaired Student's t-test; p≤0.0001, n=3 biological replicates). (E) 
Hsp104 expression under the GAL promoter for 2 to 72 h in WT and [PSI+] hsp31Δ strain. 
At each indicated time point, cells were plated on ¼ YPD plates. Percentage of prion 
curing was calculated at each point for both WT and [PSI+] hsp31Δ strain. The plotted 
graph is one representation of three independent biological repeats. (unpaired Student's t-
test; p≤0.001 at 24, 48 and 72 h; n=3). (F) Western blot demonstrating the relative 
expression levels of Hsp104. 
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3.3.5 Hsp31 collaborates with Hsp104 to cure [PSI+] prion 

The decreased efficiency in Hsp104 curing [PSI+] in the absence of Hsp31 lead us to 

further explore the relationship between these two chaperones. Small HSPs Hsp26 and 

Hsp42 are known to collaborate with Hsp104 in rescuing the polyglutamine toxicity and 

solubilization of amyloid aggregates (243). We aimed to test the effect of expressing 

Hsp31 and Hsp104 together in curing of the [PSI+] prion. Expression of Hsp104 (p426-

GPD-Hsp104) in the [PSI+] strain resulted in a curing rate of 3 % that is lower than the 

rate in Figure 3.3 because the co-existence of two different constructs decreases plasmid 

copy numbers and affects expression levels. Co-expression of Hsp31 and Hsp104 

increased the rate of prion curing to 6 % compared to the respective controls (Figure 

3.4A-B). We also tested the collaboration between Hsp104 and Hsp31 in the hsp31Δ 

strain and detected that co-expression of Hsp104 with Hsp31 was able to cure the [PSI+] 

prion to a greater extent than individual chaperone expression (Figure 3.4C-D). These 

results corroborate the inefficient curing in hsp31Δ and establish that Hsp31 is required 

for optimal Hsp104 activity.  

Previously, it was shown that sHSP, Hsp42, collaborates with Hsp26 to prevent [PSI+] 

prionogenesis by distinct and synergistic mechanisms with Hsp104 (53), hence we tested 

the interaction between Hsp42 and Hsp31 on [PSI+] prion curing. Elevated levels of 

Hsp42 driven by the GPD promoter was sufficient to increase curing of [PSI+] in this 

strain transformed with a single plasmid (5.4% compared to 1.4%).  Introduction of a 

second empty vector plasmid decreased the curing rate of the GPD-HSP42 construct to 

background levels. We also co-expressed Hsp31 and Hsp42 in the [PSI+] strain and did 

not detect any increased curing rate, in contrast to Hsp31 co-expression with Hsp104 



 
 

 

123 

123 

(Figure 3.4E-F). This lack of synergy between these proteins implies that Hsp42 and 

Hsp31 act at a similar stage of the prion cycle. 
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Figure 3.4. Expression of Hsp31 in combination with Hsp104 increases the rate of prion 
curing.  

(A) Hsp31 and p426-GPD-Hsp104 were co-transformed in the [PSI+] strain. Empty 
vectors served as controls. (B) Quantification of the experiments in panel A. Prion curing 
rate was increased from about 2.5% to 6% when Hsp31 was co-expressed with Hsp104 
compared to the control strain (*unpaired Student's t-test; p≤0.001, n=3). (C) [PSI+] 
hsp31Δ strain harboring plasmids for Hsp104 and Hsp31. (D) Quantification of 
experiments describe in panel C. The combination of Hsp104 and Hsp31 increased the 
rate of prion curing in [PSI+] hsp31Δ strain consistent with WT strain in A-B. (** One-
way ANOVA; p≤0.001, n=3). (E) Image of p426-GPD-Hsp42 transformed cells 
demonstrating curing compared to empty vector. (F) Hsp31 and p426-GPD-Hsp42 were 
co-transformed in the [PSI+] strain and quantified.  The combination of Hsp42 and Hsp31 
did not increase the curing rate (ns=not significant). Data and images shown are 
representative of at least three independent biological experiments for all panels. 
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3.3.6 Effect of [PSI+] curing in the hsp31Δ strain is not due to loss of Hsp104 

thermotolerance function. 

A possible mechanism for the decrease in [PSI+] prion curing by Hsp104 in the hsp31Δ 

background is decreased expression or activity of Hsp104. To measure the functional 

competence of Hsp104 we tested the thermotolerance activity of Hsp104 in exponentially 

growing cells. We induced Hsp104 expression in both strains by incubating the culture at 

37 °C for 30 minute and then heat shocked at 50 °C. The survival of cells after heat shock 

is dependent on Hsp104 induction, and we observed the rate of survival in hsp31Δ was 

comparable to the isogenic WT [PSI+] strain (Figure 3.5A). Moreover, the basal 

thermotolerance without induction of Hsp104 was not affected by deletion of Hsp31 

(Figure 3.5A). In addition, we observed a slightly elevated level of Hsp104 in the hsp31Δ 

strain compared to WT, hence the expression of Hsp104 is not compromised (Figure 

3.5B). Thus, reduction in [PSI+] prion curing in the hsp31Δ strain is not due to general 

impairment of Hsp104 activity or expression. 

3.3.7 Hsp104 physically interacts with Hsp31 

The close collaboration between Hsp104 and Hsp31 prompted us to test the physical 

association between them. Co-immunoprecipitation followed by western blot analysis in 

yeast lysates demonstrated that Hsp31 interacts with Hsp104. Immunoprecipitation was 

performed using HSP31-9myc genomically tagged at the endogenous locus and 

overexpressing Hsp104 either under the GPD or the GAL promoter. First, Hsp31-9myc 

was pulled down using anti-myc antibody conjugated to agarose beads from 

exponentially growing cell lysates. Western blots confirmed the successful pull down of 

Hsp31-9myc (Figure 3.5C; middle panel). The upper panel demonstrates the successful 
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pull-down of Hsp104 in both GPD-HSP104 and GAL-HSP104 expressing lysates but not 

in the empty vector control (Figure 3.5C). Similar results were obtained with an 

alternative co-immunoprecipitation approach in which polyclonal anti-Hsp104 antibody 

and protein G dynabeads were used to pull down Hsp104 followed by western blot 

analysis with anti-myc antibody to detect Hsp31. This approach confirmed the 

interactions and also demonstrated that Hsp31 is pulled down with strains having 

endogenous levels of Hsp104 (Figure 3.5C; bottom panel empty vector lane). These 

results demonstrate that Hsp31 is part of same complex with Hsp104 using two different 

immunoprecipitation protocols and the Hsp31-Hsp104 interaction is detectable under 

physiological expression levels. 
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Figure 3.5. Hsp31 interacts with Hsp104 and deletion of HSP31 does not alter Hsp104’s 
thermotolerance response.  

(A) HSP31 deletion does not impair Hsp104’s function in thermotolerance. Exponentially 
growing cells of the [PSI+] hsp31Δ and [PSI+] strain was drawn from the culture and 
decimal serial dilutions were plated onto YPD plates and incubated for 2 days at 30 °C in 
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each case. Both strains showed a comparable basal tolerance (top right image) and 
induced tolerance after pretreatment at 37 °C (bottom right image) for 30 min to a 50 °C 
heat shock treatment. Left images are non-treated cultures that serve as control. (B) 
Endogenous level of Hsp104 was determined in exponentially growing cultures of [PSI+] 
hsp31Δ and [PSI+] strains in YPD media using Hsp104 specific antibody. (C) 
Immunoprecipitation of Hsp31 from HSP31-9myc strain with overexpression of Hsp104 
either under GPD or GAL promoter, using anti-myc antibody followed by 
immunoblotting with anti-Hsp104 antibody. Empty vector served as a control. Middle 
panel shows the successful pull down of Hsp31-9myc in all strains using anti-myc 
antibody. The lower panel Hsp104 was immunoprecipitated using anti-Hsp104 antibody 
followed by immunoblotting with anti-myc antibody. 
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3.3.8 Hsp31 together with Hsp104 antagonizes prion dependent toxicity of excess 

Sup35. 

Overexpression of full length Sup35 or its PrD exhibits toxicity in the [PSI+] strain 

(244,246). The toxicity of excess Sup35 in [PSI+] or [PSI+] hsp31Δ strain was 

investigated. Deletion of HSP31 has no effect on Sup35 toxicity (Figure 3.6) in contrast 

to our previous report of increased toxicity when α-syn is expressed in the hsp31Δ strain 

background (158). However, elevated levels of Hsp31 expressed from the GPD promoter 

rescued [PSI+] cells from Sup35 toxicity in both WT and deleted strains. As expected, 

Hsp104 reduce the toxicity of Sup35 to greater extent than Hsp31. Strikingly, Hsp31 

together with Hsp104 strongly reduced the toxicity of Sup35 in the [PSI+] strain (Figure 

3.6). We also observed the rescue effect of sole expression of Hsp31 or Hsp104 and when 

expressed together in the [PSI+] hsp31Δ strain. The level of rescue was not as dramatic as 

in the WT strains suggesting that the expression of endogenous Hsp31 has a role in 

reducing toxicity in conjunction with heterologous expression of Hsp31 or Hsp104. The 

role of endogenous Hsp31 is not clear but could be a direct effect of chaperone activity or 

because autophagy can be impaired in hsp31Δ strains (294) which may lead to increased 

proteotoxicity of Sup35. 
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Figure 3.6. Hsp31 and Hsp104 reduce Sup35 prion toxicity.  
Hsp31, Hsp104 or the indicated combination of both along with GAL-PrD-Sup35-EYFP 
or full length Sup35 were overexpressed in [PSI+] and [PSI+] hsp31Δ strains. Decimal 
serial dilutions were plated onto selection plates with 2% glucose that serve as control or 
2% galactose to induce the expression. Plates were incubated at 30 °C for 3 days before 
producing the images. Hsp31 or Hsp104 rescued toxicity of GAL-PrD-Sup35-EYFP or 
full length Sup35 in these strains. Combination of Hsp31 and Hsp104 greatly reduce the 
toxicity compared to when they are individually expressed. 
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3.3.9 Hsp31 and Hsp104 modulate Sup35 aggregation in [PSI+] cells 

Collaboration of Hsp31 with Hsp104 to reduce Sup35 induced prion toxicity prompted us 

to investigate whether this activity correlates with protein disaggregation activity of 

Hsp104. To assess the state of Sup35 in [PSI+] cells harboring Hsp31 and Hsp104, we 

performed sedimentation analysis to determine the ratio of Sup35 in the soluble versus 

aggregate forms. The individual expression of Hsp104 or Hsp31 resulted in a very strong 

signal in the insoluble pellet fraction. However, the combination of Hsp104 and Hsp31 

markedly reduced Sup35 aggregation found in the pellet fraction and increased the 

amount of Sup35 found in the soluble fraction (Figure 3.7A). Soluble Sup35 was very 

susceptible to proteolysis during processing of the samples as evident by the lower 

molecular weight species, which is consistent with earlier reports (187,341). These results 

demonstrate that sole overexpression of Hsp31 does not appear to intervene in the 

established prion cycle present in a [PSI+] strain but can inhibit aggregate formation and 

prionogenesis in a [psi-] strain (Figure 3.1).  However, the results also show that Hsp31 

can cooperate with Hsp104 to reduce Sup35 toxicity and simultaneously increase Sup35 

solubility. 
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Figure 3.7. Hsp31 acts early in the prionogenesis process.  

Hsp31 together with Hsp104 decrease the aggregation of Sup35 formed by 
overexpression of GAL-PrD-Sup35-EYFP. Crude lysates of cells expressing Hsp31, 
Hsp104 or both together were subjected to sedimentation analysis. Lysates were 
ultracentrifuged into P (pellet) and S (soluble) fractions and analyzed by immunoblotting 
using GFP-specific antibody. 
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3.4 Material and Methods 

3.4.1 Yeast strains and plasmids 

The [psi-, PIN+] and [PSI+] strains were used throughout the study for prion induction, 

curing and toxicity assays. The W303 HSP31-9myc strain was used for pull down assays. 

Details of the plasmid, strains and primers used in this study are provided in the tables 

(Table 3.1-3.3). Deletion of HSP31 in [PSI+] strain was obtained by transforming a PCR 

product containing the nourseothricin N- acetyl-transferase (NAT) gene flanked by 

HSP31 homology regions. The primers consisted of 20 nucleotides for amplifying the 

NAT gene from pFA6a-NATNT2 (Euroscarf), and 50 nucleotides immediately preceding 

the HSP31 start codon or after the stop codon. The amplified product was integrated into 

[PSI+] and  [psi-, PIN+] strain. Successful integration and deletion was confirmed by 

diagnostic PCR. 
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Table 3.1 List of yeast strains used in the study. 

Strain Genotype Source/reference 

[PSI+] 74D-

694 

MATa ade 1-14, his3, leu2, trp1, ura3 

[PSI+ PIN+] 

J-C. Rochet 

W303-1A MATa can1-100 his3-11, 15 leu2-3, 112 

trp1-1 ura3-1 ade2-1 

R. Rothstein 

[PSI+]-

hsp31Δ 

W303-1A hsp31Δ::NATMX This study 

W303-

HSP31-9myc 

W303-1A HSP31-9myc::KANMX This study 

[psi-] 74D-694 74D-694 MATa ade 1-14, his3, leu2, trp1, 

ura3 [psi- PIN+] 

J-C. Rochet 
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Table 3.2 List of plasmids used in the study 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plasmids Type of 

plasmid  

Source/reference 

pAG415GPD-HSP31-dsRed Yeast, CEN This study 

pAG415ccdB-dsRed Yeast, CEN Alberti et al.(318) 

pAG424GAL-PrD-Sup35-
EYFP 

Yeast, 2 µ Alberti et 

al.(180,318) 

pLA1-Sup35 
Yeast  J. Shorter(53) 

p426-GPD 
Yeast J. Shorter(53) 

p426-GPD-Hsp42 
Yeast J. Shorter(53) 

p426-GPD-Hsp104 
Yeast J. Shorter(53) 

p2HG-GPD-Hsp104 
Yeast J-C.Rochet 

p2HG-GPD 
Yeast J-C.Rochet 

pAG425-GAL-ccdB-DsRed 
Yeast, 2 µ Addgene 

pAG425-GAL-Hsp104-DsRed 
Yeast, 2 µ This study 
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Table 3.3 List of primers used in the study 

Gene/description Forward Reverse 

hsp31Δ   AAGTACTTCCCACTGGC

TAATTACACAGATAAAA

CTCAAACAAATTTATAA

TGACATGGAGGCCCAGA

ATACCC 

CTTACATCTATATAGTAGTACA

AAGGAAATTCTAATTATCAAC

CTTTGGCTCACAGTATAGCGAC

CAGCATTCAC 

9myc tagging of 

HSP31 

TCTGCGCACTCCACTGC

CGTAAGATCCATCGACG

CTTTAAAAAACCGTACG

CTGCAGGTCGAC 

TCCTTACATCTATATAGTAGTA

CAAAGGAAATTCTAATTATCA

ACCTTTGGCTCAATCGATGAAT

TCGAGCTCG 

HSP31 cloning AAACTCGAGATGGCCCC

AAAAAAAGTTTTACTCG

C 

TTTGCTAGCTCAGTTTTTTAAA

GCGTCGATGGATCTTAC 

HSP31 9myc tag 

diagnostic 

ACAGAGAATTAACGTTA

CTCATTCC 

ATATTTGGATATTGGGGAAAC

ACAT 

hsp31Δ  

diagnostic 

TTCGTGGTCGTCTCGTA

CTC 

GCAGGGCATGCTCATGTAGA 
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3.4.2 Yeast growth conditions 

We used isogenic [psi-] and [PSI+] derivatives of 74D-694 [MATa, his3, leu2, trp1, ura3; 

suppressible marker ade1-14. Cells were grown at 30 °C on synthetic dextrose medium 

(SD; 0.7% yeast nitrogen base, 2% glucose) with appropriate amino acid dropout mixture 

for selection and maintenance of the particular plasmid. Synthetic complete (SC) medium 

contains 2% raffinose in place of glucose and 2% galactose for induction of genes under 

the GAL promoter. ¼ YPD solid medium used in the plating assays contains 0.5% yeast 

extract, 2% peptone, and 2% glucose. Cultures were always maintained in actively 

growing conditions and OD600 was used to measure the growth rate. 

3.4.3 SDD-AGE 

The [psi-] cells were co-transformed with pAG424-GAL-PrD-Sup35-EYFP and pAG415- 

GPD-HSP31-DsRed plasmids. Cultures were grown in SD media overnight and induced 

in SC 2% raffinose + 2% galactose media for 24 h. Prion aggregates were analyzed using 

SDD-AGE as described previously(158). Briefly, cells were harvested by centrifugation 

and spheroplasts were generated and lysed in 4 x SDS sample buffer at room temperature 

for 15 min before loading onto a 1.8 % agarose gel followed by transfer to nitrocellulose 

membrane. The membrane was immune-blotted using anti-GFP antibody (Roche; 

11814460001) and anti-DsRed antibody (Santa Cruz Biotechnology; Sc-33353). 

3.4.4 Fluorescence Microscopy and flow-cytometry 

The [psi-] strain was co-transformed with pAG424-GAL-PrD-Sup35-EYFP and pAG415-

GPD-HSP31-DsRed. Successful transformation was selected and re-streaked on SD (-

tryptophan -leucine) agar plates. Cells were grown overnight at 30 °C in SD (-tryptophan 

-leucine) medium and PrD-Sup35 expression was induced for 24 h in SC (-tryptophan -
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leucine) medium with 2% raffinose and 2% galactose. Cells were examined under 

fluorescence microscopy using a Nikon A1 confocal microscope with a Nikon Plan 

apochromat 60 X (NA 1.4) oil immersion objective to acquire fluorescence and DIC 

images and were analyzed using Image J. The identical cultures used in microscopy were 

also subjected to flow cytometry. After induction cells were collected and washed with 

PBS, filtered and analyzed for EYFP fluorescence intensity using the Beckman Coulter 

FC500 flow cytometer with the FL-1 channel. A total of 10,000 events were acquired for 

each sample and data was analyzed using FlowJo software to calculate median 

fluorescence intensity. 

3.4.5 Sup35 prion curing 

Curing of [PSI+] was performed by transforming the strain with plasmids, p2HG-GPD-

Hsp104, pAG425-GAL-Hsp104, pAG415-GPD-HSP31-DsRed, p426-GPD-Hsp42 and 

their corresponding empty vectors. For double transformation both plasmids were co-

transformed and selected on double dropout media simultaneously. Transferred cells 

were grown in the SD medium at 30 °C for overnight growth and plated on ¼ YPD plates 

which were incubated for three days at 30 °C and shifted for another day at 4 °C for 

colony color development. To score for curing, colonies with red color were counted as 

[psi-].  Cultures carrying plasmid with the GAL promoter were grown in SC medium 

before plating on ¼ YPD. 

3.4.6 Sup35 prion induction 

For the induction experiment, at least three independent transformants with pAG424-

GAL-PrD-Sup35-EYFP and pAG415-GPD-HSP31-DsRed plasmid were grown at 30 °C 

in SD medium overnight, centrifuges and washed three times with water, and shifted to 
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SC medium to induce prion formation. Aliquots were withdrawn at 6, 12 and 48 h and 

diluted to a density of 50,000 cells per 100 µl for plating onto ¼ YPD plate.  The plates 

were then incubated for three days at 30 °C and another day at 4 °C for color 

development. Percentage of [PSI+] induction was measured as the number of white ([PSI+] 

colonies) colonies divided by the total number of colonies. 

3.4.7 Prion toxicity assay 

The [PSI+] strain was transformed with pAL1 Sup35 and plasmids expressing Hsp31, 

Hsp42 and or Hsp104 along with their corresponding empty vector. After selection on SD 

plates, cells were grown into 5 ml of SD liquid media with 2 % glucose at 30 °C 

overnight. Cells were harvested and washed three times with water and a five fold serial 

dilution was performed with a starting OD600 of 0.8. Diluted samples of 5 µl were spotted 

onto SD and SC plates with the appropriate dropout selection. Plates were incubated at 

30 °C for 3 days and imaged with a scanner. 

3.4.8 Pull down assay 

The HSP31-9myc tagged strain was transformed with plasmids pAG425-GAL-Hsp104 or 

p426-GPD-Hsp104. Cells lysates were prepared in a buffer (50 mM Tris–HCl, 1 mM 

EDTA, 5 mM DTT, 10% (v/v) glycerol, 0.5 M NaCl, at pH 7.5) with freshly added 

protease inhibitor cocktail (Roche). Anti-myc antibody-conjugated agarose beads were 

used to pull down Hsp31 protein by incubating the beads with the lysate at 4 °C for 1 h. 

After the pull down, beads were washed three times with PBS-T and bound protein was 

eluted by boiling the sample in SDS loading buffer before separating the proteins on 

SDS-PAGE and western blotting using Hsp104 antibody (Abcam; ab69549). 

Immunoprecipitation was also preformed in reverse by immobilizing Hsp104 antibody on 
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protein G dynabeads (Life Technology) and incubating the total cell lysate with this 

complex for 1 h. In this case, western blotting was performed using anti-myc antibody 

(Sigma; M4439). 

3.4.9 Thermotolerance assay 

WT [PSI+] and [PSI+] hsp31Δ strains were grown in YPD medium starting from OD600 of 

0.2 until they reach exponential growth phase after 6 h. Equal number of cells from each 

strain were incubated at 37 °C to induce Hsp104 expression and then heat shocked at 

50 °C for 20 min. Aliquots were placed on ice before and after heat shock. A portion of 

cultures were heat shocked at 50 °C without Hsp104 induction at 37 °C. Samples were 

collected and five-fold dilutions were spotted on YPD medium. 

3.4.10 Sedimentation assay 

[PSI+] strains harboring Hsp31, Hsp104 and appropriate co-expression vector plasmids 

were grown for 12 h and centrifuged to collect cells. Cells were washed in water and 

lysed at 4 °C by bead beating in lysis buffer (50 mM Tris HCl pH 7.5, 50 mM NaCl, 2 

mM EDTA and 5% Glycerol plus freshly added protease inhibitor cocktail(158)). Equal 

volume of cold RIPA buffer (50 mM Tris HCl pH 7.0, 150 mM NaCl, 1% Triton X-100, 

0.5% deoxycholate and 0.1 % SDS) was added to the lysate and the mixture was vortexed 

for 10 s. Lysate was centrifuged at 800 rpm for 2 min at 4 °C in a Eppendorf 

microcentrifuge. Lysate supernatant was subjected to ultracentrifugation at 80,000 rpm in 

a TLA-120.2 rotor for 30 min using an Optima Max-XD Ultracentrifuge (Beckman 

Coulter). Supernatant was collected and pellet was re-suspended in equal volume of lysis 

and RIPA buffer. Supernatant and pellet fractions were subjected to SDS-PAGE and 

immunoblotted using GFP antibody (Roche). 
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3.5 Discussion 

Previous studies have demonstrated Hsp31 is a multitasking protein involved in several 

cellular pathways ranging from functioning as a glutathione independent 

methylglyoxalase to stress responder that acts as a molecular chaperone. In this study, we 

have established the inhibitory role of Hsp31 in Sup35 prion formation and its 

collaboration with Hsp104 to prevent prion aggregation and toxicity in yeast. In the [PSI+] 

prion strain, soluble Sup35 protein is depleted into insoluble prion aggregates, hence, it is 

no longer functional resulting in nonsense suppression. The stronger [PSI+] prion 

phenotype is associated with larger amounts of protein aggregates. Overexpression of 

Sup35 PrD-EYFP in a [psi-] strain efficiently induces de novo [PSI+] prion formation and 

resulting aggregates, which appear as a peripheral ring associated with the vacuoles. The 

first step in de novo prion induction is the formation of a single prion seed, also known as 

a “propagon”. These seeds sequester the soluble Sup35 and grow at both ends into larger 

aggregates that appeared as rings or dots under microscopy. Moreover, it has been 

suggested that not all cells with fluorescent aggregates will transform into [PSI+] prions, 

rather about 50% of the cells with fluorescent foci will die and some of the aggregate-

containing cells may not possess amyloids (342).  Overexpression of Hsp31 in a [psi-] 

strain inhibits Sup35 aggregate formation and this was confirmed by flow cytometry and 

SDD-AGE. These results validate the previous observation that Hsp31 reduces Sup35 

aggregates in the W303 strain (158). In addition, the inhibition of Sup35 aggregation by 

Hsp31 could result in the inhibition of prion formation, because the [PIN+] element 

required for prion induction is present in this strain. In fact, we observed that 

overexpression of Hsp31 results in a significant reduction in prion induction from Sup35-
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PrD overexpression. This only take place efficiently when Sup35-PrD was overexpressed 

for a transient period of time and upon longer expression of Sup35-PrD, Hsp31 was 

unable to reduce prion induction. Importantly, Hsp31 alone is unable to cure the [PSI+] 

prion indicating that it has no disaggregase activity. We postulate that the inability of 

curing but the concomitant ability to prevent the formation of de novo Sup35 SDS-

resistant aggregates suggests that Hsp31 acts early in the process of prion oligomerization 

but once larger oligomers are formed it is not further active in preventing prion 

propagation (Figure 3.8). 
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Figure 3.8 Hsp31 acts early in the prionogenesis process.  

Model depicting the intervention of Hsp31 during the prionogenesis process but lack of 
involvement in an established chaperone cycle.  Hsp31 and Hsp104 physically interact 
but it remains to be determined if this interaction is involved in a handoff of substrates. 
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Hsp31 may not participate in modulating an established prion cycle by itself but does 

appear to have a role in conjunction with Hsp104 because in a strain lacking Hsp31, the 

rate of [PSI+] curing was reduced with Hsp104 overexpression. In addition, we showed 

Hsp31 overexpression promotes the elimination of [PSI+] by Hsp104. In fact, another 

small HSP Hsp26 was shown to potentiate protein disaggregation by Hsp104. 

Interestingly, Hsp26 is only active as a disaggregase when it clusters together with the 

protein substrate and not after protein aggregation. A factor in considering the 

mechanism of action is that Hsp31 and the human ortholog, DJ-1, have protein deglycase 

activity (265,292). Prion glycation can occur spontaneously (343) and glycation can 

promote the stability of protein aggregates by covalent crosslinking(344) suggesting the 

activity of a deglycase may abrogate prion propogation. Deciphering the contribution of 

the enzyme activity versus chaperone function of Hsp31 would be revealing of the 

biological role of this multi-functional enzyme.  We have previously shown that 

chaperone activity can be independent of the enzyme activity because overexpression of 

an enzymatically inactive Hsp31 mutant prevents the toxicity of α-syn in yeast. While 

there is enough evidence to propose Hsp31 acts early in the process of [PSI+] prion 

oligomerization process, future investigation of Hsp31 binding to the Sup35 monomer or 

other early oligomer and the role of deglycation in inhibiting prion induction would be 

further revealing of the mechanism of action. 

We eliminated several possible indirect mechanisms for the cooperation of Hsp31 with 

Hsp104 including the possibility that disruption of Hsp31 might compromise Hsp104 

expression and thermotolerance function (Figure 3.5). Taking into account that deletion 

of Hsp31 down regulates the mRNA level of Ssa3, a possible effect of Hsp31 deletion on 
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[PSI+] prion curing by Hsp104 could be due to imbalances between Hsp104 and Hsp70 

chaperone as these are required for efficient prion curing. However, this cannot be the 

case when Hsp31 is co-expressed with Hsp104, as overexpression of Hsp31 does not alter 

the level of Hsp70 protein (158). 

We also showed that Hsp31 together with Hsp104 significantly reduced Sup35 prion 

toxicity. These results indicate that Hsp31 cooperates with Hsp104 to potentiate Sup35 

prion disaggregation and thereby prevent toxicity. Intriguingly, previous studies have 

shown such cooperation between sHSPs and ATP dependent chaperones as Hsp104 and 

Hsp70 (234,241,243). We also observed a significant reduction of Sup35 toxicity by 

Hsp31 alone. A number of possible explanations could account for these results such as, 

Hsp31 might prevent sequestration of soluble Sup35 into already present larger 

aggregates and therefore inhibit toxicity. We have previously demonstrated that Hsp31 

can reduce oxidative stress in cells (158)  and this may be the reason for the rescue of 

toxicity.  

Intriguingly, we also found that Hsp31 physically interacts with Hsp104. Hsp104 is 

known to interact with Ydj1, and co-chaperones of Hsp90; Sti1 and Cpr7 (40,225). 

Interestingly, Sti1 and Cpr7 are not required for Sup35 prion propagation but deletion of 

either of these reduced the Sup35 prion curing by Hsp104. Hsp31 has been documented 

to interact with the yeast Hsp90, Hsp82 (345), based on affinity-mass spectrometry hence 

the interaction may involve a bridging chaperone such as Hsp90.  However, our data is 

the first demonstration of Hsp31’s interaction with Hsp104 and could mean these 

chaperones may pass substrates to each other. Although the molecular details of the 
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interaction are unknown, the involvement of Hsp31 in the prion modulation process and 

the apparent close functional cooperation with Hsp104 is an important step in 

understanding the biological roles of this multi-tasking protein.
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CHAPTER 4. CONCLUSION AND FUTURE DIRECTIONS 

4.1 Summary 

Numerous human pathologies are associated with protein misfolding and aggregation 

including several neurodegenerative diseases such as AD, PD and prion diseases. For 

each such disease a different misfolded protein is responsible for neurodegeneration at 

different regions of the brain that leads to differential clinical effects. Although there is 

extensive understanding of these molecular mechanisms, there are still numerous 

unanswered questions. Several studies show the protective role of HSPs in misfolding 

processes that function as chaperones in modulating protein aggregation and their 

involvement in neurodegenerative diseases. In this thesis, we used yeast as a model 

system to gain insight into the role of Hsp31 as a molecular chaperone and characterized 

its function in PD and prion modulation in yeast.  

4.2 What makes Hsp31 a multifunctional chaperone protein? What is the role of the 

C138 residue in catalytic triad of Hsp31? 

An emerging view is that Hsp31 and its associated superfamily members each have 

divergent multitasking functions that have the common theme of responding and 

managing various types of cellular stress. Hsp31 is involved in multiple cellular functions 

including oxidative stress sensing, chaperone and detoxifying enzyme activities such as 

functions as methylglyoxalase and deglycation. In chapter 2, we have shown that
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protective role of Hsp31’s chaperone activity can operate independent of detoxifying 

enzyme activities in preventing the early stages of protein aggregate formation and 

associated cellular toxicities. The catalytic triad present in the DJ-1 superfamily members 

is the most common feature, mutation of which can lead to functional variation and 

destabilization of dimerization.  

In this thesis we showed that Hsp31 is capable of acting as a chaperone without 

involvement of its enzymatic activity. Hsp31 possesses a conserved cysteine residue 

C138 that is present in different species (272). Previously, it was shown that mutation in 

C138 abrogates its enzymatic activity. However, in this thesis, we provide strong 

evidence that mutation of C138 has no effect on the chaperone activity of Hsp31. Future 

studies should be performed to further delineate the role of C138 in Hsp31. In DJ-1, the 

oxidative state of C106 is involved in redox sensing, and the mutation of it destabilizes 

the DJ-1 functions. Under oxidative stress condition DJ-1 homo-dimer destabilizes and 

therefore loss its protective effect (346,347). Similarly, Hsp31 exists predominantly as a 

homo-dimer in solution as shown previously (271,272), and it would be interesting to 

determine what is the role of dimerization state in the chaperone activity of Hsp31? It 

remains to be determined, what are the chaperone active sites, if C138 has a limited role 

in chaperone function? Furthermore, in chapter 3 we provide significant evidence that 

Hsp31 is involved in the modulation of prion aggregation, however, we never tested the 

effect of C138 mutation in these experiments. Studying these questions will provide a 

further mechanistic insight into the role of Hsp31 as a chaperone protein. 
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4.3 What is the link between Hsp31 deglycase activity and aggregation activity? 

It is now well established that Hsp31 is a molecular chaperone that intervene in the 

aggregation of a broad range of protein substrates. Our studies provide strong evidence to 

delineating that Hsp31 intervenes early in the process of protein aggregation to prevent 

larger aggregate or oligomer formation. Future studies will need to focus on dissection of 

the mechanistic details of how Hsp31 prevents the formation of aggregates. Recent 

studies showed that enzymatic activity of Hsp31 is capable to deglycate the damaged 

proteins. One hypothesis is that Hsp31 binds to damaged or glycated substrate protein to 

deglycate them and therefore prevent the formation of aggregates caused by glycation of 

the monomeric proteins. It will be important to study that if Hsp31 binds to glycated 

monomeric protein and therefore prevent further aggregation of protein. It is not clear if 

MGO or glycated proteins are the prime substrate for Hsp31 or if both are important 

hence, determination of the in vitro enzymatic activities of Hsp31 on these two different 

substrates is important to determine.  Further in vivo studies that explore the effect of 

Hsp31 on glycated proteins will be needed to provided insight into the mode of action 

and reveal the natural substrate(s) of Hsp31 with respect to its 

methylyglyoxalase/deglycase activities.  

4.4 Determine the role and nature of the Hsp31 and Hsp104 interaction? What are the 

roles of Hsp82/Hsp70 and other co-chaperones in conjunction with Hsp31? 

In chapter 3 we showed that Hsp31 cooperates with Hsp104 to prevent Sup35 prion 

aggregation. Future studies will focus on the nature of interaction between Hsp31 and 

Hsp104. Although, we have shown that Hsp31 can pull down endogenous levels of 

Hsp104, it is not known if this interaction is direct based on the co-immunoprecipitation. 
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In order to determine if the interaction is direct, in vitro binding assays using recombinant 

proteins would answer this question. If these two chaperones interact directly, we can 

further explore the interaction sites or regions important for such an interaction. 

Information on how the DJ-1/Hsp31 protein family interacts with other chaperones or co-

factors is severely lacking. Furthermore, identification of direct interaction sites would 

allow a dissection and assessment of the role of this interaction on the overall activity of 

Hsp104 or Hsp31? Based on affinity-mass spectrometry, it has been documented 

previously, that Hsp31 interacts with the yeast Hsp90, Hsp82. It is also known that 

Hsp104 interacts with co-chaperones of Hsp90 hence, the interaction between Hsp104 

and Hsp31 may require a bridging chaperone as Hsp90 or its co-chaperones; Sti1 and 

Cpr7.  Alternatively, Hsp31 maybe a co-chaperone of Hsp90 or Hsp104 and may deliver 

substrates to these other chaperones as part of an overall multi-step chaperone cycle. 

4.5 Functional diversity or overlap among Hsp31 paralogs in yeast.  

The Hsp31 mini-family is composed of four paralogs; HSP31 (YDR533C), HSP32 

(YMR322C), HSP33 (YOR391C), and HSP34 (YPL280W). Genes of the Hsp31 mini 

family are located at the subtelomeric region of the genome in Saccharomyces cerevisiae. 

HSP31 is considered the parental gene with HSP32, HSP33 and HSP34 originating from 

it during gene duplication events. Among all the members of this mini-family, Hsp31 is 

most divergent and shares approximately 70% homology with the other members of the 

family those possess more than 90% homology between them. All the members of Hsp31 

family contain the same Cys-His-Glu catalytic triad including the E. coli ortholog.  

Previously, it was shown that mutation in the catalytic triad largely abolishes glyoxalase 

activity but this catalytic triad is not required for chaperone activity of Hsp31. These 



 
 

 

152 

152 

results indicate that the anti-aggregation activity of Hsp31 is not under the influence of its 

enzymatic activity rather, it has a direct chaperone activity against misfolded proteins. 

Intriguingly, all the paralogs of the Hsp31 minifamily possess comparable activity against 

α-syn aggregation and toxicity when they are overexpressed from the GAL promoter. 

However, unlike Hsp31, the other paralogs possess very little methylglyoxalase activity 

and are unable to protect the cells from glyoxal toxicity (260,348). These results support 

the notion that anti-aggregation activity of Hsp31 mini-family is independent of its 

enzymatic activity. Furthermore, all the members of the Hsp31 family contain the same 

catalytic triad required for methylglyoxalse activity but so far only Hsp31 is determined 

as the most active enzyme in vitro and in vivo. Despite the presence of the catalytic triad 

Hsp34 is found to be a very weak methylglyoxalase, which indicates that other regions in 

the protein sequence are also important for enzymatic activity. Hsp31 and Hsp34’s 

divergent activity has only been shown for MGO, and the different paralogs could have 

differential activity depending on the substrate type. In future research, it will be 

important to determine the functional diversity between paralogs of Hsp31 in term of its 

methylglyoxalase and other enzymatic activities. As, the lack of methylglyoxalase 

activity in one of the paralogs is evidence that the paralogs are diverging but additional 

studies dissecting the roles within this paralog group are needed to further uncover these 

diverging functions.  It is also important to note that other biomolecules such as nucleic 

acids are also susceptible to oxidative damage and could also be substrates for the Hsp31 

protein family. 

In contrast, the chaperone activity of Hsp31 and its paralog are comparable (106). Also, 

the chaperone activity of Hsp31, Hsp32 and Hsp33 against a cytoplasmic aggregation-
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prone protein is independent of their role in oxidative stress response and the vacuolar 

degradation pathway (262). It would be interesting to study the functional overlap of 

these family members. The Hsp31 protein family is broadly spread across fungal species 

with varying levels of paralog duplications and additional evidence of divergence 

including differences in localization in the Schizosaccharomyces pombe Hsp31 family 

members (272).  

 

4.6 Conclusion 

In conclusion, study presented here significantly contributed to understand the molecular 

role of Hsp31 as a chaperone in protein misfolding diseases. Hsp31 promotes cell 

survival under different stress conditions by participating in multiple cellular pathways. 

Although, currently we know that Hsp31 is a multifunctional stress responder chaperone 

proteins that have homologs in almost every organisms, the exact molecular mechanism 

of Hsp31 remains enigmatic. Further studying the mode of action of Hsp31 provides a 

promising model to understand the cytoprotective functions of DJ-1 that can be a 

potential target for neurodegenerative disease as PD. 
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APPENDICES 

Appendix A Overexpression of Hsp31 under native promoter in yeast 

Proteins under different plasmid system exhibit differential expression and therefore 

influence their activities. Most of the studies performed in this thesis are by expressing 

Hsp31 under GPD promoter using pAG415-GPD-Hsp31-DsRed. This plasmid expressed 

a steady state level of Hsp31 in different yeast strains. Next we ask if Hsp31 under its 

native promoter can also overexpress the similar level of Hsp31 in different yeast strains. 

We cloned Hsp31 native promoter into pESC-Leu plasmid by replacing the GAL 

promoter. This is a 2 µ plasmid that contains myc tag attached to the Hsp31. We 

transformed this plasmid into W303 and BY4741 yeast strains. Successful transformants 

were selected and cells were allowed to grow into SD-Leu liquid media O/N. Next day, 

yeast cell lysate were prepared and subjected to western blots for analysis of protein 

expression. Hsp31 was detected by blotting the membrane with myc antibody (Sigma). 

For positive control, we used pESC-Leu original plasmid under GAL promoter expressing 

Hsp31-myc (Figure A1). We find this plasmid is expressing steady state level of Hsp31 

in both strains therefore it provides a useful tool to obtain Hsp31 expression under native 

condition.  
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Figure A1. Hsp31 expression under native promoter.  

W303 and BY4741 yeast cell lysate harboring pESC-Leu-p-Hsp31-myc were prepared 
and subjected to western blots for analysis of protein expression. Hsp31 was detected by 
blotting the membrane with myc antibody (Sigma). For positive control, we used pESC-
Leu original plasmid under GAL promoter expressing Hsp31-myc. 
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Appendix B Hsp31 pull down for partner proteins 

In order to further elucidate the mechanism of Hsp31 in preventing aggregation and to 

narrow down its other possible role first it is important to determine the cellular 

substrates of Hsp31 that we predict are either oxidatively damaged proteins or chaperones 

or both. We proposed to take the approach to use a strain with endogenously tag Hsp31 

with 9myc. We used this strain to affinity purify Hsp31 using agarose beads. Clear lysate 

obtained from this strain was incubated with anti-myc agarose beads overnight at 4°C 

with shaking. Successful pull down was confirmed by running a SDS-PAGE gel and 

staining with Sypro Ruby stain followed by western blot using specific anti-myc antibody 

(Figure B1). To increase the possibility of identifying Hsp31 client interactions we 

digested the protein pull down on beads directly and subjected to mass spec analysis 

(Table A1). Proteins that were present in a control sample (non-tagged strain lysate) or 

with fewer peptide or spectral counts were removed and the final list is displayed in 

Table 1. Hsp31 was the most predominantly identified protein and Hsp31 paralogs 

(Hsp32 and Hsp33) were also identified. Potential co-chaperones were also observed 

including several Hsp70 isoforms and Hsp104. We performed further verification of 

some of these interactions by using various pull down experiments but results remains 

inconclusive except for interaction between Hsp31 and Hsp104 that is described in 

Chapter 3. For rest of the potential client proteins we performed pull down assay by 

transforming client protein under MORF plasmid system into Hsp31-9myc tagged yeast 

strain. First we performed the immunoprecipitation of Hsp31 by using myc tagged 

agarose beads and subjected to western blot using anti HA antibody. Most of the clients 

proteins showed positive signal that could be the reason of non specific binding of the 



 

 

181 

181 

protein to agarose beads as these constructs are tagged with protein A along with HA 

(Figure B2).  In fact, we confirmed that possibility by using the WT stains without 9myc 

tagged Hsp31 was still able to bind with the proteins (Figure B3). Due to high affinity of 

protein-A binding with agarose beads we could not processed these experiments further. 

Next, we proposed to use another technique by using purified GST-Hsp31 protein and 

incubating it with lysate generated from cells (Hsp31-9myc) expressing client proteins 

under MORF system. After incubation, samples were subjected to SDS-PAGE and 

blotted with either GST or myc antibody. This experiment shows clear positive 

interaction between Hsp31 and Hsp32 that was used as positive control. All other client 

proteins came back negative (Figure B4). Based on these experiments none of the tested 

client proteins directly interact with Hsp31 however, it is needed to confirm by using 

other plasmid system such as Tap tagged. We also suspect that some of 

Hsp31interactions with client proteins are transient in nature and different experimental 

conditions are necessary to detect such interactions. Further verification of these 

interactions and their role in the function of hsp31 will be pursued in future.  
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Figure B1. Pull down of Hsp31 using 9myc-Hsp31 strains to analyze protein interaction. 

(A) Lysates were prepared from 9myc tagged Hsp31 and WT strains followed by pull 
down using protein G-agarose beads and anti myc antibody. Samples were run on SDS-
PAGE followed by staining with SYPRO-Ruby. (B) Immunobloting of pull down 
samples from WT and 9myc-Hsp31 tagged strains were probed with anti-myc antibody 

!17!

Figure 7: Effect of Hsp31 on curing of prion. (A)!Hsp31, Hsp42, or Hsp104 were 
overexpressed in [PSI+] cells in liquid for 24hrs at 30°C. Empty vector served as the control. Cells 
were plated on ¼ YPD plates. Red color colonies indicate curing of [PSI+] prion. (B) Hsp31 was 
deleted in [PSI+] strain and Hsp104 was overexpressed to cure [PSI+] state. (C) Fluorescence 
microscopy demonstrating localization of Hsp31 and Sup35-YFP when overexpressed together. 
Hsp31 localized throughout the cytoplasm when overexpressed however, it is occluded from the 
Sup35-YFP foci as shown by white arrows.  
!

!
!
Figure 8: Atg8Δ elevate a-Syn toxicity analyzed by spotting assays. WT and atg8Δ yeast 
cells expressing a-Syn with or without hsp31Δ background were grown for 24(h in glucose media 
and spotted in fivefold serial dilutions onto glucose (expression repressed) and galactose 
(expression induced) agar plates. Cells were grown for two days at 30°C.  
 
(A)                                                                         (B) 

 
 
Figure 9: Pull down of Hsp31 using 9myc-Hsp31 strains to analyze protein interaction. (A) 
Lysates were prepared from 9myc tagged Hsp31 and WT strains followed by pull down using 
protein G-agarose beads and anti myc antibody. Samples were run on SDS-PAGE followed by 
staining with SYPRO-Ruby. (B) Immunobloting of pull down samples from WT and 9myc-Hsp31 
tagged strains were probed with anti-myc antibody. 
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Figure 9: Pull down of Hsp31 using 9myc-Hsp31 strains to analyze protein interaction. (A) 
Lysates were prepared from 9myc tagged Hsp31 and WT strains followed by pull down using 
protein G-agarose beads and anti myc antibody. Samples were run on SDS-PAGE followed by 
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Table B1 Hsp31 partner proteins identified by combination of Pull down using agarose 
beads and affinity mass spec analysis. 

Protein Name Protein 

Accession # 

Peptide 

count 

Spectral 

count 

MW 

KDa 

Hsp31 gi|45270564 18 600 25 

Enolase II, a phosphopyruvate 

hydratase 

gi|323337363 14 37 46 

*Stress-seventy subfamily B 

protein 

gi|151944335 14 35 66 

Fatty Acid Synthetase gi|323302648 15 15 22 

*Chaperone ATPase HSP104 gi|6323002 9 11 102 

≠Mitochondrial porin gi|151944477 9 13 31 

DNA Polymerase gi|323348993 8 10 124 

*Hsp33 gi|323350061 7 25 25 

Voltage-dependent anion-

selective channel 

gi|173166 7 11 _ 

*A Complex Of Sse1p And 

Hsp70 

gi|190613718 6 8 77 

ExtraCellular Mutant ECM 

(DNA dependent ATPase) 

gi|6321024 6 14 127 

Ribosomal 60S subunit protein 

L27B 

gi|323337248 5 8 155 

Subunit of Elongator complex gi|323308952 5 19 89 
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Table B1 continued 

Mdl2p, Mitochondrial inner 

membrane transporter 

gi|259149887 5 13 85 

GAPDH, isozyme 1 (Tdh1) gi|323308411 5 4 35 

Mitochondrial outer 

membrane (OM45) 

gi|172066 4 6 44 

Mitoch phosphatidate 

cytidylyltransferase (Tam41) 

gi|323309019 4 6 44 

*Hsp70 (Ssa1p) nucleotide 

exchange factor 

gi|323305941 4 4 69 

Glyceraldehyde-3-phosphate 

dehydrogenase 

gi|151943468 4 4 35 

*Hsp32 gi|323345814 3 18 25 

ubiquinol--cytochrome-c 

reductase subunit 2 

gi|6325449 3 3 40 

*Heat-shock protein [S. 

cerevisiae YJM789] 

gi|151945807 3 14 _ 

Vacuolar Protein Sorting 4 gi|158430364 2 26 48 

Transcription initiation Factor 

IIB 

gi|323305366 1 145 72 

Mitochondrial 37S ribosomal 

protein RSM22 

gi|6322694 1 67 72 

* Heat Shock Protein 
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Figure B2. Pull down of Hsp31 using HSP31-9myc strain 

(A) Immunoprecipitation (IP) of Hsp31 from HSP31-9myc genomically tagged strain 
with overexpression of Hsp90, Hsp70 and Hsp33 under MORF plasmid expression 
system. IP was performed using myc conjugated agarose beads followed by WB using 
HA antibody. (B) IP of MORF Sup35, Las17, Hsp10, Eno1 and Hsp32 that are 
transferred and overexpressed in Hsp31-9myc genomically tagged strain. IgG sepharose 
beads was use to pull down protein-A tagged attached to these proteins. Samples were 
separated on 10% SDS-PAGE gel and immunoblotted using myc antibody.  
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Figure B3. Hsp31 pull down using WT and HSP31-9myc strain. 
(A) Immunoprecipitation (IP) of Hsp31 from HSP31-9myc genomically tagged strain 
harboring MORF plasmid expressing Ssa2 or Eno1. WT strain was included as negative 
control. IP was performed using myc conjugated agarose beads followed by WB using 
HA antibody. (B) Immunoprecipitation (IP) of Hsp31 from Hsp31-9myc genomically 
tagged strain harboring MORF plasmid expressing Hsp26 or Hsp82. WT strain was 
included as negative control. IP was performed using myc conjugated agarose beads. 
Samples were subjected to WB and immunoblotted using HA antibody. 
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Figure B4. Immunoprecipitation of purified GST-Hsp31 with lysate. 

Hsp31-GST was purified from E coli and incubated with the yeast lysate generated from 
cells with genomically tagged 9myc-Hsp31 and expressing MORF Ssa4, Ssa3, Hsc82, 
Hsp60, Hsp26, Las17 and Hsp32 for 2 hrs. Samples were separated on 10% SDS-PAGE 
and immunoblotted using either GST (upper panel) or myc antibody (lower panel). Only 
positive control Hsp32 was pull-down. 
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