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ABSTRACT 
 
 
 

Bandara, Nimalka Achini, Ph.D., Purdue University, May 2015. Immunotherapy of 
Folate Receptor Expressing Cancers. Major Professor: Philip S. Low. 

 

 The folate receptor (FR) is a GPI anchored cell surface glycoprotein that functions 

to facilitate folic acid uptake and mediate signal transduction.  With the introduction of 

multiple folate-targeted drugs into the clinic, the question has arisen regarding how 

frequently a patient can be dosed with a FR-targeted drug or antibody, and whether 

dosing frequency exerts any impact on the availability of FR for subsequent rounds of 

FR-mediated drug uptake. Although the rate of FR recycling has been examined in 

murine tumor models, little or no information exists on the impact of FR occupancy on its 

rate of endocytosis. The studies described in chapter two of this thesis quantitates the 

number of cell surface FR-α and FR-β following exposure to saturating concentrations of 

a variety of folate-linked molecules and anti-FR antibodies, including the unmodified 

vitamin, folate-linked drug mimetics, multi-folate derivatized nanoparticles, and 

monoclonal antibodies to FR. The collected data indicate that FR occupancy has no 

impact on the rate of FR internalization.  The results also demonstrate that multivalent 

conjugates that bind and cross-link FRs at the cell surface internalize at the same rate as 

monovalent folate conjugates that have no impact on FR clustering, even though the 

multivalent conjugates traffic through a different endocytic pathway.    
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Having described early, fundamental studies regarding the mechanism of action 

of cell surface folate receptors, the remaining chapters in this thesis will focus on the 

design and evaluation of combination immunotherapy techniques for the treatment of FR 

expressing cancers. Cancer immunotherapy relies on harnessing the power of the body’s 

immune system and directing its killing power towards a patient’s malignant tumor while 

avoiding toxicity to healthy tissues. Since physiological folates play a critical role in 

DNA synthesis and cell division, and since uncontrolled proliferation of cells is a 

trademark of malignant cancers, FR is overexpressed by a variety of tumors in order to 

meet the demand for larger quantities of the vitamin. Therefore, the folate receptor has 

been successfully exploited for the delivery of folic acid linked imaging and therapeutic 

agents to a variety of cancer cell types. Chapters 3 and 4 of this thesis describes 

experiments aimed towards evaluating immunotherapy combinations that could have 

clinically translatable effects on FR positive cancers. By using in vivo mouse models of 

kidney cancer, lung cancer, and lymphoma these studies demonstrate that vascular 

endothelial growth factor receptor (VEGFR) inhibitors as well as T cell check point 

inhibitors synergize with folate-hapten mediated immunotherapy to slow tumor 

progression, reduce tumor cell metastasis, and prolong survival. We then proceed to 

answer the more challenging question of why this observed synergy occurs by evaluating 

resected tumor and spleen tissues from treated mice for changes in immune cell 

components and microenvironment composition. It is apparent from the collected data 

that the physiological mechanism of synergy is multi-fold and includes the combination’s 

ability to better activate immune effector cells, recruit cytotoxic cells to the tumor site, 

down regulate immune suppressor cells, and slow the growth of tumor vasculature. 
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Effect of Receptor Occupancy on Folate Receptor Internalization
N. Achini Bandara, Michael J. Hansen, and Philip S. Low*

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States

ABSTRACT: The folate receptor (FR) is a GPI anchored cell
surface glycoprotein that functions to facilitate folic acid
uptake and mediate signal transduction. With the introduction
of multiple folate-targeted drugs into the clinic, the question
has arisen regarding how frequently a patient can be dosed
with a FR-targeted drug or antibody and whether dosing
frequency exerts any impact on the availability of FR for
subsequent rounds of FR-mediated drug uptake. Although the
rate of FR recycling has been examined in murine tumor
models, little or no information exists on the impact of FR
occupancy on its rate of endocytosis. The present study quantitates the number of cell surface FR-α and FR-β following exposure
to saturating concentrations of a variety of folate-linked molecules and anti-FR antibodies, including the unmodified vitamin,
folate-linked drug mimetics, multifolate derivatized nanoparticles, and monoclonal antibodies to FR. We report here that FR
occupancy has no impact on the rate of FR internalization. We also demonstrate that multivalent conjugates that bind and cross-
link FRs at the cell surface internalize at the same rate as monovalent folate conjugates that have no impact on FR clustering,
even though the multivalent conjugates traffic through a different endocytic pathway.

KEYWORDS: receptor recycling, folate receptor endocytosis, ligand targeted drugs, antibodies to folate receptors,
ligand valency on nanomedicines

■ INTRODUCTION

The folate receptor (FR) constitutes a family of four
homologous proteins that are thought to bind folic acid and
its physiologic congeners.1,2 FR-α is found on the apical
surfaces of certain epithelial cells, where it is largely inaccessible
to folates in the bloodstream.3,4 It is also overexpressed on a
variety of epithelial-derived cancers, where it can be readily
targeted by intravenously injected folate-linked drugs.5−7 FR-β
is primarily expressed on activated macrophages8 which
populate almost all autoimmune and inflamed tissues and
mediate many of the destructive processes responsible for
disease symptoms.9−11 Examples of inflammatory diseases
caused or worsened by FR+ activated macrophages include
rheumatoid arthritis, ulcerative colitis, atherosclerosis, multiple
sclerosis, and psoriasis among others.12−18 FR-γ has been
detected in the bone marrow from whence it may be released
into circulation,19 but whether it facilitates folate uptake is not
known. FR-δ has been found primarily on regulatory T cells20

and like FR-γ has no known function. Only FR-α has been
shown to be involved in signal transduction,21 but the possible
participation of FR-β, FR-γ, or FR-δ in transmembrane
signaling has never been examined.
Because of the limited expression and/or accessibility of FR

in healthy human tissues, both FR-α and FR-β have been
exploited for targeted drug delivery to cancer tissues and sites
of inflammation, respectively.22 For this purpose, folate is
linked to a therapeutic or imaging agent and injected into the
diseased host, where it is either captured by FR on the
pathologic cell surface or rapidly excreted from the body.
Radioactive13,15 and fluorescent23,24 folate conjugates have been

used to visualize sites of inflammation25 and localize malignant
disease,23,26,27 whereas folate-conjugated therapeutic agents
have been exploited to destroy FR-α expressing tumor cells28,29

and inactivate FR-β expressing inflammatory macrophages.14,16

A variety of folate-targeted molecules are currently undergoing
human clinical trials.
Because the rate of FR internalization and trafficking can

influence the frequency of folate conjugate dosing (i.e., there is
no merit in injecting a patient with a folate−drug conjugate
more frequently than empty FR return to the pathologic cell
surface following endocytosis), several studies have examined
the rate and routes of FR trafficking in physiologically relevant
systems.24,30−32 Results from these studies demonstrate that FR
traffic through different intracellular compartments depending
on the number of folates tethered to the targeted conjugate,
with monovalent folate−drug conjugates trafficking through a
recycling center before returning to the cell surface,24,31,33 and
multivalent FR ligands trafficking through multivesicular bodies
prior to deposition in lysosomes.34−37 Importantly, despite the
detailed nature of the above studies, the effect of folate
conjugate size and valency on its rate of internalization and
recycling has never been examined. In this paper, we explore
the kinetics of internalization of both FR-α and FR-β following
their ligation to a variety of folate-linked molecules and
antifolate receptor antibodies, including the free unligated
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vitamin, folate-linked small molecules, multifolate derivatized
nanoparticles, and monoclonal antibodies to FR.

■ EXPERIMENTAL PROCEDURES
Cell Lines and Culture. All FR positive cell lines were

maintained in the Cell Culture Facility of the Purdue University
Department of Chemistry. KB and IGROV cells were
maintained in folate-deficient RPMI 1640 medium (Invitrogen,
Grand Island, NY) supplemented with 10% heat inactivated
fetal bovine serum (Sigma Aldrich, St. Louis, MO), penicillin
(50 units/mL), and streptomycin (50 μg/mL). Chinese
hamster ovary (CHO) cells stably transfected with human
FR-β (generous gift from Manohar Ratnam, Karmanos Cancer
Center, Detroit, MI) were maintained in folate-deficient RPMI
1640 medium (Invitrogen, Grand Island, NY) supplemented
with 10% heat inactivated fetal bovine serum (Sigma Aldrich,
St. Louis, MO), 0.15 mg/mL L-proline, 10 nmol/L N5-formyl
tetrahydrofolate, 100 units/mL penicillin, and 100 μg/mL
streptomycin (Sigma Aldrich, St. Louis, MO). All cell lines were
passaged continuously in a monolayer and cultured at 37 °C in
a humidified atmosphere containing 5% CO2.
Antibodies and Reagents. Folic acid was purchased from

Sigma Aldrich (St. Louis, MO) and dissolved in pH adjusted
deionized water. The hybridoma cell line that produces a
mouse monoclonal antibody to human FR-α (mAb 343) was a
generous gift from Wilbur Franklin (University of Colorado),
and folate-fluorescein (EC17) was kindly provided by
Endocyte, Inc. (West Lafayette, IN). Fluorescein-labeled goat
antimouse IgG antibody was purchased from Santa Cruz
Biotechnology, Inc. (Dallas, TX). Human antihuman mAb
against FR-β (m909) was developed in collaboration with Dr.
Dimiter Dimitrov (National Institutes of Health, Frederick,
MD) and labeled with fluorescein isothiocyanate.9

Folate Conjugates. A water-soluble monovalent folate-
rhodamine conjugate with nanomolar FR affinity (Figure 1A)

was synthesized as previously described.24,26 Folate-targeted
polyethylene glycol-derivatized liposomes were also prepared
according to previous procedures,35 with ∼3.5% of the
phospholipids derivatized with PEG and ∼10% of the
PEGylated lipids further conjugated to folic acid. Assuming
∼80 000 lipids per liposome, this calculates to ∼280 folate

targeting ligands per liposome for a folate-targeted lipid
concentration of ∼1.5 μM in the stock suspension.

Evaluation of the Effect of Receptor Occupancy on
Receptor Internalization. Each cell type to be investigated
was plated in a six-well plate at a density of 50 000 cells/well
and allowed to adhere overnight. Individual wells were either
left untreated (controls) or incubated in 100 nM folic acid or
folate rhodamine for 20 min, 4 h, or 24 h at 37 °C. For analyses
of liposome uptake, 100 μL of 2 mg/mL folate-conjugated
liposome stock suspension was added to each well prior to
execution of the same incubation procedure. Following
incubation, wells were washed thoroughly with PBS to remove
unbound ligand, after which cells were removed from the plate
by scraping, centrifuged to form a pellet, and resuspended in
cold (4 °C) folate-deficient culture medium to block further FR
trafficking. Folate receptors accessible on the cell surface were
then labeled with either mAb343 followed by fluorescein-
labeled goat antimouse secondary antibody (KB and IGROV
cells) or m909-FITC (CHO-β cells) by further incubation at 4
°C for 1 h. After washing with PBS to remove unbound
antibody, fluorescently labeled FR in all cell samples were
quantitated on a Becton Dickinson FACS Caliber flow
cytometer. Ten thousand cells were counted from each sample,
and three samples from each treatment condition were
evaluated. CellQuest software was used for data collection,
and FlowJo software was employed for data analysis. Graphing
and statistical calculations of the analyzed data were performed
using GraphPad Prism software.

■ RESULTS
Effect of Folic Acid on the Kinetics of FR-α Internal-

ization. For many cell surface receptors, the rate of receptor
internalization is strongly dependent on both receptor number
and receptor occupancy.38,39 Although previous studies have
demonstrated that the rate of FR internalization is independent
of receptor number,30 no information is currently available on
the impact of receptor occupancy on the rate of FR
endocytosis. To obtain this information, KB and IGROV cells
(which express high and low levels of FR-α, respectively) were
incubated in vitro with a saturating concentration (100 nM) of
free folic acid for 20 min, 4 h, or 24 h at 37 °C. Cell surface FR
were then quantitated by flow cytometry using a noncompeting
anti-FR-α primary antibody (mAb343) followed by labeling
with a fluorescein-conjugated goat antimouse secondary
antibody. If folic acid binding were to induce FR internalization,
a decrease in available FR on the cell surface would be expected
as exposure to folate/folate conjugate proceeded. Moreover, if
resting state FR levels were to impact the rate of ligand-induced
receptor endocytosis, differences between FR internalization by
KB and IGROV cells would be anticipated. As seen in Figure 2,
the rate of FR-α internalization is not altered by folic acid
binding, since cell surface FR-α numbers remain similar to their
levels in untreated cells at all of the time points tested.
Furthermore, the level of FR expression in untreated cells must
exert little influence over the kinetics of receptor internal-
ization, since cell lines that express high and low levels of FR
display the same insensitivity to receptor saturation.

Effect of Folic Acid on the Kinetics of FR-β Internal-
ization. Although FR-β exhibits similar nanomolar affinity for
folic acid to FR-α,40 its greatly reduced level of expression,41 its
unique manifestation on activated immune cells,8−11 and its
rapid rate of internalization12,30 raise the question of whether
the response of FR-β to saturation with folic acid might differ

Figure 1. General structures of (A) folate−rhodamine conjugate and
(B) folate−PEG liposomes.
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from that of FR-α. To evaluate the impact of FR-β occupancy
on its rate of internalization, a CHO-K1 strain that was stably
transfected with human FR-β was incubated with a saturating
concentration of folic acid and examined for cell surface FR-β
using a noncompeting monoclonal antibody to FR-β (m909).9

As seen in Figure 3, the level of FR-β on CHO-β cell surfaces is

independent of the time and extent of FR-β saturation with
folic acid. Thus, m909-FITC binding remains essentially the
same in the absence of added folic acid (0 min time point) as
seen following 24 h exposure to saturating levels of folic acid
(24 h time point). Moreover, there is no significant difference
in cell surface FR-β between cells incubated for 20 min in
saturating folic acid and those incubated for 4 or 24 h with the
vitamin. Based on these observations, we suggest that the rate
of internalization of FR-β, like that of FR-α, is not altered by
changes in the level folic acid binding, but instead recycles at a
steady rate, regardless of receptor occupancy.

Effect of Folate Conjugate Valency on the Kinetics of
Receptor Endocytosis. Cross-linking or clustering of cell
surface receptors using multivalent ligands has been known for
years to accelerate receptor endocytosis and trafficking to
lysosomes.34,36,42 For example, multivalent lectins and antibod-
ies that can bind multiple receptors simultaneously have been
observed to induce localized receptor “patching” followed by a
more global receptor “capping” prior to receptor internalization
and degradation.43 Because many laboratories have exploited
folate to target nanoparticles to pathologic cells, invariably
derivatizing their nanomedicines with multiple folates to
increase binding avidity, the concern has naturally arisen
whether such multivalent formulations might induce accel-
erated depletion of FR from the cell surface, preventing or at
least delaying the ability to target additional nanomedicines to
the same FR-expressing cells. To address this concern, we have
compared the number of cell surface FR following incubation
of cells with a monovalent ligand (folate−rhodamine) to their
number following incubation with a multivalent ligand (folate-
targeted liposomes). As seen in Figure 4, only minor differences
are seen in the number of residual cell surface FR following
incubation with either monovalent (panel A) or multivalent
(panel B) folate conjugates, suggesting that cell surface receptor
depletion commonly observed with other multivalent ligands
does not occur when FR is the targeted receptor. In the case of
monovalent folate−rhodamine, the detected variation in cell
surface FR-α (KB) and FR-β (CHO-β) levels following
different incubation times are minor and probably a
consequence of experimental variability. Even in the case of
the multivalent liposomes, the decrease in cell surface FR at
early time points is reversed at 24 h, suggesting any real effect
may be transient at best. Moreover, although receptor numbers
differ significantly with IGROV cells and the receptor sequence
differs in CHO-β cells, similar insensitivities to folate conjugate
valency are observed. We, therefore, conclude that conjugate
valency does not have a significant effect on the rate of FR
internalization.

Impact of Antibody Binding on FR Endocytosis.
Because several anti-FR antibodies have recently entered
clinical trials,44 and since antibodies commonly induce the
endocytosis of their targeted receptors,45 we felt it might be

Figure 2. Quantitation of cell surface FR-α after incubating KB cells (A) and IGROV cells (B) with a saturating concentration (100 nM) of folic acid
for 20 min, 4 h, and 24 h. Cell surface FR were quantitated by flow cytometry using a noncompeting monoclonal anti-FR-α antibody, as described in
the Methods. Mean fluorescent intensities from three samples were averaged and graphed as a percentage of the average fluorescence intensity
measured at the 0 min time point, that is, before addition of free folic acid.

Figure 3. Quantitation of cell surface FR-β after incubating CHO-β
cells with saturating folic acid for 20 min, 4 h, and 24 h, as determined
by flow cytometry following labeling of extracellular receptors with
m909-FITC. Mean fluorescent intensities from three different samples
were averaged and graphed as a percentage of the average fluorescence
intensity measured at the 0 min time point, that is, before addition of
free folic acid.
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prudent to include in our study an examination of the impact of

antibody binding on FR endocytosis. For this purpose, KB and

CHO-β cells were incubated with saturating concentrations of

mAb343 and m909, respectively, and subsequently labeled with

folate−fluorescein (EC17) to quantitate the number of cell

surface FR. As seen in Figure 5, no differences in cell surface FR

were observed following incubation with either antibody at any

of the three incubation times, demonstrating that antibody
binding also has no impact on FR internalization.

■ DISCUSSION

The rate of internalization and trafficking of most cell surface
receptors may depend on multiple parameters, including: (i)
the nature of the ligand,46 (ii) the level of receptor
occupancy,38,47 and (iii) the degree of receptor clustering

Figure 4. Quantitation of cell surface FR-α and FR-β following incubation of cells with folate−rhodamine (A) or folate-labeled liposomes (B) for the
indicated times. As in previous figures, cell surface FR were labeled with mAb343 or m909-FITC and quantitated by flow cytometry. Mean
fluorescent intensities from three samples were averaged and graphed as a percentage of the average fluorescence intensity measured at the 0 min
time point, that is, before the addition of free folic acid.
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induced by its binding ligand.48 Thus, natural agonists
commonly promote rapid receptor endocytosis, while antago-
nists generally do not.49,50 High levels of receptor occupancy
may also induce internalization and destruction of some
occupied receptors, while low levels of receptor saturation
may stimulate greater receptor trafficking to recycling endo-
somes and subsequent return of the receptor to the cell
surface.51 Finally, the degree of ligand-induced receptor
clustering can also influence receptor fate, with some clustered
receptors further aggregating into cell surface patches prior to
endocytosis43 and others either internalizing immediately or
not endocytosing at all. Not surprisingly, with the many
possible effects that different ligands can exert on the
endocytosis and trafficking of their cognate receptors, we
wondered whether the amount or nature of an injected folate-
targeted drug would impact the availability of FR on the
targeted cell surface. Thus, if folate−drug conjugate binding
were to lead to significant receptor down-regulation, the
interval between folate conjugate dosing might have to be
lengthened to allow for cell surface FR levels to recover.
The unanticipated result from this study was that neither FR

occupancy nor folate conjugate valency has any significant
effect on FR levels at the cell surface. These data suggest that
FR endocytosis occurs at a constitutive rate, regardless of FR
occupancy or cross-linking due to multivalent ligand binding.
They also suggest that if FR cross-linking induces FR trafficking
to lysosomes, as suggested by studies with multivalent folate-
targeted nanoparticles,35,36 the synthesis of new FR must
compensate for any FR that are degraded. As a consequence,

selection of an optimal frequency for folate conjugate dosing
need not involve consideration of folate conjugate concen-
tration or valency. Rather, the only variable that must
apparently be evaluated when dosing frequency is optimized
constitutes the rate at which the FR naturally recycles in each
particular tumor type. Based on previous studies of several
human tumor xenografts in live mice, this recycling rate may
vary from 8 to 12 h.30
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CHAPTER 1: 

TARGETING THE FOLATE RECEPTOR FOR CANCER IMMUNOTHERAPY 

 

1.1 Introduction 

Mark Horn, a former graduate student in the Low lab was studying receptor-

mediated-endocytosis when he serendipitously discovered that biotin, a small vitamin 

molecule, could mediate the uptake of large animal proteins into live plant cells.1 To 

follow up this exciting new finding, a variety of other vitamins were examined for their 

ability to transport macromolecules into the cytoplasm of mammalian cells. These 

experiments led to the observation that folic acid, a B vitamin, could facilitate the 

internalization of large proteins into animal cells and subsequently opened the door to 

folate-conjugate chemistry.1-2 Although folic acid is a synthetic version of naturally found 

folates, it can be converted by enzymes into the biologically active form once it enters the 

body.3 More importantly, it can readily be conjugated to any number of different 

molecules for delivery into folate receptor (FR) expressing cells.  

Physiological folates are necessary for the synthesis of new nucleotide bases as 

well as for DNA and histone methylation. Therefore, folates are essential molecules for 

growth and division of all cells.4-6 Since animals lack the ability to biosynthesize folates, 

its uptake is sorely based on diet and its appropriation is carefully regulated.6 This normal 

dietary uptake of folic acid is mediated by either the reduced folate carrier (RFC) or 
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proton coupled folate transporter in the majority of healthy cells.7-8  However, folate 

receptors, which bind folates with significantly higher affinity than the two 

aforementioned transporters, are also expressed by a select few types of cells.7 Folate 

receptors bind physiological folates as well as folic acid with a KD of ~10-10 M, which 

contrasts dramatically with the much lower affinity of ~10-5 M demonstrated by the 

reduced folate carrier to the same molecules.7,9 As shown in chapter 2 of this thesis, the 

folate receptor is also a constitutively recycling glycophophatidylinositol (GPI) anchored 

cell surface protein that enables the transport of extracellular free folate or folate-

conjugates by receptor-mediated-endocytosis into the cytoplasm. Figure 1.1 summarizes 

the path taken by folate receptors during the internalization and release of bound cargo.  

Currently, four homologous proteins, FR-α, FR-β, FR-γ, and FR-δ, are known to 

constitute the folate receptor family.10-11  Although folate receptors are extensively 

studied, little information is yet available regarding the exact role played by these 

receptors in cellular signaling and communication. 

Many of the aforementioned characteristics, when combined with the knowledge 

that the receptor is overexpressed by a variety of cancer cells, make FR a great target for 

drug delivery purposes. Tumors are believed to elevate their FR expression level in order 

to capture the amount of folate necessary for the uncontrolled cell divisions that are a 

trademark of cancer cells.12 Exploiting this receptor overexpression in order to mediate 

the death of malignant cells allows for both therapeutic efficacy and tissue selectivity. 

Since cancer by nature is a condition allowed to thrive by a malfunction of the immune 

system’s sentinel cells that are charged with the destruction of mutated or abnormal cells, 

harnessing the powers of the immune system to combat the disease is an endeavor that is 
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crucial for long-term success in the battle against cancer. Therefore, the major portion of 

this thesis focuses on our attempts at awakening the immune system and directing its 

activity to sites of cancer by using a folate-hapten conjugate as an immunotherapeutic 

drug. Furthermore, we explore the possibility of augmenting this immunotherapy 

approach by combining the folate-hapten conjugate with other known 

immunomodulatory drugs. Chapter 3 delves into the combination of receptor tyrosine 

kinase inhibitors with folate-FITC for the treatment of animal models of FR+ solid 

tumors and chapter 4 reports on the synergy observed when folate receptor-mediated 

immunotherapy is combined with antibody inhibitors of the two main T cell check points, 

cytotoxic T lymphocyte associated protein 4 (CTLA-4) and programmed cell death 

protein 1 (PD-1). 

 

1.2 Folate Receptor Expression in Healthy and Diseased Tissues 

Although the four isoforms of the folate receptor display significant peptide 

sequence homology, their physiological expression appears to be distinctly tissue 

specific.10-13 FR-α is expressed on the apical, lumen facing side of polarized cells of 

epithelial origin including those of the choroid plexus, esophagus, proximal tubules of the 

kidney, and alveolar cells of the lungs.14-18 Folate receptors on these healthy tissue are not 

accessible to folate conjugates injected into the blood stream since the tight junctions 

between polarized cells prevent the passage of conjugates between the circulation and the 

luminal surface.16 In the kidneys, the folate receptors serve as a strainer that 

prevent/delay the excretion of folates in the urine by binding the molecules and 

transporting them back to the blood stream.10,17,19    
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Besides the healthy tissues mentioned earlier, FR-α is also expressed by 

approximately 1/3 of human cancers of epithelial origin, and this upregulation has been 

shown to become more pronounced with disease progression.13,20-21 In certain cancers 

where the primary solid tumor does not have noticeably elevated FR expression, 

upregulation of the receptor has been observed on its metastatic nodules. Some examples 

of FR-α expressing cancers include those of the brain, kidney, ovary, uterus, lung, breast, 

and endometrium. 13,17,22-24 Fortunately for researchers, the FR on cancer cells are readily 

accessible to drug molecules in the blood stream due to a breakdown of tight junctions 

between the uncontrollably proliferating tumor cells.25-26  

FR-β is most commonly expressed on activated macrophages and neutrophils. 

More recently, the receptor has also been observed on tumor-associated myeloid derived 

suppressor cells (MDCSs).9,22,27-28 FR-β can be used as an identification marker for the 

pro-inflammatory, activated macrophages that play an important role in the development 

and persistence of many autoimmune and inflammatory conditions including rheumatoid 

arthritis, atherosclerosis, pulmonary fibrosis, psoriasis, and ulcerative colitis among a 

myriad others.29-35 FR-β is also expressed by some cancers of hematopoietic and 

nonepithelial origin such as myelogenous leukemias.22,27  

FR-γ is a secreted protein that has mainly been observed in the bone marrow,36 

while FR-δ is reported to be primarily expressed by regulatory T cells.37 These two 

isoforms of the receptor have not yet been studied in great detail and their specific 

functions or whether they play a role in any malignancies have not been reported in the 

literature. However, the field of folate-related research has attracted many investigators 

over the decades and the number of groups conducting studies aimed at better 
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understanding the fundamental mechanism of receptor function or at better targeting the 

receptor for drug delivery is continuing to grow annually. 

 

1.3 Targeting the Folate Receptor for the Treatment of Diseases 

Cell surface receptors are most commonly targeted with the use of either a 

receptor-specific antibody (including any variations of antibody fragments) or receptor-

specific small molecules. The folate receptor monoclonal antibodies, MOv18 and 

MOv19, have been conjugated and evaluated for therapeutic efficacy against several 

cancers at the preclinical stage, and a MOv18 radioimmunotherapy construct even 

progressed so far as to be tested on ovarian cancer patients in clinical trials.38-40 However, 

antibody therapeutics pose a number of disadvantages, the most important of which is the 

diminished tumor penetration capability resulting from their large size.41-42 Therefore, 

folate receptor-targeting has focused mainly on the development of small molecule drug 

constructs.   

Over the years, a large number of therapeutic compounds and imaging agents 

have been conjugated to folic acid for the purposes of identifying, visualizing, and 

treating the many FR+ cancers and inflammatory diseases. The basic structure of most 

folate conjugates is very similar and the final construct is usually composed of a folic 

acid molecule bound to a drug or imaging agent via a releasable or non-releasable linker. 

Releasable linkers are almost always used when the payload is a cell-killing agent while 

non-releasable linkers are generally used with imaging agents. These spacer chains are 

generally composed of simple molecules such as amino acids, sugar units, polyethylene 

glycol units (PEGs), etc. and serve a range of purposes including enhancing water-
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solubility, adding to the flexibility or rigidity of the final compound, and can even 

enhance affinity to the receptor.  To date, folic acid has been linked to toxic proteins,43 

chemotherapeutic molecules,44 radionuclides for both imaging and therapy,45-47 antisense 

oligonucleotides,48 liposomes and dendrimers,48-51 near infrared dyes,52 and haptens and 

antibodies for immunotherapy53-55 to name a few. These conjugates have been tested in 

animal models of cancer and inflammation and have shown efficacy in treating both 

types of conditions with complete eradication of symptoms resulting in certain 

instances.44-45,47,52,54-55 Folate-targeted imaging agents have been used successfully to 

detect and stage inflammation in mice, rats, dogs, and horses, as well as in humans,1,52,56-

59 and the visualization of FR-α positive tumors has been so successful that surgeons have 

used fluorescent folate conjugates to aid in tumor resection surgeries.60 With the 

development of tissue penetrating near infrared dye conjugates, this technique has the 

hope of becoming a routine component of cancer surgeries. More than eight folate-

conjugates are currently in human clinical trials, and given the specificity displayed by 

folic acid conjugates to the folate receptor, these compounds offer great promise as 

highly potent treatment options with low toxicity profiles.  

   

1.4 Folate Receptor Mediated Immunotherapy of Cancer and Inflammatory Diseases 

 Dr. William B. Coley, a bone surgeon at Memorial Hospital in New York City, is 

credited with pioneering the field of modern cancer immunotherapy. In the 1890s, while 

reviewing cases of cancer patients who had undergone surgery, Dr. Coley noticed that 

patients who developed bacterial infections following tumor resection tended to have 

better therapeutic outcomes.61 These observations led him to conclude that the 
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inflammatory response stimulated by an infection can aid the body to combat cancer. He 

initially tested his hypothesis by injecting live bacterial strains directly into the tumor 

mass of patients, but due to the risk associated with such a treatment approach he later 

transitioned to using bacterial products.62 Although a great deal of controversy 

surrounded his experimental therapies, Coley toxins were used until mid-20th century.  

 During the early 1900s immunotherapy took a backseat to the excitement that 

surrounded the development of radiation therapy,62 but more recently over the past 

several decades significant attention has been paid to the fundamental understanding of 

the immune system as well as the development of therapies that could mobilize a 

patient’s immune cells against their cancer.63 These research endeavors have led to the 

discovery of tumor specific antigens (TSA) and tumor associated antigens (TAA) that can 

be used as immunotherapeutic targets. TSAs are, by definition, present only on cancer 

cells whereas TAAs are present on both cancer cells and some normal cells.64-65 The 

importance of these finding lies in the ability of TSAs and TAAs to be recognized by 

antibodies and T cells in the body as ‘non-self’ foreign substances. However, cancers 

manage to survive and thrive because these TAAs are not always recognized and 

destroyed by the immune system due to a complicated mechanism that has been credited 

by Hanahan and Weinberg as an emerging hallmark of all cancers: evading immune 

destruction.66 Cancers evade immune recognition by 1) downregulating antigen 

presentation, 2) secreting immune inhibitory cytokines, 3) stimulating the cell-surface 

expression of immune inhibitory receptors while hindering the expression of immune cell 

activating receptors, 4) promoting anergy in immune cells, and even 5) inducing immune 

cell death.   
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 In order to neutralize and overcome these stealth mechanisms, researchers must 

keep several important considerations in mind as they design new immunotherapeutic 

drugs.   A good immunotherapeutic should be capable of improving the immune system’s 

ability to recognize the tumor, activate a full immune response (humoral and cellular) 

against the tumor, educate immune cells to distinguish between malignant and healthy 

cells, attract a robust and sustained flow of activated immune cells to the site of disease, 

and lastly, to induce a long-term memory against the cancer.67-68 The idea of targeting 

folate-hapten conjugates to FR positive cancers in order to facilitate their immune-

mediated destruction was conceived with the hope of meeting these goals. 

Haptens are small (< 1kDa), non-immunogenic molecules that are capable of 

eliciting an immune response when attached to a large, highly immunogenic carrier 

protein.69 Although some metal ions can also perform the functions of a hapten, small 

molecules are used preferentially in research. The molecules that are most commonly 

used as haptens are oxazolone, dinitrophenol (DNP), urushiol, and fluorescein.69 Bovine 

serum albumin (BSA), ovalbumin (OVA), and keyhole limpet hemocyanin (KLH) are the 

most widely used carrier proteins.69  

In folate-hapten mediated immunotherapy, a patient is vaccinated several times 

with a hapten-carrier conjugate to elicit an immune response leading to the generation of 

anti-hapten antibodies before treating the disease with regular administrations of the folic 

acid-hapten conjugate. The resulting reduction in tumor burden is achieved in part by 

antibody-dependent cellular cytotoxicity (ADCC) where the FR bound hapten is 

recognized by anti-hapten antibodies in the immunized patient’s blood stream leading to 

the recruitment of immune effector cells that can destroy the antibody decorated cancer 
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cells. The particular immunotherapy experiments described in chapters 3 and 4 of this 

thesis were conducted in immunocompetent mice using KLH-FITC as the carrier 

conjugate and folate-FITC as the therapeutic hapten drug.  

Previous studies conducted within the Low group have shown that when folate-

hapten immunotherapy is administered in combination with small doses of IL-2 and IFN-

α, ionizing radiation, and oligodeoxynucleotides containing CpG motifs (CpG-ODN), 

significant extension of survival and reduction in tumor burden is observed.53-54 

Furthermore, experiments aimed at elucidating the mechanism of this therapeutic success 

have shown that ADCC mediated cancer cell phagocytosis is the main cause of tumor 

elimination, and that this process leads to the development of an anti-cancer memory 

within the treated animals.67 The removal of NK cell, T cell, and macrophage activity by 

inhibitory antibodies have proven detrimental to the efficacy of folate-hapten 

immunotherapy showing that these effector cells play a major role in tumor recognition.53 

This therapeutic approach has been evaluated with promising results in both ascites and 

solid tumor models, as well as in some models of inflammation.53-55,70-71 However, since 

IL-2 and IFN- α can cause undesirable side effects in patients and ionizing radiation is 

difficult to target specifically to the tumor site, better combination options with low 

toxicity profiles that can positively augment folate-hapten immunotherapy would be 

needed in order to move the area of FR-targeted immunotherapy further forward. 

 Outside the realm of hapten-mediated immunotherapy and in addition to the 

MOv18 mediated radioimmunotherapy described earlier, several other techniques of FR-

targeted immunotherapy have also been tested over the years. Examples include the 

conjugation of folic acid to anti-CD3 antibodies and the development of anti-FR and anti-
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T cell receptor (TCR) bispecific antibodies with the goal of recruiting cytotoxic T cells to 

the site of the tumor,72-75 as well as the synthesis of MOv18 bound immune stimulating 

cytokine constructs (MOv18-IL-2) to activate immune cells that find their way to the 

tumor microenvironment.76 More recently, with the increasing popularity of chimeric 

antigen receptor (CAR) T cells, several varieties of FR-targeted CAR T cell constructs 

have been produced and tested in animal models and one is currently been evaluated 

against ovarian cancers in human clinical trials.77-78 

 

1.5 Current State of Immunotherapy in Clinical Cancer Treatment 

A wide variety of immunotherapeutic drugs have been developed for the 

treatment of cancer over the eleven or so decades since Dr. Coley’s success with toxin-

based therapies. Some of the vaccine-type antibody therapeutics have even obtained 

approval from the FDA and a growing number of immunotherapies are entering clinical 

trials every year. The most well-known FDA approved antibody drugs include 

Campath®, Zevalin®, Avastin®, Erbitux®, Mylotarg®, Yervoy®, Arzera®, Rituxan®, 

Herceptin®, Provenge®, and most recently Keytruda®, approved in September 2014. 

Most of these drugs are currently being used to treat cancers of hematopoietic origin; the 

two main exceptions being Herceptin® for the treatment of Her2+ breast cancers and 

Provenge® for the treatment of hormone refractory prostate cancer.  

Aside from anti-tumor antibodies, antibody conjugates, and tumor vaccines, other 

immunotherapies currently under evaluation include chimeric antigen receptor T cells, 

dendritic cell-dependent vaccines, tumor-associated protein therapies, DNA vaccines, 
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immune cell checkpoint inhibitors, toll like receptor (TLR) stimulators, and 

chemokines.79-80 These drugs have shown significant promise in a variety of different 

cancers, but have particularly been successful in immunogenic tumors such as melanoma, 

renal cell carcinoma, and lymphomas.80-81 However, many of the above listed 

immunotherapy techniques are unsuccessful at eliminating solid tumors when 

administered on their own, which make them only a minor fraction of the cancer drugs 

used in clinic today. Therefore, in the hopes of using immunotherapy to treat patients 

afflicted with the more common and aggressive cancers, these drugs are being evaluated 

in combination with chemotherapy and radiotherapy as well as with other 

immunotherapy drugs. For example, dendritic cell vaccines have been tested in 

combination with VEGF receptor inhibitors to produce significant synergy in in vivo 

tumor models,82 and T cell check point inhibitors have been tested in combination with 

other checkpoint inhibitors as well as with natural killer cell stimulators to show similar 

anti-tumor therapeutic effects.83 In addition, checkpoint inhibitor antibodies and 

immunomodulatory VEGF inhibitors have been shown to synergize with 

chemotherapeutic drugs such as cisplatin and docetaxel in murine models of cancer.84-85 

The possibility of cancer immunotherapy moving forward to become a significant subset 

of the clinically administered drug cohort will depend on the discovery of highly potent 

and minimally toxic immunotherapy combinations. 
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Table 1.1.  The average expression levels of folate receptor on healthy human and animal 
tissues. Each tissue was analyzed from at least 2 animals of each species (except primate 
liver, where n was 1) and FR expression values is expressed in picomoles FR/mg of 
solubilized membrane protein. This table was reproduced based on a published figure 
from Analytical Biochemistry. Parker, N.; Turk, M. J.; Westrick, E.; Lewis, J. D.; Low, P. 
S.; Leamon, C. P. Folate receptor expression in carcinomas and normal tissues 
determined by a quantitative radioligand binding assay. Anal. Biochem., 2005, 338: 284-
293. 
 

Tissue Mouse Rat Guinea 
Pig 

Rabbit Dog Primate Human 

Heart 0.31 0.00 1.02 0.19 0.18 0.45 1.87
Lung 0.17 0.00 1.56 0.53 0.19 0.50 7.79
Liver 0.06 0.02 0.03 0.90 0.23 0.22 1.23
Intestine 0.11 0.60 2.16 0.22 0.07 0.41 2.74
Kidney 12.74 6.00 2.20 9.46 1.25 1.29 14.40
Spleen 0.21 0.44 2.42 6.72 0.52 2.12 0.55
Muscle 0.68 0.57 0.59 0.52 0.00 0.19 0.97
Brain 0.45 0.20 ND 0.46 0.03 0.17 0.32
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1.7 Copyright Permission 
 

Figure 1.1 was reproduced and formatted for inclusion in this thesis with permission from 
Accounts of Chemical Research. Copyright 2008, American Chemical Society.   

 
Any other reproduction of the figure should be cited appropriately as follows: 

 
Low, P. S., Henne, W. A., and Doorneweerd, D. D. Discovery and development of folic-

acid-based receptor targeting for imaging and therapy of cancer and inflammatory 
diseases. Acc. Chem. Res., 2008,  41: 120-129 
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CHAPTER 2: 

 
EFFECT OF RECEPTOR OCCUPANCY ON FOLATE RECEPTOR 

INTERNALIZATION 
 

2.1 Introduction 

 The folate receptor (FR) constitutes a family of four homologous proteins that are 

thought to bind folic acid and its physiologic congeners.1,2  FR-α is found on the apical 

surfaces of certain epithelial cells, where it is largely inaccessible to folates in the blood 

stream.3,4  It is also over-expressed on a variety of epithelial-derived cancers, where it can 

be readily targeted by intravenously injected folate-linked drugs.5-7 FR-β is primarily 

expressed on activated macrophages8 which populate almost all autoimmune and 

inflamed tissues and mediate many destructive processes responsible for disease 

symptoms.9-11   Examples of inflammatory diseases caused or worsened by FR+ activated 

macrophages include rheumatoid arthritis, ulcerative colitis, atherosclerosis, multiple 

sclerosis and psoriasis among others.12-18 FR-γ has been detected in the bone marrow 

from whence it may be released into circulation19, but whether it facilitates folate uptake 

is not known. FR-δ has been found primarily on regulatory T cells20 and like FR-γ has no 

known function. Only FR-α has been shown to be involved in signal transduction21, but 

the possible participation of FR-β, FR-γ,	 or FR-δ in transmembrane signaling has never 

been examined.   
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Because of the limited expression and/or accessibility of FR in healthy human 

tissues, both FR-α and FR-β have been exploited for targeted drug delivery to cancer 

tissues and sites of inflammation, respectively.22 For this purpose, folate is linked to a 

therapeutic or imaging agent and injected into the diseased host, where it is either 

captured by FR on the pathologic cell surface or rapidly excreted from the body.  

Radioactive13,15 and fluorescent23,24 folate conjugates have been used to visualize sites of 

inflammation25 and localize malignant disease,23,26,27 whereas folate-conjugated 

therapeutic agents have been exploited to destroy FR-α expressing tumor cells28,29 and 

inactivate FR-β expressing inflammatory macrophages.14,16  A variety of folate-targeted 

molecules are currently undergoing human clinical trials.    

Because the rate of FR internalization and trafficking can influence the frequency 

of folate conjugate dosing (i.e. there is no merit in injecting a patient with a folate-drug 

conjugate more frequently than empty FR return to the pathologic cell surface following 

endocytosis), several studies have examined the rate and routes of FR trafficking in 

physiologically relevant systems.24,30-32 Results from these studies demonstrate that FR 

traffic through different intracellular compartments depending on the number of folates 

tethered to the targeted conjugate, with monovalent folate-drug conjugates trafficking 

through a recycling center before returning to the cell surface,24,31,33 and multivalent FR 

ligands trafficking through multivesicular bodies prior to deposition in lysosomes.34-37 

Importantly, despite the detailed nature of the above studies, the effect of folate conjugate 

size and valency on its rate of internalization and recycling has never been examined.  In 

this paper, we explore the kinetics of internalization of both FR-α and FR-β following 

their ligation to a variety of folate-linked molecules and anti-folate receptor antibodies, 
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including the free unligated vitamin, folate-linked small molecules, multi-folate 

derivatized nanoparticles, and monoclonal antibodies to FR. 

 

2.2 Materials and Methods 

 

2.2.1 Cell Lines and Culture 

All FR positive cell lines were maintained in the Cell Culture Facility of the 

Purdue University Department of Chemistry. KB and IGROV cells were maintained in 

folate-deficient RPMI 1640 medium (Invitrogen, Grand Island, NY) supplemented with 

10% heat inactivated fetal bovine serum (Sigma Aldrich, St. Louis, MO), penicillin (50 

units/mL) and streptomycin (50µg/mL). Chinese Hamster Ovary (CHO) cells stably 

transfected with human FR-β (generous gift from Manohar Ratnam, Karmanos Cancer 

Center, Detroit, MI) were maintained in folate-deficient RPMI 1640 medium (Invitrogen, 

Grand Island, NY) supplemented with 10% heat inactivated fetal bovine serum (Sigma 

Aldrich, St. Louis, MO), 0.15mg/mL L-proline, 10nmol/L N5-formyl tetrahydrofolate, 

100units/mL penicillin and 100µg/mL streptomycin (Sigma Aldrich, St. Louis, MO).  All 

cell lines were passaged continuously in a monolayer and cultured at 37°C in a 

humidified atmosphere containing 5% CO2. 

 

2.2.2 Antibodies and Reagents 

Folic acid was purchased from Sigma Aldrich (St. Louis, MO) and dissolved in 

pH adjusted deionized water. The hybridoma cell line that produces a mouse monoclonal 

antibody to human FR-α (MAb 343) was a generous gift from Wilbur Franklin 
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(University of Colorado), and folate-fluorescein (EC17) was kindly provided by 

Endocyte, Inc. (West Lafayette, IN).  Fluorescein-labeled goat anti-mouse IgG antibody 

was purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX). Human anti-human 

mAb against FR-β (m909) was developed in collaboration with Dr. Dimiter Dimitrov 

(National Institutes of Health, Frederick, MD) and labeled with fluorescein 

isothiocyanate.9 

 

2.2.3 Folate Conjugates 

A water-soluble monovalent folate-rhodamine conjugate with nanomolar FR 

affinity (Figure 2.1 A) was synthesized as previously described.24,26 Folate-targeted 

polyethylene glycol-derivatized liposomes were also prepared according to previous 

procedures,35 with ~3.5% of the phospholipids derivatized with PEG and ~10% of the 

PEGylated lipids further conjugated to folic acid.  Assuming ~80,000 lipids per liposome, 

this calculates to ~280 folate targeting ligands per liposome for a folate-targeted lipid 

concentration of ~1.5µM in the stock suspension. 

 

2.2.4 Evaluation of the Effect of Receptor Occupancy on Receptor Internalization 

Each cell type to be investigated was plated in a six well plate at a density of 

50,000 cells/well and allowed to adhere overnight. Individual wells were either left 

untreated (controls) or incubated in 100nM folic acid or folate rhodamine for 20 minutes, 

4 hours or 24 hours at 37°C.  For analyses of liposome uptake, 100μL of 2mg/mL folate-

conjugated liposome stock suspension was added to each well prior to execution of the 

same incubation procedure.  Following incubation, wells were washed thoroughly with 
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PBS to remove unbound ligand, after which cells were removed from the plate by 

scraping, centrifuged to form a pellet and resuspended in cold (4°C) folate-deficient 

culture medium to block further FR trafficking.  Folate receptors accessible on the cell-

surface were then labeled with either mAb343 followed by fluorescein-labeled goat anti-

mouse secondary antibody (KB and IGROV cells) or m909-FITC (CHO-β cells) by 

further incubation at 4°C for 1 hour.  After washing with PBS to remove unbound 

antibody, fluorescently labeled FR in all cell samples were quantitated on a Becton 

Dickinson FACS Caliber flow cytometer. Ten thousand cells were counted from each 

sample and three samples from each treatment condition were evaluated. CellQuest 

software was used for data collection and FlowJo software was employed for data 

analysis. Graphing and statistical calculations of the analyzed data were performed using 

GraphPad Prism software. 

 

2.3 Results 

 

2.3.1 Effect of Folic Acid on the Kinetics of FR-α Internalization 

For many cell surface receptors, the rate of receptor internalization is strongly 

dependent on both receptor number and receptor occupancy.38,39 Although previous 

studies have demonstrated that the rate of FR internalization is independent of receptor 

number,30 no information is currently available on the impact of receptor occupancy on 

the rate of FR endocytosis. To obtain this information, KB and IGROV cells (which 

express high and low levels of FR-α, respectively) were incubated in vitro with a 

saturating concentration (100nM) of free folic acid for 20 minutes, 4 hours, or 24 hours at 
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37˚C.  Cell surface FR were then quantitated by flow cytometry using a noncompeting 

anti-FR-α primary antibody (mAb343) followed by labeling with a fluorescein-

conjugated goat anti-mouse secondary antibody.  If folic acid binding were to induce FR 

internalization, a decrease in available FR on the cell surface would be expected as 

exposure to folate/folate conjugate proceeded.  Moreover, if resting state FR levels were 

to impact the rate of ligand-induced receptor endocytosis, differences between FR 

internalization by KB and IGROV cells would be anticipated.  As seen in Fig. 2.2, the 

rate of FR-α internalization is not altered by folic acid binding, since cell surface FR-α 

numbers remain similar to their levels in untreated cells at all the time points tested.  

Furthermore, the level of FR expression in untreated cells must exert little influence over 

the kinetics of receptor internalization, since cell lines that express high and low levels of 

FR display the same insensitivity to receptor saturation. 

 

2.3.2 Effect of Folic Acid on the Kinetics of FR-β Internalization 

 Although FR-β exhibits similar nanomolar affinity for folic acid to FR-α,40 its 

greatly reduced level of expression,41 its unique manifestation on activated immune 

cells,8-11 and its rapid rate of internalization12,30 raise the question of whether the response 

of FR-β to saturation with folic acid might differ from that of FR-α.  In order to evaluate 

the impact of FR-β occupancy on its rate of internalization, a CHO-K1 strain that was 

stably transfected with human FR-β was incubated with a saturating concentration of 

folic acid and examined for cell surface FR-β using a noncompeting monoclonal antibody 

to FR-β (m909).9 As seen in Fig. 2.3, the level of FR-β on CHO-β cell surfaces is 

independent of the time and extent of FR-β saturation with folic acid.  Thus, m909-FITC 
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binding remains essentially the same in the absence of added folic acid (0 minute time 

point) as seen following 24 hour exposure to saturating levels of folic acid (24 hour time 

point). Moreover, there is no significant difference in cell surface FR-β between cells 

incubated for 20 minutes in saturating folic acid and those incubated for 4 hours or 24 

hours with the vitamin.  Based on these observations, we suggest that the rate of 

internalization of FR-β, like that of FR-α, is not altered by changes in the level folic acid 

binding, but instead recycles at a steady rate, regardless of receptor occupancy. 

        

2.3.3 Effect of Folate Conjugate Valency on the Kinetics of Receptor Endocytosis 

 Cross-linking or clustering of cell surface receptors using multivalent ligands has 

been known for years to accelerate receptor endocytosis and trafficking to 

lysosomes.34,36,42  For example, multivalent lectins and antibodies that can bind multiple 

receptors simultaneously have been observed to induce localized receptor “patching” 

followed by a more global receptor “capping” prior to receptor internalization and 

degradation.43  Because many labs have exploited folate to target nanoparticles to 

pathologic cells, invariably derivatizing their nanomedicines with multiple folates in 

order to increase binding avidity, the concern has naturally arisen whether such 

multivalent formulations might induce accelerated depletion of FR from the cell surface, 

preventing or at least delaying the ability to target additional nanomedicines to the same 

FR-expressing cells.  To address this concern, we have compared the number of cell 

surface FR following incubation of cells with a monovalent ligand (folate-rhodamine) to 

their number following incubation with a multivalent ligand (folate-targeted liposomes). 

As seen in Fig. 2.4 and Fig. 2.5, only minor differences are seen in the number of residual 
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cell surface FR following incubation with either monovalent (Fig. 2.4) or multivalent 

(Fig. 2.5) folate conjugates, suggesting that cell surface receptor depletion commonly 

observed with other multivalent ligands does not occur when FR is the targeted receptor. 

In the case of monovalent folate-rhodamine, the detected variation in cell surface FR-α 

(KB) and FR-β (CHO-β) levels following different incubation times are minor and 

probably a consequence of experimental variability.  Even in the case of the multivalent 

liposomes, the decrease in cell surface FR at early time points is reversed at 24 hours, 

suggesting any real effect may be transient at best. Moreover, although receptor numbers 

differ significantly with IGROV cells and receptor sequence differs in CHO-β cells, 

similar insensitivities to folate conjugate valency are observed. We, therefore, conclude 

that conjugate valency does not have a significant effect on the rate of FR internalization. 

     

2.3.4 Analysis of the Impact of Antibody Binding on FR Endocytosis 

Because several anti-FR antibodies have recently entered clinical trials,44 and 

since antibodies commonly induce the endocytosis of their targeted receptors,45 we felt it 

might be prudent to include in our study an examination of the impact of antibody 

binding on FR endocytosis.  For this purpose, KB and CHO-β cells were incubated with 

saturating concentrations of mAb343 and m909, respectively, and subsequently labeled 

with folate-fluorescein (EC17) to quantitate the number of cell surface FR.  As seen in 

Fig. 2 .6, no differences in cell surface FR were observed following incubation with 

either antibody at any of the three incubation times, demonstrating that antibody binding 

also has no impact on FR internalization. 
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2.4 Discussion 

 The rate of internalization and trafficking of most cell surface receptors may 

depend on multiple parameters, including: i) the nature of the ligand,46 ii) the level of 

receptor occupancy,38,47 and iii) the degree of receptor clustering induced by its binding 

ligand.48  Thus, natural agonists commonly promote rapid receptor endocytosis, while 

antagonists generally do not.49,50  High levels of receptor occupancy may also induce 

internalization and destruction of some occupied receptors, while low levels of receptor 

saturation may stimulate greater receptor trafficking to recycling endosomes and 

subsequent return of the receptor to the cell surface.51  Finally, the degree of ligand-

induced receptor clustering can also influence receptor fate, with some clustered 

receptors further aggregating into cell surface patches prior to endocytosis43 and others 

either internalizing immediately or not endocytosing at all.  Not surprisingly, with the 

many possible effects that different ligands can exert on the endocytosis and trafficking 

of their cognate receptors, we wondered whether the amount or nature of an injected 

folate-targeted drug would impact the availability of FR on the targeted cell surface.  

Thus, if folate-drug conjugate binding were to lead to significant receptor down-

regulation, the interval between folate conjugate dosing might have to be lengthened to 

allow for cell surface FR levels to recover.   

 The unanticipated result from this study was that neither FR occupancy nor folate 

conjugate valency has any significant effect on FR levels at the cell surface. These data 

suggest that FR endocytosis occurs at a constitutive rate, regardless of FR occupancy or 

cross-linking due to multivalent ligand binding. They also suggest that if FR cross-

linking induces FR trafficking to lysosomes, as suggested by studies with multivalent 
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folate-targeted nanoparticles,35,36 the synthesis of new FR must compensate for any FR 

that are degraded.  As a consequence, selection of an optimal frequency for folate 

conjugate dosing need not involve consideration of folate conjugate concentration or 

valency.  Rather, the only variable that must apparently be evaluated when dosing 

frequency is optimized constitutes the rate at which the FR naturally recycles in each 

particular tumor type.  Based on previous studies of several human tumor xenografts in 

live mice, this recycling rate may vary from 8 to 12 hours.30 
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Figure 2.1. General structures of A. Folate-rhodamine conjugate, and B.  Folate-PEG 
liposomes 
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CHAPTER 3: 
 

FOLATE-HAPTEN MEDIATED IMMUNOTHERAPY SYNERGIZES WITH 
VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR INHIBITORS IN 

MURINE MODELS OF CANCER 

 

3.1 Introduction 

Folic acid, a vitamin required for the synthesis of nucleotide bases, methylation of 

DNA and the post-translational modification of G proteins, enters cells via either the 

reduced folate carrier, the proton coupled folate transporter, or a folate receptor (FR).1-4  

While the reduced folate carrier and proton coupled folate transporter are expressed in 

virtually all cells, FR is present and accessible primarily on activated macrophages, 

proximal tubule cells of the kidney and certain cancer of epithelial origin, including 

malignancies of the ovary, endometrium, kidney, lung and breast.5-8 Because folate-

linked imaging and therapeutic agents can only enter cells via the folate receptor, folate 

has been frequently exploited as a targeting ligand to deliver drugs to cancers and sites of 

inflammation.9-13 Over the past two decades, numerous folate-linked therapeutics (e.g. 

toxic proteins, chemotherapeutic molecules, liposomes, and radionuclides) have been 

developed and evaluated in murine models of cancer.9,14 However, the first folate-

targeted therapy to enter human clinical trials involved the delivery of an 

immunotherapeutic to FR over-expressing tumor cells. 
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This therapy was originally designed using an approach that took advantage of the 

body’s ability to recognize and destroy foreign proteins before they could cause any harm 

(e.g. immune response to a viral or bacterial infection). Although the immune system 

consists of very complicated cascades of stimulatory and inhibitory signals, delicate 

balances of chemokines and cytokines, and a large variety of helper and effector cells, 

this type of defensive immune response can be simplified into two different categories: 

cellular and humoral. The humoral response usually occurs first and consists of the 

recognition of foreign antigens by circulating B cells leading to their activation and 

proliferation, which in turn induces the production of antibodies against the foreign 

antigen (Chapter 9, Immunobiology, 5th Edition).15 These antibodies, in turn, can activate 

the complement system and be recognized by phagocytic macrophages and NK cells, 

which then mediate the destruction of the foreign substance in a process known as 

antibody-dependent cellular cytotoxicity or ADCC.15 The second, cellular defense 

response involves the presentation of abnormal antigens that are present within the cell 

membrane by major histocompatibility complexes (MHC-II in the case of an infection 

and MHC-I in the case of cancer) on the surface of antigen presenting cells (APC) in the 

body. These MHC-bound antigens are then recognized by circulating T cells leading to 

their activation and proliferation. Activated cytotoxic T cells subsequently mediate the 

destruction of any infected cells (Chapter 8, Immunobiology, 5th Edition).15 This MHC-

mediated antigen presentation can also facilitate the recruitment of antibody producing B 

cells to the site of infection. 

The immunotherapy method designed for targeting FRs on cancer cells takes 

advantage of the humoral immune response and anticipates stimulation of a cellular 
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response in the long term. In short, mice are vaccinated with a foreign protein decorated 

with a large number of hapten molecules leading to the production of anti-hapten 

antibodies; these immunized mice are later treated with continual doses of a folate-hapten 

conjugate that will mediate the recognition of the FR+ tumor by the activated immune 

system.  Haptens are small, non-immunogenic molecules that can elicit an immune 

response when bound to a large carrier protein.16 The therapeutic efficacy observed in 

tumor-bearing mice treated with the folate-hapten conjugate would mainly be a result of 

ADCC, but a cytotoxic T cell response component could also be involved. However, 

even though the concept is theoretically sound, folate-hapten mediated immunotherapy 

alone has been ineffective at controlling tumor progression over longer periods of time 

and requires supplementation with immunomodulatory cytokines for optimum 

therapeutic outcome.17  

Therefore, the earlier preclinical experiments with folate-targeted immunotherapy 

used the cytokines IL-2 and IFN-α as companion therapies, and the combination was very 

successful at prolonging overall survival and creating long-term anti-tumor memory in 

animal models of lung cancer and lymphoma.17-20 Follow up studies using inhibitory 

antibodies against each effector cell type have demonstrated that the phagocytic function 

of NK cells, cytotoxic T cells, and macrophages are essential for the observed therapeutic 

efficacy, confirming that both arms of the immune system are indeed playing a role in the 

response.18,19 Although the murine tumor models were extremely promising,21,22 the 

phase 1 clinical data in advanced renal cell carcinoma patients with bulky disease 

revealed no complete responses and only a few partial responses, with most patients 

showing either no response or prolonged stable disease.23  Moreover, the influenza-like 
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symptoms associated with the cytokine treatments discouraged further clinical testing of 

the folate-hapten plus cytokine combination therapy.  Nevertheless, the strong indication 

of efficacy in a very difficult-to-treat patient population together with the absence of 

toxicity associated with the folate-hapten therapy alone motivated further exploration for 

a less toxic companion therapy that might augment the ability of folate-fluorescein to 

mark and mediate the removal of FR+ cancer cells. 

Recently, several multi-targeted receptor tyrosine kinase (RTK) inhibitors have 

shown synergy in treating a variety of different cancers when combined with 

immunotherapy drugs.24-26 These molecules were initially believed to be effective against 

cancers due to their ability to inhibit the vascular endothelial growth factor (VEGF) 

receptors, and thereby impede the growth of new vasculature within the rapidly growing 

tumors.27-29 Interestingly, further delving into the mechanism of anti-tumor activity of 

these drugs have shown that their ability to normalize as opposed to totally downregulate 

tumor vasculature maybe the cause of tumor-growth inhibition.30,31 Furthermore, 

additional studies have demonstrated that their activity may not be limited to an anti-

VEGF effect, but may also stem from the molecules’ ability to reduce the levels of 

immunosuppressive myeloid derived suppressor cell (MDSC) populations and Treg 

activity in tumor-bearing animals.32,33 A number of VEGF inhibitors are currently 

approved by the FDA for use in humans. The humanized recombinant monoclonal 

antibody bevacizumab (Avastin®) is a direct VEGF inhibitor and was the first 

angiogenesis inhibitor approved for use in the United States. It is approved for use in 

refractory glioblastomas and in combination with other drugs for the treatment of 

colorectal cancer, lung cancer, and metastatic renal cell carcinoma. Nexavar® 
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(hepatocellular carcinoma and kidney cancer), Votrient® (kidney cancer), Afinitor®, and 

Sutent® (kidney cancer and neuroendocrine tumors) have since been granted permission 

for use in clinic. In addition to cancer, these drugs are also being used for the treatment of 

conditions associated with vascular abnormalities, such as macular degeneration. 

Although some immunotherapies are administered independently, most are 

administered in combination or following primary treatment with conventional cancer 

therapies or other immunotherapeutics. As a result, there is a need for evaluating and 

describing the types of cancer drugs that combine well with different modes of 

immunotherapy.34 Since both VEGF inhibitors and folate-hapten mediated 

immunotherapies have already been assessed in human kidney cancer patients,23,35 it was 

an obvious next step to wonder whether these two therapeutic modalities would synergize 

in treating FR expressing tumors. Innumerable literature articles report on the successful 

use of angiogenesis inhibitors in a myriad different cancers including testicular cancer, 

prostate cancer, colon cancer, melanoma, glioma, sarcoma, and non-Hodgkin’s 

lymphoma showing that their activity is not limited to the few malignancies being treated 

in clinic by these drugs.26,27,36,37 In addition, these drugs have already been tested in vivo 

in combination with other drugs such as cisplatin, docetaxel, cyclophosphamide, and 

dendritic cell vaccines and together have shown significant improvement of therapy over 

each individual treatment alone.24-26,36,37  

In this chapter, we describe studies evaluating the effect of combining the VEGF 

inhibitor sunitinib malate with folate-fluorescein (folate-FITC) therapy in fluorescein 

immunized mouse models of kidney cancer (Renca), lung cancer (M109), and lymphoma 

(L1210A).  To further confirm the results from these in vivo studies, we evaluated the 
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effect of combining axitinib, a second, more selective VEGF inhibitor, with folate-FITC 

in mice bearing solid L1210A tumors. We then continued onto examining the potential 

mechanism behind the therapeutic efficacy observed from these combinations by 

resecting tumors and spleens from the treated mice and assessing their immune cell and 

microenvironment components for any differences between the treatment groups. The 

collected data suggest that VEGF inhibitors play an important role in modulating anti-

tumor immunity in tumor-bearing mice when administered in combination with folate-

FITC, and could become a potent addition to other ADCC-mediated therapeutic 

approaches for cancers. 

 

3.2 Materials and Methods 

 

3.2.1 Antibodies and Reagents 

Folic acid, keyhole limpet hemocyanin (KLH), SIGMAFAST™ OPD substrate 

tablets, phosphate buffered saline (PBS), carboxymethylcellulose (CMC), Tween 20, 

collagenase IV, hyaluronidase from bovine testes, deoxyribonuclease I from bovine 

pancreas, and female Balb/c serum were purchased from Sigma Aldrich (St. Louis, MO). 

Bovine serum albumin conjugated to fluorescein (BSA-FITC), folate-EDA-fluorescein 

(Folate-FITC, EC17) and the GPI-0100 adjuvant was kindly provided by Endocyte, Inc. 

(West Lafayette, IN).  Sunitinib malate and axitinib, free base were purchased from LC 

Laboratories (Woburn, MA). Gelatin was obtained from Bio-Rad Laboratories (Hercules, 

CA). Disposal PD-10 desalting columns were purchased from GE Healthcare Bio-

Sciences (Pittsburgh, PA). The biotin-conjugated goat anti-mouse IgG2a antibody and 
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streptavidin-HRP conjugate was manufactured by Caltag Laboratories (Burlingame, CA). 

The Shandon™ Cryomatrix™ resin used for embedding harvested animal tissues during 

the freezing and sectioning process was purchased from Thermo Scientific (Waltham, 

MA). All fluorescently labeled antibodies for flow cytometry and confocal microscopy 

experiments were obtained from either BioLegend (San Diego, CA) or eBioscience, Inc. 

(San Diego, CA). The special folate-deficient diet on which animals in treatment studies 

were maintained was purchased from Harlan Laboratories (Indianapolis, IN).  

 

3.2.2 Cell Lines and Culture 

All FR positive cell lines were maintained in the Cell Culture Facility of the 

Purdue University Department of Chemistry or cultured in the Low laboratory at the 

Drug Discovery Facility. L1210A cells were a generous gift from Dr. Manohar Ratnam, 

Karmanos Cancer Institute at the Wayne State University (Detroit, MI) and Dr. Gerrit 

Jansen, Department of Oncology at the University Hospital Vrije Universiteid 

(Amsterdam, Netherlands). M109 cells expressing FR was kindly provided by Dr. 

Alberto Gabizon, Sharet Institute of Oncology at the Hadassah-Hebrew University 

Medical Center (Jerusalem, Israel).  Both L1210A (lymphocytic leukemia) and M109 

(lung cancer) cells were selected for high folate receptor expression and have been shown 

to maintain this elevated FR levels through multiple passages. However, both cell lines 

were monitored for their FR expression by flow cytometry intermittently throughout the 

duration of the immunotherapy studies. The Renca kidney cancer cell line was a gift from 

Endocyte, Inc. (West Lafayette, IN) and was selected for high FR expression by extended 

passage in folate deficient medium followed by multiple cycles of cell sorting to collect 
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the highest FR expressing fraction. The cell sorting procedures were carried out in the 

Flow Cytometry and Cell Separation Facility of the Bindley Bioscience Center. All cell 

lines were maintained in folate-deficient RPMI 1640 medium (Invitrogen, Grand Island, 

NY) supplemented with 10% heat inactivated fetal bovine serum (Sigma Aldrich, St. 

Louis, MO), penicillin (100 units/mL) and streptomycin (100µg/mL). Cells were cultured 

at 37°C in a humidified atmosphere containing 5% CO2. The adherent M109 and Renca 

cell lines and were passaged continuously in a monolayer and the L1210A cells, which 

grow in suspension were passaged in fresh medium every 3-4 days.  

 

3.2.3 Animals and Tumor Models 

M109 and Renca tumors were grown in female Balb/c mice which were obtained 

from Harlan Laboratories (Indianapolis, IN) at 5 to 7 weeks of age. Each mouse weighed 

approximately 18-20g on arrival. The DBA/2 mice for L1210A tumor studies were 

purchased from either Harlan Laboratories (Indianapolis, IN) or The Jackson Laboratory 

(Bar Harbor, ME) also at between 5 to 7 weeks of age. There were no obvious differences 

in tumor growth, response to therapy, or behavior between mice obtained from the two 

vendors. The DBA/2 mice weighed approximately 16-18g on arrival. Individual animals 

were identified during therapy by tail markings. All procedures conducted on animals 

were carried out in strict accordance with protocols approved by the Purdue Animal Care 

and Use Committee (protocol # 1310000974, High Affinity Ligand Mediated 

Immunotherapy of Tumors). 
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3.2.3.1 Renca Tumors  

The Renca renal cell carcinoma cell line was originally developed and 

characterized by Murphy and Hrushesky at the Roswell Park Memorial Institute (Buffalo, 

NY). Although these cell naturally express some FR on their cell surfaces, in order to use 

the cells for FR targeting they needed to be selected for higher FR expression. This 

enhancement in receptor expression levels was achieved by sorting out the highest FR 

expressing population by sterile flow cytometry and continually culturing this subset in 

folate deficient medium. Renca cells grow syngeneic tumors in Balb/c mice when 

transplanted via a variety of routes, but for the experiments described here solid tumors 

were implanted by injecting mice s.c. on the left shoulder with 1 x 106 cells suspended in 

serum free medium. Tumors were usually palpable by day 10 and were ready for 

initiation of therapy (50-75mm3) by day 14. 

 

3.2.3.2 M109 Tumors 

The M109 cell line needs to be passaged in Balb/c mice periodically for the cells 

to maintain the ability to grow solid tumors. Therefore, in order to have a stock of frozen 

cells that could be used for tumor implantation, solid M109 tumors from Balb/c mice 

were processed and directly cryopreserved for future use. Briefly, once a tumor had 

reached ~500-1000mm3 it was carefully resected under sterile conditions in order to 

minimize contamination and washed at least 3 times in sterile PBS. The tumor was then 

chopped into fine pieces using sterilized dissection scissors and suspended in 10-12 mL 

of the collagenase digestion cocktail detailed in section 3.2.8. The minced tumors and the 

cocktail were incubated in a T75 flask at 37°C with gentle agitation for 1-2 hours.  The 
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digestion process was then stopped by the addition of 10% fetal bovine serum (FBS) and 

the cocktail was passed through a 40 µm cell strainer. Any solid chunks of tumor 

remaining in the strainer were gently broken down with a pipette tip and washed with 

complete folate deficient medium to further help loosen up free cells. The collected M109 

cells were then spun down at 800rpm for 7-10 minutes and resuspended in complete 

medium for plating (to remove any debris or unhealthy cells). The folate deficient 

medium that the cells were cultured in was changed every 24h until each T75 flask 

become confluent, at which point the adhered cells were detached using a non-enzymatic 

cell dissociation solution (Sigma Aldrich, St. Louis, MO), counted, and cryopreserved at 

a density of 1-5 million cells/vial. For tumor implantation, frozen cells were thawed and 

allowed to grow till confluence at passage zero. Cells were then scraped from the flasks, 

counted, and suspended in folate-deficient RPMI-1640 medium containing 1% syngeneic 

female Balb/c serum. Mice were injected with 1 x 106 cells s.c. on the left shoulder. 

Tumors became palpable around day 7-10 and therapy was usually initiated between day 

10 and 14. 

 

3.2.3.3 L1210A Tumors 

The L1210A tumor cells are syngeneic to the DBA/2 mouse strain and will grow 

solid tumors when implanted subcutaneously. Female DBA/2 mice were used for all the 

studies described in this chapter. Cultured L1210A cells were counted and resuspended in 

serum free sterile PBS and each mouse was injected s.c. with 1 x 106 cells on the left 

shoulder. Tumors were usually palpable by day 5 and measured ~50mm3 in volume in 7-

10 days. 
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3.2.4 Synthesis and Purification of KLH-FITC 

 As mentioned in the introduction, animals were vaccinated with a keyhole limpet 

hemocyanin (KLH) protein labeled with fluorescein molecules in order to elicit an anti-

fluorescein antibody response. The KLH-FITC conjugate was synthesized by an 

overnight reaction between the KLH protein and excess FITC. Briefly, 4mg of FITC was 

mixed with 10mg potassium carbonate in ~1ml deionized water and slowly added 

dropwise to 20mg of KLH mixed with 10mg potassium carbonate in ~1ml deionized 

water under mild stirring. The mixture was then allowed to react in the dark at 37°C. The 

resulting KLH-FITC conjugate was first purified by running it through a PD-10 desalting 

column pre-equilibrated with sterile PBS. Protein fractions were collected as they came 

through the column and the fractions that were determined by absorption measurements 

(O.D. 280 nm) to have a high concentration of KLH were pooled and further purified by 

dialyzing in excess PBS at 4°C in order to remove any free FITC molecules (2000-3000 

MW dialysis tube). The KLH-FITC solution that was collected following dialysis was 

analyzed for its protein concentration using a commercially available BCA assay. The 

FITC to KLH ratio was also calculated using absorbance measurements and the labeling 

ratio generally measured at >100 fluorescein molecules per KLH protein. KLH-FITC 

stock solutions were labeled with concentration (g protein/ml) and stored in the dark at -

20°C till use in immunization cocktails. 
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3.2.5 Formulation of Drugs for in vivo Administration 

 

3.2.5.1 Sunitinib 

 Human patients who receive sunitinib or axitinib as a part of their cancer therapy 

regiment are given the drug in a pill form to be taken orally.35,38 Therefore, in order to 

mimic human treatment conditions, the sunitinib malate compound obtained from LC 

Laboratories was formulated in a CMC solution for administration to mice by oral gavage 

(p.o). The CMC solution used for dissolving sunitinib was made up of 0.5% 

carboxymethylcellulose, 1.8% sodium chloride, 0.4% Tween 80, and 0.9% benzyl 

alcohol in reverse osmosis purified water. The pH of this solution was then adjusted to 

6.0. Sunitinib concentration was calculated at 20mg sunitinib per kg of body weight 

(using an average weight of 18g for DBA/2 mice and 20g for Balb/c mice) in a volume of 

100µL CMC solution. Drug formulations for animal administration were prepared freshly 

every week and stored in the dark at 4°C. The suspension was vortexed or shaken 

vigorously to ensure even drug distribution before dosing mice.  

 

3.2.5.2 Axitinib 

 Axitinib was also dosed orally and was formulated in a different CMC solution 

for administration by oral gavage. CMC was dissolved in reverse osmosis purified water 

at a 0.5% concentration (w/v) and the solution was then acidified to pH 2-3. Axitinib 

concentration for treatments was calculated at 15mg per kg of body weight (using an 

average weight of 18g for DBA/2 mice) in a 100µL volume of the described CMC 

solution. Axitinib formulations were also prepared once weekly and stored in the dark at 
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4°C. The somewhat viscous, milky suspension was vortexed or shaken vigorously to 

ensure even drug distribution before dosing mice. 

 

3.2.5.3 Folate-FITC 

 Folate-FITC (EC17) provided by Endocyte, Inc. was diluted to the desired 

concentration in sterile PBS. For the experiments described in this chapter, a 500 

nmols/kg folate-FITC concentration was used for dosing animals.  Mice in the 

appropriate treatment groups were injected subcutaneously with 100µL of the conjugate 

solution. The prepared folate-FITC solutions were divided into daily aliquots and stored 

in the dark at -20°C. Each aliquot was thawed completely on the day of administration 

and shaken for even drug distribution before injection into animals. 

 

3.2.6 Evaluation of Antibody Titers 

 

3.2.6.1 Immunization of Mice 

Female Balb/c and DBA/2 mice aged 5-7 weeks were allowed to acclimate to the 

environment in the animal housing facility for one week. Then, mice aged 6-8 weeks 

were vaccinated with 35µg KLH-FITC in 50 µg GPI-0100 adjuvant formulated in sterile 

saline. Mice were immunized every two weeks using subcutaneous injections alternating 

between the base of tail and base of neck for a total of three vaccinations.  Blood samples 

from immunized mice were collected by submandibular puncture with a sterile lancet one 

week after the 2nd and 3rd vaccinations and pooled by cage. The tubes of pooled blood 
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were then centrifuged to separate the coagulated red blood cells from the serum, and the 

serum samples were stored at -20°C pending ELISA analysis (usually performed within 

1-2 days).  

 

3.2.6.2 Antibody Titer Assay 

The antibody levels in the blood of immunized mice were assayed using a 

procedure based on one received from Endocyte, Inc. 96-well ELISA plates were coated 

with 2µg/well of BSA-FITC by incubating each well with 100µL of a 20 µg/ml BSA-

FITC solution in PBS (pH 7.4) at 4°C overnight while covered with aluminum foil. The 

following day, plates were washed 3x with PBS-Tween (0.01 M PBS with 0.05% Tween-

20 at pH 7.4) and blotted dry on paper towels before incubating with a freshly prepared 

0.2% gelatin solution (0.2g gelatin powder dissolved in 100 mL PBS-Tween by gentle 

stirring at 37°C) for 1h at 37°C. The gelatin coating step is used to block any uncoated 

surfaces in the plastic wells to minimize unspecific antibody binding. The gelatin blocked 

plates were then washed 3x with PBS-Tween. Separately, in different 96-well plates, 2x 

serial dilutions (in PBS-Tween-Gelatin) of pooled anti-FITC mouse serum and pre-

immune mouse serum were performed to make a total of 22 dilutions per sample starting 

with a 1:100 dilution.  50µL of each of the serial dilutions were then transferred to the 

gelatin and BSA-FITC coated plates and incubated in the dark for 1h at 37°C followed by 

washing 4x with PBS-Tween. In order to detect the anti-FITC antibodies from the 

immunized mice that would have bound to the FITC molecules coated on the wells, the 

plates were incubated with a biotin-conjugated goat anti-mouse IgG2a primary antibody 

(1:5000 dilution in PBS-Tween) for 1h at 37°C. Following another 4x PBS-Tween 
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washing step, the plates were again incubated in the dark for 1h at 37°C with a 

streptavidin-HRP conjugate (1:5000 dilution in PBS-Tween) before washing 4x with 

reverse osmosis purified water and exposing to a freshly prepared OPD substrate 

solution. The substrate-HRP reaction was allowed to continue in the dark for 30 minutes 

at room temperature and subsequently, was stopped by the addition of 37.5 µL/well of 

3N HCl. The plate was then read at 490 nm (O.D.) using a 96-well plate reader and the 

results were plotted as average O.D. versus log serum dilution factor (e.g. 1:100 dilution 

is Log10 100 which is 2).  Each plate was read twice and each serum sample was run in 

duplicate in order to obtain an average O.D. for generating the titration curve. A 

representative graph of the antibody titers obtained from different animal experiments is 

shown in Figure 3.3. 

 

3.2.7 Combination Therapy Protocol 

Preliminary pilot studies had demonstrated that the highest antibody titer in 

mouse serum was reached 7-10 days following the final KLH-FITC plus GPI-0100 

vaccination. These studies had also indicated that L1210A tumors required 7-10 days and 

M109 tumors required 10-14 days to reach the desired 50-75mm3 tumor volume for 

therapy initiation. Therefore, in order to start dosing of the folate-FITC immunotherapy at 

the peak of antibody titers DBA/2 mice were implanted with s.c. L1210A tumors 1-2 

days prior to their 3rd immunization and Balb/c mice were injected with s.c. M109 tumors 

3-4 days prior to their 3rd immunization. The day of tumor implantation was designated 

as day 0 for all experiments. Once tumors had reached the appropriate size, mice were 

randomized into cages of 5 mice dedicated to each different treatment: PBS control, 
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folate-FITC immunotherapy, sunitinib or axitinib, and the combination of folate-FITC 

plus sunitinib or axitinib, and therapy was initiated. Mice in the PBS control group were 

injected daily (s.c.) with 100µL of sterile PBS and the mice treated with folate-FITC 

alone were injected s.c. with 100µL of the conjugate appropriately diluted to give a 500 

nmol/kg concentration. The immunotherapy was administered on a 5 days on 2 days off 

schedule. Mice in the sunitinib alone or axitinib alone groups were gavaged daily with 

100µL of 20mg/kg sunitinib or 15 mg/kg axitinib respectively. All mice treated with the 

combination of folate-FITC and sunitinib or axitinib received appropriately timed doses 

of both treatments described above (i.e. 100µL of 500 nmol/kg folate-FITC s.c. + 100µL 

of 20mg/kg sunitinib or 15 mg/kg axitinib p.o.). Tumor growth was monitored at 48h 

intervals by measuring each tumor with a pair of calipers and calculating its volume using 

a standard two-dimensional tumor volume equation; the length of the longest axis of each 

tumor (L) and the length of the axis perpendicular to it (W) was recorded in millimeters 

and the corresponding tumor volume in mm3 was determined by calculating ½ (L x W2). 

Treatments were administered continually until the PBS control tumors reached 1000-

1500 mm3 in size at which point mice were euthanized and tumors resected for further 

analysis. For comparison of tumor growth rates, the calculated tumor volumes were 

averaged by treatment group and plotted on a graph of tumor size vs. days post tumor 

implantation. In order to reduce serum folate levels to concentrations comparable with 

folate levels in humans, all mice in treatment groups were placed on a folate deficient diet 

one week following the 2nd immunization. Any mice that were not euthanized at the end 

of the treatment period were returned to regular chow within a week of completing 

therapy. 
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3.2.8 Resection and Digestion of Tumors and Spleens 

 As mentioned in the previous subsection, treatment of tumor-bearing animals was 

suspended once the control tumors started reaching a size that is considered too large a 

burden for the animals involved. In the case of M109 cells, the implanted tumors began 

to ulcerate and scab over as they reached ~750 mm3 in size and therefore, the therapy 

needed to be stopped and mice needed to be euthanized at this point. Once it was 

determined that a study should be ended, all animals in the treatment groups were 

euthanized within 1-2 days and their tumors and spleens harvested for freezing and 

analysis by flow cytometry. Briefly, mice were euthanized by CO2 asphyxiation and their 

tumors and spleens were removed with the aid of dissection equipment and washed in 

PBS to remove any excess fur or blood. Both tissues were then weighed in order to obtain 

a second set of data to corroborate tumor volume measurements and to determine 

whether tumor cells had metastasized to the spleen.  Each tumor was then cut in half and 

one section was minced into fine pieces. The individual minced tumors were then placed 

into separately labeled tubes containing ~10ml of a collagenase cocktail. This digestion 

cocktail, designed in the Low laboratory, was chosen because it causes the least damage 

to cell-surface proteins. It is composed of 1mg/ml collagenase type IV, 0.1mg/ml of 

hyaluronidase from bovine testes, and 0.2mg/ml of deoxyribonuclease I from bovine 

pancreas dissolved in serum free folate deficient (FD)-RPMI1640 medium. Following 

digestion for 1h at 37°C with mild shaking, the digestion reaction was stopped by the 

addition of FD-RPMI640 medium containing 10% heat inactivated FBS and the broken 

down tumors were passed through a 40µm cell strainer to collect individual tumor cells. 

The isolated cells were then spun down to remove digestion cocktail and resuspended in a 
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red blood cell lysis buffer (Sigma Aldrich, St. Louis, MO) for 5-10minutes. The lysis 

buffer was then diluted with an excess of PBS and the red blood cell free tumor cells 

were collected by centrifugation. The resulting cell pellet was resuspended in PBS 

containing 1% BSA and used in the flow cytometry experiments described later. 

Murine spleen tissue is generally very soft and easily broken apart, and therefore, 

does not require an extra digestion step for isolation of individual splenocytes. The 

cleaned spleens collected from treated mice were gently mashed and pressed through a 

40µm cell strainer with the aid of a plunger from a small syringe and some PBS. The 

strainer was carefully washed with a small amount of PBS to remove any attached cells 

through to the collection tube until only the white connective tissue of the spleen’s outer 

membrane remained in the mesh of the strainer. The collected splenocytes were spun 

down before subjecting them to the red blood cell lysis procedure detailed earlier. Spleen 

cells collected from the previous step were subsequently suspended in PBS containing 

1% BSA and kept on ice till fluorescent labeling and analysis.  

 

3.2.9 Labeling and Flow Cytometry Analysis of Tumor and Spleen Cells 

 The tumor and spleen cells that were isolated as described in the previous 

subsection were labeled with specific antibodies to a variety of immune cell markers. 

Briefly, 100µl aliquots of the isolated tumor and spleen cells suspended in 1% BSA-PBS-

Tween (wash buffer) were transferred to 1.5ml eppendorf tubes for labeling individual 

cell types. These aliquots were then incubated at 4°C for 5 minutes with a commercially 

available Fc receptor blocker (BD Biosciences, San Jose, CA). Each different tube was 
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subsequently incubated for 1h at 4°C with the appropriate antibodies: APC or PE 

conjugated anti-mouse F4/80 antibody for macrophages; PE conjugated anti-mouse CD3 

and FITC conjugated anti-mouse CD4 or FITC conjugated anti-mouse CD8 for CD4+ 

and CD8+ T cells respectively; APC conjugated anti-mouse CD11b and PE conjugated 

anti-mouse GR-1 for myeloid derived suppressor cells; and PE conjugated anti-mouse 

CD3, FITC conjugated anti-mouse CD4, and Alexa Fluor 647 conjugated anti-mouse 

FR4 (folate receptor δ) for regulatory T cells. Folate receptor expression on tumor cells 

was detected by staining with a folate-Alexa Fluor 647 conjugate. Following antibody 

labeling, cells were washed with cold wash buffer and analyzed on a Beckton Dickinson 

FACS Caliber instrument using CellQuest software. During each experiment, cell 

samples were also labeled with antibodies of each individual fluorescent label for 

compensation purposes. At least 100,000 cells were counted from each tumor and spleen 

sample. 

 

3.2.10 Cryopreservation, Labeling, and Imaging of Tumor and Spleen Tissue 

 Once a combination therapy study was completed, tumors and spleens were 

removed and cleaned as described in section 3.2.8. Half of each tumor was embedded in 

Shandon™ Cryomatrix™ resin and snap frozen by partial submersion in liquid nitrogen. 

The frozen tissues were then sealed in freezer bags and stored at -80°C till use. When 

ready, the frozen tumor tissues were sliced into 10µm sections using a cryotome and 

mounted on to polylysine-coated Superfrost microscopy slides. These tissue mounted 

slides were also stored at -80°C until they were used for staining and imaging (generally, 

for no more than 1 week). In order to prepare slides for fluorescent imaging, the slides 
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were removed from the -80°C freezer and allowed to warm up at room temperature for 

30-60 minutes. The tissue sections were subsequently fixed and permeabilized in ice-cold 

acetone for 10 minutes followed by washing in ice-cold PBS (2x, 5 minutes each). The 

slides were carefully wiped off with a cotton tip swab and the tissue section was encircled 

with a Pap pen marker. The marked off tissue containing circles were then incubated in a 

freshly prepared PBS-Tween solution containing 1% BSA for 30 minutes to block any 

unspecific binding. After the incubation period, slides were washed 2x for 2 minutes and 

dried with a cotton swab followed by incubating the marked circles with a 1:50 dilution 

(in 1% BSA containing PBS-Tween) of Alexa Fluor 647 conjugated rat anti-mouse CD31 

antibody (BioLegend, San Diego, CA) in a dark humidified chamber for 1h at room 

temperature. Thusly labeled tissue slides underwent a final round of washing in PBS (3x, 

5 minutes each) before being dried and mounted with cover slips (with one drop of 

mounting medium). The cover slips were then sealed in place with clear nail polish to 

prevent drying and movement during imaging.  The labeled sections were examined 

under an Olympus FV1000 inverted confocal laser scanning microscope using a Plan 

Apo 10X objective. All tissue fluorescence transmission images were obtained under 

identical conditions. Unlabeled tissue sections that were otherwise treated in the same 

manner as the anti-CD31 labeled slides were used to ensure that no unspecific 

background florescence was influencing the observed labeling intensities. 
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3.2.11 Statistical Analysis 

Graphing and certain statistical calculations of the collected data from all the 

described experiments were performed using GraphPad Prism software. Error bars on 

tumor volume graphs and all bar graphs represent standard error mean. A simple 

additivism equation was used to calculate whether the relationship between the two 

combined drugs were additive or synergistic. Eadd, the fractional tumor growth inhibition 

that would be expected if the two drugs combined in an additive manner was calculated 

as: (EA x EB), where EA and EB are the fractional tumor growth inhibition accomplished 

at a particular time point by treating with each individual drug. If the reduction of tumor 

growth observed at the same time point when animals are administered with both drugs is 

greater than the projected additive effect, then the treatment is considered synergistic. All 

flow cytometry data were analyzed on FlowJo software and confocal microscopy data 

was analyzed on FLUOVIEW Viewer software. 

 

3.3 Results 

 

3.3.1 Anti-FITC Antibody Response in Immunized Mice 

 As detailed in the Materials and Methods section, for each experiment mice were 

immunized three times at two week intervals with the KLH-FITC conjugate formulated 

in a GPI-0100 adjuvant. Mouse blood was collected by submandibular puncture 

following both the second and third immunizations and antibody titers were assessed to 

ensure that a robust anti-FITC immune response was generated. The graph shown in 

Figure 3.3 demonstrates a significant elevation of anti-FITC titers in all groups of 
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immunized mice (blood was collected from all mice in a cage and pooled for ELISA 

analysis) when compared to blood serum titers from non-immunized mice (green line). 

Following the completion of some experiments, blood was again collected and an ELISA 

titer assays conducted to ensure that antibody levels were maintained during the treatment 

period. The resulting data demonstrated that only a slight decrease in titers occurs during 

the 2-3 week treatment period, indicating that KLH-FITC plus GPI-0100 vaccination is 

capable of inducing a lasting antibody response. 

        

3.3.2 Sunitinib Synergizes with Folate-Hapten Mediated Immunotherapy in the L1210A 
Tumor Model 

 
 As noted in the Introduction, VEGFR inhibitors have been observed not only to 

downregulate angiogenesis, but also to inhibit the immunosuppressive activities of 

myeloid derived suppressor cells and regulatory T cells.  In order to test whether these 

immunodulatory properties of VEGFR inhibitors might augment the anti-tumor activities 

of receptor-targeted hapten immunotherapies, it was necessary to grow folate receptor-

expressing tumors in immunocompetent mice. For this purpose, L1210A tumors were 

implanted in DBA/2 mice and Renca and M109 cancers were grown in Balb/c mice as 

described previously.  The first experiment to evaluate the desired combination therapy 

was conducted in Balb/c mice implanted with Renca tumors, but even though the therapy 

originally seemed to work as anticipated (Figure 3.4), flow cytometry analysis of the 

tumor cells following completion of the study indicated that they were losing FR while 

proliferating in vivo. As a result, any further immunotherapy studies in Renca tumors 
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were discontinued since folate-FITC would not be able to mediate a tumor-targeted 

immune response against FR negative tumors.  

The next study to evaluate the combination of sunitinib plus folate-hapten 

mediated immunotherapy was conducted in L1210A tumor-bearing mice previously 

immunized against fluorescein. As seen in Figure 3.6, DBA/2 mice implanted with 

L1210A cancer cells grew tumors that expanded to 1000 mm3 in <3 weeks.  Surprisingly, 

neither sunitinib nor the folate-targeted immunotherapy alone exerted any impact on this 

rapid tumor growth, at least when exposed to the dosing regimen explored in this study.  

In contrast, the combination of sunitinib plus folate-targeted immunotherapy caused a 

significant reduction in tumor growth (Figures 3.6 and 3.8 A), suggesting that the 

combination therapy is better than the sum of the two single agent therapies.  These data 

imply that some type of synergy between the tumor-targeted hapten immunotherapy and 

the VEGFR inhibitor therapy exists. 

Because L1210A cells derive from a murine B cell lymphocytic leukemia, it was 

also instructive to examine the weights of each animal’s spleen, since malignant cells 

from the tumor metastasize to the spleen in this animal model.  As shown in Figures 3.7 

and 3.8 B, spleens became similarly enlarged in the PBS-, sunitinib- and folate-FITC- 

treated animals, but remained essentially normal in the combination therapy animals.  

These data suggest that either metastasis of malignant cells to the spleen is strongly 

suppressed by the combination therapy or that malignant cells that spread to the spleen 

are rapidly eliminated in this therapy. 

 



68 
 

3.3.3 Sunitinib Synergizes with Folate-Hapten Mediated Immunotherapy in the M109 
Tumor Model 

 
Folate receptors are overexpressed by a number of different human cancers. 

Therefore, in order to develop drugs that can treat these FR expressing tumors, successful 

therapeutic efficacy needs to be demonstrated in more than one murine tumor model. The 

M109 lung cancer cell line was selected as a follow-up to the L1210A tumor model 

because of its ability to grow syngeneic solid tumors in immunocompetent mice and its 

highly immunogenic nature. These tumors have also demonstrated an ability to respond 

well to folate-FITC immunotherapy in the past and some treated animals even generated 

a lasting anti-tumor memory (curative folate-FITC + IL-2 + IFN- α treatment).17 For the 

purposes of the experiments described in this chapter, female Balb/c mice were implanted 

s.c. with solid M109 tumors and divided into 4 groups: PBS control, folate-FITC alone, 

sunitinib alone, and folate-FITC + sunitinib. As shown in Figure 3.9, the groups of mice 

treated with either sunitinib or folate-FITC alone responds better to individual therapy 

than the L1210A tumor bearing mice treated with the same drug.  However, the mice in 

the group administered with a combination of both folate-FITC and sunitinib continued to 

maintain a slower growth rate and smaller tumor volumes than either treatment alone 

(purple diamond ♦). Moreover, calculating the Eadd of the two independent drug therapies 

yields a projected tumor volume reduction of 46% (assuming average tumor volume of 

the PBS group to be 100%), which is approximately two folds less efficacious than the 

23% attained by the combination therapy. These results endorse the original hypothesis 

that combining folate-hapten mediated immunotherapy with angiogenesis inhibitor 

therapy would likely result in a potently augmentation of each drug’s therapeutic 
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efficacy. Figure 3.10 visually represents the differences in tumor and spleen sizes 

harvested from mice following completion of the study. In contrast to the L1210A 

tumors, no significant metastasis of cancer cells to the spleen was apparent in this tumor 

model. 

 

3.3.4 Axitinib Synergizes with Folate-Hapten Mediated Immunotherapy in the L1210A 
Tumor Model 

 It is generally imprudent to assume that multiple drugs with the same mechanism 

of action would behave identically in a certain tumor type. Therefore, any claim 

suggesting that all angiogenesis inhibitors synergize with folate-hapten mediated 

immunotherapy against FR expressing cancers simply based on studies using one 

angiogenesis inhibitor would be an extrapolative statement. In fact, as demonstrated in 

previously described experiments, the same angiogenesis inhibitor (sunitinib) could have 

better anti-tumor effects in one murine model (M109) than in a different one (L1210A). 

 Given these possibilities, we wanted to ensure that sunitinib was not the only 

VEGFR inhibitor that would synergize with folate-FITC immunotherapy. Following a 

thorough search of the literature, we chose axitinib as a second angiogenesis inhibitor to 

evaluate in FR+ cancers because it is a more selective inhibitor of VEGF receptors and 

therefore, displays slightly different characteristics from sunitinib while maintaining the 

same fundamental mechanism of anti-tumor efficacy. We elected to test the new drug in 

the L1210A tumor model because it was clearly the more aggressive and less 

immunogenic of the two available tumor types and therefore, would be more likely to 

answer the question of whether this drug combination would succeed in other FR+ tumor 
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models. Immunized DBA/2 females were implanted s.c. with solid L1210A tumors and 

administered with PBS, folate-FITC, axitinib (15mg/kg) or a combination of axitinib and 

folate-FITC once their tumors reached 50-75mm3 in volume. As shown in Figure 3.11 

axitinib combines with folate-FITC immunotherapy to slow tumor growth and prolong 

survival of treated mice. In this particular tumor model, axitinib alone performed better 

than sunitinib alone, but was unable to slow tumor progression significantly. The average 

tumor volume in the axitinib treated group at the end of the study (day 20) was 53% of 

the tumor volumes measured in the PBS treated mice. The mice treated with the axitinib 

+ folate-FITC combination, however, demonstrated considerably smaller tumor volumes 

(23% at 20 days post tumor implantation) which is also an approximately two fold 

improvement from the projected additive therapeutic efficacy (43%). Following 

completion of the in vivo treatment studies, mice from each group were euthanized and 

their tumors and spleens were harvested for further analysis. Figure 3.12 visually 

represents the differences in tumor sizes resected from mice in the four treatment groups, 

and Figure 3.13 shows average tumor and spleen weights measured from the harvested 

tissues. 

 

3.3.5 Immune Effector Cell and Suppressor Cell Levels are Augmented in Combination 
Treated Mice 

 
 A significant amount of effort has been poured into studying the mechanisms 

underlying the anti-cancer effects caused by angiogenesis inhibitors. Studies reported in 

the literature propose a number of other mechanisms beyond the basic inhibition of tumor 

vasculature leading to tumor necrosis. These include the down-regulation of MDSCs and 
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Tregs, and inhibition of stat3 activity.29,32,33 Since previous studies have already 

determined that in order for folate-FITC immunotherapy to be successful, a full 

recruitment of immune effector cells to the tumor site was necessary, we were interested 

in determining which of these effector cell functions could be augmented by the addition 

of an angiogenesis inhibitor. In order to answer this question, tumors and spleens from 

treated mice in all studies were resected, digested, and labeled with a range of immune 

cell-specific antibodies for analysis by flow cytometry. As shown in Figure 3.14, the 

collected data indicate that CD4+ and CD8+ T cell levels are elevated in the spleens of 

the combination treated mice in both the L1210A and the M109 tumor models. The data 

also show that the MDSC levels are suppressed in the spleens of M109 tumor-bearing 

mice treated with the sunitinib plus folate-FITC combination (Figure 3.15). Interestingly, 

although MDSC suppression in VEGF inhibitor treated animals is widely reported in the 

literature, it was only observed in the M109 tumor model. Therefore, these results 

indicate that with this particular combination therapy, T cells are the most effectively 

modulated immune cell type, possibly due to the combined effect of Treg downregulation 

and stimulation of antigen presentation stemming from hapten-mediated destruction of 

tumor cells. 

 

3.3.6. Significant Inhibition of Tumor Vascular Growth is Observed in Combination 
Treated Mice 

 
 Since the primary mechanism of anti-tumor activity of angiogenesis inhibitors is 

the retardation of neovascularization, it is natural to expect that a reduction in blood 

vessel density would be observable within the tumors of any animal treated with sunitnib 
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or axitinib. However, recent studies by Prof. Rakesh Jain at the Harvard Medical School 

has shown that contrary to prevailing belief, the use of low dose vascular endothelial 

growth factor (VEGF) inhibitors in tumor treatment leads to the normalization of the 

otherwise disorganized and extremely leaky blood vessels of the tumor and results in the 

formation of a somewhat more organized and uniformly distributed vascular system.31 

Since both sunitinib and axitinib strongly inhibit the activity of multiple VEGF 

receptors,27,33 this vascular normalization theory may represent one mechanism that 

contributes to the significant retardation of tumor growth observed following the 

administration of the combination therapies described in this chapter. 

 We isolated and cryopreserved a portion of the solid tumors from all treated mice 

for analysis of tumor vasculature by immunofluorescence. The surprising observation 

from the confocal microscopy imaging of tumor sections stained for CD31 expression 

was that, contrary to expectations, the angiogenesis inhibitors alone had little effect in 

inhibiting vasculature within the tumors of treated mice, whereas the combination treated 

tumors demonstrated a dramatic reduction in CD31 staining. As shown by Figures 3.16, 

3.18, and 3.19, this observation was consistent for all three different combination studies 

described in this chapter, indicating that at least at the administered doses, the 

combination of folate-hapten mediated immunotherapy with VEGF inhibitors leads to the 

down regulation of neovascularization within FR positive tumors. The most likely reason 

for this potent synergy is twofold; first, the sunitinib and axitinib perform their primary 

function of inhibiting the VEGF receptors on the surface of endothelial cells which make 

them inaccessible to the VEGF proteins in the surrounding environment and second, the 

folate-FITC therapy mediates the destruction of FR expressing MDSCs, which are known 
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secretors of VEGF, leading to an overall lower concentration of VEGF in the tumor 

microenvironment.39 An alternate possibility is that the reduction in tumor growth rate 

caused by the dual-drug therapy maintains tumors at a small enough volume to prevent 

the necessity for rapid neovascularization.  

 

3.4 Discussion 

 The mammalian immune system is an intricate, complex, and highly efficient 

machine that has evolved over many millennia to recognize each and every healthy 

protein of the host as a ‘self’component that is permitted to reside in the body.15 Along 

the same token, this sentinel system is constantly on alert to recognize and block foreign 

antigens that are not in its repertoire of acceptable self-sequences from infecting or 

residing in the body.  Cancer has proved to be an incredibly difficult and daunting disease 

to treat partly because tumor cells have evolved the ability avoid detection by one of the 

most scrupulous security systems known to science.40 Therefore, it is only natural to 

conclude that in order to successfully eradicate a cancerous malignancy, an immune 

component should to be incorporated into the treatment regimen. However, most cancer 

immunotherapies that were developed over the past century have had to deal with not 

only waking up the unresponsive immune system against the cancer, but also with the 

cancer’s remarkable ability to suppress anti-tumor immunity.40 So, a successful 

immunotherapeutic needs to consistently recruit a robust immune response to the tumor 

site whilst meticulously blocking the cancer’s immunosuppressive activities.18 Since it 

would be rather difficult to incorporate two such functionalities into a single therapeutic 

drug that does not cause unpleasant toxicities, it has become apparent that, at least for the 
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time being, an effective immunotherapy approach would need to be composed of more 

than one anti-tumor agent.  

 Folate receptor targeted cancer therapeutics have attained exceptional success in 

both preclinical and clinical studies.9 Moreover, the folate-hapten mediated 

immunotherapy that was evaluated in clinical trials against late-stage renal cell 

carcinomas resulted in negligible (if any) toxicities associated with the folate-hapten 

therapy.23 Therefore, we were highly motivated to explore alternate therapeutic options 

that would combine well and improve the anti-tumor activity of folate-hapten 

immunotherapy.  Previous preclinical studies using folate-fluorescein immunotherapy in 

murine models of cancer had shown that the therapy was ineffective at slowing cancer 

progression once solid tumors had reached a certain size (~200mm3) and the cancer’s rate 

of proliferation exceeded the immunotherapy’s ability to mediate cancer cell death.41 

Concurrent studies had also demonstrated that localized tumor irradiation and the use of 

folate-CpG to mediate attraction of toll-like receptor expressing immune cells  to the 

tumor-site synergized with folate-hapten mediated immunotherapy to decrease tumor 

burden and prolong animal survival.41 However, neither of these therapies could easily be 

taken into clinic as companions to folate-hapten mediated immunotherapy because 1) 

most tumors are very difficult to treat with localized tumor irradiation since they are not 

easily accessible without surgical exposure, and 2) two new exploratory therapies (folate-

hapten and folate-CpG) would be challenging to obtain approval for through the FDA. 

Fortunately, having such extensive amounts of information regarding folate-hapten 

mediated immunotherapy was helpful in determining the desirable characteristics of a 

novel companion therapy for our immunotherapy. Inhibitors of the vascular endothelial 
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growth factor receptors held the most appeal for us because a number of VEGFR 

inhibitors were already approved for use in human cancers,28,38,42 they were continually 

showing efficacy against a variety of different cancers in murine models,24,25,36,37 and 

they had both direct tumor inhibition activity (which would help keep the tumors from 

proliferating faster than folate-hapten therapy could keep up with) and 

immunomodulating properties (which would aid the folate-hapten to better recruit 

immune effector cells to the site of tumor).29,31 

 Following a number of small pilot studies to evaluate whether the VEGFR 

inhibitors, sunitinib and axitinib, had any effect on two high FR expressing cancers that 

were syngeneic to mouse strains, and also to determine the range of doses that showed 

efficacy against these tumors, suboptimal doses of both the angiogenesis inhibitors and 

folate-fluorescein were used in the combination therapy studies in order to clearly 

determine whether the two therapies would work better in concert than as individual 

drugs. Sunitinib and axitinib were most effective as single therapies against M109 and 

L1210A tumors at doses higher than 20mg/kg and 15mg/kg respectively, and therefore, 

those concentrations were chosen for the purposes of the studies described in this chapter. 

With any receptor targeted, antibody-dependent immunotherapy care must be taken to 

ensure that the administered dose is not so saturating that both tumor cell receptors and 

the circulating antibodies are occupied by the therapeutic conjugate such that no tumor-

antibody interaction could occur.19 Past studied had shown that this saturation occurs at 

doses above 1500-1800 nmols/kg of folate-fluorescein.19 Thus, it was decided that a 500 

nmol/kg folate-fluorescein dose would be suboptimal yet effective.  
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 As shown in Figures 3.6 and 3.9, supplementation with sunitinib significantly 

augments folate-fluorescein immunotherapy in both L1210A and M109 tumor models. 

These results are particularly encouraging because L1210A is known to be an extremely 

aggressive tumor that has proven very difficult to impede once it has taken hold. In fact, 

even some extremely potent folate-cytotoxic agent conjugates have failed to slow 

L1210A tumor growth (Endocyte, Inc., personal communication). This tumor’s 

aggressive nature is further corroborated by the essential inactivity of both sunitinib and 

folate-fluorescein alone against the tumor in the studies described in this chapter. In 

contrast, both individual therapies have some therapeutic efficacy against the highly 

immunogenic M109 lung cancer model. The combination therapy, however, is markedly 

better than either treatment alone as demonstrated by both the tumor volume graph and 

the average weight of tumors resected from the different treatment groups (Figure 3.10). 

Furthermore, a clear increase in spleen size is observed in the DBA/2 animals treated 

with PBS, sunitinib or folate-fluorescein (Figure 3.7) indicating that L1210A tumor cells 

escape the original subcutaneous site of tumor implantation and metastasize to the spleen 

at some point during tumor progression. Healthy DBA mouse spleens average ~100mg 

(personal measurements) and the mice treated with the combination of folate-fluorescein 

plus sunitinib display spleen sizes that are only slightly heavier than normal tumors, 

leading to the most likely conclusion that the retardation of tumor growth caused by this 

therapy either prevents or slows tumor cells from escaping the solid tumor and lodging on 

other tissues. Alternatively, the less likely conclusion is that tumors metastasize at similar 

rates in each tumor treatment group, but the combination therapy is better able to destroy 
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any circulating L1210A tumor cells and metastatic nodules than any of the individually 

administered treatments. 

 An in vitro IC50 study of sunitinib with L1210A cells in culture showed that the 

compound had very low cytotoxicity against these cells. The data plotted on the graph 

shown in Figure 3.5 reveals that micromolar concentrations of sunitinib is necessary to 

kill 50% of the cells in the culture plate following a continuous 72h incubation. In 

contrast, some folate-cytotoxic drug conjugates display IC50 values in the single digit 

nanomolar range following only 2h incubations.12 This data raises the question of which 

mechanisms are playing a role in creating the synergy that exists between folate-mediated 

immunotherapy and VEGFR inhibitors if these inhibitors are not exerting their anti-tumor 

properties by killing tumor cells directly. Further mechanistic studies aimed towards 

better understanding this impressive synergy showed that cytotoxic T cell as well as 

CD4+ T cell levels compose a higher percentage of the total viable cell population in the 

spleens of combination treated DBA/2 and Balb/c mice than in any other treatment group. 

It was also interesting to observe that a significant reduction in MDSC populations, 

consistent with data reported in the literature that VEGFR inhibitors downregulate 

MDSC activity,31,32 is apparent in the spleens of M109 tumor-bearing mice dosed with 

the folate-fluoresceing plus sunitinib therapy. The fact that this difference was only 

clearly visible in the M109 tumor model is not to say that a similar mechanism is not 

underway in the L1210A tumor model, but that the large numbers of metastasized tumor 

cells may make it difficult to differentiate marked differences in % MDSC levels among 

the different treatment groups. The most surprising data collected during the search for a 

therapeutic mechanism were the confocal microscopy images of CD31-stained frozen 
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tumor sections, which showed that the dual therapy dramatically suppressed 

neovascularization of tumors. Although it was expected that a reduction of tumor 

vasculature would be observed in the two treatment groups dosed with the angiogenesis 

inhibitors, we did not anticipate finding a significantly lower blood vessel density in the 

combination treated tumors. As displayed by the images in Figures 3.16, 3.18, and 3.19, 

the reported observation is consistent among the three different experiments (sunitinib + 

folate-fluoresceing in L1210A and M109 tumors, and axitinib + folate-fluorescein in 

L1210A tumors), and a clear suppression of the tumor vasculature is apparent in the 

tumors treated with combination therapy. As mentioned in the Results section, studied by 

professor Rakesh Jain have concluded that VEGFR inhibitors, when administered 

consistently over a period of time at low doses,  is capable of normalizing the abnormal 

and erratic tumor vasculature to reflect those more commonly found within healthy 

tissues.31 But, it is apparent that if a tumor grows too fast for these drugs to exert any 

effect, then the vascular normalization does not occur even if the animals are dosed 

consistently with the VEGFR inhibitor. So, if a tumor is treated with a low dose of an 

angiogenesis inhibitor and its progression is slowed by the addition of a different 

therapeutic drug, then the blood vessel normalization effects should become apparent 

within these tumors. Moreover, an alternate reason for why this inhibition of 

neovascularization is occurring could be that the sunitinib and axitinib are blocking the 

VEGFR-VEGF recognition that is critical for growth of new blood vessels while the 

folate-fluorescein is simultaneously mediating the opsonization of VEGF-releasing 

MDSCs and tumor-associated anti-inflammatory macrophages. An experiment that 
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examines the aforementioned hypothesis would be an interesting addition to the available 

results and would strengthen the argument being made. 

 In short, the results collected from the studies described in this chapter leads to 

the conclusion that vascular endothelial growth factor receptor inhibitors are potent 

additions to the folate-hapten mediated antibody-dependent cellular cytotoxicity therapy 

described in this chapter. We have shown that two different angiogenesis inhibitors show 

synergy when combined with folate-hapten immunotherapy against both lung cancer 

(M109) and lymphocytic leukemia (L1210A) models of folate receptor expressing 

cancers. Furthermore, we have shown that this synergy occurs by improving the function 

of immune effector cells, reducing populations of immunosuppressive cells, and 

inhibiting tumor neovascularization.  
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CHAPTER 4: 
 

FOLATE-HAPTEN MEDIATED IMMUNOTHERAPY SYNERGIZES WITH 
ANTIBODY INHIBITORS OF THE T CELL CHECKPOINTS, PD-1 AND CTLA-4, IN 

MURINE MODELS OF CANCER 
 

4.1 Introduction 

The past two decades have marked the dawn of an age of renaissance for cancer 

immunotherapy. More and more research efforts are being poured into the study and 

understanding of tumor-associated immunity each year, and consequently, increasing 

numbers of immunotherapies are regularly entering clinical trials.1 At this time alone, 

there are over 600 immunotherapy based clinical trials in the United States and over 1000 

globally (ClinicaTrials.gov, NIH). Part of the reason for cancer immunotherapy receiving 

such serious attention in recent years is the publication of several high-impact articles 

that have demonstrated the important role that cancer cells play in modulating the body’s 

immune system. In fact, a 2011 sequel to an article originally published in 2000 in Cell 

by Douglas Hanahan and Robert Weinberg lists the ability to evade immune-mediated 

destruction as an emerging hallmark of cancers.2 Malignant tumors manage to evade the 

immune system through a multitude of different mechanisms, the most important of 

which are: 1) thwarting of cancer antigen processing and presentation, 2) downregulation 

of immune cell engaging co-receptors, 3) secretion of immune inhibitory factors and 

chemokines (e.g., IL-10), 4) stimulation of inhibitory receptor expression on immune 
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cells, and 5) promoting tolerance and apoptosis in host immune cells.2 Many 

immunotherapy drugs are, therefore, aimed at combatting one of these 

immunosuppressive mechanisms. However, because cancers employ a range of 

techniques to hide from the immune system, most immunotherapies have low success 

rates when administered as a single therapy and need to be prescribed in combination 

with another cancer therapeutic.3,4 

Two of the most recent drugs to receive approval by the US Food and Drug 

Administration, Yervoy® (2011) and Keytruda® (2014), are inhibitors of immune cell 

checkpoints and were designed to counteract the immune evasion mechanism 4 listed 

above. Immune checkpoints play a vital role in the regulation of immune effector cell 

function by activating negative feedback loops.5 These two particular drugs target the T 

cell checkpoint proteins CTLA-4 and PD-1, respectively. Generally, T cells are activated 

by the interaction between the T cell receptor (TCR) and major histocompatibility 

complexes (MHCs) on antigen presenting cells (APCs).6 In order to signal a complete 

activation of the T cell response, stimulation of CD28 co-receptors on T cells by B7 

proteins (CD80/CD86) on APCs is required.6 Without a co-receptor recognition signal, 

any T cell activated sorely through a TCR-MHC interaction will become anergic. T cell 

anergy causes the cell to be functionally inactive even though it has encountered a foreign 

antigen, but allows the cell to remain alive for a prolonged period in this activated-but-

incapacitated state.7 Since co-receptor signaling is so imperative in T cell activation, the 

body also utilizes co-receptors as regulators of prolonged activation. Once a T cell has 

been fully activated against an antigen and begins proliferating, other co-receptors that 

can downregulate this activation are produced and expressed on their cell surface.8 
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Cytotoxic T-lymphocyte associated protein-4 (CTLA-4) and programmed cell death 

protein-1 (PD-1) are two such inhibitory co-receptor proteins. CTLA-4 has a higher 

binding affinity to the B7 complex than CD28 and therefore, competes with CD28 for B7 

binding.8 Once a CTLA-4-B7 interaction has taken place, the T cell receives internal 

signals to stop proliferating and producing immune-activating cytokines. PD-L1 and PD-

L2 are ligands expressed by APCs that interact with the PD-1 receptors newly produced 

by activated T cells to mediate anergy, cell exhaustion, and apoptosis.9,10  In healthy 

animals, these intricate layers of immune regulation are imperative in maintaining a 

controlled immune response that does not lead to dangerous autoimmune conditions. 

Cancer cells display a remarkable ability to recognize the roles that different 

immune cells play in disease surveillance. They understand the value of inhibitory co-

receptors for immune regulation, and therefore, elevate the expression of PD-L1 and PD-

L2 on their cell membranes.11-13 This upregulation makes it difficult to recruit a persistent 

immune response to the site of tumor since most cytotoxic T cells become inactivated 

once they encounter a cancer cell expressing ligands to PD-1.13,14 Therefore, although it 

would be imprudent to interfere with these regulatory mechanisms in a healthy human, 

inhibiting the T cell checkpoint interactions has led to promising levels of immune 

stimulation in cancer patients.5 Studies in both murine models and humans patients have 

shown that the administration of monoclonal antibody inhibitors of PD-1 and CTLA-4 

lead to an elevated, prolonged, and highly effective anti-tumor response mediated by T 

cells.15-20 Checkpoint inhibitor therapies in clinic are approved for the treatment of 

melanomas and are undergoing clinical trials in lung, bladder, and prostate cancers 

among several others.19  



106 
 

One of the biggest disadvantages to checkpoint inhibitor antibodies is their lack of 

a tumor-targeting modality. Although the treatment is successful at increasing T cell 

activation and causing cancer cell death as a result of normal T cell accumulation at 

disease sites, it is conceivable that the therapy would work well in cohort with a drug that 

enhances immune cell attraction to the tumor microenvironment. Since folate receptor 

(FR)-mediated immunotherapy recruits anti-tumor immunity with selectivity and 

specificity, it was natural to wonder whether these two therapies would synergize in 

treating FR positive cancers. Folate receptors are known to be overexpressed in a number 

of important chancers including ovarian, renal, lung, and breast cancers.21 The receptor is 

also expressed on some healthy tissues,21,22 but is inaccessible to FR-targeted drugs in the 

blood stream due to its expression on the apical, non-blood-facing surface of healthy 

cells.23 Therefore, since folic acid binds FR with extremely high affinity (picomolar) and 

conjugation of folic acid to other chemical and biological compounds only slightly lowers 

its binding affinity, a large number of folate-conjugates have been developed for cancer 

imaging and therapy purposes.24-28 

Folate receptor-mediated immunotherapy works by taking advantage of the 

body’s natural defense mechanisms against infection by pathogens. In this approach, a 

patient is first immunized against a hapten molecule leading to the development of anti-

hapten antibodies, and subsequently treated with a folate-hapten conjugate to mediate 

tumor recognition by the previously induced antibodies.29-31 Haptens are generally small, 

non-toxic molecules that when administered in conjunction with a large carrier protein 

leads to the stimulation of an immune response.32 Once an animal has been vaccinated 

against a hapten, the animal’s immune system recognizes any hapten-bound cell as a 
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danger to self health and mediates its destruction via antibody dependent cellular 

cytotoxicity (ADCC). Previous experiments with folate-hapten mediated immunotherapy 

have demonstrated that a strong effector cell response by activated macrophages, NK 

cells, and cytotoxic T cells is necessary for the successful elimination of FR+ tumor 

cells.31,33 Since CTLA-4 and PD-1 checkpoint inhibitors can facilitate an extended 

activation of cytotoxic T cells that are recruited to the tumor site by folate-hapten 

mediated immunotherapy and previous studies have shown that FR-targeted 

immunotherapy is ineffective at eradicating tumors when administered alone,29 we 

conducted several experiments to evaluate the therapeutic efficacy of combining these 

two immunotherapy techniques in FR+ cancer models.  

In this chapter, we describe studies focused on evaluating the effect of combining 

monoclonal antibody inhibitors of CTLA-4 and PD-1 with folate-fluorescein (folate-

FITC) immunotherapy in fluorescein vaccinated mice implanted with tumors of two 

aggressive FR expressing cancer cell lines, M109 and L1210A. The collected data show 

that T cell checkpoint inhibitors work together with folate-FITC to reduce tumor burden, 

slow tumor progression, and significantly prolong animal survival. 
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4.2 Materials and Methods 

 

4.2.1 Antibodies and Reagents 

Keyhole limpet hemocyanin (KLH), fluorescein isothiocyanate, SIGMAFAST™ 

OPD substrate tablets, sterile phosphate buffered saline (PBS), and female Balb/c serum 

were purchased from Sigma Aldrich (St. Louis, MO). Bovine serum albumin conjugated 

to fluorescein (BSA-FITC), folate-EDA-fluorescein (Folate-FITC, EC17) and the GPI-

0100 adjuvant were generously provided by Endocyte, Inc. (West Lafayette, IN).  

Monoclonal antibodies to mouse CTLA-4/CD152 (clone 9H10) and PD-1 (clone RMP1-

14) were obtained from BioXcell (West Lebanon, NH). Gelatin was purchased from Bio-

Rad Laboratories (Hercules, CA). The biotin-conjugated goat anti-mouse IgG2a antibody 

and streptavidin-HRP conjugate was manufactured by Caltag Laboratories (Burlingame, 

CA). The special folate-deficient diet on which animals in treatment studies were 

maintained was purchased from Harlan Laboratories (Indianapolis, IN).  

 

4.2.2 Cell Lines and Culture 

The folate receptor expressing L1210A cell line was a gift from Dr. Manohar 

Ratnam, Karmanos Cancer Institute at Wayne State University (Detroit, MI) and Dr. 

Gerrit Jansen, Department of Oncology at the University Hospital Vrije Universiteid 

(Amsterdam, Netherlands). M109 cells selected for high FR expression were a generous 

gift from Dr. Alberto Gabizon, Sharet Institute of Oncology at the Hadassah-Hebrew 

University Medical Center (Jerusalem, Israel).  Both L1210A (lymphocytic leukemia) 

and M109 (lung cancer) cells were maintained in folate-deficient RPMI 1640 medium 
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(Invitrogen, Grand Island, NY) supplemented with 10% heat inactivated fetal bovine 

serum (Sigma Aldrich, St. Louis, MO), penicillin (100 units/mL) and streptomycin 

(100µg/mL) to ensure maintenance of high FR levels on their cell surface. All cells were 

cultured at 37°C in a humidified atmosphere containing 5% CO2. The adherent M109 

cells were passaged continuously in a monolayer and the L1210A cells, which grow in 

suspension were passaged in fresh medium every 3-4 days.  

 

4.2.3 Animals and Tumor Models 

M109 tumors were grown in female Balb/c mice which were obtained from 

Harlan Laboratories (Indianapolis, IN) at 5 to 7 weeks of age. Each mouse weighed 

approximately 18-20g on arrival. The DBA/2 mice used for L1210A tumor implantation 

were purchased at 5 to 7 weeks old from either Harlan Laboratories (Indianapolis, IN) or 

The Jackson Laboratory (Bar Harbor, ME). The DBA/2 mice weighed approximately 16-

18g on arrival. Individual animals were identified during therapy by tail markings. All 

procedures conducted on animals were carried out in strict accordance with protocols 

approved by the Purdue Animal Care and Use Committee (protocol # 1310000974, High 

Affinity Ligand Mediated Immunotherapy of Tumors). 

 

4.2.3.1 M109 Tumors 

M109 cells grow optimal tumors when implanted into animals at early passage 

(P0 or P1) and need to be maintained in Balb/c mice periodically in order for the cell line 

to maintain ability to grow tumors. Therefore, a stock of cryopreserved M109 cells at 

passage zero was continually kept available for tumor implantation purposes. The cells 
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were collected directly from solid tumors grown in mice as described in the previous 

chapter. When preparing to inject tumors, vials of frozen cells were thawed and allowed 

to grow till confluence in T75 or T150 flasks. Cells were then scraped from the flasks, 

counted, and suspended in folate-deficient RPMI-1640 medium containing 1% syngeneic 

female Balb/c serum. Mice were injected in their peritoneal cavity (i.p.) with 5 x 105 cells 

in 100-200µl of total medium. These ascites tumors grow more rapidly than solid tumors 

injected subcutaneously and untreated mice usually become moribund within 19-23 days 

of injecting cancer cells. Treatments were started on day 7 following tumor implantation.  

 

4.2.3.2 L1210A Tumors 

The original L1210 cell line was derived from a tumor that occurred in a female 

DBA (subline 212) mouse following skin exposure to 0.2% methylcholanthrene in ether. 

The L1210A cells used in these experiments were selected for high FR expression by the 

donors. For tumor implantation, cultured cells were counted and resuspended in serum 

free sterile PBS and each mouse was injected intraperitoneally with 3 x 104 cells. 

L1210A cells are extremely aggressive and poorly immunogenic, and therefore, 

proliferate rapidly in this ascetic tumor model. Untreated mice bearing peritoneal 

L1210A tumors generally do not survive longer than 18-20 days. Treatment was initiated 

on day 7 following tumor implantation. 

 

4.2.4 Formulation of Therapeutic Antibodies for in vivo Administration 

 In the clinic, melanoma patients receive up to 4 intravenous infusions of the 

checkpoint antibodies at 3 week intervals. In the published literature describing 
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evaluation of the antibodies in murine models of cancer, the antibodies are simply diluted 

in PBS and administered by i.p. injection from whence they are absorbed into circulation. 

Therefore, for the animal studies conducted to evaluate the checkpoint inhibitor plus 

folate-FITC immunotherapy, the αCTLA-1 antibody stock received from BioXcell was 

diluted in sterile PBS to give a final concentration of 100µg in 100µl of solution and the 

αPD-1 antibody was diluted to give a concentration of either 100µg or 200µg in 100µl of 

liquid. The stock antibodies were stored in the dark at 4°C and treatment dilutions were 

prepared fresh on the day of administration. Each mouse was dosed i.p. with 100µl of the 

appropriate antibody solution. 

 The folate-FITC (EC17) provided by Endocyte, Inc. was diluted to the desired 

concentration in sterile PBS. For the survival studies described in this chapter, a 1000 

nmols/kg folate-FITC concentration was used to treat animals in the folate-FITC and 

combination therapy groups.  Mice were injected i.p. with 100µL of the conjugate 

solution. The folate-FITC solutions prepared for animal dosing were divided into daily 

aliquots and stored in the dark at -20°C. Each aliquot was thawed completely on the day 

of administration and shaken for even drug distribution before injection into animals. 

 

4.2.5 Induction of Anti-FITC Antibodies and Measurement of Titers 

Female Balb/c and DBA/2 mice aged 5-8 weeks (following a week of 

acclimatization to their new environment) were vaccinated with 35µg KLH-FITC in 50 

µg GPI-0100 adjuvant formulated in sterile saline. All mice to be used in treatment 

studies were immunized every two weeks for a total of three vaccinations. The mice were 

injected s.c. at sites close to the neck or tail.  Blood samples from immunized mice were 
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collected by submandibular puncture one week after the 2nd and 3rd vaccinations and 

pooled by cage. Serum was isolated from the collected pooled blood samples by 

centrifugation and antibody titers were measured by ELISA. 

As mentioned in the previous chapter, antibody titers in immunized mouse blood 

were measured by an established ELISA procedure. Briefly, 96-well ELISA plates were 

coated with 2µg/well of BSA-FITC by overnight incubation. The plates were then 

washed and incubated with a freshly prepared 0.2% gelatin solution to block non-specific 

binding. Following a wash step to remove excess gelatin, the plates were again incubated 

with a total of 22 2x serial dilutions of pooled anti-FITC mouse serum and pre-immune 

mouse serum. The serum anti-FITC antibodies that were bound to the BSA coated FITC 

molecules on the 96-well plate were recognized by incubation with a biotin-conjugated 

goat anti-mouse IgG2a primary antibody which was subsequently quantified with a 

streptavidin-HRP conjugate. The assay was completed by exposing the HRP conjugate to 

a freshly prepared OPD substrate solution. Finally, the plate was read at 490 nm (to 

measure O.D.) using a 96-well plate reader and the results were plotted as average O.D. 

versus log serum dilution factor.  Each plate was read twice and each serum sample was 

run in duplicate in order to obtain an average optical density. A representative graph of 

the antibody titers obtained from one of the mouse studies is shown in figure 4.1. 
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4.2.6 Combination Therapy Protocols 

Since the peak antibody titer in mouse serum is reached approximately 7-10 days 

following the final immunization, in order to initiate antibody treatment close to this date 

mice were implanted with peritoneal M109 or L1210A tumors 1-2 days following 

inoculation with the 3rd vaccination. The day of tumor implantation was designated day 0 

for all conducted animal studies. On day 7, mice were randomly distributed among cages 

and treatment was initiated. At least 5 animals were allocated to each treatment group 

designated as PBS control, folate-FITC immunotherapy, αCTLA-4 antibody alone, αPD-

1 antibody alone, combination of folate-FITC plus αCTLA-4 antibody, or combination of 

folate-FITC plus αPD-1 antibody. Mice in the PBS control group were injected with 

100µL (i.p.) of sterile PBS 5 days per week.  Mice treated with folate-FITC alone were 

injected with 100µL (i.p.) of thawed 1000 nmol/kg folate-FITC solution. The 

immunotherapy was administered on a 5 days on 2 days off schedule. The two groups of 

mice treated with each individual checkpoint inhibitor alone were injected with 100µL 

volumes of the appropriate antibody concentration on days 7, 10, and 13. Each L1210A 

or M109 tumor-bearing mouse in the αCTLA-4 antibody group received 100µg of the 

antibody per injected dose. However, L1210A tumor-bearing DBA/2 mice in the αPD-1 

antibody group received 200µg of the antibody per injected dose whereas the M109 

tumor-bearing Balb/c mice in the same group received only 100µg of the antibody.  All 

treatments were administered according to the designated schedule until the mice showed 

clear signs of terminal disease burden. Mice fed on regular chow are known to have 

extremely high serum folate concentration, so in order to reduce folate levels to those 
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comparable with healthy humans, all mice in treatment studies were placed on a folate 

deficient diet three weeks prior to initiation of therapy.  

 

4.2.7 Measurement of Treatment Group Survival 

 All treated mice were closely monitored on a daily basis for signs of distress 

associated with the ascetic tumors. The two strains of mice displayed very different signs 

of morbidity. Balb/c mice injected with M109 tumors were considered moribund when 

they had lost ~20% of their starting body weight or had extremely scruffy fur, were 

lethargic, and had loose stool.  In contrast, L1210A tumor-bearing DBA/2 mice were 

considered terminal when their peritoneum became swollen due to extensive fluid 

buildup and the mice showed signs of scruffiness and extreme lethargy by hunching in a 

corner of the cage. Once a mouse was determined moribund, it was euthanized 

immediately by CO2 asphyxiation. The number of days from tumor implantation to 

euthanasia or death for each mouse was recorded and plotted on a survival graph. 

 

4.2.8 Data Analysis 

Graphing and certain statistical calculations of the collected data from all the 

animal experiments were performed using the survival measurement tool in GraphPad 

Prism software. 
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4.3 Results 

 

4.3.1 Anti-FITC Antibody Response in Immunized Mice 

 A robust antibody response is critical for the success of folate-hapten mediated 

immunotherapy. Therefore, before implantation of tumors, mice in each experiment were 

immunized three times at two week intervals with a KLH-FITC plus GPI-0100 (adjuvant) 

cocktail. Following the second immunization in all cases and sometimes also the third 

immunization, blood was collected from each mouse by a small submandibular puncture 

and anti-FITC antibody titers were assessed by ELISA. For comparison purposes, blood 

was also collected from a mouse that had never been immunized with the KLH-FITC 

cocktail and assayed for anti-FITC titer levels. The graph shown in figure 4.1 shows that 

a significantly elevated anti-FITC titer is present in all groups of immunized mice (blood 

was collected from all mice in a cage and pooled for ELISA analysis). These results 

reconfirm previous studies that established KLH-FITC plus GPI-0100 vaccination as a 

combination capable of inducing a strong and lasting antibody response. 

 

4.3.2 Antibody Inhibitors of PD-1 Synergize with Folate-Hapten Mediated 
Immunotherapy in the Ascitic L1210A Tumor Model 

 
Previous publications from the lab have described the requirement of a cytotoxic 

T cell component for the mediation of a successful therapeutic response by folate-hapten 

immunotherapy.31,33 As mentioned in the Introduction, some of the T cells recruited to 

the tumor site by folate-hapten immunotherapy are likely being inactivated by 

immunosuppressive receptors expressed by the cancer cells. Therefore, in order to 
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evaluate whether antibodies that inhibit the interaction between these receptors and the 

checkpoint proteins on activated T cells would augment the therapeutic efficacy of FR-

mediated immunotherapy, syngeneic tumors were grown in mice with an intact immune 

system capable of responding to modulation of its components. The L1210A lymphocytic 

leukemia cell line was selected for initial studies because it is known to be a highly 

aggressive tumor model that is difficult to treat with most folate-conjugates and therefore, 

an indication of success in this cell line would encourage further evaluation of the 

combination in other tumors. Ascitic L1210A tumors were implanted in female DBA/2 

mice as described in the Materials and Methods section and treated with either folate-

FITC or αPD-1 antibody alone or a combination of both. As shown in figure 4.2A, 

DBA/2 mice injected i.p. with L1210A cancer cells and treated with only PBS rapidly 

developed symptoms of terminal illness and had to be euthanized (median survival ~20 

days).  Interestingly, neither folate-FITC nor the αPD-1 antibody managed to slow the 

progression of disease at the administered doses and the mice in those treatment groups 

were also euthanized within a few days of the mice in the PBS group. In contrast, the 

group of mice that were treated with both folate-FITC and αPD-1 antibody (indicated by 

▲ on the graph) lived, on average, 10 days longer than the mice in the other treatment 

groups with survival extending beyond 40 days for two of the mice. This remarkable 

synergy observed in a difficult to treat tumor model was indicative of a combination 

therapy that would be potent against FR+ cancers in human patients.  
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4.3.3 Antibody Inhibitors of CTLA-4 Synergize with Folate-Hapten Mediated 
Immunotherapy in the Ascitic L1210A Tumor Model 

In addition to PD-1, activated T cells express another protein, the cytotoxic T 

lymphocyte associated antigen 4, which also mediates the regulation of their activity.8 

These proteins compete for recognition of the co-stimulatory receptors on APCs and once 

bound, signal the T cell to shut down production of cytokines and become anergic. Since 

combination with an αPD-1 antibody enhanced the therapeutic efficacy of folate-FITC 

immunotherapy so dramatically, it was possible that an antibody inhibitor of the CTLA-4 

protein would also yield similar therapeutic results.  As seen in figure 4.2B, the αCTLA-4 

antibody behaved very similar to αPD-1 antibody when administered alone and only 

prolonged life in the treated mice by a few days. As anticipated, the combination of 

folate-FITC therapy plus αCTLA-4 antibody significantly extended survival of L1210A 

tumor-bearing DBA/2 mice, but was not as successful as the earlier described 

combination with the αPD-1 antibody (figure 4.3). However, the results from this 

experiment, together with the previous study, confirm the original hypothesis that T cell 

checkpoint inhibitors would be potent companion therapies to folate-hapten mediated 

immunotherapy. 

 

4.3.4 Antibody Inhibitors of PD-1 Only Slightly Augment Animal Survival when 
Combined with Folate-Hapten Immunotherapy in the Ascitic M109 Tumor Model 

 Since folate receptors are upregulated by a number of different cancers in 

humans, in order to conclude that any drug combination would be a good candidate for 

treating these FR+ tumors the therapeutic efficacy needs to be established in more than 

one in vivo model.  Therefore, M109 ascites were grown in female Balb/c mice as 
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previously described and the animals were allocated randomly to groups that were treated 

with PBS, folate-FITC, αPD-1 antibody, or both folate-FITC and αPD-1 antibody. As 

demonstrated by the survival graph in figure 4.4A, the Balb/c mice treated with PBS (+) 

and folate-FITC alone (▼) start to become moribund around day 20 and are euthanized 

within days of each other. The surprising results from the other two treatment groups 

show that that even though the αPD-1 antibody enhances survival of these M109 tumor-

bearing mice, the combination of folate-FITC with αPD-1 antibody does little to improve 

upon that survival. The mice treated with the combination therapy (▲) display symptoms 

of terminal illness within 2-3 days of the mice treated with the checkpoint inhibitor 

antibody alone (●). These data contradict the findings of the study conducted with 

L1210A tumor-carrying DDA/2 mice which responded with synergistic survival rates 

when dosed with the same two therapies and could indicate a mouse strain-specific 

reason for the diminished therapeutic synergy. 

 

4.3.5 Antibody Inhibitors of CTLA-4 Synergize with Folate-Hapten Mediated 
Immunotherapy in the Ascitic M109 Tumor Model 

 
 As the experiment to evaluate the combination of folate-FITC immunotherapy 

with αPD-1 antibody therapy on M109 tumors were still underway, different groups of 

mice were concurrently treated with either αCTLA-4 antibody alone or in addition to 

folate-FITC treatments. Since the αPD-1 antibody component did not appear to be 

positively augmenting the folate-FITC immunotherapy in the combination treated mice, it 

was anticipated that similar results would be observed in mice dosed with the αCTLA-4 

antibody plus folate-FITC co-therapy. However, the unexpected results from this 
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experiment indicate that although the antibody therapy alone has an effect in enhancing 

survival, the combination therapy is emphatically more potent at controlling tumor 

growth and extending animal survival than either of the two individual therapies (figure 

4.4B). Moreover, as shown in figure 4.4, the individually administered αCTLA-4 

antibody is no better at slowing tumor progression than the individually dosed αPD-1 

antibody suggesting that the dramatic synergy observed during the folate-FITC plus 

αCTLA-4 antibody therapy must result from variations in the immune cell composition 

and the specific make-up of the T cells in this particular strain of mice carrying this 

particular type of tumor. 

 

4.4 Discussion 

 In an ideal situation, abnormal proteins from established tumors would be 

recognized and processed by infiltrating antigen presenting cells in the body early in the 

tumor’s development. These proteins would then be displayed on MHC proteins for 

recognition by circulating T cells, which would become activated, proliferate, and release 

immune-stimulatory cytokines.6 However, such normal pro-inflammatory functions are 

dramatically suppressed in tumors and the cancer cells evade recognition and destruction 

by immune effector cells.2 Cytotoxic T cells play an imperative role in the elimination of 

malignant cells in the body by promoting recruitment of other immune cells to the site of 

disease and by the calcium-dependent release of cell lytic granules that mediate the death 

of unhealthy cells.6 In order to avoid immune-mediated cell death, cancer cells express 

receptors that inactivate T cells before they can unleash their apoptosis mechanisms.  
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In FR-mediated immunotherapy, cancer cells are decorated with hapten-bound 

autologous antibodies which can be recognized by Fc receptors on phagocytic 

macrophages and NK cells. The cytotoxic T cell response associated with folate-hapten 

immunotherapy is mediated by the presentation of antigens derived from the cells that 

were destroyed by the aforementioned macrophages and NK cells. Therefore, since the 

tumor microenvironment’s ability to suppress recruitment of macrophages and NK cells 

to the site of tumor is directly counteracted by folate-hapten immunotherapy, a therapy 

that enhances anti-tumor T cell activity is likely to be a potent companion to folate-

hapten immunotherapy. 

 Although checkpoint inhibitor antibodies are currently showing therapeutic 

efficacy during clinical trials in a range of solid tumors,19,34 in murine models of solid 

tumors the drugs have little impact in slowing tumor growth. Therefore, in order to 

evaluate whether these antibody inhibitors of CTLA-4 and PD-1 would combine well 

with folate-fluorescein immunotherapy, the therapies were evaluated in ascites models of 

syngeneic murine cancers.  As demonstrated by L1210A tumor studies, the mice treated 

with a combination of either checkpoint inhibitor with folate-fluorescein display 

significantly prolonged survival than those dosed with only a single drug. These results 

confirm the hypothesis that blocking the interaction between CTLA-4 and CD28 and PD-

1 and PD-L1/PD-L2 results in a rather potent cytotoxic T cell response that aids the 

tumor infiltrating macrophages and NK cells to further mediate cell death. We then 

attempted to reproduce these results in a different FR+ tumor model, and evaluated the 

folate-fluorescein plus checkpoint inhibitor combination in ascitic M109 tumors. Even 

though these tumors are known to be more immunogenic than L1210A tumors, the 
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collected data surprisingly indicated that only the anti-CTLA-4 antibody synergizes with 

folate-fluorescein immunotherapy. However, both the anti-CTLA-4 and the anti-PD-1 

therapies were able to prolong survival when administered alone better than folate-

fluorescein alone. These unexpected results are difficult to explain without further 

exploration into the differences in nature of in vivo tumor growth between L1210A and 

M109 cells. It could be the case that M109 cells express less PD-L1 and PD-L2 than 

L1210A tumors, and therefore, blocking of PD-1 receptors has only a small effect on 

overall T cell activation against this particular tumor model. The minor therapeutic 

success demonstrated by anti-PD-1 antibody single therapy on M109 tumors does not 

appear to be enough to enhance the folate-hapten mediated ADCC response in the 

combination therapy. Alternatively, the discrepancy could be explained by a difference 

between the mouse strains; T cells derived from Balb/c mice may express lower PD-1 

levels than T cells from DBA/2 mice.  

In summary, further delving into the makeup of the tumor microenvironment in 

animals treated with the different drugs and combination will be necessary to better 

answer the questions arising from these results.  We can, nevertheless, conclude that 

certain T cell checkpoint inhibitors synergize with folate-hapten mediated 

immunotherapy to decrease tumor burden, delay tumor progression, and prolong survival 

in treated FR+ tumor-bearing animals. 
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CHAPTER 5: 

TARGETING THE SOMATOSTATIN AND CCR5 RECEPTORS FOR CANCER 
IMAGING AND THERAPY 

5.1 Introduction 

A number of cell surface receptors expressed on healthy organs and tissues are 

upregulated by the malignant cells of certain tumors.1-2 This overexpression facilitates the 

higher-than-normal rate of signal transduction and nutrient uptake required for the 

uncontrolled proliferation of cancer cells.2 Researchers can take advantage of this marked 

upregulation by designing small molecules that bind to such receptors with high affinity 

and use these molecules to selectively deliver therapeutics to malignant clusters of cells 

while avoiding toxicity to the surrounding healthy tissue.3 High affinity targeting ligands 

can also be linked to imaging agents in order to aid diagnosis and surgical procedures.4 

Cell surface receptor imaging with radio or fluorescently labeled ligands allows for the 

detection and visualization of both primary tumor and metastatic lesions allowing 

physicians to determine how far a tumor has already progressed at the time of diagnosis 

and also evaluate how much tissue needs to be removed during surgical resection.5 

Therefore, the discovery of novel tumor associated antigens that can selectively be 

targeted for delivery of drugs and imaging agents is an important contribution to the field 

of cancer research. 
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The somatostatin receptor and chemokine receptor 5 (CCR5) are two such 

receptors that are overexpressed by cancer cells.6-7 Somatostatin is an endocrine 

regulatory hormone that inhibits the release of growth hormone from the anterior 

pituitary gland.8 The natural hormone is found in the body in two active forms:  as cyclic 

peptides of either 14 or 28 amino acid units resulting from alternative cleavage 

processes.8  Somatostatin receptors are expressed throughout the central nervous system 

(CNS), including the hypothalamus, the cerebral cortex and the brain stem, as well as 

anterior pituitary, neuroendocrine, and gastrointestinal cells.8 While playing a 

neurotransmitter role in the CNS, somatostatin’s hormonal activities throughout the rest 

of the body include the inhibition of growth hormone, insulin, glucagon, and gastrin 

release.8-9 Somatostatin receptors belong to the G protein-coupled receptor (GPCR) 

family and their general structure comprises of seven transmembrane peptide domains. 

The extracellular portion of the receptor binds somatostatin hormones leading to signal 

transduction by the intracellular segment of the receptor.8 The human somatostatin 

receptor family is composed of five different receptor subtypes, named sst1-5, according 

to chronological order of discovery.10-12 These receptor subtypes arise from individual 

genes located on different chromosomes, which allows for a tissue-specific regulation of 

each isoform’s expression.10-12 Although all five receptor subtypes bind the natural 

somatostatin peptides, their affinities for somatostatin analogues vary widely.11,13 

Therefore, each individual receptor subtype can be specifically targeted by the 

development of ligands that have a high affinity for that particular isoform but not the 

others. Due to the important role that these hormones play in the regulation of growth 

signals, the expression of somatostatin receptors are augmented by certain cancers and 
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rare diseases. The receptor is reported to be overexpressed by numerous neuroendocrine 

tumors and adenocarcinomas as well as cancers of the breast, kidneys, and pituitary.14-17 

Somatostatin is also implicated in acromegaly, Cushing’s disease, gigantism, and 

carcinoid syndrome.18-20 

The natural somatostatin hormone itself has proven unsuitable for therapeutic 

purposes (partially due it its extremely low plasma half-life owing to rapid enzymatic 

degradation), and therefore, extensive research efforts have been focused on the 

development of peptide mimetics of somatostatin.21 Several of these peptide analogs 

(Octreotide, Lanreotide, etc.) have been studied in animal models of cancer for their 

potential as imaging and therapeutic agents.17 Although the FDA has already granted 

approval to a few analogs for use in clinic against certain conditions, e.g. Sandostatin® 

(acromegaly, gigantism, thyrotropinoma, carcinoid syndrome, and vasoactive intestinal 

peptide-secreting tumors), Signifor® (Cushing’s disease), and Somatuline® (acromegaly 

and carcinoid syndrome associated with neuroendocrine tumors), approval for applying 

any of these somatostatin ligands as anti-cancer therapeutics is still pending.   

Small molecules generally tend to be significantly better cancer therapeutics than 

peptide ligands due to their ability to penetrate deeper into solid tumors.22-23 Therefore, in 

order to use the somatostatin receptor as a cancer target, we perused the literature for 

reports describing high affinity, small molecule analogs of the somatostatin hormone. 

Sections of this chapter describes the synthesis and functionalization of a somatostatin 

receptor subtype 2 and 5 specific small molecule agonist. This particular molecule is 

reported to bind sst2 and sst5 with an affinity of approximately 2 nM and 0.38 nM, 

respectively.24-25  
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A portion of this chapter also focuses on the development of an imaging agent to 

visualize CCR5 positive tumors. CCR5 is a chemokine receptor belonging to the 

rhodopsin-like G-protein coupled receptor family. The CCR5 protein has seven 

transmembrane segments, three intracellular loops, three extracellular loops, and is coded 

by a gene located on 3p21.27-28 The receptor is primarily expressed on helper T cells, 

macrophages, monocytes, and dendritic cells. It also serves as one of the co-receptors for 

human immunodeficiency virus (HIV) entry into T cells.27-28 

In healthy animals and humans chemokine receptors on circulating white blood 

cells selectively bind small soluble chemokine molecules that can activate and attract 

these immune cells to sites of inflammation.29 CCR5 can selectively bind CCL5 

(RANTES), MIP-1α (CCL3), and MIP-1β (CCL4).30 Physiological CCL5 is a 91 amino 

acid chemokine usually expressed by T cells due to their role in the basic immune 

response against viral infections.27,31 Since modulation of inflammation is a major 

characteristic of cancer,32 chemokines and chemokine receptors are thought to play an 

important role in the development of the tumor microenvironment, helping set a 

foundation for cancer progression. Substrate binding by chemokine receptors initiates a 

cascade of downstream signaling events impacting certain cellular functions that are 

essential for cancer cell survival.33-34 The interaction between CCL5 and CCR5 leads to 

the activation of ERK, MAPK, and AKT pathways, which, in the case of tumors, help 

sustain an environment of cancer-promoting chronic inflammation.28 CCR5 is 

specifically believed to play a role in cancer progression by promoting angiogenesis, 

aiding tumor growth and survival, and most importantly, by supporting invasive 

metastasis.33-34 
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 In the field of drug design, CCR5 is most attractive to researchers due to the 

critical role it plays in HIV infection. Therefore, great efforts have been made to design 

and synthesize antagonist of the CCR5 receptor with strong affinity to the receptor (sub-

nanomolar IC50 values).35-37 One of the receptor analogs discovered via a high-throughput 

medicinal chemistry screening was maraviroc (KD for CCR5 = ~5 nM), a small-molecule 

antagonist of the CCR5 receptor with potent anti-HIV-1 activity.35 The molecule was 

originally developed by Pfizer and is currently marketed under the trade name 

Selzentry®. Since CCR5 is believed to be important for the growth, metastasis, and 

survival of certain cancers including those of the breast, colon, prostate, and ovary,33 it 

was conceivable that maraviroc could be used as a ‘Trojan horse’ drug carrier molecule 

for tumor imaging and treatment purposes. Certain sections of this chapter detail our 

efforts aimed towards functionalizing and subsequently conjugating maraviroc to a 

fluorescent dye for imaging of CCR5 expressing cancer cells. 

 

5.2 Materials and Methods 

 

5.2.1 Reagents 

Maraviroc was obtained through the AIDS Research and Reference Reagent 

Program, Division of AIDS, NIAID, NIH (Bethesda, MD). All organic solvents were 

obtained from either Sigma Aldrich (St. Louis, MO) or the Purdue University Stores. The 

starting materials and reaction reagents for the synthesis of the described small molecule 
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somatostatin agonist were obtained from either Sigma Aldrich (St. Louis, MO) or TCI 

America (Portland, OR).  

 

5.2.2 Cell Lines and Culture 

LNCaP, a prostate adenocarcinoma cell line, and MCF-7, a breast cancer cell line, 

are reported to express elevated levels of CCR5. Both cell lines are commercially 

available and originated from human cancer patients. Neither cell line has undergone any 

modification or enhancement of receptor expression. All cells were maintained in the 

Cell Culture Facility of the Purdue University Department of Chemistry. LNCaP cells 

were cultured in RPMI 1640 medium (Invitrogen, Grand Island, NY) supplemented with 

10% heat inactivated fetal bovine serum (Atlanta Biologicals, Flowery Branch, GA), 1% 

sodium pyruvate, penicillin (100 units/mL) and streptomycin (100µg/mL). MCF-7 cells 

were cultured in RPMI 1640 medium (Invitrogen, Grand Island, NY) containing 10% 

heat inactivated fetal bovine serum (Atlanta Biologicals, Flowery Branch, GA), 1% 

glutamine, penicillin (100 units/mL) and streptomycin (100µg/mL). Cells were passaged 

continuously in a monolayer at 37°C in a humidified atmosphere containing 5% CO2. 

 

5.2.3 Synthesis of the Somatostatin Receptor-Targeted Small Molecule Ligand 

 The synthesis of several small molecule, triazole derivative somatostatin analogs 

similar to the one that was chosen for the purposes of the studies described in this chapter 

(shown in figure 5.1) are described in some detail in a patent granted to Contour-Galcera, 

et al. (US Patent# 2005154039A1).25 A modified synthetic scheme derived from this 
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patent and other procedures reported in literature was used in the synthesis of the desired 

sst2/sst5 agonist. Briefly, a 3-Thio-1,2,4-triazole derivative (V) was prepared according to 

the synthesis scheme detailed in figure 5.2. The starting molecules necessary for the 

synthesis of compound V and the final desired molecule, VI, were synthesized according 

to the steps summarized in figure 5.3 from commercially available materials. 

Condensation of isothiocyanate I with the acyl hydrazide II afforded the 

hydrazinecarbothioamide IV. The 1,2,4-triazole derivative V is obtained by base-

catalyzed cyclization, allowing for the introduction of the third and final substituent, III, 

by subsequent S-alkylation, using polymer-supported BEMP as a deprotonating agent.24-

25 The 3-Bromo-1-(indol-3-yl)propan-1-one, III, was synthesized using a standard 

Grignard activated addition reaction.26 All purified synthetic products used in the 

preparation of the final sst2/sst5 agonist were verified by NMR and MS. 

 

5.2.4 Synthesis of the CCR5-Targeted Maraviroc-Rhodamine Conjugate 

 The purified maraviroc compound generously provided by the AIDS Research 

and Reference Reagent Program was functionalized for the purposes of linking a 

fluorescent imaging agent using standard synthetic methods reported in the literature. The 

initial step involved the addition of a bromine functional group to the methyl group 

located on the triazole ring of maraviroc. This step was accomplished by an AIBN 

catalyzed reaction between maraviroc and N-Bromosuccinimide. Due to the small 

amounts of maraviroc made available by the NIH, the initial bromination reactions were 

run on a very small scale (2-10mg) to optimize reaction conditions before moving onto 

larger starting material amounts (20-50mg). This reaction process is outlined in figure 
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5.4. Following the initial bromination step, the bromide product was subsequently reacted 

with the alcohol group of N-Fmoc-ethanolamine in order to introduce a terminal amine 

group that, once deprotected, was allowed to react with the NHS group of NHS-

rhodamine.  This final step (detailed in figure 5.5) yielded the fluorescently conjugated 

maraviroc, III, as the desired product. An alternate conjugation was also attempted to 

evaluate whether differences in position of linkage would alter binding affinity of the 

ligand to the receptor. A rather simplified flow chart detailing the synthesis of this 

alternate conjugate is shown in figure 5.8. Although the confocal analysis of this second 

molecule also showed similar results, all experiments describes henceforth will relate to 

conjugate III. 

 

5.2.5 Confocal Microscopy Evaluation of the Maraviroc-Rhodamine Conjugate 

 In order to determine whether the newly synthesized maraviroc-rhodamine 

conjugate can recognize and bind CCR5 on the surface of LNCaP and MCF7 cells, these 

cells were plated on separate 4-well glass-bottomed confocal microscopy plates till ~80% 

confluent. The media in the wells were then removed and replaced with the appropriate 

unmodified complete medium (well 1), medium with a 50nM maraviroc-rhodamine 

concentration (well 2), medium with a 100nM maraviroc-rhodamine concentration (well 

3), or the 100nM maraviroc-rhodamine solution along with a 100 fold excess of free 

maraviroc as competition (well 4). The cells were allowed to incubate with the 

fluorescent agents for 1 hour, washed 3 times with PBS to remove any unbound 

maraviroc-rhodamine, and the wells were replenished with complete medium before 

examination under an Olympus FV1000 Confocal Laser Scanning Microscope using a 
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60X oil-immersion objective. All fluorescence transmission images were obtained under 

identical conditions. 

 

5.3 Results and Discussion 

 

5.3.1 Functionalization of the Somatostatin Receptor-Targeted Small Molecule Ligand 

Although a remarkable amount of resources and time have been dedicated to the 

development of novel therapeutics against cancer surgery, chemotherapy, and radiation 

therapy continue to be the main treatment modalities used in the clinic.38 Surgical 

resection of tumor masses leading to complete cures would be an ideal scenario, but since 

this is rarely the case, follow-up administration of chemotherapeutic drugs with 

undesirable side effects is a necessity for most patients.38-39 The unpleasant toxicities 

associated with chemotherapy and radiation therapy (e.g. hair loss, weight loss, nausea, 

anemia, reproductive issues) are a result of the non-selective manner in which these drugs 

treat cancer.39 Therefore, in order to minimize damage to healthy tissues and maximize 

elimination of tumor cells, drugs that target cancerous tissue with high affinity and 

selectivity need to be developed. One way to accomplish this therapeutic goal is by 

designing molecules that target cancer-associated antigens. These antigens need to be 

either inaccessible or only expressed at low levels on healthy tissues. Generally, a 5-10 

fold elevation in expression level from normal expression is regarded appropriate for 

targeting an antigen for cancer treatment.40  
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Following a thorough examination of the literature, it was determined that the 

somatostin receptor was an antigen appropriate for targeting a number of important 

cancers including neuroendocrine tumors and adenocarcinomas.17 Although studies have 

indicated that the receptor could be present on some important healthy tissues (e.g. liver, 

spleen), its expression on cancer cells was expected to be significantly higher and we 

hoped that any negative side effects would be overshadowed by a potent therapeutic 

efficacy against malignant cells.11  As described earlier in the chapter, the small molecule 

we selected for targeting the somatostatin receptor has extremely high affinities for the 

2nd and 5th isoforms of the receptor, both of which are overexpressed by certain cancer 

cells.11-12,24 The synthetic scheme outlined in the original publication that reported the 

molecule’s discovery was reproducible for the most part with only minor modifications in 

regard to reaction length or temperature being necessary to obtain the desired product.  

However, after several failed attempts and explorations into alternate approaches, it was 

decided that a Grignard reaction was the most effective technique for synthesizing 

product III shown in figure 5.3. 

 Having completed the somewhat challenging synthesis of the molecule, the most 

daunting hurdle was faced while attempting to functionalize the molecule for attachment 

of a water soluble linker and a fluorescent imaging agent. We carefully analyzed any 

available literature reports that described structure activity studies and, based on these 

findings, were inclined to believe that the lysine-based (primary amine) and tryptophan-

based side groups of the triazole ring were critical for receptor recognition and binding. 

Therefore, a reaction to functionalize the molecule through a quaternary ammonium bond 

at the aromatic ring group on the triazole was attempted. However, the product of this 
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reaction was deemed unstable since no mass peak of the desired molecular weight could 

be observed during LCMS analysis. The reaction was attempted several times under a 

number of different reaction conditions, but was ultimately abandoned due to the unlikely 

possibility of finding a location on the molecule whence to attach a therapeutic or 

imaging cargo without serious altering its binding affinity to the somatostatin receptor.  

Any significant decline in binding affinity would render the molecule useless for cancer 

targeting due to the fear of off-side toxicity caused by non-specific binding. 

 

5.3.2 Conjugation of Maraviroc Interferes with its CRR5 Binding Ability 

As described in the Materials and Methods, our goal for maraviroc was to 

functionalize the molecule at its single methyl side group by the addition of a bromine 

group which would then be used as a site of linkage for a fluorescent dye. This synthesis 

proved rather difficult because we were unable to exercise much control over the site of 

reaction and it was possible that bromine groups were also being added at the isopropyl 

group on the opposite carbon of the triazole ring. However, following many persistent 

trials, a conjugate with the desired molecular weight (by LCMS) was synthesized and 

purified. It is conceivable that the final product was a mixture of two conjugates derived 

from different linkage sites that both have the same molecular weight. Nevertheless, it 

was decided that regardless of the site of conjugation, determining whether any 

modifications of the molecule affected its binding affinity to the receptor was important. 

We had maintained two cell lines that have been reported in the literature to 

express CCR5, LNCaP and MCF-7, for the evaluation of any successfully synthesized 

fluorescent conjugates of maraviroc. Therefore, since the affinity of naked maraviroc to 



141 
 

CCR5 is reported to be in the low nanomolar range and any reduction in affinity beyond 

100nM would make the conjugate undesirable for further development, the two cell lines 

were incubated with 50 and 100nM concentrations of the maraviroc-rhodamine 

conjugate. Receptor-specific binding of the conjugate was measured by competition with 

free maraviroc. The labeled cell samples were examined under a confocal laser scanning 

microscope. Much to our great disappointment, as shown in figure 5.6, no uptake of 

fluorescent conjugate was visible in either cell line at the tested concentrations. These 

results could most likely be explained by two factors: 1) LNCaP and MCF-7 cells do not 

express any CCR5 or 2) modifications to the molecule leads to the loss of affinity for the 

receptor. In order to eliminate the possibility that the cell lines do not express CCR5, the 

maraviroc-rhodamine conjugate was incubated in wells containing human white blood 

cells (separated from whole blood using a ficoll gradient). Several types of immune cells, 

particularly T cells, are reported to express CCR5. Much to our chagrin, the data from 

this experiment also showed no ligand binding to cancer cells (figure 5.7) leading to the 

conclusion that this receptor-binding inactivity is most likely a result of the conjugation 

of a new compound (rhodamine) to the otherwise highly specific maraviroc molecule. 

Since these experiments did not eliminating CCR5 as a promising cancer antigen, it still 

remains a very desirable candidate for cancer targeting due to its clear implication in a 

number of important cancers. Other CCR5-binding small molecules should continue to be 

explored as targeting ligands for cancers that over-express this receptor. 
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Figure 5.1. The high affinity small molecule ligand synthesized for the purposes of 
imaging and treating somatostatin receptor subtype 2 and 5 over-expressing cancers. The 
molecule is reported to be an agonist of the receptor and binds sst2 with an affinity of ~2 
nM and sst5 with an affinity of ~0.38 nM. 
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Figure 5.3. Preparation of the starting materials necessary for the synthesis of the final 
somatostatin ligand, VI, from commercially available reagents. Reagents and conditions: 
(d) TMSCHN2 2M in hexane (2eq), DCM/MeOH; (e) hydrazine monohydrate (10eq), 
MeOH, 25oC, 60h; (f) CS2 (10eq), polymer supported N-cyclohexylcarbodiimide (1.1eq), 
DCM, 25oC, 3h; (g) EtMgBr, DCM, 0oC, 30min, BrCH2CH2C(O)Cl (1.5eq), 25oC, 24h 
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Figure 5.4. Synthetic step showing the desired addition of a bromine functional group to 
maraviroc. The resulting compound, I, is used in later steps to facilitate the addition of a 
fluorescent imaging agent to maraviroc. Maraviroc is the starting material shown in the 
reaction scheme. 
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Figure 5.5. Reaction scheme detailing the steps involved in synthesizing the fluorescent 
maraviroc-rohodamine conjugate that will be evaluated in in vitro CCR5 binding studies. 
In the first step, an N-Fmoc-ethanolamine group is introduced to the bromine 
functionalized maraviroc in order to yield a free amine following deprotection. This 
product is then reacted with NHS-rhodamine, yielding the final maraviroc-rhodamine 
conjugate. 
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Figure 5.8. Reaction scheme detailing the steps involved in synthesizing the alternate 
fluorescent maraviroc-rohodamine conjugate that was evaluated in in vitro CCR5 binding 
studies to yield results very similar to those observed with the original fluorescent 
maraviroc compound III. 
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