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ABSTRACT 

Abotalib, Mohammad. Ph.D., Purdue University, December 2016. Sustainability 
Assessment of Large-scale Carbon Capture and Sequestration Deployment Outside the 
System Boundaries – Opportunities and Challenges. Major Professors: Fu Zhao and 
Larry Nies. 
 
 

Most power generation in the United States is derived from the combustion of 

fossil fuels, primarily coal and natural gas. As a result, greenhouse gases (GHGs) are 

generated, and they act to trap radiant heat from the Earth. When GHGs are discussed, 

attention is usually concentrated on carbon dioxide (CO2) because it is believed to be the 

most manageable anthropogenic GHG. Therefore, introducing new technologies, 

primarily those which deal with CO2 capture and storage, is seen as a potential option for 

managing GHGs. Oil and gas reservoirs, saline formations, and un-mineable coal beds 

are examples of underground CO2 storage sites. In the United States, it has been 

estimated that these sites together have the potential capacity to store the country’s CO2 

emissions for the next 500 years. For this reason, carbon capture and sequestration (CCS) 

has become a very attractive approach by several industries, including the coal-fired 

power industry, to reduce their GHG emissions. However, the implementation of CCS on 

a broad scale will require an enormous input of resources and energy, which will be used 

during the CCS production, installation, and operation phases. The eventual result of this 

implementation will be an increased demand for fuel, which in turn will lead to further 
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mining activities to provide the additional energy required. Input materials such as 

pipelines, water, and chemicals are also required throughout the technology’s life cycle. 

According to the literature, CCS with a post-capture system reduces the total CO2-

equivalent (CO2-e) emissions of a coal power plant by 65% to 87%. The magnitude of 

this reduction depends on the study boundaries that are considered in the life-cycle 

assessment (LCA), and on other parameters considered in the study, such as the plant’s 

power-generation thermal efficiency and capacity, fuel type, raw material transportation 

method, distance to power plants, distance to storage sites, and depth of storage sites. 

This dissertation address this issue and uses the LCA harmonization approach 

with the aim of reducing the variability observed in the published literature, particularly, 

for amine-based post- combustion CCS technologies on coal-fired power plants. The 

levels of GHG reduction, both the published and harmonized results indicated a large 

decrease in global warming potential (GWP) for the various coal-fired technologies 

examined. However, because of the requirements of energy and other input materials, 

there was a notable increase in cumulative energy demand (CED), which would 

subsequently increase the footprint of the technology in term of resources. 

To expand the foreseen benefits of CCS and widen it applications, CCS 

integration with EOR was investigated from an LCA-GIS perspective in which the CO2 is 

utilized from ethanol, coal-fired, and natural gas power plants in the lower 48 states of 

the U.S. the results indicated that that crude oil with lower carbon intensity can be 

produced from EOR reservoirs that are less efficient in terms of crude recovered per ton 

of CO2 injected. However, it should be acknowledged that using less efficient reservoirs 

would be associated with greater CO2 supply which has a parasitic energy requirement 
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and would in turn entail a higher cost burden. With a focus of future CCS deployment in 

the U.S., the game-theory approach was applied to determine the impacts of possible 

changes in carbon policies, the carbon market, and the cost of CCS technologies on the 

decisions of industrial carbon emitters.   

In conclusion, CCS have great potential to reduce the carbon intensity of electric or 

transportation fuel. However, under existing carbon policies and at the current cost of 

CCS deployment, the strategy of the ethanol industry would be dominated by CCS 

deployment. By contrast, coal power plants would not have sufficient governmental or 

economic incentives to deploy CCS because of the gap between the cost capturing and 

transporting CO2 and the price of CO2. 
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CHAPTER 1.  INTRODUCTION 

1.1 Statement of the Problem 

The growing global population and the economic growth in industrialized and 

developing countries give rise to a continuous increase in demand for energy. Energy 

production worldwide depends on the combustion of fossil fuels, which produces 

greenhouse gases (GHGs) and other undesired emissions. GHGs such as carbon dioxide 

(CO2), methane (CH4), nitrous oxide (N2O), and ozone (O3) trap heat in the atmosphere 

by absorbing infrared radiation. The term “global warming potential” (GWP) refers to the 

potential that GHGs have to trap heat in the atmosphere over a certain time period and is 

generally based on their cumulative radiative forcing (IPCC, 2007). GWP is typically 

calculated for various GHGs over a span of 20, 100, or 500 years and expressed in the 

form of CO2-equivalent (CO2-e) (Metz, Davidson, de Coninck, Loos, & Meyer, 2005; 

Solomon, 2007). 

Discussion of GHGs is usually focused on carbon dioxide because (1) CO2 is the 

largest contributor to radiative forcing, and (2) human beings are adding CO2 to the 

atmosphere at a historically high rate (Chen, 2005). In the United States, the electricity 

generation sector is the largest source of anthropogenic GHG emissions, accounting for 

30% of the total GHG emission as of 2013, followed by the transportation sector (U.S. 

EPA, 2015).
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 Coal is the primary fossil fuel used for power generation, and it produces more 

than 40% the country’s electricity (EIA, 2014b). Coal is the predominant fuel for 

electricity generation not only in the U.S., but also worldwide, generating 30% of global 

anthropogenic CO2 emissions and about 40% of energy-related CO2 emissions (EIA, 

2016; Epstein et al., 2011). In the future, coal will continue to be a major source of 

energy, both in the United States and around the world, because of its abundance and low 

cost (EIA, 2011). 

 
Figure 1.1 Historical and projected global energy-related CO2 emissions [in billion metric 

tons] by fuel type between 1990 and 2040 

Source: (EIA, 2016) 
 

According to the Intergovernmental Panel on Climate Change (IPCC), preventing 

the catastrophic impacts of climate change will require maintaining the global average 

temperature at 1.1 o  C/2 o F below the present level (IPCC, 2007). To avoid an increase in 

temperature, the atmospheric concentrations of CO2 would need to be stabilized within 
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the range of 400-450 ppm at maximum, and they could not exceed 400 ppm in the long 

term (IPCC, 2007). Achieving these targets requires that global CO2 emissions be 

reduced by approximately 60% by 2050 in comparison to 2010 levels (Kasibhatla & 

Chamedies, 2007). Kasibhatla and Chamedies (2007) have found that industrialized 

countries, including the U.S., would need to decrease their GHG emissions by 80% in the 

same time period. In theory, this goal could be achieved with an annual reduction of only 

2%, which would be approximately 136 million metric tons of CO2-e per year.  

In view of making substantial CO2 reductions, the IPCC has explored various 

technological options for generating low-carbon energy. Among the most promising 

options is carbon capture and sequestration (CCS). In brief, CCS collects and compresses 

CO2 from point sources, including those in the power-generation industry, and then 

transports the CO2 by pipeline, truck, ship, or train to suitable geological formations. A 

detailed description of CCS is presented in Chapter 2. CCS technologies have the 

potential to become a widely-used means of providing low-carbon energy. For example, 

CCS could be used in the power-generation industry in general, and more specifically in 

the coal-fired power industry, to produce low-carbon electricity (UK DECC, 2012). The 

most applicable CCS technology for existing industrial facilities, including coal-fired 

power plants, is post-combustion capture, in which an amine-based solvent such as 

monoethanolamine (MEA) or methyl diethanolamine (MDEA) is used as an absorbent. 

Furthermore, integration of CCS with CO2-enhanced oil recovery (EOR) could allow the 

production of transportation fuel that is less carbon-intensive than conventional 

petroleum-based fuels such as gasoline and diesel (De Oliveira, Marcelo E Dias, 

Vaughan, & Rykiel, 2005). In CCS-CO2-EOR, carbon dioxide is sequestered and 
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compressed from point sources, and subsequently transported and injected into mature oil 

reservoirs to enhance the recovery of trapped oil (ARI, 2010b).  

Although the fundamentals of CCS are well understood, the technology has not 

been strongly endorsed by a number of environmentalists and scholars because of their 

limited experience with it. The implementation of CCS on a broad scale would require an 

enormous input of resources and energy during the operation phase (Gibbins & 

Chalmers, 2008; Marx et al., 2011). The eventual result of this implementation would be 

an increased demand for fuel, which in turn would lead to further mining activities to 

provide the additional energy required. Input materials such as pipelines, water, and 

chemicals are also required throughout the technology’s life cycle. Random application 

of CCS without clear guidance could have undesirable environmental and economic 

consequences. Therefore, a comprehensive understanding of the environmental impacts 

of CCS technologies is critically needed. The discussion is already turning to practical 

challenges in the application of CCS. Large-scale implementation of CCS must include 

an in-depth assessment of these technologies from a life-cycle perspective.  

1.2 Objective 

The primary objective of this research is to enrich the current understanding of the 

sustainability of CCS, first, by use of the life cycle assessment (LCA) approach; second, 

by extending the value of LCA through integration with region-specific geospatial 

information using a geographic information system (GIS); and finally, by assessing the 

potential application of CCS in line with the existing and future carbon market and 

policies.  
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In the first component of the research, the LCA harmonization method is used to 

deal with variations in recent LCA results for coal power plants. Although the literature 

in this field has continued to mature, some variations in LCA results exist for legitimate 

reasons, such as the assumptions made, the definitions of system boundaries, and the 

methodologies followed (Heath & Mann, 2012). A similar challenge existed when the 

LCA approach was used to assess the environmental footprint of biofuels (Farrell et al., 

2006).It is assumed here that LCA harmonization can provide more consistent estimates 

by adjusting published results to common gross system boundaries (Whitaker, Heath, 

O’Donoughue, & Vorum, 2012). Chapter 4 of this dissertation focuses on the use of LCA 

harmonization in assessing the GWP and cumulative energy demand (CED) of post-

combustion CCS in a coal-fired power plant in terms of input and output resources. The 

analysis identifies these resources, their environmental impacts, and their associated 

emissions in terms of GWP by harmonizing the LCA results from relevant published 

literature. In addition to producing varied results, most of the published CCS LCA studies 

have had an “attributional” framework that focuses primarily on the environmental 

impacts within the system boundary, independently of other systems. The second and 

third components of this research, rather than following the approach of attributional 

LCA (ALCA), involve a consequential life cycle assessment (CLCA) in order to 

anticipate the effects of CCS adoption on market responses and current policy (Helin, 

Sokka, Soimakallio, Pingoud, & Pajula, 2013). The deployment of CCS-EOR in various 

industrial sectors has been investigated through the lens of the system expansion method 

and the game-theory approach to facilitate the decision-making process. 
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This document is organized into seven chapters. Chapter 1 introduces the research 

problem and expands on the objective of the research. Chapter 2 defines CCS and 

comprehensively describes various CCS technologies. This chapter also presents current 

CCS demonstration projects and highlights knowledge gaps. Chapter 3 briefly explains 

the methodology that will be used for each research component in order to achieve the 

objectives. Chapter 4 applies the LCA harmonization approach for various coal-fired 

technologies in order to reduce variability in the results and provide more consistent 

estimates. Chapter 5 extends the value of LCA by integrating the tool with GIS, and 

explores the use of the system expansion approach in coal power plants, natural gas 

plants, and ethanol facilities in the lower 48 states of the U.S. Chapter 6 establishes a 

framework for assessing CCS-EOR deployment in industrial sectors, with a specific 

focus on coal power plants and ethanol facilities, from a game-theory perspective under 

various carbon market and policy scenarios. Finally, Chapter 7 summarizes the previous 

chapters, highlights the existing gaps in knowledge, and provides recommendations for 

future work. The research outline and the subjects to be investigated in this dissertation 

are presented in Figure 1.2. 
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Figure 1.2 Dissertation outline 

 

Chapter 1 is an introduction to the topic with the following objectives: 

Objective I: Present the current and proposed CO2 emissions under the business-as-usual 

scenario. 

1. What are the problems with existing business-as-usual electricity generation? 

2. How can a reduction in the current level of CO2 emissions be achieved? 

Objective II: Underscore the potential role of CCS in mitigating anthropogenic CO2 

emissions from major industrial sectors. 

3. How can we mitigate CO2 emissions from power plants? 

4. How can we reduce CO2 emissions from the transportation sector?  

Objective III: Define the scope and state the problem to be investigated. 

O
ut

lin
e

Chapter 1

Overview

Statement of the 
problem

Chapter 2 Literature review

Chapter 3 Methodology

Chapter 4 LCA harmonization Various coal-fired 
technologies

Chapter 5 LCA-GIS Integration 
for CCS-EOR

Ethanol facilities

Coal-fired power 
plants

Natural gas power 
plants 

Chapter 6 Potential for CCS-
EOR deployment

Policy framework 
using game theory

Chapter  7 Conclusion Future work
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5. Why is it important to use the LCA approach when assessing CCS as an option 

for CO2 mitigation? 

Chapter 2 discusses various CCS techniques, and presents current CCS demonstration 

projects worldwide and U.S. efforts in further deployment. This chapter will address the 

following: 

Objective I: Describe the main principles of CCS technology and the available CO2 

capture techniques. 

1. What is CCS? 

2. How can CO2 be captured from power plants? What types of technologies are 

currently available? 

3. What types of geologic formation are suitable for CO2 storage? What is the CO2 

storage capacity in the U.S.?   

Objective II: Highlight U.S. efforts in further deployment of CCS. 

4. Why does post-combustion CCS have potential for implementation in coal-fired 

power plants in the U.S.? 

5. What is the current status of CCS in the U.S. and its application? 

Objective III: Discuss the current knowledge gaps.   

6. Why should the LCA approach be used to assess the sustainability of CCS 

technology? 

7. What are some of the issues that are encountered in the use of LCA? 

8. What are the knowledge gaps in existing CCS LCA analysis?   

 



9 
 

 

Chapter 3 describes the research methodology and data collection process, as well as the 

computer software used in the assessment. This chapter will address the following: 

Objective I: Provide a framework for the research strategy. 

Objective II: Highlight the tools that have been used in the pursuit of the research goals. 

The subsequent chapters will address diverse objectives in order to provide a 

comprehensive understanding of the potential for large-scale CCS deployment from 

environmental, technical, and political perspectives: 

 

Chapter 4: Analytical assessment of LCA studies in peer-reviewed scientific journals and 

government publications, and LCA harmonization of the GWP and CED from previous 

studies of post-combustion CCS technology in coal-fired power plants. 

Objective I: Present the results of various LCA studies in the field. 

Objective II: Provide a reasonable estimate of GWP and CED and improve the range of 

variability among different sets of LCA results. 

 

Chapter 5: Integration of LCA with GIS in order to compare GHG emissions in the EOR 

process, utilizing CO2 from three industrial pathways (i.e., ethanol refineries, coal power 

plants, and natural gas power plants). 

Objective I: Explore the use of the system expansion approach from life-cycle and 

geospatial perspectives for each source (pathway). 

Objective II: Rank pathways geospatially in terms of their net life-cycle carbon intensity 

for supplying the CO2 required to produce a barrel of crude oil via EOR.   
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Chapter 6: Framework for assessing CCS-EOR deployment in industrial sectors, with a 

specific focus on coal power plants and ethanol facilities, from a game-theory 

perspective. 

Objective I: Highlight current and future challenges under various carbon policy 

scenarios. 

Objective II: Explore CCS-EOR deployment in industrial sources, with a specific focus 

on coal power plants and ethanol facilities, and a strategy for existing and future carbon 

policy approaches and incentives in terms of potential variations in carbon market 

conditions. 

 

Chapter 7: Conclusions and recommendations. 

Objective I: Summarize the findings of this dissertation.   

Objective II: Identify knowledge gaps and provide recommendations for future work. 
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CHAPTER 2.  LITERATURE REVIEW  

2.1 Background 

Current energy consumption trends show a continuous increase in energy demand 

that is driven by economic and population growth in both developing and developed 

countries. The U.S. Energy Information Administration (EIA) predicts a 48% increase in 

the world energy consumption by 2040 as compared to 2012 (EIA, 2016). The main 

factor in this increase is the world’s basic need for electricity, which is generate by the 

combustion of fossil fuel, produces GHGs. Therefore, energy experts, non-government 

organizations (NGOs), international organizations, and scholars have studied the 

effectiveness of CCS as a solution that will meet environmental, social, and political 

goals for CO2 reduction. This subject has also attracted the attention of several 

environmental NGOs, including the World Wildlife Fund (WWF). In 2007, the WWF 

developed a model to examine the global technical and economic feasibility of a variety 

of GHG emissions-mitigation technologies by utilizing the knowledge of experts in the 

field. The exercise assessed promising technologies with maximum permissible CO2 

emissions of 400 GtC – 500 GtC (billion metric tons of carbon) between 2004 and 2050. 

The study concluded that implementation of CCS in 25% of the global energy supply by 

2050 would reduce worldwide CO2 emissions by approximately 8 GtC per year.
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 This conclusion was found to be valid even when radical improvements in energy 

efficiency and contributions of renewable energy sources were taken into account (WWF, 

2007). Similarly, the United Kingdom Department of Trade and Industry (UK DTI) 

studied the potential role of CCS in achieving a UK CO2 emissions reduction target of 

60% by the year 2050. The study concluded that this target was realistic and that it could 

be achieved only if CCS were implemented in at least 50% of fossil-fuel power plants 

(UK DTI, 2005). The conclusion assumed that no new nuclear power stations would be 

constructed. CSS has gained strong acceptance by different stakeholders and is widely 

thought to be a valid CO2 mitigation tool, but it is critical to understand the technology in 

greater depth before making fundamental decisions.  

 

2.2 Technology Description 

CCS is the process of storing CO2 underground in deep geologic formations (Metz 

et al., 2005). The three main steps in the process are capture, transport, and sequestration 

(Metz et al., 2005). Capture of CO2 can be achieved by means of three different 

technological concepts: post-combustion systems, pre-combustion systems, and oxy-fuel 

systems  (Gibbins & Chalmers, 2008). Figure 2.1 provides a generic overview of the 

different CO2 capture techniques. 



13 
 

 

 

Figure 2.1 Representation of different CCS technologies 

Source: (Metz et al., 2005) 

 

2.2.1 Post-combustion Capture System 

The post-combustion system captures CO2 from the flue gases emitted by large 

point sources after the combustion reaction takes place, as shown in Figure 2.2. 
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Figure 2.2 Schematic diagram of post-combustion capture 

Source: (Global CCS Institute, 2014) 

 

Post-combustion capture is an established, well-understood technology with CO2 

removal efficiency of up to 90% (Rochelle, 2009), and it is used in a number of industrial 

applications. The biggest advantage of the post-combustion capture system is that it 

permits modifications to existing plants without operational disruption (Rochelle, 2009). 

Therefore, this option is favored by several industries, including the power-generation 

industry. The name of this technique is self-explanatory, as CO2 is removed after the 

process of combustion has taken place. CO2 is captured either by liquid or solid chemical 

absorbents (Metz et al., 2005). In the chemical absorption method, which is the most 

widely used, an amine-based solvent such as MEA or MDEA is used as an absorbent. 

The main principle of this method is the removal of CO2 from the flue gas using a lean 

amine-based solvent, which is then cleaned with water to remove any ammonia residue 

(Figueroa, Fout, Plasynski, McIlvried, & Srivastava, 2008). Next, the CO2-rich solvent is 
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sent to a stripper to be separated by the application of heat. The highly concentrated CO2 

is then compressed and transported, primarily by pipelines, to storage sites where the 

remaining solvent is recycled to the absorber system (Figueroa et al., 2008). This 

technique is very energy intensive, in that a large amount of energy is required during the 

stripping phase for effective separation. The technique also requires water for cooling, 

CO2 absorption and stripping, and CO2 compression (Fluor Ltd., 2005; Rao & Rubin, 

2002; Zhai & Rubin, 2010). 

 

2.2.2 Pre-combustion Capture System 

The main principle of this technique is the capture of CO2 before combustion by 

converting carbon to an intermediary gas mixture of hydrogen (H2) and carbon monoxide 

(CO) that burns to produce heat (Metz et al., 2005), as shown in Figure 2.3. 

 
Figure 2.3 Schematic diagram of pre-combustion capture 

Source: (Global CCS Institute, 2014) 
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In most cases, a gasifier is used to oxidize carbon. The products of this reaction 

are CO and H2O, which react to form CO2 and additional H2. Then the CO2 is captured, 

and the H2 is used as fuel. This technology is widely applied in the production of 

fertilizer, chemicals, gaseous fuel (H2 and CH4), and power (Metz et al., 2005). 

 

2.2.3 Oxy-fuel Capture System 

In the oxy-fuel technique, an air separation unit (ASU) is used to generate 

oxygen, which is used in a burner instead of air (Metz et al., 2005), as shown in Figure 

2.4.   

 
Figure 2.4 Schematic diagram of oxyfuel combustion 

Source: (Global CCS Institute, 2014) 
 

The products of this reaction are pure CO2, which is directly transported and stored, 

and water vapor.  Although this technique is promising, it is energy intensive, especially 
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in the initial air-separation step, which is responsible for oxygen generation (Metz et al., 

2005). 

 

2.3 CO2 Transportation 

Another part of the CCS technology, the transportation of CO2, is already well 

understood in many industrialized countries. The U.S. has the necessary infrastructure 

and experience to deal with transportation because CO2 is used commercially to enhance 

oil recovery (Metz et al., 2005). The most challenging aspect of the transportation process 

would be cohesive coordination between CO2 producers and end users. Network integrity 

is also a concern because of possible pipeline corrosion, but the use of appropriate 

corrosion inhibitors would solve this problem. 

 

2.4 Suitable CO2 Storage Sites 

A suitable CO2 geologic storage site must be at a minimum depth of 800 meters 

underground (Metz et al., 2005). At the temperature and pressure that are reached at this 

depth, CO2 enters the supercritical state and behaves like a liquid (Metz et al., 2005). 

Greater quantities of CO2 can be stored as the depth and temperature increase (NETL, 

2010b). The relationship between depth and pressure and the volume of CO2 to be stored 

is shown in Figure 2.5. 
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Figure 2.5 Characteristics of an appropriate CO2 storage site  

Source: (NETL, 2010b) 
 

The blue numbers in Figure 2.5 indicate the volume of CO2 at different depths as 

compared to standard atmospheric pressure. In addition to being sufficiently deep 

underground, a suitable site for CO2 storage must meet the following requirements (Metz 

et al., 2005): 

1. Sufficient capacity: sequestering large volumes of CO2.  

2. Sufficient injectivity: receiving CO2 at an efficient and economic rate of 

injection. 

3. Effective storage: retaining CO2 safely over extended periods of time. 

The third requirement is the most difficult to evaluate because the standards for 

storage effectiveness and duration have not been defined. According to the IPCC (2005), 
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appropriate, well-managed geologic reservoirs are very likely and likely to retain 99% of 

the stored CO2 for 100 and 1000 years, respectively. Worldwide, guidelines for 99% 

successful storage range from several thousand years to 5,000 years (Metz et al., 2005). 

 

2.5 Potential Storage Sites 

There are three major types of potential onshore geologic storage reservoirs for CO2: 

depleted oil and gas reservoirs, un-mineable coal beds, and deep saline formations 

(Hendriks, 1994; Holloway et al., 1996). In 2010, National Energy Technology 

Laboratory (NETL) estimated that oil and gas reservoirs have the capacity to store U.S. 

CO2 emissions for 21 years at the current CO2 emission rates (NETL, 2010b). 

An overview and a description of potential CO2 geologic storage reservoirs is 

presented in provided in Appendix A. All these sites meet the criteria listed in the 

previous section. A basic illustration of the technology’s principles and potential geologic 

storage options is provided in Figure 2.6. 
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Figure 2.6 Schematic showing geological sequestration of carbon dioxide emissions from 
a power station with CO2 capture system 

Source: (Alberta Energy, 2011) 
 

2.6 LCA of CCS Deployment in Coal-Fired Power Plants 

Marx, Schreiber, Zapp, Haines, Hake, and Gale (2011) have suggested using the 

life cycle assessment (LCA) approach as a tool to evaluate the environmental impacts of 

CCS implementation (Marx et al., 2011). Schreiber and colleagues (2012) conducted a 

meta-analysis of 15 LCA studies focusing on the GHG emissions of various CCS 

technologies implemented in hard coal, lignite, and natural gas power plants. Such 

findings can be constructive when comparing CCS technologies with one another in 

terms of a given environmental impact category (Schreiber, Zapp, & Marx, 2012). 

However, when various published studies of the same CCS technology are compared, 

inconsistencies are observed in the results. According to Whitaker and colleagues, the use 
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of the LCA harmonization approach reduces variability in the results and provides more 

consistent estimates by adjusting published results to common gross system boundaries 

(Whitaker et al., 2012). The LCA harmonization project managed by the National 

Renewable Energy Laboratory (NREL), with funding from the U.S. DOE, has covered 

various fossil fuel based and a number of renewable power generation technologies, but 

the incorporation of CCS in coal-fired power plants was not covered (NREL, 2013). 

Therefore, investigating this gap will complement the NREL effort in this area. The LCA 

harmonization approach has been applied to the amine-based post- combustion CCS with 

the aim of reducing the variability observed in the published literature for GWP and 

CED, see Chapter 4 for details. 

 

2.7 Making CCS Attractive 

Several studies have suggested the integration of CCS with CO2- EOR as another unique 

approach for improving the energy outlook and reducing GHG emissions by producing 

crude oil with low carbon intensity (Hussain, Dzombak, Jaramillo, & Lowry, 2013; 

Jaramillo, Griffin, & McCoy, 2009; Khoo & Tan, 2006a; Middleton et al., 2015; Rhodes, 

Clarens, Eranki, & Long, 2015). Table 2-1 lists the largest operational CCS projects in 

the United States, with CO2-capturing capacities ranging from 0.68 to 8.4 MMT of CO2 

per year. Most of these projects were not developed explicitly to target CO2 storage; the 

decisions were instead based on economic considerations (McQuale, 2010). 
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Table 2-1 Commercial CCS projects in the United States as of 2013 

Notes:  MMT = million metric tons, EOR = enhanced oil recovery 
Source: (Global CCS Institute, 2012) personal analysis 

 

As shown in Table 2-1, most of the CCS projects were developed to enhance oil 

recovery, in which case it was possible to recover the initial capital cost (McQuale, 

2010). In depleted oil and gas reservoirs, CO2 has been commercially used to increase 

pressure and recover residual oil and gas (Lokhorst & Wildenborg, 2005). In CCS- CO2-

EOR, carbon dioxide is sequestered and compressed from point sources, and 

subsequently transported and injected into mature oil reservoirs. CO2-EOR is a tertiary 

oil recovery method that has been employed by the oil industry for more than 40 years to 

increase pressure and recover residual oil from depleted reservoirs (ARI, 2010b; Hussain 

et al., 2013). 

In the United States, about 60 million metric tons (MMT) of CO2 are injected per 

year in EOR, which produces more than 90 million barrels of oil (MMbo) annually. In 

 Project Name Country Stage / Status Purpose Transport 
MMT 
CO2 / 
Year 

1 Century Plant 
United States, 

TX 
Operational / Active 

2010 
EOR 

Onshore to onshore 
pipeline, 43 miles 

8.4 

2 
Shute Creek Gas 
Processing Facility 

United States, 
WY 

Operational / Active 
1986 

EOR 
Onshore to onshore 

pipeline, 403 km 
7 

3 
Val Verde Natural 
Gas Plants 

United States, 
TX 

Operational / Active 
1972 

EOR 
Onshore to onshore 

pipeline, 132 km 
1.3 

4 
Air Products Steam 
Methane Reformer 

United States, 
TX 

Operational / Active 
2013 

EOR 
Onshore to onshore 
pipeline, 101-150 

km 
1 

5 
Coffeyville 
Gasification Plant 

United States, 
OK 

Operational / Active 
2013 

EOR 
Onshore to onshore 

pipeline, 112 km 
1 

6 
Enid Fertilizer CO2-
EOR Project 

United States, 
OK 

Operational / Active 
1982 

EOR 
Onshore to onshore 

pipeline, 225 km 
0.680 

7 Lost Cabin Gas Plant 
United States, 

WY 
Operational / Active 

2013 
EOR 

Onshore to onshore 
pipeline 

1 
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addition to natural CO2 supply, anthropogenic CO2 has been recovered from gas 

processing and fertilizer production facilities in Texas and Wyoming for EOR projects 

(MITEI, 2016). In 2013, the CO2-EOR technology produced, on average, 276000 barrels 

of crude oil per day (bbl/d) (EIA, 2014a). 

 

 Advances Resources International (ARI) estimates that productive use of CO2 for 

EOR could produce approximately 3.0-3.6 million additional barrels of oil per day 

(MMbo/d) by 2030 and play an important role in reducing U.S. reliance on imported oil 

(ARI, 2010b). In addition to current CO2-EOR production, it is estimated that there are 

more than 24 billion barrels of economically recoverable oil, with the use of current EOR 

practices in the lower 48 states of the U.S., with approximately 24% in East/Central 

Texas, 22% in the Permian Basin of West Texas, and 30% split between California and 

the Mid-Continent (Kuuskraa, Van Leeuwen, Wallace, & DiPietro, 2011a).When 

considering the application of next generation EOR technologies, those estimates could 

nearly triple (Kuuskraa et al., 2011a). It is important to highlight that about 70% of the 

CO2 utilized in current CO2-EOR practices is from natural CO2-dedicated wells 

(Middleton, Clarens, Liu, Bielicki, & Levine, 2014a). More than 83% of the remaining 

30% of the CO2 used in EOR is supplied from acid gas processing plants such as natural 

gas and oil refineries (Xu, Isom, & Hanna, 2010). Because the supply of natural CO2 is at 

capacity, the role of CO2-EOR can be extended if combined with other innovative 

methods such as utilizing CO2 from various industrial sources (Kuuskraa et al., 2011a). 

An overview of the U.S. CO2 merchant market and the CO2 demand by EOR is presented 

in Appendix A. Among industrial sources that have potential CO2 supply are ethanol 
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refineries, natural gas plants, and coal-fired power plants. Besides the potential CO2 

supply from these sources, the geographical distribution of the plants makes them good 

candidates as suppliers of CO2 and as substitutes for natural CO2 wells (Middleton et al., 

2014a). Figure 2.7 shows the distribution of corn ethanol plants (green dots), pulverized 

coal-fired plants (grey hexagons), and natural gas power plants (yellow circles) in the 

U.S., along with the various EOR fields. This map will be further refined in order to 

identify viable CO2 sources in Chapter 5 

 
Figure 2.7 Spatial distribution of pathways and CO2-EOR infrastructure in the lower 48 

states of the U.S. 

Source: (Abotalib, Zhao, & Clarens, 2016) 
 

However, it is important to consider the environmental ramifications of CO2 

capture from each source (pathway) by accounting for the net GHG impacts on the basis 

of upstream, direct, and downstream impacts (i.e., from a life cycle perspective). 

Capturing CO2 from ethanol plants, coal-fired power plants, and natural gas facilities 
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would increase the demand for primary fuel, chemicals, and infrastructure materials and 

would subsequently increase indirect emissions throughout the value chain of each 

industry. In contrast to ethanol plants, which produce a pure CO2 stream (i.e., biogenic 

CO2 from the fermentation process), coal-fired and natural gas power plants produce a 

stream with low CO2 concentration, between 10 to 17% by volume, with higher 

associated energy and economic penalties. 

 

2.8 Challenges for CCS Deployment 

Recently developed geotechnical solutions have made it possible to capture CO2 

emissions from industrial point sources by means of carbon capture and storage (CCS) 

technologies (Metz et al., 2005). In this context, CCS can be applied directly to the power 

generation sector or other industrial sources, and the captured CO2 can be utilized for 

enhanced oil recovery (EOR). As discussed in the literature, CCS integration with CO2-

EOR has significant potential to reduce the carbon footprint of the U.S. transportation 

sector by producing crude oil with lower carbon intensity than in conventional crude 

recovery (Abotalib et al., 2016; Hornafius & Hornafius, 2015; Rhodes et al., 2015; U.S. 

DOE, 2013; U.S. EPA, 2015). Finding an alternative and consistent CO2 supply would 

allow the expansion of EOR projects and further the objectives of the Energy Policy Act 

of 2005 (Energy Policy Act, 2005). However, current carbon policies do not provide 

sufficient economic incentives for major carbon emitters to invest in CCS projects (Mills, 

2014). Under the existing Federal 45Q Tax Credit, anthropogenic CO2 emitters that 

capture at least 500,000 metric tons of CO2 during a taxable year receive a tax credit of 

$10 per metric ton of CO2 captured (IRS, 2011). This allocated carbon credit creates a 
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huge gap between the costs associated with capturing and transporting CO2 from major 

sources such as power plants under current market conditions and carbon price (Mills, 

2014). Furthermore, the 45Q provision excludes potential biogenic CO2 sources such as 

ethanol facilities (IRS, 2011). Although finding the right set of incentives can be a 

complex and time-consuming process, establishing a framework that is more inclusive 

and attractive for various industrial CO2 emitters would motivate more players to 

participate and compete in order to maximize their benefits. 

To determine the effects of polices on the decision-making of stakeholders, game 

theory has been applied to a wide range of disciplines including the social sciences, 

international relations, economics, ecology, and climate science (Başar, 2015; Dong, Li, 

Li, Wang, & Huang, 2010; Kutasi, 2010; Morbee, 2014; Turocy & von Stengel, 2001). 

Game theory can be defined simply as a mathematical decision-making tool. Participants 

in a game (called “players”) aim to maximize their benefits or payoffs or, in some 

situations, minimize their losses, regardless of the consequences for other players (Başar, 

2015; Dong et al., 2010). This type of game is considered non-cooperative, meaning that 

the players tend to act independently because they do not benefit from unilaterally 

altering their choices when the strategies of other players stay the same. As a result, 

players’ decisions are based on rational factors. Their optimal strategy in such a game is 

referred to as a non-cooperative equilibrium or Nash equilibrium, a concept first 

proposed by John Nash (Turocy & von Stengel, 2001). Recently, the literature has 

presented climate policy in the form of game theory, with a focus on encouraging the 

development of clean technologies, carbon price, and carbon-abatement-related policies 

and on creating international negotiation frameworks among major carbon economies 
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(Helm, Hepburn, & Ruta, 2012; Knox‐Hayes, 2012; Kutasi, 2010; Urpelainen, 2013). 

Chapter 6 presents a framework for assessing CCS-EOR deployment by industrial 

emitters, with a specific focus on coal power plants and ethanol facilities, from a game-

theory perspective under various carbon policy scenarios, in the United States, with a 

focus on the Illinois Basin. 
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CHAPTER 3.  METHEDOLOGY 

3.1 Overview 

This chapters provides a brief description of the methodologies followed in 

chapters 4, 5, and 6. In this chapter, section 3.1 describes the method of the LCA 

harmonization. Section 3.2 describes the framework used for integrating LCA with GIS 

for EOR. Section 3.3 describes the methodology implemented for establishing a 

framework for assessing the CCS-EOR deployment from a game theory perspective. 

 

3.1.1 Method for LCA Harmonization 

In Chapter 4, the LCA harmonization approach to post-combustion CCS has been 

implemented with an emphasis on GWP and CED to adjust variations in previously 

published LCA studies and provide more robust and consistent conclusions. Data for this 

analysis has been collected primarily from secondary sources, such as recent national and 

international studies in the field as reported in peer-reviewed journal articles and 

technical papers. Publications from intergovernmental organizations and governmental 

departments were also used as resources for assessing the results of various LCAs in the 

field: 
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3.1.2 Method for LCA GIS Integration 

The LCA-GIS model has been designed to calculate the carbon intensity of CO2-

based enhanced oil recovery, where CO2 is utilized from three different industrial 

sources, which are referred to as “pathways” throughout the analysis. The first pathway is 

a corn-based ethanol plant with CCS (EtOH-CCS). The second and third pathways are a 

coal-fired (PC-CCS) and a natural gas (NG-CCS) power plant, respectively; both use 

amine-based post-combustion CO2 capture technology. Geospatial data for pathways was 

obtained from the National Renewable Energy Laboratory’s (NREL) interactive mapping 

tool, the National Energy Technology Laboratory’s (NETL) NATCARB database in 

addition to the U.S. EPA Facility Level Information on Greenhouse Gases (FLIGHT) to 

denote the CO2 emissions of 2014 (NETL, 2016; U.S EPA, 2015). 

 

3.1.3 Method for LCA GIS Integration 

The future of CCS-EOR deployment in ethanol refineries and coal power plants was 

examined using the game theory approach. The framework has been designed to explore 

the impacts of possible changes in carbon policies, the carbon market, and the cost of 

CCS technologies on the decisions of industrial carbon emitters. 
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CHAPTER 4.  LCA HARMONIZATION 

4.1 Background and Motivation 

The identification of more representative results requires a careful assessment of 

the technology’s footprint during its entire life cycle. This chapter focuses on assessing 

the GWP and CED of post-combustion CSS in a coal-fired power plant in terms of input 

and output resources, by following the principles of the ISO-14040: 2006/14044:2006 

standard, titled “Life-Cycle Assessment -- Principles and Framework,” to identify 

resources, energy flows, and the potential impact of CCS deployment (ISO, 2006b). 

According to ISO (14040:2006), an LCA should include four phases. The focus of Phase 

I is to describe the aim of the LCA, define the functional unit to be compared, and draw 

the system boundaries. In Phase II, the system’s input and output flows are identified to 

generate life cycle inventories (LCIs) for all life cycle stages or processes. In Phase III, 

life cycle impact assessment (LCIA), the LCI flows are converted into environmental 

impact indicators targeting important local/global environmental concerns such as global 

warming, cumulative energy demand, etc. The final phase (Phase IV) consists of 

analytical interpretation of the LCIA results and addresses the questions posed in Phase I. 

Data for this analysis has been collected primarily from secondary sources, such as recent 

national and international studies in the field as reported in peer-reviewed journal articles 

and technical papers.
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 Publications from intergovernmental organizations and governmental departments 

were also used as resources for assessing the results of various LCAs in the field. This 

analysis uses 1 kWh of electricity generated by a power plant with post-combustion CCS 

as a functional unit. The selected power plants range in size from 400 to 800 MW prior to 

the addition of CO2 capture. The system boundaries in this analysis incorporate the 

processes shown in Figure 4.1. 

 

Figure 4.1 Generalized system boundaries of post-combustion CCS technology 

Source: (Abotalib & Zhao, 2015) 

As illustrated in Figure 4.1, processes can be grouped as upstream and operational 

processes:  

1. Upstream processes 

(I) Coal mining, including extraction, processing, and transportation of 

coal required for plant operations.   

 



32 
 

 

(II) Amine production, including raw material, energy consumption, and 

transportation. 

2. Operational processes 

(I) Coal combustion (direct emission from the stack, waste generated 

from plant operations), and the CCS capture system operations (energy 

requirement for amines regeneration and CO2 compression). 

(II) CO2 transport and storage including CO2 transportation infrastructure 

and energy required storing CO2 in deep geologic formations. 

On the basis of the above considerations, the analysis focuses on GWP and CED. 

GWP has been selected to assess the effectiveness of achieving the objective of CCS 

throughout the technology life cycle. Whereas CED has been considered because it 

accounts for the cumulative energy consumption during the life cycle of a product or 

service, including the energy used in the production phase, use, and disposal phases of 

the process. Therefore, CED can be used as an environmental as well as an economic 

indicator. Although it is considered that all LCA studies follow the ISO standards, some 

variations have been observed in the existing literature in the results for GWP and CED. 

Therefore, the LCA harmonization approach has been implemented in order to adjust 

variations in previously published LCAs and thus provide more robust and consistent 

results, as described by Whitaker et al. (Whitaker et al., 2012). The following section 

describes in further detail the approach that has been adopted. 
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4.2 Harmonization Method 

The LCA harmonization in this research was conducted in accordance with a 

harmonization project managed by the National Renewable Energy Laboratory (NREL), 

with funding from the U.S. DOE, which consists of (1) system harmonization and (2) 

technical harmonization (NREL, 2013). Because the NREL harmonization method has 

been followed, the outcomes of this work will be more relevant to the NREL objective of 

identifying representative estimates of the GWP and CED of CCS post-combustion 

power generation technologies. 

1.  System Harmonization 

System harmonization was applied to data from 42 studies representing 57 

environmental impact estimates, according to the procedure in Figure 4.2. 

 

Figure 4.2 System screening procedure 

Source: adapted from (NREL, 2013) 

• Published�a er�1990�
• LCA�with�at�least�two�phases�
• Consider�electricity�as�a�product�Round�1�

• ISO�14001�
• Methodology�and�calcula on�
• Quality�of�input�data�

Round�2�

Studies�
considered�
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Each LCA study went through two rounds of screening to ensure consistency and 

comparability. The initial screening round eliminated publications that met any of the 

following criteria:  

� Published prior to 1990; 

� LCA with fewer than two phases 

� Did not consider electricity as a product of the technology; 

� Presentation, abstract, or poster;  

� Trade journal article of three or fewer published pages; or 

� Conference paper of five or fewer double-spaced pages (or equivalent).  

 

After the first screening round, a second, more comprehensive, screening exercise 

was carried out for the remaining publications to ensure the quality of the frameworks 

used and the outcomes of each publication, on the basis of: 

� Adherence to the ISO-14040 framework for conducting LCA, as described above; 

� Methodology used for calculating the investigated indicators; and  

� Quality of the input data used (i.e., whether or not both empirical and theoretical). 

System harmonization was applied to data from 42 studies representing 57 

environmental impact estimates, according to the procedure in Figure 2 in main 

manuscript. This screening exercise yielded 44 environmental impact estimates, which 

were then used in the technical harmonization phase. (see Table 4-1 for details). 
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Table 4-1 Published LCA studies that passed the LCA harmonization screening 
requirements with key performance parameters 

No. Author/s Tech. Eff. Eff. 
(CCS) Country 

Decrease 
in power 
output 

Increase 
in Fuel  

Distance 
(km) 

Depth 
(m) 

1 (Muramatsu & Iijima, 
2002) PC 41% 31% Japan 24% 32% 20 1250-

2000 

2 (Spath & Mann, 
2004) PC 41% 31% USA 24% 31% 300 800 

3 (IEA GHG, 2006) USPC 44% 35% Netherlands 21% 27% NA NA 
4 (Viebahn et al., 2007) PC 49% 40% Germany 18% 23% 300 NA 

5 (Viebahn et al., 2007) PC 
(L) 46% 34% Germany 26% 35% 300 NA 

6 (Odeh & Cockerill, 
2008) SPC 40% 30% UK 24% 32% 300 800 

7 
(Dones, Bauer, Heck, 
Mayer-Spohn, & 
Blesl, 2007)min 

USPC 43% 31% Europe 28% 34% 200 800 

8 (Dones et al., 
2007)max USPC 43% 31% Europe 30% 36% 400 2500 

9 (Dones et al., 
2007)min 

PC 
(L) 43% 31% Europe 27% 38% 200 800 

10 (Dones et al., 
2007)max  

PC 
(L) 43% 31% Europe 30% 43% 400 2500 

11 (UKERC, 2008) PC 44% 35% UK 21% 26% 300 NA 

12 
(Koornneef, van 
Keulen, Faaij, & 
Turkenburg, 2008) 

USPC 46% 35% Netherlands 24% 31% 100 3000 

13 (Fripp, 2009) PC 33% 25% USA 24% 31% NA NA 

14 (Pehnt & Henkel, 
2009) RC 

PC 
(L) 45% 27% Germany 39% 65% 325 NA 

15 (Pehnt & Henkel, 
2009)SD 

PC 
(L) 46% 28% Germany 40% 65% 325 NA 

16 
(Schreiber, Zapp, 
Markewitz, & 
Vögele, 2010) 2010  

SPC 46% 36% Germany 23% 30% 300 NA 

17 (Korre, Nie, & 
Durucan, 2010) PC 40% 30% USA/global 25% 33% NA NA 

18 (NETL, 2010c) PC 35% 24% USA 31% 45% 160 1236 

19 (Schreiber et al., 
2010)RETRO PC 46% 33% Germany 29% 41% 400 800 

20 (Schreiber et al., 
2010)ND_after_2020 PC 49% 38% Germany 23% 31% 400 800 

21 (Schreiber et al., 
2010)2010-2020 retrofit 

PC 
(L) 45% 30% Germany 33% 49% 400 800 

22 (Schreiber et al., 
2010)ND_after_2020 

PC 
(L) 48% 35% Germany 26% 36% 400 800 

23 (Singh, 2010) SPC 43% 33% USA 23% 30% 500 1000 

24 (Ziębik, Hoinka, & 
Liszka, 2010) PC 44% 33% Unknown 25% 33% NA NA 

25 (Nie, Korre, & 
Durucan, 2011) PC 45% 34% USA 25% 33% 300 1000 

26 (Suebsiri & Wilson, 
2011) 

PC 
(L) 31% 22% Canada 30% 43% NA NA 

 



36 
 

 

Table 4-1 Continued 

27 (Marx et al., 2011) 
(Min.) PC 50% 40% Global 20% 25% NA NA 

28 (Marx et al., 2011) 
(Max.) PC 50% 30% Global 40% 66% NA NA 

29 (Marx et al., 2011) 
(Min.) 

PC 
(L) 49% 40% Global 25% 18% NA NA 

30 (Marx et al., 2011) 
(Max.) 

PC 
(L) 46% 28% Global 65% 40% NA NA 

31 (Singh, Strømman, & 
Hertwich, 2011a) SPC 43% 33% USA 24% 31% 500 NA 

32 (Sathre, 2011) PC 44% 33% Global 25% 33% NA NA 

33 (Sathre, 2011) PC 
(L) 46% 32% Global 30% 44% NA NA 

34 (U.S. DOE, 2011) SPC 44% 33% USA 25% 33% 300 NA 

35 (Singh, Strømman, & 
Hertwich, 2011b) SPC 43% 33% USA 24% 31% 500 NA 

36 (Wangen, 2012) SPC 43% 33% Europe 24% 32% 250 1000 

37 
(Castelo Branco, 
Moura, Szklo, & 
Schaeffer, 2013) 

PC 30% 25% Brazil 17% 21% 200 NA 

38 
(Śliwińska & 
Czaplicka‐Kolarz, 
2013) 

PC 37% 25% Poland 32% 48% NA NA 

39 
(Śliwińska & 
Czaplicka‐Kolarz, 
2013) 

SPC 39% 27% Poland 30% 44% NA NA 

40 
(Śliwińska & 
Czaplicka‐Kolarz, 
2013) 

PC 37% 25% Poland 32% 48% NA NA 

41 
(Śliwińska & 
Czaplicka‐Kolarz, 
2013) 

SPC 39% 27% Poland 30% 44% NA NA 

42 (Liang et al., 2013) USPC 43% 33% China 23% 30% 100 3000 

43 (Koiwanit et al., 2014) PC 
(L) 31% 21% Canada 33% 49% NA NA 

44 (Zhang et al., 2014) SPC 46% 34% Norway 26% 35% 200 800 
 

Table 4-1 presents studies passed the two-harmonization screening rounds. Some 

studies provided more than one estimates based different scenarios and assumptions 

made. In Table 4-1, each estimate is presented in a separate row to include the 

followings: 

1. Author and year, 

2. Coal-fired technology, 
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3. Thermal efficiency before CCS deployment (Eff.), 

4. Thermal efficiency with CCS deployment (Eff. CCS), 

5. Country or region, 

6. Decrease in plant’s power output, 

7. Increase in fuel demand, 

8. Distance to CO2 storage sites, 

9. Depth of CO2 storage formations 

Some studies, in Table 4.1, have passed the system and technical screening rounds, 

but did not cover all the processes defined within the system boundaries as illustrated in 

Figure 4.1.  

2. Technical Harmonization 

Coal-fired technologies can be classified into four groups: pulverized coal (PC), 

pulverized coal (lignite) (PC) (L), supercritical pulverized coal (SPC), and ultra-

supercritical pulverized coal (USPC). It was found that some of the studies that passed 

the two screening rounds did not cover all the processes defined within the system 

boundaries in Figure 4.1. Therefore, an emission profile, which expresses the relative 

impact of each process on the LCIA results, was established for each technology, and an 

adjustment was made for those estimates with incomplete system boundaries. After the 

estimates had been adjusted to common system boundaries by incorporating the effects of 

missing processes, the outliers, i.e., any estimates that were outside the “whiskers” in 

box-and-whisker plots of the data, were eliminated. In other words, estimates that were 

greater or less than 1.5 times the interquartile (IQ) range were omitted from the 
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harmonized results. In Figure 4.3, the LCA studies considered in this analysis are 

presented in a geographic map in order to highlight the regions that have shown interest 

in researching the topic and to aid in interpretation of results in relation to regional 

differences.  

 

Figure 4.3 Geographic map showing the spatial distribution of data analyzed 

Source: (Abotalib & Zhao, 2015) 

 

It can be seen that most of the studies have focused on Europe as a baseline, 

followed by North America (USA and Canada). Details of each study and their 

underlying assumptions are provided in Table 4-1. The results, henceforth, are presented 

in the form of relative changes in GWP and CED per 1 kWh of electricity generated with 

the use of CCS. Two statistical indicators are employed: (1) the arithmetic mean, which 

refers to the average value of the data, and (2) the Q3 value, which refers to the 75th 
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percentile, where 75% of the data fall at or below that value. As can be seen in Figure 

4.4, the published estimates show a significant reduction in GWP, ranging from 65% to 

85% for all coal-fired technologies. 

 

 

Figure 4.4 Box plot of published estimates considered in the analysis 

 

In regard to CED, the Q3 and mean values indicate a considerable increase input 

resources. The results in Figure 4 were further refined by breaking down coal-fired 

technologies into four groups: pulverized coal (PC), pulverized coal (lignite) (PC) (L), 

supercritical pulverized coal (SPC), and ultra-supercritical pulverized coal (USPC). This 

classification allows a comparison of various coal-fired technologies in terms of the 

environmental impact categories considered. 
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Figures 4.5 and 4.6 show published estimates and harmonized estimates of GWP 

and CED, respectively, for each technology with CCS, compared to the same 

technologies without CCS. The mean and Q3 values are again used as general 

representative indicators for the impact categories that were investigated in each case. 

 

4.3 Results 

4.3.1 Global Warming potential  

 
Note: (PC) = pulverized coal, (PC) (L) pulverized coal (lignite), (SPC) = supercritical pulverized coal, and 

(USPC) = ultra-supercritical pulverized coal.  1 = published estimates, and 2 = harmonized estimates. 

Figure 4.5 Box plots of studies considered in the analysis, illustrating the percentage of 
change in GWP for each evaluated coal-firing technology compared to the no-CCS 

scenario, using technology-specific information 

Source: (Abotalib & Zhao, 2015) 

Figure 4.5 confirms the general assumption that CCS can provide a signification 

reduction in GWP in all coal-fired technologies. The level of decrease in GWP is affected 

primarily by the fuel production process and direct emissions from plant operations. Fuel 
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production process and direct emissions from plant operations are accountable for about 

40% and 50% of the overall GWP respectively. However, lignite has a different emission 

profile, and in this case the fuel production process contributes 25% and direct emissions 

from the plant 60%, due to lower efficiency, of the overall GWP. The remaining GWP 

for all fuel types is generally distributed between amine production and CO2 transport 

and storage processes. Technology-specific emission profiles of the GWP for each 

process are provided in Table 4-2. 

Table 4-2 Share of life-cycle process to the total impacts for GWP for each coal-fired 
technology 

Process  Upstream  Operational 

Technology Coal mining & 
transport 

Amine 
production Fuel combustion CO2 transport & storage 

Averaged PC 48% 6% 40% 5% 
Averaged PC (L) 25% 9% 60% 6% 
Averaged SPC 40% 4% 54% 3% 

Averaged USPC 45% 5% 44% 5% 
 

Averaged and 75th percentile results  

In the GWP category, the estimates suggest a significant reduction regardless of 

the coal-fired technology considered. The mean reduction in GWP was 80% for the PC 

(L) technology, 72 % for SPC, 70% for PC, and 68% for USPC. The results indicate that 

the Q3 values for PC, USPC, and SPC were nearly equal, with a reduction in GWP of 

66%, 67%, and 68%, respectively. For example, a conventional pulverized coal power 

plant (PC) without CCS and a thermal efficiency of 38% would emit 960 g of CO2 per 

kWh of electricity generated from a life cycle standpoint (UChicago Argonne, 2014). 

When CCS to be applied to same plant, the net GWP would be 288 g of CO2 per kWh of 

electricity. The PC (L) technology shows a possible additional reduction in GWP of 10%, 
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with a Q3 value of 78%. This conclusion indicates that the type of fuel used is an 

important factor in the level of change in GWP. The PC (L) technology uses lignite, 

which has a lower heating value and higher GWP from fuel combustion, as this fuel type 

shows the highest achievable reduction in GWP on average compared to other types of 

coal. Although lignite has higher CO2 emission per unit of electricity generated than do 

other hard coals, the fuel production process has a lower GWP impact, and therefore 

lignite has a lower overall GWP. 

 

Sensitivity analysis and outliers 

To ensure data quality, the harmonization process excluded from the analysis 

three estimates that indicated a 56%, 68%, and 80% reduction in GWP. To ensure data 

quality, the harmonization process excluded from the analysis three estimates that 

indicated a 56%, 68%, and 80% reduction in GWP. These estimates were outliers, i.e., 

they were found to be outside the “whiskers” in the box-and-whisker plots shown in 

Figure 4.3. The first result (56%) was reported by Wangen (2012) and represents SPC 

technology. In that study, the author assumed that 70% of the overall GWP originates 

from direct plant emissions which is moderately high, especially for SPC, where the 

averaged value from published literature was 50% contribution from this process. 

Because CCS has the ability to capture 90% of CO2 from plant’s direct emissions, the 

study reached the 56% reduction in GWP. Another reason for this result may have been 

the choice of offshore storage of CO2, which could have an additional impact on GWP as 

compared to onshore storage CO2. Similarly, Suebsiri and Wilson (2011) assume a 66% 

contribution by direct plant emissions from a PC (L) plant to the overall GWP reduction 
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of 68%. This share is not significantly higher than the averaged estimate of 59% for PC 

(L), but the system boundaries in the study excluded the impact of two processes: amine 

production and CO2 transport and storage. When the effects of these processes were 

incorporated, the reduction in GWP decreased from 80% to 68%, which is outside the 

whisker box for PC (L), as shown in Figure 4.3. The third outlier removed from the 

harmonized GWP category was the IEA GHG (2006) estimate for the case of USPC, 

which suggests an overall reduction of 79%. Although that study focused on the USPC 

coal-fired technology, lignite was the main type of coal considered. The study’s 

conclusion of a 79% reduction is not within the harmonized reduction range for USPC, 

although it may be valid for PC (L). Furthermore, the study addresses a European case in 

which lignite is typically surface mined and transported over a relatively short distance to 

the power plant via conveyors, with the result of a lower GWP impact in the upstream 

processes (IEA GHG, 2006). 
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4.3.2 Cumulative Energy Demand  

 
Note: (PC) = pulverized coal, (PC) (L) pulverized coal (lignite), (SPC) = supercritical pulverized coal, and 

(USPC) = ultra-supercritical pulverized coal.  1 = published estimates, and 2 = harmonized estimates. 
Figure 4.6 Box plots of studies considered in the analysis, illustrating the percentage of 

change in GWP for each evaluated coal-firing technology compared to the no-CCS 
scenario, using technology-specific information 

Source: (Abotalib & Zhao, 2015) 
 
 

As shown in Figure 4.6, CCS deployment causes an increase in CED without 

regard to the specific coal-fired technology. The increase in CED occurs because more 

auxiliary energy is needed for CO2 capture and compression, and this higher energy 

requirement will eventually increase the demand for natural resources throughout the 

technology’s life cycle. For example, a conventional pulverized coal power plant (PC) 

without CCS and a thermal efficiency of 38% would require about 11 MJ of natural 

resources (i.e. CED including fossil and non-fossil resources) per kWh of electricity 

produced (UChicago Argonne, 2014). The PC (L) and PC technologies, which are less 
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efficient, have exhibited a larger increase in CED, which is primarily due to 

corresponding increases in fuel consumption of as high as 65% and 66%, respectively. In 

contrast, SPC and USPC are more efficient technologies and have exhibited an increase 

in fuel demand of only 30-38%. Therefore, they would have a smaller effect on the 

overall CED impact category. Technology-specific emission profiles of the CED for each 

process are provided in Table 4-3. 

Table 4-3 Share of life cycle process to the total impact for CED for each coal-fired 
technology 

Process  Upstream  Operational 

Technology Mining and 
transport 

Amine 
production Fuel combustion CO2 transport & storage 

Averaged PC 97% 3% 1% 2% 
Averaged PC (L) 100% 5% 0% 0% 
Averaged SPC 97% 3% 1% 2% 

Averaged USPC 97% 3% 1% 2% 
 

Averaged and 75th percentile results  

In Figure 4.6, the averaged estimates of CED for PC, PC (L), SPC, and USPC 

indicate increases of 41%, 49%, 36%, and 37% respectively. The harmonized Q3 

estimates show a similar trend, with an increase in CED of 52% for PC, 57% for PC (L), 

and 38% for SPC and USPC. These findings indicate that PC and PC (L) technologies 

have a higher energy penalty than SPC and USPC. 

 

Sensitivity analysis and outliers 

While there is a consensus in the literature in regard to an increase in CED for all 

technologies, Marx and colleagues (2011), Pehnt and Henkel (2009), and Śliwińska and 

Czaplicka‐Kolarz, (2013) determine either a lower or higher increase in CED compared 
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to published literature. Therefore, these estimates were not included in the harmonized 

results. Marx and colleagues (2011) evaluated the worst-case CCS scenario and a 

scenario for a PC plant that used the best available CCS technology (BAT CCS). In the 

worst-case scenario a significant drop in the plant’s efficiency is anticipated, from 46% to 

28%. This prediction represents a skeptical view of the technology, in which CED 

increases by 77% because of the reduction in efficiency. In contrast, the second scenario 

assumes an efficient CCS system, which represents a very optimistic view of the 

technology, with an increase in CED of 21%. This finding was also omitted from the 

harmonized results because it was far outside the IQ range for PC power plants. The other 

estimate removed from the analysis that reported by Pehnt and Henkel (2009) for the PC 

(L) coal-fired technology. Their study used a relatively high net efficiency of 46% for a 

lignite plant without CCS, which would drop to 28% with the deployment of CCS. This 

drop represents a decrease in plant efficiency of about 40% and is two times the 

estimated values in the literature for similar plants. The final omitted estimate, reported 

by Śliwińska and Czaplicka‐Kolarz (2013), is that of 56% increase in CED. The study 

used a slightly lower net plant efficiency of 39% for SPC, whereas other SPC studies 

have assumed net plant efficiency in the range of 40% to 46%. This lower efficiency led 

to a 52% increase in the CED category, which appears to be reasonable for conventional 

power plants but not for SPC coal-fired technologies. 

 

4.4 Summary 

The LCA approach has been suggested as a holistic tool for evaluating the 

environmental impact of CCS implementation. CCS is a relatively new technology, and 
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various LCA studies have provided differing results. In this analysis, the LCA 

harmonization approach has been applied to post-combustion carbon capture and 

sequestration with the aim of reducing the variability observed in the published literature, 

and with a focus on GWP and CED. Despite the observed variations among various 

LCAs studies, they agree in regard to a significant reduction in GWP and a considerable 

increase in CED. The CED category mainly increases due to an increase in energy 

demand, which results in greater exploitation of natural resources throughout the life 

cycle of the technology. Therefore, more efficient technologies have less environmental 

impacts. Assuming the deployment of amine-based post-combustion CCS technology 

with 90% CO2 capture efficiency, two processes recognized to have substantial impacts 

on the results are the coal combustion process (operational phase) and the fuel production 

process (upstream phase). Furthermore, it has been demonstrated that MEA production 

and CO2 transport and storage have marginal effects on GWP. The harmonized results for 

the CCS amine-based post-combustion technology indicate a potential reduction in GWP 

ranging from 56% to 80%. Although the results from the published literature were 

adjusted to common system boundaries, variations in the harmonized results still existed 

because of differences in the underlying assumptions made by each study, such as fuel 

type and characteristics, boiler type, methods of transporting fuel and chemicals, 

transportation distance, MEA requirements and losses due to chemical regeneration, and 

distance to CO2 storage sites. Lignite provides a good example of the impact of coal type 

on emissions profiles for each process. Lignite has a lower heating value than that of sub-

bituminous and bituminous coal and therefore a greater GWP impact during combustion. 

However, lignite is normally surface-mined and transported to the power plant over a 
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relatively short distance and hence has a lower impact on GWP. To improve the level of 

consistency in the results, it is essential to establish standardized values for key 

parameters, such as the development of plant efficiencies and energy penalties, capture 

efficiency, purity of the CO2, and location of the fuel source and composition (Marx et 

al., 2011). In addition to the above considerations, with the acknowledged environmental 

trade-offs associated with CCS deployment for all coal-fired technologies, it is crucial to 

make a distinction between global and regional consequences. For example, global 

warming has global significance, whereas the effects of CED are observed on a more 

regional level. Hence, any potential increase in these categories should be carefully 

evaluated on a case-by-case basis, taking into account the potential impacts on the 

regional ecosystem. Such an evaluation can be accomplished by integrating LCA findings 

with a region’s specific spatial and temporal records in order to better evaluate the 

significance of each impact category independently. 
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CHAPTER 5.  LCA-GIS INTEGRATION 

5.1 Background and Motivation 

In the United States, the transportation sector is the second largest source of 

greenhouse gas (GHG) emissions, after the electricity generation sector, accounting for 

27% of the total GHG emissions as of 2013 (U.S. EPA, 2015). In 2007, California 

introduced the Low Carbon Fuel Standard (LCFS), which was the world’s first regulation 

aimed at reducing carbon intensity in transportation fuels. The U.S. Department of 

Energy (U.S. DOE) has also examined the future of transportation fuel through the lens 

of the Transportation Energy Futures project, which addressed multiple futuristic 

approaches, such as controlling the growth of the transportation sector, increasing the use 

of biofuels, and escalating electric and hydrogen-power vehicle technologies (U.S. DOE, 

2013). Similarly, the U.S. Environmental Protection Agency (U.S. EPA) has initiated the 

Renewable Fuel Standard (RFS) Program with the objectives of reducing the GHG 

emissions of transportation fuel as well as reducing the nation’s reliance on foreign oil. 

Under the RFS legislation, the U.S. biofuel industry is projected to produce 36 billion 

gallons of biofuels (primarily ethanol), which would be equivalent to 16% of 

transportation fuels consumed in the U.S., by 2022 (Hornafius & Hornafius, 2015). In 

2010, the ethanol production capacity in the U.S. was 13.9 billion gallons, which was 

equivalent to 10% of the country’s gasoline consumption (RFA, 2012).
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 Although the proposed strategies can play important roles in reducing GHG 

emissions from the transportation sector, a combined set of strategies can achieve better 

outcomes (Rhodes et al., 2015). Integrating CCS with CO2-EOR could be a unique 

prospect, leading to escalate the deployment of commercial CCS projects, increased local 

oil supply, and the production of less carbon intensive transportation fuel as an alternative 

to conventional petroleum-based transportation fuels such as gasoline and diesel (De 

Oliveira, Marcelo E Dias et al., 2005). Recently, the literature has examined the life cycle 

GHG emissions of CO2-EOR deployment from various anthropogenic (e.g., coal or 

natural gas (NG) power plants and NG processing plants) and biogenic (e.g., ethanol 

plants) industrial sources. For example, the life cycle GHG emissions of pulverized coal 

with CCS (PC-CCS) and CO2-EOR applications have been examined in previous studies 

(Cooney, Littlefield, Marriott, & Skone, 2015; Jaramillo et al., 2009; Khoo & Tan, 

2006b; Kuuskraa et al., 2011a). Other studies have examined the GHG emissions of 

crude oil produced via EOR using the CO2 from natural gas power plants (Rhodes et al., 

2015; Zapp et al., 2012). Rhodes et al. (2015) analyzed emissions in California and used 

a crude production rate of 2.5 bbl/tCO2 injected. According to data for 2012, the crude oil 

CO2-EOR production rate is a site-specific parameter and varies by oil basin, ranging 

from 0.9 to 3.8 bbl/tCO2 (NETL, 2014b). This point was partially addressed by Cooney et 

al (2015) by using two different crude recovery rates of 2 and 4.35 bbl/tCO2 for current 

EOR and advanced EOR technologies, respectively (Cooney et al., 2015). Therefore, this 

parameter would play an important role in the life cycle assessment (LCA) results for 

EOR geospatially. Hussain et al. (2013) evaluated switchgrass and livestock manure 

biogas as biogenic CO2 sources; they did not consider corn ethanol plants as candidates 
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despite ethanol’s wide-spread use. Furthermore, the analysis compared CO2 sources on 

the basis of their net GHG emissions without taking into account their geospatial 

distribution in relation to candidate EOR basins (Hussain et al., 2013). The life cycle 

GHG emissions of EOR using biogenic CO2 from biomass and corn ethanol refineries 

have been addressed in other studies (Hornafius & Hornafius, 2015; Laude, Ricci, 

Bureau, Royer-Adnot, & Fabbri, 2011). Hornafius and Hornafius (2015) assigned a 

monetary carbon credit based on reduced carbon content in fuel rather than reporting the 

carbon intensity of the CO2-EOR crude. In another study, Laude et al. (2011) focused on 

a gate-to-gate LCA approach that excluded the biofuel’s upstream emissions as well as 

emissions associated with crude refining and combustion.   

In summary, these studies have used inconsistent system boundaries, different 

functional units, and different LCA allocation methods. In addition, some studies rely on 

site-specific assumptions, which are not representative for other locations. The objective 

of the present analysis is to extend the value of LCA by integrating the LCA tool with 

geospatial information using GIS. This analysis also explores the use of the system 

expansion approach (for details, see the Method section) from life cycle and geospatial 

perspectives for each source (pathway). The scenario examined represents a cradle-to-

grave case, which accounts for the upstream GHG emissions associated with CO2 supply 

from each pathway and subsequently allocates carbon emissions credit on the basis of 

other products produced in parallel. The combined LCA-GIS approach integrates LCA 

results from each CO2 pathway (coal power plants, natural gas plants, and ethanol 

refineries) with site-specific geospatial data for potential recoverable crude oil basins and 

information about existing/proposed CO2-EOR infrastructure in the lower 48 states of the 



52 
 

 

United Sates. Coupling LCA with GIS can be a powerful environmental decision-making 

tool for deepening our understanding of the overall carbon footprint of each pathway with 

respect to potential EOR crude oil basins. Subsequently, the pathways can be ranked 

geospatially in terms of their net life cycle carbon intensity for supplying the CO2 

required to produce a barrel of crude oil via EOR. The analysis covers the processes of 

CO2 capture and sequestration from potential sources (pathways), crude recovery and 

transport to a U.S. petroleum refinery, crude refining, and end-use consumption of 

refined products. 

 

5.2 Method and Model Description 

The model has been designed to calculate the carbon intensity of CO2-based 

enhanced oil recovery, where CO2 is utilized from three different industrial sources, 

which are referred to as “pathways” throughout the analysis, as illustrated in Figure 5.1. 

Geospatial data for pathway one was obtained from the National Renewable Energy 

Laboratory’s (NREL) interactive mapping tool and CO2 form ethanol fermentation 

process was calculated using the generalized stoichiometric ratio approach based on 

annual ethanol production, as approached by Middleton et al. (2014) (Middleton, Clarens, 

Liu, Bielicki, & Levine, 2014b; NREL, 2016). For pathways 2 and 3, we used the 

National Energy Technology Laboratory’s (NETL) NATCARB database in addition to 

the U.S. EPA Facility Level Information on Greenhouse Gases (FLIGHT) to denote the 

CO2 emissions of 2014 (NETL, 2016; U.S EPA, 2015).  

In order to identify viable CO2 candidates for existing and planned EOR fields, 

ArcGIS, a geographical mapping software developed by ESRI, was used to perform 
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spatial analysis on the basis of two key parameters: 1) minimum power generating 

capacity of 400 MW for sources in pathways 2 and 3 (ESRI, 2011; IEA, 2011), and 2) 

maximum distance of 100 miles between a CO2 pathway and an EOR oil basin. We 

understand that current CO2 EOR pipelines exist from Colorado to West Texas for EOR 

at much greater distance (about 600 miles) (Middleton et al., 2015). However, using 

similar value or even half the distance would have significant economic implications on 

CO2 transport, as illustrated by the FE/NETL model (NETL, 2014a). The NETL model 

uses a default CO2 transport distance of 62 miles to eliminate the needs for additional 

pumps to transport the CO2 from the source to EOR reservoirs. We examined increasing 

the distance to cover more CO2 candidates and at the same time keep cost attractive for 

EOR operators. At 100-miles transport distance, cost would only increase by 40% as 

opposed to 300% when the distance was increased to 300 miles. No minimum capacity 

restriction was placed on pathway 1, as it produces a pure CO2 stream. This consideration 

yielded a total of 76 CO2 candidates consisting of 21 ethanol plants (pathway 1), 22 coal 

power plants (pathway 2), and 33 natural gas power plants (pathway 3). Using the CO2 

supply from each pathway, we generated a map that illustrates recoverable crude oil in 

each EOR basin with respect to region-specific CO2 to crude oil recovery rates, as shown 

in Figure 5.1. 
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Figure 5.1 Map of CO2 pathways within 100 miles of EOR fields in the lower 48 states of 
the U.S. Quantities of CO2available from the pathways were converted to barrels of crude 

oil to be recovered via EOR 

Source:(Abotalib et al., 2016) 

To illustrate possible future CCS directions, the LCA scenario examined applies 

the system expansion approach, which accounts for upstream emissions of co-products, 

such as electricity and ethanol fuels, produced within the CO2 supply process from the 

pathways, as well as credits displacement values for these co-products. In this model, the 

entire credit goes to the functional unit defined, which is a barrel of crude oil recovered 

and consumed via EOR, based on the GHG emissions emitted by conventional ethanol 

and electricity production in pathways 1,2, and 3. Table 5-1 highlights the key 

assumptions made in the pathways and the scenario examined in this analysis. Because 

this analysis aimed at comparing the carbon intensity of crude oil extracted via EOR for 
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each pathway, GHG emissions is the primary environmental indicator used throughout 

the analysis; other environmental impact categories were considered to be outside the 

scope of this work. We used the calculation method of the IPCC (2007) to express GHG 

emissions in the form of CO2-e over a span of 100 years (Solomon et al., 2007). 

Table 5-1 Processes included in the scenario and pathways examined in the present 
analysis 

 
System 
process 

 

Pathway 1 Pathway 2 Pathway 3 

 

C
O

2 s
up

pl
y 

 

Includes LCA GHG emissions 

stages related to ethanol 

manufacturing with CO2 

capture: 

 

� Corn farming 

(including land use 

change) 

� Corn transport to 

ethanol facility 

� Ethanol 

manufacturing (i.e., 

fermentation) 

 

Regional electricity grid mixes 

supply required energy for 

CO2 compression. 

 

 

Includes LCA GHG emissions 

stages related to electricity 

generation from coal with CO2 

capture: 

 

� Coal mining 

� Coal transport 

� Coal combustion 

� Amine production 

 

 

 

The same plant provides 

necessary energy for CO2 

separation from flue gas (CCS 

system) by increasing fuel 

input. 

 

Includes LCA GHG emissions 

stages related to electricity 

generation from natural gas 

with CO2 capture: 

 

� Natural gas 

production  

� Natural gas transport 

� Natural gas 

combustion 

� Amine production 

 

The same plant provides 

necessary energy for CO2 

separation from flue gas (CCS 

system) by increasing fuel 

input. 
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C
O

2 t
ra

ns
po

rt
 

    

 

Includes LCA GHG emissions of CO2 transport: 

 

 

Regional electricity grid mixes to supply required energy for CO2 transport. 

 

 

C
O

2 i
nj

ec
tio

n 
(o

il 

re
co

ve
ry

) 

 

 

Includes LCA GHG emissions of CO2 injection (oil recovery): 

 

� Regional electricity grid mixes to supply required energy for CO2 transport. 

 

� Conventional oil recovery and transport to U.S. refineries. 

 

 

C
ru

de
 o

il 

co
ns

um
pt

io
n 

 

Includes LCA GHG emissions of crude refining and refined products combustion: 

 

� Crude oil refining. 

 

� Refined petroleum products combustion such as gasoline, diesel, and fuel oil. 

 

 

C
O

2 a
cc

ou
nt

in
g 

 

 

Systems expansion 

 

� Functional unit 

receives credit based 

on avoided GHG 

emissions from of 

corn ethanol fuel 

production without 

CCS. 

 

 

Systems expansion 

 

� Functional unit 

receives credit based 

on avoided GHG 

emissions from 

pulverized coal 

electricity generation 

without CCS. 

 

 

Systems expansion 

 

� Functional unit 

receives credit based 

on avoided GHG 

emissions from 

natural gas combined 

cycle electricity 

generation without 

CCS. 

Table 5-1 Continued 
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Po
ss

ib
le

 c
re

di
te

d 
en

tit
ie

s 

 

At least two of the following three entities 

 

1. Operating facility as the party responsible for preventing escape into the atmosphere. 

 

2. CO2 operator as the party responsible for injecting the CO2 underground. 

 

3. Oil refinery for purchasing crude oil of lower CI. 

 

 

Notes:  

� Pathways 1, 2, and 3 are compared to the business-as-usual (BAU) baseline, which is conventional crude recovery. 
� The BAU case includes LCA GHG emissions stages related to crude oil recovery, transport to U.S. refineries, and 

combustion (see appendix B for details). 
 

As mentioned earlier, the LCA model expands the system boundaries in order to 

account for negative emission credits for co-products using the system expansion or 

displacement method in accordance with ISO standards 14040-14044 (ISO, 2006a; ISO, 

2006b). Appendix B provides additional information about the technical performance 

parameters for each pathway. A schematic of the system boundaries for pathways 1, 2, 

and 3 is shown in Figure 5.2, where the grey boxes represent co-products. As shown in 

Figure 5.2, all pathways generate a common product, which is crude oil, and two distinct 

co-products, which are ethanol in pathway 1 and electricity in pathways 2 and 3. 

Table 5-1 Continued 
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Figure 5.2 Model system boundaries for pathways 1, 2, and 3 

Source: (Abotalib et al., 2016) 

In Figure 5.2, the system boundaries for each pathway are shown as multiple 

system processes, where each system process is treated as a discrete black box. The GHG 

emissions for each system process were calculated separately and then combined on the 

basis of the specific pathways examined. For example, in pathway 1, the “CO2 supply” 

system process accounts for the life cycle GHG emissions throughout the corn ethanol 

production process, which includes corn farming, transport to the ethanol facility, 

fermentation, and ethanol delivery to end users as well as the energy requirement for CO2 

capture from the fermentation process. A detailed description of each system process is 

provided in Appendix B. The system boundaries for the pathways excluded the physical 

infrastructure required in each of the system processes, and thus their associated GHG 

emissions were considered to be outside the scope of this analysis.  
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5.2.1 Functional Unit and Emission Credits 

In this analysis, we use the GREET model developed by Argonne Laboratory as a 

reference for our LCA results for ethanol production, coal, and natural power generation 

(UChicago Argonne, 2014). This model has been used in regulatory compliance 

standards in California, such as the LCFS (Rhodes et al., 2015). The functional unit 

selected here is a barrel of crude oil produced via CO2-EOR and consumed. Because 

CO2-EOR fields have historically produced oil at different recovery rates (0.9 to 3.8 

bbl/tCO2), the results were calculated on the basis of geospatial characteristics of the 

major EOR fields in the lower 48 states of the U.S. for the pathways investigated. In this 

analysis, we define crude recovery rates as the amount of oil produced (in barrels) per a 

metric ton of CO2 injected. The results were calculated with assigning negative emission 

credits for co-products, as per the system expansion approach. In the system expansion, it 

was assumed that the co-products would displace alternative production methods such as 

the production of ethanol from corn without CO2 capture and conventional electricity 

generation from pulverized coal (PC) and natural gas combined cycle (NGCC) without 

CCS. Accordingly, the functional unit obtains a credit based on the GHG emissions 

emitted by conventional ethanol, in pathway 1 and electricity production in pathways 2 

and 3. Table 5.2 shows some of the key results and credit values that were used for the 

investigated CO2-EOR oil fields. 
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Table 5-2 Displacement factors for co-products in each pathway when system expansion 
is applied 

Pathway                                   Oil Basin 
1: EtOH-CCS-EOR Permian Gulf Coast Rockies Mid-Continent California 

Co-product [gallons of EtOH] 169 395 124 91 140 

Displacement Value [tCO2-e]* -0.87 -2.04 -0.64 -0.47 -0.72 

Crude recovery rate [bbl/tCO2] 2.1 0.9 2.8 3.8 1.8 

Product [bbl. crude oil] 1 barrel of crude oil recovered via EOR 

Displaced Products Corn ethanol via dry milling 

2: PC-CCS-EOR Permian Gulf Coast Rockies Mid-Continent California 

Co-product [kWh] 485 1135 355 261 402 

Displacement Value [tCO2-e] * -0.51 -1.20 -0.38 -0.28 -0.42 

Crude recovery rate [bbl/tCO2] 2.1 0.9 2.8 3.8 1.8 

Product [bbl. crude oil] 1 barrel of crude oil recovered via EOR 

Displaced Products Electricity from coal 

3: NG-CCS-EOR Permian Gulf Coast Rockies Mid-Continent California 

Co-product [kWh] 1041 2434 762 560 862 

Displacement Value [tCO2-e] * -0.56 -1.30 -0.41 -0.30 -0.46 

Crude recovery rate [bbl/tCO2] 2.1 0.9 2.8 3.8 1.8 

Product [bbl. crude oil] 1 barrel of crude oil recovered via EOR 

Displaced Products Electricity from natural gas 
Note: * Subject plants are assumed to be retrofitted with CCS as opposed to the construction of new plants 
without CCS. 

Source: (Abotalib et al., 2016) 

Equation (5.1) shows the key variables used to calculate net GHG emissions for 

each pathway at various EOR fields, allowing the results to be compared with one other. 

The findings were also compared to a business-as-usual (BAU) baseline scenario, which 

refers to conventional crude recovery and transport to U.S. refineries and refined crude 

oil combustion (see Appendix B for details). 

𝐍𝐞𝐭 𝐆𝐇𝐆(𝐲) 𝐄𝐎𝐑 = 𝐆𝐇𝐆𝐄𝐎𝐑 +  𝐝𝐜 = [𝐭𝐂𝐎𝟐𝐞 𝐩𝐞𝐫 𝐛𝐛𝐥. ]                                            𝐄𝐪. 𝟓. 𝟏 

where  
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𝐺𝐻𝐺 (𝑦)𝐸𝑂𝑅 = ∑ 𝑥𝑖

𝑛

𝑖=1

=  𝑥1 + 𝑥2 … +  𝑥𝑛   [𝑡𝐶𝑂2𝑒 𝑝𝑒𝑟 𝑏𝑏𝑙. ]                                                  𝐸𝑞. 5.1.1 

𝑦 = 𝐸𝑂𝑅 𝑓𝑖𝑒𝑙𝑑 (𝑟𝑒𝑔𝑖𝑜𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑟𝑢𝑑𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 𝑎𝑛𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑚𝑖𝑥) 

𝑥1 = 𝐺𝐻𝐺𝑠 𝐶𝑂2 𝑠𝑢𝑝𝑝𝑙𝑦 

𝑥2 = 𝐺𝐻𝐺𝑠 𝐶𝑂2 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 

𝑥3 = 𝐺𝐻𝐺𝑠 𝐶𝑂2 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 (𝑜𝑖𝑙 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑎𝑛𝑑 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑡𝑜 𝑎 𝑟𝑒𝑓𝑖𝑛𝑒𝑟𝑦) 

𝑥4 = 𝐺𝐻𝐺𝑠 𝑐𝑟𝑢𝑑𝑒 𝑜𝑖𝑙 𝑟𝑒𝑓𝑖𝑛𝑒𝑟𝑦 𝑎𝑛𝑑 𝑟𝑒𝑓𝑖𝑛𝑒𝑑 𝑐𝑟𝑢𝑑𝑒 𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 

 

𝑑𝑐 = 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑐𝑟𝑒𝑑𝑖𝑡 [ 𝑡𝐶𝑂2𝑒 𝑝𝑒𝑟 𝑏𝑏𝑙. ] 

𝑑𝑐 = (𝑁𝑜. 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠𝑐𝑜−𝑝𝑟𝑜𝑑𝑢𝑐𝑡) ∗ (
𝐺𝐻𝐺𝑠 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 𝑝𝑟𝑜𝑑.

𝑢𝑛𝑖𝑡  )                                                  𝐸𝑞. 5.1.2 

 

5.2.2 Data Sources for GHG Life Cycle Emissions for Energy 

In pathways investigated, the energy required for CO2 capture, for pathways 2 and 

3 was assumed to be supplied by the same pathway. On the other hand, the energy 

required for CO2 compression, for pathway 1, and for CO2 transport via pipeline, and 

injection into an EOR reservoir was assumed to be supplied by an independent source 

using the regional electricity grid mix as defined by the North American Electric 

Reliability Corporation (NERC) (NERC, 2014). The life cycle GHG emissions and 

geographical distribution for each NERC entity are provided in appendix B. In addition, 

the model’s technical performance parameters are highlighted in appendix B 
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5.3 Results and Discussion 

The results, henceforth, are presented in the form of metric tons of CO2-e emissions 

per barrel of crude oil (t CO2-e/bbl.) in all investigated pathways. Three pathways were 

examined, representing the five major EOR fields. The pathways were compared to a 

baseline case, which is conventional crude recovery with LCA GHG emissions of 0.47 

tCO2-e/bbl. Figure 5.3 illustrates the pathways in ascending order in terms of the carbon 

intensity of a barrel of crude recovered and consumed via CO2-EOR. 

 

Figure 5.3 Carbon intensity of crude oil recovered via CO2-EOR from investigated 
pathways in different EOR fields 

Source: (Abotalib et al., 2016) 
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As shown in Figure 5.3, the LCA results varied among the investigated oil basins. 

Therefore, the impacts of individual system processes were further examined in order to 

identify the GHG emissions contributions from the processes included in the study 

system boundary, as shown in Figures 5.4. However, one key factor in the LCA variation 

was the crude recovery rate in each EOR field. For example, the Gulf Coast, which has a 

lowest crude recovery rate of 0.9 bbl/tCO2, requires about 1.13 tCO2 to recover one barrel 

of crude oil via CO2-EOR. This is approximately double the average requirement for 

CO2-EOR in the U.S. (0.54 tCO2/bbl) and more than four times the CO2 needed in EOR 

fields in the Mid-Continent basin (0. 26 tCO2/bbl). In view of that, storing more carbon at 

a given oil reservoir would correspond to an increase in the displacement credit for co-

products. 

Figure 5.4 illustrates the carbon intensity in terms of system process, which 

includes the upstream emissions from CO2 sources and allocates displacement credits on 

the basis of the resulting co-products. The results show that lower carbon intensive crude 

oil was produced via CO2-EOR for the three pathways compared to conventional crude 

recovery (BAU), despite the fact that the system boundary was expanded to include 

upstream emissions from the three pathways. 

Pathway 1 generally exhibited significant GHGs benefits than other pathways in 

all EOR oil basins, whereas pathway 2 had highest GHGs profile. In pathway 1, the 

capture of biogenic CO2 has added value compared to the capture of non-biogenic CO2 in 

pathways 2 and 3. Biogenic CO2 capture not only enables the production of low-carbon 

crude oil; it also removes carbon from the natural carbon cycle. Furthermore, the model 

allocates displacement credits for co-products, which balance a significant amount of the 
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CO2 generated in other system processes. For example, CO2 injection plays an important 

role in determining the extent of co-product credits, where the magnitude of the reduction 

in GHGs depends on a site’s specific crude recovery rate. The results show that co-

product credits in pathways 2 and 3 offset at least 60% of the GHG emissions (in the 

Mid-continent) of the crude refinement and refined product combustion system 

processes.  

 

Figure 5.4 LCA net GHG emissions for major EOR fields in the three pathways 

Source: (Abotalib et al., 2016) 

 

5.4 Summary 

EOR basins with a higher CO2 requirement per incremental barrel of oil exhibit a 

greater reduction in the carbon intensity for produced crude oil. This finding provides a 

potential future direction for CO2-EOR from a carbon mitigation perspective. However, 

EOR operators tend to increase the efficiency of the EOR process in order to maximize 
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the crude yield from purchased CO2. This point was addressed in a study by Middleton et 

al. (2015), which suggested that CO2 supply cost and oil prices would determine the 

economic viability of CCS-EOR applications in different EOR fields (Middleton et al., 

2015). The study also suggested that utilizing CO2 from industries that produce high 

purity CO2 would be an attractive financial alternative to primary crude production under 

certain oil market conditions (Middleton et al., 2015). 

As highlighted earlier, pathway 1 illustrates greater GWP benefits as opposed to 

pathways 2 and 3 and would be a favorable pathway for EOR operators as it produces 

almost pure CO2 stream. Next, the results indicate that pathway 3 was somehow less 

carbon intensive than pathway 2. However, the deployment of pathway 3 is unlikely to 

take place before pathway 2 because it has lower CO2 emissions profile and considerably 

higher subsequent economic implications (Middleton & Eccles, 2013). In this study, 

recovering crude oil by use of CO2 from pathway 1 was less carbon intensive than with 

the use of CO2 from the other pathways for individual EOR basins. The results indicated 

that pathway 1 was the preferable option, as its carbon intensity was only 3 to 7 percent 

that of as pathways 2 and 3. Pathway 3 was marginally less carbon intensive than 

pathway 2. This difference can be explained by the displacement credit that pathway 3 

receives and lower GHGs emission from the CO2 supply system process. Although the 

process of CO2 transport via pipeline, and injection into an EOR reservoir uses a different 

regional electricity grid mix as per the NERC classification, variations in GHG among 

NERC entities did not have a significant impact on the final LCA results in pathways 

examined. For the pathways investigated, under the technical and geospatial constraints 

of this study, the results indicate that 1.25 million barrels of crude can be recovered per 
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day through the use of CO2-EOR in five major oil regions: Permian Basin, Gulf Coast, 

Mid-Continent, Rockies, and California. As mentioned previously, we considered only 

those candidates within a distance of 100 miles from EOR oil basins. Under this 

assumption, coal-fired power plants alone would have the potential to supply about 88% 

of the CO2 required for EOR. For example, in the Rockies, about 0.6 million barrels can 

be recovered per day from only eight coal-fired power plants, with potential CO2 supply 

of 210,000 tCO2 per day. Natural gas power plants would have the capacity to supply 

about 10%, while ethanol facilities would supply the remaining 2%.  

Increasing the distance parameter alone would yield even more CO2 candidates, 

providing additional CO2 supply for EOR. For example, when we enlarged the distance 

restriction from 100 to 300 miles, the number of CO2 candidates, in all oil basins, 

increased to 88, 105, and 193 compared to 21, 22, and 33 for pathways 1,2, and 3, 

respectively. However, we noticed that most of those additional CO2 candidates were 

located in the Midwestern region, where CO2 pipelines are lacking and oil deposits are 

not significant (See Figure S8 in the SI document for details). 

Furthermore, the RFS target of increasing biofuel production to 36 billion gallons 

by 2022 can be seen as an opportunity to increase the CO2 supply from ethanol facilities 

by expanding the ethanol industry in regions close to EOR fields, in particular in 

locations with favorable climatic conditions. Furthermore, the study focused on CCS-

CO2-EOR applications in the top five major oil regions, where 80% of all EOR oil is 

trapped and readily available for recovery. Therefore, evaluating the investment 

opportunities in CCS-EOR projects in these regions would be a sensible choice for EOR 

operators. However, additional recoverable EOR crude oil deposits do exist at fair 
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capacities in other regions. For example, the Illinois Basin has about 220-300 million 

recoverable oil and at the same time reasonable ethanol capacity, producing about 3 

million gallons of ethanol in 2014. Using the CO2 supply from ethanol plants would be 

relatively cheap enough to recover 10 to 40 million barrels of oil every year (RFA, 2016). 

Therefore, the case of the Illinois basin deserves complete investigation by a separate 

dedicated study. 

 

The main limitations of the model are the technical performance parameters related 

to the individual EOR reservoirs in the investigated oil basins. The quantity of crude oil 

recovered from an EOR reservoir is highly dependent on geological characteristics, crude 

properties, and EOR technology-specific operations. The hydrostatic pressure in an oil 

reservoir depends on fluid extraction rates and other geophysical parameters such as, 

porosity and temperature. Therefore, a reservoir pressure is variable in both space and 

time (Hoversten, Gritto, Washbourne, & Daley, 2002). In this study, we did not account 

for such variations and assumed that the pressure in each EOR reservoirs does not change 

over time. Instead, we used crude recovery rates for each oil basin on the basis of historic 

oil production rates. (See appendix B for detailed technical performance parameters). 

Also, it is very important to recognize that storing more carbon at a given reservoir would 

correspond to an increase in the displacement credit for co-products. In our model, we 

assumed that “like displaces like,” i.e., that the two co-products, ethanol and electricity, 

would displace the production of corn ethanol and electricity from coal and natural gas 

without CCS. However, it can be argued that the choice of substitutes for ethanol and 

electricity should be based on the purpose that each co-product serves. For example, the 



68 
 

 

co-product in pathway 2 supplies additional electricity to the power grid mix, and 

therefore it may be argued that it should not be assumed to displace electricity from coal, 

which would yield greater displacement credit; rather, it would replace the regional 

electricity grid mix. The same argument applies to pathway 1, where additional ethanol 

produced could be assumed as a replacement for cellulosic ethanol, which has 80% less 

GHG emissions compared to corn ethanol. Thus, exploring alternative substitutes for co-

products would have a significant impact on the displacement credits; especially if that 

alternative has lower LCA GHG emissions per unit produced. Finally, because of the 

linear relationship between energy requirements and the CO2 to be injected to recover a 

barrel of oil, greater CO2 storage in a less efficient EOR field places a cost burden on this 

option. Therefore, investigating the economic dimension associated with CO2 capture 

from each pathway along with the reduction in fuel carbon intensity would lead to a more 

comprehensive understanding of industrial CO2-EOR practices. 
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CHAPTER 6. CCS DEPLOYEMNT FROM GAME THEORY PERSPECTIVE 

6.1 Background and Motivation 

The introduction or revision of operative laws, regulations, standards, or other 

government incentive programs can be a time-intensive process, as it involves careful 

categorization of potentially affected stakeholders as well as holistic evaluation of 

anticipated positive and negative consequences on stakeholders, in particular, and on 

society as a whole (Swanson & Lin, 2009). Effective environmental regulations should 

apply to the existing market and also guide industries in the desired political direction. 

Among environmental standards and regulations are those related to controlling 

greenhouse gas emissions from industrial sources. Such regulations are viewed by 

developing countries as a constraint on economic growth and the improvement of public 

welfare (Li, Zhang, Shi, & Zhou, 2016). In recent years, and especially in the post-

Copenhagen era, climate policy has shifted towards a new paradigm, which considers a 

wide range of strategies such as the green economy and low-carbon development projects 

between public and private sectors and encourages the involvement of potentially 

affected stakeholders in the decision-making process (Bäckstrand & Lövbrand, 2016). In 

2016, key global CO2 emitters including China, India, and the United States were among 

the committed participants in the Paris Agreement (Bäckstrand & Lövbrand, 2016; X. 

Yang & Teng, 2016).
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In view of substantially reducing CO2 emissions, the Paris Agreement recognized 

the importance of de-carbonizing the world’s leading economies by creating a balance 

between emission of anthropogenic CO2 by sources and elimination by sinks (Bäckstrand 

& Lövbrand, 2016). In the United States, the electricity generation and transportation 

sectors are the two main sources of anthropogenic CO2 emissions (U.S. EPA, 2015). One 

way of reducing GHG emissions from the transportation sector is the production of fuel 

that is less carbon intensive. Recently developed geotechnical solutions have made it 

possible to capture CO2 emissions from industrial point sources by means of CCS 

technologies (Metz et al., 2005). In this context, CCS can be applied directly to the power 

generation sector or other industrial sources, and the captured CO2 can be utilized for 

enhanced oil recovery EOR. 

Although there is a general consensus in the literature that CCS has a parasitic 

energy load and increases resource consumption, the technology has shown promising 

reductions in GHG emissions when analyzed from a life cycle perspective (Abotalib et 

al., 2016; H. Herzog, Meldon, & Hatton, 2009; Hornafius & Hornafius, 2015; Hussain et 

al., 2013; Melzer, 2012; NETL, 2011; Rhodes et al., 2015; Singh et al., 2011b; Singh, 

Bouman, Strømman, & Hertwich, 2015). However, the magnitude of the reduction in 

GHG emissions from a source is dependent on the energy requirement for sequestering 

the CO2 from the flue gas stream. For example, ethanol facilities produce a nearly pure 

CO2 gas steam (from the fermentation process), whereas coal-fired and natural gas power 

plants produce a gas stream with low CO2 concentration, between 10 and 17% by volume 

(Katzer, Moniz, Deutch, Ansolabehere, & Beer, 2007). 
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As discussed in the literature, CCS integration with CO2-EOR has significant 

potential to reduce the carbon footprint of the U.S. transportation sector by producing 

crude oil with lower carbon intensity than in conventional crude recovery (Abotalib et al., 

2016; Hornafius & Hornafius, 2015; Rhodes et al., 2015; U.S. DOE, 2013; U.S. EPA, 

2015). In the United States, more than 90 million barrels of oil (MMbo) are produced 

annually via CO2-EOR. This figure may increase significantly, as estimates suggest that 

there are more than 24 billion barrels of economically recoverable oil in the lower 48 

states of the U.S. (Kuuskraa, Van Leeuwen, Wallace, & DiPietro, 2011b; MITEI, 2016). 

The majority of these oil deposits are trapped in the Permian, Gulf Coast, Mid-Continent, 

Rockies, and California oil basins (ARI, 2010a). Currently, about 70% of the CO2 used in 

EOR projects is obtained from natural CO2 wells. Finding an alternative and consistent 

CO2 supply would allow the expansion of EOR projects and further the objectives of the 

Energy Policy Act of 2005 (Energy Policy Act, 2005). However, current carbon policies 

do not provide sufficient economic incentives for major carbon emitters to invest in CCS 

projects (Mills, 2014). 

The first objective of this chapter is to establish a framework for assessing CCS-

EOR deployment by industrial emitters, with a specific focus on coal power plants and 

ethanol facilities, from a game-theory perspective under various carbon policy scenarios. 

Second, we assess the payoffs of possible dynamic changes in climate policies and in the 

carbon market, and the effects of policy changes on the ethanol and coal power industries 

in the United States, with a focus on the Illinois Basin. The results from the games 

(scenarios) explored here are envisioned as the players’ possible strategies, i.e., their 
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responses to existing and futuristic carbon policy approaches and incentives, in terms of 

potential variations in carbon market conditions. 

Based on technical and economic information from the literature (see Method 

section in this chapter for details), twelve combinations of game scenarios were 

established in order to determine players’ chosen strategies and the corresponding 

payoffs under each scenario, as shown in Figure 6.1. The games are considered to be non-

cooperative; i.e., each player tends to act independently with the aim of maximizing its 

payoff or, in some situations, minimizing its loss, regardless of the consequences for 

other players (see Table 6-2 - 6-4 for details). The best outcome of such a game is 

referred to as a non-cooperative equilibrium or Nash equilibrium. The outcomes or 

payoffs from the games can be illustrated in a classic two-player, two-strategy game 

matrix, as shown in the Results section. 
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Game Description Notes 

1 
Existing carbon policies and current price of CCS technology at oil price of $60 
per bbl. 

No change in existing carbon 
regulations 

2 
Existing carbon policies and current price of CCS technology at oil price of $110 
per bbl. 

3 
Existing carbon policies and future price of CCS technology at oil price of $60 
per bbl. 

4 Existing carbon policies and future CCS technology at oil price of $110 per bbl 

5 
Future carbon policies and current price of CCS technology at oil price of $60 
per bbl. 

Increasing carbon incentive from 
$10 to $30 per ton of CO2 captured 

and used for EOR 
 

6 
Future carbon policies and current price of CCS technology at oil price of $110 
per bbl. 

7 
Future carbon policies and future price of CCS technology at oil price of $60 per 
bbl. 

8 
Future carbon policies and future price of CCS technology at oil price of $110 
per bbl 
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9 
Future carbon policies and current price of CCS technology at oil price of $60 
per bbl. 

$20 carbon tax for anthropogenic 
CO2 emitters, and increasing 

carbon incentive from $10 to $30 
per ton CO2 captured and used for 

EOR 

10 
Future carbon policies and current price of CCS technology at oil price of $110 
per bbl. 

11 
Future carbon policies and future price of CCS technology at oil price of $60 per 
bbl. 

12 
Future carbon policies and future price of CCS technology at oil price of $110 
per bbl 

Figure 6.1 Schematic representation of different non-cooperative game scenarios 
analyzed under different policy and market conditions. A detailed description of each 

game is provided in appendix B 

 

6.2 CCS Game-Theory Model 

In this analysis, we use non-cooperative game theory to assess the future of CCS 

deployment in ethanol production facilities and coal power plants. The participants in a 

game are referred to as “players.” Their payoffs in the game are determined by whether 

or not they change their business-as-usual (BAU) practices by integrating CCS into their 

operations and subsequently selling captured CO2 to EOR operators. The strategy chosen 

by a player in a specific game scenario is determined by the payoff in that scenario. For 

example, for ethanol production facilities (player 1) and coal power plants (player 2), the 

payoffs are calculated under different carbon policies, costs of CO2 capture technologies, 

and market prices of carbon as a commodity for EOR operations. Payoffs are calculated 

on the basis of the economic costs/benefits of capturing one metric ton of CO2 and 

transporting it to an EOR operator. The cost of CO2 capture represents the current and 

future costs of technology deployment in ethanol facilities and coal power plants. The 

CO2 sale price is based on the amount that EOR operators are willing to pay per mass 

unit of CO2. Historical market prices for oil and CO2 indicate that an EOR operator 

would purchase CO2 at 2.5% of the oil price per thousand cubic feet (Mcf) of CO2, or at 
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47% of the oil price per metric ton of CO2 (Kuuskraa et al., 2011a). Equation 1 is the 

mathematical formula for calculating payoffs. The variables are defined below. 

𝑹 (𝒊)𝑵(𝑷𝒏) = ∑ 𝑪𝒋 =𝒏
𝒋=𝟏  𝑪𝟏 + 𝑪𝟐 +……𝑪𝒏     Equation 6.1 

𝑅𝑁 = 𝑃𝑎𝑦𝑜𝑓𝑓 𝑓𝑟𝑜𝑚 𝐵𝐴𝑈 𝑎𝑛𝑑 𝐶𝐶𝑆 𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 

𝑖 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝐶𝐶𝑆 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠 

𝑃1  = 𝑃𝑙𝑎𝑦𝑒𝑟 1, 𝑒𝑡ℎ𝑎𝑛𝑜𝑙 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦   

𝑃2  = 𝑃𝑙𝑎𝑦𝑒𝑟 2, 𝑐𝑜𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡 

𝐶1  = 𝐶𝑜𝑠𝑡 𝑡𝑜 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑜𝑛𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 𝑡𝑜𝑛 𝑜𝑓 𝐶𝑂2 𝑖𝑛 𝑈. 𝑆. $/𝑡𝐶𝑂2  

𝐶2  = 𝐶𝑎𝑟𝑏𝑜𝑛 𝑝𝑟𝑖𝑐𝑒 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑡𝑎𝑥 𝑎𝑛𝑑 𝑐𝑟𝑒𝑑𝑖𝑡𝑠, 𝑖𝑓 𝑎𝑛𝑦, 𝑖𝑛  𝑈. 𝑆. $/𝑡𝐶𝑂2  

𝐶3  = 𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝐶𝑂2 𝑖𝑛 𝑈. 𝑆. $/𝑡𝐶𝑂2   

Table 6-1 Key parameters for possible scenarios and subsequent associated cost for each 
player 

 Parameter 
Player 1: 
ethanol 
facility 

Player 
2: coal 
power 
plant 

Notes and references 
 

C
C

S 
te

ch
ni

ca
l a

ss
um

pt
io

ns
 

CO2 supply* [$/TCO2] a 22.7 66.2 

� The cost includes CO2 capture from source and 
transport to EOR operator in [$/TCO2] 

� Cost of CO2 capture from ethanol = $12.7 
(Global CCS Institute, 2012) 

� Cost of CO2 capture from coal = $56.2 (NETL, 
2015) 

� Cost to transport CO2 100 miles = $10 (NETL, 
2015) 

CO2 supply* [$/TCO2] b 16 51 

� The cost includes CO2 capture from source and 
transport to EOR operator in [$/TCO2] 

� Cost of CO2 capture from ethanol = $6 (Global 
CCS Institute, 2012) 

� Cost of CO2 capture from coal = $41 (NETL, 
2015) 

� Cost to transport CO2 100 miles = $10 (NETL, 
2015) 

R
eg

ul
at

io
n 

Carbon Tax [$/TCO2] a 0 0 � Current regulations 

Carbon Tax [$/TCO2] b 0 20 � Future carbon tax assumed 

Tax credit [$/TCO2] a 0 10 � Section 45Q (IRS, 2011) 

Tax credit [$/TCO2] b 0 30 � Proposed revision of section 45Q (NEORI, 
2016) 
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Table 6-1 Continued 

E
co

no
m

y 
 

CO2 sale price 
[$/TCO2] a 28 28 

 
� At oil price of $60 per bbl (Kuuskraa et al., 

2011a) 
 

CO2 sale price 
[$/TCO2] b 52 52 � At oil price of $110 per bbl (Kuuskraa et al., 

2011a) 
*  CO2 supply includes the cost of CO2 capture from source and transport to EOR operators, a current or existing cost or 
technology, b proposed or future cost. 

 

Table 6-1 lists the key parameters used to calculate the payoff for each player 

examined in each game scenario. Data from the literature were used in these calculations. 

On the basis of the information provided in Table 6-1, twelve combinations of game 

scenarios were established in order to determine players’ chosen strategies and the 

corresponding payoffs under each scenario, as shown in Figure 6.1. The games are 

considered to be non-cooperative; i.e., each player tends to act independently with the 

aim of maximizing its payoff or, in some situations, minimizing its loss, regardless of the 

consequences for other players (see Tables 6-2-6-4 for details). The best outcome of such 

a game is referred to as a non-cooperative equilibrium or Nash equilibrium. The 

outcomes or payoffs from the games can be illustrated in a classic two-player, two-

strategy game matrix, as shown in the Results section  

 

6.2.1 Potential CO2 Supply 

6.2.1.1 Potential Supply from Ethanol Plants 

Currently, the amount of CO2 potentially recoverable from ethanol plants is 

estimated at 23.4 MMT, of which less than 20% is used as a commodity by other 

industries in the U.S. CO2 merchant market (Supekar & Skerlos, 2014). Ethanol plants 
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would have the capacity to supply about half of the CO2 required for EOR in the U.S at 

current EOR projects capacity. However, less than 40% of this supply is located within 

100 miles from EOR fields. 

6.2.1.2 Potential Supply from Coal-fired Power Plants 

In 2010, anthropogenic GHG emissions in the U.S. reached a total of 6,821.8 

MMT of CO2-e. Coal-fired power plants alone are responsible for about 27% (1,840 

MMT) of such emissions (U.S. EPA, 2012). In 2011, the EIA reported that coal would 

continue to dominate the U.S. power-generation matrix for the next 25 years (EIA, 2011). 

The EIA has projected a 10% increase in the concentration of CO2-e in the atmosphere 

between 2015 and 2035 (EIA, 2010). A typical 500 MW coal-fired power plant emits 

about three MMT of CO2 per year; if this CO2 were captured and used for EOR, 

approximately 11 million incremental barrels of oil could be produced(ARI, 2010b; 

Katzer et al., 2007).  Under the assumption of 90% efficiency in the capture of CO2 from 

flue gas, a total of nearly 19 coal-fired power plants with an electric power capacity of 

500 MW would be sufficient to supply all the CO2 (50 MT) required by current EOR 

projects. In contrast to ethanol plants, which produce a pure CO2 stream, coal-fired power 

plants produce a stream with low CO2 concentration, about 15% by volume, with higher 

associated energy and economic penalties (Katzer et al., 2007). 

 

6.2.2 Geospatial Data Sources 

For geospatial analysis, we used the ArcGIS computer software developed by 

ESRI to visualize the potential of CO2 CCS-EOR applications, particularly in the Illinois 
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Basin (ESRI, 2011). Geospatial data for players 1 and 2 were obtained from the NREL 

interactive mapping tool and the National Energy Technology Laboratory’s (NETL) 

NATCARB database (NETL, 2016; U.S EPA, 2015). The CO2 emission profiles for 

ethanol facilities were calculated from annual ethanol production data using the mole-to-

mole stoichiometric ratio method (Middleton et al., 2014a). Figure 6.2 is a geographic 

map of existing/proposed EOR and CO2 infrastructure in addition to ethanol and coal 

power plants in the lower 48 states of the U.S. Eighty percent of all EOR oil is trapped in 

the top five oil regions: Permian, Gulf Coast, Mid-Continent, Rockies, and California. 

However, reasonable capacities exist in other regions such as the Illinois Basin, where 

estimates suggest that there are about 220-300 million barrels of recoverable oil (Abotalib 

et al., 2016). Currently, there are no commercial CO2-EOR projects or dedicated CO2 

pipelines in the Illinois Basin because of the absence of dedicated natural CO2 wells or 

other supplies (Damico et al., 2014). However, as shown in Figure 6.2, this region has 

numerous industrial CO2 sources, such as ethanol facilities and coal-fired power plants, 

which are potential suppliers of CO2 for EOR projects in place of natural CO2 wells. 
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Figure 6.2 Map of EOR infrastructure and potential CO2 supply from ethanol and coal 
power plants. Quantities of CO2 are based on annual emission profiles from the sources 

 

6.3 Results and Discussion 

6.3.1 Non-Cooperative Game Scenarios 

The payoffs from the game scenarios, hereafter, are presented in U.S. dollars and 

based on the parameters considered in the scenarios (as illustrated in Figure 6.1). The 

payoff matrix for a given game demonstrates the rational strategy to be followed by each 

player according to the expected outcome or payoff, and subsequently a Nash equilibrium 

(highlighted in red in Tables 6-2 to 6-4) can be determined at which each player’s 

strategy is optimal to the game. The twelve games in Figure 6.1 represent three carbon 

policy scenarios with varying exogenous impacts such as changes in the cost of CO2 

technologies and the EOR operator’s willingness to pay for CO2 captured from industrial 

sources. The first set of game scenarios (1-4) represent four possible cases with existing 
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carbon regulations and changes in oil prices and in the cost of CCS and delivery to EOR 

operators. Their payoff matrices are shown in Table 6-2. The second set of games (5-8) 

explore four possible cases in which the incentive credit allocated to anthropogenic CO2 

emitters during a taxable year is increased from $10 to $30 per metric ton of CO2 

captured and utilized for EOR. This set also explores two different oil prices, and the 

existing and future costs of CCS deployment in ethanol facilities and coal power plants 

and of CO2 delivery to EOR operators, as illustrated in Table 6-3. Lastly, the third set of 

game scenarios (9-12) specify a carbon tax on anthropogenic industrial CO2 emitters of 

$20/tCO2 emitted. These scenarios also provide incentives for these entities in the form of 

tax credits for CCS deployment and integration with EOR under two different costs for 

CCS deployment and two different carbon prices. The payoffs matrices for the third set 

of games are shown in Table 6-4. For a detailed description of the game scenarios, see 

Figure 6.1 and section B3 in appendix B. 

 

Table 6-2 Games 1-4: Payoffs for players 1 and 2 with current carbon regulations under 
different CCS costs and market conditions 
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Table 6-3 Games 5-8: No carbon tax. Incentive for anthropogenic CO2 of $30 instead of 
$10. Changes in oil prices and CCS technologies 

 

 

Table 6-4 Games 9-12: $20 carbon tax. Incentive for anthropogenic CO2 of $30 instead 
of $10. Changes in oil prices and CCS technologies 

 

 

According to the results, the ethanol facilities (player 1) would increase their 

payoffs when implementing CCS-EOR in all scenarios. In other words, the dominant 

strategy of player 1 would always be to switch to CCS as opposed to BAU. In games 1, 5, 

and 9, the payoffs for player 1 were the lowest, yet still positive. In these situations, the 

sale price of CO2 was relatively low because of the low price of oil (at $60 per bbl), and 

there was no reduction in the cost of CCS technology deployment. The payoffs for player 

1 were the highest in games 4, 8, and 12, where oil prices were at $110 and the cost of 

capturing and delivering CO2 for EOR was reduced by 30%.  
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Next, the results show that coal power plants (player 2) would be reluctant to 

change their BAU strategy under existing carbon regulations and the current cost of CCS 

technologies (i.e., in games 1 and 2). This outcome is justified by the fact that switching 

to CCS would not make sense economically even if the oil price were assumed to be 

$110 per bbl. Player 2 would also tend to maintain a BAU strategy in game 3, under the 

CO2 price of $28 per metric ton, despite the reduction in the cost of CCS technologies 

from $66.2 to $51 per metric ton of CO2 captured. CCS integration in coal power plants 

would be a financially viable option only in game 4, with existing carbon regulations, a 

23% reduction in the cost of CCS, oil prices of $110 per bbl, and a carbon price of about 

$52 per metric ton. In scenarios where the government increases the carbon tax credit 

(games 5-12), the payoff for player 2 becomes mostly positive (except in games 5 and 9). 

In other words, coal power plants would be likely to reject their BAU strategy adopt 

CCS. For example, if the government increased the carbon tax credit from $10 to $30, 

coal plants would increase their payoffs by applying CCS, except in the case in which the 

cost of CCS technologies has not decreased and oil prices are $60 per bbl (game 5). The 

same outcome is expected for the coal power industry in the case where a carbon tax on 

anthropogenic CO2 emitters is introduced (game 9). 

 

6.3.2 Cooperation Opportunities 

In the Illinois Basin, oil deposits that are recoverable via EOR geographically 

underlie some parts of the state of Illinois and extend to parts of neighboring states such 

as Indiana and Kentucky (REX Energy, 2012). This region has no existing commercial 

CO2-EOR projects or dedicated CO2 pipelines, as shown in Figures 6.2 and 6.3. 
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However, this region has the potential to establish a market for CO2-EOR, since the CO2 

required for commercial projects could be obtained from the ethanol facilities and coal-

fired power plants that are abundant in the region (Abotalib et al., 2016). This potential 

CO2 supply could provide a reliable input for upcoming EOR projects in the Illinois 

Basin and further the objectives of the Energy Policy Act of 2005 (Energy Policy Act, 

2005). 

 
Figure 6.3 Illustrative map of potential CO2 supply from ethanol and coal power plants 

near the Illinois Basin. Quantities of CO2 are based on annual emission profiles from the 
sources 

 

In game scenarios 1-12, the strategy of ethanol facilities (player 1) was dominated 

by rejection of BAU and adoption of CCS. However, the CO2 supply from ethanol 
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facilities is small compared to that from coal power plants and may not be sufficient to 

motivate investment in new EOR projects. For example, the ADM Decatur plant is the 

largest ethanol facility in the Illinois basin and has the capacity to provide about a million 

metric tons of CO2 (MTCO2) annually, whereas the average CO2 supply from an ethanol 

facility is estimated to be approximately 260,000 metric tons per year (Middleton et al., 

2014a). Meanwhile, the largest coal power plant in the region, the Gibson generating 

station in northwestern Indiana, emits about 16.3 MTCO2 annually, whereas the average 

CO2 emissions from a coal power plant is estimated to be approximately 5.6 MT of CO2 

per year (NETL, 2016; U.S EPA, 2015). In the lower 48 states of the U.S., the crude 

recovery rate is a site-specific parameter; it varies from 0.9 to 3.8 bbl/t CO2 among the 

various CO2-EOR fields (NETL, 2014b).  

To overcome the limitation of CO2 supply from ethanol facilities, players could 

cooperate with one another rather than acting independently. This cooperation would 

ensure that the CO2 supply is sufficient for making capital investments in future EOR 

projects, and it would reduce the costs associated with establishing a dedicated CO2 

infrastructure. In other words, clustering CO2 from various industrial sources, such as 

ethanol facilities and even coal power plants, might be an economically feasible way to 

provide the necessary CO2 quantities, and it could motivate players to invest in 

commercial EOR projects in the Illinois Basin.  

Cooperation would allow players to consider opportunities for minimizing some 

of the costs associated with CCS deployment, and subsequently their game strategies 

could change. Game 2 was selected for investigation of this possible change.  In game 2, 

the payoff from adopting CCS would be negative ($ - 4.2) for player 2. In other words, 
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adoption of CCS would entail a cost burden. Thus, player 2 would not be motivated to 

change its BAU strategy and invest in CCS, despite a carbon price of $52 per metric ton. 

However, at that price, player 1 would make a profit of $29.3 per tCO2 sold to EOR 

operators, and therefore its strategy would be dominated by switching to CCS. Under a 

new scenario for the case of cooperation, it is assumed that both players evenly share the 

cost associated with establishing a joint CO2 transport infrastructure to deliver CO2 to an 

EOR operator. Without cooperation, the cost to transport CO2 from a source to an EOR 

operator is $10/tCO2 for each player. With cooperation, in which this cost is evenly 

shared, the payoff for each player would increase by $5/tCO2. This small change would 

be just enough to encourage player 2 to switch to CCS, even though the payoff would not 

be significant in comparison to that in the BAU scenario. The payoff matrix for this new 

scenario (game 2R) is shown in Table 6-5. 

Table 6-5 Game 2R: cooperation assumed between players, no change in current 
regulations, no reduction in the cost of CCS technologies, high oil prices 

Game 2R) Cooperation for CO2 transport with  
 current CCS tech at oil price of $110 per bbl.  

Player 2: Coal 

BAU CCS 

Player 1: Ethanol 
BAU (0, 0) (0, 0.8) 

CCS (34.3, 0) (34.3, 0.8) 

 

6.4 Summary 

Integrating CCS with CO2-EOR can play an important role in the large-scale 

deployment of CCS by various industries under economic condition in which the returns 

from selling CO2 to EOR operators exceed the costs associated with CCS deployment. 

Furthermore, as CCS becomes more widely applied and a reliable supply of CO2 more 
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readily available, a significant expansion in EOR projects is expected. In this analysis, a 

number of game scenarios were used to evaluate CCS-EOR deployment in the ethanol 

and coal power production industries, with a focus on the Illinois oil basin. We explored 

the impacts of possible changes in carbon policies, the carbon market, and the cost of 

CCS technologies on the decisions of carbon emitters regarding the integration of CCS 

into their operations. We did not select these scenarios in order to advocate for a specific 

case. Rather, they represent possible changes in carbon policies and CCS-EOR market 

conditions. Our framework is intended as a decision-making tool for industrial CO2 

emitters in response to dynamic changes in policy and market conditions. In this sense, 

the framework can provide regulatory and industrial players with a better perspective on 

CCS-EOR deployment from an economic standpoint.  

In the absence of established carbon regulations and the necessary economic 

incentives, industrial CO2 emitters will tend to avoid additional costs in order to 

maximize their profits. According to the game scenarios examined here, the coal power 

industry would not be likely to invest in CCS under the existing cost of CCS technologies 

and current carbon regulations. However, investment in CCS becomes an economically 

viable option in cases in which the cost of supplying the CO2 for EOR is competitive with 

the cost of sourcing the CO2 from other sources such as natural CO2 wells. For example, 

coal power plants would consider CCS deployment if the price of carbon was above $57 

per metric ton. From an economic perspective, EOR operators would not be likely to 

purchase CO2 at this price unless the price of oil rose above $120 per bbl. Historically, 

however, oil market statistics have been fluid, and oil prices have fluctuated over the past 

six decades (Macrotrends LLC, 2016). Thus, there is significant financial uncertainty for 
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potential EOR operators who are making economically based decisions about investing in 

the technology. Reducing the dependence of CCS deployment on oil prices by means of 

government carbon regulation and incentives would decrease the risk for both CO2 

emitters and end-users. Hence, tools such as a carbon tax and carbon credits can be used 

for incentivizing industrial CO2 emitters to consider operating at a lower carbon footprint 

and start investing in cleaner technologies and practices (Tang, Shi, Yu, & Bao, 2015; J. 

Yang et al., 2016). In short, individual stakeholders tend to act independently: first, to 

maximize benefits, and second, to minimize loss. However, working with other 

stakeholders may open the door to a third option that is better than losing. For example, if 

players had the opportunity to cooperate with one another and evaluate other possible 

economic avenues, as highlighted in game 2R, their strategy would change 
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CHAPTER 7. CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

This research addresses the potential role of carbon capture and sequestration in 

near-term mitigation of anthropogenic CO2 emissions. In the United States, the electricity 

generation sector, which is dominated by the use of coal, and the transportation sector 

together account for two thirds of total anthropogenic GHG emissions  (EIA, 2014b; U.S. 

EPA, 2015). CCS has the potential to become a widely-used option for producing low-

carbon electricity. When integrated with enhanced oil recovery, CCS is also an avenue to 

the production of transportation fuel that is less carbon intensive than conventional 

petroleum-based fuels such as gasoline and diesel. Because CCS will soon be capable of 

storing carbon dioxide from large point sources, the technology will continue to be an 

attractive option for CO2 mitigation in a fossil fuel-dependent economy.  

Therefore, CCS has been evaluated here from a life-cycle perspective to provide a 

better understanding of its environmental and economic consequences. Although the 

LCAs of various studies revealed some differences in the levels of GHG reduction, both 

the published and harmonized results indicated a large decrease in GWP for the various 

coal-fired technologies investigated.
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However, because of the requirements of energy and other input materials, there 

was a notable increase in CED, which would subsequently increase the footprint of the 

technology in term of resources. This energy burden is seen as the main constraint for 

large-scale deployment of CCS in coal-fired power generation. According to optimistic 

financial estimates, the implementation of CCS at an existing conventional coal-fired 

power plant would increase the price of delivered electricity by 40% (IEA, 2012).The 

integration of CCS with CO2-EOR is seen as a more realistic approach to advancing 

large-scale CCS deployment and thus reducing anthropogenic CO2 emissions. The merits 

of the integrated technologies are clear at each stage, from point sources such as power 

plants to the oil produced by EOR, in which some of the CO2 is offset during the 

production phase.  In other words, using mature oil wells, rather than storing CO2 

underground in saline formations, could play an important role in lowering the carbon 

intensity of transportation fuel. This approach would help to achieve the goal of reducing 

U.S. carbon emissions by 26-28% by 2025 in comparison with 2005 levels, which 

translates into an annual reduction target of 2.3-2.8% (White House Press, 2015). 

Looking at CCS from this perspective requires the identification of potential industrial 

CO2 sources (pathways). In this dissertation, coal power plants, natural gas plants, and 

ethanol refineries were selected as potential industrial sources of CO2 for the EOR 

process. These sources were investigated from a life-cycle perspective in terms of their 

ability to provide the CO2 needed to produce a barrel of crude oil. The LCA scenario 

examined here represents a cradle-to-grave case, which accounts for the upstream GHG 

emissions associated with CO2 supply from each pathway and subsequently allocates 

carbon emissions credit on the basis of other products produced in parallel. The model 
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developed in this dissertation extends the value of LCA by integrating the LCA results 

from each CO2 pathway with GIS using site-specific geospatial data for potential 

recoverable crude oil basins, and considers information about existing/proposed CO2-

EOR infrastructure in the lower 48 states of the U.S. The pathways were compared to a 

conventional crude recovery, transport, refinement, and end-use combustion baseline, 

which had net GHG emissions of 0.47 tCO2-e/bbl. Overall, net GHG emissions from 

pathways 1, 2, and 3 were lower than in the baseline case. However, our results clearly 

indicated that ethanol-based CCS-EOR (pathway 1) was the best alternative. Still, the 

CO2 supply from ethanol plants was limited; the plants would have the capacity to 

produce only about 25,000 bbl/d, compared to 1.1 Mbbl/d in pathway 2 and 125,000 

bbl/d in pathway 3. Among the system processes that were assessed, the CO2 injection 

had the greatest influence on the LCA results, where the magnitude of the reduction in 

GHGs depended on each site’s specific crude recovery rate, and that rate determines the 

extent of the displacement credits for coproducts. This finding indicates that crude oil 

with lower carbon intensity can be produced from EOR reservoirs that are less efficient in 

terms of crude recovered per ton of CO2 injected. However, it should be acknowledged 

that the use of less efficient reservoirs would be associated with greater CO2 supply, 

which has a parasitic energy requirement and would in turn entail a higher cost burden.  

The results also indicated that natural gas power plants produce a low-CO2 stream; 

the energy requirement for CO2 separation was twice that of ethanol plants and 1.12 

times greater than that of coal power plants. As a result, these power plants are less 

attractive for CO2 supply from an economic perspective. Therefore, the future of CO2 
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supply from natural gas power plants has been eliminated when looking at the future of 

CCS deployment from a game-theory perspective. 

In this dissertation, we adopted the game-theory approach to evaluate CCS-EOR 

deployment in the ethanol (player 1) and coal power production (player 2) industries, 

with a focus on the Illinois oil basin. Following this approach, we explored the impacts of 

possible changes in carbon policies, the carbon market, and the cost of CCS technologies 

on the decisions of industrial carbon emitters. The results were first assessed on the basis 

of a non-cooperative type of game, and then in terms of the opportunity for cooperation 

between players. In a non-cooperative game, participants (players) act independently: 

first, to maximize their benefits, and second, to minimize their losses, regardless of the 

consequences for other players. According to our analysis, under existing carbon policies 

and at the current cost of CCS deployment, the strategy of the ethanol industry would be 

dominated by CCS deployment. By contrast, coal power plants would not have sufficient 

governmental or economic incentives to deploy CCS because of the gap between the cost 

of capturing and transporting CO2 and the price of CO2. However, cooperation between 

the two players could lead to a third option that might have a greater payoff for each 

individual. The findings of this study have demonstrated the potential costs and benefits 

of CCS-EOR advancement in line with prospective changes in carbon regulations and 

market conditions. 

 

7.2 Future Work 

The goal of this dissertation was to develop a more inclusive approach to determining 

the role CCS in providing low-carbon electricity and transportation fuel in the United 
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States. A comprehensive, in-depth assessment of CCS from a sustainability perspective is 

also needed. The assessment should target three typical aspects of sustainability: 

environmental, economic, and social considerations. However, the latter component is 

very hard to quantify at this stage and is therefore considered outside the scope of this 

research.  

� Although the results of the post-combustion studies are quite robust, other 

emerging CCS technologies such as chemical looping and membrane-based 

capture systems have also been investigated. Experimental trials with these 

alternatives have shown lower energy penalties and lesser economic implications 

than those of amine-based capture systems. The present research addressed the 

amine-based post combustion process because it has been deployed at existing 

point sources on a commercial scale. In addition, the analysis here focused mainly 

on the problem of global warming potential because GWP reduction is the 

intended purpose of CCS. In fact, region-specific constraints such as water 

consumption and land requirement are equally important in the consideration of 

post-combustion technology. Including additional environmental indicators is 

possible, but at this point we need to understand the possible reduction in GWP in 

greater depth before moving on to other impact categories. Because of our limited 

experience with CCS, it is not yet clear where and when these technologies can be 

used. Future analysis should take into account region-specific environmental 

conditions along with carbon policies. 
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� The LCA-GIS approach uses an averaged crude recovery rate for each of the 

major oil basins in the lower 48 states, but the recovery rate can vary considerably 

from well to well within the same basin. Existing data sources do not provide a 

specific crude recovery rate for each individual oil well that could potentially be 

used in EOR. Such information would enable the development of a more 

comprehensive LCA-CCS-EOR optimization model. Furthermore, the model 

could include an economic component that would indicate the return on 

investment for obtaining CO2 from various industrial sources. For example, an 

EOR operator would be able to analyze all possible options on the basis of GWP 

and the ability to supply enough CO2 at a feasible price, before making a large-

scale CO2- EOR investment. 

 

� The game-theory framework is limited by few possible scenarios in carbon 

policies and CO2 market value. Existing and potential carbon regulations and CO2 

prices are not likely to promote cooperation among the various CO2 emitters. 

However, this may not be true in all situations, particularly in the cases of high 

carbon taxes and stringent carbon cap-and-trade scenarios. In such situations, the 

game-theory framework would provide more opportunities for cooperation among 

CO2 emitters and among CO2 end-users. The payoffs for each player can be 

calculated with the use of the Shapley value approach in order to allocate the 

gains from cooperation fairly among different players. 
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Appendix A CCS and CO2 Storage  

A.1 Saline Formation   

Saline formations exist at a greater depth compared to oil reservoirs and coal seams. 

These types of formation are globally available with great storing capacities (Lokhorst & 

Wildenborg, 2005). The rocks in these formations are classified as porous containing 

extremely salty water. There are limited encouraging projects worldwide. A famous 

project is the Sleipner project off the coast of Norway. In this project, over 10 million 

tons of CO2 have been injected so far with no leakage noticed yet (Lokhorst & 

Wildenborg, 2005). 

 

A.2 Depleted Oil and Gas Reservoirs 

In depleted oil and gas reservoirs, CO2 has been commercially used to increase pressure 

and recover residual oil and gas from the reservoirs. This process is known as enhanced 

oil recovery (EOR). According to the U.S. DOE, this option has an added-value besides 

CO2 storage, as an additional 39-48 billion barrels of domestic oil could be produced 

prior to 2030 as a consequence of this technology (NETL, 2010d). As of 2013, there were 

seven large-scale CCS projects in the United States, with CO2-capturing capacities 

ranging from 0.68 to 8.4 MMT of CO2 per year (Global CCS Institute, 2014). 

 

A.3 Un-minable coal seams 

Naturally, coal seams contain gases such CH4 that are held in pores in the coal and 

adsorbed on the surface of the coal (Lokhorst & Wildenborg, 2005). Certain coal seems 
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such as those that are too deep or too thin to be economically viable can be feasible CO2 

storage sites. The UK Department of Trade and Industry (UK DTI) estimates that 

undisrupted coal seams can contain extensive amounts of CH4, as much as 25 m3 per ton 

of coal. CO2 injection in this type of formation will displace the CH4, which can then be 

recovered for energy generation (UK DTI, 2000). 

 

A.4 United States CO2 supply and demand market 

Table A-1 lists a number of CO2 end-users, where CO2 is supplied from either natural or 

industrial sources. The latter are primarily industries that produce an almost pure CO2 

stream. Among these industries is the refining of ethanol, where only the dehydration and 

compression of CO2 are required before its delivery to consumers (Middleton et al., 

2014b). In 2014, Superkar and Skerlos published an overview of the U.S. CO2 merchant 

market that listed major suppliers and buyers, as shown in Figure A.1 “merchant market” 

is a free market controlled by supply and demand, in which suppliers and buyers of a 

commodity are independent and are not owned by the same entity. Under this definition, 

the supply of CO2 for enhanced oil recovery was not included in the CO2 merchant 

supply portfolio for the U.S. (Supekar & Skerlos, 2014). 
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Figure A1.  Sources of CO2 supply in the U.S. merchant market excluding CO2 used for 
EOR 

Source: (Supekar & Skerlos, 2014) 

As shown in Figure A.1, about 4.3 MMT is supplied from ethanol, 3.15 from natural CO2 

wells, and about 3 MMT each from hydrogen and ammonia. Table A-1 lists the major 

CO2 consumers in the U.S. in terms of annual demand. 

Table A-1: Demand for CO2 in the U.S. market in millions of metric tons (MMT) per 
year 

Industry Market Demand MMT 
Enhanced Oil Recovery (EOR) 50 
Food Processing 6.38 
Carbonated Beverages 1.98 
Agriculture 0.77 
Chemical Processing 0.11 
Metal Fabrication 0.44 
Others 1.32 
Approximate Total CO2 Annual Demand 61 

Notes: EOR data is for 2007; other data represents the U.S merchant market for CO2 in 2013. 

Sources: (Middleton et al., 2014b; Supekar & Skerlos, 2014) 

As shown in Table A-1, enhanced oil recovery consumes significantly more CO2 than 

any other industry, followed by the food processing industry. Currently, more than 50 
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MMT of CO2 are injected per year in EOR, which produces more than 90 million barrels 

of oil (MMbo) (Meyer, 2007). About 70% of this figure comes from natural CO2-

dedicated wells (Middleton et al., 2014b). 
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Appendix B Technical Parameters 

B.1.0 Technical parameters for pathways for LCA-GIS integration  

 

B.1.1 Pathway 1 

Figure B.1 shows processes that have been included in the ethanol production system 

boundaries. We used the uses a different regional electricity grid mix as per the NERC 

classification for energy related requirements focusing on the ethanol drying milling 

process. The system boundary for ethanol production was utilized from the GREET 

model of Argonne Lab, which assumes natural gas as the main source of heat (about 

84%). The remaining heat is supplied from coal (7%) and electricity grid mix (9%). The 

ethanol production process is described in detail in the Supporting Information document. 

 

Figure B.1. System boundaries of corn-based ethanol manufacturing via dry milling. 

 

Table B-1: GHG emission of CO2 supply from dry milling corn based ethanol including 
LCA emission of ethanol manufacturing. 

Parameter Value Reference 

1.0 CO2 Supply   

1.1 Corn ethanol [g CO2-e/gallon] 4929 GREET.2014 
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1.2 Gallons of EtOH [gallon / bbl.] 90-395 (This is co-product generated from 

one bbl. of crude, region specific) 

1.3 Electricity for CO2 purification [kWh / tCO2] 171.8 This CO2 is utilized fermentation 

(ISGS 2006, p15) 

 

B.1.1.1 Biogenic CO2 accounting  

Capturing biogenic CO2 would lower the upstream emission from ethanol production. In 

other words, subtracting captured CO2 (from the fermentation process) from upstream 

ethanol production would lower the net GHG emission of ethanol production. Figure 2 

illustrates the carbon flow for pathway one by considering this assumption.

 

Figure B.2 Carbon flow diagram for pathway 1. The green arrow represents biogenic CO2 
captured from the fermentation process. This value is subtracted from non-biogenic CO2 

emissions associated with ethanol production 
NOTE: Note: We assumed that 0.25-ton CO2 would recover one bbl. of crude via EOR as an example. 
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Figure B.3 System boundaries of coal-fired electricity generation via 99.9% steam power 
generation 

 

The life cycle GHG emissions for a coal-fired power plant covers coal mining and 

cleaning, transport, amine production, and direct emission from stack (released). CO2 

transport and storage are covered separately. 

 

Table B-2: Performance parameters of a coal-fired power plant with CCS 
No. Process Value Reference 

1.1 CCS total energy penalty  [kWh/kWh (PC-CC)] 0.25 (H. J. Herzog, 2001; H. J. Herzog, 

2011) 

1.2 CCS electricity requirements [ kWh/tCO2 

captured (PC-CC)] 

317 (H. J. Herzog, 2001; H. J. Herzog, 

2011) 

1.3 Emission of CCS capture [tCO2e/tCO2 captured] 

(w/o amine production, transport & injection) 

0.21003 (Frischknecht et al., 2007; 

Koornneef et al., 2008; Odeh & 

Cockerill, 2008) 

1.4 Solvent Production [t CO2e/tCO2 captured] 0.00525 (Frischknecht et al., 2007; 

Koornneef et al., 2008; Odeh & 

Cockerill, 2008) 
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1.5 Net GHG from CCS [tCO2e/tCO2 captured] 0.2153 Not to be included because we 

capture 90% 

 

 

B.1.3 Pathway 3 

 

Figure B.4 System boundaries of natural gas electricity generation at 82% by natural gas 
combined cycle (NGCC) power generation 

 

Table B-3 Performance parameters of CO2 supply from a NG-fired power plant with 
CCS 

No. Process Value Reference 

1.1 CCS total energy penalty [ kWh/kWh (NG-CC)] 0.13 (H. J. Herzog, 2001; H. J. Herzog, 

2011) 

1.2 CCS electricity requirements [ kWh/tCO2 

captured (NG-CC)] 

354 (H. J. Herzog, 2001; H. J. Herzog, 

2011) 

1.3 Emission of CCS capture [ tCO2e/tCO2 captured] 

( w/o amine production, transport & injection) 

0.235 (Frischknecht et al., 2007; 

Koornneef et al., 2008; Odeh & 

Cockerill, 2008) 
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1.4 Solvent Production [t CO2e/tCO2 captured] 0.00525 (Frischknecht et al., 2007; 

Koornneef et al., 2008; Odeh & 

Cockerill, 2008) 

1.5 Net GHG from CCS [t CO2e/t CO2 captured] 0.24 Not to be included because we 

capture 90% 

 

B.2.0 CO2 Transport parameters  

Table B-4: Performance parameters CO2 transport and emissions profile CO2 EOR 
storage location. 

Process Value Reference 

2.1 Energy intensity of pipeline transport [btu/ton-mi] 127 (Rhodes et al., 2015) 

2.2 Pipeline distance [mi] 100 Assumed based on geographic 

information. 

 

Using the existing CO2 pipelines make more economic sense if capacity is not a 

constraint. We agree that 100-mile radius seems to be restrictive, however our choice was 

guided based on the information found in the literature that indicate the need for 

additional CO2 infrastructure. The literature has indicated that existing CO2 pipelines 

would not to support further expansion in EOR oil production and for that reason major 

EOR regions such as, the Permian basin, Rockies, Mid-continent and the Gulf Coast 

basin are planning to build additional dedicated CO2 pipelines networks(Melzer, 2012; 

NEORI, 2012; Tanner, 2010). Because this study considers the opportunity of increasing 

the share of low carbon intensive oil production (CO2-EOR) as opposed to conventional 

oil production, we think that it would be more reasonable to select a restrictive distance 

(100-miles) versus using the distance of existing CO2 pipelines. This choice would help 
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to avoid the inclusion of impractical CO2 candidates, which could overestimate the 

number of potential CO2 candidates. For the pathways investigated under this restrictive 

assumption, the results indicate that 1.25 million barrels of crude can be recovered per 

day through the use of CO2-EOR, which more than 4 times current CO2-EOR oil 

production. Therefore, we investigated different distance values using the FE/NETL CO2 

transport model which considers capital as well as operational cost of CO2 transport 

infrastructure. We highlighted this point in the limitation section and mentioned the 

opportunity of increasing the distance parameter.   

Nevertheless, reviewer’s comment was taking into consideration and the use of less 

restrictive distance value has also been investigated.  Results were shown in Figure B.5 to 

illustrate the potential CO2 candidates within 300 miles from EOR regions. With the 300 

miles’ distance restriction, the number of CO2 candidates increases to 88, 105, and 193 

compared to 21, 22, and 33 with the 100 miles for pathways 1,2, and 3, respectively. We 

noticed that most of those additional candidates were located in the Midwestern region, 

where oil deposits are not significant, and therefore would not be able to use existing CO2 

pipelines even if capacity is not an issue. 
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Figure B.5 Potential CO2 candidates within 300 miles from EOR oil basins 

 

B.3.0 Crude recovery parameters 

 

Table B-5: GHG of Enhanced oil recovery per barrel of recovered crude.  
Process Value Reference 

U.S Conventional oil recovery  [g CO2/bbl.] 29911 GREET.2014 

U.S Conventional transport process [g CO2/bbl.] 10889 GREET.2014 

Additional energy for EOR [1.78 kWh/bbl] 1329.6 (Rhodes et al., 2015) 

Total GHGs U.S EOR to Refinery (Recovery, EOR, and transport) 42129.6 Calculated 

 

Table B-6 EOR technology parameters 
Parameter Value Reference Remarks 
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Energy for EOR [kWh/bbl.] 1.78 (Middleton et al., 

2014b) 

This includes energy needed for 

CO2 injection into EOR reservoir 

and CO2 recovery from recovered 

crude.  

Oil production rate [bbl./ tCO2] 4 (ARI, 2010b; NETL, 

2010a) 

This value represents historical 

EOR practices and can be adjusted 

based on EOR reservoir specific 

characteristics.  

Sequestered CO2 [tCO2/ bbl.] 0.26-

1.13 

Calculated from oil 

production rate 

Depending to oil basin (see Table 

7) 

CO2 sequestration rate 0.991 (Middleton et al., 

2014b) 

 

 

 

 

Table B-7 Crude recovery rates from major oil basins in the lower 48 sates of the U.S. 
Region Annual bbl. 

produced via 

CO2 EOR 

TCO2 

injected per 

year 

BBL/tCO2 TCO2/bbl Reference 

Permian Basin 67890000 32802597.4 2.07 0.48 (NETL, 2014b) 

Gulf Coast 15695000 17728571.43 0.89 1.13 (NETL, 2014b) 

Rockies 13140000 4645454.545 2.83 0.35 (NETL, 2014b) 

Mid-Continent 6205000 1611688.312 3.85 0.26 (NETL, 2014b) 
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California NA NA 2.5 0.4 (Middleton et al., 

2014b) 

 

Table B-8 Operational parameters for EOR from the literature 

 

Source: (NETL, 2010a) 

B.4.0 GHG life cycle emissions for electricity 

 

The energy requirement for CO2 transport via pipeline, and injection in the EOR assumed 

to be supplied by regional NERC entities in all scenarios. The life cycle GHG emissions 

of each entity are provided in Table B-9. The U.S. electrical grid is regulated by the 

North American Electric Reliability Corporation (NERC), which insures the reliability of 

bulk power systems in the United States, Canada, and the northern part of Baja 

California, Mexico (NERC, 2014). The NERC delegates its authority to eight regional 
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electric reliability entities that cover the 48 contiguous states and the District of 

Columbia. Each regional entity is accountable for compliance with NERC regulations 

and standards as well as distribution of electricity in areas under the entity’s jurisdiction.   

Table B-9 shows the eight regional players, distribution of electricity sources and CO2e 

per kWh of electricity distributed for end users.  

1. Florida Reliability Coordinating Council 

2. Midwest Reliability Organization (MRO) 

3. Northeast Power Coordinating Council (NPCC) 

4. Reliability First (RF) 

5. Southwest Power Pool, RE (SPP) 

6. Texas Reliability Entity (TRE) 

Table B-9 shows the eight regional players, distribution of electricity sources from coal 

and CO2e per kWh of electricity distributed for end users. 

Table B-9 NERC regional entities profile and their LCA GHG emissions 
Regional NERC entity Population 

served 

Geography LCA GHG 

(g CO2/ kWh) 

(%) 

Electricity 

from coal 

Florida Reliability 

Coordinating Council 

(FRCC) 

Over 16 

million 

About 50,000 square miles over 

peninsular Florida. 

628.8 0.24381 

Midwest Reliability 

Organization (MRO) 

Over 20 

million 

Covers roughly one million square 

miles spanning the provinces of 

Saskatchewan and Manitoba, and all or 

parts of the states of Illinois, Iowa, 

Minnesota, Michigan, Montana, 

747 0.64302 
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Nebraska, North Dakota, South Dakota 

and Wisconsin.  

Northeast Power 

Coordinating Council 

(NPCC) 

About 35 

million 

State of New England, New york, and 

Maritimes area. 

329.8 0.04269 

NPCC New York About 19.4 

million 

State of New York 

NPCC- New England About 14 

million 

New England 

NPCC- Maritimes About 1.9 

million 

New Brunswick and Nova Scotia  

NPCC-Ontario  ~ 13 million Province of Ontario  

NPCC- Québec About 8million Province of Québec 

Reliability First (RF) About 61 

million 

All or parts of Delaware, Illinois, 

Indiana, Kentucky, Maryland, 

Michigan, New Jersey, North Carolina, 

Ohio, Pennsylvania, Tennessee, 

Virginia, West Virginia, and the 

District of Columbia. 

 

705.8 0.54487 

Southwest Power Pool, 

RE (SPP) 

About 15 

million  

all or parts of Arkansas, Kansas, 

Louisiana, Mississippi, Missouri, New 

Mexico, Oklahoma, and Texas and the 

entire state of Nebraska covering 

370,000 square miles. 

625.25 0.43394 

Texas Reliability Entity 

(TRE) 

About 23 

million 

State of Texas 662.5 0.3735 
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Western Electricity 

Coordinating Council 

(WECC) 

Approximately 

81 million 

people 

Serving an area of nearly 1.8 million 

square miles It extends from Canada to 

Mexico. It includes the provinces of 

Alberta and British Columbia in 

Canada, the northern portion 

of Baja California in Mexico, and all 

or portions of the 14 Western states in 

between.  

489.5 0.27323 

SERC Reliability 

Corporation (SERC)  

About 39.4 

million 

All or portions of Alabama, Florida, 

Georgia, Iowa, Kentucky, Mississippi, 

Missouri, North Carolina, Oklahoma, 

South Carolina, Tennessee, and 

Virginia. Covers an approximate area 

of 308,900 square miles 

664.4 0.46113 

US Electricity Grid Mix About 330  628 0.41471 

Source: (NERC, 2014; UChicago Argonne, 2014) 

 

B.5.0 Co-product sensitivity impacts  

In our model, we assumed that “like displaces like,” i.e., that the two co-products, ethanol 

and electricity, would displace the production of corn ethanol and electricity from coal. 

However, the choice of different substitutes for ethanol and electricity based on the 

purpose that co-product serves can be argued. For example, the co-product, in pathway 2, 

supplies additional electricity to power grid mix and therefore it may be argued that it 

should not assumed to displace electricity from coal which would yield greater 

displacement credit. The same argument also applies to pathway 1, where ethanol is 

mostly used as a blending agent in gasoline. Thus, we chose to explore different 

substitutes for corn ethanol and electricity from coal, where we assumed that ethanol and 
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electricity would displace gasoline blend stock (~ 55% less LCA GHG emissions than 

corn ethanol) and U.S. electricity grid mix (~ 70% less LCA GHG emissions than 

electricity from coal), respectively. 

 

Table B-10 Displaced co-products in each pathway 
Pathway Product Co-product Displaced products GHG 

displacement 

Value [g CO2-e] 

1: EtOH-CCS-

EOR 
Recovered oil 

88 gallons 

Ethanol fuel 

Ethanol production  

(Like-displaces-like) 

-436655 

1: EtOH-CCS-

EOR 
Recovered oil 

88 gallons 

Ethanol fuel 

Gasoline blend stock  

(Alternative-substitute)  

-235997 

1: EtOH-CCS-

EOR 
Recovered oil 

88 gallons 

Ethanol fuel 

Cellulosic ethanol  

(Alternative-substitute) 

-0.077 

2: PC-CCS-

EOR 
Recovered oil 279 kWh Electricity 

Regional electricity 

(Like-displaces-like) 

-224473 

 

2: PC-CCS-

EOR 
Recovered oil 279 kWh Electricity 

U.S. electricity grid mix 

(Alternative-substitute) 

-208483 

NOTE: Note: We assumed that 0.25-ton CO2 would recover one bbl. of crude via EOR as an example. 

 

B.6.0 Sensitivity Analysis of the Results 

Based on the CO2 recovery rates in each region we estimated the potential recoverable 

barrels of oil per year from the pathways considered. 
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Figure B.6 The recoverable barrels of oil with respect to CO2 supply from sources and 
crude recover rates in each oil basin 

 

As seen in Figure B.6, pathway 2 was the major supplier for CO2 compared to the other 

two pathways. However, the LCA results have shown that pathway 2 was not the most 

favorable carbon intensive option. Figure B.7 illustrates pathways in an ascending order 

based on the CI of a barrel of crude recovered via CO2-EOR. Figures B.8-B.11 illustrate 

the share of GHG emissions from various system processes in the form of tons of CO2 

equivalent per a barrel of crude produced and consumed. 
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Figure B.7 Ranking of pathways in major EOR fields 
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B.6.1 Pathway 1 

 

Figure B.8. Share of GHG emissions from different system processes in pathway 1 
 

B.6.2 Pathway 2 

 

Figure B.9 Share of GHG emissions from different system processes in pathway 2 
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B.6.3 Pathway 3 

 

Figure B.10 Share of GHG emissions from different system processes in pathway 3 
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 B.7.0 Details on the methodology used for game-theory assessment 

Table B-11 Description of each game and parameters for calculating payoffs 
sc
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1 

x CO2 emitters 
responsible for any 
cost associated with 
CCS  
 

x $22.7 for ethanol and 
$66.2 for coal based 
on current CCS 
technologies.  

x No carbon cap 
regulatory limit on 
industries. 
 

x Carbon credit is $10 
for coal power plants. 

x EOR operator offset 
some of the CCS cost 
by purchasing CO2 
from emitters.  
 

x The price is assumed 
to be $28 per metric 
ton of CO2. [at $60 oil 
price per bbl] 

2 

x CO2 emitters 
responsible for any 
cost associated with 
CCS  
 

x $22.7 for ethanol and 
$66.2 for coal based 
on current CCS 
technologies. 

x No carbon cap 
regulatory limit on 
industries. 
 

x Carbon credit is $10 
for coal power plants. 

x EOR operator offset 
some of the CCS cost 
by purchasing CO2 
from emitters.  
 

x The price is assumed 
to be $52 per metric 
ton of CO2. [at $110 
oil price per bbl] 

3 

x CO2 emitters 
responsible for any 
cost associated with 
CCS. 
 

x $16 for ethanol and 
$51 for coal based on 
future CCS 
technologies. 

x No carbon cap 
regulatory limit on 
industries. 
 

x Carbon credit is $10 
for coal power plants. 

x EOR operator offset 
some of the CCS cost 
by purchasing CO2 
from emitters.  
 

x The price is assumed 
to be $28 per metric 
ton of CO2. [at $60 oil 
price per bbl] 

4 

x CO2 emitters 
responsible for any 
cost associated with 
CCS. 
 

x $16 for ethanol and 
$51 for coal based on 
future CCS 
technologies. 

x No carbon cap 
regulatory limit on 
industries. 
 

x Carbon credit is $10 
for coal power plants. 

x EOR operator offset 
some of the CCS cost 
by purchasing CO2 
from emitters.  
 

x The price is assumed 
to be $52 per metric 
ton of CO2. [at $110 
oil price per bbl] 
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5 x CO2 emitters 
responsible for any 
cost associated with 
CCS. 
 

x $22.7 for ethanol and 
$66.2 for coal based 
on current CCS 
technologies. 

x No carbon cap 
regulatory limit on 
industries. 
 

x Carbon credit is $30 
for coal power plants. 

x EOR operator offset 
some of the CCS cost 
by purchasing CO2 
from emitters.  
 

x The price is assumed 
to be $28 per metric 
ton of CO2. [at $60 oil 
price per bbl] 

6 x CO2 emitters 
responsible for any 
cost associated with 
CCS. 
 

x $22.7 for ethanol and 
$66.2 for coal based 
on current CCS 
technologies. 

x No carbon cap 
regulatory limit on 
industries. 
 

x Carbon credit is $30 
for coal power plants. 

x EOR operator offset 
some of the CCS cost 
by purchasing CO2 
from emitters.  
 

x The price is assumed 
to be $52 per metric 
ton of CO2. [at $110 
oil price per bbl] 

7 x CO2 emitters 
responsible for any 
cost associated with 
CCS. 
 

x $16 for ethanol and 
$51 for coal based on 
future CCS 
technologies. 

x No carbon cap 
regulatory limit on 
industries. 
 

x Carbon credit is $30 
for coal power plants. 

x EOR operator offset 
some of the CCS cost 
by purchasing CO2 
from emitters.  
 

x The price is assumed 
to be $28 per metric 
ton of CO2. [at $60 oil 
price per bbl] 

8 x CO2 emitters 
responsible for any 
cost associated with 
CCS. 
 

x $16 for ethanol and 
$51 for coal based on 
future CCS 
technologies. 

x No carbon cap 
regulatory limit on 
industries. 
 

x Carbon credit is $30 
for coal power plants. 

x EOR operator offset 
some of the CCS cost 
by purchasing CO2 
from emitters.  
 

x The price is assumed 
to be $52 per metric 
ton of CO2. [at $110 
oil price per bbl] 
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9 x CO2 emitters 
responsible for any 
cost associated with 
CCS. 
 

x $22.7 for ethanol and 
$66.2 for coal based 
on current CCS 
technologies. 

x Carbon cap on 
industrial 
anthropogenic CO2 
emitters. 
 

x $ 20 carbon tax per 
metric ton CO2 
emitted. 

 

x  Carbon credit is $30 
for coal power plants. 

x EOR operator offset 
some of the CCS cost 
by purchasing CO2 
from emitters.  
 

x The price is assumed 
to be $28 per metric 
ton of CO2. [at $60 oil 
price per bbl] 

10 x CO2 emitters 
responsible for any 
cost associated with 
CCS. 
 

x $22.7 for ethanol and 
$66.2 for coal based 
on current CCS 
technologies. 

x Carbon cap on 
industrial 
anthropogenic CO2 
emitters. 
 

x $ 20 carbon tax per 
metric ton CO2 
emitted. 

 

x Carbon credit is $30 
for coal power plants. 

x EOR operator offset 
some of the CCS cost 
by purchasing CO2 
from emitters.  
 

x The price is assumed 
to be $52 per metric 
ton of CO2. [at $110 
oil price per bbl] 

11 x CO2 emitters 
responsible for any 
cost associated with 
CCS. 
 

x $16 for ethanol and 
$51 for coal based on 
future CCS 
technologies. 

x Carbon cap on 
industrial 
anthropogenic CO2 
emitters. 
 

x $ 20 carbon tax per 
metric ton CO2 
emitted. 

 

x Carbon credit is $30 
for coal power plants. 

x EOR operator offset 
some of the CCS cost 
by purchasing CO2 
from emitters.  
 

x The price is assumed 
to be $28 per metric 
ton of CO2. [at $60 oil 
price per bbl] 

12 x CO2 emitters 
responsible for any 
cost associated with 
CCS. 
 

x $16 for ethanol and 
$51 for coal based on 
future CCS 
technologies. 

x Carbon cap on 
industrial 
anthropogenic CO2 
emitters. 
 

x $ 20 carbon tax per 
metric ton CO2 
emitted. 

 

x Carbon credit is $30 
for coal power plants. 

x EOR operator offset 
some of the CCS cost 
by purchasing CO2 
from emitters.  
 

x The price is assumed 
to be $52 per metric 
ton of CO2. [at $110 
oil price per bbl] 
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