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ABSTRACT 

Zhu, Hanyu. Ph.D., Purdue University, December 2016. Structural Elucidation of 
Deprotonated Analytes via Tandem Mass Spectrometry Based on Ion-Molecule 
Reactions and Collision-Activated Dissociation. Major Professor: Hilkka I. Kenttämaa. 

Mass Spectrometry has emerged as a powerful analytical tool for the characterization 

of unknown molecules. Molecular weight information and chemical formulas of the 

unknowns can be derived by measuring the m/z value of the ionized analyte. In addition, 

structural information can be obtained via tandem mass spectrometry methods such as 

collision-activated dissociation (CAD). However, CAD does not always guarantee 

unambiguously assignment of chemical structures, therefore, additional tandem mass 

spectrometric methods such as ion-molecule reactions were developed.  

In this dissertation, both CAD and ion-molecule reactions were used to elucidate the 

structure of deprotonated analytes. Currently, most existing neutral regents are designed 

to react with protonated analytes, making them suboptimal for the acidic analytes that are 

more sensitive when detected under negative ion mode. The identification of analyte ions 

containing phenoxide, carboxylate, and phosphate functionality was achieved by using a 

novel ion-molecule reaction setup that allowed two neutral reagents, 

diethylmethoxyborane (DEMB) and water, to be introduced into the ion trap. Using 

DEMB as the sole reagent, reactions between phenoxide, carboxylate, sulfate, and 

phosphate containing analytes and DEMB were studied. By pulsing in water, a new 



xvi 

reagent, diethylhydroxyborane (DEHB), was generated inside the ion trap, allowing the 

reactions between phenoxide, carboxylate, sulfate, and phosphate containing analytes and 

DEHB/H2O to be studied as well. Reaction mechanisms were explored via isotope 

labeling experiments and quantum chemical calculations. The above mass spectrometry 

method allowed the differentiation of phenoxide, carboxylate, phosphate, and sulfate 

containing analyte and was successfully coupled with high-performance liquid 

chromatography for the analyses of a biomass conversion product mixture and drug 

metabolite mixture. In addition, ion-molecule reactions with thionyl chloride were 

explored as a mean to differentiate deprotonated benzendiol isomers that were not 

discernable via CAD. Finally, HPLC-MSn with CAD were used to analyze complex 

mixtures related to lignin, including organosolv lignin and microbial converted biomass.



1 

CHAPTER 1. INTRODUCTION AND OVERVIEW 

 

1.1 Introduction 

Mass spectrometry has grown into one of the most widely used analytical 

techniques since its invention almost a century ago.1 Over these years, multiple types of 

mass spectrometers utilizing different scientific theories have been designed and 

developed, each with unique capabilities.2 This diverse collection of instruments made 

mass spectrometry a versatile and powerful technique capable of solving scientific 

problems across different fields of studies. 

 Despite the differences in designs and capabilities, the fundamental of mass 

spectrometers remained the same: the ability to measure the mass to charge ratio (m/z) of 

gas-phase ions. In order to do this, most mass spectrometry experiements involves four 

steps. The first step is to evaporate analytes into the gas phase. This is followed by the 

second step, ionization of the gas-phase analyte. The generated ions then undergo mass 

analysis to be separated either in time or in space according to their m/z values. Finally, 

the separated ions are detected, producing a mass spectrum.  

 The m/z value of ionized analyte can provide multiple importance information. 

The most straightforward information is the molecular weight of the analyte, which is 

closely related to the m/z of its ionized form. If the m/z value can be measured ultra-high 



2 

accuracy, elemental composition of the analyte molecule can be derived.3 At the same 

time, isobaric ions with the same nominal mass can be differentiated. 

 Structural information of the analyte ions can be obtain via tandem mass 

spectrometry experiments. During these experiments, the ion of interest is isolated and 

subjected to reactions, producing product ions that are characteristic of the structural 

motifs present in the parent ion. The m/z of the reaction product ions are then measured. 

Currently, the most widely used ion reaction method in tandem mass spectrometry is 

collision-activated dissociation (CAD), where the parent ion is given enough energy to 

fragment into smaller pieces.4,5 

 However, not all structural motifs can be revealed via CAD. This led to the 

development of additional ion reaction methods. One of these methods is ion-molecule 

reaction.6,7 Here, the ion of interest is isolated and subjected to reactions with a neutral 

reagent introduced into the mass spectrometer. If the analyte ion contains a structural 

motif that is reactive towards the neutral reagent, characteristic product ions are formed. 

This approach allows additional structural information to be obtained. 

  

1.2 Thesis Overview 

This thesis discusses the advancement in structural elucidation of deprotonated 

molecules via ion-molecule reactions and high-performance liquid chromatography 

coupled with collision-activated dissociation tandem mass spectrometry. Chapter 2 

discusses the principle and theory behind the instruments and techniques used in this 

study. Chapter 3 and 4 discusses the development of novel ion-molecule reactions for the 

functional group identification and isomer differentiation in deprotonated molecules. In 
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chapter 3, diethylmethoxyborane (DEMB) and water are being explored as neutral 

reagents used for the identification of phenoxide, phosphate, and carboxylate ions via 

ion-molecule reaction. Results shown in this chapter demonstrated that the DEMB/H2O 

ion-molecule reaction system can be used to analyze complex mixtures such as 

catalytically converted biomass and drug metabolite mixtures. Chapter 4 discusses the 

application of ion-molecule reactions with thionyl chloride in isomer differentiation of 

benzenediols, which is not possible with CAD. These two chapters demonstrate the 

potential of ion-molecule reactions in structural elucidation of deprotonated analytes. 

Chapter 5 and 6 discuss the analysis of lignin related complex mixtures via high-

performance liquid chromatography coupled with collision-activated dissociation tandem 

mass spectrometry. Chapter 5 discusses the analysis of microbial converted lignin 

product mixtures while chapter 6 discusses the analysis of swithgrass organosolv lignin. 

The samples analyzed in these two chapters are of great importance in utilizing biomass 

to produce biofuels and valuable aromatic compounds. The results show that mass 

spectrometry can play an important role in the field of renewable energy and resources. 
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CHAPTER 2. INSTRUMENTATION AND EXPERIMENTAL PRINCIPLES 

 

2.1 Introduction 

Since its invention nearly a century ago, mass spectrometry has grown into a 

versatile and powerful analytical tool widely used in both academia and industry.1,2 Its 

applications include but are not limited to studying gas-phase reaction chemistry,3 fuel 

analysis,4 environmental monitoring,5 and drug discovery.6 All applications of mass 

spectrometry are based on the ability to measure the mass to charge ratio (m/z) of ions. In 

order to do this, a mass spectrometry experiment generally involves three steps: 1) 

analyte evaporation and ionization, 2) mass analysis that separates ions based on their 

m/z values, and 3) ion detection. The experiments discussed in this dissertation utilized 

electrospray ionization (ESI) technique to evaporate and ionize analytes. Mass analysis 

and ion detection were performed using linear quadrupole ion trap (LQIT) mass 

spectrometers or linear quadrupole ion trap mass spectrometers coupled with an orbitrap 

detector (LQIT-Orbitrap). 

In addition to molecular weight information, mass spectrometry also provides 

structural information for the ionized analytes. This was achieved via performing tandem 

mass spectrometry experiments. Such experiments generally involve the isolation of the 

ion of interest inside the ion trap, followed by subsequent dissociation or bimolecular 

reaction experiments. In this dissertation, tandem mass spectrometry experiments based 
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on collision-activated dissociation (CAD) and ion-molecule reactions were performed for 

the structural elucidation of analyte ions. 

 

2.2 Ionization Techniques 

 Evaporation and ionization of analytes is the first step in mass spectrometry 

experiments. The evaporation and ionization are achieved separately for earlier ionization 

methods, such as electron ionization7 (EI) and chemical ionization (CI).8 These two steps 

are coupled in most ionization methods developed later, such as matrix assisted laser 

desorption ionization (MALDI),9 electrospray ionization (ESI),10 atmospheric pressure 

chemical ionization (APCI),11 atmospheric pressure photoionization (APPI),12 and 

desorption electrospray ionization (DESI).13 Each ionization method has its advantages 

and drawbacks, and proper selection of the ionization method is necessary for a 

successful mass spectrometry experiment. ESI is used for all experiments discussed in 

this dissertation and thus will be discussed in detail. 

 

2.2.1 Electrospray Ionization (ESI) 

ESI was invented in 1989 by Fenn and coworkers.10 It was a revolutionary 

technique as it allowed the evaporation and ionization of thermally labile and non-volatile 

biomolecules, such as proteins, oligonucleotides, and large lipids, without fragmentation, 

making it possible to study these molecules of great biological importance via mass 

spectrometry. For large biomolecules such as proteins, ESI generally generates multiple 

charged analyte ions. This gives it potential advantages over MALDI, another soft 

ionization technique that generally produce singly charged biomolecule ions, as multiple 
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charged ions 1) have lower m/z value which can fall into the mass ranges of all common 

mass analyzers and 2) are easier to dissociate during tandem mass spectrometry 

experiments.14 

Figure 2.1 shows a schematic representation of an ESI ion source. Generally, 

analyte solution is pumped continuously through a capillary needle that has a high 

voltage (3-5 kV) applied at the tip. A Taylor cone is formed at the tip of the capillary due 

to the high voltage applied, resulting in the dispersion of the analyte solution into a fine 

aerosol consisting of charged droplets.15 The polarity of the charge on the droplets is 

consistent with the polarity of the applied voltage. Dry nitrogen gas (sheath gas) 

introduced through openings that are coaxial with the capillary facilitates aerosol 

formation by nebulizing the analyte solution. Sheath gas also directs the spray towards 

the inlet of the mass spectrometer. Certain ESI sources introduce another stream of dry 

nitrogen gas (auxiliary gas) to further help solvent evaporation by dehumidifying the 

environment around the charged droplets.  
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Figure 2.1 Schematic representation of the ESI ion source 

 

The charges in the droplets are distributed along its surface. The coulombic 

repulsion among these charges increases as the droplet evaporates. When the size of a 

droplet decreases to a point where the coulombic repulsion overcomes its surface tension 

(Rayleigh limit),16 the droplet explodes into smaller progeny droplets that typically carry 

larger charge density than the parent droplet. This process, known as “Coulomb 

explosion” or “Coulomb fission”,17 occurs repeatedly for the progeny droplets, eventually 

converting them into highly charged nanodroplets that release analyte ions into the gas 

phase. Multiple theories have been proposed to explain the production of gas-phase ions 

from the highly charged nanodroplets, including the ion evaporation model (IEM),18 the 

charged residue model (CRM),19 and the chain ejection model (CEM) (Figure 2.2).14   

According to the ion evaporation model (IEM), small ions in a droplet can be 

directly ejected into the gas phase. As charged nanodroplets shrink in size, the electric 

field emanating from the surface of the droplet keeps increasing. When this electric field 
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is strong enough, it can push the charged analyte molecule away, forming gas-phase 

analyte ions. 

 

 

Figure 2.2 Illustration of the three mechanisms proposed for the formation of gas phase 
ions in ESI: the ion evaporation model (IEM), the charged residue model (CRM), and the 
chain ejection model (CEM). Reproduced from reference 14. 
 
 
 

The charged residue model mainly applies to large globular molecules such as 

folded proteins. This model proposes that consecutive Coulomb explosions would 

eventually result in the formation of nanodroplets containing only one analyte ion. These 

nanodroplets continue to evaporate until all solvent molecules are gone and the charges 

have been transferred from the surface of the droplet to the analyte ion, creating multiply 

charged gas-phase ions. 
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The chain ejection model (CEM) was proposed for partially hydrophobic polymer 

chains such as unfolded proteins. According to this model, when the charged droplet 

shrinks to a size small enough, its electric field can expel one terminus of the polymer 

chain from the surface. This is followed by the sequential ejection of the rest of the 

polymer. As the polymer is ejected from the droplet, part of the charge carried in the 

droplet equilibrates to the polymer, resulting in the formation of multiply charged 

polymer ion.   

ESI can also generate adduct ions such Most analytes studied in this dissertation 

contain small molecules. In most cases, they form protonated molecules ([M+H]+) under 

positive ion mode ESI or deprotonated molecules ([M-H]-) under negative ion mode ESI. 

 

2.3 Linear Quadruple Ion Trap Mass Spectrometer (LQIT) 

LQIT mass spectrometers were first introduced in 2002.20,21 Compared with 

traditional 3D quadrupole ion trap (QIT) mass spectrometers, the LQIT has a better ion 

trapping efficiency and capacity, resulting in higher sensitivity, lower detection limit, and 

better overall performance.22 As with all trapping instrument, LQIT has the capability to 

perform multiple stages of tandem mass spectrometry experiments (MSn), making it a 

powerful instrument for the structural elucidation of ionized analytes. 
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2.3.1 Instrumentation Setup 

All LQITs used in this dissertation were Thermo scientific LTQ XL mass 

spectrometers.23 According to the schematic representation shown in Figure 2.3, the 

instrument can be divided into three regions: atmospheric pressure ionization (API) stack 

region, ion optics region, and ion trap region. Different regions of the instrument operate 

under different pressure provided by differential pumping using two rough pumps and a 

triple ported turbomolecular pump. The API stack region was pumped by two Edwards 

E2M30 rotary-vane mechanical pumps to a pressure of ~1 Torr. The ion optics region 

and the ion trap region were pumped by a Leybold Tw220/15r0/15S triple ported 

turbomolecular pump. The region immediate after the API stack (between skimmer and 

lens L0) was connected to the first inlet of the turbomolecular pump and was pumped to a 

pressure of ~50 mTorr. The next turbomolecular pump inlet was used to pump the region 

between lenses L0 and L1 to a pressure of ~1 mTorr. The third inlet was used to maintain 

the pressure of the ion trap region at ~ 1x10-5 Torr. 
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Figure 2.3 Schematic representation of the Thermo Scientific LTQ linear quadrupole ion 
trap (LQIT) mass spectrometer with operational pressures shown for each differentially 
pumped region of the instrument. 
 
 

Ions generated in the ion source were drawn into the API stack region because 

this region had a lower pressure and a lower DC voltage potential applied to it. The ions 

first passed through a heated ion transfer capillary (200-300 oC), which facilitated ion 

desolvation. A DC potential with the same polarity as the ions being transferred was 

applied to the capillary to prevent ions from hitting the capillary wall. After passing 

through the transfer capillary, ions were directed through the skimmer via a DC potential 

applied on the tube lens. The outlet of the transfer capillary was misaligned with the 

opening on the skimmer in order to prevent neutral molecules from entering the mass 

spectrometer. 
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Figure 2.4 Representation of the DC voltage gradient applied for the transfer of positive 
ions. Gate lens voltages colored in red and black correspond to the closed (red) and open 
(black) states, respectively. 
 
 

After passing through the skimmer, the ions were guided by a series of multipole 

ion guides (Q00 rf lens, Q0 quadrupole, and Q1 octapole). These multipole ion guides 

ions in the x and y direction by applying radio frequency (RF) voltages to the multipole 

rods. RF voltages applied to adjacent multipole rods had the same amplitude but wer 180 

degrees out of phase. Every set of opposing multipole rods had the exact same RF 

voltages applied to them. These RF voltages created an alternating electric field that 

confined ions into a circular oscillating movement in the x and y plane. In order to guide 

ions in the z direction, additional DC potentials were applied to each element of the ion 

optics. These DC potentials formed a DC gradient that dropped as ions traveled further 

into the mass spectrometer (Figure 2.4). 
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Ion lenses (lenses L0 and L1, Figure 2.3) were installed between each multiple 

ion guide. These lenses were only applied with DC potential, which focused ions into 

tighter packets before they entered the next multiple ion guide. A gate lens was placed in 

front of the Q1 octapole to control ion injection into the ion trap. When set at a high DC 

potential (shown in red in Figure 2.4), the gate lens prevented ions from entering the Q1 

octapole which led into the ion trap. When set at a lower potential (shown in black in 

Figure 2.4), it facilitated ion movement into the Q1 octapole by creating a relatively large 

potential drop. The Q1 octapole then directly guided ions into the linear quadrupole ion 

trap. 

 

Figure 2.5 Schematic representation of the linear quadrupole ion trap used in Thermo 
scientific LTQ mass spectrometers.  
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The ion trap consisted of four hyperbolic rods that were cut into three sections: 

front section, center section, and back section (Figure 2.5). The four hyperbolic rods were 

divided into two sets of opposing rods (colored in red or blue in Figure 2.5). The two rods 

within each set were connected electrically and thus had the same RF potential applied to 

them. The voltages applied to the two rod sets were the same in amplitude but opposite in 

polarity. These RF voltages trapped ions in the x and y plane similarly as the multiple ion 

guides discussed above. Trapping of ions in the z direction was achieved by applying 

higher DC potential to the front and the back sections of the ion trap. The two rods in the 

center section in the x direction had a slit through which ions could be ejected into the 

detector. These two rods are referred to as the “x-rods”, or “exit rods”. Ion motion inside 

the ion trap will be further discussed below. 

 

2.3.2 Ion Motion Inside Linear Quadrupole Ion-Trap 

 

2.3.2.1 Ion Trapping in the X- and Y- Plane 

 The motion of the ions in a quadruple field is mathematically described by the 

Mathieu equation24,25: 
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Here, u represents the x, y, and z coordinates, and ua and uq are the Mathieu 

stability parameters. The other parameter
2

t 
 , with   being the radio frequency of 

the potential applied to the quadrupole rods. 

For the LQIT, the applied electric potential generated by the RF and DC voltages 

can be described using the equation below: 

 0 cosU V t     (2) 

where U is the applied DC potential, V is the amplitude of the applied RF potential, and 

  is the angular frequency of the RF potential.  The quadrupole potential within the ion 

trap in the x and y plane can then be described as: 

 
2 2 2 2

, 0 2 2
0 0

( cos )( )
x y

x y U V t x y

r r
     

   (3) 

According to Newton’s Second Law of Motion, the force that an ion experiences 

in a certain direction is proportional to its acceleration in the same direction. Therefore, in 

the x and y plane, we have: 
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where m is the mass of the ion, z is the number of charges of the ion, and e  is the 

elementary charge. Combining equation 2 into equation 3 gives: 
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which can be further rearranged into: 
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Comparing equation 6 with equation 1, we can derive the following mathematic 

representation for the two Mathieu stability parameters, a and q: 
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 For ions to maintain a stable trajectory in the x and y plane within the ion trap, the 

above two parameters must fall within a certain range, known as the stable region on the 

Mathieu stability diagram25 (Figure 2.6). Ions with parameters outside of the stable region 

will be unstable in at least one direction and thus will be eliminated from the ion trap.  
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Figure 2.6 Illustration of the Mathieu stability diagram.  

 

 It is worth noting that smaller ions have larger ua and uq values. Therefore, in 

order to simultaneously trap ions with a broad range of m/z-values, the ion trap was 

typically operated at 0ua  , which covers the widest range of uq values. Under this 

setting, ions with uq values ranging from 0 to 0.908 are stable inside the ion trap. 

 

2.3.2.2 Ion Trapping in the Z Direction 

 Ion trapping in the z direction was achieved by applying different DC potentials 

to the three sections of the ion trap. Higher potentials were applied to the front and back 

sections, creating a DC potential well that confined ions into the center section. Different 

DC gradients were used during ion injection, ion trapping, and ion ejection (Figure 2.7). 
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 Helium buffer gas filled the ion trap at a nominal pressure of ~3 mtorr as a 

supplementary method to confine ions into the center section of the ion trap.26 Ions 

gained kinetic energy as they entered the ion trap following the DC potential gradient 

along the ion optics (discussed in 2.3.1). Upon entering the ion trap, ions’ kinetic energy 

was reduced through multiple collisions with the helium buffer gas. Ions with lower 

kinetic energy are more efficiently trapped at the center of the ion trap, resulting in 

enhanced mass accuracy, resolution, and ion ejection efficiency.  
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Figure 2.7 Representation of the DC potential well created during (a) ion injection, (b) 
ion trapping, and (c) ion ejection Notice how the ions are focused into a much tighter 
packet during ion ejection by the sharper DC potential gradient. 
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2.3.3 Ion Ejection and Detection 

As discussed in section 2.3.2.1, LQIT typically operates at a condition of a = 0. 

Under such conditions, ions line up on the x axis of the Mathieu stability diagram 

according to their m/z values, with bigger ions on the left side (Figure 2.8a). When the 

amplitude of the main RF voltage is ramped up, the q value of all ions increases, shifting 

them further right on the stability diagram. When the q value of a certain ion exceeds 

0.908, it can no longer maintain a stable trajectory inside the ion trap and is ejected 

radially through the slits on the exit rods. This ejection method is referred to as the “mass 

selective instability scan” (Figure 2.8b).27 

In an attempt to enhance resolution, the contemporary Thermo Scientific LTQ 

mass spectrometers utilize an alternative ejection method known as “resonance 

ejection”.28 During this ejection event, a supplementary ac voltage is applied to the exit 

rods. The frequency of this voltage is set to a value that is in resonance with the 

frequency of motion of ions at q = 0.880. As the amplitude of the main RF voltage is 

ramped up, ions with q value of 0.880 are brought into resonance with the frequency of 

the supplementary ac voltage, and start to oscillate at increasingly bigger amplitudes. 

When the oscillation amplitude is big enough, the ion is ejected from the trap (Figure 

2.8c). Compared  to the mass selective instability scan, resonance ejection allows ions to 

be ejected as a tighter packet, resulting in enhanced mass resolution.29,30 

Once ions are ejected, they are attracted to the conversion dynode31 by a strong 

electric field induced by a high voltage (+15 kV for negative ions, -15 kV for positive 

ions) applied to the conversion dynode. Ions hitting the conversion dynode generate 

secondary particles with opposite polarity (positive ions typically generate negative ions 
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or electrons, negative ions typically generate positive ions).20 These secondary particles 

are then directed from the conversion dynode into the electron multiplier, where they are 

cascaded into a measurable current. The current produced is proportional to the number 

of ions originally ejected from the ion trap (Figure 2.9).    
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Figure 2.8 (a) Representation of ions trapped inside the ion trap in the Mathieu stability 
diagram.  (b) Ion ejection by ramping the amplitude of the main RF voltage. (c) 
Resonance ion ejection using the supplementary resonance ejection ac voltage 

a

q

Increasing VRF 

Ion ejected 
at q=0.908

(b)

m/z

a

q

Increasing VRF 

Resonance ion 
ejection at q=0.880

(c)

Ion in resonance with the
resonance ejection ac voltage m/z

a

q

(a)



24 

 

Figure 2.9 Schematic representation of the ion detection system. Ions were radially 
ejected through the exit rods and converted to secondary particles in the conversion 
dynode that were detected by the electron multiplier. Note that the electric field direction 
and the secondary particles generated correspond to positive ion detection. 
 
 

2.4 Tandem Mass Spectrometry in LQIT 

The ability to perform multiple tandem mass spectrometry experiments is a 

powerful feature of the linear quadrupole ion trap instruments.32 Generally, the ion of 

interest (parent ion) is isolated inside the ion trap by ejecting all other ions from the trap, 

and subjected to additional MS experiments, such as collision-activated dissociation33 

(CAD) or ion-molecule reactions.34 These experiments produce fragment ions or product 

ions that are scanned out of the ion trap and detected. The LQIT is capable of doing 

multiple stages of tandem MS experiments (MSn) by isolating an ion produced in the first 

MS experiment and subjecting it to further dissociation or bimolecular reaction. MSn 
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capability is a feature unique to trapping instruments like LQIT and can be used to obtain 

in-depth structural information of the analyte ion.  

 

2.4.1 Ion Isolation 

 Ion isolating is the first step involved in a tandem MS experiment. The main RF 

voltage was first ramped up to a value that set the ion of interest at a q value of 0.803. In 

this step, certain ions with lower m/z value than the ion of interest would be ejected from 

the trap. Then, a broad resonance excitation waveform was applied to the exit rods, which 

excited all ions inside the ion trap except for those with a q value of 0.803 (Figure 2.10). 

This can be accomplished because the excitation waveform covers a wide range of ion 

oscillation frequencies (5-500 kHz) but has a notch at the frequency corresponding to q = 

0.803. The width of the notch is related to the isolation window, which can be defined by 

the software. 
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Figure 2.10 Position of the ions on the Mathieu stability diagram during (a) ion trapping, 
(b) RF ramp to increase the q value of ion of interest to 0.830, (c) application of 
resonance ejection waveform to remove all unwanted ions. 
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2.4.2 Collision-activated Dissociation 

 Collison-activated dissociation (CAD) is a common dissociation method aimed at 

fragmenting the isolated ion (Figure 2.11).35 CAD process was started by lowering the 

amplitude of the main RF voltage so that the isolated ion had a lower q value (typically 

0.25). Then, a supplementary ac voltage was applied to the x-rods of the quadrupole ion 

trap to bring the isolated ion into resonance. This supplementary voltage, known as the 

“tickle voltage”, had a lower amplitude compared with the resonance ejection voltage so 

that the ions were not excited too much that they leave the trap. The tickle voltage 

kinetically excited the ion of interest, which then underwent numerous collisions with the 

helium buffer gas present inside the ion trap. During these collision processes, kinetic 

energy of the ion was converted into internal energy. When the internal energy exceeded 

the barrier for unimolecular dissociation, the parent ion fragmented into smaller ions. 

 It should be noted here that the q value at which CAD occurs could influence the 

result of the experiment. In general, a lower q value was used in order to trap all fragment 

ions (which have lower m/z values and thus higher q values) inside the ion trap. 

However, at higher q values, parent ion could osculate at a higher frequency, allowing 

more kinetic energy to be deposited into the parent ion. In this way, the internal energy of 

the parent ion could be increased, making fragmentation pathways with higher barriers 

accessible. 
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Figure 2.11 Position of the ions on the Mathieu stability diagram during (a) ion trapping, 
(b) ion excitation at q value of 0.250 (c) production of fragment ions. 
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2.4.3 Ion-molecule Reaction 

 Ion-molecule reaction is an alternative tandem MS technique to CAD.36,37 It can 

provide an extra dimension of structural information for the ionized analyte. As the name 

suggests, ion-molecule reaction occurs between the ionized analyte and a neutral reagent 

molecule. In general, neutral reagents were introduced into the ion trap via modification 

module installed on the mass spectrometer. Once inside the ion trap, they reacted with the 

isolated ion of interest, producing product ions that typically have larger m/z values 

(Figure 2.12).  

 Normal potential energy surface models do not apply to ion-molecule reaction 

which occurs in the gas-phase.38 Instead, the Braumann double-well potential energy 

surface is used (Figure 2.13).39 According to this model, the analyte ion and the neutral 

reagent first form a complex via ion-dipole interaction or ion-induced dipole interactions. 

Formation of the reactant complex lowers the overall energy through solvation. The 

solvation process gives the reactant complex enough energy to surpass the reaction 

barrier, forming a product complex which eventually dissociate into separated products. 

Because ion-molecule reactions occur in vaccum, total amount of energy in the reaction 

system is constant. Therefore, reactions with a barrier higher than the entrance energy 

level and reactions that are overall endothermic cannot occur. 

 In this dissertation, two methods are employed for the introduction of neutral 

reagents into the mass spectrometer (Figure 2.14). The first method is via an external 

reagent mixing manifold.3,40 This setup first mixed the neutral reagent into the helium 

buffer gas that entered the ion trap. A leak valve was used to regulate the amount of 

helium-reagent mixture into the ion trap. This method allowed the neutral reagent to be 



30 

continuously introduced and maintained at a constant concentration inside the trap. The 

second method is via a pulsed valve setup.41 Here, the neutral reagent was injected into a 

chamber that connects to the back of the ion trap via a pulsed valve. The pulsed valve 

opened for a short period of time upon triggering, allowing a packet of neutral reagent to 

enter the ion trap and react with the analyte ion. 
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Figure 2.12 Position of the ions on the Mathieu stability diagram during (a) ion trapping, 
(b) RF ramp to increase the q value of ion of interest to 0.830, (c) application of 
resonance ejection waveform to remove all unwanted ions. 
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Figure 2.13 An example representation of the Braumann double well potential energy 

surface 

 

2.5 Orbitrap Mass Spectrometer 

The orbitrap has quickly become the most widely used high resolution mass 

analyzer since its introduction in 2005.42 Compared with other ion traps, the orbitrap only 

utilizes electrostatic field for ion trapping and mass analysis. Therefore, it is in general a 

simpler, more robust, and more compact ion trap mass analyzer. However, it should be 

noted that despite being an ion trap, the orbitrap on its own cannot perform tandem MS 

experiments. Therefore, hybrid instruments such as LQIT-Orbitrap are developed to 

perform tandem MS experiments with high mass resolution.43 
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2.5.1 Instrument Setup 

The Orbitrap mass spectrometer used in this dissertation is a Thermo Scientific 

LTQ Orbitrap XL mass spectrometer.43,44 It is a hybrid instrument made by coupling an 

orbitrap mass analyzer to the rear end of a linear quadrupole ion trap (Figure 2.14). Ions 

trapped inside the linear ion trap could be ejected axially into the C-trap by applying a 

DC potential gradient. The ejected ions then underwent collisions with the nitrogen gas to 

be focused into a thin packet along the curvature of the C-trap. The focused ions were 

then accelerated by a series of lenses before being pulsed into the orbitrap mass analyzer. 

 

 

Figure 2.14 Schematic representation of the coupling between linear quadruple ion trap 
and orbitrap in Thermo Scientific LTQ Orbitrap XL mass spectrometer. Parts in front of 
the linear quadrupole ion trap are identical with Thermo Scientific LTQ mass 
spectrometer (Fig 2.4). Ions are concentrated in the C-trap before being ejected off center 
into the orbitrap (red arrow). 
 
 

 

Transfer octopole
Octopole collision cell

C‐trap

Orbitrap

Linear quadrupole ion trap



34 

2.5.2 Ion Motion Inside Orbitrap Mass Analyzer 

Two ion motions are involved inside the orbitrap: 1) axial oscillation movement 

along the central electrode and 2) the rotational movement around the central electrode 

(Figure 2.15).45 The axial movement can be described by the following equation: 

1/2
0

2
( ) cos( ) ( ) sin( )zE

z t z t t
k

    

where z0 is the initial axial coordinate, Ez is the intial ion kinetic energy along the axis, k 

is the axial restoring force parameter determined by the condition of the orbitrap, and ω 

is the frequency at which the ion osculates. This oscillation movement induce an 

imaginary current that peaks whenever the ion move across the center of the orbitrap. 

Therefore, oscillation frequency of the ions can be derived by performing Fourier 

transform on the imaginary current data. The frequency ω	is	further	related	to	the	m/z	

of	the	ion	by	the	following	equation: 

1/2( )
kq

m
   

The rotational movement around the central electrode can be described as: 

2qV
r

qE
  

where r is the radius at which ion rotates, qV is the initial kinetic energy, and E is the 

electric field strength. Although the rotational movement is not used for mass analysis, it 

is still important as the ion’s initial kinetic energy must to be controlled in order to avoid 

collision with the outer electrode of the orbitrap.  
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Figure 2.15 Schematic representation of an orbitrap mass analyzer. The ions are injected 
off center to induced a harmonic axial oscillation (blue arrows).
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CHAPTER 3. FUNCTIONAL GROUP IDENTIFICATION IN DEPROTONATED 
ANALYTES VIA ION-MOLECULE REACTIONS WITH DEMB AND WATER 

3.1 Introduction 

Mass spectrometry (MS) is a powerful analytical technique for the identification 

of unknown compounds within complex mixtures.1–4 By accurately measuring the m/z 

value of the ionized analyte, molecular weight and elemental compositions of the 

unknown molecules can be obtained.5 In order to further elucidate the structure of the 

unknown molecules, tandem mass spectrometry (MSn) experiments that involve multiple 

stages of ion isolation and dissociation experiments can be performed.3 During these 

experiments, the ion of interest (parent ion) is fragmented into smaller fragmentation 

ions. Analyte ions with certain functional groups often produce characteristic 

fragmentation ions.6 In this way, the functional groups present in the unknown molecule 

can be identified. The most commonly used method to fragment ions is via collision 

activated dissociation (CAD).7 However, for compounds with multiple functional groups, 

MSn based on CAD does not always provide adequate structural information for the 

identification of all functional groups present.8 Therefore, additional structural 

elucidation methods need to be developed. 

Past studies have shown that tandem mass spectrometry based on ion-molecule 

reactions can be a powerful tool for structural elucidation of ionized analytes.9 Functional
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groups can be identified by using neutral reagents that only exhibit reactivity towards 

ions with these functional groups.10–13 However, most of the ion-molecule reactions 

developed require the target analyte to be protonated as proton transfer from the 

protonated analyte to the neutral reagent is a key step in the reaction mechanism.12 

Therefore, these methods are suboptimal for acidic analytes that are easier to ionize under 

negative ion mode. One example of such analytes is lignin related compounds that 

generally contain the phenol functional groups.14 The best ionization method for these 

compounds was shown to be negative ion mode electrospray ionization (ESI) with 

sodium hydroxide dopant, which exclusively forms deprotonated molecules with no 

fragmentation for lignin model compounds.15 Other ionization methods, such as positive 

ion mode ESI or atmospheric pressure chemical ionization (APCI), either cause extensive 

fragmentation or form multiple ion types for each compound. Another example is drug 

metabolites that contain phosphate, sulfate, or glucuronide functional group. Negative ion 

mode ESI were shown to provide a lower detection limit compared with positive ion 

mode ESI, which is desirable for the trace analysis of these compounds in complex 

biologic matrixes.16 For those acidic compounds, functional group selective ion-molecule 

reactions for deprotonated analytes need to be developed. 

Boron reagents were shown to be reactive towards deprotonated analytes.17–19 

Trimethyl borate (TMB) were shown to react with phosphate containing species by 

forming an adduct that losses one or more methanol molecules.18 Diethylmethoxyborane 

(DEMB) was able to differentiate phosphorus- and sulfocarbohydrates as it only reacted 

with phosphorus carbohydrates.20 However, the reactivity of boron reagents towards 
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deprotonated analytes containing other functional groups, such as carboxylate or 

phenoxide, was not yet studied. 

In the work presented in this chapter, two ion-molecule reaction systems were 

developed for the functional group identification in deprotonated analytes. In the first 

part, DEMB is explored as a reagent for the identification of the phenol functionality 

which is commonly observed in lignin-related analytes. DEMB was introduced into the 

mass spectrometer via a reagent mixing manifold. In the second part, a novel ion-

molecule reaction setup was developed that allowed separate introduction of two neutral 

reagents, DEMB and H2O, into the ion trap. Using this setup, a new reagent, 

diethylhydroxylborane (DEHB) was produced inside the ion trap. Its reactivity with 

deprotonated analyte containing phenoxides, carboxylates, phosphates, and sulfates 

functional group was studied. This reaction system was later implemented to the analysis 

of an artificial drug metabolite mixture. 

 

3.2 Experimental 

 

3.2.1 Chemicals 

Diethylmethoxyborane (97%), phenol (99%), 2-ethoxyphenol (98%), 3-

methoxyphenol (96%), 4-ethoxyphenol (99%), 2-methoxy-4-propylphenol (99%), 

isoeugenol (98%), methyl ferulate (99%), catechol (99%), resorcinol (99%), 

hydroquinone (99%), 2-hydroxybenzyl alcohol (99%), 3-hydroxybenzyl alcohol (99%), 

benzoic acid (99.5%), 3,5-dimethoxybenzoic acid (97%), 3,4,5-trimethoxybenzoic acid 

(99%), phenylacetic acid (99%), trans-cinnamic acid (99%), octanoic acid (98%), 
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heptanoic acid (97%), levulinic acid (98%), D-serine (98%), phthalic acid (99.5%), 

isophthalic acid (99%), terephthalic acid (98%), 3-nitrophenol (99%), 4-nitrophenol 

(99%), 2-hydroxybenzaldehyde (98%), 3-hydroxybenzaldehyde (99%), 4-

hydroxybenzaldehyde (98%), methyl 2-hydroxybenzoate (99%), methyl 3-

hydroxybenzoate (99%), methyl 4-hydroxybenzoate (99%), 2-hydroxybenzoic acid 

(99%), 3-hydroxybenzoic acid (99%), 4-hydroxybenzoic acid (99%), 2-hydroxycinnamic 

acid (99%), 3-hydroxycinnamic acid (98%), 4-hydroxycinnamic acid (97%), 2-

hydroxyphenacetic acid (97%), 3-hydroxyphenacetic acid (99%), 4-hydroxyphenacetic 

acid (98%), vanillic acid (97%), syringic acid (95%), sinapic acid (98%), 4-

methoxybenzoic acid (99%), 4-methylumbelliferyl β-D-glucuronide hydrate (98%), 

phenylphosphonic acid (98%), 2-aminoethylphosphonic acid (99%), 4-

methylumbelliferyl phosphate, 4-methylumbelliferyl sulfate potassium salt, p-

toluenesulfonic acid monohydrate (98.5%), benzenesulfonic acid (98%), morphine-6-β-

D-glucuronide solution (1.0 mg/mL in methanol: water (2:8)), p-acetamidophenyl β-D-

glucuronide sodium salt, 4-nitrophenyl β-D-glucuronide (98%), phenolphthalein β-D-

glucuronide, Water-18O (97 atom % 18O) and 4-hydroxy-3-methylbenzoic acid (97%) 

were purchased from Sigma Aldrich and used as received. Vanillin (99%) was purchased 

from Fisher Scientific and used as received. Guaiacylglycerol guaiacyl ether (97%) was 

purchased from TCI America and used as received. Water (LC/MS grade) was purchased 

from ProteoChem (Hurricane, UT) and used as received. Deuterium oxide (99.5%) was 

purchased from Cambridge Isotope Labotories (Tewksbury, MA) and used as received. 

Lignin β-5 dimer was synthesized via a previously reported method.21 Converted 

Miscanthus biomass was obtained via a previously published procedure.22 For the 
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Hymecromone metabolite mixture, 4-methylumbelliferone (Hymecromone), 4-

methylumbelliferyl sulfate potassium salt, 4-methylumbelliferyl phosphate, and 4-

methylumbelliferyl β-D-glucuronide hydrate were dissolved in 50/50 v/v methanol/water 

to achieve a final concentration of 0.1 mM for each compound. 

 

3.2.2 Mass Spectrometry 

All experiments were performed on a Thermo Scientific linear quadrupole ion 

trap (LQIT) mass spectrometer equipped with an electrospray ionization (ESI) source 

operated in the negative ion mode. Sample solutions were prepared at a concentration of 

1 mmol in 50/50 water/methanol (v/v) solution. 10 µL of 1 mM NaOH water solution 

were added into 5 mL of sample solution to facilitate the formation of deprotonated 

analyte molecules. The NaOH doped sample solutions were injected into the ion source at 

a flow rate of 10 µL/min. The injected solutions were mixed via a T-connector with 

50/50 water/methanol (v/v) at a flow rate of 100 µL/min to maintain stable spray current. 

Typical ESI conditions were: 3.5 kV spray voltage, 20 (arbitrary unit) sheath gas (N2) 

flow, 10 (arbitrary unit) auxiliary gas (N2) flow, and 2 (arbitrary unit) sweep gas (N2) 

flow. 
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3.2.3 Ion-molecule Reactions 

Ion-molecule reactions were studied using a combination of a custom build 

external reagent mixing manifold and a custom build pulsed valve interface.23,24 DEMB 

was injected into the external reagent mixing manifold via a syringe drive at a flow rate 

of 3 µL/min and diluted with helium at a flow rate of 250 mL/min. The manifold was 

heated to 70 ˚C for efficient evaporation of DEMB into helium. The DEMB-helium 

mixture then entered a variable leak valve that allowed part of the mixture gas to enter the 

ion trap while the excess was directed into waste. The variable leak valve was set to 

maintain the pressure (measured via an ion gauge) within the trap region of the 

instrument at 0.5 × 10-5 Torr. Analyte ions were isolated and allowed to react with the 

neutral reagents for 200 ms before being ejected for detection. 

H2O was introduced into the trap region of the mass spectrometer via a custom 

build pulsed valve system. 5 µL of H2O was injected into a stainless steel channel 

through a rubber septum via a syringe. The stainless steel channel was heated to 90 ˚C for 

promote water evaporation. A pulsed valve connected to the stainless steel channel were 

triggered manually via a waveform generator to open for 500 µS to allow H2O to enter 

the linear quadruple trap region. Analyte ions were isolated and allowed to react with the 

neutral reagents for 200 ms before being ejected for detection. 

 

3.2.4 High-performance Liquid Chromatography 

HPLC experiments were performed on a Surveyor Plus HPLC system consisting 

of a quaternary pump, an autosampler, and a Zorbax SB-C18 column. For the separation 

of drug metabolite mixtures, a non-linear gradient of water with 5 mMol ammonium 
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acetate (A) and methanol with 5 mMol ammonium acetate (B) was used: 0.00 min, 100% 

A; 10.00 min, 70% A and 30% B; 20.00 min, 60% A and 40% B; 25.00 min, 30% A and 

70 % B; 30.00min, 30% A and 70% B; 31.00 min, 100% A; 40.00 min, 100% A. For all 

other separations, non-linear gradient of water (A) and acetonitrile (B) was used as 

follows: 0.00 min, 95% A and 5% B; 10.00 min, 95% A and 5% B; 30.00 min, 40% A 

and 60% B; 35.00 min, 5% A and 95 %; 38.00min, 5% A and 95% B; 38.50 min, 95% A 

and 5% B; 45.00 min, 95% A and 5% B. The flow rate of the mobile phase was kept at 

500 µL/min for both gradient methods. PDA detector was set at the wavelength of 254 

nm. 

HPLC eluents were ionized via an ESI source operating under negative ion mode 

with the following conditions: 3.25 kV spray voltage; 50 (arbitrary unit) sheath gas (N2) 

flow and 20 (arbitrary unit) auxillary gas (N2) flow. For phenolic compounds, HPLC 

eluents were mixed via a T-connector with 1% sodium hydroxide solution at a flow rate 

of 0.1 µL/min before entering the ESI source. 

 

3.2.5 Computational Details 

All density functional theory (DFT) calculations were performed using the 

Gaussian 09 software package. Geometry optimizations were performed using the hybrid 

functional M06-2X with the 6-31+G(d,p) basis set. Vibrational frequencies calculations 

for the optimized geometries were performed at the same level of theory to obtain 

enthalpy values as well as to confirm that all minima had no negative frequencies and all 

transition states had one negative frequency. Intrinsic reaction coordinate (IRC) analyses 

were performed for all transition states to confirm that they connect to the correct reactant 
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and product. Natural Bond Orbital (NBO) analyses were performed at the M06-2X/6-

311++G(2d,p) level of theory. 

 

3.3 Results and Discussions 

The first part of chapter 3.3 discusses the reactions between DEMB and 

deprotonated analytes containing phenoxide, phosphate, sulfate, or carboxylate 

functionality. The deprotonated analytes were generated via negative ion mode ESI with 

NaOH as dopant, isolated inside the ion trap, and subjected to reaction with DEMB. 

Results suggested that DEMB is a useful reagent for the identification of the phenol 

functionality in deprotonated analytes. DEMB was then used to identify phenols in a 

catalytically converted biomass sample containing multiple phenolic compounds.  

The second part of chapter 3.3 discusses the reactions between DEHB/H2O and 

deprotonated analytes containing phenoxide, phosphate, sulfate, or carboxylate 

functionality. This reaction system was found to be able to identify ions containing 

phenoxide, phosphate, or carboxylate functionality. Ion-molecule reactions with 

DEHB/H2O were then applied to the analysis of a drug metabolite artificial mixture. 

 

3.3.1 Ion-molecule Reactions with DEMB and H2O 

DEMB and H2O, the two neutral reagents used in this study, were introduced into 

the mass spectrometer separately. DEMB was introduced continuously via a reagent 

mixing manifold and was maintained at a constant concentration inside the ion trap. H2O 

was introduced into the mass spectrometer via a pulsed valve system. Upon triggering the 
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pulsed valve, H2O molecules entered the ion trap and reacted with the isolated analytes 

ions. 

 

 

Figure 3.1 Reactions of deprotonated catechol (m/z 109) with DEMB and DEHB/H2O. 
(a) Extracted ion current of the reactant ion (m/z 109), DEMB product ion (m/z 177), and 
DEHB/H2O product ion (m/z 165) over time. (b) Averaged mass spectra measured (top) 
before and (bottom) after one pulsed introduction of H2O 
 
 
 

Figure 3.1 shows the mass spectra collected during the ion-molecule reaction 

involving deprotonated catechol, DEMB, and H2O. Before H2O introduction, DEMB was 

the only neutral reagent present inside the ion trap. Deprotonated catechol (m/z 109) 

reacted with DEMB, forming a DEMB adduct−CH3OH product ion (m/z 177). 
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Abundance of the DEMB adduct−CH3OH product ion (m/z 177) did not change over 

time because DEMB concentration was held constant. Upon H2O introduction via the 

pulsed valve, DEMB hydrolyzed into DEHB and proceeded to react with the analyte ion. 

As a result, the abundance of a new product ion (m/z 165) increased. A corresponding 

decrease in the abundance of the reactant ion (deprotonated catechol of m/z 109) and the 

DEMB adduct−CH3OH product ion (m/z 177) was also observed. The ion of m/z 165 

was later identified to be DEHB adduct−CH3CH3. Therefore, this reaction setup can be 

used to study the reactivity of both DEMB and DEHB/H2O towards deprotonated 

analytes. 

 

3.3.2 Reactions Between DEMB and Deprotonated Analytes 

 

3.3.2.1 Reactions Between DEMB and Phenoxide Containing Ions 

Upon reactions with DEMB, most phenoxide containing analyte ions formed a 

DEMB adduct ion ([M−H+DEMB]−) that has 100 units greater m/z-value than the analyte 

ion (Tables 3.1). Larger analytes such as two lignin dimers with β-O-4 and β-5 linkages 

also exclusively produced DEMB adducts (Table 3.1). However, there are three types of 

exceptions where the DEMB adduct was not observed for phenoxide containing analyte 

ions. 
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Table 3.1 Ionic products formed upon reactions of deprotonated model compounds with 
diethylmethoxyborane (DEMB) for 200 ms. 
 

Analyte ion (m/z of [M−H]−) Ion structure 
Products formed upon 
reactions with DEMBa 

(m/z) 

phenol (91) 91+DEMB (191) 

2-ethoxyphenol (137) 137+DEMB (237) 

3-methoxyphenol (137) 123+DEMB (223) 

4-ethoxyphenol (123) 137+DEMB (237) 

2-methoxy-4-propylphenol (165) 165+DEMB (265) 

isoeugenol (163) 163+DEMB (263) 

methyl ferulate (207) 207+DEMB (307) 

catechol (109) 
109+DEMB−CH3OH 
(177) 

resorcinol (109) 109+DEMB (209) 

hydroquinone (109) 109+DEMB (209) 

2-hydroxybenzyl alcohol (123) 
123+DEMB−CH3OH 
(191) 

3-hydroxybenzyl alcohol (123) 123+DEMB (223) 

guaiacylglycerol guaiacyl ether 
(319) 

319+DEMB (419) 

lignin β-5 dimer (325) 325+DEMB (425) 

aOnly products with 5% or greater relative abundance reported. DEMB adduct colored in 
red, DEMB adduct-MeOH colored in blue. 
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The first exception was deprotonated phenols with an adjacent hydroxyl group such 

as catechol and 2-hydroxybenzyl alcohol. These analyte ions produced DEMB 

adduct−CH3OH instead of DEMB adduct upon reaction with DEMB. Formation of this 

type of a product ion was not observed for the resorcinol, hydroquinone, or 3-

hydroxybenzyl alcohol whose hydroxyl and phenol groups are further away from each 

other (Table 3.1). These observations suggest that the additional phenol or hydroxyl 

functionality close to the deprotonation site are likely involved in the formation of 

DEMB adduct−CH3OH. The potential energy surface for the proposed mechanism, 

calculated via density functional theory, is shown in Figure 3.2. 

 

 

Figure 3.2 (A) Proposed mechanism and (B) calculated potential energy surface (enthalpy 
in kcal/mol) for the formation of a DEMB adduct that has lost methanol upon reactions 
between deprotonated catechol and DEMB (M06-2X/6-31+G(d,p) level of theory). 
 
 



51 

The second exception was phenols with a conjugated carboxylic acid. Multiple 

compounds with both phenol and carboxylic acid functional group were deprotonated and 

reacted with DEMB (Table 3.2). DEMB adduct−CH3OH was observed for 4-

hydroxybenzoic acid, 2-hydroxycinnamic acid and 4-hydroxycinnamic acid, whose 

phenol and carboxylic acid functionalities are conjugated. The above proposed 

mechanism in Figure 3.2 cannot explain the formation of DEMB adduct−CH3OH for 4-

hydroxybenzoic acid since the distance between the carboxylic acid and phenol 

functionalities is too great. Therefore, a different mechanism must be involved. One issue 

that must be considered here is that 4-hydroxybenzoic acid has two possible 

deprotonation sites. Hence it is important to figure out which deprotonation form is 

involved in the formation of DEMB adduct−CH3OH. 

Past studies have shown that ESI solvent conditions can influence the site of 

deprotonation of 4-hydroxybenzoic acid.25,26 In general, aprotic solvents favor the 

formation of the phenoxide while protic solvent favor the formation of carboxylate. The 

above conclusion was verified via CAD experiments performed on deprotonated 4-

hydroxybenzoic acid generated under different solvent conditions (Figure 3.3). 

Regardless of the CAD energy used, deprotonated 4-hydroxybenzoic acid generated with 

acetonitrile showed more CO2 loss than the deprotonated 4-hydroxybenzoic acid 

generated with H2O and NaOH. 

  



52 

Table 3.2 Ionic products formed upon reactions of deprotonated model compounds 
containing a phenol and a carboxylic acid functional group with DEMB for 200 ms  
 

Analyte ion (m/z of [M-H]-) Structure 
Products formed upon reactions 

with DEMBa (m/z) 

2-hydroxybenzoic acid (137) none 

3-hydroxybenzoic acid (137) 137+DEMB (251) 

4-hydroxybenzoic acid (137) 137+DEMB−CH3OH (177) 

2-hydroxycinnamic acid (137) 137+DEMB−CH3OH (177) 

3-hydroxycinnamic acid (137) 137+DEMB (251) 

4-hydroxycinnamic acid (137) 137+DEMB−CH3OH (177) 

2-hydroxyphenacetic acid (151) none 

3-hydroxyphenacetic acid (151) 151+DEMB (251) 

4-hydroxyphenacetic acid (151) 151+DEMB (251) 

vanillic acid (167) 167+DEMB−CH3OH (235) 

syringic acid (197) 197+DEMB−CH3OH (265) 

sinapic acid (223) 

 

223+DEMB−CH3OH (291) 

aOnly products with 5% or greater relative abundance reported. 
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Figure 3.3 MS2 CAD spectra measured for deprotonated 4-hydroxybenzoic acid (m/z 
137) generated using ESI with (A) acetonitrile solution and (B) NaOH doped water 
solution. 
 
 

CO2 loss for phenoxide and carboxylate form of 4-hydroxybenzoic acid happen 

via different mechanisms and have different barriers. The calculated CO2 loss barrier for 

phenoxide is lower than that for carboxylate (Figure 3.4). This suggests that CO2 loss is 

easier for phenoxide upon CAD. The above two pieces of information proves that the 

deprotonated 4-hydroxybenzoic acid generated with acetonitrile contains a larger 

percentage of the phenoxide tautomer. 
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Figure 3.4 Calculated potential energy surface for the loss of CO2 upon CAD of 
deprotonated 4-hydroxybenzoic acid carboxylate form (A) and phenoxide form (B) 
(M06-2X/6-31+G(d,p) level of theory). 
 
 

Afterwards, the abundances of 4-hydroxybenzoic acid deprotonated using 

acetonitrile and water with 0.1% NaOH and its DEMB adduct−CH3OH product were 

measured as a function of reaction time. Ion-molecule reactions studied under the 

conditions utilized here follow pseudo-first order kinetics. Hence, a plot of the logarithm 

of the reactant ion’s relative abundance versus reaction time is a straight line with a 

negative slope equal to the rate constant multiplied by DEMB concentration. With the 

concentration of DEMB staying constant under the conditions employed here (the 

concentration of reactant ions is substantially smaller than the concentration of the 

reagent molecules), the rate constant is proportional to the value of the negative slope, 

which is larger (0.007 vs 0.005) when the reactant ions were generated using acetonitrile 

(Figure 3.5A). As discussed above, deprotonated 4-hydroxybenzoic acid generated with 

acetonitrile contains a larger percentage of the phenoxide tautomer, therefore, it is 
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reasonable to conclude that the formation of DEMB adduct-MeOH involves the 

phenoxide form of deprotonated 4-hydroxybenzoic acid. 

 

Figure 3.5 (A) Logarithm of the abundances of deprotonated 4-hydroxybenzoic acid 
(black symbols) and DEMB adduct−CH3OH product ion (blue symbols) plotted as a 
function of reaction time for the reaction between DEMB and deprotonated 4-
hydroxybenzoic acid generated using NaOH doped water solution (left) and acetonitrile 
solution (right). (B) Mechanism proposed for the formation of DEMB adduct that has lost 
methanol. (C) Calculated potential energy surface (enthalpies in kcal/mol) for the 
formation of DEMB adduct−CH3OH (M06-2X/6-31+G(d,p) level of theory). 
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which enables nucleophilic attack by the carboxylic acid moiety at the boron atom in 

DEMB. After addition, the carboxylic acid moiety can donate a proton to a methoxy 

group to eliminate methanol. Potential energy surface calculated for the proposed 

mechanism shows a low barrier of -0.3 kcal/mol for DEMB adduct−CH3OH formation 

for the reaction between deprotonated 4-hydroxybenzoic acid and DEMB (Figure 3.5C).  

The third exception was phenols with an electron-withdrawing functional group 

(aldehyde, nitro, and carboxylic acid ester) in the ortho- or para-position (Table 3.3). 

Deprotonated phenols with an electron-withdrawing substituent at the ortho- or para-

position were found to exhibit no reactivity towards DEMB while the meta-substituted 

isomers formed the DEMB adduct ion. An explanation for this behavior was sought by 

quantum chemical calculations. 
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Table 3.3 Ionic products formed upon reactions of deprotonated phenol and its 
derivatives containing electron-withdrawing substituents with DEMB for 200 ms, 
calculated NBO charges of the deprotonated phenols, and calculated energy differences 
between the reactants and their products 
 

Analyte ion 
(m/z of [M-H]-) 

Ion structure
Products formed 

upon reactions with 
DEMBa (m/z) 

Calculate
d NBO 
chargeb 

Energy 
difference 
(kcal/mol)d 

phenol (91) 91+DEMB (191) -0.808c -34.2 

vanillin (151) 
No products 

observed 
-0.721c -25.1 

3-nitrophenol (138) 138+DEMB (238) -0.782c -28.8 

4-nitrophenol (138)  
No products 

observed 
-0.726c -23.4 

2-
hydroxybenzaldehyd
e (121)  

121+DEMB (221) 
minor 

-0.766c -27.3 

3-
hydroxybenzaldehyd
e (121)  

121+DEMB (221) -0.793c -31.0 

4-
hydroxybenzaldehyd
e (121) 

 
No products 

observed 
-0.743c -26.4 

methyl 2-
hydroxybenzoate 
(151) 

151+DEMB (251) 
minor 

-0.724c -27.6 

methyl 3-
hydroxybenzoate 
(151) 

151+DEMB (251) -0.798c -31.9 

methyl 4-
hydroxybenzoate 
(151) 

 
151+DEMB (251) 

minor 
-0.752c -27.2 

 

aProducts with 5% or greater relative abundance colored in red. Products with relative 
abundance between 0.1% and 5% considered as minor. 
bNBO = natural bond orbital. Calculated at M06-2X/6-311G++(2d,p) 
cCharge on the phenoxide oxygen atom 
dRelative energy difference in enthalpy between product ion and separated reactants. 
Calculated at M06-2X/6-311G++(2d,p) level of theory 
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Calculations based on density functional theory showed that the electron density 

on the phenoxide oxygen atom in deprotonated phenols is reduced in the presence of an 

ortho- or para-positioned electron-withdrawing substituent when compared to meta-

substituted phenols (Table 3.3). The reduced electron density makes them weaker 

nucleophiles that are less likely to attack the electron-deficient boron atom in DEMB. At 

the same time, DEMB adduct formation is also less exothermic for phenols an ortho- or 

para-positioned electron-withdrawing substituent, producing adduct with higher energies. 

In the gas phase, adducts are generally not stable unless stabilized by emission of IR light 

or by collisions with the helium buffer gas. The lower the energy of the adduct, the longer 

its lifetime, and the more likely it is that it gets stabilized via one of these processes. The 

above two reasons likely explains the selectivity for stable DEMB adduct formation for 

different deprotonated phenols. 

 

3.3.2.2 Reactions Between Carboxylate, Sulfonate or Phosphate Containing Ions 
and DEMB 
 

The reactions between phosphate, carboxylate, or sulfonate containing analyte 

ions and DEMB were also studied (Table 3.4). Most phosphate containing analyte ions 

formed DEMB adduct−CH3OH product ions upon reaction with DEMB, which is 

consistent with past literature findings.17 Most carboxylate and sulfonate containing 

analyte ions were unreactive towards DEMB. The only exceptions were glucuronides 

which formed DEMB adduct−CH3OH. Given the fact that there are multiple hydroxyl 

groups close to the charge site in glucuronides, a mechanism similar to the one in Figure 

3.2 was proposed (Figure 3.6). 
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Figure 3.6 Proposed mechanism for the formation of DEMB adduct−CH3OH product ion 
upon reactions between deprotonated glucuronides and DEMB 
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Table 3.4 Ionic products formed upon reactions of deprotonated model compounds with 
diethylmethoxyborane (DEMB) for 200 ms. 
 

Analyte ion 
(m/z of [M-H]-) 

Ion structure 
Products formed upon reactions 

with DEMB (m/z) 

benzoic acid (121) none 

3,5-dimethoxybenzoic acid 
(181) 

none 

3,4,5-trimethoxybenzoic acid 
(211) 

none 

phenylacetic acid (135) none 

cinnamic acid (147) none 

octanoic acid (143) none 

heptanoic acid (129) none 

levulinic acid (115) none 

D-serine (104) none 

4-methylumbelliferyl β-D-
glucuronide (351) 

351+DEMB−CH3OH (419) 

4-nitrophenyl β-D-glucuronide 
(314) O

O

HO OH

HO

O
O

NO2

314+DEMB−CH3OH (382) 

p-acetamidophenyl β-D-
glucuronide (326) 

326+DEMB−CH3OH (392) 

phenylphosphonic acid (157) 157+DEMB−CH3OH (225) 

2-aminoethylphosphonic acid 
(124) 

124+DEMB−CH3OH (192) 
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Table 3.4, continued 
 

Analyte ion 
(m/z of [M-H]-) 

Ion structure Products formed upon reactions with 
DEMB (m/z) 

4-methylumbelliferyl phosphate 
(255) 

255+DEMB−CH3OH (323) 

4-methylumbelliferyl sulfate 
(255) 

none 

p-toluenesulfonic acid (171) none 

benzenesulfonic acid (157) none 

 

 

3.3.2.3 DEMB Ion-molecule Reactions Coupled with HPLC 

From the above two sections, it can be concluded that DEMB adduct formation is 

characteristic for most phenols. Therefore, this method can be used to identify phenol 

containing compounds in complex mixtures. Here, DEMB ion molecule reaction was 

coupled to HPLC for the rapid identification of phenolic compounds in a product mixture 

obtained by catalytic conversion of miscanthus biomass (Figure 3.7). The mixture was 

separated via a water/acetonitrile gradient. HPLC elutes were ionized by negative ion 

mode ESI and the most abundant ion formed for each elute was isolated and allowed to 

react with DEMB for 200 ms. Although the total ion current is highly complex, by 

monitoring ions that produce an ion with 100 units greater m/z value, an extracted ion 

chromatogram can be obtained that represents compounds with the phenol functionality 

(Figure 3.7A). For the product mixture studied, four major phenols were identified. Their 
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structures were elucidated via CAD of their deprotonated forms and comparison to CAD 

of model compounds (Figure 3.8B).22 

 

 

Figure 3.7 (A) (top) Total ion current HPLC chromatogram for a mixture obtained via 
catalytic conversion of miscanthus biomass. (bottom) Selected ion HPLC chromatogram 
for all ions that form a DEMB adduct. (B) Structures of the four major phenols that were 
identified in the mixture. (C) MS2 spectrum measured after isolation of ion 4 (m/z 165) 
and reaction with DEMB for 200 ms. 
 
 

3.3.3 Reactions Between Deprotonated Analytes and DEHB/H2O 

Although DEMB proved to be a useful reagent in the identification of phenol 

functional group, it does not provide adequate information to differentiate carboxylates 

and sulfonates, which all remained unreactive towards DEMB. In the work presented 

discussed in this section, the DEHB/H2O ion-molecule reaction system was explored in 

attempt to obtain additional information for the functional group identification in 

deprotonated analytes. 
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3.3.3.1 Reactions Between Carboxylate Containing Analyte Ions and DEHB/H2O 

Upon reaction with DEHB/H2O, most analyte ions containing the carboxylate 

functionality formed a DEHB adduct followed by the addition of a water molecule and 

the elimination of a an ethane molecule ([M−H+DEHB+H2O−CH3CH3]−) as the major 

product. The product ion has 74 units greater m/z-value than the analyte ion. The 

formation of the product ion was observed for both aromatic and aliphatic carboxylates, 

as well as more complex compounds such as deprotonated amino acids and glucuronides 

(Table 3.5). A minor DEHB adduct product ([M−H+DEHB]−) was observed as well. 
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Table 3.5. Product ions observed upon reactions between diethylhydroxylborane (DEHB) 
and water (H2O) with analyte ions containing carboxylate functionality for 200 ms. 
 

Analyte ion 
(m/z of [M-H]-) 

Ion structure 
Products formed upon reactions with 

DEHB/H2Oa (m/z) 

benzoic acid (121) 
121+DEHB (207) 

121+DEHB+H2O−CH3CH3 (195)  

3,5-dimethoxybenzoic 
acid (181) 

181+DEHB (267) 
181+DEHB+H2O−CH3CH3 (255) 

3,4,5-trimethoxybenzoic 
acid (211) 

211+DEHB (297) 
211+DEHB+H2O−CH3CH3 (285) 

phenylacetic acid (135) 
135+DEHB (221) 

135+DEHB+H2O−CH3CH3 (209) 

cinnamic acid (147) 
147+DEHB (233) 

147+DEHB+H2O−CH3CH3 (221) 

octanoic acid (143) 
143+DEHB (229) 

143+DEHB+H2O−CH3CH3 (217) 

heptanoic acid (129) 
129+DEHB (215) 

129+DEHB+H2O−CH3CH3 (203) 

levulinic acid (115) 
115+DEHB (201) 

115+DEHB+H2O−CH3CH3 (189) 

D-serine (104) 
104+DEHB (190) 

104+DEHB+H2O−CH3CH3 (178) 

4-methylumbelliferyl β-D-
glucuronide (351) 

351+DEHB (437) 
351+DEHB+H2O−CH3CH3 (425) 

4-nitrophenyl β-D-
glucuronide (314) 

314+DEHB (400) 
314+DEHB+H2O−CH3CH3 (388) 

p-acetamidophenyl β-D-
glucuronide (326) 

326+DEHB (412) 
326+DEHB+H2O−CH3CH3 (400) 

a Major products colored in red 
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In order to elucidate the structures of the product ions and gain a better 

understanding on their formation mechanisms, deprotonated benzoic acid (m/z 121) was 

allowed to react with DEHB/H2O, DEHB/D2O, and DEHB/H2
18O (Figure 3.8a). For 

unlabeled H2O, product ions of m/z 195 and 207 (with a mass difference of 10 units) 

were observed, while product ions of m/z 197 and 208 (with a mass difference of 11 

units) were observed for D2O, and ions of m/z 199 and 209 (with a mass difference of 10 

units) were observed for H2
18O. These results suggest that the larger product ions (m/z 

207, 208 and 209) contain one hydrogen atom and an oxygen atom that originate from 

water and hence that one hydrogen atom that originates from water has been eliminated. 

These findings are in agreement with reaction of DEMB with water to form 

diethylhydroxyborane (DEHB) via elimination of CH3OH (containing one H atom 

originating from water) that then forms a stable adduct with the benzoate ion analyte, or 

reaction of the benzoate ion with DEMB to form a stable adduct that then reacts with 

water to eliminate a methanol molecule (containing one hydrogen atom originating from 

water). As benzoic acid is unreactive toward DEMB, the former possibility appears more 

likely. 

In light of above findings, a pathway involving two water molecules is proposed 

to explain the formation of the two product ions for carboxylates (Figure 3.8b).  Based on 

this pathway, the reaction is initiated by the hydrolysis of DEMB into DEHB. This is 

followed by addition of DEHB to the analyte ion to generate a DEHB adduct ion (a stable 

adduct was observed for all carboxylates; Table 3.5), the larger of the two observed 

product ions. Reaction of this adduct ion ([M – H + DEHB]–) with H2O leads to the 

elimination of an ethane molecule, yielding the smaller product ion, DEHB adduct + H2O 
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− CH3CH3. DFT calculations were carried out to evaluate the proposed mechanism 

(Figure 3.8c). The highest barrier found for the formation of DEHB adduct + H2O − 

CH3CH3 for benzoate ion was − 0.3 kcal/mol, suggesting that the above mechanism is 

energetically feasible. 

 

 

Figure 3.8 (a) Mass spectrum measured after 200 ms reaction of deprotonated benzoic 
acid (m/z 121) with (left) H2O/DEHB, (middle) D2O/DEHB, and (right) H2

18O/DEHB. 
(b) Proposed mechanism for the formation of DEHB adduct+H2O−CH3CH3 product ion 
(m/z 195) upon reaction of deprotonated benzoic acid with DEHB/H2O. Hydrogen and 
oxygen atoms that originate from the H2O reagent are colored in blue and red, 
respectively. (c) Calculated potential energy surface (enthalpy in kcal/mol) for the 
mechanism shown in (b) (M06-2X/6-31G+(d,p) level of theory). 
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3.3.3.2 Reactions Between Phenoxide Containing Analyte Ions and DEHB/H2O 

Most analyte ions containing the phenoxide functionality also formed a stable 

DEHB adduct and a DEHB adduct + H2O − CH3CH3 product ion upon reaction with 

DEHB/H2O (Table 3.6). The results obtained using isotopically labeled water (D2O and 

H2
18O) were analogous to those reported above for carboxylates (Figure 3.9). Therefore, 

phenoxides and carboxylates are assumed to form the DEHB adduct and DEHB adduct + 

H2O − CH3CH3 product ions via a similar mechanism (Figure 3.9). It is worth mentioning 

that the DEHB/H2O reagent system can still be used to differentiate phenoxides and 

carboxylates as only phenoxides form the characteristic DEMB adduct prior to H2O 

introduction as the result of reaction with DEMB 
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Figure 3.9 (Top) Mass spectrum measured after the reaction between deprotonated 4-
ethoxyphenol (m/z 137) with H2O/DEHB, D2O/DEHB, and H2

18O/DEHB for 200 ms. 
(bottom) Proposed mechanism for the formation of DEHB+H2O−CH3CH3 product ion 
upon reaction between deprotonated phenol and DEHB/H2O.  
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Table 3.6 Product ions observed after 200 ms reactions of analyte ions containing a 
phenoxide, phosphate, or sulfate functionality with diethylhydroxyborane (DEHB) and 
water. 
 

Analyte ion 
(m/z of [M-H]-) 

Ion structure 
Products formed upon reactions with 

DEHB/H2Oa (m/z) 

phenol (91) 
91+DEHB (177) 

91+DEHB+H2O−CH3CH3 (165) 

4-ethoxyphenol (137) 
137+DEHB (223) 

137+DEHB+H2O−CH3CH3 (211) 

catechol (109) 109+DEHB−CH3CH3 (165) 

resorcinol (109) 
109+DEHB (195) 

109+DEHB+H2O−CH3CH3 (183) 

hydroquinone (109) 
 

109+DEHB (195) 
109+DEHB+H2O−CH3CH3 (183) 

2-hydroxybenzyl alcohol (123) 123+DEHB−CH3CH3 (179) 

3-hydroxybenzyl alcohol (123) 
123+DEHB (209) 

123+DEHB+H2O−CH3CH3 (197) 

phenylphosphonic acid (157) 157+DEHB−CH3CH3 (213) 

2-aminoethylphosphonic acid 
(124) 

124+DEHB−CH3CH3 (180) 

4-methylumbelliferyl phosphate 
(255) 

255+DEHB−CH3CH3 (311) 

4-methylumbelliferyl sulfate 
(255) 

none 

p-toluenesulfonic acid (171) none 

benzenesulfonic acid (157) none 

 

 

However, a new product ion, DEHB adduct−CH3CH3, was observed for 

deprotonated catechol and deprotonated 2-hydroxybenzylalchohol upon their reaction 

with DEHB/H2O (Table 3.6). This product was not observed for resorcinol, 
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hydroquinone, and 3-hydroxybenzylalcohol, which all have its hydroxyl group further 

away from the deprotonation site. Therefore, it was proposed that a hydroxyl group 

adjacent to the deprotonation site participated in the formation of this new product ion. 

Labeling experiments with D2O and H2
18O revealed that the DEHB 

adduct−CH3CH3 product ion contains one hydrogen atom and one oxygen atom from the 

H2O reactant (Figure 3.11). In addition, the product ion dissociates back to the analyte 

ion upon CAD (likely via loss of O=B-CH2CH3), suggesting that the linkage formed 

between the neutral reagent and the analyte ion is relatively weak (Figure 3.10). A 

mechanism consistent with the above observations was proposed and evaluated via DFT 

calculation (Figure 3.11). 

 

 

Figure 3.10 CAD mass spectrum obtained at 20 (arbitrary units) collision energy for 
product ion of (top) reaction between deprotonated catechol with DEMB and (bottom) 
reaction between deprotonated catechol with DEHB/H2O 
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Figure 3.11 (a) Mass spectrum measured after 200 ms reactions of deprotonated catechol 
(m/z 109) with (left) H2O/DEHB, (middle) D2O/DEHB, and (right) H2

18O/DEHB. (b) 
Proposed mechanism for the formation of DEHB adduct−CH3CH3 product ion upon 
reactions beten deprotonated catechol and DEHB/H2O. Hydrogen and oxygen atoms that 
originate from the H2O reactant are colored in blue and red, respectively. (c) Calculated 
potential energy surface (enthalpy in kcal/mol) for the mechanism shown in (b) (M06-
2X/6-31G+(d,p) level of theory). 
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3.3.3.3 Reactions Between Phosphate Containing Analyte Ions and DEHB/H2O 

Phosphates containing analyte ions also have a hydroxyl groups close to the 

deprotonation site, similar to catechol. Therefore, it was not surprising that they also 

formed DEHB adduct−CH3CH3 upon reactions with DEHB/H2O (Table 3.6).  Reaction 

mechanism was proposed based on isotope labeling experiments that confirmed that the 

DEHB adduct−CH3CH3 product observed for deprotonated phenylphosphonic acid also 

contains one hydrogen atom and oxygen atom from the H2O reactant (Figure 3.12).  
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Figure 3.12 (top) Mass spectra measured after 200 ms reactions of deprotonated 
phenylphosphonic acid (m/z 157) with H2O/DEHB, D2O/DEHB, and H2

18O/DEHB. 
(Bottom) Proposed mechanism for the formation of DEHB−CH3CH3 product ion upon 
reaction between deprotonated phenylphosphonic acid and DEHB/H2O. 
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3.3.3.4 DEHB/H2O Ion-molecule Reactions Coupled with HPLC 

HPLC separation prior to MS experiments is necessary for the analysis of mixture 

containing isobaric or isomeric analytes. The feasibility of coupling ion-molecule 

reaction experiments with DEHB/H2O to HPLC was tested using an artificial mixture 

containing Hymecromone (4-methylumbelliferone), a choleretic and antispasmodic drug, 

and its three metabolites: 4-methylumbelliferyl phosphate, 4-methylumbelliferyl sulfate, 

and 4-methylumbelliferyl-β-D-glucuronide (Figure 3.13). The mixture was separated via 

reverse phase HPLC, ionized under ESI negative ion mode, and subjected to ion-

molecule reaction with DEHB/H2O for 200 ms. Upon elution of the analyte, H2O was 

pulsed into the ion trap every 6 seconds for the duration of the HPLC peak. A typical 

HPLC peak 15-30 seconds wide could allow for 2-5 H2O pulses with 5-10 individual ion-

molecule reaction experiments performed within each pulse. Deprotonated 4-

methylumbelliferyl phosphate formed the characteristic DEHB adduct−CH3CH product 

ion while its isobar, 4-methylumbelliferyl sulfate, showed no reactivity (Figure 3.13). 

Both deprotonated 4-methylumbelliferone (contains phenoxide functionality) and 4-

methylumbelliferyl-β-D-glucuronide (contains carboxylate functionality) formed DEMB 

adduct+H2O−CH3CH product ion. However, they are still differentiated as the phenoxide 

containing deprotonated 4-methylumbelliferone formed the characteristic DEMB adduct 

upon reaction with DEMB (Figure 3.13). 
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Figure 3.13 (a) HPLC chromatogram measured for an artificial mixture of 4-
methylumbelliferyl phosphate (1), 4-methylumbelliferyl β-D-glucuronide (2), 4-
methylumbelliferyl sulfate (3), and 4-methylumbelliferone (4). The total ion current is 
plotted in black. Selected ion current for ion-molecule reaction product ions with 
DEHB/H2O are plotted in red (DEHB adduct−CH3CH3) and green (DEHB 
adduct+H2O−CH3CH3). (b) Mass spectra measured after reactions between the 
deprotonated HPLC eluents (4-methylumbelliferyl phosphate (1), 4-methylumbelliferyl 
β-D-glucuronide (2), 4-methylumbelliferyl sulfate (3), and 4-methylumbelliferone) with 
DEHB/H2O for 200ms  
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3.4 Conclusions 

Two ion-molecule reaction systems were explored for the functional group 

identification in deprotontated analytes. The first ion-molecule reaction system used 

DEMB as the neutral reagent. Aside from three types of exceptions, most phenoxide 

containing deprotontated analytes formed exclusively DEMB adducts upon reactions 

with DEMB. Deprotonated phenols with an adjacent hydroxyl group or a conjugated 

carboxylic acid functional group formed DEMB adduct−CH3CH3 product ions instead. 

Deprotonated phenols with an electron-withdrawing substituent in the ortho- or para-

position were unreactive toward DEMB. By coupling above technique with HPLC, a 

catalytically converted miscanthus biomass sample was analyzed, demonstrating the 

potential of tandem mass spectrometry based on ion-molecule reactions as a high-

throughput screening tool. 

The second reaction system introduced both DEMB and H2O to generated a new 

reagent, DEHB, inside the ion trap. Deprotonated analytes containing the carboxylate 

functionality or the phenoxide functionality reacted with DEHB/H2O via the formation of 

DEHB adduct+H2O−CH3CH3 product ions. Phosphates and phenoxides with an adjacent 

hydroxyls formed DEHB adduct−CH3CH3. Sulfates were still unreactive in this reaction 

system. Coupling the above technique with HPLC allowed the identification of the 

functional groups in multiple metabolites of a drug molecule, demonstrating the potential 

of tandem mass spectrometry based on ion-molecule reactions as a powerful analytical 

tool for drug metabolite identification in mixtures. 

  



77 

3.5 References 

(1)  Dettmer, K.; Aronov, P. A.; Hammock, B. D. Mass Spectrom. Rev. 2007, 26 (1), 
51–78. 

(2)  Chen, C.; Gonzalez, F. J.; Idle, J. R. Drug Metab. Rev. 2007, 39 (2-3), 581–597. 

(3)  McLafferty, F. W. Int. J. Mass Spectrom. 2001, 212 (1–3), 81–87. 

(4)  Cooks, R. G.; Jarmusch, A. K.; Wleklinski, M. Int. J. Mass Spectrom. 2015, 377, 
709–718. 

(5)  Hernández, F.; Sancho, J. V.; Ibáñez, M.; Abad, E.; Portolés, T.; Mattioli, L. 
Anal. Bioanal. Chem. 2012, 403 (5), 1251–1264. 

(6)  Mitchell Wells, J.; McLuckey, S. A. Enzymology, B.-M. in, Ed.; Biological Mass 
Spectrometry; Academic Press, 2005; Vol. 402, pp 148–185. 

(7)  Cooks, R. G. J. Mass Spectrom. 1995, 30 (9), 1215–1221. 

(8)  Amundson, L. M.; Owen, B. C.; Gallardo, V. A.; Habicht, S. C.; Fu, M.; Shea, R. 
C.; Mossman, A. B.; Kenttämaa, H. I. J. Am. Soc. Mass Spectrom. 2011, 22 (4), 
670–682. 

(9)  Campbell, K. M.; Watkins, M. A.; Li, S.; Fiddler, M. N.; Winger, B.; Kenttämaa, 
H. I. J. Org. Chem. 2007, 72 (9), 3159–3165. 

(10)  Eismin, R. J.; Fu, M.; Yem, S.; Widjaja, F.; Kenttämaa, H. I. J. Am. Soc. Mass 
Spectrom. 2011, 23 (1), 12–22. 

(11)  Sheng, H.; Tang, W.; Yerabolu, R.; Kong, J. Y.; Williams, P. E.; Zhang, M.; 
Kenttämaa, H. I. Rapid Commun. Mass Spectrom. 2015, 29 (8), 730–734. 

(12)  Sheng, H.; Tang, W.; Yerabolu, R.; Max, J.; Kotha, R. R.; Riedeman, J. S.; Nash, 
J. J.; Zhang, M.; Kenttämaa, H. I. J. Org. Chem. 2016, 81 (2), 575–586. 

(13)  Sheng, H.; Williams, P. E.; Tang, W.; Zhang, M.; Kenttämaa, H. I. Analyst 2014, 
139 (17), 4296–4302. 

(14)  Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. Chem. 
Rev. 2010, 110 (6), 3552–3599. 

(15)  Haupert, L. J.; Owen, B. C.; Marcum, C. L.; Jarrell, T. M.; Pulliam, C. J.; 
Amundson, L. M.; Narra, P.; Aqueel, M. S.; Parsell, T. H.; Abu-Omar, M. M.; 
Kenttämaa, H. I. Fuel 2012, 95, 634–641. 



78 

(16)  Quéméner, B.; Vigouroux, J.; Rathahao, E.; Tabet, J. C.; Dimitrijevic, A.; Lahaye, 
M. J. Mass Spectrom. 2015, 50 (1), 247–264. 

(17)  Piatkivskyi, A.; Pyatkivskyy, Y.; Ryzhov, V. Eur. J. Mass Spectrom. Chichester 
Engl. 2014, 20 (4), 337–344. 

(18)  Gronert, S.; O’Hair, R. A. J. J. Am. Soc. Mass Spectrom. 2002, 13 (9), 1088–
1098. 

(19)  Gao, H.; Petzold, C. J.; Leavell, M. D.; Leary, J. A. J. Am. Soc. Mass Spectrom. 
2003, 14 (8), 916–924. 

(20)  Piatkivskyi, A.; Pyatkivskyy, Y.; Hurt, M.; Ryzhov, V. Eur. J. Mass Spectrom. 
2014, 20 (2), 177. 

(21)  Forsythe, W. G.; Garrett, M. D.; Hardacre, C.; Nieuwenhuyzen, M.; Sheldrake, G. 
N. Green Chem. 2013, 15 (11), 3031–3038. 

(22)  Luo, H.; Klein, I. M.; Jiang, Y.; Zhu, H.; Liu, B.; Kenttämaa, H. I.; Abu-Omar, 
M. M. ACS Sustain. Chem. Eng. 2016, 4 (4), 2316–2322. 

(23)  Gronert, S. Chem. Rev. 2001, 101 (2), 329–360. 

(24)  Jarrell, T.; Riedeman, J.; Carlsen, M.; Replogle, R.; Selby, T.; Kenttämaa, H. 
Anal. Chem. 2014, 86 (13), 6533–6539. 

(25)  Schröder, D.; Buděšínský, M.; Roithová, J. J. Am. Chem. Soc. 2012, 134 (38), 
15897–15905. 

(26)  Steill, J. D.; Oomens, J. J. Am. Chem. Soc. 2009, 131 (38), 13570–13571.



79 

CHAPTER 4. DIFFERENTIATION OF REGIOISOMERIC BENZENEDIOLS VIA 
ION-MOLECULE REACTIONS WITH THIONYL CHLORIDE 

 
 

4.1 Introduction 

Due to its high aromatic content, lignin is viewed as a promising feedstock for 

converting biomass into valuable aromatic chemicals.1–3 Chemical characterization of the 

aromatic product mixtures is necessary for obtaining mass balance data that are used to 

evaluate the conversion processes.4 Mass spectrometry is a powerful analytical technique 

suitable for complex mixture analysis, providing valuable information such as molecular 

weight and elemental compositions.5 For isomeric and isobaric compounds, tandem mass 

spectrometry based on CAD can provide insight into their structure.6 However, the 

differentiation of aromatic regioisomers is still challenging and often require time-

consuming derivatization processes because they often exhibit similar CAD 

fragmentation pattern.7 Therefore, additional analytical methods for analyzing mixtures 

with high aromatic content such as converted lignin are still desired. 

Ion-molecule reactions have proven to be a powerful method for functional group 

identification in ionized analytes and hence isomer differentiation. Functional groups that 

can be identified via this method include hydroxyl, 8 epoxide, 9 amido, 10 hydroxylamino, 

11 N-oxide, 12 sulfoxide, 13 and sulfone. 14,15 The differentiation of isomeric ions that are

not discernable via CAD experiments has been achieved. 16,17 However, most of the 

aforementioned ion-molecule reactions require the target analyte to be protonated as the 
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reactions are initiated via proton transfer from the protonated analyte to the reagent.12 

Hence, these methods are not suitable for lignin mixture analysis as lignin is shown to be 

better ionized under negative ion mode.18

In this chapter, thionyl chloride is explored as a neutral reagent for the 

differentiation of regioismeric deprotonated lignin model compounds. The neutral reagent 

was introduced into the mass spectrometer via a novel pulsed valve setup. Reactions 

between thionyl chloride and deprotonated catechols, resorcinols, and hydroquinones, the 

isomeric dihydroxybenzenes, are discussed. This is the first report of using thionyl 

chloride as a neutral reagent for ion-molecule reactions.  

 

4.2 Experimental 

 

4.2.1 Chemicals 

Thionyl chloride (99%), catechol (99%), resorcinol (99%), hydroquinone (99%), 

2-nitroresorcinol (98%), 2-aminoresorcinol (99%), 3,4,5-trimethylhydroquinone (99%) 

were purchased from Sigma Aldrich (Saint Louis, MO) and used as received. 

 

4.2.2 Mass Spectrometry 

All experiments were performed on a Thermo Scientific linear quadrupole ion 

trap (LQIT) mass spectrometer equipped with an electrospray ionization (ESI) source 

operated under negative ion mode. Sample solutions were prepared at a concentration of 

1 mmol in 50/50 water/methanol (v/v) solution. 10 µL of 1mM NaOH water solution 

were added into 5 mL of sample solution to facilitate the formation of deprotonated 
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analyte molecules. The NaOH doped sample solutions were injected into the T-connector 

via a syringe driver at a flow rate of 10 µL/min, before being mixed with 50/50 

water/methanol (v/v) at a flow rate of 100 µL/min. Typical ESI conditions used were: 3.5 

kV spray voltage, 20 (arbitrary unit) sheath gas (N2) flow, 10 (arbitrary unit) auxiliary gas 

(N2) flow, and 2 (arbitrary unit) sweep gas (N2) flow.  

 

4.2.3 Ion-molecule Reactions 

Ion-molecule reactions between deprotonated analytes and SOCl2 were performed 

using a Thermo Scientific linear quadrupole ion trap (LQIT) mass spectrometer with a 

custom build  multiported pulsed valve interface system.19 5 µL of SOCl2 were 

introduced via a syringe into a stainless steel channel through a rubber septum. The 

stainless steel channel was heated to 70 ˚C for efficient evaporation of the neutral 

reagent. The pulsed valve connected to the stainless steel channel was triggered manually 

via a waveform generator to open for 500 µs to allow SOCl2 to enter the linear quadruple 

ion trap region of the mass spectrometer. Analyte ions isolated inside the ion trap were 

allowed to react with SOCl2 for 30 ms before all ions were ejected for detection. 
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4.2.4 Density Functional Theory Calculations 

All Density Functional Theory (DFT) calculations were performed using the 

Gaussian 09 software package. Geometry optimizations were performed using hybrid 

functional M06-2X with 6-31+G(d,p) basis set. Vibrational frequencies were calculated 

for the optimized structures at the same level of theory to confirm the absence of 

imaginary frequency and to obtain thermal corrected enthalpy. 

 

4.3 Results and Discussions 

 

4.3.1 Ion-molecule reactions 

Neutral introduction during ion-molecule reactions between SOCl2 and analyte 

ions was achieved via a pulsed valve setup connected to the back of the ion trap. A valve 

that can be electronically triggered open separated SOCl2 from the ion trap region. Upon 

triggering the pulsed valve, SOCl2 entered the ion trap and reacted with the isolated 

analytes ions. 
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Figure 4.1 Reaction between deprotonated resorcinol (m/z 109) and SOCl2 introduced via 
the pulsed valve system. (Top) Extracted ion current of the reactant ion (m/z 109) and 
product ion (m/z 155) over time. (Bottom) Averaged mass spectra measured during one 
pulsed introduction of SOCl2. 
 
  

As shown in Figure 4.1, after triggering of the pulsed valve, the abundance of the 

reactant ion (m/z 109) sharply decreased followed by a corresponding increase in the 

abundance of the product ion (m/z 155). This observation showed that SOCl2 reacted with 

the analyte ion. SOCl2 was introduced 5 times within 1 min by repeatedly opening the 

pulsed valve. The residence time of SOCl2 was estimated to be roughly 5 seconds. The 

MS spectra obtained were averaged spectra across one pulsed event. 

Deprotonated catechol, resorcinol, and hydroquinone were subjected to reaction 

with SOCl2. Different product ions were observed for each one of the three regioisomers 

(Figure 4.2). 
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Figure 4.2 Mass spectrum measured for (top) deprotonated resorcinol, (middle) 
deprotonated resorcinol, and (bottom) deprotonated hydroquinone after reaction with 
SOCl2 for 30 ms. 
 

  

4.3.2 Reactions between deprotonated catechol and SOCl2 

The major product ion observed for reactions between deprotonated catechol and 

SOCl2 is a series of ions (m/z 153, m/z 157, and m/z 159) which were later identified as 

the sulfur trichloride monoxide anion (SOCl3
−). The monoisotopic mass of this product is 

153. Ions of m/z 157 and m/z 159 contained one and two 37Cl atoms, respectively. Minor 

HCl2
− ions (m/z 71) were also observed aside from the major product ion.   

As the major observed product ion (SOCl3
−) does not contained any part of the 

reactant ion (deprotonated catechol), a negative charge must have been eliminated from 

the reactant complex during the reaction. Also, both product ions (SOCl3
− and HCl2

−) can 

be seen as a chloride adduct ion of SOCl2 or HCl. Therefore, it was likely that an adduct 
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was formed between deprotonated catechol and SOCl2 followed by the elimination of a 

Cl−. 

A mechanism was proposed based on the above discussions (Figure 4.3). 

According to the proposed mechanism, adducts were formed between deprotonated 

catechol and SOCl2 via the nucleophilic attack from the charge oxygen atom onto the 

sulfur atom in SOCl2. An HCl molecule and a Cl− were then eliminated from the adduct 

via the assistance of the neighboring hydroxyl group. The eliminated Cl− further reacted 

with another SOCl2 molecule to form the SOCl3
− product ion, or with another HCl 

molecule to form the HCl2
− product ion.  

As Cl− elimination requires the presence of a neighboring hydroxyl group, it was 

only possible for a molecule that has two neighboring hydroxyl groups such as catechol. 

This likely explains why SOCl3
− and HCl2

− were not the major product ions in reactions 

between SOCl2 and resorcinol or hydroquinone. 
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Figure 4.3 (Top) proposed mechanism and (bottom) calculated potential energy surface 
(enthalpy in kcal/mol) for the formation of SOCl3

− product ion upon reaction between 
deprotonated catechol and SOCl2 (M06-2X/6-31+G(d,p) level of theory).  
 
 

The proposed reaction mechanism was evaluated via DFT calculations (Figure 

4.3, bottom).  All reaction barriers were found to lie below the entrance energy level and 

the overall reaction is exothermic by 10.4 kcal/mol. These results suggest that the 

proposed mechanism is energetically feasible.  

 

4.3.3 Reactions between deprotonated resorcinol and SOCl2 

Deprotonated resorcinol formed two major product ions upon reaction with 

SOCl2: SOCl2 adduct ion that had lost one HCl molecule ([M-H+SOCl2-HCl] − of m/z 

191) and SOCl2 adduct ion that had lost two HCl molecules ([M-H+SOCl2-2HCl] −, m/z 
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155). These two product ions can be identified via the isotopic distribution of sulfur (4% 

34S to 100% 32S) and chlorine (33% 37Cl to 100% 35Cl). 

The structure of the SOCl2 adduct-2HCl was of particular interest because upon 

its formation, two HCl molecules were eliminated but deprotonated resorcinol only 

contains one active hydrogen atom. Therefore, one aromatic hydrogen must also be 

involved in the reaction. Also, the aromatic hydrogen involved cannot be too far away 

from the hydroxyl group on carbon 3 because both hydrogens need to be close to the 

chloride atoms in order to form the HCl molecules. Thus, the above reaction most likely 

involves the aromatic hydrogen on carbon 2 or carbon 4.  

In order to determine which aromatic hydrogen is involved, reaction between 

SOCl2 and deprotonated 2-methylresorcinol, whose hydrogen on carbon 2 was replaced 

with a methyl group, was studied (Figure 4.3). Deprotontaed 2-methylresorinol also 

formed the SOCl2 adduct-2HCl product ion upon reaction with SOCl2. The above result 

suggested that for resorcinol, the aromatic hydrogen on carbon 2 was not necessarily 

involved in the formation of SOCl2 adduct-2HCl product ion. 
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Figure 4.4 Mass spectrum measured for the reaction between deprotonated 2-
methylresorinol and SOCl2. 
 
 

In light of above results, a mechanism involving the aromatic hydrogen on carbon 4 

was proposed (Figure 4.5). This mechanism is initiated by forming adduct between 

deprotonated resorcinol and SOCl2 via a nucleophilic attack from carbon 4 on 

deprotonated resorcinol onto the sulfur atom in SOCl2. For deprotonated resorcinol, the 

electron density on its 4 position carbon is increased by its 1 position phenoxide group 

and 3 position phenol group, which are both ortha/para directing groups. The increased 

electron density makes the nucleophilic attack more likely to occur. After adduct 

formation, the hydroxyl hydrogen and the aromatic hydrogen at carbon 4 were lost in the 

form of a HCl molecule. The barriers for the proposed mechanism were calculated via 

DFT. The highest barrier was only -40.9 kcal/mol and the overall reaction was 

exothermic by 16.2 kcal/mol (Figure 4.5). 
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Figure 4.5 (Top) Proposed mechanism and (bottom) calculated potential energy surface 
(enthalpy in kcal/mol) for the formation of SOCl2 adduct-2HCl product ion upon reaction 
between deprotonated resorcinol and SOCl2 (M06-2X/6-31+G(d,p) level of theory). 
 
 

4.3.4 Reactions between deprotonated hydroquinone and SOCl2 

Deprotonated hydroquinone formed a chlorine atom adduct anion ([M-H+Cl] • − of 

m/z 144) upon reactions with SOCl2. The product ion was identified as a radical species 

because it had an even mass but contained no nitrogen atoms. The formation of this 

product ion was observed for a highly substituted hydroquinone as well (Figure 4.7). 

Upon CAD, the product ion dissociated into a p-benzoquinone radical anion (m/z 108) by 

losing a HCl molecule, suggesting that the chlorine atom was bound to the hydroxyl 

group.  
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Figure 4.6 Mass spectrum measured for the reaction between SOCl2 and (top) 
deprotonated 3,4,5-trimethylhydroquinone and (middle) deprotonated hydroquinone. 
(Bottom) CAD mass spectrum measured for the [M-H+Cl] • − product ion at 20 (arbitrary 
unit) collision energy.  
 
 

A mechanism for the formation of above product ion was proposed and evaluated 

via DFT calculations. This mechanism involves nucleophilic addition of carbon 4 of the 

deprotonated hydroquinone to the sulfur atom followed by elimination of HCl and a 

SOCl radical. 
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Figure 4.7 (Top) proposed mechanism and (bottom) calculated potential energy surface 
(enthalpy in kcal/mol) for the formation of Cl adduct ion upon reaction between 
deprotonated hydroquinone and SOCl2 (M06-2X/6-31+G(d,p) level of theory). 
 
 

4.4 Conclusions 

Catechol, resorcinol, and hydroquinone were successfully differentiated via ion-

molecule reactions between the deprotonated analytes and SOCl2. Deprotonated catechol 

formed SOCl3
− product ion. Deprotonated resorcinol formed SOCl2 adduct-2HCl product 

ion. Deprotonated hydroquinone formed Cl anion adduct ion. The formation of these 

distinct product ions was related to the structural characteristic of each regioisomer. DFT 

calculations performed on the proposed mechanisms found them to be energetically 

feasible. 
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CHAPTER 5. IDENTIFICATION OF MICROBIAL LIGNIL DEGRADATION 
PRODUCTS VIA HIGH PERFORMANCE LIQUID CHROMATOGRAPHY 

COUPLED WITH TANDEM MASS SPECTROMETRY 

 

5.1 Introduction 

Conversion of biomass into smaller compounds is a promising alternative route of 

obtaining the valuable chemicals mainly derived from crude oil.1–4 The degradation of 

lignin, one of the primary biomass components, is of particular interest.5–7 Lignin is the 

second most abundant natural occurring polymer and can constitute up to 35% of the total 

biomass.8 While the exact chemical structure of lignin is hitherto unknown, the current 

consensus is that it is a biopolymer consisting of phenolic monomers linked together via a 

variety of linkages.8 Due to its high aromatic carbon content, lignin is viewed as a 

promising feedstock for biomass conversion processes that produce valuable aromatic 

compounds.9  

The primary obstacle of utilizing lignin lies in its complexity. Due to the diverse 

types of phenolic monomers and linkages in lignin, most conversion processes degrade 

lignin into complex mixtures of aromatic compounds that are difficult to analyze. Yet, 

chemical characterization of these product mixtures is essential for the optimization of 

the conversion processes. Past research has shown that ESI in negative ion mode with 

NaOH as dopant is an effective ionization method for the phenolic compounds commonly 

observed in lignin degradation products.10 Its main advantage is that it yields one ion type
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 (deprotonated molecule) per analyte without fragmentation or aggregation. This 

ionization method can be further coupled with HPLC for the analysis of complex lignin 

degradation mixtures such as organosolv lignin.11,12 

Microbial degradation of lignin is an alternative approach aimed at producing 

relatively simple degradation product mixtures.13,14 This is generally achieved by using 

lignolytic microbes that produce enzymes targeting specific linkages within lignin, 

breaking it into smaller fragments.15 In this chapter, the analyses of two different 

microbial lignin degradation products are discussed. The first sample was a cordgrass 

sample degraded by Phaeosphaeria spartinicola (a type of salt marsh fungi) prepared by 

our collaborator, Dr. Alice Buchan at the University of Tennessee. Gene expressions 

during cordgrass degradation had already been measured via RNAseq experiments. 

Chemical characterization of the degradation product mixture was needed to correlate 

gene expression with lignin degradation pathways. The second sample was a lignin β-O-4 

dimer incubated with mimivirus enzyme R135, which has a similar structure as an aryl-

oxidase that participates in lignin biodegradation in plant cell walls.16 Chemical 

characterization of the incubation solution was required to determine whether mimivirus 

enzyme R135 can degrade lignin. 

Both samples had a high salt concentration needed to maintain proper microbe 

functions.  HPLC-MS analysis with NaOH dopant could not be directly applied to these 

mixtures because the high salt content would interfere with the ESI ionization process.17 

Thus, certain sample preparation was necessary. Preparative HPLC was used to desalt the 

cordgrass degradation sample and solid phase extraction (SPE) were used to desalt lignin 
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dimer mimivirus degradation sample. The desalted samples were subsequently subjected 

to HPLC-MS analysis. 

 

5.2 Experimental 

 

5.2.1 Chemicals 

4-Ethoxyphenol (99%) and vanillin (98%) was obtained from Sigma-Aldrich (St. 

Louis, Mo, USA). 4-Hydroxybenzoic acid (99%) and 4-hydroxy-3-methoxybenzoic acid 

(99%) were purchased from Alfa Aesar (Ward Hill, MA, USA). Guaiacyl glycerol-β-

guaiacyl ether (99%) was purchased from TCI America (Portland, OR, USA). HPLC 

grade water and HPLC acetonitrile were purchased from Fisher Scientific (Pittsburgh, 

PA, USA). All chemicals were used without further purification.  

All following cordgrass degradation samples were prepared by Dr. Alison Buchan 

at the University of Tennessee. These samples include: incubation mixtures of lignolic 

fungus and cordgrass (three replicas, CGSS-RepA, CGSS-RepB, and CGSS-RepC); an 

incubation mixture of lignolic fungus without cordgrass (two replicas, GSS-RepA, and 

GSS-RepB); and an incubation mixture of cordgrass without lignolic fungus (fungal-

free). The incubation medium used were: 2% (w/v) sea salt (Sigma), 23.5 mM NaNO3, 

10.3 mM KH2PO4, and 17.2 mM K2HPO4. The CGSS sample replicas were further 

diluted 10 times and incubated with salt water lignolic bacteria for different periods of 

time (T0-T6 samples, T0 incubated for 0 hr, T6 incubated for 24 hr). 

The lignin dimer mimivirus degradation samples were obtained from Dr. Michael 

Rossmann at Purdue University. Mimivirus R135 and its wildtype were incubated with 1 
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mM guaiacylglycerol-β-guaiacyl ether in PBS at 37°C for 48 hr. 1 mM guaiacylglycerol-

β-guaiacyl ether in PBS incubated at 37°C for 48 hr without any mimivirus was used as a 

negative control. 

 

5.2.2 Sample Preparation 

Preparative HPLC separation was carried out to desalt the Phaeosphaeria 

spartinicola degraded cordgrass sample by using a modified Spectrasystem P4000 

(Thermo Scientific) HPLC with a SN4000 PDA detector (Thermo Scientific) and a 

Synergi Polar-RP column (5 µm particle size, 250 mm × 21.2 mm). An injection volume 

of 2 mL was used for all degradation samples. A gradient composed of water (A) and 

acetonitrile (B) was used as follows: 0.00 min, 95% A and 5% B; 10.00 min, 95% A and 

5% B; 35.00 min, 100% B; 40.00 min, 100 % B; 41.00min, 95% A and 5% B; and 50.00 

min, 95% A and 5% B. Mobile phase flow rate was kept at 12 mL/min. HPLC elutes that 

exhibit UV absorbance at 254 nm were collected for further analysis. 

The lignin dimer mimivirus degradation samples were desalted via solid phase 

extraction experiments using Waters Oasis HLB 3 cc Vac Cartridges. The cartridges were 

equilibrated with 10 mL of methanol followed by 10 mL of water. 2 mL of sample 

solutions were loaded and washed with 10 mL of water before eluted with 2 mL of 

methanol. 25 µL eluents were injected for HPLC-MS analysis. 
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5.2.3 High-Performance Liquid Chromatography 

All desalted samples were separated via HPLC with a Surveyor Plus HPLC 

system consisting of a quaternary pump, an autosampler, and a Zorbax SB-C18 column 

or SB-phenyl column. For separations using the SB-C18 column, a non-linear gradient of 

water (A) and acetonitrile (B) was used: 0.00 min, 100% A; 15.00 min, 100% A; 25.00 

min, 100% B; 26.00 min, 100% A; and 35.00min, 100% A. For separations using the SB-

phenyl column, a different gradient of water (A) and acetonitrile (B) was used: 0.00 min, 

80% A and 20% B; 23.00 min, 25% A and 75%B; 25.00 min, 100% B; 26.00 min, 80% 

A and 20% B; and 35.00min, 80% A and 20% B. The flow rate of the mobile phase was 

kept at 500 µL/min for both gradients. 

 

4.2.3 Mass Spectrometry 

All mass spectrometry experiments were carried out on a Thermo Scientific linear 

quadrupole ion trap mass spectrometer (LQIT) equipped with an electrospray ionization 

source (ESI). The mass spectrometer was coupled to a Surveyor Plus HPLC with a 

quaternary pump, auto sampler, and photodiode array (PDA) detector. During HPLC-MS 

analysis, HPLC eluents were mixed with 1% NaOH solution introduced at a flow rate of 

0.1 μL/min via a tee connector before introduced into the ESI source. ESI conditions 

were set as follows: 3.5 kV spray voltage, N2 sheath gas at flow of 20 (arbitrary units), N2 

auxiliary gas at flow of 10 (arbitrary units), and a 275 °C transfer capillary temperature. 

Detection was done under negative ion mode. The most abundant ion measured within a 

scan were isolated with an an isolation width of 2 m/z units and subjected to collision-
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activated dissociation (CAD) experiments. All CAD experiments were performed with at 

a q value of 0.25, collision energy of 30 (arbitrary units), and collision time of 30 ms. 

 

5.3 Results and Discussion 

 

5.3.1 Preparative HPLC Separation of Cordgrass Samples 

 The cordgrass samples were desalted using preparative HPLC experiments with a 

reversed phase column. This was done for two reasons: 1) the salt content would not 

retain in the reversed phase column and therefore would elute out first; 2) the degradation 

mixture might be complex, so this step would act as the first dimension of separation. A 

UV detector was used as all lignin degradation products are aromatic. 

A cordgrass sample (CGSS) and two control samples (GSS and Fungal-free) were 

respectively subjected to prep-HPLC (Figure 5.1). The cordgrass sample (CGSS) 

contained both cordgrass and fungus, while the control samples either only contain 

cordgrass (Fungal-free) or only contain the fungus (GSS). For the CGSS sample, eluates 

eluting between 4-10 min (shown in red in figure 5.1) and 22-24 min (shown in blue in 

figure 5.1) showed the strongest UV absorbance. For the control samples, only elutes 

between 4-10 min showed strong UV absorbance (Figure 5.1). All three samples 

contained a compound eluting at 25 min (shown in green in figure 5.1). However, this 

compound was later identified as stripped column packing material as it was also 

observed in blank runs. 
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Figure 5.1 Preparative HPLC separations of the cordgrass samples. (A) Culture medium 
that contains both cordgrass and fungus (CGSS samples). (B) Culture medium that only 
contains fungus GSS. (C) Culture medium that only contains cordgrass (Fungal-free). UV 
signals were detected at 254 nm. 
 
 

 The fractions eluting between 4-10 min and between 22-24 min were collected for 

CGSS samples. Based on the mobile phase composition when they eluted, they are 

referred to as the “water fraction” and the “acetonitrile fraction”, respectively. For the 

control samples, only the water fractions were collected. These fractions were subjected 

to HPLC-MS analysis. 
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5.3.2 HPLC-MS Analysis of Cordgrass Samples 

A C-18 column was used for the water fractions and a phenyl column was used 

for the acetonitrile fractions. HPLC eluates were analyzed by both UV detection and 

tandem mass spectrometry.  

The HPLC chromatogram for the CGSS sample water fraction exhibited two 

peaks eluting at around 20.7 min and 20.9 min that had both strong ion current signal and 

UV absorbance signal (Figure 5.2). The mass spectra measured for the compounds eluted 

in these two peaks showed that their deprotonated forms had a m/z value of 137 and 167. 

The other large peaks eluting at around 5 min did not show strong UV signal, therefore 

most likely not correspond with aromatic compounds. The structures of the ions of m/z 

137 and 167 were probed via CAD experiments (Table 5.1). Their structures were 

proposed via comparison with a literature database.18 The peaks eluting at 20.70 min and 

20.94 min were not observed for the water fractions of the two control samples (GSS and 

the fungal free), suggesting that the above two identified compounds are likely the 

product of cordgrass fungal degradation (Figure 5.3). 
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Figure 5.2 (Top) Total ion current chromatogram and (bottom) UV absorbance 
chromatogram at 254 nm for CGSS water fraction. 
 
 

In the chromatography of the CGSS acetonitrile fraction, only one peak eluting at 

13.60 min was observed (Figure 5.4). The compound in the peak had a m/z value of 151 

when analyzed via mass spectrometer. Its structure was proposed by comparing its CAD 

pattern with a literature database (Table 5.1).18 

 

m/z 137

0

100000

200000

u
A

U

0

20

40

60

80

100

20.94
20.70

20.90

R
e

la
tiv

e
a

b
u

n
d

a
n

ce

20.65

m/z 167

0 5 10 15 20 25 30 35
Time (min)



103 

 

Figure 5.3 Total ion current chromatogram (top) and UV absorbance chromatogram 
(bottom) at 254 nm for (A) GSS water fraction and (B) fungal free water fraction.
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Figure 5.4 (Top) Total ion current chromatogram and (bottom) UV absorbance 
chromatogram at 254 nm for CGSS acetonitrile fraction. 
 
 

To test the structural assignments, an artificial mixture of the three identified 

compounds was prepared and analyzed via preparative HPLC separation and subsequent 

HPLC-MS analysis (Figure 4.5). The retention times and the CAD spectra of the 

compounds in the artificial mixture were similar to the compounds detected in the 

degradation sample, suggesting that the structural assignment was correct. 
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Figure 5.5 Preparative HPLC separations of the (top) artificial mixture and (bottom) 
CGSS sample. UV signal was detected at 254 nm. 
 
 

 

Figure 5.6 Total ion current chromatogram and UV absorbance chromatogram at 254 nm 
for (A) water fraction of the artificial mixture and (B) acetonitrile fraction of the artificial 
mixture. 
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5.3.3 Vanillin Quantification in Cordgrass Time Series Samples 

Samples T0 through T6 were diluted CGSS samples incubated with another type 

of salt water bacteria for different time length. T0 sample had the shortest incubation time 

while T6 sample had the longest incubation time. In theory, the aromatic compounds in 

the CGSS samples will be consumed by the salt water bacteria. Concentration of vanillin, 

the major component identified in the CGSS sample, was determined in samples T0-T6 by 

using 4-ethoxyphenol as the internal standard. HPLC-MS analysis of these samples 

showed that vanillin concentration was too low to be effectively quantified via UV 

detection (Figure 5.7). The low concentration is likely due to that samples T0-T6 were 

diluted 10 times and further subjected to bacteria consumption. To solve this issue, mass 

spectrometry was explored as an alternative detection method for quantification of 

vanillin in lignin degradation samples.  A comparison between UV detection and mass 

spectrometric detection (Figure 5.7) for vanillin showed that mass spectrometry has a 

much higher signal to noise ratio. The low limit of detection using mass spectrometry 

was determined to be 25 nM for a S/N of 3 (Figure 5.8). 
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Figure 5.7 Analysis of the T0 time series sample using (top) mass spectrometry detection 
by monitoring extracted ion current and (bottom) UV detection at 254 nm. 
 

 

 

 

Figure 5.8 Selected ion current chromatogram of deprotonated vanillin (m/z 151) 
measured for a vanillin sample with a concentration of 25 nmol 
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A calibration curve for vanillin concentration and peak area ratio of vanillin over 

the internal standard was generated (Figure 5.9). A good linear correlation (R2 = 0.994) 

between the peak area ratio and vanillin concentration was achieved. Quantification 

results of the time series samples are summarized in Figure 5.10. 

 

 

Figure 5.9 Calibration curve for vanillin concentration vs peak area ratio (vanillin / 
internal standard) 
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Figure 5.10 Vanillin concentration measured in samples T0-T6. 
 
  

Above results showed that during incubation, the concentration of vanillin 

dropped drastically.  This finding suggests that aromatic compounds are being consumed 

by the salt water bacteria.  The most significant drop occurred between samples T0 and 

T0.5, which reduced vanillin concentration to almost 0. 

 

5.3.4 HPLC-MS Analysis of Mimivirus Lignin Degradation Samples 

A mimivirus enzyme R135 was incubated with a lignin β-O-4 dimer (guaiacyl 

glycerol-β-guaiacyl ether) in order to test its ability to break the β-O-4 linkage. This 

mimivirus requires phosphate buffer to maintain normal function. Therefore, SPE 
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experiments were employed to extract the sample of interest (lignin β-O-4 dimer and its 

possible degradation products) from the culture medium. 

 An artificial mixture of vanillin (model compound for the degradation product) 

and guaiacyl glycerol-β-guaiacyl ether was used to test the effectiveness of the SPE step. 

The artificial mixture was prepared using PBS buffer and subjected to SPE and 

subsequent HPLC-MS analysis. Results showed that both compounds were retained on 

the SPE cartridge and could be effectively separated and detected by HPLC-MS (Figure 

5.11).  

 

 

Figure 5.11 HPLC-MS analysis of an artificial mixture of vanillin and guaiacyl glycerol-
β-guaiacyl ether after SPE. 
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One degradation sample (β-O-4 dimer incubated with mimivirus R135) and two 

control samples (β-O-4 dimer without virus and β-O-4 dimer incubated with a mutated 

mimivirus) were processed via solid phase extraction and subjected to HPLC-MS 

analysis. However, no significant differences were observed for these three samples 

(Figure 5.12). Only the lignin dimer was shown in high abundance and no monomers 

were observed. These results suggest that the mimivirus R135 does not specifically target 

the β-O-4 linkage within lignin.  

 

 

Figure 5.12 Selected ion chromatogram of the (A) experimental sample, (B) control 
sample with wildtype mimivirus, and (C) control sample with no added mimivirus. 
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5.4 Conclusions 

Two different sample preparation techniques were developed for the analysis of 

lignin microbial degradation products. Preparative HPLC with a reverse phase column 

was used to desalt cordgrass samples while SPE was used to desalt mimivirus lignin 

degradation samples. These two methods allowed the characterization of salty samples 

that are not compatible with direct ESI analysis.  

Vanillin, vanillic acid, and salicylic acid were found to be present in the fungal 

lignin degradation product samples. The structures of these molecules were proposed by 

comparing their CAD fragmentation data with literature database. Comparison of HPLC 

retention time with an artificial mixture was used to further confirm the structures. 

Quantification of the identified compounds was achieved using mass spectrometer to 

monitor extracted ion current of the compound of interest and showed superior sensitivity 

compared with UV detection. 

For the mimivirus lignin degradation products, a desalting method based on solid 

phase extraction was developed. This method was validated via testing of an artificial 

mixture. However, no degradation products were observed for the sample containing both 

mimivirus and lignin β-O-4 dimer, suggesting that the mimivirus does not break down β-

O-4 linkages. 
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CHAPTER 6. ANALYSIS OF ORGANOSOLV LIGNIN VIA HIGH PERFORMANCE 
LIQUID CHROMATOGRAPHY COUPLED WITH TANDEM MASS 

SPECTROMETRY 
 

 

6.1 Introduction 

As discussed in the previous chapters, many current efforts are focused on the 

conversion of lignocellulosic biomass into biofuels and other valuable chemicals.1–3 

Lignocellulosic biomass contains three primary components: cellulose, hemicellulose, 

and lignin.4 As no conversion process can efficiently convert all three components at 

once, biomass treatment often starts by separating it into individual components.5 These 

individual components are then subjected to the most suitable conversion processes. 

Therefore, efficient extraction of certain components from total biomass is desired. 

Lignin is the second most abundant naturally occurring polymer and makes up to 

25% in weight of total biomass.4 Due to its high aromatic content, it is viewed as ideal 

feedstock for conversion into valuable aromatic compounds currently derived from crude 

oil.6 Thus, multiple methods have been developed to extract lignin from biomass. One of 

these methods is organosolv, a process that uses organic solvents with heat and acid to 

selectively solubilize lignin and hemicellulose components of biomass feedstocks.7 The 

extracted lignin and hemicellulose are separated by adding brine into the organic 

solution. Lignin remains in the organic layer while hemicellulose is extracted into the 

aqueous layer. In this way, lignin can be extracted with high purity and efficiency.8 



117 

However, the chemical linkages within lignin can change under the conditions utilized in 

the organosolv process. Thus, chemical characterization of the lignin component 

extracted via organosolv is needed for the design and optimization of downstream 

conversion processes. 

The major obstacle in organosolv lignin characterization lies in the complexity of 

lignin structure. Lignin contains a wide variety of structural motifs that can undergo 

various transformations upon the organosolv process.9 In addition, lignin has been shown 

to covalently crosslink with the hemicellulose within plants, further increasing its 

complexity.10 Commonly used analysis techniques, such as NMR, only provide bulk 

information and cannot identify individual components. 

Mass spectrometry has been shown to be a powerful tool for the analysis of 

mixtures related to lignin.11,12 For instance, ESI with NaOH dopant has been reported to 

be a highly efficient ionization method for lignin related compounds.13 This chapter 

discusses the application of high-performance liquid chromatography coupled with 

multiple-stage tandem mass spectrometry (HPLC-MSn) in organosolv lignin analysis. 

Chemical formulae of the molecules present in organosolv lignin were determined via 

high resolution mass measurements and structural information was obtained via CAD. 
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6.2 Experimental 

 

6.2.1 Materials 

Organosolv lignin was obtained by our collaborator, Dr. Joe Bozell, via a process 

reported previously.9 In short, milled switchgrass was treated with a 16: 34 : 50 wt% 

mixture of methyl isobutyl ketone, ethanol, and water in the presence of sulfuric acid (0.1 

M) in a flow reactor at a temperature of 120 °C for 120 min.  100 g/mL NaCl solution 

was added to the organic solution produced from the reactor, separating it into the lignin 

containing organic layer and the hemicellulose containing aqueous later. The lignin 

containing organic layer was separated via a separation funnel and washed repeatedly 

with water before being dried. For HPLC-MS analysis, 10 mg of the obtained organosolv 

lignin dried powder was dissolved in 50/50 (v/v) THF/H2O to a final concentration of 2 

mg/mL. 

 

6.2.2 Mass Spectrometry 

All experiments were performed on a Thermo Scientific LTQ-Orbitrap XL mass 

spectrometer coupled with an ESI source operated under negative ion mode. For high 

resolution mass measurements, the resolution of the instrument was set at 100,000. For 

CAD experiments, the ion of interest was isolated with a m/z window of 1.5 and 

subjected to CAD at a collision energy of 25 (arbitrary units) and at a q value of 0.250. 
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6.2.3 High-performance Liquid Chromatography 

HPLC separations were carried out on a Surveyor Plus HPLC system consisting 

of a quaternary pump, an autosampler, and a Zorbax SB-C18 column. A non-linear 

gradient of water (A) and acetonitrile (B) was used: 0.00 min, 80% A and 20% B; 35.00 

min, 100% B; 40.00 min, 100% B; 41.00 min, 80% A and 20% B; 45.00 min, 80% A and 

20% B. The flow rate of the mobile phase was kept at 500 µL/min. HPLC eluents were 

mixed via a T-connector with 1% NaOH solution at a flow rate of 0.1 µL/min before 

being ionized in an ESI source operating under negative ion mode with the following 

conditions: 3.25 kV spray voltage; 50 (arbitrary units) sheath gas (N2) flow and 20 

(arbitrary units) auxillary gas (N2) flow. 

 

6.3 Results and Discussion 

 Complex mixture analyses often produce large amount of data that is difficult to 

process. The HPLC data collected for the organosolv lignin was visualized via base peak 

mode to identify its major components. Structure of these major components were probed 

via high-resolution mass measurement and CAD experiments performed on the 

deprotonated molecules. 

 

6.3.1 HPLC Data Visualization 

 Complex mixtures, such as organosolv lignin, typically contain hundreds of 

different compounds. HPLC analyses preformed on complex mixtures often produce 

complex chromatograms that are difficult to process and analyze. Hence, data 

visualization is important to identify the primary components present in a mixture, which 
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contribute the most to the properties of the entire mixture. In HPLC analysis, major 

components of the analyzed mixture are identified by locating large HPLC peaks where 

the concentration of the eluted analyte first increases and then decreases. For most HPLC 

analyses with MS detection, eluates concentration is measured using the strength of the 

total ion current produced upon ionization. However, the total ion current is the sum of 

the abundances of all ions producing the mass spectrum. Hence, ions with lower 

abundances will interfere with the identification of major components. Base peak ion 

current is the ion current of the most abundant ion producing the mass spectrum. By 

plotting the base peak ion current instead of total ion current, interference of ions with 

lower abundances can be reduced.   

 

 

Figure 6.1 (Top) Comparison between HPLC chromatograms obtained by plotting base 
peak ion current versus time and total ion current versus time. (Bottom) Mass spectra 
measured at time A and time B. 
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As shown in Figure 6.1, HPLC peaks are better visualized in base peak ion 

current chromatogram compared to total ion current. For instance, a HPLC peak 

corresponding to ion of m/z 177 clearly exists at time point A. However, this peak is not 

visible in the total ion current chromatogram, which showed similar total ion current for 

time points A and B. This was because at time point A, the total ion current was primarily 

contributed by a single ion of m/z 177, while at time point B, multiple low abundance 

ions contributed to the total ion current. The above case clearly demonstrates that HPLC 

data visualization via base peak ion current chromatogram is makes peak identification 

easier for complex mixtures. 

 

6.3.2 Elemental Composition Determination via High Resolution Mass Spectrometry 

14 major peaks were identified in base peak ion current mode (Figure 6.2).  The 

exact m/z values of the ions correlating with those peaks were measured at a resolution of 

100,000. Based on the high-resolution data, chemical formulas for these ions were 

proposed assuming that they only contain carbon, oxygen, and hydrogen atoms (Table 

5.1). Only one out of the 14 proposed elemental compositions had a relative error larger 

than 5 ppm (+7.5 ppm). Given the small relative errors, the proposed elemental 

compositions can be accepted with high confidence. 
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Figure 6.2 14 major components identified in organosolv lignin via base peak ion current 
chromatogram. 
 
 

Table 6.1 Elemental compositions obtained for the major components in organosolv 
lignin via high resolution mass measurements. 
 

Peak 
number 

Elemental 
composition 

m/z 
Measured exact m/z 

(relative error) 
1 C6H5O3 125 125.02412 (+3.2 ppm) 
2 C9H7O3 163 163.03967 (+4.3 ppm) 
3 C10H9O4 193 193.05002 (+2.5 ppm) 
4 C7H5O2 121 121.02931 (+7.5 ppm) 
5 C16H19O7 323 323.11261 (+0.2 ppm) 
6 C17H21O8 353 353.12311 (+0.1 ppm) 
7 C18H19O6 331 331.11768 (+0.2 ppm) 
8 C10H9O3 177 177.05515 (+2.9 ppm) 
9 C16H15O5 287 287.09158 (+0.6 ppm) 
10 C10H9O4 193 193.05002 (+2.5 ppm) 
11 C17H13O7 329 329.06552 (–0.2 ppm) 
12 C11H11O3 191 191.07083 (+2.9 ppm) 
13 C12H13O4 221 221.08131 (+2.1 ppm) 
14 C16H15O2 239 239.10709 (+1.8 ppm) 
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6.3.3 Structural Elucidation via CAD 

 After obtaining the elemental compositions of the major ionized components, 

CAD experiments were performed to obtain structural information for these ions. 

Structures were proposed for 13 out of 14 major compounds based on the fragmentation 

patterns as well as elemental compositions of their ions (Table 6.2). Out of the 13 

structures, 8 were monomeric lignin molecules that only contained one aromatic ring. 

Three were dimeric lignin compounds with two aromatic rings. Two were covalent 

complexes formed between a monomeric lignin compound and a C7 sugar. Lignin 

compounds with three or more aromatic rings were not observed. The above structural 

assignments suggested that the organosolv process breaks down the majority of the 

linkages between monomeric units within the lignin polymer. 
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In order to confirm that the above 14 identified compounds are representative for 

the bulk of the mixture, an extracted ion current chromatogram that only showed the 

identified compounds was produced (Figure 5.2). The extracted ion current 

chromatogram was very similar to the base peak ion current chromatogram. This result 

suggested that the identified compounds were indeed the major components of the 

organosolv sample. 

 

 

Figure 6.3 (Top) Base peak ion current chromatogram and (bottom) selected ion current 
chromatogram of the identified compounds for the organosolv lignin sample. 
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6.4 Conclusions 

 Swithgrass organosolv lignin was analyzed via HPLC-MSn. Elemental 

compositions of the major components were determined based on the high resolution m/z 

measurements. Structural motifs present in the unknown compounds were identified via 

CAD experiments. Based on the above two pieces of information, structures were 

proposed for 13 out of 14 identified major unknown compounds. Out of the 13 proposed 

structures, 8 were monomeric compounds, 3 were dimeric compounds, and 2 were lignin-

carbohydrate complexes. These results show that the organosolv process breaks lignin 

polymer into relatively small compounds.   
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Abstract. Conversion of lignin into smaller molecules provides a promising alternate
and sustainable source for the valuable chemicals currently derived from crude oil.
Better understanding of the chemical composition of the resulting product mixtures is
essential for the optimization of such conversion processes. However, thesemixtures
are complex and contain isomeric molecules with a wide variety of functionalities,
which makes their characterization challenging. Tandem mass spectrometry based
on ion–molecule reactions has proven to be a powerful tool in functional group
identification and isomer differentiation for previously unknown compounds. This
study demonstrates that the identification of the phenol functionality, the most com-
monly observed functionality in lignin degradation products, can be achieved via ion–

molecule reactions between diethylmethoxyborane (DEMB) and the deprotonated analyte in the absence of
strongly electron-withdrawing substituents in the ortho- and para-positions. Either a stable DEMB adduct or an
adduct that has lost a methanol molecule (DEMB adduct-MeOH) is formed for these ions. Deprotonated phenols
with an adjacent phenol or hydroxymethyl functionality or a conjugated carboxylic acid functionality can be
identified based on the formation of DEMB adduct-MeOH. Deprotonated compounds not containing the phenol
functionality and phenols containing an electron-withdrawing ortho- or para-substituent were found to be
unreactive toward diethylmethoxyborane. Hence, certain deprotonated isomeric compounds with phenol and
carboxylic acid, aldehyde, carboxylic acid ester, or nitro functionalities can be differentiated via these reactions.
The above mass spectrometry method was successfully coupled with high-performance liquid chromatography
for the analysis of a complex biomass degradation mixture.
Keywords: Ion–molecule reactions, Lignin degradation products, Phenol functionality, Phenols
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Introduction

T he pursuit of renewable and sustainable chemical re-
sources for energy and chemicals currently derived from

crude oil has motivated researchers in exploring the conversion
of lignocellulosic biomass into fuels and chemicals [1–6]. An
important component of lignocellulosic biomass is lignin, which
can make up to 25% of whole lignocellulosic biomass [7].

Lignin is a heavily crosslinked biopolymer composed of pheno-
lic units with diverse and complex structural motifs [8, 9]. Due to
its high aromatic carbon content, researchers have focused on
converting lignin into valuable aromatic chemicals [7–10]. How-
ever, the inherent complexity of lignin often leads to the produc-
tion of very complex mixtures of molecules with a wide variety
of functionalities. The analysis of such mixtures is a challenging
task. Yet, chemical characterization of these product mixtures is
essential for the optimization of the lignin degradation processes
and further conversion of the products into valuable chemicals.

Tandemmass spectrometry has proven to be a powerful tool
in the characterization of lignin degradation product mixtures.
Negative ion mode electrospray ionization (ESI) with sodium

Electronic supplementary material The online version of this article (doi:10.
1007/s13361-016-1442-9) contains supplementary material, which is available
to authorized users.
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hydroxide dopant has been identified as the best ionization
method for degraded lignin as it exclusively forms
deprotonatedmolecules with no fragmentation for lignin model
compounds [11]. Other ionization methods, such as positive
ion mode ESI or atmospheric pressure chemical ionization
(APCI), either cause extensive fragmentation or form multiple
ion types for each compound [11]. When used in HPLC/
tandem mass spectrometry experiments, negative ion mode
ESI facilitates the analysis of complex lignin degradation prod-
uct mixtures [12, 13]. Structural information for the ionized
molecules can be obtained via multiple stages of ion isolation
and collisionally activated dissociation (CAD) experiments
[14]. However, isomeric ions can have similar CAD fragmen-
tation patterns, making their differentiation challenging [12].
Therefore, new methods for structural elucidation of isomeric
aromatic ions are needed.

Past studies have shown that ion–molecule reactions can be
a powerful tool for structural elucidation of ionized analytes
[15, 16]. Identification of functional groups can be achieved by
using neutral reagents that exhibit specific reactivity towards
ions with these functional groups [17–23]. However, most
studies on functional group-specific ion–molecule reactions
have focused on protonated analytes. Only in a few cases were
deprotonated analytes examined [24–28], and to the best of our
knowledge, no reagents have been developed for the identifi-
cation of the phenol functionality. In this study, diethyl
methoxyborane (DEMB) is explored as a reagent for the iden-
tification of the phenol functionality in deprotonated lignin-
related analytes. DEMB is known to react with negative ions
and has been shown to allow differentiation of isobaric ions
(deprotonated phosphorus- and sulfocarbohydrates) [25].

Experimental
Chemicals

Diethylmethoxyborane (97%), phenol (99%), 2-ethoxyphenol
(98%), 3-methoxyphenol (96%), 4-ethoxyphenol (99%), 2-
methoxy-4-propylphenol (99%), isoeugenol (98%), methyl
ferulate (99%), catechol (99%), resorcinol (99%), hydroqui-
none (99%), 2-hydroxybenzyl alcohol (99%), 3-
hydroxybenzyl alcohol (99%), benzoic acid (99.5%),
terephthalic acid (98%), phthalic acid (99.5%), 3-nitrophenol
(99%), 4-nitrophenol (99%), 2-hydroxybenzaldehyde (98%),
3-hydroxybenzaldehyde (99%), 4-hydroxybenzaldehyde
(98%), methyl 2-hydroxybenzoate (99%), methyl 3-
hydroxybenzoate (99%), methyl 4-hydroxybenzoate (99%),
2-hydroxybenzoic acid (99%), 3-hydroxybenzoic acid (99%),
4-hydroxybenzoic acid (99%), 2-hydroxycinnamic acid (99%),
3-hydroxycinnamic acid (98%), 4-hydroxycinnamic acid
(97%), 2-hydroxyphenacetic acid (97%), 3-hydroxy phenacetic
acid (99%), 4-hydroxyphenacetic acid (98%), vanillic acid
(97%), syringic acid (95%), sinapic acid (98%), 4-
methoxybenzoic acid (99%), and 4-hydroxy-3-methylbenzoic
acid (97%) were purchased from Sigma Aldrich (MO, USA)
and used as received. Vanillin (99%) was purchased from

Fisher Scientific (MA, USA) and used as received.
Guaiacylglycerol guaiacyl ether (97%) was purchased from
TCI America (OR, USA) and used as received. Lignin β-5
dimer was synthesized via a previously reported method [29].
Converted Miscanthus biomass was obtained via a previously
published procedure [30].

Mass Spectrometry

All experiments were performed on a Thermo Scientific (MA,
USA) linear quadrupole ion trap (LQIT) mass spectrometer
equipped with an electrospray ionization (ESI) source operated
in the negative ion mode. Sample solutions were prepared at a
concentration of 1 mmol in 50/50 water/methanol (v/v) solu-
tion. Ten μL of 1 mM NaOH water solution were added into
5 mL of sample solution to facilitate the formation of
deprotonated analyte molecules. The NaOH-doped sample so-
lutions were injected into the ion source at a flow rate of 10 μL/
min. The injected solutions were mixed via a T-connector with
50/50 water/methanol (v/v) at a flow rate of 100 μL/min to
maintain stable spray current. Typical ESI conditions were:
3.5 kV spray voltage, 20 (arbitrary unit) sheath gas (N2) flow,
10 (arbitrary unit) auxiliary gas (N2) flow, and 2 (arbitrary unit)
sweep gas (N2) flow.

Ion–Molecule Reactions

Ion–molecule reactions between deprotonated analytes and
DEMBwere studied using an external reagent mixingmanifold
described previously [18, 31, 32]. DEMB was injected into the
manifold by using a syringe drive at a flow rate of 10 μL/min
and then diluted with helium at a flow rate of 500 mL/min. The
manifold was heated to 70 °C for efficient evaporation of
DEMB into helium. The DEMB-helium mixture was then
directed into a variable leak valve that allowed part of the
mixture gas to enter the ion trap at a flow rate of 2 mL/min
while the excess was directed into waste. Analyte ions were
isolated using an isolation window of 2m/z and a q value of
0.25. The isolated ions were allowed to react with DEMB for
30–500 ms before being ejected for detection.

High Performance Liquid Chromatography

All HPLC separations were performed on a Surveyor Plus
HPLC system consisting of a dcolumn. A nonlinear gradient
of water (A) and acetonitrile (B) was used as follows: 0.00min,
95% A and 5% B; 10.00 min, 95% A and 5% B; 30.00 min,
40% A and 60% B; 35.00 min, 5% A and 95%; 38.00 min, 5%
A and 95%B; 38.50 min, 95%A and 5%B; 45.00 min, 95%A
and 5% B. The flow rate of the mobile phase was kept at
500 μL/min. PDA detector was set at the wavelength of
254 nm.

HPLC eluents were mixed via a T-connector with 1%
sodium hydroxide solution at a flow rate of 0.1 μL/min before
entering the ESI source. ESI source conditions were set as:
3.5 kV spray voltage; 50 (arbitrary unit) sheath gas (N2) flow,
and 20 (arbitrary unit) auxiliary gas (N2) flow.
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Computational Details

All density functional theory (DFT) calculations were per-
formed using the Gaussian 09 software package [33]. Ge-
ometry optimizations were performed using the hybrid

functional M06-2X [34] with the 6-31+G(d,p) basis set for
potential surface calculations. All other geometries were
optimized using 6-311++G(2d,p) basis set. Enthalpy values
were obtained by calculating vibrational frequencies at the
same level of theory at which they were optimized. Natural

Table 1. Ionic Products Formed Upon Reactions of Deprotonated Model Compounds with Diethylmethoxyborane (DEMB) for 200 ms

Analyte ion (m/z of [M-H]-) Ion structure 
Products formed upon 
reactions with DEMBa

(m/z) 

phenol (91) 91+DEMB (191) 

2-ethoxyphenol (137) 137+DEMB (237) 

3-methoxyphenol (137) 123+DEMB (223)

4-ethoxyphenol (123) 137+DEMB (237) 

2-methoxy-4-propylphenol (165) 165+DEMB (265) 

isoeugenol (163) 163+DEMB (263) 

methyl ferulate (207) 207+DEMB (307) 

catechol (109) 109+DEMB-MeOH (177)

resorcinol (109) 109+DEMB (209) 

hydroquinone (109) 109+DEMB (209) 

2-hydroxybenzyl alcohol (123) 123+DEMB-MeOH (191)

3-hydroxybenzyl alcohol (123) 123+DEMB (223) 

guaiacylglycerol guaiacyl ether (319) 319+DEMB (419)

lignin -5 dimer (325) 325+DEMB (425)

benzoic acid (121) No products observed 

terephthalic acid (165) No products observed



a Only products with 5% or greater relative abundance reported. DEMB adduct are colored in red; DEMB adduct-MeOH are colored in blue
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bond orbital (NBO) analyses were performed at the M06-
2X/6-311++G(2d,p) level of theory.

Results and Discussion
Multiple model compounds containing phenol, carboxylic
acid, and other functionalities (Tables 1, 2, and 3) were
ionized via negative ion mode ESI with NaOH as dop-
ant. These compounds formed exclusively [M – H]–

upon ionization. The deprotonated analytes were allowed
to react with diethylmethoxyborane (DEMB) in order to
explore whether it provides a useful reagent for the
identification of the phenol functionality in deprotonated
lignin-related analytes. After obtaining promising results
on model compounds, the method was used to identify

phenols in a catalytically converted biomass sample con-
taining multiple phenolic compounds.

Formation of a DEMB Adduct for Deprotonated
Phenols

Upon reactions with DEMB, deprotonated phenol and
most deprotonated substituted phenols (Tables 1, 2, and
3) formed a DEMB adduct ion ([M – H + DEMB]–) that
has 100 units greater m/z-value than the analyte ion. The
substituents include alkyl, alkenyl, hydroxymethyl, alkoxy,
phenol (Table 1), nitro, aldehyde, carboxylic acid ester
(Table 2), and carboxylic acid (Table 3). The boron-
containing adduct can be easily identified by the charac-
teristic boron isotope distribution (100% 11B to 20% 10B).
Larger model compounds (i.e., two lignin dimers with β-O-

Table 2. Ionic Products FormedUpon Reactions of Deprotonated Phenol and Its Derivatives Containing Electron-Withdrawing Substituents withDEMB for 200ms,
Calculated NBO Charges of the Deprotonated Phenols at the Phenoxide Oxygen, and Calculated Energy Differences Between the Reactants and Their Products

Analyte ion 
(m/z of [M-H]-) 

Ion 
structure 

Products formed 
upon reactions with 

DEMBa (m/z) 

Calculated 
NBO 

chargeb

Energy 
difference 
(kcal/mol)d

phenol (91) 91+DEMB (191) -0.808c -34.2 

vanillin (151) No products observed -0.721
c

-25.1 

3-nitrophenol (138) 138+DEMB (238) -0.782
c

-28.8 

4-nitrophenol (138) No products observed -0.726
c

-23.4 

2-hydroxybenzaldehyde 

(121) 

121+DEMB (221) 

minor
-0.766

c
-27.3 

3-hydroxybenzaldehyde 

(121) 
121+DEMB (221) -0.793

c
-31.0 

4-hydroxybenzaldehyde 

(121) 
No products observed -0.743

c
-26.4 

methyl 2-hydroxybenzoate 

(151) 

151+DEMB (251) 

minor
-0.724

c
-27.6 

methyl 3-hydroxybenzoate 

(151) 
151+DEMB (251) -0.798

c
-31.9 

methyl 4-hydroxybenzoate 

(151) 

151+DEMB (251) 

minor
-0.752

c
-27.2 

a Products with 5% or greater relative abundance are colored in red. Products with relative abundance between 0.1% and 5% are considered to be minor
b NBO = natural bond orbital. Calculated at M06-2X/6-311G++(2d,p)
c Charge on the phenoxide oxygen atom
d Relative energy difference in enthalpy between product ion and separated reactants. Calculated at M06-2X/6-311G++(2d,p) level of theory
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4 and β-5 linkages) also exclusively produced DEMB
adducts (Table 1). However, deprotonated compounds not
containing the phenol functionality, such as deprotonated
benzoic acid, showed no reactivity towards DEMB
(Table 1). Based on the above results and the results
discussed below, the formation of a DEMB adduct is
unique to deprotonated analytes with the phenol function-
ality. However, not all phenolic compounds form this
adduct.

In contrast to the phenolic compounds discussed above,
DEMB adduct formation was not observed for deprotonated

vanillin (Table 2) that contains a phenol functionality as
well as an electron-withdrawing aldehyde functional group.
This observation led to further examination of the effects of
electron-withdrawing substituents (aldehyde, nitro, and car-
boxylic acid ester) in the analyte ion on its reactivity
toward DEMB (Table 2). Deprotonated phenols with an
electron-withdrawing substituent at the ortho- or para-posi-
tion were found to exhibit no reactivity towards DEMB,
whereas the meta-substituted isomers formed the DEMB
adduct ion (Table 2). An explanation for this behavior
was sought by quantum chemical calculations.

Table 3. Ionic Products Formed upon Reactions of Deprotonated Model Compounds Containing a Phenol and a Carboxylic Acid Functional Group with DEMB for
200 ms

Analyte ion (m/z of [M-H]-) Structure 
Products formed upon 
reactions with DEMBa

(m/z) 

2-hydroxybenzoic acid (137) No products observed

3-hydroxybenzoic acid (137) 137+DEMB (251) 

4-hydroxybenzoic acid (137) 137+DEMB-MeOH (177)

2-hydroxycinnamic acid (137) 137+DEMB-MeOH (177)

3-hydroxycinnamic acid (137) 137+DEMB (251)

4-hydroxycinnamic acid (137) 137+DEMB-MeOH (177)

2-hydroxyphenacetic acid (151) No products observed

3-hydroxyphenacetic acid (151) 151+DEMB (251) 

4-hydroxyphenacetic acid (151) 151+DEMB (251) 

vanillic acid (16) 167+DEMB-MeOH (235)

syringic acid (197) 197+DEMB-MeOH (265)

sinapic acid (223) 223+DEMB-MeOH (291)

aOnly products with 5% or greater relative abundance are reported. DEMB adduct is colored in red, DEMB adduct-MeOH is colored in blue
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Calculations based on density functional theory showed that
the NBO electron density on the phenoxide oxygen atom in
deprotonated phenols is reduced in the presence of an ortho- or
para-positioned electron-withdrawing substituent compared with
meta-substituted phenols (Table 2), making them weaker nucleo-
philes. For example, themeta-substituted 3-hydroxybenzaldehyde

has a NBO charge density of –0.793 on its phenoxide oxygen
(formation of a stable DEMB adduct was observed) whereas its
isomer, the para-substituted 4-hydroxybenzaldehyde, has a lower
NBO charge density of –0.743 (no reactivity toward DEMB was
observed). The ortho-substituted 2-hydroxybenzaldehyde has a
NBO charge of –0.766 that falls between 3-hydroxy

No reaction

[M+DEMB]

[M+DEMB] [M+DEMB

[M+DEMB

[M+DEMB]

(a) (b)

MeOH]

MeOH]

Figure 1. (a) Tandemmass spectra measured after reactions of (top) deprotonated catechol, (middle) deprotonated resorcinol, and
(bottom) deprotonated hydroquinone with DEMB for 200 ms. (b) Tandem mass spectra measured after reactions of (top)
deprotonated 2-hydroxybenzoic acid, (middle) deprotonated 3-hydroxybenzoic acid, and (bottom) deprotonated 4-
hydroxybenzoic acid with DEMB for 200 ms

Figure 2. (a) Proposed mechanism and (b) calculated potential energy surface (enthalpy in kcal/mol) for the formation of a DEMB
adduct that has lost methanol upon reactions between deprotonated catechol and DEMB (M06-2X/6-31+G(d,p) level of theory)
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benzylaldehyde and 4-hydroxybenzyaldehyde (a minor DEMB
adduct was observed). The above results show that a larger charge
density on the phenoxide oxygen correlates with higher reactivity
towards DEMB.

However, based on calculations, all the phenols form
a low-energy covalently bound adduct with DEMB (Ta-
ble 2). In the gas phase, these adducts are not stable
toward dissociation back to reactants unless they are
stabilized either by emission of IR light or by collisions
with the helium buffer gas. The lower the energy of the
adduct, the longer its lifetime, and the more likely it is
that it gets stabilized via one of these processes. Indeed,
the energy of the covalent DEMB adducts relative to the
separated reactants (Table 2) was calculated to be
greatest (from –29 down to –34 kcal/mol) for those ions
that formed an abundant stable adduct as a final product,
slightly less for those that formed a minor adduct (–
27 kcal/mol) and even less for those that did not form
a stable adduct (from –23 down to –26 kcal/mol). This

likely explains the selectivity for stable DEMB adduct
formation for different deprotonated phenols.

Formation of DEMB Adduct-MeOH

When deprotonated catechol (containing two adjacent phenol
functionalities) was allowed to react with DEMB, it did not
form a stable DEMB adduct but instead a DEMB adduct that
had lost methanol ([M – H + DEMB –MeOH]–) with 68 units
greater m/z-value than the analyte ion (Table 1, Figure 1a).
Formation of this type of product ion was not observed for the
isomeric resorcinol or hydroquinone, which both formed a
stable DEMB adduct instead (Table 1; Figure 1a). Exclusive
formation of DEMB adduct-MeOH was also observed for
deprotonated 2-hydroxybenzyl alcohol but not for the isomeric
deprotonated 3-hydroxybenzyl alcohol, the hydroxyl and phe-
nol groups of which are further away from each other (Table 1).
These observations suggest that an additional phenol or hy-
droxyl functionality in close proximity to the deprotonated

2.6

[ 0.3]

Separated
products

Separated
reactants

21.6

TS

Reactant
complex

0.0

slope= 0.00700±0.00008 slope= 0.00510±0.00008

(a)

(b)

(c)

Figure 3. (a) Logarithm of the abundances of deprotonated 4-hydroxybenzoic acid (black symbols) and DEMB adduct-MeOH
product ion (blue symbols) plotted as a function of reaction time for the reaction between DEMB and deprotonated 4-
hydroxybenzoic acid generated using NaOH doped water solution (left) and acetonitrile solution (right). (b) Mechanism proposed
for the formation of DEMB adduct that has lost methanol. (c) Calculated potential energy surface (enthalpies in kcal/mol) for the
formation of DEMB adduct-MeOH (M06-2X/6-31+G(d,p) level of theory)
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phenol group is critical for the formation of DEMB adduct-
MeOH. The potential energy surface for the proposed mecha-
nism, calculated via density functional theory, is shown in
Figure 2 for catechol (CAD mass spectrum of the product ion
is shown in Supplementary Table S1, Supporting Information).

Formation of DEMB adduct-MeOH was also observed for
certain deprotonated phenols with carboxylic acid functionali-
ties. When regioisomers of deprotonated hydroxycinnamic
acid, hydroxyphenylacetic acid, and hydroxybenzoic acid were
allowed to react with DEMB (Table 3), DEMB adduct-MeOH
was observed for 4-hydroxybenzoic acid, 2-hydroxycinnamic
acid, and 4-hydroxycinnamic acid, the phenol and carboxylic
acid functionalities of which are conjugated. All other ions
either only formed a DEMB adduct or were unreactive. The
lack of products for 2-hydroxyphenylacetic acid and 2-
hydroxybenzoic acid can be explained by the presence of
strong intramolecular hydrogen bonding in their deprotonated
forms (Figure 1b), which reduces their nucleophilicity. For the
ions that formed DEMB adduct-MeOH, such as 4-
hydroxybenzoic acid, the originally proposed mechanism (Fig-
ure 2) is no longer applicable since the distance between the
carboxylic acid and phenol functionalities is too great. There-
fore, a different mechanism must be involved.

One issue that must be considered here is that hydroxybenzoic
acids have two possible deprotonation sites. If the benzoic acid
moiety is exclusively deprotonated in some of them, one would
expect no reactivity toward DEMB, based on the above results.
Literature studies have shown that experimental conditions can
influence the site of deprotonation of 4-hydroxybenzoic acid upon
ESI [35, 36]. After some controversy onwhich is the preferred site
of deprotonation in different solvent systems, the generally agreed
upon conclusion appears to be that the phenoxide anion greatly
dominates when using aprotic solvents (such as acetonitrile) while
the carboxylate tautomer is also formed when using protic sol-
vents (such as water) [35, 36]. In order to establish whether this
applies to the present experiments utilizing ESI and protic sol-
vents, the reactivity of DEMB toward 4-hydroxybenzoic acid
deprotonated using different solvents was studied.

The abundances of 4-hydroxybenzoic acid deprotonated
using an aprotic (acetonitrile) and protic solvent (water with
0.1% NaOH) and its DEMB adduct-MeOH product were mea-
sured as a function of reaction time. Ion–molecule reactions
studied under the conditions utilized here follow pseudo-first
order kinetics. Hence, a plot of the logarithm of the reactant
ion’s relative abundance versus reaction time is a straight line
with a negative slope equal to the rate constant multiplied by

[M+DEMB]

[M+DEMB MeOH]

Noreaction
CO2

CO2

CO2

2

1

3
1

2

3

(a) (b) (c)

Figure 4. (a) (top) Total ion HPLC chromatogram measured for an equimolar mixture of 4-methoxybenzoic acid (1), 4-
hydroxyphenylacetic acid (2), and 4-hydroxy-3-methylbenzoic acid (3). Selected ion HPLC chromatograms measured for all ions
that formed DEMB adduct (middle), and DEMB adduct-MeOH (bottom) upon reaction with DEMB. (b) MS2 spectra measured after
reaction of deprotonated 4-methoxybenzoic acid (top), deprotonated 4-hydroxyphenacetic acid (middle), and deprotonated 4-
hydroxy-3-methylbenzoic acid (bottom) with DEMB for 200ms. (c) CADMS2 spectrameasured for deprotonated 4-methoxybenzoic
acid (top), deprotonated 4-hydroxyphenacetic acid (middle), and deprotonated 4-hydroxy-3-methylbenzoic acid (bottom) after a
separate HPLC run followed by ionization, ion isolation and CAD
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DEMB concentration. With the concentration of DEMB
staying constant under the conditions employed here (the con-
centration of reactant ions is substantially smaller than the
concentration of the reagent molecules), the rate constant is
proportional to the value of the negative slope, which is larger
(0.007 versus 0.005) when the reactant ions were generated
using acetonitrile (Figure 3a). This finding is in agreement with
the literature results discussed above that acetonitrile is expect-
ed to produce more phenoxide ions, whereas water doped with
NaOH should produce more carboxylate anions (about 40%
relative to the phenoxide ions) [35]. However, since both ion
populations are reactive toward DEMB, phenoxide ions exist
in both. Hence, exclusive deprotonation of the carboxylic acid
moiety is unlikely. This finding is in agreement with the CAD
mass spectra measured for 4-hydroxybenzoic acid
deprotonated using the aprotic and protic solvent systems and
the potential energy surfaces calculated for these reactions
(Supplementary Figures S1 and S2). CO2 loss from the phen-
oxide ion is calculated to be more energetically favorable than
from the carboxylate ion (Supplementary Figure S1). Indeed,
the ions generated from acetonitrile solution fragment more
readily by CO2 loss than the ions generated from water/NaOH
solution (Supplementary Figure S2), suggesting that more
phenoxide ions had been formed in the acetonitrile solution.

Based on the findings above, a new mechanism is proposed
for the formation of DEMB adduct-MeOH (Figure 3b) for
compounds with conjugated carboxylic acid and phenol func-
tionalities, such as 4-hydroxybenzoic acid. In these
deprotonated molecules, the charge on the deprotonated phenol
moiety can resonate onto the carboxylic acid oxygen, which
enables nucleophilic attack by the carboxylic acid moiety at the
boron atom in DEMB. After addition, the carboxylic acid
moiety can donate a proton to a methoxy group to eliminate
methanol. Potential energy surface calculated for the proposed
mechanism shows a low barrier of –0.3 kcal/mol for DEMB
adduct-MeOH formation for the reaction between deprotonated
4-hydroxybenzoic acid and DEMB (Figure 3c; CAD mass
spectrum of the product ion is shown in Supplementary Ta-
ble S1 and proposed fragmentation mechanism in Supplemen-
tary Scheme S1).

DEMB Ion–Molecule Reactions Coupled
with HPLC

The formation of a DEMB adduct or DEMB adduct-MeOH is
fast. At 200 ms reaction time, the relative abundances of
DEMB adduct ions with respect to analyte ions are greater than
20% for all model compounds that exhibit reactivity towards

1 2
4

3

Ion4

Extracted ion current for
ions that form [M H+DEMB]

Total Ion Current

[M H]

[M+DEMB]

(a)

(b) (c)

Figure 5. (a) (top) Total ion current HPLC chromatogram for a mixture obtained via catalytic conversion of Miscanthus biomass.
(bottom) Selected ion HPLC chromatogram for all ions that form a DEMB adduct. (b) Structures of the four major phenols that were
identified in the mixture. (c) MS2 spectrum measured after isolation of ion 4 (m/z 165) and reaction with DEMB for 200 ms
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DEMB. Thus, this reaction should be compatible with chro-
matographic time scale. In order to test this hypothesis, an
equimolar mixture of three isomers, 4-methoxybenzoic acid,
4-hydroxyphenylacetic acid, and 4-hydroxy-3-methylbenzoic
acid, was subjected to HPLC/tandem mass spectrometric anal-
ysis (Figure 4a). The compounds were eluted using a gradient
consisting of water and acetonitrile, deprotonated via ESI as
they eluted from the column, and allowed to react with DEMB
for 200 ms in the ion trap. Typically, about 40 such MS
experiments were performed for each HPLC peak. Due to the
lack of a phenol functional group, deprotonated 4-
methoxybenzoic acid showed no reactivity toward DEMB
(Figure 4b). Deprotonated 4-hydroxy-3-methylbenzoic acid
that contains both a phenol functional group and a conjugated
carboxylic acid functional group formed DEMB adduct-
MeOH, whereas deprotonated 4-hydroxyphenacetic acid
formed DEMB adduct (Figure 4b). Hence, these three isomers
can be differentiated using this approach. It is notable that these
isomers cannot be differentiated when using conventional
HPLC/MS2 analysis based on CAD, as all three ionized iso-
meric compounds undergo the same fragmentations upon CAD
(Figure 4c).

Once coupled with HPLC, the above approach can be used
for rapid screening of mixtures for the presence of phenol-
containing compound. This was demonstrated by the analysis
of a product mixture obtained by catalytic conversion of
Miscanthus biomass (Figure 5). Using the same water/
acetonitrile gradient, HPLC eluates were ionized by negative
ionmode ESI and the most abundant ion formed for each eluate
was isolated and allowed to react with DEMB for 200 ms in the
ion trap. The complexity of the product mixture is demonstrat-
ed by the total ion current chromatograph shown in Figure 5a.
However, by monitoring ions that produce an ion with 100
units greater m/z value, an extracted ion chromatogram can be
obtained that represents compounds with the phenol function-
ality (Figure 5a). No DEMB adduct-MeOH product ions were
observed, indicating the absence of phenols with adjacent
hydroxyl or conjugated carboxylic acid functionalities. For
the product mixture studied, four major phenols were identi-
fied. Their structures were elucidated via CAD of their
deprotonated forms and comparison to CAD of model com-
pounds (Figure 5b) [30].

Conclusions
A tandem mass spectrometry method is presented for the
selective detection of the phenol functionality in di- and
polyfunctional analytes related to lignin. The method is based
on gas-phase ion–molecule reactions of the deprotonated
analytes with DEMB. All deprotonated phenol model com-
pounds form stable DEMB adduct ions ([M –H + DEMB]–) or
DEMB adduct ions that have lost a methanol molecule ([M –H
+ DEMB-MeOH]–) except for the ones with a strong electron
withdrawing substituent in the ortho- or para-position.
Deprotonated phenols with an adjacent phenol or

hydroxymethyl group and those with a conjugated carboxylic
acid group can be identified based on the formation of DEMB
adduct-MeOH, although this product ion is formed via differ-
ent mechanisms for these two types of analytes. Deprotonated
compounds with no phenol functionalities and phenols with an
electron-withdrawing substituent in the ortho- or para-position
were unreactive toward DEMB. By coupling the above tech-
nique with HPLC, an entire class of analytes can be identified
in complex mixtures by using a single HPLC run. A catalyti-
cally converted Miscanthus biomass sample was analyzed to
demonstrate the potential of tandem mass spectrometry based
on ion–molecule reactions as a high-throughput screening tool
for lignin degradation product mixtures.
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