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ABSTRACT 

North, Michael A. Ph.D, Purdue University, December, 2016.  Underwater Bonding with 
Polymer Mimics of Mussel Adhesive Proteins.  Major Professor:  Jonathan J. Wilker. 
 

When it comes to underwater adhesion, shellfish are the true experts.  Mussels, 

barnacles, and oysters attach to rocks with apparent ease.  Yet our man-made glues often 

fail miserably when trying to stick in wet environments.  Results described herein focus 

on poly[(3,4-dihydroxystyrene)-co-styrene], a polymer mimic of mussel adhesive 

proteins.  Underwater bonding was examined as a function of several parameters 

including polymer molecular weight and composition.  In doing so, several surprising 

results emerged.  Poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest 

underwater adhesive found to date.  Bonding even exceeded that of the reference 

biological system, live mussels.  Adhesion was also found to be stronger under salt water 

versus deionized water.  Such unexpected findings may contradict earlier proposals in 

which charged amino acids were thought to be key for mussel adhesive function.  Taken 

together, these discoveries are helping us to both understand biological adhesion as well 

as develop new materials with properties not accessed previously.   

Reducing the mussel adhesive proteins to the simplest level revealed exciting 

results for underwater adhesion.  Building off of this success, additional components of 

the mussel adhesive system where selected to be incorporated into the polymer mimic.  

Charged groups have been incorporated into  poly[(3,4-dihydroxystyrene)-co-styrene] 
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before, however, the route was six steps that involved multiple protection/deprotection 

steps.  This synthetic burden has been reduced to three steps with the final step being still 

being optimized for complete deprotection. 

Having achieved significant bonding in underwater environments with poly[(3,4-

dihydroxystyrene)-co-styrene] attempts were made to bring this system out of the 

laboratory and into the real world.  Drawing inspiration from existing commercial 

products in addition to mussels and squids a delivery system was designed and tested 

which would allow for better commercial applicability.  Testing has revealed that 

formulating poly[(3,4-dihydroxystyrene)-co-styrene] for commercial delivery will require 

several hurdles to be overcome and the groundwork has been well established for further 

study.  
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CHAPTER 1.  MUSSEL BIOMIMETIC ADHESIVES  

1.1. Adhesives: The Return to Nature 

Throughout the ages mankind has used adhesives.  The earliest known examples 

of adhesives being used, date back to ~ 200,000 years ago (1), where an adhesive 

composed of tar and pitch was used to stick together two pieces of a rock tool.  Other 

examples using similar adhesives date back to as recent as 2000 years ago from a well 

preserved skeleton in the mountains in Norway (2).  These early adhesives were all 

inspired and made by using naturally available materials (1, 2).  Most modern adhesives 

are synthetically mass produced and are based on chemistries that are not found in natural 

adhesives.  Many of these adhesives are widely successful (e.g., Elmers glue, Super Glue, 

epoxies).  Despite the wide array of adhesives available in the modern world there are 

still many challenges that have yet to be overcome.  One of the largest of which is the 

ability of adhesives to stick underwater. 

Many modern synthetic adhesives are unable to bond in the presence of water.  

This is mainly due to the inability of most adhesives to displace surface bound waters.  In 

order to form strong bonds the first step is to bind strongly to the surface, forming an 

adhesive bond.  It is this step that fails in most adhesives when in the presence of water 

(3).  Often this is due to the chemistry that is at work.  The majority of modern adhesives 

use epoxy/acrylate based chemistry which does not provide the necessary ability to 
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displace water (4).  Despite this shortcoming of synthetic adhesives, nature has been 

using adhesives capable of doing this for eons.  Specifically, in marine organisms, these 

unique organisms have, due to their environment, overcome this challenge. 

Mussels, barnacles, sea slugs, sandcastle worms, and oysters all are capable of 

sticking underwater and accomplish this by using specialized adhesive chemistry (5).  

The most well understood of all of these organisms is the marine mussel.  After extensive 

studies many of the mechanisms that marine mussels use to adhere themselves 

underwater have been elucidated.  The marine mussel sticks by placing down a plaque 

that is connected to soft tissue inside the mussel via a thread as shown in Figure 1.1.  This 

plaque is composed of six different mussel foot proteins (Mfp’s) (6, 7).  While these 

proteins vary drastically from each other in terms of molecular weight and content the 

one thing that they have in common is the presence of a unique amino acid 3,4-

dihydroxypheylalanine (DOPA) (6-9).  This amino acid, Figure 1.1, is rarely found in 

nature and imparts the mussel foot proteins their adhesive properties. 

 

Figure 1.1.  Mussel attached to a glass plate using its plaque system.  Adhesion is due to 
the unique amino acid (shown in red) 3,4-dihydroxyphenylalanine. 
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The proteins contained in the Mfp’s each have a different molecular weights and 

DOPA percentages.  Of the six proteins, Mfp-1 is the only protein not involved directly 

in bonding.  Instead, it forms a protective coating around the other five proteins (6, 7).  

Only three of these proteins are in direct contact with the surface that the mussel is trying 

to bond to.  It is these proteins (Mfp’s-3, -5, and -6) that provide the surface bonding part 

of the mussel system (6, 7).  These three proteins contain the lowest molecular weights of 

the system, varying from 6,000 - 11,000 g/mol.  The DOPA content covers a significant 

range with Mfp-3 and -5 containing 10 - 20% and 30%, respectively (6, 7).  Mfp-6 is the 

outlier of these in that it only has 2% DOPA content.  The low molecular weights of these 

proteins are important because it allows these proteins to wet the surface of the substrates 

and begin to bind strongly.  The other important proteins for adhesion in mussel plaques 

are Mfp-2 and -4.  These two proteins make up the bulk of the mussel plaque and are 

higher molecular weight than the three in contact with the surface.  Mfp-2 and -4 are 

45,000 and 90,000 g/mol, respectively, while their DOPA contents are both between 2-

5% (6, 7).  Mussel foot protein 2 and 4 are especially important because, while Mfp-3, -5, 

and -6 provide surface adhesion, it is the these two that provide the cohesive forces that 

keep the plaques tethered to the mussels.  

These two proteins generate this cohesive force by undergoing cross-linking to 

form a cured adhesive.  The hydroxyl groups of the DOPA (Figure 1.1) are able to 

undergo chemical cross-linking by different mechanisms, mainly redox reactions, 

chelation, and radical bonding (Figure 1.2) (10).  Mussels can utilize iron from their 

surroundings to chelate in a 3:1 catechol:iron ratio (10).  Two electron reductions via 

thiols and amines yield quinones which can covalently bond to metal bound on the 
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surface.  Radicals forming from one electron oxidations can bind to other radicals to form 

covalent bonds between DOPA groups (10). 

 

 

 

The combination of these cross-linking mechanisms plus the adhesive bonds 

formed to the surface is what allows the mussel to adhere to a wide array of surfaces 

underwater, something that many commercial glues are incapable of.  This is why many 

biomimetic systems have used mussels as inspiration for components of their systems. 

 

 

Figure 1.2.  Different mechanisms of mussel protein adhesion.  The left cycle shows 
adhesive bonding, the right cohesive.  Reprinted with permission from Macmillan 

Publishers Ltd: Nature Chemical Biology (2011) 7, 579-580. 
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1.2. Polymer Adhesives: Sticky Solutions 

 

1.2.1.  Nature Inspired Materials 

 Mussel adhesive proteins, while an elegant solution for mussels, are not easily 

used for other situations.  While there are means of forcing mussels to produce glue (11) 

this is still extremely inefficient as the extraction process takes significant time and it is 

estimated that it would take ~10,000 mussels for 1 gram of protein.  This is in addition to 

the fact that mussels have not evolved to form the strongest adhesive possible.  Mussel 

adhesive proteins connect back to the mussel via a thread that is attached to the internal 

organs of the mussel.  If the adhesive were too strong it would damage the internal organs 

of the mussel.  This in combination with the time and effort required to extract any 

significant amount of mussel protein make it easier to consider developing a synthetic 

system that incorporates the desired components of the mussel adhesive protein.   

 In recent years there has been a blossoming of material systems that mimic 

various aspects of mussel adhesive proteins (5, 12-16).  Quite often, synthetic polymers 

substitute for the protein backbone and derivatives of catechol are appended to these 

chains for providing the cross-linking and adhesion chemistry of DOPA (Figure 1.1) (15-

27).  Exciting results have been obtained such as, for example, hydrogels being 

developed with self-healing properties allowing materials to be cut by a knife and then 

joined back together with recovery of materials properties (28).  Dry bonding strengths of 

mussel mimicking polymers have even been able to exceed that of long established 

commercial products including Super Glue (27). While many dry studies have 
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demonstrated the benefits of incorporating mussel adhesive chemistry there are far fewer 

studies that have demonstrated this in underwater environments.   

 Making direct comparisons of adhesion data is often difficult, given variations in 

several parameters including substrate choice, cure conditions, joint type, and testing 

methods.  However, we can gain some context by looking at the strengths prior efforts of 

underwater adhesive systems are obtaining.  Bulk lap shear joints between aluminum 

substrates with charged catechol containing polymers have been reported at 0.35 MPa for 

polyoxetanes and humid conditions with partial drying (22).  When in a coacervate phase 

of a polyanion condensed with Ca2+ cations, strengths up to 1.2 MPa were found (21).  

Neutral catechol-containing polyvinylpyrrolidine applied to wetted glass and then cured 

underwater was at 1.3 MPa (24) and a polyacrylate on wet glass bonded to 1.6 MPa (29).  

Beyond mussel mimicking systems is a “molecular velcro” of a metal complex guest and 

a macrocycle host, each surface grafted onto silicon, yielding up to 1.1 MPa underwater 

(30).  A light cured bispheonol-acrylate adhered aluminum underwater to 1.2 MPa (31).  

There are many ways of incorporating mussel adhesive chemistry but from these prior 

efforts it can be observed that anything > 2 Mpa would be considered quite strong.  

Especially when it is taken into account that improvements in bulk adhesive performance 

are typically gradual.   

1.2.2. The Reductionists Approach 

 In terms of mussel mimicking polymers, the most straightforward one is 

poly[(3,4-dihydroxystyrene)-co-styrene] (Figure 2.1).  Catechol groups pendant from a 

polystyrene host can represent, respectively, the DOPA and polypeptide chains of mussel 
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adhesive proteins (20, 27).  While the styrene imparts many benefits ranging from being 

cheap, having no innate adhesive properties, and due to the similarity to 3,4-

dihydroxystryene which is easily incorporated into a copolymer.  The copolymers can be 

synthesized on gram scales, thereby enabling bulk adhesion testing.  Prior studies have 

shown that poly[(3,4-dihydroxystyrene)-co-styrene] is a quite useful mimic of mussel 

adhesive proteins in terms of dry bulk bonding performance (20, 27).  Dry bonding of the 

polymer is quite appreciable, well into the MPa range for lap shear joints between metal, 

plastic, and wood substrates (20, 27). How well might the dry bonding of this biomimetic 

system transfer to underwater applications?  In terms of polymer composition and 

molecular weight, which derivatives should bring about the highest underwater bonding 

performance?  Looking at the proteins found in a mussel’s adhesive plaque does not 

provide too much help with regard to design since the DOPA content can range from 3% 

to 30% of all amino acids (6).  Molecular weights are as low as 6,000 and as high as 

110,000 grams/mole (7).  Insights into dry bonding with poly[(3,4-dihydroxystyrene)-co-

styrene] revealed that ~33% mole % 3,4-dihydroxystyrene provides optimal adhesion.  

This insight, in addition to the effect of other variables (e.g., molecular weight, 

concentration), has been elucidated by prior studies, in relation to dry bonding, making 

this simple polymer mimic unique among mussel mimicking adhesives (18, 20, 23, 27). 

 Despite the many adhesives mimicking mussels poly[(3,4-dihydroxystyrene)-co-

styrene] is one of the few that has undergone systematic studies of dry adhesion.  Factors 

such as fillers, cross-linking, cure conditions, temperature, and time are often considered 

but only briefly in most mussel mimicking systems.  The systematic study of poly[(3,4-
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dihydroxystyrene)-co-styrene] in addition to the strength, versatility, and availability 

make it an excellent candidate for further study in an underwater environment. 
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CHAPTER 2. ADHESIVE BIOMIMICRY: OUTMUSCLING MARINE MUSSELS 

2.1. Introduction 

To thoroughly explore the adhesion of polymer systems structure-function studies 

are needed.  For poly[(3,4-dihydroxystyrene)-co-styrene] (Figure 2.1), the focus of this 

study, a large number of these studies have been done previously for dry bonding (1-4).  

The conditions found there, however, do not necessarily carry over to underwater 

bonding.  Underwater bonding carries a significantly different set of challenges then dry 

bonding.  The main problem with underwater adhesions is that many synthetic adhesive 

fail due to poor substrate adhesion while their cohesive strength is generally quite strong 

(5).   

 The problems with underwater adhesion can be broken down to two major issues.  

The first is being able to displace the water molecules present (6).  The next is the 

presence of contaminants between adhesive and substrate (5).  Under dry conditions these 

issues are either not as significant (i.e., presence of water) or overcome by pretreatment 

of the surface.  Due to the unique adhesion mechanisms of DOPA (e.g., bidentate H-

bonds, coordination complexes, and metal chelation) which poly[(3,4-dihydroxystyrene)-

co-styrene] is able to take advantage of, these issues for underwater adhesion are partially 

overcome by the materials intrinsic properties.   
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Previously, our laboratory showed that ~33% mole % 3,4-dihydroxystryene 

resulted in optimal dry adhesion (2-4).  While this does not mean it will be optimal for 

underwater it can serve as a good starting point for an underwater adhesions study.  Using 

this as an initial point various studies were undertaken and the resulting adhesion 

measured via lap shear and tensile testing.  Lap shear and tensile testing as methods to 

evaluate adhesion are common methods (7).  Multiple structure-function studies were 

done to optimize adhesion.  The first one was a molecular weight study, followed by a 

ratio study of % 3,4-dihydroxystryene:% styrene.  Once these two were completed 

additional individual studies of cross-linkers, fillers, cure time, salt content and 

concentration studies were completed.  Once these studies were finished the best 

adhesive conditions were chosen and adhesion was measured on a wide array of  

 

 

 

 

Figure 2.1.  Chemical structure of poly[(3,4-dihydroxystyrene)-co-
styrene] with 3,4-dihydroxystyrene shown in gold and styrene in black.  
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substrates.  The data were then compared to multiple commercial adhesives measured on 

the same substrates under our testing conditions both in lap shear and tensile.  The result 

of these studies was an underwater adhesive that, under our testing conditions, is equal to  

or beats all other underwater commercial adhesives tested. 

2.2. Adhesive Polymers, a Sticky Synthesis 

2.2.1. Synthesis Results 

Synthesizing a family of varying poly[(3,4-dihydroxystyrene)-co-styrene] 

polymers was the first step.  The general synthesis is well established (2-4).  The random 

nature of the synthesis allowed for a spread of different % 3,4-dihydroxystryene 

incorporations which was further modified by altering the feeds.  Additionally, a wide 

range of molecular weights (Mw = 23,000 – 97,000 g/mol) with low PDI’s were able to 

be synthesized readily by changing the initiator (n-BuLi) to monomer ratio added in the 

beginning of the polymerization.  Glass transitions done via DSC demonstrated a single 

transition temperature of ~ 89 °C, while this exact temperature changes depended on the 

percent 3,4-dihydroxystryene incorporation and Mw the single transition demonstrates 

that poly[(3,4-dihydroxystyrene)-co-styrene] is a random copolymer.  Two transitions 

would correspond to a block copolymer. 
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2.2.2. General Synthesis Procedures 

The copolymer was synthesized from styrene and 3,4-dimethoxystyrene 

purchased from Sigma Aldrich.  The monomers were purified using an alumina column 

and an extraction process both methods removed the polymerization inhibitors shipped 

with the monomers.  Polymers were synthesized under argon using Schlenk line 

techniques using flame dried glassware.  Characterization of the poly[(3,4-

dimethoxystyrene)-co-styrene] composition was done via 1H NMR using a Varian Inova-

300 MHz spectrometer (Figure 2.2).  Gel permeation chromatography (GPC) with a 

Polymer Laboratories PL-GPCs20 system provided molecular weights.  Glass transition 

temperatures were provided using a Perking Elmer Jade differential scanning calorimeter 

(DSC).   

Deprotection of poly[(3,4-dimethoxystyrene)-co-styrene] was accomplished using 

Schlenk line techniques under argon using flame dried glassware.  Characterization of the 

deprotected polymer was done via 1H NMR demonstrating the removal of the methoxy 

peaks.  Flame testing of the deprotected polymer was also done to verify the absence of 

boron in the polymer. 
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2.2.3 Synthesis of poly[(3,4-dihydroxystyrene)-co-styrene] 

This synthesis is well established (1-4).  Briefly, styrene and 3,4-

dimethoxystyrene are initiated via n-BuLi undergoing an anionic polymerization.  The 

resultant poly[(3,4-dimethoxystyrene)-co-styrene] is reprecipitated three times with 

MeOH to crash out the polymer and DCM to dissolve the polymer (1-4).  After the 

polymer is dried 1H NMR, GPC, and DSC analysis is done to characterize the polymer.  

Removal of the methoxy groups is done using boron tribromide.  After reacting overnight 

the mixture is then quenched with MeOH.  After which, the polymer solution is washed 

with 1% HCl and then the supernate decanted.  This wash procedure is repeated three 

times.  The resulting white solution is then dissolved in acetone and DCM and dried via 

Figure 2.2.  Proton NMR of poly[(3,4-dimethoxystyrene)-co-styrene].   The 
removal of the methoxy peaks in the 3.0 – 4.0 ppm range corresponds to 

successful formation of poly[(3,4-dihydroxystyrene)-co-styrene] 
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rotovap.  Removal of the methoxy peaks is confirmed via 1H NMR spectroscopy and 

residual boron is checked by a flame test with a green flame indicating boron is still 

present. 

2.3. Adhesion Studies 

2.3.1.  Adhesion Methods 

All testing for all the following studies was carried out on an Instron 5544 

Materials Testing System at 2 mm/min with a 2,000 N load cell.  The majority of the 

studies were done in shear with single lap-joint configuration on aluminum following a 

modified version of ASTM D1002 (Figure 2.3) (8).  The exceptions to this are the 

substrate studies and the tensile study.  Tensile studies were done using the ASTM 

D2095 standard method (Figure 2.3) (9).  For all studies five joints was the minimum 

number of trials collected.  All error bars are presented as 90% confidence intervals. 
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Aluminum adherends were cut from type 6061 stock and prepared either by 

mirror polishing with Mibro no. 3 and Mibro no 5. polish or an ASTM D2651-01 method 

for adherend cleaning (10).  Red oak was purchased locally and had a surface roughness 

equivalent to that of sanding with 220 grit sandpaper.  Steel adherends were sanded with 

50 grit sandpaper prior to testing and then washed with ethanol, acetone, and hexanes.  

PVC and PTFE were obtained from Rideout Plastics. 

Artificial seawater was prepared using Marine Environment dual phase formula 

and reverse osmosis water to a final salinity of 35 grams/liter.  Deionized water was 

prepared using a Barnstead Nanopure Infinity Ultrapure water system with a final 

resistivity of 18 MΩ-cm.  All water was prepared immediately prior to use.  Deionized 

Figure 2.3.  Schematics of testing setups for adhesion measurements 
both lap shear and tensile.  Instron Materials testing System loaded 

with bonded aluminum in lap shear configuration 
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water was at pH = 8.0 directly from the purifier and at pH = 7.9 after 24 hours.  The salt 

water was pH = 7.9 at both the beginning and end of the 24 hour experiment periods. 

Derivatives of poly[(3,4-dihydroxystyrene)-co-(styrene)] were dissolved at 0.3 

g/ml in chloroform with 45 μL dispensed onto each completely submerged adherend.  An 

additional 15 μL of chloroform was then deposited.  Another adherend was placed on top 

of the first to form overlap joints of 1.2 cm x 1.2 cm.  The bonds were cured at room 

temperature for 24 hours, completely submerged prior to being removed and tested 

immediately on an Instron 5544 materials testing system.  The maximum force at joint 

failure divided by the overlap area provided the adhesion strength.  Each sample was 

tested a minimum of 5 times and averaged.  

All studies were performed based on the results from the prior study, changing 

only the variable under investigation.  After the initial molecular weight study this served 

as the baseline study from which the others such as the 3,4-dihydroxystyrene, cross-

linker, filler, salt, time, and concentration studies were based.  Generally, each study was 

done with the same polymer. 

2.3.2. Molecular Weight Influence 

Molecular weight can greatly influence adhesion.  Prior studies from our lab have 

demonstrated that increasing molecular weight dramatically enhances adhesion (2, 3).  

Despite this there have been few studies which have done discrete molecular weight 

optimization with regards to bulk adhesion.  Those that do typically consider a narrow 

range.  It only recently that our lab has shown that by considering a broad range of 



   20 

 

 

molecular weights a better handle on the effect of molecular weight on adhesion can be 

grasped. 

There are at least two chains of thoughts when it comes to what is a good 

molecular weight for adhesion.  Strong bonds are formed as a result of two modes of 

bonding i.e. adhesive and cohesive.  Adhesive bonding relates to how well the polymer 

binds to the surface of a substrate while cohesive bonding is the bonding of the polymer 

to itself in the bulk of the sample.  Both of these modes are served by two different 

molecular weights.  Adhesive bonding is generally best with lower molecular weight 

polymers as they are easier to spread out, penetrate, and provide more contact points onto 

substrates.  Cohesive bonding, on the other hand, is better served by larger molecular 

weights due to increased chain entanglement which help the polymer resist failure. 

For studying the effect of molecular weight on underwater bulk adhesion eleven 

polymers were synthesized and their adhesion tested (Table 2.1).  For this study bulk 

adhesion for all polymers was tested a minimum of ten times and the catechol content 

was kept between 27-33%.  Similarly to the previous studies molecular weight played a 

large impact on adhesion.  Adhesion increased with polymer molecular weight achieving 

~ 2.5 MPa with Mw‘s ≈ 84,000 g/mol (Figure 2.4).  The data show that there is effectively 

a plateau around ~ 80,000 Mw.  Above ~ 90,000 Mw adhesion noticeably declined.  This 

is likely due to the higher molecular weights not penetrating the submerged surface as 

well as the slightly lower molecular weights.  While the lower molecular weights result in 

less cohesive failure due to fewer bonds in the bulk material. 
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Table 2.1. Final polymer characterization data for a poly[(3,4-dihydroxystyrene)-co-
(styrene)] copolymer molecular weight study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

final  
3,4-dimethoxystyrene 

content (mole %) 

final  
styrene 
content 

( mole %) 

Mn 
(g/mole) 

 

Mw 
(g/mole) 

 

PDI 
 
 

31 69 16,000 23,000 1.4 

31 69 19,000 30,000 1.6 

33 67 29,000 47,000 1.6 

27 73 37,000 54,000 1.5 

28 72 50,000 67,000 1.3 

29 71 49,000 75,000 1.5 

29 71 52,000 77,000 1.5 

27 73 56,000 79,000 1.4 

27 73 59,000 84,000 1.4 

28 72 63,000 95,000 1.5 

33 67 60,000 97,000 1.6 
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2.3.3. Catechol Content 

Prior studies (2-4) found that dry bulk adhesion was optimized when 3,4-

dihydroxystyrene was ~30 mole % 3,4-dihydroxystryene.  The percent of 3,4-

dihydroxystyrene for optimal adhesion does not necessarily carry over from dry to 

underwater environments.  The presence of water has a large impact on the behavior of 

the polymer.  Despite this these previous data served as a starting point for the above 

molecular weight study.  After finding the ideal molecular weight the percent of 3,4-

dihydroxystyrene required for optimal underwater adhesion was revisited.   

For studying the effect of 3,4-dihydroxystyrene on adhesion nine different 

polymers were obtained (Table 2.2).  For all of these polymers the molecular weight 

(Mw) was held within 76,000 – 97,000 giving a ~ 20,000 g/mole range with the sole 

exception of the 0 % 3,4-dihydroxystyrene point which had a Mw of 101,000 and was 

Figure 2.4.  Molecular weight effect on adhesion in lap shear of 
poly[(3,4-dihydroxystyrene)-co-(styrene)] copolymer. 
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purchased from Sigma Aldrich.  Similarly to the molecular weight study each point was 

tested a minimum of ten times.  The 3,4-dihydroxystyrene content ranged from 0 - 36 %.  

The varied incorporations displayed a significant effect on adhesion (Figure 2.5).  

The lower mole % 3,4-dihydroxystyrene polymers displayed little to no adhesion.  

At 22 % 3,4-dihydroxystyrene was where adhesion peaked.  After the peak adhesion 

decreased a little but plateaued and was still significant.  Above 30 % 3,4-

dihydroxystyrene adhesion was significantly decreased from the peak but still respectable 

at ~ 1.5 MPa (Figure 2.5).  Compared to the optimal dry adhesion composition of ~ 33 % 

3,4-dihydroxystyrene underwater is significantly lower than the ideal composition.  The 

reason for this is presence of water and different substrate interactions.  Lower 3,4-

dihydroxystyrene content might be ideal for displacing water and good cohesive bonding 

while higher contents might be causing the polymer to favor cohesive bonding over 

strong bonds to the surface. 
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Table 2.2. Final poly[(3,4-dihydroxystyrene)-co-(styrene)] polymers used for a 
composition study 

 

 

 

 

 

 

 

 

 

 

 

 

 

final 
3,4-dimethoxystyrene 

content (mole %) 
 

final  
styrene 
content 

( mole %) 

Mn 
(g/mole) 

 

Mw 
(g/mole) 

 

PDI 
 
 

0 100 97,000 101,000 1.0 

17 83 67,000 96,000 1.4 

21 79 63,000 84,000 1.3 

24 76 67,000 97,000 1.4 

27 73 59,000 84,000 1.4 

29 71 52,000 77,000 1.5 

30 70 49,000 75,000 1.5 

33 67 60,000 97,000 1.6 

36 64 53,000 76,000 1.4 

Figure 2.5.  Varied 3,4-dihydroxystyrene effect on adhesion in lap shear 
of the poly[(3,4-dihydroxystyrene)-co-(styrene)] copolymer 
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2.3.4. Cross-linking 

Many commercial adhesives use cross-linking to enhance adhesion.  This same 

strategy for increasing adhesion is found in marine mussels (11-13).  Cross-linking is 

accomplished by a number of different mechanisms.  Typically it involves manipulating 

redox chemistry to form covalent bonds in the bulk material.  Other mechanisms are 

metal coordination, enzyme mechanisms, and hydrogen bonding (14-17).  Many studies 

on new systems use cross-linking chemistry including the prior studies on poly[(3,4-

dihydroxystyrene)-co-(styrene)] (4).  After testing a wide array of cross-linking agents it 

was found that dry adhesion was significantly increased when tetrabutylammonium 

periodate was added in a 1:3 periodate to catechol ratio.  This cross-linking enhanced 

both the cohesive and adhesive bonding of the dry system.   

Similar enhancements were investigated for applicability to underwater 

applications with the prior results serving as a starting point.  The first ratio that was 

tested was the same 1:3 periodate to 3,4-dihydroxystyrene ratio that had demonstrated the 

best adhesion increase.  Quick studies with this revealed that cross-linking was happening 

too rapidly to allow for formation of the lap shear bond.  Using this information the ratio 

was then adjusted to lower ratios.  Three cross-linker to catechol ratios were investigated, 

1:10, 1:50, and 1:100.  Each cross-linker was tested a minimum of five times at each of 

the three different ratios. 

Many different cross-linkers were selected for cross-linking of the polymer 

system underwater.  These cross-linkers had been used previously for dry adhesion 

studies (4).  Some of these cross-linking agents mimic chemistries that are found in the 

mussel.  Mussels contain high concentrations of Fe, Mn, Cu, and Zn all of which are 
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extracted from their surroundings.  Eight different cross-linking agents were explored 

ranging from metal containing to nonmetallic cross-linkers (Figure 2.6). 

  The cross-linkers that contained metal were iron(III) nitrate (FeIII(NO3)3), 

iron(III) acetonylacetonate (FeIII(acac)3), tetrabutylammonium dichromate 

([(C4H9)4N]2CrVI
2O7], and potassium ferrate (K2FeVIO4).  The nonmetallic cross-linkers 

tested were tetrabutylammonium periodate ([(C4H9)4N]IO4), tert-butyl peroxide 

t-BuOOH, cumene hydroperoxide (C6H5C(CH3)2OOH), and methyl ethyl ketone 

peroxide ((H3CCH2COCH2O)2).   

Cross-linking at 1:10 cross-linker to catechol ratio across all eight cross-linking 

agents displayed no increase in adhesion (Figure 2.6-A).  A large decrease in adhesion 

was noted for all cross-linkers except for the two hydroperoxides.  This indicates that the 

cross-linking concentration was too high, as the system preferred cohesive bonding vs. 

adhesive, even at ratios over three times greater than that of the one found for dry 

adhesion.  Diluting the concentration of the cross-linker even further to a 1:50 ratio 

revealed increased adhesion across all cross-linkers (Figure 2.6-B).  Despite this the data 

still showed that cross-linking provides no benefit over the polymer alone system.  

Taking the dilution one step further, to a ratio of 1:100 cross-linker to catechol, revealed 

increased adhesion for most of the cross-linkers (Figure 2.6-C).  This time the peroxides 

uniformly demonstrated higher average adhesion values.  But when 90% confidence 

intervals were taken into account they were not significantly different from the polymer 

alone adhesion.  Taking this into consideration all further studies where done without the 

presence of cross-linking agents. 
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2.3.5. Fillers 

In addition to cross-linking another common way of enhancing polymers is the 

use of fillers to form a composite (18, 19).  Fillers serve as a reinforcing material 

imparting beneficial properties such as higher strength, stiffness or flexibility (20).  The 

presence of fillers however, has significant considerations ranging from polymer filler 

interactions, filler properties (i.e. size, shape, chemical properties), and the amount of 

filler present (21).  Fillers are capable of great enhancements yet due to all the variables 

care must be taken to ensure that they are not a detriment. 

The most common fillers used for adhesives are glass fibers, cellulose fibers, and 

calcium carbonate.  It is these three that were thoroughly investigated here (4).  Others 

such as carbon fibers, laponite, and fumed silica were also briefly examined.  Prior results 

with calcium carbonate showed that optimal adhesion was obtained with 3.5 μm CaCO3 

so the same size was used for this study.  Shorter fiber lengths, less than a mm, have been 

Figure 2.6.  Effect of a variety of cross-linkers on poly[(3,4-dihydroxystyrene)-co-
(styrene)] copolymer at three different ratios. 
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shown in previous systems to provide adhesive gains so these lengths were chosen for 

this study (4).  All fillers were dispensed into the polymer solution via vortexing. 

Due to the differences even a slight difference in filler content can have, a range 

of fillers were studied for three common fillers in wide spread commercial use.  For the 

other fillers the best percentage that had been found for the three commercial fillers was 

tested.    Standard fillers comprised 10 – 50% by weight of the solution.  For these studies 

a range of 2.5 – 30 % was studied.  The higher percentages where attempted but not 

successful due to poor solubility at higher concentrations.   

All three commercial fillers where done with the same polymer and tested a 

minimum of five times.  Adhesion differed greatly between the commercial fillers 

(Figure 2.7).  For the cellulose fibers adhesion was uniformly lower than the polymer 

alone system no matter the weight content.  For the CaCO3 only the 10% filler content 

displayed an average adhesion that was greater than polymer alone.  Yet when 90% 

confidence intervals are considered adhesion is not statistically different.  The glass fibers 

displayed the most uniform results.  All weight percent’s over 5 % glass fibers had a 

higher average adhesion than polymer alone, however, they were not significantly 

different from the polymer alone system.   

Other filler included fumed silica, both hydrophilic & hydrophobic, carbon fibers 

and laponite.  The fumed silica was tested at 10 % by weight and provided no benefit to 

adhesion, like the glass fibers.  The carbon fibers where not soluble in the standard 

polymer solution.  Mean while the laponite also resulted in problems with compatibility 

with the system.  Taking this into consideration all further studies where done without the 

presence of fillers. 
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2.3.6. Salty Times 

From these studies we have shown that adhesion with poly[(3,4-

dihydroxystyrene)-co-(styrene)] can be quite significant yet enhancement of this adhesion 

via cross-linking and fillers has proven to be minimal at best.  These two methodologies 

are the most common ways found in nature and manmade materials for affecting 

adhesion under any environment.  There are other considerations that must be taken into 

account when underwater adhesion is considered by itself, specifically, the role of charge 

and salt. 

Cationic charges within mussel adhesive proteins have been proposed recently to 

aid bonding in salt water (22).  Positively charged amino acids could help outcompete 

surface-bound cations such as sodium, thereby allowing proteins to gain access onto 

mildly anionic surfaces including rocks (22).  In order to address potential roles for 
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Figure 2.7.  The effect of different filler weight percents on 
adhesion with poly[(3,4-dihydroxystyrene)-co-(styrene)]. 
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charges (1, 22) and salts (1, 22-25), we examined the bonding of poly[(3,4-

dhydroxystyrene)28%-co-(styrene)72%] (Mw = 95,000 grams/mole) in deionized water (pH 

= 7.9) and found a value of 0.4 ± 0.1 MPa.  When the same experiment was carried out 

under artificial sea water (pH = 7.9), adhesion was at 1.8 ± 0.2 MPa.  Note that poly[(3,4-

dihydroxystyrene)-co-(styrene)] is a neutral polymer and we might expect improved 

adhesion under deionized versus salt water.  This unexpected finding could be a function 

of the current study using a bulk, macroscopic adhesion method versus prior efforts 

examining interactions on the nanometer scale (22).  Nonetheless, such data indicate that 

disruption of charges atop submerged surfaces may not be of primary importance for 

adhesion in the seas. 

2.3.7. Synthetic Comparisons 

Making direct comparisons of adhesion data is often difficult, given variations in 

several parameters including substrate choice, cure conditions, joint type, and testing 

methods.  In order to provide benchmarking of poly[(3,4-dihydroxystyrene)-co-(styrene)] 

adhesives strength compared to commercial adhesives bonding was carried out with a 

range of commercial glues including common adhesives and specialty materials billed for 

wet applications.  Conditions held constant included quantity of adhesive, cure time, cure 

temperature, substrate, and being applied underwater.  Figure 2.8 provides data showing 

that poly[(3,4-dihydroxystyrene)-co-(styrene)] outperformed every product tested, 

usually by quite significant margins.  Standard adhesives such as Elmer’s Glue-All 

(polyvinyl acetate) and Super Glue (ethylcyanoacrylate) failed to bond at even modest 
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levels, likely a result of not being able to cure underwater or the water inducing curing 

too rapidly to allow interaction with the substrates, respectively. 

For providing a broader context of underwater bonding capability, poly[(3,4-

dihydroxystyrene)-co-(styrene)] adhesion on a range of different substrates was 

compared to the five strongest underwater commercial glues from Figure 2.8.  Table 2.3 

shows that these selected commercial products performed best with polyvinyl chloride, 

etched aluminum, and sanded steel substrates.  On polytetrafluoroethylene (Teflon), 

wood (red oak), and polished aluminum, catechol-polystyrene displayed the highest 

adhesion.  With Teflon, only the biomimetic polymer and a single product provided any 

bonding at all.  For wood, catechol-polystyrene was the single system capable of creating 

a measurable bond underwater.   
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Table 2.3. Comparison of substrates and commercial glues to poly[(3,4-
dihydroxystyrene)-co-(styrene)] in lap shear 

adhesive substrate 

 
polished 

aluminum 
etched 

aluminum

 
sanded steel

 

Wood 
 

PVC 
 

Teflon 
 

Mr. Sticky’s 1.0 ± 0.3 0.2 ± 0.1 0.4 ± 0.1 0 3.0 ± 0.6 0.1 ± 0.1 

Marine Loctite 
epoxy 

0.6 ± 0.3 0 0.2 ± 0.1 0 2.0 ± 0.5 0 

3M Marine 
sealant 

0.20 ± 0.03 0.10 ± 0.02 0.2 ± 0.1 0 1.0 ± 0.3 0 

North Sea Resin 0.3 ± 0.1 0 0.2 ± 0.1 0 0 0 

Gorilla Glue 0.7 ± 0.1 0.4 ± 0.2 0.5 ± 0.1 0 3.0 ± 0.6 0 

Biomimetic 
Polymer 

3.0 ± 0.4 0.2 ± 0.1 0.10 ± 0.02 0.20 ± 0.02 0.4 ± 0.1 0.3 ± 0.1 

Figure 2.8.  Comparison of commercial products to poly[(3,4-
dihydroxystyrene)-co-(styrene)] in lap shear on polished aluminum.
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2.3.8. Natural Comparisons 

A new material that can, at times, outperform established products is quite 

exciting (5, 26-28).  Perhaps even more challenging is direct comparison of a biomimetic 

system against the true biological counterpart.  Very few bio inspired materials are 

capable of duplicating the full extent of the system that begets them.  For poly[(3,4-

dihydroxystyrene)-co-(styrene)] the comparison to live mussels required changing the 

testing methods from lap shear to tensile. 

Live mussels were placed atop sheets of aluminum, polished by the same method 

as for lap shear testing, and allowed to deposit there adhesive.  Using an established 

method and several animals, adhesive plaques were pulled up from the surfaces until 

failure (29).  Average mussel adhesion in this tensile mode was 0.13 ± 0.01 MPa.  For a 

direct comparison, polished aluminum rods were held under salt water and bonded 

together into tensile joints using catechol-polystyrene.  The rods were then pulled apart to 

reveal adhesion at 2.2 ± 0.9 MPa.  This is over a magnitude difference in adhesion 

strength.  One possibility for this difference is that our efforts have been aimed at creating 

the strongest underwater glue possible.  A living mussel, by contrast, need only attach 

strongly enough to deter the forces exerted by waves and predators.  Perhaps such 

differences in end goals can, at least partially, explain how catechol-polystyrene 

outperformed mussel adhesive. 

In order to provide a broader context of the mussel plaque to poly[(3,4-

dihydroxystyrene)-co-(styrene)] comparison the same commercial glues that were tested 

and compared via lap shear in the prior section were repeated in tensile (Figure 2.9).  This 

testing was done under similar conditions of the mussel testing.  A minimum of five tests 



   34 

 

 

where done for each point and the same variables were controlled.  This time, however, 

since the mussel plaques testing procedure calls for three days, curing the tensile tests 

were also allowed to cure for three days before testing. 

As shown in Figure 2.8 poly[(3,4-dihydroxystyrene)-co-(styrene)] outperforms 

the majority of all other commercial adhesives in lap shear.  In tensile, however, unlike 

shear there are two others that are on par with poly[(3,4-dihydroxystyrene)-co-(styrene)] 

Loctite quick set epoxy and Marine Loctite epoxy.  This increase in bonding is likely due 

to the increased cure time of three days.  This also shows that a majority of commercial 

systems are capable of outbonding the native marine mussel but all of the other 

commercial products use synthetic chemistry to adhere.  Given that the commercial glues 

have been around for up to decades, we are excited to report excellent performance for a 

relatively young biomimetic system.   

Being able to outperform the reference biological system in terms of adhesion is 

impressive but the marine mussel is able to stick not only in many environments, as is 

poly[(3,4-dihydroxystyrene)-co-(styrene)], but is also capable of forming a lasting bond.  

Marine mussels are able to bind in place and remain there until they wish to detach.  This 

property is difficult to replicate as water seeps into bond lines and degrades the bond (6, 

30, 31).  In order to gauge how resistant poly[(3,4-dihydroxystyrene)-co-(styrene)] is to 

water influx a time study was carried out. 

To provide comparison to the marine mussel all testing was carried out in salt 

water which was held at the same salinity and pH as saltwater throughout the entire 

testing time.  Each point is a minimum of five trials and was set up in a lap shear 

configuration.  Figure 2.10 shows that poly[(3,4-dihydroxystyrene)-co-(styrene)] is 
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capable of forming a lasting bond.  The adhesion strength peaks after three days and 

plateaus for one week until finally it decreased after two weeks.  Despite this decrease in 

strength the adhesion remains quite high even after three months have passed. 

 

 

 

 

 

 

 

 

 

 

Figure 2.9.  Comparison of commercial products and poly[(3,4-
dihydroxystyrene)-co-(styrene)] to the marine mussel. 
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Figure 2.10.  Adhesion vs. time cured in salt water 
and adhesion measured via lap shear 
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2.4. Concluding Remarks 

 Results presented here show that man-made materials can, indeed, bring about quite 

significant underwater adhesion.  Biomimetic principles are useful for developing 

materials that outperform commercial products and even, surprisingly, a reference 

biological system.  By performing systematic structure-property studies it is revealed that 

the ideal formulation for poly[(3,4-dihydroxystyrene)-co-(styrene)] with regards to 

underwater adhesion is polymer alone without any of the tested additives.  While there 

were some benefits both with cross-linkers and fillers these where not significantly 

different and when combined together into a consensus study actually resulted in lowered 

adhesion. 

 Efforts also demonstrated that poly[(3,4-dihydroxystyrene)-co-(styrene)] is capable 

of outperforming the majority of commercial products available both in lap shear and 

tensile under certain conditions.  Not only that but the bond from poly[(3,4-

dihydroxystyrene)-co-(styrene)] is long lasting, being able to retain significant adhesion 

out to three months.  All of these data demonstrate the versatility of poly[(3,4-

dihydroxystyrene)-co-(styrene)] in being able to not only have significant dry adhesion, 

as demonstrated previously, but also be one of the strongest underwater adhesives tested 

to date.   
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CHAPTER 3. REDESIGNING A BIOMIMETIC POLYMER: A CHARGED ISSUE 

3.1. Introduction 

Reducing mussel adhesive proteins to a simple copolymer system yielded 

outstanding results both in dry and wet adhesion (1-4).  Having explored a variety of 

variables and achieving such high bond strengths the question then becomes how can it 

be further improved?  The first place to look for inspiration is back at the marine mussel 

proteins.  The marine mussel takes advantage of charged amino acids to promote strong 

surface binding but despite this it is still unknown how important the charged amino acids 

are for strong surface bonding. 

Several recent reports have been contributing to our understanding of how 

mussels bond so well.  Catechols have a special ability to drill down through surface-

bound waters for enabling wet attachment.  Having two, adjacent alcohol groups might 

allow for cooperative binding, analogous to an entropic “chelate effect” (5, 6). Hydrogen 

bonding and metal chelation at the substrate appear likely to be contributing surface 

adhesion (5).  Oxidative cross-linking generates cohesive forces (7-9).  Cationic charges 

within mussel adhesive proteins have been proposed recently to aid this bonding in salt 

water (10).  Positively charged amino acids could help outcompete surface-bound cations 

such as sodium, thereby allowing proteins to gain access onto mildly anionic surfaces 

including rocks (10).  The role of salt was addressed in a previous chapter where it was 

revealed that bonding in salt water results in significantly higher adhesion then in 
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deionized water.  Such data indicated that disruption of charges atop submerged surfaces 

may not be of primary importance for adhesion in the seas.  However, in order to address 

the potential for charge to impact underwater adhesion a polymer incorporating charge 

was targeted by synthetic efforts.   

This is not the first time that charge-containing polymers have been targeted by 

our group.  Previously, positively and negatively charged polymers have been made and 

tested.  These polymers displayed adhesion rivaling that of the neutral polymers plus 

better wetting properties (1).  Despite this apparent success these polymers proved to 

have a very large synthetic cost (1).  As seen in Scheme 3.1 the first steps involved the 

protection of the hydroxyl groups and formation of the terminal alkene group via the 

Wittig reaction (1).  After the monomer formation, it was then polymerized forming the 

general backbone of the polymer (1).  In order to insert the positive charge the polymer 

underwent a halide exchange, from chloride to iodide, allowing triethylamine to replace 

the halide group easier at this point.  Then the protecting groups were removed via acid.  

Being six steps and having an overall yield of ~ 20% resulted in a significant expenditure 

of time in solely producing the polymer (Scheme 3.1) (1).  The rest of this chapter details 

synthetic effort to form similarly charged polymers but using fewer steps, providing 

better yields all aimed at lowering the synthetic cost of forming these polymers.   
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3.2. Amine Problem 

The first alternate route to a charged polymer that was explored was using 4-vinyl 

pyridine polymerized with 3,4-dimethoxystyrene and styrene.  The pyridine ring 

maintains the same structure as that found in poly[(3,4-dihydroxystyrene)-co-(styrene)] 

but adds another functional group in the amine that allows for charge incorporation.  This 

monomer due to its similarity is susceptible to the same types of initiation and 

purification as the styrene and 3,4-dimethoxystyrene monomers. 

A range of copolymers incorporating 4-vinylpyridine with styrene or 3,4-

dimethoxystyrene were made in addition to an array of terpolymers of 4-vinyl pyridine 

styrene, and 3,4-dimethoxystyrene (Scheme 3.2).  The general synthesis was modeled 

after the one used previously for poly[(3,4-dihydroxystyrene)-co-(styrene)].  The only 

fundamental difference was that instead of the anionic initiator n-BuLi a radical initiator 

(AIBN) was used.  By varying the feed ratios and the weight percent AIBN a spread of 

different polymers was obtained.  After formation of the polymers the nitrogen on the 

pyridine was methylated using methyl iodide to yield a charged polymer.  At this stage, 

Scheme 3.1.  The chemical scheme for synthesis of cationic polymer via previous 
synthetic methods.  Reprinted with permission from American Chemical Society 

Macromolecules (2011) 44 (13), pp 5085–5088 
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however, the removal of the methoxy groups from the 3,4-dimethoxystyrene proved 

problematic (Scheme 3.2).   

The standard practice in our lab for the removal of methoxy protecting groups is 

using BBr3.  When this was attempted on poly[(N-methyl-4-vinylpyridinium)-co-(3,4-

dimethoxytyrene)] and poly[(N-methyl-4-vinylpyridinium)-co-(3,4-dimethoxystyrene)-

co-(styrene)] it failed to remove the methyl groups of the 3,4-dimethoxystyrene.  This is 

likely due to the positive charge interfering with the mechanism of the BBr3 deprotection 

which utilizes charge in ether cleavage (11).  Methylation was attempted after the 

deprotection but proved to not be feasible because it did not selectively add the methyl 

groups back to the nitrogen and methylated the free hydroxyl groups.   

Alternate routes of removing the methyl groups were attempted including 

deprotection reagents such as TMSI (12), NASEt (13), and Pyr·HCl (12).  All of these 

reagents were used both on poly[(N-methyl-4-vinylpyridinium)-co-(3,4-

dimethoxytyrene)] and poly[(N-methyl-4-vinylpyridinium)-co-(3,4-dimethoxytyrene)-co-

(styrene)].  None of them were successful at removing the methyl groups selectively from 

the aryl ether.  This is again most likely due to the presence of the positive charge in the 

polymer interfering with the mechanism.   
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3.2.1. Bridging the Problem 

Despite the successful formation of a cationic charged polymer with so many 

issues stemming from the removal of the aryl methyl ethers alternative protecting groups 

were investigated.  Another popular protecting group for catecholic chemistry is using a 

methylene bridge between the meta and para positions.  This is easily purchased in the 

form of isosafrole.  Isosafrole is an organic compound derived from safrole.  Isosafrole 

was polymerized using AIBN with 4-vinylpyridine to form the copolymers as well as 

terpolymers also incorporating styrene (Scheme 3.3).   

The deprotection strategies for the bridging methylene group used the same 

reagents as the aryl methyl ethers.  Namely BBr3, TMSI, NaSEt, and Pyr·HCl.  These 

reagents which were previously ineffective when there where two sites to deprotect. Here 

we hoped to be more effective on a single group that was protecting both oxygens.  This 

proved to not be case as none of the reagents used for the removal of methylene bridges 

Scheme 3.2.  Terpolymer synthesis and methylation with 
vinyl pyridine 
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worked for poly[(N-methyl-4-vinylpyridinium)-co-(3,4-dimethoxystyrene)] or poly[(N-

methyl-4-vinylpyridinium)-co-(3,4-dimethoxystyrene)-co-(styrene)].  After the inability 

to remove the methylene bridge was discovered the protecting group was changed to a 

different group more reminiscent of the previous six step synthesis. 

 

 

3.3. Silylation 

The original synthetic scheme (Scheme 3.1) for the cationically charged polymer 

made use of silicon protecting groups, in the form of tert-butyldimethylsilyl groups, to 

form an aryl silyl ether complex (1).  These groups were present throughout the entire 

synthesis until the last step where they were removed with acid (1).  The susceptibility of 

the silyl groups to removal via acid made them a prime target for use as a protecting 

group in a new synthetic scheme.  The charged nature of the polymer does not interfere 

Scheme 3.3.  Terpolymer synthesis and methylation with 
Isosafrole. 
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with the removal of the silyl groups as acid is much less susceptible to interference via 

charge. 

Before this advantageous chemistry could be manipulated the silyl groups must 

first be added.  In the initial incarnation the aryl silyl ethers were added via a straight 

forward silylation followed by a Wittig reaction to form the monomer (1).  However, 

recent literature provided a means to add them more directly (14).  Using 2-methoxy-4-

vinylphenol in the presence of a catalyst (tris(pentaflurophenyl)borane) allowed for the 

silylated monomer to be formed directly by passing the need for the Wittig reaction (1, 

14).  Further shortening of this synthesis was found to be possible in the form of 

vinylbenzyl trimethylammonium chloride.  Due to the already charged nature of this 

monomer it allows two additional steps to be removed from the original synthesis.  This 

brings the hypothetical number of steps needed down to three, the formation of the 

silylated monomer, polymerization and deprotection.   

3.3.1. Synthesis 

 The synthesis of positively charged polymers begins with first silylating 2-

methoxy-4-vinylphenol.  This is done according to the literature methods (14).  Briefly, 

this is done by mixing 2-methoxy-4-vinylphenol with triethylsilane and letting them mix 

for five minutes in air.  After mixing then the catalyst, tris-(pentaflurophenyl)borane, can 

be added slowly.  Addition of too much catalyst causes a dark red color, rapid formation 

of gas and bubbling of the solution.  The solution is then mixed for 10 minutes at room 

temperature in air.  After which it is run through a neutral alumina column with DCM if 
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necessary.  After being run through the column the triethylsilane protected monomer is 

concentrated via a rotovap (Scheme 3.4-A).   

 The polymerization is run under standard Schlenk line conditions with a flame 

dried flask.  In a standard reaction styrene (14.8 mmol), vinylbenzyl trimethylammonium 

chloride (10.3 mmol), and the silylated monomer (8.13 mmol) are combined in DCM 

inside the flame dried flask with the free radical initiator AIBN (0.29 mmol).  These are 

allowed to react at 70 degrees Celsius overnight.  These ratios are subject to change 

depending on what the target polymer is.  The reaction then is worked up by sonicating in 

ethanol and then reprecipitating in ether.  This is repeated three times.  This affords a 

protected charged polymer in a straight forward manner in only two steps (Scheme 3.4-

B).   

 This polymer is confirmed via 1H NMR in DMSO (Figure 3.1).  The silyl 

protecting groups are observed at ~0.95 ppm and 0.51 ppm.  Their presence is in 

agreement with literature values of their location in similar polymers and ensured that the 

catechol groups would be protected (14).  These peaks will also serve as indicators of 

how well any deprotection attempts are as ideally those peaks will disappear and be 

replaced with an –OH peak as shown in Figure 3.2. 
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3.3.2. Deprotection 

The triethylsilane protecting groups allow for a different mechanism of removal 

then previous protection strategies.  In the initial cationic polymer the silyl protecting 

groups were removed with the strong acid HCl.  In this system HCl was enough to allow 

complete removal of the protecting groups.  Using this information the first acid that was 

investigated for the new cationic charged polymer was HCl. 

Unlike the previous system that used tert-butyldimethylsilyl groups which were 

easily removed with HCl the triethylsilyl groups do not get fully removed in the presence 

of concentrated HCl.  While they may not be fully removed after being subjected to 

concentrated acid this does provide indication that the right acid may be capable of 

removing these groups as a peak corresponding to an –OH is observed.   

After this success with concentrated HCl others acids were looked at for the 

deprotection.  The first acid that was investigated was TFA.  This acid is used often for 

Scheme 3.4.  Two step synthesis of a cationic charged polymer.  
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deprotecting silyl groups and has been used by our lab previously for deprotecting tert-

butyldimethylsilyl and tert-butyldiphenylsilyl while forming a peptide (15).  Deprotection 

with TFA was attempted by dissolving the charged terpolymer in EtOH with excess TFA 

and allowed to stir for 24 hours.  This yielded the 1H NMR shown in Figure 3.2.  There is 

a noticeable decline in the 1H NMR signals corresponding to the silyl protecting groups 

but they have not vanished completely.  This is not entirely unexpected as prior results 

with TFA showed that it was only capable of deprotecting ~ 90% of the silyl groups (15).   

Previously this was overcome by incorporating a source of fluorine in the 

deprotection reaction (15).  This takes advantage of the strong bond between Si and F to 

help drive the deprotection to completion.  Prior efforts in our lab made use of this by 

using TBAF to provide the fluorine (15).  In the new charged terpolymer system TBAF 

was tried at first but was not soluble in similar solvents to the polymer and thus was not 

able drive it any closer to full deprotection.  An alternative source of fluorine was found 

in the form of NH4F.  There have been other groups that have used this to drive the 

deprotection reaction to completion and was soluble in the same solvent as the polymer.   

When used in the literature, NH4F is used by itself without acid present, initial 

experiments where done mimicking these conditions.  It was found that NH4F by itself 

was not enough to deprotect the cationic terpolymer.  Building off the labs previous work 

where it took a combination of both the strong acid TFA and TBAF to fully remove the 

silyl protecting groups similar analogous conditions are being explored for the cationic 

terpolymer (15).   
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Figure 3.1.  1H NMR of cationic terpolymer protected with 
triethylsilyl groups. 
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3.4. Concluding Remarks and Future Work 

Initial studies have begun using both TFA and NH4F in solution at the same time.  

Prior results from our lab indicate that this will require careful tuning otherwise it is 

possible to transform the aryl –OH’s to carbonyls forming the quinone instead of the 

catechol due to the basicity of the fluorine.  This was previously controlled by finding the 

right conditions for the deprotection.  Initial studies are aimed at observing the 

deprotection when both TFA and NH4F are present in excess.  Once these initial studies 

have been completed the structure will be confirmed and if needed the ratios adjusted. 

Once the synthesis of the cationic terpolymer is complete adhesion studies will be 

done.  These studies, which will be considering the same variables that were investigated 

poly[(3,4-dihydroxystyrene)-co-styrene], will be exploring how cationic charge effects 

Figure 3.2.  1H NMR of cationic terpolymer with a majority of 
the triethylsilyl groups removed.  
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adhesion.  This will be analyzed for both dry and underwater environments.  The data 

will be compared back to poly[(3,4-dihydroxystyrene)-co-styrene] and will help deepen 

our understanding of what role charges play in underwater adhesion.   
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CHAPTER 4. ADHESIVE DELIVERY: A STICKY SOLUTION 

4.1. Introduction 

Having developed poly[(3,4-dihydroxystyrene)-co-styrene] into an underwater 

adhesive and achieving significant results a further avenue was explored primarily that of 

formulating our adhesive system for commercial delivery.  The biggest challenge to 

commercializing poly[(3,4-dihydroxystyrene)-co-styrene] is that in its current incarnation 

all of the testing and development has been done under controlled laboratory conditions 

(1-4).  While variables such as time, temperature, salinity, can all be varied in the lab the 

one that is harder to emulate is physical application.  Currently, poly[(3,4-

dihydroxystyrene)-co-styrene] is dispensed in solution from a glass syringe, on a 

horizontal surface, using a needle that allows for fine control.  This will not be the case in 

the majority of commercial purposes.  Commercial adhesives typically are either a two 

component system that is mixed just prior to bonding, typically by hand, or a single 

component system.  These commercial products served as one part of the inspiration for 

the design of our own system.  The other main source of inspiration follows the path of 

poly[(3,4-dihydroxystyrene)-co-styrene] itself and is inspired by nature. 

Mussels apply there glue using their foot (5-9) Figure 4.1.  This foot seeks out a 

stable surface that it can lay the plaque upon.  Once the mussel has found a suitable 

surface it extends its foot.  The mechanism by which it is believed that mussels deposit 

the plaque is shown in Figure 4.1.  This mechanism is similar to that of a suction cup in 



   57 

 

 

that it allows for the removal of some debris and water from the site which it is 

depositing the plaque.  Mussels are not the only animal that uses this suction cup 

mechanism underwater.  The other animals well known for this are the squid and octopus. 

Squids tentacles are covered in suckers, these suckers play a valuable role in the 

life of a squid (10).  They can be used to move about or remain in place in addition to 

being part used to hunt and eat other animals.  The suckers are controlled by muscles in 

the tentacles and when stripped down to its most basic form it is that of a suction cup 

(10).  Many groups have mimicked squid suckers for variety of purpose whether it be 

underwater adhesion (11), robotic arm design (12), nano-patterned films (13), or dental 

resins (11).  This mechanism that is found not only in squids but mussels as well served 

in part as inspiration for the design and testing of a delivery system for poly[(3,4-

dihydroxystyrene)-co-styrene].   

 

Figure 4.1.  A mussel laying a plaque using its foot with a schematic of the delivery 
mechanism.  Picture taken by Chelsey Del Grosso. 
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4.2. Material & Preparation 

Dual body syringes were purchased from Pearson, a dental supply company.  

These came in different ratios of volumes either 1:1 or 1:4.  A variety of mixing tips were 

also purchased and explored for use in this system.  The squid suckers and the mussel 

foot mimic used were suction cups purchased from Vacmotion.  A variety of sizes were 

purchased and tested as shown in Figure 4.2.  Additionally, Teflon coated suction cups 

were also purchased from Vacmotion. 

Poly[(3,4-dihydroxystyrene)-co-styrene] was made as previously described.  The 

polymers once prepped were loaded into the dual body syringe by inverting the syringe 

removing the cap and loading the polymer through into one of the barrels of the syringe.  

The other barrel, depending on what was being tested, could be loaded with additional 

solvent, solvent plus cross-linker, or solvent, plus filler.  This same loading strategy was 

applied when using commercial products.  The commercial products already in dual 

barrel  

 

Figure 4.2.  Dual barrel syringe with a variety of suction cups 
and the complete assembly with a suction cup attached. 
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syringes where loaded into the dual barrel syringes that were being tested.  In these cases 

the second body was the second component of the commercial adhesive system. 

4.3. A Sticky Sucker 

Initial testing was carried out with commercial systems in order to conserve 

polymer.  The first commercial product tested was Mr. Sticky’s underwater glue and 

Marine Loctite.  Both of these glues are two component systems that had been tested 

previously as commercial comparisons to poly[(3,4-dihydroxystyrene)-co-styrene].  

These glues were tested with the different suction cups in order to provide information on 

which suction cup was best suited to continue testing with. 

The suction cups were tested by first placing them on the mixing tips as shown in  

Figure 4.2 and then trying to place them on a submerged adherend. This quick test 

automatically resulted in discarding three of the five missing tips for the size was either 

to large or too small and in the case of the red septum the design was not able to produce 

any void space.  This left the clear and the black suctions cups shown in the left in Figure 

4.2.  Of these two the black suction cup was chosen to continue testing with as the pump-

like design allowed for better control of the suction and creation of void space.    

Having identified an appropriate system for testing, delivery of the two 

commercial products were compared to the results obtained previously during the 

poly[(3,4-dihydroxystyrene)-co-styrene] study in addition to using the assembly without 

the suction cup attached on the end as shown in Table 4.1.  Similarly, poly[(3,4-

dihydroxystyrene)29%-co-styrene71%] was also tested with the assembly with and without 

the suction cup present and compared back to previous results.   
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The data show that, unlike previously hypothesized, the suction cup does not 

under any circumstances provide a benefit to adhesion.  In fact the opposite is observed 

that there is a sharp and noticeable decrease in adhesion while using the suction cup with 

both Marine Loctite and the biomimetic polymer having little to no measureable 

adhesion.  This is largely due to material loss in the suction cup.  The material is not 

deposited onto the substrate in a controlled manner.  In an effort to minimize the material 

loss suction cups coated with Teflon were purchased and studied.  These provided no 

noticeable benefit to the deposition of poly[(3,4-dihydroxystyrene)-co-styrene]. 

 

Table 4.1.  Results of the dual barrel syringe assembly with and without the squid 
mimicking suction cup. 

 

 

 

 

 

 Direct delivery With suction cup Without suction cup 

Mr. Stickies 1.0 ± 0.3 0.07 ± 0.04 0.64 ± 0.30 

Marine Loctite 0.6 ± 0.3 - 0.06 ± 5.5E-5

Biomimetic 

Polymer 
1.98 ± 0.33 - 0.33 ± 0.17 
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4.4. Ending Remarks and Future Directions  

Additional issues arose when testing the delivery assembly.  Loading the 

assembly proved challenging when using concentrated solutions.  The poly[(3,4-

dihydroxystyrene)-co-styrene] solutions also were observed to become more concentrated 

over time after being loaded into the assembly requiring mixing prior to use,  Curing of 

the polymer was not observed as such.  The main challenge for testing the delivery 

assembly is that of material loss.  In each test of the assembly there is material lost 

mainly to the mixing tip and the suction cup.  This material loss can be mitigated by 

truncating the tips shown in Figure 4.1, nearer to the syringe body.  This results in a 

thicker stream of polymer being dispensed and only exacerbates the issue of control.  It 

also provides less mixing of poly[(3,4-dihydroxystyrene)-co-styrene] with the contents of 

the second barrel of the syringe and yields lesser results. 

 Further testing of the syringe assembly is ongoing using a substitute for poly[(3,4-

dihydroxystyrene)-co-styrene].  The substitute chosen for poly[(3,4-dihydroxystyrene)-

co-styrene] is high molecular weight polystyrene due to its similar solubility’s and 

properties, namely viscosity.  Advances in the deposition and application technique are 

being made, as well insights into mixing with fillers, and cross-linkers.  Once ideal 

conditions have been found transitioned back to the actual poly[(3,4-dihydroxystyrene)-

co-styrene] system and adhesion test will be carried out and compared back to the 

previously benchmarked performance of this adhesive system. 
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Abstract 

 

When it comes to underwater adhesion, shellfish are the true experts1-3.  Mussels, 

barnacles, and oysters attach themselves to rocks with apparent ease.  Yet our man-

made glues often fail when trying to stick in wet environments.  We are in need of 

biomimetic materials to both understand how bioadhesion works as well as gain 

access to properties not yet available4.  In work describe here a copolymer system, 

poly(catechol-styrene)5,6, was used to mimic mussel adhesive proteins.  Parameters 

such as copolymer composition and molecular weight were examined to determine 

the key aspects of function.  In doing so, findings that are both exciting and 

surprising came to light.  Poly(catechol-styrene) may be the strongest underwater 

adhesive found to date, with performance exceeding that of established commercial 

products.  Bonding even surpassed that of the reference biological system, live 

mussels.  Adhesion was found to be stronger in salt water than deionized water.  

Such an unexpected result may contradict a proposal in which charged amino acids 

are thought to be key for the sticking of mussel proteins7.  Taken together, these 

discoveries are providing insights on the function of biological systems in addition to 

creating new high performance materials.  
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 Underwater adhesion presents several technical challenges1.  When applied to 

submerged substrates, glues interact with water prior to forming adhesive bonds atop the 

surface or cohesive bonds within the bulk.  Although man-made adhesives do not work 

well underwater, nature has been addressing such design constraints for eons.  A trip to 

the beach will show rocks covered by organisms including oysters, barnacles, sea grasses, 

and tube worms, each sticking with adhesives1-3.  The common blue mussel (Mytilus 

edulis) has gained a measure of fame by being the role model for our understanding of 

wet bonding (Fig. 1)1-3.  This shellfish attaches upon depositing a mixture of proteins 

containing an atypical amino acid, 3,4-dihydroxyphenylalanine (DOPA) (Fig. 1)1-3.  

Cross-linking of these proteins generates cured glue.  Despite such insights, we still do 

not understand how this system can work so well in an environment that tends to be 

particularly harsh toward adhesion.  Furthermore, we have not yet been able to take what 

we have learned from biology and transition this knowledge into fully functioning 

biomimetic materials4.   

 

 In recent years there has been a blossoming of material systems that mimic various 

aspects of mussel adhesive proteins1-3,8-10.  Quite often synthetic polymers are used to 

substitute for the protein backbone and derivatives of catechol are appended to these 

chains for providing the cross-linking and adhesion chemistry of DOPA (Fig. 1)5-7,9-18.  

Notable findings have included hydrogels being developed with self-healing19.  In terms 

of adhesion, dry bonding strengths of mussel mimicking polymers have been able to 

exceed that of long established commercial products including Super Glue5. Despite these 

advances, we are still lacking high strength bonding with synthetic materials when used 
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underwater.  We have also not developed much context for the performance of 

biomimetic materials in comparison to the biological counterparts.  In work described 

here, a polymer system is shown to bond underwater with high strengths in bulk 

applications.  Several aspects of polymer design were explored and, in the end, 

underwater bonding exceeded that achievable by the animals after which this material 

was modeled. In many regards the findings are surprising and serve to influence our 

understanding of how biology achieves underwater adhesion.   

 

 Prior studies have shown that the random copolymer poly[(3,4-dihydroxystyrene)-

co-styrene] (“poly(catechol-styrene)”) is a useful mimic of mussel adhesive proteins in 

terms of dry bonding performance (Fig. 1)5,6.  Catechol groups pendant from a 

polystyrene host can represent, respectively, DOPA distributed throughout the 

polypeptide chains of mussel adhesive proteins5,6.  The copolymers were synthesized on 

gram scales, thereby enabling bulk adhesion testing.  Dry bonding of the polymer was 

appreciable, well into the Megapascal (MPa) range for lap shear joints between metal, 

plastic, and wood substrates5,6. How well might the dry bonding of this biomimetic 

system transfer to underwater applications?  In terms of polymer composition and 

molecular weight, which derivatives should bring about the highest underwater bonding 

performance?  Looking at the proteins found in a mussel’s adhesive plaque does not 

provide too much help with regard to design.  The DOPA content can range from 3% to 

30% of all amino acids20.  Molecular weights are as low as 6,000 and as high as 110,000 

grams/mole21.  

 

68



 
 

 In order to explore underwater adhesion, a logical starting point was a polymer of 

~33% 3,4-dihydroxystyrene and ~67% styrene, given prior data on the poly[(3,4-

dihydroxystyrene)33%-co-(styrene)67%] composition yielding maximum dry adhesion6.  

Molecular weight can have a major impact upon adhesion, with shorter chains providing 

surface wetting, yet longer molecules being best at bringing about polymer-polymer 

interactions for cohesion16,22,23.  Poly(catechol-styrene) of several different molecular 

weights was made here by changing the ratio of n-butyl lithium polymerization initiator 

to monomers in the reaction feed (Extended Data Table 1).  The catechol content of these 

polymers was held between 27% and 33% (Extended Data Table 1).   

 

 To test underwater bonding, polished aluminum substrates were submerged into a 

tank of artificial sea water (Fig. 1).  Poly(catechol-styrene) was dissolved into chloroform 

and the solution deposited onto a substrate.  The choice of chloroform was dictated by 

needing a solvent denser than water such that the adhesive formulation did not float up 

and off the substrate.  A second piece of aluminum was then placed atop the first to create 

a lap shear joint.  After addition of a weight to hold the substrates together during a cure 

period, the assembly was removed from the tank and pulled apart immediately by a 

materials testing system to quantify bonding.  Maximum force at failure was divided by 

substrate overlap area to provide adhesion values (in MPa).  Data in Fig. 2a show a strong 

dependence of adhesion upon polymer molecular weight.  Performance peaked at 

~85,000 grams/mole.  This point is likely where surface adhesive and bulk cohesive  
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forces achieve an optimal balance.  Analogous data for dry bonding differ somewhat, 

with no obvious peak and increasing molecular weights correlating to higher adhesion 

even over 100,000 grams/mole 16.   

 

 The degree of cross-linking can also sway an adhesive-cohesive balance.  Oxidized 

catechols (i.e., semiquinone or quinone) bring about cross-linking to generate cohesive 

bonds within the material11,24.  However, it is the reduced form of the DOPA catechol 

ring that is responsible for surface adhesive contacts3.  Consequently, the amount of 

catechol within the polymer will influence overall adhesion.  Figure 2b presents a study 

in which several poly(catechol-styrene) derivatives were made, each with differing 

amounts of the catechol-containing 3,4-dihydroxystrene monomer (Extended Data Table 

2).  Polymer molecular weights were maintained at 75,000 - 101,000 grams/mole in 

keeping with the results from Fig. 2a for optimal bonding.  Maximum underwater 

adhesion was found with a polymer of ~22% 3,4-dihydroxystyrene and ~78% styrene 

(Fig. 2b).  Here, too, results for underwater bonding differed somewhat versus dry 

conditions, which maximized at ~33% 3,4-dihydroxystyrene and ~67% styrene6. 

 

 Making comparisons between adhesion data is often difficult, given variations in 

several parameters including substrate choice, cure conditions, joint type, and testing 

methods.  However, we can gain some context for how poly(catechol-styrene) compares 

to prior efforts.  Bulk lap shear joints between aluminum substrates with charged 

catechol-containing polymers have been reported at 0.35 MPa for polyoxetanes in humid 

conditions with partial drying15.  When in a coacervate phase of a polyanion condensed 
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with Ca2+ cations, strengths up to 1.2 MPa were found14.  Neutral catechol-containing 

polyvinylpyrrolidone applied to wetted glass and then cured underwater was at 1.3 MPa17 

and a polyacrylate between wet glass bonded at 1.6 MPa25.  Beyond mussel mimicking 

systems is a metal complex guest and macrocycle host, each surface grafted onto silicon, 

yielding up to 1.1 MPa underwater26.  A light cured bisphenol-acrylate adhered aluminum 

underwater at 1.2 MPa27.  Improvements in bulk adhesive performance are typically 

gradual, with a factor of 2X enhancement being quite significant.  With strengths up to 

~3 MPa, bulk underwater adhesion with poly(catechol-styrene) was quite appreciable.   

 

 In order to provide benchmarks for direct comparisons, bonding was carried out 

with a range of commercial glues including common adhesives and specialty materials 

billed for wet applications.  All glues were applied underwater with constant conditions 

including quantity of adhesive, cure time, cure temperature, and substrate type.  Figure 3 

provides data indicating that poly(catechol-styrene) outperformed every product tested, 

usually by quite large margins.  Standard adhesives such as Elmer’s Glue-All (polyvinyl 

acetate) and Super Glue (ethyl cyanoacrylate) failed to bond at even modest levels, likely 

a result of not being able to cure underwater or the water inducing curing too rapidly to 

allow interaction with the substrates, respectively.  We now have what appears to be the 

strongest underwater adhesive reported to date. 

 

 For providing a broader context of underwater bonding capability, poly(catechol-

styrene) adhesion on a range of different substrates was compared to some of the 

strongest commercial glues from Fig. 3.  Extended Data Table 3 shows that these selected 
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commercial products performed best with polyvinyl chloride (PVC), etched aluminum, 

and sanded steel substrates.  On polytetrafluoroethylene (Teflon), wood (red oak), and 

polished aluminum, poly(catechol-styrene) displayed the highest adhesion.  With Teflon, 

only the biomimetic polymer and a single commercial product provided any bonding at 

all.  For wood, poly(catechol-styrene) was the single system capable of creating a 

measurable bond underwater.  Given that the commercial glues have been around for up 

to decades, we are excited to report superior performance for a relatively young 

biomimetic system.   

 

 A new material that can, at times, outperform established products is quite 

exciting4.  Perhaps even more challenging is direct comparison of a biomimetic system 

against the true biological counterpart.  Live mussels (Fig. 4a) were placed atop sheets of 

polished aluminum for deposition of their adhesive.  Using an established method (Fig. 

4b) and several animals, adhesive plaques were pulled up from the surfaces until 

failure28.  Average mussel adhesion in this tensile mode was 0.13 ± 0.01 MPa.  For a 

direct comparison, polished aluminum rods were held under salt water and then bonded 

together into tensile joints using poly(catechol-styrene) (Fig. 4c).  The rods were pulled 

apart (Fig. 4d) to reveal bonding at 2.2 ± 0.9 MPa, a 17-fold increase over the animal’s 

adhesion.   

 

 Synthetic systems can mimic nature, but seldom outperform biological materials.  

Despite a large degree of effort, biomimetic properties similar to, for example, sea shells, 

bone, or wood have not yet been achieved4.  Our work described here has been aimed at 
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creating the strongest underwater glue possible.  A living mussel, by contrast, need only 

attach strongly enough to deter the forces exerted by waves and predators.  Perhaps such 

differences in end goals can, at least partially, explain how poly(catechol-styrene) 

outperformed mussel adhesive. 

 

 Several recent reports have been contributing to our understanding of how mussels 

bond to rocks so well.  Catechols may have a special ability to drill down through 

surface-bound waters for enabling wet attachment.  Having two, adjacent alcohol groups 

might allow for cooperative binding, analogous to an entropic “chelate effect”29. 

Hydrogen bonding and metal chelation at the substrate appear likely to be contributing 

surface adhesion29.  Oxidative cross-linking generates cohesive forces2,24,30.  Cationic 

charges within mussel adhesive proteins have been proposed recently to aid this bonding 

in salt water7.  Positively charged amino acids could help outcompete surface-bound 

cations such as sodium, thereby allowing proteins to gain access onto mildly anionic 

surfaces including rocks7.  In order to address potential roles for charges7,12 and 

salts7,12,18,19,27, we examined the bonding of poly[(3,4-dihydroxystyrene)28%-co-

(styrene)72%] (Mw = 95,000 grams/mole) in deionized water (pH = 7.9) and found a value 

of 0.4 ± 0.1 MPa.  When the same experiment was carried out under artificial sea water 

(pH = 7.9), adhesion was at 1.8 ± 0.2 MPa.  Note that poly(catechol-styrene) is a neutral 

polymer and we might expect improved adhesion under deionized versus salt water.  This 

unexpected finding could be a function of the current study using a bulk, macroscopic  
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adhesion method versus prior efforts examining interactions on the nanometer scale7.  

Nonetheless, such data indicate that disruption of charges atop submerged surfaces may 

not be of primary importance for adhesion in the seas.   

 

 Results presented here show that man-made materials can, indeed, bring about quite 

significant underwater adhesion.  A biomimetic copolymer yielded the strongest 

underwater bonding found to date.  Furthermore, in a rare instance of biomimetics, this 

synthetic system outperformed the reference biological counterpart.  Such findings are 

helping to reveal how mussels manage attachment within their salty environment.  

Shellfish, the true masters of wet bonding, continue to teach us the secrets of adhesion.  
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Figure 1.  Underwater bonding of a marine mussel and poly(catechol-styrene).  The 

structure of 3,4-dihydroxyphenylalanine (DOPA) in a protein and poly[(3,4-

dimethoxystyrene)-co-(styrene)] are shown.  The mussel is attached to a piece of 

aluminum.  The polymer is forming a lap shear joint between two aluminum substrates.  

Catechol-containing components are highlighted in yellow.   
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Figure 2.  Polymer influences upon underwater bonding.  a) Adhesion as a function of 

molecular weight for poly(catechol-styrene).  b) Changes in adhesion with varying 

catechol content of the polymers. 
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Figure 3.  Underwater bonding of poly(catechol-styrene) compared to commercial 

products.  Lap shear joints were made between polished aluminum substrates.  
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Figure 4.  Comparing the adhesion of live mussels and a biomimetic system.  

A)   Mussels seen depositing adhesive plaques onto the side of an aquarium tank as well 

as upon each other.  B)  Testing the adhesion strength of mussel adhesive.  The inset 

shows how grips pull up on the thread while the adhesive plaque is bound to the 

substrate.  C)  Aluminum rods held underwater and bonded together in a tensile joint with 

poly(catechol-styrene).  D)  Measuring adhesion after an underwater cure.  The substrates 

were first underwater, poly(catechol-styrene) was applied, both substrates were joined 

together, and the assembly cured for 72 hours.  The joint was then removed from the 

water for immediate testing.   
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Methods 

 

Polymer synthesis  

The poly[(3,4-dimethoxystyrene)-co-(styrene)] precursor copolymers were 

synthesized using a prior method 6.  Briefly, styrene, 3,4-dimethoxystyrene and toluene 

were combined in a flame-dried Schlenk flask.  The flask was then cooled in a dry 

ice/isopropanol bath.  After 10 minutes, n-butyl lithium was added to initiate 

polymerization.  The reaction mixture was kept on dry ice for 8 hours and then allowed to 

warm up to room temperature gradually.  After 24 hours of total time, the reaction was 

quenched and the polymer precipitated by addition of methanol.  The polymer was 

redissolved into chloroform and then reprecipitated with methanol.  This purification 

procedure was repeated three times.  The polymer was dried via rotary evaporator and 

placed under vacuum overnight.  

 

Polymer deprotection  

Poly[(3,4-dimethoxystyrene)-co-(styrene)] was converted to poly[(3,4-

dihydroxystyrene)-co-(styrene)] by dissolving the former into dichloromethane in a 

flame-dried Schlenk flask 6.  The flask was placed into an ice bath for 10 minutes after 

which boron tribromide was added.  This reaction proceeded overnight, was quenched 

with methanol, and allowed to stir for 15 minutes.  The mixture was then poured into 1% 

hydrochloric acid and stirred for 15 minutes.  After being allowed to settle, the excess 

hydrochloric acid was decanted.  This procedure was repeated 3 times.  The solid was 
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dissolved into dichloromethane and acetone then dried via rotary evaporator.    The final 

white solid was placed under vacuum overnight. 
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Polymer characterization 

 Polymers were characterized primarily with proton nuclear magnetic resonance 

(1H NMR) spectroscopy and gel permeation chromatography (GPC).  The 1H NMR 

spectra were recorded on a Varian Inova-300 MHz spectrometer and provided 

compositions.  Gel permeation chromatography was performed in THF mobile phase on a 

Polymer Laboratories PLC-GPC20 to yield molecular weights (Mn and Mw) and 

polydispersity indices (PDI’s).  

 

Water preparation 

Artificial sea water was prepared using Marine Environment dual phase formula 

and reverse osmosis water to a final salinity of 35 grams/liter.  Deionized water was 

prepared using a Barnstead Nanopure Infinity Ultrapure water system with a final 

resistivity of 18 MΩ-cm.  All water was prepared immediately prior to use.  Deionized 

water was at pH = 8.0 directly from the purifier and at pH = 7.9 after 24 hours.  The salt 

water was pH = 7.9 at both the beginning and end of the 24 hour experimental periods. 

 

Lap shear adhesion testing 

Lap shear adhesive bonding was carried out with a modified version 6 of the 

ASTM D1002 standard method 31.  Derivatives of poly[(3,4-dihydroxystyrene)-co-

(styrene)] were dissolved at 0.3 g/ml in chloroform with 45 μL dispensed onto each 

completely submerged substrate.  An additional 15 μL of chloroform was then deposited.  

Another substrate was placed on top of the first to form a lap shear joint of 1.2 cm x 1.2 

cm.  The bonds were cured at room temperature for 24 hours, completely submerged.  
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Samples were then removed from the water and measured immediately on an Instron 

5544 materials testing system.  Measurements used a 2,000 N load cell and a crosshead 

speed of 2 mm/min.  The maximum force at joint failure divided by the overlap area 

provided the adhesion strength.  Each sample was tested a minimum of 5 times and 

averaged. The molecular weight and catechol percent graphs of Figure 2 show averages 

of 10 samples.  Error bars indicate 90% confidence intervals. 

 

Preparation of Substrates 

 Substrates were fabricated by methods described previously 5,6.  Briefly, 

aluminum, type 6061 T6, was purchased and prepared either by mirror polishing with 

Mibro no. 3 and Mibro no. 5. polish or an ASTM D2651-01 method for adherend 

cleaning 32.  Red oak was purchased locally and had a surface roughness equivalent to 

that of treatment with 220 grit sandpaper.  Steel adherends were sanded with 50 grit 

sandpaper prior to testing and then washed with ethanol, acetone, and hexanes.  Teflon 

(PTFE) and PVC were obtained from Rideout Plastics. 

 

Testing of commercial adhesives  

Eleven different commercial glues were tested underwater using similar 

conditions to poly[(3,4-dihydroxystyrene)-co-(styrene)].  Each product was measured 5 

times using a mass of 13.5 mg to match the mass of poly[(3,4-dihydroxystyrene)-co-

(styrene)] in each trial (0.3 g/ml and 45 μL).  Drying experiments noted no significant 

loss of mass or solvent from any of the commercial glues.  Samples were cured for 24 

hours while underwater and then tested immediately. 
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Animal handling 

Blue mussels (Mytilus edulis) were maintained in an aquarium system described 

previously 28, with growth conditions of 4 °C, 35 grams/liter salinity, and constant 

aeration.  Each mussel was held in place with a rubber band on one 10 x 10 cm polished 

aluminum panel. The adhesive plaques of nine adult mussels were examined. 

 

Live mussel adhesion data collection 

Removal force was collected on an Instron 5544 materials testing system. 

Adhesion testing was carried out three days after placement of mussels and panels into 

the aquarium. Three separate trials were conducted whereby a total of 9 animals were 

examined to yield 48 plaques. Adhesion measurements were all averaged per animal. 

These average values per animal were then averaged to get an overall mean adhesion 

measurement. This method minimizes the effect of one shellfish biasing data too much by 

providing a different number of plaques as well as particularly weak or strong bonding.  

 

Tensile adhesion testing of polymers 

Polished aluminum rods of 1.5 cm diameter were completely submerged 

underwater.  Poly[(3,4-dihydroxystyrene)-co-(styrene)], 45 μL at 0.3 g/mL in chloroform, 

was applied to one adherend and overlapped with the second rod.  These joint assemblies 

cured for 3 days underwater in order to mimic conditions of the live mussel testing.  Ten 

samples were measured and averaged.  The error provided is a 90% confidence interval.   
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Extended Data Table 1. Polymer synthesis and characterization data for the 

molecular weight study 

 

Extended Data Table 2. Polymer synthesis and characterization data for the 

polymer composition study 

 

Extended Data Table 3. Underwater adhesion of poly(catechol-styrene) compared 

to commercial glues on several substrates 
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Extended Data Table 1.  Polymer synthesis and characterization data for the molecular 

weight study.  These polymers were used for the experiments in Figure 2a. 

 
 

feed final polymer 

 

       

3,4-dimethoxystyrene 
feed (mole %) 

styrene feed 
(mole %) 

 

final 3,4-
dimethoxystyrene 
content (mole %) 

final styrene 
content 

( mole %) 

Mn 
(g/mole) 

 

Mw 
(g/mole) 

 

PDI 
 
 

       

       

41 59 31 69 16,000 23,000 1.4 

41 59 31 69 19,000 30,000 1.6 

41 59 33 67 29,000 47,000 1.6 

40 60 27 73 37,000 54,000 1.5 

40 60 28 72 50,000 67,000 1.3 

42 58 29 71 49,000 75,000 1.5 

40 60 29 71 52,000 77,000 1.5 

45 55 27 73 56,000 79,000 1.4 

40 60 27 73 59,000 84,000 1.4 

40 60 28 72 63,000 95,000 1.5 

30 70 33 67 60,000 97,000 1.6 
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1) This polymer was purchased from Sigma-Aldrich. 

Extended Data Table 2.  Polymer synthesis and characterization data for the polymer 

composition study.  These polymers were used for the composition data in Figure 2b. 

 
 

feed final polymer 

 

       

3,4-dimethoxystyrene 
feed (mole %) 

 

styrene feed 
(mole %) 

 

final 3,4-
dimethoxystyrene 
content (mole %) 

final styrene 
content 

(mole %) 

Mn 
(g/mole) 

 

Mw 
(g/mole) 

 

PDI 
 
 

    

    

n/a(1) n/a(1) 0 100 97,000 101,000 1.0 

16 84 17 83 67,000 96,000 1.4 

30 70 21 79 63,000 84,000 1.3 

41 59 24 76 67,000 97,000 1.4 

40 60 27 73 59,000 84,000 1.4 

40 60 29 71 52,000 77,000 1.5 

42 58 30 70 49,000 75,000 1.5 

30 70 33 67 60,000 97,000 1.6 

40 60 36 64 53,000 76,000 1.4 
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Extended Data Table 3.  Underwater adhesion of poly(catechol-styrene) benchmarked 

against commercial glues.  Lap shear joints between several substrate types were examined. 

 

 

adhesive substrate 

 

   

 
polished 

aluminum 
etched 

aluminum 
sanded steel 

 
Wood 

 
PVC 

 
Teflon 

 
   

   

 
Mr. Sticky’s 

(epoxy) 
 
 

1.0 ± 0.3 
 
 

0.2 ± 0.1 
 
 

0.4 ± 0.1 
 
 

0 
 
 

3.0 ± 0.6 
 

 

0.1 ± 0.1 
 
 

Marine Loctite Epoxy 
 
 

0.6 ± 0.3 
 
 

0 
 
 

0.2 ± 0.1 
 
 

0 
 
 

2.0 ± 0.5 
 
 

0 
 
 

3M Marine Sealant 
(urethane) 

 

0.20 ± 0.03 
 
 

0.10 ± 0.02 
 
 

0.2 ± 0.1 
 
 

0 
 
 

1.0 ± 0.3 
 

0 
 

North Sea Resin 
(acrylate) 

 

0.3 ± 0.1 
 
 

0 
 
 

0.2 ± 0.1 
 
 

0 
 
 

0 
 
 

0 
 
 

Gorilla Glue 
(urethane) 

 

0.7 ± 0.1 
 
 

0.4 ± 0.2 
 
 

0.5 ± 0.1 
 
 

0 
 
 

3.0 ± 0.6 
 
 

0 
 
 

Biomimetic polymer 
 

3.0 ± 0.4 
 

0.2 ± 0.1 
 

0.10 ± 0.02 
 

0.20 ± 0.02 
 

0.4 ± 0.1 
 

0.3 ± 0.1 
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