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ABSTRACT 

Sadri, Arif Mohaimin. Ph.D., Purdue University, December 2016. Social Network 
Influence on Ridesharing, Disaster Communications, and Community Interactions. Major 
Professor: Satish V. Ukkusuri. 
 

The complex topology of real networks allows network agents to change their functional 

behavior. Conceptual and methodological developments in network analysis have 

furthered our understanding of the effects of interpersonal environment on normative social 

influence and social engagement. Social influence occurs when network agents change 

behavior being influenced by others in the social network and this takes place in a multitude 

of varying disciplines. The overarching goal of this thesis is to provide a holistic 

understanding and develop novel techniques to explore how individuals are socially 

influenced, both on-line and off-line, while making shared-trips, communicating risk 

during extreme weather, and interacting in respective communities. The notion of influence 

is captured by quantifying the network effects on such decision-making and characterizing 

how information is exchanged between network agents. The methodologies and findings 

presented in this thesis will benefit different stakeholders and practitioners to determine 

and implement targeted policies for various user groups in regular, special, and extreme 

events based on their social network characteristics, properties, activities, and interactions. 

 

Chapter 2 synthesizes studies relevant to ridesharing, behavior modeling of activity-based 

travel and evacuation decision-making, social media research in transportation and disaster 

management. It also provides a comprehensive summary of the network science literature 

and a well-established approach to quantify social influence, known as ego-centric network 

design. Part I is about social influence on ridesharing which is getting more popular and 

people are more likely to carpool with friends as compared to traditional modes of travel.    



xvii 

Chapter 3 presents a zero-inflated Poisson model to predict the frequency of joint trips, 

using ego-centric social network data, for regular activity travel decisions. Chapter 4 

presents a multinomial logit model of travel mode choice and carpooling during special 

events such as game-day. Although ridesharing can yield in effective matching of trips, it 

does not necessarily provide desirable end results. The knowledge of a better understanding 

in terms of how people share rides in a network setting would help policy makers and city 

planners in modifying existing urban transportation systems by introducing more 

ridesharing incentives to commuters and building more efficient ridesharing platforms that 

can result in a more sustainable transportation system.  

 

Part II is about social influence on the way individuals communicate risk during crisis. 

Disaster communication networks play a salient role during emergencies since people may 

exchange relevant information in social media while having limited access to traditional 

sources of information. Previous sociological studies suggest that social networks serve the 

purpose of transmitting warning message by disseminating information about an 

impending threat, however, the empirical literature is inconclusive about how warnings 

received from social connections weigh into evacuation decision-making. Chapter 5 

presents a mixed-logit model to capture how social networks influence individual-level 

evacuation decision-making based on ego-centric network data obtained from Hurricane 

Sandy. Chapter 6 develops a multilevel model of joint evacuation decision outcome at the 

dyadic (ego-alter social tie) level by using a hierarchical generalized linear modeling 

approach. Chapter 7 analyzes large-scale Twitter data (~52 M tweets, ~13 M users, Oct 14 

-Nov 12, 2012) to identify disaster communication network that was active on Twitter 

before, during, and after Hurricane Sandy’s landfall at different scales of user activity. 

Important network properties (both local and global) were obtained to examine the 

relationship between network structure and the information spreading capacity of network 

agents. It also explores the crisis communication patterns that appeared at different phases 

of Hurricane Sandy using advanced machine learning techniques. The findings of this 

chapter are useful in identifying influential nodes in such a network and disseminating 

targeted information more efficiently in similar crisis events.   



xviii 

Part III is about how individuals interact in their respective communities based on common 

interests. Online social sharing platforms have become an integral part of daily life and 

people are more connected now than ever before. The objective of this part of thesis is to 

take advantage of the enriched evidence of social influence in social media and identify a 

group of like-minded users. Chapter 8 demonstrates how to construct social interaction 

networks from such a social sharing platform and analyzes the properties and growth of 

such networks. Analysis reveals that social interactions in such networks follow a power 

law which is indicative of fewer nodes in the network with higher level of social 

interactions. Chapter 9 presents a modeling framework to jointly infer user communities 

and interests in social interaction networks. Several pattern inference models are developed: 

i) Interest pattern model (IPM) captures population level interaction topics, ii) User interest 

pattern model (UIPM) captures user specific interaction topics, and iii) Community interest 

pattern model (CIPM) captures both community structures and user interests by accounting 

for user interests and interactions jointly. The network properties revealed and 

methodologies proposed in this part of the thesis will be useful to efficiently detect user 

communities based on their social interactions and applicable for any social sharing 

platform having such user interactions.  
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Social influence occurs when an individual's emotions, opinions, or behaviors are affected 

by others in the social network. Social influence takes place in a multitude of varying 

disciplines such as conformity, socialization, peer pressure, obedience, leadership, 

persuasion, sales, and marketing. Studies have found that individuals are more influenced 

by their friends as compared to strangers. For example, 68% of consumers consult friends 

and family before purchasing home electronics [1]. Individual behavior has been the focus 

of travel behavior and evacuation modeling for a very long time. The influence of 

individual’s social network on ridesharing, crisis communication, and community 

interaction is an emerging concept in their respective literature; which is also the core idea 

of this research. The overall decision-making of an individual depends on his/her personal 

constraints; a significant share of which however depends on his/her interaction to the 

society. These interactions to the society are determined by an individual's social network. 

Social network thus has important influences on the resulting joint behavior of the network 

agents. This thesis provides a holistic understanding of social network influence on 

ridesharing, disaster communications, and community interactions. 

 

1.2 Motivations 

Conceptual and methodological developments in network analysis have furthered our 

understanding of the effects of individuals’ interpersonal environment on normative social 

influence and social engagement. Network data offers better insights related to an 

individual's abilities, aspirations, attitudes, behaviors, and interpersonal environment. The 

complex topology of real networks allows its actors to change their functional behavior. 

Network models provide better understanding of the evolutionary mechanisms being 
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accountable for the growth of such networks by capturing the dynamics in the ways 

network agents interact and change their behavior. Considerable amount of research efforts 

is required for developing novel network modeling techniques to understand the structural 

properties such networks, reproducing similar properties based on empirical evidence, and 

designing such networks efficiently.  

1.2.1 Social Influence on Ridesharing 

Ridesharing is the shared use of a travel mode by the driver and one or more passengers 

generally for various activity-based commuting purposes. Ridesharing arrangements can 

differ in terms of the regularity, formality and the purpose. For example, carpooling is one 

of them in which a distinct group (pool) of individuals alternate their driving 

responsibilities [2]. On the other hand, Slugging (a form of hitchhiking) is used to gain 

access to HOV lanes where both driver and passenger have a mutual benefit. Another form 

is car sharing in which multiple individuals rent or lease cars together in order to share 

costs which is suitable and attractive for occasional purpose. Teal’s study on carpooling 

suggests that it emerged as a social gesture from the time of very low car ownership and 

vehicle owners were likely to provide a ride to others given extra space in the vehicle [3]. 

Ridesharing became less common as vehicle ownership increased, however, this remains 

popular in urban areas where special treatments are now being provided to vehicles with 

high occupancy. There are three main traditional contributors of ridesharing: low income, 

high trip distance, and low trip average speed in addition to other socio-demographic, 

spatial and temporal factors which are also important aspects of ridesharing. Moreover, 

ridesharing is considered to be useful as it can reduce traffic congestion, emission, fuel 

consumption with other benefits [4, 5]. 

 

Although ridesharing can yield in effective matching of trips, it does not necessarily 

provide desirable end results. For example, the increasing number of shared trips may not 

necessarily result in a reduction in the total miles traveled [6]. Instead, it can result in the 

multiplication of trips by drivers offering a ride (taxi drivers for example). Another 

example could be a household-based ridesharing, where someone in the household who 

drives a car to accompany another household member for a given activity, suffering a large 
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detour on his/her way to the original destination. The empirical literature is inconclusive 

of the key psychological factors that have influence on ridesharing and the number of 

studies exploring the complexities involved in the interactions between social partners is 

limited. For non-household based ridesharing, factors such as trust, safety and reliability 

may determine if ridesharing with another individual is undertaken i.e. the frequency of 

joint trips. The knowledge of a better understanding in terms of how people share rides in 

a network setting would help policy makers and city planners in modifying existing urban 

transportation systems by introducing more ridesharing benefits to commuters and building 

more efficient ridesharing platforms that can result in a more sustainable transportation 

system. 

 

Activity-based approaches consider travel as derived demand elicited from the desire to 

perform activities either individually or with others for more accurate behavioral 

explanations [7]. In addition to the socioeconomic characteristics of travelers, the necessity 

to incorporate individual’s social environment in travel demand modeling has been 

recognized by earlier studies [8]. Studies have highlighted the importance of social 

interactions in travel demand analysis [9]. It is also necessary to explore how individuals’ 

travel-related choice making is different depending on their social networks (and context) 

to derive accurate representations of travel behavior [10, 11]. Theoretical and empirical 

analyses that link social travel behavior and social interactions have not been studied 

extensively in the literature.  

 

In spite of the recognition of this research issue, a key reason for the lack of theoretical 

models is the unavailability of reliable data that links social activity-travel and social 

networks [8]. In addition, understanding the linkage between social influence and travel 

behavior allows the accurate characterization of discretionary activities. As is well known, 

discretionary trips are a major fraction of the total urban trips. The inclusion of accurate 

discretionary activities into a supply side model will enable the accurate prediction of 

traffic congestion. Carrasco et al. demonstrated the effectiveness of personal network or 

ego-centered data collection technique in travel behavior research [12]. While there has  
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been considerable interests in the study of social activities in particular [8, 13], joint 

participation in certain activities, such as shopping together or engaging in recreational or 

social activities has also been recognized [9, 14]. Personal network characteristics do not 

only influence the pattern of social activities, but also initiate joint or shared trips among 

network members for all possible activities an individual participates in a given week. 

 

Recently, activity-based travel demand modeling gained significant interest due to its level 

of accuracy and applicability in travel behavior research especially by the inclusion of 

interactions among social network members in addition to individual level characteristics. 

Activity-based approaches consider travel as derived demand elicited from the desire to 

perform activities either individually or with others for more accurate behavioral 

explanations. Theoretical and empirical analyses that link social travel behavior and social 

interactions have not been studied extensively in the literature due to the unavailability of 

reliable data that links social activity-travel and social networks. 

1.2.2 Social Influence on Disaster Communications 

Many forms of disasters are frequently encountered by individuals and communities all 

over the world [15]. Natural disasters alone, over the past three decades, have inflicted 

billions of dollars in property damage and killed 2.5 million people [16, 17]. Although 

large-scale crises (2009 Italy earthquake and 2010 Haiti earthquake for example), have 

received significant media attention, smaller-scale local disasters such as floods, typhoons, 

tornadoes, and mudslides (among others) should also be recognized that killed thousands 

of people as well [18]. The National Academies Committee on Increasing National 

Resilience to Hazards and Disaster established hazards resilience as a national imperative 

at all levels (personal, local, state, and national). Enhanced policy requirements by the 

government has been suggested by this imperative that would enable people to be less 

dependent on federal resources while responding to such disasters [19]. Disaster resilience 

received more emphasis in the domains of physical systems and operations [19], however, 

this should incorporate dimensions of the social and built environment [20]. 
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To promote disaster resilience minimizing the adverse impacts of disasters, communities 

need to be proactive with sufficient preparation [21-24]. Effective information 

dissemination constitutes the key to spread the awareness to every individual in a 

community [25-27]. It requires systematic planning, collection, organization, and delivery 

techniques before circulating to the target audience using different media and 

communication means. Online social media (such as Facebook, Twitter among others), 

unlike traditional ones, can serve as suitable platforms to disseminate information during 

disasters. Studies have acknowledged the potential and need to efficiently analyze, record 

and utilize the large-scale and rich information these online information sources provide 

[28]. Examples of such applications can be found in many empirical studies related to 

emergency response [29-34] and crisis informatics [35-42]. Moreover, social media 

connectivity and activity allow researchers to analyze and predict what happens in the real 

world via social network amplification [43, 44]. 

 

Disaster communication networks play a salient role during emergencies since people may 

obtain weather information from traditional media such as radio or television and social 

media such as Facebook, Twitter, or the internet. Many researchers identified authorities, 

news media, and peers as emergency warning sources [45]. Research done in the social 

science literature demonstrates that the psychological and social factors are very important 

in translating hazard warning information into a collective decision [46-49]. Evacuation 

studies have found significant correlations of local authorities, peers, local and national 

media, and internet with evacuation [47]. During Hurricane Sandy, social media also 

played an important role on information sharing. Residents from New York and New 

Jersey were able to receive information on smart-phones using social media as they had 

limited access to traditional sources of information (radio, television and others) [50]. In 

areas without power, communications via online social media continued during and after 

the storm based on the continuous distribution of tweets observed throughout the city and 

Midtown Manhattan was found to be the most common tweeting location [51]. Individuals 

were more likely to evacuate if they relied on social media for weather-related information 

during Sandy [52]. 
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1.2.3 Social Influence on Community Interactions 

The emergence of online social media such as Facebook, Twitter etc. have created 

ubiquitous social environments. Users can interact with such systems by being friends with 

others, updating statuses, posting interesting links, mentioning other users in their statuses 

or posts, commenting or liking others’ posts, privately communicating with their 

connections and in many other ways depending on the type of the system. User interactions 

within these systems help to construct a network of user relationships representing links of 

direct social influence. In such a network, two users are connected if they interact with each 

other or establish a friendship between them. Thus, a social interaction network is defined 

as a network of nodes and links, where nodes consist of the users of a particular online 

social media system and links are established if two nodes have some form of interaction 

between them.  

 

An individual’s connections and activities in a social interaction network enable us to 

understand the social influence on real world actions. Such knowledge is invaluable for 

predicting human actions in real world through a social network amplification [43, 44]. 

User activity in social media has shown its prevalence in recent years, for instance every 

second over 143K tweets are being generated on Twitter [53]. As such the world population 

is more connected and reachable now than ever before and the ease in information sharing 

and the ability to instigate others have primarily contributed to such connectivity all over 

the world. However, the purpose and context of the online activity on social media 

platforms, such as Facebook and Twitter, may vary from user to user. For example, users’ 

check-in activity can be referred as distinct from what users’ post or share to disseminate 

any specific information. One specific feature of such information sharing activity is the 

ability of users’ in mentioning (direct mentions, retweets, and replies) others that they 

follow. Twitter shows both the characteristics of a social network and an informational 

network [54] and users can share short messages up to 140 characters along with the ability 

to follow other. While the information network properties of Twitter instigate information 

contagion globally, the social network properties allows access to geographically and 

personally relevant information [44]. 
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Although a few studies analyzed people’s ego-centric offline social networks and their 

association with activity participation [8, 55], the empirical literature does not provide any 

specific evidence on how to systematically extract user communities of social interaction 

networks from social media and the potential application of such networks to solve 

transportation related problems. By analyzing human activities and their interactions in 

social media platforms, it is now possible to develop complex probabilistic models to 

identify communities and topics of human social interactions. These communities of direct 

social influence would be a very important tool for several key stakeholders to target and 

effectively disseminate information for managing traffic in real-time.  To the best of our 

knowledge, this is the first study to propose a model that can construct the social interaction 

network by predicting communities of direct influence. This data driven approach will 

account for the similarity of users’ activity and community information for any given event 

and use large-scale online social media data. This network of direct social interaction 

would allow traffic managers and emergency officials to efficiently disseminate travel-

specific information to travellers/spectators and better conduct PSEs or similar events.  

 

Understanding social interaction networks has various applications such as information 

dissemination in local communities and managing planned special events. Information 

dissemination is the proactive distribution of information and spreading awareness to every 

individual within a community. It requires systematic planning, collection, organization, 

and delivery techniques before circulating to the target audience using different media and 

communication means. The successful spreading of awareness to every individual in a 

community solely depends on an effectual information dissemination process [25-27]. 

Information dissemination thus constitutes an important and critical factor for the success 

of organizing Planned Special Events (PSE) that include large sporting events, concerts, 

conventions, and similar events at specific venues such as stadiums, convention centers and 

others. Because of specific locations and times of occurrence, PSEs are associated with 

operational needs that can be anticipated and managed in advance [56]. Unlike an accident, 

or any other incidents, PSEs could increase traffic demand significantly and restrict the  

roadway capacity [57]. PSEs usually make it difficult for drivers, freight movers and traffic 

managers to deal with as compared to weekday traffic patterns [58]. The key to the 
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successful handling of a special event includes: (a) development of a good traffic 

management plan, (b) input and participation of involved agencies, (c) implementation of 

the plan, (d) on site traffic management, and (e) ability to modify the plan to accommodate 

real-time traffic [59, 60]. Despite these different technical requirements to manage PSEs, 

the empirical literature does not provide any guidance to allow local traffic managers and 

emergency response personnel to disseminate travel specific information as part of traffic 

management procedures for PSEs.  

 

1.3 Conceptual Framework 

The core theoretical framework of this research is to understand the social influence on 

ridesharing, crisis communication, and community interactions. In this regard, relevant 

personal network data will be obtained by appropriately designing and conducting survey 

and identifying statistically significant determining factors both at the individual level and 

at the network level within a proper modeling framework. By following the network 

theories of self-interest, collective interest, theories of contagion and homophily, this 

research aims at developing empirical models with the help of real world data and a tool to 

visualize and analyze individuals' relational data to predict more accurate travel demand 

and evacuation demand.  

 

The conceptual model of social network influence has two interdependent components: 

social system and information flow. Social system includes human agents who interact 

with each other based on their relationships. Information flow is determined by different 

sources of information such as social media, radio, television, internet, etc. Given the type 

of information being broadcast by a given source of information, we are interested in 

modeling how this information transmits from individuals to individuals and how these 

human agents react to that particular information. Specifically, we model and analyze the 

social system by determining how the initial state of network agents change to a final state 

for a given type of information contagion. However, the level of analysis for characterizing 

social network influence on travel behavior can also be extended to household and 

community level by considering theories of collective action. 
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Mathematically, we consider a social system as network ,  consisting of a set of 

human or information agents , , , … . ,  and  is a set of edges denoting 

interactions or ties among them. Let us assume that agent 	 ∈  has an initial state  

at any given time . However, the initial state  of agent 	  is a function of own 

background or socio-demographics   where ∈  and , , , … . ,  

representing the set of background characteristics of 	 (for example: gender, age, marital 

status, etc. for human agents or cascading efficiency, information reliability, time of 

broadcast, etc. for information agents). In addition, network characteristics 	 of 	 also 

determines the initial state  such that ∈  and , , , … . ,  denoting 

all possible network attributes (for example: density, size, homophily, heterogeneity, etc.):  

	 	 , , , … . , , 		 , , , … . , , ∀	 	 ∈             (1.1) 

where, •  is a function of background and network characteristics that define the initial 

state of all network agents at time t. Given that a specific information 	  is being 

broadcast at time  such that  ∈  where , , , … . ,  indicating the set of all 

possible types of information. We model the final state of agent 	at time ∆  as 

∆  which can be represented using the following equation: 

∆ 	 	 , 	 , 	 , … , , 	 	 , ∀	 	 ∈       (1.2) 

where,  •  is the network state transition function; one of the main contributions of this 

dissertation will be to identify the functional form of this function. However, in our 

conceptual framework, we also consider a set of stakeholders’ G that includes policy-

makers ( ), government agencies ( ), disaster management agencies ( ) and so on such 

that , , , … . , . Depending on how different agents react to a particular 

situation i.e. ∆ , each stakeholder  can then take certain necessary actions at the 

system level so that every agents is better off. Mathematically, we model these actions as: 

∆ 	 ∆ , ∆ , ………… . . , ∆ , ∀	 	 ∈    (1.3) 
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Figure 1-1 Conceptual Framework of Social Influence on Travel Behavior
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where,  •  is the function capturing the state-dependent decision made by stakeholder 

. The set of actions by different stakeholders then can be provided as inputs at some 

intermediate steps of state transition by network agents for better system performance such 

as recovering efficiently from sudden shocks, making communities more resilient, 

proactive and so on. This steps will then be repeated as feedback loops whenever necessary. 

 

This conceptual framework is presented in Figure 1-1 which includes human agents with 

different personal attributes connected to each other in different ways. These connections 

could represent undirected or directed social ties. In addition, these agents are connected 

to different sources of information sources like social media such as facebook or twitter, 

traditional news media such as radio or television or internet and so on. However, the 

information that is being broadcast could be bidirectional or unidirectional. For example, 

in social media information can flow in both directions i.e. individual receive information 

and provide feedback. On the other hand, news media like radio or television, the direction 

flow is from media to human agents i.e. there is information feedback. From a given initial 

state, networks agents turn to a final state based on type, context, intensity of the 

information that is being communicated in additions to their own background 

characteristics as well as social network characteristics 

 

The core objective of this thesis is to understand how information is propagated through 

network agents and the role of social ties in terms of decision making related to hurricane, 

travel and so on. Network agents could include virtual agents like media serving as sources 

of information and real agents like people who communicate and process information. 

Most of the agents have access to the common nodes (information sources like media). 

However, the unit of analysis could vary between individuals, households and communities. 

More specifically, this thesis will explore the influence of social network on individual 

travel behavior for different travel events. The proposed thesis offers innovative research 

ideas related to the fundamental understanding of the complex interactions among social 

network members in terms of activity participation, risk perception during crisis and 

community-level interactions.  
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1.4 Specific Research Questions  

 Part I is about social influence on ridesharing.  Chapter 3 presents a zero-inflated Poisson 

model to predict the frequency of joint trips, using ego-centric social network data, for 

regular activity travel decisions. The key research question of this chapter is to quantify 

the network effects i.e. the combined effects of social network strength, density, similarity, 

and diversity on how frequently individuals engage themselves in shared activities.   

Chapter 4 presents a multinomial logit model of travel mode choice and carpooling during 

special events such as game-day. The key research question being addressed in this chapter 

is more specific to the mode choice preference in shared trips i.e. the network effects on 

carpooling over the selection of other types of travel mode during a special event. 

 

Part II is about social influence on the way individuals communicate risk during crisis.  

Chapter 5 presents a mixed-logit model to capture how social networks influence 

individual-level evacuation decision-making based on data obtained from Hurricane Sandy. 

Chapter 6 develops a multilevel model of joint evacuation decision outcome at the dyadic 

(ego-alter social tie) level by using hierarchical generalized linear modeling approach. Both 

chapters contribute to the knowledge of social network effects on evacuation decision 

making i.e. how we can leverage social networks so that individuals communicate the risk 

strongly and eventually evacuate. Chapter 7 analyzes large-scale disaster communication 

network to examine the relationship between network structure and the information 

spreading capacity of network agents. The key research question in this chapter is to 

identify influential nodes in such crisis communication networks by running large scale 

network experiments. Another major objective is to identify well-defined patterns of user 

concerns. 

 

Part III is about how individuals interact in their respective communities and influence 

each other. The objective of this part is to take advantage of the enriched evidence of social 

influence in social media and identify a group of like-minded users. Chapter 8 

demonstrates how to construct social interaction networks from such a social sharing 

platform and analyzes the properties and growth of such networks. Chapter 9 presents a 
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modeling framework to jointly infer communities and interests in social interaction 

networks. Several pattern inference models are developed: i) Interest pattern model (IPM) 

captures population level interaction topics, ii) User interest pattern model (UIPM) 

captures user specific interaction topics based on only words mentioned in the tweets, and 

iii) Community interest pattern model (CIPM) captures both community structures and 

user interests based on both words and users mentioned in the tweets. The network 

properties revealed and methodologies proposed in this part of the thesis will be useful to 

efficiently detect user communities based on their social interactions and interests and 

applicable to any social sharing platform. 

1.5 Organization of the Dissertation 

Chapter 2 provides a comprehensive summary of the network science literature and 

synthesizes studies relevant to ridesharing, social capital, ego-centric network design, 

behavior modeling of activity-based travel and evacuation decision-making, social media 

research in transportation and disaster management. Chapter 3 presents a zero-inflated 

Poisson model to predict the frequency of joint trips, using ego-centric social network data, 

for regular activity travel decisions. Chapter 4 presents a multinomial logit model of travel 

mode choice and carpooling during special events such as game-day. Chapter 5 presents a 

mixed-logit model to capture how social networks influence individual-level evacuation 

decision-making based on data obtained from Hurricane Sandy. In Chapter 6, a 

multinomial multilevel model of evacuation decision outcome at the dyadic (ego-alter tie) 

level has been assessed by using hierarchical generalized linear modeling approach. In 

Chapter 7, large-scale Twitter data (~52 M tweets, ~13 M users, Oct 14-Nov 12, 2012) was 

analyzed to identify subgraphs of Twitter that was active before, during, and after Sandy’s 

landfall at different scales of user activity and important network properties (both local and 

global) were obtained to examine the relationship between network topology and user 

activity. Chapter 8 demonstrates how to construct social interaction networks from social 

media, presents the properties and growth of such networks along with important insights 

based on the theories of network science literature. Chapter 9 presents a modeling 

framework to jointly infer communities and interests in social interaction networks. Several 

pattern inference models are developed: i) Interest pattern model (IPM) captures population 
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level interaction topics, ii) User interest pattern model (UIPM) captures user specific 

interaction topics based on only words mentioned in the tweets, and iii) Community interest 

pattern model (CIPM) captures both community structures and user interests based on both 

words and users mentioned in the tweets. Chapter 10 concludes the work with promising 

research directions. 
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CHAPTER 2. RELATED WORK 

2.1 Introduction 

In this chapter, we present a comprehensive summary of the network science literature and 

synthesizes studies relevant to ridesharing, social capital, ego-centric network design, 

behavior modeling of activity-based travel and evacuation decision-making, social media 

research in transportation and disaster management. 

2.2 Review of Social Capital Theory 

2.2.1 Classical Definition 

As far as the literature related to the theory of social capital is concerned, it has been 

demonstrated in two related however distinct ways. One way of approaching social capital 

is to consider it as the extent to which an individual involves himself in different informal 

networks as well as formal civic organizations [61, 62]. This conceptualizes social capital 

as the many different ways in which the members of a given community interact and 

provides the overall pattern of that community's associational life and civic health. This 

may include participating in recreational activities, talking to neighbors, joining political 

parties or environmental organizations and so on. The other way of approaching social 

capital is to consider it as the resources that individuals are able to only exchange through 

relationships with other people such as information, ideas, support, etc. different from 

physical (tools, technology) or human (education, skills) capital. This definition calls for 

considering the structure of a given social network that allows the flow of resources 

through that network such as frequency and duration of contact among network members, 

network size and density, etc. [63-65].  
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Coleman introduced the role of social capital in the procurement of human capital in the 

context of U.S. high schools and revealed that higher involvement of the community and 

parents in the schools has the ability to enhance the quality of schooling and reduce dropout 

rates [66]. The study defined social capital by its function that includes different entities 

with two elements in common: includes some aspect of social structures and facilitates 

certain actions of actors within the structure. Aldrich provided the evidence that civil 

society has the ability to alter state policies in advanced industrial democracies (a) by 

pushing siting authorities to choose localities with diminished social capital as host 

communities for public bads in a dense local network settings and (b) by forcing authorities 

to move away from standard coercive policy instruments in handling conflict and 

developing new policies and tools in the case of a stronger civil society [67]. In 2012, 

Aldrich empirically explored the prospect of social capital in building more resilient 

communities so that they become proactive in absorbing sudden shocks specially during 

post-disasters [68]. In this regard, four different case studies (1923 Tokyo earthquake, 1995 

Kobe earthquake, 2004 Indian Ocean Tsunami, and Hurricane Katrina in 2005) are 

presented and identified social capital to be the single most contributing factor during post-

disaster recovery. However, three of the four extended cases (Tokyo, Tamil Nadu and New 

Orleans) suggested that individuals and neighborhoods with weaker ties faced more 

difficulties as a result of inaccurate interactions with organized and mobilized groups. In 

doing this, the study considered three forms of social capital: bonding (within network), 

bridging (between networks) and linking (across vertical gradients). 

2.2.2 Network Capital as Opposed to Social Capital 

A more network perspective relevant to social capital is to consider a personal network 

research design (PNRD) approach that collects network data by sampling anonymous 

respondents and collecting information about alters in their networks [63-65, 69, 70]. The 

General Social Survey (GSS) was first conducted in 1972 and measured the core discussion 

networks of Americans [64, 71] and several studies have used the GSS for measuring 

discussion networks [72, 73]. The particular questionnaire item from GSS has been widely 

used by researchers because of its parsimony, general nature, applicability to various 
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contexts and ability to capture ego's core discussion networks without focus on specific 

network content [63, 74-77].  

 

However, Burt proposed the upper limit of the network size to be five based on his 

experiments that accounts for increased measurement precision and reduced measurement 

bias while accounting for severe time constraint [63]. Miller and Simon also found that five 

to seven data “chunks” that can be comfortably retained at once in human memory [78, 79]. 

On the other hand, Granovettor stressed more on the cohesive power of weak ties and 

suggested that occasional and informal ties have the ability to link different groups of 

individuals that could provide access to newer resources or support [80]. But this is 

applicable more from a complete network perspective when two or more dense clusters are 

connected by weak ties which could potentially link them and serving as bridge in between. 

This is not within the scope of an ego-centric network approach where the core discussion 

network of individuals is obtained and the behavior associated with the network members 

is analyzed. However, this issue, to some extent, could potentially be resolved by 

measuring the social capital according to Putnam's definition [61, 62] which is more 

aggregated in terms collecting relevant data as compared to a network approach discussed 

above. In this regard, Grootaert et al. suggested that the conceptual debates on social capital 

cannot be resolved in an empirical vacuum and provided a list of well-defined core 

questions to obtain quantitative data on various dimensions of social capital as part of a 

larger household survey [81]. 

2.3 Social Influence on Ridesharing 

2.3.1 Social Interactions and Travel Behavior Modeling 

Axhausen's seminal work identifies the need to incorporate a better understanding of the 

social structures of daily life in travel behavior modeling [82]. Some studies demonstrated 

the concept of network capital i.e. the availability of resources through interpersonal 

relationships [83, 84], especially from a transportation policy viewpoint [85, 86]. The 

definition of accessibility has also changed from a "place-based measure" to a “people -

based” measure [87]. However, despite recent progress in understanding and modeling 
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activity-travel decision-making processes in time and space [88, 89], the relationship 

between social interactions and travel behavior is understudied [8]. In parallel to the 

empirical studies, simulation studies also explored the role of the social dimension in 

transportation [90-92]. 

 

Although studies related to social activities and their associated trips are limited as 

compared to working or shopping, recently attempts have been made to understand the 

complex travel patterns of social trips [10, 93]. Using structural equation modeling 

technique, Moore et al. established the relationship between social context and 

spatiotemporal characteristics of social activities by providing an empirical evidence to 

show the influence of personal, contextual, and social attributes on the duration, traveled 

distance, and number of people involved [94]. Carrasco and Miller presented a conceptual 

model of social activities within a social network framework to illustrate the importance of 

the social interactions in social activities and then empirically examined the idea, mainly 

the influence of social networks in the generation of social activities [13]. Habib and 

Carrasco proposed a tri-variate joint econometric model to explore the relationship between 

two key activity-scheduling variables (duration and start time) and the role of social the 

social contacts (with whom) of the decision makers [95]. Another study established the 

relationship between the social context (measured by people the respondents interacted 

with) and two key aspects of activity scheduling: start time and duration using social 

activities as a case study [91]. In order to study social activity-travel location, one study 

looked at the home distances between specific individuals (egos) and the network members 

(alters) with whom they socialize with the help of personal network data of 84 people [12]. 

 

Conceptual and methodological developments in network analysis have furthered our 

understanding of the effects of individuals’ interpersonal environment on outcomes such 

as social integration, social participation, and exposure to normative pressures [63]. 

Network data is also capable of providing insights related to an individual's abilities, 

aspirations, attitudes, behaviors and interpersonal environment [63]. Activity-based 

approaches consider travel as derived demand elicited from the desire to perform activities 
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either individually or with others for more accurate behavioral explanations [7]. In addition 

to the socioeconomic characteristics of travelers, the necessity to incorporate individual’s 

social environment in travel demand modeling has been recognized by earlier studies [8]. 

Studies such as Bhat and Lawton [9] highlighted the importance of social interactions in 

travel demand analysis. It is also necessary to explore how individuals’ travel-related 

choice making is different depending on their social networks (and context) to derive 

accurate representations of travel behavior [10].  

 

Theoretical and empirical analyses that link social travel behavior and social interactions 

have not been studied extensively in the literature. In spite of the recognition of this 

research issue, a key reason for the lack of theoretical models is the unavailability of 

reliable data that links social activity-travel and social networks [8]. In addition, 

understanding the linkage between social influence and travel behavior allows the accurate 

characterization of discretionary activities. As is well known, discretionary trips are a 

major fraction of the total urban trips. The inclusion of accurate discretionary activities into 

a supply side model will enable the accurate prediction of traffic congestion. Carrasco et 

al. demonstrated the effectiveness of personal network or ego-centered data collection 

technique in travel behavior research [12]. While there have been considerable interests in 

the study of social activities in particular [8, 13], joint participation in certain activities, 

such as shopping together or engaging in recreational or social activities has also been 

recognized [9, 14]. Personal network characteristics do not only influence the pattern of 

social activities, but also initiate joint or shared trips among network members for all 

possible activities an individual participates in a given week. 

2.3.2 Frequency of Social Activities 

Among the research efforts that particularly looked at the frequency of social activities, 

Carrasco et al. employed a disaggregated framework to study the frequency of activities 

include hosting, visiting, or gatherings at bars or restaurants that is influenced by the 

personal network characteristics of each network member along with the overall social 

structure, such as size, density, composition, etc. [8]. In addition, Van den Berg modeled 
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the number of social trips in two days by using a negative binomial approach by including 

variables related to personal characteristics of individuals and properties of the built 

environment [96]. However, due to the modest explanatory power of the personal and land-

use variables, the study found that additional variables related to personal and land-use 

characteristics are needed to connect trip making and social network effects. Another 

related research by Lin and Wang examined the impact of social network attributes on the 

solo and joint activities and the choices of companions for joint activities using activity–

travel diary data collected in Hong Kong [97]. 

 

However, from a behavioral perspective, social activity-travel is different as compared to 

other purposes, such as working and shopping [8, 98]. While there has been considerable 

interest in the study of social activities [8, 13], joint activities, such as shopping together 

or engaging in recreational or social activities have also been recognized [9, 14]. 

2.3.3 Social Influence in Activity-Based Travel  

The characterization of contagious behavior is pertinent and plays a vital component to 

investigate activity-travel behavior analysis. Since transportation systems have a 

significant coupling between the dynamic demand manifested by the complexity of human 

behavior and the dynamic supply manifested by the significant variations in network 

characteristics, small changes in the behavior can significantly impact the transportation 

network. As Bhat and Lawton argue, our understanding of the effects of social interactions 

in activity-travel patterns is very scarce [9]: 

 

(. . .) “interactions among decision-making agents, and the effect of such interactions on 

activity patterns, are topics that have received limited attention thus far in the travel 

demand analysis literature. Interactions among decision-making agents might take the 

form of joint participation in certain activities, such as shopping together or engaging in 

recreational/social activities.” [9] (p. 3) 
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So far the study of the role of social networks in activity-travel behavior has been restricted 

to modeling social activity travels [8, 13, 99, 100]. However, there is a broader impact of 

social interactions on activity-travel behavior; individual's activity-travel decisions can be 

influenced by his/her social network members. Such influences have not been captured in 

activity-travel behavior analysis before. Another important drawback of these studies that 

the collected social network data has a limited size restricting their usefulness in large-

scale applications. Online social media data offers an additional advantage in this regard. 

Each user in social media is associated with a number of virtual friends which help to build 

the overall social network. Such social network information becomes very useful to 

observe how individual activity-travel decisions (e.g., activity and location choices) are 

influenced by the members of its social network. 

2.4 Social Influence on Disaster Communications 

2.4.1 Overall Hurricane Evacuation 

The overall process of evacuation is complicated in the coastal regions where the 

population growth is high but road network growth is limited [101]. Lindell et al. [47] and 

Gladwin et al. [46] presented the necessity of efficient evacuation management and 

planning for people in coastal regions is well recognized across stakeholders. In short-

notice disasters like hurricanes, evacuation management agencies usually identify alternate 

evacuation routes depending on the expected path of the hurricane prior to the evacuation 

and official routing recommendations are provided to evacuees. Evacuation orders are 

supposed to allow clearance time for traffic to get past bottlenecks like bridges and roads 

with limited traffic capacity.  However, evacuees often delay departure and wind up leaving 

together and on similar routes showing synchronization in terms of their evacuation 

behavior [102]. Previous studies explored different governing factors such as hurricane 

trajectory and warning system, household locations and types, characteristics of the 

evacuees, etc. to explain the complex dynamic process of hurricane evacuation [46-48, 

103-106]. In October 2012, Hurricane Sandy caused about 254 deaths with an estimated 

economic loss of $65 billion (USD) in the US, Caribbean, and Bahamas [107].  
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2.4.2 Evacuation Decision Making 

From the hurricane evacuation behavioral perspective, the principal issue is to decide 

whether to evacuate or not - the evacuation decision-making process from a household 

level. Although the existing literature related to hurricane evacuation is vast, literature 

related to evacuation decision making is limited. One interesting finding by Dash and 

Gladwin revealed that households who are expected to evacuate do not evacuate whereas 

the reverse is true as estimated by emergency mangers [108]. This is why evacuation 

decision making is a complex process during an active hurricane threat and is influenced 

by several underlying factors [46]. In this regard, several others studies could be referred 

[103, 109-114]. Dash and Gladwin also identified causal factors such as age, gender, race 

and ethnicity, income, children or elderly persons in the household, disability, previous 

experience, and geographic location which significantly affect the evacuation decision 

making behavior [108]. However, consistent with Baker [103], the Huang et al. [115] 

statistical meta-analysis (SMA) found that demographic variables generally had weak and 

inconsistent correlations with evacuation. 

 

In terms of statistical modeling, Gladwin and Peacock represented variables influencing 

evacuation, for example, being in an evacuation zone, household size, and presence of 

elderly people and children [116]. Whitehead et al. used storm intensity for the 

development of their model by presenting hypothetical storm scenarios to the respondents 

and found that storm intensity is the key determinant for evacuation decision making 

behavior [117]. Fu and Wilmot [118, 119] and Solis et al. [120] developed models without 

considering the existence of heterogeneity among different households. Lindell et al. used 

correlation analysis to investigate evacuation decision making behavior and the study 

revealed that evacuation decisions are strongly correlated with geographic characteristics, 

utilization of information from peers and local authorities, social cues such as official 

evacuation recommendations, official watches and warnings, and other demographic 

characteristics [47]. But, correlation analysis does not account for the combined effect of 

the variables on the evacuation decision as a whole.   
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Another key factor to influence household level evacuation decision making is the risk 

perception. Mileti and Sorenson pointed out that individuals convert abstract notions of 

risk into concrete personalized assessments of risk for themselves, their families, and their 

households through the personalization process [121]. All these previous models of 

evacuation behavior did not account for the heterogeneity that exists from individuals to 

individuals due to differences in the production of risk perceptions. In this regard, Hasan 

et al. (2011) developed a household-level mixed logit model of hurricane evacuation 

decision where random parameters account for the heterogeneous responses of households 

to a major hurricane using original data from Hurricane Ivan. The study reported factors 

important for understanding evacuation decision behavior and revealed heterogeneities in 

terms of location, evacuation notice, work constraint, and the number of children. However, 

the study explored evacuation behavior at the household level by considering primarily 

household and demographic characteristics without any notion of social influence on the 

decision to evacuate. [122]. 

2.4.3 Evacuation Timing 

There exist several studies on evacuation departure time where the main focus is to derive 

empirical distributions without the inclusion of different influential factors. The research 

by Lindell and Prater can be referred to for a detailed review on evacuation timing studies 

[49]. However, as far as behavioral studies related to evacuation timing decisions are 

concerned, few attempts have been made in literature so far. Sorensen involved path 

analysis for evacuation timing behavior and included a set of sequential decisions made 

over time with evolving hurricane forecasts in this process [123]. The study considered 

ordinary least square (OLS) regression to capture the relationship between departure time 

and several significant variables. A sequential logit choice model was developed by Fu and 

Wilmot to capture the decision of whether to evacuate or not when each household reviews 

the conditions surrounding an approaching hurricane [118]. Later, they developed a hazard-

based model to understand evacuation decision with the evacuation timing decision jointly 

[119]. One of the assumptions of the model is that the evacuation decision and the 

evacuation timing decision are made simultaneously and both decisions are influenced by 
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the similar influential variables. But this assumption may not be valid because although 

these two decisions are connected, the factors affecting these two decisions may be 

different. In addition to that, the model included the households who did not evacuate by 

considering the corresponding observations as right censored which may overestimate the 

number of households who actually evacuate.  

 

The above evacuation timing models [49, 118, 119, 123] mostly included environmental, 

social and demographic factors. A hazard-based model to capture evacuation timing 

behavior was developed by Hasan et al. [124]. The occurrence of the end of a duration 

provided that the duration has lasted for a specified time is the main focus of hazard-based 

models. In terms of hurricane evacuation, the end of the duration from the moment of 

receiving a hurricane warning to the moment of actual evacuation could be captured by 

hazard-based approach. The hazard model developed in that study provides valuable 

insights to understanding the temporal dynamics of the household’s evacuation decision 

making process. In addition, they captured the heterogeneous risk response in the modeling 

framework by including random parameters in the model. The key focus of this paper was 

to understand the causal factors those influence the evacuation timing decision by using 

data from Hurricane Ivan. 

2.4.4 Evacuation Mobilization Time 

From a different perspective, Dixit et al. explained different factors associated with the 

duration between the time that the evacuation decision is made and the time of evacuation 

by the evacuees of Hurricane Frances [125]. They referred this duration as the 

“mobilization time.” The study showed how the impact of a previous hurricane affects the 

mobilization time in a subsequent hurricane by estimating the two models simultaneously. 

Previously, the mobilization time was defined as the difference between the time of 

departure and the time of warning receipt [123]. Some other studies referred mobilization 

time as the “evacuation delay,” and revealed several factors affecting the delay by 

considering isolated hurricanes [126-128]. Dixit et al. used mobilization time to structurally 

model risk attitudes which can predict the total number of evacuees along with the 
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associated departure time. Recently, Sadri et al. introduced random parameters to 

understand this time gap between the decision to evacuate and the actual departure from 

the home or from the evacuation zone when the evacuation warning is applicable [129]. 

2.4.5 Evacuation Destination Choice 

This section reviews previous works related with hurricane evacuation destination choice 

and highlights the need for household level destination type choice models. Lindell and 

Prater referred to the point in a given transportation network as the proximate destination, 

where the evacuee comes out of the risk area [49]. They also refer to both the town/city 

and the type of accommodation where the evacuees will stay until they can return to their 

homes as the ultimate destination which was the topic of focus in that study. On the other 

hand, Barrett et al. assumed the location where the evacuee is predicted to seek safety or 

the evacuation location recommended in the evacuation plan as the ultimate evacuation 

destination [130]. Southworth recognized that evacuees display dispersive nature in their 

destination selection being influenced by different factors: location of friends and relatives, 

the speed of the hazard, etc. [131]. Mei [132] and Modali [133] found no model of trip 

distribution for evacuations other than the Oak Ridge Emergency Management System 

(OREMS) package prior to their work. Wilmot et al. [134] applied both a gravity model 

and an intervening opportunity model for the purpose of trip distribution during hurricane 

evacuation where the gravity model performed better. However, these models are only 

applicable to aggregated zones and further calibration is needed for each accommodation 

type. Cheng et al. [135] developed two separate multinomial logit (MNL) models for 

hurricane evacuation destination choice at the zonal level, specifically for friends and 

relatives and hotel/motel choice. 

 

As part of evacuation destination choice, homes of friends and relatives are the most 

preferred accommodation type, followed by hotels/motels [136]. Public shelters are 

required for some types of emergencies (for example, nuclear power plant) and are critical 

resources for some evacuees despite their relative lack of use [137]. Public shelters as 

evacuation destination are preferred by lower income group of evacuees as revealed by 
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USACE, 2001; Mileti et al., [137] and Moore et al., [138]. A recent study by Mesa-Arango 

et al. [139] developed a household level hurricane evacuation destination type choice 

model that accounts for the utility differences among different destination options by using 

the Hurricane Ivan 2004 survey [140]. In this study, a nested logit (NL) model has been 

developed where variables related to household location, socioeconomic characteristic, 

evacuation attributes, previous hurricane experience, and hurricane position, etc. were 

found to influence the choice of a type of destination. 

2.4.6 Evacuation Routing Strategy 

In terms of emergency planning and network level analysis, a number of research efforts 

could be mentioned. For example, Wilmot and Mei [141] differentiated between the 

relative accuracy of different forms of trip generation for evacuating traffic. Another study 

explained and offered guidance on the development of dynamic traffic models for 

hurricane evacuations by Barrett et al. [130]. Murray-Tuite and Mahmassani [142] 

developed a way to predict delays and traffic densities while accounting for family 

gathering behavior in evacuations by using trip chain simulations. Robinson et al. [143] 

evaluated the impact of incidents on the time to complete an evacuation of a large 

metropolitan area. Research by Wolshon et al [144, 145] focused on areas that are needed 

to be considered for a successful evacuation plan. Dixit and Radwan [146] used 

microscopic modeling and introduced a process called “network breathing” for the external 

controls on entry and exit of evacuating vehicles into the evacuation network to improve 

overall outflow. Liu et al. [147] developed a cell-based network model in order to 

determine optimal staging schemes to reduce congestion on an evacuation network by 

providing a more uniform distribution of demand. They assumed that the starting time for 

the evacuation of each staged zone could only be controlled.  

 

As far as routing strategy during evacuation is concerned, Cova and Johnson [148] 

developed a network flow model to identify optimal lane-based evacuation routing plans 

in a complex road network and the key idea is to reduce traffic delays at intersections in 

evacuations. Shen et al. [149] proposed two models to address the highly uncertain and 
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time-dependent nature of transportation systems during disruption. One of the models 

offered dynamic routing control in a stochastic time varying transportation network which 

routes the vehicles using the shortest path algorithm while accounting for the capacity of 

the links and delays due to congestion and they claimed that the proposed routing strategy 

minimizes evacuation time to the safety shelter locations. Lammel and Flotterod [150] 

compared two different routing strategies in a multi-agent simulation of a real world 

evacuation environment. They claimed that the cooperative routing approach generates a 

substantially higher evacuation throughput than an alternative non-cooperative routing 

strategy. Chiu and Mirchandani [151] showed that the route choice behavior of an evacuee, 

as opposed to selecting optimal routes, results in subsequent degradation of evacuation 

effectiveness. They introduced a FIR (Feedback Information Routing) strategy which 

could augment the evacuation effectiveness to an optimal situation.  In this study, they 

applied an MNL-based route-choice model ERCM (Evacuation Route Choice Model) that 

is calibrated through the stated preference approach. However, an important point they 

emphasized is the fact that ERCM is not intended to serve as an exact representation of the 

actual route-choice behavior during evacuation but to devise a plausible route choice 

behavior to show how actual route choice results in evacuation performance deviating from 

the optimal route choice behavior. 

 

Existing literature suggests that few studies have addressed the routing decisions made by 

evacuees during a hurricane evacuation. A recent study by Robinson and Khattak [152] 

revealed that the preferences of evacuees whether or not to detour from a route when faced 

with congestion are predictable and controllable by using ATIS (Advanced Traveler 

Information Systems). Stated preferences analysis indicates that Hampton Roads drivers 

will be highly motivated to use an alternate route when longer than expected delays are 

observed on the intended route when ATIS information is available on alternate routes. 

The survey was intended to provide enough information to provide data for behavior based 

experiments but it was not possible to ensure a representative sample of the population of 

the whole region. This is why they emphasized that a demographically accurate survey 

must be obtained before employing the results in a real world situation. 
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The research conducted by Wu et al. [153] focused on household evacuation logistics in 

nine counties/parishes which conducted evacuations during Hurricanes Katrina and Rita. 

The study reported the choice of evacuation destination and route in different counties and 

presented the necessity of developing mathematically tractable models of household 

evacuation route choice. Murray-Tuite et al. [154] reported that many evacuees base their 

routing decisions on the belief that the selected route would be shortest and/or it is their 

usual or most familiar route during hurricane evacuation. Recently, Sadri et al. developed 

a mixed logit model to understand the choice of routing strategies during hurricane 

evacuation by using data from Hurricane Ivan in 2004 [155]. The model identified and 

explained several important factors that influence the routing behavior of evacuees among 

three significant alternatives: selecting the usual route, following the routes recommended 

by emergency officials and possibly detouring or route switching. Another recent study 

explored the choice of major bridges for the evacuees from Miami Beach by using a 

random parameter logit-based approach [156]. 

2.4.7 Evacuation Mode Choice 

In addition, several studies discuss evacuation transportation modes in particular. Kang et 

al. [157] compared respondents’ stated hurricane evacuation response with their actual 

behavior two years later during Hurricane Lili. Respondents were found to have accurate 

expectations about their actual evacuation behavior, information sources, evacuation 

transportation modes, number of vehicles taken, and evacuation shelter types. Lindell and 

Prater [49] revealed that those who are able to take personal vehicles are still largely 

assumed to take them, both from the citizen and management agency perspectives. They 

also recommended accounting for cars pulling boat trailers in hurricane evacuation 

modeling. 

 

Renne et al. [158, 159] have investigated the needs for the carless and special needs 

populations who are dependent on others for transportation, such as, transit/emergency 

management agency, family, friends, neighbors, etc. Deka and Carnegie [160] found a 

strong preference for private vehicle (84%) based on stated preference survey data and the 



29 

choice of other modes depended on familiarity with a particular transit option and the 

unavailability of a personal vehicle. Wu et al. [153], using hurricane Katrina/Rita data, 

confirmed that the most common way for households to evacuate is to take their own 

vehicles. According to them, one exception is that older evacuees are less likely to have a 

registered vehicle and as a result they depend on carpooling rather than public 

transportation. They found only 11% of evacuees not taking their own cars, of which 71% 

rode with someone else and 28% used another form of transportation.   

 

Wilmot and Gudishala [161] found that approximately 96 percent of the evacuees stated 

that they either used car or van to evacuate during Hurricane Gustav. Evacuees also used 

other modes of transportation, like bus (0.8%), sharing ride with someone else (2.8%), etc. 

Murray-Tuite et al. [154, 162] developed a simultaneous optimization model that included 

multiple modes of transportation and found that the optimization model results indeed do 

not always correspond to evacuees’ anticipated behavior. Another study pointed out that 

taking fewer vehicles during evacuation could reflect traffic considerations or a desire to 

keep the family close together or both, whereas taking more vehicles could indicate a desire 

to preserve personal property  [162].  

 

Villegas et al. [163] investigated specific characteristics of tourists that influence their 

affective and cognitive responses to a hurricane warning message and found that the 

method of transportation did not influence risk and fear perceptions except for tourists 

interviewed in the coastal sites. Lindell et al. [164] reported that majority of evacuees 

(90%) traveled in their own vehicles, whereas 9% rode with peers and less than 1% used 

public transportation during Hurricane Lili. According to their results, the average number 

of vehicles per household was 1.7, the average number of trailers per household was 0.35, 

and 7% of the households took high profile vehicles. 

 

Liu et al. [165] presented a framework to include both household-gathering behavior and 

mode choice in a no-notice emergency into an evacuation model to examine the effects of 

these two issues on evacuation efficiency and network performance. In this study they 
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considered a decision tree (DT) approach to model mode choice for no-notice evacuation 

situations. The model included individuals’ gender, possession of a driver’s license, access 

to a personal car, commute mode, commute distance, number of adults in the household, 

number of cars in the household, and child pick-up decision as input variables and the 

output variables are transport mode used in an evacuation, such as driving alone, taking 

public transit or taxi, and carpools. 

 

Murray-Tuite and Wolshon [166] presented a detailed review on the existing literature 

related to mode choice during evacuation and according to them, the mode of transportation 

to evacuate is likely to depend on a number of factors, such as characteristics of the disaster, 

required travel distance to reach safety, location of the evacuees at the time an order is 

given, and available options. Sadri et al. recently explored non-household transportation 

mode choice behavior of evacuees’ and the factors that influence the choice of a given 

mode, in a major hurricane [167].  

2.4.8 Social Influence in Evacuation Modeling 

The overall hurricane evacuation process can be characterized as a complex process 

involving decision making at different levels of influence: individual, household, and 

community. Some important dimensions of the decisions involved in the evacuation 

process include: whether to evacuate or not; evacuation timing; evacuation mobilization 

time; evacuation destination; evacuation mode and evacuation route. Riad et al. [168] 

identified 'social influence' as one the three social psychological processes combined with 

individual characteristics to influence the complex phenomenon of why people sometimes 

decide not to evacuate from a dangerous situation. According to this study, 'risk perception' 

and 'access to resources' are the two other processes in this regard. In addition to personal 

risk perception, social influences play an important role on individual’s decision making 

process though individuals are finally responsible for their own decisions [168]. Studies on 

hurricane evacuation [103, 108, 169] found that in addition to factors such as individual 

and household characteristics, risk level, evacuation orders, and storm threat, the personal 

risk perception was the most important factor in determining the evacuation decision. 
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Hasan and Ukkusuri [170] found that the role of social influence on risk perception 

behavior is not directly addressed in the literature. However, it is possible that an 

individual’s risk perception can be socially influenced as evacuation decisions spread from 

individual to individual thorough the social network configuration. Gladwin et al. [46] 

conclude that, informal networks based on neighbors, co-workers, family members, and 

friends can influence the initiation of decision-making processes and the role of warning 

dissemination. The study also presented the necessary actions required by appropriate 

agencies and organizations to support social science research on the high-priority issues in 

the hurricane forecast and warning system. 

 

Previous research suggests that individual’s social ties have an impact on the disaster 

warning dissemination (i.e., content, source, and number of warnings received) and 

adaptation process [171]. It is found that the greater the number of contacts and ties one 

has to the community, the more likely one is to receive information on evacuation 

recommendation [172]. Official warning messages sometimes provide vague information 

that are usually confirmed through other sources (i.e., through individual’s social network) 

[173]. It is generally agreed that kin relationships play more important role compared to 

community relationships in evacuation decision making. [172] however reasoned that 

when kin relationships are weak or absent, community contacts can serve similar function 

with respect to a model of evacuation behavior.  

 

Characteristics of individual social network can be the predictors of evacuation patterns. 

For example, it is found that individuals who do not typically evacuate have a small social 

network and vice versa [113]. Previous social science studies on hurricane evacuation also 

suggest that African American households typically possess more cohesive kinship and 

larger community networks compared to Caucasian communities and hence have a greater 

propagation of disaster warning information [172]. Previous research also found that ethnic 

groups such as African American households actively involve their elders within the kin 

network; which eventually contributes to a higher percentage of decisions to evacuate [174]. 

Hasan and Ukkusuri [170] proposed a threshold model of social contagion to characterize 



32 

the social influence in evacuation decision making process that was originally proposed in 

network science literature. This study suggested that individual social relationship can be 

thought of the combination of kin relationships (i.e., relatives) and community contacts 

(i.e., friends and neighbors) and both these relationships have influences on warning 

propagation and evacuation decisions. 

 

Planning by social networks in communities of highly vulnerable people can be an 

important determinant of evacuation readiness as Kusenbach and Taylor [175] find in a 

study of mobile home residents. Hasan and Ukkusuri [170] suggested that an individual’s 

risk perception can spread from individual to individual within the social network. Their 

study developed a contagion model and used a simulation-based approach to understand 

the role of different community mixing patterns to explicate information cascade and 

evacuation decision making. Recently, Sadri et al. [176] developed a Hierarchical 

Generalized Linear Model (HGLM) to explore the similarity of evacuation decision 

behavior among social partners by using ego-centric social network data. Their findings 

suggest that attributes of social ties such as frequency of contact, discussion topic, 

geographic proximity significantly impact evacuation decision making at the dyadic (ego-

alter tie) level in addition to socio-demographic factors of individuals.  

2.4.9 Social Media Research in Disaster Science and Crisis Management 

Computing for disasters, a new research area, can potentially benefit the overall 

preparedness and resilience during natural disasters by collecting data and transforming 

data into usable and secured forms specifically for the emergency officials [177]. This 

requires examining multi-disciplinary areas and addressing challenges related to scope, 

scale, complexity and uncertainty. While previous studies suggested that 'systems 

approaches' will provide more success instead of individually exploring the new advances 

such as wireless communication, data fusion, embedded sensors, pattern recognition and 

so on [178-180]. Computing for disaster has the ability to increase the number of lives 

saved, improved quality of life for the injured people, accelerated economic recovery, 

creating new job sectors, etc. There are two major sources of big data: dedicated sensor 
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networks (for example, earthquake detection using seismometers) and multi-purpose 

sensor networks (for example, social media such as Twitter using smartphones), both of 

them have demonstrated their usefulness in disasters such as the Tohoku Earthquake [181]. 

According to this report, Big Data can essentially help in all four phases of disaster 

management: prevention, preparedness, response, and recovery.  

In recent times, Microblog service providers such as Twitter, Facebook, etc. are serving as 

potential source for handling relevant information during natural disasters or emergencies. 

Social media has the ability to reach the ground truth, sharing information, crowd sourcing 

as well as responses from different groups of social media users. In addition to the 

traditional sources of information such as television, newspaper, etc., social media offers 

ways to retrieve, produce and spread timely information during emergency events. Due to 

these additional features, social media has the potential to play an important role in the 

disaster preparation, warning, response and recovery. Crisis Informatics is the new area of 

studying human behavior and response during disaster by using social media data with 

increasingly pervasive information and communication technology [182]. Social media 

data during crisis or natural disasters include studies like Virginia Tech shooting [183, 184], 

Southern California wildfires (Hughes et al. 2008), major Earthquakes in China [185, 186], 

Red River floods and Oklahoma grassfires [187] etc. from social networks like Facebook, 

Twitter, and image sharing service Flickr etc. Ukkusuri et al. [42] recently provided new 

insights about using social media data in disaster response and emergency operations. This 

study analyzed microblogs related to 2013 Moore tornado in Oklahoma posted on Twitter 

and examined the actual public response and characteristics after the tornado, which can 

improve the understanding of the “the big picture” during critical situations. The nature of 

self-generating and sharing significantly accelerates the speed of information production 

and spreading and this is why social media, increasingly, is being considered as a means 

for emergency communications as it provides real-time content, sentiment, and trends of 

public attention and behavior. 

Disaster communication networks play a salient role during emergencies since people may 

obtain weather information from traditional media such as radio or television and social 
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media such as Facebook, Twitter, or the internet. Many researchers identified authorities, 

news media, and peers as emergency warning sources [45]. Research done in the social 

science literature demonstrates that the psychological and social factors are very important 

in translating hazard warning information into a collective decision [46-49]. Evacuation 

studies have found significant correlations of local authorities, peers, local and national 

media, and internet with evacuation [47]. During Hurricane Sandy, social media also 

played an important role on information sharing. Residents from New York and New 

Jersey were able to receive information on smart-phones using social media as they had 

limited access to traditional sources of information (radio, television and others) [50]. In 

areas without power, communications via online social media continued during and after 

the storm based on the continuous distribution of tweets observed throughout the city and 

Midtown Manhattan was found to be the most common tweeting location [51]. Individuals 

were more likely to evacuate if they relied on social media for weather-related information 

during Sandy [52]. 

  

Twitter users can share short messages up to 140 characters and follow other users creating 

a network of a large number of accounts with characteristics both of a social network and 

an informational network [54]. The social network properties of Twitter provides access to 

geographically and personally relevant information and the information network properties 

instigate information contagion globally [44]. These specific features make Twitter 

particularly useful for effective information dissemination during crises. From an 

emergency research perspective, many researchers used Twitter to study the service 

characteristics [31, 38], retweeting activity [188, 189], situational awareness [187, 190], 

online communication of emergency responders  [191, 192], text classification and event 

detection [35, 36, 40, 193, 194], devise sensor techniques for early awareness [195], 

quantifying human mobility [196, 197], and disaster relief efforts [198]. 

 

 

 

 



35 

2.5 Social Influence on Community Interactions 

The emergence of online social media such as Facebook, Twitter etc. have created 

ubiquitous social environments. Users can interact with such systems by being friends with 

others, updating statuses, posting interesting links, mentioning other users in their statuses 

or posts, commenting or liking others’ posts, privately communicating with their 

connections and in many other ways depending on the type of the system. User interactions 

within these systems help to construct a network of user relationships representing links of 

direct social influence. In such a network, two users are connected if they interact with each 

other or establish a friendship between them. Thus a social interaction network is defined 

as a network of nodes and links, where nodes consist of the users of a particular online 

social media system and links are established if two nodes have some form of interaction 

between them. An individual’s connections and activities in a social interaction network 

enable us to understand the social influence on real world actions. Such knowledge is 

invaluable for predicting human actions in real world through a social network 

amplification [43, 44]. User activity in social media has shown its prevalence in recent 

years, for instance every second over 143K tweets are being generated on Twitter [53]. 

2.5.1 Transportation Planning and Engineering 

Studies have started to acknowledge the potential and need to utilize the rich information 

on user activities and networks that social media systems provide. The benefits to collect, 

analyze and use such large-scale and rich information from online information sources 

have been realized [28].  For instance, many researchers used Twitter to study the service 

characteristics [31, 38], retweeting activity [188, 189], situational awareness [187, 190], 

online communication of emergency responders  [191, 192], text classification and event 

detection [35, 36, 40, 193, 194], devise sensor techniques for early awareness [195], human 

mobility [196, 197], and disaster relief efforts [198]. Recently, transportation researchers 

used these data sources extensively for problems related to human mobility patterns [199], 

origin-destination demand estimation [200-204], activity-pattern modelling [205-208], 

social influence in activity patterns [209], travel survey methods [210, 211], transit service 

characteristics [212], and crisis informatics [42] among others. Although a few studies 
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analyzed people’s ego-centric offline social networks and their association with activity 

participation [8, 55], the empirical literature does not provide any specific evidence on how 

to systematically extract user communities of social interaction networks from social media 

and the potential application of such networks to solve transportation related problems. 

2.5.2 Information Dissemination and Planned Special Events 

Information dissemination is the systematic way of distributing information and spreading 

awareness to every individual and systematic planning, collection, organization, and 

delivery technique are needed before circulating relevant information to any target 

audience by using various media and communication means. Information dissemination 

thus constitutes an important and critical factor for the success of organizing PSEs. Despite 

many technical challenges to manage PSEs, the empirical literature does not provide any 

specific guidelines to local traffic managers and emergency response personnel to 

disseminate travel specific information as part of traffic management plans for PSEs. Social 

media platforms (Twitter, Facebook and others) can be considered as appropriate means of 

disseminating information dynamically. Studies have found that an individual’s real world 

actions can be inferred based on the connections and activities in social media [43].  Twitter 

shows both the characteristics of a social network and an informational network [54] and 

users can share short messages up to 140 characters along with the ability to follow other. 

While the information network properties of Twitter instigate information contagion 

globally, the social network properties allows access to geographically and personally 

relevant information and [44]. Because of specific features, Twitter can be particularly 

useful for effective information dissemination during PSEs. The successful spreading of 

awareness to every individual in a community solely depends on an effectual information 

dissemination process [25-27].  

 

Planned Special Events (PSE) include sporting events, concerts, conventions and similar 

large events at specific venues such as stadiums and convention centers among others. 

PSEs possess many operational needs that can be anticipated and managed in advance 

because of specific locations and times of occurrence [58]. The assembling of vehicles and 
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people in a short period of time cause transit authorities to often encounter significant 

challenges in controlling the induced traffic from different locations both before and after 

the event. Organizing PSEs have several challenges including parking management, crowd 

management, pedestrian facility design, and special facility for senior citizens and 

handicapped individuals, providing transit facility for captive riders among others. In 

addition, police enforcements often need to close several streets for security reasons, 

manage crowds who walk together to the location and guide motorists to specific routes 

who are unfamiliar with the area. Individuals attending these events travel by various travel 

modes, i.e. walk, private car and public transit. Since the traffic patterns of PSEs vary 

significantly as compared to any given weekday traffic patterns, accidents, or any other 

incidents, it is of great inconvenience for traffic managers, drivers or freight movers to deal 

with PSEs [58]. Thus, PSEs are a major concern for traffic planners and local transportation 

agencies because of increased traffic demand and restricted roadway capacity causing 

disruptions to the regular traffic conditions [57, 58]. However, this disruption and the 

associated operational needs can be anticipated and managed in advance [56]. Participation 

from key stakeholders, development and implementation of effective traffic management 

plan, and the flexibility to change plans to manage real-time traffic are among the key 

strategies to efficiently handle PSEs [59]. 

 

Some literatures have studied the importance of planned special events. Planned Special 

Events (PSEs) include events at both permanent (i.e. arenas, stadiums, racetracks, 

fairgrounds, amphitheaters, convention centers, etc.) and temporary venues. Sporting 

events, concerts, festivals, and conventions and also less frequent public events such as 

parades, fireworks displays, bicycle races, sporting games, motorcycle rallies, seasonal 

festivals, and milestone celebrations illustrate the concept of special event [56]. The term 

planned refers to the essence of such events because of their known locations, scheduled 

times of occurrence, and associated operating characteristics [60]. The Indianapolis 500 

and Brickyard 400 are the two largest single day sporting events in the world that are 

attended by over 400,000 spectators [213]. On the other hand, universities and sports 

venues regularly host events that may attract over 100,000 attendants [214]. Managing 
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travel for special events, and facing its challenges, targets the following objectives:  achieve 

predictability, ensure safety, maximize efficiency and meet stakeholder`s (both public and 

event patron) expectations [60]. These goals can be realized as benefits in different levels 

of impact. Congestion that develop as a consequence of PSE results in delays affecting 

both attendees and non-attendees of the events [58]. Overall benefits include reduced delay 

for both attendants and non-attendants and reduced overall traffic demand. System 

operations benefits include, among many others, attraction of new regular transit users and 

carpoolers and dissemination of lessons learned and solutions to technical problems. In a 

community level, benefits extend to an economical stage, with an increased knowledge of 

potential for investment and commercial activity in the community and also an increased 

potential to attract other special events. PSE are known to generate a direct outside-of-

event spending and secondary economic effects of the order of $164 billion annually, with 

college sports contributing with up to $6.7 billion [58]. 

 

Through a multinomial logit model Cervero [215] was able to list three blocks of variables 

that influence mode travel: traditional travel time, cost, and demographic variables; 

attitudinal and lifestyle preference variables; and built-environment factors. His findings 

also show that drive-alone and group-ride automobile travel likelihood increased, when 

compared to transit, with vehicle ownership levels, the presence of a driver’s license, and 

for female trip-makers [215]. A multinomial logit model was developed based on travel 

characteristics (cost and time) and individual characteristic (car ownership) to predict the 

modal split during the 6th urban sports meeting held in Wuhan in 2007 [216]. Another 

multinomial logit model to forecast mode choice during a special event was developed by 

Yan et. al, which used socioeconomic situation and the attributes of transportation mode 

alternatives (travel time, access/egress time, fare, etc.) via a utility function [217]. 

2.6 Review of Network Science Literature 

The primary focus in the study of large-scale complex networked systems is to comprehend 

the dynamic interdependence between the network topology and the function of network 

agents. This distinctive interdependence has important consequences on the robustness and 
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resilience of real networks as they respond to random failure, targeted attacks or any other 

external perturbations [218]. This has emerged in the domain of Network Science that 

provides an interdisciplinary perspective to the study of real networks having complex, 

irregular and versatile topology [219-221]. This knowledge of the coupled dynamics 

between network structure and function has manifold applications in various fields 

including infrastructure systems, supply chain and logistics, biology, social and financial 

systems, information and communication networks, and many others [220, 222, 223]. This 

joint association of network structure with the entities also allows the experiment of highly 

dynamic behavior of the network agents that exist and interact within the complex 

architecture. Some promising research questions related to complex network systems may 

include: (a) how do interactions between network agents (nodes/vertices) help to develop 

new ideas or information while disseminating through the network? (b) is there any 

threshold at which the information dissemination becomes a global cascade? (c) what is 

the rate and extent at which the information disseminates? The answer to these questions 

can be found in many empirical studies of real world systems, such as, disease transmission 

[224, 225]; transmission of computer viruses [226, 227]; collapse in financial systems 

[228], failures of power grid [229, 230]; information diffusion through social networks 

[231], and many others. 

Many new network concepts, properties and measures have been developed by running 

experiments on large-scale real networks. A number of statistical properties and unifying 

principles of real networks have been identified from these studies. Significant amount of 

research efforts have helped to develop new network modeling tools, reproduce the 

structural properties observed from empirical network data, and design such networks 

efficiently with a view to obtaining more advanced knowledge of the evolutionary 

mechanisms of network growth [170]. Many real networks possess interesting properties 

unlike random graphs indicative of possible mechanisms guiding network formation and 

ways to exploit network structure with specific objectives [220]. Some of these properties, 

common across many real networks, are described below: 
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2.6.1 Small-world Property:  

This property refers to the existence of relatively short paths between any pair of nodes in 

most networks despite their large size. The existence of this property is evident in many 

real networks [232-234]. The small-world effect has important implications in explaining 

dynamics of processes occurring on real networks. In case of spreading information or 

ideas through a network, the small-world property suggests that the propagation will be 

faster on most real world networks because of short average path lengths [220]. Three 

important measures to explain this property are eccentricity, radius and diameter. While 

the eccentricity of a node in a graph is the maximum distance (number of steps or hops) 

from that node to all other nodes; radius and diameter are the minimum and maximum 

eccentricity observed among all nodes, respectively. 

2.6.2 Degree Distributions  

The degree of a node ( ) is the number of direct links to other nodes in a graph. The degree 

distribution  in real networks (probability that a randomly chosen node has degree	 , 

issignificantly different from the Poisson distribution, typically assumed in the modeling 

of random graphs. In fact, real networks exhibit a power law (or scale-free) degree 

distribution characterized by higher densities of triangles (cliques in a social network, for 

example) [235]. In addition, many real networks also exhibit significant correlations in 

terms of node degrees or attributes. This scale-free property validates the existence of hubs, 

or a few nodes that are highly connected to other nodes in the network. The presence of 

large hubs results in a degree distribution with long tail (highly right-skewed), indicating 

the presence of nodes with a much higher degree than most other nodes. For an undirected 

network, the degree distribution  can be written as follows: 

∝ 		      (2.1) 

where  is some exponent and  decays slowly as the degree  increases, 

increasing the probability of obtaining a node with a very high degree. Networks with 

power-law distributions are called scale-free networks [219] that holds the same functional 
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form (power laws) at all scales. The power law  remains unchanged (other than 

a multiplicative factor) when rescaling the independent variable	  by satisfying: 

		 	                                       (2.2) 

The presence of hubs that are orders of magnitude larger in degree than most other nodes 

is a characteristic of power law networks. In this study, we test the scale free property both 

for the activity frequency of all active nodes and the degree distribution of subgraphs being 

active at different activity levels.  

2.6.3 Transitivity  

This property is a distinctive deviation from the properties of random graphs. Network 

transitivity implies that two nodes are highly likely to be connected in a network, given 

each of the nodes are connected to some other node. This is indicative of heightened 

number of triangles that exist in real networks (sets of three nodes each of which is 

connected to each of the others) [220]. The existence of triangles can be quantified by 

Clustering Coefficient. C: 

	 ∗	 	 	 	 	 	

	 	 	 	 	
	                          (2.3) 

A connected triple refers to a single node with links running to an unordered pair of others. 

In case of social networks, transitivity refers to the fact that the friend of one’s friend is 

likely also to be the friend of that person. Another important notion is Network Density, 

frequently used in the sociological literature [236]. The density is 0 for a graph without any 

link between nodes and 1 for a completely connected graph. 

2.6.4 Network Resilience  

This property, related to degree distributions, refers to the resilience of networks as a result 

of removing random nodes in the network and the level of resilience to such vertex removal 

varies across networks depending on the network topology [220]. Networks in which most 

of the nodes have low degree have less disruption since these nodes lie on few paths 
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between others; whereas removal of high degree nodes in a large real network can result in 

major disruption. The usual length of these paths will increase if nodes are removed from 

a network, resulting in disconnected pairs of nodes and making it more difficult for network 

agents to communicate. 

2.6.5 Node-level Properties 

2.6.5.1 Node Degree 

The node degree is the number of edges adjacent to that node ( ). In-degree is the 

number of edges pointing in to the node ( _ ) and out-degree is the number of edges 

pointing out of the node ( _ ). Average neighbor degree refers average degree of the 

neighborhood ( , ) of each node  is: 

, 	
| |

	∑ 	∈	                                                 (2.4) 

where,  are the neighbors of node	 	;  is the degree of node	 	that belongs to	 . In 

case of weighted graphs, weighted degree of each node can be used [237].  

2.6.5.2 Clustering Coefficient 

In case of an unweighted graph, the clustering coefficient ( ) of a node 	refers to the 

fraction of possible triangles that exist through that node:  

	 	

∗
       (2.5) 

 

where,  is the number of triangles that exist through node  and  is the degree of 

node 	 . In case of weighted graphs, this clustering coefficient can be defined as the 

geometric average of the sub-graph edge weights [238]. The eccentricity of node	  is the 

maximum distance from node	  to every other nodes in the graph  ( ). 

2.6.5.3 Betweenness Centrality 

Out of a number centrality measures, betweenness centrality ( ) of node	  is the sum of 

the fraction of all-pairs of shortest path that pass through node	 : 

	 ∑ , 	|	

,
, 	∈	         (2.6) 
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where,  is the set of nodes in , ,  is the number of shortest ,  paths, and , 	|	  

is the number of paths that pass through some node  other than , . Please refer to [239-

241] for more details.  

2.6.5.4 Closeness Centrality 

The closeness centrality ( ) of node	  is the reciprocal of the sum of the shortest path 

distances from node	  to all 1  other nodes in the graph	 : 

	
∑ ,

 …………….……………………… (2.7) 

 

where, ,  is the shortest path distance between node	  and node	  and  is the number of 

total nodes in graph	 . Closeness is normalized by the sum of minimum possible distances 

of 1  since the sum of the distances depend on the number of nodes in the graph. 

Higher values of closeness imply higher centrality. Please refer to [242] for details.  

2.6.5.5 Eigenvector Centrality 

The eigenvector centrality ( ) computes the centrality for a node	  based on the centrality 

of its neighbors. The eigenvector centrality for node	  is: 

	 	 	       (8) 

where  is the adjacency matrix of the graph 	  with eigenvalue . Perron–Frobenius 

theorem suggests that there is a unique and positive solution if  is the largest eigenvalue 

associated with the eigenvector of the adjacency matrix  [243, 244]. Finally, degree 

centrality for a node is just the fraction of nodes it is connected to. 

2.6.6 Other Network Properties  

Some other common properties are observed in many real networks such as mixing patterns 

(selective linking), network homophily or similarity, degree correlations, preferential 

attachment, community structure, network navigation, size of giant components among 

others [220]. 
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2.7 Ego-Centric Network Design 

Network concepts, theories and methods have been developed to analyze one’s personal 

network structure. More specifically, by considering an individual's personal networks 

(also known as ego-centric networks) it is possible to infer meaningful and relevant 

information with respect to the local network patterns surrounding the focal individual 

(also known as ego) and those connected to the ego (also known as alters) [245, 246]. This 

approach provides information related to the nature of ties between ego and alters as well 

as ties among alters in addition to the attributes of egos and alters. Ego-centric networks or 

personal networks are examined with the help of several structural characteristics broadly 

classified into the following three major dimensions with respect to the level of analysis 

which represents unique aspects of individuals’ network relationships [71, 245]: 

2.7.1 Ego-Centric Network Characteristics 

2.7.1.1 Ego-Alter Tie Attributes 

These include tie attributes at the dyadic level which include the characteristics of ego-alter 

ties such as duration, frequency of contact, physical proximity, etc. which refer to the 

relationships and nature of tie strength between the focal person and their close contacts. 

These characteristics related to tie strength can be related to social cohesion, which 

influences one’s ability to retrieve resources through ties [65, 80]. Tie duration refers to 

the length of time since the tie was originally initiated i.e. the duration of relationships. 

Frequency of contact indicates how frequently egos communicate with their alters. 

Physical or geographical proximity between people affects their interaction and 

subsequently the formation of network ties [69, 247] by enhancing the mobilization of 

resources. Since ego-alter tie characteristics determine the amount of resource exchange, 

support, and communication need [248], they can be expected to be related to how people 

make joint trips i.e. shared trips between egos and alters.  

2.7.1.2 Alter-Alter Tie Attributes 

At the alter-alter level, the characteristics of ties include personal network density which 

refers to the extent to which one’s alters are connected with each other. Density is an 
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important aspect of ego-centric networks [249, 250]. Density measures the extent to which 

people in one’s social network are involved with others. A dense personal network 

indicates close interpersonal contacts among alters, and helps to promote the sharing of 

resources. In contrast, a personal network with many loose connections (also known as 

structural holes) has been found to facilitate the flow of new or unique information and 

resources [245]. In this study, one objective is to explore how personal network density 

influences the joint trip making behavior in terms of the number of shared trips. 

2.7.1.3 Network Composition: Homophily and Heterogeneity 

The concept of homophily explains that social characteristics or attributes that are shared 

among individuals can facilitate the formation of ties among them [251, 252]. For example, 

teens who smoke tend to choose friends who also smoke, which is also referred to as social 

selection processes [253]. In a personal network context, homophily indicates the similarity 

between ego and alters on various demographic and behavioral dimensions. 

 

Personal network heterogeneity looks at how diverse the alters are in terms of their 

demographic or behavioral characteristics. Previous studies suggested that the 

heterogeneity of alters in one’s personal network influences ego’s access to resources and 

information [254]. Monge and Contractor also suggested that the heterogeneity attributes 

may enhance the focal actor’s social activities [247]. Other studies have also suggested the 

benefits of pursuing heterogeneity in one’s personal networks [255]. As a result, this study 

also considers heteregeneity as an important contributor to the joint trip making behavior 

of individuals. 

 

2.7.2 Ego-Centric Network Measures 

2.7.2.1 Survey Approach 

In the personal network research design (PNRD), researchers collect network data by 

sampling anonymous respondents and collecting information about alters in their networks 

[69, 70]. In the first step of the PNRD, an exhaustive list of alters with whom the respondent 
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has some type of relationship is generated. This approach has been used in many classic 

studies of ego-centric networks [63, 73, 256-258]. The original questionnaire wording used 

was: “If you look back over the last six months, who are the four or five people with whom 

you discussed matters important to you?” [63]. However, a researcher can use the name 

generator question to best match the specific line of research [69, 70]. For each alter 

identified by the respondents, name interpreter items were asked to elicit the attributes of 

alters as well as ego-alter ties in addition to egos' attributes. 

 

Some studies discuss the limitation of using one question for the name generator, including 

biases that occur in recall, people's propensity to forget their close contacts, and possible 

variation in interpreting what "discuss important matters with" mean [75, 259-261]. 

However, this questionnaire item from General Social Survey (GSS) has been widely used 

by researchers because of its parsimony, general nature, applicability to various contexts 

and ability to capture ego's core discussion networks without focus on specific network 

content [63, 74-77]. Name generator questions are open-ended by nature and attention 

should be drawn to the fact that they might result in lengthy surveys causing order-effects, 

fatigue, satisficing, non-redundancy, as well as interviewer effects [262-264] 

2.7.2.2 Observable Network Measures 

Several measures of ego-alter tie attributes can be calculated: the duration of ties, the 

frequency of interaction, and the physical proximity between ego and alters. The length of 

relationship (duration), the frequency of contact and the distance of ties (proximity) can be 

observed in ordered categorical form and averaged across all alters nominated by the 

respondents. These averages can be treated as proxy variables correspond to the above 

three ego-alter tie attributes in the final model specification. The alter-alter tie attribute 

measure is based on ego-network density, which can be measured by the proportion of 

existing ties out of all possible connections among alters. The current study considered the 

weighted ties among alters to capture the existence of close connections among alters and 

to be consistent with the connection between ego and alters. 
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The attributes of egos and alters considered may include several demographic 

characteristics: race, gender, age, religion, marital status, income, and vehicle ownership. 

The homophily and heterogeneity measures were computed with E-Net, a network analysis 

program specifically developed for the analysis of ego-network data [265]. Heterogeneity 

measures were derived to indicate how diverse an ego’s network is, in which a higher 

heterogeneity value indicates more diversity. Egos whose alters are mostly the same with 

respect to some categorical attribute (e.g., gender or race), will have small heterogeneity 

scores while those with more diversity in their ego-networks will have a value closer to 1 

[70]. In this study, Blau’s index (also known as Herfindahl’s measure and Hirschman’s 

measure) was considered for heterogeneity measures. In order to measure the similarity 

between ego and alters i.e. homophily, Krackhardt and Stern’s E-I statistic calculates ego’s 

propensity to have ties with alters in the same group or class as self [266]. The measure is 

calculated by totaling ego’s ties to alters who are “external” (i.e., those that are in a different 

attribute category), subtracting the number of ego’s ties to alters who are “internal” (i.e., 

from the same attribute category) and dividing by network size. Egos with ties to only those 

in the same selected category (e.g., ego is male and only has ties to other males) will have 

an E-I race score of -1 (complete homophily) and those with only ties to those in other 

categories (e.g., ego is male and only has ties to alters who are females) will have an E-I 

race score of +1 (complete heterophily) [70]. 

2.8 Summary 

In this chapter, we present a comprehensive summary of the network science literature and 

synthesizes studies relevant to ridesharing, social capital, ego-centric network design, 

behavior modeling of activity-based travel and evacuation decision-making, social media 

research in transportation and disaster management. 
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PART I: SOCIAL INFLUENCE ON RIDESHARING 
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CHAPTER 3. JOINT TRIP FREQUENCY FOR REGULAR ACTIVITY TRAVEL 
DECISIONS 

3.1 Introduction 

Recently, activity-based travel demand modeling has gained significant interest due to its 

level of accuracy and applicability in travel behavior research. Understanding the linkage 

between social influence and travel behavior allows efficient characterization of 

discretionary activities that accounts for a major fraction of the total urban trips. Some 

recent studies looked at the social network structure of individuals and measured the 

influence that social network members have on the performance of social activities. 

However, it is expected that the joint trip (trips between individuals and their network 

members) making process has an intrinsic social context for different activities in general 

(not only social activities). In this regard, by using an ego-centric (i.e., personal) network 

approach, this study empirically explores the influence of personal network characteristics 

on the frequency of weekly trips that individuals (egos) take part along with their personal 

network members (alters). With the help of zero-inflated Poisson models, this study 

presents a framework to predict the number of joint trips for six different types of activities: 

work, eating-out, shopping, recreation, study and extra-curricular. based on ego-centric 

network data. Estimation findings suggest that personal network measures such as network 

density, homophily, heterogeneity, and ego-alter tie attributes significantly impact the joint 

trip making process i.e. the number of weekly shared trips that an individual participates. 

The findings of this study would help practitioners to implement targeted policies for 

various user groups such as car sharing. 
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3.2 Research Questions 

This chapter presents a model to study the linkage between activity participation and the 

social network influence of an individual. It has been rightly recognized that in addition to 

individuals’ socio-demographic characteristics, values, attitudes and lifestyle the social 

network that they belong plays an important influence in their activity choices (type of 

activity, location, duration and frequency of activity). In this research, we first identify the 

influence between an individual's activity travel and social network characteristics by 

collecting ego-centric network data. Then we identify the influence of individual's social 

network characteristics on joint trip (trips between individuals and their network members) 

making behavior for different types of activities. This includes six types of activities: 

activities related to work (for which individuals get paid), eating-out (restaurant, cafe, etc.), 

shopping (grocery store, superstore, etc.), recreation (park, theater, bar etc.), study (class, 

group discussion, laboratory, etc.) and extra-curricular activities (cultural, student club 

activities, etc.). The main contribution here is that the study adopts an aggregated personal 

network approach to study the frequency of joint trips and all types of joint activities (not 

only social activities) while incorporating social interactions. In addition, by using an ego-

centric network approach, this study empirically explores the influence of personal network 

characteristics on the frequency of weekly trips that individuals (egos) take part along with 

their personal network members (alters). Zero-inflated Poisson models are developed that 

will predict the number of joint trips for a given type of activity based on personal or ego-

centric network data of individuals. The key research questions being explored in this 

chapter are: 

 How social network density is associated with the frequency of joint trips? 

 How network homophily i.e. similarity between ego and alters is associated with 

shared trip frequency? 

 What are the effects of strength of relationship such as contact frequency, 

geographic proximity, etc. on the frequency of joint trips? 

 How network heterogeneity i.e. diversity across different alters is associated with 

shared trip frequency? 
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3.3 Data Description 

To study social network influence on regular activity travel decisions, an online survey 

conducted to an undergraduate class at Purdue University. An email invitation, which 

included a link to the survey questionnaire on Purdue Qualtrics, was sent to the students. 

67 students completed the survey and those who completed the survey were compensated 

with bonus points in their homework assignment. It is important to note here that the 

sample is not a random sample and only includes Purdue undergraduate students. However, 

these subjects help to explain the statistically significant causal factors related to one's 

personal network characteristics that determine the joint trip making behavior of an 

individual. Studies have found self-selected students to be an appropriate subject pool for 

the study of social behavior [267]. 

 

In this study, the authors used the following as the name generator questions: "From time 

to time, most people discuss important matters with other people. Looking back over the 

last one month -- who are the people with whom you discussed matters important to you? 

Please list only those people who reside within Indiana. Write down their first name or 

initials." To derive respondents’ travel-specific network relationships, they were asked to 

exclusively nominate their friends in Indiana. Three measures of ego-alter tie attributes 

were calculated. The duration of ties was measured with the following item: ‘‘How long 

have you known each person?’’ and it was assessed on a 3-point scale (1= Less than 3 

years, 2 = 3 to 6 years, and 3 = More than 6 years). The frequency of interaction measure 

was based on the following item: ‘‘On average, how often you usually talk to each person?’’ 

and it was assessed on a 6-point scale (1 = Almost every day, 2 = At least weekly, 3 = Less 

than monthly, 4 = At least monthly, 5 = Once in two months, and 6 = Once in six months). 

Physical proximity between ego and alters was measured with the following question: 

‘‘Approximately how far does each person live from your household?’’ and it was assessed 

on a 7-point scale (1 = Less than half a mile, 2 = 0.5 mile -  less than 1 mile, 3 = 1 mile - 

less than 2 miles, 4 = 2 miles - less than 3 miles, 5 = 3 miles - less than 4 miles, 6 = 4 miles 

- less than 5 miles, and 7 = 5 miles or more). Frequency and proximity scales were reverse 

coded to be concise with their definitions.  
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The length of relationship (duration), the frequency of contact and the distance of ties 

(proximity) were in ordered categorical form and averaged across all alters nominated by 

the respondents. These averages were treated as proxy variables correspond to the above 

three ego-alter tie attributes in the final model specification. The alter-alter tie attribute 

measure was based on ego-network density, which was measured by the proportion of 

existing ties out of all possible connections among alters. Respondents were asked to 

answer the following question: ‘‘Please rate how Persons 1 and 2 are connected? Would  

you say that they are: not at all close (1), not very close (2), just a little or somewhat close 

(3), pretty close (4), or very close (5)? Specifically, the current study considered the 

weighted ties among alters that were answered as just a little or somewhat close (weight 

=1), pretty close (weight = 3), and very close (weight=5) to capture the existence of close 

connections among alters and to be consistent with the connection between ego and alters. 

Table 3-1 provides additional information on the mean, standard deviation, minimum, and 

maximum of the explanatory variables. Table 3-2 presents the correlation matrix of these 

variables. Figure 3-1 shows three examples of ego-networks with different density, 

homophily, and heterogeneity measures. 

3.4 Modeling Framework 

In this section, we will develop an econometric model to understand the influence of social 

network attributes on activity participation. The survey respondents were requested to 

specify different activity types they took part over the last one week and the number of 

trips they shared with their alters in that time horizon for a given type of activity. The 

number of shared trips needs to be treated as count data i.e. nonnegative integer values that 

can be modeled appropriately using Poisson and Negative Binomial regression methods 

[268]. In order to apply the Poisson regression technique in shared trip frequency analysis, 

the probability of individual i making it  trips in a given week can be obtained by the 

following equation [268]: 

exp ( )
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       (3.1) 
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where i is the expected number of shared trips of i i.e. [ ]iE t  (also known as Poisson 

parameter). The Poisson parameter has a log-linear relation with the vector of explanatory 

variables Xi  that includes personal network measures and dyadic (ego-alter) attributes (see 

Table 3-1): 

e x p ( X )i i       (3.2) 

where   is the vector of estimable parameters.  

 

The vector   can be estimated by standard maximum likelihood methods with this 

functional form of i and the following likelihood function: 

exp[ exp( )][exp( )]
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it
i i

i i

X X
L

t

  
    (3.3) 

However, it possible that the shared trip frequency data are overdispersed (or 

underdispersed) i.e. having a variance that exceeds (or less than) the mean. This 

overdispersion (or underdispersion) violates the underlying assumption made in the 

Poisson model and the negative binomial model is more appropriate to consider [268]. 

Negative binomial model is derived by adding a Gamma-distributed error term with mean 

1 and variance  (also known as overdispersion parameter) for each observation i as 

follows: 

exp ( X )i i i                                                                 (3.4) 

The Poisson regression model is regarded as a limiting model of the negative binomial 

regression model as   approaches zero. The additional error term allows the variance to 

differ from the mean in the following way: 

2[ ] [ ][1 [ ]] [ ] [ ]i i i i iVAR t E t E t E t E t                                         (3.5) 

Then the negative binomial distribution has the following functional form: 
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Table 3-1 Descriptive statistics of the explanatory variables. 

Variable Mean 
Standard 
Deviation Minimum Maximum 

Number of 
Observations 

Density 0.329 0.163 0 0.72 67 

Frequency (average) 1.770 0.767 1 5.2 67 

Duration (average) 1.761 0.656 1 3 67 

Proximity (average) 3.457 1.487 1 7 67 

Homophily: Gender -0.475 0.425 -1 0.6 67 

Homophily: Marital Status -0.576 0.543 -1 1 67 

Homophily: Religion 0.188 0.710 -1 1 67 

Homophily: Income 0.152 0.825 -1 1 67 

Homophily: Vehicle Ownership -0.296 0.683 -1 1 67 

Heterogeneity: Gender 0.299 0.195 0 0.48 67 

Heterogeneity: Race 0.110 0.190 0 0.72 67 

Heterogeneity: Age 0.394 0.275 0 0.8 67 

Heterogeneity: Religion 0.345 0.248 0 0.72 67 

Heterogeneity: Marital Status 0.211 0.242 0 0.72 67 

Heterogeneity: Income 0.287 0.277 0 0.72 67 

Heterogeneity: Vehicle Ownership 0.227 0.209 0 0.48 67 

     
 

Number of shared trips for different activities in a week:     
 

Work 5.654 9.178 0 28 26 

Eating Out 8.509 10.016 0 44 57 

Shopping 5.289 10.729 0 59 46 

Recreation 5.878 6.402 0 30 49 

Study 9 12.310 0 60 60 

Extra-curricular 9.400 9.137 0 31 39 
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Table 3-2 Correlation matrix of the explanatory variables. 

 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1. Density 1                

2. Frequency -0.16 1               

3. Duration 0.16 0.18 1              

4. Proximity -0.15 0.31 0.60 1             

5. Homophily: Gender -0.09 0.06 0.33 0.33 1            

6. Homophily: Marital Status -0.05 0.39 0.57 0.52 0.17 1           

7. Homophily: Religion -0.14 0.30 -0.21 -0.08 -0.16 0.10 1          

8. Homophily: Income -0.22 0.10 -0.22 -0.16 -0.05 -0.06 0.41 1         

9. Homophily: Vehicle Ownership -0.03 0.19 -0.24 -0.07 -0.06 -0.09 0.24 -0.04 1        

10. Heterogeneity: Gender -0.04 -0.03 0.38 0.34 0.88 0.29 -0.26 -0.15 -0.15 1       

11. Heterogeneity: Race -0.31 0.25 -0.05 -0.05 0.20 0.09 0.24 0.24 0.29 0.09 1      

12. Heterogeneity: Age -0.23 0.20 0.52 0.49 0.46 0.54 -0.09 0.05 -0.10 0.43 0.26 1 

13. Heterogeneity: Religion -0.23 -0.13 -0.01 -0.05 0.26 0.02 0.07 0.12 -0.07 0.25 0.22 0.07 1 

14. Heterogeneity: Marital Status -0.21 0.20 0.56 0.43 0.21 0.80 0.01 0.08 -0.18 0.29 0.20 0.62 0.05 1   

15. Heterogeneity: Income -0.10 0.07 0.36 0.21 0.10 0.30 0.10 0.33 -0.18 0.13 0.24 0.27 0.13 0.47 1  

16. Heterogeneity: Vehicle Ownership -0.03 0.05 -0.33 -0.25 -0.25 -0.31 0.12 0.12 0.39 -0.36 0.21 -0.15 -0.09 -0.23 -0.13 1 
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Figure 3-1 Examples of ego-networks with different personal network measures.
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where ( )  is a gamma function. The corresponding likelihood function can be obtained as 

follows: 
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Zero-inflated Poisson (ZIP) and Zero-inflated Negative Binomial (ZINB) regression 

models have the ability to account for the possibility of zero events in given time period. 

A zero-count state can occur because of te inability to ever experience an event. Another 

reason could be just being unable to observe an event during the observation period that 

leads to a normal count process [268]. In this study we are particularly interested in 

modeling the number of shared trips based on the personal network characteristics of an 

individual. However, it is possible for sum individuals not to take part in joint trips at all 

even though they are connected to the people in personal network and it also important to 

find out what makes them to be in the zero-count state. Another regime leads to a non-

negative count state for shared trip frequency i.e. a state that has a frequency outcome 

determined by a Poisson or negative Binomial distribution. The underlying assumption of 

Zero-inflated Poisson (ZIP) model states that the events, Y= (y1, y2, …, yn), are independent 

and the model is: 

0iy   with probability (1 )exp( )i i ip p                               (3.8)                 

iy y  with probability 
(1 )exp( )
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y
i i ip

y

  
                            (3.9) 

where ip  is the probability of being in the zero state and y is the number of events (shared 

trips) per period. The ZINB model has similar functional form with events, Y= (y1, y2, …, 

yn) being independent and: 

0iy   with probability 
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where (1/ ) /[(1/ ) ]i iu     . In order to estimate the parameters of a ZIP or ZINB 

model, maximum likelihood estimation techniques is used. However, it is critical to 

determine whether a Zero-inflated model is appropriate to model the number of shared trips 

or not. In order to test the appropriateness of a zero-inflated model, Vuong proposed a test 

statistic for non-nested models that is well suited for situations where the distribution 

(Poisson or negative binomial) is specified [269]. The statistic is determined by computing: 
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                                                    (3.12) 

where 1( | )i if y X is the probability density function of the zero-inflated model and 

2( | )i if y X  is the probability density function of the Poisson or negative binomial 

distribution. Using this, Vuong’s statistic for testing the non-nested hypothesis of a zero-

inflated model versus traditional model is [270, 271]: 
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where m is the mean, mS  is standard deviation, and n is a sample size. Vuong’s value is 

asymptotically standard normally distributed, and if |V| is less than 1.96 (the 95% 

confidence level for the t-test), the test does not indicate another model form. However, the 

zero-inflated regression model is favored if the V value is greater than 1.96, while a V 

value of less than −1.96 favors the Poisson or negative binomial regression model [270]. 

Since, one could erroneously chose a negative binomial model when the correct model is 

ZIP, Shankar et al [271] provide a decision guideline for model selection in such a case by 

using the Vuong statistic and the overdispersion parameter which has been followed in this 

study. 

 

3.5 Model Estimation Results 

This section presents estimation results of the Zero-inflated Poisson models to determine 

the number of shared trips in a given week between egos and alters for different types of 
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activities. By following the methodology discussed in the previous section, the best model 

specification results are presented in Table 3-3 after testing a number of variable 

interactions and estimating Poisson, Negative Binomial (NB), Zero-inflated Poisson (ZIP) 

model and Zero-inflated Negative Binomial models (ZINB). The ZIP model has a Vuong 

statistic greater than 1.96 justifying a Zero-inflated model over unaltered Poisson model 

except for all types of activities except shopping trips. The Vuong test is inconclusive for 

Vuong's value in between -1.96 and 1.96 [268]. However, the Vuong statistic for shopping 

trips is close to being significant (1.625) and the parameters in the NB model are not 

statistically significant. In addition, attempts to improving the NB model were not 

successful and the explanatory power ZIP model outperforms NB model.  

 

The alpha parameter in the ZINB model is not significant suggesting a ZIP model to be 

more appropriate. Under the above circumstances, ZIP model is the best model 

specification for all types of activities. Most of the variables included in the ZIP model are 

statistically significant with plausible signs as presented in Table 3-3. However, a few of 

the variables are not statistically significant at the usual 5% or 10% levels of significance. 

Based on the discussion on criteria for omitting a variable by Ben-Akiva and Lerman [272], 

we include these variables in our model despite the relatively low t-ratio.  A summary 

discussion on the findings from the final model specification is provided in the following 

paragraphs: 

3.5.1 Work Related Trips: 

The results presented in Table 3-3 show that the higher the density of personal network, 

the less likely individuals are to be in the zero state for work trips. On the other hand, the 

variable for average frequency of contact indicates that the less the frequency of contact, 

the more the number of work trips. Similarly, the less the physical proximity with alters, 

the more the number of work trips. These are counter-intuitive results, and could be due to 

the nature of the student population sample, which has only a small number of work related 

observations. 
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3.5.2 Eating-out Trips: 

For the eating-out trips, the higher the heterophily among ego and alters in terms of marital 

status and heterogeneity among alters in terms of their religion, the more individuals are 

likely to be in the zero state. In contrast, the denser the personal network, the more the 

number of eating-out trips between egos and alters. Proximity shows similar effects as in 

work trips. The proxy variable for average duration of relationship exhibits significant 

negative association with the number of shared trips and this is expected since alters with 

longer relation duration are less likely to be proximate alters. Turning to the factors related 

to homophily and heterogeneity, the more the homophily (as opposed to heterophily) in 

terms of gender and religion, the more the number of shared trips for eating activities. 

These make sense since individuals of same gender and religion are likely to spend more 

time eating together based on their food habits and religious values, respectively. The more 

the heterophily of income and vehicle ownership among egos and alters, the more the 

number of shared trips. These indicate that individuals travel more for eating activities with 

people having different level of income and vehicle ownership. Heterogeneity measures 

indicate that the more dissimilarity among alters in terms of race and vehicle ownership, 

the more the number of shared trips for eating purpose. 

3.5.3 Shopping Trips: 

Estimation findings for shopping trips suggest that heterogeneity of age among alters 

within the personal network makes individuals to be more likely in the zero state. However, 

the average duration and proximity indicate similar association with the number of shared 

shopping trips as in eating related trips. However, the more the heterophily in terms of 

religion between egos and alters, the more the number of shared trips for shopping 

activities. In addition, homophily for income suggests that the more the dissimilarity of 

income between individuals and their personal contacts, the more frequent shopping trips 

they make together. 
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3.5.4 Recreational Trips: 

Turning to the factors related to recreational trips, higher heterogeneity of income among 

alters makes individuals to be likely in the zero state. Average frequency of contact 

indicates the more the frequency of contact, the more the number of shared recreational 

trips. This is an intuitive finding since individuals who communicate more frequently with 

their alters may have more common interests and shared information. Homophily of 

religion indicates more frequent joint trips for ego and alters who share religious similarity. 

In contrast, the more the heterophily of income and vehicle ownership between egos and 

alters, the more the number of shared trips. Finally, gender heterogeneity among alters 

indicates negative association while heterogeneity for religion indicates positive 

association with the number of shared recreational trips. 

3.5.5 Study Related Trips: 

Since this study is based on data from a class survey of students, they reported several 

study trips for that week. Estimation findings suggest that the higher the gender 

heterogeneity among alters, the more the students are likely to be in the zero state for study 

trips. This is expected since students will prefer to travel together with students of same 

gender for study purpose. Further, the denser the personal network, the more frequent 

shared trips between students on study purpose. Variables representing ego-alter tie 

attributes (frequency and proximity) have similar effects on the number of shared trips as 

was in the other activities except for the duration variable. The positive sign of average 

duration of contact indicates that students are likely to make study trips with students whom 

they have known for longer period. Homophily measures for religion, income and vehicle 

ownership indicate a positive relation between heterophily on these dimensions and the 

number of shared trips, except for the case of marital status. This is an intuitive finding 

since the negative sign indicates more frequent joint study trips between students with 

similar marital status i.e. students, being single, are more likely to travel with students who 

are single. Finally, joint study trips are likely to be more frequent for students having higher 

racial heterogeneity and lower age heterogeneity in their personal networks. 
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Table 3-3 Estimation results of the Zero-inflated Poisson model for the number of shared trips. 

  Activity Types 

 Work  Eating Out  Shopping  Recreation  Study  

Extra-
curricular 

Variable Coeff.( t-stat)   Coeff.( t-stat)   Coeff.( t-stat)   Coeff.( t-stat)   Coeff.( t-stat)   Coeff.( t-stat) 
Zero state probability model as logistic 
function            
Constant 2.575(1.81)  -3.320(-3.44)  -2.816(-2.93)  -0.92(-1.87)  -1.653(-2.36)  -3.6(-3.74) 
Density -6.282(-1.53)  -  -  -  -  - 
Homophily: Marital Status* -  1.529(1.70)  -  -  -  - 
Heterogeneity: Gender -  -  -  -  2.402(1.32)  - 
Heterogeneity: Age -  -  2.911(1.71)  -  -  - 
Heterogeneity: Religion -  4.354(2.40)  -  -  -  4.299(2.31) 
Heterogeneity: Income -  -  -  -3.607(-1.84)  -  - 

Non-Zero state probability model            
Constant -0.384(-0.58)  0.900(6.45)  1.55(14.12)  2.479(11.19)  1.733(10.22)  -0.502(-1.32) 
Density -  1.265(9.17)  -  -  1.05(7.4)  - 
Frequency -0.983(-3.56) - - 0.186(2.34) 0.325(6.71) 0.174(2.19) 
Duration - -0.526(-11.19) -0.54(-10.94) - 0.246(5.33) 1.047(6.78) 
Proximity -0.362(-2.17) -0.367(-15.54) -0.186(-11.02) -0.116(-1.8) -0.112(-4.06) - 
Homophily: Gender* -  -0.633(-8.21)  -  -  -  -1.672(-10.51) 

Homophily: Marital Status* -  -  -  -  -0.375(-4.91)  -0.129(-1.51) 

Homophily: Religion* -  -0.390(-8.82)  0.748(10.07)  -0.26(-2.51)  0.352(7.82)  0.173(2.89) 

Homophily: Income* -  0.266(6.98)  0.788(7.77)  0.493(5.81)  0.27(7.28)  0.318(6.92) 

Homophily: Vehicle Ownership* -  0.286(6.04)  -  0.475(4.95)  0.472(12.16)  0.458(4.76) 
Heterogeneity: Gender -  -  -  -2.813(-10.46)  -  - 
Heterogeneity: Race -  1.475(12.17)  -  -  1.014(6.54)  1.079(2.93) 
Heterogeneity: Age -  -  -  -  -0.54(-4.65)  1.199(6.92) 
Heterogeneity: Religion -  -  -  0.794(3.48)  -  - 
Heterogeneity: Income -  -  -  -  -  -0.674(-3.18) 
Heterogeneity: Vehicle Ownership -  0.794(5.45)  -  -  -  - 
            
Log-likelihood at convergence (Poisson Model) -180.259  -289.255  -217.349  -175.673  -404.18  -191.977 
Log-likelihood at convergence (ZIP Model) -42.056  -246.152  -197.4  -126.347  -248.985  -145.698 
Vuong Statistic 5.884  2.236  1.625  2.491  4.093  2.461 
Number of observations 26   57   46   49   60   39 

 * Homophily measures based on E-I Index, E-I = -1 refers to complete homophily and E-I = +1 refers to complete heterophily 
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3.5.6 Trips Related to Extra-Curricular Activities: 

Students also reported several trips related to extra-curricular activities. Most of the 

personal network measures show similar effects on the number shared extra-curricular trips 

as in study trips. However, religious heterogeneity among alters makes students to be in 

the zero state for extra-curricular trips. In addition, the more the gender homophily among 

alters, the more the number of shared trips. Heterogeneity of age has a positive association 

and heterogeneity of income has a negative association with the number of shared trips in 

this case. 

3.6 Key Insights 

The model estimation results, as discussed above, also help to infer some common patterns 

linking personal network features and joint trip frequency across different activities.  

 There exists at least one demographic heterogeneity (gender, age, religion and 

income) among alters that causes individuals to make no joint trips i.e be in the zero 

state.  

 Denser networks are associated with more eating-out and study related trips.  

 The more the contact frequency between egos and alters, the more the number of 

trips for recreational, study and extracurricular activities which is expected from a 

student population.  

 Proximity has consistent (negative) association with the number of shared trips and 

individuals are less likely to travel with proximate alters who are also likely to be 

students. This is counter-intuitive in general, however it is possible that students 

seek resources (in this case, they look for rides) from distant alters which can be 

explained by the idea that social capital benefits can be reaped from network ties.  

 The similarity of gender and marital status among network members generates 

more shared trips, which is expected.  

 Homophily in terms of religion produces more eating-out and recreational trips. 

This result could be indicating that shared religious beliefs or restrictions influence 

the likelihood of joint trips between people.  
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 Another interesting finding is that individual’s make more trips with alters with 

different income level and vehicle ownership status. This result also supports the 

notion of network capital i.e. network ties can be the conduit through which one 

can access resources from others. This has important implications to influence 

travel behavior specially to encourage ride sharing, the choice of certain recreation 

activities and potentially the choice of mode. 

 

3.7 Specific Applications 

In this section, the applicability of the models predicting joint trip frequency, presented in 

this chapter, is briefly summarized. For example, consider the case where a local 

transportation agency needs to decide on the number of carpool lanes to be provided on the 

freeways originating from two residential areas A and B to a destination study area C where 

the most promising restaurants in town are located. Assuming residents of A and B have 

same social network characteristics (homophily, heterogeneity, and strength) except for 

network density. Consider the ego-centric networks of residents in area A are under 

complete density i.e. all alters are connected to each other. In contrast, ego-centric networks 

in area B do not have any notion of density i.e. zero density. Based on the final model 

specification for eating-out trips, study area A will produce 1.27 additional shared trips, on 

average, as compared to study area B. Given both study areas have equal number of 10,000 

residents, there will about 12,700 additional shared trips just because of the effects of 

network density. This approximation can be used in the design of any ridesharing 

incentives for the origin-destination pairs A-C and B-C such as width of the carpool lanes, 

number of carpool lanes to provide and similar design considerations.  

 

3.8 Conclusions and Future Directions 

In the past few decades, models explaining and predicting human travel behavior have gone 

through several changes and the effect of social interactions on activity patterns have 

received limited attention in the travel demand analysis literature. While recent studies 

incorporate the social dimension to understand different aspects of social activities, this 

study broadens the scope and empirically investigates the role of social networks in six 
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different activity types (work, eating, shopping, recreation, study and extra-curricular) 

which cover a large majority of individuals’ everyday activities. Using personal (ego-

centric) network data and with zero-inflated Poisson modeling technique, this study 

presents a framework to predict the frequency of weekly shared trips that individuals (egos) 

take part along with their personal network members (alters) based on several personal 

network characteristics. The findings indicate that personal network measures, such as 

network density, homophily on demographic dimensions, and heterogeneity among alters 

along with ego-alter tie attributes (frequency, duration, proximity) significantly impact the 

joint trip making process i.e. the number of weekly shared trips. The study also provides 

meaningful inferences about the patterns of social network influence on joint trips that are 

common across different activities.  

 

Collecting a large volume of network data is expensive and this exploratory work is based 

on a student population with relatively smaller number of observations. However, the 

theoretical and methodological framework that has been used in this study can be expanded 

to a larger representative sample to obtain better parameter estimates and examine 

additional explanatory variables. The conclusion for zero-inflated Poisson models is based 

on Vuong statistic as was discussed in the previous section. However, a larger sample may 

end up showing zero-inflated negative binomial model to be the best model specification. 

In addition, with more number of observations, it will be possible to introduce random 

parameters that will account for the unobserved heterogeneity across observations. While 

this study is limited to five connections (alters) in one’s personal network, future studies 

should include as many connections as possible to draw conclusions from a more 

comprehensive personal network. It would also be interesting to see if the General Social 

Survey (GSS) data, which provides information about the personal network characteristics 

of the U.S. population based on a national representative sample [63, 64], can be used to 

predict the number of joint trips among personal network members. 

 

In general, social networks influence a wide variety of individuals’ behavioral decisions 

and travel is one of them. Recent studies focus on both physical networks (actual or real 
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social network) and virtual networks (social media connections) to understand how these 

two types of networks influence the activities people take part. This research serves as a 

key to demonstrating the usefulness of the theoretical and methodological approaches of 

social network analysis for quantitatively understanding how personal network 

connections impact the joint trips people make for different types of activities. From a 

transportation planning and policy perspective, the findings of this study would help 

practitioners to implement targeted policies for various user groups to encourage 

sustainable policies such as car sharing. This study would also help different stakeholders 

and policy makers to determine whether an individual level policy is sufficient or a group-

level policy is needed for certain user groups. The demand predicted from this type of 

model would also benefit the analysis in the supply side such as parking, public 

transportation, and others. 

 

The material presented in this chapter from the paper “Modeling Social Network Influence 

on Joint Trip Frequency for Regular Activity Travel Decisions” (published in 

Transportation Research Record: Journal of the Transportation Research Board, No. 2494, 

pp. 83–93, 2015) is reproduced with permission of the Transportation Research Board. 



67 

CHAPTER 4. SOCIAL INFLUENCE ON MODAL SPLIT DURING SPECIAL 
EVENTS  

4.1 Introduction 

Although the importance of social network on social activities has been extensively studied 

and some models were developed to predict mode choice during special events, nothing 

has yet been presented which links social network, mode choice and special events. This 

research studies the role that social networks play in mode selection during a special event 

and how it fosters carpooling during high demand events such as game days. By collecting 

ego-centric data network data, a multinomial logit model was developed to understand the 

mode choice of attendants during a college game day. Five different modes were 

considered in the survey: (a) own car, (b) walk, (c) carpool, (d) bus, and (e) others. The 

model contributes to mode choice research by determining the influential factors in 

selecting one of five mode choices, as a function of the social network characteristics such 

as homophily and heterogeneity indexes, network size and network density. 

4.2 Research Questions 

The prevalence of social networks in recent times make people travel in so many ways. 

Ride sharing is getting more popular and people make joint trips. People are more likely to 

carpool with friends as compared to traditional modes of travel such as driving own car, 

using transits and so on. This behavior is predominant during special events when 

individuals make trips to a specific location on a given day and time from various parts of 

the city. In turn, accommodating the travel demand generated during a special event is key 

to its success. This chapter presents a multinomial logit model that identifies the 

determining factor for attendants in selecting one of five modes to reach the football arena 

at Purdue University: car, walk, carpool, bus and other. Using a personal 
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network research design (PNRD) approach, socio-demographic attributes of egos and 

alters were collected and correlated to produce social network variables that were tested in 

the model framework. The estimation findings of this model reveal that the preference over 

a travel mode is related to a set of network variables (size, homophily, heterogeneity and 

density) and ego-alter relational attributes (frequency of contact, length of relationship) 

play an important influence on selecting a private mode as compared to a shared ride or 

walk. The findings of this study construct a framework for the modal split during a special 

event that would help campus policy developers to foster ride sharing and transit authorities 

to better plan for such occasions, facilitating access to the venue location and improving 

overall experience of attendants.  The key research questions being addressed in this 

chapter are listed below: 

 How social network density is associated with the preference of carpooling? 

 How network homophily i.e. similarity between ego and alters is associated with 

the inclination towards carpooling? 

 What are the effects of strength of relationship such as contact frequency, 

geographic proximity, etc. on the carpooling preference? 

 How network heterogeneity i.e. diversity across different alters is associated with 

the tendency to carpool? 

4.3 Data Description 

This study focuses on personal network characteristics to determine the casual factors that 

influence the mode choice for an attendee on a college sports game day. Respondents were 

drawn from an undergraduate class at Purdue University. An email invitation, which 

included a link to the survey questionnaire on Qualtrics, was sent to the students through 

the online Research Participation System (RPS). 562 students completed the survey. The 

survey questionnaire asked five mode choices for students to choose from: car, walk, 

carpool, bus, and an “other” option, which included any other modes not listed in the above 

(i.e., bicycle, taxi, etc.). This was done by asking the survey respondents the following 

question: “On a Purdue game day, how would you prefer to go to the Ross-Ade Stadium 

from the place you stay?” The use of a personal network research design (PNRD) elicited 
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relevant information about the focal individual attributes (also known as ego), the ego’s 

perceptions of the attributes of each alters (e.g., sex, race, income, etc.) and the shared 

relationship (e.g., duration, intensity, frequency, etc.) [70] 

 

Usually, the first step on a PNRD is to create a list of alters to which the ego has connection. 

Name generator questions serve this purpose. In this survey, the authors used: “Looking 

back over the last three months, who are the people with whom you discussed matters 

important to you?” To derive respondents’ travel-specific network relationships, they were 

asked to exclusively nominate their friends in Indiana. The next step is to ask name 

interpreter questions. These questions reveal the egocentric nature of PNRD since the ego 

alone provides information about his and his alters attributes as well as ego-alter tie [70]. 

Two different measures of ego-alter tie attributes were computed: the duration of ties and 

the frequency of interaction. The averaged values of these two categorical variables were 

used as explanatory variables in the multinomial logit model developed. 

4.4 Modeling Framework 

To produce a reliable model, we split the dataset into two and created for each one of the 

subgroups a different choice set for the dependent variable, thus creating a different model 

for each subgroup. Ego networks were grouped based on vehicular ownership, a variable 

that was also introduced in the survey questionnaire. For those who responded positively 

to the question “Do you own a car or any other vehicle?” the five mode choices (car, walk, 

carpool, bus and other) were considered; whereas the car mode was constrained for 

whoever responded negatively to the same question. After analyzing the frequency 

distribution of each mode, it was necessary to merge taxi and other, creating a more robust 

“other” option on both datasets due to the few number of observations on the taxi mode. 

The original dataset contained 548 observations on mode choice and after accounting for 

missing data on some of the explanatory variables it reduced to a total of 504 observations 

altogether. Figure 4-1 shows the frequency distribution of mode choices as well as the total 

number of observations computed for each model. 
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In this study, the mode choice decisions of car-owners include five choices to reach the 

point of interest from different origins during a special event. These include: (a) car, (b) 

carpool, (c) walk, (d) bus and (e) others. For individuals who do not own a car, the choice 

set reduces to four discrete choices excluding the car option. Discrete preferences like these 

can effectively be analyzed by employing a logit-based modeling framework [268, 273]. 

Now, to explain the mode choice decisions, consider a function that defines the 

multinomial outcome of the mode choice preference for an individual i: 

, , ,m i m m i m iC V  
                                                             

(4.1) 

where, 

 ,m iC
  

is a function determining the mode choice category min M (m=1, 2, 3, 4, 5 

for car owners, and m=1, 2, 3, 4 for non-car owners); 

 ,m iV
  
is the vector of explanatory variables (see Table 4-1);  

 i     is the vector of estimable parameters, and 

 ,m i
  
is an error term 

Now with the assumption that ,m i is generalized extreme value distributed [274], the 

multinomial logit model results in the following equations [268]: 
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(4.2) 

where,
i
mPr being the probability of mode choice type m (among all the types M) for 

individual i 

 

The social networks characteristics for the socio-demographic data, i.e. homophily and 

heterogeneity were computed using the software E-net. Krackhardt and Stern’s E-I statistic 

was used to measure similarities among an ego and his alters. The index is calculated by 

subtracting internal ties (i.e., from the same attribute category as the ego) from external ties 

(i.e., those that are from a different attribute category) and diving the subtraction by the  
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(a) Car-owners’ distribution 

(a) Non car-owners’ distribution 
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Figure 4-1 Mode choice distribution for the two models 
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Figure 4-2 Ego-network examples with different network characteristics 
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Table 4-1 Descriptive statistics of explanatory variables. 

  Standard 
Deviation 

  
Variable Description Mean Min Max 
Model 1 (car owners)     
Indicator variable for network size (1 if netsize ≥  8, 0 otherwise) 0.587 0.493 0 1 
Indicator variable for density (1 if density ≥ 7, 0 otherwise) 0.216 0.412 0 1 
Indicator variable for average frequency of contact (1 if average frequency of contact ≥ 5.5, 0 otherwise) 0.465 0.500 0 1 
Indicator variable of average duration of relationship (1 if average duration of relationship ≥ 2.8, 0 otherwise) 0.429 0.496 0 1 
Homophily: sex (1 if homophily E-I of sex ≤ -0.2, 0 otherwise) 0.781 0.414 0 1 
Homophily: age (1 if homophily E-I of age ranges from -0.5 to 0.5, 0 otherwise) 0.558 0.497 0 1 
Homophily: race (1 if homophily E-I of race ≤ -0.2, 0 otherwise) 0.842 0.365 0 1 
Homophily: marital status (1 if homophily E-I of marital status ranges from -0.6 to 0, 0 otherwise) 0.500 0.501 0 1 
Homophily: income (1 if homophily E-I of income ranges from -0.3 to 0.2, 0 otherwise) 0.174 0.380 0 1 
Homophily: vehicular ownership (1 if homophily E-I of vehicular ownership ≤ -0.1, 0 otherwise) 0.877 0.328 0 1 
Heterogeneity: sex (1 if heterogeneity of sex ≥ 0.2, 0 otherwise) 0.797 0.403 0 1 
Heterogeneity: age (1 if heterogeinity of age ≥ 0.75, 0 otherwise) 0.087 0.282 0 1 
Heterogeneity: vehicular ownership (1 if heterogeneity of vehicular ownership ≥ 0.6, 0 otherwise) 0.235 0.425 0 1 
Indicator variable of on-campus living condition (1 if respondent lives oncampus, 0 otherwise) 0.655 0.476 0 1 
Indicator variable of dorm living condition (1 if respondent lives in any Purdue dorm, 0 otherwise) 0.242 0.429 0 1 
Indicator variable of apartment living condition (1 if respondent lives in an apartment, 0 otherwise) 0.342 0.475 0 1 
Indicator variable of number of people in the family (1 if number of people in the family ≥ 4, 0 otherwise) 0.735 0.442 0 1 

     
Model 2 (non-car owners)     
Indicator variable for network size (1 if netsize ≥ 6, 0 otherwise) 0.655 0.476 0 1 
Indicator variable for density (1 if density > 0.45, 0 otherwise) 0.488 0.501 0 1 
Indicator variable for average frequency of contact (1 if average frequency of contact > 4.8, 0 otherwise) 0.803 0.399 0 1 
Indicator variable of average duration of relationship (1 if average duration of relationship ≥ 2.8, 0 otherwise) 0.261 0.440 0 1 
Homophily: sex (1 if homophily E-I of sex ≥ 0.8, 0 otherwise) 0.030 0.170 0 1 
Homophily: age (1 if homophily E-I of age ranges from -0.3 to 0.1, 0 otherwise) 0.227 0.420 0 1 
Homophily: race (1 if homophily E-I of race ranges from -0.9 to -0.3, 0 otherwise) 0.320 0.468 0 1 
Homophily: income (1 if homophily E-I of income ≥ 0.8, 0 otherwise) 0.404 0.492 0 1 
Homophily: vehicular ownership (1 if homophily E-I of vehicular ownership ranges from -0.5 to -0.2, 0 otherwise) 0.158 0.365 0 1 
Heterogeneity: sex (1 if heterogeneity of sex ≥ 0.45, 0 otherwise) 0.271 0.446 0 1 
Heterogeneity: age (Blau's index of heterogeneity) 0.393 0.262 0 0.84 
Indicator variable of on-campus living condition (1 if respondent lives oncampus, 0 otherwise) 0.803 0.399 0 1 
Indicator variable of apartment living condition (1 if respondent lives in an apartment, 0 otherwise) 0.222 0.416 0 1 
Indicator variable of dorm living condition (1 if respondent lives in any Purdue dorm, 0 otherwise) 0.498 0.501 0 1 
Indicator variable of number of people in the family (1 if number of people in the family ≥ 5, 0 otherwise) 0.374 0.485 0 1 
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Table 4-2  Estimation results of Model 1 (car owners) multinomial logit model for choice of mode 

Model 1 (car owners) Coefficient z-stat Marginal effect 
Walk (base outcome) 
Car    
Constant 2.108 2.44  
Indicator variable for network size (1 if netsize ≥  8, 0 otherwise) 0.993 2.35 0.096 
Indicator variable for density (1 if density ≥ 7, 0 otherwise) 1.220 2.66 0.090 
Indicator variable for average frequency of contact (1 if average frequency of contact ≥ 5.5, 0 otherwise) -0.937 -2.18 -0.059 
Homophily: sex (1 if homophily E-I of sex ≤ -0.2, 0 otherwise) -0.433 -0.94 -0.023 
Homophily: race (1 if homophily E-I of race ≤ -0.2, 0 otherwise) -1.341 -2.79 -0.107 
Homophily: income (1 if homophily E-I of income ranges from -0.3 to 0.2, 0 otherwise) 1.296 2.69 0.091 
Homophily: vehicular ownership (1 if homophily E-I of vehicular ownership ≤ -0.1, 0 otherwise) -1.440 -2.63 -0.168 
Indicator variable of on-campus living condition (1 if respondent lives oncampus, 0 otherwise) -1.887 -4.03 -0.147 
Indicator variable of dorm living condition (1 if respondent lives in any Purdue dorm, 0 otherwise) -1.623 -1.94 -0.158 
Indicator variable of apartment living condition (1 if respondent lives in an apartment, 0 otherwise) 0.603 1.39 0.035 
Indicator variable of number of people in the family (1 if number of people in the family ≥ 4, 0 otherwise) -1.089 -2.69 -0.106 
Carpool    
Constant -3.505 -2.13  
Indicator variable for density (1 if density ≥ 7, 0 otherwise) 1.355 2.35 0.073 
Indicator variable for average frequency of contact (1 if average frequency of contact ≥ 5.5, 0 otherwise) -1.484 -2.67 -0.088 
Indicator variable of average duration of relationship (1 if average duration of relationship ≥ 2.8, 0 otherwise) -1.931 -3.53 -0.141 
Homophily: sex (1 if homophily E-I of sex ≤ -0.2, 0 otherwise) -0.591 -1.14 -0.029 
Homophily: age (1 if homophily E-I of age ranges from -0.5 to 0.5, 0 otherwise) 0.769 1.56 0.061 
Homophily: race (1 if homophily E-I of race ≤ -0.2, 0 otherwise) -1.083 -1.87 -0.050 
Homophily: marital status (1 if homophily E-I of marital status ranges from -0.6 to 0, 0 otherwise) 1.193 2.39 0.087 
Homophily: income (1 if homophily E-I of income ranges from -0.3 to 0.2, 0 otherwise) 1.413 2.7 0.072 
Homophily: vehicular ownership (1 if homophily E-I of vehicular ownership ≤ -0.1, 0 otherwise) 1.339 1.44 0.128 
Heterogeneity: sex (1 if heterogeneity of sex ≥ 0.2, 0 otherwise) 1.323 1.57 0.096 
Heterogeneity: age (1 if heterogeinity of age ≥ 0.75, 0 otherwise) 1.936 3.12 0.141 
Heterogeneity: vehicular ownership (1 if heterogeneity of vehicular ownership ≥ 0.6, 0 otherwise) 0.881 1.58 0.064 
Indicator variable of on-campus living condition (1 if respondent lives oncampus, 0 otherwise) -1.221 -2.22 -0.044 
Indicator variable of apartment living condition (1 if respondent lives in an apartment, 0 otherwise) 0.861 1.65 0.046 
Bus    
Constant -1.223 -2.3  
Homophily: age (1 if homophily E-I of age ranges from -0.5 to 0.5, 0 otherwise) -2.501 -2.26 -0.053 
Indicator variable of on-campus living condition (1 if respondent lives oncampus, 0 otherwise) -2.547 -2.92 -0.042 
Other    
Constant -2.967 -4.04  
Homophily: sex (1 if homophily E-I of sex ≤ -0.2, 0 otherwise) -1.509 -2 -0.034 
Homophily: income (1 if homophily E-I of income ranges from -0.3 to 0.2, 0 otherwise) 1.212 1.54 0.020 
Indicator variable of apartment living condition (1 if respondent lives in an apartment, 0 otherwise) 1.185 1.6 0.024 
Log-likelihood at zero, LL(0) -295.5764   
Log-likelihood at convergence, LL(β) -215.1506   
ρ2 0.272   
Adjusted ρ2 0.215   
Number of observations 306   
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Table 4-3 Estimation results of Model 2 (non-car owners) multinomial logit model for choice of mode. 

Model 2 (non-car owners) Coefficient z-stat Marginal effect 

Walk (base outcome) 

Carpool    
Constant -4.015 -3.08  
Indicator variable for density (1 if density > 0.45, 0 otherwise) 1.141 1.88 0.074 

Indicator variable for average frequency of contact (1 if average frequency of contact > 4.8, 0 otherwise) 1.234 1.09 0.080 

Homophily: sex (1 if homophily E-I of sex ≥ 0.8, 0 otherwise) 3.579 2.21 0.181 

Homophily: age (1 if homophily E-I of age ranges from -0.3 to 0.1, 0 otherwise) 1.715 2.64 0.111 

Homophily: race (1 if homophily E-I of race ranges from -0.9 to -0.3, 0 otherwise) 0.970 1.66 0.063 

Indicator variable of on-campus living condition (1 if respondent lives oncampus, 0 otherwise) -1.254 -1.75 -0.060 

Indicator variable of apartment living condition (1 if respondent lives in an apartment, 0 otherwise) 1.442 2.05 0.057 

Indicator variable of number of people in the family (1 if number of people in the family ≥ 5, 0 otherwise) -1.275 -1.76 -0.082 

Bus    
Constant -2.859 -2.29  
Indicator variable for network size (1 if netsize ≥ 6, 0 otherwise) -0.727 -1.25 -0.051 

Indicator variable of average duration of relationship (1 if average duration of relationship ≥ 2.8, 0 otherwise) -1.473 -1.49 -0.104 

Homophily: sex (1 if homophily E-I of sex ≥ 0.8, 0 otherwise) 3.882 2.55 0.224 

Homophily: income (1 if homophily E-I of income ≥ 0.8, 0 otherwise) 0.650 1.15 0.040 

Homophily: vehicular ownership (1 if homophily E-I of vehicular ownership ranges from -0.5 to -0.2, 0 otherwise) 1.476 2.28 0.105 

Heterogeneity: sex (1 if heterogeneity of sex ≥ 0.45, 0 otherwise) 1.289 2.28 0.091 

Heterogeneity: age (Blau’s index of heterogeneity) -1.653 -1.53 -0.117 

Indicator variable of on-campus living condition (1 if respondent lives oncampus, 0 otherwise) -1.848 -1.95 -0.117 

Indicator variable of apartment living condition (1 if respondent lives in an apartment, 0 otherwise) 3.214 2.63 0.211 

Indicator variable of dorm living condition (1 if respondent lives in any Purdue dorm, 0 otherwise) 2.505 2.12 0.177 

Other    
Constant -4.710 -4.58  
Homophily: sex (1 if homophily E-I of sex ≥ 0.8, 0 otherwise) 3.408 2.16 0.058 

Homophily: income (1 if homophily E-I of income ≥ 0.8, 0 otherwise) 1.860 1.62 0.039 
Log-likelihood at zero, LL(0) -153.35972   
Log-likelihood at convergence, LL(β) -107.11187   
ρ2 0.302   
Adjusted ρ2 0.204   
Number of observations 198   



76 

network size. Ego`s with and E-I score of -1 have ties exclusively to alters that belong to a 

same given attribute category as him, while an E-I score of +1 represents connection to 

alters that belong exclusively to other attribute categories. Blau’s index was used to 

measure the diversity between alters. Given an attribute category, this index varies from 0 

(all alters similar for that attribute) to 1 (meaning alters are more diverse for the given 

attribute). Figure 4-2 shows examples of different networks found in the study, with some 

network characteristics computed.  

 

4.5 Estimation Results: Model 1 (Car-owners) 

This section presents estimation results of multinomial logit models to predict the 

transportation mode chosen by attendees on a Purdue game day.  To come up with the 

respective models,504 decisions were analyzed inside a multinomial logit framework using 

Stata 13. All the explanatory variables used in the model are generic variables that are 

common among the alternatives. Goodness-of-fit measures are presented for the models, 

and the values of ρ and ρ2 are reported. All being above 0.2 indicates good goodness-of-

fit. Also, the average marginal effects are presented for each explanatory variable on Table 

4-2 and Table 4-3, allowing for the evaluation of the change in probability given a unit 

change in the explanatory variable in analysis, with all other variables equal to their means.  

A discussion on the final models parameters and on the findings, is presented in the sub-

sequent paragraphs: 

 

This first model was developed for respondents who reported that they owned a car or any 

other vehicle. The original choice set was maintained for the analysis, consisting of: car, 

carpool, bus and other. Walk was set as the base outcome, so all the coefficients of other 

modes could be compared to it. The constants shown are defined for all modes in this 

model, and they indicate that, all else being equal, individuals are more likely to drive their 

own cars to the game. 
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4.5.1 Density, Network Size and Ego-Alter Tie Attributes: 

Results presented on Table 4-2 show that the likelihood of using own car increases for 

network sizes greater than or equal to eight. This might be so because individuals who own 

a car might prefer to drive it instead of using any other mode, as shown by the constants 

values. The indicator variable of density was defined across car and carpool modes. 

Attendees with a network density greater or equal than seven are more likely to carpool 

than any other mode (β = 1.355). This results is expected in the sense that denser networks 

stimulate resource sharing [55]. On the other hand, individuals who either contact their 

alters more frequently or that have known their alters for a longer period of time are more 

likely to walk to the venue location. This result is understandable if we think the walk 

action as a group activity rather than a solo journey. 

 

4.5.2 Homophily Indexes:  

Both sex and race homophily show similar effects on carpool, when compared to walk 

mode. The higher the homophily in those cases, the more likely individuals are to walk to 

the game. This might be the case where the diversity of gender and race between an ego 

and his alters stimulates carpooling. The marginal effects of these two variables show that 

the carpool mode is more affected by a change in sex homophily (M.E = -0.029) than it is 

by a change in race homophily (-0.050). Individuals with intermediate values of age and 

income homophilies are more likely to carpool than any other mode. Again we see egos 

who have a network with different attributes than his own being more likely to carpool. 

Marital status homophily was defined only across carpool. The range set on that variable 

reveals that values close to complete homophily or any value that approximates to 

heterophily might stimulate the individual to carpool. 

 

Probably the most interesting result in terms of homophily is the one for vehicular 

ownership. Since in this model all respondents own a car, total homophily values means 

exclusively connections to alters who also own car, and total heterophily means the exact 

opposite. The combined range and coefficients of that variable show that the more an ego 
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who owns a car is connect to alters who also own a car, the more likely he is tocarpool (β 

= 1.339), and the less likely heis to drive his own car alone (β = -1.440). The reason for 

that might lay on the fact that since more resource (i.e., car) is found in this type of network, 

individuals would be more willing to share it. Also, an ego who connects himself with other 

car owners would have more opportunities to carpool than others who connect themselves 

with non-car owners.  

 

4.5.3 Heterogeneity indexes: 

Heterogeneity variables were defined only for carpool, and all of them (sex, age and 

vehicular ownership) show a positive association with this mode, indicated by the positive 

sign of the coefficients. The indicator variable for age heterogeneity is, in fact, the one with 

the greater impact on carpool. Its average marginal effect suggests that the probability of 

carpooling increases by 0.141. This is an indication that this mode in highly influenced by 

the diversification of one`s network, and that individuals with a more diverse network are 

more likely to pursue resource sharing.  

 

4.5.4 Location Variables:  

The indicator variables for on campus, dorm and apartment behave as expected. Although 

far distances are not appropriately addressed in the survey questionnaire (meaning that 

overall proximity of all residences do not exceed five miles from the Arena) the proximity 

to campus decreases the likelihood of adopting any other mode of transportation besides 

walk, while individuals living on apartments pursuit carpool more than any other mode.  

4.6 Estimation Results: Model 2 (Non-Car-owners) 

This second model was developed for respondents who reported that they did not own a 

car or any other vehicle. The car mode was intuitively constrained in this case. Walk was 

set as the base outcome, so all the coefficients of other modes could be compared to it. 
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4.6.1 Density, network size and ego-alter tie attributes 

The results presented in Table 4-3 show that for individuals who did not own a car, the 

higher the density of personal network, the more likely they are to carpool as compared to 

any other mode of transportation is considered (β = 1.141). Network size has an influence 

for bus mode in this model, with its likelihood decreasing for network sizes greater or equal 

to six, as compared to the other lower range. Indicator variable for frequency of contact 

shows positive influence for carpool and indicator variable for average relationship 

duration decreases the likelihood of riding a bus.  

 

4.6.2 Homophily indexes: 

E-I index of sex was a variable defined and categorized across all alternatives, and it 

indicates that the more heterophily of sex between egos and alters, the more likely 

individuals are to pursuit other modes other than walk. The coefficient result for age 

homophily indicates that individuals in the intermediate range are more likely to carpool. 

These two variables results would be another evidence that egos who seek connections to 

alters from different attribute categories than his would be more likely to carpool. Although 

this might seem counter-intuitive (since we might think that the more like each other people 

in a network are the more they will do activities together) it has a plausible explanation. 

The diverse nature of the egos network might grant them access to a so likely diverse source 

of resources. Since these egos are used to make diverse connections, they might also be 

more likely to do activities that might involve the presence of people unknown to them. 

This result is consistent with the previous model. Homophily of race plays a positive 

influence on carpool (β = 0.970), showing that individuals who do not own a car are more 

likely to carpool with alters that pertain to the same race. Heterophily of income has a 

positive association with the likelihood of riding a bus in this model.  

 

Once again vehicular ownership homophily is an interesting variable in the analysis. In this 

second model, total homophily means connections to alters who do not own a vehicle, 

whereas total heterophily represents exclusively connections to alters who do own a car. 
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At the extent of values ranging from -0.5 to -0.2, individuals are more likely to ride a bus 

when compared to all other modes considered. This result seems logical, once egos 

connected to alters who do not own cars would be more willing to take a non-car dependent 

mode such as bus. 

 

4.6.3 Heterogeneity indexes and location variables: 

While heterogeneity of sex increases the likelihood of riding a bus (β = 1.289), 

heterogeneity of age decreases this same likelihood (β = -1.653). Variables showing living 

conditions behave as expected in this model. On campus residents are more likely to walk 

to the game, while dorm residents (which are part of the on-campus share) are more likely 

to ride a bus. This might be so because dorm residents might be more used to ride buses, 

i.e. to class daily. Apartments residents are more likely to ride a bus (β = 3.214), followed 

by carpool (β = 1.442).  

 

4.7 Specific Applications 

In this section, the applicability of the models predicting carpooling preference, presented 

in this chapter, is briefly summarized. For example, consider the case where a local transit 

operator needs to decide whether to provide additional bus service for captive riders (non-

car owners) in two residential areas A and B to a destination study area C where a special 

event would take place on a certain day. Assuming residents of A and B have same social 

network characteristics (homophily, heterogeneity, and strength) except for network 

density. Consider the ego-centric networks of residents in area A are above 0.45 i.e. more 

than 45% connectivity among alters is observed. In contrast, ego-centric networks in area 

B have density 0.45 or below on average. Based on the final model specification for non-

car owners, the marginal effect of network density is +0.074 i.e. the increase in the 

probability of carpooling for each additional individual having density over 0.45. Given 

both study areas have equal number of 10,000 residents, each of the residents in area A has 

a 7.4% higher chance of carpooling as compared to the residents in area B. Based on such 

an approximation, the transit operator can decide whether to provide special transit facility 
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for the origin-destination pair A-C for the special event for the people who are likely to 

carpool and thus less congestion can be expected in the nearby areas of the event. 

 

4.8 Conclusions and Key Findings 

While some studies have explored mode choice during special events considering utility 

functions and socio-demographic attributes, this study presents a social network approach 

of travel mode during such events. The multinomial logit model developed contains 

explanatory variables related to social network characteristics, i.e. homophily, 

heterogeneity, density and network size. The model was developed based on a personal 

(ego-centric) network survey that investigated which of five different transport mode (car, 

walk, carpool, bus and other) college students from Purdue University take to reach the 

Ross-Ade-Stadium during a football game. Ego and alter attributes, as well as ego-alter 

and alter-alter tie attributes were the basis for the explanatory variables included in the 

model. The findings show that social network characteristics influence mode choice 

selection during a special event. 

 

The analysis of the results of both models provide key insights with respect to travel mode 

during a special event. Such insights include. 

 Rather than being influenced by network size, carpool mode revealed a strong 

positive correlation with network density, showing that dense networks are 

associated with more carpool travels. 

 Homophily of age presented itself similarly across the models. Intermediate values, 

in both cases, are linked with higher likelihood of carpooling, meaning that egos 

who share connections with a diverse set of alters would be more likely to carpool 

than those who relate to more similar or totally different set of alters in terms of 

age. 

 Homophily of sex and income in both models showed that an ego who seek 

connections to alters that are different than him would have a greater likelihood of 

carpooling.   
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 Individuals who own a car and who have a network composed mostly by alters who 

also own a car are more likely to carpool,  

 Heterogeneity values in model 1, which included only car owner egos, showed that 

the more diverse the alters of an ego are in terms of gender, age and vehicular 

ownership, the more likely the ego is to carpool. 

 Bus shows itself as a relevant option for non-car owners in the second model. 

 The closer individuals are to the venue location, the less likely they are to take their 

own cars to reach the event. 

 

The proposed model shows us that a dense and diverse network in terms of age and sex 

(both in in terms of ego and alter attributes as well as for alter and alter attributes) would 

increase the likelihood of carpooling for an individual. With these findings, actions that 

promote the interaction of different individuals in a campus community could be 

encouraged. Bringing people together through college activities, international events such 

as food days and road trips, floor meetings, dorm game days and so on, would be a way to 

reinforce the existing connections inside a network and promote the diversity and addition 

of new individuals to the network. Since proximity to the campus plays an influence on 

whether using a car or not, a good way to foster ride sharing in this occasion would be to 

provide shuttle services serving high density locations such as apartment complexes inside 

and outside campus during game days. The model developed would also help local transit 

agencies to better plan for such events, increasing the potential for attracting more of this 

types of events, thus creating a path to generate income for locals, reduce congestion for 

both attendees and non-attendees, accommodate travel demand and parking needs and 

improve access to the venue location. 

 

Although the model provides evidence of the effect of social network on mode choice 

during a special event, some limitations remain. The effect of proximity to the venue 

location needs to be better addressed, since the survey was responded by Purdue college 

students who mostly reside in a radius no greater than five miles to the arena. Intermodal 

travel was suppressed by the survey questionnaire design, i.e. driving a car to a certain 
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location and from there using a public transportation. Network composition for the egos 

interviewed could have led to more solid results if we knew to what extent people in the 

networks collected are used to interact with each other in terms of social activities daily, 

i.e. eating out, study, shopping and so on. Again, this would be better addressed with an 

inclusion in the survey questionnaire. In the face of the results and limitations of this study, 

the authors recognize the need for more research linking special events mode choice and 

social networks. We hope that the findings and propositions suggest by this study are 

considered by campus city transportation agencies to foster carpool during high demand 

events. Joining such actions with the modal split forecast proposed by the two models in 

this study will help to improve overall experience of attendants, reduce congestion and 

alleviate transit demand issues associated with special events. 

 

The material presented in this chapter from the paper “Social Network Influence on Mode 

Choice and Carpooling During Special Events: The Case of Purdue Game Day (peer-

reviewed by Transportation Research Beard and presented at the TRB 95th Annual 

Meeting, Washington, D.C., January 2016.) is reproduced with permission of the 

Transportation Research Board. 

   



84 

PART II: SOCIAL INFLUENCE ON DISASTER COMMUNICATIONS 
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CHAPTER 5. SOCIAL INFLUENCE ON INDIVIDUAL EVACUATION DECISIONS 

5.1 Introduction 

Hurricanes often threaten with catastrophic impacts on the lives of residents in the coastal 

areas of the United States. Timely evacuation limits this impact, but people may choose to 

evacuate or not during an extreme weather conditions due to differing personal constrains 

and environments that have little do with the direct risk. For example, during Hurricane 

Sandy a significant portion of New York and New Jersey residents facing potentially life-

threatening storm-surge risk elected not to evacuate. While previous evacuation studies 

have investigated the complexities of hurricane behavior and revealed important factors 

impacting evacuation choice including the influence of social networks and information 

media, no quantitative analyses of social network effects on evacuation have been done. In 

some cases, evacuation decisions are solely based on personal obligations and needs, yet 

they can often be influenced by the people an individual frequently contacts. Previous 

sociological studies suggest that social networks serve the purpose of transmitting warning 

message by disseminating information about an impending threat and individuals having 

more social connections can be expected to receive more warning information. However, 

the empirical literature is inconclusive about how warnings received from social 

connections weigh into evacuation decision making. This study uses data obtained by 

interviewing people from high storm-surge risk areas to understand how they responded to 

Sandy. Individuals' ego-centric social network information was obtained by using the 

Personal Network Research Design (PNRD) approach. A mixed (random parameters) logit 

model of individual-level evacuation decision making is developed to explain the 

combined effects of individual, household, and social network characteristics along with 

the reliability of different information sources within a unified modeling framework. This 

model will enable emergency
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 managers and planners to better predict evacuation demand: the number of individuals 

evacuating to a safe destination during a major hurricane threat. Researchers exploring 

different dimensions of evacuation logistics (for example, departure time, destination, 

modal split, route choice) and simulations may also find this study informative. 

5.2 Hurricane Sandy Background 

Hurricane Sandy produced a disastrous storm surge in coastal areas of New York and New 

Jersey with property damage of nearly $50 billion (the second-costliest since 1900) and 72 

fatalities in the mid-Atlantic and northeastern United States with at least 147 direct deaths 

across the Atlantic basin [275]. Most of these fatalities were the direct result of Sandy's 

wind and flood impact [276]. Other direct impacts of Superstorm Sandy included 

destruction of 570,000 buildings, cancellation of 20,000 airline flights, 8.6 million power 

outages in 17 states among others [277]. In addition, thousands of the residents were 

displaced from their homes, and major hospitals had to undertake precarious evacuations 

even as Sandy engulfed the metropolitan region [278]. Although residents were given some 

early notice of the oncoming storm and the likely impact and flooding it would cause, 

230,000 cars were destroyed in the storm because of floods [279]. All these catastrophic 

consequences during a major hurricane can be significantly reduced by ensuring timely 

evacuations of the vulnerable communities and efficient actions from emergency 

authorities [46, 47]. 

 

Hurricane Sandy (October 2012) caused about 254 deaths in the US, Caribbean, and 

Bahamas with an estimated economic loss of $65 billion (USD) [107]. 97 people died in 

the storm within the New York metropolitan area and thousands were relocated from their 

homes with 2 major hospitals requiring evacuations that exposed people to imminent risk 

[278]. Most of the beach areas in New Jersey shrank by 30 to 40 feet across the width and 

the rising floodwaters caused significant water damage during Hurricane Sandy [277]. 

Although Sandy made devastating impacts in these areas, city officials, emergency workers, 

transportation authorities and city residents responded to this storm with thorough 

preparations. Because of timely evacuation, fewer casualties occurred that it was expected  
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[50]. However, the entire process of evacuation is convoluted by various aspects [111] and 

a systematic planning for evacuation is needed [46, 47].  

 

Social media served as an essential source of information sharing during Hurricane Sandy. 

Many residents lacking access to traditional sources of information (television for example), 

could receive information on smart-phones using social media [50]. Communications via 

social media in areas without power (Midtown Manhattan was the most common tweeting 

location) continued throughout and after the storm as suggested by the continuous 

distribution of tweets throughout the city [51]. While social media pertains to virtual or 

online social connections, individual evacuation decisions can be influenced by the real 

social ties. Hasan and Ukkusuri [170] found that warning information propagates faster 

within networks with greater inter-community connections using a simulation based 

approach. Previously, Rogers and Sorensen [280] presented a contagion model to explain 

how people first receive emergency warning information and then spread the information 

to others. In this regard, Gladwin et al. [46] presented the necessary actions required by 

appropriate agencies and organizations to support social science research on the major 

issues in the hurricane forecast and warning system. 

5.3 Research Motivations 

A major portion of the New York and New Jersey residents (74%) who were interviewed 

for this study and lived in high storm surge areas did not finally evacuate as Sandy 

approached (Figure 5-1). Although many of these people were aware of the storm and 

thought an evacuation order had been issued they apparently decided they would be safe 

staying in their homes. This behavior suggests that evacuation decision making is a 

complex process influenced by underlying factors in addition to risk and evacuation order 

communication [46]. Some studies indicate a personalization effect exists affecting the way 

individuals make their own intuitive judgments, and this allows them to transform abstract 

notions of risk into concrete personalized assessments [121, 281]. Individual level actions 

or responses are based on personal risk perception, characteristics, and constraints 
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individuals live in [122]. In addition, psychological and social factors play an important 

role in shifting hazard warning information into a collective decision [46].  

Furthermore, people retrieve weather-related information from different sources of 

information such as television, radio, internet, social media, and others, resulting in 

individual risk perception being based on the type and quality of information broadcast. 

For example, many residents lacking access to traditional sources of information 

(television for example), were able to receive information on smart-phones using social 

media [50].  While social media pertains to virtual or online social connections, individual 

evacuation decisions can be influenced by real social ties. Hasan and Ukkusuri [170] found 

that warning information propagates faster within networks with greater inter community 

connections. Drabek [45], Perry et al. [282], Rogers and Sorensen [280] earlier suggested 

that people first receive emergency warning information and then spread information to 

others. Previous sociological research has well documented that social networks serve the 

purpose of transmitting warning messages by disseminating information about an 

impending threat [282]. Thus, an individual with more social connections can receives 

more warnings from his social connections. Gladwin et al. [46] presented the need for 

social science research in the hurricane forecast and warning system. But at the same time 

the empirical literature is inconclusive about how warnings received from social 

connections weigh into evacuation decision making.  

5.4 Research Questions 

This study analyzes the individual-level evacuation decision making process during 

Hurricane Sandy using a random parameters logit-based modeling approach to explore the 

role of social and information networks in addition to individual and household 

characteristics. Random parameters are introduced to capture heterogeneous individualized 

responses among the population that account for the limitations of traditional evacuation 

behavior models that have used a constant parameters assumption for variables influencing 

the decision to evacuate. In the survey, individuals' ego-centric social network information 

was obtained by using the Personal Network Research Design (PNRD) approach. 

Estimation results from the logit model suggest that the reliability of different types of 
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information sources such as radio, television, social media and internet significantly 

influence evacuation decision making. Social network parameters such as network size, 

homophily, heterogeneity, and length of relationship also play a vital role in determining 

whether an individual finally decides to evacuate. Additional factors related to individual 

characteristics (age, marital status, evacuation order, and experience) and household 

characteristics (location, size, type, proximity to water body) are also found to be important 

predictors consistent with previous findings. 

 

In this study, a random parameter binary logit model of individual-level evacuation 

decision making is introduced by incorporating the role of individual, household and social 

network characteristics, and reliability of different information sources. The model can 

explain the combined effects of all variables within a unified modeling framework while 

accounting for the unobserved heterogeneity across different individuals with the help of 

random parameters. This model would allow emergency managers and planners to 

accurately predict evacuation demand: the number of people evacuating to a safe 

destination during a major hurricane threat. While previous studies have demonstrated how 

evacuation decision is somewhat influenced by certain household and personal 

characteristics [115], this study reveals that other important factors such as social networks 

and sources of information play a dominant role in the process. Specific research questions 

being addressed in this chapter are listed below: 

 What are the key individual-level and household-specific factors that positively 

influence evacuation decision-making? 

 What are the effects of social network size on the way individuals decide to 

evacuate? 

 How does the strength of social ties influence evacuation decisions? 

 Under what conditions of social homophily and diversity individuals prefer to 

evacuate? 

 What are the role of different information sources on evacuation decision-making? 
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5.5 Data Description 

Residents from New York and New Jersey received the brunt of Hurricane Sandy. While 

Sandy was approaching, many people had a very short time to understand and decide what 

to do. To obtain information regarding how people reacted to this emergency, a survey 

interviewed residents from the high storm-surge areas of New York and New Jersey 

(Figure 5-1). The survey was funded by the National Science Foundation, and individuals 

participated in the survey voluntarily. The sample design was based on US census block 

groups from coastal areas of New Jersey and New York having residents likely to be at risk 

of life-threatening storm surge in a major hurricane like Sandy. Most of the block groups 

were randomly selected from all that had a mean elevation of less than eight meters and 

were within five km of the coastline or an inland tidal water body. While not meeting these 

conditions, block groups located in New York City evacuation Zone A (which was ordered 

to evacuate for Sandy), were also included.   

 

From the list of qualifying block groups, approximately 350 block groups were randomly 

selected and a sample of telephone numbers randomly drawn from selected areas.  Forty-

five percent of these were listed land-line numbers and 55% were cell phone numbers. 

While land-line numbers could be matched to block groups through address geo-coding, 

cell phone numbers required additional verification with interview questions on zip code 

and distance to water body. Approximately 13% of numbers dialed reached a household 

where an interviewer contacted an eligible person, and 40% of those persons completed 

the survey, giving a final response rate of 5% and completion rate of 40%. The average 

interview length was 15 minutes and the interviews were administered by trained bilingual 

interviewers (English and Spanish) who used questionnaires programmed in both 

languages on a computer-assisted telephone interview system.   

 

In addition to self-report on socio-demographic information, respondents provided relevant 

details about their social ties with individuals with whom they interacted closely during 

Sandy. Ego-centric social network data of individuals were obtained by following the 

personal network research design (PNRD) approach [63, 69, 73]. Data collected for this 
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study indicate that the number of social ties varied from a minimum of 1 to a maximum of 

6 (Figure 5-2) for individuals who interacted closely with their social partners during Sandy. 

Table 5-1 presents the descriptive statistics of the explanatory variables used in the final 

model specification with mean, standard deviation, minimum, and maximum.  

 

 

Figure 5-1 Evacuation decisions of respondents from high storm surge areas of New 
York and New Jersey 



92 

 

Figure 5-2 Examples of ego-alter networks with different network size (N). 
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(a) 

 
(b) 

Figure 5-3 Ego-alter networks with different network measures for same size. (a) N=3 (b) 
N=6 
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5.6 Modeling Framework 

Social networks can influence a decision maker at several stages by imposing constraints 

on available choice alternatives, provide information about perceptions of different 

alternatives, and allow a decision maker to simply follow the preferences shown by their 

social ties towards an alternative or provide a model of decision making processes that 

could be simply imitated by the decision maker. While much hurricane evacuation research 

keeps to traditional utility or rational choice [283] assuming individuals or households 

"choose the averting measures that maximize their utility subject to their budget constraint" 

[284], an increasing amount of research has investigated the temporal sequence of 

decisions and constraints that must take place before evacuation order compliance takes 

place [108, 285].  This sequence is social as well as temporal as Gladwin et al. [105] have 

demonstrated, but to our knowledge no research extends the study of social factors to 

empirically measured formal properties of social networks involved in hurricane 

evacuation decision-making: a serious omission given that evacuation compliance is 

critical in urban settings where relevant social networks are likely to be larger. 

 

In this study, hurricane evacuation decision making at the individual level is considered to 

have discrete binary outcomes, i.e. whether to evacuate or not during a major hurricane. 

Discrete choice modeling (logit models) is an appropriate analytical framework to model 

this behavior [268, 273]. However, the underlying assumption in the derivation of a 

standard logit (fixed parameters logit) model is that the estimated parameters do not vary 

across all observations. Inconsistent parameter estimates along with erroneous outcome 

probabilities will result if this assumption does not hold [268]. The mixed logit (random 

parameters logit) modeling framework explicitly accounts for the variations (across 

different observations) of the effects that covariates have on the binary choice of evacuation 

decision. Several classical studies [286, 287] have demonstrated the effectiveness of mixed 

logit models. 
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Consider the following function determining the evacuation decision outcome of individual 

n: 

, , ,i n i i n i nU Z  
                                                       

(5.1) 

where, 

 ,i nU
 
is the function determining binary evacuation outcome; 

 ,i nZ is the vector of explanatory variables (see Table 5-1);  

 i is the vector of estimable parameters, and 

 ,i n is an error term 

 

With the assumption that the error term ( ,i n ) is generalized extreme value distributed 

[274], the following is the standard binomial logit form for the evacuation decision 

outcome [268]: 
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(5.2) 

where, 

 ( )nP i
 
is the probability of individual n evacuating; 

 ,i nZ  and ,j nZ  are the vector of explanatory variables determining whether 

individual n will evacuate or not. 

 

To account for the variations of parameters across different observations (variations in   

), a mixing distribution is proposed for the evacuation outcome probability [273]: 

 

,

, j,

exp[ ]
( ) ( | )

exp[ ] exp[ ]
i i n

n
i i n i n

Z
P i f d

Z Z


  

 



                                          

(5.3) 

where, 

 ( )nP i  is the probability of individual n evacuating; 
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 ( | )f   is the density function of   

  indicates a vector of parameters of the density function (mean and variance) 

 

This  can now allow individual-specific variations of the effect of Z on evacuation 

probability and the density function ( | )f    used to determine  . The mixed logit 

probabilities are then obtained by a weighted average for different values of   across 

observations where some elements of the vector  may be fixed and some may be 

randomly distributed [288]. Since the estimation of maximum likelihood of mixed logit 

models is computationally cumbersome, a simulation-based maximum likelihood method 

is preferred. The mixed logit probabilities ( )nP i  (Eq. 3) are approximated by drawing 

values of   from ( | )f   given the values of   . This step is repeated for different 

draws, and the computed logit probabilities are averaged to a simulated probability that is 

required to estimate the likelihood function. The probability of the outcome in case of a 

mixed logit model is replaced by the corresponding simulated probability obtained from 

repeated Halton draws. Finally, this likelihood function is maximized to estimate the 

parameter vectors   and  . Out of different simulation-based techniques, Halton draws 

provide more efficient distribution of draws for numerical integration than purely random 

draws [289]. McFadden and Ruud [290], Stern [291], and others offer details about the 

simulation-based maximum likelihood methods. Previous studies have suggested that 200 

Halton draws is usually sufficient for accurate parameter estimation [289, 292]. In this 

study, 400 Halton draws were considered and random parameters are assumed to be 

normally distributed.  
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Table 5-1  Descriptive statistics of explanatory variables. 

Var. (#) Explanatory Variables Mean 
Standard 
Deviation Min Max 

(1) Evacuation Decision (1 if evacuated, 0 if not) 0.275 0.446 0 1  
Individual Characteristics     

(2) Marital Status (1 if married, 0 otherwise) 0.583 0.493 0 1 
(3) Age (1 if respondent is 70 years or elder, 0 otherwise) 0.126 0.332 0 1 
(4) Evacuation order from emergency officials (1 if received an evacuation recommendation, 0 

otherwise) 0.189 0.392 0 1 
(5) Evacuation order from emergency officials (1 if received a mandatory evacuation order, 0 

otherwise) 0.187 0.390 0 1 
(6) Evacuation experience (1 if evacuated in a previous storm, 0 otherwise) 0.258 0.438 0 1  

Household Characteristics     
(7) Location (1 if respondent is from New York, 0 if New Jersey) 0.488 0.500 0 1 
(8) Household's perceived proximity to ocean or large water body (1 if 20 miles or less, 0 otherwise) 0.972 0.164 0 1 
(9) Household size (1 if household includes only a single person, 0 otherwise) 0.166 0.372 0 1 

(10) Residential Structure Type (1 if a mobile home, 0 otherwise) 0.008 0.090 0 1  
Social Network Characteristics 

(11) Network Size (1 if number of social ties is 2 or less, 0 otherwise) 0.759 0.428 0 1 
(12) Number of people in the network who evacuated earlier 0.122 0.447 0 4 
(13) Homophily: Sex (1 if sex homophily (EI) is over -0.5 and below 0.5, 0 otherwise) 0.243 0.429 0 1 
(14) Homophily: Age (1 if age homophily (IQV) is 50 or less, 0 otherwise) 0.122 0.327 0 1 
(15) Heterogeneity: Sex (1 if sex heterogeneity (IQV) is 0.9 or over, 0 otherwise) 0.145 0.352 0 1 
(16) Average Age of Alters (1 if mean age of alters is over 70 years, 0 otherwise) 0.045 0.208 0 1 
(17) Average Contact Duration (1 if mean contact duration with alters is less than 20 years, 0 

otherwise) 0.148 0.356 0 1  
Types of Information Sources     

(18) Radio and Television (1 if relied both on radio and television for information, 0 otherwise) 0.111 0.315 0 1 
(19) Social Media (1 if relied on social media for information, 0 otherwise) 0.247 0.431 0 1 
(20) Internet (1 if relied on internet for information, 0 otherwise) 0.477 0.500 0 1   

    
  Number of Observation 863       
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Table 5-2  Correlation matrix of the explanatory variables. 

 (#) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) 

(1) 1.000                    

(2) -0.101 1.000                   

(3) 0.102 -0.053 1.000                  

(4) 0.055 0.018 0.039 1.000                 

(5) 0.418 0.007 0.033 -0.231 1.000                

(6) 0.230 0.011 0.031 0.107 0.254 1.000               

(7) -0.107 0.008 -0.043 0.009 -0.033 -0.057 1.000              

(8) 0.057 0.028 0.022 0.046 0.027 0.019 0.024 1.000             

(9) 0.089 -0.464 0.131 -0.024 0.043 0.022 -0.005 0.000 1.000            

(10) 0.118 -0.107 -0.034 -0.011 0.023 0.035 -0.011 0.015 0.029 1.000           

(11) 0.013 -0.037 0.002 -0.026 0.026 -0.026 0.013 0.020 -0.004 0.021 1.000          

(12) -0.109 0.067 -0.057 0.021 -0.011 0.017 -0.079 -0.001 -0.024 -0.025 -0.314 1.000         

(13) -0.028 -0.013 -0.029 0.009 -0.050 0.005 -0.029 -0.052 0.009 -0.021 -0.558 0.214 1.000        

(14) -0.062 0.056 -0.035 -0.044 -0.014 0.064 0.006 0.020 -0.042 -0.034 -0.022 0.057 0.078 1.000       

(15) 0.042 -0.026 0.002 0.037 -0.037 0.020 -0.013 -0.071 0.003 -0.037 -0.184 0.116 0.718 0.078 1.000      

(16) -0.059 0.037 0.052 -0.048 -0.004 0.025 0.033 0.003 -0.052 0.043 -0.099 0.028 0.150 0.175 0.101 1.000     

(17) 0.050 -0.050 -0.100 -0.018 -0.007 0.014 -0.029 -0.088 0.024 0.035 -0.199 0.069 0.128 0.254 0.069 0.019 1.000    

(18) 0.080 0.008 -0.012 0.018 0.020 -0.007 -0.065 -0.030 -0.029 0.009 -0.025 0.003 -0.012 -0.030 0.011 0.047 -0.044 1.000   

(19) 0.051 0.010 -0.137 -0.008 0.002 0.018 -0.064 0.015 -0.082 -0.022 -0.029 -0.012 0.020 0.050 0.039 -0.060 0.056 0.045 1.000  

(20) -0.027 0.042 -0.168 0.007 0.031 0.008 -0.042 -0.008 -0.020 -0.035 -0.129 0.077 0.118 0.020 0.068 0.015 0.052 0.038 0.260 1.000 
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Table 5-3  Estimation results of logit models for the decision to evacuate 

  Fixed Parameters Logit Model   Random Parameters Logit Model 
Explanatory Variables Coeff. t-stat M.E.   Coeff. t-stat M.E. 

Constant (defined for the utility function of not evacuating) 2.717 3.32 0.380  3.530 3.12 0.370 

Individual Characteristics        
Marital Status (1 if married, 0 otherwise) -0.438 -2.11 -0.061  -0.590 -2.11 -0.034 

Age (1 if respondent is 70 years or elder, 0 otherwise) 0.596 2.21 0.083  0.670 1.79 0.010 

Recommended evacuation order (1 if received an evacuation recommendation, 0 otherwise) 0.977 4.29 0.136  1.317 3.83 0.036 

Mandatory evacuation order (1 if received a mandatory evacuation order, 0 otherwise) 2.575 10.92 0.360  3.607 5.27 0.093 

Evacuation experience (1 if evacuated in a previous storm, 0 otherwise) 0.689 3.41 0.096  0.901 3.06 0.030 

Household Characteristics        
Location (1 if respondent is from New York, 0 if New Jersey) -0.593 -3.17 -0.083  -0.800 -2.80 -0.037 

Household's perceived proximity to ocean or large water body (1 if 20 miles or less, 0 otherwise) 1.471 1.94 0.205  2.144 2.09 0.221 

*Household size (1 if household includes only a single person, 0 otherwise) 0.163 0.61 0.023  -0.181 -0.39 0.006 
(Standard deviation of the parameter estimate)     (2.178) (2.29)  
Residential Structure Type (1 if a mobile home, 0 otherwise) 3.053 2.63 0.426  4.218 2.31 0.003 

Social Network Characteristics 
*Network Size (1 if number of social ties is 2 or less, 0 otherwise) -0.431 -1.55 -0.060  -0.812 -1.90 -0.027 
(Standard deviation of the parameter estimate)     (1.479) (2.25)  

Number of people in the network who evacuated earlier -1.231 -3.57 -0.172  -1.399 -3.52 -0.010 

Homophily: Sex (1 if sex homophily (EI) is over -0.5 and below 0.5, 0 otherwise) -0.834 -1.95 -0.117  -0.910 -1.80 -0.024 

Homophily: Age (1 if age homophily (AED) is 50 or less, 0 otherwise) -0.658 -2.00 -0.092  -0.851 -1.93 -0.009 

Heterogeneity: Sex (1 if sex heterogeneity (IQV) is 0.9 or over, 0 otherwise) 1.290 2.97 0.180  1.499 2.85 0.028 

Average Age of Alters (1 if mean age of alters is over 70 years, 0 otherwise) -1.060 -1.88 -0.148  -1.493 -1.96 -0.005 

Average Contact Duration (1 if mean contact duration with alters is less than 20 years, 0 otherwise) 0.773 2.83 0.108  1.040 2.62 0.018 

Types of Information Sources        

Radio and Television (1 if relied both on radio and television for information, 0 otherwise) 0.665 2.44 0.093  0.800 2.18 0.011 

Social Media (1 if relied on social media for information, 0 otherwise) 0.399 1.85 0.056  0.489 1.73 0.014 

Internet (1 if relied on internet for information, 0 otherwise) -0.270 -1.38 -0.038  -0.469 -1.73 -0.022 

Note: * indicates random parameters that are assumed normally distributed. All variables are defined for the evacuation outcome 
unless mentioned otherwise.
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Table 5-4  Goodness-of-fit measures for the random and fixed parameter logit models. 
 

Random Parameters Fixed Parameters 

Number of observations 863 863 

Number of parameters 22 20 

Log likelihood at zero, (0)LL  -598.19 -598.19 

Log likelihood at convergence, ( )LL   -373.69 -376.91 

2  0.375 0.370 

Adjusted 
2  0.339 0.336 

  

Likelihood-ratio test Random versus Fixed Parameters 

2[ ( ) ( )]fixed randomLR LL LL     6.44 

Degrees of freedom 2 

Critical 
2
0.05,2  (0.95 level of confidence) 5.99 

  

 
 

In this study, ego-centric social network data was collected (see Data Collection section) 

to understand the role of social ties in evacuation decision making in addition to the effects 

of individual and household level characteristics. Network concepts and theories allow 

researchers to analyze personal network structure and infer meaningful and relevant 

information with respect to the local network patterns surrounding the focal individual 

(ego) and those connected to the ego (alters) [245, 246]. To represent the nature of 

relationship and tie strength between ego and alter, dyadic (ego-alter) tie attribute such as 

the length of relationship (contact duration in years) is averaged for the inclusion in the 

model specification. Ego-network density, which is measured by the proportion of existing 

ties out of all possible connections among alters, indicates the extent to which people in 

one’s social network are involved with others.  

Since alters are the people whom the ego mostly cares about, homophily and heterogeneity 

are two important measures of network composition that can be explained for various 

demographic and behavioral dimensions (Figure 5-3). The attributes of egos and alters 

considered in this study included some demographic characteristics such as gender and 

age. While homophily indicates the similarity between ego and alters, personal network 
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heterogeneity looks at the diversity among alters. The homophily and heterogeneity 

measures were computed with E-Net, a network analysis program specifically developed 

for the analysis of ego-network data [265]. Homophily score was based on Krackhardt and 

Stern’s  E-I statistic that calculates ego’s inclination towards having ties with alters in the 

same group or class as self [266]. The measure is calculated by totaling ego’s ties to alters 

who are “external” (i.e., those that are in a different attribute category), subtracting the 

number of ego’s ties to alters who are “internal” (i.e., from the same attribute category) 

and dividing by network size. Egos with ties to only those in the same selected category 

(e.g., ego is male and only has ties to other males) will have an E-I gender score of -1 

(complete homophily), and those with only ties to those in other categories (e.g., ego is 

male and only has ties to alters who are females) will have an E-I gender score of +1 

(complete heterophily) [70]. For homophily of continuous variables such as age, E-NET 

computes the Average Euclidean Distance (AED) of the alters' values. On the other hand, 

higher heterogeneity value indicates more diversity among alters. Egos whose alters are 

mostly the same with respect to some categorical attribute (e.g., gender or race) will have 

small heterogeneity scores while those with more diversity in their ego-networks will have 

a value closer to 1 [70]. In this study, Agresti's IQV score (Agresti and Agresti 1978) was 

considered for heterogeneity measures computed by E-net [70].  

5.7 Model Estimation Results 

In this study, NLOGIT version 4.0 was used to estimate the fixed and random parameters 

of the evacuation decision-making model by following the logit-based modeling 

framework as discussed above. The estimation results of the final model specification for 

both models, i.e. standard logit (fixed parameters) model and mixed logit (random 

parameters) model are presented in Table 5-3. To test the overall statistical significance of 

the mixed logit model over the standard logit model, a likelihood ratio test is done. The 

likelihood ratio (LR) is calculated using the following equation:  

 

2[ ( ) ( ) ]fixed randomLR LL LL                                    (5.4) 
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where, the ( )fixedLL  is the log-likelihood at convergence of the standard logit model 

(fixed) and the ( )randomLL  is the log-likelihood at convergence of the random-parameter 

logit model (mixed). LR is 
2 distributed with degrees of freedom equal to the difference 

in the number of parameters of both models. The value of LR is 6.44 and the critical value 

of 2
0.05,2 (5% level of significance and degrees of freedom equal to 2) is 5.99 (Table 5-4). 

Thus, the null hypothesis of no random parameters (i.e. a fixed-parameter logit model) is 

rejected and the validity of the mixed logit model over the standard logit model is 

established. The goodness-of-fit measures for both models i.e. 
2  and adjusted 

2  are also 

reported in Table 5-4. Based on these measures, the evacuation decision-making model 

developed in this study shows a better fit as compared to the previous study by Hasan et 

al. [122]. 

 

In addition to the combined effects of the selected variables in the final model specification, 

marginal effects of the corresponding variables are also reported to assess the impact of 

each parameter itself (Table 5-3). Marginal effect is an appropriate measure to demonstrate 

indicator or dummy variables which can be computed as the difference in the estimated 

probabilities with the indicator variable changing from zero to one while all other variables 

are equal to their means [268]. In our results, we report only the average marginal effect 

across all observations since each observation in the data has its own marginal effect. As 

presented in Table 5-3, all the variables included in the final specification of the mixed 

logit model are statistically significant with plausible signs at the usual 5% or 10% levels 

of significance. Although the usual levels of significance are p = 0.05, p = 0.01, and smaller 

values, we include some variables in our model based on the discussion on criteria for 

omitting a variable by Ben-Akiva and Lerman [272] and we believe that these variables 

have influences on the decision of evacuating or not despite their relatively low t-ratio (p 

= 0.10). Two parameters (household size and network size) in the model are treated as 

random (vary across the population) since their standard deviations are statistically 

significant for their assumed normal distribution while the others are treated as fixed 
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parameters (standard errors not significantly different from zero). For the final model 

specification, the constant term is defined for the utility function of not evacuating which 

indicates that individuals are less likely to evacuate, in general, everything else being the 

same. Important implications from the model estimation results are discussed in the 

following sub-sections. 

5.7.1 Individual Characteristics: 

The indicator variable for marital status is negative indicating that married individuals are 

less likely to evacuate as compared to people with any other marital status. This indicates 

that if someone is married their risk perception is less during a storm threat. Mei [132] also 

found that 58.1% of the 298 married individuals interviewed in the post-Andrew household 

survey did not finally evacuate. On the other hand, elderly people (70 years and over) show 

higher inclination towards evacuating as reflected by the age indicator variable. This is an 

interesting and important difference in the Sandy situation since in studies of other 

hurricanes elders have often been shown to be less likely to evacuate [116, 172]. The type 

of evacuation order received by individuals prior to the evacuation also plays a very 

important role. However, the evacuation order variable, considered in this study, refers to 

actual evacuation order received from emergency officials and respondents were either 

ordered or recommended to leave their homes at any time before the landfall. Individuals 

who received mandatory evacuation order from emergency officials are more likely (

3.607   ) to evacuate followed by those who received a voluntary or recommended 

evacuation order ( 0.901   ). The average marginal effect suggests that the probability 

of evacuating increases by 0.093 if individuals receive a mandatory evacuation order. 

Whitehead et al. [117] and Hasan et al. [122] provided similar insights that households 

receiving a mandatory evacuation order instead of a voluntary one are more likely to 

evacuate. Previous evacuation experience is also found to be statistically significant in the 

final model specification meaning that individuals prefer more to evacuate if they had 

experienced a similar situation previously. This is in contrast with the findings of Hasan et 

al. [122] who found in the case of Hurricane Ivan past hurricane experience was negatively 

associated with evacuation decision.  
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5.7.2 Household Characteristics: 

Individuals from New York are less likely ( 0.800   ) to evacuate as compared to New 

Jersey residents. This finding was presented as the location indicator variable in the final 

model specification. Perhaps this was due to reassuring statements made by authorities in 

New York 50 hours before landfall ([293], October 27, 2012 2pm). Turning to the general 

preparedness, there were subtle differences in terms of how these two states approached 

and perceived the risk of Hurricane Sandy. While New Jersey Governor Christie declared 

a state of emergency in advance of the storm (on October 27, 2012), and issued a mandatory 

evacuation order for the barrier islands, New York City Mayor Bloomberg ordered (on 

October 28, 2012) suspension of mass transportation services and mandatory evacuation 

of New York’s designated Evacuation Zone A [294]. In addition, New Jersey Transit 

service (bus, rail, and light rail systems) were preemptively closed on October 29, whereas 

New York City public transportation systems were announced to be shut down at 7 p.m. 

on October 28, 2012 [295]. These actions taken by the state emergency officials are likely 

to have significant influences over individuals’ risk perception and important consequences 

on the decision to evacuate.  

 

Household proximity to the coastline is a salient factor influencing evacuation decision 

making. However, this measure is based on individual’s perceived distance from their 

household to a large water body. Respondents who report that they live 20 miles further 

from the coastline are less likely to evacuate which is indicative of their perceived lack of 

risk. In other words, those who perceive they live near a large water body (within 20 miles) 

are more likely to evacuate, and the average marginal effect suggests that the probability 

of evacuating increases by 0.221. Wilmot and Mei [141] also found distance to the nearest 

body of water to be an important predictor of the evacuation decision. Household size 

(single person household) is one of the two random parameters estimated in the model. 

With a mean of -0.181 and standard deviation as 2.178, the parameter estimate for 

household size variable implies that 53.3 percent of the individuals who live in a single 

person household have a lower probability for evacuation while the remaining 46.7 percent 

have a higher probability. This finding is consistent with the one by Wilmot and Mei [141] 
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in which 56.8% of single person households were found to evacuate during Hurricane 

Andrew (based on post-Andrew household survey data). The type of residential structure 

is also crucial in evacuation process. If an individual lives in a mobile home, s/he is more 

likely to evacuate than any other type of residential structure. Reviews of several previous 

evacuation studies by Baker [103] and Huang et al. [115] suggest this to be an extremely 

important predictor of evacuation. Whitehead et al. [117] and Hasan et al. [122] also found 

that household being a mobile home is positively associated with evacuation decision. 

5.7.3  Social Network Characteristics: 

Social network characteristics of individuals are also important predictors of evacuation 

behavior. The number of social ties (i.e. the network size) is the other random parameter 

estimated in the final model specification. Individuals are less inclined towards evacuating 

if they have two or less social partners. Seventy-point nine percent of the individuals in 

this category have a lower probability to evacuate as compared to the remaining 29.1 

percent. In other words, a social network size of three or more positively influences 

evacuation decision making. This suggests the all-important effect of social capital in the 

form of social ties reinforcing the making of good resilience-related decisions. Conversely, 

individuals who are more socially isolated may have a harder time making the decision to 

evacuate in a timely manner. This may be related to the social contagion effect on 

evacuation decision making which implies that an individual’s risk perception can spread 

from individual to individual within the social network [170]. In addition, social capital in 

the form of more social ties could enhance resiliency so that individuals in a given 

community become proactive in reacting towards sudden disasters [68, 175]. 

 

The number of people in the social network who evacuated earlier also significantly 

influences the decision to evacuate. Based on the model estimation results, individuals are 

less likely ( 1.399   ) to evacuate if they have a larger number of people in the network 

who evacuated earlier (i.e. number of alters evacuating earlier than the ego). This is likely 

since the time taken for others to evacuate earlier is the time that the respondent had not 

evacuated yet.  It thus may serve as a proxy for making the evacuation decision late and 
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individuals running out of time in the 24 hours or less most had to evacuate in the Sandy 

situation. Average marginal effect suggests that each additional alter in the social network 

reduces the probability of evacuation by 0.01. The "running out of time" issue is central to 

the question of whether timing affects evacuation decisions or not. Once people finally 

realize they need to evacuate based on intuitive risk judgement, timing becomes crucial 

since they need to prepare, coordinate work and family members, and 

arrange transportation [296]. On the other hand, while some households probably remained 

in the risk area because they "ran out of time", many other households perhaps decided to 

stay for other reasons such as considering homes to be sufficiently safe [103, 111], 

protecting property from the storm and looters, or avoiding traffic accident risks [47]. 

People who stay for these reasons will also see a larger number of people in their social 

network leaving earlier.  

 

The similarity of individuals with their social partners in terms of gender and age are also 

two important social network parameters influencing evacuation decision. Homophily 

facilitates the formation of social ties based on similar attributes of social partners [251, 

252]. As an example, teens who smoke tend to choose friends who also smoke, which is 

also known as social selection processes [253].  In this study, individuals having 

intermediate homophily score (-0.5 < EI < +0.5) for gender are found to be less likely to 

evacuate. The indicator variable for age homophily (AED < 50) suggests that lower age 

differences result in lower rate of evacuation. Although density is an important aspect of 

ego-centric networks [249, 250], this was not included in the final model specification since 

it was found to be statistically insignificant. Density refers to the ratio of number of ties 

(links) that exist among alters (social partners) and the number of total ties possible, 

however, respondents (ego) often fail to report how any two alters are connected to each 

other. This leads to the computation of ego-centric social network densities being 

problematic and reduces the number of observations significantly. 

 

The heterogeneity or diversity of gender among social partners also positively and 

significantly influence evacuation behavior. Individuals having high heterogeneity score 
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(IQV > 0.9) are more likely to evacuate ( 1.499   ). Bastani [254] suggested that the 

heterogeneity of alters in one’s social network influences ego’s access to resources and 

information. Ibarra [255] also showed the importance of pursuing heterogeneity in one’s 

ego networks. Indicator variable for the average age of alters suggests that individuals 

having elderly (over 70 years on average) social partners, s/he are less likely to evacuate. 

The mean contact duration for the relationship with social partners also influences the 

decision to evacuate. If the mean contact duration is less than 20 years, individuals are 

more likely to evacuate. Contact duration or the length of relationship is related to social 

cohesion that influences one’s ability to retrieve resources through ties [65, 80]. Since ego-

alter tie characteristics determine the amount of resource exchange, support, and 

communication need [248], this is an important predictor of evacuation decision making 

behavior. 

 

While this study makes an important contribution by measuring social influences in a 

distinctly different way from previous studies. For example, Baker [103] suggested that 

individuals are more likely to evacuate if most of the neighborhood evacuates because of 

conformity effect. This conformity effect can be convoluted by many other factors. Huang 

et al. [115] also suggested that the large effect sizes for social cues (observations of 

businesses closing and others’ evacuating) is not only due to a better risk judgement but 

also for serious enough consideration others to take protective action. Perry et al. [282] 

previously reported that contacts with relatives, as well as contacts with friends and 

neighbors, both had positive effects on protective action. However, this was the case only 

in one study site so the overall effect across all four study sites was insignificant. 

5.7.4 Types of Information Sources: 

People rely on different types of sources or media to obtain information. During an 

emergency, similar to a hurricane threat, people may obtain weather information from 

traditional media such as radio or television, social media such as Facebook, Twitter, or 

the internet. Drabek [45] characterized warning sources as authorities, news media, and 

peers. Many other researchers have also adopted this typology. In this study, the 
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respondents were asked which of different information sources were important and reliable 

for them to decide if it was worth evacuating. From the final model specification, indicator 

variables for different types of information sources suggest that individuals are more likely 

to evacuate if they rely both on radio and television ( 0.800   ). This is followed by 

those who rely on social media ( 0.489   ). Kaufman et al. [50] found that many 

residents lacking access to traditional sources of information during Sandy could receive 

information on smart-phones using social media. In addition, people in areas without power 

(such as Midtown Manhattan) continued to communicate via social media throughout and 

after the storm [51].  However, reliance on the internet for weather-related information 

makes individuals less likely to evacuate ( 0.469   ). This is evidence of the complex 

changing nature of the internet as a primary information source during an emergency since 

internet users become indecisive as they run out of time.   

  

Previously, the Lindell et al. [47] hurricane evacuation study obtained significant 

correlations of local authorities, peers, local and national media, and internet with 

evacuation. However, Lindell et al. [297] tsunami evacuation was unable to find any 

significant correlations of warning sources with evacuation. The major role of earthquake 

shaking as a signal for tsunami threat might cause these differences. However, Perry et al. 

[282] found a rather complex pattern of relationships between warning sources and flood 

evacuation. Hayden et al. [298] also addressed warning sources. Future studies need to 

explore how multiple information networks function during an emergency and how much 

trust people put on them. 

5.8 Specific Applications 

In this section, the applicability of the model predicting individual-level evacuation 

decisions is briefly summarized. For example, consider the case where emergency officials 

need to decide whether to provide evacuation bus service for evacuees in two hurricane 

prone areas A and B to minimize significant bottleneck along the evacuation routes close 

to the storm landfall time. Assuming residents of A and B have same social network 

characteristics (homophily, heterogeneity, and strength) except for network size. Consider 
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the ego-centric network size of residents in area A are above 2. In contrast, ego-centric 

networks in area B have network size 2 or below on average. Based on the final model 

specification, the marginal effect of network size is +0.027 i.e. the increase in the 

probability of evacuating for each additional individual having network size above 2. Given 

both study areas have equal number of 10,000 residents, each of the residents in area A has 

a 2.7% higher chance of evacuating as compared to the residents in area B. Based on such 

an approximation, the emergency officials can decide whether to provide special 

evacuation bus for the people who are likely to evacuate from area A and thus less 

congestion can be expected in the vicinity of evacuation routes. 

5.9 Conclusions and Key Findings 

In this research, original data from Hurricane Sandy is analyzed and used to model 

evacuation decision making behavior at the individual level within a logit-based modeling 

framework. Model estimation results suggest that the evacuation decision behavior of 

individuals from high storm surge areas is significantly influenced by the combined effects 

of important predictors related to individual characteristics, household characteristics, 

social network composition, and reliance on information sources. The ego-centric social 

network information for this study was obtained by considering Personal Network 

Research Design (PNRD) approach. The mixed logit model showed a better fit as 

compared to its fixed parameters counterpart based on the likelihood ratio test. The random 

parameters (household size and social network size) that were introduced in the final model 

specification account for the unobserved heterogeneity across different individuals. 

Marginal effects are also reported to explain change in the probability of evacuation for a 

unit change in the explanatory factors. 

 

Individuals having different sets of constraints and characteristics are shown to react to a 

hurricane threat differently. Important conclusions have been drawn from the model 

estimation results that help to better explain the complexity involved in evacuation decision 

behavior of individuals. Such insights for this sample of respondents include: 
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• Elderly individuals (70 years and over) are more likely to evacuate whereas married 

individuals are less likely to do so. 

• Evacuation order being mandatory makes higher impact as compared to evacuation 

recommendation. 

• Previous evacuation experience positively affects the decision to evacuate. 

• Individuals from New York are less likely to evacuate relative to the New Jersey 

residents. 

• Households living in a mobile home and near the ocean or large water body are more 

likely to evacuate. 

• Household size has heterogeneous effects on evacuation decision. Individuals (53.3%) 

staying at a single person household are less likely to evacuate. 

• Social network size (i.e. number of social ties) of 3 or more positively influence 

evacuation decision making. However, the effect of network size varies across 

observations. 

• More people in the social network evacuating earlier make individuals less likely to 

evacuate.  

• Individuals having intermediate homophily (similarity) score (-0.5 < EI < 0.5) for sex 

and lower score (AED ≤ 50) for age are less likely to evacuate. 

• Social network diversity (IQV ≥ 0.9) in terms of sex has positive influence on 

evacuation decision. 

• Average length of relationship (below 20 years) and age (70 years or less) of social 

partners positively affect the decision to evacuate. 

• Individuals relying on radio, television and social media for weather related 

information are more likely to evacuate than those relying primarily on the internet. 

 

This study makes major contributions in the literature related to hurricane evacuation 

logistics by identifying the role of social networks and information sources on hurricane 

evacuation decision making (and by using representative sample from high storm-surge 

areas in the northeastern United States (NY and NJ) for Hurricane Sandy. The model would 
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allow practitioners and emergency officials better predict evacuation demand and make 

efficient plans during a major hurricane. Researchers and other stakeholders may also find 

it useful to pursue other important dimensions of evacuation behavior such as departure 

time, destination choice, modal split, route choice, and so on. 
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CHAPTER 6. SOCIAL INFLUENCE ON JOINT EVACUATION DECISIONS 

6.1 Introduction 

The coastal areas of the United States are vulnerable to repeatedly occurring hurricanes 

due to their devastating impacts resulting in substantial loss of lives and property damage. 

Evacuation is a typical form of travel during extreme events and it is the usual recourse to 

prevent loss of life if high storm surge occurs. The fundamental question in evacuation 

behavior modeling is to explore the complex evacuation decision-making process i.e. 

whether an individual evacuates or not during a hurricane threat. Recent studies suggest 

that the characteristics of individual social networks can be the predictors of evacuation 

patterns. The study explores the social network influence on evacuation decision-making 

process by using ego-centric social network data obtained from Hurricane Sandy. The 

findings of this study will help emergency managers to implement efficient strategies and 

policy-makers to provide targeted policies by determining fractions of people evacuating 

or not during a major hurricane i.e. more accurate evacuation demand. 

6.2 Research Questions 

The central idea of this paper is to explore the social network influence on evacuation 

behavior by using ego-centric social network data obtained from Hurricane Sandy and by 

considering the nested structure of the data i.e. friends or close contacts (alters) being 

nested within an individual (ego). In this regard, this study develops a multinomial 

multilevel model of evacuation decision outcome at the dyadic (ego-alter tie) level by using 

Hierarchical Generalized Linear Modeling (HGLM) technique to investigate the effects of 

relational or tie attributes in addition to individuals' own socio-demographic characteristics. 

and by considering the nested structure of the data i.e. friends or close contacts (alters) 

being nested within an individual (ego). Estimation results indicate that
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social ties significantly impact how people evacuate during a disaster in addition to some 

individual level characteristics. Specific research questions being addressed in this chapter 

are listed below: 

 What are the key individual-level factors that influence joint evacuation decisions 

in a network setting? 

 How does the strength of social ties influence joint evacuation decisions at the 

dyadic (ego-alter) level? 

 How does the geographic proximity of socially connected individuals influence 

joint evacuation decisions? 

6.3 Data Description 

In this study, data was collected by surveying residents from the high storm surge areas of 

New York and New Jersey who participated in the survey voluntarily (see Figure 6-2). The 

survey was funded by the National Science Foundation. The survey was designed as such 

to reveal how individuals from these areas reacted to Hurricane Sandy. While Sandy was 

approaching, many people had a very short time to understand and decide what to do. In 

addition to background information, respondents provided relevant details about their 

social ties whom they interacted closely during Sandy. Ego-centric social network data of 

individuals were obtained [63, 70, 73] by following the personal network research design 

(PNRD) approach. Please see the details on the data collection on Section 5.5 

 

For the purposes of this study, the categorical dependent variable was based on respondents 

(ego) self-report of their own evacuation decision as well as the people (alters) they were 

closely connected during Hurricane Sandy. Data suggests that the number of social ties 

varied from a minimum of 1 to a maximum of 6. The data shows a nesting structure i.e. 

alter level information being nested within each ego. Thus, the evacuation decision 

outcome at the dyadic level has four categories: (a) both ego and alter evacuate (b) ego 

evacuates, alter does not evacuate (c) alter evacuates, ego does not and (d) both ego and 

alter do not evacuate. Figure 2 sows the distribution of the discrete evacuation decision 

outcomes at the dyadic (ego-alter) level. Table 6-1 presents the descriptive statistics of the 
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explanatory variables used in the final model specification with mean, standard deviation, 

minimum and maximum. After accounting for the missing data for some of the explanatory 

variables in the final model specification, the ego-level and alter-level observations are 412 

and 1109 respectively. 

 

 

 

Figure 6-1 Outcome of evacuation decision at the dyadic level. 

 

10%
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11%
63%

Dyadic Level Evacuation Outcome
(N = 1109)

Category 1: both ego and alter evacuate Category 2: ego evacuates, alter does not

Category 3: alter evacuates, ego does not Category 4: both ego and alter do not evacuate
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Figure 6-2 Goe-locations of the respondents from New York and New Jersey.
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Table 6-1 Descriptive statistics of the explanatory variables 
    

Explanatory Variables Mean 
Standard 
Deviation Min Max 

(a) Level 1 (Alter level variables)     
Alter gender (1 if male, 0 if female) 0.476 0.500 0 1 

Alter income (1 if alter belongs to high income group, 0 otherwise) 0.206 0.404 0 1 

Discussion topic (1 if topic of discussion is 'family' in general, 0 otherwise) 0.537 0.499 0 1 

Frequency of contact (1 if contact frequency is 'almost every day' in general, 0 otherwise) 0.546 0.498 0 1 
Geographic proximity (1 if geographic proximity more than five miles or fifteen minutes drive, 0 
otherwise) 0.343 0.475 0 1 

Alter age in years 51.237 16.256 10 95 

     
Number of observations 1109       

(b) Level 2 (Ego level variables)     
Marital Status (1 if married, 0 otherwise) 0.592 0.492 0 1 

Household size (1 if household includes only a single person, 0 otherwise) 0.172 0.378 0 1 

Age (1 if ego is 65 years or elder, 0 otherwise) 0.209 0.407 0 1 
Proximity to ocean or large water body (1 if ego lives within 25 miles of an ocean or large water body, 0 
otherwise) 0.959 0.199 0 1 

Number of years living in the present county/city 27.165 18.743 1 88 

Type of household (1 if ego lives in a single family home, 0 otherwise) 0.704 0.457 0 1 

Evacuation experience (1 if evacuated in a previous storm, 0 otherwise) 0.262 0.440 0 1 

Evacuation order from emergency officials (1 if received an evacuation order, 0 otherwise) 0.398 0.490 0 1 

Location (1 if New York, 0 if New Jersey) 0.495 0.501 0 1 

     
Number of observations 412       
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6.4 Modeling Framework 

In this study, the Hierarchical Generalized Linear Modeling (HGLM) for a multinomial 

model to investigate the effects of social network influence on evacuation decision at the 

dyadic (ego-alter) level. The multinomial multilevel modeling approach is appropriate for 

clustering data with a multinomial outcome considering the following two specific reasons: 

(1) multinomial analysis is more efficient than a series of binary logit analyses since the 

former approach involves a large number of comparisons [299]. With four categories such 

as the type of evacuation outcome at the dyadic level in this study, six comparisons should 

be made whereas the multinomial model needs only three comparisons. (2) multilevel 

analysis is advantageous over traditional ordinary least squares (OLS) regression analysis 

since it accounts for the dependence among alters within egos network and provides 

efficient parameter estimates in unbalanced, nested structure of data [300].  

 

However, the problem of evacuation decision-making involves four possible outcomes at 

the dyadic (ego-alter) level. These are: (1) both ego and alter evacuate, (2) ego evacuates, 

alter does not evacuate, (3) alter evacuates, ego does not and (4) both ego and alter do not 

evacuate. Here, the variance in outcome variable can be analyzed at two hierarchical levels 

[300, 301]). Since alters (Level 1) are nested within ego’s networks (Level 2), the variance 

can be decomposed in variance between and within ego networks of individuals. Based on 

a multinomial logit link function, the evacuation decision outcome at the dyadic level can 

be modeled using this multilevel modeling framework. Considering the work presented in 

Raudenbush and Bryk [300] about hierarchical modeling for multinomial data, let the 

dependent categorical variable be defined as: 

	
1,			 	
0,			

          ...............................................(6.1) 

Here,  

  is the dependent variable for level  (ego-alter) 

  is the response variable for level  (ego-alter) 

 1, 2, … . . . ,  

  is the number of discrete categories 
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Now, the probability that  takes the value of  is defined as: 

                  m 	 		; 				 1, 2, … . , 		 .........................(6.2) 

Since we have four discrete outcomes related to the evacuation decisions at the dyadic level, 

here M = 4. Thus we get: 

1 	           ............................................(6.3) 

2 	 	         .............................................(6.4) 

3 	           ............................................(6.5) 

4 	 	1 	      ..............................(6.6) 

 

The probabilities in (2) can be defined as the following multinomial logit link function for 

each category m = 1, 2, .... , (M-1): 

log log
	

	
      ...............................(6.7) 

 

Here, category M is the 'reference category' and the outcomes at Level-1 are the log-odds 

of falling into category m relative to category M. Now, Level-1 (ego-alter level) structural 

model  can be defined for m = 1, 2, .... , (M-1) as: 

 

	 	 ∑ 	 	 									    ..........................(6.8) 

 

Here, A are the attributes and	 	 is the ath attribute out of A attributes in total for m = 1, 

2, .... , (M-1). In case of ego-centric networks, this level refers to a tie between ego and 

alter or ego-alter level represented by alter i and ego j or simply the tie . In this regard, 

the variables 	 	 represent attributes specific to alters or the relationship between the ego 

and alter. For M = 4 we have the following  3 equations: 

	 	 ∑ 	 	 		     ................................(6.9) 

	 	 ∑ 	 	 											...................................(6.10) 

	 	 ∑ 	 	 												...................................(6.11) 
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Then, the Level-2 (ego level) structural model can be defined as: 

	 	 	 ∑ 	 	 	 	 	 		; 			 	 0, …	,    ...........(6.12) 

where, E are the attributes, 	 	 is the eth attribute out of E attributes in total, and 	  

are the corresponding coefficients. For ego-centric social networks, Level-2 is the ego-

level, represented by the ego (j) i.e. characteristics related to ego. 

6.5 Model Estimation Results 

By following the modeling framework discussed above, a multi-level multinomial logit 

model is estimated in this study. As presented in Table 6-2, most of the variables included 

in the mixed logit model are statistically significant with plausible signs at the usual 5% or 

10% levels of significance. Prior to estimating the full, two-level multinomial HGLM, to 

examine how much variation in evacuation decision exists between different egos, the 

empty model, which has no explanatory variable, was estimated using the following 

equations: 

	 	 					; 							 	 1, 2	, 3		 	     ............(6.13) 

	 	 	 	 	 		; 			 	 1, 2	,3		 	 			............(6.14) 

where  is the log-odds of evacuation outcome relative to base category of both ego and 

alter evacuating, m = 1 indicates the category ego evacuates but alter does not, m = 2 refers 

to alter evacuates but ego does not, m = 3 refers to both not evacuating, 	 	 is the 

population average of the transformed probabilities and 	  the random deviation from 

this average for group j. 	  are assumed to be independent random variables with a 

normal distribution with mean zero and variance τ . The estimated variances of the three 

intercept terms are significant (p < .001), suggesting that there is significant variation in 

the withdrawal rates among individuals (different egos). The final model contains the alter-

level and ego-level variables listed in Table 6-1 which summarizes the HGLM estimates 

of coefficients in the final model for the outcome variables. The Intra-class Correlation 

Coefficient (ICC) was found to be 90% which refers to the proportion of variance in the 

outcome variable between egos. For the final model specification, 67.91% of the variance  
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has been reduced as compared to the fully unconditional model i.e. the proportion reduction 

in error. 

 

In this study, the case that both ego and alter evacuate (case 1) has been treated as the 

reference category. The constant terms suggest, all else being equal, it is more likely that 

both the ego and alter are more likely not to evacuate as compared to the other cases. This 

finding provides another evidence that people, in general, tend not to evacuate depending 

on several determining factors. This is similar to finding from Hurricane Ivan [122] and 

depicts the overall unwillingness of the people in the hurricane prone regions to evacuate. 

Therefore, this is important to determine the causal factors that hinders the necessary 

evacuation. However, these factors and their effects can broadly be classified into three 

distinct groups: 

6.5.1 Influences of ego-alter relational (dyadic) attributes: 

The relational attributes between ego and alter have differential effects on each type of 

evacuation outcome as shown in Table 2. These attributes include frequency of contact 

(indicating how often ego and alter contact each other), discussion topic (indicating the 

topic that occurs in their discussion in general) and geographic proximity (indicating how 

close or how far they live from each other). Frequency of contact was defined for cases 

where either ego or alter evacuates (case 2 and case 3) and found to be statistically 

significant. The results indicate that people contacting each other daily are more likely to 

evacuate as compared to people with less frequent contact. This is an important finding 

indicating the evidence that frequently contacted persons are more concerned about the 

storm threat that allows them perceive and react to the situation in a similar manner. 

Discussion topic was defined for case 2 and case 4 suggesting that individuals discussing 

family matters (as compared to any other topic) had higher odds of not evacuating (85% 

and 62% respectively). This is relevant since most family discussion occurs among family 

members and there could be significant household matters constraining their evacuation. 

The variable geographic proximity was found to be statistically significant (p<0.01) and 

this was defined for all the three cases (case 2, case 3 and case 4). Model estimation results 
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show higher log-odds for each of these cases as compared to the base case suggesting that 

alters living at a distance more than five miles (or fifteen minutes driving time) from their 

alters would be less likely to evacuate as opposed to those living in close proximity. This 

is an important finding since social network members living in close proximity are more 

likely to evacuate and these individuals can be provided with special facility (for example, 

evacuation bus) in order for reducing the level of congestion during evacuation. 

6.5.2 Influences of alter characteristics: 

Apart from the significant dyadic attributes, individual attributes of ego and alter play 

significant role in effecting the evacuation outcome at the dyadic level. For example, alter 

age shows higher mean odds (1.03 for case 2 and case 4; 1.02 for case 3) indicating that 

the likelihood that both ego and alter evacuate reduces with the increased age of alters. On 

the other hand, alter income results in lower mean odds as defined for case 2 and case 4 

(0.47 and 0.63 respectively) indicating that if alter belongs to high income group they are 

less likely to evacuate. Alter gender was found to be highly significant for case 4 with 

higher mean odds (47%) which indicates that having male alters in the network makes it 

more likely that both ego and alter do not evacuate. These findings suggest how the 

characteristics of the people in social networks significantly impact evacuation decision 

making. 

6.5.3 Influences of ego characteristics: 

In the final model specification, characteristics related to ego include: location, age, marital 

status, race, household size, proximity to large water body, evacuation experience and 

evacuation order from officials influence evacuation decision. For example, if ego is from 

New York it results in higher odds (75%) as defined for case 4 indicating that individuals 

and their social partners from this area are less likely to evacuate. Since Hurricane Sandy 

finally passed through New Jersey after making its landfall, this is an important finding 

that captures the overall unwillingness of the people from New York to evacuate. If ego is 

an elderly person (65 years or over), it is more likely that ego will evacuate as suggested 

by lower odds (52%) defined for case 3. This is an important finding indicating the higher 
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perception of risk by the senior citizens. On the other hand, the odds for case 3 and case 4 

were 3.33 and 1.78 times greater for egos who are married, respectively. This finding also 

shows the overall unwillingness of married individuals to evacuate. Similar effects were 

observed for the number of years ego lived in the present county or city. Ego being the 

only person in the household shows higher odds both for case 2 and case 3 suggesting the 

likelihood of either ego or alter to evacuate. Proximity to large water body or ocean (twenty 

five miles or less) also suggests that either the ego or alter do not evacuate if ego living in 

close proximity (within 25 miles of an ocean or large water body). This should be given 

due consideration since individuals staying at close proximity needs to evacuate for safety. 

 

However, previous evacuation experience and receiving evacuation order from emergency 

officials result in lower mean odds for each of the cases as compared to the base outcome 

(both ego and alter evacuate). This provides a crucial insight on the fact that individuals 

having previous experience and receiving evacuation order can persuade their social 

partners to evacuate and show synchronous evacuation behavior. These findings from 

Hurricane Sandy validates the findings from Hurricane Ivan [122] and have important 

implication. The key take away from this result is that the more people will receive 

mandatory evacuation from officials the more likely that they will evacuate and this is how 

the evacuation process can be expedited. However, individuals having evacuation 

experience prior to Sandy were more likely to evacuate as compared to those without an 

experience. This contrasts with that of Ivan and depicts the importance of educating people 

in the coastal regions who do not have previous experience about the necessity of 

evacuation. The odds of case 3 (alter evacuates, ego does not) relative to the base case were 

0.50 times lower for ego living in a single-family home. 
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Table 6-2 Multinomial logit estimates for evacuation outcome at the dyadic level 
     

  
Coefficient 

(β)  
Standard 
Deviation 

z-
statistic p 

Odds-
ratio 

(Exp(β)) 
Category 1: both ego and alter evacuate (base)      
Category 2: ego evacuates, alter does not           

Constant -0.089 1.231 -0.07  0.91 

Alter age in years 0.028 0.012 2.26 ** 1.03 

Alter income (1 if alter belongs to high income group, 0 otherwise) -0.750 0.290 -2.59 ** 0.47 

Frequency of contact (1 if contact frequency is 'almost every day' in general, 0 otherwise) -0.695 0.198 -3.52 *** 0.50 

Discussion topic (1 if topic of discussion is 'family' in general, 0 otherwise) 0.616 0.243 2.53 ** 1.85 
Geographic proximity (1 if geographic proximity more than five miles or fifteen minutes drive, 0 
otherwise) 2.162 0.479 4.51 *** 8.68 

Household size (1 if household includes only a single person, 0 otherwise) 0.706 0.270 2.61 *** 2.03 
Proximity to ocean or large water body (1 if ego lives within 25 miles of an ocean or large water 
body, 0 otherwise) 1.911 0.780 2.45 ** 6.76 

Evacuation experience (1 if evacuated in a previous storm, 0 otherwise) -1.041 0.566 -1.84 * 0.35 

Evacuation order from emergency officials (1 if received an evacuation order, 0 otherwise) -1.443 0.661 -2.18 ** 0.24 

Category 3: alter evacuates, ego does not      
Constant 1.297 1.233 1.05  3.66 
Alter age in years 0.022 0.013 1.73 * 1.02 
Frequency of contact (1 if contact frequency is 'almost every day' in general, 0 otherwise) -0.456 0.205 -2.22 ** 0.63 
Geographic proximity (1 if geographic proximity more than five miles or fifteen minutes drive, 0 
otherwise) 1.299 0.499 2.6 *** 3.67 

Age (1 if ego is 65 years or elder, 0 otherwise) -0.647 0.311 -2.08 ** 0.52 

Marital Status (1 if married, 0 otherwise) 1.202 0.325 3.7 *** 3.33 

Household size (1 if household includes only a single person, 0 otherwise) 0.626 0.338 1.85 * 1.87 

Number of years living in the present county/city 0.017 0.007 2.36 ** 1.02 
Proximity to ocean or large water body (1 if ego lives within 25 miles of an ocean or large water 
body, 0 otherwise) 1.306 0.740 1.76 * 3.69 
Type of household (1 if ego lives in a single family home, 0 otherwise) -0.684 0.219 -3.12 *** 0.50 
Evacuation experience (1 if evacuated in a previous storm, 0 otherwise) -1.201 0.586 -2.05 ** 0.30 
Evacuation order from emergency officials (1 if received an evacuation order, 0 otherwise) -3.239 0.665 -4.87 *** 0.04 
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Table 6-2 Multinomial logit estimates for evacuation outcome at the dyadic level (continued) 

  
Coefficient 

(β)  
Standard 
Deviation 

z-
statistic p 

Odds-
ratio 

(Exp(β)) 

Category 4: both ego and alter do not evacuate      
Constant 3.330 0.924 3.61 *** 27.94 

Alter age in years 0.026 0.012 2.23 ** 1.03 

Alter gender (1 if male, 0 if female) 0.388 0.151 2.57 ** 1.47 

Alter income (1 if alter belongs to high income group, 0 otherwise) -0.458 0.217 -2.12 ** 0.63 

Discussion topic (1 if topic of discussion is 'family' in general, 0 otherwise) 0.480 0.189 2.54 ** 1.62 
Geographic proximity (1 if geographic proximity more than five miles or fifteen minutes drive, 0 
otherwise) 1.482 0.465 3.18 *** 4.40 

Marital Status (1 if married, 0 otherwise) 0.577 0.224 2.58 ** 1.78 

Number of years living in the present county/city 0.016 0.005 3.13 *** 1.02 

Evacuation experience (1 if evacuated in a previous storm, 0 otherwise) -1.329 0.550 -2.41 ** 0.26 

Evacuation order from emergency officials (1 if received an evacuation order, 0 otherwise) -3.709 0.641 -5.79 *** 0.02 

Location (1 if New York, 0 if New Jersey) 0.558 0.157 3.56 *** 1.75 

      
Number of observations 1109         

 *** p < 0.01       ** p < 0.05      * p < 0.10 
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6.6 Specific Applications 

In this section, the applicability of the model predicting dyadic-level evacuation decisions 

is briefly summarized. For example, consider the case as discussed in section 5.8 where 

emergency officials need to decide whether to provide evacuation bus service for evacuees 

in two hurricane prone areas A and B to minimize significant bottleneck along the 

evacuation routes close to the storm landfall time. Assuming residents of A and B have 

same social network characteristics (homophily, heterogeneity, and strength) except for 

geographic proximity. Consider the geographic proximity of socially connected individuals 

residing in area A is 5 miles or less on average. In contrast, geographic proximity of socially 

connected individuals in area B is above five miles on average. Based on the final model 

specification, the odds-ratio of only ego evacuating is 8.68, only alter evacuating is 3.67, 

neither evacuating is 4.40. Odds-ratio in each case is well above one with respect to the 

base case of both ego and alter evacuating. Given both study areas have equal number of 

10,000 residents, more residents are expected to evacuate from area A because of higher 

geographic proximity of socially connected individuals. Based on such an approximation, 

the emergency officials should provide special evacuation bus for the people who are likely 

to evacuate from area A and thus less congestion can be expected near evacuation routes.  

6.7 Conclusions and Key Findings 

In this study, the role of social ties on evacuation behavior is explored by using ego-centric 

social network data obtained from Hurricane Sandy and by considering the hierarchical 

structure of the data i.e. friends or close contacts (alters) being nested within an individual 

(ego). With the help of Hierarchical Generalized Linear Modeling (HGLM) technique, this 

study develops a multinomial multilevel model of evacuation decision outcome at the 

dyadic (ego-alter tie) level based on the effects of relational or tie attributes in addition to 

individuals' own socio-demographic characteristics. The main contribution of this study is 

to report important dyadic or relational attributes that define social ties which influence the 

decision to evacuate or not. This study also provides meaningful insights for a clear 

understanding of evacuation decision making behavior that would help forecasters and 
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emergency officials to come up with targeted and efficient evacuation plans. For example, 

evacuation order from the officials makes it more likely that individuals evacuate and this 

is also true in case of frequently contacted social ties. This indicates that evacuation rate 

would be higher and faster for closely connected communities. On the other hand, if friends 

live far apart, chances of evacuation is significantly reduced. However, estimation findings 

also suggest that individual level characteristics also influence evacuation decision making. 

Some of the key insights based on the final model specification are listed below: 

 

 All else being equal, it is more likely that both the ego and alter are less likely to 

evacuate. 

 Ego and alter, who contact each other daily i.e. high frequency of contact, are more 

likely to evacuate. 

 Ego and alter, who discuss family topics in general i.e. family relations, are less 

likely to evacuate. 

 Ego and alter, who live at a distance more than five miles (or fifteen minutes driving 

distance), are less likely to evacuate. 

 Age, gender and income of alters significantly impact evacuation outcome at the 

dyadic level. 

 At the ego-level, household size, location and proximity to large water body 

influence evacuation decision making in addition to socio-demographic factors 

such as age and marital status. 

 Previous evacuation experience and evacuation order from emergency officials 

significantly impact evacuation decision making at the dyadic level. 

This study incorporates a disaggregate approach to model evacuation decision making i.e. 

how an individual and close contact both behave during a major hurricane threat. However, 

a more aggregated approach would be to model evacuation decision making at the 

individual level by including network measures like density, homophily, heterogeneity and 

so on to explore network effects. Also, the study is based on ego-centric social network 

data from east coast i.e. New York and New Jersey during Hurricane Sandy. Future studies 
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could collect data in a similar type of a disaster to validate the results obtained in this study 

and check if the model is applicable and transferable to other coastal areas in the United 

States. 
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CHAPTER 7. CRISIS COMMUNICATION PATTERNS OF HURRICANE SANDY 

7.1 Introduction 

Hurricane Sandy was one of the strongest and costliest in the history of hurricanes. Many 

people used social media to communicate during this period while lacking access to 

traditional information sources. In this study, we analyze the raw data (~52 M tweets, ~13 

M users, Oct 14 -Nov 12, 2012) obtained from Twitter. First, we identify subgraphs of 

Twitter that was active before, during, and after Sandy’s landfall at different scales of user 

activity. Then, we explore several important network properties (both local and global) 

influencing the process of online social contagion during Hurricane Sandy. Finally, we 

examine the relationship between network topology and user activity. We also analyzed the 

texts appeared in one of the subgraphs at a given activity level and identify several crisis 

communication patterns relevant to a major hurricane. We observed that the distributions 

of activity frequency of nodes along with their degrees follow power-law that is indicative 

of the scale-free property of many real networks. Network elements grow exponentially 

with the size of subgraphs and almost equal number of connected components and isolates 

exist at all levels of activity. For larger subgraphs, we observed that the networks become 

less transitive and less dense, however, but more assortative with increased node degree on 

average. From the node-level analysis, we observed that nodes are more likely to be active 

when occupying more central positions in the subgraph and having larger degrees. 

Conversations of most frequent and relevant users indicate evolution of numerous topics 

at different phases of the storm such as warning, response, and recovery. People were also 

concerned about phase independent topics specific to location, time, media coverage, 

political leaders and celebrity activities. 
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7.2 Data and Research Approach 

In 2012, residents in the coastal areas of New York and New Jersey experienced a massive 

storm surge produced by Hurricane Sandy, a late season hurricane causing about $50 

billion in property damage, 72 fatalities in the mid-Atlantic and northeastern United States, 

and at least 147 direct deaths across the Atlantic basin [275]. Sandy's wind and flood are 

the key contributors of the heightened number of fatalities [276]. In addition, 570K 

buildings were destroyed, 20K flights were cancelled, and 8.6M power outages in 17 states 

among other direct impacts of Sandy [277]. Moreover, thousands of people were displaced 

from their homes [278] and 230K cars were destroyed by the floods even though the 

residents were given early warnings about the oncoming storm and the likely impact [279]. 

The specific date, time, location and event, attributed to Hurricane Sandy, are presented in 

Table 7-1. Please see [195] for further details.  

 

Table 7-1 Specific events along the path of Hurricane Sandy 

Date Time Nearby Location Event 

October 22, 2012 12:00 UTC Kingston, Jamaica Sandy formed and officially assigned name 

October 24, 2012 19:00 UTC Jamaica First landfall as a Category 1 hurricane 

October 25, 2012 05:30 UTC Cuba Second landfall as a Category 3 hurricane  

October 29, 2012 12:00 UTC Atlantic City Re-intensified to the maximum wind speeds  

October 29, 2012 23:30 UTC 
Near Brigantine in 

New Jersey 
Final landfall as a post-tropical storm 

 

In this study, we analyze raw data (~52 M tweets, ~13 M users, Oct 14 -Nov 12, 2012) 

obtained from Twitter. Please see [195] for the detailed steps involved in data collection. 

The data includes a text database with user and text identifiers, texts, and some additional 

useful information. The network database includes the relationship graphs of active users 

i.e. the list of followees for each user. These were reconstructed using Twitter API. Only a 

minor fraction of the texts (~ 1.35%) are geo-tagged by Twitter. For relevance, user activity 

was assessed on the basis of number of tweets (~11.83 M) in the data that included the 

word ‘sandy’, co-appeared with other words after filtering out ~46.45 M tweets that are in 
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English i.e. non-English tweets were removed. For the analysis of directed graphs, we 

considered a network link received by user from his followee. From Twitter perspective, a 

followee is the user who is being followed by another user and the information flows from 

the followee to the followers. In the network data, we observed that a number of highly 

active nodes did not have any followee, however they appeared in the followee list less 

active users which is indicative of the direction and rate of information flow. Some active 

users did not appear in the network database for which we assumed zero followee since the 

current length of followee list on Twitter is close to zero, even after three years of data 

collection. We followed the following definition [302] to construct the subgraphs: 

 

A graph  is an ordered triple ( , , ) consisting of a non-empty set  of 

nodes, a set  of links being disjoint from  and an incidence function  that 

associates with each edge of  an unordered pair of (not necessarily distinct) vertices of 

G. If  is an edge and  and  are vertices such that ,  then  is said to join  

and ; the nodes  and  are called the ends of . A graph  is a subgraph of   ( 	 ⊆ 	 ) 

if 	⊆ 	 , 	⊆ , and  is the restriction of 	to . When 	 ⊆ 	  

but 	 	 , we write 	 ⊂ 	  and call  a proper subgraph of . If  is a subgraph of , 

 is a supergraph of .  

 

In order to create subgraphs at any given activity level, we first observe the followees of 

an active user and identify all the active followees of that user. We construct a directed 

subgraph of all active users having links coming out from user followees directed towards 

the active nodes. Then we run different network algorithms to identify the network 

properties and observe the association between the frequencies of user activity and network 

properties (global and local). The larger the size of the subgraphs, the more nodes it include 

from a lower activity level. 

7.3 Graph Visualization 

Figure 7-1 visualizes the subgraphs of different sizes and their largest connected 

components. Network visualization is indicative of highly active nodes in the active 
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subgraphs appearing both at the largest connected component and as isolates in the 

periphery (Figure 7-1a). Within the largest connected component, highly active nodes 

appear at different positions (Figure 7-1b-d). The ego node of the largest hub depicts its 

influential position in the subgraph connectivity directing our attention towards a node-

level analysis of the subgraphs (Figure 7-1e).  

 

7.4 Activity Patterns 

7.4.1 Activity and Degree Distributions 

To characterize disaster communication networks, we analyze the activity and degree 

distributions. Using Alstott et al.’s python code [303], we obtained the best fitting to the 

user activity and subgraph degree distributions. The code also returns a value of  

which refers to the minimal value of  at which the power law begins to become valid. 

User activity frequency based on all relevant keywords follows a power law distribution 

( 2.71	 0.005; 	 0.001;	 39 , whereas, activity frequency (AF) based on 

keywords co-appeared with ‘sandy’ follows a truncated power law distributions (

2.795	 0.016; 	 0.001 . The degree distributions of the subgraphs at different 

activity frequency (AF) levels follows a truncated power law ( 3.057	 0.067; 	

0.01; 10 . Here,  is the slope of the distribution. When  is high, the number of 

nodes with high degree is smaller than the number of nodes with low degree.  We may thus 

think that a low value of  denotes a more equal distribution, and higher values of  denote 

more and more unfair degree distributions.  However, this might not be the case and the 

opposite may become true i.e. a high value of  represents a network in which the 

distribution of edges is fairer. The best fit power law may only cover a portion of the 

distribution's tail [303]. There are domains in which the power law distribution is a superior 

fit to the lognormal [304]. However, difficulties in distinguishing the power law from the 

lognormal are common and well-described, and similar issues apply to the stretched 

exponential and other heavy-tailed distributions [305, 306]. If faced with such difficulties 

it is important to remember the basic principles of hypothesis and experiment: Domain-

specific generative mechanisms provide a basis for deciding which heavy-tailed 
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distributions to consider as a hypothesis fit. Once candidates are identified, if the log-

likelihood ratio test cannot distinguish between them the strongest solution is to construct 

an experiment to identify what generative mechanisms are at play. Our comments on the 

distributions fitting are based on pairwise comparison between power law, truncated power 

law, lognormal, and exponential distributions. See Figure 7-2 for details. 

7.4.2 Aggregate Network Properties 

Figure 7-3 shows the variation of the subgraph network properties at various activity levels. 

It is important to note here that the larger the size of the subgraphs, the more nodes it 

include from a lower activity level. We observe that the number of nodes and links 

generated in these subgraphs (both directed and undirected) grow exponentially for larger 

subgraphs. A similar pattern is observed for the nodes and links that exist in the largest 

connected component. An interesting pattern that we observe in these subgraphs is the 

existence of almost equal number of connected components and isolates at all levels of 

activity. Network densities of the subgraphs (both directed and undirected) tend to zero for 

larger subgraphs, having slightly higher densities in the largest connected component in 

each case. This implies that the connectivity between nodes do not follow the rate at which 

the network grows for larger subgraphs.  

 

Network transitivity implies the probability of any two given nodes in the graph to be 

connected if they are already connected to some other node. The average clustering 

coefficient of the undirected subgraphs range between 0.2 to 0.4 and decreases with the 

size of the subgraphs (see Figure 7-4). The network transitivity, based on average clustering 

coefficient, suggests that the subgraphs become less transitive as their size grows. The 

increase in average degree of the nodes is indicative of more nodes that are reachable in 

larger subgraphs on average. The degree pearson correlation coefficient approaches 0 for 

larger subgraphs. This is a measure of graph assortativity in terms of node degree and a 

network is said to be assortative when high degree nodes are, on average, connected to 

other nodes with high degree and low degree nodes are, on average, connected to other 

nodes with low degree.  Since degree assortativity measures the similarity of connections 
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in the graph with respect to the node degree, we observe that the networks become more 

assortative for larger subgraphs. While the eccentricity of a node in a graph is the maximum 

distance (number of steps or hops) from that node to all other nodes; radius and diameter 

are the minimum and maximum eccentricity observed among all nodes, respectively. For 

a larger subgraph, we observe that the radius takes a constant value of 5, while diameter 

approaches 8. 

7.4.3 Nodel-level Properties 

Node level properties are important to understand the role and contribution of different 

nodes (network agents) on the information propagation at a local scale. To obtain node 

level properties, we first construct an active subgraph with AF ≥ 10 that includes a directed 

graph of 157,622 nodes and 14,498,349 links. Then we run different network models to 

obtain node-level properties of the undirected largest connected component with 152,933 

nodes and 11,375,485 links. We observe that most of these nodes had a degree close to ~25 

with activity frequency around 13. While some of the nodes, having equivalent degree, 

were highly active; most of the nodes in this degree region remained less active. We 

observed fewer nodes in the higher degree zones who remained less active than some lower 

degree nodes (Figure 7-5). However, these nodes can play important role during a crisis or 

emergency because of their higher access to many other nodes. Similar but less smooth 

trend was observed with respect to average neighbor degree. This node property is related 

to assortativity that measures the similarity of connections in the graph with respect to the 

node degree. An important insight here is that we see a chunk of nodes having very high 

degree neighbors who remained less active (Figure 7-5). 
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Figure 7-1 Snapshots of active subgraphs with their elements 
(a) Full subgraph (~ 0.16 M nodes, ~ 14.50 M links, AF ≥ 10, ~ 3.92 M tweets); (b) Largest Connected Component of the subgraph (~ 
0.15 M nodes, ~ 11.38 M links, AF ≥ 10); (c) Circular tree visualization of Largest Connected Component (~ 12 K nodes, ~ 0.50 M 
links, AF ≥ 50) (d) Regular visualization of Largest Connected Component (~ 12 K nodes, ~ 0.50 M links, AF ≥ 50); (e) Largest Hub 
(AF ≥ 50) ***Node size is proportional to node activity in each case. 
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Figure 7-2  Activity and Degree Distributions 
(a) Activity distribution based on all tweets after initial filtering (~ 46.45 M tweets). This follows 
a power law distribution. (b) Activity distribution of different users after the ‘sandy’ filtering (~ 
11.83 M tweets). This follows a truncated power law distribution. (c) Degree distribution of the 

largest directed subgraph (~ 0.16 M nodes, ~ 14.50 M links, AF ≥ 10, ~ 3.92 M tweets) 
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Figure 7-3  Elements of the Subgraphs at Different Activity Levels 

(a) Number of nodes and links, (b) Network densities, (c) Number of isolates and connected components, 
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Figure 7-4 Properties of the Subgraphs at Different Activity Levels 

(a) Radius and Diameter of the largest connected component, (b) Average degree, (c) Average clustering coefficient, and (d) the degree 
Pearson correlation coefficient. 
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The association of activity frequency with node-level clustering coefficient and 

eccentricity (Figure 7-7) also show well-defined range. Since eccentricity of a node is the 

maximum distance from that node to all other nodes, we observe that most of the nodes 

had an eccentricity of 6, many of them remained less active while only a few of them were 

highly active. More importantly, for some nodes having less eccentricity, we observed their 

rigidity to be less active during crisis (Figure 7-7). Figure 7-7 shows that many nodes, even 

being part of the largest connected component, did form any cluster and remained less 

active. These nodes are less reachable from the nodes who are more central and form 

clusters. Such nodes should be given due consideration for effective information 

dissemination during crises. Turning to the centrality measures (Figure 7-8-Figure 7-9), we 

observe that only closeness centrality shows a well-defined range (Figure 7-8). Degree 

centrality and eigenvector centrality shows similar patterns. Betweenness centrality 

suggests that almost all of the nodes were having centralities equal to zero in terms of their 

betweenness in the network (Figure 7-8). The key take away from the centrality parameters 

is the pattern presented by the closeness centrality (Figure 7-8) which is indicative of a lot 

of nodes being highly central in terms of their closeness with many other nodes who 

remained significantly less active.  

7.4.4 Information Spreading Capacity 

We run a tobit regression to test the effects of network variables such as degree and 

centrality on frequency of user activity i.e. the information spreading capacity of the 

network agents. This has been done by observing nodel-level network properties of the 

largest directed subgraph AF ≥ 10 that includes 157,622 active nodes originally and 

152,933 active nodes in the largest connected component. We report (Table 7-2) the mean, 

standard deviation, minimum, and maximum of the variables tested in the tobit regression 

(data left censored at 10). We observe higher variability of closeness centrality, however, 

the variability of other centrality measures is insignificant while their means close to being 

zero. 

 

Our analysis is indicative of higher levels of activity for nodes having larger in-degree and 

out-degree. For any give node in the active directed subgraph, the more information (links) 
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it receives from other nodes the more active is that node during crisis. On the other hand, 

a node is also highly likely to be active and influential in case of having more out-degrees 

i.e. links directing to other nodes that allow them to disseminate crisis information. 

Coefficient estimated for closeness centrality suggests more influential capability of a node 

by being more central in the active subgraph. However, less activity is observed for nodes 

having larger eccentricities. All the network variables tested under tobit regression are 

significant at p<0.001. 

 

 

Table 7-2  Tobit Regression for Activity Frequency 

  N Mean S.D. Min. Max. 
Activity Frequency 152,933 24.87351 37.59742 10 2267 
Degree 152,933 148.7643 484.8861 1 32406 
In-degree 152,933 94.80183 219.0143 0 9640 
Out-degree 152,933 94.80183 447.848 0 32397 
Clustering Coefficient 152,933 0.195215 0.13114 0 1 
Eccentricity 152,933 5.790215 0.456218 5 8 
Avg. Neighbor Degree 152,933 2745.791 2326.095 1.5 32406 
Betweenness Centrality 152,933 1.14E-05 0.000231 0 0.037856 
Closeness Centrality 152,933 0.369475 0.040014 0.178652 0.530577 
Eigenvector Centrality 152,933 0.00109 0.002313 8.86E-13 0.071367 
Degree Centrality 152,933 0.000973 0.003171 6.54E-06 0.211898 

 Activity Frequency: Tobit Regression 

 Coeff. Std. Err. t-stat [95% Conf. Int.] 
Constant 18.92990 2.73118 6.93 13.57685 24.28295 
In-degree 0.00917 0.00057 16.10 0.008053 0.010285 
Out-degree 0.00658 0.00026 25.63 0.006081 0.007088 
Eccentricity -5.53433 0.30563 -18.11 -6.13336 -4.9353 
Closeness Centrality 87.82817 3.54151 24.80 80.88689 94.76944 
No. of observations 152,933     
Pseudo R-squared 0.00420         
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Figure 7-5 Node-level Properties: Degree and Avg. Neighbor Degree 
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Figure 7-6 Node-level Properties: In-degree and Out-degree 
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Figure 7-7 Node-level Properties: Clustering Coefficent and Eccentricity 
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Figure 7-8 Node-level Properties: Betweenness Centrality and Closeness Centrality
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Figure 7-9 Node-level Properties: Eigenvector Centrality and Degree Centrality 
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7.5 Communication Patterns 

7.5.1 Most Frequent Keywords 

We also analyzed the texts that evolved in the tweets of the active subgraphs. For example, 

the sub-graph, formed by considering 157,622 nodes that were active 10 times or more (AF 

≥ 10), include ~3.9 M tweets. After removing the punctuations, English stop-words, 

repeated words such as ‘http’ and ‘@’ from these tweets, we observed that these 100 most 

frequent words contribute ~37.5% of all the words in the texts. Any given word can be a 

part of a specific topic evolved over time. Also, each word can be a part of multiple topics. 

The text database needs to be carefully analyzed to infer aggregate and user-specific topic 

pattern. 

 

We present the highly frequent words as a heatmap over time in Figure 7-12 and Figure 

7-13 where the frequencies of these words can be seen. ‘sandy’ and ‘hurricane’ are the top 

two most frequent word. The word ‘storm’ is also on top of the list. Interestingly, we found 

that the word ‘storm’ was more popular on October 23, 2012 shortly after the tropical 

depression was formed (Table 7-1). Later on, ‘hurricane’ and ‘sandy’ became more 

frequent close to the landfall on October 29. The word ‘superstorm’ was also popular. The 

appearance of ‘sandy’ before the tropical depression was formed (October 22) suggests 

those tweets having ‘sandy’ out of context. The labelling of a tropical storm should be 

given importance as it is strongly connected to how information disseminates later. The 

other words in the list can be broadly classifies into several categories.  

 

Words such as ‘east’, ‘coast’, ‘stay’, ‘safe’, ‘update’, ‘watch’, ‘path’, ‘prepare’, 

‘emergency’ appeared more frequently before the storm. Some words, for example, 

‘power’, ‘water’, ‘food’, ‘gas’, ‘home’ were more prominent close to or shortly after the 

landfall. Considerably after the landfall, topics including ‘help’, ‘relief’, ‘victims’, 

‘donate’, ‘affect’, ‘please’, ‘fema’, ‘without’, ‘shelter’ appeared to emerge. Words such as 

‘weather’, ‘state’, ‘time’, ‘still’, ‘sandys’, ‘hit’, ‘ny’, ‘nj’, ‘york’ were uniformly distributed 

both before and after the landfall. 



146 
 

 

7.5.2 Model Description and Formulation 

In this paper, we present topic modeling framework for inferring communication patterns 

of Hurricane Sandy based on the interactions found in social media data: Our hypothesis 

is that interactions in social media platforms can be described through representative topics 

which are the distributions of specific words. To infer these topics, we use topic models or 

Latent Dirichlet Allocation (LDA) [307] which have been widely used in machine learning 

research. While dealing with unlabeled text data that requires natural language processing, 

LDA is a highly acceptable framework in the machine learning literature as compared to 

other predictive or classification algorithms such as Support Vector Machine, Naive Bayes 

among others. The main idea here is to find the emergence of different topics in a large 

corpus of documents. Thus, each document can be modeled as a mixture of topics and each 

topic as a distribution of words (words being the smallest data unit). We also present a 

Gibbs sampling approach to estimate the model parameters. 

 
A topic model is a generative model that follows a probabilistic process for generating 

documents based on a set of straightforward probabilistic sampling rules. This process 

explains how words in a document can be generated based on some latent variables i.e. 

topics that evolve in a document. The overall procedure includes the following steps [308]: 

(i) select a distribution over topics to make a new document, (ii) for each word in the 

document, select a topic randomly and then a word from that topic following that 

distribution. The process can also be reversed and the set of topics that generate the 

collection of documents can be obtained. The model fitness of such generative models 

should find the best set of latent variables (i.e. topics of the documents) based on which the 

observed data can be reasonably explained (i.e. words in the documents). The generative 

process, as discussed above, does not assume any specific ordering of the words (‘bag-of-

words’ assumption in natural language processing) in a document [308] and the frequency 

of word appearance in a document is the only information that is relevant. The ordering of 
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the words can be useful at times, however, this is not captured by topic models. A topic 

model can also be applied to other types of discrete data.  

Formally speaking, the problem of identifying various social interaction topics is to 

determine  latent patterns through  for ∈ 1,2, …  and each topic  is a 

distribution of different words. A word is defined as the basic unit of data to be selected 

from a set of possible words of size	 , a user tweets about 	topics, and the user can 

contribute to the collection of  tweets. The generative process is summarized below (see 

Figure 7-10): 

1. For each topic, ∈ 1,2, … , a distribution over words is selected  

	~	Dirichlet	  

2. For each tweet, ∈ 1,2, … , 

a) A distribution over topics is selected 

		~	Dirichlet	  

b) For each word 	in tweet   

i. Select a topic  	~	Multinomial	 ; ∈ 1,2, …  

ii. From topic , a word is selected  

                                                   	~	Multinomial	 ; ∈ 1,2, …  

Now, given  tweets,  topics over  unique words, the main objectives of the inference 

of topic pattern classifications are: 

i. Find the probability of a word  given each topic , | 	 	where 

|  is represented with 	multinomial distributions  over words of 

size	  

ii. Find the probability of a topic  for a word in tweet 	 , |

	 where |  is represented with 	multinomial distributions  over  

topics. 

The above model views the topic pattern as a probability distribution over words and 

tweeting activities as a mixture of these patterns. From  topics, the probability of i-th 

word in a given tweet	  is: 

| 	∑ | 	 |   (7.1) 
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Here,  is the latent variable referring to the pattern from which the i-th word is drawn, 

|  indicates the probability of word  under the j-th pattern and |  

is the probability of selecting a word from pattern j in the tweet	 . Intuitively, |  

determines the importance of a word in forming a pattern and |  determines the 

prevalence of the pattern in different tweets. The complete model of pattern generation by 

IPM follows: 

| , 	~	Multinomial	  

	~	Dirichlet	  

| 	~	Multinomial	  

		~	Dirichlet	  

Here,  and  are hyper-parameters for the prior distributions of  and  respectively. We 

assume Dirichlet prior distributions which are conjugate to the multinomial distributions. 

The joint distribution of words and patterns ,  written as: 

, 	 |        (7.2) 

The first term can be written as [309]: 

| 	
	

	∏
∏

∙      (7.3) 

Here  is the number of times word  is assigned to pattern  and	 ∙ 	∑ . The 

second term can be written as: 

	
	

	∏
∏

∙     (7.4) 

Here  is the number of times a word from tweet 	is assigned to pattern  and ∙

	∑ 	 . A pattern can be assigned to a word using the following conditional distribution 

[309] : 

| , ∝ 	 ,

,
∙ 		 ,

,
∙     (7.5) 

Here,  is the count excluding the current pattern assignment of 	 . The first ratio 

expresses the probability of word  in pattern  and the second ratio expresses the 

probability of pattern  in the tweet	 . 
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Figure 7-10 Graphical representation of probabilistic generative process 

 

 

Figure 7-11 Perplexity Analysis 

 

7.5.3 Parameter Estimation 

There are various approximation techniques for estimating the parameters of this model 

[307, 309]. We used the Gibbs sampling approach proposed by [309]. The algorithm can 
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be found in detail in [309]. Only a brief description of the approach is provided here. To 

estimate the model parameters, a Markov Chain Monte Carlo (MCMC) procedure is used. 

In MCMC, samples are taken from a Markov chain constructed to converge to a target 

distribution. In our model, each state of the chain is the assignment of a pattern to a word 

and the transition from one state to another follows a specific rule based on Gibbs sampling 

approach [310]. In this procedure, the next state is reached by sampling the variables from 

a conditional distribution which specifies the distribution of the variables conditioned on 

the current assignment of all other variables and the observations. The parameters of LDA, 

representing the hidden patterns, can be computed as: 

	 ∙  ;  	 ∙     (7.6) 

7.5.4 Pattern Analysis 

The model selection was based on Perplexity – a metric to measure the predictive capacity 

of the model to infer the unseen data in each run. In machine learning, Perplexity is a 

commonly used metric to report the performance of a probabilistic model that refers to the 

average likelihood of obtaining a test data set given a set of model parameters. Perplexity 

can be defined as the exponential of the negative of average predictive likelihood of a test 

data given a model [309]. In this study, the algorithm was run for different number of topic 

patterns (K) and perplexity in each run was computed. Next, the optimal number of patterns 

was selected based on perplexity values. For a given set of words { } and 	 	 ∈

	 	given a model	 , Perplexity of a test data set can be defined as: 

exp	
∑ |

∑
   (7.7) 

where  is the number of words in each topic  and 	 |  can be derived from Eq. 

(7.1). 

 

In order to estimate perplexity values, the data set was randomly split with 90% of the users 

in the training set with the rest in the test set; the parameters of the topic model on the 

training data set were estimated; and finally the perplexity values on the test data set were 

computed. While a lower value of perplexity refers to a better model performance, an 
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increase in the number of topics reduces the perplexity and there is no significant 

improvement beyond a certain number of topics (Figure 7-11). Based on perplexity values, 

K = 250 was selected for running the Gibbs algorithm for finding the topic patterns. 

 

Table 7-3, Table 7-4, and Table 7-5 presents the details on each type of the communication 

pattern along with the associated keywords. The top ten words contributing to each pattern 

are tabulated in Appendix (Table XX- Table YY) in the decreasing order of their 

occurrence probability from left to right. Topic model was applied to ~763 K tweets 

including ~95 M words from the 4029 users being active at least 100 times (AF ≥ 100) 

demonstrating their high degree of appearance and relevance to Sandy. 

 

Most discussions during the warning phase (before October 29, 2012), listed in Table 7-4  

are related to storm prediction (W1-13), storm watch (W14-19), and storm preparedness 

(W34-37). Storm prediction topics consist of words like NASA, NOAA, satellite, predict, 

path, model, track, form, regain, weaken and other similar words. Conversations on storm 

watch are expressed through keywords including warn, watch, issue, advisory, forecast. 

People were also concerned about storm preparedness and words like ‘get’, ‘ready’, ‘try’, 

‘prepare’, ‘parent’, ‘children’, ‘care’, ‘neighbor’ contributed to such topics. A number of 

topics are specific to user concern (W38-45), people expressed their thoughts and prayers 

for the people who stayed along the path of the hurricane. Some topics were related to 

updates on weather condition made of ‘wind’, rain’, ‘snow’, ‘water’, ‘heavy’, ‘strong’ and 

several weather measurement units. People also expressed their concern about previous 

hurricanes such as Katrina and Irene as Sandy was approaching. The causality of a major 

hurricane like Sandy was also a major topic of concern (W31-33). Some claimed global 

warming and climate change to be responsible, some supposed gay marriage to be a source 

of storm formation. 

 

Turning to topics evolved during the response phase (during or immediately after the 

landfall on October 29, 2012), we observe that people were mainly concerned about the 

basic needs such as gas/fuel (RP1-3), food/water (RP4-5), and the adverse impacts caused 
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by significant power outage in different states (RP6-16). A number of discussions went on 

transportation related topics (RP17-25) as expressed by ‘flight’, ‘travel’, ‘airlines’, 

‘subway’, ‘bus’, ‘train’, ‘metro’, ‘station’, ‘bridge’, ‘tunnel’, ‘mta’, ‘cancel’, ‘service’, 

‘suspend’, ‘resume’, ‘line’ and other similar words (Table 7-3). People also talked about 

how local officials such as state governors responded (RP26-28) to the situation and 

whether or not an evacuation order is issued (RP 29). Major infrastructures such as Statue 

of Liberty, World Trade Center and Nuclear Power Plant were also part of a number of 

interactions (RP30-32). 

 

The severity of death tolls was highlighted in a number of topics (RP33-37). Hospitals 

undertook precarious evacuations (RP38) and several rescue efforts went on by the police 

department (RP39-40). Concerns about the impact of fire (RP41), flood (RP42-43), 

cleaning debris (RP44-45), and pets/animals (RP46-47) also emerged. People also talked 

about different ongoing crimes (RP48) and the status of the stock market (RP49). First 

responders such as FEMA (RP50-52), National Guard, Navy, American Red Cross and 

Army also appeared in a number of topics (RP53-58). Some people discussed about the 

cancellation of major events (RP59-62) and closure of offices and schools (RP63-64). 

 

The recovery phase of the storm primarily included discussions about numerous disaster 

relief efforts such as Occupy Sandy and popular hashtags like ‘sandyaid’, ‘sandyrelief’, 

‘sandyhelp’, ‘sandyvolunteer’ among others (RC1-16). Some discussions were specific to 

the recovery process itself when people talked about survivors and victims of the storm 

and lessons learned from Hurricane Sandy (RC17-26). Economic losses, devastating 

damage, and other aftermaths caused by Sandy (RC17-26) were also discussed in this 

particular phase of the storm (Table 7-4). 

 

Various topics were phase independent and specific to location, time, media coverage, 

political leaders and celebrities as listed in Table 7-5. When the location category is 

considered, we observe that many patterns represent user concern about East Coast, New 

York and New Jersey (L1-12). These were the areas that experienced major impact of 
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Sandy. People also communicated about the other states/areas slightly impacted or close to 

the path of Sandy. These included Long Island, Staten Island, Rhode Island, Connecticut, 

Virginia, North Carolina, Delaware, Philadelphia, and Maryland (L13-21). Other specific 

locations such as Hudson River (L22) and any given street address that was flooded (L23). 

Time related topics were also prominent (T1-6) that included day and year of Sandy’s 

landfall (October 29, 2012) in addition to other specific time units. 

 

Media played a salient role during Hurricane Sandy. Numerous patterns were part of the 

media coverage, both traditional news media (NM1-16) and easily accessible social media 

(NM17-25). Traditional media sources included CNN, LA Times, Sky News, NYT, ABC 

News, Daily Mail, CBS, USA Today, Washington Post, Huffington Post, BBC, Forbes, 

Reuters, and Wall Street Journal. On the other hand, Facebook, Twitter, and Instagram 

were among the popular social media topics as people talked about several social media 

activities such as ‘tweet’, ‘status’, ‘page’, ‘share’, ‘message’, ‘follow’ and so on. Some 

topics represented solely different broadcasting steps such as live updates, live coverage, 

press briefings, and others (NM26-30). Political leaders such as President Obama (PC1-3), 

Mitt Romney and Bill Clinton (PC4-7) appeared in several discussion topics. Some 

interactions were on the 2012 US Election and its relevance to Hurricane Sandy (PC8-12). 

Celebrity activities during that period were also prominent in a number of occasions. For 

example, Karl Rove, Jim Cantore, Lindsay Lohan, and Dina Lohan appeared in a few 

conversations (PC13-16). Some other topics were uncategorized (O1-33). 
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Figure 7-12  Word appearance over time (word frequency rank: 1-50)  
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Figure 7-13  Word appearance over time (word frequency rank: 51-100)  
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Table 7-3 Communication Patterns: Response Phase 
R

es
p

on
se

 P
h

as
e 

Topic 
No. of 
Topics 

Pattern 
# 

Relevant Keywords 

Gas/fuel 3 RP1-3 fuel, spill, diesel, oil, gasoline, near, shut, gas, line, station, ration, price, shortage, wait 

Food/water 2 RP4-5 food, water, need, supply, blanket, batteries, distribute, clothe, ice, drink, pump, bottle, boil, 
safe, sewage 

Power outage 11 RP6-16 power, without, million, customers, still, remain, restore, utility, phone, charge, cell, internet, 
mobile, battery, explosion, dark, safety, generator, caution, blackout, tip, cold, house, 
electricity, outage,  without 

Transportation 9 RP17-25 flight, travel, tour, airlines, subway, transit, mta, commuter, bike, walk, bus, service, train, 
cancel, suspend, system, line, resume, suspend, traffic light, break, stop, wait, port, metro, 
authority, bridge, tunnel, open, close, station, boat, empty, flood 

Local officials 3 RP26-28 officials, governor, cuomo, christie, obama 

Evacuation 1 RP29 evacuation, zone, order, mandatory 

Infrastructure 3 RP30-32 statue, liberty, nuclear, power, plant, world, trade, center 

Death tolls 5 RP33-37 dead, death, rise, toll, destruction, homeless, kill, people, many, lot, bahamas, haiti, caribbean, 
fear, video 

Hospital 1 RP38 hospital, evacuate, medical, patient, nurse, fail, baby 

Rescue 2 RP39-40 police, people, nypd, rescue, fire, trap, loot, report, ship, miss, sink 

Fire 1 RP41 home, fire, destroy, burn 

Flood 2 RP42-43 flood, street, swim, severe, underwater 

Trees/Debris 2 RP44-45 cleanup, clean, clear, debris, house, tree, fall, home, block, line, wire 

Pets/Animals 2 RP46-47 pet, shelter, rescue, animal, find, help, dog, cat 

Crime 1 RP48 worry, crime, strand, unplug 

Stock Market 1 RP49 stock, market, trade, close, exchange, open, close 

FEMA 3 RP50-52 fema, response, respond, call, 911, register, insurance, damage, shelter, zip, code 

First Responder 6 RP53-58 national, guard, navy, aid, response, assist, soldier, army, support, carrier, american, red, cross, 
donation, million, relief, first, responder, team, supply, military, truck, community, aid, group 

Event Cancellation 4 RP59-62 cancel, due, event, class, marathon, runner, suspend, office, postpone, date 

Work/ School 
Colsure 

2 RP63-64 school, close, reopen, remain, due, office 
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Table 7-4  Communication Patterns: Warning and Recovery Phase 

 
Topic 

No. of 
Topics 

Pattern 
# 

Relevant Keywords 

W
ar

n
in

g 
P

h
as

e 

Storm prediction 13 W1-13 model, track, show, predict, impact, data, confirm, intense, image, satellite, latest, radar, nasa, loop, 
powerful, view, cuba, jamaica, hurricane, might, become, frankenstorm, increase, storm, surge,  
lifethreatening, flood, graphics, make, landfall,  expect, along, threaten, become, merge, tropical, 
strength, downgrade, form, cyclone, gain, weaken, regain, region, hit, path, across, map, crisis, gouge, 
noaa, see, direct 

Storm watch 6 W14-19 warn, storm, watch, effect, issue, tropical, huge, hit, eye, keep, unclear, video, space, show, nasa, 
station, timelapse, natioanl, hurricane, center, forecast, nhc, advisory, cone 

Preparedness 4 W34-37 tip, disaster, children, care, preparedness, parent, kid, prepare, residents, urge, plan, officials, get, ready, 
try, serious, make, sure, check, neighbor, elderly 

User concern 8 W38-45 affect, thoughts, prayers, everyone, pray, god, love, hope, feel, worry, call, shit, take, seriously, aim, 
place, care, action, warn, stay, safe, keep, please, inside, tune, inform, impact, wake, destructive, know, 
need, want, anyone, let, call, someone, put, risk, really, info, visit, check, control, rumor, share 

Weather condition 9 W20-28 wind, rain, high, heavy, strong, snow, mph, move, category, sustain, mb, pressure, water, level, tide, 
feet, rise, surge, record, dangerous, outside, inside, scary, gust, far, miles, force, storm, center, field, 
wide, air, drop, eye,  low, central, inch, report, blizzard, part 

Previous hurricane 2 W29-30 review, katrina, unprepared, usgov, irene, tragedy, vulnerability 

Storm cause 3 W31-33 blame, gay, marriage, preacher, global, warming, climate, change, cause 

R
ec

ov
er

y 
P

h
as

e 

Disaster Relief 16 RC1-16 concert, victims, raise, relief, benefit, sandyaid, occupysandy, sandyvolunteer, sandyrelief, sandyhelp, 
mutualaid, donate, redcross, help, efforts, fund, support, million, show, need, church, volunteer, help, 
pls, collect, please, recover, rt, spread, word, families, charity, ask, offer, free, aid, provide, displace, 
want, supply, join, dayofgiving, fundraise, disaster, federal, fema, blood, drive, fdr, food, meals, 
emergency, serve, response 

Recovery 10 RC17-26 reopen, jfk, airport, help, survivors, victims, impact, cash, recovery, efforts, begin, fuel, frustration, 
please, need, help, family, claim, pay, insurance, assistance, fema, tax, health, workers, mental, cut, 
learn, lessons, get, back, work, normal, finally, replacement, recover, add, businesses 

Damage/Aftermath 7 RC27-33 damage, cost, billion, estimate, economic, losses, aftermath, wake, wrath, fury, devastation, devstate, 
fee, waive, bank, ever, history, record, largest, worst, biggest, sales, auto, industry, affect, buy, please, 
help, areas, concern, postsandy, expose 
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Table 7-5  Communication Patterns: Location, Time, News & Media, Politics, Leaders & Celebrities, and Others 

 
Topic 

No. of 
Topics 

Pattern # Relevant Keywords 
L

oc
at

io
n 

East Coast 3 L1-3 easterm, east, coast, us 

NY/NJ 4 L4-7 ny, nj, new, york, city, jersey, state 

NY 3 L8-10 new, york, yorkers, newyork, nyc, nysandy 

NJ 2 L11-12 nj, new, jersey, sandynj, njsandy 

Other States 9 L13-21 li, long, island, longisland, staten, statenisland, borough, rhode, si, ct, connecticut, ctsandy, va, 
virginia, vasandy, nc, north, carolina, delaware, philadelphia, philly, sandycenpa, md, maryland, 
mdsandy 

River 1 L22 river, hudson, bank 

Street Address 1 L23 st, ave, cars, water, flood, avenue, street 

P
ol

it
ic

s,
 

L
ea

d
er

s 
&

 
C

el
eb

ri
ti

es

President Obama 3 PC1-3 obama, gop, govt, america, president, barack, statement, speak, brief, deliver 

Others 4 PC4-7 romney, mitt, bill, clinton, gevernment, capital, mayor, endorse 

US Election 5 PC8-12 presidential, election, us, race, politics, gop, washington, vote, poll, voters, early, election2012 

Celebrities 4 PC13-16 karl, rove, lindsay, lohan, dina, lohan, jim, cantore 

N
ew

s 
&

 M
ed

ia
 

News Media 16 NM1-16 cnn, los, angeles, times, sky, news, nyt, business, abc, daily, mail, cbs, usa, today, box, break, post, 
blog, report, washington, huffington, yahoo, cover, buzzfeed, bbc, wsj, wall, street, journal, weather, 
channel, national, coverage, forbes, reuters 

Social Media 9 NM17-25 social, media, internet, share, friends, photo, video, app, download, mobile, tweet, send, message, 
text, receive, facebok, fb, page, status, topic, top, twitter, follow, info, information, picture, image, 
pics, instagram 

Broadcasting 5 NM26-30 live, update, coverage, watch, brief, press, conference, hold, stream, tv, online, broadcast, youtube, 
chat, report, call, ask, question, answer, reporters 

T
im

e Time 6 T1-6 oct, 29, 30, 2012, pm, tonight, afternoon, night, week, year, last, next, hours, days, minutes, past, next 

O
th

er
s Others 33 O1-33 hurricane, sandy, dont, think, cant, u, cant, look, one, superstorm, say, good, ppl, like, get, give, hear, 

us, go, yet 
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7.6 Conclusions and Key Findings 

In this study, Twitter subgraphs have been analyzed based on user activity during 

Hurricane Sandy. For user activity at any given level, subgraphs of social networks were 

constructed from the user followee list obtained at the time of data collection. For 

relevance, user activity was assessed based on number of tweets in the data that included 

the word ‘sandy’, co-appeared with other words. For the analysis of directed graphs, we 

considered a network link received by user from his followee. Based on our subgraph 

analysis at different activity levels, we provide the following key insights: 

 

 The distributions of information spreading capacity (activity frequency) of nodes 

follows a power-law evidencing the existence of fewer nodes highly capable of 

disseminating information and many other nodes being less capable.  

 The degree distributions of the communication network also follow a power-law, 

executing the scale-free property of many real networks (fewer nodes with larger 

degrees and many other nodes with fewer degrees).  

 Network visualization is indicative of highly active nodes in the active subgraphs 

appearing both at the largest connected component and as isolates in the periphery. 

Within the largest connected component, highly active nodes appear at different 

positions. The ego node of the largest hub depicts its influential position in the 

subgraph connectivity directing our attention towards node level analysis. 

 Network elements at different activity levels suggest that the number of nodes and 

links in these subgraphs (both directed and undirected) grow exponentially with the 

size of subgraphs which is also true for the largest connected components. An 

interesting pattern that we observe in these subgraphs is the existence of almost 

equal number of connected components and isolates at all levels of activity. 

However, network isolates should be given consideration during such crisis. 

 For larger subgraphs, network densities tend to zero, having slightly higher values 

in the largest connected components. As the size of these subgraphs increases, we 

observe that the networks become less transitive but more assortative with 
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increased node degree on average. In terms of the reachability, the radius becomes 

constant at 5, while diameter takes a value of 8. 

 Node-level analysis of the subgraphs suggest that many highly central nodes and 

nodes having high degree remained less active. Also, a number of nodes in the 

largest connected component did not form any cluster. We observed that nodes are 

more likely to be active when occupying more central positions in the subgraph and 

having larger degrees.  

 Conversations of most frequent and relevant users (~763 K tweets from top 4029 

highly active users; AF ≥ 100) indicate evolution of numerous topics at different 

phases of the storm such as warning, response, and recovery. People were also 

concerned about phase independent topics specific to location, time, media 

coverage, political leaders, and celebrity activities. 

 Warning phase topics were related to storm prediction, storm watch and advisory, 

storm preparedness, user concerns about the storm, previous hurricane experience 

and causes responsible for storm formation such as climate change and global 

warming. 

 Communications during the response phase may include basic needs of people such 

as food, water, gas, power and so on. People also express concern on major 

infrastructures and different transportation facilities such as subway, metro, train, 

bus, airlines, and others. Several interactions include how local officials responded 

to the storm threat and order mandatory evacuations. First responders such as 

FEMA, hospitals, pets/animals, fire, flooding, event cancellation, rescue 

operations, work or school closure were also among the topics. 

 People primarily discussed about several disaster relief and fundraising efforts in 

the recovery phase. In addition, possible aftermath and lessons learned from such 

major disaster also emerged during this phase.  

 While some communication patterns are location (impacted states/areas) and time 

specific, some were specific to media coverage including both traditional news 

media and social media. Political leaders, 2012 US election and celebrity activities 

were among other topics of discussion. 
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We also provide the following research directions to explore more about the complex 

contagion of hurricane Sandy. Network models of social contagion, models of network 

growth, influence maximization are also relevant for such networks. Based on the topics 

evolved over time, it would be interesting see how these topics spread through the network 

and the rate of information propagation. Not only inferring the social interaction is 

important, but also modeling the growth of such network is particularly important. In 

addition to running aggregate analyses on such networks, micro-analyses based on the 

node-level properties are also needed to explore network resilience. For example, if a 

highly central node with very large degree is missing during such events, what happens to 

the rate at which the information propagates? If we increase the connectivity by introducing 

additional links, will it help based on the small-world property? Introducing hashtags are 

common these days in social media. Can emergency managers use such hashtags in the 

disaster communication network to allow vulnerable people receive more relevant 

information? How much this will perform on followee-follower net as compared to the 

network of direct social influence constructed by user mentions. 

 

More advanced text classification techniques such as Topic-Link LDA, Dynamic topic 

models among others would be useful to understand the evolution of topics, content 

relevance, risk profiling in addition to examining each keyword alone. Based on the user 

mentions, re-tweets posted by each user in their tweets, it would be possible to infer the 

social interaction network which might portray the network of direct social influence. The 

network properties of such network would be relevant to be compared with the typical 

followee-follower network. These networks can be used as an efficient tool to effectively 

disseminate information during crises. Advanced statistical modeling techniques could 

benefit the analysis of user activity frequency based on node-level properties. Do centrality, 

degree or eccentricity affect the way people react in such situation? It should be noted that 

node-level properties and node attributes are two distinct features. For example, centrality 

is a node-level property obtained from network topology, however, node-specific attribute 

such as gender, age or income. From the network topology perspective, the connectivity of 

nodes i.e. link properties are equally important. This is relevant to strength of ties. Do 
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highly active users make the connections stronger? To understand the complex contagion 

better, it is recommended that the analysis is done at different stages of recovery that can 

produce more accurate results. For example, in case of Sandy, we can broadly specify three 

different stages: warning information, evacuation and response, response and recovery. 

Subgraphs of geo-tagged users (~2% in the raw data) may help to understand the mobility 

pattern and spatial correlation with their network activity. 
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PART III: SOCIAL INFLUENCE ON COMMUNITY INTERACTIONS 
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CHAPTER 8. ANALYSIS OF SOCIAL INTERACTION NETWORKS 

8.1 Introduction 

The complex topology of real networks allows its actors to change their functional behavior. 

Network models provide better understanding of the evolutionary mechanisms being 

accountable for the growth of such networks by capturing the dynamics in the ways 

network agents interact and change their behavior. Considerable amount of research efforts 

is required for developing novel network modeling techniques to understand the structural 

properties such networks, reproducing similar properties based on empirical evidence, and 

designing such networks efficiently. In this chapter, a demonstration on how to construct 

social interaction networks using social media data is presented, followed by the key 

findings obtained from the network analytics. The characteristics and growth of online 

social interaction networks have been analyzed, the network properties were examined, 

and important insights based on the theories of network science literature were derived. 

The application of such networks as a useful tool to effectively disseminate targeted 

information during planned special events. Since the data is specific to the Purdue 

University community, we also observe two very big events, namely Purdue Day of Giving 

and Senator Bernie Sanders’ visit to Purdue University as part of Indiana Primary Election 

2016. 

8.2 Network Data Description 

We used twitter REST API to collect tweets for using a specific keyword ‘purdue’ which 

is frequently used in Twitter within the Purdue community. The dataset selection was due 

to its relevance in the study of information flow patterns of specific topics related to Purdue 

University. It is equally important to understand how special events affect this behavior 

over time. By running the twitter REST API between April 16, 2016 and May  
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16, 2016 for four consecutive weeks, we were able to obtain 56,159 tweets for the query 

‘purdue’ after initial data cleaning for non-English tweets and common stop words. 19,532 

of these tweets did not include any user mentions, however, the rest of the tweets included 

at least one user mention in each tweet. The differences in the amount of user mentions in 

the tweets over days are plotted in Figure 8-1. It can be clearly seen that the number of 

tweets having user mentions is almost twice as the number of tweets without mentions. 

These tweets primarily contribute to the formation of networks of direct social influence. 

In Table 8-1, we present the amount of user mentions as was observed in the tweets. 

 

In Twitter, users can post tweets up to 140 characters and each data point can be stored as 

a tuple Tweet once collected with the following information:  

Tweet (tweet_id) = {tweet, tweet_created_at, user_id, user_screen_name, user_location, 

user_name, user_followers_count, user_friends_count, user_statuses_count, 

user_favourites_count,, user_listed_count, user_mention, tweet_retweeted, tweet_lat, 

tweet_lon} 

For this study, we are interested in using a sub-tuple tweet to infer the links of direct 

influence that finally evolves into a highly connected network of a given context: 

tweet (tweet_id) = { user_id, tweet, user_mention} 

Let us consider the following three tuples from the tweets generated on Twitter on 

04/28/2016 (02:45:40 +0000), 05/02/2016 (14:45:33 +0000) and 05/03/2016 (13:50:21 

+0000), respectively. 

tweet(725516302819938305) = {709920419529281537, ‘at purdue university, we are in 

this campaign to win and become the democratic nominee. - bernie sanders htt…’, [null]} 

tweet(727147016233558016) = {3239853627, ‘rt @saracohennyc at purdue university, 

we are in this campaign to win and become the democratic nominee. - bernie sanders 

htt…’, [709920419529281537]} 

tweet(727495513277382656) = {325069363, ‘rt @bernielovesall: rt @saracohennyc at 

purdue university, we are in this campaign to win and become the democratic nominee. - 

bernie sanders htt…’, [3239853627, 709920419529281537]} 
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Based on the above tweets, there is a directed link from user 709920419529281537 to user 

3239853627 and from user 709920419529281537 to 325069363. Please refer to Figure 

8-2(a) for the details of this network construction. The preliminary analysis of these data 

waves suggest the existence of 34,363 unique users and 38,442 unique undirected links 

(39,709 links if direction is considered) of direct influence. The network elements of the 

graph (constructed based on the data) are presented in Table 8-1. Different network 

visualizations are presented from Figure 8-2(c)-(f) to depict the network configurations and 

how the network structure appears after four weeks. In Figure 8-2(c), we present the 

undirected graph having 34,363 users from Twitter and 38,442 links. The network isolates 

without any connectivity are also shown in the periphery. This graph includes 8,348 

connected components and the largest connected component is presented in Figure 8-2(e)-

(f). While Figure 8-2(f) better represents the hierarchical structure of the network with the 

most central node in the center, Figure 8-2(e) presents weighted edges based on the number 

of appearance of these links. This weighted graphs help to explain the existence of links 

having higher strength which also serves as an evidence of higher influence. In Figure 

8-2(d), we present the largest hub i.e. the most central node having the largest degree. It is 

highly intuitive that the network will be under huge disruption if such node disappears or 

remain active in cases.  

 

We also determine the existence of common users and links (mentions) in each day of data 

collection with respect to the most active day (May 3, 2016). From Figure 8-3 we observe 

that a minimum of 155 and a maximum of 462 users were active on Twitter for a given day 

out of 4,192 unique users that were active on May 3. Likewise, Figure 8-4 suggests, a 

minimum of 17 and a maximum of 117 common links were observed in the four 

consecutive weeks with respect to the most active day when a total of 3,750 user mentions 

have been observed. We also present the existence of repetitions in terms of how elements 

of such networks appear in the network data (Figure 8-5, Figure 8-6). This is of great 

significance within the context of finding highly active nodes (users) in the social 

interaction networks along with the strength of relationships between node pairs. The 

relevance of considering the dynamic strength of social ties in information spreading has  
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been duly addressed [80, 311]. The weighted graph, based on the number of times a link 

has appeared, is presented in Figure 8-2(e). In order to assess the commonalities of network 

elements (nodes and links) over time, we compute the fraction of nodes and links every 

day that appeared at least once in any of the previous days. From Figure 8-5, it can be seen 

that 65.2% of the total users (or nodes) on May 16, 2016 appeared in the data at least once. 

Similarly, we observe that 28.3% of the total links of interaction (undirected graph) on May 

16, 2016 appeared, in any of the previous days, at least once (Figure 8-6). 

8.3 Text Data Description 

By running the twitter REST API between April 16, 2016 and May 16, 2016 for four 

consecutive weeks, we were able to obtain 56,159 tweets for the query ‘purdue’ after initial 

data cleaning for non-English tweets and common stop words. The top 50 most frequent 

words contribute up to ~25% of all the words that appeared in the collected data The top 

100 most frequent words contribute approximately 32.5% of all the words that appeared in 

the collected data. Different combinations of these words constitute specific topics based 

on which users influence one another by using the user mention feature on Twitter. These 

frequently appeared words also suggest the emergence of event specific topics such as 

Purdue Day of Giving, Senator Bernie Sanders's visit during Indiana Primary among 

others. Celebrity players of Purdue such as Anthony Brown (football), Spike Albrecht 

(basketball) and others also contributed to many topics. We present the heatmap over time 

using logarithmic color scales for the top 50 most frequent words in Figure 8-7, followed 

by the next 50 most frequent words in Figure 8-8. The annual big event Purdue Day of 

Giving was on April 27, 2016 and Senator Bernie Sanders’ visited Purdue University on 

the same day. Relevant keywords such as ‘purduedayofgiving’ and ‘sanders’ showed 

highest intensity on April 27, 2016 (Figure 8-7). 
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Table 8-1 Description of the Tweets and Network Elements 

Description of the Tweets   

Number of Total Tweets 56,159 

Number of Tweets without any User Mentions 19,532 

Number of Tweets with at least one User Mentions 36,627 

Number of Tweets only including Self Mentions 20,645 

Number of Words 3,589,732 

Description of Network Elements 
 

Number of Nodes (directed) 34,363 

Number of Links (directed) 39,709 

Network Density (directed) 0.00003 

Number of Nodes (undirected) 34,363 

Number of Links (undirected) 38,442 

Network Density (undirected) 0.00007 

Number of Nodes (lagest connected component) 21,045 

Number of Links (lagest connected component) 33,020 

Network Density (lagest connected component) 0.00015 

Radius (lagest connected component) 9 

Diameter (lagest connected component) 17 

Number of Connected Components 8,348 

Number of Isolates 6,096 

Average Degree (directed) 1.156 

Average Clustering Coefficient (undirected) 0.149 

 

 



 
 

 

 

169 

 

Figure 8-1 Number of tweets collected for each day for the data collection period (April 16, 2016-May 16, 2016) 
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Figure 8-2 Construction and Visualization of Social Interaction Network 
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Figure 8-3 Distribution of common users appeared in the most active day 
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Figure 8-4 Distribution of common links appeared in the most active day 
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Figure 8-5 Existence of common users each day as compared to all previous days.  
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Figure 8-6 Existence of common links each day as compared to all previous days. 
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Figure 8-7 Word appearance over time (word frequency rank: 1-50) 
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Figure 8-8  Word appearance over time (word frequency rank: 51-100) 

 

8.4 Network Analysis Results 

8.4.1 Small World Property 

The user mentions, observed in the data for four consecutive weeks, construct a social 

interaction network that includes 34,363 nodes and 39,709 links for the directed graph and 

34,363 nodes and 38,442 links for the undirected graph (Table 8-1, Figure 8-2c). 6,096 of 

these nodes appeared as network isolates (nodes without connectivity) in the periphery 

along with 8,348 connected components (Figure 8-2c). 33,020 connections (links) among 



177 
 

 

21,045 users (nodes) were observed in the largest connected component of this network 

(Figure 8-2e-f). The radius and diameter of the largest connected component were observed 

as 9 and 17, respectively. These are relevant to the small world property of complex real 

networks that refers to the existence of relatively short paths between any pair of nodes in 

most networks despite their large size. The existence of this property has been observed in 

many real networks as studied in the empirical literature [232-234]. This property has 

significant implications in the modeling of dynamic processes occurring on real networks. 

For example, when effective information dissemination is considered, contagion will be 

faster through the network because of short average path lengths [220]. Three important 

measures to explain this property are eccentricity, radius and diameter. While the 

eccentricity of a node in a graph is the maximum distance (number of steps or hops) from 

that node to all other nodes; radius and diameter are the minimum and maximum 

eccentricity observed among all nodes, respectively. 

8.4.2 Density and Degree Distributions 

Network Density, frequently used in the sociological literature [236],  equals to 0 for a 

graph without any link between nodes and 1 for a completely connected graph. The density 

of real graphs refer to the proportion of links that exist in the graph and the maximum 

number of possible links in the graph. For n users, the number of maximum links are n(n-

1) for a directed graph and n(n-1)/2  for a undirected graph. The densities that we observe 

in the social interaction network of 21,045 users are 0.00003, 0.00007 and 0.00015 for the 

directed, undirected and the largest connected component,  respectively. This implies 

higher connectivity in the largest connected component, more than twice as much as in the 

whole network. The node Degree is the number of edges adjacent to that node, In-degree 

is the number of edges pointing in to the node and Out-degree is the number of edges 

pointing out of the node. The degree of a node ( ) is the number of direct edges to other 

nodes in a graph from that node and the degree distribution  in real networks, 

(probability that a randomly chosen node has degree	 ), is significantly different from the 

Poisson distribution, typically assumed in the modeling of random graphs. Real networks, 

in fact, exhibit a power law (or scale-free) degree distribution characterized by higher  
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densities of triangles such as cliques in a social network [235]. Such networks also 

demonstrate significant correlations in terms of node degrees or node-level attributes. 

Existence of hubs i.e. a few nodes that are highly connected to other nodes, in the network 

can also be validated by the scale-free phenomenon. The largest hub (or ego), as was 

observed in our dataset, is visualized in Figure 8-2(d). The presence of large hubs results 

in a degree distribution with long tail (highly right-skewed), indicating the presence of 

nodes with a much higher degree than most other nodes. For an undirected network, the 

degree distribution  can be written as follows: 

∝ 		       (8.1) 

where,  is some exponent and  decays slowly as the degree  increases, 

increasing the probability of obtaining a node with a very high degree. Networks with 

power-law distributions are called scale-free networks that holds the same functional form 

(power laws) at all scales. The power law  remains unchanged (other than a 

multiplicative factor) when rescaling the independent variable	  by satisfying: 

		 	       (8.2) 

The presence of hubs that are orders of magnitude larger in degree than most other nodes 

is a characteristic of power law networks. The average degree of all the 34,363 users in the 

social interaction network is 1.156 (Table 8-1) and the overall degree distributions are 

plotted in Figure 8-9. Figure 8-10 presents the degree distributions that were observed



179 
 

 

 

Figure 8-9 Overall degree distributions 

 

Figure 8-10 Degree distributions each day 



180 
 

 

 

Figure 8-11 Comparison of data fitting with different distributions 
 

 

Figure 8-12 Closer snapshot to power-law, truncated power-law and log-normal fitting 
comparisons 
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each day starting from the data period of data collection. By using Alstott et al.’s python 

code, we obtained the best fitting to the degree distributions [303] and the empirical data 

of this study fits close to being a power-law or truncated power-law distributions. The code 

also returns a value of  which refers to the minimal value of  at which the power law 

begins to become valid. For power-law, we obtain 2.294	 0.046;		 11 and 

for truncated power-law	 2.278;	 11. Here,  is the slope of the distribution. 

When  is high, the number of nodes with high degree is smaller than the number of nodes 

with low degree.  A low value of  may refer to a more equal distribution, whereas higher 

values of  may denote more and more unfair degree distributions.  It is important to note 

here that the best fit power law may only cover a portion of the distribution's tail [303]. 

From Figure 8-12, it appears that the data also fits close to being a log-normal distribution. 

However, difficulties in distinguishing the power law from the lognormal are common and 

well-described, and similar issues apply to the stretched exponential and other heavy-tailed 

distributions [305, 306]. Our analysis on the distributions fitting are based on pairwise 

comparison between power-law, truncated power-law, log-normal, and exponential 

distributions. See Figure 8-11 and Figure 8-12 for details. 

8.4.3 Transitivity 

Another network property is Transitivity that implies the higher likelihood of any two given 

nodes in a network to be connected, given each of these two nodes are connected to some 

other node. This property refers to the fact that the friend of one’s friend is likely also to 

be the friend of that person in case of social networks and this is a distinctive deviation 

from the properties of random graphs. In fact, this is indicative of heightened number of 

triangles (sets of three nodes each of which is connected to each of the others) that exist in 

real networks [220] (Newman, 2003a). The existence of triangles can be quantified by 

Clustering Coefficient. C: 

	 ∗	 	 	 	 	 	

	 	 	 	 	
	       (8.3) 
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A connected triple refers to a single node with links running to an unordered pair of others. 

In case of an unweighted graph, the clustering coefficient ( ) of a node 	refers to the 

fraction of possible triangles that exist through that node:  

	 	

∗
       (8.4) 

Here,  is the number of triangles that exist through node  and  is the degree of 

node	 . The average clustering coefficient in the undirected social interaction network was 

observed to be 0.149 (Table 8-1) 

8.4.4 Network Growth 

Turning to the results obtained from the network growth analysis, we present these results 

in Figure 8-13 and Figure 8-14. The unit of time for the analysis of network growth was 

set to be 24-hours. We observe that the growth of network elements [nodes and links in 

Figure 8-13(a), isolates and connected components in Figure 8-13(b)] is almost linear over 

days except for the date 04/26/2016 for which we could not obtain any data. One key 

insight here is that the growth rate is higher for days that followed special events such as 

Purdue Day of Giving and Senator Bernie Sanders’ visit to Purdue University during 

Indiana Primary 2016. While the network elements grow linearly, the densities tend to go 

down to zero because of less overall connectivity in the network (Figure 8-13c). However, 

the density of the largest connected components remain slight higher over time. In addition, 

as the social interaction network keeps growing based on difference in user interaction for 

various topics, the diameter and radius keeps fluctuating initially, however becomes 

constant later. This is indicative of network stability when the reachability from one node 

to another node is considered (Figure 8-14a-b). The average degree of the nodes shows 

similar pattern to that of the growth of network elements initially, however becomes flat 

later (Figure 8-14c). The network transitivity, based on average clustering coefficient, 

suggests that the network becomes more transitive over time, however slight fluctuation 

remains (Figure 8-14d).  The power-law exponents each day are presented in Figure 8-14e. 

After reducing slightly in the initial days, they turn to becoming flat and take a value close 

to 2.3. This implies that the power-law property holds when social interaction network is 

observed over a long period. 
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Figure 8-13  Growth of social interaction network over time. 
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Figure 8-14 Changes network properties over time. 

 



185 
 

 

8.5 Applications of Social Interaction Networks 

The properties of social interaction networks analyzed in this chapter have manifold 

applications. The most important finding is the presence of fewer nodes in such network 

with higher levels of interaction and many nodes with less interactions. This is evident for 

different time range i.e. this property holds both for day-to-day interactions and monthly 

interactions. However, given such properties in social interaction networks, the question 

then comes how one could use such networks for effective information dissemination by 

targeting influential nodes as we briefly demonstrated in section 7.6. In addition, novel 

modeling approaches are required to predict user communities i.e. identifying groups of 

like-minded users based on their interactions on a common interest. This motivates the 

work presented in the next chapter of this thesis where three inference models are proposed. 

8.6 Conclusions and Key Findings 

Real networks having complex topologies demonstrate a unique interdependence between 

the structure and functional behavior. In this study, we demonstrate such interdependence 

by exploiting online social interaction networks based on network data obtained from 

Twitter. The social interaction network was formed by following the user mentions 

appeared in the tweets during four consecutive weeks which are specific to a university 

community. The network characteristics and properties have been analyzed and the 

network growth has been monitored over time. Key insights obtained from the network 

analyses are listed below: 

 The network degree distributions exhibit a power-law which is indicative of the 

scale-free property of most real networks. This property holds for any given day as 

evident from the empirical data. This suggests the presence of fewer nodes in the 

network with higher levels of interactions and many nodes with lower levels of 

interactions. 
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 Network visualization is indicative of some nodes (users) being highly active, some 

links (relations) having higher strength, existence of network isolates, connected 

components, and hubs i.e. nodes having reachability to many other nodes. This is 

also evident when the appearance of the network elements each day is compared to 

all previous days. 

 Network elements and average user degree grow linearly each day, however, 

network densities tend to become zero. Largest connected components exhibit 

higher connectivity (density) when compared with the whole graph. 

 Network radius and diameter become stable over time which suggests less 

variations when the reachability from one node to another node is considered. These 

variables are related to the small-world property. 

 Increased transitivity in the growth of such networks is observed following the 

pattern of mean clustering coefficient. Initial fluctuations of the power-law 

exponents reduce as the network grows. 

The properties of social interaction networks, as observed in this study, have fundamental 

implications towards effective information dissemination. For example, power-law degree 

distributions is related to the resiliency of a communication network.  The level of 

resilience, when a random nodes in the network are removed, depends solely on the way 

the network is formed i.e. network topology. In case of networks having many low-degree 

nodes would have less disruption and higher resilience since this nodes lie on few paths 

between others. However, removal of hubs (high degree nodes) would cause major 

disruption and network agents would fail to communicate since the regular length of path 

will increase as a result of many disconnected pairs of nodes. For any Planned Special 

Event (PSE), the assembling of vehicles and pedestrians in a short amount of time cause 

transportation and transit authorities to often encounter significant challenges in controlling 

the induced traffic coming from different origins before the event and departing from the 

event location after the event. There is hardly any specific method in the empirical literature 

that would allow local traffic managers or agencies to properly disseminate targeted 

information to any specific audience as part of traffic management procedures for PSEs.  
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CHAPTER 9. JOINT INFERENCE OF USER COMMUNITY AND INTEREST 
PATTERNS 

9.1 Introduction 

Online social media have become an integral part of our social beings. Analyzing 

conversations in social media platforms can lead to complex probabilistic models to 

understand social interaction networks. In this chapter, a model for jointly inferring 

communities and interests in social interaction networks using Twitter data collected from 

Purdue University community is presented. Several pattern inference models have been 

proposed: i) Interest pattern model (IPM) captures population level interaction topics, ii) 

User interest pattern model (UIPM) captures user specific interaction topics based on only 

words mentioned in the tweets, and iii) Community interest pattern model (CIPM) captures 

both community structures and user interests based on both words and users mentioned in 

the tweets. A Gibbs sampling approach to estimate the model parameters is presented. To 

the best of our knowledge, this is the first study to propose a model that can construct the 

social interaction network by predicting user communities. This data driven approach 

accounts for the similarity of users’ interactions on various topics of interest and their 

community belonging by using large-scale online social media data. These networks of 

social interactions would allow traffic managers and emergency officials to efficiently 

disseminate travel-specific information to travelers/spectators and better conduct Planned 

Special Events (PSE). A demonstration on the application of such networks as a useful tool 

to effectively disseminate targeted information during planned special events and 

demonstrate how to single out specific nodes in a given community by running network 

models proposed in the network science literature. From our model results, we observe the 

interaction topics and communities related to two big events within Purdue University 

community, namely Purdue Day of Giving and Senator Bernie Sanders’ visit to Purdue 

University as part of Indiana Primary Election 2016.  
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9.2 Study Objectives 

The focus of this work will be to develop methodologies for inferring user communities 

and interests in social interaction networks using large-scale data obtained from online 

social media systems. By analyzing human activities and their interactions in social media 

platforms, it is now possible to develop complex probabilistic models to identify 

communities and topics of human social interactions. These communities of direct social 

influence would be a very important tool for a number of key stakeholders to target and 

effectively disseminate information for managing traffic in real-time.  To the best of 

knowledge, this is the first study to propose a model that can construct the social interaction 

network by predicting communities of direct influence. This data driven approach will 

account for the similarity of users’ activity and community information for any given event 

and use large-scale online social media data. This network of direct social interaction 

would allow traffic managers and emergency officials to efficiently disseminate travel-

specific information to travelers/spectators and better conduct PSEs or similar events. The 

contributions of this study are listed below: 

 

 Three models to characterize social interaction networks are presented: 

a)  Interest Pattern Model (IPM) infers well defined patterns of user interests 

based on their interactions at an aggregate level. 

b)  User Interest Pattern Model (UIPM) captures user-specific variations in 

the interest patterns. However, UIPM is only limited to inferring user-specific patterns 

and does not account for the user connectivity. 

c)  Community Interest Pattern Model (CIPM) jointly infers user communities 

and their interaction patterns by taking both user connectivity and topics of interest into 

account. 

 A demonstration on how to target specific nodes within the identified communities 

by running network models proposed in the network science literature.  
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9.3 Model Description and Formulation 

In this paper, we present several models for inferring user interests and communities from 

the interactions found in social media data: i) Interest pattern model (IPM) infers user 

interest patterns at an aggregate-level, ii) User interest pattern model (UIPM) accounts for 

the user-specific variations in the interest patterns only based on words or text, and iii) 

Community interest pattern model (CIPM) can jointly infer user communities and interest 

patterns based on both words and users mentioned in the data. Our hypothesis is that 

interactions in social media platforms can be described through representative topics which 

are the distributions of specific words. To infer these topics, we use topic models or Latent 

Dirichlet Allocation (LDA) [307] which have been widely used in machine learning 

research. While dealing with unlabeled text data that requires natural language processing, 

LDA is a highly acceptable framework in the machine learning literature as compared to 

other predictive or classification algorithms such as Support Vector Machine, Naive Bayes 

among others. The main idea here is to find the emergence of different topics in a large 

corpus of documents. Thus, each document can be modeled as a mixture of topics and each 

topic as a distribution of words (words being the smallest data unit). We present our CIPM 

formulation as a significant extension to LDA in order to be able to predict social 

interaction communities and user interest pattern simultaneously. We also present a Gibbs 

sampling approach to estimate the model parameters. 

 
A topic model is a generative model that follows a probabilistic process for generating 

documents based on a set of straightforward probabilistic sampling rules. This process 

explains how words in a document can be generated based on some latent variables i.e. 

topics that evolve in a document. The overall procedure includes the following steps [308]: 

(i) select a distribution over topics to make a new document, (ii) for each word in the 

document, select a topic randomly and then a word from that topic following that 

distribution. The process can also be reversed and the set of topics that generate the 

collection of documents can be obtained. The model fitness of such generative models 

should find the best set of latent variables (i.e. topics of the documents) based on which the 

observed data can be reasonably explained (i.e. words in the documents). The generative 
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process, as discussed above, does not assume any specific ordering of the words (‘bag-of-

words’ assumption in natural language processing) in a document [308] and the frequency 

of word appearance in a document is the only information that is relevant. The ordering of 

the words can be useful at times, however, this is not captured by topic models. A topic 

model can also be applied to other types of discrete data.  

9.3.1 Interest Pattern Model (IPM) 

Formally speaking, the problem of identifying various social interaction topics is to 

determine  latent patterns through  for ∈ 1,2, …  and each topic  is a 

distribution of different words. A word is defined as the basic unit of data to be selected 

from a set of possible words of size	 , a user tweets about 	topics, and the user can 

contribute to the collection of  tweets. The generative process is summarized below (see 

Figure 9-1a): 

3. For each topic, ∈ 1,2, … , a distribution over words is selected  

	~	Dirichlet	  

4. For each tweet, ∈ 1,2, … , 

c) A distribution over topics is selected 

		~	Dirichlet	  

d) For each word 	in tweet   

iii. Select a topic  	~	Multinomial	 ; ∈ 1,2, …  

iv. From topic , a word is selected  

                                                   	~	Multinomial	 ; ∈ 1,2, …  

Now, given  tweets,  topics over  unique words, the main objectives of the inference 

of topic pattern classifications are: 

iii. Find the probability of a word  given each topic , | 	 	where 

|  is represented with 	multinomial distributions  over words of 

size	  

iv. Find the probability of a topic  for a word in tweet 	 , |

	 where |  is represented with 	multinomial distributions  over  

topics. 
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The above model views the topic pattern as a probability distribution over words and 

tweeting activities as a mixture of these patterns. From  topics, the probability of i-th 

word in a given tweet	  is: 

| 	∑ | 	 |   (9.1) 

Here,  is the latent variable referring to the pattern from which the i-th word is drawn, 

|  indicates the probability of word  under the j-th pattern and |  

is the probability of selecting a word from pattern j in the tweet	 . Intuitively, |  

determines the importance of a word in forming a pattern and |  determines the 

prevalence of the pattern in different tweets. The complete model of pattern generation by 

IPM follows: 

| , 	~	Multinomial	  

	~	Dirichlet	  

| 	~	Multinomial	  

		~	Dirichlet	  

Here,  and  are hyper-parameters for the prior distributions of  and  respectively. We 

assume Dirichlet prior distributions which are conjugate to the multinomial distributions. 

The joint distribution of words and patterns ,  written as: 

, 	 |        (9.2) 

The first term can be written as [309]: 

| 	
	

	∏
∏

∙      (9.3) 

Here  is the number of times word  is assigned to pattern  and	 ∙ 	∑ . The 

second term can be written as: 

	
	

	∏
∏

∙     (9.4) 

Here  is the number of times a word from tweet 	is assigned to pattern  and ∙

	∑ 	 . A pattern can be assigned to a word using the following conditional distribution 

[309] : 

| , ∝ 	 ,

,
∙ 		 ,

,
∙     (9.5) 
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Here,  is the count excluding the current pattern assignment of 	 . The first ratio 

expresses the probability of word  in pattern  and the second ratio expresses the 

probability of pattern  in the tweet	 . 

9.3.2 User Interest Pattern Model (UIPM) 

IPM, as discussed above, when applied over all the users assumes that each tweet consists 

of topic discussion of a unique user. It does not capture the user-level variation of the 

evolving topics i.e. the user-level topic patterns. We extend IPM to UIPM to infer the user-

specific patterns and the probabilistic generative process of UIPM is summarized below 

(see Figure 9-1b): 

1. For each topic, ∈ 1,2, … ,	select a distribution over words   

	~	Dirichlet	  

2. For each user, ∈ 1,2, … , elect a distribution over topics  

		~	Dirichlet	  

a) For each tweet, ∈ 1,2, …  of user  

i. For each word 	in the tweet   

A. Select a topic  	~	Multinomial	 ; ∈ 1,2, …  

B. From topic , select a word   

	~	Multinomial	 ; ∈ 1,2, …  

The difference of this model formulation as compared to the previous one is that the second 

term of Eq. 1 can be rewritten as follows: 

	
	

	∏
∏

∙    (9.6) 

Here  is the number of times a word from user 	is assigned to pattern  and	 ∙

	∑ 	 . A user-specific pattern can be assigned using the following conditional 

distribution: 

| , , ∝ 	 ,

,
∙ 		 ,

,
∙    (9.7) 
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Here,  is the count excluding the current pattern assignment of	 . The first ratio 

expresses the probability of word  in pattern  and the second ratio expresses the 

probability of pattern  in the tweeting activities of user	 . 

 

 

Figure 9-1  Graphical representation of probabilistic generative process (a) IPM, (b) 
UIPM, (c) CIPM. 

(rectangle plates represent the repetitiveness of the data, white circles present random 

variables and shaded circles represent observed variables, arrows represent the dependency 

between different entities.)   

9.3.3 Community Interest Pattern Model (CIPM) 

UIPM is limited to only capturing user-specific variations in the emerging topics. It does 

not capture the community-level variation of the evolving topics i.e. the community-level 

topic patterns. In this section, we extend the topic model to CIPM where community-

specific patterns are represented. CIPM accounts for both community structures and user 

interests based on both words and users mentioned in the tweets. Each user mentioned in a 

given tweet by another user contributes to the higher likelihood of these two users 

belonging to the same community. 
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The probabilistic generative process for the model is summarized below (see Figure 9-1): 

1. For each topic, ∈ 1,2, … ,	select a distribution over words   

	~	Dirichlet	  

2. For each community, ∈ 1,2, … ,	select a distribution over users   

	~	Dirichlet	  

3. For each user, ∈ 1,2, … , elect a distribution over topics  

		~	Dirichlet	  

a) For each tweet, ∈ 1,2, …  of user  

i. Select a community  for the topic  

ii. For each word 	in the tweet   

A. Select a user  from  to be mentioned as observed in the tweet 

B. Select a topic  	~	Multinomial	 ; ∈ 1,2, …  

                                           Assign the same topic to  

C. From topic , select a word   

	~	Multinomial	 ; ∈ 1,2, …  

A community-specific pattern can be assigned using the following conditional distribution: 

| , , , ∝ 	 ,

,
∙ 		 ,

,
∙ 	 ,

,
∙ 	

	  (9.8) 

Here,  is the count excluding the current pattern assignment of 	 . The first ratio 

expresses the probability of word  in pattern	 , the second ratio expresses the probability 

of pattern  in the tweeting activities of user	  and the third ratio expresses the probability 

of user	  in the tweeting activities of user	 .  

9.3.4 Parameter Estimation 

There are various approximation techniques for estimating the parameters of this model 

[307, 309]. We used the Gibbs sampling approach proposed by [309]. The algorithm can 

be found in detail in [309]. Only a brief description of the approach is provided here. To 

estimate the model parameters, a Markov Chain Monte Carlo (MCMC) procedure is used. 

In MCMC, samples are taken from a Markov chain constructed to converge to a target 

distribution. In our model, each state of the chain is the assignment of a pattern to a word 
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and the transition from one state to another follows a specific rule based on Gibbs sampling 

approach [310]. In this procedure, the next state is reached by sampling the variables from 

a conditional distribution which specifies the distribution of the variables conditioned on 

the current assignment of all other variables and the observations. The parameters of IPM, 

representing the hidden patterns, can be computed as: 

	 ∙  ;  	 ∙     (9.9) 

The parameters of UIPM can be computed as: 

	 ∙  ;  	 ∙     (9.10) 

Finally, CIPM model parameters are computed as: 

	 ∙  ;	 	 ∙ 	; 	 ̂ 	 ∙ 	
   (9.11) 

 

We implemented our model formulations by using Python programming language to 

process the data and estimate model parameters. Cython, an extension of Python, was used 

to write the core computational steps of Gibbs sampling procedure that reduced the 

computational time significantly. The number of input words and user mention sequence, 

the number of latent patterns, and the number of samples determine the actual time required 

to estimate the model parameters. A typical setup for the input data used in the paper took 

less than an hour to estimate the IPM and UIPM parameters, however, more than four hours 

in case of CIPM. 

9.4 Pattern analysis 

The model selection was based on Perplexity – a metric to measure the predictive capacity 

of the model to infer the unseen data in each run. In machine learning, Perplexity is a 

commonly used metric to report the performance of a probabilistic model that refers to the 

average likelihood of obtaining a test data set given a set of model parameters. Perplexity 

can be defined as the exponential of the negative of average predictive likelihood of a test 

data given a model [309]. In this study, the algorithm was run for different number of topic 

patterns (K) and perplexity in each run was computed. Next, the optimal number of patterns 
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was selected based on perplexity values. For a given set of words { } and 	 	 ∈

	 	given a model	 , Perplexity of a test data set can be defined as: 

exp	
∑ |

∑
   (9.12) 

where  is the number of words in each topic  and 	 |  can be derived from Eq. 

(1). 

 

In order to estimate perplexity values, the data set was randomly split with 90% of the users 

in the training set with the rest in the test set; the parameters of the topic model on the 

training data set were estimated; and finally the perplexity values on the test data set were 

computed. While a lower value of perplexity refers to a better model performance, an 

increase in the number of topics reduces the perplexity and there is no significant 

improvement beyond a certain number of topics (Figure 9-2).  

 

 

Figure 9-2  Perplexity Analysis 
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9.4.1 IPM Patterns 

Based on perplexity values, K = 100 was selected for running the Gibbs algorithm for 

finding the topic patterns. Table 9-1 presents the results of the topic model applied to the 

data. Although 100 latent patterns were estimated, only a few insightful and interesting 

patterns are reported here and explained along with the probabilities of the top 10 words in 

each topic (Table 9-1): 

 Patterns 1, 41, and 48 resemble academic interests within Purdue University community 

 Pattern 97 shows relevance to Purdue alumni and their activities 

 Pattern 7 reflects user (students) interest related to convocation and graduation which 

typically occur during mid-May for the Spring semester 

 Pattern 11 conveys user (students) concern about tuition fees 

 Patterns 43, 59, and 98 express user interest related to recent research accomplishments 

on campus 

 Pattern 23 is the evidence of user gratitude to university donors 

 Pattern 2 is specific to the interests about the Online Writing Lab (OWL) at Purdue 

 Patterns 5, 71, and 76 capture user interest about the large annual event on campus, 

namely Purdue Day of Giving 

 User interactions related to Senator Bernie Sanders’ visit during Indiana Election 

Primary 2016 are captured by Patterns 78, 82, and 85 

 Patterns 12, 15, 17, 33, 36, and 64 resemble campus-wide online discussions about 

celebrity players or influential people who are affiliated with Purdue University 

 Patterns 28, 35, 53, 81, 14, and 77 are specific to weekend games on campus. These 

include team mascots, upcoming matches, opponent teams, joining of new players, big 

ten conference, among others 

 Patterns 19, 24, 34, 66, 86 and 90 are some well-defined, however, irrelevant topics 

related to Purdue Pharma which is a privately held pharmaceutical company located in 

Stamford, Connecticut.  
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Table 9-1  Interest pattern model (IPM) results 

w P(w|Z) w P(w|Z) w P(w|Z)  w P(w|Z) w P(w|Z) w P(w|Z) 
Academic  Alumni Graduation Tuition Fees 

Pattern 1  Pattern 41 0.01 Pattern 48   Pattern 97  Pattern 7  Pattern 11  
university 0.14 class 0.07 way 0.06  purdue 0.20 congrats 0.08 year 0.07 
students 0.08 purdue 0.06 new 0.06  alumni 0.03 today 0.07 tuition 0.04 
ive 0.07 fall 0.03 college 0.05  center 0.02 proud 0.06 get 0.04 
three 0.07 coming 0.03 purdue 0.04  dance 0.02 engineering 0.05 people 0.03 
far 0.05 boilerup 0.03 via 0.04  golf 0.01 congratulations 0.03 hours 0.03 
semester 0.05 new 0.03 education 0.03  fun 0.01 purduewedidit 0.03 straight 0.03 
gone 0.04 purdues 0.03 program 0.02  event 0.01 graduating 0.02 president 0.03 
wonder 0.04 look 0.02 pay 0.02  got 0.01 graduation 0.02 didnt 0.03 
failing 0.04 icymi 0.02 university 0.01  haas 0.01 son 0.02 daniels 0.02 
lectures 0.04 2020 0.02 income 0.01  culture 0.01 graduates 0.02 12 0.02 

Research & Innovation  Donation Online Writing Lab Administration 
Pattern 43  Pattern 59 0.01 Pattern 98   Pattern 23  Pattern 2 0.01 Pattern 29  
student 0.08 new 0.06 purdue 0.09  offer 0.17 owl 0.03 purdue 0.11 
purdue 0.06 research 0.06 graduate 0.06  university 0.10 since 0.03 made 0.08 
david 0.04 award 0.04 space 0.05  blessed 0.10 purdue 0.02 online 0.05 
science 0.03 deal 0.02 grad 0.04  receive 0.07 check 0.02 employees 0.03 
helps 0.03 cancer 0.02 mission 0.03  boilerup 0.06 use 0.02 software 0.03 
hedelin 0.03 may 0.02 station 0.03  received 0.06 new 0.02 scheduling 0.03 
data 0.03 2016 0.01 2017 0.03  say 0.03 writing 0.02 managing 0.03 

success 0.02 program 0.01 nasa 0.02  honored 0.02 even 0.02 easier 0.03 

ol 0.02 expand 0.01 join 0.02  thankful 0.02 career 0.02 guys 0.02 
predict 0.02 read 0.01 tingle 0.02  god 0.01 follow 0.02 days 0.01 

Purdue Day of Giving  Indiana Primary Election 2016 
Pattern 5  Pattern 71  Pattern 76   Pattern 78  Pattern 82  Pattern 85  
dayofgiving 0.16 today 0.14 future 0.08  sanders 0.13 purdue 0.30 indiana 0.09 
us 0.06 dayofgiving 0.08 purdue 0.07  bernie 0.11 w 0.04 indy 0.07 
help 0.06 better 0.05 igave 0.05  hall 0.04 1st 0.02 notredame 0.06 
support 0.06 making 0.04 grant 0.04  berniesanders 0.04 place 0.02 inprimary 0.06 
make 0.03 join 0.04 opportunity 0.04  town 0.04 trump 0.01 feelthebern 0.06 
donate 0.03 bigger 0.03 student 0.04  rally 0.03 support 0.01 iu 0.06 
give 0.02 supporting 0.02 could 0.04  live 0.03 agree 0.01 indianastate 0.05 
pubandorch 0.02 graduating 0.02 shape 0.03  line 0.02 chalk 0.01 isu 0.05 
gift 0.02 pmo 0.02 dayofgiving 0.02  political 0.01 days 0.01 vicaucus 0.05 
hour 0.02 upon 0.02 dayofgiving 0.02  revolution 0.01 idc 0.01 virginislands 0.04 
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Table 9-1 Interest pattern model (IPM) results (continued) 

w P(w|Z) w P(w|Z) w P(w|Z) w P(w|Z) w P(w|Z) w P(w|Z) 

Celebrities/Players 

Danny Anthrop Caleb Swanigan Champion Villanova Coach Gene Keady Brown Anthony Spike Albrecht 

Pattern 12  Pattern 15  Pattern 17  Pattern 33  Pattern 64  Pattern 36  
state 0.04 purdues 0.13 national 0.06 coach 0.09 anthony 0.10 spike 0.12 
illinois 0.03 nba 0.07 host 0.06 keady 0.08 brown 0.10 albrecht 0.12 
anthrop 0.03 swanigan 0.06 villanova 0.04 gene 0.07 cb 0.09 transfer 0.11 
danny 0.03 caleb 0.05 breaking 0.04 former 0.07 cowboys 0.06 season 0.07 
list 0.02 combine 0.04 defending 0.04 basketball 0.06 dallas 0.04 michigan 0.07 
iowa 0.02 draft 0.03 14.0000 0.04 rally 0.05 pick 0.04 play 0.06 
butler 0.02 wants 0.02 nov 0.03 took 0.04 four 0.03 next 0.05 
among 0.02 invited 0.02 gavittgames 0.03 longtime 0.04 round 0.03 final 0.04 
free 0.02 players 0.02 6.0000 0.02 carmel 0.04 6th 0.02 pg 0.03 
colts 0.02 hammons 0.02 nfldraft 0.02 stage 0.04 draft 0.02 eligible 0.02 

Games 

Ohio Gobucks (Mascot) 
Minnesota Gophers 

(Team) Game with Other Teams Big Ten Conference/NCAA 

Pattern 28  Pattern 35  Pattern 53  Pattern 81  Pattern 14  Pattern 77  
win 0.08 3 0.07 vs 0.10 purdue 0.17 boilermakers 0.15 purdue 0.21 
gobucks 0.04 final 0.04 game 0.07 2 0.08 university 0.09 school 0.08 
b1g 0.03 series 0.03 maryland 0.04 vs 0.04 purdue 0.05 high 0.02 
ohio 0.03 1 0.03 football 0.04 saturday 0.04 bigten 0.05 ready 0.02 
buckeyes 0.03 innings 0.02 2016 0.03 field 0.04 ncaa 0.02 head 0.02 
sweep 0.02 minnesota 0.02 terps 0.03 tbt 0.02 black 0.02 ncaagolf 0.02 
finish 0.02 12 0.02 1 0.03 pregame 0.02 pete 0.01 practice 0.01 
recap 0.02 gophers 0.02 softball 0.02 wvu 0.02 large 0.01 polytechnic 0.01 
baseball 0.02 top 0.02 announced 0.02 sept 0.02 jersey 0.01 speak 0.01 
state 0.02 runs 0.02 feartheturtle 0.02 mountaineer 0.01 logo 0.01 stem 0.01 

Purdue Pharma 
Pattern 19  Pattern 24  Pattern 34  Pattern 66  Pattern 86  Pattern 90  
epidemic 0.07 purdue 0.13 purdue 0.26 oxycontin 0.07 times 0.08 oxycontin 0.08 
helped 0.07 oxycontins 0.04 miss 0.03 pharma 0.05 oxycontin 0.08 records 0.06 
opioid 0.07 12hour 0.02 says 0.02 next 0.04 pharma 0.06 maker 0.06 
pharma 0.06 problem 0.02 houston 0.01 judge 0.03 la 0.05 keep 0.05 
via 0.04 hell 0.02 doctors 0.01 secret 0.03 got 0.04 painkiller 0.04 
drug 0.04 want 0.02 misled 0.01 week 0.03 says 0.04 block 0.04 
companies 0.04 marketing 0.01 yesterday 0.01 records 0.02 heres 0.04 secret 0.03 
cause 0.03 former 0.01 friday 0.01 documents 0.02 report 0.04 lawsuit 0.03 
profits 0.03 claim 0.01 pharmaceuticals 0.01 unseal 0.02 investigation 0.03 battle 0.03 
evidence 0.03 created 0.01 cold 0.01 thanks 0.01 wrong 0.02 legal 0.03 
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IPM results indicate that the proposed model is a useful tool to find the latent patterns of 

user interests and interactions in social media. The observed patterns primarily contain the 

campus-wide activities with a higher concentration of user interactions about regular 

weekend games. The model is able to capture unique special events or annual big events. 

IPM thus also allows to eliminate irrelevant social interactions. Traditional survey 

techniques hardly can infer such user interest metric based on social interactions. 

9.4.2 UIPM Patterns 

In this section, we present the results from user interest pattern model (UIPM). Similar to 

IPM model selection, we use perplexity values to determine the number of interest patterns 

to be estimated. Figure 9-2 presents the results for perplexity measurements for UIPM. 

Based on these perplexity values we select K = 100 for estimating the model parameters. 

Table 9 presents a few of the user interest patterns estimated and the probability of the top 

10 words for each pattern reported. We discuss about patterns that are specific to the two 

large and unique events that we observed during the course of data collections (Figure 9-3): 

 Patterns 1, 21, and 56 resemble user interactions about Senator Bernie Sanders’ visit 

during Indiana Election Primary 2016 

 While it appears users like 41621505, 16440677, 2228806220 and others primarily talk 

about the outcome of the event (Pattern 1) i.e. Senator Sanders’ winning the primary 

election, users such as 16664309, 721428816971894000, 123269504 and others 

interacted were likely to interact long before the event (Pattern 56). On the other hand, 

Pattern 21 is indicative of user interactions the event. 

 Patterns 19, 20, and 25 capture user interaction about the annual large campus event 

Purdue Day of Giving 

 While Pattern 19 demonstrates user interactions before the event i.e. supporting the 

cause of the event, pattern 20 suggests user interactions after the event since the users 

discussed abut record breaking grant collected this year. 
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Figure 9-3 Higher connectivity of top users in different UIPM patterns 



202 
 

 

Table 9-2  User interest pattern model results 

Indiana Primary Election 2016 

Pattern 1 0.0136  Pattern 56 0.0142  Pattern 21 0.0117 

w P(w|Z)   w P(w|Z)  w P(w|Z) 
sanders 0.1229  indiana 0.0858  purdue 0.0768 
bernie 0.0918  feelthebern 0.0579  berniesanders 0.0424 
live 0.0283  notredame 0.0557  line 0.0223 
rally 0.0237  inprimary 0.0550  hall 0.0167 
town 0.0237  iu 0.0487  town 0.0125 
hall 0.0190  indy 0.0484  rally 0.0122 
win 0.0151  indianastate 0.0474  today 0.0107 
crowd 0.0143  purdue 0.0435  purdues 0.0095 
become 0.0121  vicaucus 0.0425  night 0.0080 
revolution 0.0117  virginislands 0.0410  last 0.0079 

u P(u|Z)  u P(u|Z)  u P(u|Z) 
41621505 0.0366  16664309 0.1078  11775782 0.0499 
16440677 0.0275  721428816971894000 0.0185  158216203 0.0486 
2228806220 0.0189  123269504 0.0087  463204470 0.0287 
354330741 0.0152  2416940856 0.0078  2350966291 0.0180 
88245817 0.0122  2332808262 0.0065  199636296 0.0123 
802584787 0.0100  713948924004831000 0.0063  376476523 0.0116 
1952653698 0.0056  4871145023 0.0062  705454296154796000 0.0106 
242137063 0.0053  4582019741 0.0058  3056052077 0.0104 
463204470 0.0048  1860727694 0.0051  53983 0.0075 
50793235 0.0036   24190388 0.0044   2333439294 0.0067 

Purdue Day of Giving 

Pattern 19 0.0231 Pattern 20 0.0092 Pattern 25 0.0084 

w P(w|Z)  w P(w|Z)  w P(w|Z) 
dayofgiving 0.1358  purdue 0.1649  purdue 0.1701 
support 0.0322  day 0.1101  pubandorch 0.0442 
help 0.0304  giving 0.0512  purduedayofgiving 0.0296 
today 0.0253  pmo 0.0184  boiler 0.0268 
igave 0.0219  today 0.0160  black 0.0243 
us 0.0215  msu 0.0117  band 0.0217 
better 0.0195  million 0.0113  hail 0.0189 
grant 0.0195  record 0.0104  gold 0.0152 
future 0.0175  ever 0.0101  big 0.0112 
make 0.0175  lets 0.0095  marching 0.0102 

u P(u|Z)  u P(u|Z)  u P(u|Z) 
28573278 0.0293  772180069 0.0746  215702601 0.1082 
16134525 0.0142  3525080836 0.0083  381639855 0.0233 
605564976 0.0126  110691113 0.0048  71036725 0.0123 
45052134 0.0122  11775782 0.0045  14421621 0.0101 
772180069 0.0108  95450798 0.0039  66167575 0.0062 
348440739 0.0106  348440739 0.0038  724630593800179000 0.0059 
829194631 0.0095  902520864 0.0033  1520322312 0.0049 
44409797 0.0084  190252722 0.0033  4864158051 0.0048 
3420171568 0.0082  369128406 0.0029  2533104662 0.0045 
3215171243 0.0080   312050513 0.0027   3313270876 0.0043 

 
Similar to IPM, as discussed in the previous section, these user-level patterns demonstrate 

the applicability of our modelling approach to extract the hidden underlying patterns of 

user-specific interests. The reported patterns contain the likely interests of the users on 

various social interactions. We also report the top users for each of the interest patterns 
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along with their corresponding probabilities. These users indicate the top contributors for 

the corresponding patterns. It is also important to note here that a user’s social interactions 

can be modelled as a mixture of patterns since the user can have varied interests that belong 

to few specific patterns and a user can iterate the same pattern several times. In addition to 

the word proportions for a given pattern, the UIPM can also determine user-specific pattern 

proportions ( ). These pattern proportions can be used to find the similarity among the 

users based on their interest and social interactions. From the subgraph visualizations of 

the top 10 users for each pattern listed in Table 9, we observe in Figure 9-3 that these users 

are highly connected to each having more weighted social interactions. This justifies the 

exclusive purpose of considering the user mentions i.e. links of social interaction networks 

which is why we extend our UIPM formulation to CIPM that can obtain community 

specific pattern as discussed in details in the next section. 

9.4.3 CIPM Patterns 

In this section, we present the results from community interest pattern model (CIPM). 

Similar to IPM and UIPM model selection based on perplexity values (Figure 9-2), we 

select K = 100 for estimating the CIPM model parameters and assign the users into 40 

different communities to explain the community patterns (18,077 users, K=100, C =40, 

p>=0.025). For 100 topics, we run the CIPM for different number of communities and 

present the variation in the number of users that can be assigned into C different number 

of communities with probability greater or equal to 1/C (Figure 9-4). We observe that 

maximum number of users are assigned when K = C = 100. Although a user can belong to 

any community with certain probability, however, we set the minimum probability 

threshold as 1/C in order to assign users in various communities. In order to better analyze 

the community patterns inferred by CIPM, we visualize and discuss about the largest 

connected components (LCC) of two community patterns (community 2 and community 

3) for the user assignment to 40 communities in which the maximum probability that a user 

can belong is considered (Please see Figure 9-5 for the distribution of user assignment in 

communities).  
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Table 9-3  Community interest pattern model results 

w P(w|Z) w P(w|Z) w P(w|Z) 
Pattern 1 0.146 Pattern 5 0.006 Pattern 23 0.009 
purdue 0.175 way 0.031 visit 0.075 
university 0.023 new 0.030 weekend 0.031 
game 0.008 could 0.022 transfer 0.030 
boilerup 0.008 college 0.018 told 0.026 
today 0.007 based 0.017 tech 0.026 
coach 0.006 long 0.016 stephens 0.020 
spring 0.006 forget 0.014 plans 0.019 
first 0.006 program 0.014 kendall 0.019 
great 0.006 never 0.014 take 0.018 
team 0.006 pay 0.013 texas 0.018 
Pattern 62 0.008 Pattern 91 0.007 Pattern 99 0.014 
like 0.030 purdue 0.128 michigan 0.048 
recruiting 0.029 vs 0.024 iowa 0.044 
iubb 0.028 softball 0.023 offers 0.037 
taking 0.026 2018 0.022 st 0.030 
iu 0.022 play 0.018 state 0.029 
matt 0.018 thank 0.016 interest 0.025 
lot 0.017 tyler 0.015 wisconsin 0.021 
story 0.016 head 0.012 week 0.019 
robert 0.016 jeff 0.011 msu 0.019 
hes 0.015 g 0.011 illinois 0.017 
      
Community 2  
(LCC) (p>=0.025) Topics of maximum interest 

Community 3 
(LCC) (p>=0.025) Topics of maximum interest 

User Id Pattern p User Id Pattern p 
3234688946 1 0.200 615833064 1 0.461 
3924021759 1 0.396 2710709881 1 0.321 
537760351 1 0.615 1069622622 1 0.299 
3404906992 1 0.164 90658098 1 0.206 
1049183928 1 0.246 1180961940 1 0.288 
62787754 1 0.271 23646710 23 0.237 
622150102 1 0.280 3281659363 23 0.204 
1241975864 1 0.307 168906812 62 0.360 
913748036 1 0.169 304160410 62 0.214 
3015956952 1 0.277 70952154 91 0.309 
714816804858630144 5 0.462 21438334 99 0.476 
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Figure 9-4  Number of users with community assignment 
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Figure 9-5  CIPM Patterns (a) Distribution of users in different communities 
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Figure 9-6  CIPM Patterns: LCC of Different Communities: C-1 and C-21 

C-1 C-21 
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C-2 C-3 

Figure 9-7  CIPM Patterns: LCC of Different Communities: C-2 and C-3 
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Figure 9-8  Identifying user communities in the largest connected component using CIPM (a) original graph [all nodes color coded as 
white], (b) classified graph [color code: C-1 (red), C-21 (green), C-3 (blue) and C-2 (yellow)]  
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Figure 9-9  Social Interaction Community 3 (C-3).  

(a) undirected graph (492 nodes, 44 links, 452 connected components, 444 isolates, and density 0.00036), (b) undirected largest 
connected component, lcc (32 nodes, 34 links, and density 0.00015); user id 615833064 of the largest hub belongs to Spike Albrecht, a 
transferred basketball player who will be playing for Purdue team for the 2016-17 season 
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Table 9-3 presents the community interest patterns estimated and the probability of the top 

10 words for each interest pattern to which users, assigned to community 2 (C-2) and 

community 3 (C-3), had their maximum contribution. The LCC’s of the top 4 communities: 

C-1, C-21, C-3 and C-2 (according to the size, respectively) are presented in Figure 9-6 

and Figure 9-7. To present CIPM results, we discuss below some key community and 

interest patterns for the top 4 communities: 

 All the users, assigned to any given community, belong to their respective 

communities with at least 2.5% probability. These assignments are based both on topic 

similarity and mention similarity 

 C-1 LCC and C-21 LCC respectively include 4.21% and 3.96 % of all the users 

(21,045) that exist in the LCC of the original graph (please refer to the center of Figure 

9-6) 

 Almost all the users assigned in C-2 LCC primarily contributed to Pattern 1 

(captures overall interest about Purdue University and its logo BoilerUp) except for user 

714816804858630144 who had interest more towards Pattern 5. However, all these 

users belong to the same community (C-2) because of their mention similarity i.e. high 

connectivity as presented in Figure 9-7 

 Likewise, 32 users belong to belong to C-3 LLC where many users also expressed 

primary interest about Pattern 1 and some contributed to other topics such as Pattern 23, 

62, 91 and 99) 

As an extension to UIPM, as discussed in the previous section, our CIPM formulation is 

capable of capturing community-level patterns by accounting for the hidden underlying 

patterns of user-specific interests. The reported patterns contain the likely interests of the 

users on various social interactions and their likelihood of belonging to certain 

communities as inferred from their user mentions. In addition to the word proportions for 

a given pattern, the CIPM can also determine community-specific pattern proportions ( ̂ ). 

These pattern proportions can be used to find the similarity among the users based on their 

connectivity and social interactions. From the subgraph visualizations of the top 4 

communities, we observe in Figure 9-6 that several users in C-21 LCC are not only 

connected by user mentions but also highly weighted. This demonstrates how CIPM is able 
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to jointly infer user communities and interests in social interaction networks. CIPM can 

also classify nodes in a large graph based on their community assignment as presented in 

Figure 9-8. 

9.5 Applications of Inferring Social Interaction Communities 

The interdependence between complex networks having dynamic, irregular structure and 

the functional behavior of the network agents has significant outcomes when the robustness 

and resilience of a real network is considered and the way networks respond to targeted 

failure due to external disturbances as suggested in the Network Science literature [218-

220, 222, 244]. The prevalence of networked systems has resulted in a number of studies 

with applications in various domains over the last decade. A few examples of such studies 

may include travel demand network [312], the Commonwealth trade network [223], 

contagion of risk perception during crisis [170], disease transmission [224, 225], email 

networks and computer virus transmission [226, 227], power grid networks [229, 230], 

market disruptions [228], information propagation [231], and many others. Such studies 

primarily focused on exploring the emergence of new innovations or ideas based on agent 

interactions, identifying influential players in the network, maximizing network influence 

based on certain mechanism, determining under what conditions contagions become global 

cascade among others. 

 

In this section, we demonstrate the benefits of inferring communities in social interaction 

networks, being more specific to the transportation research domain. Effective information 

dissemination is a key to successfully arrange Planned Special Events (PSE), briefly 

discussed as our motivation in Section 1. Organizing PSEs have several challenges 

including parking management, crowd management, pedestrian facility design, and special 

facility for senior citizens and handicapped individuals, providing transit facility for captive 

riders among others. In addition, police enforcements often need to close several streets for 

security reasons, manage crowds who walk together to the location and guide motorists to 

specific routes who are unfamiliar with the area. Individuals attending these events travel 

by various travel modes, i.e. walk, private car and public transit. However, despite a number 



212 
 

 

of operational needs and technical requirements to manage PSEs, the empirical literature 

does not provide any guidance to local traffic managers and emergency response personnel 

to identify targeted groups or communities and disseminate travel specific information. 

 

Table 9-4  Node-level network properties of community 3 largest connected component 

User Id Degree 
Clustering 
Coefficient 

Eccentricity 
Average 
Neighbour 
Degree 

Betweenness 
Centrality 

Closeness 
Centrality 

 

304160410 3 0 3 9.3 0.177 0.492  
223380891 1 0 4 22 0 0.431  
829652401 1 0 4 22 0 0.431  

2340566769 1 0 5 4 0 0.272  
94876906 1 0 4 5 0 0.341  
703347828 1 0 4 22 0 0.431  
392719200 1 0 4 22 0 0.431  
23646710 2 0 4 2.5 0.004 0.341  
101367531 1 0 4 22 0 0.431  
427742343 1 0 4 22 0 0.431  
168906812 5 0.100 3 5.8 0.183 0.508  
446493623 2 0 4 11.5 0.065 0.443  

3816904035 1 0 5 4 0 0.272  
70952154 1 0 5 3 0 0.323  
338334941 1 0 4 22 0 0.431  
37138498 1 0 4 22 0 0.431  
21438334 4 0 4 1.8 0.131 0.369  
14673689 1 0 4 22 0 0.431  

615833064 22 0.004 3 1.5 0.901 0.738  
1180961940 3 0.333 4 9.3 0.065 0.470  

166378224 1 0 4 22 0 0.431  
269970971 1 0 4 22 0 0.431  

1069622622 1 0 5 2 0 0.310  
90658098 2 0 4 4.5 0.026 0.373  
221692889 1 0 4 5 0 0.341  

3269424943 1 0 4 22 0 0.431  
3281659363 2 0 4 12 0.027 0.443  
241195337 1 0 4 22 0 0.431  
900482838 1 0 4 22 0 0.431  
254708948 1 0 4 22 0 0.431  

2710709881 1 0 4 22 0 0.431  
96860616 1 0 4 22 0 0.431  

 
 

For example, by running relevant network models for Community 3 (see previous section 

for details), we report both graph-level and node-level properties in Table 9-4. Node level 

properties are important to understand the role of different nodes (network agents) on the 

information propagation at a local scale and identify the nodes that can play important role 

during a crisis or emergency because of their higher access to many other nodes. The ego 

node of the largest hub, user 615833064 in C-3 with degree score 22, depicts its influential 

position in the largest connected component of C-3 (Figure 9-9) when accessibility from a 
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given node to many other nodes is considered. This user account on Twitter belongs to 

Spike Albrecht who is a college basketball player from Crown Point, Indiana and he will 

play for the Purdue Boilermaker Team for the 2016-17 season. While a node degree is the 

number of edges adjacent to that node, average neighbor degree refers the mean degree of 

the neighborhood. On the other hand, transitivity implies that two nodes are highly likely 

to be connected in a network, given each of the nodes are connected to some other node. 

This is indicative of heightened number of triangles (sets of three nodes each of which is 

connected to each of the others) that exist in real networks (expressed in terms of clustering 

coefficient)  [220]. In case of social networks, transitivity refers to the fact that the friend 

of one’s friend is likely also to be the friend of that person. This property is dominant for 

user 1180961940 in C-3 although it has very low degree as compared to user 615833064. 

Network Density is a graph-level property that is frequently used in the sociological 

literature [236]. The density is 0 for a graph without any link between nodes and 1 for a 

completely connected graph. While the eccentricity of a node in a graph is the maximum 

distance (number of steps or hops) from that node to all other nodes; radius and diameter 

are the minimum and maximum eccentricity observed among all nodes, respectively. For 

C-3, we observe that the radius is 3 and diameter equals 5. Centrality measures indicate 

how central a given node in the network. Betweenness centrality of a node is the sum of 

the fraction of all-pairs of shortest path that pass through that node [239-241]. Closeness 

centrality of a node is the reciprocal of the sum of the shortest path distances from node to 

all other nodes in the graph. Closeness is normalized by the sum of minimum possible 

distances of all other nodes since the sum of the distances depend on the number of nodes 

in the graph [242] for details. Higher values of closeness imply higher centrality and user 

615833064 is the most central node in the largest connected component of C-3 (Table 9-4). 

The properties of social interaction networks, as observed in this study, have fundamental 

implications towards effective information dissemination. For example, removal of hubs 

(high degree nodes) would cause major disruption and network agents would fail to 

communicate since the regular length of path will increase because of many disconnected 

pairs of nodes. For any Planned Special Event (PSE), the assembling of vehicles and 
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pedestrians in a short amount of time cause transportation and transit authorities to often 

encounter significant challenges in controlling the induced traffic coming from different 

origins before the event and departing from the event location after the event.  

9.6 Conclusions 

In this study, we are interested in jointly modeling the interests and social interactions 

among users in a social sharing platform within a unified modeling framework. The work 

is motivated by the observation that a link between two users is not only determined by 

interest similarity, but also affected by the community ties between the users. Indeed, in-

town users are more likely to be influenced by their friends (as compared to those out-of-

town), and researchers are more likely to cite papers presented at the conferences they 

attend or in the journals they read. This is evident since users are inherently more aware of 

the activity in their community and might not be aware of relevant activity outside it. By 

accounting for both topic similarity and social network relations, we can better identify the 

reasons for the presence or absence of a link, and, in turn, find improved user interaction 

topics and communities. 

This paper demonstrates the uses of large-scale data available from different social sharing 

platforms to characterize and measure social network influence.  We develop several 

pattern inference models: i) Interest pattern model (IPM) infers population-level user 

interest patterns, ii) User interest pattern model (UIPM) accounts for user-level variations 

of interests based on the texts generated from social interactions, and iii) Community 

interest pattern model (CIPM) jointly infers user communities and interests based on text 

and users mentioned in the tweets. These models are expected to leverage the process of 

information dissemination in targeted communities by having both the knowledge user 

interest and interactions in a social sharing environment. Predicting user communities will 

allow local traffic managers to implement proactive traffic management plans across 

different special events. These networks of direct social influence can further be used to 

conduct different network experiments such as influence maximization, community 

detection, identifying influential nodes and many others. 
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The study is limited to a university-specific data and the patterns are explained for the 

communities and user interests that belong to only Purdue University. The data also suffers 

from lack of representativeness and sampling biases due to the limited collection period of 

one month. We also note here the scalability and computational issues of our proposed 

algorithms for real-world applications given the large size of the data. However, the 

methodologies presented in this study would be useful to model the social dimensions of 

travel behavior using similar data from various social sharing platforms.  
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CHAPTER 10. SUMMARY AND CONCLUSIONS 

10.1 Summary 

The core theoretical framework of this dissertation depicts how human social networks can 

be leveraged so that people make better and more strategic joint decisions. Network science 

provides an interdisciplinary perspective to the study of complex real networks to explain 

the compelling connection between network topology and functionalities. This provides a 

holistic understanding about how social and information networks influence the underlying 

behavior of people when shareability with peers is considered. By using relevant theories 

from network science and social science, this thesis explores the level of social influence 

on ridesharing, disaster communications and community interactions by characterizing the 

impact and propensity of information exchange between network agents. This thesis 

develops novel techniques to explore how individuals are socially influenced, both on-line 

and off-line, while making shared-trips, communicating risk during extreme weather, and 

interacting in respective communities.  

 

Chapter 2 provides a comprehensive summary of the network science literature and 

synthesizes studies relevant to ridesharing, social capital, ego-centric network design, 

behavior modeling of activity-based travel and evacuation decision-making, social media 

research in transportation and disaster management. Chapter 3 presents a zero-inflated 

Poisson model to predict the frequency of joint trips, using ego-centric social network data, 

for regular activity travel decisions. Chapter 4 presents a multinomial logit model of travel 

mode choice and carpooling during special events such as game-day.  

 

Chapter 5 presents a mixed-logit model to capture how social networks influence 

individual-level evacuation decision-making using data obtained from Hurricane Sandy. 
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Chapter 6 develops a multilevel model of joint evacuation decision outcome at the dyadic 

(ego-alter social tie) level by using hierarchical generalized linear modeling approach. 

Chapter 7 analyzes large-scale Twitter data (~52 M tweets, ~13 M users, Oct 14 -Nov 12, 

2012) to identify subgraphs of Twitter that was active before, during, and after Sandy’s 

landfall at different scales of user activity and important network properties (both local and 

global) were obtained to examine the relationship between network topology and user 

activity. It also explores the crisis communication patterns of Hurricane Sandy using 

advanced machine learning techniques. 

 

Chapter 8 demonstrates how to construct social interaction networks from social media, 

presents the properties and growth of such networks along with important insights based 

on the theories of network science literature. Chapter 9 presents a modeling framework to 

jointly infer communities and interests in social interaction networks. Several pattern 

inference models are developed: i) Interest pattern model (IPM) captures population level 

interaction topics, ii) User interest pattern model (UIPM) captures user specific interaction 

topics based on only words mentioned in the tweets, and iii) Community interest pattern 

model (CIPM) captures both community structures and user interests based on both words 

and users mentioned in the tweets.  

 

The prevalence of social networks in recent times influence people’s decision making in 

so many ways. Ride sharing is getting more popular and people are more likely to carpool 

with friends as compared to traditional modes of travel. Although ridesharing can yield in 

effective matching of trips, it does not necessarily provide desirable end results. The 

knowledge of a better understanding in terms of how people share rides in a network setting 

would help policy makers and city planners in modifying existing urban transportation 

systems by introducing more ridesharing benefits to commuters and building more efficient 

ridesharing platforms that can result in a more sustainable transportation system. Online 

social media have also become an integral part of our social beings. Effective detection of 

user communities based on their social interactions and interests would allow traffic 

managers and emergency officials to efficiently disseminate travel-specific information to 
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travelers/spectators and better conduct Planned Special Events (PSE). The methodologies 

and findings presented in this thesis will benefit different stakeholders and practitioners to 

determine and implement targeted policies for various user groups in regular, special, and 

extreme events based on their social network characteristics, properties, activities, and 

interactions. 

10.2 Thesis Contributions 

The proposed thesis contributes towards developing novel methodologies for analyzing 

social network data across different travel events and provides a holistic understanding of 

the role of social and information networks on the underlying travel behavior of people 

both in terms of their regular activity participation and the way they react to a particular 

disaster. Given the potential availability of social network datasets in near future and the 

lack of appropriate methodologies to connect social influence with travel behavior, this 

thesis makes a novel and significant contribution to the modeling of complex contagion in 

ridesharing and crisis dynamics. The empirical models developed in this study would allow 

practitioners to predict travel demand and evacuation demand based on social network data.  

 

This thesis also makes significant contribution in terms of policy implications. By 

identifying the key social network effects on individuals travel decisions, policy makers 

would be able to make policies for targeted groups or communities instead of implementing 

individual-level policies. In addition, as compared to traditional policy making strategy 

based on observed data, planners can provide real time guidance based on real time data. 

The findings of this research also provide important implications in making communities 

more resilient and proactive in terms of how individuals react to certain types of 

information and make decisions. With the recent advancement in information technologies, 

real time information update and social media applications, these methodologies can 

become useful in transportation analysis in near future.  

 

In addition, understanding the linkage between social influence and travel behavior will 

allow the accurate characterization of discretionary activities. The inclusion of accurate 
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discretionary activities into a supply side model will enable the accurate prediction of 

traffic congestion. On the other hand, the evacuation demand predicted from the empirical 

models would also help emergency planners and officials to find out more efficient 

techniques to control the evacuating traffic in future hurricanes. In sum, this research aims 

to serve as a key to demonstrate the usefulness of the theoretical and methodological 

approaches of social network analysis for quantitatively understanding how personal 

network connections impact the joint trips people make for different types of activities and 

hurricane evacuation decision making. 

10.2.1 Ridesharing 

In the past few decades, models explaining and predicting human travel behavior have gone 

through several changes and the effect of social interactions on activity patterns have 

received limited attention in the travel demand analysis literature. While recent studies 

incorporate the social dimension in order to understand different aspects of social activities, 

this thesis broadens the scope and empirically investigates the role of social networks in 

six different activity types (work, eating, shopping, recreation, study and extra-curricular) 

which cover a large majority of individuals’ everyday activities. The research also provides 

meaningful inferences about the patterns of social network influence on joint trips that are 

common across different activities.  

 

Since special events play a significant role on travel management plans and a relevant 

economic impact nation-wide, it is important to understand how attendants choose a 

specific modal to reach the venue location. Efficient measures to control traffic and 

pedestrian flow can be developed based on the frequency distribution of mode choices. 

Doing this requires a behavioral model capable of predicting the mode choice during a 

given PSE. The modal split forecast is an essential tool to help practitioners to develop 

more efficient management plans that would accommodate both current and future transit 

demand. In this matter, recognizing the explanatory factors that play into the selection of a 

mode is an essential part of the modal split forecast. As ride sharing is getting more popular 

and people are more likely to carpool with friends when attending such events, we believe 
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that spectators' mode choice forecast should be made based not only on socio-

demographics attributes, but it should also take into account social network characteristics. 

 

Collecting a large volume of network data is expensive and this exploratory work is based 

on a student population with relatively smaller number of observations. However, the 

theoretical and methodological framework that has been used in this study can be expanded 

to a larger representative sample in order to obtain better parameter estimates and examine 

additional explanatory variables. In general, social networks influence a wide variety of 

individuals’ behavioral decisions and travel is one of them. Recent studies focus on both 

physical networks (actual or real social network) and virtual networks (social media 

connections) to understand how these two types of networks influence the activities people 

take part. This research serves as a key to demonstrating the usefulness of the theoretical 

and methodological approaches of social network analysis for quantitatively understanding 

how personal network connections impact the joint trips people make for different types of 

activities. From a transportation planning and policy perspective, the findings of this study 

would help practitioners to implement targeted policies for various user groups to 

encourage sustainable policies such as car sharing. This research would also help different 

stakeholders and policy makers to determine whether an individual level policy is sufficient 

or a group-level policy is needed for certain user groups. The demand predicted from this 

type of model would also benefit the analysis in the supply side such as parking, public 

transportation, and others. 

10.2.2 Disaster Communications 

While previous evacuation studies have investigated the complexities of hurricane 

behavior and revealed important factors impacting evacuation choice including the 

influence of social networks and information media, no quantitative analyses of social 

network effects on evacuation have been done. In some cases, evacuation decisions are 

solely based on personal obligations and needs, yet they can often be influenced by the 

people an individual frequently contacts. Previous sociological studies suggest that social 

networks serve the purpose of transmitting warning message by disseminating information 
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about an impending threat and individuals having more social connections can be expected 

to receive more warning information. However, the empirical literature is inconclusive 

about how warnings received from social connections weigh into evacuation decision 

making. In this research, original data from Hurricane Sandy is analyzed and used to model 

evacuation decision-making behavior both at the individual-level and the dyadic-level 

(social tie) within a logit-based modeling framework. Model estimation results suggest that 

the evacuation decision behavior of individuals from high storm surge areas is significantly 

influenced by the combined effects of important predictors related to individual 

characteristics, household characteristics, social network composition, and reliance on 

information sources.  

 

This thesis also makes major contributions in the literature related to hurricane evacuation 

logistics by identifying the role of social networks and information sources on hurricane 

evacuation decision-making and by using representative sample from high storm-surge 

areas in the northeastern United States (NY and NJ) for Hurricane Sandy. The empirical 

models, developed in this study, would allow practitioners and emergency officials better 

predict evacuation demand and make efficient plans during a major hurricane. Researchers 

and other stakeholders may also find it useful to pursue other important dimensions of 

evacuation behavior such as departure time, destination choice, modal split, route choice, 

and so on. Individuals having different sets of constraints and characteristics are shown to 

react to a hurricane threat differently. Important conclusions have been drawn from the 

model estimation results that help to better explain the complexity involved in evacuation 

decision-making.  

 

This thesis also analyzed large-scale social media data (both network data and text data) 

obtained from Twitter and identified subgraphs of Twitter that was active before, during, 

and after Hurricane Sandy’s landfall at different scales of user activity. The study 

contributes in establishing the relationship between network topology and user activity in 

such social interaction platforms and reveal numerous insightful crisis communication 

patterns. Disaster communication networks play a salient role during emergencies since 
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people may obtain weather information from traditional media such as radio or television 

and social media such as Facebook, Twitter, or the internet. Many useful insights were 

obtained by running complex network models and advanced machine learning techniques. 

These insights and implications are particularly meaningful effective information 

dissemination and real time crisis management.  

10.2.3 Community Interactions 

In spite of a few quantitative insights from recent travel behavior studies related to social 

network influence on shared trip-making, a model which can characterize the complexity 

involved in understanding the social influences on ridesharing is currently missing. Taking 

this into consideration, in this study we develop several pattern recognition models to 

specifically analyze the contagion process through social interaction networks having 

different community structures. Individuals in a social network behave differently and 

follow their peers (e.g., relatives, friends, and neighbors) to make a decision. Similar 

decision-making pattern can be observed in other socio-economic systems where decision 

makers observe others in the network because of limited information or to exchange 

resources. However, it is unfavorable to empirically observe the process of social contagion 

since it requires having information on individual’s social network which cannot be 

obtained with traditional survey techniques used in travel behavior studies.  

 

Online social media have become an integral part of our social beings. Analyzing 

conversations in social media platforms can lead to complex probabilistic models to 

understand social interaction networks. To the best of our knowledge, this is the first study 

to propose a model that can construct the social interaction network by predicting user 

communities. This data driven approach accounts for the similarity of users’ interactions 

on various topics of interest and their community belonging by using large-scale online 

social media data. These networks of social interactions would allow traffic managers and 

emergency officials to efficiently disseminate travel-specific information to 

travelers/spectators and better conduct Planned Special Events (PSE). The study also 

contributes by presenting an application of such networks as a useful tool to effectively 
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disseminate targeted information during planned special events and demonstrate how to 

single out specific nodes in each community by running network models proposed in the 

network science literature.  

 

These predictive models are expected to leverage the process of information dissemination 

in targeted communities by having both the knowledge user interest and interactions in a 

social sharing environment. Predicting user communities will allow local traffic managers 

to implement proactive traffic management plans across different special events. These 

networks of direct social influence can further be used to conduct different network 

experiments such as influence maximization, community detection, identifying influential 

nodes and many others. However, the methodologies presented in this study would be 

useful to model the social dimensions of travel behavior using similar data from various 

social sharing platforms. 

10.3 Future Research 

While the overarching goal of this thesis is to provide a holistic understanding of social 

network influence on travel behavior during regular and extreme weather events, this 

research can further be extended to explore travel during planned special events such as 

concert, conference, game-day, etc. for efficient traffic and crowd management. 

Sustainable and smart travel choices such as ride-sharing, carpooling, bike-sharing can be 

promoted by introducing targeted policies based on the insights obtained and proposed 

from this study. This will also make communities more resilient and systems more 

sustainable by allowing people, especially captive riders, to take strategic decisions such 

as where to travel, when to travel, how to travel and so on. In addition, the role of social 

and information networks needs to be assessed at different stages of a disaster such as 

emergency preparedness, evacuation, and recovery by adopting a holistic interdisciplinary 

approach to minimize the overall impact caused by a given disaster. Resiliency cannot be 

ensured to a reasonable extent unless all these interconnected phases are considered 

altogether.  
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Future research should aim to measure the underlying properties of the informal social 

networks and relating them to develop more advanced network models of social influence 

on travel behavior. Such efforts should capture the social contagion process more 

accurately, quantify the propagation of shared decisions, answer specific questions such as:  

(a) Under what condition agents make a shared trip for a given activity? (b) Based on the 

number of trips shared by different agents, can we obtain total shared trips for a given 

community? (c) What is the role of this strength of ties on social contagion process? Do 

higher proportions of strong ties result into more shared trips? For example, family 

members can produce more shopping trips as compared to colleagues. (d) Does this 

contagion behavior vary across different activity types? (e) Can local contagion of 

ridesharing turn to a global cascade for a special event to which agents have common 

interest? (f) Do we see a pattern from different mixing distributions of agents (car owners 

vs. non-owners, low income vs. high income) in terms of how they share rides? 

 

Other research questions may include mode choice in shared travel, activity duration for 

joint trips, evacuation departure time, mode and destination choice can be explored based 

on the ego-centric social network data. Developing and providing app-based solutions and 

technologies to travelers is another promising research direction that will allow travelers 

to access real time travel information about their nearest neighbors and friends whom they 

can share ride. In addition, with more number of observations, it will be possible to 

introduce random parameters that will account for the unobserved heterogeneity across 

observations. While this study is limited to five connections (alters) in one’s personal 

network, future studies should include as many connections as possible to draw conclusions 

from a more comprehensive personal network. It would also be interesting to see if the 

General Social Survey (GSS) data, which provides information about the personal network 

characteristics of the U.S. population based on a national representative sample [1,65], can 

be used to predict the number of joint trips among personal network members. 

 
We also provide the following research directions to explore more about the complex 

contagion of hurricane Sandy. Network models of social contagion, models of network 

growth, influence maximization are also relevant for such networks. Based on the topics 
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evolved over time, it would be interesting see how these topics spread through the network 

and the rate of information propagation. Not only inferring the social interaction is 

important, but also modeling the growth of such network is particularly important. In 

addition to running aggregate analyses on such networks, micro-analyses based on the 

node-level properties are also needed to explore network resilience. For example, if a 

highly central node with very large degree is missing during such events, what happens to 

the rate at which the information propagates? If we increase the connectivity by introducing 

additional links, will it help based on the small-world property? Introducing hashtags are 

common these days in social media. Can emergency managers use such hashtags in the 

disaster communication network to allow vulnerable people receive more relevant 

information? How much this will perform on followee-follower net as compared to the 

network of direct social influence constructed by user mentions. 

 

More advanced text classification techniques such as Topic-Link LDA, Dynamic topic 

models among others would be useful to understand the evolution of topics, content 

relevance, risk profiling in addition to examining each keyword alone. Based on the user 

mentions, re-tweets posted by each user in their tweets, it would be possible to infer the 

social interaction network which might portray the network of direct social influence. The 

network properties of such network would be relevant to be compared with the typical 

followee-follower network. These networks can be used as an efficient tool to effectively 

disseminate information during crises. Advanced statistical modeling techniques could 

benefit the analysis of user activity frequency based on node-level properties. Do centrality, 

degree or eccentricity affect the way people react in such situation? It should be noted that 

node-level properties and node attributes are two distinct features. For example, centrality 

is a node-level property obtained from network topology, however, node-specific attribute 

such as gender, age, or income. From the network topology perspective, the connectivity 

of nodes i.e. link properties are equally important. This is relevant to strength of ties. Do 

highly active users make the connections stronger? To understand the complex contagion 

better, it is recommended that the analysis is done at different stages of recovery that can 

produce more accurate results. For example, in case of Sandy, we can broadly specify three 
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different stages: warning information, evacuation and response, response, and recovery. 

Subgraphs of geo-tagged users (~2% in the raw data) may help to understand the mobility 

pattern and spatial correlation with their network activity. 

 

Finally, it is also important to consider how the problems addressed and methodologies 

presented in different chapters of this thesis are interrelated. The econometric models of 

ridesharing and evacuation decision-making, presented in Chapters 3, 4, 5 and 6, are based 

on ego-centric networks. In contrast, the information spreading capacity of network agents 

presented in Chapter 7 are based on the knowledge of complete network i.e. when 

connectivity of all network agents under consideration is known. The insights drawn from 

ego-centric networks are applicable for complete networks in a way that complete networks 

can be converted into a set of ego-centric networks. The predictive models of social 

interactions presented in Chapter 9 are applicable for any large-scale networks such as the 

ones analyzed in Chapter 7 for disaster communications. 
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APPENDIX A  Hurricane Sandy Communication Patterns 

Appendix Table 1 Hurricane Sandy Communication Patterns: Warning Phase 

Topic Warning Phase (words in decreasing order of occurrence probability from left to right) Comment 

W1 model track latest still show gfs run major predict impact Storm 

W2 sandy hurricane data confirm hand beat almost plus intense lend Storm 

W3 image satellite latest show radar nasa see loop view powerful Storm 

W4 cuba hurricane jamaica hit category slam reach 2 strengthen near Storm 

W5 sandy hurricane become might frankenstorm mess plug increase minimize inflatable Storm 

W6 storm surge bring expect lifethreatening predict flood sound graphics li Storm 

W7 make landfall expect even southern posttropical near along jersey early Storm 

W8 storm frankenstorm could winter threaten create become hybrid merge historic Storm 

W9 storm tropical strength jamaica downgrade form cyclone gain weaken regain Storm 

W10 storm northeast region batter noreaster hit across midatlantic plan path Storm 

W11 map crisis google launch interactive track price general current gouge Storm 

W12 see never ive like sleep nywx noaa years anything ht Storm 

W13 sandy hurricane may hit direct arent economy spend 11 viral Storm 

W14 warn storm watch effect florida issue tropical fl huge ts Storm Watch 

W15 hit keep hard areas eye storm hardest noreaster cargo unclear Storm Watch 

W16 video space view show see timelapse station watch international nasa Storm Watch 

W17 center issue national move advisory hurricane toward nature quickly posttropical Storm Watch 

W18 come hurricanesandy together watch crazy back true use ashore prediction Storm Watch 

W19 forecast number advisory track tropical nhc public storm latest cone Storm Watch 
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Appendix Table 1 Hurricane Sandy Communication Patterns: Warning Phase (continued) 

Topic Warning Phase (words in decreasing order of occurrence probability from left to right) Comment 

W20 wind rain bring high heavy strong pick snow style expect Weather Condition 

W21 wind mph move 1 cat 90 sustain 75 mb pressure Weather Condition 

W22 water high level tide feet battery rise park surge record Weather Condition 

W23 go sandy around outside right dangerous nyc inside scary walk Weather Condition 

W24 wind mph gusts report gust gusting sustain arrive far 40 Weather Condition 

W25 miles wind force storm center tropical extend field southeast wide Weather Condition 

W26 pressure force air sandy drop eye low central mb recon Weather Condition 

W27 2 4 1 3 nov 5 hurricanesandy b category yall Weather Condition 

W28 snow noreaster wv report inch blizzard bring fall feet part Weather Condition 

W29 sandy hurricane via review katrina unprepared vulnerabilities solute usgov tragedy Previous Hurricane 

W30 irene worst much could worse case say scenario forecasters bad Previous Hurricane 

W31 sandy hurricane blame john via marriage gay gays preacher badai Storm Cause 

W32 warm list global open center shelter climatechange nyc tonight overnight Storm Cause 

W33 climate change ignore abrupt fuel fossil climatechange silence cause action Storm Cause 
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Appendix Table 1 Hurricane Sandy Communication Patterns: Warning Phase (continued) 

Topic Warning Phase (words in decreasing order of occurrence probability from left to right) Comment 

W34 sandy frankenstorm tip disaster children care preparedness parent kid emotional Preparedness 

W35 prepare residents urge plan hurricane officials arrival sandybattered gary ahead Preparedness 

W36 get ready great try sandy worse serious involve lakes deserve Preparedness 

W37 make sure check neighbor elderly way prepare theyre ready youre Preparedness 

W38 affect thoughts everyone prayers send pray god love go hope User Concern 

W39 im feel worry oh gonna theres lol scar call shit User Concern 

W40 take seriously aim sandy place care action longer americans warn User Concern 

W41 stay safe everyone keep hope please roads inside tune inform User Concern 

W42 sandys impact path destruction potential wake future economic project destructive User Concern 

W43 know need want anyone please let dont call things someone User Concern 

W44 sandy hurricane put risk test hurricanes people really perspective others User Concern 

W45 info visit information check please control important rumor website share User Concern 
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Appendix Table 2  Hurricane Sandy Communication Patterns: Response Phase 

Topic Response Phase (words in decreasing order of occurrence probability from left to right) Comment 

RP1 sandy break say report cnn diesel fuel spill among midnight Gas/Fuel 

RP2 sandy us oil reuters near gasoline ahead cut shut trash Gas/Fuel 

RP3 gas line station fuel ration price shortage wait postsandy gasoline Gas/Fuel 

RP4 food water need supply blanket batteries distribution locations clothe ice Food/Water 

RP5 water flood drink pump bottle dont boil safe enter sewage Food/Water 

RP6 power without million customers still nearly due remain half 7 Power Outage 

RP7 power restore customers company crew utility restoration work workers conedison Power Outage 

RP8 power without millions million least people dead superstorm leave 17 Power Outage 

RP9 phone charge power cell knock tip turn internet mobile battery Power Outage 

RP10 manhattan lower con power dark side part ed edison explosion Power Outage 

RP11 use safety home tip generator generators head hotels safely caution Power Outage 

RP12 nyc sandy black brooklyn blackout dumbo still sandyny bronx dark Power Outage 

RP13 away turn return sandy power grow union home keep set Power Outage 

RP14 go sandy power may get tip extra time today case Power Outage 

RP15 still power cold thousands heat many without house electricity misery Power Outage 

RP16 power outages outage report postsandy widespread lipa utilities linger wout Power Outage 
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Appendix Table 2 Hurricane Sandy Communication Patterns: Response Phase (continued) 

Topic Response Phase (words in decreasing order of occurrence probability from left to right) Comment 

RP17 flight cancel travel due airlines thousands ground cancellations air strand Transportation 

RP18 damage cause view tour survey aerial assess photos travel suffer Transportation 

RP19 nyc subway system transit shut mass mta flood subways ahead Transportation 

RP20 new york city postsandy commuters newyork amid reuters bike walk Transportation 

RP21 service bus subway train mta suspend limit resume line tomorrow Transportation 

RP22 light sandy nyc darkness break stop wait traffic plunge saw Transportation 

RP23 area sandy bay head dc port authority sandydc tristate metro Transportation 

RP24 bridge tunnel close brooklyn open battery holland traffic pm river Transportation 

RP25 station central boat empty photo grand south subway st flood Transportation 

RP26 local officials listen say sandy people roads radio continue could Local Officials 

RP27 emergency state cuomo gov declare governor ahead andrew management massachusetts Local Officials 

RP28 christie gov chris obama governor say nj response praise cuomo Local Officials 

RP29 zone evacuation order evacuations evacuate mandatory areas nyc residents live Evacuation 

RP30 sandy save try liberty statue security die man meet nypd Infrastructure 

RP31 nuclear plant alert power shut creek path declare oyster due Infrastructure 

RP32 nyc flood sandy grind site world center art halt wtc Infrastructure 
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Appendix Table 2 Hurricane Sandy Communication Patterns: Response Phase (continued) 

Topic Response Phase (words in decreasing order of occurrence probability from left to right) Comment 

RP33 leave haiti behind destruction homeless dead trail fear devastation aftermath Deaths 

RP34 people lot many die co write thru video help panic Deaths 

RP35 death toll us rise least deaths canada climb confirm caribbean Deaths 

RP36 state 11 unite across cnn deaths people dc accord 13 Deaths 

RP37 kill caribbean bahamas us 21 hurricane dead leave least pound Deaths 

RP38 hospital evacuate nyu medical patients center fail baby nurse hospitals Hospitals 

RP39 report police people nypd fire brooklyn loot rescue fdny trap Rescue 

RP40 ship rescue miss crew bounty hms sink 14 abandon coast Rescue 

RP41 home fire point queen destroy breezy burn 50 house huge Fire 

RP42 flood streets coastal cause shark expect major severe swim towns Flood 

RP43 city atlantic boardwalk nj acpress citys ac downtown casinos underwater Flood 

RP44 sandy cleanup face clean massive begin clear debris house problem Trees/Debris 

RP45 tree fall man line wire block queen car house home Trees/Debris 

RP46 pet sandypets shelter alert rescue nyc animal animals need hotline Pets/Animals 

RP47 lose help find pet need dog everything cat please friend Pets/Animals 

RP48 sandy hurricane reveal worry life remain crime strand study unplug Crime 

RP49 stock market nyse close trade exchange floor monday us open Stock Market 
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Appendix Table 2 Hurricane Sandy Communication Patterns: Response Phase (continued) 

Topic Response Phase (words in decreasing order of occurrence probability from left to right) Comment 

RP50 fema response obama katrina respond director bush quickly criticize obamas FEMA 

RP51 call fema assistance 911 311 register insurance damage please online FEMA 

RP52 shelter open find rat code zip search apply 43362 4fema FEMA 

RP53 national guard support response assist soldier deploy members stand army National Guard 

RP54 sandy hurrican send aid navy carriers everywher recovery tour htt Navy 

RP55 red cross american donations million relief havoc 1 donate hook American Red cross 

RP56 thank work first responder 1st staff employees great many much First Responders 

RP57 w team supply truck rockaway sandy military load nyers fly Military 

RP58 sandy hurrican cause find h group americans communit aid 99 Community Aid 

RP59 cancel due event monday events google android tuesday class northeas Event Cancellation 

RP60 nyc maratho runners run cancel hotel victims room race enter Event Cancellation 

RP61 mt sandy park hmrd office loc smem box detail suspend Event Cancellation 

RP62 hallowee sandy hurricanesand kid homeless postpon party happy village date Event Cancellation 

RP63 school close public tomorrow monday reopen remain students high tuesday Work/School Closure 

RP64 close due monday tuesday remain dc offices tomorrow washingto mon Work/School Closure 
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Appendix Table 3 Hurricane Sandy Communication Patterns: Recovery Phase 

Topic Recovery Phase (words in decreasing order of occurrence probability from left to right) Comment 

RC1 benefit telethon nbc concert victims springsteen raise bruce relief tonight Disaster Relief 

RC2 sandyaid ows occupy sandyvolunteer occupysandy sandyrelief relief sandyhelp opesr mutualaid Disaster Relief 

RC3 10 donate redcross text 90999 please donation relief help sandyhelp Disaster Relief 

RC4 relief efforts donate fund support effort million raise 1 every Disaster Relief 

RC5 show night sunday late jimmy broadway saturday brooklyn kimmel louis Disaster Relief 

RC6 need sandyaid park st ave church hub volunteer brooklyn sunset Disaster Relief 

RC7 help pls victims donate relief collect please need recover rt Disaster Relief 

RC8 help please word spread affect follow families run charity ask Disaster Relief 

RC9 house offer free victims aid provide fb displace white followback Disaster Relief 

RC10 volunteer help need want sandyaid sandyvolunteer weekend opportunities supply sit Disaster Relief 

RC11 victims help join donate fund support directly portion set dayofgiving Disaster Relief 

RC12 sandy hurricane approach awesome th fundraise boston artistic vi even Disaster Relief 

RC13 disaster relief federal major fema disasters natural romney remember declare Disaster Relief 

RC14 way drive sandy blood help donate donations find fdr 300 Disaster Relief 

RC15 rockaway beach hot meals food emergency far serve response sandyaid Disaster Relief 

RC16 sandy hurricane detail soon ht h around charities make rate Disaster Relief 
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Appendix Table 3 Hurricane Sandy Communication Patterns: Recovery Phase (continued) 

Topic Recovery Phase (words in decreasing order of occurrence probability from left to right) Comment 

RC17 tomorrow today morning open airport newark reopen airports wednesday jfk Recovery 

RC18 help ways survivors best victims visit many impact cash h Recovery 

RC19 recovery efforts begin slow fuel latest anger sandynyc noreaster frustration Recovery 

RC20 please need rt help family heroes victims nj kill parent Recovery 

RC21 claim pay insurance disaster assistance affect extend fema announce tax Recovery 

RC22 sandy hurricane health wake via workers whole towns cut mental Recovery 

RC23 sandy hurricane learn lessons cnn ban full show term frankenstorm Recovery 

RC24 back get full work folks normal finally moon soon place Recovery 

RC25 sandy hurricane via snap htt different stun ball replacement amanda Recovery 

RC26 sandy talk include add recover impact storm go barrier businesses Recovery 

RC27 damage cost billion could estimate cause 50 economic 20 losses Damage/Aftermath 

RC28 sandys aftermath wake wrath fury devastation grease deal commute devastate Damage/Aftermath 

RC29 sandy hurricane fee aftermath weve waive bank many major via Damage/Aftermath 

RC30 storm ever history set us biggest worst largest could record Damage/Aftermath 

RC31 sandy hurricane win sales surprise october knock industry auto entertainment Damage/Aftermath 

RC32 affect hurricanesandy sandy buy help please areas bring hop remind Damage/Aftermath 

RC33 sandy hurricane concern postsandy pick interest piece via expose restaurants Damage/Aftermath 
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Appendix Table 4 Hurricane Sandy Communication Patterns: Locations 

Topic Location (words in decreasing order of occurrence probability from left to right) Comment 

L1 us eastern near across slam strengthen seaboard shut bear coast East Coast 

L2 east coast head toward us brace barrel towards march churn East Coast 

L3 east coast along threaten bear us slam pummel batten coasters East Coast 

L4 ny nj harbor hmrd albany nynews upstate buffalo stone belle NY/NJ 

L5 new york city noreaster sandybattered challenge jersey subways unprecedented bear NY/NJ 

L6 sandy plz flw newtag newyorkcity jerseyshore poise eastcoast england celebrities NY/NJ 

L7 nj ny ct pa state md de va ri due NY/NJ 

L8 new york yorkers yorks newyork reuters citys postsandy yorker divide New York 

L9 via nyc frankenstorm sandy njsandy nysandy hurt wx huffpostgreen hurricanesandy New York 

L10 hurricane sandy special edition ny1 ny1sandy anchor guest fo businessweek New York 

L11 nj hoboken sandy njsandy sandynj newjersey residents sandyabc7 njenviro hall New Jersey 

L12 new jersey york england box pennsylvania po address cope coastline New Jersey 
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Appendix Table 4 Hurricane Sandy Communication Patterns: Locations (continued) 

Topic Location (words in decreasing order of occurrence probability from left to right) Comment 

L13 county town li residents longisland newsday suffolk neward westchester nassau Long Island 

L14 long island beach coney ny surf rhode sand sound lbi Long Island 

L15 island staten statenisland helpsi borough residents forget tanker si body SI 

L16 sandy connecticut malloy ct p old wfsb ctsandy gov welcome Connecticut 

L17 sandy west virginia part already va side norfolk flood vasandy Virginia 

L18 north sandy head nc carolina obx end 12 near ncwx NC 

L19 may wave cape nj crash delaware feet ft south buoy Delaware 

L20 sandy hurricane philadelphia also philly available provide private sandycenpa decide Philadelphia 

L21 sandy ocean city sea maryland pier md photo mdsandy large Maryland 

L22 sandy river story hudson hurricanesandy bank run quote youve low Hudson  

L23 st ave cars c water flood avenue car 14th street Street  
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Appendix Table 5 Hurricane Sandy Communication Patterns: Time 

Topic Time (words in decresing order of occurrence probability from left to right) Comment 

T1 2012 oct 29 30 sex october ksa saudi egypt bahrain Month 

T2 pm tonight 7 6 update 8 et baltimore 9 come Time  

T3 days two sandy say three several could weeks take past Day 

T4 hours 15 hour minutes next 24 ago last sandy 12 Hour 

T5 expect effect move condition lake afternoon wave possible monday tuesday Time 

T6 week last night next could nearly update early year track Time 
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Appendix Table 6 Hurricane Sandy Communication Patterns: Politics, Leaders & Celebrities 

Topic Politics, Leaders & Celebrities (words in decreasing order of occurrence probability from left to right) Comment 

PC1 p2 tcot obama fema gop romney college women govt teaparty President Obama 

PC2 obama sandy america benghazi focus play situation voice room show President Obama 

PC3 obama president barack statement pres speak deliver white brief receive President Obama 

PC4 romney fema mitt romneys would cut rally want talk refuse Mitt Romney 

PC5 sandy hurricane via bill pass clinton canal gowanus mckibben rainbow Bill clinton 

PC6 big sandy storm government say deal powerful capital escape tool Government 

PC7 mayor bloomberg say nyc michael endorse decision city cite yorkers Mayor 

PC8 presidential monitor science election hurricane us christian race key politics US Election 

PC9 twitter sandy hurricane via tweet use man web lie gop US Election 

PC10 us hurricane blow election sandy reuters course loom washington sprint US Election 

PC11 vote poll voters email early displace place allow election2012 site US Election 

PC12 day election sandy us continue give second happen damn 13 US Election 

PC13 storm super perfect handle armageddon could approve rove worry karl Karl Rove 

PC14 jersey shore devastate lindsay lohan star cast devastation tweet celebs Lindsay Lohan 

PC15 sandy hurricane ravage neighborhood northeastern resources 60 lohans digital dina Dina Lohan 

PC16 sandy hurricane survive one hurricanesandy jim cantore farm flash walk Jim Cantore 
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Appendix Table 7 Hurricane Sandy Communication Patterns: News & Media 

Topic News & Media (words in decreasing order of occurrence probability from left to right) Comment 

NM1 build crane nyc collapse manhattan dangle surya suryaray cnn fall CNN 

NM2 time first since los angeles square 1st india real felt LA  Times 

NM3 sandy update well hurricane htt blue sky every nyt ahead Sky News/ NYT 

NM4 business news tech small businesses world money technology manage sport Business News 

NM5 news abc northeast disrupt superstorm us network blog reuters brace ABC News 

NM6 new york daily news newyork superstorm san mail tingookids chronicle Daily Mail 

NM7 news cbs superstorm brace sandys millions add storm recovery googlenews CBS News 

NM8 today usa sandy nyc yesterday bring many come wont earlier USA Today 

NM9 news fox break masdirin world cover top yahoo hurricanes article Fox News 

NM10 post blog washington huffington latest gawker buzzfeed superstormsandy preparations seattle Wash./Huff. Post 

NM11 sandy news bbc life back storm begin us slowly areas BBC News 

NM12 sandy hurricane via stories top teach wsj heartbreaking emerge baldwin WSJ 

NM13 street wall journal occupy plan bear open even monday lead WSJ 

NM14 weather channel service extreme national cold coverage severe meteorologist 1 Weather Channel 

NM15 sandy hurricane economy forbes boost disasterpreparedness sa hurt miketrends special Forbes 

NM16 new york reuters struggle jersey region slam newyork week move Reuters 
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Appendix Table 7 Hurricane Sandy Communication Patterns: News & Media (continued) 

Topic News & Media (words in decreasing order of occurrence probability from left to right) Comment 

NM17 media social youre let know love ok update may line Social Media 

NM18 tell friends family sandy call wo access share internet net Internet 

NM19 photo sandy cover wow amaze shoot magazine gallery credit stun Photo 

NM20 sandy hurricane 5 hit apps emergency app download video mobile Video/App 

NM21 tweet send sandy via message text receive update community relate Tweet 

NM22 sandy hurricane facebook video status use knot topic top disrupt Facebook Status 

NM23 sandy page hurricane facebook see rebuild update fb resource info Facebook page 

NM24 update follow latest account list twitter information safety provide tip Twitter 

NM25 photos picture fake share instagram videos 10 image destruction pics Instagram 

NM26 live update watch brief conference press hold preparations response nycs Live Update 

NM27 live coverage watch stream update tv online broadcast youtube chat Live Coverage 

NM28 sandy report job clean delay result htt could find call Report 

NM29 sandy ask question hurricane answer heres hurricanes starledger reporters hell Report 

NM30 sandy sign report home avoid toronto scam star repair al Report 
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Appendix Table 8 Hurricane Sandy Communication Patterns: Others 

Topic Others (words in decreasing order of occurrence probability from left to right) 

O1 sandy hear tonight work need could together must pull affect 

O2 sandy hurricane start shake already flee season replace resilience soon 

O3 give sandy go ill provide b trump us chance 2 

O4 sandy hurricane via patch lindenhurst picture aol montauk jerseycity babylon 

O5 sandy us hurricane share pls ur thx let use know 

O6 sandy hurricane typhoon philippines hu sontinh wow still approach neward 

O7 sandy hurricane seaside heights tv update film movie production reporter 

O8 sandy continue pic impact see work meet cover shop partner 

O9 sandy go nyc road whats happen start wonder si rd 

O10 sandy hurricane bird arctic via blow unusual cloud appear melt 

O11 dont yet even forget isnt let hey hasnt though get 

O12 sandy hurricane guide despite prove hunker statebystate blog san tmobile 

O13 sandy gt check gtrt hurricane rebuild bar stuff click consider 

O14 sandy hurricane still roll shift ht experience resources rock stress 

O15 sandy hurricane real prep rip video tear rush brian dear 

O16 sandy hurricane via store press apple 25 release un associate 
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Appendix Table 8 Hurricane Sandy Communication Patterns: Others (continued) 

Topic Others (words in decreasing order of occurrence probability from left to right) 

O17 sandy hurricane far strike sandynyc canada helpful thus mostly still 

O18 sandy hurricane via set video htt possible aftermath greenpoint lovely 

O19 think would really like doesnt happen mean seem lot bad 

O20 u r sandy 3 lt follow run n say guy 

O21 cant get sandy stop even better bc make wait believe 

O22 look like heres nothing statebystate youre sound proof ron weatherman 

O23 sandy ppl say still wed hs almost busy free fyi 

O24 sandy hurricane via read frankenstorm haarp must catch engineer book 

O25 one sandy another thing jet place person home face different 

O26 sandy hurricane via tragedy greek ssn allhiphop whatitis humor afta 

O27 sandy good morning yes reason bad expect 5 idea see 

O28 sandy hurricane energy video green bring department truck common solar 

O29 sandy right follow chicago name im devastation fill stick try 

O30 sandy hurricane calm huge th show eerie sweep ahead photos 

O31 superstorm ap sandy cc video wake ras tingookids cj apsuperstorm 

O32 sandy say link hurricanesandy likely thats things theyre many scientists 

O33 sandy hurricane little act bite via every heres fr kindness 
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