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A composite materials strength can significantly depend on the constitutive description of 

interfaces. A computational model of composite deformation should, therefore, incorporate 

interface constitutive behavior. These interfaces poses several challenges in studying them 

due their length scales of micrometer to nanometer as well the coupling of other factors 

such as confinement during the loading. Thus, separating main phase constitutive behavior 

from interface constitutive behavior in mechanical property measurement experiments is 

an arduous task. In this work, an epoxy interface between glass plates is analyzed under 

quasistatic and dynamic loading conditions to obtain a description of interfacial 

constitutive response at strain rates from 10-2 to 103 s-1. The experiments were conducted 

with indenters of radius 1, 10 and 100 µm on the interfaces thicknesses of 1, 10 and 100 

µms within the spatial error tolerance of less than 3 µms. The interface thickness was 

verified with the Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray 

(EDX) analysis. The approach relies on describing interfaces as a confined material phase 

between two unconfined phases. Dynamic microscale impact tests are used to obtain stress-

strain response as a function of strain rate for the analyzed interfaces. The data was then 

subjected to statistical analysis to remove experimental errors. An analytical model was 

developed to find the confinement effect and the solution was verified by capturing stress 

maps with Nanomechanical Raman Spectroscopy (NRS) experiments pre and post 
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experiments to analyze the change in the stress distribution around interfaces. Based on the 

analyses of confinement effects, a constitutive model is proposed to predict the interface 

deformation behavior with a dependence on both strain rate and confinement effect. This 

model is further used in the finite element simulations to predict and quantify the role of 

interfaces in multilayered materials. 

Equation Chapter (Next) Section 1 
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CHAPTER 1. INTRODUCTION 

1.1 Objectives and Significance 

The development of advance materials have led researchers to look for inspirations from 

various material systems such as naturally occurring shells in shrimps, crabs etc [1, 2]. 

These materials are providing important insights into the hierarchical design needed to 

improve the properties such as strength and toughness of the materials. One of the key 

factors contributing to the exceptional properties of these materials is their multilayered 

structure. The presence of multilayers provides them higher tensile strength in metals, 

better brittle properties in ceramics etc. These multilayers also lead to higher strength to 

weight ratio, less friction and wear, higher temperature operation, higher corrosion 

resistance, higher fracture toughness etc. They key to translate these properties in 

developing better materials lies in understanding the interface behavior between the layers 

of multilayered materials. 

The development of new composites as well as metallic multilayered alloys needs a better 

understanding of the behavior of these interfaces as a function of rate of deformation and 

their composition. The understanding of constitutive behavior of these interfaces will also 

lead to development of finite element models to be able to predict the deformations under 

different loading scenarios. Thus, a combination of the understanding of the constitutive 

behavior of the interface and their role in the bulk properties of the multilayered materials 

is an essential piece needed for the development of better multilayered materials. The 

current work investigates the role of these interfaces. 
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1.2 Research Challenge 

The multilayered materials are made up of thousands of individual layers which makes it 

difficult to identify and extract its constitutive behavior. The length scale of these interfaces 

poses another challenge that needs special experimental tools to perform the experiments 

which are otherwise not possible in regular uniaxial tests. These interface range from few 

nanometers in metals to few micrometers in ceramics and other composite materials. These 

interfaces also vary in their thickness across same material system with a gradient effect. 

Therefore, a new method needs to be developed to study the behavior of these individual 

interfaces. 

It is in addition to identifying the zone around the interfaces where they play a role during 

the application of different loads as well the effect of its structure. Thus, the experiments 

needs to be designed such that these deformations in the interfaces could be visually 

monitored too. It is also not clear how different factors such as strain rates of loading, 

presence of other interfaces in nearby region, temperature changes during the experiment 

and the effect of interface composition are coupled with each other. A thorough 

investigation is needed to decouple these effects and to develop constitutive laws defining 

their roles.  

The main research challenge to decouple the behavior of the interfaces from the main 

phases of the material is addressed in the case of epoxy interfaces between glass plates. 

The confinement effect on these interfaces is also addressed and accounted for in the 

constitutive law along with the effect of coupling. It is then further implemented in finite 

element software to quantify the role of individual interfaces. 
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1.3 Chapter Outline 

Chapter 2 gives an overview of the role of interfaces in different materials studied by the 

authors as well as other researchers. The differences between biomaterials and metallic 

materials are highlighted. An account of different tools such as molecular dynamic 

simulations, theoretical frameworks is given with the advantages and disadvantages of each 

method. In the end, a description of the current technique is provided. 

Chapter 3 describes the experimental tools used to study the interfaces in this research. The 

first part discusses the nanoindentation principles and the advantages of this technique. The 

second part describes the use of nanoscale impacts to study the high strain rate behavior of 

these materials. The third part gives a detailed account of the nanomechanical Raman 

spectroscopy technique and its unique advantage in measuring the stresses in a non-contact 

way. 

Chapter 4 includes the nanoindentation and nanoscale impact experiments performed on 

the samples. It starts with the sample preparation methods used to make the samples. It is 

followed by the description of data collection methods as well as their statistical analysis. 

The rate dependence on the data is discussed which is further used to find the stress-strain 

relations of the interfaces.  

Chapter 5 further discusses the stress-strain relations of interfaces and the observed 

differences in the material in the interface and its native state. The difference is found to 

stem from the confinement effect which is further investigated and an analytical model is 

developed to account for it. The analytical model is validated using nanomechanical Raman 

spectroscopy measurements. 
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Chapter 6 includes the step by step explanation of the development of the new constitutive 

law which couples the confinement effect and the strain rate effect in the deformation of 

interfaces. It is further developed for difference sizes of interfaces in the materials. 

Chapter 7 utilizes the new confinement model and shows its application in quantifying the 

role of interfaces in different material systems using finite element software ABAQUS. 

The simulations are compared with the experimental results to validate the model. The 

contribution of each individual interface is shown from the energy absorbed by each 

interface. 

Chapter 8 summarizes the thesis with the conclusions and provides recommendations for 

the future work. The possible applications of the proposed model are described along with 

mentioning its limitations. 

1.4 Contributions 

There are three main contributions of this thesis, which gives a new direction in 

understanding the multilayered material behavior: 

1. An interface constitutive law is developed that couples the strain rate dependence 

and the confinement effect in the deformation of interfaces. The law is developed 

based on the experimental investigation of epoxy interfaces between glass plates. 

The law is further implemented in finite element software to quantify and predict 

the role of interfaces in the deformation of multilayered materials. 

2. An analytical solution is developed to calculate the multiaxial stresses in the 

interfaces in materials. The analytical solution also provides the stress distribution 

across the depth of the interfaces. The analytical solution is further verified using 
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nanomechanical Raman spectroscopy experiments which is developed in our lab to 

measure the stress distributions in a non-contact way. 

3. The scope of the nanoindentation method is further stretched to be able to predict 

the strain rate dependence on materials from nanometer to micrometer length scale 

which is otherwise not possible using the conventional uniaxial tests.  

Equation Chapter (Next) Section 1 
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CHAPTER 2. INTERFACES IN MATERIALS 

2.1 Interfaces in Biomaterials 

Naturally occurring materials have been of keen interest in the materials community with 

the aim of understanding and reproducing the exceptional strength and toughening 

mechanisms present in these materials, e.g. exoskeletons of shrimps [2, 3], lobsters [4, 5], 

crabs [6, 7], nacre [8, 9] etc. All such materials share some common traits such as a strong 

hierarchical structure, layered structure, composition of material with both minerals and 

fibers, gradient in the thickness of layers, etc. These naturally occurring materials have 

been able to manipulate the characteristics mentioned above to customize the design of 

their exoskeletons for survival in different habitats, cuticles to attack the predators to 

mention a few applications. The one important parameter along with the material 

composition in such designs is the role of the interfaces in the multilayered structure. In 

our earlier articles, we highlighted the difference between the mechanical properties of two 

similar species of shrimp Pandalus Platyceros and Rimicaris Exoculata, that are found at 

sea level and at 2300 m depth in the sea as a function of habitat with focus on wet vs dry 

conditions [3], temperature effect [2], and mineral composition [10, 11]. 

The individual layers in the Bouligand exoskeleton consist of chitin based fibrils coated in 

proteins at nanometer level. Such fibrils bind together to form fibers. These fibers are then 

woven together to form chitin-protein layers. These layers are stacked in a twisted plywood 

structure known as the Bouligand pattern. The spacing between such woven layers is filled 

with proteins and biominerals [1-3, 10, 11]. Raabe et al. [5, 12] studied the structure and 

mechanical properties of lobster exoskeleton reporting the hardness and the reduced 
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stiffness with depth of exoskeleton of lobster. Boßelmann et al. [4] showed the direct 

correlation between increase in mineral content and hardness of lobster claw. Chen et al. 

[7] compared the mechanical properties of the crab shell in dry and wet conditions 

revealing the effect of wet conditions. Sylvain et al.[13] showed the effect of the packing 

of the calcite layers in the protein at nm scale on the high strength and toughness of nacre. 

Feng et al. [9] found that the crack deflection, fiber pull-out and organic matrix bridging 

are the three main toughening mechanisms acting on nacre along with the organic matrix 

which also plays a major role in the toughening. Chen et al. [14] investigated the structure 

of natural ceramic mollusk shell for fracture strength and fracture toughness while 

identifying different shapes and arrangements of laminated aragonites and organic layers. 

Schneider et al. [15] developed models that are capable of predicting strength values for 

real biomaterials up to five hierarchical levels. This discussion is a small summary of work 

done in the natural materials area with focus on Bouligand structure.  

A more involved list of the experimental work done at the interfaces in various materials 

is presented in Table 2-1. The table lists the material type, key aspects of measurements, 

and authors by year. This list, even though, does not list each and every possible article in 

the literature (and only lists work going back 15 years), gives the reader a comprehensive 

review of the experimental techniques and measurements focusing on interfaces. 
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Table 2-1 List of experimental research at the interfaces in materials. 

 

Year Materials Key aspects Authors 

2015 Shrimp exoskeleton Layered structure with thickness 

gradient. Interface helps in crack 

containment 

Verma et al. [1, 

10, 11] 

2015 Polypropylene/glass 

fiber composite 

Interlaminar interface strength 

contribution in impact resistance 

Sorrentino et 

al.[16] 

2015 TiAl64/Steel  Interface properties fluctuation in 

dynamic conditions 

Verma and 

Tomar [17] 

2014 PP/glass fiber Interface strength in low velocity 

impact 

Simeoli et al. [18] 

2014 Nacre Organic interlamellar layers 

contribution to strength 

Lopez et al. [19] 

2014 Calcia and Silica Ceramic bioinspired composite 

from nacre 

Bouville et al. 

[13] 

2013 Ti-43Al-9V/Ti-6Al-4V Thermal behavior of interface 

joints 

Wang et al. [20] 

2013 Suture Tendon Stitching at suture-tendon 

interface 

Savage et al. [21] 

2013 Biomaterials Mechanical characterization Roeder [22] 

2013 Ti/Ni, Ti64/Steel Interfacial strength properties Kundu et al. [23, 

24] 



9 

 

Table 2-1 Continued 

2013 Ti64/Bone Implant/bone interface Grandfield et al. 

[25] 

2013 Alloy 718 Welded interface properties Damodaran et al. 

[26] 

2013 Glass/epoxy Impact fatigue Azouaoui et al. 

[27, 28] 

2012 Polymide and nano clay Bioinspired honeycomb structure Xu et al. [29] 

2012 Odontodactylus 

scyllarus 

Multiphase bio composite Weaver et a. [30] 

2012 Fiber-metal laminate Impact resistance Sadighi et al. [31] 

2012 Ti/Ni/Steel Diffusion bonded layers Sam et al. [32] 

2012 Ti/Ni/Steel Diffusion bonded joint Peng et al. [33] 

2012 Cu/Nb multilayers Effect of He ion implants Li et al. [34] 

2012 Ti/Steel Interface microstructure Kundu et al. [35] 

2012 Glass/epoxy Interface strength by pull-out tests Koyanagi et al. 

[36, 37] 

2012 Beetle forewings Bioinspired honeycomb structure  Chen et al. [38] 

2012 Copper Role of grain boundary in fracture 

of material 

Cerreta et al. [39] 

2011 Biomaterials Design principles Wu et al. [40] 

2011 Barnacle exoskeleton Nanomechanical properties of the 

cuticle 

Raman et al. [41] 
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Table 2-1 Continued 

2011 CNF/Polymer 

composite 

Tensile stress measurements Mohan et al. [42] 

2011 GFRP laminates Impact strength of the laminates 

under impact 

Menna et al. [43] 

2011 Bone Structure and hierarchical 

organization 

McNamara [44] 

2011 Natural materials Energy dissipation by organic 

layers 

Mayer [6] 

2011 Soft tissues Contact stresses dissipation Korhonen et al. 

[45] 

2011 Pt-Ir coatings Adhesive interlayer strength Klocke et al. [46] 

2011 TiN coatings Effect of interface on cyclic 

damage 

Chen et al. [47] 

2011 Magnesium alloy Bone –implant interface Castellani et al. 

[48] 

2010 Ti64 coating Wear properties of coatings Wheeler et al. 

[49] 

2010 Lobster cuticle Hierarchical organization of 

layered structure 

Svetoslav et al. 

[50] 

2010 Concrete/epoxy Fracture characterization Lau et al. [51] 

2010 Carbon/epoxy Time and temperature 

dependence of interface strength 

Koyanagi et al. 

[52] 
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Table 2-1 Continued 

2010 Nacre Interconnectedness of chitin 

interfaces 

Bezares et al. [53] 

2010 Biological material Hierarchical structure Bechtle et al. [15] 

2009 Fish Anisotropic design Lifeng et al. [54] 

2009 Nacre  Biomimetic design Luz et al. [55] 

2009 AlTiN and TiAlCrN Coating strength Fox-Rabinovich 

et al. [56] 

2009 Graphene Nanoindentation property 

measurements 

Das et al. [57]  

2009 Mollusk shells Cross laminar interface links Barthelat et al. 

[58] 

2008 Dentin Residual tensile stress effect Hernandez et al. 

[59] 

2008 Particulate-polymer 

nanocomposite 

Particle/matrix interface adhesion Fu et al. [60] 

2008 Ag/Ni Interface stress measurements Birringer et al. 

[61] 

2008 Crab exoskeleton Structure and mechanical 

properties 

Chen et al. [7] 

2007 Ag/Ni Bilayer thickness effect on the 

properties 

Kang et al. [62] 

2006 Glass/ carbon fiber Temperature effect at interfaces Ray [63] 
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Table 2-1 Continued 

2006 Lobster exoskeleton Chitin protein microstructure Raabe et al. [5, 

12] 

2006 Biological materials Design principles Mayer [64] 

2005 Natural Fiber-

Polyolefin 

Interfacial strength between fiber 

and matrix 

Sain et al. [65] 

2004 Bivalva shell Ceramic polymer interface 

fracture strength 

Chen et al. [14] 

2001 Cement/cement Interface strength based on time 

of cure 

Park et al. [66] 

2000 Nacre Alumina/Kevlar composite cased 

on nacre 

Feng et al. [9] 

1999 Glass/epoxy Glass epoxy cross linked interface Swadener et al. 

[67] 

1999 Ag/Ni XRD interface stress 

measurements 

Josell et al. [68] 

1998 biomaterials Interfaces in biomaterials Bonfield et al 

[69] 

1996 Stone crab Hardness measurements across 

the thickness 

Melnick et al [70] 

1995 Ag/Cu Interface stress measurements Berger et al. [71] 

1994 Glass/epoxy Interface degradation Chateauminois et 

al. [72] 
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Table 2-1 Continued 

1993 Metal/ceramic Interface strength measurement 

by laser 

Gupta et al. [73, 

74] 

 

 

2.2 Interfaces from Molecular Dynamic Simulations Perspective 

The interfaces in several materials are also studied using molecular dynamic tools to 

be able to predict the mechanisms of deformation in interfaces at molecular level. One 

unique feature that determines the properties of natural biomaterials is the interfacial 

interactions between organic and inorganic phases in the form of protein (e.g. chitin (CHI) 

or tropocollagen (TC))-mineral (e.g. calcite (CAL) or hydroxyapatite (HAP)) interfaces, 

[75-78]. The size of protein-mineral interfaces can be enormous. Such interfaces control 

biological reactions, and provide unique organic microenvironments that can enhance 

specific affinities, as well as self-assembly in the interface plane that can be used to orient 

and space molecules with precision. Interfaces also play a significant role in determining 

structural integrity and mechanical creep and strength properties of biomaterials. In the 

structural studies of such biological materials, it is observed that at the mesoscale (~100 

nm to few µm), the mineral crystals are preferentially aligned along the length of the 

organic phase polypeptide molecules in a hierarchical (e.g. staggered or Bouligand pattern) 

arrangement [79-83]. The length scale and complexity of microstructure of hybrid 

interfaces in biological materials make it difficult to study them and to understand the 

underlying mechanical principles, which are responsible for their extraordinary mechanical 

performance. One of the most important aspects of understanding the influence of 
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interfaces on natural material properties, is the knowledge of how stress transfer occurs 

across the organic-inorganic interfaces. Molecular modeling provides a way to study such 

phenomenon at the length scale of the individual molecular components and a brief review 

of some of these studies is given below.  

The effect of different kinds of interfaces was modeled in our research in the case of 

chitin-calcite interactions, Qu et al [84, 85]. These studies focused on the role of interface 

related mechanisms in determining overall mechanical deformation properties while also 

addressing the real aspect of stresses at interfaces. A brief literature survey list of the 

simulation work done at the interfaces in materials is presented in Table 2-2. The table lists 

the material type, key aspects of measurements, and authors by year. Even though the list 

does not contain each and every possible article in the literature, it gives the reader a general 

overview of the modeling techniques and measurements available in the literature on 

biomaterials, metals, composites and ceramics. 

 

Table 2-2 List of modeling research at the interfaces in materials. 

Year Materials Key aspects Authors 

2015 Chitin-calcite Effect of interface composition Qu et al. [84, 85] 

2014 Collagen Interface thermomechanics Qu et al. [86] 

2014 Stainless Steel Dislocations at grain boundaries McMurtrey et 

al.[87] 

2014 Nacre like aluminium 

composite 

Impact behavior of wavy interfaces Flores-Johnson 

et a. [8] 
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Table 2-2 Continued 

2013 Collagen Viscoelastic properties Gautieri et al. 

[88] 

2012 Laminate composite Low velocity impact strength Shi et al. [89] 

2012 Graphene Fracture at interface of the graphene 

joints 

Fang et al. [90] 

2011 Fcc/bcc interface Dislocation mechanisms Zhang et al. [91] 

2011 Cu/Nb interface Interface dominated deformation 

mechanisms 

Wang et al. [92] 

2011 Fcc/bcc/ multilayers Interface shear strength Wang et al. [93] 

2011 GFRP laminates Impact strength  Menna et al. 

[43] 

2011 Pt-Ir coatings Adhesive interlayer strength Klocke et al. 

[46] 

2010 Steel/steel Stress distribution on joint line of the 

material 

You et al. [94] 

2010 composites Failure of interface Wisnom [95] 

2010 Nacre Interconnectedness of chitin 

interfaces 

Bezares et al. 

[53] 

2009 fish Anisotropic design of the fish 

exoskeleton 

Lifeng et al. [54] 

2009 Cu/Nb Crystal elastic/plastic model for 

nanoscale metallic multilayers 

Wang et al. [96] 
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Table 2-2 Continued 

2008 Ag/Ni Interface stress measurements Birringer et al. 

[61] 

2002 Bentonite clay Diffusivity of chemical species Ichikawa et al. 

[97] 

2001 Carbon-epoxy Stress transfer Paipetis et al. 

[98] 

1999 Agglomerates Impact strength based on surface 

energy 

Subero et al. [99] 

 

2.3 Interface from Theoretical Formulations 

The concepts of dividing surface, interfacial excess energy and interfacial stress were 

initially introduced by Gibbs [100]. According to the Gibbs formulation, the amount of 

reversible work dw  performed to create new area dA  of a fluid or solid surface can be 

expressed as 

 .dw dA   (2.1) 

Here,   is the surface tension. Interface excess energy is directly correlated to interface 

mismatch stress with both having origin in orientation mismatch at the interfaces. The 

surface contributions to the thermodynamic quantities are defined as the excesses over the 

values that would be obtained if the bulk phases retained their properties constant up to a 

two-dimensional imaginary dividing surface embedded in a three- dimensional continuum. 

In other words, the interface (not interphase) is a mathematical surface of zero thickness 
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over which the thermodynamic properties change discontinuously from one bulk phase to 

the other. The excess amount is associated only with the dividing surface. These 

formulations were developed for continuum mechanics by Shuttleworth [101] relating the 

interfacial excess energy to surface stress [101]. The formulations were further developed 

by Gurtin and coworkers to find relations between the surface and body stresses[102].  

   (2.2) 

Here, T  , u  and E  denote, respectively, the stress, displacement and the strain field. The 

constants ,   and   are the mass density and Lame moduli for body while with 

, ,o o    and for the surface.   denotes the surface stress. Such relations have been 

widely used and modified in the recent years by Sharma et al.[103], Yang et al.[104], 

Cammarata et al.[105] etc. Dingreville and Qu[106, 107] related surface stress at interface 

with interface in-plane strain and in-plane stress based on a modification of Shuttleworth 

and Herring43 model, applicable to coherent interfaces and recently extended to include 

some degree of incoherency. The interfacial excess energy equation for the case of a flat 

interface between two elastic solids as shown in Fig. 2-1 were given by Dingreville and 

Qu[106-108]. The stress and strain far away from the interface are defined as  

 
3 3

lim , lim .
x x

 
 

 σ σ ε ε   (2.3) 
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Fig. 2-1. (a) Schematic of flat interface (b) Distribution of strain energy near interface. 

Figure adapted from Dingreville and Qu [107] 

Here, regions with 3 0x   are denoted by positive sign and regions with 3 0x   are denoted 

by negative sign. In the given scenario, the standard Gibbs definition of the interfacial 

excess energy per unit undeformed area is given by  

    
0

3 3 3 3

0

(x ) (x ) ,w w dx w w dx



 



       (2.4) 

where,  

  3 0

1 1
ˆ ˆ : : : : : ,

2 2

s s s s s t tw x c   τ ε ε C ε σ M σ   (2.5) 

 
1 1

: : : : ,
2 2

s s s t tw      ε C ε σ M σ   (2.6) 

are the elastic strain energy densities(in the undeformed configuration) corresponding to 

the total and remote fields, respectively. Specifically, sε  and tσ  are, respectively, the in-

plane and transverse stress tensors. The integrals needs to be carried out only over the 
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thickness of the interfacial region, h h   as given in Fig. 2-1(b). In the flat part, the 

transverse part of the stress tensor is uniform throughout the biomaterial, .t t t      

Furthermore, continuity of displacement along the interface leads to .t t t      Solving 

it further the interfacial excess energy can be written as 

 (1) (2) (2)

0

1 1
: : : : : ,

2 2

s s s t t      Γ ε ε Γ ε σ σ   (2.7) 

where,  

 (1)

0 0 3 3 3 3
ˆ ˆ( ) , ( ) ,sw x dx x dx

 

 

   Γ τ   (2.8) 

 
0

(2)

3 3 3 3

0

(x ) (x ) ,s s s sdx dx



 



          Γ C C C C   (2.9) 

    
0

(2)

3 3 3 3

0

(x ) (x ) .dx dx



 



    Λ M M M M   (2.10) 

Equation (2.7) gives the interfacial excess energy as an explicit function of the in-plane 

strain and transverse stress tensors. The interfacial excess stress is given by  

 
0

3 3 3 3

0

(x ) (x ) .s s s s sdx dx



 



          Σ σ σ σ σ   (2.11) 

Which is further modified as 

 
(1) (2) : ,s s t   Σ Γ Γ ε σ H   (2.12) 

with  

    
0

3 3 3 3

0

(x ) (x ) .dx dx   


 



    H   (2.13) 
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In the case of isotropic bimaterials with Lamé constants   and  , the inplane biaxial 

stress is given by / 2s

  , where 

 
(1)

3

4
2s s tS S

S

T

K
K

E
  


        (2.14) 

Clearly, SK  is the plane stress bi-axial bulk modulus of the interface. The individual 

components of the interfacial excess stress tensor are 

 
(1)

11 11 11 3

2
( ) 2 ,s s s tS S

S S S

T

K
K

E



             (2.15) 

 
(1)

22 11 22 3

2
( ) 2 ,s s s tS S

S S S

T

K
K

E



             (2.16) 

 (1)

12 12 122 .s s

S       (2.17) 

The given equations can be simplified for a 1-D case. The indentations are assumed to 

cause a 1-D deformation in the elastic limits at low loads. For the case of isotropic solid, 

the interfacial isotropic elasticity formulation gives the final form of interfacial mismatch 

stress components as 

 
(1) *, , *, , 2

2 2 .
S S

S S m S S m S S S S S K

E


         


          (2.18) 

Here, S  is the in-plane interfacial mismatch stress in the direction of indentation. (1)  is 

the elastic stress component.   and   are lame’s constant with ‘*’ denoting the interfacial 

components. E  and    are the transversal components modulus and stress. SK  is the in-

plane bi-axial modulus.   is the poisson’s ratio, S  is the in-plane strain and ,m S  is the 

interfacial mismatch strain. In the present case we are only looking at the normal 
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component of the interfacial mismatch stresses (component in the direction of indentation). 

The derivation for this equation can be found in the given references. Considering the case 

when the in-plane mismatch strains are ignored, the equation can be simplified as 

 
(1) 2

2 .
S S

S S S S S K

E


     


        (2.19) 

The (1)  is the applied stress during the dynamic indentation. S is the strain calculated 

from the dynamic indentation data. The material properties for the interface and bulk 

materials are obtained from the tensile tests.    is calculated by dividing the applied load 

with the surface area of the cube corner indenter and the taking its component in the 

transverse direction. This method provides the way to account for the transverse stresses 

in the interfaces along with the in-plane strain contribution.  

In an another study, a method to calculate the stresses of interfaces with vanishing thickness 

was presented by Ustinov et al. [109] .The authors describe surfaces and interfaces as 

transversally isotropic to the interface normal. The variation of density of every volumetric 

surface value (such as energy and stress) is understood as the integral of the excess of the 

corresponding value over the interface (or surface) area over the normal direction to the 

interface (surface). The conditions of compatibility and equilibrium for an interface 

between the bulk phases 𝐴 and 𝐵 are introduced as: 

 
A B

ij ij ij      (2.20) 

 
A B

ij ij ij        (2.21) 

The first condition means, that the strains in the interface plane (𝑥, 𝑦)  
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Fig. 2-2. Schematic of the interfaces used for elastic constant determination. Three 

layered material of the initial step (left) and modified intermediate layer C' (middle) with 

vanishing thickness h’ 

Using the two index notation as in the previous sections, a three layered elastic, transverse 

isotropic material is described by a set of constants

 11 12 13 33 44 66 11 22  ,  , , , , / 2i i i i i i i iC C C C C C C C  . The alphabetic character 𝑖  refers to the 

respective layers. For the intermediate layer with the thickness  ℎ, we designate  i C . 

Analogously, we designate i A  for the upper and i B  for the lower layer. The z 

axis is assumed to be normal to the interfacial area, x and y are in-plane to the interface. In 

the following, a homogeneous loading of the considered structure is assumed. The elastic 

energy of the system is described as 

   

 

 2  2  2

11 12 13 33

0
 2  2  2

66 66 44

2 2

2

C C C C C C C C C C C C

xx yy xx yy zz xx yy zz
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yz xz
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U U

C C

     
  
   
 

 . 

(2.22) 
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In this equation, 0U  is the elastic energy of the upper and lower layers. Authors replaced 

the intermediate layer C  in a next step by three new layers, where the thickness of the new 

intermediate layer with the elastic constants 
'

ijC  is h h   (Fig. 2-2). The new upper and 

lower layers of the initial intermediate layer have the elastic constants of the initial upper 

and lower layers. The constants 
'

ijC  of the modified intermediate layer are chosen so, that 

the overall elastic energy of the system remains the same. Now, the thickness h  is reduced 

stepwise towards zero and the elastic constants of the layer are adjusted simultaneously. A 

new two layered system with additional interface elastic constants is obtained. Its elastic 

energy is 
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While the longitudinal strains , C C

xx yy

 
 and 

C

xy


 stay the same as for the initial system 

 

'

'

'

, 

,

 

A B C C

xx xx xx xx xx

A B C C

yy yy yy yy yy

A B C C

xy xy xy xy xy

   

   

   

 . (2.24) 
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The following relations for the transverse strains are presented, by claiming that the surface 

displacements should coincide with the initial system 

 
' '

2 2

A B C C

xz xz xz xz

h h h h
h h


  


   (2.25) 
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   (2.27) 

By substituting equation (2.25)-(2.27) in (2.23) the elastic energy of the modified system 

is expressed in terms of the strains of the initial system. Solving the equation system which 

results by equating U  to eff U  after performing the limit transition 0h  the elastic 

properties ijA  of the interface with vanishing thickness can be expressed as: 

 11 22 12 662A A A A    , (2.28) 
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It is evident, that these elastic constants are dependent only on the thickness of the initial 

layer h  and not on the (vanishing) thickness 'h . In the case of thickness tending to zero, 

these constants are defined as, 
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33 33 44 44 66 13

, , ,
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  (2.34) 

A list of the theoretical work at the interfaces in materials is presented in Table 2-3. The 

table lists the key aspects, and authors by year. Even though the list does not contain each 

and every possible article in the literature, it gives the reader a general overview of the 

theoretical background on the interface mechanics formulations available in the literature 

on biomaterials, metals, composites and ceramics. 

Table 2-3 List of theoretical research at the interfaces in materials. 

Year Key aspects Authors 

2014 Transverse Interfacial stresses Dingreville et al . [106] 

2013 Interface elastic constants for finite thickness Ustinov et al. [109] 

2010 Surface/interface stress effect Zhang et al. [110] 
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Table 2-3 continued 

2009 Interface elastic constants by a semi analytical 

approach 

Dingreville et al.[111] 

2008 Interfacial Excess Energy Dingreville et al. [107] 

2005 Size dependent elastic constants Duan et al. [112] 

2005 Surface free energy in elasticity  Dingreville et al.[108] 

2004 Surface/interface bulk elasticity Sharma and Ghanti. 

[103] 

1998 Interface stress at atomic level Nix and Gao [113] 

1997 Interfacial nanostructured materials Cammarata et al. [105] 

1970 Diffusion at grain boundary Cahn [114] 

1975 Surface stress continuum formulation Gurtin and Murdoch 

[102] 

1953 Surface energy and surface stress  Herring [115] 

1950 Surface stress continuum formulation Shuttleworth [101] 

1928 Surface Energy Gibbs [100] 

 

2.4 Current Techniques/literature Review 

It is well established that a material exhibits changes in its constitutive response as a 

function of changes in temperature, length scale of analyses, and strain rates, [1, 2, 116, 

117]. The material damage under different impact scenarios such as due to sand particles, 

various projectiles etc. occur via different deformation mechanisms. An understanding of 

such mechanisms is required to develop new constitutive laws. A number of constitutive 
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deformation laws for polycrystalline materials are available in literature for dynamic 

loading [118]. Recently, the focus has shifted on developing these models for the dynamic 

loading failure in interfaces to determining the material failure [118]. The current work 

aims at investigating interface failure under micro scale dynamic impacts. There are several 

material constitutive models available to understand the strain rate effect on material’s 

dynamic strength and failure [119-122]. The impact damage propagates inside a material 

via stress or shock waves causing large inelastic deformation. Development of material 

models for such deformation cases requires precise experiments because of smaller 

temporal and spatial resolution required. One such example is the split Hopkinson bar 

experiment for intermediate strain rate experiments in tensile, torsion, and compression 

modes [123]. The experimental procedure involves impacting bulk material samples and 

measuring average stress-strain response for the whole sample. The development of 

nanoindentation techniques in the last few decades has enabled measurement of nanoscale 

to microscale material site-specific behavior such as an interface sandwiched between two 

materials [124]. The present work focuses on using a small-scale impact test based on 

nanoindentation at high strain rates to measure strain rate dependent interface constitutive 

behavior. 

The interface deformation description has been of interest since Gibbs work on the 

surface energy [100]. The interfacial failure is significantly dependent on the surface and 

interface stress. The plastic deformation of interfaces should also take into account stress 

mismatch because of the material property differences on either side of interfaces. In the 

case of nanomaterials, surface and interface stresses become significantly important owing 

to the significantly high surface to volume ratio. As described by Zhang et. al. [110], the 



28 

 

interface stress consists of two parts, both arising from the distorted atomic structure near 

the interface: the first part, independent of the deformation of solids, is the interface 

residual stress, and the second part which contributes to the stress field related to the 

deformation is related to the interface elasticity. Interface plastic deformation, particularly 

the initial yield point is sensitive to the local strain (or local stress) of a heterogeneous 

material, which includes both the local surface or interface residual stress and local stress–

strain relationship. The concepts of dividing surface, interfacial excess energy, and 

interfacial stress were initially introduced by Gibbs [100]. Interface excess energy is 

directly related to interface mismatch stress with both having origin in orientation 

mismatch at interface. For example, if an interface is considered as a sharp zero thickness 

entity then the interface excesses thermodynamic quantitates would be the difference 

between the bulk phase and interface properties in a three- dimensional continuum. The 

excess amount is associated only with the dividing surface. Based on such postulate, 

surface stress formulations were developed for continuum mechanics by Shuttleworth [101] 

relating the interfacial excess energy to surface stress [101]. The formulation were further 

modified by Gurtin and coworkers to find relations between the surface and body stresses 

[102]. Such relations have been widely used and modified in the recent years by Sharma et 

al. [103], Yang et al. [104], Cammarata et al. [105] etc. Dingerville and Qu [107] relating 

surface stress at interface with interface in-plane strain and in-plane stresses based on the 

modification of Shuttleworth and Herring model, applicable to coherent interfaces and 

recently extended to include some degree of incoherency. In the present case the analyzed 

interface is of finite thickness made up of a different material compared to the adjacent 

phases. The response of interfaces under dynamic and quasistatic loading is modeled in 
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this work by developing a dynamic response constitutive model. A quick look at the 

literature gives different dynamic strength models applicable to various strain rate ranges. 

The most popular models that cover the whole range of strain rates in dynamic loading 

experiments were developed by Steinberg-Guinan (SG) [119], Johnson-Cook(JC) [120], 

Steinberg and Lund (SL) [122], Zerilli and Armstrong (ZA) [121], and Fallansbee and 

Kocks [125] etc. The SG model is applicable for 1D plate experiments with limitations 

such as not being able to capture the evolving history. The ZA model and mechanical 

threshold stress (MTS) model of Fallansbee and Kocks [125] have their own advantages 

such as applicability at higher strain rates and describing the viscoplastic response up to 

strain rates of 104 s-1. The JC model is an empirical relation to describe the flow stress 

dependency on the strain rate, plastic strain, and temperature change with applicability up 

to strain rates of 104 s-1. 

To account for the confinement effects, the residual confinement stresses in the 

interfaces are measured using the Nanomechanical Raman spectroscopy experiments. 

There are other techniques, for example, destructive techniques with higher precision (nano 

scale) are transmission electron microscopy (TEM), methods such as electron diffraction 

contrast imaging (XTEM) and convergent beam electron diffraction (CBED). These 

techniques are expensive and require destructive elaborated specimen preparation [126]. 

The latter causes an extensive modelling for the interpretation of the XTEM  images [127]. 

Raman spectroscopy, which was originally used to obtain information about the chemical 

composition and crystallinity of the examined sample, was later found to be sensitive to 

applied stresses too. A relationship between the Raman peak and the applied loads was first 

found by E. Anastassakis, A. Pinczuk et al. [128] who applied uniaxial stresses along the ] 
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0 0 1    and 111    planes of silicon. The external load cause splitting and shift of the 

Raman peaks from which correlation coefficients were obtained. Raman spectroscopy has 

become a popular non-destructive stress measuring technique due to the presence of 

correlation between mechanical stresses and the Raman peak. This technique has been used 

in the literature to measure stresses in the crystalline materials such as Silicon [129] and 

polymers such as epoxy [130]. The JC model is therefore updated in the current article to 

account for both confinement effect and strain rate effect. In order to understand the 

underlying mechanisms of deformation and to measure constitutive response of interfaces, 

characterization techniques with sufficient resolution are needed. The interface properties 

of an epoxy interfaces between glass plates are investigated by nano and micro scale impact 

experiments. 

 

Equation Chapter (Next) Section 1 
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CHAPTER 3. METHODS 

3.1 Nanoindentation 

Nanoindentation is one of the preferred method to measure the mechanical properties 

of small volume materials at nano-micro scale. The interfaces investigated in this study are 

very thin which requires techniques better than the traditional uniaxial mechanical loading 

tests. Nanoindentation experiments have the ability to measure properties at desired sites 

such as grains and grain boundaries without any significant sample preparation. This makes 

nanoindentation an excellent tool to perform elastic-plastic property measurements at nano 

and micro-scales in the current experiments. The experiments are performed by indenting 

the interfaces at predefined peak load ( maxP ) by stepwise increase in the load or peak depth 

( maxh ) by increasing the depth in small steps. A spherical indenter was used for performing 

the indentations and the unloading portion of the curve was used for calculating the 

mechanical properties from contact mechanics framework [131, 132]. The maximum 

indentation load maxP and the corresponding are of indentation A  was measured during 

experiments. The hardness, H  is given as  

 max .
P

H
A

  (3.1) 

Here, A  for a spherical indenter is related to the contact depth radius ca  given as 

 23.14 .cA a   (3.2)                                                                                            

The reduced modulus, rE  is derived from the slope of the upper portion of the unloading 

curve as  
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 1.17 .r

dP
S E A

dh
     (3.3) 

Here, S  is the stiffness measured from the slope of unloading portion of the curve. rE  is 

then used to find the material modulus given by the relation,  

 
22 (1 )1 (1 )

.i

r iE E E

 
    (3.4) 

Here, E  and   are the Young’s modulus and the Poisson’s ratio of the specimen under 

examination. iE  and i  are respectively the Young’s modulus and the Poisson’s ratio of 

the indenter. More details on these procedures can be found in the author’s earlier articles 

[2, 3]. 

The load-displacement data was further analyzed to find the stress-strain behavior of the 

material. The contact depth was calculated from the indentation depth using equation(3.5), 
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Here, P  is the applied load, h  is the indentation depth, *E  is the modulus of material 

from the experiments, and R  is the radius of the indenter. 

The contact radius 
ca  was measured by equation (3.6) given as 

 
22 .c c cRa h h    (3.6) 

 The indentation stress and strain were then defined by equation (3.7) as  
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Here, 
e ch h h   is the elastic depth of indentation. These stresses and strains were also 

corrected for the zero load and zero displacement. Reader can find more details on the 

procedures in the articles by S. R. Kalidindi [133]. The experimental set up is a multi-

module mechanical testing instrument from NanoTest, Micro Materials Ltd., platform 2, 

shown in Fig. 3-1. The experimental set up consist of a 3D stage that allows it to move in 

x, y and z directions with nanometer precision. The instrument has a vertical pendulum 

with an indenter. The pendulum hangs on frictionless springs which indents during 

experiments in the horizontal direction. The force on the pendulum is applied through the 

electro-magnets located on the top of the pendulum. The depth of the indents is measured 

by the capacitance plates located behind the indenter. Authors have used the same 

experimental setup in their earlier studies for various materials characterization. More 

details on the equipment can be found in earlier articles by the authors in the following 

references [10, 11]. 

 

Fig. 3-1. Instrument set up, NanoTest, Micro Materials Ltd. 
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The samples were glued firmly to the substrate to avoid any displacements. The sample 

surface was observed under a microscope for any defects before mounting it on the stage. 

The experiments were performed at 25 oC . One of the most challenging task is to design 

experiments that are reliable and repeatable. It was ensured that the same experimental 

conditions were present while performing experiments for long time intervals. 20 

indentations were performed to get each data point. A 10 µm tip radius spherical indenter 

was used to perform experiments. 

3.2 Nanoscale Impact 

The impacts were also performed using the same set up described in the earlier section 

but with the high strain rate module [1]. The impacts were performed with the spherical 

indenter of 10 µm tip radius. The force on the pendulum was applied through a solenoid at 

the bottom and an electromagnet at the top from both ends of the pendulum as shown in 

Fig. 3-2. The instrument was resting on a vibration isolation table throughout the 

experiment and the temperature was kept stable. During the impacts, the pendulum was 

pulled from both ends by applying forces from both the electromagnet and the solenoid. 

For impact, the solenoid was switched off to release the pendulum to impact the predefined 

site. The data acquisition is similar to the nanoindentation. The position of the indenter is 

monitored and stored during the impacts. The displacement from the points of initial 

contact to the maximum penetration is considered as the maximum depth and is used in the 

strain rate calculations. The final depth after the impact is considered as the residual depth 

after the impact. The time is also recorded during the experiments corresponding to the 

displacement as shown in Fig. 3-3. It is used to calculate the velocity of the impacts by 

taking a first order derivative. 
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Fig. 3-2. Schematic of instrument set up for dynamic indentation tests. 

The average strain rate during an impact event was approximated by equation (3.8) given 

as 

 
max

.inV

h
    (3.8) 

Here, maxh  is the highest depth and inV  is the contact velocity. 

The energy absorbed in the sample deformation is calculated by equation (3.9) as [134, 

135]  

 
 2 2
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Pdh


    (3.9) 
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Here, P  is the load, m  is the mass of pendulum, outV  is the outgoing velocity and resh  is 

the residual depth. The area under the impact is given by equation(3.2). The effective 

dynamic hardness, dH  is given by equation (3.10) as derived by H. Somekawa and C.A. 

Schuh [135], 
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d

res
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ch


   (3.10) 

The strain rates during the experiments were in the range of 10 s-1 to 2000 s-1. The strain 

rate in the current experiments depended on the maximum load applied at the impacts. 

 

Fig. 3-3. Representative curve for impact experiment, showing hmax, hres, Vin, and Vout. 

The stress and strain were then defined by equation (3.11) as  
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    (3.11) 
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3.3 Nanomechanical Raman Spectroscopy Experiments 

The Nanomechanical Raman Spectroscopy (NRS) experimental set up was used to measure 

the residual confinement stresses in the interface. The experimental setup for Raman 

spectroscopy consisted of two key instruments, a high performance laser and a high 

resolution CCD image sensor. The Raman laser used in this research is 514.5 nm Ar+ laser 

(Modu-Laser Inc, UT). The laser was redirected to the sample surface for measurement 

using a single mode fiber (SMF). The back-scattered laser signal was collected by the same 

objective and sent to the spectrometer (Acton SP2500, Princeton Instruments Inc., NJ). The 

Mechanical load was applied using the nanoindentation platform manufactured by Micro 

Materials Inc., UK with load range from 0.1 mN to 500 mN, with the accuracy of better 

than 0.1 mN. The experimental setup to measure the Raman signal is shown in Fig. 3-4. 

 

Fig. 3-4. Setup of the Nanomechanical Raman spectroscopy experiments, (a) Nano 

indentation in front view. (b) Raman spectroscopy setup in top view. 
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The spherical indenter (5) was attached to the pendulum (1). The force was applied and 

measured with electro magnets (3). The displacement of the indenter was measured with 

the capacitor plates (2). One plate was connected to the pendulum and the other one was 

fixed. The displacement of the pendulum changes the gap between the two plates and 

therefore its electrical capacity. The displacement was therefore a function of this 

capacitance. The sample (6) was fixed with a sample holder (4) on a stage which was 

moveable in three directions (7). 

 

Fig. 3-5. Nanomechanical Raman spectroscopy experimental schematic describing the 

collection of Raman signal over the interface. 

 

The top view in Fig. 3-4 shows the setup of the Raman Spectroscopy. An Argon Ion Laser 

(16) was used as the monochromatic light source. The laser light had a wavelength of 514.5 

nm. The laser light was directed to a dichroic mirror (12) which reflected the laser light 

directed by the optical fiber cable (11) and narrowed by a collimator(9). An objective (10) 

focused the light on a 2 µm area on the sample. The emitted light from the sample with a 

different wavelength reflected back through the dichroic mirror. The reflecting mirrors (13) 

were used to redirect it to a notch filter (14). This filter rejected the laser light wavelength 
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portion of the spectrum, and transmitted all other wavelengths. An optical spectrometer 

(15) was placed behind the notch filter to analyze the Raman signal from the sample. The 

optical spectrometer resolved the signal corresponding to Raman peaks from the sample. 

The procedure to collect signal is as given in Fig. 3-5. 

During the process, the examined material is penetrated by the monochromatic laser light. 

The incoming photons generate a dipole moment in the molecules of the material. The 

amount of the resulting moment, called polarizability, is dependent on the molecule 

geometry and structure and therefore on the material. The Raman tensor describes the 

relation between the scattering intensity and the polarizability. The induced moment causes 

vibrations of the molecules and the energetic level of the molecule increases to a virtual 

level as shown in Fig. 3-6. Oscillating dipole moments generate electrical magnetic waves. 

The material emits a big part of this light elastically, which means the emitted light has the 

same wavelength, frequency and energy as the laser light. This (elastically) reflected light 

is called the Rayleigh scatter. The big arrows in the figure illustrates that this elastic 

reflection is the most probabilistic process. Additionally, a small amount of light with other 

wavelengths is emitted by the material. The photons of this light collide inelastically with 

molecules. This causes a variation of the emitted photon energy by Q . Since the energy 

of photons Q  is correlated to its frequency f  by Q gf , where g  is the Planck 

constant, the emitted light has different wavelength from the laser light. This inelastically 

scattered light is called the Raman Scatter and is the basis of the Raman Spectroscopy. 

During the collision of the photon and the molecule, the photon can add energy to the 

material or, in a constructive collision, the energy of the photon increases. The former case 

is called Stokes Scatter and the latter is called Anti-Stokes Scatter. Since the intensity of 
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the Anti-Stokes Scatter is normally significantly smaller, a common way is to measure only 

the Stokes Scatter. 

 

Fig. 3-6. Inelastic collisions of photons and molecules increase the energy level of the 

electrons to a virtual unstable state from which the energy is reduced back to a basic state 

by light emission 

3.4 Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) 

Scanning Electron Microscope (SEM) images were captured by the FEI Nova 

nanoSEM (FEI Company, Hillsboro, OR) located at Purdue University. The normal focus 

point for the Nova SEM is 5 mm. The accelerating voltage was set to 10.00 kV in a high 

vacuum chamber. Energy Dispersive X-ray (EDX) analysis was completed using the FEI 

Quanta 3D FEG Dual-beam SEM. The normal focus point for Quanta SEM is 10 mm. The 

accelerating voltage was 20.00 kV. 

Equation Chapter (Next) Section 1  
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CHAPTER 4. RATE DEPENDENCE ON STRESS-STRAIN 

4.1 Sample Preparation 

Single interface samples of glass and epoxy were prepared with an epoxy interface 

sandwiched between two glass phases. The samples were prepared using two part industrial 

epoxy procured from Composite Polymer Design (South St. Paul, MN, USA). The resin, 

CPD4505A, and hardener, CPD 4507B, were thoroughly mixed in recommended 

proportions of 100A : 28B by weight. The epoxy layer thickness was controlled by putting 

tabs of appropriate thickness in between the glass slides. The interface thickness was kept 

at 10 µm achieved by placing the epoxy between glass slides with 10 µm tabs on the sides. 

The samples were cured at a prescribed temperature of 250 oF for one day. The thickness 

of the interface in samples was measured with a microscope to make sure that it was in the 

error margin of 10±0.5 µm. The sample surfaces as shown in Fig. 4-1 were polished to 

remove scratches that could interfere with the data measurement during experiments. 

 

Fig. 4-1. SEM images showing Glass/Epoxy interface (a) before polishing and (b) after 

polishing with polishing steps listed at the top of the figure. 
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The EDX analysis was conducted on the samples before and after the experiments. Fig. 

4-2. shows SEM image illustrating the impact marks in the middle of the on the epoxy 

interface. The indent marks width was in the range of 8-10 micron. The depth of the impacts 

was approximately 2 micron. The EDX spectrum of the surface was obtained to identify 

the elements. The elemental mapping on the sample surface is given in Fig. 4-3. The sharp 

interface of epoxy between two glass phases is shown in Fig. 4-4. The individual element 

mapping on the epoxy and glass surface is shown in Fig. 4-4 (a) and Fig. 4-4 (b) 

respectively. 

 

Fig. 4-2. Post impact SEM image of glass/epoxy interface. 

 

Fig. 4-3. Elemental spectrum on the surface of the sample. 
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Fig. 4-4. Images showing the EDX elemental map on (a) epoxy (red) and (b) glass 

(green). 

4.2 Statistical Analysis 

The quasistatic and dynamic indentation data was post processed to calculate the 

stresses and strains, dynamic hardness of the interfaces, strain rates of impacts, impact 

depths, stresses at maximum penetration depth, impact velocity and impact energy. These 

calculations are subjected to experimental error, and their uncertainty depends on the 

experimental procedures. The error in a measurement is usually defined as the difference 

between its true value and the measured value. The term "uncertainty" is used to refer to 

"a possible value that an error may have." According to the description by Moffat RJ, the 

terms "uncertainty interval" and "uncertainty" are in general synonymous. They are also 

used in the current discussion, both referring to the interval around the measured value 

within which the true value is believed to lie [136]. The "uncertainty analysis" is the 

determination of the uncertainties in the individual measurements and their effect on the 

calculated results. The calculated values of dynamic hardness, strains, impact depths, etc. 

reflect the similar uncertainties. The bounds of uncertainty in the data collected during 

impact tests is shown in Fig. 4-5. The data points shown in blue color were the measured 

data from the experiments. The green line indicates the average value and the red lines 
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indicate the one standard deviation variation from the average. The data points that fall 

under the acceptable deviation from the average were used for further analysis. The data 

points outside the red lines were ignored due to too much error in the measurement, 

probably because of errors during the experiments. 

 

Fig. 4-5. Uncertainty analysis on the data measured from the experiments for (a) stress 

and (b) strain. 

Statistical analysis is another way to check for the validity of the experimental data 

collected over a range of experiments. It helps the used to interpret the data and deduce the 

correlations among different variables. A statistical check was done on the data collected 

from the current experiments before the analysis using a statistical analysis software SAS. 

A regression analysis was performed by writing a SAS program to check for the 

correlations between dynamic hardness and other parameters of the experiment. Table 4-1 

lists the correlation coefficients among dynamic hardness, residual depth, strain rate, 

plastic depth, stress rate and energy absorbed. The stresses were calculated at the highest 

plastic depth and were multiplied by the strain rates to give stress rates. The dynamic 

hardness has a strong negative correlation (>0.80) with residual depth. A high positive 

correlation was found between the strain rate and impact energy. In the case of glass/epoxy 

interfaces, the dynamic hardness shows an increase with the increase in the strain rate as 
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expected as shown in Fig. 4-6. These correlations were useful to eliminate the duplicated 

parameters during the further analyses stages and development of viscoplastic models. The 

viscoplastic models will be described in further sections. 

Table 4-1 A list of the correlation coefficients among dynamic hardness, strain rate, 

plastic depth, residual depth, stress rate, and energy absorbed at impact sites on 

glass/epoxy interface 
 

Hdyn Strain 

rate 

hplastic hres Stress rate Eabsorbed 

Hdyn 1.00000 0.65238 -0.45380 -0.82190 0.65607 0.33781 

Strain rate 0.65238 1.00000 -0.37223 -0.49652 0.82665 0.74555 

hplastic -0.45380 -0.37223 1.00000 0.69329 -0.80397 0.33109 

hres -0.82190 -0.49652 0.69329 1.00000 -0.66994 -0.00656 

Stress rate 0.65607 0.82665 -0.80397 -0.66994 1.00000 0.25838 

Eabsorbed 0.33781 0.74555 0.33109 -0.00656 0.25838 1.00000 

 

 

Fig. 4-6. Dynamic hardness on glass/epoxy interfaces as a function of strain rate. 
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4.3 Stress Strain 

The dynamic strength of a material needs to be modeled appropriately depending on 

the strain rates of loading. The Johnson-Cook model is utilized in the present scenario to 

model this behavior. The JC constitutive model [120] is an empirical model, that relates 

the equivalent stress as a function of the strain, strain rate and temperature given by 

equation (4.1)as 

 
*[A B ][1 Cln ][1 T ].n m        (4.1) 

Here,   is the equivalent stress,   is the normalized effective plastic strain rate 

(normalized to strain rate of 1.0 1s  in the present case), and  is the effective plastic strain. 

*T  is defined as * (T T ) / (T )r m rT T    with rT  as room temperature, T is the absolute 

temperature, and mT  is the melting temperature , , n, C and mA B  are material constants. 

The experiments were conducted at room temperature so the equation is simplified to  

 [A B ][1 Cln ].n       (4.2) 

Similarly, the JC damage model is given by the equation as  

 
1 2 3 4[ exp(D *)][1 ln ].f D D D       (4.3) 

Here, 
*  is the stress triaxiality, f  is the fracture strain, 

1D ,…,
5D  are material 

constants. 

The stress strain data corresponding to each red point comes from a single impact point. 

Each impact instant during the experiment gives the depth and velocity of the impact which 

was used to calculate the stress and strain of that point. This method of extracting the stress 
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strain data from impact experiments is well document in the literature and have been used 

for years [137, 138]. The stresses for the strains from 0.2 to 0.4 was measured during 

dynamic indentation experiments. The contact radius divided by the indenter radius is 

defined at the indentation strain [139, 140]. The JC model equation is fitted to this range 

of strains with an normalized strain rate of 300 s-1. Table 4-2. lists the JC parameters 

obtained from the current fit. The yield stress value shown in the table is high compared to 

the value for normal epoxy. The reason for this is that the confinement effect also plays a 

major role during that deformation and it is not considered in the given equation. It is later 

discussed in the next chapter and the confinement effect is quantified. The deformation 

mechanisms of in high strain regimes depends on strain rates, microstructure, grain 

boundaries orientations, and dislocation movements [141]. The present analyses concludes 

that the JC model alone is not sufficient to model the dynamic behavior of interface. 

Therefore, there is a need to extend the current JC model to be able to predict the 

mechanisms of interfaces deformation correctly. The JC parameters were calculated from 

the experimental data.  

Table 4-2 Johnson-Cook material parameters for the epoxy interfaces. 

Strain hardening Damage parameters 

A (MPa) 251 
D

1
 

-0.219 

B (MPa) 1130 
D

2
 

0.366 

C 0.018 
D

3
 

0.212 

n 0.33 
D

4
 

0.556 

 

Although the Johnson-Cook model is useful to describe the dynamic effects in 

materials, it is only applicable in higher strain rate regimes. The other limitation of JC 
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model is the large no. of material parameters that needs a lot of experimental data. A new 

viscoplastic model that could capture the strain rate dependency over large strain rate 

ranges and is relatively easy to implement was sought in the current study. It is well 

stablished as given in the article by L.M. Taylor et. al., that the strength of the material 

changes with strain rates and thus strain rate should be included in the material modeling 

[142]. Materials exhibit considerable increase in the yield strain with increasing rate of 

strain which leads to the increase of material ductility. A brief search through literature 

revealed several models that could describe the behavior of polymeric material such as 

epoxy. E Kontou et. al., examined the tensile behavior of epoxy-glass fiber composites and 

developed a 3D viscoplastic model [143]. They developed a model to describe the 

nonlinear, strain rate-dependent behavior in anisotropic materials. Q. Bing et. al.. 

developed a technique to conduct compression experiments on carbon fiber composites to 

characterize their strain rate dependent behavior [144]. The rate-dependent constitutive 

model and the microbuckling model for the composites predicted the compressive strengths 

very accurately. In yet another study by A.D. Mulliken et. al., two polymers were compared 

at strain rate from 10-4 s-1 to 104 s-1 in uniaxial tension and compression experiments by a 

dynamic mechanical analyzer (DMA) [145]. In more recent studies, the compressive 

deformation of low-density polymeric foams at different strain rates was characterized by 

A. Yonezu et. al.[146]. They proposed a constitutive equation for plastic deformation of 

polymer materials with strain rate dependence which could predict time-dependent 

properties of porous materials subjected to uniaxial compression and indentation loadings. 

R. Dou et. al., used Cowper-Symonds model as the constitutive model to study the 

properties of aluminum alloy with an account of compression behavior and strain rate 
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effects[147]. All previously mentioned models employ many material parameters to model 

the strain rate effect. In the present case, we have chosen the viscoplastic model developed 

by J.Tsai and C.T. Sun defined by a simple power law [148]. They observed that the elastic 

deformation of the material was not affected significantly by strain rates but the plastic 

deformation was significantly affected by strain rates. They developed a viscoplastic model 

from low strain rate data that also fits the high strain rate. The stress-strain curve was fitted 

by equation (4.4) given as  

   .
np A    (4.4) 

Here, the amplitude A  is function of strain rate, which can be expressed by equation (4.5) 

given as 

   .
m

pA     (4.5) 

The material parameter   and m  were determined from the data corresponding to the 

plastic deformation part by plotting the amplitude A  as a function of plastic strain rate on 

the log-log scale as shown in Fig. 4-7. The viscoplastic parameters obtained from the 

experimental data for glass/epoxy interfaces are given in Table 4-3. The stress-strain curves 

for quasistatic and dynamic loading are shown in Fig. 4-8. As expected the dynamic 

strength of material is higher in comparison to the quasistatic strength.  

Table 4-3 Viscoplasticity parameters for epoxy interface. 

χ (MPa)
-n

 1.58E-13 

m -0.28 

n 1.4 
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The viscoplastic model fit is also plotted on the Fig. 4-8 using the equation(4.4). The stress-

strain curves from this model is later compared to the model developed in this article in 

further  

 

Fig. 4-7. Plot to determine the amplitude A  for glass epoxy interface. 

 

Fig. 4-8. Stress–strain curves for glass/epoxy interface for quasistatic and dynamic 

loading. 

Equation Chapter (Next) Section 1  
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CHAPTER 5. CONFINEMENT EFFECT IN INTERFACES 

5.1 Confinement Law 

The material deformation under the effect of compressive stresses changes from its 

normal behavior. This phenomenon has been long established since first introduced by 

Richard et. al. in 1928, with his proposed linear relation given in equation (5.1), for the 

compressive strength of confined and unconfined material under lateral confinement stress 

  with k  as material constant[149] 

 . .cc cf f k    (5.1) 

Here, 
ccf  is the confined compressive strength and 

cf  is the unconfined strength.  

Since then there had been huge attempts to modify the equation (5.1) to make predictions 

more accurate and to propose the value of the constant k [150].  

Interfaces in composite materials can be considered as a material phase confined 

between two separate grains or phases. Mechanical strength of materials in confined spaces 

has been shown to be strongly affected by lateral stresses [149]. Such confinement effects 

has been utilized in applications such as brittle materials for armor applications where 

brittle materials are kept under high confinement stresses. Most of the research on the effect 

of confinement is in the area of concrete with a goal to increase the strength of structures 

made of concrete. D. R. Mc Creath et. al. [151] studied response of concrete under 

increasing lateral compressive stress and found that increasing compressive strength of the 

concrete as a function of applied lateral stress. Experimental studies found that the load 

carrying capacity and ductility of concrete columns increased by the application of 



52 

 

composite wraps in axial compression. It can also renew deteriorated structure and improve 

seismic resistance [152]. Effect of hoop reinforcement on the strength of concrete column 

studied by Y.P. Sun et. al., revealed that the hoops with intermediate hoops or crossties 

exhibited higher increase in the concrete strength and more ductile behavior compared to 

perimeter hoops [153]. Stress strain behavior of the concrete columns under various 

confinements was also studied with recently improved models for confined compressive 

strength proposed by Y. Sun. It was applied in the case of rectangular or circular 

confinement by accounting for the volumetric ration, the yield strength, the thickness and 

the outside dimension of confinement [154]. These models predicts the stress strain 

response of the confined material up to very large strains. Veysel et. al. [155], proposed a 

simple model predicting the effect of fiber reinforced polymer (FRP) confinement to the 

increase of compressive strength and axial deformation capacity of concrete  which could 

also be extended to hollow cylinders confinement. Various analysis techniques have been 

adopted to be able to model these problems such as nonlinear fiber element analysis [156], 

crack formation process with pre and post peak behavior in confinement [157], stress strain 

model for compressive fracture [158], the fracture mode changes in armor materials [159], 

and the lateral expansion associated with the compression [160]. 

The confinement effect in the current case is investigated by comparing the stress strain 

behavior of epoxy in the interface confined between two glass slides with the stress strain 

behavior of unconfined epoxy. The data for the unconfined epoxy for different strain rates 

was obtained from the article by L. Bardella [161]. The viscoplastic model was fitted to 

this data to find the viscoplastic parameters. The viscoplastic parameters obtained from the 
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experimental data for glass/epoxy interfaces are given in Table 5-1. The stress strain curves 

for unconfined epoxy for quasistatic and dynamic loading are given in Fig. 5-1. 

Table 5-1 Viscoplasticity parameters for unconfined epoxy. 

χ (MPa)
-n

 
6.37E-14 

m 
-0.0456 

n 
1.5 

 

 

Fig. 5-1. Stress–strain curves for unconfined epoxy for quasistatic and dynamic 

loading 
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The confined epoxy state in the glass/epoxy interface and the unconfined epoxy is 

compared for both the quasistatic and dynamic cases. The interfaces exhibited higher 

compressive strength as compared to the unconfined epoxy. Moreover, the effect of 

confinement is much higher in the case of dynamic loading as shown in Fig. 5-2. This 

difference is attributed to the factors such as the increase in the material strength via strain 

hardening and also because of the increased compressive strength due to the presence of 

residual stresses. 

 

Fig. 5-2. Difference in compressive strength between confined and unconfined state in (a) 

quasistatic and (b) dynamic loading. 

5.2 Analytical Solution for Confinement Stresses 

As mentioned earlier, it is difficult to measure the lateral stresses during the indentation 

experiments with the current techniques but the lateral stress information is needed to be 

able to quantify the effect of confinement. An analytical solution is therefore developed to 

calculate the lateral stresses during indentation of interfaces. A schematic of the contact 

problem of interface is illustrated in Fig. 5-3. The present boundary value problem shows 
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non-linearity in the displacements of the bodies and contains mixed boundary conditions 

in the loaded area. It also changes its size in a non-linear manner while applying the load 

therefore several assumptions and simplifications are needed to describe the problem in a 

mathematically comprehensible way. The underlying simplifications of the model are 

discussed in the following text. 

 

Fig. 5-3. Schematic of epoxy interface between glasses. 

 

As shown in Fig. 5-3, the spherical indenter has a radius of 100 µm and the epoxy interface 

has a thickness of 10 µm. In the present analysis, the indentations are quasistatic and fully 

elastic which gives small indentation depths, 
2 , compared to the indenter radius. This 

condition allows for the simplifications of the loaded region. The term “quasistatic” means 

that the indentations are performed with a low velocity and the dynamic forces such as 

inertia are not considered. This case of loading allows us to restrict the theoretical model 
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to a static one which means that stresses are calculated for specified indentation depths and 

loads. 

Whenever a spherical body is in contact with a half space, the surface tractions, because of 

geometrical reasons, are not one dimensional in the indentation direction. This causes 

normal and tangential displacements in the elastic half space. The contact between the 

indenter and the half space is assumed to be a frictionless contact, where the tangential 

forces in the loaded area are zero, a no slip contact, or a mix of both with partial slip. In 

the latter case, no slip occurs in the center of the contact area and slip starts to appear first 

at the margins but with increasing indentation depth, the slip zone increases. The curvature 

of the indenter within the contact area is small because of the small indentation depths and 

comparatively big indenter radius. This allows us to assume contact as a no slip contact. 

Interfaces are often described as transversely isotropic with the interface normal axis as the 

symmetry axis [162, 163]. The conditions of compatibility and equilibrium are expressed 

as: 

 ,epoxy glass

ij ij    (5.2) 

 .epoxy glass

ij ij     (5.3) 

The compatibility condition means that the local strains, 
epoxy

ij , in the interface plane 

must correspond to the local strains occurring in the glass, 
glass

ij  close to the interface. 

The stresses perpendicular to the interface plane, 
epoxy

ij 
 in interface and 

glass

ij 
 in glass, 

must also be in equilibrium. 

The geometry of the contact problem is such that the indenter is in contact with the thin 

interface and the bulk phase glass. Since the stiffness of the indenter is usually significantly 
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higher than the stiffness of the sample, the normal surface displacement of the interface is 

prescribed by the geometry of the indenter. Considering different stiffness for the interface 

and the bulk phases, this boundary condition leads to a jump in the stresses. It has 

continuous strain distribution for the component in indentation direction while the stresses 

perpendicular to the interface must fulfill the condition of equilibrium.  

To solve this problem, a fictitious homogeneous isotropic elastic half space is assumed 

which for a given applied load through the indenter exhibits the same normal surface 

displacement as the material with interface. The elastic modulus of this half space can be 

obtained by using Hertzian equations [164] given as  

 
*

3

2
1

3
.

2 

P
E

R

   (5.4) 

Here, *E  is the effective Young’s modulus for the contact and P is the applied load.   is 

the maximum total deformation of the surface which is a sum of the indentation depth 
2 , 

the depth of the indenter deformation
1  and 

1R is the radius of the indenter. The effective 

modulus can be expressed in terms of the modulus and Poisson’s ratios of the two bodies 

in contact which gives the Young’s modulus of the half space as 
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  (5.5) 

The Poisson’s ratio of the interface is unknown and is assumed to be equal to one of the 

bulk phases. Here subscript ‘1’ corresponds to the indenter properties and subscript ‘2’ 

corresponds to bulk material properties. Generally, a ratio of 0.25   is valid for most 

of the engineering materials [165].  
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The stress distribution of this fictitious elastic half space can be obtained by using the 

constitutive equations for a distributed load acting on the surface of a half space given in 

equation(5.6)-(5.11) as, 
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0 .R x y z         (5.12) 

 

These equations are obtained from the Boussinesq solution for load acting on a half space 

using the principal of superposition. More details on the derivations can be found in the 

given reference[166]. Here, the load applied is represented as a function ( , )p     which 

is distributed over local x  and y  directions represented as   and   respectively. z  is 

the indentation direction coordinate and a  is the radius of contact. The load distribution, 

with applied load P , within the area of contact is given by Hertz [167] and can be 

expressed in Cartesian coordinates as, 
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The correlation to the applied load is given by equation (5.14) as,  
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     (5.14) 

The classical stress solutions given in equation (5.6)-(5.11) are the basis of the following 

calculations. The key assumption of the approach presented here is that the classical 

solution and the solution for the layered half space are similar for the applied loads.  

Due to its dependence on the geometry of the indenter, the strain in indentation direction, 

zz
, for a given indentation depth is assumed to be independent of the interface stiffness 

and thickness as long as the indenter is in contact with both the interface and the bulk 

phases. Therefore, it is assumed that the strain, ,zz fict , is equal to the strain in the layered 

half space, ,zz lay . 

The strains perpendicular to the indentation directions and the interface are not prescribed 

by the indenter geometry and are therefore not necessarily a continuous function. The 

related stresses, in contrast, must fulfil equilibrium conditions and therefore be continuous. 

The assumptions for these components are therefore: 
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, ,

, ,

,

,

.

xx fict xx lay

xz fict xz lay

xy fict xy lay

 

 

 







  (5.15) 
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The remaining strain components in interface plane direction yy , and yz  must fulfill the 

conditions of compatibility and strain jumps cannot occur. Therefore, the assumptions are:  

 
, ,

, ,

,

.

yy fict yy lay

yz fict yz lay




  (5.16) 

 

Fig. 5-4. ABAQUS figures showing the stress assumption validation for model with 

interface (top figures) with the model without interface (bottom figures) 

 

To validate the assumptions of the model, an interface FE model and a homogeneous 

isotropic half space model was simulated with 10 µm thick interface in the middle. Plane 

strain loading boundary conditions were applied and the loading was given in the 

displacement boundary condition. The strains were measured at the maximum 

displacement of 500 nm that was equivalent to the indentation depth in the actual 

experiments. The strains and stresses were compared for both models. The stresses, Fig. 

5-4, showed the similar profile validating the stress assumptions given in equation (5.15). 

The strain assumptions given in equation (5.16) were also verified by the ABAQUS 

solution as shown in Fig. 5-5. 
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Fig. 5-5. ABAQUS figures showing the strain assumption validation for model with 

interface (top figures) with the model without interface (bottom figures) 

 

While the perpendicular stresses can be obtained directly from equations (5.6),(5.9) and 

(5.10), the other stress components must be first transferred into strains using Hooke’s law 

and the elastic constants of the fictitious elastic half space. A brief description of the 

stresses in the plain-strain case is given below.  

In contrast to the plane stress state, which is mostly used to describe the behavior of thin 

walled components such as the skins of aircraft, where the structure is not able to be loaded 

in the third direction, plane strain is used to describe very thick components, where (almost) 

no strains occur in the third direction. The state of plane strain leads to the following 

simplifications: 

 0,yy    (5.17) 

  .yy xx zz       (5.18) 
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The relation between stresses and strains is generally known as Hooke’s Law, and can be 

expressed as it follows for the case of plane strain, 

     21
  1 1 ,xx xx zz
E

          (5.19) 

     21
  1 1 ,zz zz xx
E

          (5.20) 

 
 2 1

  .xz xz
E





   (5.21) 

 

 In a second step, they are transferred back into the stresses using the elastic constants of 

the interface and the bulk phases as shown in Fig. 5-6.  

 

Fig. 5-6. Schematic sketch of the solution procedure. 
 

The stress then can be obtained from the following equation: 
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Here, H  is a Heaviside function on the interface. The value of H  is zero outside the 

interface so that the equations from (5.22) to (5.24) only gives the stress on the interface. 

x  is along the thickness of the interface with the middle point of interface as zero location.

E  and   are the modulus and poisons ration with the subscript denoting the material. The 

strains ( , , , , ,xx yy zz xy xz yz       ) are the strains for the fictitious half space calculated by 

Hooke’s law from equation (5.6) to (5.11). Due to limitations of the stress measuring 

technique, it is not possible to obtain a full stress tensor for the interface in the current 
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indentation setup. Nevertheless, an equivalent stress can be obtained, therefore the 

calculated stress tensors are transferred to an equivalent stress by:  

   2 2 2 2 2 23 .v xx yy zz xx yy yy zz xx zz xy yz xz                      

 (5.25) 

Here, 
v  is the von Mises equivalent stress. 

The flat punch corrections were then applied in the model. A flat ended and a spherical 

indenter produce different load distributions on the surface of the sample. While the normal 

stress  ,p    which is transferred from a sphere to the sample is a quadratic function 

with its maximum at the center of the contact, the normal stress transferred from a flat 

indenter to the sample has its minimum at the center and the maximum at the edge. 

Therefore the stresses occurring close to the edge of the sample reach theoretically infinity. 

Expressed as equations, the two distributions are: 

In the case of spherical indenter, 
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And in the case of flat-punch indenter  
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The relations between the load-displacement curve, the Young’s modulus and the contact 

area radius as introduced earlier are not valid any more. Therefore the following relations 

are used: 

 
2

0 / (2 )p P a  , and (5.28) 
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The resulting surface displacements can be expressed as: Inside the contact area: 
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outside the contact area 
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These formulations were further used for the flat punch indenter to find the stress 

distributions. 

 

The abovementioned model was programmed in a MATLAB code to calculate the confined 

stresses for different scenarios. The confinement stresses were then calculated for the 

quasistatic case for the same applied load as in the experiments. Fig. 5-7 shows the 

representative stress distribution for material with interface and without interface. The 

model was run for the case with an interface and without an interface. The confinement 

stresses were then separated  by comparing the stress values from the model with the 

experimental values according to equation (5.1) and used to find the value of constant ‘ k  
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’ given in equation (5.32). Since there was a passive confinement in the present case and 

we are comparing the stresses acting in the system instead of the compressive strengths, 

the k  was calculated as a function of applied stress. The linear fit equation describing this 

relation between k  and axial stress is given as 

 
91.592*10 * 0.1112.k     (5.32) 

 

Fig. 5-7. Representative Stress distribution (a) with interface and (b) without interface. 
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The k for the dynamic case was then determined from the axial stress data available from 

the experiments. Table 5-2 shows the values of k  with stress for the quasistatic which was 

used to fit equation(5.32). 

Table 5-2 k  with respect to the applied stress for the quasistatic case. 

Stress 0.06 0.08 0.1 0.14 0.16 0.18 0.2 

k 3.52 
 

-1.48 -4.61 2.80 1.27 0.74 0.51 

5.3 Multiaxial Stresses in Interfaces 

Raman spectroscopy is an excellent tool to measure properties such as the crystalline 

structure, chemical signature without a necessity of sample preparation. It is a not-contact 

and non-destructive mode of measurement which measures data from the surface of the 

sample. The molecular signal obtained from Raman is also associated with the stress state 

of the sample and thus provides a tool for non-contact evaluation of stress in the sample 

under considerations which also allows for rapid data acquisition within a matter of seconds. 

The Raman spectroscopy is based on ‘Raman Effect’, which provides a unique ‘fingerprint’ 

of every individual substance as a characteristic of for its identification. It is an inelastic 

process in which energy is exchanged between the incident photon and molecule. During 

the process, the molecule either emits a photon of lower frequency (stokes) or higher 

frequency (anti-stokes) than the incident photon. Stokes transitions are more likely to 

happen as the molecules are predominantly in the ground state at room temperature. There 

are some other experimental methods available to measure the stress distribution such as 

X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (XTEM) 

but this methods are cumbersome due to extensive sample preparation and destructive in 

nature[129]. X-Ray diffraction (XRD) measures the chemical bond lengths of atoms and 
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angle with high precision from which values for the strain tensor components can be 

obtained[168]. The focus of the x-ray beam can reach a precision of few µms. The 

resolution is still large compared to thickness the examined interface,10 µm, and it requires 

special instrumentation. The Raman spectroscopy has been used for other material systems 

such as epoxy during recent years to measure the curing state as well as the residual stresses 

in the sample [130]. The sample used to measure the Raman stresses on the interface is 

shown in Fig. 5-8 

 

 

Fig. 5-8. SEM images showing epoxy interface (a) unpolished and polished and (b) edge 

of the sample with finite thickness interface. 

 

We have used the nanomechanical Raman spectroscopy experiments to measure the 

stresses in the interface at different applied loads during indentation to compare the stress 

distribution. The epoxy samples shows Raman peaks in a wide range from 560 nm to 645 

nm. The Raman signal at each wavelength depends on the masses of the atoms involved 

and the strength of the bonds between them. In the current system we measured the 
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strongest signal around 641.1 nm as shown in Fig. 5-9. This signal corresponds to the C-H 

vibrations which corresponds to the polymer chains in the cured epoxy shown in red boxes 

in Fig. 5-10. 

 

Fig. 5-9. Raman spectrum collected from epoxy showing the peak corresponding to C-H 

bond. 

 

 

Fig. 5-10. Cured epoxy showing the polymer chains in red boxes with C-H bonds giving 

the Raman signal. 
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The first step to measure the stress across the interface is to establish a calibration curve of 

Raman shift with the applied stress. A uniaxial load was applied on a block of epoxy and 

the Raman shift was measured at applied loads of 100, 200, 300, 400 and 500 mN. The 

stresses were obtained by dividing the load by the area of the calibration sample. The 

measured Raman peak data was converted into shift by the equation 

 
11 1

*10 ^ 7 .
laser measured

cm
 

 
   

 
  (5.33) 

The change in shift was obtained by subtracting the shift at the applied load for the shift 

at zero load. The calibration curve for shift versus load for epoxy is given in Fig. 5-11.  

 

Fig. 5-11. Raman shift versus stress calibration curve for epoxy 

The Raman shift versus stress calibration curve was used to calculate the stress maps on 

the interfaces. The load was applied on the interface and the Raman signal was measured 

on the transverse side of the sample. The Raman stress maps were measured at 3 loads, 20 
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mN, 200 mN, and 500 mN. The measurements were performed while holding the load 

constant. 

 

Fig. 5-12. Raman stress maps on interfaces with applied load by Nanomechanical Raman 

spectroscopy experiments and analytical solution 
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The stress distribution across interfaces are shown in Fig. 5-12. The stresses were measured 

across an area of 10X100 µm2. The load direction is as shown in the picture. As shown in 

the picture, the stress is increasing with an increase in the applied compressive load. The 

confinement stresses are due to the presence of much stronger material adjacent to the 

epoxy interface.  

 

Equation Chapter (Next) Section 1 
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CHAPTER 6. INTERFACE CONSTITUTIVE LAW 

6.1 Analytical Model 

There are several models that explains the effect of strain rate and confinement 

independently as already described in earlier sections but for material models described in 

the current paper, the effect of strain rate and confinement is coupled and needs to be 

treated simultaneously. Therefore, a new model has been developed that derives motivation 

from the Johnson-Cook model to couple the effect of confinement and strain rate. The 

proposed model takes the form given in equation as  

 1( )(1 ln *)(1 *).nA B C k         (6.1) 

Here,   is the equivalent stress,   is the equivalent plastic strain, A  is the yield stress, 

B  is the strain hardening constant, n  is the strain hardening coefficient, C  is the strain 

rate strengthening coefficient and k  is the confinement factor. *
ref





  is the 

dimensionless strain rate normalized with reference strain rate, 
1

1*
compressive strength





  is 

the dimensionless lateral stress normalized with the compressive strength of the material. 

The reference strain rate, ref , is taken as 1 s-1 and the compressive strength ,

compressive strength , is taken as 100 MPa. In the current experiments, the temperature was 

constant so the temperature effects were neglected. 
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The coefficient A  is the yield stress of the material and is a known material property. 

Considering the experiments in which the strain rate was equal to the reference strain rate 

and there were no confinement effects, the equation(6.1) reduces to  

 ( ).nA B     (6.2) 

The influence of the strain rate and confinement was ignored and the equation was 

rearranged by taking logarithm on both sides given as 

 ln( ) ln ln .A B n      (6.3) 

The linear fit of stress and strain values after the transformation given in equation (6.3) 

gives ln B   and n  from the intercept and slope data as shown in Fig. 6-1 

The values in the given case are 11A MPa  , 208B MPa  and 0.46n  . 

 

Fig. 6-1. Linear fit to determine A, B and n for equation. 
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The value of constant k  was taken as 1.6 and the value of C  was then determined by 

fitting the data for the confined case in dynamic and quasistatic loading. The values of 

coefficients for the given case are provided in Table 6-1 

Table 6-1 Parameters for the given model coupling strain rate and confinement effects 
A (MPa) B (MPa) C n k 

11 208 0.05 0.46 1.6 

 

 

Fig. 6-2. Comparison of current model with the Tsai-Sun model for (a) quasistatic 

loading and (b) dynamic loading. 
 

The model developed in the current study was compared with the earlier models. As shown 

in the Fig. 6-2(a) and (b), the current model captures the confinement effect at both 

quasistatic and dynamic case while the former Tsai-Sun model is only for the strain rate 

effect and thus does not account for the confinement effect. At lower strain rates, the 

difference in stresses was mostly because of the confinement effect while in the dynamic 

case, the strain rate effect also plays a major role. The difference in the stresses was higher 

in the dynamic case as evident in the Fig. 6-2 (b) compared to Fig. 6-2 (a). Thus the current 

models is better suited to model the behavior of materials under confined spaces such as 
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interfaces in the composite materials, metals, ceramics etc. A conventional way is to 

consider interface as a zero thickness and to not consider interface effect on the material 

deformation. The model in equation(6.1) takes the effect of interfaces into the deformation 

and should be considered for cases with interface dominant geometries such as biomimetic 

and other layered materials. 

The constitutive model for the confinement and strain rate effect was also verified for size 

effect by conducting experiment on the interface with indenters of 1, 10 and 100 µm radius 

on the same interface. The stress strain curves and the fit to the experimental data from the 

new constitutive model is shown in Fig. 6-3. The fitting parameters are listed in Table 6-2. 

The equation (6.1) fits very well to the data obtained from the experiments with indenters 

with different radiuses. The thickness of the interfaces was 10 µm in these experiments. As 

seen in the Fig. 6-3 (a), the interface responds more like epoxy material with lower yield 

stress and lower stress values. Fig. 6-3 (b) shows the impact with a 10 µm indenter where 

the indenter impacts the whole interface thickness and this shows higher values in the 

stress-strain curve. The stress strain data for impacts with 100 µm indenter is shown in Fig. 

6-3 (c) with very high stress values that reached the elastic limit of glass. This is also the 

reason for higher values of fitting parameters for 100 µm radius indenter in Table 6-2. 

Reader might think of these values as unreasonable at first look but in this case, the indenter 

was much bigger than the interface with the effective impacts on the glass phase with a 

very low contribution from the epoxy interface. This is further highlighted in Fig. 6-3 (d) 

where the stress strain curve is plotted for the lower strain-rate regimes which exhibits the 

behavior resembling to the brittle failure in materials such as glass. Thus the current model 

developed in this paper applies very well to the impact regimes where the interface 
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thickness is comparable to the impactor. The model is not applicable to the cases where 

interface does not dominate the deformation mechanisms exhibited in Fig. 6-3(c). This 

essentially means that the confinement effect is not a dominant factor in the deformations 

in that particular case of larger indenter radius.  

 

 

Fig. 6-3. Fit of the constitutive model developed in current article to the stress strain 

curves from impact experiments with spherical indenter of radius (a) 1 µm, (b) 10 µm, (c) 

100 µm, and (d) showing the magnified quasistatic data in the case of 100 µm radius 

indenter. 

 

 

Further experiments were performed on interfaces of different sizes of 10, 20 and 30 

micron thickness to analyze the size effects. It was found that the yield stress of the 
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interfaces increases with the decrease in the thickness. The stress-strain data is as shown in 

Fig. 6-4. The corresponding fit parameters are given in Table 6-3. 

 

Table 6-2 Parameters for the given model coupling strain rate and confinement effects 

with size effect 
Indenter 

Size (µm) 
A (MPa) B (MPa) C n k 

Strain Rate 

(s-1) 

Confinement 

Stress (MPa) 

1 11 208 0.05 0.46 1.59 300 250 

10 11 208 0.05 0.46 1.59 500 350 

100 11 208 0.05 0.46 1.59 2000 400 

1 11 208 0.05 0.46 1.59 0.01 10 

10 11 208 0.05 0.46 1.59 0.01 10 

100 110 208 0.05 0.46 1.59 0.01 10 

 

 

Fig. 6-4. Fit of the constitutive to the stress-strain for interface thickness of 10 μm, 20 

μm, and 30 μm. 
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Table 6-3 Parameters for the given model coupling strain rate and confinement effects 

with size effect for different thickness interfaces. 
Interface 

thickness (µm) 

A 

(MPa) 

B 

(MPa) 

C n k Strain rate 

(s
-1

) 

Confinement 

stress (MPa) 

10 51 208 0.05 0.46 1.59 175 400 

20 41 208 0.05 0.46 1.59 145 250 

30 21 208 0.05 0.46 1.59 125 200 

 

Equation Chapter (Next) Section 1 
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CHAPTER 7. MULTILAYER MATERIALS APPLICATION 

The interface constitutive law developed in the previous section was further 

implemented in the finite element software ABAQUS-explicit to check for the validity of 

the model. The model verification was done in three steps. In the first step, the behavior of 

the glass phase was verified by comparing the experiment and simulations for a single glass 

plate. The second step was to verify the 5 layer structure made of 

glass/epoxy/glass/epoxy/glass. The load-displacement of the multilayered assembly from 

the ABAQUS simulation was compared with the experimental results of a flat punch 

loading in the experiments. In the final step, a multilayered model with the thickness of the 

layers similar to that of the shrimp exoskeleton was modeled. The interfaces were made of 

chitin and their contribution during the deformation of the multilayered system was 

quantified. The interface constitutive model was used for the interfaces to predict the effect 

of interface in shrimp exoskeleton. 

7.1 Glass Plate 

The glass plate was modeled in the ABAQUS software and the load-displacement 

profile from the simulations was compared to the load-displacement profile from the 

experiments. The glass plate with dimensions of 22 mm length and 22 mm with a thickness 

of 100 micron was modeled for the finite element simulations. The dimensions were based 

on the experimental glass plate procured from Ted Pella Inc. (Redding, CA). The properties 

of the glass such as elastic modulus, poisons ratio and density were provided by the 

manufacturer for the simulations purposes. The failure properties were obtained from the 
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literature[169]. The properties of glass used in the simulation as provided by the 

manufacturer are given in Table 7-1.  

Table 7-1 Properties of glass plate. 
E 70 GPa 

ν 0.20 

Density 2.51 g/cm3 

Brittle Fracture Energy 100 J/m2 

Failure Stress 80 MPa 

 

 

Fig. 7-1. ABAQUS model of the glass plate 

The model was fixed at the bottom as per the experimental conditions. The sample 

mounting for the experiments is shown in Fig. 7-1. The loading head was allowed to move 

only perpendicular to the glass plate simulating the experimental conditions of the 

movement of the flat punch during loading. The load was applied as a displacement 
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boundary condition equivalent to the displacement applied during experiments. The model 

dimensions are also described in Fig. 7-1. It shows the dimensions of the model, the 

thickness of the plates, the actual sample used in the experiments and the boundary 

condition applied to the backside of the plate and the loading direction. 

The model was run for different number of elements to find the convergence. The 

model converged around 50,000 elements as shown in Fig. 7-2. The value of von-Mises 

stress was used as a parameter to find the convergence. The mesh for different cases is 

shown in Fig. 7-3. These values are also provided in Table 7-2. The minimum size of the 

element used for the simulation was 10 microns in the thickness direction of the plate. The 

final simulation used in the presented results was run for 48,400 elements. 

Table 7-2 von-Mises stresses with number of elements 
Total Elements S Mises 

1936 1.74 

15987 17.03 

48400 20.48 

121000 20.03 

 

 

Fig. 7-2. Model convergence with number of elements. 
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Fig. 7-3. Mesh size for the convergence study 

The experiments were performed using a flat punch on the micro head of the 

indentation set up from Micro materials (UK). A detailed description of the setup is given 

earlier in the method section. The load is applied via an electromagnetic actuation and the 

displacements are measured using capacitor plates. The experimental setup was calibrated 

before the experiments by performing load, depth and machine compliance calibrations. 

The sample was loaded on the stage with movements in x,y and z directions. The load was 

applied and the displacement was monitored throughout the experiments. The load-

displacement curve from the ABAQUS simulation was obtained by observing a reference 

point attached to the flat punch in the simulation. The load displacement curve from the 

experiments was compared to the load-displacement curves from the simulation as shown 

in Fig. 7-4. The data matched pretty well showing the validity of the ABAQUS model of 

glass plate. The displacement and stress distribution at the end of the simulation are also 

plotted in Fig. 7-5 and Fig. 7-6 respectively to give the reader an illustration of the stress 

distributions. 
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Fig. 7-4. Load-displacement curve for the glass plate from ABAQUS simulation and 

experiments. 

 

Fig. 7-5. Displacement at the end of the simulation 
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Fig. 7-6. Stress distribution at the end of the simulation 

7.2 Multilayered Glass and Epoxy Interface System 

The single glass plate model was verified in the earlier section. The second step was to 

verify the model of multilayered materials with epoxy interfaces between the glass plates. 

The samples were prepared using uncured epoxy layers of 50 microns and placing them 

between the glass plates. The multilayered glass and epoxy material was then cured at 150 

degree Celsius for 30 minutes as per the guidelines from the manufacturer of the epoxy 

layers. The epoxy layers were obtained from the company Bonding Source (Manchester, 

NH). The final sample was checked for defects and proper adhesion of the epoxy in 

between the glass plates. The sample was mounted on the micro head of the micro materials 

indentation setup. The loading was applied using a flat punch. The experimental steps 

included moving the flat punch in the sample direction to bring it in contact with the sample. 

The micro head was calibrated for load, depth and machine compliance measurements. 
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Once all calibrations were done, the load was applied on the surface of the multilayered 

sample. This sample was then also modeled in the ABAQUS software with the same 

dimensions and loading conditions as in the experiments. The properties of the interfacial 

epoxy was based on the confinement effect developed in this research and also without the 

confinement effect. The 5 layer model was modeled as glass/epoxy/glass/epoxy/glass 

layers stacked one above the other. The dimensions of the model are given in Fig. 7-7. The 

properties of epoxy were as given in Table 7-3. 

Table 7-3 Properties of Epoxy interface. 
E 3.5 GPa 

ν 0.20 

Density 1.3 g/cm3 

Confined Yield Stress 8 MPa 

 

 

Fig. 7-7. ABAQUS model of the multilayered glass and epoxy plate 
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The model was run for different number of elements to find the convergence. The 

model converged around 60,000 elements as shown in Fig. 7-8. The value of von-Mises 

stress was used as a parameter to find the convergence. The mesh for different cases is 

shown in Fig. 7-9. The last figure also shows the elements in the thickness direction of the 

glass and epoxy interfaces. These values are also provided in Table 7-4. The minimum size 

of the element used for the simulation was 10 microns in the glass plate and 5 micron in 

the epoxy interface in the thickness direction. The final simulation used in the presented 

results was run for 60,500 elements. 

Table 7-4 von-Mises stresses with number of elements 
Total Elements S Mises 

54 34.01 

180 43.95 

2420 51.39 

9680 62.07 

60500 63.66 

242000 63.8 

  

 

Fig. 7-8. Model convergence with number of elements. 
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Fig. 7-9. Mesh size for the convergence study 

The load was applied and the displacement was monitored throughout the experiments 

and stored through a data acquisition system. The load-displacement curve from the 

ABAQUS simulation was obtained by observing a reference point attached to the flat 

punch in the simulation. The load displacement curve from the experiments was then 

compared to the load-displacement curves from the simulation as shown in Fig. 7-10 for 

both the confined and unconfined case. The data matched pretty well showing the validity 

of the ABAQUS model of glass plate for confined case. The stress distribution at the end 

of the simulation are plotted in Fig. 7-11. 

 

Fig. 7-10. Load-displacement curve for the glass plate from ABAQUS simulation and 

experiments for (a) confined model and (b) unconfined model 
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Fig. 7-11. Stress distribution at the end of the simulation 

7.3 Multilayered Shrimp Exoskeleton Structure 

The last step of the verification was to quantify the effect of interfaces in the shrimp 

exoskeleton. The shrimp exoskeleton was modeled with main phase layers having the 

properties obtained from the indentation experiments as provided in author’s earlier 

papers[1-3, 10, 11]. The interfaces in shrimp exoskeleton are made up of chitin fibrils so 

the interface properties were given based on the chitin properties. The stress-strain relations 

for the chitin interfaces were obtained in our earlier work with the effect of orientation as 

well as the effect of environment [84, 85]. The model parameters for the interface 

constitutive law were obtained from this stress-strain data. The exoskeleton was then 

modeled with the main layer thickness of two microns and the interface thickness of one 

micron. These dimensions were based on the dimensions of shrimp like structures with the 

thickness of the layers equivalent to the shrimp exoskeleton. The properties of the layers 

and the dimensions of the model are given in Fig. 7-12. The material properties were 
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derived by fitting the stress-strain curves from the earlier molecular dynamic studies 

performed in reference by Tao et al. [84, 85]. The properties of the main phase are given 

in Table 7-5 and the properties of interface are given in Table 7-6. 

Table 7-5 Properties of shrimp exoskeleton main phase. 
E 29 GPa 

ν 0.20 

Density 1.5 g/cm3 

Layer thickness 2 microns 

Interface thickness 1 micron 

 

Table 7-6 Properties of chitin interface. 
E 110 GPa 

ν .23 

Density 1.5 g/cm3 

A 150 Mpa 

B 600 Mpa 

n 0.4 

 

 

Fig. 7-12. ABAQUS model of the multilayered shrimp exoskeleton structure 
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Since the model was based on the similar structure as in the earlier section, the mesh 

was based on it and each layer was divided in 4 elements in the direction of thickness. The 

minimum element size was in the thickness direction of the layers with 500 nanometers in 

the main phase and 250 nanometers in the chitin interface. The model was run for two cases 

with the confined properties and without the confinement effect. The applied displacement 

boundary condition in each case is given in Fig. 7-13. The stress distribution in the each 

layer was then compared for both case layer by layer. The stresses in each layer was plotted 

for comparison as given in Fig. 7-14 to Fig. 7-16. The stress distribution in the interface 

layers was as given in Fig. 7-17and Fig. 7-18. The difference in these interface was 

quantified based on the strain energy of these interfaces as plotted in Fig. 7-19. This shows 

that the interfaces in the confined case have the ability to absorb more energy thus making 

the overall structure more stiff and resistant to deformations.  

 

Fig. 7-13. Applied displacements to the system in (a) confined state and, (b) unconfined 

state 
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Fig. 7-14. Stresses in the layer-1 with (a) confined state and, (b) unconfined state 

 

Fig. 7-15. Stresses in the layer-2 with (a) confined state and, (b) unconfined state 
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Fig. 7-16. Stresses in the layer-3 with (a) confined state and, (b) unconfined state 

 

Fig. 7-17. Stresses in the interface-1 with (a) confined state and, (b) unconfined state 
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Fig. 7-18. Stresses in the interface-2 with (a) confined state and, (b) unconfined state 

 

 

Fig. 7-19. Strain energy in the interface (a) 1 and, (b) 2 in the confined and unconfined 

state 
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In summary, the shrimp exoskeleton was modeled with the properties of the system 

derived from the nanoindentation experiments as well as the interface properties derived 

from the molecular dynamic simulations on the chitin interfaces. The interface properties 

were then applied to the model based on the confinement law and the stress distributions 

were compared. The effect of each layer can be seen in the stress plots of each layer. The 

top layer where the loading is directly applied takes most of the stresses as shown in Fig. 

7-14. As we go down the multilayered system, the middle layers also contribute to the 

stiffness of the system as shown in Fig. 7-15 and Fig. 7-16. It can be seen from the stress 

distribution that even when the properties of the each layers are same, the stresses are 

different in the confined case as compared to the unconfined case because of the presence 

of the interfaces. It can be further illustrated in the stress plots of the interfaces given in 

Fig. 7-17and Fig. 7-18. The confined interfaces contribute more in absorbing the stresses 

as compared to unconfined interfaces. It can be quantified further by comparing the strain 

energies of these interfaces given in Fig. 7-19. The confined interface absorbs higher 

energy as compared to unconfined case with the second interface with higher energy 

because it experiences higher deformations during the loading. 

In conclusion, the interface constitutive law gives us a way to quantify the interface 

contribution in a multilayered materials and provides a way to develop customized 

multilayered materials based on the applications. 
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CHAPTER 8. SUMMARY AND CONCLUSIONS 

The main goal of the study was to develop a constitutive law describing the behavior 

of interfaces in multilayered materials along with the consideration of strain rates of 

deformation and possible other factors affecting the interfaces. The problem was 

approached by considering an epoxy interface between two glass plates. The behavior of 

the epoxy interface was analyzed using nanoindentation, nanoscale impact and 

nanomechanical Raman spectroscopy technique. The nanoindentation was preferred 

because of its applicability to perform experiments at the length scale of the interfaces in 

this study since the epoxy interface was 10 micron thick. The nanoscale impact tests were 

used to perform high strain rate tests to be able to understand the effect of rate of loading. 

The stress-strains in the epoxy interface and bulk epoxy were compared for higher and 

lower strain rates and it was concluded that the confinement effect on the interfaces had a 

considerable effect on the stress-strain response. The confinement effect was then 

quantified by developing an analytical solution to obtain the multiaxial stresses in the 

interfaces. The analytical solution was verified using the nanomechanical Raman 

spectroscopy stress measurements.  

Based on the rate dependent stress-strain analyses and the confinement analyses, a new 

law was developed that couples both the strain rate and confinement effect in interfaces. 

The new law was fit to the stress-strain data of 10 micron thick interfaces to obtain the 

material parameters. The effect of thickness of the interface and the size of impactor was 

also analyzed by impacting the interface by 1, 10 and 100 micron radius indenters. The 

interface constitutive model was then also implemented in the finite element software to 

solve the case of multilayered material and to quantify the role of the interface. 
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In conclusion, the interface behavior was analyzed in the case of epoxy interfaces 

between glass plates at nanometer to micrometer scales. A new model capturing both strain 

rate and confinement effects was developed for strain rates up to 
3 110 s . An analytical 

model was developed to measure the lateral stress tensors during indentation experiments. 

The stress-strain analysis was performed along with the EDX analysis for quasistatic and 

dynamic experiments. The following points are drawn from the analyses given in earlier 

sections. 

1. The confinement and the strain-rate effect are coupled with each other and to 

predict the material deformation under indentation loading a new model developed 

in this paper is more applicable. The new model fits the data from the confined 

interfaces showing the need to consider the interface as a separate entity in the 

analyses. 

2. The interface has a complex multiaxial stress state during the deformations which 

needs to be accounted for by developing suitable analytical solutions. These 

stresses can be used to find the confinement effect of the interfaces as shown in the 

current study. 

3. The development of the interface constitutive law gives a way to quantify the role 

of interfaces during the deformation of multilayered materials. The stress strain 

behavior of the interfaces in the case of finite thickness epoxy interfaces shows the 

dependence on impactor size which can be captured with the model parameters 

based on the interface thickness. 

4. The interface stresses needs to be measured experimentally using advance 

measurement tools such as nanomechanical Raman spectroscopy experiments. It 
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provides a non-contact way to measure the residual stresses are present in the 

interfaces as well. 
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